


Structural Mechanics-
A Unified Approach



http://taylorandfrancis.com


Structural
Mechanics -
A Unified
Approach
Alberto Carpinteri
Department of Structural Engineering, Politecnico di Torino, Italy

Taylor &. Francis
Taylor & Francis Group

LONDON AND NEW YORK



Published by Taylor & Francis
2 Park Square, Milton Park, Abingdon, Oxon, OX 14 4RN

First edition 1997

Transferred to Digital Printing 2006

© 1997 Taylor & Francis

Typeset by EXPO Holdings, Malaysia.

ISBN 0419 19160 7

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be
reproduced, stored, or transmitted, in any form or by any means, without the prior permission in
writing of the publishers, or in the case of reprographic reproduction only in accordance with the
terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with
the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK.
Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at
the London address printed on this page.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

A catalogue record for this book is available from the British Library

Library of Congress Catalog Card Number: 94-66939



To my daughters
Margherita and Sofia

v



http://taylorandfrancis.com


Contents

Preface xiii
About the Author xv

1 Introduction 1

1.1 Preliminary remarks 1
1.2 Classification of structural elements 2
1.3 Structural types 5
1.4 External loading and constraint reactions 11
1.5 Structural collapse 14
1.6 Numerical models 16

2 Geometry of areas 20

2.1 Introduction 20
2.2 Laws of transformation of the position vector 20
2.3 Laws of transformation of the static moment vector 21
2.4 Laws of transformation of the moment of inertia tensor 22
2.5 Principal axes and moments of inertia 25
2.6 Mohr's circle 26
2.7 Areas presenting symmetry 28
2.8 Elementary areas 30
2.9 Thin-walled sections 33
2.10 Examples of calculation 35

3 Kinematics and statics of rigid systems 48

3.1 Introduction 48
3.2 Degrees of freedom of a mechanical system 48
3.3 Kinematic definition of plane constraints 51
3.4 Algebraic study of kinematics of rigid systems 57
3.5 Graphical study of kinematics of systems having one

degree of freedom 64
3.6 Cardinal equations of statics 69
3.7 Static definition of plane constraints 69
3.8 Algebraic study of statics of rigid systems 72
3.9 Static-kinematic duality 77

4 Determination of constraint reactions 79

4.1 Introduction 79
4.2 Auxiliary equations 79
4.3 Principle of Virtual Work 83
4.4 Graphical method 89
4.5 Line of pressure 95

5 Internal beam reactions 107

5.1 Introduction 107
5.2 Indefinite equations of equilibrium for plane beams 109

vii



CONTENTS

5.3 Diagrams of characteristics of internal reaction: direct
method and graphical method 116

5.4 Determination of characteristics of internal reaction via
the Principle of Virtual Work 136

6 Statically determinate beam systems 139

6.1 Introduction 139
6.2 Gerber beams 140
6.3 Trusses 146
6.4 Three-hinged arches and closed-frame structures 153

7 Analysis of strain and stress 174

7.1 Introduction 174
7.2 Strain tensor 174
7.3 Dilations and shearing strains 177
7.4 Law of transformation of the strain tensor for rotations of

the reference system 179
7.5 Principal directions of strain 182
7.6 Equations of compatibility 184
7.7 Stress tensor 185
7.8 Law of transformation of the stress tensor for rotations of

the reference system 189
7.9 Principal directions of stress 191
7.10 Plane stress condition 195

8 Theory of elasticity 200

8.1 Introduction 200
8.2 Indefinite equations of equilibrium 200
8.3 Static-kinematic duality 202
8.4 Principle of Virtual Work 204
8.5 Elastic constitutive law 207
8.6 Linear elasticity 211
8.7 The problem of a linear elastic body 213
8.8 Clapeyron' s Theorem 215
8.9 Betti's Reciprocal Theorem 216
8.10 Isotropy 218
8.11 Strength, ductility, fracture energy 223
8.12 Strength criteria 230

9 The Saint Venant problem 236

9.1 Introduction 236
9.2 Fundamental hypotheses 236
9.3 Centred axial force 239
9.4 Flexure 242
9.5 Eccentric axial force and biaxial flexure 248
9.6 Torsion in beams of circular cross section 253
9.7 Torsion in beams of generic cross section 257
9.8 Torsion in open thin-walled sections 260
9.9 Torsion in closed thin-walled sections 263

Vlll



CONTENTS

9.10 Combined shearing and torsional loading 266
9.11 Shearing force 267
9.12 Biaxial shearing force 273
9.13 Thin-walled cross sections subjected to shear 274
9.14 Beam strength analysis 280

10 Beams and plates in flexure 286

10.1 Introduction 286
10.2 Technical theory of beams 286
10.3 Beams with rectilinear axes 286
10.4 Plane beams with curvilinear axes 292
10.5 Differential equation of the elastic line 294
10.6 Notable displacements and rotations in elementary

schemes 298
10.7 Composition of rotations and displacements 305
10.8 Beam on elastic foundation 309
10.9 Dynamics of deflected beams 313
10.10 Plates in flexure 319
10.11 Sophie Germain equation 326
10.12 Shells with double curvature 327

11 Finite element method 332

11.1 Introduction 332
11.2 Single-degree-of-freedom system 332
11.3 Principle of minimum total potential energy 334
11.4 Ritz-Galerkin method 337
11.5 Principle of Virtual Work 339
11.6 Kinematic boundary conditions 344
11.7 Dynamics of elastic solids 345

12 Structural symmetry 350

12.1 Introduction 350
12.2 Beam systems with axial symmetry 350
12.3 Beam systems with axial skew-symmetry 354
12.4 Beam systems with polar symmetry 359
12.5 Beam systems with polar skew-symmetry 360
12.6 Non-symmetrically loaded shells of revolution 361
12.7 Symmetrically loaded shells of revolution 364
12.8 Membranes and thin shells 367
12.9 Circular plates 371
12.10 Cylindrical shells 378
12.11 Cylindrical vessels with faces subjected to internal

pressure 380
12.12 Three-dimensional solids of revolution 383

13 Statically indeterminate structures: method of forces 385

13.1 Introduction 385
13.2 Axial indeterminacy 385
13.3 Elementary statically indeterminate schemes 388

IX



CONTENTS

13.4 Elastic constraints 399
13.5 Inelastic constraints (imposed displacements) 405
13.6 Thermal distortions 411
13.7 Continuous beams 417

14 Statically indeterminate structures: method of
displacements 421

14.1 Introduction 421
14.2 Parallel-arranged bar systems 421
14.3 Parallel-arranged beam systems 426
14.4 Automatic computation of beam systems having multiple

degrees of indeterminacy 429
14.5 Plane trusses 436
14.6 Plane frames 438
14.7 Plane grids 440
14.8 Space frames 441
14.9 Dynamics of beam systems 444

15 Plane frames 450

15.1 Introduction 450
15.2 Rotating-node frames 454
15.3 Translating-node frames 466
15.4 Thermal loads and imposed displacements 474
15.5 Frames with non-orthogonal beams 478
15.6 Frames loaded out of their own plane 483

16 Energy methods for the solution of beam systems 486

16.1 Introduction 486
16.2 Determination of elastic displacements in statically

determinate structures 488
16.3 Resolution of structures having one degree of static

indeterminacy 494
16.4 Resolution of structures having two or more degrees of

static indeterminacy 499
16.5 Thermal distortions and constraint settlements 505
16.6 Statically indeterminate truss structures 507
16.7 Arches and rings 515
16.8 Castigliano's Theorem 529
16.9 Menabrea's Theorem 530

17 Instability of elastic equilibrium 532

17.1 Introduction 532
17.2 Discrete mechanical systems with one degree of

freedom 532
17.3 Discrete mechanical systems with n degrees of freedom 535
17.4 Rectilinear beams with distributed elasticity 543
17.5 Beam systems 552
17.6 Curvilinear beams: arches and rings 556

X



CONTENTS

17.7 Lateral torsional buckling 559
17.8 Plates subjected to compression 561
17.9 Flat arches 566

18 Theory of plasticity 572

18.1 Introduction 572
18.2 Elastic-plastic flexure 575
18.3 Incremental plastic analysis of beam systems 580
18.4 Law of normality of incremental plastic deformation 592
18.5 Theorems of plastic limit analysis 595
18.6 Beam systems loaded proportionally by concentrated

forces 597
18.7 Beam systems loaded proportionally by distributed

forces 602
18.8 Non-proportionally loaded beam systems 610
18.9 Cyclic loads and shake-down 614
18.10 Deflected plates 618

19 Plane stress and plane strain conditions 622

19.1 Introduction 622
19.2 Plane stress condition 622
19.3 Plane strain condition 624
19.4 Deep beam 626
19.5 Thick-walled cylinder 631
19.6 Circular hole in a plate subjected to tension 635
19.7 Concentrated force acting on the edge of an elastic

half-plane 637
19.8 Analytical functions 640
19.9 Kolosoff-Muskhelishvili method 643
19.10 Elliptical hole in a plate subjected to tension 647

20 Mechanics of fracture 653

20.1 Introduction 653
20.2 Griffith's energy criterion 655
20.3 Westergaard's method 658
20.4 Mode II and mixed modes 665
20.5 Williams' method 668
20.6 Relation between fracture energy ^}C and critical value

KIC of the stress intensity factor 673
20.7 Crack branching criterion in mixed mode condition 679
20.8 Plastic zone at the crack tip 682
20.9 Size effects and ductile-brittle transition 686
20.10 Cohesive crack model and snap-back instability 691

Appendix A Calculation of the internal reactions in a circular
arch subjected to a radial hydrostatic load 700

A. 1 Analytical method 700
A.2 Direct method 702

XI



CONTENTS

Appendix B Calculation of the internal reactions in a circular
arch subjected to a uniformly distributed vertical
load 705

B. 1 Analytical method 705
B.2 Direct method 707

Appendix C Anisotropic material 708

C.I Anisotropic elastic constitutive law 708
C.2 Orthotropic material 710
C.3 Stress-strain relations for plane stress conditions 712
C.4 Strength criteria for orthotropic materials 716

Appendix D Heterogeneous beam 718

D. 1 Multilayer beam in flexure 718
D.2 Reinforced concrete 720

Appendix E Heterogeneous plate 722

Appendix F Finite difference method 725

F. 1 Torsion of beams of generic cross section (V2CD = 0) 725
F.2 Plates in flexure (V4w = q/D) 121

Appendix G Torsion of multiply-connected thin-walled cross
sections 728

Appendix H Shape functions 729

H. 1 Rectangular finite elements: Lagrange family 729
H.2 Rectangular finite elements: Serendipity family 730
H.3 Triangular finite elements 732
H.4 Three-dimensional finite elements 734

Appendix I Application of the finite element method to
diffusion problems 735

Appendix J Initial strains and residual stresses 738

Appendix K Dynamic behaviour of elastic solids with linear
damping 739

Appendix L Plane elasticity with couple stresses 740

Appendix M Rotating circular disk 742

Appendix N Thermal stress in a circular disk 744

Further reading 746

Index 747

xn



Preface

This text intends to provide a complete and uniform treatment of the funda-
mental themes of Structural Mechanics, ranging from the more traditional to
the most advanced.

The mechanics of linear elastic solids (beams, plates, shells, three-
dimensional bodies) is studied adopting a matrix approach, which is particu-
larly useful for numerical applications. The kinematic, static and constitutive
equations, once composed, provide an operator equation which has as its
unknown the generalized displacement vector. Moreover, constant reference is
made to duality, i.e. to the strict correspondence between statics and kinemat-
ics that emerges as soon as the corresponding operators are rendered explicit,
and it is at once seen how each of these is the adjoint of the other. In this con-
text the Finite Element Method is illustrated as a method of discretization and
interpolation for the approximate solution of elastic problems.

The theory of beam systems (statically determinate, statically indetermi-
nate and hypostatic) is then presented, with the solution of numerous exam-
ples and the plotting of the corresponding diagrams of axial force, shearing
force and bending moment, obtained both analytically and graphically. For the
examination of framed structures, approached on the basis of the method of
displacements, automatic computation procedures, normally involving the use
of computers, are introduced in both the static and the dynamic regime. In
addition, the energy aspects and their usefulness in reaching solutions are
emphasized.

Finally, the more frequently occurring phenomena of structural failure
are studied: instability of elastic equilibrium, plastic collapse and brittle frac-
ture. The unifying aspects, such as those regarding post-critical states and the
discontinuous phenomena of snap-back and snap-through are underlined.
Numerous examples regarding frames previously examined in the elastic
regime are once more taken up and analysed incrementally in the plastic
regime. Furthermore, comparison of the results based on the two theorems of
plastic limit analysis (the static and kinematic theorems) is made. As regards
fracture mechanics, the conceptual distinction between 'concentration' and
'intensification' of stresses is highlighted, and the stress treatment and energy
treatment are set in direct correlation. Finally, size scale effects, as well as the
associated ductile-brittle transition, are discussed.

To this it may be added that all the topics regarding structural symmetry
(frames and plates) are gathered together in a single chapter, whereas subjects
regarding dynamics are recalled in various chapters, for the purpose of
emphasizing how dynamics is, in any case, a generalization of statics. Topics
of considerable current interest from the applicational standpoint, such as
those regarding anisotropic and/or heterogeneous materials, are dealt with in
appendices.

Whereas Chapters 11 and 12 present continuity with Chapters 7, 8, 9 and
10, based on the common operator formulation of the elastic problem, Chap-
ters 13,14, 15 and 16 represent the completion of the theory of beam systems
introduced in Chapters 3, 4, 5 and 6. Elementary mechanisms of structural
collapse are dealt with in Chapters 17, 18 and 20, where the mutual interac-
tions of these mechanisms are also touched on. Chapter 19 deals with plane

xiii



PREFACE

problems of thin plates and cylindrical or prismatic solids of large thickness,
and constitutes an indispensable basis for Linear Elastic Fracture Mechanics
(Chapter 20).

The book has been written to be used as a text for graduate or undergradu-
ate students of either Architecture or Engineering, as well as to serve as a use-
ful reference for research workers and practising engineers. A suitable
selection of various chapters may constitute a convenient support for different
types of courses, from the more elementary to the more advanced, and from
short monographic seminars to courses covering an academic year.

This text is the fruit of many years of teaching in Italian universities, for-
merly at the University of Bologna and currently at the Politecnico di Torino,
where I have been Professor of Structural Mechanics since 1986. A constant
reference and source of inspiration for me in writing this book has been the
tradition of the Italian School, to which I am sincerely indebted. At the same
time, it has been my endeavour to update and modernize a basic, and in some
respects dated, discipline by merging classical topics with ones that have
taken shape in recent times. The logical sequence of the subjects dealt with
makes it possible in fact to introduce, with a minimum of effort, even topics
that are by no means elementary and that are of differing nature, such as the
shell theory, the finite element method, the automatic computation of frames,
the dynamics of structures, the theory of plasticity and the mechanics of
fracture.

Finally, I wish to express my gratitude to all those colleagues, collaborators
and students, who, attending my lessons or reading the original manuscript,
have, with their suggestions and comments, contributed to the text as it
appears in its definitive form. I further wish to thank in advance all those who
in future will have the courtesy to point out to me any mistakes or omissions
that may have been overlooked in this first edition.

Alberto Carpinteri
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1 Introduction

1.1 Preliminary remarks

Structural Mechanics is the science that studies the structural response of
solid bodies subjected to external loading. The structural response takes the
form of strains and internal stresses.

The variation of shape generally involves relative and absolute displace-
ments of the points of the body. The simplest case that can be envisaged is that
of a string, one end of which is held firm while a tensile load is applied to the
opposite end. The percentage lengthening or stretching of the string naturally
implies a displacement, albeit small, of the end where the force is exerted.
Likewise, a membrane, stretched by a system of balanced forces, will dilate in
two dimensions and its points will undergo relative and absolute displace-
ments. Also three-dimensional bodies, when subjected to stress by a system of
balanced forces, undergo, point by point and direction by direction, a dilation
or a contraction, as well as an angular distortion. Similarly, beams and hori-
zontal plates bend, imposing a certain curvature, respectively to their axes and
to their middle planes, and differentiated deflections to their points.

As regards internal stresses, these can be considered as exchanged between
the single (even infinitesimal) parts which make up the body. In the case of the
string, the tension is transmitted continuously from the end on which the force
is applied right up to the point of constraint. Each elementary segment is thus
subject to two equal and opposite forces exerted by the contiguous segments.
Likewise, each elementary part of a membrane will be subject to four mutu-
ally perpendicular forces, two equal and opposite pairs. In three-dimensional
bodies, each elementary part is subject to normal and tangential forces. The
former generate dilations and contractions, whilst the latter produce angular
distortions. Finally, each element of beam or plate that is bent is subject to
self-balanced pairs of moments.

In addition to the shape and properties of the body, it is the external loading
applied and the constraints imposed that determine the structural response.
The constraints react to the external loads, exerting on the body additional
loads called constraint reactions. These reactions are a priori unknown. In
the case where the constraints are not redundant from the kinematic point of
view, the calculation of the constraint reactions can be made considering the
body as being perfectly rigid and applying only the cardinal equations of stat-
ics. In the alternative case where the constraints are redundant, the calculation
of the constraint reactions requires, in addition to equations of equilibrium,
the so-called equations of congruence. These equations are obtained by elim-
inating the redundant constraints, replacing them with the constraint reactions
exerted by them and imposing the abeyance of the constraints that have been
eliminated. The procedure presupposes that the strains and displacements,
produced both by the external loading and by the reactions of the constraints
that have been eliminated, are known. A simple example may suffice to illus-
trate these concepts.

1



INTRODUCTION

X = 2F

Figure 1.1

B2

x2

, 21/3 , 2113 21/3
(a) r T +

(b) v(F)

Let us consider a bar hinged at point A and supported at point B, subjected
to the end force F (Figure 1.1). The reaction X produced by the support B is
obtained by imposing equilibrium with regard to rotation about hinge A:

F(2l) = Xl=*X = 2F (1.1)

The equation of equilibrium with regard to vertical translation provides, on
the other hand, the reaction of hinge A. The problem is thus statically deter-
minate or isostatic.

Let us now consider the same bar hinged, not only at A but also at two
points BI and B2, distant \l and ^/respectively from point A (Figure 1.2 (a)).
The condition of equilibrium with regard to rotation gives us an equation in
two unknowns:

(1.2)

Thus the pairs of reactions X\ and X2 which ensure rotational equilibrium are
infinite, but only one of these also ensures congruence, i.e. abeyance of the
conditions of constraint. The vertical displacement both in B} and B2 must in
fact be zero.

To determine the constraint reactions, we thus proceed to eliminate one of
the two hinges Bl or B2, for example Bl9 and we find out how much point B}

rises owing to the external force F (Figure 1.2(b)) and how much it drops
owing to the unknown reaction X{ (Figure 1.2(c)). The condition of congru-
ence consists of putting the total displacement of B^ equal to zero:

The equation of equilibrium (1.2) and the equation of congruence (1.3)
together solve the problem, which is said to be statically indeterminate or
hyperstatic.

1.2 Classification of structural elements

As has already been mentioned in the preliminary remarks, the structural ele-
ments which combine to make up the load-bearing structures of civil and
industrial buildings, as well as any naturally occurring structure such as rock
masses, plants or skeletons, can fit into one of three distinct categories:

1. one-dimensional elements (e.g. ropes, struts, beams, arches);
2. two-dimensional elements (e.g. membranes, plates, slabs, shells, vaults);
3. three-dimensional elements (stubby solids).

In the case of one-dimensional elements, for example beams (Figure 1.3),
one of the three dimensions, the length, is much larger than the other two,
which compose the cross section. Hence, it is possible to neglect the latter two
dimensions and consider the entire element as concentrated along the line
forming its centroidal axis. In our calculations, features which represent the
geometry of the cross section and, consequently, the three-dimensionality of
the element, will thus be used. Ropes are elements devoid of flexural and com-
pressive stiffness, and are able only to bear states of tensile stress. Bars, how-
ever, present a high axial stiffness, both in compression (struts) and in tension
(tie rods), whilst their flexural stiffness is poor. Beams and, more generally,
arches (or curvilinear beams), also present a high degree of flexural stiffness,

F(2/) + X,|/ = X2|f

2

A

B

I F

i F

BI

A

X] ,

IF

(c)

Figure 1.2

f(Xi)

x,

u (F)=u(x1) (1.3)



CLASSIFICATION OF STRUCTURAL ELEMENTS

Figure 1.3

provided that materials having particularly high tensile strength are used. In
the case of stone materials and concrete, which present very low tensile
strength, straight beams are reinforced to stand up to bending stresses, whilst
arches are traditionally shaped so that only internal compressive stresses are
produced.

When, in the cross section of a beam, one dimension is clearly smaller than
the others (Figure 1.4), the beam is said to be thin-walled. Beams of this sort
can be easily produced by rolling or welding metal plate, and prove to be
extremely efficient from the point of view of the ratio of flexural strength to
the amount of material employed.

In the case of two-dimensional elements, for example flat plates (Figure 1.5
(a)) or plates with double curvature (Figure 1.5 (b)), one of the three dimen-
sions, the thickness, is much smaller than the other two, which compose the
middle surface. It is thus possible to neglect the thickness and to consider the
entire element as being concentrated in its middle surface. Membranes are ele-
ments devoid of flexural and compressive stiffness, and are able to withstand
only states of biaxial traction. Also plates that are of a small thickness present
a low flexural stiffness and are able to bear loads only in their middle plane.
Thick plates (also referred to as slabs), instead, also withstand bending
stresses, provided that materials having particularly high tensile strength are
used. In the case of stone materials and concrete, flat plates are, on the other
hand, ribbed and reinforced, while vaults and domes are traditionally shaped
so that only internal compressive stresses are produced (for instance, in arched
dams).

Finally, in the case of so-called stubby solids, the three dimensions are all
comparable to one another and hence the analysis of the state of strain and
internal stress must be three-dimensional, without any particular simplifica-
tions or approximations.

3
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(a)

(a)

Figure 1.5

(b)
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STRUCTURAL TYPES

1.3 Structural types

The single structural elements, introduced in the previous section, are com-
bined to form load-bearing structures. Usually, for buildings of a civil type,
one-dimensional and two-dimensional elements are connected together. The
characteristics of the individual elements and the way in which they are con-
nected one to another and to the ground, together define the structural type,
which can be extremely varied, according to the purposes for which the build-
ing is designed.

In many cases, the two-dimensional elements do not have a load-bearing
function (for example, the walls of buildings in reinforced concrete), and
hence it is necessary to highlight graphically and calculate only the so-called
framework, made up exclusively of one-dimensional elements. This frame-
work, according to the type of constraint which links together the various
beams, will then be said to be trussed or framed. In the former case, the cal-
culation is made by inserting hinges which connect the beams together,
whereas in the latter case the beams are considered as built into one another.
In real situations, however, beams are never connected by frictionless hinges
or with perfectly rigid joints. Figures 1.6-1.11 show some examples of load-
bearing frameworks: a timber-beam bridge, a truss in reinforced concrete, an
arch centre, a plane steel frame, a grid and a three-dimensional frame.

Also in the case of bridges it is usually possible to identify a load-bearing
structure consisting of one-dimensional elements. The road surface of an arch
bridge is supported by a parabolic beam which is subject to compression, and,
if well-designed, is devoid of dangerous internal flexural stresses. The road
surface can be built to rest above the arch by means of struts (Figure 1.12), or

Figure 1.6

Figurel.7

5
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Figure 1.8

Figure 1.9
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STRUCTURAL TYPES

Figure 1.10

Figure 1.11

can be suspended beneath the arch by means of tie rods (Figure 1.13). Invert-
ing the static scheme and using a primary load-bearing element subject exclus-
ively to tensile stress, we arrive at the structure of suspension bridges (Figure
1.14). In these, the road surface hangs from a parabolic cable by means of tie
rods. The cable is, of course, able to withstand only tensile stresses, which are,
however, transmitted onto two compressed piers.

As regards two-dimensional structural elements, it is advantageous to
exploit the same static principles already met with in the case of bridges. To
avoid, for example, dangerous internal stresses of a flexural nature, the usual

7
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(a)

(b)

Figure 1.12

approach is to use vaults or domes having double curvature, which present
parabolic sections in both of the principal directions (Figure 1.15 (a)). A vari-
ant is provided by the so-called cross vault (Figure 1.15 (b)), consisting of
two mutually intersecting cylindrical vaults. Membranes, on the other hand,

8



STRUCTURAL TYPES

(a)

(b)

Figure 1.13

can assume the form of hyperbolic paraboloids, with saddle points and curva-
tures of opposite sign (Figure 1.15 (c)). In the so-called prestressed mem-
branes, both those cables with the concavity facing upwards and those with
the concavity facing downwards are subject to tensile stress.

9
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(a)

(b)

Figure 1.14
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EXTERNAL LOADING AND CONSTRAINT REACTIONS

(a)

Figure 1.15

(b)

1.4 External loading and constraint reactions

The strains and internal stresses of a structure obviously depend on the exter-
nal loads applied to it. These can be of varying nature according to the struc-
ture under consideration. In the civil engineering field, the loads are usually
represented by the weight load, both of the structural elements themselves
(permanent loads) and of persons, vehicles or objects (live loads).

Figure 1.16 represents two load diagrams, used in the early decades of this
century, of horse-drawn carts and carriages. The forces are considered as con-
centrated and, of course, proceeding over the road surface. Figure 1.17 illus-
trates the load diagram of a locomotive engine, and Figure 1.18 that of a
hoisting device. Figure 1.19 compares the permanent load diagrams of two
beams, one with constant cross section, and the other with linearly variable
cross section.

Other loads of a mechanical nature are hydraulic loads and pneumatic
loads. Figure 1.20 shows how the thrust of water against a dam can be repre-
sented with a triangular distributed load. Then there are inertial forces, which
act on rotating mechanical components, such as the blades of a turbine, or on

11
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INTRODUCTION

the floors of a storeyed building, following ground vibration caused by an
earthquake (Figure 1.21). A similar system of horizontal forces can represent
the action of the wind on the same building.

In addition to external loading, the structural elements undergo the action of
the other structural elements connected to them, including the action of the
foundation. These kinds of action are more correctly termed constraint
reactions, those exchanged between elements being internal, and those
exchanged with the foundation being external. The nature of the constraint

(a) form. 150

(b)

Figure 1.16

Figure 1.17

12
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EXTERNAL LOADING AND CONSTRAINT REACTIONS

(a)

Figure 1.19

(b)

Figure 1*20

reaction depends on the conformation and mode of operation of the constraint
which connects the two parts.

Figure 1.22 gives examples of some types of beam support to the founda-
tion. In the case of Figure 1.22 (a), we have a pillar in reinforced concrete; in
Figure 1.22 (b), we have joints that are used in bridges, and in Figure 1.22 (c),
a roller support. In all cases, the constraint reaction exchanged between the
foundation and the structural part is constituted by a vertical force, no con-
straint being exerted horizontally, except for friction.

Figure 1.23 shows the detailed scheme of a hinge connecting a part in re-
inforced concrete to the foundation. The hinge allows only relative rotations
between the two connected parts and hence reacts with a force that passes
through its centre. In the case illustrated, there will thus be the possibility of a
horizontal reaction, as well as a vertical one.

13
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Figure 1.21

Figure 1.24 illustrates the joint between two timber beams, built with join-
ing plates and riveting. Similar joints are made for steel girders by means of
bolting or welding. This constraint is naturally more severe than a simple
hinge, and yet in practice it proves to be much less rigid than a perfectly fixed
joint. In the designing of trusses, it is customary to model the joint with a
hinge, neglecting the exchange of moment between the two parts. The effect
of making such an assumption is, in fact, that of guaranteeing a greater margin
of safety.

1.5 Structural collapse

If the loading exerted on a structure exceeds a certain limit, the consequence is
the complete collapse or, at any rate, the failure of the structure itself. The loss
of stability can occur in different ways depending on the shape and dimen-
sions of the structural elements, as well as on the material of which these are
made. In some cases the constraints and joints can fail, with the result that
rigid mechanisms are created, with consequent large displacements, toppling
over, etc. In other cases, the structural elements themselves can give way; the
mechanisms of structural collapse can be divided schematically into three dis-
tinct categories:

1. buckling
2. yielding
3. brittle fracturing.

In real situations, however, many cases of structural collapse occur in such a
way as to involve two of these mechanisms, if not all three.

Buckling, or instability of elastic equilibrium, is the type of structural col-
lapse which involves slender structural elements, subject prevalently to com-
pression, such as struts of trusses, columns of frameworks, piers and arches of
bridges, valve stems, crankshafts, ceiling shells, submarine hulls, etc. This
kind of collapse often occurs even before the material of which the element is
made has broken or yielded.

Unlike buckling, yielding, or plastic deformation, involves also the mate-
rial itself and occurs in a localized manner in one or more points of the struc-

14
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Figure 1.22

Figure 1.23

ture. When, with the increase in load, plastic deformation has taken place in a
sufficient number of points, the structure can give way altogether since it has
become hypostatic, i.e. it has become a mechanism. This type of generalized
structural collapse usually involves structures built of rather ductile material,
such as metal frames and plates, which are mainly prone to bending.

Finally, brittle fracturing is of a localized origin, as is plastic deformation,
but spreads throughout the structure and hence constitutes a structural collapse
of a generalized nature. This type of collapse affects prevalently one- and two-
dimensional structural elements of considerable thickness (bridges, dams,
ships, large ceilings and vessels, etc.), large three-dimensional elements (rock
masses, the Earth's crust, etc.), brittle materials (high-strength steel and con-
crete, rocks, ceramics, glass, etc.) and tensile conditions.

15

(a)

IM (C)



INTRODUCTION

Figure 1.24

As, with the decrease in their degree of slenderness, certain structures,
subject prevalently to compression and bending, very gradually pass from a
collapse due to buckling to one due to plastic deformation, likewise, as we
move down the size scale, other structures, prone to tension and bending,
gradually pass from a collapse due to brittle fracturing to one due to plastic
deformation.

1.6 Numerical models

With the development of electronics technology and the production of
computers of ever-increasing power and capacity, structural analysis has
undergone in the last two or three decades a remarkable metamorphosis. Cal-
culations which were carried out manually by individual engineers, with at
most the help of the traditional graphical methods can now be performed
using computer software.

Up to a few years ago, since the calculation of strains and internal stresses
of complex structures could not be handled in such a way as to obtain an
exact result, such calculations were carried out using a procedure of approx-
imation. These approximations, at times, were somewhat crude and, in
certain cases, far from being altogether realistic. Today numerical models

Figure 1.25
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Figure 1.26

Figure 1.27

allow us to consider enormous numbers of points, or nodes, with their corre-
sponding displacements and corresponding strains and internal stresses. The
so-called finite-element method is both a discretization method, since it
considers a finite number, albeit a very large one, of structural nodes, and an
interpolation method, since it allows us to estimate the static and kinematic
quantities even outside the nodes.

The enormous amount of information to be handled is organized and
ordered in a matrix form by the computer. In this way, the language itself of
structural analysis has taken on a different appearance, undoubtedly more syn-
thetic and homogeneous. This means that, for every type of structural element,
it is possible to write static, kinematic and constitutive equations having the

17
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same form. Once discretized, these provide a matrix of global stiffness which
presents a dimension equal to the number of degrees of freedom considered.
This matrix, multiplied by the vector of the nodal displacements, which
constitutes the primary unknown of the problem, provides the vector of the
external forces applied to the nodes; this represents the known term of the
problem. Once this matrix equation has been resolved, taking into account any
boundary conditions, it is then possible to arrive at the nodal strains and nodal
internal stresses.

As an illustration of these mathematical techniques, a number of finite-
element meshes are presented. They correspond to: a buttress dam (Figure
1.25), a rock mass with a tunnel system (Figure 1.26), an eye hook (Figure
1.27), two mechanical components having supporting functions (Figure 1.28),
a concrete vessel for a nuclear reactor (Figure 1.29) and an arch dam
(Figure 1.30).

(b)

Figure 1.28
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Figure 1.29

120m

Figure 130
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2 Geometry of areas

Figure 2.1

2.1 Introduction

When analysing beam resistance, it is necessary to consider the geometrical
features of the corresponding right sections. These features, as will emerge
more clearly hereafter, amount to a scalar quantity, the area, a vector quantity,
the position of the centroid, and a tensor quantity, consisting of the central
directions and the central moments of inertia.

The laws of transformation, by translation and rotation of the reference sys-
tem, both of the vector of static moments and of the tensor of moments of
inertia, will be considered. It will thus become possible also to calculate com-
posite sections, consisting of the combination of a number of elementary
parts, and the graphical interpretation (due to Mohr) of this calculation will be
given.

Particular attention will be paid to the cases of sections presenting symme-
try, whether axial or polar, and of thin-walled beam sections, which have
already been mentioned in the introductory chapter and for which a simplified
calculation is possible. A number of examples will close the chapter.

2.2 Laws of transformation of the position vector

The coordinates x,y of a point of the plane in the XY reference system are
linked to the coordinates x, y of the same point in the translated reference
system XY (Figure 2.1) by the following relations:

Jc = jc-Jt0 (2. la)

y = y-y0 (2.1b)

where JC^VQ are the coordinates of the origin O of the translated system, with
respect to the original XY axes.

The laws of transformation (2.1) can be reproposed in a vector form as
follows:

{r} = {r}-{rQ} (2.2)

where {r} indicates the position vector [x,y]T of the generic point in the orig-
inal reference system with { r } being the position vector [ jc,y ]T of the same
point in the translated reference system and with {r0} being the position vec-
tor [jCo,y0]

T of the origin O of the translated system in the original reference
system.

The coordinates jc, y of a point of the plane XY are linked to the coordi-
nates J*,y* of the same point in the rotated reference system X*Y* (Figure
2.2) via the following relations:

x* = x cos $ -I- y sin tf (2.3a)

y*=-*sintf + ycostf (2.3b)

where -& indicates the angle of rotation of the second reference system with
respect to the first (positive if the rotation is counterclockwise).

20



Figure 2.2

LAWS OF TRANSFORMATION OF THE STATIC MOMENT VECTOR

These transformation laws can be reproposed in a matrix form, as follows:

{r*] = [N]{r} (2.4)

where

|~cos$ sin$~

|_-sin$ cos$_

is the orthogonal matrix of rotation.

2.3 Laws of transformation of the static moment vector

Consider the area A in the XY reference system (Figure 2.1). The definition of
static moment vector, relative to the area A and calculated in the XY refer-
ence system, is given by the following two-component vector:

(2.5)

(2.6)

The static moment vector, again referred to the area A, calculated in the trans-
lated XY system, can be expressed in the following way:

Applying the transformation law (2.2), equation (2.7) becomes

{S}= f{r}dA-{r0}fdA
JA JA

(2.7)

(2.8)

since {r0} is a constant vector. Recalling the definition (2.6), we obtain finally
the static moment vector transformation law for translations of the reference
system:

{S} = {S}-A{r0} (2.9)
The vector relation (2.9) is equivalent to the following two scalar relations:

S- = Sv-AxQ (2.10a)

S- =5 v-Av ( ) (2.1 Ob)
The reference system, translated with respect to the original one, for which

both static moments vanish, is determined by the following position vector:

(2.11 a)• V G ~T-^ (2.1 lb)

The origin G of ihis particular reference system is termed the centroid of area
A, and is a characteristic point of the area itself, in the sense that it is alto-
gether independent of the choice of the original XY system.
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GEOMETRY OF AREAS

Now consider the reference system X*Y*, rotated with respect to the XY
system (Figure 2.2). The static_moment vector, relative to area A and calcu-
lated in the rotated system X*Y*, may be expressed using the law (2.4):

{5*}= (V}dA = [AT|f{r}dA (2.12)
JA JA

where [N] is the constant matrix (2.5). Finally, recalling the definition (2.7),
the static moment vector transformation law for rotations of the reference sys-
tem is obtained:

{S*] = [N]{S} (2.13)

The matrix relation (2.13) is equivalent to the following two scalar
relations:

Sy* = Sy cos & + Sj sin t> (2.14a)

S^* = -Sy sin # + Sf cos tf (2.14b)

From equations (2.14) two important conclusions may be drawn.

1. The static moments are zero with respect to any pair of centroidal orthogo-
nal axes. __

2. If the origin Oof the reference system does not coincide with the centroid
G of area A, there exists no angle of rotation # of the reference system for
which the static moments both vanish. In fact, from equations (2.14) we
obtain

( $\
Sy* = 0 for # = arctan —L (2.15a)

\ Sx )

(s }
Sf* = 0 for tf = arctan ^ (2.15b)

( S y )
The conditions (2.15) are not, however^compatible.

If we consider a reference system X*Y*, obtained by translating and then
rotating the original XY system (Figures 2.1 and 2.2), it is possible to formu-
late the general static moment vector transformation law for rototranslations
of the reference system, combining the foregoing partial laws (2.9) and (2.13):

{S*} = [tf]({S}-A{r0}) (2.16)

The inverse rototranslation formula may be obtained from the previous one by
premultiplying both members by [N]J = [TV]'1

{S} = [#]T{r} + A{r0} . (2.17)

2.4 Laws of transformation of the moment of inertia tensor

Consider the following matrix product (referred to as the dyadic product):

{rHrF-fLrtJ*2 ^1 (2.18)
bJ [yx y2]
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LAWS OF TRANSFORMATION OF THE MOMENT OF INERTIA TENSOR

The definition of the moment of inertia tensor, relative to area A and calculated
in the XY reference system, is given by the following symmetric (2 x 2) tensor:

r/ f -i I x2 cM I jcvdA
1/1= /T /V - V J/ (2.19)

L/v.v f u j VJCCL4 y 2 dA

_«M JA
Taking into account relation (2.18), definition (2.19) can be expressed in the
following compact form:

ll}= f{r}{r}TdA (2.20)
JA

The moment of inertia tensor, relative again to area A and calculated in the
translated reference system XY (Figure 2.1), can be expressed as follows:

[/]= |V}{F}TdA (2-21)
JA

and thus, applying the position vector transformation law for the translations
of the reference system (equation (2.2)), we obtain

[/] = \ ( { r } - { r Q } ) ( ( r } - { r Q } ) T d A (2.22)
JA

Since the transpose of the sum of two matrices is equal to the sum of the trans-
poses, we have

[/]= f<{r}-{r0})({r}T-{ro)T)dA
JA

= f{r}MTcL4- f{r}cM{r0}T-{r0}f{r}Td4+ (2.23)
JA JA JA

{r()}{r0}Tfd4
JA

Finally, recalling definitions (2.6) and (2.20), we obtain the law of transforma-
tion of the moment of inertia tensor for translations of the reference system

[7] = [/] + /l{/b){r0}T-{r0}{5}T-{5}!r0}T (2.24)

The matrix relation (2.24) can be rendered explicit, as follows:

'zv^v+Avo2-2}^, (2-25a)

/-, = /vv+Ax0
2-2.v0Sv (2.25b)

% = !yx = 7vy + A*0>'0 ~ x^x ~ yQSy (2.25c)

The above relations simplify in the case where the origin of the primitive XY
reference system coincides with the centroid G of area A. In this case, we have

Sx=Sy=0 (2.26)

and equations (2.25) assume the form of the well-known Huygens' laws:

Izc=IIcxc+Ay$ (2-27a)

%=/, f i , c+A*2 (2-27b)

/w = /A.c,c+AWo (2.27c)

23



GEOMETRY OF AREAS
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As regards relations (2.27a) and (2.27b), it may be noted how the centroidal
moment of inertia is the minimum of all those corresponding to an infinite
number of parallel straight lines.

Now consider the moment of inertia tensor, relative to area A and calculated
in the rotated reference system X*Y* (Figure 2.2):

[/*] = jV}{r*}TdA (2.28)
JA

Using the law (2.4) of transformation of the position vector for rotations of the
reference system, we have

[/*]= f ([#]{r})([Ar]{r})TdA (2.29)
JA

Now applying the law by which the transpose of the product of two matrices is
equal to the inverse product of the transposes, we have

[/*] = f ([N]{f]) ({r}T[AHT) dA (2.30)
JA

Exploiting the associative law and carrying the constant matrices [N] and [7V]T

outside the integral sign, equation (2.30) becomes

[/*] = [#][ {r}{F}TdA[AT]T (2.31)
JA

Finally, recalling definition (2.21), we obtain the law of transformation of the
moment of inertia tensor for rotations of the reference system

[7*] = [ATl[7][Ar|T (2.32)

The matrix relation (2.32) can be rendered explicit as follows:

Ix*x* = I ft cos2 & + Iyy sin2 tf - 27^ sin tf cos tf (2.33a)

7^* = 7- sin2 # + /- cos2 tf+ 2% sin#cost? (2.33b)

7^* = 7-* j* = 7^ cos 2$ + - (7^ - 7^) sin 2i> (2.33c)

Two important conclusions can be derived from equations (2.33).

1. The sum of the two moments of inertia 7^ and 7^ remains constant as the
angle of rotation # varies. We have in fact

/-..,+ /.,.. = /-+/- (2.34)

This sum is the first scalar invariant of the moment of inertia tensor and can be
interpreted as the polar moment of inertia of area A with respect to the origin
of the reference system:

Ip = f r2 dA (2.35)
JA



PRINCIPAL AXES AND MOMENTS OF INERTIA

2. Equating to zero the expression of the product of inertia /-#-*, it is pos-
sible to obtain the angle of rotation #0 which renders the moment of iner-
tia tensor diagonal:

W= W=0 for (2-36)

#o = -arctan ^— , - — < $0 < —
2 1%-W 4 4

Substituting equation (2.36) in (2.33a, b), the so-called principal moments of
inertia are determined. The two orthogonal directions defined by the angle #0 are
referred to as the principal directions of inertia. It can be demonstrated how the
principal moments of inertia are, in one case, the minimum, and the other, the max-
imum, of all the moments of inertia /-*-* and /-*-* , which we have as the angle
of rotation # varies. When the axes, in addition to being principal are also cen-
troidal, they are referred to as central, as are the corresponding moments of inertia.

The general law of transformation of the moment of inertia tensor for
rototranslations of the reference system (Figures 2.1 and 2.2) is obtained by
combining the partial laws (2.24) and (2.32):

[/*]-[^]([/] + A{r0}{r0}T-{r0}{5}T-{5}{r0}T)[7Vr (2.37)

The inverse rototranslation formula may be obtained from (2.37) by premulti-
plying both sides of the equation by |W]T and postmultiplying them by [N] and
inserting equation (2.17):

[/] = [An^[An + [^lT{n{r0}
T + (2.38)

{>b}{nT[An + A{r0}{r0}T

2.5 Principal axes and moments of inertia

Using well-known trigonometric formulas, relation (2.33a) becomes

1 + cos W l-cos2# .
A?*i* = fn + 'vy % sm 2i> (2.39)

Via equation (2.36) we obtain

/_,_,( t fo) = M±^L + ̂ Z&. Cos 2i>0+ (2.40)

/— — I—
— — tan 2$0 sin 2^0

and hence

7-^(iV=/^/^ + /Z\/'? ' (2-41)
•v 2 2 cos2tf0

Since we know from trigonometry that

! = (l + tan2 2tf0)^ (2.42)
cos 2t>0

 V ;
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Figure 23
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it is possible to apply once more equation (2.36)

-L--L 4/" 1* (2.43)
cos2t?0 ( (%-/H)2J

77Tr-((/« - %)2 + 47S-f when I-x-x > %
_ xx *yy

7-rH(/« ~ %)2 + 4/2?y)iwhen 7K < 7 -̂
yy JCJT

Then, indicating /-*-» (#0) with the simpler notation 1%, we have

^^ +^((/n - %)2 + 4/2?,)i when 7H > 7?j?
/|= / J7 f ^ (2.44)

^y^ - j (('« - %)2 + 4/^J1 when 7S < 7Jy

Likewise, indicating 7y*y* (A)) w^h Aj» we have

^^ -^((/JEF - %)2 + 472;y)iwhen 7- > 7,,-
/')= / + / ? , (2-45>

^^ +1 ((/„ - %)2 + 47^-yf when 7H < %

We can thus conclude that, when the XY axes, by rotation, become the princi-
pal axes, the order relation is conserved:

7^ > lTy =» 7^ > 7, (2.46a)

7 s<%=>/ 5</, , (2.46b)

When

/5=%. %^0 (2.47)

relation (2.36) is not defined and thus it makes no difference whether the XY
reference system is rotated by 7i/4 clockwise or counterclockwise (#0 = ±71/4)
in order to obtain the principal directions.

Moreover, when

/**=%, %=0 (2.48)

all the rotated reference systems X*F* are principal systems, for any angle of
rotation #0. The areas that satisfy the conditions of equation (2.48) are said to
be gyroscopic. As will be seen in the next section, it is possible to give a syn-
thetic graphical interpretation of cases (2.47) and (2.48).

2.6 Mohr's circle

With the aim of introducing the graphical method of Mohr's circle, let us con-
sider the inverse problem of the one previously solved: given an area A, and
its principal axes of inertia fy\ and the corresponding principal moments /^, /^
known, with respect to a point O of the plane (Figure 2.3), we intend to
express the moments of inertia with respect to a reference system rotated by
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an angle #, counterclockwise with respect to the principal fy] reference
system.

Applying equations (2.33), and since /^ = 0, we have

l^ = /£ cos2 # + /^ sin2 tf (2.49a)

/^ = /£ sin2 i> + In cos2 # (2.49b)

%=^-^-sin2tf (2.49c)

The trigonometry formulas used previously give

h + /„ /* - /„
/xx =- ~ + J ^-cos2tf (2.50a)

7f + /„ I*- /„
% = -S 2- —? 2- cos 2tf (2.50b)

/*-/„
%=- -sin 2tf (2.50c)

Relations (2.50a,c) constitute the parametric equations of a circumference
having as its centre

C(^T^'°] (2*51a)

and as its radius

/£-/„

^ = ̂  2- (2.5 Ib)

in Mohr's plane I^xy (Figure 2.4). The above circumference represents all
the pairs (I^J^) which succeed one another as the angle ft (Figure 2.3)
varies. Note that, since /^ is in any case positive, we have in fact a Mohr's
half-plane.

Let us now reconsider the direct problem: given the moments of inertia with
respect to the two generic orthogonal axes XY (Figure 2.3), determine the
principal axes and moments of inertia. This determination has already been
made analytically in section 2.5. We shall now proceed to repropose it graphi-
cally using Mohr's circle (Figure 2.5).

1. The first operation to be carried out is to identify the two notable points P
and Pf on Mohr's plane:

/VH.%), P'(Iy-y,-lry) (2.52)

2. The intersection C of the segment PP/ with the axis 1^ identifies the cen-
tre of Mohr's circle, while the segments CP and CP7 represent two radii of
that circle.

3. Draw through the point P the line parallel to the axis /^ and through P*
the line parallel to the axis /^. These two lines meet in point P*, called
the pole, again belonging to Mohr's circle.
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Figure 2.4

Figure 2.5

4. The lines joining pole P* with points M and N of the /^ axis, which are
intersections of the circumference with the axis, give the directions of the
two principal axes of inertia. Naturally, points M and N each have as
abscissa the value of one of the two principal moments of inertia. In par-
ticular, in Figure 2.5, the abscissa of M is 7^, while the abscissa of N is /^,
since we have assumed /^ > /^. Pole P* can obviously also fall in one
of the three remaining quadrants corresponding to Mohr's circle.

The graphical construction described above and shown in Figure 2.5 is jus-
tifiedhby noting that the circumferential angle PP*Nis half of the correspond-
ing central angle PCN = 2#, and that thus its amplitude is equal to the angle #.

2.7 Areas presenting symmetry

An area is said to present oblique axial symmetry (Figure 2.6.(a)) when there
exists a straight line s which cuts the area into two parts, and a direction s',
conjugate with this straight line, such that, if we consider a generic point P,
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(a) (b)

Figure 2.6

belonging to the area and the line PC, parallel to the direction s', and we draw
on that line the segment CPr = PC on the opposite side of P with respect to
5, the point Pf still belongs to the area. When the angle a between the direc-
tions of the lines s and s is equal to 90°, then we have right axial symmetry
(Figure 2.6(b)).

It is easy to verify that the centroid of a section having axial symmetry lies
on the corresponding axis of symmetry. The centroid relative to the pair of
symmetrical elementary areas located in P and P/ coincides in fact with point
C (Figure "2.6). Applying the so-called distributive law of the centroid, it is
possible to think of concentrating the whole area on the axis of symmetry s,
and thus the global centroid is sure to lie on the same line s.

In the case of an area presenting right symmetry (Figure 2.6 (b)), the axis of
symmetry is also a central axis of inertia. In fact, it is centroidal and, with

(a) (b)

Figure 2.7
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Figure 2.8

Figure 2.9

respect to it and to any orthogonal axis, the product of inertia Iss> vanishes by
symmetry.

When there are two or more axes of symmetry (oblique or right), since the
centroid must belong to each axis, it coincides with their intersection (Figure
2.7). In the case of double right symmetry (Figure 2.7(a)), the axes of symme-
try are also central axes of inertia.

An area is said to present polar symmetry (Figure 2.8) when there exists a
point C such that, if we consider a generic point P belonging to the area and
thejine PC joining the two points, and we draw on this line the segment CP'
= PC on the side opposite to P with respect to C, the point Pf still belongs to
the area.

It is immediately verifiable that the centroid of a section having polar sym-
metry coincides with its geometrical centre C. The centroid corresponding to
the pair of symmetrical elementary areas in P and Pf coincides, in fact, with
point C (Figure 2.8). Applying the distributive law of the centroid, it is pos-
sible to think of concentrating the whole area in point C, and thus the global
centroid must certainly coincide with the same point C.

It is interesting to note how an n-tuple right symmetry area, with n being an
even number (2 =^ n < °°), is also a polar symmetry area (Figure 2.9), whereas
a polar symmetry area is not necessarily also an w-tuple right symmetry area
(Figure 2.8).

Areas having n-tuple right symmetry, with n being an odd number (3 ̂  n <
°°), do not, however, present polar symmetry, even though they are gyroscopic
areas, as also are those with n even.

2.8 Elementary areas

If, on an XY plane, we assign n areas, Alt A2, ... , An, the distributive law of
static moments, and, respectively, that of the moments of inertia, are defined
as follows (Figure 2.10):

(2.53a)

(2.53b)

where S and / indicate generically a static moment and a moment of inertia,
calculated with respect to the coordinate axes ( Sx, Sy; !„,!„,!„).

In determining the static and inertial characteristics of composite areas, it is
necessary to exploit the above laws. These derive from the integral nature of
the definitions which have previously been given of first and second order
moments. The first law expresses the fact that the static moment of a compos-
ite area (i.e. of the union of more than one elementary area) is equal to the sum
of the static moments of the single areas. The second law refers to the
moments of inertia and is altogether analogous.

Since it is therefore possible to reduce the calculation of composite areas to
the calculation of simpler areas, the importance of calculating once and for all
the static and inertial features of elementary areas emerges clearly. In the sequel,
we shall examine the rectangle, the right triangle and the annulus sector.
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(b,0)

Figure 2.11

Figure 2.12
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Figure 2.10

Consider the rectangle having base b and height h (Figure 2.11). From the
definition of centroid, we obtain immediately the static moments in the XY ref-
erence system:

Sx=AyG=±bh* (2.54a)

Sy=AxG=^hb2 (2.54b)

For the central moments of inertia, we have
f>+b/2 p + / i / 2 hh^

4G ,G=J I y2dxdy=— (2.55a)
J-b/2 J-h/2 1*

and likewise

/VG,C~ (2.55b)

It is then possible to obtain the inertia tensor in the XY reference system by
applying Huygens' laws (2.27):

, i bh3 bh* bh3
^ = IXcXc + Ay* = — + — = — (2.56a)

A 2 hb3 hb3 hb3 ^^^
fyy = !yGyG + ̂ >= ~& + ~ = ~ (2-56b>

^ = I*cyo + ̂ o^o = 0 + H[- |J-| j = *^1 (2.56c)

Consider the right triangle having base b and height h (Figure 2.12). As is
well-known, its centroid coincides with the point of intersection of the three
medians, which are at the same time axes of oblique symmetry. The moment
of inertia with respect to the axis Xc of the triangle MOP is equal to the
moment of inertia with respect to the axis Xc of rectangle NOPQ. The latter, in
fact, is obtained from the former by suppressing triangle MNC and adding
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triangle CQP. These two triangles are equal and arranged symmetrically with
respect to the axis Xc. Hence

/,, ,1*(*?,»! (2.57)
*c*c 3 \2J 24

Applying the inverse of Huygens' law, we obtain

bh3 (bh\(h"\2 btf .„ „.
'-^-ITJUJ^ (2'58)

Finally, applying Huygens' law, we have

=^ mv*f w^
" 36 U J U J 12 ( '

Likewise

to3

/ y y=— (2.60)

As regards the product of inertia 7^, its integral definition can be applied:

*b *h(b-x}lb ,21,2
7^= xy<jxdy= (2.61)

Jo Jo 24

The product of inertia / may be obtained from 7^, via the inverse appli-
cation of Huygens' law:

'~-^-® (-»-*£ <-
Consider the annulus sector of internal radius /?j, external radius /?2 and

angular amplitude <p (Figure 2.13). The static moment of the sector with
respect to the X axis is

n/?2 }
(rsin<p)rd<p = -(l-cos<p)(/?2

3-*3) (2.63a)
„ .•?! 3

Likewise, the static moment with respect to the Faxis is

5 = 1 f 2 (r cos cp)r drdcp = - sin cp(R% - R?) (2.63b)
Jo J/fj 3

Also in the calculation of the moments of inertia it is possible to apply the def-
inition:

*<p *R2 j

(»= I I (rsin<p)2rdrd^> = -(<p-sin<pcos<p)(^-JR1
4) (2.64a)

Jo J/?! 8
f9 fR2 I

I = (r cosy)2rdrd(p = ~(q> + sirupcos<p) (R$ - Rf) (2.64b)
Jo J/?j 8

rv f^2 i
/^ = (r sin<p) (r cos<p) r dr d<p = — (1 - cos2<p) (^ - /?t

4) (2.64c)
Jo J/?j 16

Fioiire 2.13
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In the particular case of a circle of radius 7?, we have

Rl=Q9R2 = R9 <p=2n

and thus

5^=5^=0 (2.65a)

/«=/ jy=-^-, 7^=0 (2.65b)

The static moments and the product of inertia are zero by symmetry. Another
way to obtain the moments of inertia 7^ and 7^ of the circle is that of calculat-
ing the polar moment as given by equation (2.35):

*2n *R n4

'„ = /«+/*= (r*)rdrd<p = ̂  (2.66)
Jo Jo 2

Since 7 .̂ = 7^,, once more we obtain equation (2.65b).

2.9 Thin-walled sections

A section is said to be thin-walled when one of its dimensions (the thickness
8) is clearly smaller than the others (Figure 2.14). In these cases, the section is
represented and calculated as if its whole area were concentrated in its mid-
line m. This approximate calculation approaches the exact result, the smaller
the thickness is, compared to the other dimensions of the section.

Consider a rectilinear segment of length / and thickness 8 (Figure 2.15).
The moment of inertia Ix x = 1^ = /53/12 can be neglected with regard to all
the other quantities. This moment is, in fact, an infinitesimal of a higher order,
as it is proportional to the infinitesimal quantity 8 raised to the third power,
whilst the other quantities are proportional to the quantity 8 raised to the first
power.
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When Huygens' law is applied, for the calculation of the moments of inertia
of a rectilinear segment with respect to the translated axes p and n (Figure
2.15), it is important to distinguish the two cases. In fact, for the calculation of
Ipp, it is possible to consider the entire area concentrated in the centroid and to
neglect the local moment:

IPP=8U2
P (2.67a)

while for the calculation of Inn, in addition to the contribution of translation, it
is necessary to include also the local contribution, which is not a negligible
quantity:

Si3

/„= —+ A/2 (2.67b)

If we imagine inclining the rectilinear segment by an angle a with respect
to the X axis (Figure 2.16), the moment of inertia with respect to the X axis
then becomes

f f + / / 2

Ixx = \y2 dA = (z sin a)2 Sdz (2.68)
JA J-//2

where Z is the longitudinal axis of the segment. Evaluating the integral, we
obtain

7^=-^sin2a (2.69a)

and, likewise

7VV=—cos2a (2.69b)

813

Ixy = sina cosa (2.69c)

It may be noted how, for a = 0, n/2 , we obtain once more the results already
found.

Figure 2.16

34
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Figure 2.17
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Consider an arc of circumference of radius R, angular amplitude (p and
thickness S (Figure 2.17). To define the static and inertial characteristics, it is
possible to reconsider the formulas of section 2.8 and to particularize them for

R^ R2* R- R2-Rl=8«R (2.70)

For example, equation (2.63a) is transformed as follows:

Sx=^(l-cos(p)(R2-Rl)(R$+R2Rl+R?)*(l-cos(p)8R2 (2.71a)

and likewise, equation (2.63b) becomes

Sy=sin<p6R2 (2.7 Ib)

Then, as regards the moments of inertia, from equations (2.64) and (2.70) we
obtain

fxx~~((P" sin<P cos<p)(5R3 (2.72a)

1^ = -((p + sincp cos(p)SR3 (2.72V)

Ixy=^(l-cos2cp)SR3 (2.72c)

2.10 Examples of calculation

Five examples of calculation are given below for five sections, without any
particular comments. In each case, the areas, the static moments, the coordi-
nates of the centroid, the moments of inertia in the centroidal system, the cen-
tral directions and moments of inertia are calculated and listed, in order and
for each elementary part of the section, as well as for the entire section.

Example 1 (Figure 2.18(a)) concerns an L-section made up of two rectan-
gular-section plates and of a triangular-section angle iron (Figure 2.18(b)).
This section does not present particular symmetries and thus, for the determi-
nation of the global centroid, requires the calculation of the areas and the
static moments. The latter are obtained by multiplying the partial areas by the
coordinates of the partial centroids. For the calculation of the moments of
inertia in the centroidal system XGYG, use has, instead, been made of Huy-
gens' formulas (2.27), which add the local moment of inertia to the moment of
translation. Angle #0 of counterclockwise rotation, which provides the central
directions, may be obtained analytically from equation (2.36), just as the cen-
tral moments may be deduced from equations (2.44) and (2.45). Figure
2.18(c) gives the graphical construction of Mohr's circle, with the definition
of the aforesaid quantities.

Example 2 (Figure 2.19(a)) concerns an H-section which may be obtained
ideally by removing a square and a semicircle from the rectangle circumscrib-
ing the section (Figure 2.19(b)). The axis of symmetry Fis also centroidal and
principal, and thus central. The ordinate yG of the global centroid remains
unknown, and hence only the static moments with respect to the X axis are to
be calculated. Whereas the moments 1^ and lf\ relative to the rectangle
and to the square are obtained by applying equation (2.27a), for the moment
/£3) of the semicircle, equation (2.25a) has been resorted to. The partial prod-
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(a)

(b)

Figure 2.18
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Figure 2.19
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Figure 2.21
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ucts of inertia are all zero by symmetry. In this case Mohr's graphical con-
struction is of little significance, on account of the axial symmetry (Figure
2.19(c)).

Example 3 (Figure 2.20 (a)) concerns a closed thin-walled section made up
of three plates inclined by 60° with respect to one another (Figure 2.20 (b)). To
calculate the moments of inertia, Huygens' laws (2.27) have been used, whilst
the local moments of the inclined segments have been evaluated using equa-
tions (2.69). Figure 2.20 (c) presents Mohr's graphical construction.

Example 4 (Figure 2.21 (a)) concerns a closed thin-walled section made up of
three plane plates and one cylindrical plate (Figure 2.21 (b)). The static moment
Sx ' , relative to the circular segment, has been calculated according to equation
(2.71 b), while the moment of inertia 1$ has been evaluated, applying the law of
transformation by translation (2.25 a) and, locally, equation (2.72 b). The moment
of inertia 1$*' has, instead, been evaluated by simply applying equation (2.72 a).
Mohr's circle for this case is represented in Figure 2.2 l(c).

Finally, Example 5 (Figure 2.22 (a)) regards a thin-walled section having
polar symmetry, made up of three plane plates (Figure 2.22 (b)). In this case,
calculation of the position of the centroid serves no purpose, as the polar sym-
metry causes it to coincide with the geometrical centre of the area. Mohr's cir-
cle (Figure 2.22 (c)) provides confirmation of the central directions and
moments determined analytically.

EXAMPLE 1

AM = 45 x 20 mm2 = 900 mm2

AM = 50 x 15 mm2 = 750 mm2

A<3) = 1 x 20 x 20 mm2 = 200 mm2

3

A = VA<*> = 1850mm2

i=l

SO) = A^y^ = 900 x 10 = 9 000 mm3

, 5<2> = A<2>yk2) = 750 x 45 = 33 750 mm3

5(3) = A^y^ = 200 x 26.67 = 5 333 mm3

3

Sx = V S£>=48083 mm3

i=i

S^ = A^xg = 900 x 22.5 = 20 250 mm3

< S<2> = A<2>42) = 750 x 7.5 = 5 625 mm3

S<3>=A<3>43) =200x21.67 = 4333 mm3

3

Sy = Vs$/) =30208 mm3

1=1
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5Vxc = —=- = 16.33 mm

.yG= — = 25.99 mm
A
4S x 9f)3

/ ( i ) = +900xl5.992 - 260 112 mm4

12

. / < 2 > =
 15x5°3 + 750 x (45 - 25.99)2 = 427 285 mm4

/£> = 2°X2°3 + 200 x (26.67 - 25.99)2 = 4 536 mm4

3

Ix =y/1° =691933 mm4

C
 ^M^

 C

1 = 1

20x453

/ ( , ) ^_u £_ + 900 x (22.5-16.33)2 =186 100 mm4

< / (2> =
 50x153 + 750 x (16.33 - 7.5)2 = 72 583 mm4

20 x 203

7^= — + 200 x (21.67 -16.33)2 = 10 133 mm4

3

L =y 7!0 =268 816 mm4

>G ^̂  >C
/=!

I^vc = -900 x (22.5 -16.33)(25.99 - 10) = -88 792 mm4

I<fc\c = -750 x (16.33 - 7.5)(45 - 25.99) - -125 941 mm4

202 x 202

I&yc = + 200 x (21.67 - 16.33)(26.67 - 25.99)

= -1500 mm4

3

/ = V /(') = -216 186 mm4
G G JL^ G- G

^ aLctan 2><(-216186) =22.81c
° 2 268816-691933

/{ = 691 933^268816+ |((69]933_268816)2+4x(2l6l86)2)i

= 480 374 + 302 478 = 782 852 mm4

In = 480 374 - 302 478 = 177 896 mm4
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EXAMPLE 2

A^= 50x65 = 3 250 mm2

A^= -30x30 --900mm2

A ( 3 >=--x3.1415xl5 2 --353.42mm2

3

A = V A< f ' > = 1996.58 mm2

/ = !

5(i) = A^yg = 3 250 x 32.5 = 105 625 mm3

< Sf)=A (2^2)=-900x50 = -45 000 mm3

S<3) = --(15)3 - -2 250 mm3

3

S* = y '̂'> = 58 375 mm3

/= ]
5V =0

pc -0

1 yc = ?*. = 29.24 mm

^i, =50£65_ + 325()x(325_2924)2=1 ]788105mm4

an v ^f)3
7(2) = _ £U_^ 90() x (5Q _ 29 24)2 = _^5 3?9 ̂  mm4

/|3) ---x!54-353.42 x(29.24)2 +c 8

2 x 29.24 x - x 153 = -190 465.99 mm4

3

/ = V /< ' ) = 532 956 mm4
A G / A *G

/=!

^^ 65x50^ = 677083.33mm4

I n»=_30X301 4

12

/;3> = -- x 154 = -19 879.80 mm4

8



44

GEOMETRY OF AREAS

3

/ = V /</> = 589 702 mm4

>r, ^^ >«

/=!

f /^ = /^ = 532 956 mm4

| /^ = /Vf = 589 702 mm4

EXAMPLE 3

A ( 1 ) = 8 0 x 6 = 480cm2

< A < 2 > = 80x6 -480 cm2

A< 3 > = 50x6 -300 cm2

3

A = V A"> = 1260 cm2

/=!

5^=0

< S<2) =A< 2^2 ) =480x8.66-4 156.8 cm3

50) = A^y£} = 300 x 21.65 - 6 495 cm3

3

S, = V 5^ =10 652 cm3

/ = !

S[l) = A ( I )JC^ = 480 x 15 = 7 200 cm3

< ^2) = A<2>42 ) - -480 x 20 = -9 600 cm3

5{.3) - A(3)^ - 300 x 12.5 - 3 750 cm3

3

5V = V s < / > = 1350cm3

/ = !

Svxc - -^- - \ .07 cm

yG= — = 8.45 cm

/I1 > = 480 x (8.45)2 = 34 273.2 cm4
A6

6 x 803

x 7(2) ^ » ou (Q 866)2 + 480 x (8.66-8.45)2 =192 009.9 cm4

^ = 62<50_(Q 866)2 + 30Qx(21 65_g 45)2 = 99 144 25 Cm4
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/ = V /< '> = 325 446 cm4
XG / J XG

i=\

£ y 8f)3
/ID = U A O U +480x(15-l.Q7)2 - 349 000 cm4

•c 12
6 x RO^

< I[2} = x (0.5)2 + 480 x (20 + 1.07)2 = 277 000 cm4

• G 12

7(3) = 6X50- x (Q 5)2 + 3Q() x (12 5 _ 1 Q7)2 = 55 OQO cm4

3

/ = V 7?0 -681000cm4
> G / * > G

i=\

/ ( I ) = -480 x (15 - 1.07) x 8.45 = -56 500 cm4
-1 C - G

7<2)v c =6x80^x ( a 8 6 6 ) x ( a 5 )^

480 x (8.66 - 8.45) x (20 + 1.07) = 109 000 cm4

/£>YC = ̂ 521 x (o.866) x (-0.5) +

300 x (12.5 - 1.07) x (21.65 - 8.45) - 18 000 cm4

3

7V v - V /(;)
Y - 70 500 cm4

A G>(7 ^^ A G. A C

/=!

1 2x70500 1 A Q Ot?n = - arctan = 10.8°0 2 681000-325000

/{ = 325 °00;681 ̂  -i((681 000-325 OOOr- +4x(70 500)^

= 503 000 -191 000 - 312 000 cm4

7/? - 503 000 + 191 000 = 694 000 cm 4

EXAMPLE 4

A ( 1 ) =80x5 = 400 cm2

^ A ( 2 ) = A ^ 3 > = 4 0 x 5 = 200cm2

AM =-x(56.57)x5 = 444cm2
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4

A = yA<<> == 1 244 cm2

1=1

r 5<!>=o
| S< 2 >=S< 3 >=200x20 = 4000cm3

[ S^ = 2 x 5 x (56.57)2 x (0.707) = 22 600 cm3

4

Sx = V S(0 =30 600 cm3

1=1

sy = o

r *G = o

I ?c=y = 24.61 cm

I™ = 400 x (24.61)2 = 242 000 cm4

/<2> = /<3> = 5x4Q3 + 200 x (24.61 - 20)2 = 31 000 cm4

7<4) = [ 5 +1 j x 5 x (56.57)3 + 444 x (24.61)2 -
*G U 2 j

2 x (24.61) x (22 600) = 320 000 cm4

4

/, = V /f = 624 000 cm4
G ^«w G

i=i

/(1) = 5x803_= 4
yc 12

1 /f > = /J3> = 200 x 402 = 320 000 cm4
yc yG

I<£ = 12E -1J x 5 x (56.57)3 = 258 000 cm4

4

7yc=2/£=1111000cm4

1=1

I 1% = !XG = 624 000 cm4

| 1^ =Iyc =1111000cm4
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EXAMPLE 5

f /<»=1^0i = 170667cm4
J Xc 12

/< 2 > = /< 3 > = 120 x 102 = 12 000 cm4

I XG XG

3

/ = y /« '• )=!94 667 cm4

*G ^̂  'VG

/=!

' 4"=°
/ < 2 ) = / ( 3 , = 4x30^ = 3600 m4

.V; >c ^

3

/ = V /</) = 72 000 cm4
> C JT^ ) G

/=!

f/i0,. =o
J *G>G

] /(2) = / ( 3 > =120x15x10 = 18 000 cm4

t At7.V, Ac-V;

3

/ = V /< ') z, 36 000 cm4
G - G ^ j G - G

/ = !

/, = '94667 + 72000+1( 4667_?2 4 36 }l

s 2 2 V 7

= 133 000 + 71 000 = 204 000 cm4

7n - 133 000-71 000 = 62 000 cm4

2x36000
tf0 =arctan = -15.2°0 72000-194667



O Kinematics and statics of rigid
systems

f (x.y.z) = 0

Figure 3.1

3.1 Introduction

The kinematics and statics of rigid systems are intimately connected. The
movements prevented by mutual and external constraints are in fact strictly
related to the reactive forces exerted by the constraints themselves. More
particularly, it will be noted, and subsequently rigorously demonstrated,
how the static matrix is the transpose of the kinematic one and vice versa, a
property that will re-present itself also in other chapters devoted to elastic
body systems. In every case this property will show itself to be a conse-
quence of the Principle of Virtual Work, each of the two theorems implying
the other.

After defining plane constraints from the twin viewpoints of kinematics and
statics and investigating in depth the concept of duality from the algebraic
standpoint, the same concept will be reproposed from the graphical point of
view, with the presentation of various examples of statically indeterminate,
statically determinate and hypostatic constraint. Particular attention will be
paid to the condition of ill-disposed constraint (for which the system has a
rigid deformed configuration) in the framework of the hypothesis of linearized
constraints. In this case the solution of the equilibrium equations proves to be
impossible.

3.2 Degrees of freedom of a mechanical system

The degrees of freedom of a mechanical system represent the number of gen-
eralized coordinates that are necessary and sufficient to describe its configura-
tion. A system with g degrees of freedom can thus be arranged according to °°s
different configurations.

Consider, for instance, the case of a material point forced to move, in three-
dimensional space, on a surface of equation f(x,y,z) = 0 (Figure 3.1). The
degrees of freedom, which originally are three, are reduced to two by the con-
straint / which binds the coordinates of the point. In the same way, it may be
stated that, in the case where the point is forced to follow a skew curve of
equations/,(;c,y,z) = Q,f2(x,y,z) = 0, the degrees of freedom are further reduced
to one, the curve being a geometric variety of one dimension only.

Imagine then connecting a material point A with a fixed system of reference
(e.g. the foundation) by means of a rigid rod OA (Figure 3.2) and connecting,
by means of another rod AB, the point A to a second point B. If we assume that
both connecting rods are not extensible, the rigidity constraints which these
impose on the two points may be represented by the equations of two circum-
ferences: the first, with radius /, centred in the origin O, and the second, with
radius /2, with the centre travelling along the first circumference

(3. la)

Figure 3.2
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Figure 3.3 Figure 3.4

Figure 3.5

Figure 3.6

The number of residual degrees of freedom (two) will be given by the differ-
ence between the degrees of freedom of the two unconstrained material points
(four) and the degrees of constraint (two).

In the case of three material points connected together by three connecting
rods (rigidity constraints) as in Figure 3.3, we have originally six degrees of
freedom. In the plane, in fact, the position of each point can be identified by
two coordinates. On the other hand, the three rigidity constraints

( j t , - * 2 ) 2 +tVi - ;y2 ) 2 =/ l 2 2 (3'2a)

(jc2 - jc3)2 + (v2 - v3 )
2 - /2

2
3 (3.2b)

(x*-xl)
2+(y*-yt)2=& (3.2c)

reduce the degrees of freedom of the system to three (# = 6-3 = 3). Note that
the system made up of three points and three connecting rods is rigid and its
position in the plane can be defined, once three relevant items are known (e.g.
the coordinates of the centroid and the angle of orientation).

By adding a fourth point to the above system and connecting it to two of the
previous points by means of a pair of connecting rods, we again obtain a rigid
system with three degrees of freedom in the plane (g = 8 - 5 = 3). In fact, two
new degrees of freedom are introduced, but at the same time these are elim-
inated with the two connecting rods (Figure 3.4). The same happens if a fifth
point is added, and so on.

Whereas in the plane, five is the minimum number of connecting rods
required to connect four material points rigidly (Figure 3.4), in space this
number rises to six (Figure 3.5), so as to form a tetrahedron. In fact, the orig-
inal 4 x 3 = 12 degrees of freedom are reduced to six, which is the number of
degrees of freedom of a rigid body in three-dimensional space. The general-
ized coordinates of a body can therefore be considered the cartesian coordi-
nates of the centroid plus the three Euler angles.

Often, in the pages that follow, the rigidity constraint will be, to use the term
generally adopted, linearized. This is to say that only infinitesimal displace-
ments about the initial configuration will be considered, and it will thus be pos-
sible to equate the circular trajectories with the rectilinear tangential ones. The
simplest case is that of a material point connected to the foundation by a con-
necting rod. Obviously, such an elementary system has one degree of freedom
and can be defined as hypostatic. The trajectory imposed on the point is the cir-
cumference of centre O and radius r (Figure 3.6), although, circumscribing the
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Figure 3.7

Figure 3.8
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kinematic analysis about any initial position of coordinates (*, v), it is possible
to assume as local trajectory an infinitesimal segment of the tangent

XX + yy = r2 (3.3)

The elementary displacements are hence considered to be vectors perpendicu-
lar to the radius vector. This statement derives from the kinematic theory of
the rigid body in three-dimensional space.

As is well-known from rational mechanics, the relation which links the ele-
mentary displacements of two generic points P and O of a rigid body undergo-
ing a rototranslational motion is the following (Figure 3.7):

{dSp} = {ds0} + {d(p}A{P-0} (3.4)

where {dip}, termed rotation vector, is that vector which has as its axis of
application, that of instantaneous rotation, as its sense, the feet-head sense of
an observer who sees the body rotate counterclockwise, and as its magnitude,
the value of the infinitesimal angle of rotation.

With J, J, k as the unit vectors of the reference axes X, Y and Z, relation
(3.4) can take on the following form:

(up -u0)i + (vp -v0)j + (wp-w0)k (3.5)

j k
= det cpx cpy <pz

( X P - X O ) (yP-y0} (ZP-ZO)_

where the determinant of the formal matrix on the right-hand side provides the
components of the vector product which appears in relation (3.4), while u,v,w
indicate the components along the axes X,Y,Z of the elementary displace-
ments, and cpx, cpy, (pz indicate the components of the rotation vector.

Relation (3.5) can alternatively be presented in the form of a product of an
antisymmetric matrix, called a rotation matrix, for the position vector of the
point P with respect to the point 0,

0 -(pz <py 1 [XP-XO'

{dsp}-{ds0}= <pz 0 -<px yP-y0 (3.6)
_-<Py <PX 0 J [zp-z0_

In the particular case of an elementary rotation of a two-dimensional
rigid body in its XY plane (Figure 3.8), equation (3.5) is particularized as
follows:

i j k'
(Up-u0)i+(vp-v0)j = 0 0 <pz (3.7)

(XP-XQ) (yp-yo) °
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Figure 3.9

Evaluating the determinant of the symbolic matrix on the right-hand side of
the equation, we obtain

up-u0=-(yp-y0)(p. (3.8a)

(3.8b)

Equations (3.8) are linear relations which describe algebraically the concept
of linearization of the constraint, already introduced previously on a more
intuitive basis. A geometrical interpretation (Figure 3.9) of equation (3.8) may
then be given, considering the elementary rotation <p: of P about O. The point
P will move to P', at a distance equal to np, (except for infinitesimals of a
higher order). The horizontal relative displacement, represented in Figure 3.9
by segment PQ\ thus equals

UP-UO- PQ' - -r(p: sin a (3.9)

Since triangles OQP and P'Q'P are similar, it follows that r sin a= (yP-yo),
so that from equation (3.9) we obtain again equation (3.8a). In the same way it
is possible to verify also the meaning of the linear relation (3.8b).

3.3 Kinematic definition of plane constraints

The constraints that we shall hereafter assume to be connecting the plane rigid
body to the fixed reference system are referred to as external constraints.
These can be classified on the basis of the elementary movements of the con-
strained point P which can be prevented, these movements consisting of the
two translations up and vp and of the elementary rotation <pp. The subscript P
has been applied to the latter quantity, even though this is a characteristic of
the act of rigid motion and thus of each point of the body.

There is thus created a hierarchy of constraints, from those which restrain
the body more weakly (single constraints) to those which more effectively
inhibit its movements (triple constraints or fixed joints).

The simplest kind of constraint, frequently used in technical applications, is
the roller support (Figure 3.10(a)) or the connecting rod (Figure 3.10(b)). This
constraint imposes on the point P a movement along the straight line p. It should
be noted that in the case of the connecting rod of Figure 3.10(b), the constraint is
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(a) Roller support

Figure 3.10

(b) Connecting rod

(a) Hinge

(b) Ideal hinge

Figure 3.11

linearized, as was clarified in the previous section. In mathematical terms, the
symbols of Figure 3.10 impose the following condition:

{dsp}t{n} = 0 (3.10)

i.e. that the elementary displacement of the point P cannot present components dif-
ferent from zero on the straight line n, perpendicular to the straight line p. The ele-
mentary rotation cpz can, on the other hand, be different from zero. Since equation
(3.10) is a scalar relation (it represents, in fact, the scalar product of the displace-
ment and the unit vector of the straight line n), it can be stated that the roller sup-
port or the connecting rod are single constraints. Single constraints require that any
centre of instantaneous rotation must lie on a straight line. In the case of the roller
support or the connecting rod, the centre of instantaneous rotation must lie on the
straight line n, since this is perpendicular to the instantaneous trajectory p.

Another constraint which has a wide application is the hinge (Figure
3.11 (a)). This imposes on the constrained point P to remain fixed in the plane,
while the elementary rotation <pz can be about the same point P, which thus
coincides with the centre of instantaneous rotation. In mathematical terms,

{d*P} = {0} (3.11)

The foregoing condition is of a vector nature and thus the hinge can be class-
ified as a double constraint.

We may then consider that, by suitably combining two single constraints,
the result for the body can be a double constraint. The most typical case is that
of two non-parallel connecting rods (Figure 3.1 l(b)), the axes of which come
together in the centre of instantaneous rotation C. Each connecting rod in fact
conditions the centre to belong to its axis, and the two conditions are compati-
ble, except when the connecting rods are parallel, in which case the centre
would be at infinity. The centre C is said to constitute an ideal hinge.

When the two connecting rods are parallel, the centre of instantaneous rota-
tion coincides with the point at infinity of the axes of the connecting rods (Fig-
ure 3.12(a)). This means that the rigid motion becomes one of pure translation
in the p direction perpendicular to the axis n. In mathematical terms, we have
the following two scalar conditions:

{dsP}
T{n} = 0 (3.12a)

cpz=0 (3.12b)

The double connecting rod is thus a double constraint and can be repre-
sented, in an altogether equivalent way, by a sliding joint (Figure 3.12(b)).
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(a) Double connecting rod

Figure 3.12

(b) Sliding joint

Double articulated
parallelogram

Figure 3.14

(a) Fixed joint

Figure 3.13

The only triple constraint of a local type is the fixed joint or built-in sup-
port (Figure 3.13(a)), which, by definition, prevents all three movements
(hence, no centre of rotation exists):

{<M = {0} (3.13a)

< p _ = 0 (3.13b)

Obviously, the triple constraint may be obtained by suitably combining a
double constraint with a single one (Figure (3.13(b)).

In the hierarchy of plane constraints outlined above just one case is missing,
one which, as a rule, is rarely applied in building practice, but which may be
defined mathematically and may prove useful in applications of the Principle
of Virtual Work. This constraint is that which allows motion of translation in
all directions, while it inhibits rotation:

(p.=0 (3.14)

This can be represented by a double articulated parallelogram (Figure 3.14)
and is a single constraint which obliges the centre of instantaneous rotation to
remain on the straight line at infinity.

So far only point constraints have been introduced, i.e. constraints concen-
trated in one point or, at the most, acting within an infinitesimal area of the
body. The only exception is that of the ideal hinge (Figure 3.1 l(b)) in which
two connecting rods are applied, at a finite distance from one another. On the
other hand, in building practice, the constraints are arranged in different
points of the structural element, in such a way as to prevent its movement.
When the constraints are insufficient to fix the position of the rigid body in
the plane, the constraint condition is said to be hypostatic. In the case of
Fipure 3.15(aV for instance, a single hinge allows rotation of the olate
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Figure 3.15

(a) (b) (c)

constrained by it about its axis. In the case of Figure 3.15(b), a hinge and a
roller support prove to constitute a strictly sufficient condition to hold the
body in position; the body is then said to be constrained isostatically. While,
in fact, the hinge A forces any rotation to be centred in A, the roller support B
forces the centre to lie along the normal n. These two conditions are evidently
mutually incompatible, as the point A does not lie along the line n. Likewise,
it may be observed how the hinge A imposes the trajectory n on the point B,
while the roller support B imposes the trajectory p on the same point B. These
two trajectories are again incompatible, in that they have in common only the
point B. In the case of Figure 3.15(c), finally, the two hinges constitute a
redundant condition of constraint. The body is then said to be hyper-
statically constrained.

On the other hand, it should at once be pointed out that, if the constraints
are not suitably disposed, they can lose their effectiveness. Thus it is that bod-
ies which are apparently isostatic or even hyperstatic, may then in fact prove
to be hypostatic. The hinge and the roller support of Figure 3.16(a), for exam-
ple, are ill-disposed constraints, because the centre of rotation allowed by the
roller support B can come to find itself on the straight line n, which passes
through the hinge A. Hence, it is possible for the centre of rotation to be in A.
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Internal connecting rod

Figure 3.17

Figure 3.19

Internal fixed joint

Figure 3.20

In other words, the trajectories imposed on the point B by both constraints
coincide in the straight line/?. Likewise, the roller support and the double con-
necting rod of Figure 3.16(b) are ill-disposed, because both of them permit
horizontal translations of the body. The centre of rotation will thus be at
infinity, as the meeting point of the normals nA and nB. Finally, the case illus-
trated in Figure 3.16(c) is yet another example of ill-disposition of the con-
straints in that the three normals, nA,nB and nc, all meet at the point P, i.e.
there is a centre of instantaneous rotation at the point where all three lines
meet, since this centre must belong to each one of them.

Just as external constraints impose particular conditions on absolute ele-
mentary displacements of points held to the foundation, so internal con-
straints impose similar conditions on the relative elementary displacements
of points belonging to different rigid bodies. Consider the case of the internal
connecting rod (Figure 3.17). This prevents discontinuity of displacement in
the direction of its axis n:

{dsA-dsB}T{n} = 0 (3.15a)

while it allows discontinuity of displacement in the perpendicular direction p:

{dsA-dsBF{p}*0 (3.15b)

just as it allows discontinuity of rotation, i.e. relative rotation:

<p A -<ps*0 (3.15c)

Any centre of relative rotation must lie on the line n. Internal constraints
may also be considered, in a complementary way, as disconnections of
degree (3 - g), where g is the degree of constraint; i.e. it is possible to start
from a single rigid body that has two parts which are firmly joined and to
reduce it, via elementary disconnections, to the case under examination. In
this context, the connecting rod is a single constraint and, at the same time, a
double disconnection.

The internal hinge eliminates any relative displacement of the two points
which it connects, while it allows relative rotation (Figure 3.18):

{dsA-dsB} = {0} (3.16a)

(pA-(pB*® (3.16b)

Any centre of relative rotation will coincide with the hinge, which is in fact a
double constraint and, at the same time, a single disconnection.

The double internal rod (Figure 3.19) eliminates relative displacement in
the direction n as well as relative rotation:

{dsA-dsBFin} = 0 (3.17a)

<pA-(pB=Q (3.17b)

while it allows the relative displacement in the perpendicular direction p:

{dsA-dsBF{p}*Q (3.17c)

Any centre of relative rotation will be the point at infinity of the straight line n,
and thus the only relative motion allowed will be the translational one in the/?
direction. The double rod is a double constraint or can be considered as a
single disconnection. The internal fixed joint (Figure 3.20) firmly joins one
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internal double articulated
parallelogram

Figure 3.21

(a)

(b)

Figure 3.22

portion of the body with the other and is a triple constraint. In other words,
there is no internal disconnection.

To bring our discussion of internal constraints to a close, let us consider the
case of the internal double articulated parallelogram (Figure 3.21), which
allows any relative translation but not relative rotation. It is thus a single con-
straint or a double disconnection. The relative centre lies on the straight line at
infinity and can be any point on that line.

The internal hinge often connects more than two elements (Figure 3.22 (a)), in
such a way that the relative centres all come to coincide with it. In these cases, it is
logical to consider (n - 1) mutual connections, if n is the number of the connected
elements (Figure 3.22 (b)). In the case, therefore, of four bars mutually connected
as in Figure 3.22 (a), the residual degrees of freedom are g = (4 x 3) - (3 x 2) = 6.
We have, in fact, 12 original degrees of freedom and six degrees of constraint.
More synthetically, it is possible to arrive at the same result again by considering
as generalized coordinates of the system the cartesian coordinates of the hinge
plus the four angles of orientation of the bars. In the same way, the roller support
of Figure 3.23, with three hinged bars, forms a mechanical system having four
degrees of freedom. A less immediate calculation again gives g = (3 x 3) - (2 x 2)
- 1 = 4, as there are nine original degrees of freedom, and five degrees suppressed
by two double (internal) constraints and one single (external) constraint.

In the case where the bars are built into one another so as to form one or more
closed configurations, the system is said to be internally hyperstatic and there will
be three degrees of hyperstaticity for each closed configuration. For example, for
the rectangle of Figure 3.24(a), formed by four bars built into one another, the
calculation g = (4 x 3) - (4 x 3) = 0 does not hold good, as it would suggest, quite
falsely, that the system is isostatic. In actual fact, the doubly-connected body pre-
sents three external degrees of freedom (it is not externally constrained), and
three degrees of internal indeterminacy, since the various parts would remain
firmly joined even if a triple disconnection (i.e. a cut) were made in any point of
the axis (Figure 3.24(b)). The triple disconnection could, on the other hand, be
distributed in two or three points (Figures 3.24(c), (d)). It is necessary, however,
to take care in arranging such disconnections. The hinge on the axis of the con-
necting rod or the three aligned hinges, for example, would be ill-disposed, with
the consequent development of an internal mechanism (Figures 3.24(e), (f)).

Figure 3.23
(a) (b) (c)

(d)

Figure 3.24

(e) (f)
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Figure 3.25 Figure 3.26 Figure 3.27

Two bars connected both to the foundation and to one another by three
hinges constitute a fundamental isostatic scheme called a three-hinged arch
(Figure 3.25). Naturally, for the same reasons already seen previously, the
three hinges must not be collinear; otherwise, a mechanism is created. By
inserting a fourth hinge (single disconnection), a mechanism with one degree
of freedom is obtained (Figure 3.26); this is known as an articulated parallel-
ogram (# = 9 - 8 = 1 ) . Alternatively, yet another simple mechanism is
obtained by disconnecting, with respect to the horizontal translation, one of
the two hinges connected to the foundation (# = 6 - 5 = 1 ) . In this case the
crank mechanism of Figure 3.27 is obtained.

3.4 Algebraic study of kinematics of rigid systems

We shall now approach, from the algebraic point of view, the problem of the
kinematics of rigid systems, thus giving a rigorous interpretation to the degen-
erate case of the ill-disposition of constraints. Progressively more complex
examples will be introduced, with an increasing number of bodies.

As a first case consider the L-shaped beam of Figure 3.28(a). This is con-
strained by a roller support hinged in A and by a hinge in B. The unknowns of
the problem will be the displacements of a representative point of the rigid
body, chosen arbitrarily, referred to as the pole or centre of reduction. This
point is chosen to fall at the convergence O of the two bars. A cartesian system
is chosen with centre in O and axes parallel to the two bars. The unknowns
are then uQl vo, <po, i.e. the two elementary translations of the point O with

(a)

Figure 3.28
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reference to the axes X and Y and the elementary rotation of the entire rigid
body. On the other hand, there are also three constraint equations:

vA=Q (3.18a)

w f i = 0 (3.18b)

vB=Q (3.18c)

The task, therefore, will be to render explicit equations (3.18) as a function of
the elementary displacements of the pole. Applying equations (3.8), we have

VA = v0 + (XA -x0)(p0 = v0 (3.19a)

UB = uo ~(ys ~yo)<Po = uo (3.19b)
VB = v0 +(XB -x0)(p0 = vo +l<po (3.19c)

and thus the constraint equations become

v0 = 0 (3.20a)

u0 = 0 (3.20b)

D0 + /<p 0 =0 (3.20c)

The system of linear algebraic equations (3.20) may be resolved very quickly
by substitution, thus affording the obvious or trivial solution. The displace-
ments of the pole O are all zero, which means that the constraints are well-
disposed. Since, however, it is our purpose to reason in terms that are more
general and that can be more readily extrapolated to cases of greater complex-
ity, it is necessary to introduce the matrix notation

"0 1 0] [w0~| [0"
1 0 0 v0 = 0 (3.21)

0 1 / J q>0 |_0_

It is well-known from linear algebra that a necessary and sufficient condition
for a homogeneous system of linear algebraic equations to admit of the obvi-
ous solution is that the determinant D of the matrix of the coefficients should
be different from zero. In the case of the system of equations (3.21), we have
D = -/. When / > 0, as appears in Figure 3.28(a), the solution is thus the trivial
one. On the other hand, carrying out a parametric study on the variable /, we
find that, for / = 0, the kinematic solutions become °°l and the system becomes
a mechanism, since an ill-disposition of constraints is produced. The normal n
to the plane in which the roller support moves, in fact, in this case contains the
hinge B (Figure 3.28(b)), so that a centre of instantaneous rotation arises in the
same point B.

As a second example, consider again the L-shaped beam met with earlier,
this time, however, restrained in A with a roller support having its plane of
movement inclined at the angle a with respect to the vertical direction (Figure
3.29(a)). The first of equations (3.18) will then be substituted by the following:

{dsAF{n} = 0 (3.22a)

or more explicitly by

wA cos a + D A sin a = 0 (3.22b)
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(a) (b)

Figure 3.29

Writing the left-hand side expression as a function of the displacements of the
pole O, we have

(u0 + h(p0) cos a + v0 sin a = 0 (3.22c)

In the matrix of the coefficients which appears in equation (3.21), only the first
line will vary with respect to the previous case:

cos a sin a hcosa u0 0

1 0 0 v0 = 0 (3.23)

0 1 / J (p0 |_0_

The determinant of the matrix of the coefficients has the value: D = - (I sin a-
h cos aj, and is generally different from zero. Assuming as parameter the
angle a, we find that D vanishes for a = a = arctan (h/l). In this case, in fact,
the plane in which the roller support moves is set perpendicular to the line
joining A and B (Figure 3.29(b)).

We now examine the case of a portal frame made up of two L-shaped
beams, connected together by a hinge and to the foundation by a hinge and by
a horizontal double rod, respectively (Figure 3.30(a)). The points A and C of
external constraint are assumed as poles. The six kinematic unknowns will

Rigid deformed configuration

(a)

Figure 330
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thus consist of the elementary displacements of the two poles: UA, VA, <pA, uo

vc, (pc. On the other hand, the six constraint equations will impose

While in the first and last pairs of equations the unknowns of the problem
appear directly, the intermediate ones, which exclude relative displacements
in B, must be expressed in terms of the generalized displacements of the poles
A and C. Applying equations (3.8), the displacements of the central ends B'
and B"of the two beams are given by

(3.25a)

(3.25b)

(3.25c)

(3.25d)

(3.26a)

(3.26b)

(3.26c)

(3.26d)

(3.26e)

(3.26f)

Substituting equations (3.25) into equations (3.24(c),(d)) we obtain

and, in matrix form

" 1 0 0 0 0 0 "

0 1 0 0 0 0

1 0 - 2 / 1 - 1 0 h

O i l 0 - 1 /

0 0 0 1 0 0

0 0 0 0 0 1

XT
VA

VA
uc
DC

_<Pc_

"0"
0

0

0

0

0

(3.27)

The determinant of the matrix of the coefficients has the value D = -2h. For
h = 0, this vanishes and we end up with an ill-disposition of the constraints,
as emerges from the rigid deformed configuration of Figure 3.30(b). In this
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uA=Q

vA=Q

uB'-uB»=0

VB>-VB>. = 0

uc = 0

(pc=0

(3.24a)

(3.24b)

(3.24c)

(3.24d)

(3.24e)

(3.24f)

M^=M A -2 fc f l ) A

VB^^A+^A
Wfi" ^uc-h(pc

vB" =vc-l(pc

uA=0

D A -0

WA - 2/z(pA - MC + /z<pc = 0

v x +/^ -u c +/ f l> c =0

uc=Q

(p c=0
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(a) (b)

Figure 3.31

case, it may be noted how the two absolute centres and the relative one are
aligned.

If the portal frame just considered is further constrained in C, by adding a
vertical connecting rod, the constraint equations become seven, whilst the
kinematic unknowns remain the six previously introduced. In the case of h > 0
(Figure 3.31 (a)), the solution will still be the obvious one. On the other hand,
even when h = 0 (Figure 3.31(b)), the solution is the obvious one, because,
from the matrix of the coefficients (7 x 6), it will be possible to extract a non-
zero minor of order 6, since the added line is not linearly dependent on the
others.

If, instead, one of the two rods in C of the portal frame of Figure 3.30(a) is
suppressed, the constraint equations are reduced to five. In the case of h > 0
(Figure 3.32(a)), it will be possible to extract a nonzero minor of order 5, and
thus the solutions will be °°l and the system will have one degree of freedom.
On the other hand, when h = 0 (Figure 3.32(b)), it will be possible to extract a
nonzero minor of order 4, and thus the solutions will be <*>2, which means that
the mechanical system is hypostatic to the second degree. In fact, two angles
of rotation will be necessary, for example, the absolute angle # and the rela-
tive angle (p (Figure 3.32(b)), to describe its deformed configuration.

(a)

Rigid deformed configuration

(b)

Figure 332
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Figure 3.33

Figure 334

Now imagine parameterizing, in the portal frame of Figure 3.33, the angle
of orientation a of the double connecting rod in C. Thus only equation (3.26e)
is altered:

uc cos a + vc sin a = 0 (3.28)

and consequently in the matrix of the coefficients (3.27) only the fifth row
varies:

" 1 0 0 0 0 0 "

0 1 0 0 0 0

1 0 -2A -1 0 h

0 1 / 0 -1 /

0 0 0 cosa sina 0

0 0 0 0 0 1

~UA~

VA
<f>A

UC

vc

Vc

"0"

0

0

0

0

0

(3.29)

The determinant of the matrix of the coefficients has the value D = -2h cos a +
I sin a, and vanishes for a =a = arctan (2M), i.e. when the double connecting
rod is parallel to the line joining A and B. In this case the constraints are ill-dis-
posed, since, for example, the hinge A on the one hand, and the double rod C on
the other, allow the point B the same trajectory about the original configuration,
viz. the normal for B to the line joining A and B. Also in this example, when a
condition of ill-disposition of the constraints and consequently of freedom is
reached, the absolute centres and the relative centre are aligned.

Finally, consider a structure made up of three rigid parts, connected
together with hinges and attached to the foundation by a vertical double rod, a
hinge and a roller support (Figure 3.34). There are, in all, nine original degrees
of freedom and nine degrees of constraint (four double constraints and one
single constraint). We shall study the system, assuming as variable parameter
the distance of jc of the internal hinge B from the left upper vertex of the struc-
ture. It is convenient to choose as pole of each rigid part the point constrained
to the foundation, so that the nine kinematic unknowns will be

The constraint conditions are the following:

(3.30a)

(3.30b)

(3.30c)

(3.30d)

(3.30e)

(3.30f)

(3.30g)

(3.30h)

(3.30i)
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WA> VA, VA> MO vc> <Po UE>VE, <PE

vA=0

VA=<>
UB> - uB» = 0

VB'-VB» =0
uc=0
vc=0
UD> - UD» - 0
VD>-VD» =0
vE=0
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In the third, fourth, seventh and eighth, the kinematic parameters of the poles
do not appear directly, and thus it will be necessary to have recourse to equa-
tions (3.8)

uB,=uA-h<pA (3.3 la)

vp=vA+xq>A (3.315)

UE» =uc-2h<pc (3.3 Ic)

VB" = vc + U - l)cpc (3.31d)

UD> = uc -h(pc (33le)

vD>=vc + l<pc (3.3 If)

uD»=uE-h<pE (3.31g)

vD»=vE-l<pE (3.3 Ih)

The equations of the problem appear, then, as follows:

\)A = 0 (3.32a)

q>A =0 (332V)

UA - h<pA -uc + 2h(pc = 0 (3.32c)

VA + x(pA - DC + (/ - x)(pc = 0 (3.32(1)

uc = 0 (3.32e)

vc = 0 (3.32f)

«c ~ *Pc -uE+h<PE=® (3.32g)
vc + /<pc - v£ -f l(pE = 0 (3.32h)

u £ = 0 (3.321)

and in a matrix form, we have

" 0 1 0 0 0 0 0 0 0 ] \UA~\ [0~
0 0 1 0 0 0 0 0 0 VA 0

1 0 -h -1 0 2/2 0 0 0 <pA 0

0 1 jc 0 -1 l-x 0 0 0 uc 0

0 0 0 1 0 0 0 0 0 v c = 0 (3.33)

0 0 0 0 1 0 0 0 0 <pc 0

0 0 0 1 0 -A -1 0 h UE 0

0 0 0 0 1 / 0 -1 / v£ 0

o o o o o o o i oj ^ [°_
The determinant of the matrix of the coefficients has the value D - (I - x) /,
and vanishes for jc = /, when the hinge B is at the right end of the upper hori-
zontal beam. In the next section we shall discuss the type of mechanism that is
created in this last particular case (Figure 3.39).
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3.5 Graphical study of kinematics of systems having one degree of
freedom

The kinematic study of systems having one degree of freedom, herein also
referred to as kinematic chains, will be proposed in this section from the
graphical point of view. Also certain cases of the foregoing section will be
taken up again, with the aim of defining the displacement vector field and the
deformed configuration of the rigid bodies (here all assumed as being one-
dimensional) which make up the chain.

The graphical study of kinematic chains is founded on two theorems, which
here for reasons of brevity will not be demonstrated, but only stated.

First Theorem of Kinematic Chains (applicable when the chain is made up of
at least two rigid bodies). A necessary and sufficient condition for the mechan-
ical system to be hypostatic is that, for each pair of bodies i and 7, the absolute
centres of rotation C, and Cj and the relative centre Ctj should be aligned.

Second Theorem of Kinematic Chains (applicable when the chain is made
up of at least three rigid bodies). A necessary and sufficient condition for the
mechanical system to be hypostatic is that, for each group of three bodies /, j
and k, the three relative centres Cijf Cjk and Cki should be aligned.

Let us consider the crank mechanism of Figure 3.35(a) in its initial configura-
tion, and let us proceed to study its elementary movements about that configura-
tion. The absolute centre of rotation Q of the connecting rod / coincides with the
point hinged to the foundation, just as the relative centre C12 will coincide with the
internal hinge. The absolute centre of the bar // is not known a priori. Since one
end of this bar is hinged to a roller support, the straight line n on which that centre
must lie is, however, known. By the First Theorem of Kinematic Chains, the cen-
tre C2 must then be collinear to centres Cl and C12. We are thus provided with the
information indicating that centre C2 belongs to two different straight lines:

(a)

(b)
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C2 e n, C2e fQ, Cn)

so that it must consequently lie at the intersection of these two lines (Figure
3.35(a)).

Once the centres of instantaneous rotation have been identified, these and
the other notable points of the system will be projected onto two orthogonal
lines (Figure 3.35(a)). It will thus be possible to draw the diagrams of the hor-
izontal and vertical displacements, respectively, on the vertical and horizontal
fundamental lines. To be able to do this, we shall, then, have to take into con-
sideration the linear equations (3.8), the points where the displacement func-
tions vanish (coinciding with the projections of the absolute centres) and the
conditions of continuity imposed by the internal constraints on the displace-
ments and the rotations.

The actual procedure will be to draw a segment of a line, inclined at an arbi-
trary angle <p with respect to the horizontal fundamental line (Figure 3.35(a))
which will represent the vertical displacements of the corresponding points
projected from the connecting rod /. As regards the bar //, the projection of the
absolute centre is known, as is also the vertical displacement of the end hinged
to the connecting rod /. The internal hinge, in fact, prevents relative displace-
ments in that point, i.e. it imposes the continuity of the vertical (and horizon-
tal) displacement function. It may be stated, therefore, that the vertical
displacements of the points of the bar // will be represented by the segment of
straight line which joins the projection of the centre C2 to the right end of the
previous linear diagram. This segment is thus rotated clockwise by an angle #,
while the rod / is rotated counterclockwise by an angle <p.

The horizontal displacements can then be read in reference to the vertical
fundamental line (Figure 3.35(a)). Draw a segment rotated counterclockwise
by an angle <p about the projection of the centre Cj. Next, consider the line that
joins the projection of centre C2 to the point representative of the horizontal
displacement of the internal hinge. The horizontal projection of bar // on this
line represents the horizontal displacements of the points of the bar itself.
Note that the rotations on the two displacement diagrams must be the same for
each rigid body. It can be demonstrated in fact that, by exploiting the simili-
tude of the hatched triangles in Figure 3.35(a), that also on the diagram of the
horizontal displacements the bar II rotates clockwise by the angle #.

To conclude, it may be of interest for a verification of the results to draw the
deformed configuration of the system on the basis of the diagrams obtained.
The procedure is to compose horizontal and vertical displacements of the
notable points of the chain and to reconnect these points, transformed by the
movement, with straight line segments. In the case of the crank mechanism of
Figure 3.35(a), the internal hinge is displaced leftwards and upwards (by
amounts which can be deduced from the diagrams described above), while the
roller support moves towards the left, dragged by the rotation of the connect-
ing rod /. Of course, when we come to draw the deformed configuration, we
must bear in mind that the linearization of the constraints, which is justified in
a context of infinitesimal displacements, instead deforms rigid bodies when
these displacements are amplified to meet the requirements of graphical clar-
ity. In the crank mechanism, for example, the connecting rod / appears dilated
owing to the movement (Figure 3.35(b)).

As a second example, consider the hypostatic arch of Figure 3.36(a). This
time the roller support moves in a vertical plane. The absolute centre C2 is
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(a)

(b)

identifiable as the intersection of the normal to the plane in which the roller
support moves with the line joining the centres C{ and C12. With the absolute
and relative centres projected on the two fundamental lines, and taking into
account the conditions of continuity imposed on the displacements by the
internal constraint, we can proceed to draw the diagrams of the horizontal
and vertical displacements. It may be noted (Figure 3.36(a)) how the absolute
centres of rotation undergo null displacements (this is true by definition), just
as the extreme points of the two rigid bodies connected by the internal hinge
are displaced by the same amounts, both vertically and horizontally. Both
bodies rotate counterclockwise, the first by an arbitrary (and infinitesimal)
angle <p, the second by an angle 29, twice as much on account of the particu-
lar geometrical proportions of the system (the upright on the left is twice as
long as the one on the right). These angles emerge from both diagrams of
horizontal and vertical displacements. While, therefore, the body / rotates
about the external hinge, the body // is dragged in such a way as to rotate
twice as much, pulling the roller support upwards with a displacement equal
to 3<p/ (Figure 3.36(b)).

We are now confronted with the case of a hypostatic arch (Figure 3.37) con-
sisting of two rigid L-shaped bodies, connected together by a horizontal dou-
ble rod and to the foundation with a hinge and a roller support, respectively.
Also in this case, the centre C2 is obtained as the intersection of the normal to
the plane of movement of the roller support with the line joining Cl and
C12(°°). Since C12(«>) is the point at infinity of the horizontal lines, the line
joining C\ and C12 is the horizontal line passing through C\. With the absolute
centres projected on the two fundamentals, the two rigid bodies must rotate by
the same angle (since the double rod does not allow relative rotations), while
the horizontal displacement cannot present discontinuity in correspondence
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Figure 3.37

with the double rod. There is, instead, a discontinuity in the diagram of the
vertical displacement equal to 2<p/, so that the end to the left of the double rod,
belonging to body /, will be displaced upwards (as well as leftwards), while
the end to the right, belonging to body //, will be displaced downwards (as
well as leftwards). The roller support will, meanwhile, be displaced an amount
cp/z towards the right.

So far we have considered systems that are hypostatic for manifest
insufficiency of constraints. We shall now consider two cases (already met
with in the previous section) which concern structures having ill-disposed
constraints. The difference, therefore, in this case lies in the fact that the initial
configuration is not arbitrary, as instead occurs in the case of crank mechan-
isms and, in general, for all mechanisms having one degree of freedom.

Consider the arch with ill-disposed constraints of Figure 3.38, already
studied algebraically earlier. The three centres, two of which absolute, C{

and C2(o°), and one relative, C12, as stated above, are aligned and thus,
according to the First Theorem of Kinematic Chains, the structure is hypo-
static. The projections of the centre C2(°°) fall at the points at infinity of the
two fundamentals, so that the diagrams of the horizontal and vertical dis-
placements of the points of body II are two segments parallel to their respec-
tive fundamentals. These points translate downwards by the amount <p/ and
rightwards by 2cp/z, and thus, globally, translate in a direction orthogonal to
that of the axes of the rods. At the same time, body / rotates clockwise by an
angle cp, so that the internal hinge finds itself translated rightwards by 29/1
and downwards by <p/.

To conclude, reconsider the structure made up of three rigid bodies, in the
case of ill-disposition of the constraints (Figure 3.39). The absolute centre
CjO*) is the point at infinity of the vertical straight lines. The centre C2 is
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Figure 339
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Figure 3.40

STATIC DEFINITION OF PLANE CONSTRAINTS

found on the external hinge, while the centre C3 is unknown a priori. The
relative centres C12 and C23 coincide with the internal hinges.

The centre C3 is found at the intersection of the normal to the plane of move-
ment of the roller support with the line joining C2 and C23. On the other hand,
the third relative centre C13 is found at the intersection of the line joining C12
and C23 (Second Theorem of Kinematic Chains) with the line joining Cj(<») and
C3, which is the vertical line through C3 (First Theorem of Kinematic Chains).
In short, C13 is found to coincide with the hinge of the roller support.

Once all the centres are known, both absolute and relative, it is possible to
project them on the two fundamentals and to draw the linearized functions of
displacement graphically, turning, so to speak, on these projections. As is nat-
ural, the body / translates only horizontally, while the bodies // and /// both
rotate by the same angle, the former, however, counterclockwise, the latter
clockwise. The roller support moves towards the left by the amount 2<p&, as
does the upper internal hinge. The lower internal hinge translates leftwards by
<p/z and upwards by cp/.

3.6 Cardinal equations of statics

Consider a plane rigid body subjected to the action of n concentrated forces Ft
and of m concentrated moments (or couples) Mi (Figure 3.40). A necessary
and sufficient condition for this body to be in equilibrium is that the system of
loads should satisfy the cardinal equations of statics:

n

{/?} = ]T{^} = {0} (3.34a)
i=l

m n

M(0) = ̂ Mt +^({/}} A {/v))T {*} = 0 (3.34b)
/=! /=!

where {R} is the resultant force and M(O) is the resultant moment (scalar
because the system is plane) with respect to an arbitrary pole O of the plane.
The arbitrariness of the pole is permitted by the condition whereby the resul-
tant force is zero. In fact, the resultant moment with respect to a different pole
0'is linked to the foregoing one by the following relation:

M(0') = M(0) + ((O - O') A (R})T{k} (3.35)

A system of loads which satisfies the conditions (3.34) is said to be balanced
or equivalent to zero (two systems being equivalent when they possess equal
resultant forces and equal resultant moments). On the other hand, two systems
of loads are said to be one the equilibrant of the other when their sum is a
balanced system. It follows from this that an equilibrant of a system of loads is
the opposite of an equivalent system. It will be seen later how the system of
external loads and the system of constraint reactions balance one another, their
sum necessarily constituting a system equivalent to zero.

3.7 Static definition of plane constraints

Plane constraints, both internal and external, have already been introduced
and defined from the kinematic point of view in Section 3.3. We shall now
give a static definition, which means that we shall specify the reactions that
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Figure 3.41

Figure 3.42

Figure 3.43

the constraints themselves are able to exert. There is a perfect correspondence,
known as duality, between the kinematic definition and the static one. To each
elementary movement (or generalized displacement) prevented by the con-
straint, there corresponds a generalized force exerted by the constraint on the
body (and vice versa) in the case of external constraint, and mutually between
two connected bodies in the case of internal constraint.

Recalling that for the roller support or connecting rod the kinematic con-
ditions are (Figure 3.41)

{dsP}T{/7}*0 (3.36a)

{dsp}
7{n} = 0 (3.36b)

<pz*Q (3.36c)

to these there will correspond in a complementary (or dual) fashion the fol-
lowing elementary reactions:

(RPF(p} = Q (3.37a)

{/?P}T{n}*0 (3.37b)

MP = 0 (3.37c)

Hence, only the reaction orthogonal to the plane of movement of the roller
support is different from zero, while the reaction parallel to this plane and the
reaction moment are zero. Absence of friction (smooth constraint) is therefore
assumed. Note that, as a consequence of the duality, the total work of the con-
straint reactions is zero:

{Rp}T{dsP} + MP(pz = 0 (3.38)

This relation is valid, however, only when the constraint is ideal; that is, when
the constraint is rigid and smooth, the conditions whereby displacements and
reactions cancel, rigorously holding good.

The hinge, which is a double constraint, reacts with a force whose line of action
passes through the hinge itself (Figure 3.42). The kinematic and static conditions are

{dsp} = {0} =*{RP}*{0] (3.39a)

<pz*Q =>MP=Q (3.39b)

The parameters which identify the reaction force are in any case two: the two
orthogonal components, or magnitude and angle of orientation.

Also the double rod is a double constraint, which reacts with a force parallel
to the axes of the rods. The kinematic and static conditions are (Figure 3.43)

idspF{p}*0 =>{Rp}T{p} = Q (3.40a)

{dsP}T{n} = 0 =>{#,,}T{n}*0 (3.40b)

< p r = 0 rz>M P *0 (3.40c)

There are two parameters that identify the reaction: force and reaction
moment, or translated force (after its composition with the reaction moment)
and distance of the line of action from the constraint (Figure 3.43). Note that,
considering the double rod as an ideal hinge at infinity, it may be stated that
the reaction is a force whose line of action passes through this ideal hinge.
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The triple constraint, or fixed joint, inhibits all elementary movements, and
thus all three elementary reactions can be different from zero (Figure 3.44):

{dsp} = {0} =*{Rp}*{0} (3.41a)

(pz=0 => MP*0 (3.41b)

There are three parameters that identify the reaction: two orthogonal components of
the reaction force and reaction moment, or magnitude and angle of orientation of the
translated force and distance of the line of action from the constraint (Figure 3.44).

Finally, the last external constraint that remains to be considered is the
double articulated parallelogram (Figure 3.45), which is a single constraint
that inhibits rotation and that will thus react only with the moment

{<M*{0} => {RP} = {0} (3.42a)
cpz = 0 => MP * 0 (3.42b)

For internal constraints, the considerations are altogether similar to those
just set forth for external constraints. On the other hand, just as for external
constraints the reactions are understood as mutual actions (i.e. equal and
opposite) exerted by the foundation on the body and vice versa, so for internal
constraints the mutual action is to be understood as being exerted between the
two bodies connected by the constraint.

The connecting rod exerts an equal and opposite force on the two bodies
(Figure 3.46). This force has the line of action coinciding with the axis of the
connecting rod, and thus the only static parameter involved is its magnitude
(in addition to the sense). The force perpendicular to its axis and the reaction
moment are not transmitted by the connecting rod.

The hinge exerts a force which passes through its own centre (Figure 3.47).
Since it is a double constraint, there are two static parameters involved: the
two orthogonal components, or the magnitude and the angle of orientation.
The reaction moment is zero since relative rotations are allowed. The hinge is
usually said not to react to moment.

The double rod transmits a force parallel to the axes of the rods, of which the
magnitude and the distance from the constraint are to be defined (Figure 3.48).
In an equivalent manner it may be stated that the double rod transmits a force,
with line of action coincident with the axes of the rods (which are at an infinite-
simal distance), and a reaction moment. Considering the double rod as an ideal
hinge at infinity, the reaction is a force passing through this ideal hinge.

The double articulated parallelogram transmits the reaction moment only
(Figure 3.49).

Figure 3.44

Figure 3.45 Figure 3.46 Figure 3.47
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Figure 3.48 Figure 3.49 Figure 3.50

Figure 3.51

The internal joint, since it is a triple constraint, transmits all three ele-
mentary reactions: horizontal and vertical components of the force and the
reaction moment (Figure 3.50). It is equivalent, on the other hand, to con-
sider the global reaction obtained by summing up the single components:
this can be any force, however oriented in the plane and however distant
from the constraint.

It is important to note at this point that a rigid beam can be considered as
a succession of infinite triple constraints which connect the infinite elemen-
tary segments that make it up (Figure 3.51). In this case, the elementary
reactions assume peculiar structural meanings, as will be seen in the sequel,
and particular denominations. Axial reaction is also referred to as normal
reaction; reaction perpendicular to the axis is known as transverse or shear
reaction; reaction moment is called bending moment. We shall hereafter
refer to these elementary reactions in general as characteristics of internal
reaction.

3.8 Algebraic study of statics of rigid systems

In this section we shall show how hypostaticity, isostaticity and hyperstatic-
ity of rigid systems also find a highly meaningful algebraic interpretation in
the field of statics. Moreover, we shall see that whereas in the kinematic
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field, the condition of the system is an intrinsic property of the system itself,
in the static field it is also a function of the external load.

As an introduction to the subject, consider again the L-shaped beam of Fig-
ure 3.52, loaded by a vertical force concentrated in the centre of the horizontal
part. The external constraint reactions consist of the force RA, perpendicular to
the plane of movement of the roller support A, passing through the hinge of the
roller support, and assumed to be acting upwards, and of the components HB

and VB of the reaction exerted by the hinge B, assumed to be acting rightwards
and upwards, respectively. These three parameters, RA, HB, VB, represent the
unknowns of the static problem, while the equations for resolving them are the
cardinal equations of statics. If, once the solution has been obtained, a
parameter is found to have a negative value, this means that the corresponding
elementary reaction has a sense contrary to the one initially assumed.

To bring out the correspondence, or duality, between statics and kinematics,
it is necessary to choose the static pole about which equilibrium to rotation is
to be expressed, corresponding to the same kinematic pole that characterized
the displacements of the individual rigid body (Figure 3.29(a)). This point O is
thus chosen, also in this case, at the point of convergence of the two sections,
horizontal and vertical. We must then express, in order, equilibrium to hori-
zontal translation, equilibrium to vertical translation and equilibrium to rota-
tion about the pole (or centre of reduction) O:

RAcosa + HB =0 (3.43a)

RAsina+VB-F = Q (3.43b)

RA hcosa + VBl-F- = Q (3.43c)

Note that the vertical component RA sin a of the reaction of the roller support
and the horizontal component HB of the reaction of the hinge do not appear in
the third equation, as these elementary reactions have a zero arm with respect
to the pole O. The term RA h cos a may alternatively be read as the product of
the magnitude RA of the roller support reaction and the corresponding moment
arm (Figure 3.52).

A matrix version of equations (3.43) may be given as

" cosa 1 0] |"/?A1 0

sin a 0 1 HB =- -F (3.44)

hcosa 0 / J [vB\ -F-

The vector of the known terms is the opposite of the so-called vector of
reduced external forces. The latter represents a system of loads equivalent to
the system of external forces and acting precisely at the pole. In the case in
point, it is the vertical force F translated at 0, plus the moment of translation
- Fl/2 (negative as it is clockwise).

Note that the matrix of the coefficients of relation (3.44) is exactly the
transpose of the matrix in equation (3.23). This, as shall be seen more clearly
later, is a property altogether general, known as static-kinematic duality of
rigid body systems. The matrix of the static coefficients is therefore the trans-
pose of the matrix of the kinematic coefficients.
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To discuss the system (3.44), it is necessary to refer to the well-known
Rouche-Capelli Theorem, valid for systems of non-homogeneous linear alge-
braic equations. It is useful here to recall the statement of this theorem.

Rouche-Capelli Theorem
A necessary and sufficient condition for a system of m linear equations in n
unknowns to possess a solution is that the matrix of the coefficients and the
matrix made up of the coefficients and the known terms, the so-called
augmented matrix, should have the same rank.

We recall that the rank of a matrix is the integer expressing the maximum
order of its non-zero minors.

The determinant of the matrix which appears in the system (3.44) vanishes,
as has already been seen, for a = a = arctan (h/l). The determinant of a
square matrix is in fact equal to that of its transpose. When, therefore, the line
joining A and B is perpendicular to the plane of movement of the roller sup-
port, the matrix of the coefficients presents rank 2 whereas the augmented
matrix admits of rank 3. On the basis of the Rouche-Capelli Theorem, the sys-
tem, therefore, does not possess a solution. This means that, in a condition of
ill-disposition of the constraints and hence of hypostaticity, calculation of the
constraint reactions is impossible.

As a second example, consider the arch made up of two rigid bodies, already
analysed from the kinematic point of view in Section 3.3 (Figure 3.53(a)). Let
this be loaded by an oblique force F. In this case the unknowns consist of the
constraint reactions of the external hinge, HA, VA, of the internal hinge, HB, VB,
and of the double rod, Rc, Mc. The centres of reduction are chosen coincident
with the external constraints, at A and C respectively, while, as is customary, the
horizontal forces directed towards the right, the vertical forces directed upwards
and the counterclockwise moments are considered positive. These choices are,
in actual fact, altogether arbitrary and conventional.

Figure 3.53

(a) (b)
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The six equilibrium equations, the first three relative to the left-hand body
and the following three relative to the right-hand body, are presented as follows:

HA+HB=Q (3.45a)

VA+VB=Q (3.45b)

- 2hHB + VB/ = 0 (3.45c)

Rc cos a - HB + F cos /J = 0 (3.45d)

Rc sin a - Vj - Fsin/? = 0 (3.45e)

//5/z + V5/-/zFcos/3 + -Fsin£ + M c =0 (3.45f)

In matrix form we obtain

" 1 0 1 0 0 0 ] r#A] °

0 1 0 1 0 0 VA °

0 0 -2A / 0 0 Hn °
0 0 -1 0 cos* 0 V/ =- ^os£ (3-46)

0 0 0 -1 sina 0 RC ~Fsm/J

_0 0 A / 0 1J |_Mc] -/iFcos0 + -Fsin£

The opposite of the vector of the known terms represents the vector of the
external forces reduced at the poles A and C. The first three terms are zero
because the left-hand body is not subjected to external loads.

The static matrix of system (3.46) is the transpose of the kinematic matrix
of system (3.29). When the determinant is different from zero, both the matrix
of the coefficients and its augmented matrix evidently present the same rank 6.
By the Rouche-Capelli Theorem, the algebraic system then possesses only
one solution, i.e. an orderly set of six values. In this case the mechanical
system is said to be statically determinate or isostatic.

The determinant, on the other hand, vanishes for a = a = arctan (2M). In
this case the matrix of the coefficients is of rank 5 while its augmented matrix
in general is of rank 6. The algebraic system is thus impossible and does not
possess any solution, while the mechanical system is hypostatic and loaded
by external forces that cannot be balanced in any way.

An even more particular case is where a = a = arctan (2h/l), ft = ;r - a =
arctan (-2h/l), Also the external force becomes parallel to the line joining A
and B, as well as the double rod at C (Figure 3.53(b)). In this case the aug-
mented matrix will be as follows:

" 1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 -2A / 0 0 0

0 0 - 1 0 cosa 0 Fcosa

0 0 0 -1 sina 0 Fsinc?

0 0 h I 0 1 -hFcosa-(l/2)Fsina
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The seventh column, that of the known terms, is a linear combination of the
fifth column (multiplied by F) and the sixth (multiplied by ~hFcos a- (1/2) F
sin a). Consequently, both the matrix of the coefficients and the augmented
matrix present rank 5. By the Rouche-Capelli Theorem, there exist then oo1

solutions. The mechanical system is thus intrinsically hypostatic, but is loaded
by an external force that can be balanced in oo1 different ways (Figure
3.53(b)). The mechanical system is thus in equilibrium on account of the par-
ticular load condition. But this equilibrium presents itself as statically inde-
terminate, or hyperstatic.

To conclude, let us re-examine the double portal frame of Figure 3.54(a),
loaded by a horizontal force F{ and by a vertical force F2. In this case, we
have nine equilibrium equations in nine unknowns, which, in a matrix form,
are presented as follows:

" 0 0 1 0 0 0 0 0 0] |"VA 1 ["F!
1 0 0 1 0 0 0 0 0 MA 0

0 1 - f c j t 0 0 0 0 0 HB -F!/I

0 0 - 1 0 1 0 1 0 0 V f i 0

0 0 0 -1 0 1 0 1 0 Hc = F2 (3.48)

0 0 2h l-x 0 0 -h I 0 Vc 0
0 0 0 0 0 0 - 1 0 0 #D 0

0 0 0 0 0 0 0 -1 1 VD 0

0 0 0 0 0 0 h I oj VE [0

The matrix of the coefficients is the transpose of that of equation (3.33).
When 0 ^ x < /, the matrix of the coefficients is of rank 9, as is the aug-

mented matrix. The algebraic system thus possesses a solution and the
mechanical system is said to be statically determinate.

(b)

Figure 3.54
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When jc = / and F2 = 0, the matrix of the coefficients is of rank 8, while the
augmented matrix is again of rank 9. The algebraic system is thus impossible,
just as the mechanical system is hypostatic and loaded by an unbalanceable
force.

Finally, when x - I and F, = 0, the matrix of the coefficients is again of rank
8, as is the augmented matrix. The column of the known terms is in fact pro-
portional to the sixth column of the static matrix. The algebraic system thus
possesses <*>] solutions, the rigid system being hypostatic but in equilibrium on
account of the particular load condition. This equilibrium can be obtained in
oo1 different ways. This can be immediately justified if the body / is replaced
by a roller support which moves horizontally in £, and the body /// is elim-
inated since it does not react (Figure 3.54(b)). In this way, having reduced the
system to its essential elements, we may verify how the force F2 can be bal-
anced by an infinite number of pairs of vertical reactions Vc and VB, such that
VB+VC-F2 = 0.

3.9 Static-kinematic duality

We close this chapter with a summary of its contents, underlining the aspect of
duality between kinematics and statics. A rigorous demonstration will there-
fore be given of the fact that the static matrix is the transpose of the
kinematic matrix, and vice versa.

The kinematic equations of a rigid system, with g original degrees of freedom
and v degrees of constraint, can be represented in a compact form as follows:

[C]{s0] = { s x } = ( 0 } (3.49)
vx# gxl vx l vx l

where [C] = kinematic matrix
{s0} = vector of displacements of poles
{sx} = vector of displacements (absolute or relative) of constraint

points

When v < g, the algebraic system possesses at least °°g~v solutions, and the
mechanical system is at least (g - v) times hypostatic.
When v = g, the algebraic system possesses at least the obvious solution, and the
mechanical system is isostatic, if there is no ill-disposition of the constraints.
When v > g, the algebraic system possesses at least the obvious solution,
and the mechanical system is (v - g) times hyperstatic, if there is no ill-
disposition of the constraints.

On the other hand, the static equations of the same rigid system can be rep-
resented as follows:

[A]{X] = -{F] (3.50)
gX\) V X l £ X l

where [A] = static matrix
{X} = vector of constraint reactions
{F} = vector of reduced external forces

When v < g, the algebraic system is generally impossible and the system of
external forces cannot be balanced in any way.
When v = g, the algebraic system generally possesses one solution, and the
mechanical system is said to be statically determinate or isostatic.
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When v > g, the algebraic system generally possesses oo"'8 solutions and the
mechanical system is said to be statically indeterminate or hyper static.

The Principle of Virtual Work can be applied to a rigid system in equilib-
rium, subjected to external loads and constraint reactions. If the external forces
are replaced, as is permissible, with the forces reduced to the poles, we have

On the other hand, using the matrix relations (3.49) and (3.50), equation
(3.51) is transformed as follows:

-{*0}
T[A] [X] + {%}T[C]T{X} = 0 (3.52)

from which we obtain

This equation, on account of the arbitrariness of {so} and {X}, is satisfied if
and only if

[A] = [C]T (3.54)

The fundamental relation (3.54), which arose inductively in this chapter, can
thus be deemed to be rationally demonstrated.
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4 Determination of constraint
reactions

4.1 Introduction

This chapter presents some methods for determining constraint reactions in
the case of statically determinate structures, i.e. structures constrained in a
non-redundant manner. In addition to the algebraic method of auxiliary equa-
tions, which helps us to split the general solution system into two or more
systems of smaller dimensions, the method based on the Principle of Virtual
Work, as well as the classical graphical method using pressure lines, is also
proposed.

In this chapter particular attention is again drawn to the problem of ill-
disposition of constraints for which the potential centres of rotation, both
absolute and relative, fall on a straight line, just as, from the static viewpoint,
the force polygons do not close except at infinity.

In the case of continuous distributions of forces acting in the same direc-
tion, the differential equation of the pressure line is obtained, so revealing how
this line represents, save for one factor, the diagram of the bending moment.
The cases of arch bridges and suspension bridges are considered as typical
examples in which, since the geometrical axis of the load-bearing member
coincides with the pressure line, the member itself is either only compressed
(arch) or else only stretched (cable).

4.2 Auxiliary equations

As we have already seen in the previous chapter, if the number of rigid bodies
making up an isostatic, or statically determinate, structure is n, it will be pos-
sible to write 3n equations of partial equilibrium in 3n unknown elementary
reactions. On the other hand, this leads to systems of equations that are
unwieldy to resolve even with a low n.

An alternative way that can be followed is that of the method of auxiliary
equations. In this case, we consider the three equations of global equilibrium,
i.e. of the entire structure, with the addition of s auxiliary equations of partial
equilibrium, if s is the degree of internal disconnection of the structure. We
thus have (3 + s) equilibrium equations in (3 + s) unknown external reactions.
The s auxiliary equations are chosen in such a way that the internal reactions
are not involved in the system of resolution.

To clarify the process outlined above, let us examine once more the arch of
Figure 4.1, consisting of two rigid parts hinged at B and connected to the foun-
dation with a hinge and a double rod, respectively. In this case the degree of
internal disconnection s is equal to one (the relative rotation allowed by the
hinge B). We can, therefore, write three equations of global equilibrium plus
an auxiliary equation of partial equilibrium with regard to rotation of the body
AB about point B, in the four unknown external reactions, HA, VA, Ro Mc. The
auxiliary equation of partial equilibrium with regard to rotation of the body
EC about point B is equivalent to the foregoing auxiliary equation, it being a

79



DETERMINATION OF CONSTRAINT REACTIONS

Figure 4.1
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(a) (b)

linear combination of the four equations so far considered. It is, however,
more complex. It is therefore more convenient to write

HA + Rc cosa + Fcos /J = 0 (4. la)

VA +#csina-Fsin/3 = 0 (4.1b)

HAh - 2VAl - h Fcos/J + - Fsin/J + Mc = 0 (4.Ic)

2HAh-VAl = Q (4. Id)

Whereas, then, the first three are the equations of equilibrium of the braced
structure, i.e. of the hyperstatic structure obtained by replacing the internal
hinge with an internal built-in constraint (Figure 4.1(b)), the fourth is the aux-
iliary equation which expresses equilibrium with regard to rotation of the left-
hand body about the hinge. In this way, the internal unknowns HB and VB do
not for the moment enter into the balance, and the system (4.1) consists of four
equations in four unknowns, as against the six equations in six unknowns of
the system (3.45).

It is, however, possible subsequently and once the external reactions have
been determined, also to determine the internal reactions. These may be
deduced using the equations of partial equilibrium with regard to translation,
of the body AB or, alternatively, of the body BC. Since the body AB is not sub-
jected to external loads, the first way is the more convenient:

HA+HB=Q (4.1e)

VA + V B = 0 (4.1f)

Now consider the case, already introduced in the last chapter, of three rigid
bodies (Figure 4.2(a)). For this structure we have 5 = 2, since two rotational
single disconnections in B and D are present. There will then be five equations
(three global equilibrium equations and two auxiliary equations) in the five
unknown external reactions: VA, MA, Hc, Vc, VE. The first three equations
refer to the braced structure (twice hyperstatic) of Figure 4.2(b):



AUXILIARY EQUATIONS

(a)

(b)

Figure 4.2

HC + F = Q (4.2a)

K4+^c + ̂ = 0 (4-2b)
- VAl + MA+ 2VEl - 2Fh = 0 (4.2c)

Of these, equation (4.2c) expresses equilibrium with regard to rotation about
point C. It is then necessary to provide the information that there exists a
hinge at B, by writing the equation of partial equilibrium with regard to rota-
tion of the body AB about B (in this way, we avoid introducing additional
unknowns),

MA =0 (4.2d)

and, finally, that there also exists a hinge at point Z), expressing the partial
equilibrium with regard to rotation of the body DE about D,

VF/ = 0 (4.2e)
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Figure 4.3

Once we have obtained the five external unknowns, it will also be possible
to deduce the internal ones, by resolving the equations of equilibrium with
regard to translation of the two end bodies:

F+HB=Q (4.2f)

VA + VB = Q (4.2g)

-VD + V E = < > (4.2h)

-HD=0 (4.2i)

More generally, it is then possible to consider structures having a generic
number s of internal hinges and thus (3 + s) external elementary reactions. The
procedure will be altogether analogous to that presented previously. There are,
however, auxiliary equations to be considered relative to partial sections, hav-
ing one end internally constrained and the other externally constrained. These
sections can contain possible internal disconnections.

On the other hand, the forms of internal disconnection that may be consid-
ered are not limited to the hinge. For instance, the portal frame of Figure 4.3
contains an internal disconnection to the vertical translation, i.e. a horizontal
double rod. The three global equations are those of equilibrium with regard to
horizontal and vertical translation and the equation of equilibrium with regard
to rotation about point C:

HA+HC=Q (4.3a)

VA+VC-F = Q (4.3b)

-2VAl -HAh + F- = Q (4.3c)

whilst the auxiliary "equation to be considered is that of partial equilibrium
with regard to vertical translation of the left-hand section:

VA = 0 (4.3d)

In the case of the double rod being vertically oriented (Figure 4.4(a)), the
auxiliary equation would then be that of equilibrium with regard to horizontal
translation of one of the two rigid sections.

(a) (c)

(b) (d)

Figure 4.4
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When, instead, there is a double internal disconnection, i.e. s = 2, which is
concentrated in the same point, there are two auxiliary equations corre-
sponding to it, and they must be formulated so that the only elementary reac-
tion transmitted does not appear. In the case of a horizontal connecting rod,
for example, it will be necessary to consider the partial equilibrium with
regard to rotation about the constraint and with regard to vertical translation
of one of the two sections into which the structure is separated by the con-
necting rod itself (Figure 4.4(b)). When, instead, the connecting rod is verti-
cal (Figure 4.4(c)), the partial equilibrium with regard to rotation and with
regard to horizontal translation will be considered. Finally, in the case of the
double articulated parallelogram (Figure 4.4(d)), the two auxiliary equations
will both be equations of equilibrium with regard to translation.

43 Principle of Virtual Work

We have previously described two algebraic methods for determining con-
straint reactions: (1) the general method, according to which each single rigid
body is set in equilibrium, writing 3n equations in 3n unknowns (n = number of
rigid bodies of the system); (2) the method of auxiliary equations, according
to which the global equilibrium is considered and at the same time the inform-
ation is provided that there exist s internal disconnections, by writing 3 + 5
equations in (3 + s) unknowns.

A semi-graphical method will now be introduced that is based on the Prin-
ciple of Virtual Work and on the theory of mechanisms, which is, on the other
hand, able to provide a single elementary reaction each time. This is thus a
method which can be used to advantage when we wish to determine a spe-
cific reaction, necessary, for example, for dimensioning the constraint sup-
porting it.

As an introduction to this method, consider the bar system of Figure 4.5(a),
subjected to the horizontal force F. We intend to define the value of the hori-
zontal reaction Hc exerted by the hinge C. It will then be necessary to effect a
disconnection in such a way that, apart from the external force, only the reac-
tion sought will be able to perform work. The hinge C will then be degraded
by being transformed into a horizontally moving roller support (from a double
constraint to a single constraint) and the horizontal force //c, exerted by the
hinge C, will be applied, assumed to be acting towards the right. It is evident
that the assigned structure has now been transformed into the mechanism
already studied in Section 3.5 (Figure 4.5(b)). The reactions HA and VA of the
external hinge do not perform work because their point of application is not
displaced. The internal reactions HB and VB perform equal and opposite work
on the two bars that make up the bar system. Finally, the reaction Vc of the
roller support does not perform work, since it is displaced in a direction per-
pendicular to that of its line of action. There thus remain to be taken into
account the external force F, which is displaced by the quantity #/*3, and the
reaction H c (which in this scheme has the role of an external force), which is
displaced by the amount /&(hl + h2 + h3). Since these two forces undergo dis-
placements opposite to their direction, the two contributions will both be
negative (Figure 4.5(b)):

Work = -FtSfea - H^h^ + h2 + h3 ) = 0 (4.4)
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(a)

Figure 4.5

(b)
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from which

Hc = -F ^_ (4.5)c hl+h2+h3

It may be noted that the angle of virtual rotation & of the bar BC is can-
celled by both the contributions and therefore does not enter into the expres-
sion (4.5). Nor do the abscissae l{ and /2 enter into this expression (Figure
4.5). The mechanism thus remains in equilibrium on account of the particular
load condition, and Hc is negative because it is, in actual fact, acting in the
opposite direction to the one assumed.

As a second example consider the asymmetrical portal frame of Figure
4.6(a), subjected to a constant distributed load q. We intend to determine the
vertical reaction of the hinge C. The procedure, then, is to reduce the con-
straint C in a dual manner with respect to the reaction that we are seeking. The
hinge C will thus be transformed into a vertically moving roller support. In
this case, only the diagram of the vertical displacements defined already in
Figure 3.36(a) will be used. With the aim of applying the Principle of Virtual
Work, we shall consider the two partial resultants of the external load, each
acting on one rigid section, plus the reaction Vc:

-<?/)(?»|)-te/)(2flO+Vc(3#) = 0 (4.6)

from which

Vc=^ql (4.7)
6

In this case, the direction assumed proves to be the actual one.
If we intend then to determine the vertical reaction T (shearing force) trans-

mitted by the internal hinge B (Figure 4.6(b)), we have to reduce the hinge itself
and to transform it into a disconnection of a higher order which allows the verti-
cal relative translations. If, then, a horizontal connecting rod is introduced in
place of the hinge, the mechanism will undergo the horizontal and vertical dis-
placements shown in Figure 4.6(b). The two portions both turn in the same
direction, the one on the right through an angle twice as large. Note how, in cor-
respondence with the relative centre C12, relative displacements of the two
bodies do not occur. While the force T, acting on the left-hand portion, performs
the work Tqd, that on the right-hand portion performs twice as much work. The
same applies to the external partial resultants, even though in this case the
amounts of work performed are of opposite algebraic sign. Altogether we have

T(pl + 2T<pl-ql((p-} + ql(2(p-l = () (4.8)

from which

T = ~4 <4-9)6
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(a)

C12

(b)

(c)

Figure 4.6
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If, instead, we wish to obtain the horizontal reaction N (axial force) trans-
mitted by the internal hinge B (Figure 4.6(a)), we must replace the hinge with
a vertical connecting rod (Figure 4.6(c)), which allows horizontal relative
translations. This time the two sections turn through the same angle but in
opposite directions. Also in this case, in correspondence with the relative cen-
tre C12, the two bodies are displaced by the same amounts. The total balance
works out as follows:

-ql(v^-ql{v^ + N(2(ph) + N(<ph) = Q (4.10)

whence

N = ̂ ~ (4.11)
3h

It is possible to check the results obtained using the Principle of Virtual
Work, by applying the method of auxiliary equations:

HA + HC=Q (4.12a)

VA + Vc-2ql = 0 (4.12V)

-2VAl + HAh + 2ql2=Q (4.12c)

I2

-VAl + 2HAh + q— = Q (4.12d)

where the last equation is the auxiliary one (equilibrium to rotation of the
section AB about B).

Resolving the system (4.12), we obtain

HA=^~ (4-13a>5n

VA = 1-ql (4.13b)
6

Hc=-^— (4.13c)c 3h

Vc=^ql (4.13d)
6

Considering equilibrium with regard to translation of the left-hand section, we
have then

HA-N = 0 (4.14a)

VA+T-ql = Q (4.14V)

from which we obtain the axial and shearing forces transmitted by the hinge B

N=*L, T = -*L (4.15)
3A 6
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(c)
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Figure 4.7

P.V.W.
-qK<p 1/2) + qK<f> 1/2) +
+ ISH<p.2h)-N(9h) = 0

N = 0

(b)

P.V.W.
M^-M -2<P + ql(2tp 1/2) -
q/<V//2) = 0

M=q/2/2

(a)
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As regards the asymmetrical portal frame of Figure 4.7(a), obtained from
the foregoing one by replacing the internal hinge with a horizontal double rod,
the determination of the two elementary reactions transmitted by the internal
constraint B can be arrived at, applying the Principle of Virtual Work and
using the two mechanisms shown in Figures 4.7(b) and 4.7(c).

4.4 Graphical method

The graphical method for determining the constraint reactions is based on the car-
dinal equations of statics. In the case where we have three forces in equilibrium in
the plane, these must form a triangle if laid out one after the other. This derives
from the well-known parallelogram law and hence from the first cardinal equa-
tion of equilibrium with regard to translation. At the same time, the lines of action
of the three forces must all pass through the same point of the plane. The moment
of the three forces must in fact be zero with respect to any point in the plane, and
thus also with respect to the intersection of each pair of lines of action: the third
line must then pass through that point. This latter requirement follows directly
from the second cardinal equation of equilibrium with regard to rotation.

For greater clarity, let us take an example of application of the graphical
method. Examine the L-shaped beam of Figure 4.8(a), already considered

(a)

(b)

Figure 4.8
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from both the static and the kinematic viewpoints. We know a priori two of
the three lines of action for the forces involved: the line of action of the exter-
nal force F and the line of action of the reaction RA of the roller support. These
two lines are concurrent in point P, and hence, for equilibrium with regard to
rotation, also the reaction RB of the hinge must pass through P. Thus we have
defined the direction of the reaction RB, which is that of the line joining B and
P. The magnitudes, which were previously unknown, of the two constraint
reactions can then be determined graphically, laying off to scale the given
force F and drawing through its ends two lines oriented as the lines of action
of RA and RB (Figure 4.8(a)). The triangle that is thus obtained represents half
of the parallelogram of the forces RA and RB, which will assume a direction so
that they follow the given force F. In this way the force F is equilibrant of RA

and RB (while the opposite force is their resultant).
When the constraints are ill-disposed (Figure 4.8(b)), the lines of action of

the reactions RA and RB both coincide with the line joining A and B and the tri-
angle of forces does not close, other than at infinity. The reactions thus tend to
infinity and equilibrium is impossible.

However, there are not always only three forces involved in ensuring equi-
librium of a rigid body. On the other hand, if we compose the forces suitably,
it is always possible to reduce them to three partial resultants. For example,
Figure 4.9(a) shows the case of a beam constrained by three well-disposed
connecting rods, i.e. ones not passing through the same point, and loaded by
an external force F. Composing the connecting rods B and C, we can assume
that we have an ideal hinge in D, and thus the graphical resolution will closely
resemble the previous one (Figure 4.9(b)). We identify, in fact, point P, the
intersection of the line of action of the external force with the axis of the rod
A, and we join P with the ideal hinge D. The line PD is the line of action of the
composite reaction RD. Once we have found the magnitude of RD using the tri-
angle of forces (Figure 4.9(b)), we can resolve this reaction into its two ele-
mentary components RB and Rc by drawing a new triangle of forces, which in
Figure 4.9(b) appears adjacent to the foregoing one. Note, however, that while
the first triangle resolves a problem of equilibrium (the arrows follow one
another round), the second one resolves a problem of equivalence (parallelo-
gram law).

Figure 4.9
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Figure 4.10

(b)

In the case where the external load consists of a concentrated couple or
moment m (Figure 4.10), we must consider the straight line passing through the
ideal hinge D and parallel to the axis of the rod A. The moment m will, in fact, be
balanced by a couple of equal and opposite forces RA and RD, the magnitude of
which i$RA=RD=m /d, where d is the distance between the two lines of action.
The reaction RD can then be resolved into its two components RB and Ro

The graphical method can be used also when the structure consists of more
than one rigid body. As regards three-hinged arches, a rapid and convenient
application of the method requires, however, that the external load should act
only on one of the two rigid sections, or else on the internal hinge.

In the case of the arch of Figure 4.11 (a), the vertical external force is
applied to the hinge C, which, being considered in this case as a material
point, is found in equilibrium with regard to translation under the action of F,
RA and RB (Figure 4.1 l(b)). The triangle of forces will therefore have one side
vertical and the other two in the directions of the lines joining A and C, and B
and C, respectively.

If the external force acts on the section BC (Figure 4.12(a)), the section AC
performs the function of a connecting rod and we find ourselves once again in
a case similar to those which we have already seen previously and which cor-
respond to a single rigid body (Figure 4.12(b)).

In the event then that the three hinges are aligned and hence ill-disposed,
also the external reactions RA and Rc become collinear and the triangle of
forces does not close, thus ruling out the possibility of any static solution.

(a) (b)

Figure 4.12
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(a) (b)

Figure 4.13

So far only hinges and roller supports have been considered, but also the
double rod can be involved in a solution of a graphical type. This may, in fact,
be considered as an ideal hinge at infinity, and thus be treated as we have by
now already seen more than once. In the case, for instance, of an L-shaped
beam constrained by a double rod and a roller support (Figure 4.13(a)) and
loaded by an oblique force F, the pole P is given by the intersection of the line
of action of F with the normal to the plane of movement of the roller support.
The double rod will react with a horizontal force passing through P. The trian-
gle of forces will have the hypotenuse parallel to the external force and the
two catheti parallel, respectively, to the two rectilinear sections of the beam
(Figure 4.13(b)).

In the case of generalized three-hinged arches, i.e. arches where double
rods are also involved (Figure 4.14), our analysis will once more be based on
the interpretation of the double rod as an ideal hinge and on the partial equilib-

(b)

92

(a)

Figure 4.14



GRAPHICAL METHOD

(a) (b)

Figure 4.15

rium of the portion that is not externally loaded. The portion EC, in fact, is in
equilibrium under the action of two equal and opposite collinear forces. These
two forces must be horizontal and must pass through the hinge B. In other
words, their line of action will be the line joining the two hinges, the real one
B and the ideal one consisting of the point at infinity of the horizontal lines.
Given this, the pole P is furnished by the intersection of the line of action of F
with the horizontal line through B. The third force acting on the structure is
the reaction RA, whose line of action is given by the line joining A and P.

In the case where the portal frame is symmetrical, i.e. where it has uprights
of equal height (Figure 4.15), the pole P falls on the line joining A and B, so
that the triangle of forces does not close. The ill-disposition of the constraints
thus renders the equilibrium of the system impossible, once this is subjected to
the vertical force F.

Now reconsider the arch of Figure 4.16 (a), already studied in the previous
chapter. The equilibrium of the portion AB is achieved with two equal and
opposite forces on the line joining A and B. The intersection of the line AB
with the line of action of the external force gives the pole P, through which
also the horizontal reaction Rc of the double rod must pass. When the parame-
ter h vanishes, the system becomes hypostatic and equilibrium is impossible
(Figure 4.16 (b)).

Another example, already amply studied, is the portal frame of Figure
3.53(a). When the double rod is disposed parallel to the line joining A and B
(Figure 4.17(a)), the system is hypostatic and the generic force F cannot be
balanced in any way, since the triangle of forces does not close (Figure
4.17(b)). When, moreover, also the external force is directed as the straight
line AB and the double rod, the pole P comes to coincide with the point at
infinity of this direction, so that the line of action of the reaction Rc of the dou-
ble rod remains indeterminate. On the other hand, in this case the triangle of
forces is degenerate, with all three sides collinear (Figure 4.17(c)), and there
exist oo * pairs of vectors RA and Rc that satisfy equilibrium. As was already
seen algebraically in Chapter 3, the mechanical system is hypostatic, but in
equilibrium for the particular condition of load. Since, however, there exist °ol

solutions, both on account of the indetermination of the line of action of the
reaction Rc of the double rod and on account of the possibility of balancing
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(a)

(b)

Figure 4.16

the force F with two reactions parallel to it (of which one is arbitrary), the
system is said to be statically indeterminate (or once hyperstatic).

Another case that has already been amply discussed is that of the double por-
tal frame of Figure 4.18(a). Imagine that the hinge B is in the centre of the upper
horizontal beam (jc = 1/2) and that the system is loaded by the horizontal force F.
To start with, it should be noted that the vertical reaction VE of the roller support
must be zero. If we were to assume ab absurdo that this were not so, it ought to
be balanced by the vertical reaction VD of the hinge 7), and thus a couple would
be formed that cannot be balanced by the only reaction HD remaining to be con-
sidered as acting on the section ///. This section is thus completely inactive, or,
to use the term normally applied, unloaded. The remaining sections, / and 77,
constitute a generalized three-hinged arch of the same type as those already
introduced. The section 77 is not loaded externally and hence its equilibrium
develops on the line joining B and C. The hinge 5, therefore, coincides with the
pole P and the vertical reaction of the double rod A must pass through this point.
Since the triangle of forces (Figure 4.18(b)) is geometrically similar to the trian-
gle BB'C (Figure 4.18(a)), it is immediately evident that

RA = 4 Fh/l, Rc = F(l + (16h2/I2))* (4.16)

and the structure is completely resolved.
When the hinge B is at the right end of the upper horizontal beam, the beam

system is transformed into a mechanism (Figure 3.39). The vertical reaction
RA of the double rod is reduced to being collinear to the reaction Rc of the
hinge so that, if the external force is horizontal, the triangle of forces cannot
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Figure 4.17

close and equilibrium is impossible (Figure 4.18(c)). If the external force is,
instead, vertical (Figure 4.18(d)), the beam system reveals itself to be (once)
hyperstatic owing to the particular load condition.

Consequently, with extreme economy, we have been able to arrive back at
the results that are already known to us, which in Chapter 3 were brought to
light algebraically, using the Rouche-Capelli Theorem.

As a final case, consider that of an internal constraint made up of two non-
parallel connecting rods (Figure 4.19(a)). The system of bars can be considered
as a three-hinged arch, where the internal hinge consists of the ideal hinge //,
the point of concurrence of the axes of the two connecting rods, and the two
rigid bodies are the bars AE and BG. The pole P is the intersection of the line of
action of the external force F with the line joining B and H. The reaction RA of
the external hinge A must pass through the pole P, as well as through A. This is
determined by the triangle of forces, together with the reaction RB. The latter is
equal and opposite to the resultant reaction transmitted by the two connecting
rods to the section BG, while it is equivalent to the resultant reaction transmitted
by the two connecting rods to the section AE. Figure 4.19(b) shows the triangles
of forces for global equilibrium, for equilibrium of the section BG and for the
equivalence of the reaction RB with the sum of the two reactions RE and Rc

transmitted by the two connecting rods to the section AE.
We could equally have resolved the exercise with the method of auxiliary

equations. The primary unknowns would have been the external ones, HA, VA,
HB, VB, while the four resolving equations would have been those of global
equilibrium plus the auxiliary equation of equilibrium with regard to the par-
tial rotation of the section BG about the ideal hinge H.

4.5 Line of pressure

The set of lines of action of the successive resultant forces acting on a struc-
ture, or rather, that act as internal constraint reactions, proceeding from one
end to the other of the structure itself, we call a line of pressure.

To illustrate this definition more clearly, consider the isostatic arch of Fig-
ure 4.20(a), subjected to four external forces, of which the resultant R is
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112

F/RA= <//2)/2h

RA=F(4h//)

(b)

Figure 4.18

96

(a)

(d)

(c)



LINE OF PRESSURE

(a)

Global equilibrium Equilibrium of bar BG

(b)

Equivalence (equilibrium of bar AE)

Figure 4.19

known, and to the two constraint reactions RA and RB, identified via the trian-
gle of forces of Figure 4.20(b). Imagine then composing the constraint reac-
tion RA with the first external force F,: the first partial resultant R} will then be
given by the corresponding triangle of forces of Figure 4.20(b) and its line of
action will pass through point P\ of intersection of the lines of action of RA

and Fh Compose then the first partial resultant R{ with the second force F2.
The second partial resultant R2 passes through the pole P2 and is obtained
from the triangle /?, F2 R2 of Figure 4.20(b). We then proceed by adding each
partial resultant vectorially with the following external force, thus obtaining
the next partial resultant. Finally, by adding R3 and F4, we obtain the last
resultant R4, which must be a vector equal and opposite to the reaction RB. In
this way, the polygon (in this case, a hexagon) of forces closes (Figure
4.20(b)). It is made up of four triangular segments, each of which represents a
vector sum (i.e. a problem of equivalence). Note once again that the vector
that has as its foot that of F! and as its head that of F4 represents the resultant
R. The partial resultants /?,-, / = 1, ..., 4, are thus the internal fixed joint reac-
tions which each portion to the left of a generic section contained between F,
and Fi + 1 transmits to the complementary portion to the right of the same sec-
tion. If in the triangular segments of Figure 4.20 (b) we invert the sense of the
vectors /?,-, / = 1, ..., 4, this means to consider a problem of equilibrium
(instead of equivalence) and these vectors would represent, in this case, the
internal fixed joint reactions which each right-hand portion transmits to the
complementary left-hand portion.
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(b) Force polygon

Figure 4.20

It may now be understood how the funicular polygon or pressure line,
being the set of the lines of action of the successive resultants, is represented
in Figure 4.20(a) by the broken line AP^P^B. The sides of the funicular
polygon are parallel to the rays of the polygon offerees, represented in Figure
4.20(b) by the polygonal line RAF{F2F3F4RB.

Now examine the case of a continuous system of forces having equal direc-
tion q(z) acting on the arch AB (Figure 4.21 (a)). Integrating, we can obtain the
resultant

F=\ q(z)dz (4.17)
Jo

and its arm d with respect to the straight line z = 0

Fd=\ q(z)zdz (4.18)
Jo

It will then be possible to obtain the constraint reactions RA and RB via the
global triangle of forces (Figure 4.2 l(b)). In this case the polygon of forces
reduces to a triangle, because the distributed forces are all acting in the same
direction. This is made up of infinite infinitesimal triangular segments, each of
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(a)

Figure 4.21

Distributed
load

(b)

" (resultant)

which represents the vector sum of the partial resultant with the subsequent
increment of load q(z)dz.

Let us then take the pressure line to be known a priori and assume that it
may be described analytically via the function y(z). If Q and R represent two
points of the arch infinitely close to one another of abscissae, respectively, z
and z + dz, the corresponding partial resultants will be directed along the
respective tangents to the pressure line (this being the envelope of the infinite
lines of action of the subsequent resultants). These partial resultants will then
be definable in their magnitudes via the rays PQ"and PR"of the triangle of
forces of Figure 4.2 l(b). Their angles of orientation a and /? will differ by an
infinitesimal amount and will be given by the respective tangents to the pres-
sure line.

The segment Q"R"v& Figure 4.2l(b) represents the increment of distributed
load

G"/r = ?(z)dz (4.19)

On the other hand, some elementary geometrical considerations give

Q"R" = Q"S - R"S = #(tan a - tan /?) (4.20)

= -#[/(*)-/(»]

where H indicates the magnitude of the horizontal component of RA and RB,
whilst the prime indicates the first derivation with respect to the coordinate z.
From equations (4.19) and (4.20), by the transitive law, we have

q(z)dz = -Hdy' (4.21)
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where the difference has been replaced by the differential, as the quantities are
extremely close and as a pressure line is considered devoid of cusps (in fact
there are no concentrated forces).

Finally, from relation (4.21) we obtain the differential equation of the pres-
sure line for distributed loads acting in the same direction:

*y=-9& (4.22)
dz2 H

This is a second order differential equation and hence is to be combined with
two boundary conditions, which are, in this case y(0) = 0, y(/) = h, the pressure
line passing through the two end hinges. The first partial resultants which we
meet going around the structure from the left or from the right are the reaction
RA or the reaction R& respectively. Hence the pressure line, besides passing
through A and B, must be tangential at these points to the relative external
reactions.

When the distributed load q is constant, the funicular curve is parabolic. We
shall see various examples of this hereafter.

It is interesting to note that the pressure line, of equation y(z), represents,
but for one factor, the diagram of the bending moment. The partial resultant,
P£>", in fact, is made up of the horizontal force PS and the vertical force SQ"
(Figure 4.2l(b)), and is applied in Q (Figure 4.21 (a)). Thus it is clear that the
moment of internal reaction P<2"is equal to the sum of the moments of PS and
SQ". While the former is equal to HxQQ', the latter is zero because the corre-
sponding arm vanishes.

Finally

M = H(y-y0) (4.23)

where M is the so-called bending moment, H is the projection of the external
reactions RA and RB on the normal to the direction of the external forces, y is
the distance of the pressure line from the fundamental straight line AB' while
v0 indicates the distance of the axis of the arch from that fundamental. The
segment intercepted between the pressure line and the axis of the beam thus
represents, but for the factor //, the corresponding bending moment.

From relation (4.22) we then obtain

**.^,-H£a (4.24,
dz2 dz2

which is the differential equation of the bending moment in the case of a beam
with a curvilinear axis. When the beam is rectilinear, we have y0 = fe/Z, and thus

^ = -*(z) (4-25)
dz2

If we imagine constructing an arch which presents exactly the form of the
pressure line, we have y = y0 and thus the bending moment vanishes at each
point of the arch. Between one section and another only a compressive force
would then be transmitted, as the internal reaction is always tangential to the
axis of the curved beam. This is the situation that tends to occur when incoher-
ent materials are used, i.e. those without tensile strength.

If all the forces acting on the arch, and thus also the reactions RA and RB,
were inverted, only tensile internal reactions would be obtained. A string of
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Figure 4.22

length equal to that of the pressure line would, in fact, be disposed according
to the configuration of this line, it not being able to support other than tensile
stresses; hence, the name funicular curve, from the Latin funis meaning cable
or rope.

Consider a three-hinged parabolic arch, subjected to a uniform vertically
distributed load q (Figure 4.22). The pressure line is parabolic and passes
through the three hinges, where the bending moment vanishes. Recalling that
only one parabola may pass through three given points, the pressure line must
necessarily coincide with the axis of the arch, which will be found to be
entirely in compression and devoid of bending moment.

Wide use has traditionally been, and still is, made of arches for buildings
having wide spans, such as bridges. Usually it is the deck which transmits the
vertical loads, which consist of its own weight and any live loads, to the sup-
porting arch by means of connecting bars that can all be in compression (Fig-
ure 4.23(a)), all in tension (Figure 4.23(b)) or partly in compression and partly
in tension (Figure 4.23(c)) according to the level at which the deck is dis-
posed. Then there are suspension bridges, where the static scheme is inverted
and the supporting element is represented by a cable in tension in a parabolic
configuration (Figure 4.23(d)). In this case the elements of transmission are all
tie rods.

We recall that, in the case where the vertical distributed load is not con-
stant per unit of span, but constant per unit length of the arch, i.e. in practice
it represents the weight of the arch itself assumed to be of uniform section,
the pressure line is no longer exactly parabolic but assumes the form of a
catenary.

Let us now examine another notable case in which the pressure line
coincides with the axis of the arch. Let the three-hinged semicircular arch of
Figure 4.24(a) be subjected to a constant radial distributed load q. For reasons
of symmetry it is possible to consider only one half of the arch, if it is noted
that the vertical reaction transmitted by the hinge A must vanish (Figure
4.24(b)). On the basis of the triangle offerees, the reactions RA and RB are thus
of magnitude equal to qR. The moment transmitted by a generic section S of
the arch, identified by the polar angle <p, may be calculated as the algebraic

(b) (d)

Figure 4.23
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(a)

qR

Figure 4.24

sum of the moment of the reaction RB and the moment of forces distributed
between 0 and <p. The first is counterclockwise and equal to

(4.26)

(4.27)

whilst the second is clockwise and equal to

Ms(q) = (2qRsm(<p/2)) (Rsm(q>/2)}

The resultant of a constant radial distribution q of forces is given by the prod-
uct of q and the chord subtended by the arc on which the forces act. Since then
from trigonometry we have

(4.28)• / IK fl-cose>Vsm(<p/2) = l ^—^J

it follows that the expressions (4.26) and (4.27) are equal and that, therefore,
the moment Ms in the generic sections is zero.
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Figure 4.25
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To demonstrate rigorously that the pressure line coincides with the circular
axis of the beam, it is necessary to demonstrate that, in addition to M5, in each
section S the radial internal reaction Ts also vanishes.

The radial reaction transmitted by the reaction RB is equal to (Figure 4.24(b)).

Ts(RB) = qRsin(p (4.29)

whilst the radial reaction transmitted by the forces distributed between 0 andcp
is equal to

rTs(q) = -\ qRcos((p-CO)dco (4.30)
Jo

qRdo) being the elementary contribution, acting at an inclined polar angle Ct)
on the horizontal (Figure 4.25). Setting x = (p - CO and integrating equation
(4.30), we obtain

f?
Ts(q) = -qR\ cosjcd* (4.31)

Jo

= -qR[sinx]% = -qRsmcp

The contributions (4.29) and (4.31) cancel each other out and thus the pressure
line coincides with the semicircumference of radius R.

The only reaction transmitted by the internal built-in constraints is the tan-
gential one Ns. The tangential reaction transmitted by RB is equal to (Figure
4.24(b))

Ns(RB) = qRcos(p (4.32)

while the tangential reaction transmitted by the radial forces between 0 and (p
is equal to (Figure 4.25)

t9

Ns(q) = I qRsin ((p - CO) dco (4.33)
Jo

Setting again jc = (p ~ co, we obtain

rNs(q) = qR\ sinxdx (4.34)
Jo

= qR [- cos x]$ = qR(l - cos cp)

Summing up the axial forces (4.32) and (4.34) we have finally

Ns = qR (4.35)

The axial force is thus constant and compressive over the whole arch. Its abso-
lute value coincides with that of reactions RA and RB.

In the simple cases considered in the previous chapter, consisting of one,
two or, at the most, three rigid bodies, loaded by a concentrated force, the
pressure line reduces to the set of a finite number of straight lines. In the case
of the L-shaped beam of Figure 4.8(a), the pressure line consists of the line of
action of the reaction RA for all the points contained between A and the point
of application of the force, and by the line of action of the reaction RB for all
the points contained between the point of application of the force and the
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hinge B. In other words, it is a pair of straight lines and we pass discontinu-
ously from one to the other, passing over the point of application of the con-
centrated force.

For the bar system of Figure 4.5(a), the pressure line consists of the axes of
the two bars, whilst for the three-hinged arch of Figure 4.11, the pressure line
consists of the line joining A and C for all the points of the section AC, and of
the line joining B and C for all the points of the section EC. In the case of the
arch of Figure 4.12, the pressure line is the straight line BP for the points to
the right of the external force, while it is the straight line AP for the points
contained between A and the force.

For the beam constrained by the three connecting rods of Figure 4.9(a), the
pressure line consists of the line joining A and P for the points between A and
the point of application of the force, of the straight line DP for the points con-
tained between the point of application of the force and the rod B, and finally
of the axis of the rod C for the points contained between the last two right-
hand connecting rods, B and C.

When the same beam is subjected to a concentrated moment m (Figure
4.10), the pressure line is represented by the axis of the rod A for the points
contained between A and the loaded point, by a parallel straight line passing
through point D for the points contained between m and B, and finally by the
axis of the rod C for the remaining points.

Now consider the three-hinged portal frame of Figure 4.26(a), subjected to
a vertical distributed load q on the right-hand section. The external reaction RA

has as its line of action the line joining A and B, which intersects the line of
action of the resultant ql in the pole P. The second external reaction Rc passes
through points C and P and can be determined graphically, together with RA,
by means of the triangle of forces. The pressure line for the left-hand section
will again be the line joining A and J5, while for the section BCf this will be
composed of an infinite number of straight lines which have a parabolic enve-
lope with a vertical axis. This parabola passes, of course, through the hinges B
and C and admits, in those points, of the lines of action of the reactions RA and
Rc as its tangents. At this point the arc of parabola between B and C is defined,
since three data are sufficient to identify a second order parabola. Even though
two points of the parabola are already known with their corresponding tan-
gents, to make the graphical construction easier, a third point will be identified
along with its tangent. Indicate by P"the intersection of the vertical through P
with the line joining the extreme points B and C, and by Pf the midpoint of the
segment PP". Then draw through Pf a straight line p parallel to the line joining
B and C. It is possible to demonstrate that P' and the latter line p constitute the
third point and the third tangent which we had set out to obtain. It is now
extremely easy to draw the arc of parabola, since this must pass through B, P'
and C, and it is inscribed in the polygonal line made up of the straight lines
AP, p and PC (Figure 4.26(a)). In the section CCf the pressure line is repre-
sented by the straight line CP.

Consider the case of a horizontal distributed load, acting on the left-hand
section of the portal frame previously studied (Figure 4.26(b)). While for the
section CA', which is not externally loaded, the pressure line is represented by
the line joining the two hinges B and C, for the section AA' the pressure line is
represented by an arc of parabola with horizontal axis, which has as its
extreme points A and B and as its tangents at those points the lines of action of
the reactions RA and RB. It will then be possible, as shown previously, to iden-
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(a)

(b)

Figure 4.26

tify a third point Pf and a third tangent parallel to the line joining the extreme
points. Note that, if the axis of the structure were now conceived with the
same form as the funicular curve found, the section AB would be found to be
completely in tension and the section EC would act as a strut (connecting bar
in compression).

As our last example, consider the asymmetrical portal frame of Figure 4.27,
already studied more than once, loaded by a constant distribution of vertical
forces on the right-hand section. The horizontal reaction of the double rod
passes through the pole P and constitutes, with its line of action, one of the
two extreme tangents to the arc of parabola with a vertical axis, which repre-
sents the pressure line for the section BB'. This arc must be contained in the
vertical strip of the plane containing also the vertical distribution q. The
second tangent to the arc of parabola is, of course, given by the straight line
AB. We therefore find, finally, that the pressure line for the section CB' is
represented by the line of action of the reaction Ro for the section AB it is
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q/

Figure 4.27

represented by the line joining A and B, while for the loaded section BB' it is
represented by the arc of parabola connecting the previous two straight lines.

Note that, in the case of a concentrated load equal to the resultant of the dis-
tributed load under examination, the pressure line would be made up of the
two above-mentioned extreme straight lines only, passing from one to the
other with discontinuity in crossing the point of application of the force.
Hence there derives from this a sort of rounding off brought about by the con-
tinuous, rather than discrete, distribution of the external forces.
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5 Internal beam reactions

5.1 Introduction

The characteristics of internal reaction for a beam section are, as stated in
the earlier chapters, the elementary internal reactions transmitted by the sec-
tion itself. In the case of a plane beam (line of axis contained in the plane),
there are three characteristics of internal reaction (Figure 5.1):

1. axial force, which is the component of the force tangential to the axis of
the beam;

2. shearing force (or, more simply, shear), which is the component of the
force perpendicular to the axis of the beam;

3. bending moment, which is the moment of the force that the two portions
of beam transmit to one another, with respect to the section being
considered.

The usual conventions regarding the signs of the characteristics in the plane
are the following:

1. axial force is taken to be positive when it is tensile;
2. shearing force is taken to be positive when it tends to rotate the segment of

the beam on which it acts in a clockwise direction;
3. bending moment is taken to be positive when it stretches the lower fibres

and compresses the upper fibres of the beam.
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Positive
direction

(a)

Figure 5.2

It is at once evident that these conventions are purely arbitrary and, except
in the case of axial force, relative to the observer's orientation (bending
moment) or half-space of observation (shear).

In the case of a beam with skewed axis, it becomes necessary to establish a
direction in which we consider the axis of the beam, and to establish, for each
section, an intrinsic reference system consisting of the tangent, the normal and
the binormal to the curve (Figure 5.2). More precisely, the reference system
will be right-handed, with the Z axis oriented according to the tangent and in
the direction chosen for considering the axis, the Y axis oriented according to
the normal, and the X axis according to the binormal. The force transmitted by
the lower section to the upper section must be projected on these axes and the
respective components are the axial force N, the shearing force Ty and the
shearing force Tx (Figure 5.2(a)). On the other hand, the opposite force trans-
mitted by the upper section to the lower section must be projected on to the
left-handed reference system, opposite to the system previously considered, in
order to obtain characteristics of the same sign as the previous one. As regards
the moment vector mutually exchanged between the two beam portions (Fig-
ure 5.2(b)), conventions and considerations altogether analogous to those set
out above hold good also here. The moment vector comprises three compo-
nents. The one along the Z axis is called the twisting moment Mv whilst the
remaining two are the bending moments My and Mx. In the case, therefore, of
the beam in three-dimensional space, there are six characteristics of the inter-
nal reaction: axial force, two shearing forces, twisting moment and two bend-
ing moments. Also in the three-dimensional case the conventions are arbitrary
and the signs of the characteristics come to depend on the direction in which
we consider the axis of the beam.
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INDEFINITE EQUATIONS OF EQUILIBRIUM FOR PLANE BEAMS

5.2 Indefinite equations of equilibrium for plane beams

We shall now deduce the differential equations that govern the equilibrium of
a plane beam. For this purpose consider an infinitesimal element of the beam,
bounded by two right sections, i.e. perpendicular to the axis of the beam (Fig-
ure 5.3). Indicate by O the centre of curvature of the axis of the beam in rela-
tion to the element considered. If r is the radius of curvature, ds the increment
of the curvilinear coordinate in the direction of the axis of the beam and d$
the angle formed by the two end sections of the element (positive if the upper
section is superposed on the lower section rotating in a counterclockwise
direction), we have by definition.

ds=rd& (5.1)

In this way the radius of curvature r, as well as the increments, assumes an
algebraic sign (in Figure 5.3, r is positive). We point out that, if instead the
element were observed from the opposite half-space, the radius r would be
negative.

The infinitesimal element of the beam is in general subjected to an axial dis-
tributed load p(s)ds, a transverse distributed load q(s)ds and a distributed
moment m(s)ds, as well as to the characteristics N, T, M, at the upward end,
and to the incremented characteristics TV + dN> T + dT, M + dM, at the down-
ward end (Figure 5.3). Noting that d$/2 represents both the angle between the
median radial line and the end sections, and the angle between the median tan-
gent and the extreme tangents, it is possible to impose equilibrium with regard
to translation of the element in the directions of the median tangent and the
median radial line, respectively:

pds ~ N cos — + (N + d/V) cos —

+rsin — + (r + dr)sin— = 0 (5.2a)

qds - N sin (N + dN) sin

-Jcos — + (7>dr)cos — = 0 (5.2b)

As regards rotational equilibrium, it is expedient to choose as centre of reduc-
tion the point of intersection of the extreme tangents, i.e. of the lines of action
of the axial forces on the end sections:

/ \

mds + dM - pds 7—^\~r -
( di> \cos —

I I 2 ) )

7>tan —-(r+dTVtan —= 0 (5.2c)
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Since the angle d$/2 is assumed to be infinitesimal, it is legitimate to take
this angle as equal to its sine or its tangent, and put cos (d$/2) = 1. By so
doing, equations (5.2) are transformed as follows:

pds + dN+T<W = 0 (5.3a)

qds-Nd& +dr = 0 (5.3b)

mds + dM - 7><h> = 0 (5.3c)

Dividing the foregoing equations by ds and applying the relation (5.1), we
obtain the indefinite equations of equilibrium for the beam:

— + — + /7 = 0 (5.4a)
ds r

— - — + 4 = 0 (5.4b)
ds r

!^L-T + m = 0 (5 Ac)
ds

In the case where the radius of curvature r is not a function of the curvi-
linear coordinate s, namely that of circular arches and rings, equations (5.4)
can be presented in the following form:

— + T + pR = Q (5.5a)

f\T

N + qR = Q (5.5b)
d#

— -TR + mR = Q (5.5c)
d$

where the independent variable is represented by the angular coordinate & and
R is the radius of the circular axis of the beam.

Equations (5.5), like equations (5.4), form a system of three linear differen-
tial equations of the first order in the three unknown functions N, T, M. It is
possible to decouple the function M from the other two and obtain a third
order differential equation, where only the unknown M(&) appears.

From equation (5.5c) we have

r = w+l^ (5.6)
R dtf

so that equations (5.5a, b) are transformed as follows:

W + m + ±™. + pR = 0 (5.7a)
dt> R dtf

*!L + .Ld?" N + ,a = 0 (5.7b)
dt? R dt?2

From equation (5.7b) then we obtain

N = qR+^L+L^L (5.8)
dtf R dt?2
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MA=0
T A = 0
MB=0

Figure 5.4

and hence from equation (5.7a) there follows

d3M dM n7f dq} ( d2m} /r nx+ = -R2 \p + —\-R\ m + (5.9)
d03 dt> I d0J ( d$2)

Equation (5.9) is a non-homogeneous third order differential equation,
which has the following complete integral:

M(tf) = M0(0) + C1sin0 + C2cos0 + C3 (5.10)

where M0( ft) indicates the particular solution. In the case, for instance, of the
circular arch of Figure 5.4, subjected to a hydrostatic load, we have

X0) = m(0) = 0 (5.1 la)

0(0) = -//?(!-cos 0) (5. lib)

where /indicates the specific weight of the fluid exerting pressure. The three
boundary conditions are those which cause the corresponding characteristics
to vanish at the two ends: M(A) = M(B) = T(A) = 0. In order to resolve the
above analytical problem, it is possible to apply the method of variation of the
arbitrary constants (Appendix A).

In the case where the radius of curvature r tends to infinity, namely that
of rectilinear beams (Figure 5.5), and in the absence of distributed moments
(m = 0), the indefinite equations of equilibrium (5.4) reduce to the following:

«-p(z) (5.12a)
dz

^T = -<?(*) (5.12b)
dz

^ = J (5.120

The first of these tells us that the derivative of the axial force with respect to
the axial coordinate is equal to the opposite of the axial distributed load; the
second that the derivative of the shearing force is equal to the opposite of the
distributed load perpendicular to the axis; and finally, the third that the deriva-
tive of the bending moment is equal to the shearing force. In addition, deriving
both sides of equation (5.12c) and taking into account equation (5.12b), we
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Figure 5.5
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again obtain equation (4.25), which in the previous chapter was obtained on
the basis of considerations involving the pressure line.

In the absence of distributed loads, then, both the axial force and the shear-
ing force are constant, while the bending moment is a linear function of the z
coordinate. The diagram of the characteristics is to be studied for the portions
of beam contained between one concentrated load and another. At the points
of application of the concentrated loads there emerges, instead, the discontinu-
ity of the corresponding characteristics. When the distributed loads are con-
stant, on the other hand, both the axial force and the shearing force are linear
functions of the z coordinate, while the bending moment is a second order par-
abolic function. More generally, when the distributed loads are polynomial
functions of order n, the axial force and the shearing force are polynomial
functions of order (n + 1), while the bending moment is a polynomial function
of order (n + 2).

We shall now apply the indefinite equations of equilibrium (5.12) to deter-
mine analytically the functions M, T, N, for the inclined rectilinear beam of
Figure 5.6(a), which is subjected to a uniform vertical distributed load qQ =
F/l, where F is the resultant force and / the projection of the beam on the hori-
zontal. The triangle of equilibrium gives the constraint reactions RA = #0//tan j3,
RB = q0l/sin /?, ft being the angle that the line joining B and P forms with the
horizontal (Figure 5.6(b)). The pressure line is a parabola with vertical axis
which passes through the extreme points of the beam and presents as extreme
tangents the lines of action of the two external reactions. Later we shall verify
how this represents, but for a factor of proportionality, the diagram of the
bending moment.

The vertical distributed load per unit length of the beam is

q*=-^- = q0cosa (5.13)
//cos a

where a is the angle of inclination of the beam on the horizontal and //cos a is
the length of the beam. The axial component and the component perpendicular
to the axis of the distributed load q are then equal to (Figure 5.6(c)).

p(z) = <?0 cos a sin a (5.14a)

q(z) = qQCQS2a (5.14b)
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•Line of pressure

(a)

RB = qo//sin/3
q0cosasina

qncos2a

qQcosa

RA = q0//tan/3

(b] (c)

qo/=F

Figure 5.6

The differential equation which governs the bending moment will thus be
the following:

—- = -4o cos2 a (5.15)
dz^

with the boundary conditions

Af(0) = M(//cosa) = 0 (5.16)

The complete integral of the function M(z) contains two constants which
depend on the foregoing boundary conditions:

2

M(z) = -$o cos2 « — + Qz + C2 (5.17)

Applying the two conditions (5.16), we obtain two algebraic equations in the
two unknowns C} and C2.

M(0) = C 2 = 0 (5.18a)

M(//cos a) = - - q0l
2 + Cj —— = 0 (5.18b)

2 cosa
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whence

C^-^o/cosa, C2=0 (5.19)

The moment function is then given by

1 ( 7 \
M(z) = -q0lzcosa\ 1 --cos a (5.20)

for 0 < z < //cos a.
The diagram of the moment function, given in Figure 5.7(a) on the side of

the fibres in tension, represents a parabola having the axis perpendicular to the
beam. Note that the distribution is symmetrical with respect to the centre of
the beam and that the maximum that is reached in the centre is independent of
the inclination a of the beam:

Mmax=A/(//2cosa) = ̂ 0/
2 (5.21)

O

The shearing force can be found by derivation of the moment function
(5.20):

T(Z) = — = -qQlcosa I 1 - — cosa ] (5.22)
dz 2 \ I J

The diagram of the shear function (Figure 5.7(b)) is linear and skew-
symmetrical with respect to the centre of the beam, where it vanishes (station-
ary point of the bending moment).

The axial force, finally, may be obtained from the first of equations (5.12):

dN
— =-g0 cosasina (5.23)
dz

which gives

N(z) = -qoZ cos a sin a + C (5.24)

where the constant C is determined by imposing a suitable boundary condi-
tion. It is possible, for example, to consider that, at the end A, the axial com-
pressive force coincides with the component of the reaction RA along the axis
of the beam (Figure 5.6(b)).

tf(0) = C = -$0/^£ (5.25)
tanj3

hence we have

N(z) = -£0 cos a z sin a + (5.26)
I tan/?y

It is possible, on the other hand and in an equivalent manner, to assume that
the axial force at the end B is compressive and coincides with the component
of the reaction RB along the axis of the beam (Figure 5.6(b)).

N(l/cosa) = -q0l sina + C = -q0l
 C°^ " a) (5.27)
sin p
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(a).

(b)

N

(c)
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Figure 5.7

From equation (5.27) we obtain

_ .(sin a sin 5 +cos a cos 6 . ^ .cosor ,_ ^nxC = -<fo/ £—- ^-sma = -<fo/—— (5.28)
^ sm/3 ) tan/?

which confirms equation (5.25).
The trapezoidal diagram of the axial force appearing in Figure 5.7(c) shows

how the beam is entirely in compression and how the maximum of this force
is reached at the end B,

The distinction between distributed load per unit of horizontal projection
and distributed load per unit length of the beam is necessary, for example, also
in the case of the circular arch of Figure 5.8, subjected to a vertical distributed
load g0, which is uniform if considered per unit length of horizontal span. Just
as was seen in the case of the inclined rectilinear beam (cf. equation (5.14)),
the elementary components of the distributed load are
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Figure 5.8

/?(#) = qQ costf sintf (5.29a)

q(&) = -qQ cos2 i? (5.29b)

The full solution for the above example is given in Appendix B.

5.3 Diagrams of characteristics of internal reaction: direct method
and graphical method

In the last section we introduced the characteristics of internal reaction and the
differential equations governing them. It has thus been possible to note how
the problem of the determination of these functions can be set and resolved in
a purely analytical manner. In this section, we shall see how it is possible to
approach the same problem from a direct point of view, that is, imposing equi-
librium on finite portions of beam, subjected to external loads, to known con-
straint reactions and to unknown characteristics. On these bases, it is possible
in many cases to draw the diagrams of the characteristics M, T, N, using purely
graphical procedures.

To start with, let us consider the so-called elementary schemes, which,
on account of their simplicity, recur very frequently, also being inserted
within more complex structural schemes. A built-in rectilinear beam, known
as a cantilever beam, is subjected to a force F perpendicular to its axis and
with the point of application in the end B (Figure 5.9(a)). The built-in sup-
port A reacts with a force equal and opposite to the external one, so that the
pressure line coincides with the line of action of F for all the points of the
beam. On the other hand, the reaction RA can be thought of as acting in point
A together with the counterclockwise moment of transport MA - RAl = Fl.
The built-in support A will react, therefore, transmitting to the beam a posi-
tive shear F and a negative bending moment -Fl. The diagram of the bend-
ing moment is linear, owing to the absence of distributed loads q(z), and
vanishes at point B, with respect to which the external force has a zero arm
(Figure 5.9(b)). To draw it, it will be sufficient to perform a simple graphical
operation, joining point B with the upper end of the segment that represents
the moment in the built-in support -Fl. This operation, however common-
place it may be, involves a series of logical steps which we shall endeavour
to illustrate.
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F/ (a)

|RA=F

F/

M

(b)
Elastic deformed
configuration

(c)

(a) (b)

Figure 5.10

The fact that, in a generic section of the cantilever beam, the bending moment
is M(z) = -F(l - z) and the shear is T(z) = F (Figure 5.9(c)) means that the beam
portion ZB is found to be in equilibrium under the action of the external force F,
the positive shear F and the counterclockwise bending moment F(l-z) (Figure
5.10(a)). The last two loads are the internal reactions transmitted by the left-
hand portion AZ to the one being considered, ZB. On the other hand, it also
means that the portion AZ (Figure 5.10(b)) is in equilibrium under the action of
the counterclockwise fixed-end moment F/, the vertical fixed-end reaction F, the
positive shear F and the clockwise bending moment F(7 - z). To determine,
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*^^ Elastic deformed
configuration

(c)

Figure 5.11

section by section, the internal characteristics M and T, it will suffice, therefore,
to consider a problem of equilibrium for either of the two portions into which
the beam is divided by the section under examination. Similarly, it is possible,
instead, to consider a problem of equivalence and to transfer into the section
under examination all the forces acting upward of the section itself, applying
this equivalent system to the complementary portion of the beam.

If the cantilever beam is loaded by a concentrated moment at the end B (Fig-
ure 5.11 (a)), the built-in support reacts with an equal and opposite moment, so
that each partial portion of the beam, whether finite or infinitesimal, is in equi-
librium under the action of two opposite moments. The line of pressure is the
straight line at infinity, since the resultant force of a couple is zero and tends to
act at infinity. The moment diagram is constant and negative (Figure 5.11(b)),
while the shear is identically zero (Figure 5.1 l(c)), being equal to the derivative
of a constant function and there being no vertical forces involved.

The last elementary scheme for the cantilever beam is that of the uniform
distributed load q (Figure 5.12(a)). The reaction of the built-in support A is
equal and opposite to the resultant ql of the distributed load. The pressure line
is thus degenerate and consists of the sheaf of vertical straight lines contained
between the end B and the midpoint C (Figure 5.12(a)). The bending moment
in one generic section of abscissa z is thus (Figure 5.12(b)).

M(z) = -qV^- (5.30)

while the shear is (Figure 5.12(c))

T(z) = q(l-z) (5.31)

These two functions have been obtained by reducing, in the section under
consideration, the system of forces acting to the right of the section. This
reduction of the forces which precede a generic section is referred to as the
direct method.
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(a)

q/2/2

M
(b)

(c)

It is, on the other hand, possible to proceed in a completely graphical man-
ner, using the moment diagram for a concentrated force equal to the resultant of
the system and acting in the middle of the beam. This diagram is linear and pre-
sents the zero value in the centre C and the maximum absolute value ql2/2 at
the built-in support A (Figure 5.12(b)). In actual fact, the moment diagram for
the distribution of forces q is parabolic, and presents a zero value at the end B
and a maximum absolute value equal to the previous one of ql2/2 at the built-in
support A, while its tangent in A coincides with the linear diagram described
formerly, the shear being transmitted by the built-in support in a like manner in
both cases. The tangent at B is then horizontal, the shear vanishing at that point.
We thus have the two extreme points with the corresponding tangents to the arc
of parabola that is sought. It is then simple, by applying the graphical construc-
tion already illustrated in the previous chapter, to identify a third point with its
corresponding tangent and to draw the diagram of M(z) precisely.

As regards the shear (Figure 5.12(c)), the graphical construction of the diagram
is immediate, if we join the end of the cantilever beam with the upper end of the
segment that represents the vertical reaction of the built-in support ql In this case
it is also possible to verify that the function T(z) is the derivative of the function
M(z).
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(a)

(b)

(c)

M

Turn over

(d)

Figure 5.13
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Now consider the L-shaped cantilever beam of Figure 5.13(a), subjected to
a horizontal concentrated load at the end C. The reaction of the built-in sup-
port RA is a force equal and opposite to the external one, so that, reduced in
point A, it is equivalent to a horizontal reaction F and to a fixed-end moment
equal to the moment of translation Fh. The axial force (Figure 5.13(b)) is zero
on the portion CB, while it is compressive and of an absolute value equal to F
on the portion BA. The shearing force (Figure 5.13(c)) is, vice versa, zero on
the portion BA and equal to F on the portion CB. Finally, the bending moment
(Figure 5.13(d)) increases linearly in absolute value proceeding from the end
C to the knee B. From B to A the absolute value remains constant and equal to
the product of the force and the arm h. The algebraic sign of the bending
moment depends on the conventions (taking those of Figure 5.13(d) it is nega-
tive). However, what is independent of the reference system and physically
important is the part (or edge) of the beam in which the longitudinal fibres are
in tension. As has already been said, it is customary to draw the moment dia-
gram (whatever sign it may have) on the side of the fibres in tension. This is
illustrated by the elastic deformed configuration of Figure 5.13(e). From the
graphical point of view, we use the term overturning of the value of the
moment at B, implying by this the equilibrium to rotation of the built-in node
B (Figure 5.13(d)).

If the cantilever beam has a skewed axis, the characteristics that could be
present total six. An example is shown in Figure 5.14, where the intrinsic refer-
ence system has been highlighted for each rectilinear portion of the beam. In
the portion AB, only two characteristics are different from zero: Ty = F, Mx = Fz.
In the portion BC, we have N = -F, Mx = Fb. In the last portion CD, there also
emerges the internal reaction of twisting moment: Tx = -F, My = Fz, M, = -Fb.

Also in plane cantilever beams, if these are loaded with forces not con-
tained in the plane, there is present the internal characteristic Af_. In the case,
for example, of the semicircular cantilever beam of Figure 5.15(a), loaded

Figure 5.14
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(b)

Figure 5.15

with a force F perpendicular to the plane and applied at the end A (the direc-
tion assumed looking into the plane of the diagram) we have

TX=Q

Ty=-F

Mz=FR(l-cos$)

Mx = -FRsm$

M = 0

(5.32a)

(5.32b)

(5.32c)

(5.32d)

(5.32e)

(5.32f)

The moments Mz and Mx can be determined in two different ways. The first
consists of transferring the force F at A' (Figure 5.15(a)), adding the first
moment of translation MX9 and subsequently in P, adding the second moment
of translation Mz. The second way consists of considering the moment vector
of the force F with respect to the generic point P (double-headed arrow in
Figure 5.15(b)) and projecting this vector onto the left-handed XYZ reference
system. The total moment has the magnitude

(5.33)
and thus

Mz = M sin(#/2) = FR(l - cos 0) (5.34a)

Mx = -M cos(tf/2) = -FRsin $ (5.34b)
Now consider a rectilinear beam, hinged at one end and constrained with a

horizontally moving roller support at the other (Figure 5.16(a)). This elemen-
tary scheme is referred to as the supported beam and will be studied in the
various cases of external loading. Let the supported beam be subjected to the
concentrated force F acting on its centre. The constraint reactions consist of
two vertical forces, each equal to F/2. The horizontal reaction of the hinge is,
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(a)

F/21 I F/2

M (b)

Elastic deformed
configuration (c)

Figure 5.16

Discontinuity in shear

F/2

F/2

in fact, zero by equilibrium to horizontal translation. The pressure line will
thus consist of the line of action of the corresponding constraint reaction for
each of the two portions AB and EC. The moment diagram will consist of two
linear functions, symmetrical with respect to the centre (Figure 5.16(b)):

M(z) = -z, for O ^ z ^ - (5.35a)

M(z) = ~z-/fz-A for l - ^ z ^ l (5.35b)
L \ L) L

The function (5.35b), which emphasizes the sum of the two contributions,
may be rewritten as follows:
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M

(d)

Figure 5.17
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M(z) = --z + F- (5.36)

The maximum of the function is obtained in the centre and equals F//4. This
maximum is not a stationary point but a cusp of the function, i.e. the left-hand
derivative appears different from the right-hand one. The bitriangular diagram
M(z) can be drawn graphically, referring to the symmetry of the problem and
joining the end points A and C of the beam with the lower end of the vertical
segment which represents the moment in the centre. The diagram is drawn
from the side of the lower longitudinal fibres, which are the ones physically in
tension (Figure 5.16(c)).

The shear diagram, on the other hand, is birectangular and skew-symmetri-
cal with respect to the centre (Figure 5.16(d)). It represents exactly the deriva-
tive of the moment function. Where the function M(z) presents a cusp, its
derivative T(z) presents a discontinuity of the first kind, i.e. a negative jump.
The infinitesimal element of the beam straddling the centre is, in fact, in equi-
librium under the action of the external force F and the two shearing forces
FI2 both directed upwards (Figure 5.16(d)).

Let the supported beam be subjected to the concentrated moment m acting
in the centre (Figure 5.17(a)). The two constraint reactions in this case will be
opposite and equal to m/l so as to form a couple equal and opposite to the one
applied externally. The pressure line, as before, consists of two vertical

Elastic
deformed
configuration

Discontinuity in moment

M

(b)

(a)
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(a)

M

Figure 5.19
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straight lines passing through A and through C. The moment diagram consists
of two linear functions, which are skew-symmetrical with respect to the centre
(Figure 5.17(b)).

Af(z) = yz, for O ^ z ^ - (5.37a)

M(z) = yz-m, for 1 ss z ss / (5.37b)

In the centre a discontinuity of the first kind is thus created, i.e. a positive
jump, equal to the concentrated moment applied there. The infinitesimal ele-
ment straddling the centre will thus be in equilibrium with regard to rotation
under the action of the counterclockwise external moment m and the two
bending moments m/2, both clockwise. The elastic deformed configuration
presents an inflection in the centre, so that the fibres in tension appear below
in the portion AB and above in the portion BC (Figure 5.17(c)).

The shear diagram is constant, positive and equal to the magnitude of the
constraint reactions (Figure 5.17(d)). In fact, going along the axis of the beam
and encountering the moment m, no contribution is added to the vertical force.
On the other hand, the derivative of the function M(z) of Figure 5.17(b) is
defined and equal to m/l in each section. It would not be analytically defined
only in the centre, where, instead, physically it is defined and equal to the left-
hand and right-hand derivatives.

Let us imagine applying the moment m in a generic section, other than that
of the centre (Figure 5.18). The constraint reactions are the same as in the pre-
vious case, so that the moment diagram appears still made up of two linear
segments of equal inclination (Figure 5.18):

M(z) = y z, for 0 ̂  z ̂  a (5.38a)

M(z) = y z - m, for a ̂  z ̂  I (5.38b)

The shear diagram is obviously identical to the previous one (Figure 5.17(d)).

<b)
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(a)

M

Figure 5.20

Figure 5.21

When, finally, the concentrated moment is applied to one of the two ends of
the beam (Figure 5.19(a)), the moment diagram reduces to a single linear
function which has as its maximum the value of the applied moment itself
(Figure 5.19(b)). In this case the pressure line consists of the single straight
line a, and the inflection of the elastic deformed configuration disappears,
leaving the fibres in tension always underneath. The shear diagram, of course,
coincides with that of Figure 5.17(d).

As a last elementary scheme, consider the supported beam subjected to the
distributed load q (Figure 5.20(a)). The constraint reactions are two vertical
forces having the same direction equal to ql/2, so that the pressure line is made
up of the sheaf of vertical straight lines external to the beam. Imagine going
along the axis of the beam, starting from the end A. In the end section A, the
pressure line is the line of action of the constraint reaction. In a section imme-
diately to the right of A, the reaction RA will have to be composed with the par-
tial resultant of the distributed forces qdz. Since the two forces have opposite
direction, their resultant will be a vertical force (RA - qdz) passing to the left
of A. If we increase the coordinate z, the line of action of the subsequent
resultants remains vertical but departs more and more from point A, until it
reaches infinity for z = 1/2. The system of the forces acting to the left of the
centre is, in fact, equivalent to a couple of moment ql2/8.

Note that, if the roller support B were not moving horizontally (Figure
5.21), the pressure line would be made up of all the tangents enveloping the
arc of parabola which has as its extreme points A and B and as its extreme tan-
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gents the lines of action of the constraint reactions. Considering the foregoing
case as a limiting case, we can understand then how the parabola becomes
degenerate and the infinite tangents are transformed into the sheaf of vertical
straight lines described above.

The moment diagram is parabolic and may be determined using the direct
method, taking into account all the contributions upwards (or downwards) of a
generic section of coordinate z (Figure 5.20(b)).

M(z) = ql-Z-(qz)^ = q^(l-z) (5.39)

This function vanishes for z = 0 and for z = I and is symmetrical with respect
to the centre, where it presents a maximum equal to #/2/8.

The same diagram may be determined also using a purely graphical proce-
dure, considering the auxiliary diagram of the moment relative to a concen-
trated force acting in the centre and equal to the total resultant ql. The
auxiliary diagram is bitriangular with the maximum equal to ql2/4. The dia-
gram sought presents the same extreme points and the same extreme tangents,
the constraint reactions, and hence the shear value at the ends, as unchanging.
On the other hand, according to the by now familiar graphical construction,
the third point and the third tangent correspond to the stationary point in the
centre.

The shear diagram is linear and skew-symmetrical with respect to the centre
(Figure 5.20(c)). This vanishes at the central point, where the moment dia-
gram is stationary. It is also possible to proceed on the basis of merely graphi-
cal considerations, joining the ends of the vertical segments which represent
the values that the shear assumes at the ends A and B of the beam. On the other
hand, the direct method applied to a generic section of coordinate z gives

T(z) = ql--qz (5.40)

where the first term is the contribution of the reaction RA, while the second is
the contribution of the partial distribution of external forces that extends from
A to the section under examination. It may thus be verified that the function
(5.40) is the derivative of the function (5.39).

In the case of the distribution of constant concentrated forces of Figure
5.22(a), the moment diagram is represented by a polygonal line with the sides
contained between each pair of consecutive forces (Figure 5.22(b)).

M(z) = 2Fz, for 0 ̂  z ̂  / (5.41a)

M(z) = 2Fz - F(z -1) = Fz + F/, for / ̂  z ̂  21 (5Alb)

M(z) = Fz + Fl- F(z - 21) = 3F/, for 21 ̂  z ̂  3/ (5.41c)

M(z) = 3FI - F(z - 31) = 6FI - Fz, for 31 ̂  z ̂  41 (5Aid)

M(z) = 6FI-Fz-F(z-41) = 10F/-2Fz, for 41 ̂  z ̂  51 (5Ale)

The shear diagram is represented by a step function, with discontinuity of
the first kind in each point in which a force is applied (Figure 5.22(c)). This
may be derived analytically from the moment diagram, or it may be obtained
using the direct method and summing up algebraically all the contributions
that precede a section.
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(a)

(b)

(c)

Figure 5.22

In the case of the supported beam of Figure 5.23(a), with a constant dis-
tributed load only on the intermediate portion, the constraint reactions are
symmetrical, vertical and equal to ql/2. The pressure line is then represented
by the vertical straight line a for the portion AB, by the vertical straight line d
for the portion CD, and by the sheaf of vertical straight lines external to the
beam for the portion EC.

The moment diagram is obtained using the direct method (Figure 5.23(b)).

(5.42a)

(5.42b)
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(a)

M

(b)

Figure 5.23

(c)
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M(z) = q^z-ql(z-ll\ (5.42c)

= --qlz + -ql2, for 21 ̂  z ̂  31

The stationary point of the function M(z) is obtained by equating to zero its
derivative in the portion / ̂  z ̂  21

^L = T(z) = ~qz + -ql = Q (5.43)
dz 2

fo r z= l /
2 '
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The moment diagram will then be symmetrical, with the maximum at the
centre, which is equal to

Mmax^ll'rf^2
\Z J O

This will be made up of two linear external segments and the parabolic inter-
mediate segment (Figure 5.23(b)).

It is also possible, however, to draw the moment diagram graphically, using
the auxiliary diagram corresponding to the resultant. This diagram is bitrian-
gular and symmetrical and its maximum in the cusp is equal to^ql2 (Figure
5.23(b)). In the outermost portions AB and CD the auxiliary diagram coincides
with the one sought. In the intermediate portion EC, the diagram for the distri-
bution q will present the same extreme values and the same extreme tangents
as the auxiliary diagram. It is therefore easy to draw an arc of parabola that
corresponds to these conditions and thus to refind the solution described
above.

The shear diagram, as usual, may be obtained by derivation of the moment
diagram, or rather, directly, considering the successive contributions of the
forces acting perpendicularly to the beam (Figure 5.23(c)). In the outermost
portions, the function T(z) is constant, whilst it varies linearly where the dis-
tributed load is applied; in fact, the differential equation (5.12b) must hold
good at all points. The cusps in the shear diagram reflect the discontinuity of
the distributed load, which passes sharply from zero to q, and vice versa. The
point of zero shear corresponds, of course, to the stationary point of M(z)
(Figure 5.23(b)).

Now consider a supported beam not symmetrically loaded (Figure 5.24(a)).
The load weighs only on the left-hand half, so that the reaction VA will be
greater than the other reaction VB. The respective values are: VA = ̂ ql, VB =
±ql. The pressure line is made up of the sheaf of vertical straight lines external
to the beam, for the section AC, and by the line of action of the reaction V#, for
the section CB.

The moment diagram, as has already been seen, may be obtained using the
direct method or using the graphical method. The direct method gives two
functions, one parabolic and the other linear (Figure 5.24(b)).

3 z2

M(z) = -qlz-q — > for O ^ z ^ / (5.44a)

M(z) = -qlz-qlfz-t} (5Mb)
4 \ 2)

= --qlz + -ql2, for / *£ z ̂  21

We have the stationary point in the left-hand half when

^- = T(z) = ?-ql-qz = 0 (5.45)
dz 4

i.e. for z = %l. The value of the moment in the centre may be obtained more
simply by going along the beam from B leftwards:
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(5.46)

The graphical method is applied using the auxiliary diagram for the resul-
tant. This diagram is bitriangular and presents a maximum in the cusp equal to
| ql2. The linear segment between B and C coincides with the diagram for the
distributed load, since between B and C no external loads act. On the other
hand, the two linear segments of the auxiliary diagram constitute the extreme
tangents of the arc of parabola which represents the diagram M(z) between A
and C. Also in this case the real diagram follows the course of the auxiliary
one, the cusp rounding off considerably.

The shear diagram is linear between A and C and constant between C and B
(Figure 5.24(c)). There are no discontinuities in T(z), as there are no concen-
trated forces apart from the constraint reactions, but there is a discontinuity in
the derivative of T(z) which reflects the discontinuity that the distributed load
undergoes in the centre. The shear vanishes where the moment shows a
stationary point (Figure 5.24(b)).

(a)

(b)

(c)

Figure 5.24
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Let the beam with overhanging ends of Figure 5.25(a) be subjected to a
constant distributed load q between the two supports and to two concentrated
forces F at the ends. Each of the two constraint reactions is therefore equal to
F +(ql/2). The moment diagram (Figure 5.25(b)) can be drawn by summing
up graphically the trapezoidal contribution due to the forces F with the para-
bolic one of the load q. The procedure will then be to consider as reference
axis for the arc of parabola the constant central diagram equal to F//2. The
sagitta of the arc of parabola is equal to ql /8, a notable value, being one
already met with more than once. In the case where F < ql/4, a part of the
parabola falls beneath the axis of the beam (Figure 5.25(b)), and at the points
where the bending moment vanishes, two inflections are produced in the elas-
tic deformed configuration; these separate the central portion, concave
upwards, from the outermost portions, concave downwards (Figure 5.25(c)).
For F ̂  ql/4 the inflections disappear and the longitudinal fibres in tension are
found only in the upper edge of the beam.

The shear diagram (Figure 5.25(d)) is constant at the overhanging ends and
linear between the two supports. It undergoes two positive jumps at the points
corresponding to the supports, equal to the reactions of the supports them-
selves. The infinitesimal element of beam straddling the support A, for exam-
ple, is in equilibrium with regard to vertical translation under the action of the
left-hand shear F and the right-hand shear ql/2, both directed downwards, and
of the reaction F + (ql/2), directed upwards (Figure 5.25(d)). The moment
diagram shows cusps just where the shear diagram is discontinuous, and a
stationary point where the shear vanishes.

Using the graphical method, we have so far examined only rectilinear
beams. Now consider the beam with broken axis of Figure 5.26(a), made up of
three rectilinear portions and loaded by a concentrated moment m at the centre
of the horizontal beam. The constraint reactions are vertical and form a couple
equal and opposite to the one applied. In the portion AB the bending moment
is zero, since the reaction at A has no arm with respect to its points. In the por-
tion BC the moment grows in linear manner up to the value ra/3. It then under-
goes a discontinuity equal to the moment applied and, in the portion CD, it
decreases linearly in absolute value until it vanishes virtually at point E'. At D
the moment is —m/3 and the representative segment on CD can be turned
through 45° in a clockwise direction, so that it becomes the representative seg-
ment on DE. The diagram is, of course, the same but of opposite sign, going
along the beam from £ to A. In all cases the usual procedure is to draw the
moment diagram on the side of the fibres in tension. As regards shearing force
and axial force, these are represented by constant diagrams, as no distributed
loads are present. The diagram of shearing force is shown in Figure 5.26(b),
whilst that of axial force is shown in Figure 5.26(c).

Finally, consider the three-hinged arch of Figure 5.27(a), which presents the
same polygonal line of axis as the previous beam and is loaded by a concen-
trated force F on the left-hand portion. The triangle offerees gives the internal
and external constraint reactions (Figure 5.27(a)). The pressure line consists
of the lines of action of the reactions RA and Rc. It is important to define where
the pressure line intersects the axis of the structure, since at these points the
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(a)

(b)

(c)

Figure 5.25
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(a)

(b)

Figure 5.26
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bending moment vanishes; in fact, the arm of the partial resultant vanishes
with respect to the section. In the structure under consideration, the pressure
line encounters the axis at point £, as well as at the hinges A, B, C. At these
points the moment diagram will vanish (Figure 5.27(b)). In the portion AD the
absolute value of moment grows linearly up to the value of 3HAL At D the dia-
gram is turned over, remaining linear between D and F and vanishes at E. At F
there will be a cusp since a concentrated force is applied there. The linear dia-
gram between F and G is obtained simply by joining the end of the segment
representative of the moment at F with the hinge at B. The moment at F is thus
HAl, while at G it is 2HAl. The diagram is then turned through 45° and finally it
is joined with the hinge C. The same diagram would, of course, have been

3/

3HA/

(a)

(b)
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Figure 5.27 c, d

obtained by going around the structure from C to A. The absolute value of the
moment at G, calculated by means of the reaction Rc, is equal to

MG=(HC-VC)41 (5.47)

The triangle of forces (Figure 5.27(a)) shows, on the other hand, that Hc = HA

and Vc = Hc/2 = HA /2, from which we obtain MG = 2HAl, the same value as
before.

The shear diagram and the axial force diagram are constant in all sections
and are shown in Figures 5.27(c) and 5.27(d).

5.4 Determination of characteristics of internal reaction via the
Principle of Virtual Work

Just as external reactions can be calculated using the Principle of Virtual
Work, by suitably reducing the corresponding external constraints, so can the
characteristics of internal reaction be obtained by transforming the internal
built-in constraint into a double constraint: the hinge to obtain the bending
moment, and the double rod to obtain the shearing force or the axial force.
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In the case, for instance, of the three-hinged portal frame of Figure 4.6(a), if
we wish to determine the bending moment in the midpoint of the taller
upright, it is necessary to introduce a hinge at that point and to apply the corre-
sponding unknown moments (Figure 5.28). Using the diagrams of horizontal
and vertical displacements, we have

-ql (^cp]-ql (L<p]-M<p-M(2<p) = 0 (5.48)

whence we obtain

M = --ql2 (5.49)

In the case where we wish to determine the shear at the same point, we must
introduce a double rod parallel to the axis of the upright and apply the two
unknown forces T (Figure 5.29)

-ql U<p j- ql (Lcp] + T(2h<p) + T(h<p) = 0 (5.50)

whence we obtain

r = ,| (5.51)

Figure 5.29
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Finally, in the case where we wish to determine the axial force in the
upright, we must introduce a double rod transversely to the axis and apply the
two unknown forces N (Figure 5.30)

-^(^9]-^(^l(p}-N(ll(p) = ° (5-52)

whence we obtain

N = ~ql (5.53)
6
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6 Statically determinate beam
systems

6.1 Introduction

Isostatic, or statically determinate, structures made up of beams are widely
used in civil and industrial buildings. As will emerge more clearly later, the
internal stresses induced by mechanical loads are greater in the isostatically
constrained structure than in the structure that is redundantly constrained and
consequently rendered hyperstatic by further constraints. On the other hand,
the internal stresses induced by the so-called thermal loads (variations of
temperature, uniform or otherwise, through the depth of the beam) are zero in
isostatic structures, whereas in certain cases they are considerable in hyper-
static, or statically indeterminate, structures. From this it is possible to deduce
the importance, also from a practical point of view, of considering isostatic
beam systems. In fact, often the mechanical loads that the structure will have
to support are known to the designer, at least with a certain degree of approx-
imation, whilst the thermal variations and the constraint settlements that the
structure will undergo are not reasonably foreseeable, even as regards the
order of magnitude. Inlhese cases an isostatic structure shows ample possibil-
ities of settling with the intervention of rigid movements only (translations
and global rotations), whereas a hyperstatic structure, in view of its redundant
degree of constraint, will undergo deformations also of a mechanical nature,
and thus internal stresses different from zero.

These subjects will be taken up again and analysed in greater depth in the
chapters on statically indeterminate structures, where the consequences
induced by thermal and mechanical distortions will be studied. On the other
hand, the above discussion serves to understand why, for structures having
large spans, and thus subjected to notable dilations and rotations of a thermal
origin, an isostatic scheme is preferred to a hyperstatic one. The two schemes
most widely used for realizing structures that have large spans and are devoid
of vertical encumbrance are:

1. Gerber beams. These consist of a rectilinear beam with a number of
supports and an adequate number of disconnections, and are used, for
example, in the construction of motorway bridges.

2. TVusses. These are made up of elements whose finer structure consists of
mutually hinged connecting rods, and are traditionally used in railway
bridges.

For constructions with smaller spans, or ones that present also vertical
encumbrance, arched structures are traditionally used, where, as we have
already seen in Chapter 4, compressive stress prevails, whilst bending stress
tends to be reduced. For industrial sheds and, more in general, for all sorts of
roofing (stations, gymnasia, football grounds, etc.), the following structural
schemes are mainly used:

3. Three-hinged arches. These have been widely examined in the foregoing
chapters in order to introduce the fundamental statical concepts.
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4. Closed-frame structures. These are made up of chains of structural
elements which close in on themselves and may in some cases also present
internal statical indeterminacy.

Very often the four structural types mentioned above are found combined in
the global structural scheme. A typical example is represented by arched
bridges, where a gerber beam can rest on a three-hinged arch, or by suspen-
sion bridges, where a gerber beam can be hung on a truss system of tie rods
and cables. In other cases, more complex schemes, also closed ones, can be
reduced to simpler three-hinged arch schemes. In this chapter we shall look at
some examples of these.

In many technically important cases, the mechanical loads and the struc-
tural geometry are such as to induce the designer to choose hyperstatic
schemes. These cases, on the other hand, can be reduced to similar isostatic
schemes, where, in addition to external loads, there act also hyperstatic loads
exerted by redundant constraints. The calculation of these structures, which
have few degrees of statical indeterminacy, is made by eliminating ideally the
redundant constraints and replacing them with their respective constraint
reactions. These reactions are obtained from considerations of congruence
that regard the respect of the kinematic conditions imposed by the suppressed
constraints. We shall return, however, to these aspects in Chapter 13, which is
devoted to hyperstatic structures and their solution using the method of
forces.

6.2 Gerber beams

Gerber beams are rectilinear beams with (2 + s) supports, in which the line of
axis presents s single disconnections, so as to render the structure isostatic
(Figure 6.1 (a)). To obtain statical determinacy also with respect to horizontal
forces, the supports must be all roller supports, except for one hinged to the
foundation. The s simple disconnections (which may be hinges or double
rods) must be well-arranged, so as not to create hypostatic and/or hyperstatic
portions (Figure 6.1(b)). Generally speaking, that is, three hinges must never
be arranged consecutively (hypostatic portion) or three supports consecutively
(hyperstatic portion).
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This having been said, gerber beams can be resolved using analytical and
graphical methods, valid for all isostatic structures, which have been presented in
the foregoing chapters. Indeed, for gerber beams it will not usually be necessary
to consider equilibrium with regard to horizontal translation, since, with only ver-
tical loads, it is identically satisfied, once the only horizontal reaction potentially
present is removed. To determine the (2 + s) external reactions, it is expedient to
resort to the method of auxiliary equations, already introduced in Chapter 4. The
global equilibrium equations are those of equilibrium with regard to vertical
translation and to rotation about a suitable point of the plane. The auxiliary equa-
tions are the s equations of partial equilibrium corresponding to the portions into
which the disconnections subdivide the gerber beam. The diagrams of the charac-
teristics of internal reaction are then drawn by isolating the individual portions
ideally and by applying to them the external forces, the external constraint reac-
tions and the internal constraint reactions, transmitted by the adjacent portions.

As an example, let us consider the gerber beam of Figure 6.2(a), subjected
to the distributed load q on all three spans of length /. In this case there is only
one disconnection, and the two equations of global equilibrium are accompa-
nied by the auxiliary equation of partial equilibrium with regard to rotation of
the portion AB about the hinge B:

VA+Vc + VD=3ql (6. la)

VA|/ = VC^ + VD|/ (6.1b)

VAl = q1^ (6.1c)

To express equilibrium with regard to global rotation, the midpoint of the
gerber beam has been used as pole, with respect to which the moment of
external load vanishes. The system (6.1) of three equations in three unknowns
possesses the following solution:

VA=^ VC=W VD=-±ql (6.2)

The reaction VD of the support D turns out to be negative and thus acts in the
opposite direction to the one assumed. On the other hand, the internal reaction
transmitted by the hinge B is given by the equation of equilibrium with regard
to vertical translation of the portion AB:

VA+VB=ql (6.3)

from which we have: VB = (1/2) ql
Applying the direct method, it is possible to identify the analytical func-

tions M(z) and T(z). As regards bending moment, we have

M(z) = -qlz--qz2, for 0 ̂  z ̂  21 (6.4a)

M(z) = -qlz-- qz2 + 3ql(z - 21) (6.4b)

= --qz2+-qlz-6ql2, for 21 ̂  Z ̂  31
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(b)

(c)

Figure 6.2
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The shear function can then be obtained from the foregoing by derivation, or,
as was done for the moment, by summing up one at a time the contributions
that are encountered going along the beam:

T(z) = -ql-qz, for 0 ̂  z ̂  21 (6.5a)

T(z) = -ql- qz, for 21 *£ z ^ 3/ (6.5b)

The moment diagram is drawn in Figure 6.2(b). It is formed by two arcs of
parabola with a vertical axis. The portion corresponding to the span AB is the
diagram, already calculated in the last chapter, corresponding to a simply sup-
ported and uniformly loaded beam (Figure 5.20(b)). Since no concentrated
forces act on the hinge B, the shear at that point will not undergo discontinuity
and thus the moment will not present cusps. The third point for identifying
univocally the arc of parabola between A and C is the one representing the
moment on the support C: M(2l) = -ql2. Note that this moment in absolute
value is as much as eight times that which loads the centre of the first span. In
order to construct this first arc of parabola graphically, it is possible to proceed
by considering the spans AB and BC separately and then the corresponding
portions of the arc; or it is possible to proceed by considering the entire
portion AC at once. The above graphical constructions are given in detail in
Figure 6.2(b). The parabolic diagram for the span CD may then be drawn
immediately, if we note that the forces acting on the portion BD are symmetri-
cal with respect to the vertical straight line passing through C. This arc of
parabola will thus be specularly symmetrical with respect to the one for the
span BC. It thus emerges that there is no point in studying the functions
(6.4a,b) analytically. As we have already suggested, it is far more advanta-
geous to proceed graphically and synthetically.

The shear diagram is given in Figure 6.2(c). It is formed by two rectilinear
segments of equal slope, since the distributed load has a constant value over
the entire beam. The function T(z) vanishes where the moment M(z) presents
a stationary point, while it undergoes a positive jump equal to the reaction
Vc = 3ql, at the support C. Also the extreme values of T(z), for z = 0 and
z = 3/, can be interpreted as jumps, positive and negative respectively, of
the function.

As a second example, let us now examine the gerber beam of Figure 6.3(a),
consisting of three spans, two of which uniformly loaded. The vertical portion
AA' is constrained in the hinge A, whilst the single disconnection in C is, in
this case, a double rod. Since only vertical loads are present, the upright is
subjected only to the axial force VA, while bending moment and shearing force
are zero.

The equations of global equilibrium to vertical translation and to rotation
about point P are

VA + VB + VD=3ql (6.6a)

VA\I+V*\I = VD\I (6'6b)
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whilst the auxiliary equation is that of partial equilibrium to the vertical trans-
lation of the portion CD,

VD = 2ql (6.6c)

The external constraint reactions are then the following:

V A=f? ' . VB=-\^ VD=2ql (6-7)

The reactive moment transmitted by the double rod is then obtained by con-
sidering the equilibrium with regard to rotation of the portion CD: Mc = 2ql2.

The shear diagram is constant in the portion A'B and linear in the portion
BD (Figure 6.3(b)). In B the shear undergoes a discontinuity equal to the value
of the reaction, but does not change its algebraic sign. At the right of B the
function T(z) equals ql, whereas it vanishes in C, because the double rod does
not transmit the shear. Hence, two points are known of the linear function con-
tained between B and D, which is thus defined. It is possible to verify the dia-
gram by going along the structure from right to left. The shear at the end D,
T(4l) = -2ql, is in absolute value equal to the reaction VD.

The moment diagram (Figure 6.3(c)) is linear in the portion A'B and para-
bolic between B and D:

M(z) = -qlz, for 0 = ^ z ^ / (6.8a)

M(z) = | qlz - ~ql (Z - /) - ~ q(z ~ D2 (6.8b)

= --qz2+2qzl, for l^z^4l

Having set the scale and drawn the linear part, we can identify at once three
values of the parabolic part: M(l) = (3/2)ql2; M(2l) = 2ql2- M(4l) = 0. The pat-
tern of the moment diagram between B and D is thus clear, all the more so,
because in correspondence with the double rod C there is a stationary point
(zero shear) with a horizontal tangent. The tangent at the end D may be identi-
fied by joining D with point Q, intersection of the horizontal tangent with the
vertical line through R. Finally, the graph of Figure 6.3(c) clearly indicates
four points of the arc of parabola together with their respective tangents.

An alternative graphical construction can be made by joining the extreme
points of the arc and drawing a vertical segment that starts from the midpoint
of this line and drops by iq (3/)2 = ^ql2. In this way again we find the
intersection of the extreme tangents at the height $ql2 + ^ql2 = 3ql2, and the
weak angular point produced by the discontinuity of the shear in B emerges.

The elastic deformed configuration must present the lower longitudinal
fibres in tension. On the other hand, the deformed configuration of Figure
6.4(a) would create an axial tensile force on the upright AA'. The axial force
is, instead, compressive, and a shortening of the upright is compatible only
with a deformed configuration which presents a discontinuity of the vertical
displacement in correspondence with the double rod (Figure 6.4(b)). In
Chapter 16 we shall re-examine this example and calculate the elastic
displacements rigorously.
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Figure 6 J

(a)

(b)
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(a) NO

(b) YES

Figure 6.4

6.3 Trusses

Trusses are systems of bars connected by hinges. These hinges are referred to
as nodes and are considered loaded by external forces and by the reactions of
the bars (Figure 6.5(a)). This is to say that the hinges, which are normally con-
sidered only as constraints and hence as boundary conditions, in the case of
trusses are considered as material points in equilibrium under the action of the
forces involved. On the other hand, the bars, if they are not loaded directly
from outside, are considered as connecting rods and thus as constraints.

In truss schemes only axial force will therefore be present as a characteristic
of internal reaction. In actual situations, however, bending moment and shear-
ing force are also present, albeit frequently not in significant measure. There
are substantially two reasons for this. The first is that the external loads do not
always concentrate their action on the nodes, but rather often appear as dis-
tributed along the bars or concentrated at points that are other than the nodes.
The second reason is that the real connection between the bars does present a
certain rotational stiffness. It would therefore be closer to the true situation to
represent the connections with semi-fixed joints, i.e with elastic hinges. The
latter will be introduced further on, when we come to deal with elastic con-
straints. Hence when the loads are not all concentrated on the nodes and, at the
same time, the bars are fixed into one another (welded or bolted joints), trusses
will work, from the static standpoint, in a way similar to that in which the so-
called framed structures work. These structures will be dealt with in the
sequel, since they have many degrees of redundancy and reveal a notable
presence of bending moment.

From a static viewpoint, a truss presents (a + 3) unknowns, if a is the num-
ber of bars and if the external constraint condition is statically determinate.
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Rigid deformed configuration

(b)

Figure 6.5

These unknowns are the internal reactions, and thus the axial forces of the
bars, and the external reactions. On the other hand, the number of resolving
equations is 2n, if n is the number of hinge-nodes. They are in fact the pairs of
equations of equilibrium with regard to translation corresponding to each
node. A necessary, but not sufficient condition for the truss to be isostatic, is
that the following relation should hold:

a + 3 = 2n (6.9)

That this relation is not of itself sufficient is shown by the truss of Figure
6.5(b), which presents, as that of Figure 6.5(a), 15 bars and nine nodes. In this
structure, however, the bars are ill-arranged, so that globally the system is
kinematically free or hypostatic. In fact, two portions are created which can
turn about the two supports, and of which one is internally statically indeter-
minate and the other internally statically determinate.

A simpler and unequivocal way of judging the internal statical determinacy
of a truss is that of checking whether it is made up of triangles of bars with
adjacent sides, without intersections or joints through a single vertex (Figure
6.5(b)). It is therefore easy to verify the statical determinacy of the metal
trusses traditionally most widely used for bridges and roofings (Figure 6.6):
(a) Polonceau truss; (b) English truss; (c) Mohnie truss; (d) Howe truss;
(e) Pratt truss; (f) Neville truss; (g) Nielsen parabolic truss; (h) Inverted para-
bolic truss; (i) Fink truss; (j) K truss.

The single elements malting up a structure then often consist of substruc-
tures of a truss type. Take for example the supported arch of Figure 6.7(a), or
the three-hinged arch of Figure 6.7(b), which can be realized by eliminating
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(a) French or Polonceau truss (b) English truss

(c) Mohnie truss (d) Howe truss

(e) Pratt truss (f) Neville truss

(g) Nielsen truss (h) Inverted parabolic truss

(i) Fink truss (j) K truss

Figure 6.6
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(a)

(b)

(c)

Figure 6.7

the central bar of the lower chord and adding the horizontal chain of Figure
6.7(c). This latter structural scheme is known as the tied arch, where the
horizontal action of the arch on the two supports is eliminated. It presents
problems of encumbrance due to the tie bar linking the two supports.

Another example of truss elements within a primary structural scheme is
provided by the supported beam of Figure 6.8(a), and also by the gerber beam
of Figure 6.8(b), obtained ideally from the previous one by eliminating two
members of the upper chord and by adding two intermediate supports.

An example of methods of solution of trusses is given hereafter in relation
to the simple structure of Figure 6.9(a). This truss is statically determinate
both internally and externally. The external reactions may be determined using
the triangle of forces, where the horizontal external force F, the vertical
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Figure 6.8

reaction VA and the reaction RB follow one another around the triangle (Figure
6.9(b)), their magnitudes being

V A =£. RJj*+Lftf=lLFA 2 B ( 4 ) 2

To determine the axial forces of the individual bars, it is generally possible
to write 2n equations in (a + 3) unknowns, and so to check the values of the
external reactions, already obtained by imposing global equilibrium. This
mode of proceeding is known as the method of equilibrium of nodes and it is
possible to give a highly significant graphical version of it, by taking each
node as being in equilibrium and considering its polygon of forces.

The node A is in equilibrium under the action of the external force, the reac-
tion of the roller support VA, the action NDA of the bar DA and the action N^
of the bar EA. The trapezium of forces of Figure 6.9(c) gives the axial forces
involved. Noting that the actions of the bars on the hinges are equal and oppo-
site to the actions of the hinges on the bars, it is possible to find that NDA =
-FV2/2 and N^ = -F/2, i.e. that the bars DA and EA are both struts. On the
other hand, the forces NCA, NCD, NGE, NGB are all zero, by virtue of the equi-
librium of the nodes C and G.

The node D is in equilibrium under the action of the forces NAD, NED, NBD.
The first is known from the previously considered force polygon, so that
also the other two are determined with the triangle of forces of Figure 6.9(d):
NAD = NDA = -F V2/2; NE» - F/2; NBD = -F/2.

The node E is in equilibrium under the action of the forces NAE = NEA

= -F/2; NDE = NED = F/2\ NBE = -F V2/2 (Figure 6.9(e)). Finally, the node B
proves to be in equilibrium under the action of the forces NEB = NBE =
-FA/272; NDB = NBD = -F/2 and of the constraint reaction RB, already
obtained from considerations of global equilibrium (Figure 6.9(f)). The axial
forces in the individual bars may be summarized as follows:

AC unloaded
CD unloaded
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(d)

(b) External reactions

(c)

(a)

(e)

(f)

Figure 6.9
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BG unloaded
EG unloaded
AE -FI2
AD -FV2/2
DE +F/2
DB -F/2
EB -F-s/2/2

It may thus be noted that the sides of the parallelogram ADBE are all struts,
whilst the diagonal DE is the only tie bar present in the structure. Taking into
account also the external forces and reactions, there is a polar-symmetrical
distribution of forces with respect to the centre of the tie bar DE.

A verification of the solution just described may be carried out using the
method of sections introduced by Ritter. A section of the truss is said to be a
Ritter section in relation to a bar, if this section cuts, in addition to the bar
under examination, other bars that are concurrent at a real point or at a point
at infinity. The additional sectioned bars must therefore intersect in a single
pole or be parallel. In the former case it will suffice to consider the equation
of partial equilibrium with regard to rotation about the pole, and in the latter
case, the equation of partial equilibrium with regard to translation ortho-
gonally to the parallel direction, to find at once the force in the bar under
consideration.

The section of Figure 6.10 is a Ritter section in relation to the bar DE, as the
two remaining sectioned bars DB and AE are parallel and horizontal. The
equation of equilibrium with regard to vertical translation of the portion that
remains to the left of the section in fact gives

NDE=+^ (6-10)

The same section is then a Ritter section also in relation to the bar AE, as
the remaining two sectioned bars DE and DB are concurrent in D. The equa-
tion of equilibrium with regard to rotation about point D of the same portion
of truss considered previously, is written

(F+NAE)l = ̂ l (6.11)

Figure 6.10
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from which we obtain NAE = -F/2.
Finally, the section is a Ritter section in relation also to the bar DB, as the

two remaining sectioned bars AE and DE are concurrent in E. The equation of
equilibrium with regard to rotation about E assumes the following form:

AW + f' = 0 (6.12)

from which we find NDB = -F/2.
There follow three examples of trusses, resolved using the method of equi-

librium of nodes. The first regards a cantilever truss with variable cross
section (Figure 6.11), while the remaining two refer to trusses made up of
diagonal struts (Figure 6.12) and of diagonal tie rods (Figure 6.13).

6.4 Three-hinged arches and closed-frame structures

The schemes of three-hinged arches (where the hinges are real, ideal or at
infinity) have already been extensively discussed in the previous chapters. In
the present section we shall highlight the existence of these schemes within
more complex structures, thus bringing out more clearly how the entire struc-
ture works from a static viewpoint and, at the same time, providing an inter-
esting graphical and synthetic approach to resolving such schemes.

Statically determinate closed structures are made up of internally isostatic
closed frames, externally constrained in a non-redundant way. Each closed
frame must thus present three single disconnections and be constrained to the
foundation by three single constraints. In the cases where there are external
forces concentrated on the internal hinges or external hinges coinciding with
internal ones, and thus external reactions acting on the internal hinges, it will
be convenient also to consider these hinges as bodies in equilibrium. We shall
proceed by looking at three examples: in the first closed system the external
and internal constraints are all separate (Figure 6.14); in the second, an exter-
nal constraint coincides with an internal one (Figure 6.16), i.e. two beams con-
verge at one external hinge, so that the hinge is, simultaneously, both external
and internal; in the third system, finally, the two external constraints both
coincide with internal constraints (Figure 6.18).

The closed structure of Figure 6.14(a) consists of the L-shaped beam, CAE,
on which the three-hinged arch CDE rests. It is possible, in the first place, to
determine the external reactions, imposing equilibrium with regard to vertical
translation and rotation about point P of the entire structure:

# 4 = 0 (6.13a)

VA + VB=ql (6.13b)

VA f 1 + ̂  = 0 (6.13c)

from which we obtain

VA = -\^ vB=\qi
It is then expedient to resolve the three-hinged arch CDE (Figure 6.14(b))

determining the internal reactions Hc and RE, and to verify the equilibrium of
the beam CAE, once this is subjected to the internal reactions opposite to the
previous ones and to the external reactions (Figure 6.14(c)). Note how the
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(a)

(c)

(g)

Figure 6.11
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External reactions

(b)

N,

(d)

Figure 6.11 (continued)

(f)

(h)

forces transmitted by the three-hinged arch to the beam constitute a system
equivalent to the distribution of external forces and, at the same time, a system
that balances the external constraint reactions.

The diagrams of the characteristics of internal reaction are drawn considering
each portion as isolated and subjected to all the forces involved, both active and
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(a)

N.

(e)

External reactions

(b)

(i)

Figure 6.12

(I)
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AO'

(C) (d)

(h)

(m)

Figure 6.12 (continued)

reactive. As regards axial force (Figure 6.15(a)), in the portion CA it is zero,
since the total force does not have an axial component. In the portion AE the
axial force is tensile and equals ±ql, this being the component of the resultant
of all the forces which precede and follow any one of its cross sections. In the
portion ED' the axial force is given by the vertical component of the reaction
RE, and hence is compressive and equal to -ql (Figure 6.14(b)). Finally, in the
portion D'C, the axial force is that of the strut CD and equals -iql
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(a) (b)

(e)

(h)

Figure 6.13

(i)
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N.

(c) (d)

(9)

N,, (m)

(0

Figure 6.13 (continued)

The shearing force (Figure 6.15(b)) is equal to the reaction of the strut CD in
the portion CA and to the vertical reaction VA in the portion AB. The diagram
then undergoes a positive jump in 5, where the vertical reaction VB is applied.
The shear is equal to the horizontal component of the reaction RE on the
upright ED', and varies linearly in the portion D'D, where the distributed load
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Hi l l II

(a)

(b)

Figure 6.14

(c)
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(a)

(b)

(c)

Figure 6.15

is applied. Its value at the end D' is given by the vertical component of the
reaction RE, T(D') - -ql, while it is zero at the end D, and also in the strut CD.

The diagram of bending moment (Figure 6.15(c)) rises linearly in absolute
value between C and A, as also between A and B. The moment M(A) is obtained as
the product of the reaction of the strut CD and the arm /, and its value is the same to
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the left as to the right of A, as opposed to what occurs in the case of the other two
characteristics. The representative segment is therefore turned by 90° in a counter-
clockwise direction and we thus obtain a point of the following linear diagram. A
second point can then be represented by the pole Q, where the horizontal axis
intersects the line of action of the resultant of the forces acting in C and A (Figure
6.14(c)). In the portion BE the moment diagram decreases in absolute value until it
vanishes in the hinge E. The cusp that corresponds to point B reflects the disconti-
nuity in the shear diagram (Figure 6.15(b)). The diagram then is again linear in the
portion ED' and parabolic in the portion D'D, where the distributed load is applied.
The arc of parabola is the same as that determined in the case of the cantilever
beam (Figure 5.12(b)), because the strut CD transmits only an axial force.

The pressure line consists of a set of three straight lines plus the infinite
number of straight lines which envelop the arc of parabola of Figure 6.14(b)).
In particular, for the portions DC and CA the pressure line is the straight line
DC, for the portion AB it is the straight line CQ (Figure 6.14(c)),'for the por-
tions BE and ED' it is the straight line EP and, finally, for the portion D'D it is
the arc of parabola already indicated.

The closed structure of Figure 6.16(a) consists of a closed rectangular frame
with three internal hinges which ensure its internal isostaticity. The roller sup-
port A constrains the portion CAD to the foundation, whilst the hinge B, in addi-
tion to connecting the portions CB and DB, further constrains the structure to
the foundation. To resolve the structure algebraically, we proceed by isolating
each single portion of it, including the hinge B, and we replace the constraints
with the actions exerted by them (Figure 6.16(b)). The connecting rod CB is
subjected to two equal and opposite axial forces Rc. The portion CAD is sub-
jected to the horizontal reaction Rc, to the external reaction of the roller support
m/2/, and to the axial force HD and the shearing force VD, transmitted by the
internal hinge D. The hinge B is subjected to the reaction of the connecting rod
Rc, to the vertical external reaction m/2/, to the horizontal internal reaction HB
and to the vertical internal reaction VB. For equilibrium with regard to transla-
tion of the hinge B, we must have HB = Rc andVB - mill. It follows that the por-
tion DB is subjected to the horizontal force Rc and the vertical force m/2/ at the
end B, whilst at the end D it is subjected to the axial force HD and the shearing
force VD, transmitted by the hinge D, as well as to the external concentrated
moment m, assumed as acting on that point. There are three unknowns, Rc, HD,
VD. Imposing equilibrium on one of the two portions, CAD or DB, we obtain the
internal unknowns. Taking the portion CAD, we have for example

HD = RC (6.14a)

VD=^ (6.14b)

Rcl = ̂ l (6-14C)

whence it follows that Rc = HD = VD = m/2/. As a verification of this, we can
note that, according to this solution, the portion DB is in equilibrium with
regard to rotation, and is loaded by the external moment m and two equal and
mutually concordant couples, each of moment m/2.

A shorter way to resolve the same closed structure of Figure 6.16(a) is to
recognize in it a three-hinged arch scheme. Note that the static and kinematic
function of the connecting rod CB does not vary according to the variation of
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(a)

(b)

Hinge B

Figure 6.16

its length and thus of the position Bf of the hinge to the foundation (Figure
6.17(a)). We thus come to identify an ideal hinge at point C and hence the sim-
plified scheme of Figure 6.17(b). In this way, the static working of the struc-
ture emerges clearly, whereas in the original scheme it was not evident.

We now find graphically the reactions previously obtained proceeding alge-
braically. The pressure line of the fictitious structure consists of two parallel
straight lines inclined at 45° to the horizontal. The moment diagram presents a
discontinuity where the concentrated moment is applied (Figure 6.17(b)). The
shear diagram (Figure 6.17(c)) and the axial force diagram (Figure 6.17(d)),
on the other hand, do not present discontinuity in Z), as no concentrated forces
are applied to the structure in that point. The pressure line of the original
structure (Figure 6.16(a)) is hence defined as follows:

portion CB: straight line CB
portion CA: straight line CB
portion AD: straight line CD
portion DB: straight line BQ

The closed structure of Figure 6.18(a) consists of a square frame with three
internal hinges, and is constrained to the foundation by two of these hinges. The
only external reaction that can oppose the horizontal load ql is the horizontal
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(a)

M

(c)

Figure 6.17

(d)
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one in C. There is formed, on the other hand, a clockwise couple of moment
i ql2, which will be balanced by an equal and opposite couple created by the
vertical external reactions. Another way to identify these reactions is that of con-
sidering the pole D, where the line of action of the external resultant and the
straight line perpendicular to the plane of moving of the roller support intersect.
The three elements CA, AB, BC and the two hinges A and C having been iso-
lated, the procedure will be to impose equilibrium on each of these (Figure
6.18(b)). TTie connecting rod AC is in equilibrium under the action of two equal
and opposite forces Rc. The hinge A is in equilibrium under the action of the
reaction Rc of the connecting rod, the vertical external reaction I ql and the reac-
tions HA and VA transmitted by the portion AB. The portion AB will thus be sub-
jected to the reactions HA = Rc and VA = ±ql, the external force ql and the
internal reactions HB and VB. The three unknowns Rc, HB, VB may immediately
be determined, considering the equilibrium of the portion AB,

HB + Rc=ql (6.15a)

VB=^ql (6-15b)

^ql2=VBt + HBl (6.15c)

from which we obtain

Rc=^ql, HB=^ql, VB=±ql (6.16)

At this point the equilibrium of the remaining elements is verified. The
hinge C (Figure 6.18(b)) is subject to the horizontal external reaction ql, the
vertical external one 1 ql, the reaction of the connecting rod Rc, and the reac-
tions Hc and Vc, transmitted by the portion BC. We thus have Hc - I ql and Vc

= i<7/. The portion BC is found, finally, to be subject to two equal and opposite
forces acting along the line joining B and C.

The graphical approach can be adopted, if we note that the static solution is
not a function of the length of the connecting rod AC" (Figure 6.18(c)). The
fundamental scheme can, that is, be reduced to the three-hinged arch ABC. We
thus identify the pole P as the intersection of the line of action of the external
resultant with the line joining C and B. The force triangle thus furnishes the
reactions RA and RB. The values of equation (6.16) are again obtained if it is
noted that the force triangle is geometrically similar to the triangle ACP. On
the basis of the goemetrical ratios of the latter, the horizontal component of RA

is three times the horizontal component of RB, so as to give the values HA =
iql and HB = ±ql. At the same time the vertical components of RA and RB

prove to be equal in magnitude: VA = Vc = 1 ql.
The pressure line for the portion CA' is the straight line CB, whilst for the portion

AA', on which the distributed load acts, it is the arc of parabola shown in Figure
6.18(c). The pressure line coincides, but for a scale factor, with the diagram of
bending moment (Figure 6.18(d)). This diagram is in fact linear in the portions CC,
CB, BA', vanishing at the hinges C and B, and parabolic in the loaded portion AA'.
Its maximum value is reached at three-quarters of the height of the upright AA',

J L f f 3 ! ^ f 3 lV3A f 3 iV3!^ 9 /2M — / = \—ql —/ - — <7H — l\-—&U ; U A4 ; U As; 32*

165



Figure 6.18

166

(b)

(a)

STATICALLY DETERMINATE BEAM SYSTEMS

Hinge C

(c)

Hinge A



(d)

(e)

(f)

Figure 6.18 (continued)
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where the shear vanishes (Figure 6.18(e)). The axial force diagram is given,
without further comments, in Figure 6.18(f).

There follow three examples regarding three isostatic structures, along with
the resolving diagrams of bending moment, shearing force, axial force and the
pressure line.

-i- AA

H q/

q/

Example 6.1

//4

3
- q/
8

Pressure line

Portion

CD
DE
EF
FG

Corresponding line

Parabola a
Parabola b
Straight line c
Parabola d
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2

Bending moment M

Axial force N

i q/

5
, q'
V^s . q'

Shearing force T

Example 6.1 (continued)
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M t M M i t q

OB

A

Pressure line

Portion

AB
DCH
AD
BE
HE

Corresponding line

Straight line a
Straight line b
Parabola c
Straight line a
Parabola c Pressure line

Example 6.2
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-q/'
6

-q /
6

18

Bending moment M

1
- q/
6

1-q,

1

? q /

1 1
- q/ - q / -
6 6

i 2

- q/
3 Axial force N

Example 6.2 (continued)

M

XT

X ! +

Shearing force T

- q/
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K

F
c

1LMH1"
E

> B

n

D C ,

Pressure line

Portion

AF
FK
KE
EH
HD
DB
BF
DC

Corresponding line

Straight line a
Straight line b
Parabola p
Straight line c
Straight line c
Straight line c
Straight line d
Not defined

Pressure line

Example 6.3
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q/

Bending moment M

Iq/
4

Axial force N

Shearing force T

Example 63 (continued)
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7 Analysis of strain and stress

7.1 Introduction

The analysis of strain and that of stress may be dealt with in a similar way, in
that both these quantities, in the one case kinematic, in the other static, present
a tensorial nature. In this chapter the corresponding tensors are defined: the
strain tensor, consisting of dilations and shearing strains, and the stress tensor,
correspondingly made up of normal stresses and shearing stresses.

On the basis of the laws of projection of the displacement vector and of the
stress vector, we arrive at the laws of transformation of the strain and stress
tensors for rotations of the reference system. Once the principal directions are
defined as those that diagonalize the corresponding tensor, the determination
of these directions and the corresponding principal values is reduced to an
eigenvalue problem. There are three principal directions, at right angles to one
another. An elementary cube of the solid with the sides set parallel to the prin-
cipal directions is subject to dilations only (zero shearing strains) and to nor-
mal stresses only (zero shearing stresses).

As regards the principal stress values, the graphical interpretation due to
Mohr, already presented in Chapter 2 in the case of the inertia of plane sec-
tions, is reproposed.

7.2 Strain tensor

In the foregoing chapters only rigid bodies have been considered, i.e. undeform-
able bodies in which the distance between each pair of points does not vary,
even when these bodies are loaded by external forces. We have defined the
rigidity constraint and the linearization of this constraint in the assumption of
small displacements. On these bases we have recalled the kinematics of the rigid
body, as a study of the relationships existing between the displacements of dif-
ferent points belonging to one rigid body undergoing rototranslational motion.
In this chapter, this study will be extrapolated to the more complex case of a
deformable body, i.e. we shall analyse the relationships existing between the
displacements of different points (but ones sufficiently close together) belonging
to one deformable body which in general undergoes rototranslational motion.

Let us thus define the displacement function/, as that correspondence which
associates each position vector {r} of the points of the body, in the initial posi-
tion and in the undeformed configuration, to the vector {?]} of the displacement
which these points undergo, bringing the body into the final position and into
the deformed configuration (Figure 7.1). Expressed in symbols, it is

/:jg?->^ (7. la)

f:P\^Pf (7.lb)
/:{r}h*{7]} (7. Ic)

where the domain 2 of the function consists of the total set of geometrical
points occupied by the material points of the body in the initial state, and the
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Figure 7.2

Figure 7.3

codomain Sf is the volume occupied by the body in the final state. We thus
have a vector field of displacements, which can be projected onto a fixed XYZ
reference system (Figure 7.1)

(7.2){rj} = u(x, y, z) i + v( x, y, z) j + w(x, y, z) k

Each component u, v, w, is a function of the three cartesian coordinates Jt, y, z. As
will be shown, the function {17} is the primary unknown in structural problems.

For the moment we formulate a hypothesis of regularity of the function/: R3

—> /?3, such as to rule out fracture and overlapping (Figure 7.2). In Chapter 20,
we shall then consider the phenomenon of fracture explicitly and thus the
discontinuity of the displacement function. The function / and its inverse
function/"1 must be continuous and bijective (bi-univocal). These requirements
can be summarized under a single term:/and/'1 must be homeomorphisms.

Consider an arbitrary point P, within a deformable body, and a point Q
belonging to the infinitesimal volume surrounding it (Figure 7.3), such that

PQ = {dr} = (XQ - x p ) i + (yQ - ») j + (zQ-zP)k (7.3)

If the function / is sufficiently regular, i.e. continuous together with its first
partial derivatives, it is possible to expand this function applying Taylor series
up to terms of the first order:

(7.4a)

(7.4b)

(7.4c)

The scalar expressions (7.4) may be summarized in a single matrix expression:

{dr} (7.5)

where [JP] is the Jacobian matrix of the dependent variables u, v, w with
respect to the independent variables x, y, z.

On the other hand, if the displacements were caused exclusively by a rigid
motion, equation (7.5) would be reduced to equation (3.6), which, in compact
form, can be represented thus:

{riQ} = {rir} + [<Pr]{dr} (7.6)

In this particular case, the Jacobian matrix is represented by the rotation
matrix, already defined in Chapter 3:

0 -<pz <py

[q>P] = <p. 0 -q>x (7.7)

~<pv <pv , 0

Since the Jacobian matrix must be the sum of a contribution of rigid motion
and a contribution of deformation, where the former consists of the skew-
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symmetric matrix (7,7), it may be inferred that the purely deforming contribu-
tion is equal to the difference between the Jacobian matrix and the rotation
matrix. On the other hand, each square matrix consists of the sum of a sym-
metric matrix and a skew-symmetric matrix. The following identity in fact
holds good:

[JP] = ̂ ((Jp]-[Jp]'T) + ̂ ([JP] + (JP]'T) (7.8)

Of course the first term represents the rotational contribution (skew-
symmetric matrix [<pp]), whereas the latter represents the contribution of
deformation (symmetric matrix [£P]).

Finally, equation (7.5) expands as follows:

(riQ} = {rip} + [<pp]idr} + [£p]{Ar} (7.9)

where the first term is the translational contribution, the second one is the rota-
tional contribution and the third is the contribution of deformation. The matri-
ces of rotation and strain, on the basis of the identity (7.8), can be rendered
explicit as functions of the first partial derivatives of the components of the
displacement vector, u, v, w:

if^-^o i(*._^y
2(dy dx) 2{dz dx)

1 (dv du\ _ 1 (dv dw\ ._ _ _ .
[?>/>]= T K—ir ° ^hr~ir (7-10a)

2 \ ^ dx dy) 2\dz d y )

]_(dw__du\ ±(d^_dv_] Q

2(dx dzj 2(dy dz) \p

du \{du_ dv] ]_fdu dw\

dx 2(dy*dx) 2(dz*dx)

'"'-if^D £ ifi+£) (7-low
2\dx dy) ay 2\az ay)

1 (aw du\ 1 (dw dv\ dw

2(dx~*lkJ 2^+*"J *" Jp

The strain matrix will henceforth be represented thus:

1 1
c — y — y
*"* ~ I yx « / zjc

[e]= !/„ e, |r,v (7.1D

1 1
J7, -7* et
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where the e terms represent the partial derivatives of the components of the
displacement vector in the corresponding directions, while the /terms repre-
sent the sums of the cross partial derivatives. The elements of the strain matrix
are pure numbers, to which we shall give a precise physical interpretation in
the next section. In the framework of the hypotheses of small displacements
and of regularity of the function/, the parameters £ and /are small compared
with unity.

7.3 Dilations and shearing strains

Consider two orthogonal segments PQ and PR of infinitesimal length within the
body in the initial position and in the undeformed configuration. Choose the
reference system XYZ so that the X and Y axes are parallel to the segments PQ
and PR respectively. When the body is in the final position and in the deformed
configuration, the two transformed segments Pig'and P'R', in addition to their
having undergone a rototranslation, appear to be of different length from the ini-
tial one and no longer form a right angle (Figure 7.4). Applying equations (7.4)
to the particular case described above, for point Q we have

UQ=UP+(^\ dx (7.12a)
\dx)p

vQ = vp + \^r\ ** (7*12b)
\dx JP

WQ = WP+ — d* (7.12c)
\dx )P

Rigid motion + deformation

dv
— dx
dx

O

Figure 7.4
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and for point R
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"R = up+\^r} <*y (7.13a)
Wj.

VR = VP+\^-} fy (7-13b){Jyjp

w « = w p + | — dy (7.13c)\0y )p
The projection on the XY plane of the two rototranslated and distorted seg-
ments is represented in Figure 7.4, on the basis of the relations (7.12 a, b) and
(7.13a,b).

Neglecting infinitesimals of a higher order, the specific dilation in the
direction of the X axis equals

(A d u A \ Adx + —dx -dx
L_*L_J_=* (7.14)

djc dx
and thus coincides with the first diagonal term of the strain matrix. Likewise,
the specific dilations in the Y and Z directions will be represented by the
remaining diagonal elements Ey and £r

Next, as regards the shearing strains 7^ = yyx, yxz = Y&, 7yz = Yzy, these
represent the decreases (or negative variations) that the right angles, formed
by the initial directions, undergo as a result of the deformation. For the X
and y directions, and neglecting infinitesimals of a higher order, we have
(Figure 7.4)

du fa
— dy -±L&c

?--$=*—+&— = Yxy (7.15)
2 dy dx y

where Vindicates the new angle formed by the above-mentioned axes. Note that,
in the diagram of Figure 7.4, the term duldy is positive, while dv/dx is negative.

We shall now check the physical meaning of the elements of the strain
matrix, considering directly only the contributions of deformation (Figure
7.5). The initial segments PQ and PR in this case only undergo a variation in
length and a distortion, while the contributions of rotation and translation are
obliterated. On the basis of equation (7.9), and, precisely, the third term of its
second member, we can write

tte=(lr] ̂  (7J6a)
\dxjp

v =!f*L+*>| d* (7.l6b)Q 2(& dy)p

1 (dw du\^-br*]/* (7-i6c)
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Deformation only

- - 1 / du dv\

- -2 \a7 + ax /
dx

Figure 7.5

and likewise

(7.17a)

(7.17b)

(7.17c)

The projection on the XY plane of the two purely distorted (and not
rototranslated) segments is represented in Figure 7.5, on the basis of the rela-
tions (7.16a, b) and (7.17a, b). Also in this case, and neglecting infinitesimals
of a higher order, the specific dilations appear to be equal to the diagonal
terms of the strain matrix, just as the shearing strains coincide with the
decrease in the angles formed by the straight lines passing through point P and
parallel to the coordinate axes. For the X and Y directions, we have in fact
(Figure 7.5)

n rt _ I (du dv\ ,~ +n^2-*=2x2(*+-*rr'> (7-18)

7.4 Law of transformation of the strain tensor for rotations of the
reference system

Consider an infinitesimal sphere of unit radius with its centre in point P
(Figure 7.6). The unit vector {n} identifies point Q on this sphere. The
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Figure 7.6

displacement vector of point Q, once the components of rototranslation have
been obliterated, is given by the third term on the right-hand side of equation
(7.9):

(rin } = [£]{») (7.19)
•A

The projection of the displacement {T\n} on the same direction n therefore
>Jm equals

TU={n}T [£]{«} (7.20)

whilst the projection on another generic direction m, identified by a point R of
the sphere, equals (Figure 7.6)

TU = {«}T[£]{«} (7.2D
On the other hand, the displacement of the point R is

tom } = [£]{«} (7.22)

and thus its projection on the direction n is

i7(BB={«}Tte]{«} (7.23)

The expressions (7.21) and (7.23) can be shown to coincide. Rendering the
matrix products explicit, we obtain the following bilinear form:

fJnm = nmn = ex
nxm* + £ynymy + eznzmz + (7.24)

-7*vKmv+nvmJ +

-yxz(nxmz + nzmx) +

--Yyz(nymz+nzmy)

where n^, nv, nz are the direction cosines of the n direction, and mx, my, mz are
the direction cosines of the m direction. The equality (7.24) expresses the law
of reciprocity for the projections of the displacement vector.

Having made the radius of the sphere of Figure 7.6 equal to unity, we can
note how the projection T]nn also represents the specific dilation in the direc-
tion n. Hence, by equation (7.20), we obtain

£l,={n}T[e]{n} (7.25)

If then the directions n and m are assumed to be orthogonal, we obtain the cor-
responding shearing strain

Jnm = Ymn = ^nm + *}mn (7.26)

The law of reciprocity gives us

7nm=7,nn=^nm=^mn (7.27)
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and hence, from equations (7.21) and (7.23), we obtain finally

\7nm =\ymn={™ne}{n} (7.28)

= {n}T[e]{m}

Considering three mutually orthogonal directions, n, m, /, rotated with
respect to the initial reference system, X, Y, Z, it is now possible to express the
law of transformation of the strain matrix for rotations of the reference system
(Figure 7.7). This matrix in the rotated reference system nml is indicated by
[£*], where the asterisk implies the operation of rotation:

Jj_ J_
^n r* Y mn ry I In

[£*] = \rnm £m \Jim (7-29)

1 1
-Tnl 2Ytnl £<

From relations (7.25) and (7.28) we obtain

"{«>T[e]{n} {n}T[£]{«} WT[e]{/}'
[£*]= {m}T[e]{n} {m}T[e]{m} {m}T[e]« (7.30)

.WT[e]W (l}T(e]{m} {/}T[e]{/}_

"{n}T][e][{«}{m}{/}]

= (m}T

.«T.
This last matrix product only apparently and formally relates a column
matrix, a scalar quantity and a row matrix. Actually all three matrices are
square (3 x 3), and the law (7.30) can be put in an even more compact form *

[e*] = [#][£][AnT (7.31)

*The law of transformation (7.31) may be readily obtained by considering the relation (7.19) in
the rotated reference system

[An{r?«} = [e*][An{«}

Premultiplying both sides by [N] , we obtain

{rin} = (WT[e*m{n}

This equation coincides with equation (7.19) if

[e] = [N]T[£*m

and thus in the case where equation (7.31) holds.
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where the matrix [AT| is orthogonal and represents the rotation which changes
the reference system from XYZ to nml (Figure 7.7)

nx ny nz

[N] = mx my mz (7.32)

}x ly k _

A law similar to that of equation (7.31) has already been met with in
Chapter 2, in the case of the moment of inertia tensor. It is then possible to
conclude that the strain matrix in actual fact is a tensor, by virtue of the form
that its law of transformation for rotations assumes. Also strain, like inertia, is
a physical quantity that may be described solely in tensor terms.

7.5 Principal directions of strain

There is now posed the problem of determining, if they exist, the points of the
infinitesimal sphere of centre P that undergo only radial displacements (Figure
7.6). The task will be to define the directions along which only dilations, and
not shearing strains, occur. This means that the unit vector {n} of such a direc-
tion must be parallel to the corresponding displacement vector { 7 ] n }

(In } = £» (7.33)

In general, on the other hand, the relation (7.19) holds good, so that, by virtue
of the transitive law, we obtain the characteristic equation (eigenvalue equa-
tion) which governs the problem

([e]-[l]eB)W = {0} (7.34)

where [1] indicates the (3 x 3) identity matrix. In explicit terms, equation
(7.34) is presented thus:

(£,-£«) -7>, -Yv r -i r0-

^ (£,-£„) ^ ny = 0 (7.35)

Ir !r (£ _ £ ) kJ W
9 *xz 9 *yz ^ z n>

The trivial solution of the system of linear algebraic equations (7.35) is without
physical meaning, as the direction cosines must obey the relation of normality

nl+n*+n\=\ (7.36)

The solution is different from the trivial one and represents a principal direc-
tion, if and only if the determinant of the matrix of coefficients vanishes. This
last condition gives a third order algebraic equation in the unknown en

e^-J,e^-Jllen-Jlll=0 (7.37)
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where the coefficients are the so-called scalar invariants of strain, since they
remain constant as the reference system varies:

J!=£x+£v+£z (7.38a)

£x l £x 1 £v 1x — y x — y > —y
Jn=-\ 2 - - i 2 ^ - i 2 - (7.38b)

2"y^ £v 2"^ 6, 2^2 e,

y / /7=det[e] (7.38c)

The first invariant is referred to as the trace of the tensor and is equal to the
sum of the diagonal elements. The second invariant is equal to the sum of the
opposites of the determinants of the principal minors. The third invariant is
equal to the determinant of the strain tensor. If these coefficients varied as the
reference system varied, the solution of the physical problem would also vary
as the reference system varied, which would be absurd.

Equation (7.37) possesses three roots £h £2, £3, referred to as the eigenval-
ues of the problem, so that the system (7.35) possesses three different solu-
tions, {/ i j} , {^K {^3}' called eigenvectors of the problem. The eigenvalues
are real, since the tensor [e] is symmetric, and represent the three principal
dilations, while the eigenvectors, if £, ^ £2 ^ £3, are mutually orthogonal and
represent the three principal directions. If we consider, in fact, the two prin-
cipal directions / and j, the law of reciprocity gives the equality

£,costf,7 =£jcos$ij (7.39)

where the angle ty is that contained between the given directions. If £, * £•,
we must have fyj = Ti/2, whereas when £, = £-, t^ can assume any value. Three
cases may thus present themselves:

1. £, * £2 * £3: the three principal directions are mutually orthogonal;
2. £{ = £2 * £3: the direction {n3} is principal together with the oo1 directions

orthogonal to it (principal plane 12);
3. £{ = £2 = £3: the °o2 directions are all principal.

Of course, the strain tensor in the principal reference system 123 is diagonal
(Figure 7.8):

~£, 0 0"
0 £2 0 (7.40)
0 0 £3

as the shearing strains are zero. The invariants of the strain may therefore be
expressed as functions of the principal dilations

jj =£, +£2 +£3 (7.4 la)

Ju = -(£j£2 + £,£3 + £2£3) (7.415)

y / /7=£,£2£3 (7.41C)
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Figure 7.8

Ax^l+e^

Ax

Figure 7.9

A x 2 ( l + e 2 )

The first invariant assumes the physical meaning of cubic dilation (or volu-
metric dilation). An elemental parallelepiped of sides Axh Ax2, Ax3, oriented
according to the principal directions, is in fact transformed, once deformation
has come about, into the parallelepiped of sides Axj (1 + £j), Ax2 (1 + £2)* ̂ 3
(1 + £3) (Figure 7.9). The volume of the dilated element is thus

V' = V(l + £1)(l + £2)(l + e3) (7.42)

V being the volume in the undeformed configuration. Neglecting the infinite-
simals of a higher order, we have

V'=V(l + el+e2+e3) (7.43)

from which we obtain the volumetric dilation

AY y'-V_ = __ = £ 1 +£ 2 +£ 3 = // (7.44)

7.6 Equations of compatibility

As we have seen, the displacement vector is a function/: /?3 -» /?3, which asso-
ciates with each position vector the ordered triad «, u, w of the components of
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the corresponding displacement. On the other hand, the strain tensor, defined in
the foregoing sections, can be considered as a function g: R3 —> /?6, which asso-
ciates with each position vector the ordered set ex, ey, £,, %v, %-, yvr of the dila-
tions and shearing strains. The function g may be derived from the function/,
on the basis of the relations (7.1 Ob). It thus follows that not all the continuous
and derivable tensor fields produce, on integration, displacement fields that are
bicontinuous functions. The six components of strain must hence be connected
by three differential relations, which limit their mutual independence.

These relations, known as equations of compatibility, are obtained by
deriving the shearing strains with respect to both the corresponding variables
and noting that the third order partial derivatives that are obtained in the dis-
placements correspond to those of the second order in the dilations

d^L = J^u_ + J^=d^+d^L (?45a)
chcdy dxdy2 dx2dy dy2 dx2

d2rx- <?3H <?3w d2£K 92E. , _ „ _ . .* *~~ i — x_ _i *;_ s*i 45b^
dxdz dxdz2 dx2dz dz2 dx2 ^ ' '
d2r,L = ̂ v_ + ̂ vL=d2e^+d2^ (?45c)

dyoz dydz~ dy dz dz~ oy^

7.7 Stress tensor

Let us consider a body in equilibrium under the action of forces distributed
over the unit external surface, {/?}, and in the unit volume, {T} (Figure 7.10).
The cardinal equations of statics impose

f {p} dS + f {JT} d V = {0} (7.46a)
J5 Jv

f {r} A {p} d5 + f {r} A {̂ ) dV = {0} (7.46b)
Js Jv

pdS

X *

Figure 7.10
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where S represents the boundary of the body, V the volume occupied by it and
{r} the position vector of its points. In the case where the body is deformable,
let us assume that {r} can be confused with the final position vector {r} + {17}.

Now imagine sectioning the body with a plane A (Figure 7.1 l(a)), passing
through one of its generic points P. Each of the two portions into which the
solid has been ideally subdivided will be in equilibrium under the action of
the surface forces (as well as the body forces): both those corresponding to
the external partial surface SA and those corresponding to the surface of the
section QA and transmitted by the complementary portion of the body.
Expressed in symbols

f {p} dS + I {t} dQ + f {jq dV = {0} (7.47a)
JsA JnA JvA

f {r}A{/?}dS+f [ r } A { t } d Q + f {r} A {^} dV = {0} (7.47b)
JSA JQA JvA

where {t} is the tension vector, i.e. the force transmitted to the elementary
area dQA, which constitutes the area surrounding point P on the plane A. This
vector is not in general orthogonal to the plane A as occurs for fluids under
pressure, and it is a function both of point P and of the secant plane A.

In fact, if we consider a different section of the body, obtained by a plane B
passing again through point P, we find a different tension vector acting on the
elementary area d£2& the surrounding area of point P on the plane B (Figure
7.1 l(b)). The cardinal equations of statics for this new portion of the solid will
prove to be similar to equations (7.47), if we replace the subscript A with B.

Once the position vector {r} and the unit vector [n] normal to the elemen-
tary area dQ are known, we are able to define the tension vector

(t} = {t({r},(n])} = {tn} (7.48)

Of this vector, it is possible to consider the components with respect to the
external reference system (Figure 7.10),

(tn} = tj + tj + tn,k (7.49)

tdft

pdS tan pdS

(a)

Figure 7.11
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or the components with respect to a local system, with one of the coordinate
axes coinciding with the normal to the elementary area djQ and the other two
lying on the section plane (Figure 7.12)

{tn} = ann + rnpp + Tntlq (7.50)

where n, p,q are the unit vectors of the above axes, on is the normal compo-
nent, while rnp and inq are the shearing stress components on the axes p and q.
The resultant of inp and rnq on the section plane is referred to as the total
shearing stress component

T w =fe +T*,)* (7.51)

Having established the point P inside the body, we now propose to deter-
mine the law of variation of the tension vector, as the plane of the elementary
area d£2 varies. For this purpose consider a volume surrounding point P hav-
ing the form of a tetrahedron with three sides parallel to the coordinate planes
and the oblique face with normal unit vector {n} (Figure 7.13(a)). Let this
infinitesimal tetrahedron be subjected to the action of the tension vectors -
{tx}, -{fv}> -R-}> (U> an<3 at the same time let the body force be negligible.
By virtue of equilibrium with regard to translation, we have

[tn] dQn -{rv} dI2r - [t } dQ - {r_} d£2_ = {0} (7.52)

where the areas of the projections of the triangular surface dQn on the coordi-
nate planes are equal to

OUX = nx &L2n

dQv - ny d£2n

dQz = n. d&n

(7.53a)

(7.53b)

(7.53c)

(a)

Figure 7.13
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(b)

Figure 7.12
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Dividing the expression (7.52) by dQn we then obtain

{tn} = (tx}nx+{ty}n,+{t.}n: (7.54)

The foregoing expression, due to Cauchy, can be put in the matrix form con-
sidering the so-called special stress components, i.e. the components of the
vectors {fv}, {fv}, {t-} on the X, Y, Z axes

*nX 'xv *yX *v "v

'«v = 'n ',, ',v "y (7-55)

tn,\ |> 'vc ^-JU-

or using the traditional notation

*n* tf, ^ ** «*
V = *n- °y *=y «v (7-56)

_rnj |5-r Tv, ^ j [^_

where the <7 terms are normal stress components and the r terms are shearing
stress components (Figure 7.13(b)).

The matrix relation (7.56) may be represented in compact form as follows:

(U = MM (7.57)

which interprets the stress matrix [<j] as a matrix of transformation of the
normal unit vector [n] into the corresponding tension vector {tn}. The anal-
ogy with relation (7.19) is evident. In the latter, the strain matrix [e] may be
interpreted as the matrix of transformation of the normal unit vector {n} into
the corresponding displacement vector {rjn}.

Considering then the equilibrium with regard to rotation of the tetrahedron
of Figure 7.14, the matrix [a] is shown to be symmetric. The centroid G of the
triangular elementary area d£2n has as projections on the coordinate planes the
centroids of the elementary areas d£2v, df2v, d£L Let the tension vectors be
applied to these centroids Gr, Gv, G-, and let the conditions of equilibrium
with regard to rotation of the tetrahedron with respect to the axes GGV, GGV,
GG- be expressed. In the case, for instance, of the axis GGY, the five special
components crx., TJV, Ttr, crv, <J,, present a zero arm, while TVJC and T:V are paral-
lel to the axis. The only two components that contribute to the moment with
respect to the axis GG^ are T_V and Tvr,

T:V dfl,—-^., dflv^ = 0 (7.58)

where the product of a stress component by the corresponding elementary area
represents the infinitesimal resultant force, whilst dz/3 and dy/3 represent the
arms of these two forces. Noting that

- dX2v dy = - df2_ dz = dV (7.59)
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dz

dz

P dx

3
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Figure 7.14

where dVis the volume of the elementary tetrahedron, we obtain that ryz = T^,
just as rxz = ty. and r^ = Tyx. The stress matrix [a] is thus symmetric, with only
six significant components.

7.8 Law of transformation of the stress tensor for rotations of the
reference system

As we have already done in the case of the displacement vector in Section 7.4,
we shall now express the projection of the tension vector on a generic axis.
Recalling the law of transformation expressed by equation (7.57), the compo-
nent normal to the elementary area of normal unit vector {n} equals

an = tnn = {nF{tn} = {n}T[cr]{n} (7.60)

More generally, the projection of the tension vector {/„} on a generic direction
of unit vector [m] equals

<«m={m}T[(J]{n} (7.61)



ANALYSIS OF STRAIN AND STRESS

On the other hand, the projection of the tension vector {tm} on the direction of
unit vector [n] equals

'mn=WT[<m»i} (7-62)

Expanding the expressions (7.61) and (7.62), we obtain the law of reciprocity
for the projections of the tension vector

f
nm = f

mn = °x
nxmx + Oynymy + o^m, + (7.63)

rxy(nxmy-\-nymJ) +

TJCZ(nxmz+nzmJ) +

Tyz( nymz +nzm^

where nx, ny, nz and mx, my, mz arc the components of the unit vectors {n} and
{m}, respectively.

If then the unit vectors {n} and [m] are assumed to be orthogonal, the pro-
jections tnm and tmn become special shearing stress components:

rnm =rmn ={m}T[<7]{/i} (7.64)

= {n}T[a]{m}

The foregoing equality expresses the law of reciprocity of shearing
stresses, of which the symmetry of the matrix [a] is a clear example (Figure
7.13(b)).

If /I, m, I are three mutually orthogonal directions, rotated with respect to
the initial reference directions X, Y, Z, on the basis of the foregoing laws of
projection, it is possible to express the law of transformation of the stress
matrix for rotations of the reference system (Figure 7.7). The transformed
matrix is marked with an asterisk:

°n Tmn Tln

[<!*]= rnm am rlm (7.65)

Jnl Tml °l _

From relations (7.60) and (7.64) we obtain

~MT[(T]{«} WT[<r]{m} MT[CT]{/}~
[0*]= {m}T[a]W {m}T[a]{m} {m}T[(T]{/} (7.66)

_{/F[<T]M {/}T[a]{m} {/}T[<T]{/}_

MT1[<7][M{m}{/}]

= {m}T

.WT .

As has already been noted in the analysis of strain, the three matrices high-
lighted in the foregoing product are square (3 x 3), and the law of transforma-
tion sought can be put in the form
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[0*] = [N][v][NV (7.67)

where [N] is the orthogonal matrix (7.32). The form of the law (7.67) makes it
possible to recognize a tensor entity in the matrix [<r], referred to as stress
tensor. Thus, in addition to inertia (Chapter 2) and strain (Section 7.4), stress
also proves to be a physical quantity of a tensor nature.

7.9 Principal directions of stress

The problem now is to determine, if they exist, planes with respect to which only
normal stresses are present (Figure 7.15). This means that the unit vector {n},
normal to such a plane, must be parallel to the corresponding tension vector {tn}:

{'„} = <!„{*} (7-68)

In general the relation (7.57) holds, from which, by the transitive law, we
obtain the characteristic equation which governs the problem

([cr]-[l]cjn){n} = {0} (7.69)

where [1] indicates the (3 x 3) identity matrix. Note the perfect formal identity
of equations (7.34) and (7.69). In explicit terms, equation (7.69) can be pre-
sented as follows:

(CTj-aJ ryx TV 1 nx |"0"

r^ «*y-an) ?zy «y = 0 (7.70)
T« Tyz (<r z-tfn)J [nj L°.

The trivial solution of the system (7.70) is without physical meaning, as the
direction cosines must obey the relation of normality (7.36). The solution is
different from the trivial one and represents a principal direction, if and only
if the determinant of the matrix of coefficients vanishes. This condition gives a
third order algebraic equation in the unknown on, formally identical to
equation (7.37),

C73_y / ( J2_ / / / ( T n_ / / / / =o (7.71)

where the coefficients are the scalar invariants of stress

Jf = ax + ay + oz (7.72a)

®X ^\X &r ?7r &\ *7\
J/,=- - - (7.72b)Tty ay rxz az ryz az

J//7=det[cr] (7.72c)

The first invariant, or trace of the tensor, is equal to the sum of the diagonal
elements. The second invariant is equal to the sum of the opposites of the
determinants of the principal minors. The third invariant is equal to the deter-
minant of the stress tensor. If these coefficients varied as the reference system
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varied, the solution of the physical problem would also vary, and this would
be absurd.

Equation (7.71) possesses three roots a1? a2, 03, referred to as eigenvalues of
the problem. Consequently, the system (7.70) admits of three different solutions,
{ttj}, {n2}y {rc3}, called eigenvectors of the problem. The eigenvalues are real,
since the tensor [a] is symmetric, and represent the three principal stresses,
while the eigenvectors are mutually orthogonal and represent the three princi-
pal directions, if the eigenvalues are all distinct (Figure 7.15). This follows
from the law of reciprocity, as has already been illustrated in the case of strain.
Also in the case of stress, if two eigenvalues coincide, then there exists one prin-
cipal direction and one principal plane which are mutually orthogonal. Thus
when all three eigenvalues are equal, the directions are all principal.

The stress tensor in the principal reference system 123 is of course diagonal
(Figure 7.15),

~al 0 0"
0 (T2 0 (7.73)

0 0 cr3

since the shearing stress components are all zero by definition. The invariants
of stress may be expressed therefore as functions of the principal stresses:

Jj = a} + (72 +o-3 (7.74a)

Ju = -(0^2 + (TjC^ + O2o3) (7.74b)

Jm = ̂ i02a3 (7.74c)

The first invariant assumes the physical meaning of mean normal stress, but
for the factor 3:

J, = 3 f f '+^+ q3 (7.75)

= 3a1±op7L = 3_

Each stress tensor, corresponding to a generic reference system, may thus be
represented as the sum of two components,

[<r] = [<T'']+ [<r'] (7.76)

where the first is referred to as the hydrostatic tensor,

"or 0 0"

[<j'']= 0 a 0 (7.77a)
0 0 a
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and the second is called the deviatoric tensor,

ax - a ryx T^
[ad] = r^ ay-a rzy (7.77b)

. T*z ryz az~^

Whereas the hydrostatic tensor does not depend on the reference system, since
it is a function only of the trace, the deviatoric tensor varies as the orientation
of the reference system varies.

The component (1.11 a) is given the name hydrostatic, because liquids
under pressure exchange internal stresses of this sort. The principal stresses
are all three equal and thus all the directions are principal (see gyroscopic
areas, section 2.5). In fluids under pressure the stress vector is always normal
to any elementary area dft; it is compressive and its magnitude is equal to the
pressure of the fluid. Perfect fluids, in fact, do not transmit shearing stresses
internally, just as ropes do not transmit shearing force (and bending moment),
but only axial force.

The problem of principal stresses will now be given a graphical interpreta-
tion based on the method of Mohr's circles. This method has already been
introduced in Chapter 2, in the framework of the geometry of areas, in order to
seek the principal directions of inertia.

In the principal reference system 123, the equations (7.57) and (7.60) are
particularized in the following way:

"cTj 0 0 1 IX"

{rn}= 0 cr2 0 n2 (7.78)

0 0 <73 n3

°n = lni n2 "3] [<TI 0 0] |X~
0 cr2 0 n2 (7.79)

0 0 cr3 /i3

where nb n2, n3 are the direction cosines of the generic direction n in the prin-
cipal system.

Equation (7.79) may be developed by working out the matrix products

<7n = (jin2 + <j2n2 + G^n2 (7.80a)

On the other hand, the magnitude squared of the tension vector (7.78) is

cj2 +r I = oln\ + a%n% + a\n} (7.80b)

while for the direction cosines we have the condition of normality

«l2+"22+«32 = 1 (7'8°C)
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Equations (7.8(X) constitute a system of three linear algebraic equations in the
three unknowns nb n2, n\. The solution of the system is the following:

n^r^(an-a2)(an-a3) (J ̂
(al-o2)(al-a^

n2=^^n-^(an-a3)
(a2-a])(a2-a3)

2^+^-CT^-CT,) (781c)

(a3-al)((J3-a2)

Let us assume that between the principal stresses there exists the order rela-
tion: (Tj ^ a2 25 <J3. As the expressions on the right-hand sides of relations
(7.81) should be positive, the following inequalities are obtained:

T2+(cTn-cr2)(c7n-cT3) ^ 0 (7.82a)

r 2 + «TB - d! )(crn - cr3) ^ 0 (7.82b)

T W
2 +(CT W -CJ 1 ) (CJ W -C7 2 ) ^ 0 (7.82C)

It is easy to verify that these inequalities are equivalent to the ones given
below:

T^-^)2.(^)2 (7.83.)

rt+(an-^J - (^) (7.83b)

^+(crn-^)2 ^ (^J (7.830

On Mohr's plane (Figure 7.16) all the pairs of components, consisting of
the normal stress an and the shearing stress Tn, which are obtained as the unit
vector [n] varies, are represented by the intersection of the three domains
(7.83). The first domain is the one external to the circumference that has its
centre on the axis an in the point Cl [1(<J2 +<73),0] and radius R\ - ^(o^-o^).
The second domain is the one internal to the circumference of centre C2 [± (<J\
+ (JsXO] and radius R2 = 1 (Gi-a3). Finally, the third domain is the one external
to the circumference of centre C3 [^(0"! + cr2),0] and radius R3 = ^(cTj-crJ.
Note that the possible pairs (<7n, rn) are °°2, just as the directions n issuing from
a point are °°2. There exists a bi-univocal relation which links each unit vector
{n} to each point of the hatched area of Figure 7.16. For reasons of brevity, we
shall not enter into further details of this relation.

In the case where one, or two, of the principal stresses are zero, the graph-
ical construction described previously will present one, or two, of the inter-
sections of the circumferences with the axis aw, coincident with the origin.
The five possible cases are represented in Figure 7.17.
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Figure 7.16

7.10 Plane stress condition

The stress condition in a point is said to be plane if the tension vector belongs
in every case to one and the same plane, independently of the section chosen.
A necessary and sufficient condition for the stress state to be plane is that one
of the three principal stresses should vanish. If, for example, CTj * 0, O2 *0, <73

= 0 (Figure 7.17(c)), it can easily be shown that the tension vector {tn} always
belongs to the plane of stresses G\-GI, whatever the orientation of the ele-
mentary area dI2n (Figure 7.18). Equation (7.78) becomes

'nil pTl 0 OlU"

tn2 = 0 CT2 0 n2 (7.84)

.'ij L O ° °JU.
from which we obtain

*«3=0 (7-85)

Since the tension vector has always zero components in the direction 3, the
stress tensor with respect to a generic system of axes XY3, will present the
third row, and thus by symmetry the third column, identically equal to zero

X Ty* 0"
r^ ay 0 (7.86)

0 0 0
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Figure 7.17

*„€(!-2)

Stress plane (1-2)

Figure 7.18
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The eigenvalue problem is resolved then by equating to zero the determinant
of the following matrix:

~ox-an ryx 0 "
det T^ oy-an 0 = 0 (7.87)

0 0 -an

The three roots are obtained from the two conditions

an = 0 (7.88a)

a$ - (ax + ay )an + (axay -r£) = 0 (7.88b)

Whereas the first equation gives a result already known, because by hypothe-
sis CJ3 = 0, the second gives the two principal stresses different from zero, av
and cr2. Note that the first coefficient (ax + oy) is the trace of the significant
principal minor of the stress tensor (7.86), whilst the second coefficient (ax
dy-Tj^2) is the determinant of this minor. Resolving equation (7.88b), we

obtain the pair of roots

*i =^pL + {[«y, -<V2 +4T^f (7.89a)

°2 = ̂ ^-\[frx ~<V2 + 4T^]{ (7.89b)

It is possible to obtain the same result by imposing that the significant prin-
cipal minor of the tensor (7.86) should be diagonal (this approach has already
been adopted in Chapter 2 for seeking the principal directions of inertia)

+ I" cos # sin $ 1 TCI* ryx 1 "cos & - sin $1
~|_-sin# cost5j[r^ oy j sint^ costf J

Equating the off-diagonal term to zero, we have

C=^cos2^--(cTJC-(Tv)sin2^ = 0 (7.91)

and thus the angle by which the XY system must turn to reach the principal
system is

#0 = 1 arctan _^2_ (7,92)
2 \ax"°y)

with -7T/4 < d0 < n/4.
The graphical construction of Mohr's circle, representing all the pairs of

normal stresses an and shearing stresses rn1 which we have as the orientation
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of the elementary area dI2n varies in such a way that the unit vector {n} should
belong to the plane of stresses, is made in exactly the same way as that already
shown in Chapter 2 for the geometry of areas. Let us imagine that the stresses
ax, Oy, T^, acting on an elementary parallelepiped having sides parallel to the
axes XY3, are known (Figure 7.19(a)). Let the shearing stress r^ be consid-
ered positive if it tends to rotate the element in a clockwise direction (and vice
versa for ryx). Let there be fixed on Mohr's plane (Figure 7.19(b)) the two
notable points: P (ax, r^,), P' (ay, -T^,). The intersection of the segment PP'
with the axis on gives the centre C of Mohr's circle, while the segments CP
and CP'represent two opposite radii of this circle. The line parallel to the axis
on is then drawn through P and the line parallel to the axis Tn is drawn through
P'. These two lines meet at the pole P*. The straight lines joining P* with the
points M and TV of the axis an, which are the intersections of the circumference
with the axis, give the directions of the two principal axes. Of course the
points M and N each have for their abscissae the value of a principal stress. In
particular, in Figure 7.19(b), the abscissa of M is (T2 and the abscissa of N is
CJj, as we have assumed ox > oy and the order relations are maintained:

ax > ay => cij > cr2 (7.93a)

ax < ay =» al < o2 (7.93b)

(a)

Figure 7.19
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When ax = ay and r^ * 0, it makes no difference whether the XY reference
system is rotated 7Z/4 clockwise or counterclockwise to obtain the principal
directions. When then ax = oy and T^ = 0, Mohr's circle degenerates into a
point. Note, on the other hand, that assuming a3 = 0, as the unit vector {n}
also varies outside the plane of stresses, the set of pairs (<yn, rn) is represented
by the circumference with centre at the point C (OXI2, 0) and radius R = oJ2.
The problem, in other words, always remains three-dimensional.

It is easy to verify that the graphical construction outlined above reflects
both the analytical solutions (7.89) and (7.92). To justify the former, consider
in fact the abscissa of the centre C and the right triangle PP*P', which has as
its hypotenuse the diameter of Mohr's circle (Figure 7.19(b)). To justify the
latter, note that PP*Nis a circumferential angle corresponding to the central
anglefC/V, and that the latter has an amplitude equal to arctan 2Txy/(ox-ay).
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8 Theory of elasticity

8.1 Introduction

In this chapter the general problem of the non-homogeneous and anisotropic
three-dimensional linear elastic body is formulated. The properties of linear-
ity, homogeneity and isotropy concern exclusively the constitutive relations
which link stresses and strains; they do not in any way affect the kinematic
relations, which define dilations and shearing strains, nor the static relations
provided by the indefinite equations of equilibrium. An intimate correlation
exists between the static and kinematic relations, in that the two correspond-
ing matrix operators are each the transpose of the other. The same correlation
is present, at a finite level, in the case of rigid systems, as has been seen in
Chapter 3.

Static-kinematic duality leads to an extremely direct demonstration of the
Principle of Virtual Work for deformable bodies, just as it enables a represen-
tation of the elastic problem in a symmetrical manner by combining the three
above-mentioned relations in a single operator equation which has as its
unknown the displacement vector.

Having demonstrated the classical theorems of Clapeyron and Betti,
which hold good also in the case of anisotropic material, we then proceed
to the analysis of isotropic material, which is of particular importance for
its practical engineering applications, and to the definition of the corre-
sponding Young's modulus and Poisson's ratio. The chapter closes with the
strength criteria for biaxial and triaxial stress conditions, where the modes
of rupture of ductile materials are distinguished from those of brittle
materials.

8.2 Indefinite equations of equilibrium

In the last chapter the stress tensor was defined as the matrix of transforma-
tion of the unit vector into the corresponding tension vector. It was seen at
the same time how the elements of the tensor represent the special compo-
nents of stress on the coordinate planes. We then studied the law of vari-
ation of the stress tensor with the variation in orientation of the reference
system and identified the principal reference system, with respect to which
the tensor becomes diagonal and the shearing stresses thus vanish. We shall
now determine the system of differential equations that govern the vari-
ations of the stress tensor as the point under consideration varies. Having
so far limited our investigation to examining what happens at point P of the
body, in the present section we shall define the differential relation that
links the stresses that develop in points of the body that are very close to
one another.

To this end let us consider an elementary parallelepiped with the sides par-
allel to the coordinate planes, of length dx, dy, dz, respectively (Figure 8.1).
On the opposite faces of the parallelepiped there act components of stress
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dx
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which, but for an infinitesimal increment, are equal to one another. Equilib-
rium to translation in the X direction, for instance, imposes

-^dx( dy dz) + -^- dy( djc dz) + ~^-dz( dx dy)+ ^( dx dy dz) = 0 (8.1)
ax ay az

where only the increments of stress, multiplied by the elementary areas on
which they act, and the body force, multiplied by the elementary volume in
which it acts, are present. Dividing equation (8.1) by the elementary volume
d V = dx dy dz, we obtain the first of the indefinite equations of equilibrium:

%+%+%+^° <8-2a>dx ay az

The analogous equations of equilibrium in the Y and Z directions appear as
follows:

<9rn, <9o\ dr.,.
—2-+ —! + —=>-+ jr=0 (8.2b)

ox dy dz

,̂ + ̂ l + ̂  + jr=0 (8.2c)
ox ay oz

Equations (8.2) may also be obtained by integration. Consider a domain V,
contained in the domain V and having for boundary a closed and regular sur-
face £2 (Figure 8.2). The equation of equilibrium to translation in vector form
is written

f (Udfl+f {^}dV = {0} (8.3)
JQ Jv

Figure 8.2
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This vector equation is equivalent to three scalar equations, of which the first
is

f f l udf l+f j rdV = 0 (8.4)
Jn Jv

Applying the first of the Cauchy relations (7.56), the foregoing equation
becomes

f«T,«JC+Tw»v+T2Xiiz)dfl+ (VdV = 0 (8.5)
JQ ' JV

The application of Green's Theorem to the surface integral transforms it into a
volume integral,

f fe + % + %- + <*] d^O (8.6)JV' { d* <ty dz )

and this equation must hold good for any V subdomain. The integrand must
therefore be identically equal to zero, thus verifying the first of the indefinite
equations of equilibrium (8.2a).

Note that equations (8.2) constitute a system of three differential equations
with partial derivatives, in the six unknown functions <rx, <7V, <7-, Txy, TX:, Tvr

This system is hence three times indeterminate, and, using the terminology
introduced for beam systems, it is possible to state that the problem of a three-
dimensional solid is three times hyperstatic. We shall presently see how, by
adding the kinematic equations and the constitutive equations to the static
equations, the problem as a whole becomes determinate.

On the boundary of the domain V (Figure 8.3), the tension vector must on
the other hand coincide with the surface force {/>}, externally applied:

'** = °xnx + Vv + tv*z = Px (8-7a)

*ny = V, + °yny + Trv"z = Py (8'7b)

*K = **"* + W + ̂ z"c = Pz (8'7c)

The above relations are known as boundary conditions of equivalence. They
represent one of the two boundary conditions for the general problem of the
mechanics of elastic solids, which will be introduced in the ensuing sections.

8.3 Static-kinematic duality

We are now able to express in matrix form the systems of differential equa-
tions that govern, on the one hand, congruence and, on the other, equilib-
rium. These two systems have intimately connected formal structures, as we
shall show in this section.

As regards congruence, we recall the relations (7.1 Ob) which define the ele-
ments of the strain tensor. The six independent components can be ordered in
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a strain vector, which can be obtained by premultiplying formally the dis-
placement vector by a (6 x 3) matrix operator:

XI r-£ o o"
£y 0 | 0

° o f "
v (8.8)

r» i i o
w

r- I ° i

>J L° £ I.
The relations (8.8) can also be written in compact form,

{£} = [d](rj} (8.9)

and are called kinematic equations.
On the other hand, as regards equilibrium, the indefinite equations of equi-

librium may be reproposed, also in matrix form and with the stress compo-
nents ordered in the stress vector:

>r~

av

'i o ° i I ol r^rl [o"
(7.

° i 0 l ° l + ^ = 0 (8.10)
T^

° ° I ° i IJ UJ kr^
/,-_

The static equations are written in compact form

[<9]T{cr} + m={0} (8.11)

the static differential operator being the exact transpose of the kinematic one
appearing in equation (8.8).
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In this way, just as in the mechanics of rigid bodies the static matrix is the
transpose of the kinematic one, also in the mechanics of deformable bodies
there exists the same profound interconnection between the two matrix
operators. In the case of the mechanics of rigid bodies, we saw how this inter-
connection implies the validity of the Principle of Virtual Work (Section 3.9).
The validity of this Principle will, on the other hand, be extended to the case
of deformable bodies, precisely on the basis of static-kinematic duality.

To conclude, it is also possible to give an explicit matrix form to the
boundary equations of equivalence (8.7),

~°x~

r i °y r inv 0 0 ny n^ 0 px

0 /i v 0 ^ 0 n, ' = pv (8.12)
XV

0 0 n. 0 n x n n
L * J r,z

 L^J

_V

or in compact form

mT{<T} = {p} (8.13)

The reader's attention is drawn to the perfect correspondence that exists
between the matrix operator [d]r and the algebraic matrix [^]T: the partial
derivatives of the one are matched by the corresponding direction cosines of
the other, in the spirit of Green's Theorem.

8.4 Principle of Virtual Work

The Principle of Virtual Work is the fundamental identity in the ambit of the
mechanics of deformable bodies. It states the equality between external vir-
tual work (forces multiplied by corresponding displacements) and internal vir-
tual work (stresses multiplied by corresponding strains). More precisely, the
Principle of Virtual Work may be said to constitute the very definition of strain
energy. From Rational Mechanics, the concept of work as scalar product of
the force vector and the displacement vector is well-known. However, it is not
obvious that strain energy is expressible as the scalar product of the stress vec-
tor and strain vector, for the very reason that the intimate nature of these latter
quantities is tensorial. On the other hand, when the body is rigid, the strains
are zero and the internal virtual work vanishes, as we have already assumed in
Section 3.9.

A system a of external forces (of volume {J^~}and surface {pa}) and
stresses {aa} is said to be statically admissible when these forces satisfy the
equations of statics (8.11) and the boundary conditions expressed by equation
(8.13)

[d]J{aa} = -{^}, VPeV (8.14a)

MTkU = f/>J, VPeS (8.14b)



PRINCIPLE OF VIRTUAL WORK

Figure 8.4

205

where V is the three-dimensional domain occupied by the body and S is the
boundary of that domain, on which the external forces {pa} are applied; the lat-
ter may, however, be zero over the entire boundary S or over a subset of this.

On the other hand, a system b of displacements {%} and strains {eb] is said
to be kinematically admissible when the equations of kinematics (8.9) are
satisfied:

[d] {77,} = {£*}, VPeV (8.15)

At this point a digression is called for to demonstrate the rule of integration
by parts on a three-dimensional domain. This rule is nothing other than an
extension of Green's Theorem, and will be used for demonstrating the Princi-
ple of Virtual Work for Deformable Bodies.

Consider two functions of the three cartesian coordinates,/(*, y, z) and g(x,
y, z), defined on a three-dimensional domain V. Perform the partial derivation
of the product with respect, for instance, to the x coordinate

|(/*) = fs + /f (8.16)
ax ox dx

and integrate both members on a generic chord parallel to the X axis and
belonging to a generic section A of the domain, z = constant (Figure 8.4)

fft(y)d f«y)# rPW fa
^-(fg)dx=\ ±gte+\ f%dx (8.17)

Ja(y)dX «JaOO«K Ja(y) «*

The integral of the derivative of the product is equal to the difference of the
values that the product presents at the extremes of the interval of integration

PPM* fP<y> a*
[*!&)= I IWf f%** <8-18>

Ja(y) & Ja(y) a*
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Integrating both sides of equation (8.18) with respect to the variable y, we obtain

| fgdy = f %-gdxdy+f f~dxdy (8.19)
J^ JAdx JA dx

where on the left-hand side there appears the counterclockwise integration
around a closed path of the product performed on the boundary *%> of the two-
dimensional domain A. If nx indicates the direction cosine with respect to the
X axis of the normal to the curve "$, and ds indicates the increment of the cur-
vilinear coordinate, from the foregoing equation we obtain

(f fgnx ds = f %-g dA + f /^ dA (8.20X
J^ JA&X JA ox

Finally, integrating both members with respect to the third coordinate z, we
have

f fgnxdS = f |W+ f f^dV (8.21)
JS Jyax Jy dx

S being the boundary of the entire three-dimensional domain V Equation
(8.21) represents an extension of Green's Theorem, as is evident if we putf(x,
y , z ) = l,OTg(x,y,z) = 1.

On the basis of equation (8.21), and using the compact matrix formulation,
it is not difficult to obtain the equation of virtual work. Consider the virtual
work performed by the body forces (^}times the displacements {%}, these
two fields belonging to two altogether independent systems, the first being
statically admissible and the second kinematically admissible:

LF=\ t570fc}dV (8.22)
Jv

Applying the equations of statics (8.14a), we have

LF=-t([d]T{aa}f{Tib}dV (8.23)
Jv

Noting that, under the sign of transposition, there is not an algebraic matrix
product, but instead a differential operator which transforms a vector function,
and having recourse to equation (8.21), we obtain

LF = I {afl}T[<?]{lUdV- f {trJT[-n{/UdS (8.24)
Jv Js

Applying the equations of kinematics (8.15) and the boundary conditions of
equivalence (8.14b), we have then

LF = f (<UT{efc}dV- f {pa}
r(nb}4S (8.25)

Jv Js



pdS

207

ELASTIC CONSTITUTIVE LAW

and thus

f (aaF{£b}dV= f {.^}T{%}dV+ f {/UT{rUdS (8.26)
Jv Jv Js

which constitutes the final form of the Principle of Virtual Work for
Deformable Bodies. Whilst the right-hand side represents the external virtual
work L^, the left-hand side represents and defines the internal virtual work
Lu, as the scalar product of the stress and strain vectors:

41 = I* (8.27)

Note that up to this point we have not framed any hypothesis on the nature
of the material. This means that the Principle of Virtual Work is of general
application, whatever the constitutive law of the material.

8.5 Elastic constitutive law

We now introduce the concept of the elastic body. As will be expressed more
rigorously later, a deformable body is elastic when its strain energy, i.e. the
work performed from outside to bring it into a certain strain condition {£}, or
into a certain stress condition {cr}, does not depend on the loading process
(i.e. on the previous events), but only on the final condition. It is usually said
that the strain energy is in this case a state function.

Consider a deformable body, in equilibrium under the action of the body
[9r}and surface {/>} forces. There is generated within it a displacement field
(r)}, different from zero, except on a constrained part of the external surface
(Figure 8.5). Now imagine increasing the external forces by elementary quan-
tities. Let the incremental fields be {d^jand {dp} and let them generate an
incremental displacement field {drj} from which there follows an incremental
strain field {d£}.

Figure 8.5
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Apply the Principle of Virtual Work, considering as a statically admissible
system that of the external forces {,9~ }and {/?}, and of the stresses produced
by them [a }, and as a kinematically admissible system that of the incremen-
tal displacements {drj} and of the incremental strains {de}. Note that, in this
case, the infinitesimal work is non-virtual, in the sense that the external forces
work really by the increments of displacement, while the work of the incre-
ments of the forces {d.^"}and {dp}, by the increments of displacement |dr]},
is an infinitesimal of a higher order and is consequently negligible.

We have therefore

dLe = f {/>}T {dTj} dS + f {T }T{d7]} d V (8.28a)
Js Jv

d^-= |*{<T}T{d£}dV (8.28b)
Jv

and, by the Principle of Virtual Work, the following equality holds:

dLe = dLj (8.29)

On the other hand, a deformable body is defined as elastic when the infinitesi-
mal work expressed by equation (8.28b) is an exact differential. In particular,
for the infinitesimal work dL, to be an exact differential, it is necessary for its
integrand to be an exact differential:

d<2> = {<j}T{de} (8.30)

The function

<P = 0(^,ere.,y^,y,z,rvc) (8.31)

must, that is, be a state function and it is referred to as elastic potential,
because it is possible to deduce from it the components of stress by means of
partial derivation. The total differential of the function 0 can be expressed as

d0 d<P d&
d& = ?— dex+—-dev + — d£-+ (8.32a)

o£x o£v o£z

d® , d® A d® ,_dr,v+_dr,j+_d7v;
while, rendering equation (8.30) explicit, we have

d<P = ax dex + ay dey + az dez + rxy dyjy + TXZ dyxz + rv, dyyz (8.32b)

From equations (8.32a, b) we obtain the components of stress

d& d<& d<& /0 ._.
^x=T~' av=T~' ^-^^T"' ^833)dex dey ~ dez

_ 90 _ d<P __ (90Txy=w:,' TK=^I' Tyz=^
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In the uniaxial case, both <Z> and ax are functions of the dilation ex alone,

One-value function
(a)

Two- or more value function
(b)

Figure 8.6
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In the uniaxial case, both <Z> and ax are functions of the dilation ex alone,

® = <I>(ex\ crx=ax(ex) (8.34)

so that, if we imagine loading and then unloading the one-dimensional body (e.g.
a bar in tension), the paths forward and backward in the plane ex - ox coincide
(Figure 8.6(a)). The strain energy, represented by the potential 4> is equal to the
area under the curve ax (£j. Hence, when the body is unloaded completely, there
is no dissipation of energy and the stored elastic energy is fully recovered.

In the case of an inelastic one-dimensional body (Figure 8.6(b)), the functions
d> and ax no longer present the property of monodromy, i.e. to one value of ex

there can correspond two or more values of the work and of the force. Unloading
the body, we no longer go along the curve a x (£x) corresponding to the loading,
and hence we encounter residual or permanent deformations, with dissipation of
energy and only partial recovery of the strain energy. Reversing then the direction
of the force and submitting the body to loading cycles, closed or spiral-shaped
curves will be described in the plane £x-ox. These trajectories will be traversed in
a clockwise direction, giving rise to a dissipation of energy by hysteresis.

Consider the infinitesimal virtual work

d«F = {d(T}T{e} (8.35)

Using the definition (8.30), we have

d<J> + d f= d({<j}T{e}) (8.36)

The elastic potential 0 and the scalar product {CF}T{£} are both state func-
tions, and thus dd> and d({a}T{£}) are exact differentials. It follows from
equation (8.36) that also d*F is an exact differential and hence that *P is a
state function. The function

<F = ¥(a;,ay,az^,Txz,Tyz) (8.37)
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Nonlinear elasticity

(a)
Linear elasticity

(b)

Figure 8.7
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is called complementary elastic potential, and it is possible to deduce from it
the strain components via partial derivation. The total differential of the func-
tion *F may be expressed as follows:

/9V /9*f /9f
d<F - —-d(7v+^— dcrv+^~-da,+ (8.38a)

dax doy da^

dV . <?<F , <?f .
3— d**v + —- dr,. + —- drv,
dr^, drxz drv:

whereas rendering equation (8.35) explicit, we have

d«P = exdax+evday+£zdG; + (8.38b)

7 v > ,dr n ,+7^dT r z +7 v ,dT, c

From equations (8.38a, b) we obtain the components of strain:

••-£• ->-%• '=•£•
ay ay ay

r- = a^.' r« = ̂ ' 7- = arv:

In the uniaxial case it is easy to give a graphical interpretation of f. The elastic
complementary energy is the area contained between the curve of loading ex(o v)
and the axis ox (Figure 8.7(a)), i.e. it is the area complementary to the one repre-
senting the elastic energy 0, with respect to the rectangle of sides ex, ox. The lat-
ter would represent the work of deformation in the case where, during the entire
deformation process, the value of stress was constant and equal to the final value.
In the general case, where the relation ox = Gx(ex) is not linear (Figure 8.7(a)), the
deformable body is said to be nonlinear elastic. In the particular case, instead,
where the relation is linear (Figure 8.7(b)), the body is said to be linear elastic. In
the linear and one-dimensional case, it is obvious that *F= <A We shall demon-
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strate, however, that equality also exists between elastic potential and comple-
mentary elastic potential in the linear and three-dimensional case.

8.6 Linear elasticity

Let us reconsider the elastic potential function (8.31) and expand it using
Maclaurin series about the origin, i.e. about the undeformed condition

( d® "\ ( d® 1
&(F f V } = <Z> TO") + —— F 4 p 4- 4.V(ex,er...,7yz) a>(U)+^£j^+|^£j^+...+

( 30 } 1 \(d2®} , (d2®} ,fej/»+4*rj;<H*rr+-"+

(d2&} , f <?2<Z> ) „( <?2<Z> \y/^2M0^
+2Wo^+---+

j ^<P i i2 , / . r«rvz[+-
l^r«^Jo ' J

If the strains are sufficiently small, a good approximation will be achieved by
neglecting terms in powers above the second. On the other hand, since the
stresses are obtained by derivation of d>, the value that the function presents at
the origin is an arbitrary constant, which we can take to be zero: 0 (0) = 0.
Also the coefficients of the first order terms are zero, since they represent the
stresses in the undeformed condition

11 -̂1 =^(0 = 0 (8.41a)
V*J0

•? =<rv(0) = 0 (8.41b)
I* Jo '

\~\ =tyz(0) = 0 (8.41f)
v^;0

The analogy with the potential well of the harmonic oscillator is evident
(Figure 8.8). Also in that case the derivative of the potential provides the force
necessary to remove the material point from the origin (or the opposite of the
restoring force)

0 = - kx2 (8.42a)

d<P
Force = —= fa (8.42b)

dx
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where k is the stiffness of the spring. Also in this case, as is well-known, the
restoring force is zero in the origin.

The Maclaurin expansion (8.40) then reduces to a quadratic form, with 21
coefficients that can be ordered in the (6 x 6) Hessian matrix

fi!*l ( d20 } { d2® }
1*2 Jo l*.*J0 '" l*'*J0

fJ!*_l (d*®} ( P® }

["]= l*?*Jo l*U " l*^Jo (8'43)

f_^*_] f d2® } (d2®}

_l***Jo l***J0 '" WJ0_

Note that the Hessian matrix is the Jacobian of the six first partial derivatives.
It is then possible to write in compact matrix form

0 = |{£}T[//]{e} (8.44a)

This relation is analogous to equation (8.42a), once the strain vector {£} is
made to correspond to the elongation jc, and the Hessian matrix is made to cor-
respond to the stiffness of the spring. Via partial derivation, it can be readily
verified that the stress vector is given by

{a} = [H][e} (8.44b)

This relation is analogous to equation (8.42b), which gives the restoring force
of the spring in the case of a one-dimensional problem (harmonic oscillator).
From equations (8.44a, b) a new expression of elastic potential is derived:
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<*> = |{e}T{<T} (8.45)

Since the undeformed condition must represent an absolute minimum of O,
and not only a stationary point as equations (8.41) ensure, the Hessian matrix
must be positive definite, i.e. its determinant and those of its principal minors
must be greater than zero. Thus, once more it is possible to discern the anal-
ogy with the one-dimensional case, in which the stiffness k of the spring,
which is the second derivative of the potential, must be positive.

The positiveness of the Hessian implies the reversibility of the relation
(8.44b) and hence of the Hessian matrix itself:

{e} = [Hrlia} (8.46)

The relations (8.44b) and (8.46) link together linearly the stress and strain
vectors, and constitute the link, hitherto missing, between statics and
kinematics.

From the relation (8.36), but for an arbitrary constant, we obtain

0 + «P - (cr}T{£) - axex + (Jvev + aze. + rXT7n, + TX.JXZ + rv,y_vr (8.47)

i.e. the sum of the elastic potential and complementary elastic potential is
always equal (also in nonlinear cases) to the scalar product of {a } and {£}. It
has also been demonstrated that, in linear cases, 0 is half of that product
(equation (8.45)). Hence, for linear elastic bodies we have

0 = «p = -{£}T{CT} = -{CJ}T{€} (8.48)

We can then give the following form to the complementary elastic potential:

Y = -{a}T[H]-l{a] (8.49)

which corresponds to equation (8.44a) and shows how f is a quadratic form
of the components of stress.

8.7 Problem of a linear elastic body

As has previously been noted, the three indefinite equations of equilibrium
do not suffice to determine the six components of stress. On the other hand,
by adding to them the six elastic constitutive equations (8.44b), we obtain a
system of nine differential equations in nine unknowns: crv, <rv, cr., T^., Tv_,
Ty,; u, v, w.

In matrix form it is possible to give a very synthetic and expressive repre-
sentation of the linear elastic problem, considering as the primary unknown
the displacement vector {rj}. If in the static equation (8.11) we introduce the
constitutive law (8.44b), and then the kinematic equation (8.9), we obtain a
matrix equation, called Lame's equation in operator form:

([d]T[H][d]){r)} = -PH (8.50)
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The matrix and second order differential operator in round brackets is called
the Lame operator,

[y1 = [<?]T [//] [<?] (8.51)
(3x3) (3x6) (6x6) (6x3)

It turns out to be a (3 x 3) matrix and, in non-homogeneous problems, where
the matrix [H] is a function of the point, it too is a function of the point.

Recalling the boundary equations of equivalence (8.13) and assuming that
they hold good on a portion Sp of the external surface of the body and that, on
the complementary portion S^, there is imposed a congruent field of dis-
placements {7]0}, the three-dimensional elastic problem can be synthesized as
follows:

mM = -{<?}, VPeV (8.52a)

(in^[H][d]){ri} = {/?}, VPeS, (8.52b)

* W = foe), VPeS, (8.52c)

For example, in the case of a linear elastic one-dimensional body, restrained
at one end, submitted to a tensile force p at the opposite end and to a distribu-
tion 9\(x) of axial forces (Figure 8.9), equations (8.52) take on a notably sim-
plified appearance:

£A^ = -«>), for 0^ jt*s / (8.53a)
dx2

EA — = p, for jc = / (8.53b)
d*

w = 0, for x = Q (8.53c)

where / is the length of the bar and the product EA represents the longitudinal
stiffness of the bar.

Once the problem (8.52) is resolved and the displacement field {77} has
been identified, if we reverse the procedure and equations (8.9) and (8.44b)
are reapplied, the strain field {£} and the stress field {a} arc respectively
determined. Since equations (8.52) are linear, the Principle of Superposi-
tion holds. It means that, if a loading system {.Ta }, {pa}, {%,} generates a
displacement field {77^} and thus the strain and stress fields [ea}> {aa}, and
if a different loading system {^}, {/?&}, {%>} generates the fields {%},
(eb}> {ab}, the loading system {^} + {Tb\{pa} + {ph}, {%J +{%,},
generates displacement, strain and stress fields, which are the sum of the
previous ones:

{r]a} + {%}, fa} + {%}> {°a}
 + (^}

On the basis of the Principle of Superposition, it is possible to demonstrate
KirchhofTs Theorem or the Solution Uniqueness Theorem: if the solution
{77} exists, it is the only one. The demonstration must be conducted ab
absurdo. Imagine, that is, that one loading system, {9~},{/?}, {//o)» can gener-

Figure 8.9
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ate two different responses: {?]„}, [ea}> [aa] or {%}, [eb}9 {ah}. Applying the
Principle of Virtual Work to the difference system, we have

f {0}T {AT]} dV + f {0}T {Arj} dS + f {A/?}T {0} dS (8.54)
Jv Js, Js,

= f (A(T}T{A£}dV
Jv

{A/?} being the difference in constraint reactions. The integrand on the right-
hand side represents twice the elastic potential, so that we have

2 f 4>(Aex,A£v,...,Ay )dV = 0 (8.55)
Jv

On the other hand, it is known that 0 is a positive definite quadratic form, so
that the integral (8.55) vanishes only when the integrand is zero at each point
of the elastic body. This is found to be the case only when, at each point, we
have

tex = A£V =... = A/vc = 0 (8.56)

i.e. only when solutions (a) and (b) coincide.

8.8 Clapeyron's Theorem

Consider a linear elastic body subjected to body forces {J^Jand to surface
forces {/?}. Let {77} be the displacement field that is generated in the body at
the end of the loading process that brings the external forces from zero to the
aforesaid values. The application of the Principle of Virtual Work gives the
following equality:

f {^}T{T)}dV+ f {p}T0?}dS= f [a}T{e}dV (8.57)
Jv Js Jv

if the corresponding final fields are considered as statically and kinemati-
cally admissible systems. Multiplying both sides of equation (8.57) by the
factor 1/2, we have

~ f (^}T [rfi <1V + ~ f (p}T {r?} dS = f 0 dV (8.58)
2Jy 2Js Jv

since, for a linear elastic body, the relation (8.45) holds. Equation (8.58)
expresses the fact that the work of deformation performed by the external
forces to bring the body from the initial undeformed condition to the final
deformed condition is equal to half of the work that these forces would per-
form if they presented their final value during the whole deformation process.
The content of Clapeyron's Theorem was already implicitly presented, when
we considered the one-dimensional case of Figure 8.7(b). If, for example, a
linear elastic beam is subjected to the action of a concentrated force in the
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Figure 8.10

centre which increases slowly (so as not to induce dynamic phenomena) from
zero to the final value F0, and at the same time the deflection at the centre
increases from zero to the final value 7]0, then, according to Clapeyron's
Theorem, the work of deformation performed on the beam is (Figure 8.10)

Atef.= f ^)dr? = ^F0r]0 (8.59)
Jo £

8.9 Betti's Reciprocal Theorem

Betti's Reciprocal Theorem shows how the Principle of Superposition in lin-
ear elasticity holds only for displacements, strain and stress and is not applica-
ble, instead, to the work of deformation.

Consider a linear elastic body and submit it to a quasi-static (i.e. very slow)
loading process so that the final forces applied are {^}, [pa}> and the work of
deformation performed is La. Then proceed loading with the quasi-static
application of a second system of forces {J^ }, {pb}. Let the work performed
by these forces be Lb\ the work of the forces (^ }, [pa] by the displacements
{r\b] is called mutual work Lab. Expressed in formulas,

La+b = La+Lb + Lab (8.60)

with

La=^\ mT{*7a}dV + if (Pa}-T(na}as (8.61a)
2JV 2 Js

^=^f WTto*}dV + ̂ f toPfffcJdS (8.61 b)
z jv ^Js

^ = f mT{%}dV+ f {/>fl}
T{r?fc}dS (8.61c)

Jv Js
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Equation (8.60) clearly expresses the non-applicability of the Principle of
Superposition to the work of deformation.

Imagine now that the process of loading described above is reversed, i.e.
that first the forces {J£}, (Pb] ̂  applied, and then the forces {.Ta },{pa}.
The total work of deformation will then be expressible as follows:

Lb+a=Lb+La+Lba (8.62)

where the mutual work of the forces {J£}, [pb] acting through the further dis-
placements {rfa} is

Lba = \ PSFOUdV+f {p^ftJdS (8.63)
Jv Js

Comparing expressions (8.60) and (8.62) and noting that the total work of
deformation must not depend on the loading path (i.e. on the order in which
the external forces are applied), since the body was assumed as being elastic,
we obtain the equality of the two mutual work expressions (8.61c) and (8.63):

Lab=Lba (8.64)

In general, for an elastic body subjected to two systems of surface and body
forces, the work done by the first system acting through the displacements
resulting from the second and that done by the second system acting through
the displacements resulting from the first are equal and different from zero.
When in particular these are both zero, the two systems of forces are said to be
energetically orthogonal and the Principle of Superposition becomes valid
also for the work of deformation. Consider, for instance, a supported beam
made of linear elastic material, subjected to a concentrated force F in the cen-
tre (Figure 8.11 (a)) or to a concentrated moment m at one end (Figure
8.11(b)). The two systems, F and m, are not energetically orthogonal, since
their mutual work is different from zero,

F7i(m) = mcp(F) * 0 (8.65)

where Tj(m) is the deflection in the centre caused by the moment m, and <p(F)
is the angle of elastic rotation at the ends caused by the force F. Instead, the

(b)
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two systems of external forces of Figure 8.12, i.e. the concentrated force F in
the centre and the two concentrated moments m applied in the same direction
at the ends, are energetically orthogonal. In fact, their mutual work is zero,

F x 0 = m(p(F) - m(p(F) = 0 (8.66)

the deflection in the centre being zero in the diagram of Figure 8.12(b), which
is skew-symmetrical, and the end elastic rotations being equal and opposite in
the diagram of Figure 8.12(a), which is symmetrical.

As will be shown later, the characteristics of the internal reaction of the
beams are, except for marginal cases, energetically orthogonal.

8.10 Isotropy

The deformable body is considered in this section also as isotropic, as well as
linear elastic. This means that the mechanical properties are considered as
identical in all directions issuing from the generic point P (the case of aniso-
tropic material is dealt with in Appendix C). As there do not exist preferential
directions, the complementary elastic potential ¥ will depend on the values of
the three principal stresses, and not on the orientation of the principal refer-
ence system

f^CT,,^,^) (8.67)

As ̂  is a quadratic form of the stress components, it may be cast in the fol-
lowing form:

V = —{(a? + CT2
2 + CT3

2) - 2V(CT1CT2 + CT,^ + <72CT3)} (8.68)
LtL

where 1/2E and -vIE are two coefficients which multiply the squares and the
mutual products, respectively. The coefficients thus reduce from 21 to two, on
the hypothesis of isotropy alone. The constants E and v, as we shall see pres-
ently, have a precise physical meaning.

Recalling the expressions (7.74) of the invariants as functions of the princi-
pal stresses, equation (8.68) can be written as follows:

¥ = ±{j}+2Ja(l + v)} (8.69)
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Expressing then the invariants as functions of the generic components of the
stress vector, as equations (7.72) show, we have

* = JE (<T'+ a*+ a*} ~ i(<T;cCTy+a*Gt + °y°*} + (8'70)

-L^+T^+rp

where we have set

G = —-— (8.71)
2(1 + v)

Equation (8.70) thus represents the complementary elastic potential in the
case of linear and isotropic elasticity.

The components of strain are obtained according to equations (8.39), by
partial derivation of *F:

••-£-%--*•'-$''
^!H-M»'
••-%-$-$••--*•>
'••£•£
r.-£-£ <«M

r,-^ »™>

Note that, whereas the shearing strains are linearly dependent, with a rela-
tion of proportionality, only on the respective shearing stresses, the dilations
each depend on all three normal stresses. In explicit matrix form we may
write

~ex 1 I" l. _£ -± 0 0 01 \°x~

ey -% JL -^ o 0 0 °y
C. Ci t,

£7 v v 1 n n n &71 = -^ "f ¥ ° ° ° (8.73)
r^ 0 0 0 -1 0 0 Tj:y

7xZ 0 0 0 0 ± 0 T«

/yj L 0 0 0 0 0 ^J [^_
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The foregoing matrix relation in compact form is represented by equation
(8.46). The inverse of equation (8.73) is as follows:

"ff'l te j^ ^ o o en re,-
°> T^7 & T^v ° 0 0 £,

1 0"? v v i-v n n n *̂
= ~P2^ "P27 T^ U U U (gj4)

2G r-rv 0 0 0 1 0 0 7vv

T« 0 0 0 0 ± Q 7*

_TvzJ L 0 0 0 0 0 jj [7yz_

Since the Hessian matrix has been assumed as positive definite (the unde-
formed condition must represent an absolute minimum of the work of defor-
mation), also its inverse is positive definite (i.e. likewise the unstressed
condition must represent an absolute minimum of the work of deformation).
All the principal minors of the matrix (8.73) must therefore be greater than
zero. The following principal minor must therefore be positive definite:

1 v v
E E ~ E
v \ v

-- - -- (8.75a)
E E E
v v 1.~~E ~£ £_

and the following condition must at the same time hold:

— > 0 (8.75b)
G

From equations (8.75) four inequalities are drawn,

- > 0 (8.76a)

-^(1-V2)>0 (8.76b)
£L

— (1 + v)2 (1 - 2v) > 0 (8.76c)

—-— > 0 (8.76d)
2(1+ v)

which, when resolved, impose

E > 0 (8.77a)

- l < v < l (8.77b)

v < - (8.77c)

v>- l (8.77d)
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Combining the conditions (8.77b, c) and noting that equation (8.77d) contains
equation (8.77b), we obtain finally the following bounds:

£>0 (8.78a)

-1 < v < - (8.78b)

On the other hand, physically we note that the coefficient v is never negative.
In the sequel we shall discuss the physical meaning of the parameters E, v, G,
and their limitations.

Consider an elementary parallelepiped subjected to the normal tensile stress
component ax only (Figure 8.13(a)). Equations (8.72) in this case take on a
particular form

(8.79a)

(8.79b)

(8.79c)

(8.79d)

From equation (8.79a) there derives for E the physical meaning of stiffness of
the material. On the plane ex-ax, E represents in fact the positive slope of the
straight line passing through the origin, which describes the process of loading
(Figure 8.13(b)). The slope E is known as the normal elastic modulus or
Young's modulus.

The coefficient v, on the other hand, represents the ratio between the dila-
tions induced in the directions perpendicular to that of stress and the dilation
in the direction of stress:

v = (8.80)

X

(a) (b)

Figure 8.13
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Figure 8.14

Since the former are experimentally always of the opposite algebraic sign with
respect to the latter (Figure 8.14), physically v is positive, and thus the limita-
tions (8.78b) corresponding to it are in actual fact more severe:

0 < v < -
2

(8.81)

The constant vis called ratio of transverse contraction or Poisson's ratio. It
is interesting to note that the reversibility of the Hessian matrix implies a
volumetric dilation concordant with the normal stress ax, and vice versa. In
fact, from relations (8.79), we have

(8.82)

Since from equation (8.78a) we have E > 0, and from equation (8.78b) v <
1/2, equation (8.82) shows how AV7V and <jx are concordant, i.e. if ax is a
tensile stress, a positive volumetric dilation is produced, whereas if Gx is a
compressive stress, a negative volumetric dilation (i.e. a volumetric
contraction) is produced.

Consider once more the elementary parallelepiped, stressed in this case
only by the shearing stress component r^ (Figure 8.15(a)). Equations (8.72)
are particularized as follows:

ex = ey = £z = ?xz = yyz = 0

y = L.
f xy /-T

Lr

(8.83a)

(8.83b)

The parameter G thus represents the stiffness that the solid opposes to
shearing strain. This is called the shear elastic modulus, and graphically is
the positive angular coefficient of the line of loading in the plane Yxy~rxy (Fig-
ure 8.15(b)). From the relation (8.83b) and the similar relations which show
the proportionality between shearing strains and corresponding shearing
stresses we deduce how, in the linear elastic and isotropic body, the principal
directions of strain and stress coincide.

(b)

Figure 8.15
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A linear elastic and isotropic body is characterized by the values that the
two parameters E and v assume at each point. If the point functions E andv
prove to be constant, then the body is said to be homogeneous.

Two typical building materials, steel and concrete, are with good approxima-
tion considered linear elastic, isotropic and homogeneous. On the other hand,
the hypothesis of linear elasticity is acceptable only in the conditions where the
materials are not excessively stressed. Beyond certain threshold values, of
which we shall speak presently, the behaviour of the material becomes non-
linear and inelastic. When the materials are subjected to increasing stresses,
critical conditions are eventually reached, on account of which the body can no
longer be considered even a deformable continuum. In other words, fractures
form and hence produce discontinuities in the displacement function.

In Table 8.1 indicative values of E, v and (Tmax for the two materials men-
tioned above are given, dmax being the value of tensile normal stress which
causes yielding or fracturing.

Table 8.1

E (kg/cm2) V crmax(kg/cm2)

Steel 2 100 000 0.30 2400
Concrete 250000 0.15 30

The ratio crmax/£ indicates the order of magnitude of the dilation, below which
the linear elastic idealization has a physical meaning. It may be noted that this
order of magnitude lies between 10~3 and 10"4. The strains which are usually
found in structural elements are in fact very small.

As regards the anisotropic elastic constitutive law, the reader is referred to
Appendix C.

8.11 Strength, ductility, fracture energy

Once the elastic stress field of a structural element has been calculated, on the
basis of the forces applied {^"Jand {/?} and the displacements imposed {TJQ},
using the equations of statics and kinematics and the constitutive equations and
then resolving Lame's equation, we are faced with the problem of evaluating
whether the theoretically determined stresses exceed, albeit in only one point
of the body or in one of its portions, the strength of the material of which the
body is made. In fact, as has already been mentioned in the foregoing section,
even though the law o(e) is linear and elastic in the initial portion of the curve,
it loses its linearity in the next portion, giving rise to phenomena of yielding,
plastic deformation and ultimately fracture. The stress field, on the other hand,
is proportional to the forces applied so far as the structural behaviour is linearly
elastic. Consequently, if calculation, in this conventionally elastic case, gives
excessively high values of stress, it is possible to consider the external loads
reduced by a suitable factor to obtain a really elastic stress field. This factor
will therefore be equal to the ratio between the conventionally elastic and
excessively high stresses and the really elastic and hence admissible stresses
for the material. The latter are chosen by the structural designer on the basis of
criteria of resistance and safety which we shall look at later on.
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a =

A/
~

Figure 8.16

Structural materials are traditionally catalogued, on the basis of the charac-
teristics of the cr(£) curve, into two distinct categories: ductile materials and
brittle materials. Whereas the former show large portions of the a(e) dia-
gram that are not linear, before they reach the fracture point, the latter break
suddenly, when the response is still substantially elastic and linear. A second
characteristic which distinguishes them clearly is the ratio between tensile
strength and compressive strength. Whereas for ductile materials this ratio is
close to unity, for brittle materials it is a good deal lower (in some cases, 10'1

to 10~2). The differences in behaviour depend to a great extent upon the micro-
scopic mechanisms of damage and fracture, which, in the various structural
materials present notable differences. In metal alloys, for instance, sliding
takes place between the planes of atoms and crystals which gives rise to a
behaviour of a plastic and ductile kind, with considerable permanent deforma-
tions. In concrete and rock, on the other hand, the microcracks and debond-
ings between the granular components and the matrix can extend and combine
to form a macroscopic crack which splits the structural element suddenly into
two parts. This unstable fracturing process causes the material to behave in a
brittle manner.

On the other hand, it is not always easy to determine the microscopic mag-
nitude of the mechanisms of damage. It may present very different dimensions
according to the nature of the mechanisms and the heterogeneity of the mate-
rial. In crystals damage occurs at an atomic level, with vacancies and disloca-
tions; in metal alloys cracks spread at an intergranular or transgranular level;
and in concrete the cracking occurs at the interface between the aggregates
and the cement matrix. It is thus understandable how the scale of damage
comes to depend upon the regularity of the solid and hence upon the size of
heterogeneities present in it. Alongside the traditional building materials,
more recent times have witnessed the advent of a large number of new mater-
ials which present highly heterogeneous and anisotropic features on account
of their being reinforced with fibres and composed of laminas. These materi-
als, called composites, may have a polymer, metal, ceramic or cement matrix.
In these there are essentially two mechanisms of damage: fibre pull-out and
delamination (i.e. the debonding of the layers).

The distinction between ductile materials and brittle materials is not always
so clear in practice, because the ductility of the material also depends upon the
ambient temperature and, as we shall see later, upon the size of the structural
element. Of the two, the latter is the factor that is harder to grasp, because in
this case ductility ceases to be a property of the material and becomes a prop-
erty of the structure as a whole.

Let us consider a uniaxial tensile test carried out on a test specimen of duc-
tile material, for instance, steel (Figure 8.16). Let the test specimen have the
usual hourglass shape, to prevent fracture occurring in the vicinity of the ends
where the specimen is clamped to the testing equipment. Let A0 be the area of
the initial cross section of the tensile specimen in the middle zone, and /0 the
initial distance between two sensors glued at two distinct points of the middle
zone. Let this distance be measured by an electrical device that connects the
two points. Let the nominal stress cr be defined as the ratio between the
force F transmitted by the testing equipment and the initial area A0:

a = F/AQ (8.84)
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In this way the elastic and possible plastic transverse contractions are neglected.
Then let the conventional dilation e be defined as the ratio between the varia-
tion in the distance between the two sensors, A/, and the initial distance /0:

= A///0 (8.85)

This dilation is the average dilation for the zone being checked. It is very
likely that during the test, and especially in the nonlinear regime, dilation is
not uniform and consequently at a given point does not coincide with the
average.

Now let all the pairs of points recorded during the loading process be plot-
ted on the o-e plane (Figure 8.17). Between points O and L the diagram is lin-
ear and elastic. From L onwards the response is no longer linear and the
material begins to yield. When the specimen is unloaded, there is evidence of
permanent deformation £pl. This means that part of the strain energy has been
recovered (triangle ABA), i.e. that corresponding to the strain eeh whereas the
remainder has dissipated plastically (area OLAA). When the test specimen is
again loaded, once more it covers elastically the path A A, which is parallel to
the path OL. When it arrives at A, the specimen yields again at a stress cr> <J/.
Virgin material, then, yields at lower levels of stress than does material that
has already undergone yielding. This phenomenon is referred to as harden-
ing. When the applied force F is further increased, the curve ceases to be lin-
ear (portion AU). In this phase the increase in stress per unit increase in
dilation (usually called tangential stiffness) continues to diminish, until it van-
ishes at point U. When the point U is reached, if the loading process is con-
trolled by the external force F, the specimen breaks, because F cannot increase
any further.

U
Ductile material

pi.

Figure 8.17
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Necking

Figure 8.18

On the other hand, if the loading process is controlled by the variation in dis-
tance A/ (i.e. if a slope is electronically imposed on that quantity in time), it is
possible to investigate the behaviour of the material beyond the point of ulti-
mate strength U. Beyond the point U, in fact, the tangential stiffness becomes
negative and, to positive increments of displacement A/, there correspond neg-
ative increments of the force F. This is due to the phenomenon of plastic trans-
verse contraction or necking (Figure 8.18), whereby the area A of the actual
cross section becomes notably less than A0, in a localized band between the two
sensors. Finally, once a terminal point S is reached, the specimen gives sud-
denly, even though the loading process is deformation-controlled.

In the case of certain metal alloys, such as low carbon steels, a sudden yield
follows the proportional limit L, so that dilation increases by a finite quantity
under constant loading (Figure 8.19). In these cases it is thus easy to identify
the value of uniaxial yielding stress o>, as this coincides with the propor-
tional limit 0}. When, instead, the proportional limit is followed by the harden-
ing portion of the curve, it is more difficult to define Op. In this case, it is
conventional to use the stress value of which the permanent deformation epl at
unloading is equal to 2%c.

Whereas ductile materials present similar behaviours in tension and com-
pression, brittle materials behave in considerably different ways. Concrete, for
instance, is ductile in compression but brittle in tension, and presents an ulti-
mate compressive strength that is about one order of magnitude greater than
its ultimate tensile strength. A tensile test on a specimen of concrete, if con-
ducted by applying a load or, as is usually said, under controlled loading con-
ditions, shows an approximately linear elastic response up to a point where the
load drops sharply corresponding to the sudden formation of a crack. How-
ever, today's electronic techniques allow us to control the strain (input = strain
£, output = stress a). By so doing, the post-peak response curve of the cement
material is highlighted (Figure 8.20). Only recently has it been realized that
there exists an extensive branch of softening and that it is possible for con-
crete to dissipate a considerable amount of energy per unit volume. This
energy is represented by the area under the curve a (£).

O

Figure 8.19
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Brittle material

Branch depending on
length /0 (e non-uniform)

Figure 8.20

Even more recently it has been possible to demonstrate that energy, in
actual fact, is not dissipated uniformly in the volume, but rather is dissipated
over a localized band, which subsequently becomes a crack (the same phe-
nomenon occurs in ductile materials with necking). In other words, point dila-
tion between the two sensors of Figure 8.16 is not a constant function. On the
contrary, it presents a notable peak corresponding to the crack that is forming.
Ideally it is possible to imagine that the dilation £ is a Dirac 5 function, since
the dilation is infinite where a discontinuity occurs in the axial displacement
function.

As a consequence of the localization of the strain e, the decreasing branch
of the a (£) curve comes to depend on the length /0 of the measurement base.
What, instead, emerges as a true characteristic of the material is the cr(vv) dia-
gram, which represents the stress transmitted through the crack, as a function
of the opening (or width) of the crack itself (Figure 8.21). This law of decay
indicates, of course, a weakening of the interaction with the increase in the
distance w between the faces (or free surfaces) of the crack. When w reaches
the limiting value wc., the interaction ceases totally and the crack becomes a
complete disconnection which divides the specimen into two distinct parts.
The area under the curve <7 (w) represents the energy dissipated over the unit

Figure 8.21
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surface of fracture. Since the cohesive law a (w) is a characteristic of the
material, which depends on the intimate structure and on the mechanisms of
damage of the material, the fracture energy ̂ IC is also an intrinsic property of
the material:

(8.86)

The energy dissipated over the surface of the crack is equal to ̂ A0, since
f^lc is work per unit surface and thus force per unit length, [FJtL]"1. Since,
however, we have assumed that the dissipation of energy has only occurred on
the fracture surface and not in the volume of the undamaged material, the
energy dissipated globally in the volume A0/0 is still equal to ̂ Ao (this is rig-
orously valid only in the absence of hardening). If the response curves are
then plotted on the plane F-A/, with the increase in the length /0 of the speci-
men, we obtain elastic portions of curve having a decreasing stiffness and
softening portions having a growing negative slope and, beyond a certain
limit, having a positive slope (Figure 8.22(a)). The area under each curve must
in fact be constant and equal to ^I(AQ.

Area =

(a)

a =

IQ-+Q

Area =

€ = A///O

(b)

Figure 8.22

228

fWc

yic = <7(w) dw
Jo



Figure 8.23

STRENGTH, DUCTILITY, FRACTURE ENERGY

229

On the a~e plane (Figure 8.22(b)) the transition just described is repre-
sented by a single linear elastic portion of curve and by a fan of softening
branches, as the length /0 varies. The area under the curve, in fact, in this case
varies with /0, as it is equal to ^/<y^o- For /0 —> 0 the softening branch becomes
horizontal and represents a perfectly plastic structural response. On the other
hand, for /0 -*> °° the area between the o(e) curve and the axis £ must tend to
zero, and thus the softening branch tends to coincide with the elastic portion
(Figure 8.22(b)).

The positive slope of the softening branch may be justified not only, as we
have seen, by considering the dissipated energy, but also by analytical deriva-
tion of the function £(o). In the post-peak regime, we have (Figure 8.23)

= A/ = g,,/o+w
1 1 *
*0 H)

where £el indicates the specific longitudinal dilation of the undamaged zone:

£el = a/E (8.88)

From equation (8.87) we then draw

£ = T + T- "(a) (8-89)
L /0

and deriving with respect to cr

*l = l + l^ (8.90)
dcr E 10 da

This derivative, and consequently also the inverse dcr/de, is greater than zero
for

10>E ^ (8.91)

It follows that there are portions of softening having a positive slope for

/o > £/ ̂  (8.92)
/ <*W max

i.e. when the length of the specimen, or rather the distance /0, between the
points of which the relative displacement is measured, is higher than the ratio
between the elastic modulus and the maximum slope of the cohesive law.
This is due to the fact that, during the softening phase, the stress a dimin-
ishes and, while the point which represents the fracture zone drops along the
curve cr (w) (Figure 8,21), the point representing the undamaged zone drops
along the straight line a (£) (Figure 8.20) and describes an elastic unloading.
If the length /0 is sufficiently great, the elastic contraction prevails over the
dilation of the fracture zone, giving rise to the phenomenon described before.

Softening with a positive slope represents a phenomenon that falls within the
scope of Catastrophe Theory. If, in fact, the loading process is governed by the
conventional dilation £, or by the elongation A/, once the point U is reached
(Figure 8.22(a)), there is a vertical drop in the load, until the lower softening
portion of curve, which has a negative slope, is encountered. The portion UQTis
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thus ignored and becomes virtual. To record this portion experimentally, it is
necessary to govern the process of loading via the opening w of the crack, a pro-
cedure rendered possible by modern-day electronic techniques. The instability
described above is called snap-back. All relatively brittle materials (e.g. con-
crete, cast iron, glass, plexiglass) which possess a low fracture energy ^IC with
the normal lengths /0 of the measurement base present a sharp drop in load when
the global behaviour of the specimen is still linear elastic.

To conclude this section, it is expedient to note how strength and fracture
energy are intrinsic properties of the material, whereas ductility depends on a
structural factor, such as the length of the specimen. In Chapter 20 this subject will
be taken up again, and we shall see how, among the factors that affect structural
ductility, or brittleness, the size scale of the structural element must be included.

8.12 Strength criteria

In the case of bodies subjected to a condition of uniaxial stress, such as ropes
or columns, the check on strength is immediate, once the service stress and the
yielding or ultimate strength are known. In ductile materials, the material does
not reach the critical point, i.e. yielding, in the case where the following rela-
tion holds:

-Op <e«jp (8.93a)

as the yielding stress has approximately the same absolute value in tension as
it does in compression. In brittle materials, the behaviour in compression is
usually different from that in tension and the critical point for the material is
avoided if

-<7C < a < <7U (8.93b)

where <7C is the ultimate compressive strength.
The relations (8.93) would provide real safety limits if all the quantities

involved were known with certainty and without statistical oscillations. How-
ever, in the physical world, the quantities will always possess a degree of
approximation. For instance, the strength measured in the laboratory, the
dimensions of the body, the forces actually applied are not deterministic quan-
tities. Admissible stress, to permit conditions of safety, will then be repre-
sented by a fraction of the nominal strength, in such a way that the so-called
safety criteria, for ductile and brittle materials, will be presented as follows:

-^-«j<— (8.94a)
s s

-^<a<^- (9.94V)
s s

The parameter s > 1 is called the safety factor. The higher this factor, the less
foreseeable is the behaviour of the material and hence the less repeatable are
the laboratory results. Whereas for ductile materials it is common practice to
take s = 1.5, for brittle materials the factor of safety is usually higher (in some
cases s = 6), because in the case of these materials the mechanisms of damage
are more unstable and hence, as has already been shown, there do not exist
ductile or plastic reserves beyond the ultimate load.
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In general, however, the service of structural elements is not restricted to
only one axis. Nonetheless, the tests that are usually performed in laboratories
are uniaxial, hence the need to correlate biaxial and triaxial stress states to
the uniaxial ones. In other words, the procedure must be to define a function
of the stress tensor, called ideal stress or equivalent stress, to compare with
the stress of uniaxial yield

<?eq =CTeq((JJC,CT r(Jz,T^,TJCZ,ryz)<CJp (8.95)

In the case of isotropy of the material, the ideal stress is a function of the prin-
cipal components of stress alone:

<7 eq = ^eq (<*1, CT2, CT3 ) < (Tp (8.96)

As regards uniaxial tensile and compressive tests on metal specimens, it
may be noted that the hydrostatic pressure of the environment in which the
tests are conducted does not influence the yield stress value. This important
experimental fact has given rise to two strength criteria, which have been
widely confirmed by experience: Tresca's criterion and Von Mises' criterion.

Tresca's criterion or the criterion of maximum shearing stress considers
shearing stress responsible for the yielding of the material when it is subjected
to a triaxial stress condition. It is thus implicitly assumed that not only in the
uniaxial case but also in the triaxial case the superposition of a hydrostatic
condition does not affect the strength of the material. It is very simple and
expressive to represent Tresca's criterion on Mohr's plane. The maximum
shearing stress Tmax is in fact equal to half the difference between the extreme
principal stresses (Figure 8.24)

*max = j max {ft -CT2| , 1̂  -(J3| , |d2 -<J3|} (8.97)
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and, from the condition of uniaxial yielding, we obtain (Figure 8.25)

TP=^(Tp (8.98)

where rp is the yield shearing stress. Tresca's condition Tmax < T/>, applying
equations (8.97) and (8.98), is translated into the following:

max {|a} - cr2| , \a} - a3| , |<J2 - <J3|} < ap (8.99)

where the term on the left-hand side is called Tresca's equivalent stress.
Equation (8.99) is thus a particular case of equation (8.96). On Mohr's plane,
the original condition Tmax < rp is represented by an infinite strip, bounded by
the two parallel straight lines T= ±TP (Figure 8.25).

In the case of a plane stress condition, one of the three principal stresses
vanishes, for example <73 = 0, and the condition (8.99) becomes

max {l̂ ! -a2\ , jcr^ , |cr2|} < ap (8.100)

The inequality (8.100) may be interpreted as the intersection of three different
inequalities:

Icr^cjp (S.lOla)

|cr2 |<o> (8.101b)

\al-a2\<ap (S.lOlc)

The first two, on the plane <7i-cr2, represent Rankine's criterion, or the crite-
rion of maximum normal stress. The strength domain would in this case be a
square (Figure 8,26), but, in actual fact, such a simple criterion has been
proved inadequate by the experimental evidence. The inequality (S.lOlc) in
fact further sections the square domain and finally furnishes a hexagonal
domain, called Tresca's hexagon (Figure 8.26). Note how the four points of
intersection of Tresca's hexagon with the axes a{ and CJ2 represent the uniaxial
critical points, of tension and compression, in the two principal directions.
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It is worthwhile mentioning here the extrapolation of Tresca's criterion for
brittle materials, which present different values for tensile and compressive
strength. Instead of considering the critical shearing stress as a constant inde-
pendent of the state of stress, the Mohr-Coulomb criterion proposes a limit
Tp that is a function of the corresponding normal stress

Tm a x<r c- /KJ (8.102)

where TC represents the cohesiveness of the material and // the coefficient of
internal friction. The strength increases with the increase in normal compres-
sion, so that the strength domain on Mohr's plane is represented by a strip that
broadens in the direction of the negative stresses a (Figure 8.27). Cutting this
domain with the two vertical straight lines that represent the uniaxial critical
states of tension and compression, we obtain a trapezoidal domain which
reproduces satisfactorily the critical states of brittle or incoherent materials
(e.g. concrete, rock, soil). On the plane of the principal stresses (Tj-c^, the
Mohr-Coulomb domain is represented by a symmetrical hexagon with respect
to the bisector of the first and third quadrants (Figure 8.28), which reduces to
Tresca's hexagon for jU = 0 (zero internal friction).

Von Mises' criterion, or the criterion of maximum energy of distor-
tion, considers the strain energy corresponding to the deviatoric tensor
(7.77b) responsible for the critical condition of the material. Since, in
general, the strain energy per unit volume (or strain energy density) may be
expressed as a function of the first two invariants of stress, as is shown by
equation (8.69),

y = 0 = JL{j2 + 2//7(l + v)} (8.103)
ZtM^I

this expression can be particularized to the case of the deviatoric tensor. The
first invariant of the deviatoric tensor is zero by definition, so that the energy
<&d associated to this tensor is

<p*=-4r'/« (8-104)
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where JIJd indicates the second deviatoric invariant. This equals

Jlld = -[(a\ ~ °) (°2 ~ tf) + (tf I ~ ̂  ) (0"3 ~ °) + (°2 ~ tf) (^3 - ^)] (8-] 05>

where a indicates the mean stress:

a = -((7 ,+(J 2+tf3) (8.106)

Substituting equation (8.106) in equation (8.105) we obtain

y / w=-^[(2cr1-a2-<T3)(2(72-a I-c73) + ...] (8.107)

and then, multiplying the three pairs of trinomials and ordering the terms that
result:

Jud = --[a|-2cr1
2~2(7|+5cj,cr2-a1o-3-cr2c73+ (8.108)

0-f - 2of - 2a\ + 5ala3 - a,cr2 - <73(J2 +

of - 2<r| - 2a] + 5cr2cT3 - a2al - cr^cr, ]

= -[(a,2 + <72
2 + a2) - (a,cr2 + ajCJ3 + (T2<j3)]

The distortion energy is then

^ =^[(CJ,2 +a2
2 +cT2)-((T1cr2 +(1^3 +a2(T3)] (8.109)

3i:

In the uniaxial critical condition, the distortion energy reaches its limit value:

«V=^V (8.110)

The original condition of Von Mises,

&d<®dp ( 8 - n i )
therefore translates into the following:

[(a,2 + af + af) - (a{a2 + cTjCJ3 + cr2cr3)] < ap
2 (8.112)

where the term on the left-hand side represents the square of Von Mises'
equivalent stress. Equation (8.112) is thus a particular case of equation
(8.96).

We now intend to express the condition of Von Mises as a function of the
special components of stress, instead of as a function of the principal stresses.
Noting that the inequality (8.112) can be expressed as a function of the invari-
ants

(/2+37 / /)<(J2 (8.113)

and using expressions (7.72a,b), we obtain

[(cr2 -f a2 + a%)-(axay +axaz +0yj,) + 3(r2
v + r2

z +T^)]<aP
2 (8.114)
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As regards plane stress conditions, for example <T3 = 0, the condition (8.112)
becomes

(of + <r| -a^) < op
2 (8.115)

The inequality (8.115) represents all the points inside an ellipse which has its
major axis coincident with the bisector of the first and third quadrants (Figure
8.29). Von Mises' ellipse is circumscribed to Tresca's hexagon and intersects
the axes a{ and <J2

 at tne same f°ur notable points. The two boundaries have in
common also the two points of intersection with the bisector of the first and
third quadrants.

Von Mises' criterion is less conservative than Tresca's criterion, since the
elliptical domain is wider than the hexagonal one. On the other hand, Von
Mises' criterion is simpler to use than is Tresca's, since it imposes only one
inequality (8.115) as against the three of equation (8.101).

Finally, it should be noted how the triaxial strength domains, both according
to Tresca and according to Von Mises, are represented in the space o^-o^-o^
by a cylinder with the generators parallel to the trisector of the first octant. The
inequality (8.99) represents in fact the cylinder that has as its directrix on the
plane Oi~a2 the hexagon of Figure 8.26, while the inequality (8.112) represents
the cylinder that has as its directrix on the plane <7i-<J2 the ellipse of Figure
8.29. That the trisector of the first octant should be entirely contained in the
above-mentioned strength domains is a result consistent with the basic experi-
mental observation, i.e. with the independence of the conditions of yielding
from a superimposed hydrostatic state. This means that, according to these cri-
teria, even severe hydrostatic conditions of loading do not cause in any case the
failure of the material,

As regards the strength criteria for anisotropic materials, the reader is
referred to Appendix C.
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9 The Saint Venant problem

9.1 Introduction

This chapter deals with the particular case of a cylindrical, homogeneous and
isotropic, linearly elastic solid loaded exclusively on its end planes. This solid,
known as the Saint Venant solid, represents a relatively simple and highly use-
ful model in the case of beams. All the fundamental loadings are studied,
which correspond to the internal reaction characteristics already introduced in
Chapter 5: axial force, shearing force, twisting moment, and bending moment.
For each loading both the stress condition produced and the corresponding
deformation characteristic are obtained: axial dilation, mean shearing strain,
unit angle of torsion, and curvature. It is shown that, in the case of symmetri-
cal sections, the fundamental reactions are all mutually energetically ortho-
gonal, and that in this case, the strain energy is a diagonal quadratic form of
the reactions themselves.

The chapter further deals with combined loadings consisting of eccentric
axial force, with the definition of the central core of inertia, and of shear-
torsion, with the definition of the corresponding centre of shear or of torsion.
As regards the case of torsion of thin-walled sections, the considerable differ-
ence existing between closed sections (tubular sections) and open sections is
emphasized. The latter are in fact subjected to stresses and torsional rotations
that are far higher.

The chapter closes with a number of examples of strength tests, carried out
on beams having as sections the areas considered in the closing part of
Chapter 2.

9.2 Fundamental hypotheses

The Saint Venant problem constitutes a particular elastic problem regarding
a cylindrical solid, loaded at its ends.

Consider a generic area with its central (i.e. centroidal and principal) XY
reference system. Imagine translating this area perpendicularly to its own
plane, so as to cause its centroid G to describe a rectilinear trajectory, nor-
mal to the XY coordinate plane and of length / (Figure 9.1). Let the oriented
straight line of this trajectory constitute the third reference axis Z. The cylin-
drical volume thus described constitutes the domain of the Saint Venant
solid.

Having thus described the geometry of the Saint Venant solid, it is neces-
sary to specify the material of which it is made and the forces by which it is
loaded. As regards the material, it is assumed to be linear elastic, isotropic and
homogeneous. The last of these assumptions may be omitted, as is shown in
Appendix D. As far as the external forces applied are concerned, on the other
hand, these are assumed to be only surface forces, which act exclusively on
the end planes (Figure 9.1). Body forces are hence excluded, as are displace-
ments imposed on the boundary. Of course the surface forces acting on both
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pdS

Figure 9.1

ends, A and A', must make up a balanced system and consequently satisfy the
cardinal equations of statics:

(9-lb)

The equations governing the Saint Venant problem are the same as those
governing the elastic problem, the former being merely a particular case in the
framework of the latter. These equations are those of statics (8.2), kinematics
(8.8) and the constitutive equations (8.73). As shall be noted in the sequel, in
the case in point, some of these are identically satisfied, precisely on account
of the simplifying hypotheses introduced.

On the other hand, the boundary conditions of equivalence on the lateral
surface, where nz = 0, are

axnx + Tyxny = 0 (9,2a)

rxynx+ayny=0 (9.2b)

rxznx + ryzny = 0 (9.2c)

while those on the end planes, where nx = 0, ny = 0, nz = 1, take the following
form:

rzx=px (9.3a)

*v=Py (93b)

oz=pz (9.3c)

We may now state Saint Venant's fundamental hypothesis, one which has
been amply borne out both experimentally and theoretically (Figure 9.2):

At a sufficient distance from each end plane, the strain and stress fields
depend only upon the resultant {/?} of the forces acting on the end itself and
upon the resultant moment {M} of the forces with respect to the centroid of
the end considered.
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{/7}dA = {0}
JAVA'

f ({r}A{p})dA = {0}
J Ai , A'

(9. la)
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M

Figure 9.2

In line with this hypothesis, the conditions of equivalence at the ends can be
global, and not local conditions as in the case of equations (9.3):

f {tz}dA = 1 {p} dA = {R} (9.4a)
JA JA

f ({r} A {tz}) dA = f ({r} A [p]) dA = {M} (9.4b)
JA JA

Consider, for instance, a rectilinear beam having rectangular cross section,
of base b and depth A, subjected on each end plane, in one case to a couple
made up of two forces F with arm h (Figure 9.3(a)), in the other to a couple
consisting of two forces 2F with arm h/2 (Figure 9.3(b)). The strain and stress
fields are approximately the same at distances from the ends greater than the
depth h. Reversing one of the two systems of forces and applying the Principle
of Superposition, two self-balancing systems acting on the end planes are
obtained, which generate approximately zero strain and stress fields, except in
the end regions. The damping of the perturbation created by the self-balancing
systems of forces occurs at distances from the ends approximately greater than
the maximum dimension of the cross section, when the cross section itself is
compact and of a regular shape. When, instead, the cross section is thin-
walled, the distance of damping may prove far greater.

y^
_ ^ u 1 ^

F

2F

h/2{

2F

Figure 9 J

y/\
t

^

2F

2F
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Figure 9.4

As we have already said in Chapter 5, the components of the resultant force
{R} and the resultant moment {M} are called elementary internal reactions:

Rx = TX = shearing force along the X axis;
Ry = Ty = shearing force along the Y axis;
Rz~N= axial force;
Mx = bending moment along the X axis;
My = bending moment along the Y axis;
Mz = twisting moment.

The cases of elementary loading for the Saint Venant solid are thus the
following:

1. centred axial force Af;
2. flexure Mx\
3. flexure My;
4. shear 7^ (and flexure Mx);
5. shear Tx (and flexure My)\
6. torsion Mr

It should be noted that, since the shear is the derivative of the moment func-
tion, its presence also presupposes that of the corresponding flexure, whereas
the reverse is not true.

In the sequel we shall see how the three elementary loadings, N, Mx, My9

produce an axial one-dimensional stress field, where only normal stress <JZ is
present. The remaining three elementary loadings, Ty, Tx, Mz, produce instead,
on each cross section, a field of shearing stress with the presence of the com-
ponents T-y., T^, and thus of rz only. Also for this reason, it is customary to
combine the elementary loadings, so as to obtain complex loadings which
produce only normal stresses, <rz, or only shearing stresses, Tz:

1. biaxial flexure: Mx> My,
2. eccentric axial force: N, Mx, My\
3. shear-torsion: Tx, Ty, Mz.

It should be noted that the eccentric axial force is equivalent to an axial
force N, exerted at a point of the XY plane which does not coincide with the
centroid. On the other hand, the shear-torsion is equivalent to a force 7, with
the line of action belonging to the XY plane and not passing necessarily
through the centroid. In the last analysis, then, the resultant force {R} and the
resultant moment {M} are a system equivalent to that of the two skew and
orthogonal forces N and T (Figure 9.4).

9.3 Centred axial force

As regards centred axial force and, as we shall see, also the other elementary
loadings that produce normal stress <rz, we start by assuming a stress solution
and then verify that this solution satisfies all the equations of the elastic prob-
lem, including the boundary conditions.

Let us assume then

tfjr = ̂  = Vjy = T*z = T?z = ° <9-5a>

az=c (9.5b)
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where c is a constant that can be determined on the basis of the global bound-
ary conditions of equivalence (9.4). These conditions are all identically
satisfied, except for the projection of the first on the Z axis

j <JZ dA = N (9.6)
JA

whence we obtain

cA = N (9.7)

and hence the constant stress on the cross section

0,=^- (9.8)
A

On the other hand, the indefinite equations of equilibrium (8.2), as well as
the boundary conditions of equivalence (9.2), are all identically satisfied by
the solution given by equations (9.5a) and (9.8).

The elastic constitutive equations (8.73) then give the strain field

e j r=e v=-v-^ (9.9a)
EA

€7=— (9.9b)
EA

Yxy=7xz=ryz=V (9.9c)

If the axial force N is tensile, there is thus a uniform dilation in the axial direc-
tion and contractions that are all equal to one another in the transverse direc-
tions, while the shearing strains are zero.

Integrating the strain field, it is possible finally to obtain the displacement
field, save for components of rigid rototranslation. We have in fact

lf=-"£ (9-10a)
ax EA

!--£
£-£ (9.10=)ai EA

|%^ = ° (9.10d)
ay ox

^+^=° (9-10e>dz dx

ir+lr=0 <9- lof>dz dy

Integrating the first three equations, we obtain

N
u = -v — x + u0(y,z) (9.11 a)

EA

99.10b0



CENTRED AXIAL FORCE

241

v = -v—y+v0(x,z) (9.11b)
tLA

w = —z + w0(x,y) (9.11c)

Substituting equations (9.11) into equations (9.10 d, e, f), we have

^U^ = 0 (9.12.)
ay ax

%+%=° <9-12b>az ax

% + ̂ <>=0 (9.12c)
az dy

as well as, of course

—^- = 0 (9.12d)
ax

% = 0 (9.12e)
<?y

% = 0 (9.12!)
az

From equations (9.12) it follows that the field of displacements UQ, i^, w0 does
not have strain components. It, therefore, represents a generic rigid
rototranslation.

The solution obtained consists of stresses (9.5a) and (9.8) and displace-
ments (9.11). It is the only one possible, by virtue of KirchhofFs Solution
Uniqueness Theorem.

The elementary work of deformation, for an infinitesimal segment of length
dz of the Saint Venant solid, may be obtained by applying Clapeyron's
Theorem (Figure 9.5)

dL = -Afdw = -Afe. dz (9.13)
2 2

dw/2 dw/2
h-H KH

i—r 1—,
N N

': I :'
Figure 9.5
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Substituting the expression (9.9b) in equation (9.13), we have then

^ = !£. (9.14)
dz 2 EA

The factor 1/2 (characteristic of linear elasticity) is therefore multiplied by the
square of the static characteristic N, and divided by the product of the elastic
characteristic E and the geometric characteristic A. It will be noted in the
sequel how the structure of the formula (9.14) is also conserved in the case of
the other elementary loadings.

9.4 Flexure

Also in the case of flexure a uniaxial stress field Gz is assumed, in this case
linearly variable on the cross section

^x=<yy=Txy = Txz=ryz=Q (9.15a)

az=ax + by + c (9.15b)

The constants a, b, c may be determined on the basis of the boundary condi-
tions expressed by equations (9.4):

\azdA = N = 0 (9.16a)
JA

f T^6A = TX=0 (9.16V)
JA

f T^dA = T > = 0 (9.16c)
JA

\<rzydA = Mx*Q (9.16d)
JA

f azx dA = -My = 0 (9.16e)
JA

f (r^x - T^y) dA = Mz = 0 (9.16f)
JA

Whilst the conditions (9.16b, c, f) are identically satisfied, the conditions (9.16
a, d, e) give the constants a, b, c. From equations (9.16a) and (9.15b) we have
in fact

\(ax + by + c)dA = aSy+bSx+cA = Q (9.17)
JA

and, since the static moments Sx and Sy are zero as the XY system is a cen-
troidal reference system, we obtain

c = 0 (9.18)

From equation (9.16 e) we have then

f (ax + by)x dA = al + W = 0 (9.19)
JA
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and, since the product of inertia /^ is zero as XY is a principal reference
system, we obtain

a = 0 (9.20)

Finally, from equation (9.16 d) we have

f by2dA = b!x=Mx (9.21)
JA

from which we obtain

b = ̂  (9.22)
*x

and thus

ot=^-y (9.23)
*x

If only the elementary load Mx is present, the stress <7Z depends upon the y
coordinate alone, and increases in absolute value as it moves away from the X
axis (Figure 9.6). It is directly proportional to the applied moment and
inversely proportional to the relative moment of inertia. TTie stress cr, is zero
for y = 0, i.e. on the X axis which, for this reason, is called the neutral axis.
The Y axis is called the loading axis, because the couple Mx belongs to the
plane KZ, which in turn is called the loading plane. In this case the loading
axis and the neutral axis are mutually orthogonal. The case of the hetero-
geneous beam in flexure is dealt with in Appendix D.

The stress solution, represented by equations (9.15a) and (9.23), identically
satisfies the indefinite equations of equilibrium (8.2) and equivalence (9.2), and,
via the elastic constitutive equations (8.73), gives the following strain field:

ex=ey=-v-^-y (9.24a)

e,=%f-y (9.24b)
^lx

7^=7«=y y z=0 (9.24c)

: **$*
^ W ^
: ^^

Y

Z

X
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Integrating the strains of equations (9.24), it is possible to obtain the dis-
placement field, except for the components of rigid rotation. From equations
(9.24) we have

£—v^-y (9.25.)
dx El/

dv Mr ,- ^_, x- = -v^, (9.25b)

% = %-> (9'25C)dz klx

£ + £ = 0 (9.25d)
ay ax

%+^=° <9-25e>ai dx,

ir+ir=0 <9-25f>dz <?y

Integrating equations (9.25a, b, c), we obtain

M = -v —- xy + u0(y, z) (9.26a)
ĴC

v=-v^4 + vo(*>*) (9-26b)
^yjc 2

w = —f-yz + H>0Cx,30 (9.26c)
£'*

Substituting equations (9.26) in equations (9.25d, e, f), we have

C/U(\ CnJf) A/v xrt __ .
—- + —^^v—*-x (9.27a)
dy dx El;

% + ̂  = 0 (9.27b)
dz ax

*><L+dw<L = _M± 92?

dz dy Elx

Integrating equation (9.27a) with respect to x, we obtain

v0(x,z) = v¥*-^ + Vi(x,z) (9.28)
Llx 2

while from equation (9.27c) we draw

^^-1t'
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and hence

vi(x9z) = ~j^4 + Vz(J") (930)
hlx 2

In conclusion, we can express the displacement field as follows:

M = -vTrr *y+«o(y*z) (9-31a)
£'*

u = -^[*2 + V0>2 -*2)] + Mz(*.z) (9.3lb)z/s/j

>v = -f;yz + w0U,}0 (9.3 Ic)
^JC

Substituting the foregoing equations (9.31) in equations (9.25d, e, f)» we
have

% + ̂  = 0 (9.32a)
ay oic

^-+^=° <9-32b>^ dc

^ + ̂  = 0 (9.32c)
dz. ay

as well as, of course

% = 0 (9.32d)
dx

-^- = 0 (9.32e)
5y

^ = 0 (9.32f)
^

From equations (932) it follows that the field of displacements % î , w0 does
not have any strain components. It therefore represents a generic rigid
rototranslation, which shall henceforth be neglected.

The points of the Z axis, of coordinates P(Q, 0, z), are transformed, once
deformation has occurred, into the points ?' (0, vp, z), since by equation
(9.3Ib) we have

Vp = v(W,z) = -^-z2 (9.33)
X

In the foregoing equation the term of rigid rototranslation u^ has been omitted
(Figure 9.7).
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Figure 9.7

On the other hand, the points of a generic cross section, of coordinates Q(x,
y, z), are transformed, as a consequence of the deformation, into the points
Q'(x + UQ, y + VQ, z + WQ), equations (9.31) yielding

M
UQ = u(x, y,z) = -v-^xy (9.34a)

tlx

VQ = v(x,y,z) = -^-[z2 + v(j2 -*2)] (9.34b)
2hlx

M
WQ = w(jc,y,z) = TTTK (9.34c)

^^JC

Hence the transformation 2 -» Q'will be, in general, nonlinear:

Mx'^x-yLJLxy (9.35a)

/ = y-^-[?2+v(y2-^)] (9.35b)
^^^JC

z' = z + ̂ yz (9.35c)
^4

If, on the other hand, we consider the Saint Venant solid sufficiently slender to
allow us to consider the coordinates x and y as always being infinitesimal
compared to the f coordinate, equations (9.35) may be rewritten as follows:

x' = x (9.36a)

y=y-£r* (9.3*)
z' = z f l + ̂ l <9.36c)

V £/^ )
In equations (9.36a, b) the second order infinitesimal terms, which represent
the phenomenon of transverse contraction, have been omitted.
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In the framework of the above hypotheses the principle of conservation of
plane sections holds, according to which each individual cross section rotates
rigidly by the angle (px about the X axis, and translates by the quantity vp in the Y
direction (Figure 9.7). Furthermore, each individual cross section, after
deformation, remains perpendicular to the deformed axis, since yv, = 0, whilst the
latter undergoes bending but not variations in length, in that ez (x = 0, y = 0) = 0.

A further confirmation of what is stated above comes from the relation
(9.36c):

*<=—=& <9-37>y EI
X

In fact, the angle &x which the geometrical tangent to the deformed configura-
tion of the axis expressed by equation (9.33) forms with the Z axis, is approx-
imately equal to (Figure 9.7)

*; ~^ = ̂  (9-38)dz Elx

Comparing expressions (9.37) and (9.38), which represent the rotation of the
section and the rotation of the axis, respectively, we find what has been previ-
ously stated, viz. that <px = 1̂ .

Referring to equation (9.37), the differential of the angle tpx equals

d<px=^dz (9.39)

On the other hand, if we denote by Rx the radius of curvature of the deformed
axis and by %x = \IRX the curvature due to flexure, we have (Figure 9.8)

*<Px=^- = Xxte (9.40)
Kx

From the comparison of the two equations (9.39) and (9.40), we obtain the
curvature,

Xx=%r (9.41)
£/ v

Likewise, the curvature produced by the flexure Mv equals

Mv
*v=7T (9.42)

Ely

The foregoing formula presents the same structure as equation (9.9b), which
gives the axial dilation produced by the centred axial force. In both cases we
have the static characteristic divided by the product of the modulus of elastic-
ity and the geometrical characteristic.

By then applying Clapeyron's Theorem to the infinitesimal beam segment
of Figure 9.8, we obtain the elementary work of deformation,

dL = 1 Mx d<px = 1 Mxxx dz (9.43)
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Substituting relation (9.41) into equation (9.43), we have finally

^a-L (9.44)
dz 2EIX

9.5 Eccentric axial force and biaxial flexure

Consider the combined loading of eccentric axial force consisting of an axial
force N, having eccentricity ey with respect to the X axis and ex with respect to
the Y axis, and thus eccentricity € = (€% + £y) with respect to the centroidal
axis (Figure 9.9). This force is equivalent, on the other hand, to the system of
elementary loadings made up of the centred axial force N and the flexures

Mx = Ney (9.45a)

My = -Nex (9.45b)

Summing up the uniaxial stress fields that correspond to the aforesaid ele-
mentary loadings, we obtain

at,!L + ̂ Ly.^Lx (9.46)1 A Ix
y Iy

The negative sign of the last term is due to the fact that the moment My, if
positive, stretches the longitudinal fibres of the half-plane x < 0.

Substituting equations (9.45) in equation (9.46), we deduce the following
relation:

af=!L + ̂ ly + !^x (9.47)
1 A 1; Iy

which, expressing the moments of inertia as functions of the area A and of the
respective central radii of gyration, becomes

^=T 1+Hry+-5r* <9-48)
*\ Pl Py j

Defining the neutral axis, also in the case of combined loading, as the
straight line on which the stress oz vanishes, we obtain by simply equating the
expression (9.48) to zero,

l + -^y + ̂ -jc = 0 (9.49)
Pi P2

y

The neutral axis may cut the cross section or not, according to the eccentricity
e and the angle a (Figure 9.9). For small eccentricities the neutral axis does
not intersect the cross section, and the stresses <rz all have the same sign,
whereas, for large eccentricities, the neutral axis intersects the cross section,
and the stresses oz change sign on it. The term central core of inertia is given
to the area within which the eccentric axial force falls, in such a way that the
neutral axis does not intersect the cross section of the beam. This concept is of
particular importance in reference to compressed beams made of brittle or
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Figure 9.9

non-traction-bearing materials (concrete, masonry, etc.). We shall shortly see
two particularly significant examples.

The linear variation of the stresses O- on the cross section can be repre-
sented by drawing a reference line perpendicular to the neutral axis (Figure
9.9) and by marking in the two values corresponding to the neutral axis, <T. =
0. and to the centroid, cr. = N/A. The diagram of stresses a. will therefore be
butterfly-shaped in the case where the neutral axis intersects the cross section
(Figure 9.9), or trapezoidal in the case where the neutral axis is external to the
cross section (Figure 9.10).

As the eccentricities ex, ey, vary, three particular cases may arise.

1. eK - ey = 0 : centred axial force. The neutral axis degenerates into the
straight line at infinity.

2. (a) ex = 0 : centred axial force plus flexure. The neutral axis is parallel
to the X axis:

y = —£L (9.50a)

Figure 9.10
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(b) ey = 0 : centred axial force plus flexure. The neutral axis is parallel to
the Y axis:

x = -- (9.50V)

Note that the centre of pressure and the centroid always belong to the same
one of the two half-planes into which the neutral axis divides the XY plane.
In this regard, see also the general equation (9.49).

3. ey/ex = tan a; ex-*°of ey-+<*>. The latter is the case of biaxial flexure. The
general equation (9.49) then becomes

-4 tana + -̂ - = 0 (9.51)
Pi Py

which represents a centroidal straight line. That is, when only the flexures
Mx> My are present, the neutral axis is centroidal; however, in general, this
is not perpendicular to the loading axis.

The loading axis is the straight line NG (Figure 9.9) represented by the
equation

y = xt&na (9.52)

On the other hand, the neutral axis can be represented by the equation

1 Px\ Piy = \£*-\ x-^-
tana pv ev

(9.53)

It is readily recognizable that the lines (9.52) and (9.53) are orthogonal, not
only for ex = 0 or for ey = 0, but also when the central radii of gyration are
equal: px = py. In this case we have Ix = Iy and thus the section is of a gyro-
scopic nature (Chapter 2).

We shall now determine the central cores of inertia of two cross sections
that are very frequently encountered in building practice: the rectangle and the
circle.

h/3

h/3

h/3

Figure 9.11
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Y

Figure 9.12

In the case of the rectangular cross section of Figure 9.11, the neutral axis
can be assumed to coincide with the straight line to which the upper side BC
belongs. Using equation (9.50a), we obtain

-r(^
from which

* v = 7 (9.55)
o

The eccentric axial force corresponding to the neutral axis BC is applied to the
point //, belonging to the Y axis at a distance h/6 from the X axis. Similarly,
the centres of pressure corresponding to the straight lines CD, DA, AB are G,
F, E, respectively (Figure 9.11).

It is easy to show that the central core of inertia is represented by the rhom-
bus EFGH. The neutral axis corresponding to each point of the segment G//,

-̂ - + -̂ - = 1 (9.56)
(*/6) (h/6)

is given by the equation (9.53), once we insert the ratio

tana = f L =Mfc-6£ i) (95?)

ex 6 bex

We thus have

Y = *«** f*^-*l-L (9.58)
' h(6ex-b)\b) 12 *v

Equation (9.58) is satisfied by the coordinates of the point C(-fc/2, -h/2) for
any pair of values (ex, ev) which satisfies the relation (9.56).

The cross section is traditionally said to be entirely in compression if the
centre of pressure is within the middle third. In fact, in the case of
compressive axial force and flexure, when the force N acts between F and
H (FH = h/3), the neutral axis is external to the cross section, and we have oz

< 0 in each point (Figure 9.11).
A similar line of reasoning, though simpler on account of polar symmetry,

leads us to conclude that the central core of inertia of a circular cross section
of radius R is the concentric circle of radius R/4. Equation (9.50a), in the case
of the neutral axis being tangent in point A (Figure 9.12), gives in fact

-* = -<*£> (9.59)
ey

from which there follows

ey=£ (9.60)

As regards deformation, eccentric axial force produces a rigid rotation of
each individual cross section about the neutral axis, as well as an axial

251



THE SAINT VENANT PROBLEM

252

translation of the section. Referring to Figure 9.9 and to the relation (9.37), we
can see that the moment Mx = Ney produces the rotation

Mx Nz evm =—L.Z = • (9.61a)
* EIX EApl

just as the moment My = -Nex produces the rotation

Mv Nz e
^ = ̂ TZ = -^^ (9'61b)

EIy EA p2

Since the rotations <px and <pv are infinitesimal, the vector summation of them
may be made and will give the total rotation vector

[<p} = <pj + <pyj (9.62)

where / and j are the unit vectors of the X axis and the Y axis, respectively.
The angular coefficient of the axis of rotation is thus equal to

^ = -4^T=—U/kY (9.63)
9* e y ( P y ) t ana |^p v j

and coincides with that of the neutral axis (9.53).
Finally, it may be shown that the three elementary loadings, N, Mx, Myt are ener-

getically orthogonal, and the work associated with the eccentric axial force is
therefore equal to the sum of the work of each of the individual characteristics. The
elementary work, corresponding to an infinitesimal segment of beam, is equal to

dL = f Y dA dz (9.64)
JA

where *P represents the work per unit volume. Recalling expression (8.70),
which furnishes the complementary elastic potential as a function of the stress
condition, we have

dL = f ^- dA dz (9.65)
JA 2E

If we use the solution (9.46), we obtain

f * = J _ f K^-^TdA (9.66)
dz 2 E J A ( A lx

 > /, J

Expanding the square of the trinomial under the integral sign, we split the ele-
mentary work into two parts; in the first part there appear the squares of the
characteristics, whilst in the second there appear the mutual products

dL=i\N^+Ml + ̂ ] +

dz 2 LEA EIX £/v j

J_[NA* NM, c MxMy r 1
17 A J * A J v 7 7 nE [ A I X AIy • IJy - J
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Since the X and Y axes are central, the corresponding static moments vanish, as
does the product of inertia, and hence the second part of expression (9.67) vanishes

^=i[^i+M+^l (9.68)
dz 2 EA EIX EIy\* yj

The relation (9.68) proves that the three characteristics so far considered are
energetically orthogonal.

9.6 Torsion in beams of circular cross section

Let us consider a beam of circular cross section, subjected at its ends to the action
of two twisting moments Mv of equal magnitude and opposite direction (Figure
9.13). Let / denote the length of the beam and R the radius of the cross section.

Whereas in the case of axial force and flexure we have assumed the stresses
az (static hypothesis), in the case of torsion the hypothesis regards the dis-
placement field (kinematic hypothesis). We assume in fact that each cross sec-
tion rotates rigidly about the longitudinal axis, remaining at the same time
plane. Expressed in formulas (Figure 9.14),

u = -<pzy (9.69a)

v = cpzx (9.69b)

w = 0 (9.69c)

where <pz is the angle of infinitesimal rotation. For this purpose we have had
recourse to equations (3.8). Since, if we exclude the end regions, the relative
rotation per unit length of the beam must be constant and equal to ®, we shall
have for example

<pz=0z (9.70)

in the case where the beam is built-in in the cross section z = 0. The character-
istic of deformation® is called the unit angle of torsion. Equations (9.69)
then become

w = -0yz (9.71a)

v=Oxz (9.7 Ib)

w = 0 (9.71c)

From the displacement field expressed by equations (9.71) the strain field
may be immediately derived via the kinematic equations

ex=ey = ez=rxy=Q (9-72a)
7v=-®y (9.72b)

yzy=0x (9.72c)

Applying then the elastic constitutive equations (8.74), from the strain
field (9.72) it is possible to obtain the corresponding stress field:

ax=ay=az^rxy^0 (9.73a)
r^ = -G<9 y (9.73b)

Tzy=G0x (9.73c)
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From the shearing stress components (9.73b, c) the magnitude of the shearing
stress vector is obtained,

Tz=GOr (9.74)

where r is the radial distance of the generic point from the centre of the circu-
lar cross section.

The indefinite equations of equilibrium (8.2) are identically satisfied
by the stress field (9.73), just as are the equations of equivalence on the
lateral surface (9.2). Equation (9.2c) in fact becomes

G0(-ynx+xny) = 0 (9.75)

from which relation we obtain the proportion

i = 2t (9.76)y ny

which is identically satisfied on the basis of the similarity of the right-angled
triangles ABC and A' Er B in Figure 9.15. Note that equation (9.2c) is equiva-
lent to equating to zero the scalar product of the stress vector and the unit vec-
tor normal to the lateral surface

{T,)T{n} = 0 (9.77)

whereby the stress vector {TZ} is always tangential to the lateral surface and
thus, in the case of a circular cross section, it is also perpendicular to the
radius vector. On the other hand, not only on the lateral surface, but indeed at
each point of the circular cross section the vector {rz} is perpendicular to the
radius vector (Figure 9.15). From equations (9.73b, c), we have in fact

{rz }T {r} = _G0 JJC+ G0 xy = 0 (9.78)

Since az = 0, the conditions of equivalence on the end planes N = Mx = My = Q,
are identically satisfied. On the other hand, the shear along the X axis
vanishes,

Tx=\ TZJCdA = -G0 I y dA = -GOSX = 0 (9.79)
JA JA

since the static moment of the cross section with respect to the centroidal axis
X vanishes. The same applies for shear along the Y axis,

T = [ T^d4 = G0 f xdA = G0Sy=Q (9.80)
JA JA

The only significant condition of equivalence remains the one corresponding
to the twisting moment Mz

Mz = I {r}A{Tz}dA = f(^-yrw)dA (9.81)
JA JA

which, on the basis of equations (9,73b, c), gives

Mz = G& f r2 dA = GO Ip (9.82)
JA
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Full section
(a)

Hollow section
(b)

Thin section
(c)

Figure 9.16
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where Ip is the polar moment of inertia of the circular cross section. From the
foregoing relation (9.82), we obtain the unit angle of torsion

S-%. (9.83)

which is the characteristic of deformation corresponding to the twisting
moment. As in the case of longitudinal dilation (9.9b) produced by the
centred axial force, and in that of the curvature (9.41) produced by flexure,
the angle 0 is directly proportional to the static characteristic M. and
inversely proportional to the elastic characteristic G and the geometric
characteristic Ip.

Reconsidering equation (9.74), it is now possible to formulate the definitive
expression of global shearing stress

T z=^-r (9.84)
*p

This expression has a structure similar to equation (9.23) for flexure. If the
twisting moment is counterclockwise (positive), the vector {rr} will always
give positive moment with respect to the centre and will follow concentric cir-
cular lines of flux. It will increase linearly from zero, at the centre, to its max-
imum value, at the boundary (Figure 9.16(a))

rm ax=f^ (9-85)
lp

Since the polar moment of inertia is equal to nR*l2, the expression (9.85) may
be rewritten as a function of the radius R alone, as well as of the static
characteristic M. r--^

In the case of a cross section with the form of an annulus (Figure 9.16(b)), it
is possible to repeat the entire line of reasoning so far developed for the case

99.860
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of a circular cross section. It will be sufficient to take into account the
different polar moment of inertia

Ip=~(R\-R\) (9.87)

in the expression of stress (9.84)

T r=—^^—r (9.88)z n(R\-R\)

from which we obtain the maximum shearing stress

_ 2MZR2
r™~n(R\-R\) (9'89)

Hence, given an equal maximum radius /?2, the hollow cross section is
subjected to a higher stress.

Finally, let us consider a thin-walled circular cross section of thickness 8 (Figure
9.16(c)), which may be understood as a limit case of the preceding example:

#!' R2 = R (9.90a)

R2-Rl=8 (9.90b)

Expanding the difference of the fourth powers, the relation (9.89) becomes

T = 2M^
Tmax

 Ju(Rl+Ri)(R2+Rl)(R2-Rl) ^ }

and applying the approximations (9.90)

T~ = 2l™ ^
The foregoing formula may also be deduced from equation (9.85), setting
Ip = (2nR8)R2.

On Mohr's plane, the stress condition is represented by a circumference with its
centre in the origin. This stress condition is referred to as the state of pure shear
and implies two principal directions, one of tension and the other of compression,
rotated by 45° with respect to the Z axis (Figure 9.17(a)). It is thus understandable
why cylindrical elements of concrete subjected to torsion are reinforced with
spiral-shaped bars, inclined at an angle of 45° with respect to the axis and disposed
in such a way as to stand up to the principal tensile stress (Figure 9.17(b)).

The work of deformation of an element of the beam (Figure 9.13) is
obtained once more by applying Clapeyron's Theorem

dL = -Mz0dz (9.93)

and using the expression (9.83) of the unit angle of torsion

^-I«L (9.94)
dz 2Glp

The quadratic expression (9.94) is altogether analogous to equations (9.14) and
(9.44), obtained for the centred axial force and for the flexure, respectively.
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(a)

Reinforcement
(b)

Figure 9.17

Figure 9.18
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9.7 Torsion in beams of generic cross section

In the case of beams of generic cross section, each cross section is assumed to
rotate about a longitudinal axis (which may not coincide with the centroidal
one), called the axis of torsion, at the same time not remaining plane. Expressed
in formulas and analogously to equations (9.71), we have (Figure 9.18)

u = -0z(y-yc) (9.95a)

v = Oz(x ~ xc) (9.95b)

w = 0G)(x,y) (9.95c)

where xc, yc are the coordinates of the centre of torsion C, while the function
a)(x, y), called the warping function, represents the axial displacements of the
points of the cross section.

From the kinematic equations (8.8), we obtain the strain field

£x=£y=£z=7xy=0 (9.96a)

r =-e(y-yc) + 0^. (9.96b)
OX

Y^=0(x-xc) + 0^ (9.96c)
<ty

and consequently, applying the elastic constitutive equations (8.74), we obtain
the stress field

ax=<Ty=az = Txy = 0 (9.97a)

rvc=G0\^-(y-yc)] (9.97b)
Idx J

Tzy=G0 ^ + (jc-jcc) (9.97c)
L^ J
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In this case, the third of the indefinite equations of equilibrium (8.2c) is
satisfied if and only if

fH?"
i.e. if and only if w is a harmonic function. On the other hand, the third of the
equations of equivalence on the lateral surface (9.2c) is satisfied if and only if
the following boundary condition is satisfied:

\~-(y-yc)}n^\^ + (x-xc)\nv^O (9.99)
I d x J ' [dy J •

Laplace's equation (9.98) associated with the boundary condition (9.99) con-
stitutes a problem for which the solution exists and is the unique one, but for
an arbitrary additional constant (Neumann problem). It should be noted, how-
ever, that up to this point the coordinates xc, yc of the centre of torsion are still
unknown.

The conditions of equivalence on the end planes

•N = MX = A f v = 0 (9.100)

are identically satisfied, since oz = 0, whilst from the annihilation of the shear
we obtain the coordinates of the centre of torsion C. We have in fact

Tx= f rvcdA = G0 f |^-(;y-;yc)|dA = 0 (9.101a)
JA JALVX J

r v = f r^,dA = G0 f —+ (jc-jcc) dA = 0 (9.101b)
• JA " J A l d y J

whence we obtain

f — M-Sx+ycA = Q (9.102a)
JA dx

f — dA + Sv-x cA = 0 (9.102b)
JA fy

and thus, since the centroidal static moments are zero

^ I f ^ d A (9.103a)
A JA °y

yc = ~^I^M (9.103b)
AJA dx

Applying Green's Theorem, the coordinates of the centre of torsion finally
appear as follows:

jc c= — A o)nv ds (9.104a)
A y^ •

yc = --<i>conxds (9.104b)
A Jtf
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where <€ indicates the boundary of the cross section; or, in the alternative form

xc = <ko)dx (9.105a)
A Jf

yc=-—&G)dy (9.105b)
A J-f

The boundary condition expressed by equation (9.99) for the warping function
then transforms into the following integrodifferential equation:

\toy-Lta>dy]nx+\^ + X + ±&a>to\n =0 (9.106)
[dx A J f J [ fy AJs J

The equations (9.98) and (9.106) give the warping function, and consequently,
from equations (9.105) we obtain the coordinates of the centre of torsion. For
a numerical solution to this problem, the reader is referred to Appendix F.

There remains to be imposed the last condition of equivalence on the end
planes, the one corresponding to twisting moment

Mz = I {r}A{T,}d4= UxT^-yr^dA (9.107)
JA ~ JA

which, on the basis of equations (9.97b, c), gives

M _ = G 6 > f (,2+3,2+*^ ^IdA (910g)J A { dy dx)

The integral represents the so-called factor of torsional rigidity 7r, which is a
quantity that is always less than or, at the most, equal to the polar moment of
inertia Ip. The unit angle of torsion can thus be expressed in general as
follows:

0 = ̂ - (9.109)
GIt

with

7 ' - f (*2+>2+HSH£V (9-no)
J A { d y d x )

Note how It is an exclusively geometrical characteristic of the cross section.
From equations (9.97b, c) and (9.109) we obtain the shearing stress vector

M. F dd) , J /o 111 x^=-rhr-(>'->jc) (9Jlla)It I d x J

r.v=^[^ + (,-,c)] (9.lllb)
A \_<*y J

Finally, Clapeyron's Theorem gives the elementary work of deformation

^ = !*£ (9.H2)
dz 2GI,
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Figure 9,19
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9.8 Torsion in open thin-walled sections

The solution previously outlined regarding a cross section of generic shape
can be applied to the case of the rectangular cross section. It may thus be
deduced how the maximum stress is reached in the intermediate point of the
larger side (Figure 9.19)

Vax=oA (9.113)

where a is a dimensionless coefficient which depends only on the ratio a/b
between the sides of the cross section. At the same time, it is possible to obtain
the factor of torsional rigidity to be inserted into equation (9.109)

It=pab* (9.114)

where j3 is another dimensionless coefficient which depends only on the ratio
a/b between the sides of the cross section. The two coefficients, a and /J, are
given in Table 9.1 as functions of a/b.

In the case of a thin rectangular cross section (a/b —»<») , the lines of flux
of the vector [TZ] are closed curves with two portions practically parallel to
the larger sides (Figure 9.20). These portions reverse their course only in the
end regions, so that the shearing stress vector {TZ} presents the sole compo-
nent T-X for the most part of the cross section. The shearing stress component
TZJ. is shown to have a linear distribution over the thickness b,

,„-%.,
with a maximum absolute value at the boundary,

*--^ <9-"6>

Table 9.1

alb 1 1.5 2 3 10

a 4.80 4.33 4.06 3.74 3.20 3
P 0.141 0.196 0.229 0.263 0.312 1/3

99.150
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Figure 9.20

Since on the basis of equation (9.114) and of the tabulated value we have

/,=^3 (9.117)

we also obtain

M
rmax=-fb (9.118)

v

Note that the stresses parallel to the larger sides are not, however, sufficient
of themselves to ensure equivalence with the applied twisting moment M,. In
fact, on the basis of equation (9.16f), we obtain

Mz(r.^) = -\ yr^dA (9.119)
JA

Substituting the expression (9.115) in equation (9.119), we obtain

6M r/2 r^2
Af.(T, f) = —f- dx y2dy (9.120)

ab* J_a/2 J-b/2

from which we have

M:(r:,) = ̂ - (9.121)

The other half of the moment M. is furnished by the components rrv, which
are important only in the end regions of the cross section, where they present
an arm with respect to the centroid (or centre of torsion) which is much greater
than that of the components T^ (a » b).

Let us consider the case of an open thin-walled cross section made up of a
number of thin rectangles welded together so as not to create any closed path
(Figure 9.21), and let us allow the applied moment M- to be distributed in such
a way that the /th section takes up the amount ML • The maximum stress on
the fth section will be given by equation (9.118),

rU=^, (9-122)
*r
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where bt is the thickness of the zth section and

//=!*/*? (9.123)

from equation (9.117). On the other hand, for reasons of congruence, since
each section must rotate by the same angle <9, we have

ei=ML = e=M± (9.124)
GI\ GIt

where It is the factor of torsional rigidity of the entire section. From equations
(9.122) and (9.124), we obtain

tUx=^/ (9-125)
*t

The factor It is obtained from considerations of equilibrium, or rather of
equivalence. Since the sum of the partial moments Ml must equal the applied
moment Mz, we have

Mz = GO It = V M( = G0 V /; (9.126)
i i

from which we obtain

/, = ̂ // (9-127)
I

The global factor of torsional rigidity is thus equal to the sum of the partial
factors, as is the case when the elements are in parallel. From equation (9.124)
we then have
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Mi=M_=f- (9.128)~ ~£"/
where the ratio !}/% Ij is called coefficient of distribution. Recalling equa-
tion (9.127), the global factor may be expressed as follows:

I,=^atf (9.129)
/

If the open thin-walled section has as its mid-line a regular curve (Figure
9.22), and not a broken line as in the previous case, equations (9.125) and
(9.129) will be replaced by the following:

M
r^(max) = —±b(s) (9.130)

't

I,=\\b\s)te (9.131)
J J 6

where s is the curvilinear coordinate on the mid-line ̂
The distribution of the stress r.s is linear on the thickness and vanishes on

the mid-line. The maximum absolute value (9.130), which is recorded on the
boundary, is in turn maximum in the points in which the thickness b(s) is max-
imum. The flux lines of the vector {rz} are thus parallel to the mid-line and
reverse their course only in the end regions (Figure 9.22).

9.9 Torsion in closed thin-walled sections

Closed thin-walled sections are also called tubular sections. These are fre-
quently used in building applications, because, as we shall see shortly, they
present notable strength and stiffness. Their disparity of behaviour in regard to
open thin-walled sections is due substantially to the flux of the vector {T-},
which in the case of closed sections manages to develop more conveniently,
i.e. with the shearing stresses Tzs that are approximately constant on each
chord that is perpendicular to the mid-line ^ (Figure 9.23(a)). In addition,
even though the thickness b(s) is not constant, the product of shearing stress
rzs and thickness must be constant:

Ty (s) b (s) = constant (9.132)

This follows from the simple application of the law of reciprocity of shear-
ing stresses to an element of the thin wall, obtained by sectioning the beam
with two planes perpendicular to the axis of the beam, located at a distance dz
apart, and with two planes perpendicular to the mid-line of the cross-section
(Figure 9.23(b)). If we denote as b^ b2 the chords of intersection of the longi-
tudinal and the transverse sections, and as TJ, T2 their respective shearing
stresses, by virtue of the axial equilibrium of the element, we must have

Tlbldz = T2b2dz (9.133)

from which there follows the constancy of the product (9.132), since equation
(9.133) holds good for any pair of planes which cut the mid-line at right
angles to it.
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Figure 9.23

From equivalence we must find

M. = <j> ry (5) b(s) h(s) ds (9.134)

where h(s) represents the arm of the elementary force (T:S bds) with respect to
the centroid (Figure 9.23(a)).

From equations (9.132) and (9.134) we deduce

Mz = Tzs(s)b(s) <X> h(s)ds (9.135)
J^

and thus, noting that the integral given above represents twice the area Q,
enclosed by the mid-line ̂  we obtain

Tzs = MZ (9.136)zs 2Qb(s)

The expression (9.136), called Bredt's formula, underlines how the maxi-
mum stress is produced where the thickness b(s) is minimum, in sharp con-
trast with what occurs in the case of open thin-walled sections, as described by
equation (9.130).

An application of Clapeyron's Theorem then furnishes the factor of tor-
sional rigidity. The elementary work of deformation is equal to

dL = -^-dz = |VdV (9.137)
2GIt Jv

where *Pis the complementary elastic potential expressed by equation (8.70).
Since the stress component T^ alone is different from zero, we have

^ — f ^ d A (9.138)
2GJA
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and thus, substituting equation (9.136)

^ = £ T%2 I IJT^(b(s) **) (9-139)2G 4Q2 J^ bz(s)

From equations (9.137) and (9.139) we obtain the factor of torsional rigidity

It=4Q2l& — (9.140)
IJvKs)

This formula simplifies when the thickness of the section is constant,

/,.i25 0.I4D
s

where s is the length of the mid-line. It should be noted that, whereas the
thickness b appears raised to the first power in equation (9.141), it appears
raised to the third in equation (9.117), thus jeopardizing the stiffness of the
open sections.

In the case of a thin circular section of thickness 8 we find again equation
(9.92), applying Bredt's formula

T = M* (9.142)
* 2nR28

while equation (9.141) gives

,..*gp
which proves to be the polar moment of inertia of the cross section

It = 2nR38 = Ip (9.144)

In certain cases it may happen that a thin section is made up of tubular parts
and open parts (flanges). It may readily be shown that practically the whole of
the applied moment Mz is sustained by the tubular part, while the remaining
open thin parts are subjected to much lower amounts.

Consider, for instance, the box section of Figure 9.24. Cross sections of this
sort are frequently used for beams of road bridges. It consists of a thin rectan-
gular cross section (1) and of two flanges (2).

99.1430
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Angular congruence gives

0^^L = 02=^ (9.145)
1 G/j 2 G/2

where the symbols have their obvious meanings. On the other hand, from
equivalence we have

M{+M2=M2 (9.146)

Equations (9.145) and (9.146) constitute a system of linear equations in the
two unknowns M,, M2. Once solved, these give the distribution that was
sought:

Mi=M,—Ij— (9.147a)
* / , + / 2

A/ 2 =M_—^— (9.147b)
* / , + / 2

Using relations (9.141) and (9.129), we then have

I}=-a^b (9.148a)

I2=-ab3 (9.148b)

whence the ratio between rigidity factors becomes

t=4 (!)! <9'149)

If, for example, a/b — 10, we obtain I\/12 — 400, and thus M\ — M, and A/2 — 0.
Using equations (9.136) and (9.130), we obtain the shearing stresses

T, =M. —^ — (9.150a)1 4 /, + /2 4 fl2fe

r2 = M,—VTIT (9-150b>z / , + / 2 fa fo 3

whence the ratio between the shearing stresses is

lL = 4W2xlf*]aW (9.151)
T2 UJ 6UJ 3UJ

Note that, while the ratio (9.149) between the stiffnesses is proportional to the
square of the ratio (a/b), the ratio (9.151) between the stresses is proportional
to the first power of (a/b). The flanges are in any case under a slight stress.

As regards multiply-connected thin-walled sections, the reader is referred
to Appendix G.

9.10 Combined shearing and torsional loading

We intend to show how shear is energetically orthogonal to twisting moment,
only if applied to the centre of torsion. To do so, let us consider a beam built-
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Figure 9.25

in at one of its ends and loaded on the other, in one case by a force T passing
through the centre of torsion C (Figure 9.25(a)), in the other by a twisting
moment Mz (Figure 9.25(b)). If we denote as {ri c(M z)} the displacement in the
XY plane of the point C, caused by the moment Mz, and as <pz(T) the rotation of
the cross section in the XY plane, caused by the shear T, the application of Bet-
ti's Reciprocal Theorem expresses the equality of the work performed by
either force system acting through the displacement resulting from the other

On the other hand the displacement {77C(MZ)} of the centre of torsion is zero
by definition, so that the work done by either system is likewise zero and in
particular the rotation <pz(T) caused by the shear acting in point C is zero. For
this reason, the centre of torsion is also called the centre of shear.

When the shearing force, then, is applied to the centre of torsion, it causes
only translations and not rotations of the cross section in the XY plane. As
there is no torsional deformation, i.e. 0=0, from equations (9.97) it may be
deduced that the torsional stresses must also be zero.

Following the same line of reasoning, it is evident that the combined load-
ing of shear-torsion (Figures 9.25(a), (b)) is equivalent to a single force, par-
allel to the assigned shear, that presents a moment Mz with respect to the
centre of torsion (Figure 9.25(c)). In other words, the global twisting moment
Mz is evaluated as the moment of the force tangent to the cross section with
respect to the centre of torsion, and not with respect to the centroid, as one
might have been erroneously led to think previously.

9.11 Shearing force

Consider a Saint Venant solid loaded on the end planes by two equal and
opposite shearing forces Tyj whose lines of action pass through the corre-
sponding centres of torsion and are parallel to the central direction of inertia Y,
and by a bending moment Mx which counterbalances the couple Tyl, where / is
the length of the cylindrical solid (Figure 9.26). Whereas the shear is constant,
the bending moment varies linearly, from zero to the value -Tyl, along the axis
of the beam. A typical case is that of a cantilever beam loaded by a force Ty at
the end. As has already been mentioned, it is not possible to isolate the
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Figure 9.26

shearing characteristic, as this is the derivative of the bending moment
function.

Let us now set ourselves the problem of determining the mean shearing
stress acting orthogonally to a generic chord BB' (Figure 9.27(a)). For this
purpose let us consider a portion of the solid, bounded by two cross sections a
distance dz apart and by the plane parallel to the axis of the beam, the projec-
tion of which on the cross section is represented by the chord BB' (Figure
9.27(b)). If we indicate by s the direction perpendicular to the chord BB' on
the XY plane, the distribution of the shearing stresses rsz will be given by over-
turning the reciprocal shearing stresses r^ about the edge BB' (Figure
9.27(b)). From the equilibrium with regard to axial translation of the element
of solid considered, we can then put

(9.153)

(b)
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where A' is the lower portion of the cross section, and where the integrand
on the right-hand side of the equation represents the increment of normal
stress <JZ produced by the bending moment Mx(z). From equation (9.23) we
obtain

%-^-f <9-154>dz GL lx

where Mx is the only function of z. Recalling then that the derivative of the
moment is equal to the corresponding shear, we have

%-r,f (9.155)
di lx

The relation (9.155), introduced into equation (9.153), gives the mean shear-
ing stresses acting orthogonally to the chord BB',

TySf
T,-^- (9-156)

where Sx is the static moment of the area A' with respect to the X axis, and b
is the length of the chord. The relation (9.156) is known as the Jourawski for-
mula. The components of {rz} parallel to the chord BB' are negligible in the
cases in which the chord BB' is parallel to the central axis X. The mean values
of these stresses, on a chord parallel to the central axis K are in fact propor-
tional to the static moment S^ , where A" is one of the two portions of the
section separated by the vertical chord (Figure 9.28).

From the applications point of view, the Jourawski formula proves to be
particularly useful, because, in addition to the fact that the above-mentioned
components are negligible, the local values ry are not sensitive to variation
from the mean value given by the relation (9.156). A typical example of a
cross section for which the Jourawski formula provides a highly reliable esti-
mation of the maximum shearing stress is the rectangular one (Figure 9.29(a)).
Consider a generic horizontal chord BB' for which the static moment of the
area A' with respect to the X axis is

*--*(HH(HH(T->') »•*>
Recalling that the moment of inertia of a rectangular area is Ix = &/z3/12, and
applying equation (9.156), we obtain

<.-£(?->•)
The stress r^, or rather its mean value on the horizontal chords, varies para-
bolically, vanishing on the horizontal sides and presenting one maximum on
the centroidal chord (Figure 9.29(b)):

r =__2L (91591
Tmax 2 Mi ( '

(9.158)
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Figure 9.29

More generally, the following relation will hold good:

T™«=*> 7 (9-160>
where A stands for the area of the cross section, while sy is a factor always
greater than unity, which depends on the geometrical shape of the cross
section. For the circular cross section, for instance, we have sy - 4/3.

In slender beams, the shearing stresses are usually far smaller than the axial
stresses due to bending moment. In the case, for instance, of a cantilever beam
having rectangular cross section and loaded by a force Ty at the free end, at the
built-in constraint we have

Tyl h_6Tyl
a™=W/U2=~M (9J61)

so that the ratio

^ = 7(7) (9.162)
<7max 4U;

tends to zero for / —» «>.
In the case of stubby beams, the shearing stresses can be considerable, even

if compared with axial stresses due to bending moment. It should be noted,
however, that below certain ratios of slenderness (I/h =5 3) the Saint Venant
theory fails to apply, since the end regions of the solid must then be neglected
(the length of these regions is approximately equal to the beam depth h). Nor
must it be forgotten that by the law of reciprocity of shearing stresses, longitu-
dinal shearing stresses ryz are also present, as well as the stresses T^ acting
upon the cross section (Figure 9.30(a)). The existence of the former stresses
Tyz may be inferred if we consider two beams resting one on top of the other
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(d)
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(c)

Figure 9.30

without friction (Figure 9.30(b)). If the lower beam is supported at its ends
and the upper one is loaded with a force, then each beam will bend, presenting
fibres in tension below and fibres in compression above. At the interface
between the two beams we shall then have dilations in the upper beam and
contractions in the lower one. If we now imagine that there is some form of
friction acting between the two free surfaces in contact, the two beams will
develop interactions that will tend to contract the upper one and dilate the
lower one. These interactions, in the case where relative sliding is prevented
by the presence of a bonding agent, are represented by the shearing stresses tyz
(Figures 9.30(c), (d)). In laminate composite materials, the mechanism of
delamination is caused by the stresses ryz exceeding the limits of bonding
resistance.

As regards deformation, the only strain component substantially different
from zero is y^. In the case of a rectangular cross section, y^ will show a par-
abolic variation equal, but for the factor 1/G, to that of t^, (Figure 9.31):

* =_^_(^_ 2\
7v G Gbh*(4 y) ( }

Shearing strain is thus maximum on the centroidal plane y = 0, and zero on
the outermost planes y = ±h/2 (Figure 9.31). The result then is an inflection
or warping of the cross sections out of their original planes, so as to main-
tain orthogonality only between the deformed section and the outermost
planes.
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Figure 9.31
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The relative sliding between the end sections of the element of length dz
(Figure 9.32) may be obtained via the application of Clapeyron's Theorem

dL = ̂ Tydv =^Tyry<k (9.164)

where jy is called mean shearing strain and represents the characteristic of
deformation corresponding to the shearing force Ty. The elementary work dL

lz is expressible via the complementary elastic potential,

dL= I f dV = — I T^dA (9.165)
Jy 2G JA

where the component T^ has been neglected, while the component T^ has
been assumed to be given locally by its mean on the corresponding horizontal
chord.

Substituting the expression (9.158) in equation (9.165), we obtain

. fb/2 f h / 2 357^2 / , 2 \2

"^HJ ^J 7w T~y2 dy (9'166)
2G J_fc/2 J-h/2 b n V 4 )

from which

dL = A 6 H (9167)

2G 5 bh
A comparison between the foregoing expression and equation (9.164) yields

7v=-—^ (9.168)7> 5 Gbh
More generally the following relation will hold:

/,=',£ ^.169)

where fr called the shear factor, is always greater than unity and depends on
the geometrical shape of the cross section. For the circular cross section, for
instance, we have t. = 32/27.
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From equation (9.164) we thus obtain

f-i-4
which shows how the work per unit length of the beam is a quadratic function
also of the shearing force.

9.12 Biaxial shearing force

In Section 9.10 it has been shown how the shear passing through the centre of
torsion causes only translation and not rotation of the cross section in its
plane. We did not, however, then specify the relation that links this translation
to the shearing force components Tx, Ty. On the other hand, in the last section
we implicitly assumed that, where the axis Y is central and one of symmetry,
the shearing force Ty causes exclusively a shearing strain yy and hence a trans-
lation of the cross section in its own Y direction. However, it is not possible to
rule out a priori that, where the Y axis is central but not one of symmetry, the
shearing force Ty may cause also a shearing strain % and hence also a transla-
tion of the cross section in a direction different from its own.

To analyse the problem in a rigorous way, it is necessary to consider (open
or closed) thin-walled cross sections, for which the shearing stress T^ can be
considered constant on each chord orthogonal to the mid-line ^ while the
shearing stress component orthogonal to r^ can be neglected (Figure 9.33). In
the case of biaxial shear, i.e. where there is the simultaneous presence of the
two shears Tx, Ty, the stress r^ is equal to the algebraic sum of the correspond-
ing contributions

rzs(s) = lL^l+^^l (9.171)
^' Ix b(s) Iy b(s)

The elementary work of an element of beam is always equal to the integral of
the complementary elastic energy

dL = £\TZbds (9.172)
2Gjv

From equation (9.171) we obtain the relation

dz \n C S2 T2 f S.2 TXTV f S,SV 1
dL = — H1 ^dj + ̂ U — d* + 2^-H -^ds (9.173)

2G[/| Jv b 72 Jv b Ixly Jv b \

which may be cast in the form

*""= ̂ A(r'T* + '^ + 2^W (9'174)

where

A f S2

tx =~\ -^ds (9.175a)
I] Jv b

*"Hrf* <9-"5b)

(9.170)
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are the shear factors, while

t^ = — J -̂ -̂  ds (9.175c)

is the mutual shear factor.
When in general t^ * 0, the mutual work

TXTV
dL (mutual) = r „ -^ dz (9.176)

GA
is different from zero, and thus the shears Tx and Ty are not energetically
orthogonal. On the other hand, t^ is null when there is even only one axis of
symmetry, as may be deduced from the integral expression (9.175c). Hence,
only for cross sections with one or more axes of symmetry are the shears Tx

and Ty energetically orthogonal.
Applying Clapeyron's Theorem, we also have

dL = ^r J [ d«+^r > ,dv (9.177)

and therefore, introducing the mean shearing strains

dL = - (7; Yx + rvyv) dz (9.178)2 y y

On the other hand, from the linearity of the elastic problem, the mean shearing
strains are homogeneous linear functions of the shears

Yx=axxTx+axyTy (9.179a)

Yy=ayxTx+ayyTy (9.179b)

Substituting equations (9.179) into equation (9.178), and taking into account
that we must have a^ = ayx according to Betti's Reciprocal Theorem, we have

2
A comparison between the preceding expression and equation (9.174) furnishes,
via the law of identity of polynomials, the linear relation that links the shearing
force vector to the shearing strain (or translation) vector of the cross section:

y^-Jr^Ti+f^) (9.181a)
GA

Yy=-^(txyTx+tyTy) (9.181b)

The relations (9.181) hold good also for compact sections, in which case,
however, the factors tx, tr t^ are difficult to determine.

9.13 Thin-walled cross sections subjected to shear

As has been mentioned in the foregoing section, the Jourawski formula fur-
nishes the exact shearing stresses only in the case of thin-walled sections, with
thickness b tending to zero. In this case, in fact, it is legitimate to equate the
local stress with the mean stress on the chord. On the other hand, only the
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Figure 9.34

(a) (b)

shearing stress component Trv (parallel to the mid-line) is present, by virtue of
the condition of equivalence on the lateral surface of the beam.

In the sequel we shall examine a number of typical cases, namely the I-
section, the box section and the C-section, both from the standpoint of stress
and from that of deformation.

Consider the I-section of Figure 9.34(a). This type of cross section is fre-
quently used in metal constructions, because it allows the maximum moment
of inertia to be achieved with the minimum use of material. A high moment of
inertia implies, in fact, low axial stresses cr, due to bending.

The static moment S^ may be represented graphically on the cross section,
if we take as our reference line the mid-line (Figure 9.34(b)). The static
moment varies linearly on the flanges and parabolically on the web. In the
points where the flanges and the web converge, it undergoes a discontinuity, in
such a way that the flux of the vector {rzs} is preserved. If we denote by B}

and B2 the points which immediately precede and follow the node #, in abso-
lute value we have (Figure 9.34(b))

S*'(B,) = fr(|)(|) = -jW»2 (9.182a)

S f ( B 2 ) = 2S?'(B,) = ±bh2 (9.182b)

The static moment in the centroid is then

S*'<0-lM*+ft(|](±) = |«k* (9.1820

The maximum stress is in the centroid. Applying the Jourawski formula and
using the moment of inertia
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I=—bh3+2(bh)\-\ =—bh* (9.183a)
12 V 2 J 12

we find that the maximum stress is

TV(JL bh2} 15 Tv^-^-m "-'83b>
More particularly, considering the two coordinates ^ and £2 along the mid-

line, we have (Figure 9.34(b))

Sf(& = ±bhSt (9.184a)

5j4'(£2) = ̂ 2+^2(f-|-] (9.184b)

It is thus possible to verify that it is the web ED alone that withstands the
shearing force. We have in fact

fD fh/2 T cA'(? \

I tjte = 2\ -^f^dfe (9.185)
JB Jo *xb

Substituting expressions (9.183a) and (9.184b) into equation (9.185), we obtain

c° 21 f^Vi i i ^
Tz,6d5 = T-Jr lW2+IMg Ifc£2 W2 (9.186)

Jfl ^-/7/z3 Jo V2 2 2 J

and thus we verify that

f r!Sbds = Ty (9.187)
JB

As regards the shear deformation, the expression (9.175b) in the case of the
cross section under examination becomes

3h f Ch/2 Ch/2 }
' v= 77^5-4 [^'(5i)l2d6 + 2 [5^({2)pd& (9.188)
' (£«i3) I Jo Jo J

whence we obtain
r,^3.38

Figure 9.35 gives qualitatively the diagram,of shearing stresses for the box
section already considered.

Finally let us consider the C-section of Figure 9.36(a). It is symmetrical
only with respect to the central axis X, so that the centre of torsion will be
found on that axis in a position that is unknown beforehand. In the case
where there is a shear Ty passing through the centre of torsion (Figure
9.36(a)), the shearing stresses produced must constitute a system of forces
equivalent to the only characteristic present, Ty (in addition to the bending
moment Mx). Resolving then a simple problem of static equivalence, it is
possible to identify the position of the centre of torsion in the case of thin-
walled cross sections.
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Figure 935

With the two reference systems ^ and £2 fixed on the mid-line, we have
(Figure 9.36(a))

#'(&) = £*& (9.189a)

S*'(£2) = 2 W*2 +^2fft-^-j (9.189b)

for which the application of the Jourawski formula gives the following shear-
ing stresses:

*»(&> = ** = 7 ,̂ <9.190a)

^(fe) = fv = -^[2fcfcz + bh§2 ~\b^] (9.1906)
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where Ix - 4£- bh3. The variation of the stress iu is thus linear on the two hor-
izontal plates and parabolic on the vertical plate (Figure 9.36(b)). The stresses
T^y create a flux which runs from the upper end A to the lower one L. The
magnitude of the resultant force of each horizontal distribution r^ is

f2/l ^ T [£2~]2h *

*-Jl '.*>»«-l4#H.-7r> <9'191a)

whilst the magnitude of the vertical resultant is equal to the shear Ty:

f2h ^ T [ <ff 2 1 £3 "I2*Ho^'^'^r^Hfi -T' <9-191b)

The two horizontal resultants therefore create a counterclockwise couple
2hFl9 and hence the shear Ty is equivalent to the system formed by this couple
and by the force F2, when it acts to the left of the vertical plate, at a distance d,
such that

2hFl=dF2 (9.192)

from which we obtain the position of the centre of torsion C:

d = 2h^- = -h (9.193)
F2 7

From the foregoing considerations, it may be deduced that, for thin-walled
sections formed by thin rectangular elements converging to a single common
point (Figure 9.37), the centre of torsion coincides with that point. In fact, the
problem to be solved is a static one of equivalence for two or more forces all
passing through a single pole. Evidently the resultant will also pass through
the pole.

Also in the case of oblique polar symmetry (Figure 9.38), considerations
similar to the preceding ones apply, which make it possible to identify the
position of the centre of torsion in the centre of symmetry.

However, in the case of non-symmetrical sections (Figure 9.39), the task of
locating the centre of torsion is far more complex and calls for the resolution
of two static problems of equivalence, with respect to the shears Tx and Ty.
The intersection of the lines of action of the two resultants furnishes the centre
of torsion.
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Figure 9.38

(a)

(b)

Figure 9 39

279



THE SAINT VENANT PROBLEM

9.14 Beam strength analysis

Combining all the elementary loadings acting on the Saint Venant solid, we
obtain two orthogonal forces that are generally skew forces (Figure 9.40(a)):
the axial force N, eccentric with respect to the centroid G, and the shearing
force 7, eccentric with respect to the centre of torsion C. The first combined
load is equal to the sum of a centred axial force N and the two bending
moments Mx, My, and generates only the axial component of stress <7r The
second combined load is equal to the sum of a twisting moment Mz and the
two shears Tx, Ty, and generates only the shearing stress component Tr There-
fore, in each point of any given cross section, there will in general be present
both the components oz and rz (Figure 9.40(a)), thus in every case giving rise
to a plane state of stress (Figure 9.40(b)). It is evident that, in general, the
plane of stresses varies from point to point in the cross section.

The stress tensor for the Saint Venant solid thus takes the following form:

"0 0 rxz~

[cr]= 0 0 Tyz (9.194)
Tzx Tzy °z _

three of the six significant components always being zero. It should be noted
that the case of the tensor (9.194) is complementary to that of the cylindrical
solid of thickness / tending to zero, loaded exclusively on the lateral surface
by forces contained in the middle plane. This solid, called the Clebsch solid,
idealizes a plane plate of small thickness, loaded by forces contained in its
own middle plane and thus not subject to bending. This problem will be dealt
with more extensively in Chapter 19.

The representation of the state of stress in a point is obtained graphically on
Mohr's plane (Figure 9.41). It is sufficient to identify the two notable points

(b)

(a)

Figure 9.40
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P'(0,-r£)

Figure 9.41

P(oz, rz) and P* (0, -TZ), where the stress rz > 0 if, when applied to the plane
normal to the axis Z, it tends to cause the element to rotate in a clockwise
direction. The intersection of the diameter PP' with the axis an gives the cen-
tre of Mohr's circle (Figure 9.41). The intersection of the horizontal through P
with the vertical through P' defines the pole P*, while the lines joining the
pole P* with the points of intersection of the circumference with the axis an

define the principal directions of stress. From the graphical construction, it
may be noted how one of the two principal stresses is always negative and
thus compressive, while the other is always positive and thus tensile.

The application of Tresca's criterion (criterion of maximum shearing
stress), gives the following condition (Figure 9.41):

rmn=PC = ̂ J + T2
z <\op (9.195)

where OP is the uniaxial yielding stress. From equation (9.195) we obtain then
the following strength condition for the beams:

Jal+4*l <ap (9.196)

On the other hand, Von Mises' criterion (criterion of the maximum energy
of distortion), via the general equation (8.114) gives

Vof+3rz
2 <ap (9.197)

From a comparison between the inequalities (9.196) and (9.197), we verify
again how Tresca's criterion is more conservative than that of Von Mises, in
that it presents the factor 4 as against the factor 3.

There follow a number of strength analyses for cross sections already intro-
duced in Chapter 2.
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EXAMPLE 1

Let us reconsider the cross section of Figure 2.18, subjected to an eccentric
axial force of compression (combined compression and bending). Since the
eccentricities in the central reference system are (Figure 9.42)

ex = 43.54 mm, ey = 29.30 mm

and the corresponding central radii of gyration

p2 = 4/A = 423.16mm2

p2 =/y /A = 96.16 mm2

equation (9.49) for the neutral axis is as follows:

, 29.30 43.54
1 + y + ^ - Q

423.16 96.16

or, in segmentary form

-J^ + -fL = _i
14.44 2.21

Thus on the basis of equation (9.48) point A, having coordinates XA = 15.84 mm,
yA - 41.08 mm, is subjected to the compressive stress OA = -17.88 kg/mm2,

Figure 9.42
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whilst point B, having coordinates XB = -25.00 mm, yB = -17.32 mm, is sub-
jected to the tensile stress &B = 18.67 kg/mm2. Both stresses are lower in abso-
lute value than the yield stress of steel, ap = 24 kg/mm2.

EXAMPLE 2

Let us reconsider the cross section of Figure 2.19, subjected to a combination of
compression and bending. Since

ex = 0, ey = 35.76 mm

p 2 = 4/4 = 267 mm2

equation (9.50a) of the neutral axis is

y = -7.5 mm

The maximum stress in absolute value is thus

5000kg 35.76 + 7.5 , . , „ , , 7<7max = ~- x = 14.42 kg/mm2
max 1996mm2 7.5 *

and proves to be less than ap = 24 kg/mm2.

EXAMPLE 3

Let us reconsider the cross section of Figure 2.20, subjected to axial force and
twisting moment. The axial force produces a uniform normal stress

TV 1500xl03kg 101 , 2
07 = — = —^ = 12kg/mm2

1 A 1260cm2 6

while the twisting moment, if we neglect the contribution of the flanges, pro-
duces a uniform shearing stress

Mt 40xl03kgxl02cm 01 . 2T, = —*— = — = 3 kg/mm2

" 2QS 12 cm x 1082 cm2 6

furnished by the Bredt formula (9.136).
Applying Tresca's criterion (9.196), we obtain

A/C72+4r2 = Vl2 2 +4x3 2 = 13.4kg/mm2 < 24 kg/mm2

The yield strength test thus gives a positive response.

EXAMPLE 4

Let us consider again the cross section of Figure 2.21, subjected to a combined
loading of shear-torsion. The twisting moment is Mz = 4001 x 0.4 m = 160 tm,
and produces a counterclockwise uniform shearing stress equal to

, , 160xl03kgxl02cm 2T7 (M.) = = 3.89 kg/mm2
zl z / 10cm x (2513+ 1600)cm2

On the other hand, for the calculation of stresses due to shear, it is necessary to
evaluate the static moment of the part of cross section which remains above
the central axis £
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In Chapter 2 the static moment of the circular segment (4) with respect to
the X axis has already been evaluated:

44)= 22 600 cm3

so that

S<4)= S& - A(4}yG = 22 600 - 444 x 24.61 = 11 673 cm3

The two rectilinear segments above the axis £ present the following static
moment:

sf } = sf } = ̂  (40 - 24.61 )2 x 5 = 592 cm3.

Altogether we have

5max = (11 673 + 2 x 592) cm3 = 12 857 cm3.

The maximum shearing stress due to shear is therefore

remax 4oo xlO 3 kg x 12857cm3

r, m = —-— = *— = 8.24 kg/mm2

' 2/^<5 624 000 cm4 x 10 cm

The maximum shearing stress is found on the left-hand vertical segment, in
correspondence with the global centroid

*max = TJMZ) +rz(T) = 12.13 kg/mm2

Applying Tresca's criterion (9.196), we find

V4r2
ax - V4xl2.132 -24.26kg/mm2 > ap

whereas Von Mises' criterion (9.197) yields a positive result:

^3^ - V3X12.132 - 21 kg/mm2 < ap

EXAMPLE 5

Let us consider again the cross section of Figure 2.22, subjected to biaxial
shear. The corresponding components are equal to

T^ 193 t, T£=* 52.4 t

The maximum static moment with respect to the £, axis is (Figure 9.43(a))

5max = (160 x 20 x 0.96 + 120 x 13.58) cm3 = 4701 cm3

so that the maximum shearing stress due to Tn develops in the centre and is
equal to

T ( ) =Wl=^3xlQ3k gx4701cm3= n i 2

^Tl1 1^8 204 000 cm4 x 4 cm

The shearing stress in the central point due to 7^, on the other hand, is in the
opposite sense (Figure 9.43(b)), and tends to mitigate the previous contribu-
tion. The test is thus positive.
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(a)

(b)

Figure 9.43
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10 Beams and plates in flexure

10.1 Introduction

In this chapter deflected beams and plates are studied. It is shown that, for
both elements, it is possible to define the deformation characteristics by deri-
vation of the components of the generalized displacement vector, which, in
addition to displacements in the strict sense, also presents rotations. Analo-
gously with the three-dimensional solid encountered in Chapter 8, it may be
noted that, also for the one- or two-dimensional solid, the static operator is,
but for the algebraic sign, the transpose, or rather the adjoint, of the kinematic
operator. This property of duality proves of great utility in the case of dis-
cretization into finite elements (Chapter 11).

The cases of curved plane beams and shells having double curvature
present notable analogies with the cases of rectilinear plane beams and plates
respectively, once the rotation matrix, which converts the external reference
system to the local reference system, is included in the analysis. A further
noteworthy analogy is found between the differential equation of the elastic
line for rectilinear beams and the equation of the elastic plane for plates. Both
equations, in fact, neglect the shearing deformability and turn out to be of the
fourth order in the single unknown function consisting of deflection or
transverse displacement.

Two particular cases of application of the equation of the elastic line are
represented by the beam on an elastic foundation and by the beam subjected to
steady free oscillations.

10.2 Technical theory of beams

The results obtained for the Saint Venant solid on the basis of restrictive
hypotheses, as regards both the geometry of the solid (rectilinear axis, con-
stant cross section) and external loads (lateral surface not loaded, zero body
forces), are usually extended in technical applications to cases in which these
hypotheses are not satisfied. This means that the stresses and strains in the
cross sections of beams are usually calculated using formulas obtained in the
foregoing chapter, by introducing, instead of the loads acting on the end
planes of the Saint Venant solid, the internal beam reactions acting in the cross
sections considered. This extrapolation is also made in the case of

1. beams having non-rectilinear axes;
2. beams of variable cross section;
3. beams loaded on the lateral surface.

It is required, in any case, that the radius of curvature of the geometrical axis of
the beam should be much greater than the characteristic dimensions of the cross
section, and that the cross section should, at most, be only slightly variable.

10.3 Beams with rectilinear axes

Let us consider an elementary portion of a beam with rectilinear axis and a
cross section that is symmetrical with respect to the Y axis. Let this portion be
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(a)

JdvT

T

dvT = 7 dz

\
^ d(dvM)= dtf, dz

2

I d(dvM)

Figure 10.1
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(c)

subjected to bending moment Mx and to shear Ty. Deformations due to these
two characteristics will produce relative displacements between the centroids
of the two extreme cross sections of the beam portion, exclusively in the
direction of the Y axis. In the case of the shear 7V, we have (Figure 10.1 (a))

d v T = / v d z (lO.la)

where duT is the relative displacement in the Y direction due to the shear, yv is
the shearing strain dual of the shearing force and dz is the length of the infini-
tesimal element of beam. In the case of bending moment, and considering the
rotation <px of the element, we have (Figure 10.1 (b))

dvM=-(pxdz (lO.lb)

having neglected the infinitesimals of a higher order due to the curvature, i.e.
to the slope variation d<px (Figure 10.1 (c)),

d(dvM) = --d(px dz (lO.lc)
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Summing up the two significant contributions of the shear, equation (10.la),
and of the bending moment, equation (10.1 b), we obtain

dv = d u T + d u M = 7 v dz-^dz (10.2)

from which

T- = 7v-^ (10-3>dz

At this point we are able to formulate the fundamental equations of the
elastic problem for one-dimensional solids with a rectilinear axis. The kine-
matic equations constitute, as in the case of the three-dimensional solid, the
definition of the characteristics of deformation as functions of the generalized
displacements

F 1 T d 1 r n
7* ^ 0 0 0 - 1 0 "

7,- 0 £ 0 +1 0 0 v
d

e, 0 0 ~T 0 0 0 ^
d (10.4)

Xx 0 0 0 ^ 0 0 ^
d

Xy 0 0 0 0 ^ 0 (pv

d
o \ o o o o o ^ [9z

where among the components of the deformation vector appear the shearing
strains, jv %„ the axial dilation ev the curvatures, %„ %y9 and the unit angle of
torsion, <9, whilst among the components of the displacement vector appear, in
addition to the ordinary components, u, v, w, also the generalized components,
<px, (py, <p:, i.e. the angles of rotation about the reference axes. The transforma-
tion matrix is differential and shows on the diagonal the total derivative d/dz,
while the off-diagonal terms are all zero except for two, which have absolute
values of unity and derive from relation (10.3) and from its analogue

du
-r = rx+9v dO.5)
dz

Also relation (10.4), like relation (8.8), may be written in compact form,

{q} = [d}{ri} (10.6)

where {q} indicates the vector of the deformation characteristics, {77} the vec-
tor of generalized displacements, and [d\ the matrix operator of relation (10.4).
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On the other hand, also the indefinite equations of equilibrium, if relations
(5.12) are taken into account, can be presented in matrix form,

^ 0 0 0 0 0
d

0 ^ 0 0 0 0
d

0 0 ^ 0 0 0
d

0 - 1 0 ^ 0 0
d

+ 1 0 0 0 ^ 0
d

0 0 0 0 0 ^

T*

Ty

N

Mx

My

Mz

+

I*
1y

P

mx

my

.'"*-

=

0

0

0

0

0

0

(10.7)

where among the components of the vector of static characteristics appear the
shearing forces, Tx, Ty, the axial force N, the bending moments, Mx, My, and
the twisting moment, Mz, whilst among the components of the vector of exter-
nal generalized forces appear, in addition to the transverse distributed loads,
qx, qy, and the axial distributed load, /?, also the bending distributed moments,
mx, my and the twisting distributed moment, mr The matrix operator presents
the total derivative d/dz in all diagonal positions, while the off-diagonal terms
are all zero, except for two which are equal to unity and express the equality
of the shear with the derivative of the corresponding bending moment
(neglecting the distributed moments, mx, my). The matrix operator (10.7) is
equal to the transpose of the operator (10,4), but for the finite terms which
change algebraic sign. This is said to be the adjoint operator of the previous
one, and vice versa. The reason why the finite terms change sign will emerge
clearly in the next chapter. In compact form we can write

[<?]*{£}+ {^n = {0} (10.8)

where {Q} is the vector of static characteristics, and {^r} is the vector of
external forces.

It should be noted that, unlike in the case of the three-dimensional solid,
the matrices [d\ and [d]* are square (6x6). This means, as we already know,
that it is possible to determine the internal reactions of a statically determi-
nate beam by using only the relations of equilibrium. This, unfortunately,
does not occur in the case of a three-dimensional body constrained isostati-
cally, the stress field of which may be determined only by applying, in addi-
tion to the static equations, also the constitutive and kinematic equations.

On the other hand, also in the case of beams constrained in a redundant
manner (i.e. statically indeterminate beams), it is necessary to have recourse
to the constitutive equations to define their static characteristics, in addition,
of course, to the deformations and the displacements. The relations which link

289



BEAMS AND PLATES IN FLEXURE

290

the static characteristics with the dual characteristics of deformation may be
presented in matrix form:

TV] r ** ^_ o o o o ] \T*
GA GA

yv T* 7^ o o o o T?GA GA
£~ 0 0 - i - O O O N

< • = U U EA U U U (10.9)

X* 0 0 0 -jjj- 0 0 Mx

Xy 0 0 0 O" ^- 0 My

o\ L° ° ° ° ° wt\ L
M;

Expressed in compact form, they are

te} = [ff]-'(G} (10-lOa)

where [H]~l represents the inverse of the Hessian matrix of the elastic poten-
tial of the beam. On the other hand, the inverse relation of equation (lO.lOa)
also holds:

{Q} = [H]{q} OO.lOb)

Applying Clapeyron's Theorem, we obtain the work of deformation per unit
length of the beam, i.e. the elastic potential of the beam,

^ = |{0T(9} (10.11)

which, on the basis of equation (lO.lOa), becomes

^ = ^{Q}J[Hrl{Q} (10.12a)
QZ 2

or, on the basis of equation (10.1 Ob)

^ = ±{q}T[H]{q} (10.12b)
dz 2

where we have used the relation of symmetry [//]T = [//]. Rendering relation
(10.12a) explicit, we obtain

dL \( T\ n „ T& N2 Ml A/2 M2 \
— = - fr-

JL + rv—^- + 2rrv-
L-L + — + -^- + —-L + —^ (10.13)

dz 2(x GA y GA xy GA EA EIX EIV G/J

which is a quadratic form of the static characteristics. In the case where the
cross section of the beam presents at least one axis of symmetry, the mutual
factor of shear, r^, vanishes and the total work is equal to the sum of the con-
tributions of the single characteristics, the Principle of Superposition being
applicable in this case.

Having now at our disposal the equations of kinematics and statics and
the constitutive equations for the beam, we can obtain Lame's equation in
operator form
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([d]t[H][d]){T1} = -{^} (10.14)
The matrix and differential operator of the second order in round brackets can
be called the Lame operator

m = [<?r [H] [d] (1015)
( 6 x 6 ) ( 6 x 6 ) ( 6 x 6 ) ( 6 x 6 ) '

It turns out to be a (6 x 6) matrix and, in non-homogeneous problems, in
which the matrix [//] is a function of the axial coordinate z, is also a function
ofz.

Finally, the boundary conditions may be conditions of equivalence at the
ends,

UnT{C} = {<20} (10.16)
where the matrix [^]Tcoincides with the identity matrix [1], and causes a
value of unity to correspond to each differential term of the matrix [d\*. The
boundary conditions can, on the other hand, also represent displacements
imposed at the ends:

M = too} (10.17)

In conclusion, the elastic problem of the rectilinear beam can be summar-
ized as follows:

m{rj} = -{Jn, for 0 < z < / (10.18a)

([#][<?]) {r?}={QoK for z = 0,/ (10.18b)

{77} = {r?oK for z = 0,/ (10.18c)

where the static boundary condition (10.18b) holds good in the end point or
points that are subjected to loading, as does the kinematic boundary condition
(10.18c) in the constrained end point or points. In the case where there are no
conditions on the displacements, the loads {QQ} must constitute a self-
balancing system.

The previously developed formulation is notably simplified in the case
where the beam is loaded in the plane. If we assume a cross section symmet-
rical with respect to the Y axis, the characteristics of deformation reduce to the
shearing strain yv, the axial dilation ez and the curvature %„ so that of the rela-
tions (10.4), (10.7) and (10.9) only those corresponding to the second, third
and fourth rows and columns remain significant. In particular, the kinematic
equations simplify as follows:

7y] r± o + i l L
dz

e, = 0 — 0 w (10.19)
dz

y 0 0 — <DrXx\ L dzj |_
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(c)

Figure 10.2
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The static equations likewise simplify thus:

"A o olfc 1 M [o
dz
0 — 0 N + p = 0 (10.20)

dz

.~! ° ddl^j H k
The constitutive equations reduce then to a diagonal relation

7A Ijy. o o Ik
GA

e, = 0 — 0 N (10.21)
EA

J i ° ° ij k
10.4 Plane beams with curvilinear axes

Let us consider once more the element of beam with curvilinear axis of Figure
5.3. The curvilinear coordinate s is considered as increasing as we proceed
from left to right along the beam, while the angle d# is considered to be posi-
tive if it is counterclockwise. In accordance with the above conventions, also
the radius of curvature r acquires an algebraic sign on the basis of the relation

ds = rdtf (10.22)

As regards the generalized displacements of the generic cross section, the
radial displacement v is positive if it is in the positive direction of the 7* axis
(where 7*Z* is a system of right-handed axes travelling along the axis of the
beam), the axial displacement w is positive if it is in the positive direction of
the curvilinear coordinate s, and finally the variation of the angle <p is posi-
tive if it is counterclockwise (Figure 10.2 (a)).

We shall now show how the kinematic equation (10.19) must be modified to
take into account the intrinsic curvature of the beam. The axial displacement
w produces, in fact, a slope variation <p(w), which, in accordance with the

/x- /\r /I\
/v \ / v- / \/\L^' ̂ ^ <f̂ ^>

Y* z* d?L ^/
(a) (b) «MY ^*~—•
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scheme of Figure 10.2(b), and neglecting infinitesimals of a higher order,
equals

<p(w) = - (10.23)
r

On the other hand, the radial displacement v produces an axial dilation e(v)
which, in accordance with the scheme of Figure 10.2(c), and neglecting infini-
tesimals of a higher order, is given by

£(u) = - (10.24)
r

As a consequence of an infinitesimal relative rotation dtp of the extreme cross
sections of the beam element of Figure 5.3, the angle between the sections can
be obtained as the sum (d# + d<p) of the initial and intrinsic relative rotation
and the elastic and flexural relative rotation. The new curvature is then

^-fiSlffi (10.25,
as

so that the variation of curvature is

* = *total-- = ̂  (1°-26)
r ds

Substituting the relations (10.23), (10.24) and (10.26), which furnish respect-
ively the slope variation to be deducted, the additional axial dilation and the
variation of curvature, the kinematic equations (10.19) transform as follows:

VI [A -I +l]\v
' ds r

£ = - — 0 w (10.27)
r ds

x o o £ v

The indefinite equations of equilibrium, or static equations, have previ-
ously been derived in Section 5.2. Equations (5.4) may be reproposed in
matrix form:

-J- -- o]M \q] [o
as r

- — 0 N + p = Q (10.28)
r ds

-1 0 — M m 0
dsj L J L J L

It should be noted that, but for the algebraic signs of the non-differential
terms, the static matrix is the transpose of the kinematic one.
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Finally, as regards the constitutive equations, if the radius of curvature is
much greater than the characteristic dimensions of the cross section, equation
(10.21) can be used to very good approximation.

The rotation matrix which transforms the global reference system YZ into
the local reference system F*Z* is the following:

cos $ sin $ 0

[N] = -sintf costf 0 (10.29)

0 0 1_

so that the vectors of the external forces and of the generalized displacements
in the local reference system may be expressed by premultiplying the
respective vectors evaluated in the global reference system by the matrix [N]

{^} = [N] ( j r } (10.30a)

to*} = [AH to) 00.30b)

The static and kinematic equations can thus be expressed as follows:

[<?]*{£}+ { "̂} = {0) (10.31a)

fo} = 0]{TJ*} (10.31b)

which, on the basis of equations (10.30), become

[d]'{Q} + [N]{jr]=(0] (10.32a)

{<?} = [<?] [^{7?} (10.32b)

Substituting equations (10.1 Ob) and (10.32b) in equation (10.32a), we have

[ffflH] [<?] [N] {/?} + Iff] m = {0} (10.33)

Premultiplying both sides of equation (10.33) by |W]T, we obtain finally

([NmdTW [d] [N]) {77} = -(J-} (10.34)

which is Lame's equation for curved beams and arches.
The elastic problem for curved beams and arches can then be summar-

ized as follows:

mftH-pn, for 0 < 5 < / (10.35a)

([NnH][d][N])[ri}={Qfi}9 for s = OJ (10.35b)

{r?}={r70}, for s = OJ (10.35c)

10.5 Differential equation of the elastic line

As regards beams with rectilinear axes and cross sections that are symmetrical
with respect to the Y axis, loaded in the plane of symmetry FZ, we shall arrive
at a differential equation in the unknown function v(z), called deflection or
transverse displacement, by neglecting the contributions of deformation due
to shear, which, for sufficiently slender beams, are much less than the contri-
butions of deformation due to bending moment.
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(c)

Let us consider a cantilever beam of length /, loaded at the free end by a
concentrated force F (Figure 10.3 (a)). The increment of vertical displacement
due to shear is (Figure 10.3 (b))

dvr = rydz (10.36)

so that the vertical displacement at the free end due to shear is

"T (/) = /,/ (10.37)

On the other hand, the increment of vertical displacement due to bending
moment is (Figure 10.3 (c))

dvM = -<pxdz (10.38)

Differentiating both sides of equation (10.38) with respect to z, we obtain

^ = -^ (10.39)
dz2 dz

Recalling the expressions of elastic curvature (9.40) and (9.41), we obtain a
second order differential equation

d2vM M•*s—«£ (WM)

The bending moment M# as well as the elastic characteristic E and the geo-
metrical characteristic IX9 can be functions of the z coordinate. Usually, how-
ever, cases are considered where the material and the cross section do not vary
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along the axis of the beam. The bending moment, in the case of the cantilever
beam of Figure 10.3(a), instead varies linearly,

Mx = F(z-l) (10.41)

so that the differential equation (10.40) becomes

d2uM F— = _(,-;, (,0,2,

and produces the complete integral

vu(z) = --?-z3+-!j-z2 + C1z + C2 (10.43)
6 EIX 2 hlx

The two constants C} and C2 are obtained by applying the boundary condi-
tions. The built-in constraint does not allow any translations or rotations of the
fixed-end section of the beam, so that

vM(0) = C2=0 (10.44a)

dvM

(0) = ̂  =0 (10.44b)
dz

and the vertical displacement at the free end is therefore (Figure 10.3 (c))

F/3

v M ( l ) = (10.45)
3 EIX

From relations (10.37) and (10.45) it is already evident that the vertical dis-
placement due to shear is a linear function of the length / of the beam, while
the vertical displacement due to bending moment is proportional to the third
power of /. More particularly, it is possible to sum up the two contributions
and write

Fp r t P v"
v(l) = l + 6(l + v)ry ^M (10.46)

3 EIX • \ I J

where px indicates the radius of gyration of the cross section with respect to
the X axis. It is hence possible to understand how, since we normally have
px <$C /, the contribution of shear is negligible.

The differential equation of the elastic line thus coincides substantially
with equation (10.40)

^L = -^L (10.47)
dz2 EIX

If in a cross section within the beam the bending moment vanishes, also the
curvature vanishes and, in accordance with equation (10.47), the second
derivative of the vertical displacement v vanishes. In correspondence with that
cross section the elastic deformed configuration (or elastic line) of the axis of
the beam will thus show a point of inflection.

Differentiating both sides of equation (10.47) with respect to z, we obtain
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^r = y- (10.48)
dz3 EIX

which is a third order differential equation that has as its known term the shear
function. Differentiating again we finally obtain

d4v = q
dz4 " EL

(10.49)

which is the alternative version of the equation of the elastic line, of the fourth
order, with the known term proportional to the transverse distributed load q(z).
This version requires a more laborious integration, with the identification of
four arbitrary constants, on the basis of the static and kinematic boundary con-
ditions. To compensate for this, on the other hand, it is not necessary to deter-
mine beforehand the bending moment function Mx(z).

From equation (10.49) it may be deduced how a discontinuity in the
transverse distributed load function q(z) causes a discontinuity on the fourth
derivative of the transverse displacement v(z), and thus a relatively minor dis-
continuity. In like manner and considering equation (10.48), we may deduce
how a discontinuity in the shear function Ty(z), and thus a concentrated trans-
verse load, causes a discontinuity on the third derivative of the transverse dis-
placement v(z). From equation (10.47) we can deduce how a discontinuity in
the bending moment function Mx(z), and thus a concentrated moment, causes
a discontinuity on the second derivative of the transverse displacement v(z).
To have, instead, the discontinuities more pronounced in the transverse
displacement v(z), i.e. the discontinuity on the first derivative, or relative
rotation, and the discontinuity on the function v(z) itself, or relative sliding,
the appropriate disconnections are necessary, represented in one case by
the hinge and in the other by the double rod parallel to the axis of the beam.
Figure 10.4 provides a synthesis of the various cases presented previously.

Av

Av1

J Av"

Av411

Av IV

Figure 10.4
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10.6 Notable displacements and rotations in elementary schemes

Here we shall discuss displacements and rotations of notable cross sections in
elementary structural schemes. To this end, we shall proceed to integrate the
differential equation of the elastic line introduced previously, considering at
the same time the specific boundary conditions of constraint.

As a first case, let us examine the cantilever beam AB, built in at A and sub-
jected to a concentrated moment at point B (Figure 10.5(a)). Since the bending
moment is constant along the axis of the cantilever and also negative, equation
(10.47) takes the following form:

0-S-
the flexural rigidity El also being considered constant. The complete integral
of equation (10.50) is thus

v(z) = ̂ r + C1z + C2 (10.51)
hi 2

the two constants Q and C2 being obtainable by means of the two boundary
conditions

v(0)=v'(0) = 0 (10.52)

which express the vanishing of the vertical displacement and of the rotation at
the built-in constraint, respectively. We obtain

d = C 2 = 0 (10.53)

and thus the vertical displacement at the end B is

/2

VB=V(I) = -— (10.54a)
2. ili 1

while the rotation at the same end is

7

(pB=-v'(l) = -— (10.54b)
LI

^ -, w IFH ) D
^A N^Xm ^A B

(a) (b)

|_n mm«
A

(c)

Figure 10.5
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A slightly more complex case is that of the same cantilever beam, loaded by
a force perpendicular to the axis at the end B (Figure 10.5 (b)). In this case the
moment is a function of the axial coordinate z, and therefore the differential
equation of the elastic line (10.47) is particularized as follows:

^ = ̂ -> (10.55)
dz2 El

A first integration gives

F72 Fl
v'(z) = -±±- + ±L z + ci (10.56)

2 El El '

and a second one

F?3 Flv(z)=-^iFi+^riz2+c>z+c> (10-57)

As the boundary conditions of equation (10.52) still hold, we obtain finally

Fl3

VB = -^— (10.58a)B 3 El

Fl2

<pn = —^— (10.58b)
™ 2 El

As our last elementary case for the cantilever beam, let us take a uniform
distributed load q (Figure 10.5 (c)). In this case the differential equation is

*« 50bE>l (10.59)
dz2 2 El

which, once integrated, yields

v'(z) = -^-(^--lz2+l2z + Cl] (10.60)
2, tlil \ 3 )

a (?4 73 72 "\
u(z) = -M -—/— +/ 2 — + C,z + C2 (10.61)

2EI\12 3 2 ' 2J

The application of the conditions of equations (10.52) confirms equations
(10.53), and thus

vB=-j^- (10.62a)
o tLl

(pB=--^— (10.62b)YB 6 El

Let us now look at the case of a beam supported at both ends subjected to a
concentrated moment at one of the two ends (Figure 10.6 (a)). The equation of
the elastic line is

^ = --^ (10.63)
dz2 Ell
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(b) (c)

Figure 10.6

with the boundary conditions

v(Q) = v(l) = 0 (10.64)

Integrating equation (10.63), we obtain

v'(z) = Ji(~fiz2+Cl] (10'65a)

v(z) = ±-(~zi+Clz + C2\ (10.65b)
bl V o/ )

from which, applying equations (10.64), there follows

C i = — (10.66a)
6

C 2 = 0 (10.66b)

The rotation function (10.65a) thus takes on the following final aspect:

•'«-ii(-5''+T) "0-67)

whence it is possible to determine the rotations of the end sections:
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(pA=-v'(Q) = --^- (10.68a)
6 El

V|? = -„'(/) = J|. (io.68b)

When the supported beam is loaded symmetrically, it is possible to con-
sider only one half of it, with a built-in constraint which represents kinemat-
ically the condition of symmetry and the reactive force in place of the
support. This is the case, for instance, of the vertical force in the centre
(Figure 10.6 (b)). In this way we find ourselves once again faced with the
case of the cantilever beam of Figure 10.5 (b), for which equations (10.58)
provide, respectively, the vertical displacement in the centre and the rota-
tions at the ends:

Ffn 3

2(2l = _FP_
c 3 El 48 £/

L(Lf
? 1 7 J Fl2

9 = -<p = -£A£Z_ = (10.69b)
B A 2 El 16 El

In like manner, in the case of uniform distributed load (Figure 10.6 (c)),
using equations (10.58) and (10.62), we obtain

/m3 f / V

.c.!lilL!iiL.J_*ic 3 El 8£7 384 El

/m 2 m3

q 2(2} q(2 qP
9 =-$ = L^L> V^_ = _2L_ (I0.70b)
YB VA 2EJ 6 El 24 El

b i

F 7 t . b t ' T
I" 't H

H '- H

Figure 10.7

(10.69b)

(10.69b)
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If the vertical force F is not applied in the centre (Figure 10.7), it is not
possible to exploit the properties of symmetry. The bending moment function
is piecewise linear:

Fb
M(z) =— z , f o r O ^ z ^ t f (10.71a)

M(z) = —z-F(z-a), fora^z^l (10.71b)

Two distinct differential equations must therefore be considered:

^L = - —z, f o r O ^ z ^ a (10.72a)
dz2 EH

¥^ = -Itz + JL ( z_ a ) > fora^z^l (10.72b)
dz Ell El

Integrating equation (10.72a), we obtain

*1 = —™-z2+C, (10.73a)
dz 2 Ell '

Fh
v,=-—— 73+C,z + C2 (10.73b)

o Lit

whilst, integrating equation (10.72b), we get

^- = —™-z2+-F- ( z-a)2 + c (10.74a)
dz 2 Ell 2 Elv ' 3

Fh F
v2 = --—z3 +—(z - a)3 + C3z + C4 (10.74b)

o £i// 6 hi

The two conditions of continuity for the rotation and for the displacement in
z = a,

feu) .fe.) (10,5a)
V dz Jz=fl V dz yz=fl

Vl(z = a) = v2(z = a) (10.75b)

give

Cj = C3 (10.76a)

C2=C4 (10.76b)

while the conditions at the ends,

V!(0) = 0 (10.77a)

v2(/) = 0 (10.77b)

determine the values

ci=^T7/(/2-fe2) (ia78a>o HI

C2 = 0 (10.78b)
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In general it is necessary to resort to the conditions of continuity expressed
by equations (10.75) whenever there is a discontinuity or non-regularity in the
moment function (Figures 10.8 (a), (b)), or a discontinuity in the flexural
rigidity El of the beam (Figure 10.8 (c)). The latter eventually occurs in the
case of an abrupt variation of the cross section, or in the case of a sharp varia-
tion in the material of which the beam is made. When these variations occur
with continuity, it is instead necessary to integrate the differential equation of
the elastic line, considering the continuous functions E(z), I(z).

Let us consider finally the beam with overhanging end of Figure 10.9 (a).
Also in this case the bending moment is piecewise linear, and thus it is expedi-
ent to consider two unknown functions v} (portion AB) and i^ (portion BC).
The differential equations of the elastic line, corresponding to the two por-
tions, are (Figure 10.9 (b))

^ = —, for 0 ̂  z ̂  I (10.79a)
dz El
d^=Fz_2F(z-l)
dz2 El El

with the boundary conditions

u,(0) = 0 (10.80a)

v,(/) = 0 (10.80b)

v2(/) = 0 (10.80c)

V|'(/) = v2'(l) (10.80d)

for (10.79
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Integrating equation (10.79a), we obtain

î- = —Z 2+C (10.81a)
dz 2 El l

u,= — z3 + C,z + C2 (10.81b)
6 El

while integrating equation (10.79b), we find

^TrS-TS1-**0* (ia82a)

U2=-^-z3__f_ (z_03 + C3Z + c4 (10.82b)

By applying equations (10.80), we obtain four equations in the four arbitrary
constants C,-, /' = 1, 2, 3,4:

C2 = 0 (10.83a)

-£-/3 + Q/ + C 2 =0 (10.83b)

—^-/3 + C3/ + C4 = 0 (10.83c)
6£7

(b)
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/ 2 + d = / 2 + Q (10.83d)
2 El ] 2EI 3

The solution is readily obtained:

ci=c3=-^7 (10-84a)6 El

C2=C4=0 (10.84b)

The rotation and the vertical displacement at the end of the overhang can be
found on the basis of equations (10.82) and (10.84):

9 = -v{(2 /) = --— (10.85a)
6 El

2 F/3

vc=v2(2l) = (10.85b)
J Lit 1

10.7 Composition of rotations and displacements

As can be seen in the last section, the resolution of the equation of the elastic
line is not always immediate, and indeed often involves very laborious calcu-
lations. In some cases, as in that of Figure 10.9, it is certainly more convenient
to apply the Principle of Superposition, considering separately the effects of
the force on the cantilever beam EC (Figure 10.10 (a)) and the effects of the
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internal reactions on the supported beam AB (Figure 10.10 (b)). As regards the
cantilever beam EC, we have

<}=0 (10.86a)

<p(B]=0 (10.86b)

^^-{ji (1°'86C)

V("=I!L (10.86d)
j /j i

while for the supported beam, subjected to the moment Fl at the end B, we
have

^ = ({£ d0.87a)
6 £7

V(I)="^ (10'87b)

<p(c}=<p(l} (10.87c)

1̂  = <p(^ / (10.87(1)

whereby finally, summing up the contributions of equations (10.86) and
(10.87), we obtain

Fl2

(PA=—T (10.88a)
D £/

(pB=~— (10.88b)YB 3EI

5 Fl2

<Pc=-T-7T (10*88c)6 £/

2 F/3

v c=-— (10.88d)

Note how equations (10.88c, d) coincide with equations (10.85a, b).
If we intend to determine the rotation and displacement of the midpoint of a

cantilever beam of length 2/, loaded by a force at the end (Figure 10.11 (a)), it

| 5 \ (a)IT ' c
f

I K (b)
^A B^ffl

H '- H- '- H

Figure 10.11
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«
IA . \e \c

~*\!
"*<

Figure 10.12

is sufficient to consider a cantilever beam halved and loaded by the internal
characteristics of shear and bending moment (Figure 10.11 (b)). Summation

IF of the contributions yields

*\ c 9fl = _^_(^ = _l^i (10.89a)
*B 2 El El 2 El

<» VB=IL+&L^HL (10.89b)
B 3 £7 2 El 6 El

A If, instead, the same cantilever beam is loaded in its midpoint (Figure
'//////A 10.12), and we wish to determine the rotation and displacement of the end

cross section, taking into account that the portion BC is not subjected to bend-
F ing but only to rigid rotation, we have

B }f' tpc = 9» = ~'JTi (10'90a)

(7) ^ F/3 F/2 S F/3

vc = VB + \<PB\l = — + -^—1 = ~— (10.90b)c B \YB\ $ EI 2 El 6 El

A The displacements (10.89b) and (10.90b) are identical on the basis of Betti's
'//////ft Reciprocal Theorem.

\ F Let us consider the L-shaped cantilever beam of Figure 10.13 (a), subjected to
^B t (c) a f°rce acting at the end C, and let us seek to determine the translation and rota-
U c tion of this cross section. We shall therefore make the summation of the contri-

© butions that result from the scheme of Figure 10.13(b), in which the
characteristics of axial force and bending moment act on the vertical cantilever

Fi re 1013 ^'w^ ̂ e contrit>uti°ns ̂ at emerge from the scheme of Figure 10.13(c), con-
sisting of the overhang BC, built-in at B and loaded with the external force F at C

"a''(-JW <1091"
<— ̂  (10.91W

t-J 1

<p(2=9($ (10.91c)

v(c} =\9(B} \l (10.91d)

u(£=u($ (10.91e)
F/3

v™=-^- (10.91f)
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^c=~i d°-91g)

Summing up the corresponding terms, we obtain

9c=^+^=-~ d°-92a)

Uc = I/« + 1/2)=l^l (10.92b)
.3 /I /

F/3

«c-«(c' = f^ (10.920

As our final example, let us now examine the beam of Figure 10.14 sub-
jected to a concentrated moment at A. The overhang is devoid of loads and
hence is not deflected, but only rotates rigidly, under the action of the remain-
der of the structure. On the hypothesis of small displacements, and applying
the rules of kinematics of rigid bodies, we have

q> =p =__^_ (10.93a)D B 6 El

VD=VC=\VB\^ = ̂  d0.93b)

«o=KI* = f§ (10-93c)

I
D

7 h
'

,. ! H-̂

Figure 10.14
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10.8 Beam on elastic foundation

We shall now examine the case of a beam supported on a foundation which
reacts elastically and bilaterally. Referring to the fact that the reaction of the
foundation is assumed to be proportional to the vertical displacement v, we
represent this foundation usually as a bed of springs (Figure 10.15). This
model provides a significant representation of the case of a beam set in the
ground, or of a rail fastened to sleepers. We shall see later in Chapter 12 how
this can be of aid in studying cylindrical shells.

If we denote by K the elastic rigidity of the foundation, the differential
equation (10.49), which holds in the absence of the foundation, is modified as
follows:

<^ = ±-*Lv (10.94)
dz4 El El

where the index x of the moment of inertia has been omitted. In the case where
q - 0, we have

H47,
^— + 4/34^0 (10.95)

with

j8 = J-£- (10.96)K ^4EI

The complete integral of equation (10.95) is

v(z) = e#(Ci cos/fe + C2 sin/fe) + e-*(C3 cos/fe + C4 sin/fe) (10.97)

where the constants Cf, with / = 1, 2, 3,4, are to be identified via the boundary
conditions.

When instead, q is constant and different from zero, the complete integral
(10.97) must be supplemented by the particular solution v= qlK.

Once the analytical expression of the displacement v is known, it is
possible to obtain by derivation the rotation 9, the bending moment M, and
the shear T.

In the case of an infinitely long beam resting on an elastic foundation,
loaded by a concentrated force F (Figure 10.16), the terms of equation (10.97)
that contain the factor e^z must vanish because at infinity the displacement
vanishes. We shall therefore have Cl - C2 = 0, so that

v(z) = e-#(C3 cos# + C4 sin#) (10.98)

At the point of application of the force, from symmetry we have then

f^rl =-0(c3-c4) = o do.99)
V dz ;z=0

and hence the displacement will be determined but for a single factor

u(z) = Ce-#(eosjfe + sin/fe) (10.100)
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(a)

(b)

(c)

(d)

Figure 10.16

This factor C can finally be determined on the basis of the condition of equi-
librium to the vertical translation of the entire beam

F = 2\ Kv dz (10.101)
Jo

Substituting equation (10.100) in equation (10.101), we obtain

9 KT1

F = =^± (10.102)
P

and hence the elastic line is represented by the function

v(z) = ̂ e-#(cos# + sinpz) = ̂ - A% (10.103a)
2 /£ 2 K.
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By derivation we obtain

v = -^. = Z|ie-*8in/k = ̂ ia/t (10.103D)
QZ A K

M = -EI^ = -£-e-K(co&fe-8infc) = ̂ -Cfh (10.103c)
dz^ 4p 4j3 ^

r = -E/^ = - —e-#cos# = - — D«. (10.103d)
dzj 2 2

Table 10.1 gives the values of the functions Ap-tBp., Cp-9Dp., as the argu-
ment /Jz varies. The maximum values attained by the transverse displacement,
the bending moment and the shear, are found for z = 0 (Figure 10.16). The
functions (10.103) represent all exponentially smoothing sinusoids. The
wavelength A is defined by the relation

0A = 2;r (10.104)

from which we deduce

A = — = 2*4/1^- (10.105)
P V K

In the case of multiple concentrated loads, the Principle of Superposition
can furnish the displacement and the internal characteristics at each point. For
example, when two equal forces are applied, at a distance apart of 1500 mm,
on a beam with j3 = 10~3mm~1, we have (Table 10.1)

Ap, (1.5) -0.23

Cp. (1.5)- -0.20

whereby the total displacement under each force is increased by approxi-
mately 23%,

v=^~ (1 + 0.23)
2K

while the total bending moment under each force is reduced by approximately
20%,

M = -£-(1-0.20)
4/>

Let us consider finally a semi-infinite beam, loaded at its end by a force F
and a moment m (Figure 10.17). Since also in this case the displacement at
infinity must be zero, the relation (10.98) will hold with the boundary
conditions

(#1} =-"L (io.l06a)
U2J;=0 El

(TT! =TJ (10-106b)
V <k3 J.=0 El
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Table 10.1

fr Aft, Bftz €0, Dftz

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
a/4
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
a/2
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
37Z/4
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
n
3.2
3.3
3.4
3.5

1.0000
0.9907
0.9651
0.9267
0.8784
0.8231
0.7628
0.6997
0.6448
0.6354
0.5712
0.5083
0.4476
0.3899
0.3355
0.2849
0.2384
0.2079
0.1959
0.1576
0.1234
0.0932
0.0667
0.0439
0.0244
0.0080
0
-0.0056
-0.0166
-0.0254
-0.0320
-0.0369
-0.0403
-0.0423
-0.0431
-0.0432
-0.0431
-0.0422
-0.0408
-0.0389

0
0.0903
0.1627
0.2189
0.2610
0.2908
0.3099
0.3199
0.3224
0.3223
0.3185
0.3096
0.2967
0.2807
0.2626
0.2430
0.2226
0.2079
0.2018
0.1812
0.1610
0.1415
0.1230
0.1057
0.0895
0.0748
0.0671
0.0613
0.0492
0.0383
0.0287
0.0204
0.0132
0.0070
0.0019
0
-0.0024
-0.0058
-0.0085
-0.0106

1.0000
0.8100
0.6398
0.4888
0.3564
0.2415
0.1431
0.0599
0
-0.0093
-0.0657
-0.1108
-0.1457
-0.1716
-0.1897
-0.2011
-0.2068
-0.2079
-0.2077
-0.2047
-0.1985
-0.1899
-0.1794
-0.1675
-0.1548
-0.1416
-0.1342
-0.1282
-0.1149
-0.1019
-0.0895
-0.0777
-0.0666
-0.0563
-0.0469
-0.0432
-0.0383
-0.0306
-0.0237
-0.0177

1.0000
0.9003
0.8024
0.7077
0.6174
0.5323
0.4530
0.3798
0.3224
0.3131
0.2527
0.1988
0.1510
0.1091
0.0729
0.0419
0.0158
0
-0.0059
-0.0235
-0.0376
-0.0484
-0.0563
-0.0618
-0.0652
-0.0668
-0.0671
-0.0669
-0.0658
-0.0636
-0.0608
-0.0573
-0.0534
-0.0493
-0.0450
-0.0432
-0.0407
-0.0364
-0.0323
-0.0283

fr

3.6
3.7
3.8
3.9
5n/4
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
37Z/2
4.8
4.9
5.0
5.1
5.2
5.3
5.4
771/4
5.5
5.6
5.7
5.8
5.9
6.0
6.1
6.2
2n
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
9/Z/4

A/fa

-0.0366
-0.0341
-0.0314
-0.0286
-0.0278
-0.0258
-0.0231
-0.0204
-0.0179
-0.0155
-0.0132
-0.0111
-0.0092
-0.0090
-0.0075
-0.0059
-0.0046
-0.0033
-0.0023
-0.0014
-0.0006
0
0.0000
0.0005
0.0010
0.0013
0.0015
0.0017
0.0018
0.0019
0.0019
0.0019
0.0018
0.0018
0.0017
0.0016
0.0015
0.0014
0.0013
0.0012

%

-0.0121
-0.0131
-0.0137
-0.0140
-0.0140
-0.0139
-0.0136
-0.0131
-0.0125
-0.0117
-0.0108
-0.0100
-0.0091
-0.0090
-0.0082
-0.0073
-0.0065
-0.0057
-0.0049
-0.0042
-0.0035
-0.0029
-0.0029
-0.0023
-0.0018
-0.0014
-0.0010
-0.0007
-0.0004
-0.0002
0
+0.0001
0.0003
0.0004
0.0005
0.0006
0.0006
0.0006
0.0006
0.0006

C*

-0.0124
-0.0079
-0.0040
-0.0008
0
0.0019
0.0040
0.0057
0.0070
0.0079
0.0085
0.0089
0.0090
0.0090
0.0089
0.0087
0.0084
0.0080
0.0075
0.0069
0.0064
0.0058
0.0058
0.0052
0.0046
0.0041
0.0036
0.0031
0.0026
0.0022
0.0019
0.0018
0.0015
0.0012
0.0009
0.0006
0.0004
0.0002
0.0001
0

D»*

-0.0245
-0.0210
-0.0177
-0.0147
-0.0139
-0.0120
-0.0095
-0.0074
-0.0054
-0.0038
-0.0023
-0.0011
-0.0001
0
0.0007
0.0014
0.0019
0.0023
0.0026
0.0028
0.0029
0.0029
0.0029
0.0029
0.0028
0.0027
0.0026
0.0024
0.0022
0.0020
0.0019
0.0018
0.0017
0.0015
0.0013
0.0011
0.0010
0.0008
0.0007
0.0006

Figure 10.17
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From equations (10.98) and (10.106) we obtain

c-f^ (10-107a)

Q=W/ (iai07b)

Equation (10.98) therefore transforms as follows:

e-/fe
v(z) = __[Fcosj3z-j3w(cosj3z-sinj3z)] (10.108a)

^ JJ Hi /

2Fp 2mp
= ~TD^~~TC^

By derivation we then obtain

<p(z) = ̂ -A^-^-Dp, (10.108b)
A. X

The vertical displacement and the rotation at the end of the beam are
therefore

i;(0) = ̂ -£(F-mj3) (10.109a)
A

2 B2

<p(0) = —^-(F- 2 mj8) (10.109b)
/C

The latter result will be used in the study of cylindrical shells which have their
ends fastened to plane or hemispherical bases (Section 12.11).

10.9 Dynamics of deflected beams

With the purpose of analysing the free flexural oscillations of beams, let us
consider the differential equation of the elastic line (10.49), replacing the dis-
tributed load q(z) with the force of inertia,

f?~££
where p, denotes the linear density of the beam (mass per unit length).

Equation (10.110) is an equation with separable variables, the solution
being representable as the product of two different functions, each one having
a single variable:

v(z,0 = i?U)/(0 (10.111)

Substituting equation (10.111) in equation (10.110), we obtain

T?/+£i|£ = o <«>-112>dz4 El dtz

(10.110)
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Dividing equation (10.112) by the product r\f, we have

(#f\ (dVl_UiJ=^/U^=fi )2 3)
f u n

where of represents a positive constant, the two first terms of equation (10.113)
being at the most functions of the time t and the coordinate z, respectively.

From equation (10.113) there follow two ordinary differential equations

^ + fi>2/ = 0 (10.114a)
dt2

^-a4rj = 0 (10.114b)
dz4

with

I 9

« = ̂ — (10.115)

Whereas equation (10.114a) is the equation of the harmonic oscillator, with
the well-known complete integral

f(t) = AcosG)t + Bsina)t (10.116a)

equation (10.114b) has the complete integral

TJ(Z) = Ccosaz + Dsinaz + £coshaz + Fsinhaz (10.116b)

As we shall see later on, the constants A, B may be determined on the basis
of the initial conditions, while the constants C, D, £, F may be determined on
the basis of the boundary conditions. However, the parameter co remains for
the moment undetermined, and so also the parameter a according to equation
(10.115). This represents the eigenvalue of the problem, from the mathemati-
cal standpoint, or the angular frequency of the system, from the mechanical
point of view. In the sequel we shall see how the angular frequency CD may
also be obtained on the basis of the boundary conditions. We shall obtain in
fact an infinite number of eigenvalues o^, and thus a,, just as also an infinite
number of eigenfunctions^, and thus r\{. The complete integral of the differen-
tial equation (10.110) may therefore be given the following form, on the basis
of the Principle of Superposition:

oo

vU,0 = 5^,-(z)/-(0 (10.117)
i=l

with

ft(t) = Ai cos 0)^ + Bt sin ay (10.118a)

Tjj (z) = Cj cos a<z + D{ sin a,z + £,- cosh a,z + Ft sinh a,z (10.118b)

The eigenfunctions rj, are orthonormal functions. We may in fact write
equation (10.114b) for two different eigensolutions

riy=afa (10.119a)
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j}™ =a\rik (10.119b)

Multiplying the first of equations (10.119) by r]k, the second by fy, and inte-
grating over the length of the beam, we obtain

f' fl

ifcf?f dz = a? Wjdz (10.120a)
Jo Jo

f rip? dz = oc4
k\ r\pk dz (10.120b)

Jo Jo
Integrating by parts the left-hand sides, the foregoing equations transform as
follows:

totf II, -Win" ]'0 + £ tf 1j <^ = ajf0 Wj dz (10.121a)

lltf lUfX Id + £ n/tf dz = al?0 rift dz (10.121b)

When each of the two ends of the beam is constrained by a built-in support (r/
= rf = 0), or by a hinge (rj = 77" = 0), or by a double rod (rfr = rf = 0), or yet
again is unconstrained (rf" = TJ" = 0), in this last case the remaining end of the
beam being built-in, the quantities in square brackets vanish. Subtracting
member by member we thus have

(otf-X)f 7J7%dz = 0 (10.122)
Jo

from which there follows the condition of orthonormality,

f rtjTikdz = 8jk (10.123)
Jo

where Sjk is the Kronecker delta. Thus when the eigenvalues are distinct, the
integral of the product of the corresponding eigenfunctions vanishes. When,
instead, the indices; and k coincide, the condition of normality reminds us that
the eigenfunctions are defined but for a factor of proportionality, as follows
from the homogeneity of equation (10.114b).

As we have already had occasion to mention, the constants A,-, Bf of equa-
tion (10.116a) are determined via the initial conditions

v(z,0) = v0(*) (10.124a)

^(z,0) = v0fe) (10.124b)
ot

which, on the basis of equations (10.117) and (10.118a), become

oo

^AiT]i(z) = v0(z) (10.125a)
j=i
oo

^ 0,̂ 77, (z) = v0(z) (10.125b)
j=i
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Multiplying by any desired eigenfunction rjj9 and integrating over the length
of the beam, we obtain

V A,, f rift dz = f Vo dz (10.126a)
^—4 Jo Jo
i=\

y *>/#, f nflj dz = I ^ "0 & (10.126b)
•̂  Jo Jo

/ = ]

Taking into account the condition of orthonormality, equation (10.123), finally
we have

Aj = f rijv^dz (10.127a)
Jo

« / = — f Mdz (10.127b)
J <OjJo J

When the system is initially perturbed, by assigning to the beam a deformed
configuration proportional to one of the eigenfunctions, with an initial zero
velocity, the beam, once left free to oscillate, continues to do so in proportion
to the initial deformed configuration. In this case we have

vQ(z) = arli(z) (10.128a)

v0(z) = 0 (10.128b)

where a is an arbitrary constant of proportionality. Equations (10.127) then
furnish

Aj^aStj (10.129a)

Bj=Q (10.129b)

and hence the complete integral (10.117) takes the following form:

v(zj) = aTii(z) cos 0)^ = vQ(z) cos £0,7 (10.130)

The beam therefore oscillates in proportion to the initial deformation and with
an angular frequency that corresponds to the same eigenfunction. These oscil-
lations are called the natural modes of vibration of the system.

More particularly, as regards a beam supported at both ends, of length /
(Figure 10.18(a)), the boundary conditions imposed on the expression
(10.118b) in correspondence to the end A yield

T}(0) = C + £ = 0 (10.131a)

77"(0) = -a2(C- E) = 0 (10.131b)

whence we obtain

C = £ = 0 (10.132)
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A B

J^\ /\ (a)
y//////, &$/

.. .-^H3 -̂.,,̂ ,4
* S N *>*^% / *»A

A • ft ,< y 1k / ;»B (b)

£̂v:̂ :::̂ --*<::̂
n= 1

Figure 10.18

The boundary conditions corresponding to the end B yield, on the other hand

rj(/) = D sin erf + F sinh a/ = 0 (10.133a)

7]//(/) = -a2(Dsincrf-Fsinho/) = 0 (10.133b)

from which it follows that

£>sino/ = 0 (10.134a)
Fsinho/ = 0 (10.134b)

From equation (10.134b) we obtain

F = 0 (10.135)

whilst from equation (10.134a), once the trivial solution D = 0 has been ruled
out, it follows that

a = n- (10.136)

where n is a natural number.
From relation (10.115) we deduce

«*=»<£-^ (10-137)

whereby we obtain the natural angular frequencies of the system

^=»2T^7 (1(U38)

and hence the proper periods thereof:

7; = 2£ = l/iJZ (10.139)
" ft)n nn2 \EI
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The normalized eigenfunctions are thus represented by the following succes-
sion (Figure 10.18(b)):

|k(z) = JysiniMr7 (ial40)

In the case of the cantilever beam of Figure 10.19, the boundary conditions
imposed on the expression (10.118b) are

7i(Q) = C + E = Q (10.141a)

r)'(O) = a(D + F) = 0 (10.141b)

r?"(/) = -a2(Ccosal + Dsinod - Ecoshal- F sinh erf) = 0 (10.141c)

rt"\l) = a^Csinod-Dcosal + Esinhal + Fcoshal) = Q (10.141d)

Whilst from the first two equations we obtain

E = -C, F = -D (10.142)

from the last two there follows

C(coso/ + cosh od) + D(sincd + sinh a/) = 0 (10.143a)
C(sin al - sinh at) - D(cos al + cosh od) = 0 (10.143b)

The system of algebraic equations (10.143) gives, on the other hand, a solu-
tion different from the trivial one, if and only if the determinant of the
coefficients is zero:

(cos a/ + cosh a/)2 + (sin2 od - sinh2 od) = 0 (10.144)

Computing expression (10.144), we obtain the trigonometric equation which
provides the set or spectrum of eigenvalues

cosan/ coshan/ = -1 (10.145)

The first three roots of equation (10.145) are

a,/ = 1.875, aj, = 4.694, c^l = 7.885

The angular frequencies and the proper periods of the cantilever beam are
given by

B"=a'f7 (I0.146a)

T-'^ <1<U46b>

The fundamental period is therefore

r,=1.79/2J-£- (10.147)
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and is approximately three times as long as that of the supported beam given
^ "" j (a) by equation (10.139):

1 ^ - % w ^=a64/2^ <10-I48)^ ,__-,

The first three eigenfunctions have the aspect shown in Figure 10.19.
^ (c)

 In the case of a rope in tension (Figure 10.18), the flexural rigidity El is
1 " vanishingly small, so that the bending moment, in the case of large dis-

placements, is given by the product of the axial force and the transverse
Figure 10.19 displacement

M = -Nv (10.149)

Applying the relation (4.25), it is possible to obtain the equivalent transverse
load, so that the equation of equilibrium to vertical translation is the following:

K7d
2v d2v

N — = »— (10.150)

Equation (10.150) transforms into the wave equation

d2v , d2v
W = C2~^ (10'151)

where

9 N

c2=— (10.152)

is the square of the velocity of the transverse wave in the rope in tension.
Equation (10.151) is formally identical to the equation of longitudinal

waves in elastic bars. If in fact we replace the distributed longitudinal force
Px(x) in the static equation (8.53a) with the force of inertia -//(dV^2), we
obtain

^Ad2u d2u
EA^ = ̂  (1°J53)

and thus

d2u , d2u
^ = c2— (,0.154)

where in this case

, EA
c2 = (10.155)

is the square of the velocity of the longitudinal wave in the elastic bar.

10.10 Plates in flexure

Plates are structural elements where one dimension is negligible in compari-
son with the other two. This dimension is termed thickness. Plane plates, in
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Figure 10.20

particular, are cylindrical solids whose generators are at least one order of
magnitude smaller than the dimensions of the faces (the reverse of the situ-
ation we have in the case of the Saint Venant solid).

Let us consider a plate of thickness h, loaded by distributed forces orthogo-
nal to the faces and constrained at the edge (Figure 10.20). Let XY be the
middle plane of the plate and Z the orthogonal axis. The so-called Kirchhoff
kinematic hypothesis assumes that the segments orthogonal to the middle
plane, after deformation has occurred, remain orthogonal to the deformed
middle plane (Figure 10.21). Denoting then as <px the angle of rotation about
the Y axis and as <py the angle of rotation about the X axis, the displacement of
a generic point P of coordinates jc, y, z will present the following three
components:

(10.156a)

(10.156b)

(10.156c)

Figure 10.21
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dw
u = <Pxz = -—z

ax
dw

„ = „,* = -_*

w = w(x, y)
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The relation (10.156c) indicates that all the points belonging to one and the
same segment orthogonal to the middle plane are displaced in that direction by
the same quantity.

From the kinematic hypothesis (10.156) it follows, by simple derivation,
that the strain field is

*-=£ = %'-IT* (10'157a>ax dx ax2-

dv d<Pv d2w
^=^ = ̂ Z = -^TZ (10.157b)y dy dy dy2

ez=^ = 0 (10.157c)
OZ

'--f't-fe^V^fs' <10-157*ay ax {ay ax J axay

y«=f + fr = ° (10.157e)

r*=lHSH> (10.1570az ay

KirchhofFs kinematic hypothesis generates therefore a condition of plane
strain. The three significant components of strain may be expressed as follows:

ex=Zxz (10.158a)
£y = Zyz (10.158b)
Yxy^ZtyZ (10.158C)

where %x and %y are the flexural curvatures of the middle plane in the respec-
tive directions, and Xxy *s twice the unit angle of torsion of the middle plane in
the X and Y directions.

For the condition of plane stress, the constitutive relations (8.73) become

ex=±(ax-vay) (10.159a)
t-j

ey=±.(av-vvx) (10.159b)
L

Yxy=^rxy (10.159c)

It is important, however, to note that a condition cannot, at the same time, be
both one of plane strain and one of plane stress. The thickness h is, on the
other hand, assumed to be so small as to enable very low, and consequently
negligible, stresses crz to develop. This is an assumption that we shall take up
and discuss in greater depth in Chapter 19. From equations (10.159a, b) we
find

cj^ - vay = Eex (10.160a)

vay-v
2ax=Evey (10.160b)
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Figure 10.22
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whence, by simple addition, we obtain the expressions

ox = -^(sx+vey) (10.161a)

ay = ̂ =^(ey + v£;) (10.161b)

•«-J5^r, (11X16!.)

From equations (10.158) there thus follows the stress field of the plate

°*=-j^-t(X*+vZyte (10.162a)

°y=^~(Xy+VXx)Z (10.162b)

T-=^)^ (1°'162C)

Integrating, over the thickness, the stresses expressed by equations
(10.162), we obtain the characteristics of the internal reaction, which are
bending and twisting moments per unit length (Figure 10.22)

fh/2

Mx=\ axzdz (10.163a)
J-/I/2

fh/2

My=\ ayzdz (10.163b)
J-k/2

fh/2
Mxy = Myx=\ r^zdz (10.163c)

J-h/2
Substituting equations (10.162) in equations (10.163), we obtain finally the
constitutive equations of the plane plate,
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T dy

dx dy

(a)

q dx dy

dy dx

Figure 10.23

dx dy

(b)
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Mx = D(Xx+vXy) (10.164a)

My = D(xy + vXx) (10.164b)

Mxy = Myx = l-~DXiy (10.164c)

where

FA3D=i2<r^) <""«>
is the flexural rigidity of the plate.

Let us then determine the indefinite equations of equilibrium, considering
an infinitesimal element of the plate submitted to the external load and to the
static characteristics. The condition of equilibrium with regard to rotation
about the Y axis (Figure 10.23(a)) yields

|^djt]d}> + | 2dy\dbc-(Txdy)dx = Q (10.166)
V dx ) ^ dy )

from which we deduce

^A-7^0 (10.167a)
ax dy

xr*x
Y Iz
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Likewise, we have

%+^L-T-O (io.i67b)
ax dy y

The condition of equilibrium with regard to translation in the direction of the
Zaxis (Figure 10.23(b)) gives

f 3 T \ ( f)T \
-^dx dy+ —% \dx + qdxdy = Q (10.168)

V ax ) ^ dy )

from which we deduce

-̂ - + -^ + 4 = 0 (10.169)
ox dy

The remaining three conditions of equilibrium, that with regard to rotation
about the Z axis and those with regard to translation in the X and Y directions,
are identically satisfied, in that the plate has been assumed to be loaded by
forces not exerted on the middle plane.

If yx and Yy denote the shearing strains due to the shearing forces, Tx and Ty,
respectively, the kinematic equations define the characteristics of deformation
as functions of the generalized displacements, in the following way:

VJ [|: +1 o"
dx

^ i ° +1 r ivy w
x* = ° ^ ° v* (10-170)

* • • i M

H r H.
It is to be noted that the shearing strains % and jy have so far been neglected,
starting from equations (10.156a, b), as also in equations (10.157e, f).

The static equations (10.167) and (10.169), on the other hand, in matrix
form are presented as follows:

|| o o o]M r l r ndx dy Ty T^l TO

- 1 0 - 1 - 0 ^ - ^ + 0 = 0 (10.171)
ax ay

d_ d_ **y M LOJ
G ~l ° dy *J[M^_

Also in the case of plates, static-kinematic duality is expressed by the fact
that the static matrix, neglecting the algebraic sign of the unity terms, is the
transpose of the kinematic matrix, and vice versa.
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The constitutive equations (10.164), finally, can also be cast in matrix form,

T* \^Gh o 0 0 0 1 Y*
6

Ty o -Gh o o o Yy
Mx = 0 0 D vD 0 *, 00.172)

Mv 0 0 vD D 0 Xy

_Mxy\ [ o o o o !^D]|̂

where the factor 5/6 is the inverse of the shear factor corresponding to a rectangular
cross section of unit base and thickness h. Note that, while the thickness h appears
in the first two rows raised to the first power, in the remaining rows it appears raised
to the third power, in agreement with equation (10.165). The shearing stiffness
appears therefore more important than the flexural stiffness, by as much as two
orders of magnitude, and this explains why the shearing strains are often neglected.

The equations of kinematics (10.170) and statics (10.171) and the constitu-
tive equations (10.172) may be cast in compact form,

{<?} = [<?] mi (10.173a)

ld]*{Q} + {^} = {0} (10.173b)

{Q} = [H]{q} (10.173C)

so that if, as we have already done in the case of the three-dimensional solid
and the beam, we denote by

m = [<?r (H] [d] (10174)
( 3 x 3 ) ( 3 x 5 ) ( 5 x 5 ) ( 5 x 3 )

the Lame's matrix operator, the elastic problem of the deflected plane plate is
represented by the following operator equation furnished with the correspond-
ing boundary conditions:

t^]{T?} = -{^rl, VPeS (10.175a)

MTfQ} = {/>), VPE^p (10.175b)

fol = faoK VPe^ (I0.175c)

In the above, Cp denotes the portion of the edge C on which the static condi-
tions are assigned, while C^ denotes the complementary portion on which the
kinematic (or constraint) conditions are assigned.

Designating as {n} the unit vector normal to the boundary portion S^>
(Figure 10.24), it is simple to render explicit the boundary condition of equiv-
alence (10.17 5b).

fa 1

nx ny o 0 0 1 Ty \Tn

0 0 nx 0 ny Mx = M^ (10.176)

0 0 0 ny nx\ My [Mny_

_M-_
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Mnx and Mny being the components of the moment vector acting on the section
of normal n. As in the case of the three-dimensional solid, also in the case of
the plate, the matrix [^/H7 is linked to the matrix operator [3]* of the static
equation (10.171), matching each partial derivative with the corresponding
direction cosine of the normal to the boundary.

Finally, the elastic problem of the deflected plane plate can be summa-
rized as follows:

[3f] {77} =-{J^ K WzS (10.177a)

(mr[//][<?]){7)} = {/?}, W E ̂  (10.177b)

{*?} = {%}> VPz^ (10.177c)

Equations (10.177) are formally identical to equations (8.52), once the three-
dimensional domain V has been replaced by the two-dimensional one S of the
plate, and the external surface S by the boundary Sfof the plate.

10.11 Sophie Germain equation

Neglecting the shearing deformability of the plate, it is possible to arrive at a
differential equation in the single kinematic unknown w. Deriving equations
(10.167), we find

%-&%•
d Tv _ d2Mxv d2My

dy dxdy dy2

and substituting the foregoing equations (10.178) in equation (10.169), we obtain

d2M d2MKy <92MV
^ + 2—-^ + —^ + ̂ 0 (10.179)

dxL dxdy dy1

The constitutive equations (10.164), if we neglect the shearing strains, become

fd2w d2w}M*-D(l^+vw} (iai80a)

*v=_Dfe+v*y (I0.i80b)
^ dy2 dx2 )

d2w
Mxv=-D(l-v)—— (10.180C)

dxdy

Substituting equations (10.180) in equation (10.179), we deduce finally the
Sophie Germain equation,

d4w . d4w d4w q *„ „

^ + 2^W+^=D (1°-'81)

(10.

(10
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Note the formal analogy between equation (10.184) and the equation of the
elastic line (10.49).

The term principal directions of moment relative to a point of the
deflected plate is given to the two orthogonal directions along which the twist-
ing moment M^ vanishes, and consequently the shearing stresses r^ likewise
vanish. These directions thus coincide with the principal ones of stress. The
term principal directions of curvature is applied to the two orthogonal
directions along which the unit angle of torsion Jtry/2 vanishes. In the case
where the material is assumed to be isotropic, the constitutive equation
(10.164c) shows how the principal directions of moment and the principal
directions of curvature must coincide.

The Finite Difference Method for the approximate numerical solution of
the Sophie Germain equation is proposed in Appendix F. Deflected plates hav-
ing polar symmetry are dealt with in Chapter 12, while the multilayer plates of
composite materials are discussed in Appendix E.

Figure 10.25

10.12 Shells with double curvature

Let us consider a shell of thickness h, the middle surface of which has a dou-
ble curvature. On this surface there exists a system of principal curvilinear
coordinates s^2 (Figure 10.25), in correspondence with which the middle sur-
face presents the minimum and maximum curvature. The membrane regime
consists of the normal forces A^, N2, and the shearing force Nn contained in
the plane tangential to the middle surface (Figure 10.26(a)), as well as of the
dilations £{, €2 and the shearing strain e12 between the principal directions of
curvature. The flexural regime consists of the shearing forces 7\, T2, perpen-
dicular to the tangent plane, of the bending moments Mb M2, and of the twist-
ing moment M12 (Figure 10.26(b)), as well as of the shearing strains yt, y2

between each principal direction of curvature and the direction normal to the
tangent plane, of the flexural curvatures ̂ b #2, and of twice the unit angle of
torsion #12.

The kinematic equations, which define the characteristics of deformation
as functions of the generalized displacements, may be put in matrix form,
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which is the fourth-order differential equation corresponding to the elastic
plane. If we indicate by

V2=|U|^ (10.182)
dx2 dy2

the Laplacian, equation (10.181) can also be written as

V2(V2w) = -^ (10.183)

or, even more synthetically

V4w = -^ (10.184)
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Figure 10.26
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'£i 1 f i + /d^> t- +i °
£> +7 f̂ i +i
£ ^ /£> CT^ <9 /^ gft; ^ ^

<&2 "/*,(£,-/?,) &2 ds,~ R2(Rl-R,) A, ° «,

y, --i- 0 -J- +1 0 "2

^ " -i i I
* £ +/^>f kj

^ o o +7^f ^

H [ o o ^-^^f ^-^^^

(10.185)

where 1/^1/2* M3 are ̂  components of the displacement on the two principal
axes of curvature and on the normal to the tangent plane, <pl9 <p2 are the rota-
tions about the principal directions of curvature 2 and 1, respectively, and R^
R2 are the two principal radii of curvature. Equation (10.185) may be rewritten
in compact form,

{q} = [d]{rf} (10.186)

where {?]*} is the displacement vector in the rotated reference system 123.
The indefinite equations of equilibrium, on the other hand, are five and

express the equilibrium with regard to translation in the three directions 1,2,3,
and the equilibrium with regard to rotation about the tangential axes 1 and 2



(10.187)
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Equation (10.187) may be written synthetically

[<?]*{G} + {^r*} = {0} (10.188)

where {F *} is the vector of the external forces in the rotated reference system 123.
It should be noted that the kinematic equations represent a more complete

version than those proposed by Novozhilov. On the other hand, they have
been obtained heuristically, i.e. considering the adjoint of the static operator.

The constitutive equations are the following:

"#, 1 I" -!!£ v-^ 0 0 0 0 0 0 Ife,

N2 y^-SL -^ 0 0 0 0 0 0 £2

N12 0 0 ^^ 0 0 0 0 0 £12

7j _ 0 0 0 (l-v)|£ 0 0 0 0 7i

T; ~ o o o ;, o-v)4£ o o o r2i. ft*. *.
A/, 0 0 0 0 0 D vD 0 /i

A/2 0 0 0 0 0 vD D 0 ^2

M12 0 0 0 0 0 0 0 .Lzn X\21 J L 2 ^10.189)

or, in compact form

{Q} = [H]{q} (10.190)

The vectors of the external forces and of the displacements in the local sys-
tem 123 may be obtained by premultiplying the corresponding vectors in the
global reference system XYZby the orthogonal matrix of rotation [TV]

[3r*} = [N]{3r] (10.191a)

W) = [#]{* (10.191b)

where [N] is the following 5 x 6 matrix:

"cos fx cos ft cosfz 0 0 0

COS2X COS2Y COS2Z 0 0 0

[N]= cos 3^ cos A cos £ 0 0 0 (10.19
0 0 0 COS2X COS2ft COS2Az

0 0 0 -COS ix -COSiv -COSiz

and{F }, {77} are the following six-component vectors:

mT=[<^, qr ^, 0, 0, 0] (10.193a)

{7?}T=[w, u, w, ^, ^v, <pj (10.193b)

The matrix [AT| is not square, since the moment and rotation vectors, which are
always contained in the tangent plane, in the global XYZ system generally
possess three components.

Substituting equations (10.191) in equations (10.186) and (10,188), we
obtain
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m{T?}=-m (io.i94)
the Lame operator being given by the following matrix product:

m=[ATF[<?r [H] [d] [N]
( 6 x 6 ) ( 6 x 5 ) ( 5 x 8 ) ( 8x8 ) ( 8 x 5 ) ( 5 x 6 ) ' '

On the other hand, the boundary condition of equivalence takes the form:

[W (Ql = [AH (P\ (10 1%)
( 5 x 8 ) ( 8 x 1) ( 5 x 6 ) (6 x 1) '

where {p} is the vector of the forces and of the moments applied to the unit
length of the boundary and referred to the global system XYZ, whilst [^]Tis
the matrix which transforms the static characteristics into the aforesaid load-
ings, referred to the local system 123. Designating as n the axis belonging to
the tangent plane and orthogonal to the boundary (Figure 10.25), and as m the
axis tangential to the boundary, in such a way that the reference system nm3 is
right-handed, we have

"n, 0 n2 0 0 0 0 0 "
0 n2 n} 0 0 0 0 0

[^T]T= 0 0 0 *! n2 0 0 0 (10.197)
0 0 0 0 0 n} 0 n2

0 0 0 0 0 0 n2 / i , j

where the submatrix formed by the last three rows and the last five columns
replicates equation (10.176), obtained for the plate. The submatrix obtained
from the first two rows and the first three columns reproduces equation (8.12)
in the case of plane stress condition. It is therefore apparent how, also in the
framework of boundary condition, the membrane and flexural regimes remain
separate and are not interacting. As in all other cases so far considered, the
matrix [^ ]T is directly correlated to the operator [3]*.

The elastic problem of the shell with double curvature is thus summa-
rized in the following equations:

m{7]} = -{JF), VPeS (10.198a)

([N]Tl^nH]ld][N]){ri} = (pi VPeVp (10.198b)

taHtaoK VPe^ (10.198c)

(10.1



11 Finite element method

11.1 Introduction

The Finite Element Method is illustrated here as a method of discretization and
interpolation for the approximate solution of elastic problems. This method is
introduced in an altogether general manner, without specifying the structural
element to which it is applied, whether it is of one, two, or three dimensions,
and in the first two cases, whether it does or does not have an intrinsic curva-
ture. On the other hand, the two dimensions that characterize the element are
brought into the forefront: that of the generalized displacement vector and that
common to the two vectors of static and deformation characteristics.

Applying the Principle of Minimum Total Potential Energy and the Ritz-
Galerkin numerical approximation, we arrive at the analytical and variational
definition of the Finite Element Method. Furthermore, applying the Principle of
Virtual Work, also the alternative definition of the method is given, the one
more widely known in the engineering field, viz. the mechanical and matrix
one. Via the definition of shape functions, we arrive at the notion of local stiff-
ness matrix of the individual element. This matrix is thus expanded and assem-
bled, i.e. added to all the other similar matrices, to provide, finally, the global
stiffness matrix. In this context an explanation is given of the change of alge-
braic sign shown by the unity terms of the static and kinematic matrix opera-
tors, which, in the case of beams and plates, are each the adjoint of the other.

The chapter closes with a reference to the dynamics of elastic solids. On the
basis of results already reached in the case of the dynamics of deflected beams
(Chapter 10), the so-called modal analysis is developed, a topic which will be
taken up again in Chapter 14, where we shall study the dynamics of beam
systems and, more particularly, of orthogonal multistorey frames.

11.2 Single-degree-of-freedom system

Consider a material point subjected to an external force F and to the elastic
restoring force of a linear spring having stiffness k (Figure 11.1). Since the
restoring force is proportional to the elongation x of the spring and is acting in
me 0PPosite direction to that of the external force, the condition of static
equilibrium will be expressed by the following equation:

F-kx = Q (11.1)

from which the abscissa of the position of equilibrium is deduced:
Figure 11.1

x = F/k (11.2)

This simple result may be obtained in principle by also considering the
total potential energy of the system, which is equal to the sum of the poten-
tial energy of the spring and the potential energy of the non-positional force F:

W(x) = -kx2-Fx (11.3)
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As is known from Rational Mechanics, the derivative of the total potential
energy, with change of sign, yields the total force acting on the system,

dW
Total force = = ~kx + F (IIA)

dx

from which we deduce that the system is in equilibrium when equation (11.2)
is satisfied. The condition

-^ = 0 (11.5)
ck

also defines a point of stationarity, viz. the minimum total potential energy,
which can be represented by a parabolic curve as a function of the elongation
x (Figure 11.2). This parabola is also known as the potential well.

The position of equilibrium (11.2) may also be obtained by applying the
Principle of Virtual Work: if we impose a virtual displacement Ax on the
system in a condition of equilibrium, the work thus produced must be zero,

FAx-fccAc = 0 (11.6)

from which, by cancelling Ax, the already known result of relation (11.2)
follows.

The Finite Element Method, even though it concerns multiple-degree-of-
freedom systems, can be introduced by following the two paths indicated for
the single-degree-of-freedom system: (1) Principle of Minimum Total
Potential Energy; (2) Principle of Virtual Work. The Finite Element
Method is basically a discretization method, in the sense that, instead of the
continuous function of the displacements {77}, it considers as unknowns only
the displacements {5} of a discrete number n of points called nodes. It is at
the same time an interpolation method, in the sense that, once the displace-
ments {5} are determined, it connects them with sufficiently regular func-
tions. The problem is thus reduced to the determination of the equilibrium
configuration {5}, from which we then obtain, by interpolation, the dis-
placement field {J]}, by derivation, the strain field {£} or the deformation
characteristics field [ q ] , and, via the constitutive equations, the stress field
{a} or the static characteristics field {Q}.

X
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For each of the structural geometries considered hitherto, there are two
numbers that characterize the system: (1) the degrees of freedom g, which
are represented by the dimension of the displacement vector {r;}; (2) the
dimension d of the strain characteristics vector, {£} or {#}, and the static
characteristics vector, {a} or {Q}. Table 11.1 gives the characteristic num-
bers g and d for all the one-, two- and three-dimensional elastic solids so far
analysed.

Table 11.1

Structural element

Beam in the plane
Beam in space
Deflected plate
Shell with double curvature
Two-dimensional solid
Three-dimensional solid

g

3
6
3
5
2
3

d

3
6
5
8
3
6
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Note that only in the case of the beam do the degrees of freedom g coincide
with the dimension d of the characteristics vectors. In all other cases we
have g < d.

11.3 Principle of minimum total potential energy

In the foregoing chapters we have seen how every elastic problem, in one, two
or three dimensions, can be referred to Lame's equation of the sort

[&] {77} =-{^} (11.7)
( £ X £ ) ( £ X l ) ( £ X l )

where [y7] is the differential and matrix operator corresponding to the geome-
try in question, {77} is the vector of the generalized displacements, {9r} is the
vector of the external forces acting in the elastic domain.

In the case where the structural element does not present an intrinsic curva-
ture (arches and shells), the boundary conditions of equivalence assume the
following form:

(in^[H} [<?]) w = {/>} (ii.8)
(gxd) (dxd)(dxg) (gx\) (gxl)

where [./^]Tis the matrix which transforms the static characteristics vector
into the vector of the external forces acting on the boundary, [H] is the
Hessian matrix of the elastic potential 4>, [d ]is the kinematic operator, and
{p} is the vector of the external forces acting on the boundary S of the
elastic domain.

In the case where the external forces {9~} and {p} are not self-balanced,
constraint conditions of a kinematic type are necessary,
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07} = too) 01.9)
(#x l ) (gxl)

valid over a part of the boundary, or else over the entire boundary.
In the sequel it will be shown how the operator formulation of the elastic

problem, i.e. equations (11.7) and (11.8), imply the Principle of Minimum
Total Potential Energy, and vice versa.

The total potential energy, in the case of an elastic structural element, is
defined as follows:

W(ri) = t<P(q)dV- f {77}T{.̂ }dV- l{r]}T{p}dS (11.10)
Jv Jv Js

Applying Clapeyron's Theorem, we have

W(ri) = ~\ f{r?}T{.^W+ f{7j}T{/7}ds|- (11.11)
*\Jv Js )

(t{ri}T{?idv+l{nF{p}ds}
\Jv Js )

where the terms in brackets are identical and both represent twice the strain
energy. Denoting by [^] the operator for the boundary conditions of
equivalence (11.8)

[^]{rj} = {p} 01.12)
(gxg)(#xl ) (gxl)

and substituting equation (11.7) and the preceding equation (11.12), only in
the first term of equation (11.11), we have

W(rD = ±(-\{71n^]{n}dV+ f{T?}T[:4]{W)- (11-13)
2 v Jv Js )

ffwT{^W+f WT(/W|
\Jv Js )

The total potential energy for the external forces {9}, {p}, and for an
incremented displacement vector (77 + Arj}, will be written as follows:

W(77 + A7]) = -(-f{Tj + AT]}T[^]{T] + Arj}dV-H (11.14)
2 v Jv

f^ + ArjrtyoKrj-fA^-
Js )

{ f to + Af?}T{.̂ }dV + f {r, + ATJ}T[p}ds]
\Jv Js )
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The associative property allows us to dismember each integral into a sum of
several integrals:

W(7/ + Af7)=4(-f WTm{7f}dV- f{A/7}T[J/]{/7}dV- (11.15)
2 ^ Jv Jv

I{r?}Tm{AT]}dV- f {A77}Tm{A7]}dV +
Jv Jv

f {T?mKmdS + f {ATj}TL4]{i?}dS +
Js Js

f {7/n^6HAmdS + f {A77mKA77}dsl-
Js Js y

f f {/?}T{^}dv+ f{A77}T{^)dy +
V^v Jv

f{rj}T{p}d5-ff{A7]}T(p}d^
J5 J^ y

Application of Betti's Reciprocal Theorem yields

W(Tj + A77) = W(7])- (11.16)

f {A77}
T[^]{r/}dV+ f {Ar?}

T[J4]{r/}d5 +
Jv Js

^| - f {A7]}T[^]{Ar]}dy + f {AT7}T[^0]{ArrtdS|-
^ V Jv Js )

f{Arj}T{.5TdV-f{Arj}T{p)d5
Jv Js

On the basis of the field equations (11.7) and the boundary equations (11.12),
four of the six integrals of equation (11.16) cancel each other out, thus
yielding

W(7] + Arj) = W(T7) + y-f{Ar]}T[^]{Ar]}dV+ (11.17)
2\ Jv

f{Arjmo]{A/7}dS)
Js )

The integrals in parentheses represent the work that the body forces {A<9~} and
surface forces {Ap} perform by the displacements caused by them, where

m{Aifl = -{A*} (11.18a)

[^0]{A77} = {Ap} (11.18b)

Hence, by virtue of Clapeyron's Theorem, we obtain

^(rj + ATj)=^(rj)+ f&(Aq)dV (11.19)
Jv
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The total potential energy, for the displacement field {?]}, which resolves the
elastic problem, is thus the minimum, with respect to any other arbitrarily
chosen field {77 + A?]}. The elastic potential d> is in fact a positive definite
quadratic form of the deformation characteristics {A^}. We have thus shown
how the operator formulation expressed by equations (11.7) and (11.8) implies
the so-called variational formulation

W(ri) = minimum (11.20)

On the other hand, by virtue of the arbitrariness of the incremental vector
(A?]}, also the reverse holds. In fact, taking the foregoing formulation in the
inverse direction, we arrive at the implications of orthogonality (cf. equation
(11.16)),

(mO?} + {jr})-L{Af7> (H.21a)

(UolW-WWAm (11.21b)

which hold for any incremental vector {Arj}. From this it follows that the vec-
tors on the left-hand sides of equations (11.21) vanish and hence the operator
formulation holds good.

11.4 Ritz-Galerkin method

When the Ritz-Galerkin numeric approximation method is used, the func-
tional W(TI) is assumed to be stationary, expressing the unknown function {77}
as the sum of known and linearly independent functions {TJ/}, with i = 1,2,...,
( g x n ) :

gxn

{* = £«/ft/> 01.22)
/=!

To express it using the customary language of Functional Analysis, the func-
tional W(t|) is rendered stationary on a subspace of finite dimension, sub-
tended by a set of known linearly independent functions. The problem thus
emerges as discretized, since, instead of the vector function {77}, the new
unknowns are now the (g x n) coefficients a,, where n is the number of the
nodes and g the degrees of freedom of each node.

Inserting the linear combination (11.12) in the expression of total potential
energy (11.13), and applying the associative property, we obtain

( gxn gxn

W(*j) = | -£ ^<xiajj{riin<e]{rij}dV + (11.23)
V /=! ;=1

gxn gxn \

Z Sa/aJ(r7/}T[^o]{77^ r
/=! y=l S )

(gxn gxn \

Y a, \{rii}-T(.^dV+\ai \ {iUT{p}dS
(ft Jv ft Js )

In a more synthetic form, we have
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W(a) = ̂ {a}T[L]{a}-{a}T{F} (11.24)

where [a] is the vector of the unknown coefficients of the linear combination.
The square matrix [L] has the dimension (g x n) and as elements the following
integrals:

h = - f fo,-}TMfo;)dV+ f {T?,m]fy}dS (11-25)
Jv Js

while the vector {F} has the dimension (g x «) and as elements

Fl= \{rii}T{^W+ \totF {PW (11.26)
Jv Js

The matrix [L] is symmetrical by virtue of Betti's Reciprocal Theorem, and is
called the Ritz-Galerkin matrix.

The minimum of the total potential energy is obtained by deriving the
expression (11.23) with respect to each coefficient a, and equating the result
to zero:

gxn

^1^-^=0, for/ = 1,2, . . . ,(gxn) (11-27)

7 = 1

We have therefore arrived at a system of (g x n) linear algebraic equations in
the (g x n) unknowns ctp which in synthetic form may be written thus:

[L]{a} = {F} (11.28)

That the condition of stationarity (11.28) is also a condition of minimum is guar-
anteed by the fact that the quadratic form present in equation (11.23) is positive
definite, representing as it does the strain energy of the solid in a discretized form.

In the case where the functions {77,} are defined over the entire domain V,
the matrix [L] is ill-conditioned, and thus the resolving numerical algorithm
presents problems of instability. With the Isoparametric Finite Element
Method, the so-called splines are used as {77,} functions. These are functions
defined only on subsets of the domain V (whence the term 'finite elements'),
which present a value of unity in one node and zero values in all the other
nodes which belong to their own domain of definition. The splines can be lin-
ear or of a higher order. A number of examples are shown in Figure 11.3. The
simplest are of course the linear splines. To each node k there corresponds a
spline % and hence, if the degrees of freedom are g, then there correspond g
vectors of dimension g:

i- rrfci r o i r o ~
2- 0 ifc 0

: 0 , 0 ,..., 0 , k = l,2,...,n (11.29)

g- L O J [ o j U.
1- 2- g-
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Linear splines

U1

Quadratic splines

Cubic splines

i -i-1 i + 2 i + 3

Figure 11.3

Figure 11.4
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It is therefore evident that, with splines, the coefficients at of the linear combi-
nation (11.22) coincide with the nodal values of the generalized displace-
ments. Ordering these values in the vector {<5}, of dimension (g x n), the
resolving equation (11.28) becomes more expressive, no longer presenting as
unknowns simple coefficients, but rather the nodal displacements themselves:

[L]{S} = {F] (11.30)

11.5 Principle of Virtual Work

In this section we shall define again the Finite Element Method on the basis of
the Principle of Virtual Work, and we shall show how this is equivalent to the
definition proposed in the previous section and based on the Principle of Min-
imum Total Potential Energy.

Let the elastic domain V be divided into subdomains Ve, called finite ele-
ments of the domain V, and let each element contain m nodal points (Figure
11.4). Usually in the two-dimensional cases (plane stress or strain conditions,
plates or shells, axisymmetrical solids, etc.), the elements are triangular or
quadrangular, with the nodes at the vertices, on the sides and, in some cases,
inside. In three-dimensional cases, the elements are usually tetrahedrons or
prisms with quadrangular sides. A number of specific examples are presented
in Appendix H.

To each of the nodal points of the element Ve let there correspond a spline,
defined on the sole element V€ if the node is internal, also on the adjacent ele-
ment if the node is on one side, and also on all the other elements to which the

ia;
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node belongs if this coincides with a vertex (Figure 11.5). To each node k of
the element V€ let there then correspond a diagonal matrix made up of the g
vectors (11.29)

\

[7]k]= % . , i = l,2,...,m (11.31)
(*X£)

*k.

These matrices are referred to as shape functions, and have the following
properties:

[%]*=[!] (ll-32a)
[ryy.=[0], k*j (11.32b)

Using the Kronecker symbol, we can write more synthetically

[%],=[£*,] (11-33)

The displacement vector can be expressed by interpolation, via the shape
functions and on the basis of the nodal displacements:

(gxg) (gxg) (*xg) _ _w-[^]...[^]...wm]r*ii ( ^ x i ) o1-34)
(gxi) :

5jt U x i)

Sm\ (*xi)
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In compact form, the displacement vector field defined on the element Ve
may be represented as

{*U= foj (Se] (1135)
(gxl) g x ( g x m ) (gxm)xl

The deformation characteristics vector is obtained by derivation

fe}= [5] {17,} (1136)
(dX\) ( < ? X g ) ( g X l )

whence, applying relation (11.35), we obtain

kJ=[<?] frj [Se] (11.37)
( r fx l ) (rfxg) gx(gxm) (gx/njxl

or, in synthetic form

fo} = [Be] {<5J (11.38)
( r fx l ) dx(gxm)(gxm)xl

where the matrix

[*,] = [d] [f?J (1139)
d x ( g x m ) (dxg) gx(gxm]

is calculated by derivation of the splines. If the splines are linear, [Be] is a
constant matrix on the element V€.

The static characteristics vector is obtained by premultiplying the
deformation characteristics vector by the Hessian matrix of strain energy

[Qe}=[H] [B€] {Se} (11.40)
( d x \ ) ( d x d ) d x ( g x m ) ( g x m ) x \

Let the Principle of Virtual Work be now applied to the element Ve. This
fundamental principle has been demonstrated, for the three-dimensional solid,
in Section 8.4. The same formal demonstration also holds in the cases consid-
ered in Table 11.1: rectilinear or curved beams, plates or shells, plane stress or
plane strain conditions, etc. In the cases where there is the presence of an
intrinsic curvature, it is sufficient to substitute the operators [d], [d ]T, {^r ]
and U^~]T , respectively, with

[d][N]9 [N?[d]\ M1[#], [AnTMT (11.41)

Let a field of virtual displacements {Ar/} be imposed on the element Ve. The
Principle of Virtual Work implies the following equality:

f {A^}T{a}dV=f{An}T{^}dV+f{Ar}}T{p}d5 (11.42)
Jvf Jve Jse

On the basis of equations (11.35), (11.38) and (11.40), we deduce

\{ASnBe?[H][Be]{Se}dV (11.43)
Jve

= f {AS}T[rjJT{.^}dV+ f {A5}Ttr/JT{p}dS'
Jvf Jse



FINITE ELEMENT METHOD

342

Cancelling on both sides the virtual nodal displacement {A5}T, we obtain

f [5,]T [H] [Be] dV- {8e} (11.44)
JVe (gxm)xd(d'xd} dx(gxm) (gxm)x\

= f ft,]T {-*}dV+ f fo,]T (p}dS
JVe (gxm)xg(gxl) Jsf (gxm)xg(gxl)

The vector of the nodal displacements of the element Ve, {Se}> has been
carried out from under the integral sign since it is constant. The integral on the
left-hand side is called the local stiffness matrix:

[Ke] =1 [£JT [H] [Be] dV (11.45)
(gxm)(gxm) Jve (gxm)xd(dy.d}dx(gxm)

Equation (11.44) therefore takes on the following form:

[Ke] {5J = {Fe} + {pe} (11.46)
(gxm)(gxm)(gxm)x\ (gxm)x] (gxm)xl

The two vectors on the right-hand side are the vectors of the equivalent
nodal forces, and represent the integrated effect of the forces distributed in
the domain and on the boundary of the element Ve. Once the local stiffness
matrix is calculated, it would be possible to determine the vector of the nodal
displacements {Se} on the basis of the local relation (11.46), only if the forces
{/?} acting on the boundary of the element were known beforehand and hence
the vector of the equivalent forces [pe] were obtained by integration.
Whereas, that is, the body forces {,9~} are a datum of the problem, the forces
(p}, which exchange between them the elements at the reciprocal boundaries,
are a priori unknown.

To get round this obstacle and, at the same time, to resolve the general prob-
lem of the determination of the vector of all the nodal displacements {8} of
the solid, one must add the relation (11.46), valid for the element Ve, to all the
similar relations valid for the other elements of the mesh. In this way, the sur-
face contributions [pe] all cancel out, except for those that do not belong to
interfaces between elements, but which belong to the outer boundary. This
operation is called assemblage, and involves a prior expansion of the vectors
{8e}, [Fe], {pe}, from the local dimension (g x m) to the global dimension (g
x ft), where n is the global number of nodal points of the mesh. The procedure
will therefore be to order all the nodes of the mesh of finite elements, so as to
be able to insert the nodes of the generic element Ve in the positions that they
should have. This may be achieved by premultiplying the vector of the local
nodal displacements[8e] by a suitable assemblage matrix [Ae]

T, of dimension
(g x ft) x (g x m), where all the elements are zero, except for (g x m) elements
having the value of unity set in the (g x m) different rows to be filled, and
corresponding to the (g x m) columns

{8*} = [AeY (8e] (11.47a)

{F'} = [AJT {Fe} (11.47b)

{p*} = [AJT {pe} (H.47c)
(gxn)x\ (gxn)(gxm)(gxm)xl
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Substituting the inverse relations in equation (11.46), we obtain

[Ke][Ae]{6<} = [Ae]{F*} + [Ae]{p*} (11.48)

which, premultiplied by [Ae]\ yields

([AJT[tfJ[AJ) {£'} = {F<} + (Pe} (11-49)
( g x n ) ( g x n ) (gxn)xl (gxn)xl (gxn}x\

The relation (11.49) remains valid even if the expanded vector of local displace-
ments {S e] is substituted with the global vector of nodal displacements {8}

[^}{8} = {F"} + {p^ (11.50)

where [Ke] is the local stiffness matrix in expanded form:

[*'] = [Ae]
T [Ke] [Ae] (11.51)

( g x n } ( g x n ) ( g x n ) ( g x m ) ( g x m } ( g x m ) ( g x m ) ( g x n )

The local relation, but in expanded form (11.50), may be added to the similar
relations for the other finite elements:

IV- 1> (K?]\ {S} = {F} (11.52)
\^m4 \(gxn)x\ (gxn)x\

( g x n ) ( g x n )

having gathered to a common factor the vector of the nodal displacements
{5}, and where

{F} = ̂ ({F*} + {pe}) 01.53)
e

From equations (11.44) and (11.47) we deduce

(F}= f[AJT[7]JT{^}dV+f[AJT[r?JT(p}d5 (11.54)
Jv Js

where the integrals extended to the boundaries of the elements cancel out two
by two, since the forces that the interfaces of the elements exchange are equal
and opposite. It is easy to verify that the vector (11.54) has equations (11.26)
as its components.

Finally, we thus derive the equation

IK]{8}={F} (11.55)

which coincides with equation (11.30), once the equality of the global stiff-
ness matrix [K] with the Ritz-Galerkin matrix [L] has been demonstrated.
However, this is possible on the basis of relations (11.45) and (11.39):

[^]=f[BJT[H][^]dV-f([(9][T]J)T[H][(9][7]JdV (11.56)
Jve Jve

Applying the rule of integration by parts on a three-dimensional domain
(already used in the demonstration of the Principle of Virtual Work in Section
8.4), we have
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[Kf] = -[[riend]*[H][d][Tie]ilV + (11.57)
JVe

f[ryTUm#][<?][r?JdS
Jse

The minus sign in front of the first integral, which derives from the rule of
integration by parts and is necessary for the terms of the matrix [<? ] which are
differential operators, constitutes the reason why the non-differential terms of
the matrix [d ] change their algebraic sign in the adjoint matrix [<?]*.

In equation (11.57) the presence of the Lame operators O"] and Og ] can be
recognized:

[#J = -f[7?JTm[77jdV + (11.58)
Jve

\[rie]
T[^Q][rie]dS

J$e

The global stiffness matrix is therefore obtained by summing up all the contri-
butions (11.58), after premultiplying them by the matrices [AJT and
postmultiplying them by the matrices [AJ:

t^] = ̂ [^] = -J[AJT[77jT[^][r7j[4]dy+ (11.59)
€

f[AJT[77jT[^0][7]J[AJd5
Js

The contributions corresponding to the interface between elements cancel
each other out. It is easy to verify that the matrix (11.59) has equations (11.25)
as its elements, and hence the identity between the global stiffness matrix and
the Ritz-Galerkin matrix holds:

[K] = [L] (11.60)

On the basis of equations (11.24) and (11.60), the total potential energy can
thus be expressed as follows:

W(S) = ̂ {SF[K]{S}-{8}'T{F} (11.61)

where the first term represents the strain energy of the discretized elastic solid,
and the second term represents the potential energy of the external (body and
surface) forces.

11.6 Kinematic boundary conditions

So far we have not considered the boundary conditions of a kinematic type, as
given by equation (11.9). However, the Principle of Minimum Total Potential
Energy can be reproposed in the case where the external forces do not consti-
tute a self-balanced system, so that we arrive at the same resolving equation
(11.55). Some of the elements of the vector {S} are in this case known, rather
than unknown, terms, just as the constraint reactions now play a role of
unknowns, and no longer of known terms, as hitherto assumed.
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Partitioning the vectors and the stiffness matrix in such a way as to separate
the free displacements from the constrained ones, we obtain

\KLL KLV1 [SL1 [FL1

\K K \\Sr\F\ (1L62)
1KVL KWJ LdVj L*VJ

While the constrained displacements {5V) are zero, or anyway predetermined
in the case of imposed displacements, the free displacements {SL} represent
the unknowns of the problem

(KuWL^iFJ-tfLvUSy} (11.63)

from which we obtain

{5L} = [KLLT*({FL}-[KLV]{SV}) (11.64)

The external constraint reactions are thus expressible as follows:

{&} = {*•„}-{/$} (11.65)

where

{FV} = [KVL]{6L} + (KVV]{8V} (11.66)

represents the vector of the equivalent nodal forces, acting in the constrained
nodes, while

{*v> = X<Fv} d1-67)
e

represents the vector of the nodal forces, equivalent to the body forces.

11.7 Dynamics of elastic solids

If the body force {F } in the operator equation (11.7) is substituted by the
force of inertia,

KpJ-S-fo) (H-68)
ot~

we obtain the equation of free oscillations for the elastic solid under examination

(M-[p] l^lfo} = {0} (H.69)
V of)

Here [ p] denotes the density matrix, which is a diagonal matrix of dimension
(g x g)> where the density p of the material corresponds to the translations, and
the moment of inertia (1/12) ph2 corresponds to the rotations, h being the
thickness of the beam or plate.

In the absence of body and surface forces of a static type and in the
presence of inertial forces, relation (11.58) becomes

[Ked] = -\[rien^][r]eW + \ [rjJT[p][r/,]dV~+ (11.70)
Jve Jvf ot"

ffo,m]fo,]ds
Jsf
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from which we obtain the dynamic stiffness matrix

[Ked] = [Ke] + [Me]^- (11.71)
otL

with

[MJ=f[77jT[p][rydV (11.72)
Jv,

which represents the local matrix of masses.
In equivalent manner, replacing in equation (11.44) the body forces {9r}

with the inertial forces (11.68), we obtain

[Ke]{6e} = -f trjJT[p][T7jdy.^{5j+f[7]JT(p}d5 (11.73)
Jvf <* Jse

At this point, expanding and assembling the local dynamic stiffness matrices,
we obtain

^[Ked]=^[AeF[Ked][Ae] (11.74)

e e

a relation which is analogous to equations (11.51) and (11.52), and furnishes
the global matrix of masses

[M] = ̂ [AJT[MJ[AJ (11.75)
e

Finally we obtain then the equation

[K]{S} + [M]{8} = {0} (11.76)

which is formally analogous to the equation of a harmonic oscillator with one
degree of freedom, devoid of viscous forces and forcing loads. It should be
noted that [M] is not in general a diagonal matrix.

It would have been possible to arrive at the same equation by considering
the inertial forces as static body forces, and by applying sequentially
equations (11.53), (11.54), (11.68), (11.35) and (11.47a).

In relation to equation (11.76), let a solution be chosen of the form

{S(t)} = {S}f(t) (11.77)

separating the temporal variable t and considering the same oscillatory law for
all the generalized coordinates of the system.

Substituting equation (11.77) into equation (11.76), we obtain

_i=mKm
f {Sf[M]{8}

and hence the separation of the temporal problem from the spatial one:

/ + A/ = 0 (11.79a)

{5}T([K]-A[M]){5} = 0 (11.79b)

346

(11.78)



DYNAMICS OF ELASTIC SOLIDS

From equation (11.79b) we obtain

det ([/n-A[M]) = 0 (11.80)

which is an algebraic equation in the unknown A, of a degree equal to the num-
ber of degrees of freedom of the system. This equation is called the characteris-
tic equation, and its solutions are the eigenvalues of the problem. The
eigenvectors are obtained, but for a factor of proportionality, from the equation

([/n-A[M]){<5} = {0} (11.81)

The eigenvectors have the property of orthonormality. Let equation (11.81)
be written for two different eigenvectors

[K]{8j} = lj[M]{6j} (H.82a)

[K]{6k} = lk[M]{6k} (11.82b)

Premultiplying the former by (8k}
T and the latter by {<5;}

T, taking into account
the symmetry of [K] and [M] and subtracting member from member, we
obtain

0 = (Ay-A^{<5*}T[M]{<5,} (11.83)

and hence, in normal form

{8knM]{5j} = 8jk (11.84a)

where the term on the right-hand side of the equation is the Kronecker
symbol. Equations (11.82a) and (11.84a) also imply

{6knK]{6j} = lj8jk (11.84b)

Since the matrices [M] and [K\ are symmetrical and positive definite, it is
possible to demonstrate how the eigenvalues Ay ,y = 1, 2,..., (g x ri) are all real
and positive. Equation (11.79a) is thus written

fi+G>rfi=0, i = l,2,...,(gxn) (11.85)

and has the following integral:

/• (t) = AJ cos G)ft + Bf sin (Ott (11.86)

The complete integral (11.77) can therefore be put in the following form:

gxn

(S(t)} = V {Sf} (A, cos a)ft + Bi sin co{t) (11.87)
1=1

The 2 x (g x n) constants A,, B, are determined by imposing the initial con-
ditions, in a manner similar to that adopted in Chapter 10 in the case of
deflected beams:

(5(0)} = {S0} (11.88a)

(5(0)} = {S0} (11.88b)

From equations (11.87) and (11.88) we deduce in fact that
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gXn

^Ai{8i} = {80] (11.89a)
/ = !

£Xrt

^Bia)i{Si} = {SQ} (11.89b)
/=!

We thus obtain two distinct systems of equations in the unknowns A/ and /?,,
respectively, which can be resolved by transposition of the individual
members

gxn

^A,.{5;}
T = {50}

T (11.90a)
1 = 1

gxn

^ «,.«,. {5, }T={50}
T (11.90b)

/=!

Postmultiplying by [Af]{^} and exploiting the property of orthonormality, we
obtain

A7={50}
T[M]{<5,-} (11.91a)

Bj=— {50}
T[M]{5;} (11.91b)

J 0)j J

for7= 1,2,..., (gxn).
As in the case of deflected beams, also in the more general framework of

the Finite Element Method, a system perturbed initially according to an eigen-
vector, with zero initial velocity, then continues to oscillate indefinitely in
proportion to that deformed configuration. Assume that

{SQ}=a{5i} (11.92a)

{50} = {0} (11.92b)

From equations (11.91) we derive

A^aSy (11.93a)

Bj=0 (11.93b)

and hence the complete integral is

{8(t)} = a f t } cos G)tt = {<50} cos o)tt (11.94)

The eigenvectors being known, it is possible to consider as generalized
coordinates of the system the temporal functions/. Then ordering these func-
tions, called normal coordinates, in the vector {/], we perform the following
coordinate transformation:

{<5(r)} = [A]{/} (11.95)
which is an alternative way of writing equation (11.87), [A] being the modal
matrix, which has as its columns the eigenvectors
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[&l = l8t\82\...\6gxn] (11.96)

Substituting equation (11.95) in equation (11.76), and premultiplying by [A]T,
we obtain

([A]T[M][A]){/} + ([A]T[K][A]){/} = {0} (11.97)

Taking into account equations (11.84a,b), we have on the other hand

[A]T[M][A] = [1] (11.98a)

[A]T[K][A] = [A] (11.98b)

where [1] is the unit matrix, and [A] is the diagonal matrix of the eigenvalues.
Equation (11.97) leads therefore to the vector form

{/}+[ A] </} = {()} (11.99)

and thus to the scalar form (11.85). The equations of motion are thus
decoupled, each containing a single unknown, made up of one of the normal
coordinates. The transformation of coordinates (11.95) allows the expressions
of the elastic potential and kinetic energy to be reduced to the so-called
canonical form:

W = ̂ {S}T[K]{S} = ̂ {f?[\]{f} (ll.lOOa)

^-^{5}T[M]{5} = ̂ {f}T [!]{/} (ILlOOb)

The application of the Finite Element Method to physical problems differ-
ent from those examined in this chapter is illustrated in Appendix I. A number
of complementary topics are also dealt with in the appendices; these include
the problem of initial strains and residual stresses (Appendix J), the dynamic
behaviour of elastic solids with linear damping (Appendix K) and plane
elasticity with couple stresses (Appendix L).



12 Structural symmetry

12.1 Introduction

In this chapter we shall consider one-, two- and three-dimensional solids, with
properties of geometrical, constraint and static symmetry. These are structures
which present axes or centres of symmetry about which the distribution of
matter, the constraints and the loads applied are symmetrical quantities. As we
shall be able to investigate more fully in the sequel, the most notable conse-
quence deriving from the properties of symmetry of a statically indeterminate
structure is the reduction of its effective degree of indeterminacy. The increase
in regularity with respect to structures devoid of symmetry is in general the
cause of a decrease in static indeterminacy.

As regards beam systems, both axial symmetry and polar symmetry will be
considered, as well as the corresponding skew symmetries. The study of shells
having double curvature will be restricted to the case of shells of revolution,
loaded both symmetrically and otherwise with respect to the axis of symme-
try. This study will then be particularized to the specific, but, from the techni-
cal standpoint, highly significant, cases of membranes of revolution, thin
shells of revolution, circular plates and cylindrical shells. In this context, ref-
erence will also be made to the problem of pressurized vessels having a
cylindrical shape and flat or spherical bases. Finally, the problem of axi-sym-
metrical three-dimensional solids, loaded either symmetrically or otherwise
with respect to the axis of symmetry, will be dealt with.

12.2 Beam systems with axial symmetry

A beam system is said to be symmetrical with respect to an axis when one of
the two halves into which the structure is subdivided by the axis comes to
superpose itself on the other, if it is made to rotate by 180° about the axis itself
(Figure 12.1 (a)). A beam system with axial symmetry is said to be symmetri-
cally loaded if, in the above-mentioned rotation, the loads that act on one half
also come to superpose themselves on those acting on the other half. In addi-
tion to the beams and the loads, the constraints, both external and internal,
must of course also respect the condition of symmetry so that the structural
behaviour should be specularly symmetrical.

In a beam system with axial symmetry, the structural response, whether static
or kinematic, must logically prove symmetrical. This means that the characteris-
tics, both static and deformation, must be specular. Whereas then the axial force
and the bending moment are equal and have the same sign in the pairs of sym-
metrical points, shearing force is equal but has an opposite sign, with a skew-
symmetrical diagram. Likewise, the rotations and elastic displacements per-
pendicular to the axis of symmetry are equal and opposite, while the elastic
displacements in the direction of the axis are equal and of the same sign.

If the conditions described above are to be maintained on the axis of sym-
metry, it will be necessary for the shearing force, as well as the rotation and
the component of the displacement orthogonal to the axis of symmetry, to
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(a) (b)

Figure 12.1

I

(c)

vanish. Thus, whereas the shearing force T vanishes in order to satisfy sym-
metry and equilibrium simultaneously, the displacement u and rotation <p van-
ish to satisfy symmetry and congruence simultaneously (Figure 12.1 (a)).
These conditions, both static and kinematic, at the points where the axis of
symmetry encounters the structure, are realized by a double rod perpendicular
to the axis itself (Figure 12.1(b)). It is therefore possible to reduce the study of
the entire structure to that of one half, constrained at a point corresponding to
its axis of symmetry by a double rod. Consider then that the axial force and
bending moment diagrams are symmetrical, whereas the shearing force dia-
gram is skew-symmetrical.

The reduced structure of Figure 12.1(b) has two degrees of indeterminacy,
while the original structure apparently has three (Figure 12.1 (a)). This means
that the structure of Figure 12.1 (a) actually has two degrees of indeterminacy
for reasons of symmetry. Whereas in fact the vertical reactions are each equal
to one half of the vertical load, the fixed-end moments and the horizontal reac-
tions are represented by equal and symmetrical loadings, which remain, how-
ever, statically indeterminate (Figure 12.1(c)).

In the case where, instead of the internal fixed joint, there is a weaker con-
straint at the axis of symmetry, it is possible to apply once again what has
already been said, but excluding a priori from the conditions of symmetry the
characteristics not transmitted by the constraint itself, and at the same time
including the relative displacements permitted by it. If, for example, the two
symmetrical parts of a structure are connected by a hinge (Figure 12,2(a)), the
moment in the centre will vanish by definition of the hinge constraint, while
the shear will vanish by virtue of symmetry. Hence the only remaining static
characteristic transmitted by the hinge will be the axial force. The existence of
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(c)

the hinge allows, on the other hand, relative rotations between the two parts,
just as symmetry allows displacements of the centre in the direction of the
axis. However, displacements of the centre are not possible in either direction
perpendicularly to the axis, for reasons of symmetry, nor are detachment and
overlapping possible for reasons of congruence.

These conditions, both static and kinematic, are realized by a vertically
moving rolling support or by a horizontal connecting rod. The equivalent
structure of Figure 12.2(b) has one degree of indeterminacy, whilst the orig-
inal structure of Figure 12.2(a) apparently has two. As before, the vertical
reactions are statically determinate and each equal to one half of the vertical
load, while the horizontal reactions and the fixed-end moments are linked
together by the equation of equilibrium to rotation of each part about the hinge
(Figure 12.2(c)).

In the case where there are columns or uprights on the axis of symmetry
(Figure 12.3(a)), it is necessary to consider, in addition to the conditions of
symmetry, the conditions of equilibrium of the central fixing-node (Figure
12.3(b)). It is simple to conclude that the upright is loaded by an axial force
which, in absolute value, is twice the shear transmitted by each of the two hor-
izontal beams, while the characteristics of shear and bending moment are zero
on the upright for reasons of symmetry. If the upright is considered as axially
undeformable, the equivalent structure is reduced to that of Figure 12.3(c),
where the centre is constrained with a perfect fixed joint. This structure is thus
indeterminate to the second degree, whereas the original structure is appar-
ently indeterminate to the third degree (Figure 12.3(a)). If, instead, we wish to
take into account the axial compliance of the central upright, it is necessary to
consider a fixed joint elastically compliant to vertical translation, having a
stiffness of EA/2h, where h denotes the height of the upright.
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Nothing changes with respect to the previous case, if the central upright,
instead of being fixed, is only hinged to the horizontal beam, and thus consists
of a simple vertical connecting rod (Figure 12.4). As before, it will transmit
only a vertical force to the overlying beam. The equivalent scheme is thus yet
again that of Figure 12.3(c).

Finally, let us take the case where a concentrated force is applied in the cen-
tre (Figure 12.5(a)). By reason of the equilibrium of the central beam element
and from symmetry, it is possible to refer to the equivalent scheme of Figure
12.5(b), where the end constrained by the double rod is also loaded by a force
equal to one half of the total.

Applying in inverse manner the considerations so far made, it is possible to
calculate the elastic rotation at the hinged end of a beam, constrained at the
opposite end by a double rod (Figure 12.6(a)). From symmetry, this scheme is
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Figure 12.6

in fact equivalent to a beam of twice the length, hinged at the ends and loaded
by two specular loads (Figure 12.6(b)). In the specific case of the moment
applied to the hinged end (Figure 12.6(a)), the scheme of Figure 12.6(b) yields
the rotation

m(2l) m(21) ml(pA=—(pr= = (12.1)
^A *c 3EI 6EI El

The elastic line of the beam of Figure 12.6(a) is, on the other hand, equal,
but for an additional constant, to that of the cantilever of Figure 12.6(c), where
the rotation of the free end is given by relation (10.54b).

12.3 Beam systems with axial skew-symmetry

A symmetrical beam system is said to be loaded in a skew-symmetrical way
when the loads acting on one of the halves are the opposite of, and symmetri-
cal to, the loads acting on the remaining half (Figure 12.7(a)).
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In a beam system with axial skew-symmetry, the structural response, both
static and kinematic, must logically be skew-symmetrical. This means that the
characteristics, both static and deformation, must be opposite to those produced
at the symmetrical points.

Whereas, then, the so-called symmetrical characteristics - axial force and
bending moment - will present a skew-symmetrical diagram, the skew-sym-
metrical characteristic - the shearing force - will present a symmetrical dia-
gram. Likewise, the rotations and the elastic displacements orthogonal to the
axis of symmetry are equal and have the same sign, whilst the elastic displace-
ments in the direction of the axis are equal and opposite.

If the above conditions are also to be respected on the axis of symmetry, both
the axial force and the bending moment must vanish, as must the component of
the displacement in the direction of the axis of symmetry. Thus, whereas the
axial force N and the bending moment M vanish in order to satisfy skew-
symmetry and equilibrium simultaneously, the displacement v vanishes to
satisfy skew-symmetry and congruence simultaneously (Figure 12.7(a)). These
conditions, which are static and kinematic, at the points where the axis of sym-
metry encounters the structure, are realized by a roller support moving ortho-
gonally to the axis itself (Figure 12.7(b)). The study of the original structure is
thus reduced to that of one of its halves, constrained in the centre with a roller
support. The reduced structure of Figure 12.7(b) thus has one degree of redun-
dancy, whereas the original structure apparently has three (Figure 12.7(a)).
While in fact the horizontal reactions are each equal to one half of the horizon-
tal load, the fixed-end moments and the vertical reactions are represented by
equal and skew-symmetrical loads, which, respecting the condition of equilib-
rium to rotation, remain only once indeterminate (Figure 12.7(c)).
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In the case where, instead of the internal fixed joint, there is a weaker con-
straint at the axis of symmetry, the considerations made above may be
repeated, taking into account, however, only the reactions transmitted by the
constraint and adding the relative displacements allowed by this. If, for
instance, the two symmetrical parts of a structure loaded skew-symmetrically
are connected by a hinge (Figure 12.8(a)), the shear, as before, is the only
characteristic transmitted, and hence the reduced scheme is again that of
Figure 12.7(b). This scheme is indeterminate to the first degree, whilst the
original structure of Figure 12.8(a) is apparently indeterminate to the second
degree. The vertical reactions V and the fixed-end moments M (Figure
12.8(b)) are in fact linked by a condition of equilibrium to rotation, and are
thus once indeterminate.

If, instead, the two symmetrical parts are connected by a double rod (Figure
12.9(a)), the constraint cannot transmit either of the two symmetrical charac-
teristics and the equivalent scheme will be represented by the cantilever beam
of Figure 12.9(b). The original structure of Figure 12.9(a) is therefore substan-
tially statically determinate, since the horizontal reactions are each equal to
one half of the horizontal load, just as the vertical reactions are each equal to
the vertical load acting on the corresponding part (Figure 12.9(c)). The fixed-
end moments may, on the other hand, be determined via an equation of global
equilibrium with regard to rotation.

In the case where there are columns or uprights on the axis of symmetry
(Figure 12.10(a)), it is necessary to consider, in addition to the conditions of
skew-symmetry, the conditions of equilibrium of the central fixing-node
(Figure 12.10(b)). Unlike in the case of symmetry, the upright is subjected to
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moment and shear, while the axial force exerted on it is zero. The bending
moment and shearing force, in the immediate vicinity of the node, are equal,
respectively, to twice the moment and twice the axial force acting on the hori-
zontal beams. It is thus possible to consider the reduced scheme of Figure
12.10(c), where the material of the upright is considered with its elastic modu-
lus halved.

In the case where, in place of the upright, there is a simple connecting rod
(Figure 12.11), it is obvious that the reduced scheme which must be referred
to remains that of Figure 12.7(b), with a hinge instead of the built-in support.

When a concentrated moment m is applied in the centre (Figure 12.12(a)), it
is possible to consider this as a skew-symmetrical load consisting of two
moments equal to m/2 and having the same sign. The equivalent scheme is
that of Figure 12.12(b). In the case, therefore, of a simply supported beam
(Figure 12.13(a)), we revert to the supported beam of halved length (Figure
12.13(b)). The elastic rotation of the ends thus equals

f-Y-1**=*>-W-£;
while the elastic rotation of the centre section is

f-Y-1UJUJ=jnL
Yc 3EI 12EI

(12.2

(12.3
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12.4 Beam systems with polar symmetry

A beam system is said to be symmetrical with respect to a pole when one of
the two halves into which the structure is subdivided by the pole may be
superposed on the other half, if made to rotate by 180° about the pole itself
(Figure 12.14(a)). A system of beams with polar symmetry is said to be
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Figure 12.15

symmetrically loaded if, in the above rotation, the loads acting on one half are
also superposed on those acting on the remaining half.

If the structure presents polar symmetry, it is logical that from polar-
symmetrical causes there follow polar-symmetrical effects, which are both
static and kinematic. In particular, at the pole the moment vanishes in order to
satisfy polar symmetry and equilibrium simultaneously, just as the displace-
ment vanishes to satisfy polar symmetry and congruence simultaneously.
These conditions are realized by a hinge, so that the equivalent reduced struc-
ture appears as in Figure 12.14(b). This scheme thus proves to have two
degrees of indeterminacy. The original structure also has two degrees of inde-
terminacy (Figure 12.14(c)). The reactions H, V, M are in fact linked only by
the global equation of equilibrium with regard to rotation, the equations of
equilibrium with regard to translation already being identically satisfied.

Of course, in the case where there is originally a hinge at the pole, the con-
siderations outlined above again all apply.

Finally, in the case where a concentrated moment m is applied at the pole
(Figure 12.15(a)), this load can be considered as polar-symmetrical and as
consisting of two moments equal to mil and having the same sign. The
reduced scheme is thus that of Figure 12.15(b).

12.5 Beam systems with polar skew-symmetry

A polar-symmetrical beam system is said to be loaded skew-symmetrically
when the loads that act on one of the halves are the opposite of, and symmetri-
cal to those acting on the remaining half (Figure 12.16(a)).

At the pole, the axial force and the shearing force vanish in order to satisfy
polar skew-symmetry and equilibrium simultaneously, just as the elastic rota-
tion vanishes to satisfy polar skew-symmetry and congruence simultaneously.
These conditions are realized by a double articulated parallelogram (Figure
12.16(b)). The equivalent scheme appears to be indeterminate to the first
degree, whereas the original structure is apparently indeterminate to the third
degree. The degree of residual redundancy is due to the indeterminacy of the
fixed-end moment M (Figure 12.16(c)).

In the case where there is a hinge at the pole (Figure 12.17(a)), the equiva-
lent scheme reduces to the cantilever beam of Figure 12.17(b). The structure is
therefore substantially statically determinate. The fixed-end moment M in this
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Figure 12.16

T=0

£
N=0

(a) (b)

I"

JU}

A

(C)

case is in fact determined via a condition of partial equilibrium to rotation
about the hinge (Figure 12.17(c)).

Finally, in the case where a concentrated force F is applied at the pole (Fig-
ure 12.18(a)), this load can be considered polar skew-symmetrical and con-
sisting of two forces equal to F/2, having the same sign. The reduced scheme
is thus that shown in Figure 12.18(b).

12.6 Non-symmetrically loaded shells of revolution

The term shell of revolution refers to a shell, generally of double curvature,
generated by the complete rotation of a plane curve r(z) about the axis of
symmetry Z (Figure 12.19). The set of the infinite configurations which the
generating curve rfzj assumes in its rotation are called meridians. The set of
the infinite circular trajectories described by the individual points of the curve
are called parallels. The meridians and the parallels represent the so-called
lines of curvature, on which a system of principal curvilinear coordinates sl s2

can be defined.
Denoting by $i the curvilinear coordinate along the meridians, and by s2 the

curvilinear coordinate along the parallels, we have (Figure 12.19)

ds = ds = -^— (12.4a)
cos a

ds2 = rdtf (12.4b)
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i
N=0
T=0

(a)

(c)

Figure 12.17

(a) (b)

Figure 12.18

where a is the angle which the tangent to the meridian forms with the axis of
symmetry, which is equal also to the angle that the normal to the surface forms
with the radius r (Figure 12.19), and where # represents the longitude. On the
basis of Meusnier's Theorem, the radius r and the principal radius of curva-
ture /?2 are linked by the following relation:

r = R2cosa (12.5)
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Figure 12.19

Whereas the variations of the radius of curvature R} are equal to zero with
respect to the coordinate ^2 (i.e. along the parallels), the variations of the
radius of curvature R2 with respect to the coordinate Sj (i.e. along the meridians)
are:

dR2=d( r \
dsi ds \ cos a )

= *(-L-) + r»*°L to (12.6)
ds \cosaj cos ~a ds

By the definition of curvature doc /ds = -I//?,, and thus from equation (12.6) we
have:

dR2 _ sin a R2 sin a
ds\ cos a R\ cos a

= tanafl-^l- (12.7)

The term l/p2, recurring in the kinematic (10.185) and static (10.187) matrices,
can be expressed as follows:

1 RI dR2 _ tan or _ sina

P2 K2(«i-^2)*i R2 r '
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The kinematic equations for the shells of revolution non-symmetrically loaded
are thus:

"
e*
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X&
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r 7a^ ^
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w

<Ps
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_ _

(12.9)

The static equations are dual with respect to equations (12.9):

Jd | s i n a \ s i n a 1 d ^ 1 0 0 0 0

I d I d , 2 sma\ f

° rdti \ds ' r ) l }
!

/? 0 0 0

— L — L 0 (-^_+sin_a\ \__d_ 0 0 0

Q Q 0 — 1 0 f d \ S'n a \ S*n a 1 d

0 0 0 0 i n 1 d Id , 2 s ino r \
1 ° r^ U ' r )J

" » "
Z

Ts

Ms

M$

+

~ P s ~

ru

q
0

=

" 0 "

0
0

0
(12.1C

12.7 Symmetrically loaded shells of revolution

When a shell of revolution is loaded symmetrically with respect to axis Z,
relations (12.9) and (12.10) simplify, since only the curvilinear coordinate s is
present as an independent variable, while the displacement v along the para-
llels vanishes, as well as the deformations %#, )&, x^& > an^ the corresponding
internal reactions Ns$, T#, M^:
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r - j_
~e'~\ ds /?, °

sin a 1
+~T W2 ° f w ~

ys = -J- -^ +1 w (i2.l i)
AI ds

** 0 0 — L^
ds

.*J 0 0 +sina
L r -

j_l+sin_a^ sina J_ Q Q 1 r^M T I T '

Vd5 r J r .R, Nt .% Q

•T ~T (T + —} ° ° r< + •* = 0 . (12.12)*' /?2 Vck r ;

o o -i pL+»-£] -«-« ^ ° °
Ids r ) r J LM^J L J L J

Observe that, again for reasons of symmetry, the conditions of equilibrium to
translation along the parallels and to rotation around the meridians are iden-
tically satisfied and thus do not appear in equation (12.12). Finally, we have
three equations of equilibrium (respectively, with regard to translation along
the meridians, to translation along the normal «, and to rotation about the par-
allels) in the five static unknowns Ns, N& Ts, Ms, M# (Figure 12.20). The elas-
tic problem for shells of revolution thus has two degrees of internal
redundancy, while the more general problem of shells with double curvature
appears to have three degrees of redundancy. Just as for beam systems then,
symmetry reduces the degree of statical indeterminacy of the elastic problem
also for shells.

Equations (12.12) are verified by imposing the above three conditions of
equilibrium on an infinitesimal shell element, bounded by two meridians
located at an infinitesimal distance ds2 = r d& and by two parallels located at
an infinitesimal distance dS} = ds (Figure 12.20).

The condition of equilibrium with regard to translation along the meridians
yields the equation (Figures 12.20(a), (c))

<W,rdd + Ns6rd&-N&smaAsdd + Ts— rd# + .5fr dsdtf =0 (12.13a)
/?,

which, divided by rdsdtf, coincides with the first of equations (12.12).
The condition of equilibrium with regard to translation along the normal n

furnishes the equation (Figures 12.20(c), (d), (e))
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(a)

(d)

Figure 12.20
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-Ns—r&&-N0As&dcQsa + dTsrad + T s f o d d + .$>;ras&& = Q (12.13b)
R}

which, divided by rdsdtf, coincides with the second of equations (12.12).
Finally, the condition of equilibrium with regard to rotation about the paral-

lels furnishes the equation (Figures 12.20(b), (c))

-Ts r di> ds + dMv r dtf + Mvdr d& - Md sin a ds dd = 0 (12.13c)
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which, divided by rdsdtf, coincides with the third of equations (12.12).
Notice that, in the indefinite equations of equilibrium (12.12), some contri-

butions have been enclosed which, for example in the particular case of a cir-
cular plane plate, will not be negligible. These contributions are due to the fact
that the parallel curvilinear sides of the shell element of Figures 12.20(a), (b)
differ by the amount drd# . In the static matrix (10.187) they appear in the
first element of the first row, in the fourth element of the third row and in the
sixth element of the fourth row.

12.8 Membranes and thin shells

Membranes are two-dimensional structural elements without flexural rigidity.
These elements can sustain only tensile forces contained in the tangent plane.
A similar but opposite case is provided by thin shells, which are shells of such
small thickness that they present an altogether negligible flexural rigidity.
These elements can sustain only compressive forces contained in the tangent
plane. In the case of membranes, therefore, a zero compressive stiffness is
assumed whereas in the case of thin shells a zero tensile stiffness is assumed.
Both hypotheses imply a zero flexural rigidity.

As regards membranes and thin shells of revolution, the kinematic and
static equations simplify notably compared with equations (12.11) and (12.12),
since only forces along the meridians and the parallels, Ns and N$, are.
present, as well as the displacements along the meridians and those perpendic-
ular to the middle surface, u and w, respectively

(12.14a)

(12.14b)

From the second of equations (12.14b) we obtain the fundamental algebraic
relation which links the forces Ns and N$

£.+3L=<r
/?, R2 "

while from the first we obtain the following differential equation:

*L-***N,-o
ds r

(12.15a)

(I2.15b)
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Figure 12.21

368

On the other hand, by means of equation (12.15a) we can express N$ as a
function of Ns,

N»=R2L%_.!!L\ (12.16)

and this expression, inserted in equation (12.15b), gives

^+^^=,^tan« (12.17)
which is a differential equation with ordinary derivatives in the unknown
function Ns(s).

Instead of resolving the foregoing differential equation, alternatively we can
consider equilibrium to translation in the Z direction of the portion of a thin shell
(or membrane) which remains above a generic parallel (Figure 12.21)

Q = Nsco$a(2nr) (12.18)

where Q is the integral of the vertical loads acting on that portion. From equa-
tion (12.18) we obtain immediately

Ns= (12.19)
2nr cos a

Via equation (12.16) we then obtain the corresponding force along the
parallel.
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(a)

Figure 12.22

Figure 12.23
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If o; and o# denote the internal forces transmitted per unit area of the cross
section (Ns and N$ are forces per unit length), equation (12.15a) is trans-
formed as follows:

^ + ̂  = ̂  (12.20)
R{ R2 h

where p denotes the pressure acting normally to the middle surface and h
denotes the thickness of the thin shell (or membrane).

In the case of an indefinitely long cylindrical membrane subjected to the
internal pressure/? (Figure 12.22), we have Rl —» «>, R2 = r, and thus the cir-
cumferential stress is

<r*=y (12.21)

This internal reaction increases naturally with the increase in the pressure p
and the radius r, and with the decrease in the thickness h.

In the case of a spherical membrane subjected to the internal pressure
p (Figure 12.23), we have R{ = R2 = R, and thus the state of stress is
isotropic:

<T>=<T*=J£ (12.22)

Also in this case the internal reaction increases with pressure and radius, and
decreases with the increase in thickness.

In the case of an indefinite conical membrane subjected to the internal
pressure p (Figure 12.24), we have R{ -> °°, R2 = r/cos a, and hence the cir-
cumferential stress is

o(2nRh) = p(7iR2)
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Figure 12.24

Figure 12.25
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°#=T^— (12'23)
/zcos a

The conditions of internal loading in the case of finite cylinders and cones are
equal to the above ones obtained only at sufficiently large distances from the
externally constrained zones. This amount is, however, to be evaluated in rela-
tion to the thickness h of the shell.

In the case of a toroidal membrane under pressure (Figure 12.25), equa-
tions (12.20) and (12.19) become

£L + ̂ Lcosa = Z (12.24a)
RL r h

fc=*tjS?k (12.24b)
2^rcosa
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Since r = r0 + fljcosa (Figure 12.25), equation (12.24b) offers
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p^2r0 + RlCOSa
2h rQ + fljCOsa

On the crown of the toroidal surface we have a = n!2 and hence

<rs=4" (12.26)n

This stress corresponds to the circumferential stress of a pressurized cylinder
of radius R\. The minimum stress as occurs on the maximum parallel of the
torus for a = 0,

PR.^R,
5 2h /0 + tfj

while the maximum occurs on the minimum parallel of the torus for a = n,

".-S-̂ f <12-28)2h r0 - R}

The stress along the parallels is obtained from relation (12.24a) and in each
point of the torus amounts to

°»=^ (12-29)

It is equal to the longitudinal stress of a pressurized cylinder of radius Rl9 hav-
ing, for example, hemispherical ends (Figure 12.23).

12.9 Circular plates

The case of shells of revolution loaded symmetrically reduces to the particular
case of circular plates, for R{ —> <», a = 7tl2. The curvilinear coordinate along
the meridian, s, coincides with the radial coordinate r, so that the kinematic
equation (12.11) transforms as follows:

(12.26)

(12.26)
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The static equation (12.12), on the other hand, becomes:

372

"puii -i o o oiKi
Ur r) r N# |"jfl TO"

0 0 f—+ -) 0 0 Tr + jr - o (12.31)
Vdr r y

(d n i M. L ° J L°o o - i —+- -- MVdr r) rJLM t f_

Restricting the analysis to the flexural regime only, we obtain the following
equations, which are kinematic and static, respectively:

~Yrl IT +1
dr r -,

H W

Xr = 0 ~ (12.32)- UJ
_ X # J 0 -

L r -I

f(«+i) o oil"''] r-,i ro-i
Vdr r^ Mr + (12.33)

-i (1 + 1) -i L o J LoJ
L \dr r) rl^M^

fhe indefinite equation of equilibrium (12.33) represents a system of two dif-
ferential equations in the three unknowns Tr, Mr, M$. The polar symmetry
hus reduces the degree of static indeterminacy of the deflected plane plates
rom two to one.

The first of equations (12.33) represents the condition of equilibrium with
egard to the vertical translation of a plate element identified by two radii
brming the angle d#, and by two circumferences of radius r and r + dr
Figure 12.26(a))

drrrdtf + 7;drdtf-?rdrdtf = 0 (12.34a)

fhe second term of the foregoing equation is due to the greater length
>resented by the outermost arc of circumference. Dividing by the elementary
irea rdrd#, we once more obtain equation (12.33).

The second of equations (12.33) represents the condition of equilibrium
vith regard to rotation of the same plate element about the circumference of
•adius r (Figure 12.26(b)):

-rrrd^dr + dAf rrdt?H-M rdrdi?-M t ?drd^ = 0 (12.34b)
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(b)
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Also in this case the contribution of the third term is due to the greater length
of the outermost arc of circumference.

Using the elastic constitutive equations which link bending moments and
curvatures:

Mr = D(zr+vz*) (12.35a)

M» = D(x»+vxr} (12.355)

and assuming zero shearing strain yr

Yr = ̂  + (/>r = 0 (12.36a)

whereby

*•£•-£
t = _I£: (12.36c)
r r dr

the second of the indefinite equations of equilibrium (12.33) transforms into a
third-order differential equation in the unknown function w:

d f d 2 w v dw\ D f d 2 w v_dw} £_fl^dy_ d2w^|_
^Sv^

 + 717j"7lv"d^ + 7"dTj4'7lv7 dr *V dr2 )

(12.37)

Reordering the terms, we obtain

d^L+i_^L__L^=_Z_
dr3 r dr2 r2 dr D

(12.36a)

Figure

(12.38)
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The foregoing equation is equivalent to the following one, in which the
unknown function is the radial rotation <pr

ZL.1.!*..J!.,,.L (,2.39,
dr2 r dr rz D

If Q(r) denotes the integral of the vertical loads acting on the plate within the
circumference of radius r, from equilibrium we have

2xrTr=Q(r) (12.40)

whereby equation (12.39) can be cast in the following form:

AriA(n?v)l=ew
dr |_rdr r j 2nDr

A first integration yields

^(r^f^dr + C, (12.42)
r dr Jo 2nDr

Multiplying by r and integrating again, we obtain

T9r = f [rf ̂ rldr+Ciy+C2 (12-43)
Jo [ Jo 2nDr J 2

from which, on further integration, we find the equation of the elastic
deformed configuration wfrj.

Consider, for instance, a circular plate of radius R clamped at the boundary
and uniformly loaded with a pressure p. In this case we have Q(r) = pnr1, so
that equation (12.43) becomes

f r pr3 r2

^=Joi^r+c'T+C2 (12-44)

and hence

pr=^- + C,- + ̂ 2. (12.45)
*r 16D 12 r V ;

For reasons of symmetry we must have (pr(0) = 0, and hence the constant C2 is
zero. The condition of a built-in constraint at the edge, on the other hand,
furnishes the relation

^(*) = S + C>T = 0 (12*46)
Ibl) 2

from which we obtain the constant Q:

C,=-^- (12.47)1 SD
The equation of the elastic deformed configuration is thus drawn from the
integration of the following equation:

_dw = pr^_pR^r

dr 16D 16D
(12.48)

(12.41)
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The displacement w is thus defined but for a constant C3,

—£+£"^
which may be determined by imposing the annihilation of the displacement at
the built-in constraint

^-^
Finally, therefore, the displacement orthogonal to the middle plane and the
radial rotation are expressible as follows:

w = —£-(R 2 -r 2 ) 2 (12.51a)
64DV '

9r=-^(R2-r>] (12.51b)

The vertical displacement at the centre of the plate is therefore equal to/=|M)(°)I=I£ (i2-52)
The bending moments (12.35) are obtained taking into account equations
(12.36b,c) and (12.51)

Mr=-^[(l + v)K2-(3 + v)r2] (12.53a)

M» = -^_[(l + v)#2-(l + 3v)r2] (12.53b)

In the centre the two moments, the radial one and the circumferential one, are
equal to one another

Afr(0) = Af tf(0) = -(l + v)^L- (12.54)
lo

On the clamped edge we have

M,(K) = £¥-, Ml)(«) = v^- (12.55)
o o

The maximum moment is the radial one at the built-in constraint. Figure 12.27
shows the elastic deformed configuration and the internal reactions Mr and M$.

If the above plate is loaded by the concentrated force Q, equation (12.43)
becomes

r(p r=— f rlogr dr + C j — + C2 (12.56)
27cDJo 2

and hence

^=^(21ogr-1)+Cir^ (12-57)

(12.49)

(12.50)
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The symmetry condition and the boundary condition, respectively

<pr(0) = 0 (12.58a)

?,(*) = 0 (12.58b)
furnish the corresponding values of the two constants

C2 = 0 (12.59a)

Ci=-7^r(2iog/J-l) (I2.59b)
4/TL/

We thus find

9r = '^Dr Iog7 (12*60a)

w = --^—(R2 -r2-2r2 log -} (12.60b)
loTcDv r y

The vertical displacement at the centre of the plate is therefore

'-^-^D <12-6I>
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(a)

(b)

I

(d)

Figure 12.28
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In the case where Q = pnR2, this latter vertical displacement is four times that
of equation (12.52). The bending moments are given by

Mr=--^-[(l + v)log --ll (12.62a)
4n\_ r J

M<> =—^-| (l + v)log — - v 1 (12.62b)
4nl r J

In the centre they are theoretically infinite, whilst at the clamped edge they are
equal to

Mr(/?) = -p-, M»(R) = v-@- (12.63)
4n 4n

Figure 12.28 depicts the elastic deformed configuration and presents the Mr
and M# bending moment diagrams.

^QR2

JL16nD
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12.10 Cylindrical shells

In cylindrical shells the principal radius of curvature R{ —> <», while the angle
a between the generatrix and the axis of symmetry vanishes. Furthermore, the
curvilinear coordinate along the meridian, s, coincides with the longitudinal
coordinate x, and the second principal radius of curvature R2 = r coincides
with the radius R of the circular directrix.

The kinematic equation (12.11) is thus transformed as follows (Figure 12.29):
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whilst the static equation (12.12) becomes
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(12.64)

(12.65)

Figure 12.29
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in the case where the only external force acting on the shell is a load q(x), normal
to the middle surface. Notice that the variation in curvature x# vanishes, just as the
moment M# is not involved in any of the three equations of equilibrium.

The first of equations (12.65) is the equation of equilibrium with regard to
longitudinal translation,

^ = 0 (12.66a)
dx

which gives Nx = constant. The second of equations (12.65) is the equation of
equilibrium with regard to normal translation,

_A^L +d7L =

R dx
while the third is the equation of equilibrium with regard to rotation about the
parallel,

7;=^ (12.660

Substituting equation (12.66c) into equation (12.66b), we obtain

-f^-
In the case where the longitudinal dilation ex is zero, we have

N#=Ehe#= — w (12.68)
R

The moment Mx is, on the other hand, proportional to the variation in curva-
ture x# as x& = 0:

Mx=DXx=D^- (12.69)

If we disregard the shearing strain

7,=-^ + <P,=0 (12.70)

we get

MX=~D^ (12.71)

Substituting relations (12.68) and (12.71) into equation (12.67), we obtain the
following differential equation in the unknown function w:

D0+£--«
Equation (12.72) is formally identical to the differential equation of the beam
on an elastic foundation (10.94). In the case where q = 0, equation (12.72) can
be cast in the form

d4w
^-f+ 4£4w = 0 (12.73)
dx4

379

(12.66b)

(12.66c)

(12.67)

(12.67)
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where /? denotes the parameter

/J = 4p^I (12.74)
H \4DR2

From equation (10.165) we obtain

,-^P
For the solution of equation (12.73), the reader is referred to Section 10.8.

In the case where the force Nx is zero, note that equation (12.73) is still
valid. From equations (10.161 a, b) we have

Nx=^-T(£x+ve#) = Q (12.76a)

**=ir^r(£*+VE*) (12-76b)

Equation (12.76a) gives ex = ~ve$ , which, substituted into equation (12.76b),
yields again equation (12.68).

12.11 Cylindrical vessels with faces subjected to internal pressure

The displacement and rotation at the edge of a cylindrical shell, produced by forces
and moments distributed along the edge itself (Figure 12.29) can be obtained on
the basis of the analogy between cylindrical shells and beams on an elastic founda-
tion (Figure 10.17). Equations (10.109) can be expressed in the following form:

w(0) = -AFFF + XFMM (U.lla)

<PM = -A>MFF + A>MMM (12.77b)
where the elastic coefficients A^, which for the beam on an elastic foundation
were found to be equal to

2/3 1

^i-wa (12J8a)

,FM = ,MF = ̂  = -L- (12.78b)

^ = 4-T=Wi (12'78c)

for the semi-infinite cylinder are likewise equal to

A-=^ (12.79a)

*™=*«F = 2^ <12'79b)

^M=j^ 02.790

380

(12.75



Figure 12.30

/ \
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CYLINDRICAL VESSELS WITH FACES SUBJECTED TO INTERNAL PRESSURE

If the edges of a pressurized cylinder were free, we should have exclusively
the circumferential stress given by equation (12.21) and the radial displacement

H> = ̂  (12.80)
Lh

If, instead, the edges of the cylinder are clamped (Figure 12.30), and the cylin-
der is assumed as being sufficiently long, a localized flexural regime will be
produced, which will be superposed in the surroundings of the edge on the
aforementioned membrane regime. Since the constraint prevents both the
radial displacement and the rotation of the edge, we have the following two
equations of congruence (Figures 12.29 and 12.30):

w(0) = -AFFF + AFMM + ̂ 1 = o (12.8 la)
Eh

<7>,(0) = -AMFF + AMMM = 0 (12.81b)

where F and M are the statically indeterminate reactions which act along the
edge. Using equations (12.79) and (12.75), we obtain

M = ̂  (12.82.)

F = -| (12.82b)

For a strength test, it will be possible to consider, at the edge, the circumferen-
tial stress

a^=^±v-^M (12.83a)
n h"

and the longitudinal stress

ax=±~M (12.83b)
h~

as well as the shearing stress

T = J- (12.830

In the case of a pressurized flat-faced cylinder, the edges of the cylinder and
of the circular plate exchange a distributed force and a distributed moment
(Figures 12.29, 12.31), the plate system having two degrees of static indeter-
minacy, as in the previous case.

The equation of angular congruence takes the form

-^+4-"-o^5+i(i^D (1284)

where the left-hand side of the equation represents the rotation of the edge of
the cylinder, whilst the two terms on the right represent the rotations of the
edge of the cylinder face, due, respectively, to the redundant moment and to
the internal pressure. The first rotation is deduced in the case of uniform
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Figure 12.32

Figure 12.33
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bending. If Mx = Mv = Af, also the curvatures equal one another, xx = X\ = X,
so that the relation (10.164a) gives

*'0^5 "2'85>

and thus the angle of rotation at the edge (Figure 12.32)

<PX=RX (12.86)

which appears in equation (12.84). The second rotation can then be obtained
from the foregoing one by substituting, in place of M, the radial moment at the
built-in constraint (12.55).

The second equation of congruence is the one corresponding to the radial
displacement

_o2 if7D
-AFFF + AFMAf + f—(2-v) = —(l-v) (12.87)

2Eh Eh
The third term on the left-hand side represents the radial displacement of the
cylinder, which, when pressurized, is subject to a biaxial stress condition

^=T > f f ' = J 2? (12'88)

whereby the circumferential dilation

^^K-vaJ (12.89)

produces the radial displacement

w = e#R = ^—(2 - v) (12.90)
* 2£/zV '

The right-hand side of equation (12.87) represents, on the other hand, the
radial displacement of the edge of the circular plate, since this is in a condition
of uniform stress cr= F/h.

In the case of a pressurized cylinder with hemispherical faces (Figures
12.29, 12.33), the equation of angular congruence takes the following form:

-AMFF+ KMMM = -hMF¥-XMMM (12.91)

if we assume, as is approximately the case, that the elastic coefficients of the
cylinder and the hemisphere are equal. From equation (12.91) it follows that
the redundant moment M vanishes.

On the other hand, the equation of congruence for the radial displace-
ment is

-AFFF + ̂ (2-v) = AFFF + £5i(l-v) (12.92)
2Eh 2Eh

where the second terms on both sides of the equation take ino account the
biaxial stress condition of the shells, which are cylindrical and spherical,
respectively. From equation (12.92) we obtain

2^F = gl (12.93)



383

THREE-DIMENSIONAL SOLIDS OF REVOLUTION

and thus, applying equations (12.79a) and (12.74), we have

'-^H
12.12 Three-dimensional solids of revolution

In the case of a three-dimensional solid of revolution, not loaded symmetri-
cally, the kinematic and static equations appear as follows (Figure 12.34):

""] II ° ° "
1 l d 0 r n
7 7 ^ ° T"

£; 0 0 ~
z v (12.95a)

y,9 II fl_I) 0
r W \dr rj

3 3 w
^ T ° F3z 9r

a i a
_H L ° fe rW.

"^r "

V 3 1 \ 1 19 ^ n " l
Va7 + 7j "7 ° ra^ az CT^

1 9 (d 2\ « 3 ^ ^0 7^ ° (a7 + 7J ° 9^ Tr&
 +

d /a i\ i a r0 ° S ° U + 7J 7^J r"
LT^_

"^v~| |"o"

^ = 0 (12.95b)

_*J L°.

912.94



STRUCTURAL SYMMETRY

The static equations (12.95b) represent the three indefinite equations of
equilibrium with regard to translation, in the radial, circumferential and axial
directions, respectively (Figure 12.34). Notice that, once again, the terms 1/r
in the static matrix are due to the difference between the areas of the two par-
allel curved faces of the element of Figure 12.34, as well as the different
action lines of the stresses o$ and T$r acting on the two opposite faces.

In the case where the solid of revolution is also loaded symmetrically with
respect to its axis, the degrees of internal redundancy become two instead of
three:

Figure 12.34
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'"} f °
£# - 0 [ u~

=
 r (12.96a)

c\

sz 0 - l*>_
dz

xj 1 1
Ldz dr_

~ ar~

i79+M ' o a i r^i r°i
U r) ~7 ° fe °>

0 0 1 (1 + 1) a, + ^ Q (12.96b)
dz \dr r} J L ̂  J Lu _

.rrz_

When the problem presents a plane stress condition, we have az =rr, = 0, and
hence only the first of equations (12.96b) remains significant:

d^+a£j-a,+

dr r
jr=0 (12.97



1 O Statically indeterminate
*J structures: method of forces

13.1 Introduction

Redundant beam systems, i.e. ones that contain a surplus number of con-
straints, are statically indeterminate. As we have seen in Chapter 3, this means
that they can be balanced by <*>v~8 different sets of reactive forces, v-g being
the degree of redundancy. We therefore need to identify the particular single
set of reactive forces which, in addition to equilibrium, also implies congru-
ence, or rather the respect of the internal and external constraints,
notwithstanding the deformations induced in the structural elements.

From the operative viewpoint, the method offerees consists of eliminating
v-g degrees of constraint, so as to reduce the given structure to a statically
determinate beam system, and applying to this system, in addition to the exter-
nal forces, the unknown constraint reactions exerted by the constraints that
have been removed. The v-g equations of congruence will then impose abey-
ance of the kinematic conditions corresponding to the suppressed constraints,
and, once resolved, will yield the v-g elementary reactions exerted by these
constraints, which are called hyperstatic unknowns.

When resolving a statically indeterminate structure, one is therefore con-
fronted with the problem of finding a suitable way of disconnecting it so as to
obtain the statically determinate scheme on which to impose the conditions of
congruence. In principle, the disconnection can be performed in an infinite
number of different ways, as it is possible to reduce the degrees of constraint
both externally and internally, and, among the internal constraints, it is pos-
sible to reduce the infinite internal fixed-joint constraints which guarantee the
continuity of the beam. Normally, however, it is convenient to reduce or sup-
press the external constraints, or to interrupt the continuity of the structure, by
inserting hinges in points of concurrence of two or more beams (fixed-joint
nodes). In the first case the equations of congruence will impose the annihila-
tion of the displacements of the points that are sites of statically indeterminate
reactions, whereas in the second case the so-called angular congruence will
be imposed, i.e. an equal elastic rotation at all the beam ends which converge
at the same fixed-joint node.

13.2 Axial indeterminacy

Consider a rectilinear beam of length /, hinged at the ends A and B and sub-
jected to an axial force F, acting at a distance a from the end A and b from the
end B (Figure 13.1 (a)). Thus loaded, the beam is statically indeterminate,
since the pairs of reactions HA and HB, which together with the force F make
up a balanced system, are infinite. Replacing the hinge B with a roller support
having a horizontal plane of movement (Figure 13.1(b)) and applying the
hyperstatic unknown X at the same end B, we obtain the equivalent statically
determinate scheme. The equation of congruence must express the existence
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of the suppressed constraint, i.e. that the displacement of the roller support is
zero

wB=^l~^a = ° <13J)EA EA

where the first term represents the contribution of the reaction X, while the
second represents the contribution of the external force. Notice that we have
implicitly made use of the Principle of Superposition. The force X, in fact,
generates a characteristic of tension on the entire beam, while the force F gen-
erates a characteristic of compression only on the portion AC. The force F thus
contracts the portion AC, while the portion CB is drawn along by a rigid
translation.

From equation (13.1) we derive

X = F- (13.2a)

F-X=F- (13.2b)

so that the force F is supported by the two end constraints in direct proportion
to the reciprocal distances from the point of application. The portion CB is
thus subjected to tension while the portion AC is subjected to compression.



AXIAL INDETERMINACY

(a)

(b)

Figure 13.2

The axial force diagram (Figure 13.1(c)) thus shows a discontinuity at the
point of application of the force. The element of beam straddling this point is
in equilibrium under the action of the external force and of two internal
reactions having the same sense.

If the beam considered previously were submitted to a uniform distribution
of axial forces/? (Figure 13.2(a)), the skew-symmetry of the structural scheme
would make it possible to recognize two equal constraint reactions having the
same sense, so that, on the basis of equation (5.12a), the axial force diagram
would be linear and skew-symmetrical, with a zero in the centre and the
extreme values equal to - 1 pi in A and + 1 pi in B (Figure 13.2(b)).

Finally, let us consider a case of double axial redundancy: a beam of length
21 hinged at the ends and in the centre, loaded by a concentrated axial force
acting in the centre of the left-hand span (Figure 13.3(a)). The equivalent stat-
ically determinate scheme may be obtained by transforming two of the three
hinges into as many horizontally moving roller supports. Figure 13.3(b)
depicts the scheme with the roller supports in B and C and the respective
redundant reactions Xl and X2. The two equations of congruence express the
immovability of the points B and C,

'.-S^l-~-» 03*EA EA 2

wc=^-2l + ̂ l-—- = 0 (13 3b)C EA EA EA 2 ^ '

\ — * % (a,
AT " 7 \ " " A^^ ^^ ZZZ?

F/2 p X,=F/2 X2=0

Figure 13.3
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from which we obtain

*i=f» *2=0 03.4)

The solution found expresses the fact that only the two hinges between which
the external force F is applied react.

13.3 Elementary statically indeterminate schemes

Consider the rectilinear beam of length /, built-in at the end A and supported at
the end B (Figure 13.4(a)), subjected to the distributed load q. This structure has
one degree of redundancy. The equivalent statically determinate scheme is
obtained by eliminating one of the three external constraints (excluding the axial
one) and imposing congruence, i.e. abeyance of the constraint that has been sup-
pressed. Alternatively, though only in principle, it would also be possible to dis-
connect the beam internally, but this would not prove to be a convenient
approach in actual operative terms.

A first equivalent statically determinate scheme is obtained by eliminating
the roller support in B and subjecting the cantilever beam AB, not only to the
distributed load q, but also to the redundant reaction X, which is an unknown
vertical force acting at the end B (Figure 13.4(b)). Superposing the effects, the
condition of congruence becomes

•"£-£"
This equation contains the single unknown X. From equation (13.5) we obtain

X = ̂ ql (13.6)

The reactions at the built-in end are then equal to (Figure 13.4(b))

VA=ql~ql = ̂ ql (13.7a)

MA=\qP-\ql2=\qP (13.7b)

The shear diagram is thus linear with extreme values equal to 1 ql in A and
- l<y/ in B (Figure 13.4(c)). The bending moment diagram may be plotted by
points. The moment at the built-in constraint is equal in fact to 1 qfi, while the
moment is zero at the hinge B (Figure 13.4(d)) and at the point where the
function

tf(z) = |«fe-£«z2=-^z(z-|/) (13.8)

vanishes, i.e. at a distance z = 1 / from the end B. Another notable value of the
moment is the maximum one at the point of zero shear

"--"d'hif.*1 (1M)

(13.5
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On the basis of the four notable points discussed above, the diagram can be
immediately plotted (Figure 13.4(d)). The elastic deformed configuration of
the beam can be plotted qualitatively, with respect to the constraints and the
moment diagram (Figure 13.4(e)). The built-in constraint A imposes a
deformed configuration with zero vertical displacement and zero rotation at A,
just as the roller support B imposes a deformed configuration with zero verti-
cal displacement at B, while it allows rotation of the end section B. The
deformed configuration of course presents a point of inflection where the
moment becomes zero and then undergoes a change in sign. There will be
extended fibres in the upper portion between the end A and the inflection, and,
vice versa, in the lower portion between the inflection and the end B. Summa-
rizing, we can say that the deformed configuration will present the point of
inflection at a distance 1 / from the end B, and the point of maximum curva-
ture at the distance 1 / once again from point B (Figure 13.4(e)). In the case of
the beam made of reinforced concrete, the reinforcement must follow the path
of the stretched fibres (Figure 13.4(f)).

A second equivalent statically determinate scheme is obtained by eliminat-
ing the degree of constraint with regard to rotation of the built-in end A; i.e. by
replacing the built-in constraint with a hinge, and by applying an unknown
redundant moment X at the end A itself (Figure 13.5(a)). Summing up the elas-
tic rotations of the end section A, due both to the external load and to the
redundant reaction X, we obtain the equation of congruence

<pA=--^— + — = 0 (13.10)A 24EI 3EI

from which there follows

X = ±ql2 (13.11)
o

This result coincides with the moment at the built-in constraint, deduced in the
previous solution.

The moment diagram, in the framework of the present scheme of resolu-
tion, may be obtained graphically (Figure 13.5(b)). The partial diagram due to
the redundant reaction is linear with extreme values equal to -1 ql2 in A and
zero in B. On the other hand, the partial diagram due to the distributed load is
parabolic with the maximum which again equals I ql2. The graphical sum of
the two partial diagrams may be obtained by following the usual procedure,
outlined in Chapters 4, 5 and 6, based on the properties of the arcs of parabola.
From the mid-point of the triangular diagram two consecutive vertical seg-
ments are drawn, each having a length of 1 ql2, so as to obtain the third point
of the parabola and the point of intersection of the end tangents, respectively.
The third tangent is parallel to the line joining the end points. The total
diagram thus obtained coincides with that of Figure 13.4(d).

As regards the shear diagram, the equivalent statically determinate scheme
must be balanced by two vertical forces at either end, directed upwards and
equal to ^ ql, and by a clockwise couple of vertical forces X/l-^ql (Figure
13.5(c)). Making the vector summation of the partial reactions, we obtain
once more the extreme values of shearing force shown in Figure 13.4(c).
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Figure 13.5

Let us now consider the same beam, built-in at one end and supported at the
other, loaded in this case by a couple m at the end B (Figure 13.6(a)). Even
though it is possible to accommodate the case within the equivalent statically
determinate scheme consisting of the cantilever beam and obtained by elim-
inating the roller support, in the ensuing treatment we shall consider the sec-
ond scheme used previously: that of the beam supported at either end (Figure
13.6(b)). The condition of congruence is

9 =^L,JHL = 0 (13.12)
rA 3£7 6EI
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from which we obtain

m
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m
X-- (13.13)
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The moment at the built-in constraint is then half that applied. The moment
diagram is linear and hence vanishes at the distance 1 / from the support
(Figure 13.6(c)). At that point the elastic deformed configuration of the beam
undergoes an inflection (Figure 13.6(d)). It is, moreover, possible to calculate
the elastic rotation of the end section B:

mL_(jn/2l=,nL
B 3EI 6EI 4EI

As will emerge more clearly in the sequel, it is important to introduce the con-
cept of rotational stiffness of the beam built-in at one end and supported at the
other, for moments applied at the supported end:

k = ̂ - = ̂ - (13.15)
<PB I

This stiffness is directly proportional to the elastic modulus of the material
and to the moment of inertia of the cross section, and inversely proportional to
the length of the beam.

The vertical reactions must balance the two moments having the same
sense, m and X = m/2. They are thus equal and opposite forces of magnitude
(3/2)m/l (Figure 13.6(e)). The shear diagram is thus constant and positive
(Figure 13.6(f)).

Note that, if in the cases hitherto examined we were to replace the roller
support with a hinge, the solutions would not vary at all, on account of the
absence of the axial force. Even if a redundant reaction were supposed, this
would be zero, thus yielding the only contribution to the equation of axial
congruence WB = 0 (Figure 13.1(b))4

In the case of a rectilinear beam built in at both ends, loaded in any manner
whatsoever (Figure 13.7(a)), the degree of static indeterminacy is three and
can be eliminated by removing one of the two built-in constraints (Figure
13.7(b)). The three redundant unknowns, consisting of the elementary built-in
constraint reactions, may be determined using the three equations of congru-
ence with regard to horizontal translation, to vertical translation and to
rotation, respectively:

w5=0, vB=Q, <p /?=0 (13.16)

d —•—•̂ ••••l̂  (a)
UA Bjl

v F X3

/A \ \̂ X1\ *—3-*- lbl
k

Figure 13.7
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In the particular case of a vertical load concentrated in the centre (Figure
13.8(a)), the scheme has only one degree of redundancy. The other two
degrees of redundancy, which are potentially present, do not appear owing to
symmetry and the lack of horizontal components in the external loading. The
equivalent statically determinate scheme is then found by inserting two hinges
at the ends and applying two equal and opposite redundant moments X (Figure
13.8(b)). Just as there is only one degree of redundancy, there is also a single
equation of congruence with regard to rotation

^^JL + JI-J^O (13.17)YA YB 3EI 6EI 16EI
whence we obtain

X = -Fl (13.18)

The bending moment diagram can be constructed graphically by superposi-
tion (Figure 13.8(c)). The two redundant moments furnish a constant partial
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diagram which is equal in absolute value to IF/, whilst the central force F
produces a bilinear partial diagram with the maximum equal to IF/. The
total diagram thus intersects the axis of the beam at two symmetrical points at
a distance 1/4 from the built-in constraints.

The shear diagram is that produced exclusively by the force F, the two
redundant moments constituting a self-balanced system (Figure 13.8(d)).

Since the elastic deformed configuration of the beam has to satisfy the con-
straint conditions as well as the deflections suggested by the moment diagram,
it will appear as in Figure 13.8(e), with two inflections corresponding to the
points where the bending moment becomes zero.

It is interesting to see how, by using the properties of symmetry of the struc-
ture, it is possible to reduce it even to a statically determinate scheme, and so
resolve it with the use of equilibrium equations alone. One may consider just
the half-beam on the left, once the centre C is constrained with a double con-
necting rod (Figure 13.9(a)). The vertical force F/2 is countered by the built-in
constraint, so that it is possible to transform the scheme of Figure 13.9(a) into
that of Figure 13.9(b), where the built-in constraint has been replaced by a
second double rod loaded by the vertical reaction F/2. This latter scheme is
skew-symmetrical and can be reduced to that of Figure 13.9(c), which pre-
sents a roller support in the new centre and thus emerges as statically deter-
minate. It is clear that the reactive moment exerted by the double rod A, in the
scheme of Figure 13.9(c), is

MA = *xI = IWA 2 4 8
and represents the fixed-end moment already defined following another
procedure.

(a)

F/2

(b)

(c)

Figure 13.9
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Adopting the same synthetic approach seen hitherto, it is not possible, on
the other hand, to resolve the case of a beam built in at both ends and sub-
jected to a distributed load q (Figure 13.10(a)). The equivalent statically deter-
minate scheme is that obtained, as we have already seen, by replacing the
built-in constraints with hinges and by applying two equal and opposite
redundant moments (Figure 13.10(b)). The equation of congruence is

<p --<p --*L + -*L_j£_ = o (13.19)
*A *B 3E7 6EI 24EI V '

from which we obtain

Ql2

X = ̂  (13.20)

Whereas then the shear diagram is equal to the one of the scheme of a beam
supported at both ends and subjected to a distributed load q (Figure 5.20(c)),
the moment diagram is obtained from the graphical addition of a constant dia-
gram with value equal to --^ql2, and a parabolic diagram with a maximum of
1 qP (Figure 13.10(c)). The moment in the centre is thus Mc = -1-qP.

The scheme of a beam constrained by a built-in support and a double rod,
loaded by a vertical force F applied to the double rod (Figure 13.1 l(a)), from
symmetry is equivalent to the beam of twice the length, i.e. 2/, built in at both
ends and subjected to twice the force, 2F, in the centre (Figure 13.1 Kb)), or to
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the beam of length 1/2 constrained by a double rod and a roller support (Figure
13.1 l(c)). In either case the bending moment and shearing force diagrams are
those represented in Figure 13.11(d) and Figure 13.11(e), respectively. The
elastic displacement of point B can be determined in various ways. The sim-
plest is, however, the one based on the scheme of Figure 13.1 l(c), or rather, by
symmetry, on the scheme of Figure 13.1 l(f)

( 2F/3 ^ Fl3

vB=2\^- =— (13.21)B {46EIJ 12EI

Likewise, the scheme of a beam constrained by a hinge and a double rod,
acted upon by a vertical force F applied at the double rod (Figure 13.12(a)),
from symmetry is equivalent to the beam of twice the length, 2/, supported at
both ends and subjected in the centre to twice the force, 2F (Figure 13.12(b)).
The bending moment and shear diagrams are those represented in Figures
13.12(c), (d). The vertical displacement of the point B constrained by the
double rod is

2F<2/)1=«1
B 4SEI 3EI

t
M

(a)

2F

(b)

t
F/ (c)

Figure 13.12
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(a)

(b)

_ .„ <c>m.'

Figure 13.13

The above structure, loaded by a moment at the hinged end (Figure
13.13(a)) is equivalent to the beam of twice the length, 2/, supported at both
ends and subjected to two opposite moments at the ends (Figure 13.13(b)).
The moment is thus constant and the shear absent. The rotation at the extreme
section A is

m(2/)+Zn(2/) = >n/ (m3)
A 3EI 6EI El

Notice that the rotation <pA is the same as that undergone by the end section of
a cantilever beam, built in at B and loaded by the moment m at A (Figure
13.13(c)). In fact the moment diagrams of the schemes of Figures 13.13(a),
(c), coincide, just as the same boundary condition, v'B - 0, applies in both
cases. The deformed configuration, on the other hand, remains the same but
for one additional constant.

13.4 Elastic constraints

Up to now the constraints, whether internal or external, have been considered
as rigid, i.e. as conditions of congruence, where the displacements or rotations
vanish. In practice, however, the constraints cannot always be treated simply
as rigid. They are said to settle elastically when the reaction of the constraint
is proportional to the displacement undergone by the constraint itself. In what
follows we shall compare the results for rigidly constrained redundant struc-
tures with those for the same structures constrained elastically. In statically
determinate structures, on the other hand, the constraint reactions and the dia-
grams of characteristics do not depend on the stiffness of the constraints, since
in any case the equilibrium equations are the same.

Let us consider the continuous beam on three supports shown in Figure
13.14(a), subjected to the moment m acting at the end C. There exists an
infinite number of triads of constraint reactions VA, VB, Vo equilibrants of the
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moment m. The one that also ensures congruence could be obtained by elim-
inating any one of the three supports, by applying the corresponding unknown
redundant reaction and by imposing the condition that the corresponding ver-
tical displacement should become zero. An even faster approach is that of
interrupting the continuity of the beam by inserting a hinge on the support B
(Figure 13.14(b)) and applying the redundant reactions transmitted by the
removed constraint, viz. two equal and opposite moments. The condition of
congruence at this point will concern the continuity of the elastic line, which
will not be able to present cusps in B. That is, the section B thought of as
belonging to the beam AB must rotate by the same amount as that by which
the same cross section, thought of as belonging to the beam EC, rotates:

<PBA=<PBC (13.24)

Rendering both sides explicit, we have

-»=--*UJ* (13.25)
3£7 3EI 6EI

from which we obtain

X = — (13.26)

Knowing now the moments at the three supports, the moment diagram can
at once be drawn (Figure 13.14(c)). It will suffice to lay out to scale a segment
of length m above the support C, a segment of length ra/4 beneath the support
B, and then join with straight line segments the notable points of the diagram
thus defined. A point of annihilation of the moment in the right-hand span is
then identified at the distance 1/5 from the central support. At this point the
elastic deformed configuration possesses an inflection (Figure 13.14(d)).

The constraint reactions, and hence the shear diagram, may be determined
by isolating the supported beams AB and BC, acted upon by the external and
the redundant loads (Figure 13.14(e)). The two end reactions are directed
upwards and are VA = wi/4/, Vc = 5w/4/, while the reaction of the intermediate
support is the sum of the reactions that apply to the two schemes of Figure
13.14(e), VB = 3m/2l. It is a force directed downwards, which produces a
discontinuity of the first kind in the shear diagram (Figure 13.14(f)).

Consider again the foregoing scheme, assuming, however, an intermediate
elastically compliant support (Figure 13.15(a)). This compliance can, for
instance, represent the axial compliance of a connecting rod. In this case the
stiffness of the equivalent spring is k = EA/l (Figure 13.15(b)), When the
external constraints are elastically compliant, it is necessary to consider, not
only, as in the usual case, the action of the constraint on the structure, but also
the action of the structure on the compliant constraint. The scheme of Figure
13.15(c) shows how the spring is loaded by a force XII transmitted by the left-
hand beam and by a force (m+X)/l transmitted by the right-hand beam, both
directed upwards in accordance with the conventions assumed. The support
will then rise by the quantity

S = ̂ ^- (13.27)
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which is a function of the redundant unknown X, and will induce a rigid
rotation in both beams, with an absolute value equal to 511 (Figure 13.15(c)).

The equation of congruence, in implicit form, is once more equation
(13.24), where, on the other hand, also the contributions of rigid rotation must
appear, as well as those of elastic rotation previously considered. We shall
therefore have

XI m + 2X _ XI ml m + 2X
3^7 + ~^-~3^+6ET^~ (13'28)

whence we obtain

(—--1
Y _ U £ / ki2)

f~2l 4~t (13.29)

l3£7 + «2j

When the stiffness of the spring tends to infinity, we find again the previous
result (Figure 13.14(c))

limX = — (13.30)
k^>~ 4

On the other hand, when the stiffness of the spring tends to zero, we find again
the value of moment in the centre for a beam supported at both ends, having a
length of 2/, loaded by a moment at the end

limX = - — (13.31)
*->o 2

Note that the moment X vanishes when

* = if 03.32,

Hence, for smaller stiffness the inflection disappears in the elastic line, and
only the upper fibres are stretched. For k = 12EI/13, the moment is zero in the
left-hand span, since only the supports B and C react, and the deformed confi-
guration of the beam is rigid between the supports A and B (Figure 13.15(d)),
i.e. the left-hand span rotates rigidly counterclockwise, drawn along by the
deflection of the right-hand span.

As a second example of elastic constraint, consider again the beam built in
at one end and supported at the other, acted upon by a distributed load q (Fig-
ure 13.16(a)). In this case, assume that the built-in constraint A is angularly
compliant. The equivalent statically determinate scheme is the same as that of
Figure 13.5(a), but, in the equation of congruence, the action of the beam on
the built-in constraint must be taken into account (Figure 13.16(b)). Whereas,
that is, the built-in constraint acts on the beam with a counterclockwise
moment X, the beam will act on the built-in constraint with a clockwise
moment X, and will cause it to rotate by an angle -X/k. The equation of
congruence is thus modified as follows:

, A = _»_j£_ = -£ 03.33)
YA 3EI 24EI k
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from which we obtain the redundant unknown

(J!L]
xJf4f (13.34)

+-

V3£/ k)

When the angular stiffness of the built-in constraint tends to infinity, we find
again the rigid joint moment

\imX = -ql2 (13.35a)
*->oo 8

On the other hand, when the angular stiffness of the built-in constraint tends to
zero, the moment vanishes because the constraint A turns into a hinge:

lim* = 0 (13.35b)
k-»0

The moment diagram will thus in general be contained between the two limit
diagrams of Figure 13.16(c).



INELASTIC CONSTRAINTS (IMPOSED DISPLACEMENTS)

13.5 Inelastic constraints (imposed displacements)

The cases of inelastic constraint settlements, which will be dealt with in the
ensuing discussion, can be more appropriately termed imposed displace-
ments. In fact, it is not a question of modifying in some way the reactive prop-
erties of the constraint, but rather of imposing a predetermined displacement
on the constraint itself. Such a displacement will therefore not be a function of
the loads and the redundant unknowns, but will itself perform the function of
an external load, it being a datum of the problem.

In the case where infinitesimal displacements are imposed on the con-
straints of a statically determinate beam system, the system adapts by under-
going only rigid rototranslations. Consequently no external or internal
reactions develop. On the other hand, with the exception of particular cases,
it may be stated that the displacements imposed on a statically indeterminate
beam system generate reactions and deflections in the beams. Evidently this
is due to the redundant degree of constraint, which may be said to oppose the
deformation of the system. A rational explanation of this may be found in the
matrix treatment of the kinematics of rigid systems, presented in Chapter 3.

The kinematic matrix of a statically determinate beam system is square,
and hence the augmented matrix, containing the imposed displacements, will
have the same rank, whatever the displacements imposed on the constraints.
By virtue of the Rouche-Capelli Theorem, it is thus possible to state that
there exists a single kinematic solution, represented by the rigid deformed
configuration of the system.

The kinematic matrix of a statically indeterminate beam system is rectangu-
lar and is augmented by the imposed displacements on its longer side. This
allows the augmented matrix to have a rank greater than that of the kinematic
matrix, unless the imposed displacements are so particular as to produce a col-
umn of known terms linearly dependent on the columns of the kinematic
matrix. If we exclude the latter case, the Rouche-Capelli Theorem makes it
possible to assert that there does not exist a solution in the framework of the
kinematics of the rigid body. The beam system will thus have to adapt by
undergoing deformations (dilations and deflections). The solution is
determinable only in the context of the kinematics of the deformable body.

Consider a beam built in at one end and supported at the other and let the
vertical displacement r]0 of the built-in constraint be imposed (Figure
13.17(a)). Let the equivalent statically determinate scheme be that of a beam
supported at both ends (Figure 13.17(b)). This scheme rotates only rigidly,
after the imposition of the displacement TJO (Figure 13.17(c)). The equation of
congruence will consider both the elastic rotation induced by the redundant
moment X, and the rigid rotation rfo//,

9A=- — + -^ = 0 (13.36)
*A 3EI I

from which we obtain

X = 2jL1o 03-37)

The reactive moment of the built-in constraint is thus proportional to the mag-
nitude rj0 of the inelastic settlement. The bending moment diagram is thus
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linear with a maximum at the built-in constraint (Figure 13.17(d)), whilst the
shear is constant and equal to -X// (Figure 13.17(e)).

A different equivalent statically determinate scheme could be that of a can-
tilever beam, with the reaction VB at the free end determinable using the
equation of congruence

whence

(13.38)

(13.39)
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On the other hand, the reaction VB may be obtained also by inverting the
formula (13.22) corresponding to the scheme of a beam with a hinge and a
double rod (Figure 13.12(a)).

Let a rotation <pQ of the built-in constraint be imposed on the scheme of the
beam built in at one end and supported at the other (Figure 13.18(a)). Let the
equivalent statically determinate scheme consist of a beam supported at either
end, loaded by the unknown moment X (Figure 13.18(b)). The condition of
angular congruence thus reads

from which we deduce

(13.40)

(13.41)

Also in mis case me moment diagram is linear (rigure i 5A$(c)) witn a maxi-
mum at the built-in constraint, while the shear is constant and equal to X/l
(Figure 13.18(d)).

Let us now pass on to the beam built in at both ends, and let a vertical
displacement and a rotation be imposed separately to one of the two built-in
constraints. In the case of the imposed displacement Tfo (Figure 13.19(a)), the

' — •*.. B (a)

(b)

3EI
— M

(c)

3EI
/2

Figure 13.18
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scheme can be split up into one symmetrical scheme plus one skew-symmetrical
scheme (Figure 13.19(b)). Whereas the symmetrical scheme represents a simple
rigid translation 7](/2 downwards of the entire beam, the skew-symmetrical
scheme can be brought back to the one previously studied of a beam built in at
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one end and supported at the other (Figure 13.19(c)), for which the moment at
the built-in constraint is

J.H_7Jo._6£/
(112? 2 ~ P- * (B'42)

The moment diagram is thus linear and skew-symmetrical (Figure 13.19(d)),
while the shear diagram is constant and equal to (Figure 13.19(e))

T~H~^% (,3.43,

In the case of imposed rotation <p0 (Figure 13.20(a)), the equivalent stati-
cally determinate scheme is that of a beam supported at either end with
unknown redundant moments at the ends (Figure 13.20(b)). The equations of
congruence will impose the rotations <p0 in A and zero in B

»'-»-»•* (B'44a)
y / Y /A2£__A£ = ()

YB 3EI 6EI

(a)

t£ms 44OT1
(b)

4&
I

M

2EI
(c)

i

-SS-*.,2 "*

, *
i

T

•i-

$i
Figure 13.20
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From the foregoing equations we can deduce the two redundant unknowns

4Ff
*i= —<Po (13.45a)

2F7
*2=—<Po (13.45b)

The moment diagram is thus linear and asymmetrical, with a value at the end
at which the built-in constraint rotates which is twice that at the other end
(Figure 13.20(c)). The shear is constant (Figure 13.20(d)), having a value of

Xi+X 2 6EI
T= I ""]2~^o (13-46)

Note that it would have been possible to disconnect just the built-in constraint
A, in which case the equation of congruence would have been expressible on
the basis of equation (13.14):

<PA= — = <Po (13.41)A 4EI

In this way the solution outlined previously is once more obtained.
Finally, let us consider the scheme of the beam built in at one end and con-

strained with a double rod at the other. Whereas the vertical displacement of
the built-in constraint does not generate reactions and deflections (it is one of
those cases in which the augmented matrix has the same rank as the kinematic
matrix), an imposed rotation <p0 generates the elastic deformation of Figure
13.21 (a). The equivalent statically determinate scheme consists of the hinged
beam constrained by a double rod, loaded by the redundant moment X (Figure

(a)

X _-"

(b)

El
—

M

(c)

Figure 13.21
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13.21(b)). This scheme has already been studied in Section 13.3 and, on the
basis of equation (13.23), yields the following equation of congruence:

XI
<p =^- = (p (13.48)
T t\ j-ij T \J x /

from which we deduce

X = y<p0 (13.49)

The moment diagram is constant (Figure 13.21(c)), whereas the shear is zero.

13.6 Thermal distortions

Thermal distortions are the deformations induced in beams by variations
in temperature within the depth h. In the present section only linear
variations of temperature within the depth h will be considered. Each lin-
ear variation of temperature can then be divided into a uniform thermal
variation and a butterfly-shaped thermal variation (Figure 13.22). In the
context of small displacements, it will be possible to apply the Principle of
Superposition.

A uniform thermal variation AF, acting on an infinitesimal beam element of
length dz (Figure 13.23), induces an elongation of the element given by

dw = aA7dz (13.50)

AT(y)

Figure 13.22

dz
N H

AT

+AT
dw «ATdz-T=oATT

Figure 13.23
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where a is the coefficient of thermal expansion of the material. Thus a
thermal dilation will be produced:

€ = — = a&T (13.51)
dz

The butterfly-shaped thermal variation of Figure 13.24 brings about length-
ening of the lower fibres and shortening of the upper ones, so that, if the cross
sections are assumed to be orthogonal to the axis of the beam even after ther-
mal deformation has occurred, a relative rotation is produced between the end
sections of the element,

aA7— ,
d(p = 2 r-2- = 2a AT— (13.52)

^ h
2

and hence a thermal curvature

x =^ = 2a^- (13.53)
dz h

Since, on the other hand, the rotation is equal, but for the algebraic sign, to the
derivative of the vertical displacement v,

<P = ~ (13.54)
dz

the equation (13.53) becomes

£---2«f (13.55,
dz2 h

The differential equation (13.55), which governs the thermal deflection of the
beam, is formally identical to equation (10.47), which governs the elastic
deflection and, in place of the temperature variation AT, presents the bending

Figure 13.24
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a +AT
 /A

 +r£
|A ^WB I -F _
^ ^ Z S x B TB

Figure 13.25 - AT X \ _\?.
Figure 13.26

moment M. Putting together the two contributions, it is possible to write the
equation of the thermoelastic line:

SHf-f)
Let us now consider some elementary statically determinate schemes sub-

ject to thermal distortions. For the same reasons pointed out in the case of
imposed displacements, the thermal distortions do not generate additional
reactions and elastic deformations in statically determinate structures. The
latter are thus freely deformed without forcing of any sort. The cantilever
beam of Figure 13.25, subjected to a uniform thermal variation, is lengthened,
for example, by the amount

t*WB = eTdz = a&Tl (13.57)
JA

The same cantilever beam of Figure 13.25, subjected to a butterfly-shaped
thermal variation (Figure 13,26), will undergo a rotation of thermal origin at
the end section B,

f A T

<PB= XT& = -la — l (13.58a)
JA n

+ AJ
A ^ — — [̂ - ̂  B ia\

 an<^ a deflection,

^ -- ^ v.-fVzfc-a^/* (13.58b)

14—^ Zl <b) which can be determined also by resolving the differential equation (13.55),
"" 1/2 with the boundary conditions: v (A) = v '(A) = 0.

*" ** The supported beam subjected to a butterfly-shaped thermal variation
Figure 13 27 (Figure 13.27(a)) constitutes a symmetrical structural scheme, whereby, using

the previous results for the cantilever beam, we have (Figure 13.27(b))

A T
9A=~<PB=:<x—l (13.59a)

h

Vc=-a«L(L}2
=-a«L>± (13.59b)

(_, j f • } 1 Ah \2J h 4

In the case of the beam built in at both ends, subjected to a uniform thermal
variation (Figure 13.28(a)), the equivalent statically determinate scheme is
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Figure 13.28

that of a cantilever beam with an unknown axial reaction X (Figure 13.28(b)).
The equation of congruence

wB = aATl- —1 = 0 (13.60)
EA

yields the axial force

X = EAaAT (13.61)
In the case of a beam built in at both ends, subjected to a butterfly-shaped

thermal variation (Figure 13.29(a)), the equivalent statically determinate
scheme is that of a beam supported at either end with redundant reactions X at
the ends (Figure 13.29(b)). The equation of congruence

^=-^=0^-^1 = 0 (13.62)

yields the built-in constraint moment, which is equal to the bending moment
acting on all the sections of the beam

X = 2^^- (13.63)
h

Note that since the elastic curvature is equal and opposite to the thermal
curvature,

Xe=± = 2a^- (13.64a)
LI n

Xr=-2a^ (13.64b)

the global thermoelastic deformed configuration is zero, and the beam remains
rectilinear.

In conclusion, let us take a beam built in at one end and constrained by a
vertical connecting rod at the other (Figure 13.30(a)). Let the beam be
subjected to a butterfly-shaped thermal variation and the connecting rod to a

+ AT +AT

g F V gfs V (*fy
|A 7f B| ft? ~?\^" £=} Y/ * x -^ x Y'

-AT -AT

(a) (b)

Figure 13.29
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Figure 13*30

uniform thermal variation. If we isolate the cantilever beam and the connect-
ing rod, which exchange the redundant reaction X (Figure 13.30(b)), it is pos-
sible to formulate the equation of congruence, which must express the
equality of the deflection of point B', belonging to the cantilever beam, and
point B", belonging to the connecting rod,
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vff=vir (13.65)

with

vff=a — l2-— (13.66a)
* h 3EI

, xiL]
vr = -aAT- + —^ (13.66b)B 2 EA

With expressions (13.66) substituted in equation (13.65), we obtain

oW'+il

*= f l ^ (13'67)

Ul+37j
The connecting rod therefore functions as a strut, as was assumed
conventionally.

The beam presents a thermoelastic inflection where the elastic curvature
equals, in absolute value, the thermal one,

^ = 2a^- (13.68)
El h

from which we obtain the coordinate of the inflection (Figure 13.30(c)),

"^
where X is given by equation (13.67). Finally

f-+-'2l( A 1 )
z = f , \J (13.70)

(*+'!U J
and, in the case of a rectangular section and a slender beam (Uh —»«>),

z^l (13.71)

Remaining within the restrictive hypotheses made above, the vertical
displacement of the end B is

vB=--aATl (13.72)

and thus, since it is negative, the point B will rise. The thermoelastic deformed
configuration of the beam is depicted in Figure 1330 (c).

(13.69)
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13.7 Continuous beams

The term continuous beams refers to rectilinear beams devoid of internal dis-
connections, constrained to the foundation by a series of supports and, in some
cases, by built-in supports at the ends. The equivalent statically determinate
structure is obtained by inserting a hinge in each support or in each external
built-in support. There will thus be as many redundant unknowns and as many
equations of congruence as there are disconnected nodes. The equation of angu-
lar congruence corresponding to each node will contain the redundant moment
acting on the same node, as well as the redundant moments acting on the two
adjacent nodes; it is for this reason that it is called equation of three moments.
In the case of nodes adjacent to the ends or end nodes, the number of unknowns
present in the corresponding equation may prove to be less than three.

Consider the three-span continuous beam of Figure 13.3l(a). It is con-
strained by four supports (a hinge and three roller supports) and loaded by a
moment m at the right-hand end D. If the two intermediate supports are dis-
connected with two hinges and the redundant moments X{ and X2 are applied
(Figure 13.31(b)), the equations of congruence take on the following form:

<PBA=<PBC (13.73a)

<PcB=<PcD (13.73b)

and thus

_x1l=zx1i_+x2i_
3EI 3EI 6EI

_x2L-±L=x2L+jaL (13.74b)
3EI 6EI 3EI 6EI

Once resolved, equations (13.74) yield the solution X} = -^m, X2 = -4-w,
and therefore the moment diagram of Figure 13.31 (c). This diagram con-
sists of a broken line which intersects the axis of the beam in two points. The
points at which the bending moment becomes zero correspond to inflection
points in the elastic deformed configuration (Figure 13.31(d)). Finally, the
shear diagram is represented in Figure 13.31(e). The discontinuities or jumps
which the function T undergoes, proceeding from left to right, represent the
vertical reactions of the supports:

_ 1 m _ ^ m _ 8 m _ 19 my — y — y — y —
A 15 I B 5 I C 5 I D 15 I

Let us now assume that the continuous beam considered previously under-
goes an inelastic settlement of the support B. After disconnecting the beam as
shown in Figure 13.31(b), it will be necessary to consider the contributions to
the rotations of the sections B and C, due both to the elastic deformability of
the beams and to the rigid mechanism caused by the deflection TJO

_Xl_^=X,L+X2L + ̂
3EI I 3EI 6EI I

_X2L_XiL+!h = ̂ 2L (1375b)
3£/ 6£7 / 3E/

(13.74a

1375b)



STATICALLY INDETERMINATE STRUCTURES: METHOD OF FORCES

m

(a)

X, X, X2 X,

f^ jr.*
m

(b)

m/15

M m

15

(c)

Inflections

m

'/

-L jn
15 /

i
T

T 1 m

19 m.
T5 /

(e)

Figure 13.31

418

(d)



CONTINUOUS BEAMS

__^ D

(a)

(b)

1*1-
(c)

419

Figure 13.32

The solution to the system (13.75) is as follows:

X^-yfU 03.76a)

*2=ff Ho <13-76b>

The moment diagram (Figure 13.32(b)) intersects the axis of the beam at
a single point, so that the deformed configuration presents the fibres
stretched at the lower edge in the left-hand part and at the upper edge in the
right-hand part (Figure 13.32(a)). The shear diagram is depicted in Figure
13.32(c), and also in this case the discontinuities measure the values of the
constraint reactions.

As our last example of a continuous beam, we shall examine the one
depicted in Figure 13.33(a), which consists of two spans with a built-in con-
straint in A and supports in B and C. Since the distributed load q acts only on
the span BC, it is possible to reduce the scheme to that of Figure 13.16(a),
with the elastic compliance of the beam AB represented by the rotational
spring. The elementary schemes for resolving the problem are given in Figure
13.33(b), where the stiffness k of the spring is equal to 4EI/1. From equation
(13.34) we obtain X = #/2/14, and hence the moment diagram of Figure
13.33(c). The shear emerges as constant in the beam AB and linear in the beam
EC (Figure 13.33(d)). The point of zero shear corresponds to the maximum
bending moment (Figure 13.33(c)), just as the points where the moment

¥lv
fi El6 -^Tl
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becomes zero correspond to the inflections of the elastic line (Figure
13.33(e)).

(a)

(b)

q/2/14

q/2/28

M

q/2/8

q/2/8

(c)

*4 f,/

(d)

Figure 13.33

(e)
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1 A Statically indeterminate
• structures: method of

displacements

14.1 Introduction

The method of displacements is dual of the method of forces, introduced in
the previous chapter. Thus it is a process of identifying a single set of
kinematic parameters which, in addition to congruence, implies also
equilibrium.

From the operative standpoint, the method of displacements consists of
imposing certain displacements or rotations, characteristic of the system, in
such a way that the v- g redundant reactions satisfy v-g relations of equilib-
rium. In the sequel this method will be applied to beam systems of various
types. In illustrating the method, we shall start from simple cases of parallel-
arranged elements and close the chapter by presenting fundamental concepts
on which the automatic computation of beam systems with multiple degrees
of indeterminacy (trusses, plane frames, plane grids, space frames) is based, in
the static as well as the dynamic regime. Some elements of the seismic analy-
sis of multi-storey buildings are also given.

14.2 Parallel-arranged bar systems

Consider a rigid cross member of symmetrical shape constrained with a sym-
metrical system of parallel connecting rods, which may present different
lengths and different cross-sectional areas, and may consist of materials with
different elastic moduli (Figure 14.1 (a)). If this symmetrical system is loaded
symmetrically, for instance by a vertical force F acting in the centre of the
cross member, the resulting deformation will be symmetrical and can be glo-
bally described by a single datum: the vertical translation 5 of the cross mem-
ber. Each connecting rod will in fact undergo the same elongation 5, since it is
hinged to the cross member. For the congruence of the system it is therefore
possible to set

V /

5i=-^- = S (14.1)
E,A,

where 5f is the elongation of the ith connecting rod, Xt is the corresponding
axial tensile force, /,, Eit Af are, respectively, the length, the elastic modulus
and the cross-sectional area of the connecting rod. Congruence is thus implic-
itly assumed, while the kinematic unknown <5is determined by considering the
equilibrium of the cross member with regard to vertical translation (Figure
14.1(b))

F=^xi <14-2)
/
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(a) Congruent
system

(b)
X Balanced

3 system

Figure 14.1

From equation (14.1) we obtain in fact the value of each redundant unknown
Xt as a function of the primary unknown 5,

X,=^S 04.3)
T

and thus the equation (14.2) yields the displacement that is sought:

S=^S (14'4)

^ l<
The foregoing expression may also be cast in the form

5 = £ (14.5)
A

where

* = £*' = I/TL (14'6)
i i l

denotes the total stiffness of the system. This turns out to be equal to the sum-
mation of the partial stiffnesses Kt of the parallel elements.
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Finally, the expression (14.3) furnishes the reactions of the individual con-
necting rods

H )̂/(z^M
where the ratio K{ /K, between partial stiffness and total stiffness, is called
coefficient of distribution and indicates the fraction of the total load sup-
ported by the /th element. This fraction is proportional to the partial stiffness
of the element itself.

Hence, in this particular case of parallel elements, the convenience of the
method of displacements, compared with the method of forces, emerges
clearly. In fact, if we were to apply the latter method, we should have to
resolve (n - 1) equations of congruence, n being the number of unknown
redundant reactions (in the example of Figure 14.1 we have n = 3).

As a second example of parallel-arranged elements, consider a rigid cross
member of asymmetrical shape, constrained by a system of parallel connect-
ing rods of varying lengths and cross sections and of different constitutive
materials (Figure 14.2(a)). Let this system then be loaded in an altogether
generic manner, on condition that no components of horizontal force are
present, with respect to which the system is free. Consider, for instance, a
generic vertical force applied to the cross member at a distance d from the
centre (Figure 14.2(a)). With respect to this force the system presents (n - 2)
degrees of indeterminacy, n being the total number of connecting rods.

Once deformation has taken place, the cross member will be rotated by the
angle <p with respect to the undeformed configuration, so that there will be two
kinematic unknowns: for example, the vertical translation 8 of the mid-point
of the cross member together with the angle of rotation (p. The congruence of
the system thus imposes

V /

fi.=-JJ- = 5 + ̂ J. (14.8)
LiAi

where jc, denotes the abscissa of the /th connecting rod.
Just as there are two primary unknowns, there are also two equations for

resolving them which are represented by the equations of equilibrium of the
cross member with regard to vertical translation and to rotation about the
centre:

F=^Xj (14.9a)
i

Fd = Vx(.Jcf (14.9b)
i

Since each individual redundant reaction may be expressed as a function of
the two kinematic unknowns, via the relation (14.8),

X.=M. (fi+ ,,*<) (14.10)
n

423
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(a) Congruent
system

(b) Balanced
system
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Figure 14.2

equations (14.9) are rendered explicit as follows:

fe^Mi^H-' <i4-"a)
(i li ) \ i * )
/£^l+j£M^l = w (i4.iib)

V i / V i /

from which it emerges clearly how these represent a linear algebraic system of
two equations in the two kinematic unknowns 5, (p. The ordered set of four
coefficients represents the stiffness matrix of the system, which is symmetrical
by virtue of Betti's Reciprocal Theorem.

Finally consider a set of connecting rods concurrent at a point belonging to
the plane (instead of at infinity as in the cases of Figures 14.1 and 14.2). Let the



PARALLEL-ARRANGED BAR SYSTEMS

point of concurrence be represented by a hinge-node (Figure 14.3(a)), and let
that node be loaded by a generic force F, inclined at the angle /? with respect to
the horizontal. Once deformation has occurred, the hinge-node will be dis-
placed with respect to its original position, by an amount u in the horizontal
direction and by an amount v in the vertical direction (Figure 14.3(a)). Since
all the connecting rods are hinged at the end, all sharing the same node, and
since the Principle of Superposition holds, the elongation of each individual
connecting rod will be given by the two contributions, one corresponding to
the displacement u and the other to the displacement v

XI
A/,- = —l— = u cos ai +usin a- (14.12)

£/A
The equations of equilibrium with regard to horizontal and vertical transla-

tion of the hinge-node constitute the equations which resolve the problem
(Figure 14.3(b))

F cos ft = V X,- cosa, (14.13a)
/

F sin/3 = \ Xl sina, (14.13b)
i

(a)

(b)

Figure 14.3

i,
Congruent
system

Balanced
system
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Expressing, according to equation (14.12), each redundant reaction as a func-
tion of the two kinematic unknowns u and v

Xt =-L-L( Mcosofy+usina,. ) (14.14)
n

equations (14.13) transform as follows:

u\ f —l—Lcos2qf +u ^ ——Lsina/ cosa, =Fcosj3 (14.15a)

u ^^cosa,- sine*,. + J V^-sin2^- = Fsinj8 (14.15b)

V / / v i )

Also in this case the stiffness matrix of the system is symmetric, in accordance
with Betti's Reciprocal Theorem.

14.3 Parallel-arranged beam systems

Consider n beams connected together by a single fixed joint-node and each
constrained at its other end in any manner whatsoever to the foundation
(Figure 14.4(a)). Let these beams present different lengths, cross sections and
elastic moduli, and let the fixed joint-node be loaded by a counterclockwise
moment m. When deformation has taken place, the fixed joint-node will be
rotated by an angle <p, as will the end sections of the individual beams which
converge at the fixed joint-node itself (Figure 14.4(a))

X 1
(Pi =-^- = 9 04.16)

ciEih

where <pt denotes the angle of rotation of the nodal section of the fth beam, Xt

is the reactive bending moment due to the above-mentioned distortion, /,-, /,, E{

are respectively the length, the moment of inertia and the elastic modulus of
the beam, and finally ci is a numerical coefficient dependent on the remaining
constraint. From Section 13.5, regarding inelastic constraint settlements and
imposed displacements, we can deduce, for instance, the coefficients cl corre-
sponding to the beams of the scheme of Figure 14.4(a). For beam 1 we have
cl = 4 (Figure 13.20), for beams 2 and 4 we have c2 = c4 = 3 (Figure 13.18),
while for beam 3, c3 = I (Figure 13.21).

An alternative and equivalent way of expressing the proportionality relation
between the kinematic unknown <pt and the redundant moment Xt is that of
transforming the fixed joint-node into a hinge-node (Figure 14.4(b)) and to
apply all the redundant unknowns Xt. It will thus be a question of determining
the elastic rotations <pt on all the various statically indeterminate or statically
determinate schemes thus obtained. This time the coefficients c{ are thus
derived by assigning to the moments X, the role of cause, and to the rotations
<Pi that of effect, as opposed to the previously adopted procedure. The schemes
of Figures 13.6, 10.6(a) and 13.13 confirm, in each case, the corresponding
coefficient q already deduced following another path.
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(a)

(b)

Congruent
system

(c)

Figure 14.4

<4 Balanced
system

m

The equilibrium of the fixed joint-node, on the other hand, imposes (Figure
14.4(c))

m = ̂ Tx- (14.17)
/

whereby, using equation (14.16), we obtain

Z r F1
^=£- (14.18)
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and hence the primary unknown of the problem

m m
<p = r*\ C.E.J. TS

l*^i~
(14.19)

where K designates the total stiffness of the beam system, which yet again is
equal to the summation of the partial stiffnesses of the individual elements.

From equations (14.16) and (14.19) it is thus possible to derive the individ-
ual redundant unknowns,

Hfl/^h* "4-20)
where the ratio K/K is the flexural coefficient of distribution and represents
the fraction of external loading supported by the /th beam.

Consider, as a second fundamental case, a horizontal rigid cross member,
constrained to the foundation by a series of uprights of various lengths, having
different moments of inertia and consisting of different materials (Figure
14.5(a)). Let the horizontal cross member be loaded by a horizontal force F.
When deformation has occurred, the cross member will be translated horizon-
tally by the amount <5, as will the ends of the uprights. From congruence, we
therefore have

T-fi
5,=-^- = 8 (14.21)

ciEJi

T
\
\
\
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where 7} is the shear transmitted to the cross member by the ith upright, /,,/,
and Et are as before the characteristics of the upright, while ct is a numerical
coefficient depending on the constraint holding the upright to the foundation.
From Section 13.5 we can deduce the coefficients ci corresponding to the
exemplary scheme of Figure 14.5(a). For upright 1 we have cl = 12 (Figure
13.19), for uprights 2 and 4 we have c2 - c4 = 3 (Figure 13.17), while for
upright 3, c3 = 0, since the horizontal translations of the upright are permitted
by the double rod.

The displacement 8t having been imposed, the redundant shear reaction 7} is
thus obtained. Inverting the roles, as has already been seen in the previous
fundamental scheme, it is possible to apply the force Tt and find the elastic dis-
placement Sj. It is sufficient to consider the schemes of Figures 13.11 and
13.12 for the calculation of the coefficients cl and c2 = c4, respectively.

The equation that resolves the problem is thus of equilibrium, with regard
to horizontal translation of the cross member (Figure 14.5(b))

F = ̂ Ti (14.22)
/

from which, taking into account equation (14.21), we obtain

5-yW = l (14'23a)

-f-lT
the total stiffness K being provided by the summation of the partial stiffnesses.

The redundant reactions Tl are instead expressible as follows:

H^J/ISTH <i4-23b)
where the ratio Kf /K is the shear coefficient of distribution.

Notice how the uprights, in addition to the shear 7,, generally also transmit
to the cross member a moment M, and an axial force TV,. Equilibrium with
regard to vertical translation and to rotation of the cross member will thus be
ensured by the combination of these loadings. Whereas, however, the
moments M, are by now known and deducible from schemes already referred
to, the axial forces TV, constitute a set of redundant unknowns which may be
calculated on the basis of a scheme of parallel connecting rods similar to that
of Figure 14.2(a), in which the external load consists of the moments M,.

In the same way, the shearing forces and axial forces transmitted to the
fixed joint-node of Figure 14.4(c) must allow equilibrium with regard to trans-
lation of the latter. Of course, in this case the shearing forces are known and
their summation constitutes the total force acting on the node, while the axial
forces are again unknown but deducible from a scheme of converging con-
necting rods like that of Figure 14.3(a).

14.4 Automatic computation of beam systems having multiple
degrees of indeterminacy

Consider a system of rectilinear beams lying in the plane, constrained at the
ends, both mutually and externally, by fixed joint-nodes or hinge-nodes
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Yigare 14.6

(Figure 14,6). Let the fixed joint-nodes and the hinge-nodes be numbered,
starting from the internal nodes and ending with the external ones. In the case
of fixed joint-nodes, there are three kinematic parameters which characterize
their elastic configuration: two orthogonal translations and the rotation (Figure
14.7(a)). In the case of hinge-nodes, the kinematic parameters which charac-
terize their elastic configuration are equal to the number of the beams which
converge in the node, augmented by two: it will in fact be necessary to take
into account an independent rotation for each end section, and the two ortho-
gonal translations (Figure 14.7(b)). Finally, in the case of connections of a
mixed type, fixed joint and hinge (Figure 14.7(c)), there will be three kine-
matic parameters, plus the number of beams which converge at the hinge.

Further, let the beams be numbered and let each be disposed within a local
reference system F*Z*, which will be in general rototranslated with respect to
the global reference system YZ (Figure 14.6). Let us then consider a generic
loading of the system, consisting of concentrated and distributed loads on the
individual beams and of concentrated loads (forces and couples) acting on the
internal nodes.

11
(a)

Figure 14.7

(b) (c)
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1
(b)

Figure 14.8
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At this point let each beam with ends ij be isolated, and let it be considered
as constrained by built-in supports in the end sections (Figure 14.8(a)). The
procedure will thus be to impose, at each end, the three generalized displace-
ments and find the redundant reactions at the built-in ends. If we designate the
reactions at the built-in constraints as M, T and N, and the rotation and the two
imposed displacements as <p, v and w, respectively, and if we assume the con-
ventional positive senses indicated in Figure 14.8(b), which are the same at
either end, we have the following matrix relation:

~MH r 4 -6 o 2 6 0 -,rw-| rMo-

T, -$ % 0 - ^ - ^ 0 u, r°

Nt 0 0 * 0 0 -± wt N°
=EI - (14.24)

Mj 2 _ * o f 6 0 <PJ M°

T 6 12 n 6 12 A i. T°Lj p --p o F F o u;- ry.

-A / J L ° 0 -^ 0 0 ^ JL^J L N J _

This relation expresses the constraint reaction vector as the sum of two con-
tributions: the first deriving from the imposed displacements and the second
balancing the external loads acting on the beam. The symmetric (6 x 6) matrix
which multiplies the displacement vector is referred to as the stiffness
matrix of the element. Each column of the matrix is obtained by imposing
the relative displacement or rotation and by calculating, as was done in Sec-
tion 13.5, the redundant reactions at the ends. In place of the vector of the
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Figure 14.10 Figure 14.11

Figure 14.9
forces balancing the external load acting on the beam, in relation (14.24)
appears the vector of the forces equivalent to the external load, with a neg-
ative algebraic sign. In the case of uniform distributed load (Figure 14.9) we
have the vector

L< sL9 o, *i, «L. oT (14.25)
L 12 2 12 2 J

while, with the butterfly-shaped thermal distortion (Figure 14.10) and the uni-
form thermal distortion (Figure 14.11), it is necessary to consider the follow-
ing forces transmitted by the beam to the built-in constraint nodes:

\2EIa — ,0,0,-2£/a — ,0,0] (14.26)
L A h J

[0,0, -EAaAT, 0,0, EAaATf (14.27)

In relation (14.24) it is possible to group together the terms corresponding
to the two ends / and j

a
1" * ~i r v v ~i {~c*~i r !-•* ~, J-K, ^ ip5 , i_ /n
c;J L^ ^JkJ kJ

where the quantities marked by an asterisk are to be understood as referring to
the local coordinate axes 7*Z*, corresponding to the beam ij (Figure 14.6). In
compact form

WKMal+fcl (14.29)
(6x6) (6x1) (6x1) (6x1)

The quantities referred to the local system are expressible as functions of the
same quantities referred to the global system,

{S:} = [N]{8e} (14.30a)

(14.29)
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{e;}=M(a} <i4.30b)
{F;} = [N]{F(} (14.300

[N] being the matrix of rotation which transforms the global reference system
YZ into the local reference system y*z*

" 1 0 0 0 0 0

0 cos $ sintf 0 0 0

r n 0 -sintf cost? 0 0 0
\N] = (14.31)L J 0 0 0 1 0 0

0 0 0 0 cos ̂  sintf

0 0 0 0 -sintf cos#_

Substituting equations (14.30) into relation (14.29), we obtain

[Ke][N]{Se} = [N}({Qe} + {Fe}} (14.32)

Finally, premultiplying both sides by [7V]T, we obtain

((N]r[Ke][N}){8e} = {Qe} + {Fe} (14.33)

The two vectors on the right-hand side are, respectively, the vector of the con-
straint reactions and the vector of the equivalent nodal forces, while the matrix
in round brackets is the stiffness matrix of the element, reduced to the global
reference system.

The assembly operation, as in the case of the Finite Element Method, con-
sists of an expansion of the vectors [8e], {Qe}, {Fe} from the local dimension
(6) to the global dimension n, where n is the total number of the kinematic
parameters identifying the deformed configuration of the beam system. Thus
the procedure will be to order all the kinematic parameters of the system in one
vector, in such a way as to be able to insert the end displacements of the generic
element e in the positions that they should occupy. This can be achieved by pre-
multiplying the vector of the local displacements [Se} by a suitable assemblage
matrix [A JT, of dimensions (n x 6), where all the elements are zero, with the
exception of six elements having a value of unity arranged in the six different
rows to be filled and corresponding to the six associated columns:

{^} = [4]T{5f} (14.34a)

{Qf} = K]T{eJ (14.34b)

{F<} = [Ae]
T{Fe} (14.34c)

In the case of the beam 2-5 of the frame of Figure 14.6, for example, the
matrix [Ae]

r is of dimensions (30 x 6), where the first element of the fourth
row, the second element of the fifth row, the third element of the sixth row, the
fourth element of the thirteenth row, the fifth element of the fourteenth row
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and the sixth element of the fifteenth row are different from zero and have a
value of unity:

node 2

node 5

(14.35)

(30 X 6)
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Figure 14.12
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Substituting the inverse relations of equations (14.34) into equation (14.33),
we obtain

([AfMAnjKKf'H^Xfc'hM) (14.36)

Premultiplying by [AJT, we have

([Ae]
r(N?[Ke][NlAe]){S<} = {Qr} + {F<} (14.37)

The relation (14.37) remains valid even if the expanded vector of local dis-
placements {Se} is replaced by the global vector of nodal displacements
[S],

[ K e ] { 6 } = { Q f } + { F < } (14.38)
(nxn)(nx\) ( / ? x l ) ( n x l )

where [K*] denotes the matrix of local stiffness, reduced to the global refer-
ence system and expanded to the dimension n.

The local relation in expanded form (14.38) may be summed together with
the similar relations corresponding to the other beams:

|5>'Jp>=£(fc'hM) <14-39>
V e ) e

Noting that, for the equilibrium of nodes, we must have (Figure 14.12)

-^{Qe}+{n = {0} 04.40)
e

the equation (14.39) which resolves the problem may be cast in the form

[*]{5} = {F} + {FfJ (14.41)

where [K] is the matrix of global stiffness, {F} is the vector of effective
nodal forces and {Feq} is the vector of equivalent nodal forces.
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The vectors of the effective and equivalent nodal forces summarize the
external loads acting upon the beam system and are to be considered as known
terms or data of the problem. The stiffness matrix of the system is also known,
once the geometry and the elastic properties of the beams are known. The
unknown of the problem is represented by the vector of nodal displacements
{§}. It is evident then how the calculation of a beam system with a multiple
degree of statical indeterminacy can be accommodated within the method of
displacements and can be performed automatically via computer by means of
a pre-ordered succession of elementary operations.

So far we have not taken into account the external constraint conditions. To do
this, let us partition the vectors and the matrix which appear in relation (14.41),
so as to isolate the free displacements from the constrained displacements:

\KLL KLV! IA1 [FL!
\K K Ls = F (14'42)
1KVL KVV] [Oy] 1FV]

Whereas the constrained displacements {8V} are zero (or, at the most, prede-
termined in the case of inelastic settlement), the free displacements {8L} rep-
resent the true unknowns of the problem,

[Ku^SL} = {FL}-[KLV^dv} (14.43)

from which we obtain

{SL} = [KLLr({FL}-[KLV]{5v}) (14.44)

On the other hand, from relation (14.42) we have

{FV} = [KVL]{8L} + [KVV]{8V} (14.45)

and hence, by virtue of equations (14.44) and (14.45), we obtain the external
constraint reactions

{Qv} = [KVL][KLLYl \{FL}-[KLV]{SV}\ + [KVV]{SV}-{F^} (14.46)
(vxl) (vxl) (Ixl) l ^ ( / x l ) ( I x v ) (vxl}) (vxv) ( v x l } ( v x l }

where {F v } is the vector of the equivalent nodal forces corresponding to the
constrained nodes. Notice that, beneath the formula (14.46), are given the
dimensions of the vectors and matrices that are involved.

Once all the kinematic parameters {8L} are known, it is then simple, by
applying for each beam the initial relation (14.24), to determine the internal
reactions and hence the diagrams of the characteristics.

14.5 Plane trusses

In the case of plane trusses (Figure 14.13), the kinematic parameters of the
system reduce to the hinge-node displacements. The local stiffness matrix in
this case reduces to a (2 x 2) matrix,

X-l (~! _!lK-~
= EA 7j v

l (14.47)
NJ\ L 7 7 }[WJ_
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Figure 14.13
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Figure 14.14
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where only the axial force and the axial displacement are present (Figure
14.14). The vector of the forces balancing the external load acting on the indi-
vidual bar is zero, since in general trusses are assumed as being loaded only in
the hinge-nodes.

Relation (14.47) can be cast in the compact form

[Ke]{8;} = {&} (14.48)
(2x2) (2x1) (2x1)

where the quantities referred to the local system have been marked with an
asterisk. On the other hand, both the axial displacement and the axial force can
be projected on the axes of the global reference system YZ, giving rise to the
four-component vectors {S€} and {Qe}>

{S*e} = [N]{S€} (14.49a)

{Q:} = [N]{Qe} (14.49b)

where [N] denotes the orthogonal (2 x 4) matrix:

~-sin# cos# 0 0
[N]= (14.50)

[ 0 0 -sin# costf
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The assembly operation is based on the relation

[*']{*} ={e<} 04.51)
( n x n ) ( n x l ) ( n x l ]

where

[*<]=[4]T[tf]T [*,][#][*,] (14.52)
(nxn) (/ix4) (4x2) (2x2) (2x4) (4xn)

is the local stiffness matrix, reduced to the global reference system and
expanded to the dimension n, {8} is the vector of nodal displacements, which
presents two components for each node with a total of n components, and
{Qe} is the vector of nodal reactions, this also reduced to the global reference
system and expanded to the dimension n. Summing up all the relations (14.51)
as the index e characterizing each individual bar varies, we obtain

[K]{8} = {F} (14.53)

which is the equation that resolves the problem.
Once all the kinematic parameters {8} are known, and hence the displace-

ments in the individual local reference systems

{8:}= [N] [Ae] {5} (14.54)
(2x1) (2x4)(4xn)(nxl)

it is then possible to determine the axial force acting in each single bar, by
applying the initial relation (14.47).

14.6 Plane frames

Plane frames have already been dealt with extensively in Section 14.4. Here
we shall consider two important particular cases:

1. rotating-node frames;
2. translating-node frames with rigid horizontal cross members (also called

shear-type frames).

In rotating-node frames the nodes are not displaced but simply rotate, except
for the contributions due to axial deformability of the beams. Figure 14.15
provides an example of a rotating-node frame with four nodes effectively free to
rotate (two of these are internal and two external). In these cases, if we neglect
the axial deformability of the beams, the local stiffness matrix is, as in the case of
trusses, a (2 x 2) matrix:

"Mt] ri -lpp'1 TM'P"
= & j 4 ~ (14'55)

MJ IT yjkj N.
In this case the vector of rigid joint moments [M f, M y ]T is also present.

Relation (14.55) can be put in the synthetic form (14.29). This is one of
those cases in which the local and global kinematic parameters coincide, so
that relations (1430) remain valid, even though the orthogonal matrix [AT| is
the identity matrix of dimensions (2 x 2). The assemblage matrix [A€] will
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therefore have the dimensions (2 x /i), where n is the number of the nodes of
the frame.

In translating-node frames with rigid horizontal cross members, we
have the situation complementary to the preceding one: the nodes do not
rotate but are displaced only horizontally, except for the contribution due to
the axial deformability of the columns. Figure 14.16 gives an example with
three cross members effectively free to translate. Only the vertical beams are
thus considered, hence the local stiffness matrix has, as in the foregoing cases
(trusses and rotating-node frames), dimension (2 x 2):

r^i ^T -7?iru'i f7?"
= El - (14.56)

T 12 12 ... TO
.f/J L~F T J LVJJ Llt J

Also in this case the local kinematic parameters coincide with the global
ones, which are precisely the horizontal translations of the cross members.
The assemblage matrix [Ae] will therefore have the dimensions (2 x n), where
n is the number of horizontal cross members plus one.
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14.7 Plane grids

Consider a system of rectilinear beams lying in a plane, mutually constrained
via fixed-joint nodes and externally via built-in ends or supports orthogonal to
the foundation (Figure 14.17). The kinematic parameters characterizing the
deformed configuration of the nodes are three: two rotations with orthogonal
axes lying in the plane, and the displacement orthogonal to the plane.

Let each beam be disposed in a local reference system X*Z*, which will in
general be rototranslated with respect to the global reference system XZ
(Figure 14.17) and let a generic loading of the system be considered, consist-
ing of distributed and concentrated loads perpendicular to the plane XZ, acting
on the individual beams or on the individual nodes.

Let each beam be isolated, it being considered as built in at the end sections
/ and j (Figure 14.18(a)). The procedure will be to impose on each end the
three generalized displacements and to find the redundant reactions at the
built-in constraints. Designating as M, T, Mt the reactions at the built-in con-
straints, and <p, v, #, respectively, the rotation about the axis X*, the vertical

(a)

Figure 14.18

(b)
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displacement and the rotation about the axis Z* (Figure 14.18(b)), we have the
following matrix relation:
MA \ i _A o - - o ih'i rM'°~/ /2 / i2
T, .6. 12 0 _6 . .12 0 „, ,o

Mrt 0 0 JL 0 0 -f *, MO

= £/ 2 6 4 6 - <14-57>
M, y -A 0 f A o ,; MO

6 12 6 12
7} J ~P ° /T -p ° "J T?M\ [ ° ° -^ ° ° ir jy u

where the local stiffness matrix is identical to the one present in relation
(14.24) except for the four terms corresponding to torsion, which replace
those corresponding to axial force.

The matrix relation (14.57) can be cast in the compact form (14.29). The
quantities referred to the local reference system X*Z* are expressible as
functions of the same quantities referred to the global system XZ. Relations
(14.30) therefore continue to hold, [N] being the following rotation matrix:

"cosa 0 sina 0 0 0
0 1 0 0 0 0

-sina 0 cosa 0 0 0
[N]= (14.58)L J 0 0 0 cosa 0 sina

0 0 0 0 1 0
0 0 0 -sina 0 cosa

Just as the matrix (14.31) reduces shearing force and axial force to the global
reference system, so the matrix (14.58) likewise reduces bending moment and
twisting moment (Figure 14.19).

As regards calculation of the external constraint reactions, the procedure to
follow is yet again that formally outlined in section 14.4.

14.8 Space frames

To conclude, let us consider the most general case, which comprises, as partic-
ular cases, both plane frames and plane grids. This is the case of space frames,
which are three-dimensional systems of rectilinear beams mutually con-
strained and externally constrained by fixed joints, cylindrical hinges and
spherical hinges (Figure 14.20). In the case, for instance, of fixed-joint
constraint nodes, there are six kinematic parameters characterizing the
deformed configuration: three mutually orthogonal translations and three rota-
tions about three mutually orthogonal axes. In the case of spherical hinges (e.g.
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Figure 14.20

three-dimensional trusses), the kinematic parameters are equal to three times
the number of beams that converge at the node, augmented by three. In the
case of mixed-type connections, the kinematic parameters will be of a lower
number. Let each beam be disposed within a local reference system X*Y*Z*,
which will in general be rototranslated with respect to the global reference
system XYZ, and let each be isolated by being considered as built-in at the
end sections ij. Following the same procedure as in the previously considered
cases, let six generalized displacements be imposed at either end, so as to find
the 12 redundant reactions at the built-in supports. Designating as Tx, Tyt N,
Mr My and Mz the reactions at the built-in supports, and as u, 14 w, <pr <py and
<pz the imposed displacements, we have the following matrix relation:

442



" TV, "

TYI

M

M-j

Thj

Myj

—

r 12Hy 6£/v 12£/v 6f/y 1
/3 U U U ••• - U ^ U U U p U

liElr oE/v 1 2£7V \)EIro n n n n n n n

0 0 ^ 0 0 0 0 0 -— 0 0 0

0 _i 0 0 0 0 —^ 0 0 0

6£7,, 4£/v 6£A. 2£/v^ o n n n n o n ^^*> „

0 0 0 0 0 ^ 0 0 0 0 0 -^

- 0 0 0 J 0 ^E/y 0 0 0 *^v 0

0 0 -^ 0 0 0 0 0 ^ 0 0 0

0 -—- 0 — ~ 0 0 0 --^ 0 — - 0 0

- ^ 0 0 0 ^ 0 ^ 0 0 0 ^ 0

0 0 0 0 0 -~ 0 0 0 0 0 ^

Uj

«,

«

^

_

" ^ S "

70
VI

Nf

AT(

^
^

j

(14.59)



STATICALLY INDETERMINATE STRUCTURES: DISPLACEMENTS

The local stiffness matrix in this case has the dimension (12x12).
The rotation matrix [N] also has the dimensions (12 x 12) and can be parti-

tioned into 16 submatrices of dimensions (3 x 3), of which 12 are zero and the
four diagonal ones are mutually identical,

~NQ o o o "
0 N0 0 0

M= o o , v 0 o (14'60)

0 0 0 AT0

where

"cosX*X cosXT cosX*Z~

[NQ]= cosrx cosry cosrz (i4.6i)
|_cosZ*X cosZ*F cosZ*Z

The assembly operation and the determination of the external constraint
reactions are formally identical to those corresponding to plane systems,
described in Section 14.4.

14.9 Dynamics of beam systems

If the distributed masses of a plane frame are assumed as being concentrated
in the nodes, the equilibrium equation (14.41) can be transformed into the
equation of free oscillations

[*]{£}+ [M]{<5} = {0} (14.62)

where the mass matrix [M] is a diagonal matrix which presents an equivalent
mass corresponding to each nodal translation and a zero mass corresponding
to each nodal rotation. The equivalent mass can, for instance, be calculated by
adding the weights, divided by two, of the beams that converge in the node.
The formal identity of equation (14.62) and equation (11.76) allows the con-
cepts and formulas developed in Section 11.7 for elastic solids and finite ele-
ments to be extrapolated to beam systems.

However, it should be noted that, if one wishes to take into account the real
distribution of the masses along beams and columns, it is always possible to
apply the Finite Element Method already discussed in Chapter 11, subdividing
each beam or column into one or more finite elements. In this way, of course,
the mass matrix would not be diagonal.

In practice, the procedure often adopted is to carry out a further simplifica-
tion and approximation with respect to the two methods just outlined, i.e. the
Finite Element Method and the method of the masses concentrated in the
nodes. Since in fact the moment of inertia of horizontal beams is usually
much greater than that of columns, the horizontal cross members are consid-
ered as rigid and the masses as concentrated in the cross members alone. This
scheme, already introduced previously (Figure 14.16) is referred to as the
shear-type frame, and the procedure which we are about to describe is known
as the method of rigid cross members.
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Figure 14.21

445

Let us take, as an example, the two-storey one-bay frame of Figure 14.21.
Denoting the masses of the two cross members by mlf m2, and designating the
shear rigidities of the pairs of uprights as klf &2,

ki=^jr <14-63)
the two equations of the motion of the cross members are

m^ = -^ + k2(82 -8^ (14.64a)

m282=-k2(82-8}) (14.64b)

where <5j, 5^ denote the horizontal translations of the cross members. Equa-
tions (14.64) may be written in matrix form

'(*, +*2) -AJ! [ 8, IK o 1 pi r o 1
-*, *2JUJ+ [ ° "-aJkrH ( }

To study the free oscillations of the system with two degrees of freedom, let
us suppose that the coordinates 51? 5^ of the system vary harmonically in time
with equal angular frequency and without phase shift,

Sl (t) = S{ sin co t (14.66a)

82 (t) = 82 sin co t (14.66b)

where the angular frequency co and the maximum amplitudes ̂  and 5^ are to
be determined via an eigenvalue problem. Substituting equations (14.66) into
equation (14.65), we obtain the following homogeneous algebraic equation:

>,+*2-»v»2) -*2 ]H_[°1 (1467)-k2 fe-^UJ'LoJ
This equation possesses a solution different from the trivial one if and only if
the determinant of the coefficient matrix is zero:

('if -L Is lr } Ir IT
4 1 *v1 ' '̂ '7 •*'9 I O /tl ArO .̂  .4 A s-r\\u, -M ^ + -*- b2 + 1 2 = 0 (14.68)

\^ AWj AW2 J tn^m2

In the case where the columns have the same moment of inertia and the
same height, we have k}=k2 = k. If we further assume that also the masses of
the cross members are equal, ml-m2- m, the characteristic equation (14.68)
simplifies as follows:

1& k2

co4-—<02+-~- = 0 (14.69)
m m2

and yields the following two eigenvalues:

0)2 = i±^_k_ (1470)
2 m
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(= = =

(a) First mode

8,,= 0.618 512

(b) Second mode

Sjj.-o.eiss,,

Figure 14.22

whence it follows that

(14.71a)

(14.7 Ib)

The eigenvectors are obtained by resolving the homogeneous system (14.67),
after substituting the corresponding eigenvalues (14.71):

<5n=0.618<512

S22=-0.618<521

(14.72a)

(14.72b)

The eigenvectors (14.72) are determined but for a factor of proportionality,
and are represented in Figure 14.22, normalizing the maximum absolute value
coordinate. The second modal deformed configuration presents translations of
opposite sign (Figure 14.22(b)).

In general in multi-storey frames, the oscillation modes higher than the first
(known as the fundamental mode) present reversals of sign in the transla-
tions of the cross members. Also for these systems, the equation of motion
reduces to the form of equation (14.62), where [M] is the diagonal mass
matrix of the cross members and [K] is the global stiffness matrix, already
defined in Section 14.6.

In the sequel we shall examine the problem of forced oscillations due to
movements of external constraints. Suppose that the base of the columns of a
multi-storey frame with rigid cross members is subjected to a seismic move-
ment with displacement jc(f), velocity x(t) and acceleration x(t). Equation
(14.62) will then assume the following form:
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[#]{<?}+ [M]{5 + i} = {0} 04.73)

since the elastic restoring forces remain dependent on the translations evaluated
in the reference system of the frame, while the forces of inertia are proportional
to the accelerations in the absolute system. From equation (14.73) we deduce

[#]{5} + [M]{(5} = -[Mp} (14.74)

This is a non-homogeneous dynamic equation, which presents a forcing load on
the right-hand side, which derives from the acceleration x of the foundation.

Introducing the normal coordinates of the system /• and the eigenvectors
{5,}, and premultiplying by (5/}T, we obtain

/.{5,.}T[̂ {5/} + /.{5,.}T[M]{5,} = -{5,.}T[Mp} (14.75)

Dividing both sides of the equation by the coefficient of/,-, we find

? , f {sfags,} _ {*,}>]{*} 476
f' fi {«,}T["M - {<5,.}T[M]{<5,} ( ' 6)

Finally, recalling equation (11.78) and terming the coefficient o f / the
Rayleigh ratio, we obtain the following decoupled equation for each oscilla-
ting mode and hence for each normal coordinate/,:

/• + G>Ui = -g<x, for i = l,2,...,n (14.77)

Since for frames with rigid cross members the mass matrix is diagonal, the
factor gf takes the following form:

n

^mAj
&=-£ <14-78>

^mJ8l
y=i

and is usually referred to as the coefficient of participation of the system to
the ith mode of oscillation.

The analysis of the forced oscillations of the system thus comes back to
the analysis of n elementary oscillators, each subject to the fraction gf of
excitation at the base. Then once the differential equation (14.77) is
resolved, it is possible to retrace the displacements of the cross members in
terms of time,

n

{*(')} = £/{$} 04.79)
i-\

via the eigenvectors {5,}, and hence again via linear transformations, it is
possible to deduce the internal characteristics acting on the columns of the
frame.
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The maximum acceleration that a system with one degree of freedom
undergoes as a result of a seismic event is set by current standards according
to the formula

a = CR(co)g (14.80)

where C is the coefficient of seismic intensity, which depends on the degree
of seismicity of the area where the structure is located, R(co) is the coefficient
of response which depends on the fundamental frequency of the system, and g
is the acceleration due to gravity.

If the effects of the earthquake on the ith oscillation mode of a frame having
multiple degrees of freedom are considered, the maximum acceleration that
can be attributed to that elementary oscillator is then

^CR^ggi (14.81)

From equation (14.81) we thus obtain the maximum acceleration undergone
by thejth storey as a result of the ith mode of oscillation,

a^CR^ggfrj (14.82)

and, consequently, the maximum force

F^otjmj (14.83)

Equation (14.83) can be expressed in the form

Fy-CRfaJWjYy (14.84)

where Wj is the weight of thejth storey and

70=ft^ 04.85)

the so-called coefficient of distribution of the ith mode on thejth storey.
The maximum storey forces expressed by equation (14.84) act at the same

time in the context of the same ith mode, but are out of phase when different
modes of oscillation are considered. Then, once the maximum value of a char-
acteristic has been calculated, for instance the bending moment Mt, as the ith
mode varies, there is the problem of combining these values. We recall the fol-
lowing empirical formulas for obtaining an equivalent maximum moment:

n

Wn»=^(M,| (14.86a)
1 = 1

Mmax=|Mi| (14.86b)

^max= X^ (14'86C)

| 1 = 1

Equation (14.86a), which corresponds to the hypothesis that the maxima occur
simultaneously, proves to be excessively conservative. Equation (14.86b),
which considers only the fundamental mode, proves not to be very reliable for
slender buildings, where the modes above the first are involved to a far from
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insignificant extent. Equation (14.86c), on the other hand, meets with wider
agreement and is called the formula of composition in quadrature.

Finally, it should be noted that the coefficient of participation g[S given by
equation (14.78), and hence the coefficients of distribution ^, given by equa-
tion (14.85), clearly tend to diminish with the increase in the index i of the
oscillation mode, because of the change of sign in the translations 5,y. It is
therefore quite easy to understand the reason for the usual limitation of seis-
mic analysis to modes with lower indices only, thus making it possible to
avoid the burden of a complete modal analysis.

449



15 Plane frames

15.1 Introduction

As we have already seen in the previous chapter, a frame is a system of beams
having many degrees of indeterminacy. In this chapter we shall refer expressly
to plane frames loaded in their own plane, with the exception of a brief look at
the case of a portal frame loaded by forces perpendicular to its own plane.

In reference to the deformed configuration of their own fixed joint-nodes,
plane frames can be subdivided into:

1. rota ting-node frames (Figure 15.1);
2. translating-node frames (Figure 15.2).

In the former, the fixed joint-nodes rotate elastically but do not undergo trans-
lation, provided that it is possible to neglect the axial deformability of the
individual beams. In the latter, the fixed joint-nodes not only rotate but also
undergo considerable translation. In some cases, as in that of the portal frame
of Figure 15.1 (a), the symmetry of the load condition implies the annihilation
of the translations of the fixed joint-nodes. The same portal frame loaded in a
non-symmetrical fashion (Figure 15.2(a)) proves to be a translating-node
frame. More precisely, the two upper nodes undergo a translation in the hori-

(a)

//////A

Figure 15.1

(b)
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'///////

1
(a)

m

(b)

(c)

Figure 15.2

zontal direction. In general, it is possible to state that the beam systems
sufficiently constrained externally prove to be rotating-node frames (Figure
15.1(b)). By suppressing some of the external constraints, the same frames
can transform into translating-node systems (Figure 15.2(b)). Notice, how-
ever, how symmetry does not always imply non-translation of nodes. For
example, the lack of a central column in the frame of Figure 15.2(c) renders
the two central nodes vertically translating.

When, in the last chapter, we dealt with the automatic computation of plane
frames, the above-mentioned distinction between rotating-node frames and
translating-node frames was not made. In that case, the method of resolution
was not susceptible to such a distinction. In the present chapter, we shall pro-
pose a method of solution in which the translations of the fixed joint-nodes are
among the unknowns of the problem, together with the redundant moments

451



PLANE FRAMES

which develop at the fixed joint-nodes themselves. It is, in other words, a
hybrid method, half-way between the method of forces and the method of dis-
placements, in which the equations that resolve the problem consist partly of
relations of congruence and partly of relations of equilibrium.

The method outlined above consists of disconnecting, with respect to rota-
tion, all the external built-in supports and the internal fixed joint-nodes, put-
ting hinges in them and applying the corresponding redundant moments
(Figures 15.3(a),(b)). On account of the equilibrium with regard to rotation of
the fixed joint-node, the redundant moments are linked together by the follow-
ing relation (Figures 15.3(c),(d)):

Z*'=°

Node not
loaded

(a)

/I

(c) «n

Node loaded by
moment

IX, = m (f)

Figure 153
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It is important to distinguish between the moments X, exerted by the fixed
joint-node on the convergent beams and assumed as being counterclockwise
in the schemes of Figures 15.3(b),(c), and the moments Xt exerted by the
beams on the fixed joint-node, which are opposite to the previous ones (Figure
15.3(d)). In the case where the fixed joint-node is loaded by a concentrated
moment m (Figure 15.3(e)), the relation that expresses the equilibrium of the
node becomes (Figure 15.3(f))

Xx '=m
i

Once hinges have been inserted in all built-in supports and fixed joint-
nodes, we obtain a beam system, called associated truss structure, which
may be either redundant, isostatic or hypostatic. In the former two cases, the
original frame is a rotating-node frame (Figure 15.4), with the unknowns con-
sisting of the redundant moments alone, and the equations for resolving the
problem consisting of the relations of angular congruence alone. In the latter
case, the original frame is a translating-node frame (Figure 15.5), with the
supplementary unknowns consisting of the displacements of the nodes and the
supplementary equations consisting of as many relations of equilibrium, in
general expressible via the application of the Principle of Virtual Work. In the
case, for instance, of the structure of Figure 15.2(a), the associated truss

(a)

M£ (b)

Figure 15.4
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(Figure 15.5(a)) consists of an articulated parallelogram whose only degree of
freedom can be described by the horizontal translation of the upper nodes. The
same thing can be said for the structure of Figure 15.2(b), whose associated
truss (Figure 15.5(b)) presents the possibility of translations of the horizontal
cross member. However, the truss associated with the frame of Figure 15.2(c)
presents three degrees of freedom, corresponding, respectively, to the horizon-
tal translations of the two cross members and to the vertical translation of the
central column (Figures 15.5(c)-(e)).

15.2 Rotating-node frames

The solution of rotating-node frames is altogether analogous to the solution
of continuous beams, dealt with in Section 13.7, and consists of writing down
a number of equations of angular congruence equal to the number of unknown
redundant moments. Once these moments are known (they turn out to be end
moments for the individual beams), it is easy then to draw the moment dia-
grams, superposing the diagrams corresponding to external loads on the linear
functions that correspond to the redundant moments.

Consider the frame of Figure 15.6(a), consisting of a horizontal continuous
beam and a vertical upright built-in at the top in the centre of the beam and, at
the bottom, to the foundation. Let two hinges be inserted, respectively, in the
fixed joint-node B and in the external built-in support D, applying at the same
time the corresponding redundant moments (Figure 15.6(b)). Note that, owing

1 ~£Lf f '///////i
(b)

Figure 15.5a, b
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to the equilibrium of the node B, the redundant moment acting on the end B of
the upright DB is a function of the remaining two redundant moments acting
on the same node. More precisely, if we designate by Xl the moment transmit-
ted between the fixed joint-node and the horizontal beam AB, and by X2 the
moment transmitted between the fixed joint-node and the horizontal beam CB,
the moment exchanged between the fixed joint-node and the upright is equal
to (Xl+X2) and has a sense opposite to the previous moments. Clearly the
senses assumed are altogether conventional and may not be confirmed by cal-
culation, should negative redundant moments be obtained.

There are thus basically three redundant unknowns, Xt, X2, X3 (Figure
15.6(b)), just as there are three equations of angular congruence

<PBA=<PBC (15. la)

VBA=<PBD (15-lb>

<PoB=0 (15-lc>
The first two of equations (15.1) express the fact that all three branches of the
fixed joint-node of Figure 15.6(b) rotate by the same amount, and that hence
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the fixed joint-node as a whole rotates rigidly without relative rotations
between the various branches. The third equation expresses the existence in D
of a built-in support, which prevents any displacement and hence also the
absolute rotation of the base section D of the upright. It is then possible to
show how the associated truss structure of Figure 15.6(b) constitutes a stati-
cally determinate system of beams, and hence the frame under examination
may be considered a rotating-node type.

The terms of equations (15.1) can be rendered explicit by taking into
account exclusively elastic rotations, which have already been calculated for
the elementary schemes of a supported beam (Section 10.6):

_X± = _X2L + JnL

3EI 3EI 6EI
X I / = ( X 1 + X 2 ) / X3l
3EI 3EI 6EI

Aj/.lilM.o (15.20
3EI 6EI

Multiplying all three equations by 6EI/1, we obtain

-2Xt=-2X2+m (15.3a)

-2X{ = 2Xj + 2X2 - X3 (15.3b)

2X3-X}-X2=Q (15.3c)

The first expresses X2 as a function of Xb

X 2 =X 1 + y (15.4)

and, substituting this expression into equations (15.3b,c), we obtain a system
of two linear algebraic equations in the unknowns Xi and X3:

6X1+m = X3 (15.5a)

2X3-2Xl- — = 0 (15.5b)

Substituting equation (15.5a) into equation (15.5b), we have

X, =- — m (15.6a)1 20
so that equation (15,4) and equation (15.5a) yield respectively

*2=^« (15.6b)

*3=^ (15-6C)

The fixed joint-node B is thus in equilibrium under the action of the
moments of Figure 15.6(c). The moment diagram is obtained by laying the
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Figure 15.7e

segments out to scale on the side of the stretched fibres, and joining the ends
of these with rectilinear segments. The moment diagram is in fact linear, as no
transverse distributed loads are present. The deformed configuration of the
frame must be consistent with the external constraints and with the moment
diagram (Figure 15.6(d)). Notice the two points of inflection corresponding to
the sections in which the bending moment vanishes. The fixed joint-node
rotates in a counterclockwise direction by the amount ml/20EI.

As regards the shear diagram, this is obtainable from the schemes of equi-
librium of the individual supported beams to which we are brought back (Fig-
ure 15.7(a)), loaded by the external loads and by the redundant moments. This
is obviously constant on each individual beam and considerably higher on the
beam loaded externally (Figure 15.7(b)). The sign of the shear results from the
usual convention. It is possible, however, to deduce the shear as derivative of
the moment function, referring the latter to a right-handed system KZ, with
origin at one of the two ends of the individual beams.

Finally, the values of the axial force are also constant in each individual
beam. The beam BC is not subjected to axial force, as it is constrained by a hor-
izontally moving roller support in C, while the beam AB absorbs an axial force
of compression equal in absolute value to the shear of the upright DB (Figure
15.7(c)). In turn, the upright DB absorbs axially the shears of the two horizon-
tal beams AB and CB, being loaded in tension by a total force equal to -y rn/l .
An effective check at this point consists of considering also the equilibrium
with regard to translation of the fixed-joint node B (Figure 15.7(d)).

Many of the results just obtained can find a further confirmation from the
pressure line. The structure, considered as being completely disconnected exter-
nally, is subjected basically to three forces (Figure 15.7(e)). The first is the reac-
tion RA of the hinge A. which has as its components the axial force 20 ̂  ̂
the shearing force 20 rn^- ^e secon^ *s ^e resultant Rc of the applied
moment m and the reaction Vc of the roller support. The third force is the reac-
tion RD of the built-in support D, which has as its components the axial force
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-3 T

-y m/l and the shearing force -JQ- wA and passes at a distance X^/RD from point D. It is
possible to verify how these three forces pass through the same pole P and con-
stitute a system equivalent to zero.

The pressure line may be defined portion by portion in the following manner:

portion AB: straight line 0;
portion CB: straight line c\
portion DB: straight line d.

It may thus be noted that the pressure line passes through those sections in
which the bending moment vanishes (Figure 15.6(c)) and in which the elastic
deformed configuration presents points of inflection (Figure 15.6(d)).

As a second example, let us consider the square closed configuration of
beams shown in Figure 15.8(a), subjected to two equal and opposite forces F.
The double axial symmetry allows the structure to be considered as a rotating-
node frame, and hence there is a single unknown redundant moment X (Figure
15.8(b)). The equation that resolves the problem will then be furnished by the
condition of angular congruence,

9AB=9AC (15'7>

which is identical to the other three conditions for the vertices B,C,D.
Rendering the condition (15.7) explicit, we have

-2L+^L-I!L = -^L-ZL a58)
3EI 6EI 16EI 3EI 6EI

whence there results

X = ̂  (15.9)
lo

The moment diagram is thus given in Figure 15.8(c). It shows four points of
annihilation, symmetrical with respect to both axes of symmetry. The elastic
deformed configuration of Figure 15.8(d) presents, of course, points of inflec-
tion corresponding to the above-mentioned sections. Whilst the vertical beams
are entirely convex outwards, the horizontal beams are convex outwards only
in the end regions. The four fixed joint-nodes are not displaced but all rotate
by the same amount F/2/32£7; A and D rotate clockwise, B and C counter-
clockwise.

The shear diagram for the vertical beams is zero, and for the horizontal
beams, reproduces that of the scheme of the supported beam (Figure 15.8(e)).
On the other hand, the axial force diagram for the horizontal beams is zero,
and for the vertical beams is compressive and equal to F/2 (Figure 15.8(f)).

At this point it is simple to verify that the pressure line is formed by the two
vertical straight lines passing through the points of inflection (Figure 15.8(d)).

Let the symmetrical portal frame of Figure 15.9(a) be loaded by two sym-
metrical distributions of horizontal forces acting on the upper half of the two
uprights. This frame is a rotating-node type by symmetry, and hence an equiv-
alent statically determinate structure can be obtained by disconnecting with
regard to rotation the fixed joint-nodes B and C and eliminating the connecting
rod FG (Figure 15.9(b)).
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In this case the two equations of congruence will have to express the angular
congruence of the node B (or Q as well as the annihilation of the horizontal
displacement of the point F (or G):

<PBA=<PBC (IS.lOa)
uF=0 (IS.lOb)

Rendering the foregoing relations explicit as functions of the redundant
unknowns X{ and X2 (Figure 15.9(b)), we obtain the following two equations
that resolve the problem:

_x1L_x^+^<£=x±+x]L
3EI 16EI 384 El 3EI 6EI

*£+*£_J_*U0 (15.11b)
16EI 48EI 384 2EI

The contributions corresponding to the load q acting on the half-beam can
be obtained by considering the Principle of Superposition and splitting this
load into two components, one symmetrical and the other skew-symmetrical
(Figure 15.9(c)). The rotation of the end is

*/> 4-T
9 = _2l+2kL = _L*i (15.12)

24EI 24EI 384 El

while the displacement in the centre,

l/4
v=J~2_ + 0 = -^-£- (15.13)

384 El 384 2EI

is given by the symmetrical contribution alone.
Reordering equations (15.11) we obtain

320X{ +24X2l = 9ql2 (15.14a)

48X1+16X2/ = 5tf/2 (15.14b)

Multiplying the former by two and the latter by -3, and then adding them
together, the unknown X2 is eliminated,

Xi~qP (15.15a)

whence we obtain

*2~tf <15.15b)
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Considering the scheme of Figure 15.10(a), rotated by 90° with respect to
its actual orientation, and writing the relations of equilibrium with regard to
translation and to rotation with respect to the centre,

VA + VB+X2=q± (15.16a)

-Kij + V^-X.-^-pO (15-16b)

we at once obtain the transverse reactions VA and VB. Substituting the solu-
tions (15.15) into equations (15.16), we have

VA+VB=^4l <15-17a)

VA-VB=--j^ql (15.17b)

from which there follows

VA=-^ (15.18a)

ro

VB=— ql (15.18b)

The shear diagram on the upright AB is depicted in Figure 15.10(b). The
extreme values are equal in absolute value to the reactions VA and VB, whilst in
the centre there is a positive jump in the function equal to the reaction X2 of
the connecting rod.

As regards bending moment, this presents the following three notable val-
ues (Figure 15.10(c)):

M(A) = 0

M(F} = — qlx~ = — ql2
v ' 248 2 496

*(*)=*,—«/'
Whereas in the portion AF the diagram is simply linear (Figure 15.10(c)), in
the portion FB to the linear diagram there should be added graphically the par-
abolic diagram corresponding to the distributed load,

M(F) + M(*)_1 n? _21. 2
V ' 2 8 UJ 992^

A faster way of resolving the twice statically indeterminate structure of Fig-
ure 15.9(a) is that of interrupting the continuity of the uprights and then insert-
ing two hinges, one at F (where beams FA, FB and FG converge), and the
other at G (where beams GD, GC and GF converge) (Figure 15.11). In this
way we have to deal purely with notable schemes of supported beams, with
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moments applied at the ends and loads uniformly distributed over the entire
span. The two conditions of congruence are in this case both rotational:

<PBc=9BF (15.19a)

<pFB=9FA (15.19V)
Equations (15.19) can be expressed as functions of the two unknown redun-
dant moments XlfX2:

Y ( i } yrn ro3

XI XI Xl\7\ *2 U" *m*ll+*lU \2J_ k22 + _U2_ (15.20a)
3EI 6EI 3EI 6EI 24EI

Y(n ym (i}3
 yrn

\2) \2 q(2 2 2vzy +_V£/—V^L = v£/ (I5.20b)
3EI 6EI 24EI 3EI

Multiplying by 6EI/1, we obtain

2Xl+Xl=-Xl-^X2+^ql2 (15.21a)

X2+~X,-±qP=-X2 (15.21b)

Cross addition of the two sides of equations (15.21) eliminates the term q

X2=|x, (15.22)

from which we obtain as a verification of the results previously reached otherwise

X,=^^ (15.23a)

*2=^<?'2 (15.23b)

The moment diagram will thus be constant over the cross member BC and
on the two uprights will present the same pattern already defined in Figure
15.10(c).

15.3 Translating-node frames

The solution for translating-node frames differs substantially from that for
rotating-node frames, starting from the very way in which it is set out. The
truss structure associated with the frame is in fact hypostatic and this means
that the insertion of the hinges in all the fixed joint-nodes is an excessive oper-
ation with respect to the degree of redundancy of the structure. In other words,
the associated truss, subjected to the action of external loads and redundant
moments, must be in equilibrium for the particular loading condition. In addi-
tion to the redundant moments, also the generalized coordinates which define
the rigid deformed configuration of the associated truss will be unknown. On
the other hand, together with the relations of angular congruence, also a num-
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her of equilibrium equations equal to the degrees of freedom of the associated
truss will combine to make up the system of equations that provide the
solution.

Consider for instance the asymmetrical portal frame of Figure 15.12(a),
loaded by a horizontal force F. The associated truss is made up of the articu-
lated parallelogram of Figure 15.12(b), from which the components of rigid
rotation of the two uprights are immediately drawn, whilst the cross member
undergoes a horizontal translation. From the scheme of Figure 15.12(c),
obtained by restraining the displacements of the associated truss, are derived
instead the components of elastic rotation at the ends of the individual beams.

The unknowns of the problem are thus the two redundant moments Xlf X2
and the rigid rotation <p of the left-hand upright (Figure 15.12(b)). There must
therefore be three equations that resolve the problem, made up of two equa-
tions of angular congruence (taking into account also the rigid rotations) and
of an application of the Principle of Virtual Work

VBA = VBC (15.24a)

<PcB = <Pco (15.24b)
Principle of Virtual Work (15.24c)

Rendering equations (15.24) explicit, we obtain

_£(2/) M/)+££0 (15.25a)
3EI 3EI 6EI

_^_X1(2/)^
1EI 6EI 3EI Y

F(2lq>) + X}<p-X2 (2q>) = 0 (15.25c)

Multiplying the first two equation by 3EI/1 and dividing the third by <p, the sys-
tem of equation (15.25) transforms as follows:

1FI
-2Xl - — <p = 2^ + X2 (15.26a)

3FI
-2X2 - Xl = X2 - — (2<p) (15.26b)

X{=2X2-2Fl (15.26c)

Substituting the expression (15.26c) into the first two, we obtain a system in
X2 and tp:

X2=-Fl- — <p (15.27a)2 9 3r

X2=-Fl + — cp (15.27b)2 5 5/ ^

Equating the right-hand sides of equations (15.27), we obtain

9 = —— (15.28)
^ 69 El
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1AF
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Figure 15.12g, h
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23
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t j
(9)

t1AF
23

from which then

(15.29a)

(15.29b)

The redundant moment Xl turns out to be negative and this means that, con-
trary to our initial assumption, at the fixed joint-node B the internal fibres are
in fact stretched (Figure 15.12(b)). The bending moments at the two fixed
joint-nodes thus being known, it is simple to draw the corresponding diagram,
taking into account that the moment vanishes at the hinges which are at the
feet of the two uprights (Figure 15.12(d)).

The elastic deformed configuration of the translating-node frames must be
drawn coherently with the external and internal constraints (angular congru-
ence), with the displacements undergone by the fixed joint-nodes and with the
bending moment diagram. The deformed configuration of the asymmetrical
portal frame is represented in Figure 15.12(e). Note that the two fixed joint-
nodes of the horizontal beam have been translated horizontally by the same
amount and rotated clockwise, while the hinges at the foundation allow rota-
tions but not translations of the base sections of the uprights. A point of inflec-
tion appears at the point where the moment vanishes on the cross member.
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The fibres of the beams are thus stretched internally in the left-hand part, and
externally in the right-hand part of the portal frame.

The shear is constant on each member and equal, in absolute value, to the
slope of the moment diagram (Figure 15.12(f)). The axial force also is con-
stant on each member, being compressive on the horizontal beam and on the
right-hand upright, and tensile on the left-hand upright (Figure 15.12(g)).
Whereas on the uprights the axial force is equal, in absolute value, to the shear
which acts on the horizontal beam, the axial force in the horizontal beam is
equal, in absolute value, to the shear acting on the right-hand upright. The
schemes of equilibrium to the horizontal translation of the beam and the verti-
cal translation of the nodes B and C are represented in Figure 15.12(f) and
Figure 15.12(g), respectively.

The pressure line is made up of two straight lines (Figure 15.12(h)):

portion AB: straight line a\
portion BD: straight line d.

These two straight lines meet at the pole P, which is coincident both with the
point of annihilation of the bending moment (Figure 15.12(d)) and with the
point of inflection of the elastic deformed configuration (Figure 15.12(e)).

Also the frame of Figure 15.13(a) is a translating-node frame. This consists
of a horizontal beam loaded on the overhang, and of two externally hinged
uprights. The above-mentioned frame is equivalent to the scheme of Figure
15.13(b), in which the overhang has been eliminated and replaced by the reac-
tions transmitted to the rest of the structure: the vertical force F = ql, and the
moment m = ql2/2.

The truss structure associated with the statically indeterminate scheme of
Figure 15.13(b) has one degree of freedom, and, as in the previous case, the
scheme of Figure 15.14(a) provides the components of rigid rotation of the
two uprights, with the cross member which undergoes a horizontal translation.
The restrained scheme of Figure 15.14(b) in turn provides the components of
elastic rotation at the ends of the beams. Note how the moment m, acting on

rrnrn-
JF= q/

(b)

Figure 15.13
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(a)
4W'/jt

m-v*

Figure 15.14

m-X.

T

m

the fixed joint-node C (Figure 15.13(b)) has been split into its two components
(m- X2) and X2, the former acting at the end of the beam CD, and the latter at
the end of the beam CB. In this way the equilibrium with regard to rotation of
the node C is automatically satisfied (Figure 15.14(b)). The force F, unlike the
moment m, does not generate bending moments in the scheme of Figure
15.13(b), but only tensile axial force on the upright CD.

The equations of congruence and the equilibrium relation, which in implicit
form appear as follows:

9BA = 9sc

<PCB=<PCD

Principle of Virtual Work

(15.30a)

(15.30b)

(15.30c)

may be expressed in explicit form, taking into account the rigid translation of
the cross member, 5,

_%il_$__Xii X2l
3EI 7 ~ 3£7 + 6EI
X2l XJ = (m-X2)l 5
3E7 6EI ~ 3E1 + /

^y-Cm-X^^O

(15.3 la)

(15.31b)

(15.31c)

Performing the calculations, we obtain

(15.32a)

(15.32b)
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(15.32c)

The positive signs of the redundant moments indicate that the real senses are
those assumed, whilst the negative sign of the displacement S points to a left-
ward translation of the cross member. The moment diagram is given in Figure
15.15(a), complete with the part that regards the overhang CG. The equilib-
rium of the node C is guaranteed by the moments that have been determined
(Figure 15.15(b)), whilst the lack of points of annihilation in the moment
function (except for the external hinges A and D and the end G of the over-
hang) implies an elastic deformed configuration without inflections (Figure

The shear diagram may be obtained very simply from the schemes of equi-
librium of the individual supported beams into which the frame has been sub-
divided (Figure 15.16(a)). The shear is constant on the two uprights and the
cross member EC, whereas it is obviously linear on the cantilever CG (Figure

The axial force also is constant on all the beams of the frame (Figure
15.16(c)). Whereas it is zero on the overhang, on the uprights it is equal, in
absolute value, to the shear of the cross member and vice versa. Finally, we

12

q/2/2

c

(b)

(a)
\
I

^ /

(c)

Figure 15.15
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have to remember the additional contribution to the axial force on the upright
CD made by the force F= ql (Figure 15.13(b)).

The pressure line is represented in Figure 15.17 and basically consists of
three straight lines which meet at a common point P. In fact the structure, con-
sidered as a single body and completely disconnected externally, is in equilib-
rium under the action of the external reactions RA and RD, as well as the
resultant F of the active forces. As may be seen, none of the three straight lines
encounters the axis of the beam of which it represents the state of loading.
This is consistent with the absence of points of annihilation in the moment
diagram (Figure 15.15(a)), and of points of inflection in the elastic deformed
configuration (Figure 15.15(c)). The only virtual point at which the moment
vanishes (apart from at the two hinges) is the point Q of Figure 15.17, which
represents the intersection of the axis of the cross member with the line of
action of the reaction RA.

15.4 Thermal loads and imposed displacements

In the case where a translating-node frame is subjected to thermal dilations or
imposed displacements, the components of rigid rotation deriving directly
from these anomalous loads must be found from the restrained truss scheme,
which, being statically determinate, does not oppose any resistance to such
movements.

As an example let us take again the asymmetrical portal frame of Figure
15.18(a), loaded by a uniform thermal variation on the cross member. The
associated truss has one degree of freedom, and the generalized coordinate

21

(a) (b)

Figure 15.18
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characterising its rigid deformed configuration is the angle of rotation <p of the
upright AB, or the translation S of the cross member (Figure 15.18(b)). From
the restrained truss (Figure 15.18(c)) it is possible to find, as well as the elastic
rotations, the rigid rotation of the upright AB, produced directly by the thermal
dilation of the cross member. In this case the three equations (15.24) are
expressed as follows:

_^20 ^7X20 = X,(2/)+^(2/)
3£7 r 21 3EI 6EI

_xJ(2i1_x2(2i1=x2L (1533b
6EI 3EI 3EI 9 ( '

Xl(p-X2(2(p) = Q (15.33c)

Multiplying the first two equations by 3E//7, and dividing the third by <p, we
obtain

4X1+X2=^-cp^ (15.34a)

IFf
X{+3X2=2(p — (15.34b)

X{=2X2 (15.34c)

Substituting relation (15.34c) into the two previous ones, we have

^'~^ 0535.)

*2=j<Py 05.35b)

from which, by the transitive law, we find

<p = — aAT (15.36a)
Z.3

X^—aAT— (15.365)

X2=— aAT— (15.36c)2 23 I

The moment diagram (Figure 15.19(a)) envisages the stretched fibres of the
beams always outwards, with the absence of points of inflection in the elastic
deformed configuration (Figure 15.19(b)). Since the translation of the cross
member towards the right is

<5 = 2<p/ = — aATl (15.37)
^ 2 3

while the thermal elongation of the cross member, neglecting its axial elastic
deformability, is

^(2/) = 2o477 (15.38)
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(d)

Figure 15.19

in actual fact the node C shifts rightwards by 5, while the node B is displaced
leftwards by [A(2/> - 8\.

The shear diagram is constant on each beam (Figure 15.19(c)), as also is the
axial force diagram (Figure 15.19(d)), which is compressive on the cross
member and on the left-hand upright and tensile on the right-hand upright.

Finally, the pressure line is represented by the straight line AD, joining the
two external hinges (Figure 15.19(e)). The frame is in fact in equilibrium
under the action of two equal and opposite forces, the components of which
are given by the shearing force diagram and the axial force diagram. The pres-
sure line does not intersect the axis of the frame at any point, and this is con-
sistent with the absence of points of moment annihilation (Figure 15.19(a))
and with the absence of inflection points in the elastic deformed configuration
(Figure 15.19(b)).
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Figure 15.20

As a second example of translating-node frames subjected to distortions, let
us look at the symmetrical portal frame of Figure 15.20(a), where a vertical
displacement is imposed on the hinge D. The associated truss structure (Figure
15.20(b)) has one degree of freedom and furnishes the rigid rotations, while
the restrained truss scheme (Figure 15.20(c)) provides the elastic rotations as
well as the rigid rotations deriving directly from the settlement (Figure
15.20(d)). The two equations of angular congruence and the Principle of
Virtual Work provide the three equations for resolving the problem:

_Xl_6__X}(2l) )Wn 7,0
3EI r^ET 6E1 27 (1539a)

X2(2Q X,(2f) n 0 _ X 2 ' $ ns,qw

~^£T~~6£T~2/""3£7~7 (1539b)
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c c

Xj —X2- = 0 (15.39c)

Note how the Principle of Virtual Work is always to be applied to the associ-
ated truss system (Figure 15.20(b)), neglecting the imposed displacements.

From equation (15.39c) we have

Xl = X2 (15.40)

and multiplying equations (15.39a, b) by 6EI

8X,/ = -^(*-^) (15.41a)

8X,/ = -^(^-5] (15.41b)

Finally we obtain

<5 = 7?0/2 (15.42a)

Xl=X2=Q (15.42b)

The resolution of the frame leads us to note that the static characteristics as
well as the external reactions are zero. This is due simply to the fact that the
imposed displacement 7]0 is actually compatible with the constraints of the
frame. The hinge A can in fact function as the centre of rotation and allow an
infinitesimal rigid rotation of the whole structure in a clockwise direction
(Figure 15.20(e)). The trajectory of the point D, as it must be orthogonal to the
radius vector AD, is vertical. If we consider the skew-symmetrical component
alone of the loading (the symmetrical one producing a trivial vertical transla-
tion downwards equal to /7o/2), the kinematic scheme of Figure 15.20(f) pro-
vides an immediate justification for equation (15.42a).

15.5 Frames with non-orthogonal beams

So far we have considered only frames where the individual beams are mutu-
ally orthogonal. This is the case which usually concerns the frameworks of
buildings, where the columns are vertical and the floors, with their joists, are
horizontal. It is not, however, out of place also to consider cases of frames
where the individual beams are not mutually orthogonal.

The resolution of frames made up of non-orthogonal beams is accom-
plished in the same way as that already seen in the foregoing sections. The
only differences are represented by an associated truss system which presents
more complicated kinematics, since in this case there is no simple translation
of the cross members, and by shearing force diagrams and axial force dia-
grams that are no longer directly derivable from one another by exchanging
their components.

Consider, for instance, the portal frame of Figure 15.21(a), which presents
the right-hand stanchion inclined at an angle of 45° to the horizontal. The
associated truss has one degree of freedom, it being a mechanism whose dia-
grams of horizontal and vertical displacements are given in Figure 15.21(b).
The three unknowns of the problem are the redundant moments Xlt X2 and the
rigid rotation <p of the upright stanchion AB, while the three equations that
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resolve the problem are the two equations of angular congruence plus the
application of the Principle of Virtual Work:

XJ Xvl X2l qP ,,eA<*\L. - 0 = -J_ + —L- + m - _z— (15.43a)
3EI 3EI 6EI 24EI

X2l XJ ql3 X2ljl n*Am2 L_ + <p + _2 _2 @ (15 ̂ 43^5)
3EI 6EI r 24EI 3EI Y

Xl(p + Xl(p-X2(p-X2<p-ql(-^\ = ̂  (15.43c)

Multiplying the first two equations by 6EI/1 and dividing the third by <p, we have

4Xl + X2=-12<p — + 3L (15.44a)

X1+2X2(1 + V2) = 12^)— + ̂ - (15.44b)
/ 4
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2(Xl-X2) = ̂ ql2 (15.44C)

Resolving, we obtain

*, = 16 + 3VV (15.45a)1 112

X2=-^~^c,r- (15.45b)

8±W2^
448 £7

Passing from the irrational expressions above to decimal expressions, we
have

X^Q.lSql2 (15.46a)

X2^-0.07?/2 (15.46b)

(p^-0.03^- (15.46c)

The unknowns X2 and <p turn out to be negative, and hence it follows that at
the node C, the internal fibres are stretched, and that the rigid rotation of the
upright stanchion AB is counterclockwise.

The bending moment diagram (Figure 15.22(a)) is obtained by the graphi-
cal summation of the parabolic diagram for the distributed load q and the
linear diagram for the redundant moments.

The deformed configuration of the frame (Figure 15.22(b)) is constructed
by displacing the two fixed joint-nodes B and C, on the basis of the mechan-
ism of Figure 15.21(b). Both the nodes translate leftwards by the amount (pi,
while the node C alone translates downwards by the same quantity. The
deformed configuration moreover respects the external constraint conditions,
the angular congruence at the nodes B and C, and the moment diagram (Figure
15.22(a)). At the point where the moment vanishes there corresponds the
inflection of the deformed configuration, which shows the fibres stretched
externally in the left-hand part and internally in the right-hand part.

(15.45c)Q

Figure15.22



FRAMES WITH NON-ORTHOGONAL BEAMS

qrrm i

0.18 q/

0.18 q/ 0.07 q/
c 0.07 q/

t I 0.25 q/ ^0.05 q/

0.18 q/

(a)

0.50 q/

0.75 q/

To.25q/

0,05 q/

0.18 q/

Figure 15.23

The schemes of equilibrium of the individual beams, loaded by the external
load q and by the redundant moments (Figure 15.23(a)), immediately furnish
the shear diagram (Figure 15.23(b)). The shear is constant on the two stan-
chions, where the moment is linear, and linear on the cross member, where the
moment is parabolic. The point of zero shear corresponds to the section sub-
jected to the maximum moment.

Only on the upright stanchion AB and on the cross member BC do the
shearing force and axial force exchange roles. They are both subject to a com-
pression, equal to Q.75ql and Q.lSql, respectively. As regards the stanchion
CD, since it is inclined at an angle of 135° with respect to the cross member,
its axial force can be determined as the sum of the axial components of the
horizontal force (0.18#/) and the vertical force (0.25#/), which the cross mem-
ber transmits to it (Figure 15.24(a)). The same result may be arrived at by con-
sidering the equilibrium with regard to translation of the fixed joint-node C
(Figure 15.24(a))

/? /2~
N2±-T1± + 0.18^ = 0 (15.47a)

2 2

ft /?
N— + T— + 0.25ql = Q (15.47V)

2 2
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0.75 q/ 0.18q/

0.18q/

0.75q/
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Figure 15.24

Figure 15.25

Resolving equations (15.47), we obtain

A^-0.30<?/
7^-0.05?/

(15.48a)

(15.48b)
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Equation (15.48b) reconfirms the result already obtained following another
approach.

The structure, totally disconnected from the foundation and considered as a
single body, is in equilibrium under the action of three forces (Figure 15.25).
The reactions of the two hinges and the resultant of the distributed load pass
through the pole P. The pressure line consists of the line of action of the exter-
nal reaction, for each stanchion, and of the arc of parabola which has as its
extreme tangents the above-mentioned lines of action, for the cross member.
Notice how the arc of parabola corresponds, but for a negative scale factor, to
the moment diagram of Figure 15.22(a). Both the curves pass through the sec-
tion of the cross member which is the site of the deformative inflection point
(Figure 15.22(b)).

15.6 Frames loaded out of their own plane
We have already dealt with frames loaded out of their own plane in Sections
14.7 and 14.8, when we considered the automatic computation of plane grids
and space frames. As we have already been able to witness in those cases, the
situation is notably complicated with respect to the case of the plane frame,
because potentially all six static or kinematic characteristics are involved.

If we wish to proceed along the same lines as those followed in this chapter,
we must disconnect the fixed joint-nodes with spherical hinges, instead of
with the normal cylindrical hinges, and apply both bending and twisting
redundant moments at the ends of the beams. If the associated truss has n
degrees of freedom, it will be necessary to consider n kinematic parameters
among the unknowns of the problems, as well as n applications of the Princi-
ple of Virtual Work among the equations for resolving the problem. For each
spherical node we have, on the other hand, three unknown redundant moments
and three equations of angular congruence.

It may prove convenient to apply this method only in the simplest cases, as
for example in those of portal frames or balconies. For the solution of the
structure of Figure 15.26(a), loaded by a force F on one of the two internal
nodes, already as many as ten equations in ten unknowns are required. Two
unknowns are represented by the deflections 5j and 5^ of the two internal
nodes (Figure 15.26(b)), while the other eight unknowns are represented by
the bending and twisting moments which the beams exchange with one
another, or which the beams exchange with the built-in constraints in the
external wall (Figure 15.26(c)). As regards the equations, there will be two
applications of the Principle of Virtual Work and eight conditions of angular
congruence

< p A = 0 (15.49a)

&A = 0 (15.49b)

<pB, = *V (15.49c)

tV = <PB" (15.49d)
<p r=tV (15.49e)
tfr = (pc» (15.49f)
<Pz>=0 (15.49g)

#D = 0 (15.49h)
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(b)

(c)

where <p denotes the angles of deflection and # those of torsion.
In the case where the previous structure is loaded by a uniform distributed

load q on the cross member (Figure 15.27(a)), there is, by symmetry, a single
redundant unknown represented by the moment X, which is a bending
moment in the case of the cross member and a twisting moment in the case of
the two cantilevers (Figure 15.27(b)). The condition of congruence imposes
the equality of the angle of deflection of the cross member with that of torsion
of the cantilevers,

<pB» = iV (15.49d)
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^^v

y/

Figure 15.27

and in explicit form
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JL+_*L_j£_ = _™. (15.50)
3EI 6EI 24EI GIp

where / = 27, if the cross section of the beams is assumed to be circular. From
equation (15.50) we obtain

X = ^ (15.51)
12[/ + 2A(l + v)]

Whereas then the cross member is subject to bending moment and shear,
the cantilever beams are subject to the constant shear ql/2, to the linear bend-
ing moment which ranges from zero to a maximum of qlh/2 at the built-in
support, as well as to the constant twisting moment X.
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16.1 Introduction

The Principle of Virtual Work, proposed in Section 8.4 in the context of three-
dimensional solids, may be extrapolated, following a similar line of demon-
stration, to one- and two-dimensional solids. As regards rectilinear beams, it is
sufficient to substitute equation (8.23) with

LF=-\ ([<?]* {a))T{%}dz (16.1)
Jo

whereby, instead of equation (8.24), we obtain

LF = f {ft,™ {%}dz-[{Q,)T(%}](, (16.2)
Jo

0 and / being the coordinates of the beam ends.
We then obtain the equation of the Principle of Virtual Work for a rectilin-

ear beam, subjected to loads distributed over the span and to loads concen-
trated at the ends,

({Qa}
T{qb}dz= \{^{rib}&z + [{Qa?{i]b}l (16.3)

Jo Jo
where, adopting the same nomenclature used in Section 10.3, {Qa} is the vec-
tor of the static characteristics, {qb} is the vector of deformation characteris-
tics, {̂ } is the vector of the distributed forces and {rjb} is the displacement
vector.

The fundamental equation (8.26) can then be shown to be valid also in the
case of curvilinear beams, by using the mathematical formalism of Section
10.4 and replacing the operator [d\ with [<?][Ar|, where [N] is the rotation
matrix, and the operator [d]* with [/V]T[e?]*.

Finally, equation (8.26) can also be further applied to the case of beam sys-
tems, by summing up the contributions of the individual beams. Whereas the
integrals of equation (16.3), already extended to the individual beam of length
/, must, in this case, be extended to the entire structure S, the second term of
the right-hand side of the equation cancels out in all the internal nodes, for
obvious reasons of equilibrium. On the other hand, all the contributions corre-
sponding to the ends that are externally constrained or that are subjected to
concentrated loads still remain to be accounted for:

f{a}Tfe}c^ = f{^T{^}^+y{a,}T{%} 06.4)
Js Js ~i

Since the aim of the application of Principle of Virtual Work to statically
determinate beam systems is to determine the elastic generalized displace-
ments, it is expedient to consider, for each individual beam or structure, two
distinct systems:

1. the real system or system of displacements;
2. the fictitious system or system of forces.

16
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(a)

(b)

Figure 16.1

The real system consists simply of the structure under examination, subjected
to all the external loads, both mechanical and thermal, including the inelastic
settlements, and taking into account the elastic settlements (Figure 16.1 (a)).
The fictitious system in turn consists of the same structure, loaded in this case
by the single unit force, dual of the elastic displacement sought T](r} (Figure
16.1 (b)).

An application of equation (16.4) yields

f (NW ^ f (tT^\
N(f)\ H_ + cOfir) ^ + r(/) « ^ (16 5)

Js (EA ° ) js (GA)
f (' M^ nAT^r^\
\M<f>\— + 2=l—\ds
Js ( El h )

=ix^)+yW^-^l
i V Ki )

where the superscript / denotes the fictitious system or system offerees, the
superscript r denotes the real system or system of displacements, T](r) desig-
nates the real displacement to be determined, R( indicates the rth constraint
reaction, &, indicates the stiffness and rj(^. denotes the displacement imposed
on the corresponding constraint.

With the exclusion of the truss structures, it may be stated that the contri-
bution of the third integral on the left-hand side of equation (16.5), the one
corresponding to the bending moment, is usually far greater than that of the
two integrals preceding it, which correspond to axial force and shearing
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force, respectively. Of course, the contributions corresponding to the
thermal dilatations and curvatures are absent in the case where there are no
thermal loadings (r0

(r) = A7(r) = 0). In the same way the summation on the
right-hand side of the equation is zero, in the case where there are no elastic
or inelastic settlements.

16.2 Determination of elastic displacements in statically determinate
structures

We shall now show how it is possible to determine the elastic displacements
and rotations in the cross sections belonging to statically determinate beam
systems by applying equation (16.5).

As a first elementary example, let us consider the simply supported beam of
Figure 16.2 (a), loaded by a concentrated moment at the right-hand end. We
intend to calculate the elastic rotation of this end. To do this, let the fictitious
system consist of the same beam loaded at the same end by a unit moment,
acting in the same direction as the actual moment (Figure 16.2 (b)). We have,
therefore

Af< r>(z) = — z (16.6a)

Af </>(z) = i (16.6b)

whereby, if we apply equation (16.5), taking into account the absence of axial
force, the negligibility of shearing strain and the absence of distortions and
settlements, we obtain

f l M(/>M<r>
IX<PB=\ ^—& 06.7)

Jo El

Substituting expressions (16.6) into the integral (16.7), we obtain

*« = if (16'8)

a result already known to us from the treatment of the elastic line (Chapter 10).
We then intend to determine the elastic rotation at the end opposite to the

loaded one. In this case we shall have to consider a different fictitious system,
loaded by a unit moment at the end A (Figure 16.2 (c)). Here we have

Af(/)(z) = — (16.9)

whereby application of the Principle of Virtual Work yields

f l MWM&IX(PA=\ ™ dz (16.10)
Jo tl

By substituting the functions (16.9) and (16.6a) into equation (16.10), we find
that

^ = Wi <16-">
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0 (a)

(b)

(c)
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Figure 16.2

In the case of a supported beam subjected to uniform load (Figure 16.3 (a)),
the vertical displacement or deflection in the centre can be obtained by means
of the fictitious system of Figure 16.3 (b), consisting of the same beam loaded
by a vertical unit force acting in the centre. Given the symmetry of the beam
under examination and of the displacement sought, i.e. given the symmetry of
the two systems, the real one and the fictitious one, it is possible to evaluate
the integrals on half the beam and multiply them by two. The two moments,
the real one and the fictitious one, can hence be expressed analytically even
just on the left-hand span

M^(z) = lqiz-iqz2 (16.12a)

Af</>(z) = - (16.12b)

for 0 ̂  z ̂  1/2. Applying equation (16.5), we obtain

2 f"2

1 x vc = — M (/>M(r>dz (16.13)
El Jo
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©

Figure 16.3

and, if we substitute equations (16.12) into equation (16.13), we can easily
obtain

vc= — ̂ — (16.14)c 384 El

Now consider the L-shaped beam of Figure 16.4 (a), uniformly loaded on
the cross member. The determination of the elastic displacement of the roller
support on which the upright rests may be obtained by means of the fictitious
structure of Figure 16.4 (b), on which a unit horizontal force is applied at the
end A. Whereas in the fictitious system the upright is subjected to bending
moment, this does not occur in the real system, the upright of which is sub-
jected to axial force alone. Hence, taking into account only the contribution of
the cross member, we have

M^(z) = ̂ qlz-^qz2 (16.15a)

Af</>(z) = -z (16.15b)

whereby we obtain

lxSA=^^9k~qA^. (16.16)
tl Jo I \£ L )

and thus

'•-^5* <i6-17'
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©

B 1

(b)

q/ /24EI

A- q//24EI

(c)

Figure 16.4

Note that this displacement is equal to the product of the angle of elastic rota-
tion of the end of a supported beam by the rigid arm of length h provided by
the upright (Figure 16.4 (c)).
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Figure 16.5
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Figure 16.6
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Let us reconsider the gerber beam of Figure 16.5 (a), of which we here
intend to evaluate the relative vertical displacement at the double rod (Figures
6.3, 6.4 (b)). The fictitious structure consists of the same beam, loaded by two
unit vertical, equal and opposite, forces, acting at the ends of the beams con-
nected together by the double rod (Figure 16.5 (b)). Imposing equilibrium first
on the portion CD and then on the portion CA (Figure 16.5 (c)), we obtain the
fictitious moment functions

M^Ui) = 3z1, O^z^/ (16.18a)

M^(z2) = z2, 0^z2^3/ (16.18b)

On the other hand, the real moment functions are equal to

M ( r )(zi) = |?fei, Q^z^l (16.19a)

M^(z2) = 2qlz2--qzl 0^z2^3/ (16.19b)

Applying the Principle of Virtual Work yields the following equation:

lxAvc=±-\ ^fe^+JLf z2(2qlz2-^-qzl}dz2 (16.20)
LI JQ Z. L l j Q \ 2 J

Carrying out the calculations, we obtain

4Wc=^ (16.21)c 8 El

If we wish to know by how much one end is raised and by how much the other
end is lowered, it is possible to consider the two unit forces of the scheme of
Figure 16.5 (b) separately.

In order to define the rigid rotation of the upright, it is necessary to consider
the fictitious system of Figure 16.5 (d), in which a unit moment is applied to
the end A. In this case the only contribution to the calculation comes from the
portion ATS, since only here are both the real moment and the fictitious
moment different from zero:

^^^fT^'T1-^' (i6-22)
Ll JQ\Z A L J

Computing, we find the rotation to be positive and hence clockwise as sup-
posed (Figure 6.4 (b)):

VA=-— (16.23)
*A 4 El

Finally, let us consider the truss of Figure 16.6, and let us determine the
elastic displacement of the roller support A. We shall therefore have to recon-
sider the same truss, loaded by a unit force similar to the actual one. In this
case, since the axial force is the only static characteristic present, equation
(16.5) reduces as follows:

Ix^I^^r', (16.24)
/ EA
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On the basis of the axial forces obtained and listed in Section 6.3 (Figure 6.9),
we have

«A£A = 2^-0-0j+ (16.25)

K-M-H4
[(IB)]

and thus

«,=-|(| + V2) (16.26)

16.3 Resolution of structures having one degree of static indeterminacy

In the case where the structure being examined has one degree of static inde-
terminacy (Figure 16.7), it is possible to write the equation of congruence
using the same calculating procedure adopted in the previous section (Figure
16.1). The procedure will be to equate the elastic displacement produced by
the external loads and by the redundant reaction to zero or to a quantity differ-
ent from zero (function of the redundant reaction for elastically compliant
constraints), according to whether the suppressed constraint is rigid or not.

From the operative point of view, once the equivalent statically determinate
structure has been identified, two schemes are resolved:

Scheme 0, consisting of the equivalent statically determinate structure,
subjected to external loads;
Scheme 1, consisting of the equivalent statically determinate structure,
subjected to the unit redundant reaction.

At this point, the system of forces consists of Scheme 1, whilst the system of
displacements consists of the superposition of Scheme 0 and Scheme 1, which

+AT

Figure 16.7
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is multiplied by the redundant unknown X. Equation (16.5) thus yields the
displacement rj of the constrained point

lx7, = -!fM(1)(A/(0> + XM(1))d* (16.27)
El Js

In the case of a rigid or inelastically compliant constraint, the equation of congru-
ence is obtained by equating the right-hand side of equation (16.27) to zero or to
% where rj0 is the known entity of settlement. In the case of an elastically com-
pliant constraint, the equation of congruence is obtained by equating the right-
hand side of equation (16.27) to -X/k, where k is the stifrbess of the constraint. In
all cases a linear algebraic equation in the single unknown X is obtained.

In the case of an elastically compliant constraint, we have for instance

f M ^ M ^ d s + xf (M^)2ds = -X— (16.28)
Js Js k

whence we obtain

LM^MWds
X = & w (16.29)

L(MM)2ds + —
* k

In the same way, in the case of an inelastically compliant constraint, we obtain

LAf^AfWds-TJoE/
X = -^—• „ „ °— (16.30)

ls(MM)2ds

When instead the constraint is rigid (k —> <», or rj0 -» 0), both expression (16.29)
and expression (16.30) reduce to the following:

LMMM^ds
X = -^e — (16.31)

J5(AWd5

We shall now reconsider some of the structures having one degree of static
indeterminacy, already studied in Chapter 15 with the method of plane frames.
For the very reason that they were not sufficiently constrained, these structures
proved to be frames with translating nodes. As will be seen, in these cases the
application of the Principle of Virtual Work constitutes a valid alternative to
the methods already introduced.

In relation to the frame of Figure 15.13 (a), there are two schemes to be
considered to obtain a resolution of the problem using the Principle of Virtual
Work. The equivalent statically determinate structure may be obtained, for
example, by eliminating the degree of constraint to the horizontal translation
of the hinge A, i.e. transforming the hinge into a roller support (Figure 16.8).

Scheme 0 (Figure 16.8 (a)) thus consists of the equivalent statically deter-
minate structure subjected to the distributed load acting on the overhang CG,
while Scheme 1 (Figure 16.8 (b)) consists of the same statically determinate
structure, loaded in this case by a unit horizontal force applied at point A. The
determination of the constraint reactions of the two schemes is immediate, as
is the drawing of the respective moment diagrams (Figure 16.8).
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(b)

(c)

Figure 16.8
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= f (--z2

Jo V /

r r2 ' /2 r2Y 72 7^ fjz2 23
(M<i>)2ds= TT<k+ 1 + 7^ + 7F + \^rtz = —Js Jo ^ Jo \ 4r I J Jo r 3

©

Figure 16.9
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Table 16.1 Once a reference system for each beam of the frame has been chosen, it is
possible to draw up Table 16.1.

Beam M<Q) M^ We thus obtain

AB 0 z} /• - / 1 1

BC Iffe, /-2z, \M^M^ds = \ -qlZ2(l-2z2)dz2=--ql* (16.32a)
2 JS Jo ^ A^

CD 0 z3 t l l

CG Lqz\ o f(M^))2cb = fz1
2dz1 + f ( / -2z 2 ) 2ck 2+ fz 3

2dz 3=/ 3 (16.32b)
2 Js Jo Jo Jo

From equation (16.31) we obtain the redundant unknown

X = ±ql (16.33)

The equilibrium scheme of the node C, obtained by superposition of Schemes 0
and 1 x X, and shown in Figure 16.8 (c), is equivalent to the one obtained with the
method of plane frames and shown in Figure 15.15 (b). Applying once more the
Principle of Superposition, it is possible to verify the bending moment, shearing
force and axial force diagrams, already represented in Figures 15.15 and 15.16.

As a second example, consider again the asymmetrical portal frame of Figure
a 15.12. As an equivalent statically determinate structure, let us choose, from the

Beam M<0) M0' infinite range of possibilities, the three-hinged arch ACD (Figure 16.9). In this
case, therefore, the structure has been internally disconnected, even though usu-

_£ ally, from the point of view of simplicity of calculation, external disconnections
' are more convenient. Having determined the moment diagrams on Schemes 0

BC F~ - (l + — ) and 1, and having fixed a reference system on each beam, we draw up Table 16.2.
^ 2/' Notice that in the schemes of Figure 16.9, the moment diagram is shown

CD o -- from the side of the stretched fibres, and that where A^0) and M11} extend oppo-
site fibres, in the table the respective functions must give values of opposite
sign. The following two integrals are therefore obtained:

[M^0)Af(1)d5 = f (--z2)dz + f (-FZ/1 + — )dz = -6F/2 (16.34a)
Js Jo V / / Jo v 21J

f f 2 / 7 2 f2Y 72 7^ f^2 23

(M<i>)2ds= 7r<k+ 1 + Trr + TF+ \ ~rdz =—K^Mb)
In l/-v /"" lx"\ I 4-/'~ / / - Irk / *" "1
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Figure 16.10

Table 16.3

Beam A/*0* A/0'

AB

BC

CD

0
3 i
4 2

-qlz-^2
8

z

1

r
— z

2
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From equation (16.31) we obtain the redundant moment

18
X = —Fl (16.35)

23

This calculation is implicitly equivalent to the imposition of angular
congruence in the fixed joint-node C:

Aq>c=Q or (16.36a)

9co = 9cA (16.36b)

Applying the Principle of Superposition, it is simple to find once more the
diagrams of the static characteristics defined in the previous chapter (Figure
15.12).

As a final example of a mechanically loaded structure having one degree
of redundancy, let us refer back to the portal frame with oblique stanchion of
Figure 15.21 (a). Let the structure be disconnected externally, so as to trans-
form the hinge D into a horizontally moving roller support (Figure 16.10).
Once the external reactions have been identified on Schemes 0 and 1 and the
reference systems have been defined on the individual beams, the determina-
tion of the analytical functions M^ and M^ is immediate. It is not necessary
at this stage to draw the diagram of these functions, which are given in Table
16.3.

Calculation of the integrals

f Af<°)^1><k = f lf-qlz--qz2}dz+ (16.37a)
Js Jo \4 2 /

f '^f l rrV V2V 5 + 2V2 4I U^AzTr=-24'-*/
r r^ r^ /»/v^ i 4. -*- /2~

(M< l ))2ds= z2dz+ /2dz+ Vdz= /3 (16.37b)
Js Jo Jo Jo 2 3
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makes it possible, via equation (16.31), to obtain the redundant reaction

*-!*$£•* (16.38)

We are thus able to verify that the bending moment in the fixed joint-node C is
equal to

Mc = X/ + i^=^i=^V (16.39)

which, apart from the sign, coincides with the value given in equation
(15.45b) for the solution obtained using the plane frame method.

Before closing this section, we draw attention to the fact that, in general, it
is more difficult to construct the moment diagram using the Principle of Vir-
tual Work than it is using the plane frame method, illustrated in the previous
chapter. In that case, the nodal values of the bending moment are obtained
directly, so that it is simpler to add the partial diagrams for the external loads
to the linear diagrams for these values.

16,4 Resolution of structures having two or more degrees of static
indeterminacy

In the case of structures having two or more degrees of static indeterminacy,
the procedure outlined in the foregoing section can be extended to a pair of
fictitious schemes, consisting of the equivalent statically determinate struc-
ture, loaded by one redundant unknown at a time. The displacements of the
two points in which the disconnection is made can be obtained by applying the
Principle of Virtual Work to each fictitious structure.

More precisely, considering as system of displacements the real one
(Scheme 0 + Xl x Scheme 1 + X2 x Scheme 2) and as system of forces each of
the two fictitious systems, we have

IXT)! =— fAf< 1 >(Af(°> + X1M( I)+X2Af<2>) ds (16.40a)
El Js

lX772 =— f Af<2>(M(°> H-XjAfW +X2M&) ds (16.40b)
El Js

In the case where all the constraints of the structure are rigid, the two rela-
tions of congruence, rjj = rj2

 = 0» yield the following two linear algebraic
equations:

X{ f(M^)2dy-HX2 [M^M^d^-f M^M^ds (16.41a)
Js Js Js

X{ \M^M^ds + X2 f(M<2>)2dy = -| M^M^ds (16Alb)
Js Js Js

If we designate as coefficient of influence T]12 the displacement generated by
the redundant reaction X2 = 1 at the point of application and in the direction
of the other redundant reaction X t, and as 7]21 the displacement generated by
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Table 16.4

Beam A/0) A/ ! )

AB 0 z

BC ~qz- - + z
2 2

CD --9/2 /
8

A/<2)

0

-

1
2

Xj = 1 at the point and in the direction of X2, from Betti's Reciprocal
Theorem and the Principle of Virtual Work we can deduce

7]p = rj?1 =— I M^M^ds (16.42a)
El Js

while the self-influence coefficients may be expressed as

7jn =— f(M ( 1 >) 2 ds (16.42b)
£^ Js

7]?, = J L f ( A f < 2 > ) 2 ds (16.42c)
£* Js

Equations (16.41) may thus be cast in the form

r?n*,+ r?,2*2 =- Hio (16.43a)

*?2ixi + ^22*2 = - %> (16.43b)

7710 and Tj2o being the displacements due to the external load. Resolving the
system using Cramer's rule, we obtain

HlO *?12

X{=~ "» l ? 2 2 =- ̂ ^ -^20 (1644a)

111 Hi 2 Hi I ^22 ~ Hf2

J?2I H22

Hll ^10

X,=- ^^ ? ? 2 0=- ^ '^0-^0^. (1644b)
^11 ^12 ^11 ^22 ~ ^2

^21 ^22

As an example of the application of the above procedure, let us reconsider
the frame with two degrees of redundancy of Figure 15.9 (a). As an equiva-
lent statically determinate structure, let us consider the same portal frame,
with the connecting rod and the constraint to horizontal translation at the feet
of the uprights removed (Figure 16.11). Three schemes are hence to be
considered:

Scheme 0, with the external load only (Figure 16.11 (a));
Scheme 1, with two symmetrical and horizontal unit forces acting at the foot
of the uprights (Figure 16.11 (b));
Scheme 2, with two symmetrical and horizontal unit forces acting half-way up
the uprights (Figure 16.11 (c)).

Figure 16.11 also shows the corresponding moment diagram for each of the
three schemes. Taking into account symmetry, there are three portions of the
structure on which the integrals of equations (16.42) are to be evaluated.
Using a suitable reference system for each portion, we obtain Table 16.4.
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There then follows the computation of the coefficients of influence:

r r / / 2 r / /2n V r / / 2 5
(Af( !>)2d?= z2<fe+ - + z ck+ I2dz = -l3 (16.45a)

Js Jo Jo v2 J J0 6

r r / / 2 f / "\ r / / 2 f n n
M^Af^ds = J _ + z U,+ / - dz = — /3 (16.45b)

Js Jo V 2 J Jo U; 48

f f"V 1 Y/ \ Cl/2f 1 A
\M^M^ds = \ \--qz2 - + z dz + --^/2 /dz (16.45c)

Js Jo v 2 A 2 y Jo v 8 )

=-i±-qi*384^

f r / / 2 r / / 2 / 2 p
(Af<202dj= z2dz+ — dz=— (16.45d)

Js Jo J0 4 6

f f ; /V i A r / / 2 / ^ i M
M^M^ds = \ —qz2 zdz+ —ql2 }-dz (16.45e)

Js Jo v 2 y Jo V 8 ) 2

=--V
128

Considering the equations (16.42) and (16,43), we finally obtain:

X, =—— o/ (16.46a)1 248^

X2=—ql (16.46b)

verifying what was already found following another procedure in the previous
chapter.

In the case of a structure having three or more degrees of redundancy, the
procedure does not substantially change. Once the equivalent statically deter-
minate structure has been identified, (n +1) elementary schemes are consid-
ered, where n is the degree of redundancy. Applying the Principle of Virtual
Work to each scheme, we arrive at a linear algebraic system of n equations in
the n unknowns X1? X2,..., Xn

n

]£ rjtjXj =- 77i0, for i = l,2, ...,n (16.47)

7 = 1

where j]^ are the elements of the influence matrix

n..=— IM^MWds, for 1,7 = 1,2, ...,n (16.48)
El Js

and 77,0 are the displacements due to the external load

n.0 = — f Af<'>M<°>dj, for i = l,2, ...,« (16.49)
El Js
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Table 16.5

Beam Af<°> A/*1' M<2) A*<3)

m z z z
AB ~1Z J 2 U

EC -m+™z -1 ^ -^
21 2 2 21

BD 0 z 0 1

In the case, for instance, of the frame of Figure 15.6, it is possible to reduce
it to an equivalent statically determinate structure by eliminating the built-in
support D at the foot of the upright and by applying the three elementary reac-
tions. There will thus be four schemes to be considered (Figures 16.12 (a)-(d))
and Table 16.5, showing the bending moment functions.

The real bending moment may thus be expressed by means of the Principle
of Superposition:

M(AB = <* + *i<* + X2^(AB + ̂ MAB (16.50a)
=-§z4*iz+^+^

MBC = MBC + X\MBC + X2^sc + X3MBC (16.50b)

= ~m + ̂ ll~\XlZ + \X2Z~~^lX^

M<& = M(^ + XtM™ + X2Mg> + X3Mg> (16.50c)

= XlZ + X3

The first equation of congruence will therefore be

\M^M^ds= (16.51)
Js

--M-^x^T^
IH^-^^-i,^
f (z)(XlZ + X3)dz = 0
Jo

which, when the calculations are performed, becomes

l(-f + X I +X2 +f)f- (16,2)

!-_*l+X2_M!i+-!i+
4U ' 2 I J3 22

;3 ;2
X,— + *3 — = 01 3 3 2

and hence

6X,/ + 8X3+w = 0 (16.53)
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Table 16.6

Beam M0'

AB z

BC l + -

CD z

A/0)

1

2"
1

1
2
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Equation (16.53) is satisfied by the values

*i=-£f d6.54a)

X3=^ (16.54b)

which we obtained following another path in the previous chapter.
In like manner, it is, on the other hand, possible to obtain the remaining two

equations of congruence and to verify the results previously obtained. At the
same time it may be appreciated how the Principle of Virtual Work is
extremely laborious, compared with the method of plane frames, when the
degree of redundancy of the structure is equal to or greater than three.

16.5 Thermal distortions and constraint settlements

In the case where the redundant structure undergoes thermal distortions,
whether spread uniformly over the entire thickness or butterfly-shaped, equation
(16.5) is to be applied, considering the real system as the system of displace-
ments and a statically determinate fictitious system as the system of forces.

Let us take, for instance, the case of the asymmetrical portal frame of Figure
15.18 (a), subjected to a uniform increase in temperature over the cross member.
We shall choose as equivalent statically determinate structure the one of Figure
16.13, obtained by replacing the hinge D with a roller support. Table 16.6 gives
the bending moment and axial force functions, M1^ and A/°}, as M<0) = A^0) = 0,
on account of the absence of external loads of a mechanical nature.

Equation (16.5) yields

f f XM(l}

N^aATds+ MM ^-L— ds = 1 x 0 (16.55)
JBC Js El

and on the basis of Table 16.6

X\f2/ fj( f V f'
2aATl + — z2dz+ /+•- dz+ z2dz =0 (16.56)

£7 [Jo Jo \ 1) Jo
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Figure 16.14

(a)

Figure 16.15
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Evaluating the integrals, we obtain

X = -Aodr|^ (16.57)

which corresponds exactly to the shear value on the upright CD, obtained in
the previous chapter.

As regards statically indeterminate structures having an inelastic constraint
settlement, it is necessary to take into account the work performed by the ficti-
tious constraint reaction corresponding to the settlement itself. For example,
the portal frame of Figure 15.20 (a) can be rendered statically determinate by
replacing the hinge D with a horizontally moving roller support (Figure
16.14). In this case equation (16.5) yields

IxO + Oxrj^-f-ftM'1))2^ (16.58)
El Js

whence it emerges that X = 0; i.e. the structure is not subject to internal reac-
tions, since the displacement TJO of the point D can be produced by a simple
rigid rotation of the portal frame about the hinge A (Figure 15.20 (e)).

. / .

(b)



STATICALLY INDETERMINATE TRUSS STRUCTURES

As regards the statically indeterminate structures with an elastic constraint
settlement, it was shown in the introduction to this chapter that it is necessary
to take into account the work done by the fictitious constraint reaction acting
through the settlement caused by the real constraint reaction.

a Consider again the continuous beam on an elastic support of Figure 13.15
Beam A/<0) A^!) (a)- Scheme 0 consists of the beam AC, loaded by the moment m at the end C

(Figure 16.15 (a)), whilst Scheme 1 consists of the same beam with a unit load
AB ~—z — acting in the centre (Figure 16.15 (b)). The moment functions are given in

21 2 Table 16.7.
Tfl Z

BC -m + --z - Using formula (16.29), we have

f Af (0)M<^ds
X = ^ w (16.59)

J5(M< I>)2ds + —
K

where k = EA/h, and

IM^M^OS = I (- — *Y-\k+ (16.60a)

fY m }z* l j-I \-m + — z\ — dz =—nil2

Jo I 21 )2 4

f f ; z2 f ; 72 z3

(Af<102dj= — dz + — dz = ~ (16.60b)
Js J0 4 Jo 4 6

Performing the calculation, we obtain

Im/2
x = f^W (16'61)

6 + k
The two limit cases of an infinitely compliant support and a perfectly rigid

support, present, respectively, the following vertical reactions VB:

limX = 0 (16.62a)
k->0

l imX = -— (16.62b)
Jt-^oo 2 /

Once again we find the reaction of the central support, already determined fol-
lowing another procedure (Figure 13.14).

16.6 Statically indeterminate truss structures

In the case of statically indeterminate truss structures, the application of the
Principle of Virtual Work constitutes a highly valid and often rapid method of
resolution. The equivalent statically determinate structure is obtained by sub-
tracting a number of bars equal to the degree of redundancy of the structure.
These bars, once isolated, must be considered axially compliant under the
action of the corresponding redundant reaction.

Let us take as an example the truss structure of Figure 16.16 (a), subjected
to a temperature increase AT on the bar CE. When the bar has been isolated
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(a)

(b)

Figure 16.16

508

and both the bar and the equivalent statically determinate structure have been
subjected to the unit fictitious reaction (Figure 16.16 (b)), equation (16.5)
becomes

X^ #.(/)AT.(r)
Ix4?j< '>= > ' ' lt (16.63)

*-* EA
i

From the scheme of the bar CE we have, on the other hand,

ATI& = f aAT-—} /V2 (16.64)
V EA)
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whereby the equation that provides the solution becomes

/ \
V (N(l)}2 \ f X \ r~z I^r*Ka4r-s) ̂  (1"5)

V * /

Since

*£ = *S = <-A^=^ (16-66a)

tfj& = -l (16.66b)

we obtain finally

x [ ( f t } 2 I f y ^
— 4x — x / + l x / V 2 = \oAT-—\ /V2 (16.67)EA ^ 2 J v £A;

and hence

X=2~^2 aATEA (16.68)

As our second example, let us examine the truss structure of Figure 16.17(a),
where the upper chord is subjected to a uniform temperature increase ATI The
bars ED and DC are unloaded by virtue of the equilibrium of the node £>, so that
the scheme providing the solution reduces to that of Figure 16.17(b), where the
bar AC has been isolated with respect to the rest of the structure. From the equi-
librium of the nodes C and B (Figure 16.17(c)), the following condition results:

N^ = N^c = N^ = N^=-^j- (16.69a)

NBE = ̂ J- 06.69b)

Since, by virtue of the fact that the load is of thermal origin, we have M0) = 0,
applying the Principle of Virtual Work gives

-'*^H"?H
and hence, rendering the terms of the summation explicit

.M^-^otf, (I6.71)
EA 3£A 3

whence we obtain the unknown reaction NAC

X = 9"5^3 aATEA (16.72)
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B +AT C

(a)

B -VaVa c

(b)

Figure 16.17

The static indeterminacy of the truss structure of Figure 16.18(a) is due to
the continuity of the lower chord. The equivalent statically determinate struc-
ture is obtained by inserting a complete hinge at D (Figure 16.18(b)) and
applying the redundant moment X. The fictitious structure of Scheme 1 proves
to be loaded in a symmetrical manner by two unit moments (Figure 16.18(c)).
By virtue of the equilibrium of the beams DC and DE, as well as of the nodes
A and D (Figure 16.18 (d)), we have

/(D _ A/0) __£_
" A C1 ~~ *• ~ 4 /? "~" /—•4C 4B /Vs (16.73a)

510

Vs/3 Va/3
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O ^\3/3 ^ O (C)
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VaT/3
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^=-773 (16'73b)

N™=~TJ3 (16>73c)

Structure of Scheme 0 (Figure 16.18(e)) proves, on the other hand, to be
loaded only on the external bars:

<>=-^ (16.74B)

NCD=^ (16.74b)

N*B=--^ <16-74c>

#AD = O (16.74d)

The schemes of equilibrium of the nodes C and A are represented in Figure
16.18(f).

Application of the Principle of Virtual Work leads to the following equation:

1x0 = ̂ [2<^> + 2O$ + «^] + (16.75)

f[2«>)2
+2«)2

+(^)2
+2«>)2] +

iK'(^)2^]
which allows the determination of the redundant unknown X. We thus have

A f & = y (16.76)

whence

f(M&)2dz=4 (16-77>
Jo *

and hence, substituting equations (16.73), (16.74) and (16.77) into equation
(16.75)

J_L^_2F_^1+ (16.78)

EAl 31 31 31 ]
X/ [" 8 2 4 8 "I
£A[3/2 +3/2 +3/2 +3/2J +

Afl^o
E/L3 J
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Finally we obtain

(16.79)

wnere p denotes me radius ot gyration or the cross section of the bars.
Finally, consider the closed structure of Figure 16.19(a), stiffened by a diag-

onal cross. In order to obtain the equivalent statically determinate structure, let

(a)

(b)

1 1

/Va"

Figure 16.18a, b, c

(C)

512
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c<

F

(e)

t

o c

Figure 16.18d, e, f

A

«-/\3~ /

the cross be isolated and subjected to the action of the unknown axial force X,
just as the square framework is subjected to equal and opposite loads (Figure
16.19(b)). The system of Scheme 0 is subjected to a compressive axial force
on the beams AB and CD, and to a bending moment on the beams AD and BC
(Figure 16.19(c)). The system of Scheme 1 is subjected to a tensile axial force
on all the beams (Figure 16.19(d)).

The Principle of Virtual Work yields the following condition:

, */V2/2 f Af</>M< r> f tf</W> /1/:om-lx— = I ds + l ds (16.80)
EA J5/4 El Js/4 EA
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(a)

U2 ^ 1/2
•!<

X \
(b)

c
F/2

(c)

Figure 16.19

\

Va/2 /
*+— o B

f V2/2

C

N(1) = V2/2

(d)

514

N(0>=-F/2
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ARCHES AND RINGS

with

M < / » = 0 (16.81a)

NW=NM=^ (16.81b)

M$=£z (16.81c)

M$=0 (16.8 Id)

N& = X^j- 06.81e)

*&=-f + *:y 06-810

Equation (16.80) thus takes the form

_*/^ = _Lf* + X_M)
2£A 2E4tv2 2 4 J

whence it follows that

X=F(2~^ (16.83)
4

The axial forces in the individual bars are therefore

M ^ F . F(2-V2)V2 ,,72-3 „ . _ . .
^ = #CD = — + — = p—j— (16.84a)

^D = ̂ c = ̂ (V2-l) (16.84b)

tyro = #AC =-^<2-V2) (16.84c)

16.7 Arches and rings

In the cases of arches and rings, and in general of curvilinear beams, just as
in the previously considered case of truss structures, application of the Princi-
ple of Virtual Work proves to be a highly convenient method of solution.

Consider, for instance, the circular cantilever of Figure 16.20(a), subjected
to a uniform temperature rise AT. Introduce three fictitious schemes, where the
cantilever is loaded at the unconstrained end by

Scheme 1: a unit horizontal force (Figure 16.20 (b));
Scheme 2: a unit vertical force (Figure 16.20 (c));
Scheme 3: a unit couple (Figure 16.20 (d)).

(16
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+AT

(a) (b)

(d)

Figure 16.20

516

It is then possible to calculate the generalized displacements of that end. We
have in fact

Af< l >=cosp (16.85a)

NW=sin<p (16.85b)

# ( 3 )=0 (16.85c)

and hence

\xuB = \sN^eTds (16.86a)

lxvB=lsN^€Tds (16Mb)

lxq)B=!sN^€Tds (16.86c)
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-AT

Figure 16.21

Substituting equations (16.85) into equations (16.86), we obtain

UB = VB = *oA7\ <PB = 0 (16.87)

If the same cantilever beam is subjected to a butterfly-shaped thermal varia-
tion (Figure 16.21), the previously considered fictitious schemes yield the fic-
titious moments

M^=R(cvs<p-l) (16.88a)

M^=Rsin(p (16.88b)

A f < 3 > = ! (16.88c)

and hence the application of the Principle of Virtual Work to each of the three
schemes leads to the determination of the displacements of the end B:

lxuB=!sM^XT<k (16.89a)

lxvB=lsM^xT^ (16.89b)

1 x <pB = J5 M
(3^rds (16.89c)

From equations (16.88) and (16.89) we obtain

A™ +nl2

uB=2a— #2(cos<p-l)d<p (16.90a)
h Jo

vB=2a—{ R2 sm<p d<p (16.90b)
h J0

AT tnl2

(pB=2a— Rd(p (16.90c)
h J0

and hence

UB= aAT—(2-n) (16.91a)
h

VB = 2aAT— (16.91b)
/z

<p5 = ^ro^r- (16.91c)

To determine the relative horizontal displacement of the ends of the discon-
nected ring of Figure 16.22(a), it is sufficient to consider the fictitious scheme
of Figure 16.22(b), so that

M</> = M^ = R(l - cos <p) (16.92a)

Af(D = MM = FR(i _ Cos <p) (16.92V)

Application of the Principle of Virtual Work,

t Au f MWMM A f^M.
lx — = I ds (16.93)

2 J5/2 H

517
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(a) (b)

Figure 16.22

(a)

Figure 16.23
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on the basis of equations (16.92), yields the following condition:

"^[(l-cos^dp (16.94)
2 tl Jo

from which we find

FR3

Au = 3n (16.95)
El

To determine the relative displacement of the ends of the disconnected ring
of Figure 16.23(a), two fictitious schemes must be used, one with the unit
force horizontal (Figure 16.22(b)), and the other with the unit force vertical
(Figure 16.23(b)). For the latter scheme we have

MW = M<2> = R sin<p (16.96a)

M(r) = FM(2) = FR sin^ (16.96b)
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and hence the discontinuity of vertical displacement may be deduced from the
following equation:

4» f M«W

2 Js/2 El

which, on the basis of equations (16.96), gives

AV PK^ r^
— = — sin2pd? (16.98)

L El JQ

and hence

Av =n— (16.99)
iiti

The discontinuity of horizontal displacement is zero owing to skew-
symmetry. The absolute displacement may be deduced from the application of
the Principle of Virtual Work, considering expression (16.96b) as the real
moment and expression (16.92a) as the fictitious moment,

f FM^M^
lxu=\ ds (16.100)

Js/2 El

from which we obtain

u = f*sine>(l - cos<p)dop (16.101)
El u

and hence

w = 2^ (16.102)
£*/

Now consider the statically indeterminate ring of Figure 16.24(a), in which
the internal connecting rod undergoes a temperature rise A!T. By virtue of
double symmetry, the ring reduces to the quarter of circumference of Figure
16.24(b), in which the rod has been isolated and subjected to the redundant
reaction 2X{. The equivalent statically determinate structure can hence
appear as in Figure 16.24(c), where the quarter of circumference is subjected
also to the second redundant unknown, the moment X2. The two fictitious
structures are represented in Figures 16.24(d), (e). The real moment is equal
to

M^ = ̂ AfW + X2M<2) (16.103a)

where

M^^tfsnup (16.103b)

A f < 2 > = ! (16.103c)

The first equation of congruence for the connecting rod is written

( ?Y /? "\ f*72 M<r>
lx -±±i£+ aATR\= M^—Rd<p (16.104)

I EA J Jo El *

(16.9
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(a)

2X, (c)

(b)

Figure 16.24

(d) (e)
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Performing the calculations, we obtain

521

( #2 A
XA 2p2 + — + X2R = ElaAT (16.105)

v 4 ;

Since the radius of gyration of the cross section is much smaller than the
dimension /?, equation (16.105) simplifies as follows:

nR2Xl + 4RX2 = 4EIaAT (16.106)

The second equation of congruence, corresponding to the rotation, is
written

fnl2 M(r)
1x0 = M< 2> Rd(p (16.107)

Jo El

From equations (16.103) we have

/.7T/2

(X{Rsm<p + X2)d(p = Q (16.108)
Jo

and hence

2X{R + nX2=Q (16.109)

From equations (16.106) and (16.109) we obtain the axial force of the rod

X. = 4ffT (16.1 lOa)1 /J2(^2-8)

as well as the redundant moment

Op

X2=- — Xl (16.110b)
n

The statically indeterminate ring of Figure 16.25(a) is studied in the same
way as for the preceding one. If we imagine turning the scheme by 90°, it is
possible to use the fictitious systems of Schemes 1 and 2 of the previous
example (Figures 16.24(d), (e)), whilst Scheme 0 is represented in Figure
16.25(b),

FR
Af<°>=—(1-cosp) (16.111)
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(a)

F / 2

(b)

F /2

522

Figure 16.25

The equations of congruence can be written like equations (16.41), with

f f^ 7 2 n
\(M^)2ds = R3 sin2<pd(p = -R3 (16.112a)

Js Jo 4
f fx/2

\M^M^ds = R2\ sin(pd(p = R2 (16.112b)
Js Jo
f pTT/2

(M^2>)2dy = /? &<p = -R (16.112c)
Js Jo 2
f F/?3 T^72 ATP3

Af(1)M(0)d5 = ̂ -I sin(p(l-cos<p)d<p = ̂ -^- (16.112d)
Js 2 J0 4

f FR2 f*/2 FR2

M<2>Af<°>ds = (l-cos<p)d<p = (Ti-2) (16.112e)
Js 2 J0 4

We have therefore

~R3Xl +R2X2 =-— (16.113a)

_ ATJ?2
R2X,+-/?X2=-^-(7r-2) (16.113b)
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Figure 16.26

(b)
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From equations (16.44) we have finally

X\=F-^^ (16.114a)

= FRn~~2n~4 (16.114b)
2(8-^2)

Also the statically indeterminate ring of Figure 16.26 (a), the orthogonal
diaphragms of which are respectively heated and cooled, can be analysed
using the method illustrated previously. In this case (Figure 16.26 (b))

M< 0 ) =0 (16.115a)

M^=Rsincp (16.115b)

M < 2 ) = 1 (16.115c)

M(3) = /?(l-cos<p) (16.115d)

The ring of Figure 16.27 (a) is subjected to a butterfly-shaped thermal vari-
ation. The equivalent statically determinate structure is represented in Figure
16.27 (b), with

M<°>=0 , M ( 1 ) =l (16.116)

The real moment is therefore

Af < r > = Af <°> + XM^ = X (16.117a)

(a)
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(a)

(b)

524

Figure 16.27

so that the real thermoelastic curvature is

X AT
X(r)= +2a— (16.117b)

El h

The Principle of Virtual Work yields

1x0= [M^Z^AS (16.118)
J S / 4

from which we obtain

fi + 2a^*=0 (16.119)(EI h ) 2

and hence

X = -2aAT— (16.120)
h

Consider again the ring of radius /?, loaded by three angularly equidistant
radial forces (Figure 16.28 (a)). The equivalent statically determinate structure
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(a)

F / 2

(b)

Figure 16.28
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is represented in Figure 16.28 (b), so that the moments corresponding to
Schemes 0 and 1 are the following:

•p D -p fa

M(0) =—sin<p--^— R(l-cos(p) (16.121a)
2 6

M^=l (16.121b)

Angular congruence imposes

f M^0) + XM(1)

1x0= M^1^ ds (16.122)
J^/3 El
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and hence

f2nnV ™ p fa 1

— sinp-—^-fl(l-cosp) + X \Rd(p = Q (16.123)
JQ [_ 2 6 J

whence we obtain

X = -FR9~^3 (16.124)
6n

Let the ring of Figure 16.29(a) be subjected to the stresses produced by the
thermal dilatation of the two orthogonal diaphragms. The equivalent statically
determinate structure is represented in Figure 16.29(b). From symmetry it can
be reduced to the fictitious system of Scheme 1 of Figure 16.29(c). We have
therefore

M < ° > = 0 (16.125a)

M(1) = -(sin<p + cos<p-l) (16.125b)

Application of the Principle of Virtual Work yields

2 x ± x f aATR- — )= f X (M< ) ds (16.126)
2 V EAJ Js/4 El

from which we obtain

XR XR^ fnl^
aATR = (sin<p + cos<p-l)2d<p (16.127)

EA 4EIJ0

and hence

X= 2
4aATEI

 2 (16.128)
R2(n + \) + 4p2

Finally let us consider the arch of Figure 16.30(a). The equivalent statically
determinate structure of Figure 16.30(b) presents at its lower end an elasti-
cally compliant roller support which simulates the lateral cantilever on which
the arch rests. Schemes 0 and 1 give the moments (Figure 16.30(c))

PR
Af<o) =—(l_cos<p) (16.129a)

M^=-Rsin<p (16.129b)

and thus we have

f Af <°) + XMM
1x0= M^M +AM d^ (16.130)

J5 /2 El
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+AT

+AT

+AT

(b)

(C) I1/2

Figure 16.29
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(a)

F / 2

F / 2

F / 2

(c)

Figure 16.30
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Figure 16.31
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Since

1703
f M<°>M<'>ds = -^- (16.131a)

J j / Z A

ls/2(M^)2ds = &- (16.131b)

we obtain finally X = Fin. Note how the stiffness k of the spring does not
appear in the solution.

16.8 Castigliano's Theorem

In the case where thermal distortions and constraint settlements are absent, the
determination of elastic displacements in statically determinate structures can
be made using Castigliano's Theorem, as an alternative to the application of
the Principle of Virtual Work proposed in Section 16.2.

Consider a statically determinate structure subjected to n different loads Fh

F2, ..., Fn (Figure 16.31). The Principle of Superposition makes it possible to
express the n generalized displacements dual of the forces, 7jb rj2, ..., T]n, via
the coefficients of influence fy :

n

n,-=]jjr V> for i = U,...,/i (16.132)
7 = 1

Clapeyron's Theorem then gives the strain energy of the structure in the form

^def=4i^ (16.133a)
t i=\

which, taking into account equations (16.132), becomes

**f=^iiWff 06.133b)
Z i = l j = \

Finally, deriving the strain energy with respect to each force Fit i - 1, 2, ..., n,
we have

n

%L = X^/^' for < = 1,2,...,« (16.134)
;=i
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and hence, on the basis of equation (16.132), we find

-^• = 77,., for / = 1,2,...,» (16.135)
dFi

Relation (16.135) represents the statement of Castigliano's Theorem: the
derivative of the strain energy with respect to the magnitude of an
applied force is equal to the global elastic displacement, dual with respect
to the same force.

In the case where one wishes to calculate a generic displacement which
does not correspond to an applied force, it is possible to apply a fictitious
force, corresponding to the displacement sought, and, once the partial deriva-
tive of the work has been obtained, to make the magnitude of the above force
tend to zero.

It is possible to demonstrate the perfect equivalence of Castigliano's
Theorem with the Principle of Virtual Work. In fact, in the case where axial
force and shearing force give a negligible contribution to the strain energy, we
have

^4/5f d, (16-136)

and hence, on the basis of equation (16.135)

71 = ——— f M2ds (16.137)
'' 2EIdFiJs

Carrying the differential operator under the integral sign, we obtain

/? ,=— ( M^-ds (16.138)
EIJS dFt

Since then the real moment M may be interpreted as the sum of n partial
moments, each generated by the generic force Ft

Af = M< r> = £fJAf< l '> (16.139)
/=!

equation (16.138) becomes

rj. = — f M< r>Af<''>ds (16.140)
El Js

in which relation we can recognize the equation of the Principle of Virtual
Work, amply discussed and applied hitherto.

16.9 Menabrea's Theorem

Menabrea's Theorem may be derived directly from Castigliano's Theorem,
even though originally the two theorems were demonstrated independently.

Menabrea's Theorem is also called the Theorem of Minimum Strain
Energy and refers to redundant structures (Figure 16.32). It states in fact that,
given a structure with n degrees of redundancy, the n values of the redun-
dant unknowns make the strain energy of the structure a minimum.
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Considering the equivalent statically determinate structure and the n redun-
dant unknowns Xb X2,..., XnJ Castigliano's Theorem gives

rji=^L9 for i = l,2, ...,/i (16.141a)
dXt

while the conditions of congruence, in the case where all the constraints are
rigid, are

rj f .=0, for i = l,2, ...,/i (16.141b)

By the transitive law we obtain therefore

4-Afcf(*i.*2---.*«) = 0. for 1 = 1,2, ...,n (16.142)
CK;

The foregoing equation confirms the statement of Menabrea's Theorem, Ldef
being a positive definite quadratic function in the variables X,.



1 "7 Instability of elastic
equilibrium

17.1 Introduction

The hypothesis of small displacements so far advanced considers the cardinal
equations of statics (7.46) and (7.47) in relation to the undeformed structural
configuration. In other words, the elastic displacements have been hypothe-
sized as being so small as to make it possible for the deformed configuration
to be confused with the undeformed one when the static characteristics are to
be evaluated. In this chapter this hypothesis will be removed, and it will be
shown how the solution of an elastic problem can represent in actual fact a
condition of stable, neutral or unstable equilibrium, according to the magni-
tude of the load applied. Moreover, there exist, around the condition of neutral
equilibrium, an infinite number of other similar conditions, characterized by
different static parameters (applied loads) and kinematic parameters
(configuration of the system).

The instability of elastic equilibrium occurs in general for slender struc-
tural elements subjected to compressive loads, such as columns of build-
ings, machine shafts, struts of trusses, thin arches and shells, and
cylindrical and spherical shells subjected to external pressure. But also
other cases, which are more complex, as regards both their geometry and
the loading conditions, can equally be considered. It will suffice to think of
the lateral torsional buckling of beams of thin rectangular cross section,
where the disparity between the order of magnitude of the two central
moments of inertia can cause, in a deflected beam, a sudden torsional defor-
mation. The instability of elastic equilibrium is, moreover, a critical phe-
nomenon that may affect an entire beam system, before it involves a
particular element of the system. This occurs in the case of metal trussed
and framed structures, which are frequently made up of extremely slender
rods and beams.

The loss of stability of elastic equilibrium is commonly referred to as buck-
ling. This is one of the three fundamental phenomena of structural collapse,
the other two being yielding and brittle fracturing, which we shall discuss in
the ensuing chapters. These phenomena do not in general occur separately, but
interact during the phases of collapse. In this chapter we shall see how yield-
ing can interact with buckling in the context of a transition from one to the
other as the slenderness of the structure increases. In Chapter 20 we shall con-
sider, instead, the interaction between yielding and brittle fracturing and the
ductile-brittle transition as the size scale increases, the geometrical shape of
the structure remaining the same.

1 7.2 Discrete mechanical systems with one degree of freedom

Let us consider the mechanical system of Figure 17.1 (a) consisting of two
rigid rods connected by an elastic hinge of rotational rigidity k, and con-
strained at one end by a hinge and at the other by a roller support. When the
system is loaded with a horizontal force N and the absolute rotation <p of the
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Figure 17.1

two arms is assumed as the generalized coordinate, the total potential energy
of the whole system is

W(cp) = -k(2<p)2 -2M(l-cos<p) (17.1)

The conditions of equilibrium are identified by imposing the stationarity of the
function (17.1).

W'(<p) = 4kcp - 2NI sin<p = 0 (17.2)

from which we obtain the relation

N=™V- (17.3)
/sin<p

which links loading condition and deformed configuration along the branch of
equilibrium presented in Figure 17.1(b). The plane N-q> is thus divided into
two sectors by the curve of equation (17.3): the points of the upper sector rep-
resent conditions of instability, whilst those of the lower sector represent con-
ditions of stability. Starting from the initial condition <p = N = 0, it will thus be
possible to traverse in a stable manner the vertical segment of the axis N up to
the point C (<p = 0, N~NC = 2k/l), then to deviate onto one of the two branches
of equilibrium of Figure 17.1(b). Alternatively, it would be possible to pro-
ceed along the vertical axis beyond point C of branching, although in this case
the equilibrium is of an unstable type.

Note how the global behaviour of the system is then of a hardening type,
the increase in deformation requiring a further increase in the external load. A
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nonlinear and post-critical behaviour of this sort is said to be stable. To verify
the stability of the post-critical branch, it is possible to consider the concavity
of the potential as expressed by equation (17.1) and hence its derivatives of a
higher order, calculated for (p = 0

W'(Q) = W"(0) = W'"(0) = 0 (17.4a)

WIV(Q) = 4k>Q (17.4b)

The determination of the critical load Nc can be made also via the
simple method of direct equilibrium, i.e. by equating the destabilizing
moment

Af,. = Msinp=* Nl<p (17.5a)

and the stabilizing moment

Ms=2k(p (17.5b)

Note that in relation (17.5a) recourse has been made to the hypothesis of
linearized kinematics. This hypothesis simplifies the calculations, even
though it prevents the definition of the post-critical behaviour.

Let us now consider the mechanical system of Figure 17.2(a), consisting of
two rigid rods connected by a hinge, and constrained externally by a hinge and
two roller supports, the intermediate one resting on an elastic foundation of
rigidity k. The total potential energy is

W((p) = -k(ls'm(p)2 -2M(l-costp) (17.6)

where the first term represents the potential energy of the spring, while the
second represents the potential energy of the horizontal force N. The
conditions of equilibrium are obtained by imposing the stationarity of the
function (17.6):

W'(q>) = / sin<p (kl cos(p - 2N) = 0 (17.7)

from which we obtain (Figure 17.2(b))

kl
N = —cos<p (17.8)

In this second example, the global behaviour of the system is of a softening
type, a decrease in the external load corresponding to an increase in deforma-
tion. A post-critical behaviour of this sort is said to be unstable. To verify the
instability of the post-critical branch it is possible to consider the convexity of
the potential expressed by equation (17.6) and hence its derivatives of a higher
order, calculated for (p - 0:

w\Q) = w"(0) = w"(0) = 0 a ?.9a)
WIV(Q) = -3kl2 <Q (17.9b)
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Also in this case, the determination of the critical load Nc may be made by
equating the destabilizing moment acting on each rod and evaluated around
the end supports (Figure 17.2(c))

Mt=Nlsin(p^Nl<p (17.10a)

and the stabilizing moment due to the reaction of the central support (Figure
17.2(c))

Ms =-kl2 sirup cos<p « -kl2(p (17.10b)

17.3 Discrete mechanical systems with n degrees of freedom

Let us consider the mechanical system with two degrees of freedom of Figure
17.3(a), consisting of three rigid rods connected by two elastic hinges of rota-
tional rigidity k, and constrained at one end by a hinge and at the other by a roller
support. When the system is loaded with a horizontal force N and the vertical
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displacements xl and x2 of the elastic hinges are assumed to be generalized coor-
dinates, the total potential energy of the entire system is expressible as follows:

W(Xl, x2) = -k [arcsin^- - arcsin *2 "*l [ + (17.11)

f \2~I • x? • x<j- x} }arcsm —*- + arcsin — -

M 3-cos arcsin— -cos arcsin-^- -

( . x2 - *i ^cos arcsin—^ L

Performing a Taylor series expansion of equation (17.11) about the origin,
we obtain

^i.^)* 2^~(5*? +5*22 -8^2)- (17-12>

N , 1 2
-J-(X1+X2~X1X2)
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The conditions of equilibrium are identified by imposing the stationarity of the
function (17.12):

dW (5k 2N] (4k N}

^=H"~J~H~u ( }

dW (4k N} (5k 2N] mi^•^a-x{p--)+xip-—ro (17-l3b)

Equations (17.13) constitute a homogeneous system of linear algebraic equa-
tions and possess a solution different from the trivial one when the deter-
minant of the coefficients is equal to zero:

(5k__2N_} _f^_^l
(P l (l2 * = 0 (17.14)

(4k N} (5k 2N]
-(W-T) IF"rj

Evaluating this determinant, we obtain a second-degree algebraic equation in N

f5k_2frf _(« *tf=0 (17.15)
(l* I ) (l* l)

and hence

4k k2

N2- — N + 3^ = 0 (17.16)

which yields the two eigenvalues

Ncl=j (17.17a)

Nc2=3- (11.lib)

From the system (17.13) we then obtain the corresponding eigenvectors

x{=x2 (17.18a)

jc,=-;c2 (17.18b)

The eigenvectors (17.18) represent the two modes of deformation correspond-
ing to the two critical conditions and are shown, but for a factor of proportion-
ality, in Figure 17.3(b).

To analyse the post-critical branch corresponding to the first eigenvector,
the following changes of variable are useful:

x{ = e + yi

x2 = e + y2
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where yl and v2 are infinitesimals of a higher order with respect to the dis-
placement £, which may even be finite. The condition of equilibrium is iden-
tified by imposing stationarity of the function W(e+y^ £+y2) and reconsidering
the original expression (17.11):

Af = ~arcsin- (17.19)
€ I

The expression (17.19), for e —> 0, tends to the first eigenvalue k/l in accord-
ance with equation (17.17a). Substituting equation (17.19) into equation
(17.11) and computing the elements of the Hessian

' d2W d2W '

dy\ dy\dyi
[H]= (17.20)

d2W d2W
dy2dy{ dy\

we obtain

d2W * f 7(eY 137 (eY 629 (eY 1 ,1^^^ r n « W + ™W +*°W +-J (17-21a)

det^^r/iY^r^.^^6..,] (17.21b)
/4 [ UJ 15UJ 1260UJ J

These two series expansions continue with the even powers only of £/l and
with all the coefficients positive. It may thus be concluded that, since the
Hessian is positive definite, the post-critical branch is stable analogously to
what has already been seen in the example of Figure 17.1.

The eigenvalue problem just illustrated can be solved rapidly, considering
directly the equations of equilibrium with regard to rotation about the elastic
hinges, in the framework of linearized kinematics (Figure 17.3(a)):

A&1=^a_^zaj (i7.22a)

Nx2 = U&- + ̂ 2J^L I (17.22b)

From equations (17.22) we find

( Ik} kXI(N~T ry*2"0 (17-23a)

iJCl + x2fjV-y) = 0 (17.23b)
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Also in this case the homogeneous system (17.23) possesses other solutions
besides the trivial one, when the determinant of the coefficients becomes zero:

{N-*} *
^ l ' f

 l x =0 (17.24)
* N-™}
/ /

Consequently we again obtain the characteristic equation (17.16).
Note how, for TV = 0, the matrix (17.14) coincides with the stiffness matrix

of the discrete system being considered (Figure 17.3(a)). The columns of the
stiffness matrix are obtained in fact by setting one of the two generalized coor-
dinates equal to unity and equating the other to zero (Figure 17.4). The ele-
ments of each individual column are furnished by the vertical forces which
produce this situation. The vertical forces are, on the other hand, the loads
dual with respect to the generalized coordinates chosen.

The physical meaning of the matrix (17.24) is not instead equally evident. For
N = 0, it in fact represents the stiffness matrix of the system, when the reactive

(a)

(b)

Figure 17.4
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Figure 17.5

moments of the elastic hinges are assumed to be static characteristics. These
moments are not, however, the loads dual to the coordinates x± and x2.

As a second example of a system with two degrees of freedom, let us exam-
ine that of Figure 17.5, which consists of three rigid rods on four supports, of
which the central ones are assumed to be elastically compliant with rigidity k.
The total potential energy may be expressed as follows:

V(jc1>Jc2) = -t(jc1
2+JcJ)-M 3-coslarcsin^- - (17.25)

( • X2 1 ( ' X2 ~ xl 1cos arcsin— -cos arcsin-^-—L

Expanding equation (17.25) into a Taylor series about the origin, we obtain

W(xl9x2)* |*Ui2 +*f)- (17.26)

N , 7 1—-(x^xl-x^

The stationarity of the potential W requires that the two first partial derivatives
be equal to zero:

dW L 2N] N H7T7^
-5r = *M*~~rrT*2 = 0 (17.27a)dxl V 1 ) 1

dW N (. 2N] n-707^
= Xl+X2\k- — =0 (17.27b)

dx2 I { I )

Making the determinant of the coefficient matrix zero,

ffe-^1 £
^ ' J , l . =0 (17.28)

^ (k-™}
I ( I )
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yields the characteristic equation

1 4k
-j-N2—-N + k2=Q (17.29)

and hence the eigenvalues

Ncl=-kl (17.30a)

Nc2 = Id (17.30b)

From the system of equations (17.27) the two corresponding eigenvectors are
found

Xi=-x2 (17.31a)

Xt=x2 (17.31b)

which are the same, in reverse order, as in the case previously considered
(Figure 17.3(b)).

To analyse the post-critical branch corresponding to the first eigenvector,
the following changes of variable are useful:

*i = e + yi

x2 = -e + y2

where y\ and y2 are infinitesimals of a higher order with respect to
the displacement £, which may even be finite. The condition of equilibrium is
identified by imposing stationarity of the function W(e+y{, -£+y2) and recon-
sidering the original expression (17.27):

I I
f eVl 2 f f eVl 2

l'-(f '-4 7N = ki-± =LL i (1132)
f£\

2i2 r fe^2!2

T(I)\T\I)_
The expression (17.32), for e —» 0, tends to the first eigenvalue kl/3 in accord-
ance with equation (17.30a). Substituting equation (17.32) into equation
(17.27) and computing the elements of the Hessian (17.20), we obtain

ff-[r!(f)2-f(f)4-f(f)6--] '7*
**H] = ̂ UiT -sfiT -~f£T -.I d7.33b)[ u; (i) 4 UJ J

These two series expansions continue with the even powers only of e/l and
with all the coefficients negative. It may thus be concluded that, since the
Hessian is not positive definite, the post-critical branch is unstable analo-
gously to what has already been seen in the example of Figure 17.2.
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A more rapid solution to the problem may be obtained by imposing the
equilibrium with regard to rotation of the two end rods with respect to the
intermediate hinges:

Nx{=VAl (17.34a)

Nx2 = VBl (17.34b)

where VA and VB denote the vertical reactions of the end supports (Figure
17.5). The equations of equilibrium with regard to vertical translation and to
rotation about the point A of the entire structure,

VA+VB=k(x{+x2) (17.35a)
hcll + 2kx2l = 3VBl (17.35b)

make it possible to obtain the above reactions as functions of the
displacements

VB=-(xl+2x2) (17.36a)

VA=|(2*!+*2) (17.36b)

When equations (17.36) are substituted into equations (17.34), we find

'(**-*} » ]U [o~
U ,. ^ f.

 3 , - (17.37)
« (IU-N] X2 o3 U )\ L j L .

Making the determinant of the coefficient matrix zero, we obtain once more
the characteristic equation (17.29).

Also in this case, for TV = 0, the matrix (17.28) coincides with the stiffness
matrix of the system. In general, when a discrete system with n degrees of
freedom is considered, as occurs in the case of the Finite Element Method, the
problem of the stability of elastic equilibrium can always be cast in the form

([K]-KKg]){8} = {Q} (17.38)

where [K] designates the elastic stiffness matrix, already defined in Chapter
11, [Kg] designates the geometric stiffness matrix, [ S } denotes the nodal dis-
placement vector, and A indicates a multiplier of the loads, which are assumed
to increase proportionally. The eigenvalues of the problem are obtained via the
condition

det([Al-A[^]) = 0 (17.39)

The minimum eigenvalue A is said to be the critical multiplier of the loads,
and represents the load of incipient collapse.

As an example, it is underlined that, in the case of both the systems just
considered, the geometric stiffness matrix is the same and takes the following
form:
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- 2 _ r

[K8]= \ 2
7 (17.40)

-~7 7-
17.4 Rectilinear beams with distributed elasticity

Let us consider a slender beam of constant cross section, inextensible and not
deformable in shear, though deformable in bending, constrained at one end by
a hinge and at the other by a roller support, loaded by an axial force N and by
an orthogonal distributed load q(z) (Figure 17.6(a)).

The total potential energy in a deformed configuration v(z) is

W = ̂ -( ^-dz-Nw- L(z)v(z)dz (17.41)
2 J0 El J0

Using the differential equation of the elastic line in the form given by equation
(10.47) and noting that the displacement w of the point of application of the
force # is (Figure 17.6(b))

w = |(d/-dz)= f( l-cos<p)d/ (17.42)
Jo Jo

and hence, with the expansion of the cosine into a Taylor series

I f 7 I f '
w« - <p2dz ^ - i/2 dz (17.43)

2 J0 2 J0

the total potential energy can be expressed as follows:

n i I
-(EIv"2-Nv'2)-qv \dz (17.44)
2 J
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Enforcing stationarity of the functional W(v), we obtain

SW= \(EIv"8v" -Nv' 8v' -q5u)dz = Q (17.45)
Jo

where Sv is referred to as a perturbation and indicates a function of infinites-
imal values contained in the class of the solutions u. Integration by parts gives

-[(Elv'" + Nv' )dv ][> + [Elv" Sv' J + (17.46)

\(EIvIV + Nv" -q)8vdz = 0
Jo

Since equation (17.46) must hold for any Sv, the following equations are iden-
tically satisfied:

EIvIV + Nv" -q = Q, (17.47a)

(Elv'" + Nv' )Sv = 0, for z = O,/ (17.47b)

(Elv" )5v' = 0, for z = O,/ (17.47c)

Equation (17.47a) is called the equation of the elastic line with second-
order effects and, if we neglect the term Nv", coincides with equation
(10.49). For the simply supported beam (Figure 17.6) we have the boundary
conditions u(0) = v(l) = 0, which imply Sv = 0 at the ends, and hence that equa-
tion (17.47b) is satisfied. On the other hand, v" is zero at the ends, because the
bending moment is zero in the hinges, and hence also equation (17.47c) is
satisfied in the specific case considered.

An alternative, and more immediate, mode of obtaining equation (17.47a)
is that of considering the equilibrium of a deformed beam element (Figure
17.7). Equilibrium with regard to vertical translation furnishes

^- = -q (17.48)
dz

where V represents the vertical component of the internal reaction, which is
not to be confused in this case with the transverse or shearing component.
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On the other hand, equilibrium with regard to rotation furnishes

V=™_Ndv_ (1?49)

dz dz

from which, via equation (17.48), we find

*M_NM (17.50)
dz dz

Finally, using equation (10.47), we arrive back at equation (17.47a).
Consider the case of a uniformly distributed load q(z) = q (Figure 17.8(a)).

The integral of the equation (17.47a) assumes the form

QZ2

v(z) = Acosaz +#sinaz +Q + D + -— (17.51)
2N

where we have set

a2=— (17.52)
El

The four constants, A, B, C, D are determined by the boundary conditions

v(0) = v (1) = EIv" (0) = Elv" (I) = 0 (17.53)

which yield

A = -D = -f- (17.54a)
a2N
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g = ̂ _i-coso/ (1?54b)

a2N sin al

C = —^- (17.54c)
2N

Equation (17.51) therefore becomes

«(z) = f{4[(l-co8aO^-(l-co8az)]-^}(17^)
AT [a21_ sin a/ J 2 J

It is important to note that, for od —» TT, i.e. for

N^Nc=7C2^j- (17.56)

we have since/ -» 0 and hence a deformed configuration which tends to infinity
(Figure 17.8(b)). This means that the flexural stiffness of a compressed beam
is less than that of the same beam not loaded in compression, if we take into
account the geometrical nonlinearities. This stiffness even becomes zero when
the compressive force equals its critical value Nc. The same occurs, for
instance, in the case where the supported beam is loaded, not only by the com-
pressive force, N, but also by an end moment m (Figure 17.9).

In the case where the distributed load is absent, i.e. q = 0, the equation of
the elastic line with geometrical nonlinearities (17.47a) simplifies as follows:

E/u^+M/ '^O (17.57)

The integral of equation (17.57) is

v(z) = A cos az + B$maz + Cz + D (17.58)
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Enforcing the boundary conditions (17.53), we have

1 0 0 1 ] [ A ] [~0~

cos al sin al I 1 B 0

o o o c = o (17'59)

-a2cosal -a2sinal 0 0 D 0

The system possesses a solution different from the trivial one if and only if the
determinant of the coefficient matrix is zero, and hence when sin al = 0. This
condition coincides with the one that makes the flexural stiffness of the beam
zero (equation (17.55)).

It is possible to arrive at the same solution by imposing that, in each section
of the beam, the destabilizing moment

Mt = Nv (17.60a)

should be equal to the stabilizing moment

M = -EI^—- (17.60b)
dz2

Letting therefore M, = M5, we obtain the differential equation

vf/+a2v=0 (17.61)

the second derivative of which coincides with equation (17.57). The complete
integral of equation (17.61) is

v(z) = A cos az + Bsin az (17.62)

and, since we must have v (0) = v (I) = 0, it follows that

A = 0, sina/ = 0 (17.63)

and the coefficient B can assume any value.
From the second of equations (17.63), we obtain the succession of the

eigenvalues of the problem

an =—, n = natural number (17.64)

and hence from equation (17.52)

Xcn^n2*2^- (17.65)

To each eigenvalue Ncn there corresponds an eigenfunction

vn(z) = Bsinanz (17.66)

which represents the critical mode of deformation for that force. This
deformed configuration consists of a number n of sinusoidal half-waves (Fig-
ure 17.10). Of course, if there are no further constraints on the beam apart
from the two end supports, the critical load is that corresponding to n = 1:

Ncl=n2^ (17.67)
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This force, called Euler's critical load, is the force which determines the buck-
ling of the beam. For N < Ncl the equilibrium is stable, for N = Ncl, the equilib-
rium is neutral, while for N>Ncl the equilibrium is unstable. It should be noted
that Euler's critical load increases in proportion to the rigidity El of the beam,
and decreases in inverse proportion to the square of the length of the beam.

Euler's formula shows, on the other hand, limits of validity in the case of
insufficiently slender beams, for which the inelastic behaviour of the material
can come to interact with the mechanism of buckling.

Let us indicate by

ac=^± (17.68)
A

Euler's critical pressure, which on the basis of equation (17.67) can be cast
in the form

^=*2lr*2££ (17-69)

where p denotes the radius of gyration of the cross section in the direction of
the bending axis. If A designates the slenderness //p, it is possible to express
equation (17.69) in the following form:

7T2F

*c=-^r (17'70)
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Drawing the diagram of equation (17.70) on the plane <JC-A2, we obtain the
so-called Euler's hyperbola (Figure 17.11). This hyperbola envisages critical
loads tending to zero as the slenderness tends to infinity and, conversely,
critical loads tending to infinity as the slenderness tends to zero. The latter
tendency is unlikely since for stubby beams the failure due to yielding

(Tc=0> (17.71)

can precede, even markedly, that due to buckling (equation (17.70)). If there
were no interaction between the two critical phenomena, there would be a
point of discontinuity in the passage from one to the other, corresponding to
the limit slenderness

( E^A l i m = d — (17.72)
\°P)

which proves to be a function of the elastic modulus E and of the yielding
stress Op of the material. For steel, E/aP ~ 103 and hence Alim ~ 102.

In actual fact, the two critical phenomena interact and hence there is a gra-
dual transition from one to the other as the slenderness of the beam varies. The
critical pressure is thus furnished by the dashed curve of Figure 17.11, which
connects the two critical curves corresponding to equations (17.70) and
(17.71), rounding off the cusp that these form at their point of intersection.
This curve joining the two is normally given in tabulated form, putting

a<ap/co (17.73)

where co is a safety factor greater than unity that depends on the material and
on the slenderness of the beam.

So far we have examined only the case of a beam that is constrained by a
hinge and a roller support. Equation (17.57) represents, on the other hand, the
equilibrium equation of a beam, whatever the means of constraint. The
boundary conditions instead vary according to the constraints at the ends.
Since there are four degrees of freedom - free or restrained - at the two ends
(two deflections and two rotations), there are likewise four boundary condi-
tions. These are partly kinematic (or essential) conditions and partly static
(or natural) conditions. Table 17.1 illustrates the different possible cases: a
beam supported at either end, a cantilever beam, a beam built-in at one end
and supported at the other, a beam with one end built-in and the other con-
strained with a transverse double rod, a beam with one end built-in and the
other constrained by an axial double rod, and a beam supported at one end
and constrained at the other by an axial double rod. For each of these cases
the kinematic and static boundary conditions are given, with the reminder
that the second derivative of the deflection v" is proportional to the bending
moment, while the third derivative u'"is proportional to the shearing force. In
the case of the cantilever, the static condition

Elv" (/) + Nv' (/) = 0 or (17.74)

T(l) = Nv'(l) (17.75)
yields the shear at the end as the transverse component of the horizontal force
W (Figure 17.12).
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Kinematic conditions Static conditions Critical load NC1
Free length of
deflection /0

z

I = Beam length

ti

v(0) = 0
v(/) =0

i +>

W ** ~~ jfift

VH(0) = 0

v w ( / ) =0

N

7

* El
/2

/

*^ ~~--^^
"^v. <

 N

v(0) = 0
v'(0) = 0

v"(/) =0

Elv"{/) +Nv* { / } =0
El

4/2

N-*

- - " ̂ "&/

'

v(0) = 0 v(/) =0
V(0) = 0

-0 27C2 El
/2

Table 17.1

For each case Table 17.1 then gives the critical load, which is always
expressible in the form

*.-*£
*0

(17.76)

The dimension /0 is the so-called free length of deflection, which represents
the distance between two successive points of inflection in the critical
deformed configuration.

Finally, notice how the static (or natural) conditions may be deduced also
from the boundary conditions (17.47b, c), once the kinematic (or geometrical)
conditions are applied to the perturbation <5uand to its derivative $v'.
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Kinematic conditions Static conditions Critical load NC
Free length of
deflection /„

v(0) =0

v'(0) = 0

=0

=0
None 112

v(0) =0

v'(0 ) = 0 v"-(/) =0

v(0 ) = 0 V(0) = 0

V(/) =0
-
4/2

21

Table 17.1 (continued)

Figure 17.12
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17.5 Beam systems

In some cases beam systems, owing to their simplicity, can be accommodated
within the elementary schemes of Table 17.1. In particular, portal frames with
rigid cross members can be referred directly to the last four cases, according
to whether or not the windbracing is present, and to whether the feet of the
columns are hinged or built-in (Figure 17.13).

In other cases, the axial redundant reactions, obtainable with the usual
equations of congruence, can cause instability of equilibrium. A classic case is
that of bars hinged or built in at the ends (Figure 17.14), subjected to an
increase in temperature and hence to a prevented dilation. If the bar is only
hinged at the ends, the critical temperature increase is (Figure 17.14(a))

ATc=n2latt (17.77)

while it is quadrupled if the bar is built-in (Figure 17.14(b)).
When the beam system cannot be reduced to the schemes already seen, it is

possible to apply the Finite Element Method, considering the elastic and
geometrical stiffness matrices, already introduced in Section 17.3.

For the zth beam we can assume

w/(z) = ft,-}T0,-} 07.78)
(1x4) (4x1)

where v{ represents the transverse displacement, {77,} denotes the shape func-
tion vector and (5J indicates the nodal displacement vector (two transverse
displacements and two rotations).

The shape functions {T],} must be chosen in such a way that

v/(0) = -8,1, v,(0) = 5,2) v^ = -5,3, v, (/,) = 5W

For beams of constant cross section, the shape functions {77,} are cubic, and
are obtained by imposing, in turn, one of the nodal displacements §/,- = 1, and
leaving the others zero (Figure 17.15).

The total potential energy of the ith beam in a generic deformed
configuration t>, (z) is equal to

W(vt) = J [^(W2 - N r f 2 )-qn 1 dz (17.79)

From equation (17.78) we have

v/(z) = tt;}T{$-} (17.80a)

wru)={»nT0.-} (ii.wb)
and hence

<2={5,}T{/7,'m'}T{5,.} (17.81a)

vr2={8,}Tw}{rirF(8i} (i7.8ib)
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(a)

Figure 17.14
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(b)

Figure 17.15

(17.82)
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%«>--'[f-'(f)'*(f)']

v«..-,(if.(±]r

<.<«--/[m'-H-n

%».»(iy-i(i)r

Substituting equations (17.81) into equation (17.79), we obtain

W(Vi) = ±{6^ f kwflWTdz {<?,}-
2 I/*0

i r r '< i-̂ ,.{5,.}T M}{77;)T<k {$}-
2 [Jo J

I f^nj^k}
I Jo I
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Equation (17.82) may be cast in the form

W(Vi) = ±{5,.}T([K,.] - #,[*„]){«,.} - {/v}T{<5,} (17.83)

which, compared against equation (11.61), highlights the elastic stiffness
matrix

[K,]= fkwnmrFdz (l?.84a)
Jo

and the geometrical stiffness matrix of the tth beam

[Kgi]=l'{j1'i}{rj'i}'[dz (17 Mb)
Jo

as well as the equivalent nodal force vector

(•'•
{/?}=Uto,-}dz (17-84c>

Jo

Computing with the shape functions given in Figure 17.15, we obtain

" £ _6_ 2_ _6_ ~

', If /, if

_6_ 12 _6_ _12
I2 I3 I2 I3

(Ki] = EIi ' (17.85)
2 _6_ ± 6_

li If I, If

6 _12 A li
L/ , 2 "/,3 /,2 /f J

which corresponds to equation (14.24), and in addition

"A^ __!_,. __L /? J_,;
15 ' 10 ' 30 ' 10 '

-—/ - -—/ --
,K , 1 10' 5 10' 5[Ag(-] = — (17.86)

-^ --/, ^/f -1/,30 ' 10 l 15 ' 10 '

±; _i ±/ ^
L 10 f 5 10 ' 5 J

Basically then, the presence of the axial force Ni decreases the stiffness of the
I'th element.

As regards the subsequent operations of the Finite Element Method, the
procedure is exactly as outlined in Chapter 11, with the rotation and the
expansion of the local stiffness matrices. Finally the assembly operation
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provides the global stiffness matrix, so that the eigenvalue problem for seek-
ing the critical loads is formulated as follows:

det([*]-A[^]) = 0 (17.87)

where A represents the multiplier of the external loads.
In actual fact, the axial forces in the individual beams do not increase in

proportion to the loads. It may be assumed, on the other hand, in first approx-
imation, that the axial forces are maintained proportional to the values that are
obtained from a geometrically linear analysis

ty(A) = Aty(A = l) (17.88)

17.6 Curvilinear beams: arches and rings

Let us consider a beam with curvilinear axis which is inextensible and not
deformable in shear. The kinematic equations (10.27), on the hypothesis that
Y= £=0, yield

<p = -^+™ (17.89a)
ds r

^ = -» (17.89b)
ds r

X = ̂  07.890
ds

Substituting equation (17.89a) into equation (17.89c), we obtain

* = -—+}(-} <17-90>ds2 ds\rj

and hence, neglecting the variation of intrinsic curvature and applying equa-
tion (17.89b),

* = -TT-T <17'91>ds2 r2

Finally, recalling the relation which links variation of curvature % and bending
moment M, we derive the equation of the elastic line for curvilinear beams
(Boussinesq gives an analogous treatment)

^- + ̂ -^ (17.92)
ds2 r2 El

Consider a cylindrical shell of radius R, subjected to an external pressure q,
in a deformed configuration, symmetrical with respect to two orthogonal
diameters (Figure 17.16). If the static characteristics in the point A' are NA* =
-qA'O and MA>, the bending moment in the generic point B' is equal to

Mff = MA, + NA,A7C + ~qAl}''2 (17.93)
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MB,=MA>-q (A'O • A'C - - A'B'2 j (17.94)

Between the sides of the triangle OA'B' there holds the relation

Yd2 = A7*?2 + AW2 - 2 A^O A7]?7 cos co (17.95)

whence

A^O A7C = -(A7O2+A7B;2-5;O2) (17.96)
2 \ /

Having substituted equation (17.96) into equation (17.94), we obtain

My =MA>--q fro2 - WO2} (17.97)

Since we have

A7O = /?+t;0 (17.98a)

Wd = R+v (17.98b)

equation (17.97), once infinitesimals of a higher order have been neglected,
becomes

MB,=MA.+qR(v-vQ) (17.99)

Taking into account equation (17.99) and that ds = R d$, equation (17.92) is
transformed as follows:

i&+v =~^MA'+qR(v ~Vo)} (17'100)
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or

•^4+vf —+ 1 | = — (qRvQ -MA.) (17.101)
dtf 2 ( El ) Elw ° A

Setting

a2=-^- + l (17.102)
El

the eigenvalue equation becomes

jj^ + aiv=jf(qRv0-MA,) (17.103)

The integral of equation (17.103) is

v(#) = A sin atf + £cos a$ + ̂  O~MA'R (17.104)
^/?3 + £"/

Enforcing the two conditions of symmetry,

— = oAcosa^-a^sina^ = 0, for t> = 0, — (17.105)

we obtain the two equations

aA = Q (17.106a)

ct^sin—= 0 (17.106b)

which give

A = 0 (17.107a)

a—-nn, n = natural number (17.107b)

Equation (17.107b) yields the succession of eigenvalues

an =2n, n = natural number (17.108)

For n = 1, from equation (17.102) we obtain the first critical load

Vc = ™ (17.109)

and the deformed configuration

vW=M"Rl+v°EIcos2»+^-M*'R2 (17.110)
q&+El qR3+EI

On the other hand, from the condition of inextensibility (17.89b) we obtain

^-H^/i^ <,R\-MA,R>
qR3+EI 2 qR3+EI (17.1
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n = 2

For $ = 0, nil, the axial displacement w must vanish by symmetry, and hence

MA,=qRvQ (17.112)

Substituting equation (17.112) into equation (17.110), we obtain finally the
following deformed configuration:

u(tf)=u0 cos2tf (17.113)

which represents an ovalization of the tube (Figure 17.17(a)). It is possible
then to demonstrate that the second configuration of neutral equilibrium con-
sists of the four-lobed buckling of Figure 17.17(b). In general, the nth
configuration of neutral equilibrium will present 2n lobes.

17.7 Lateral torsional buckling

Consider a beam of thin rectangular cross section, constrained at the ends so that
rotation about the longitudinal axis Z is prevented. Let this beam be subjected to
uniform bending by means of the application at the ends of two moments m
contained in the plane YZ of greater flexural rigidity (Figure 17.18(a)).

Consider a deformed configuration of the beam, with deflection thereof in
the XZ plane of smaller flexural rigidity, and simultaneous torsion about the
axis Z (Figure 17.18(b)). The deflection w(z) and the torsional rotation <pz(z)
generate components of the external moment m in the axial direction Z (Figure
17.18(c)) and in the transverse direction Y (Figure 17.18(d)), respectively:

M,. =m— (17.114a)

Myi=-m(pz (17.114b)

Both the loads Mzi and Myi are destabilizing, because they tend to increase the
torsional rotation <pz and the flexural deflection w, respectively. On the other
hand, as for Euler's rod, the corresponding stabilizing loads are present

Mzs=GIt^ (17.115a)

Mys=EIy^ (17.115b)

(a) (b)

Figure 17.17
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The equilibrium is neutral when equations (17.114) are respectively equal
to equations (17.115)

GIt^ = m— (17.116a)
dz dz

d2u
EIv — = -m<p. (17.116b)

dz
Differentiating equation (17.116a) with respect to z and substituting the result
into equation (17.116b), we obtain

^-^ + —-—<p, =0 (17.117)
dz2 £G/V/,

If we put

a2=—-— (17.118)
EGIvIt
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the equation

(p"+a2(p.=0 (17.119)

assumes the same form as equation (17.61), corresponding to the problem of
the axially compressed slender rod. Usually, the complete integral of equation
(17.119),

(p,(z) = A cos az + B sin az (17.120)

satisfies the boundary conditions

p_(0) = p-(/) = 0 (17.121)

for A = 0 and sin al = 0. The eigenvalues of the problem are thus

an = n: —, n = natural number (17.122)

and the first, a\ = nil, yields the critical load

m(.=yV'£G/r/, (17.123)

Equation (17.123) is commonly known as Prandtl's formula.
The phenomenon of lateral torsional buckling is especially relevant to

deep beams, while it is virtually present for beams of compact cross section,
for which the critical moment, expressed by equation (17.123), is so high as
to exceed the plastic moment of the cross section (see Chapter 18). It is possi-
ble to note, on the other hand, how beams of compact cross section can also
undergo lateral torsional buckling, in the case where they are particularly
slender (/ —> «>).

17.8 Plates subjected to compression

On the basis of relations (10.157) and (10.158), the strain energy per unit sur-
face of a deflected plate is

*-^M^+M^+2M^} (17-124)
2 ^ dx- dy- oxoy)

Using relations (10.180), we obtain

«4Jfe]\fe)\2v&Yf4 <„,*>
2 ^ dx- ) \dy~ ) I dx- A, dy- )

w-4i£\\dxoy )

If, in addition to being considered undeformable in shear, the plate is con-
sidered also as being inextensible and subjected to a membrane regime, Wv,
Nr Nxr the potential energy of these loads in a deflected configuration is

^4kt^4ft+24flf]l <m26)
2 \ax J ' \ oy ) ' \ ax \ ay )
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As regards the first two terms of equation (17.126), these contributions are
analogous to those calculated for the rectilinear beam (see equation (17.44)),
while the third term represents the work of the shearing stresses acting
through the shearing strains due to the deflection w, and can be justified as fol-
lows. Let us consider two infinitesimal segments OA and OB in the directions
of the two coordinate axes X and Y (Figure 17.19). Because of the deflection
w, these segments are transformed into O'A' and O'B''. The difference between
the angle A'O'B' and n!2 represents the shearing strain sought. For the purpose
of determining this difference, let us consider the right angle B'fO'Af. Rotating
this angle about the side O'A' by the amount dwldy, the plane B"O'A' comes to
coincide with the plane B'O'A', the point B" assuming the position C. The dis-
placement B"C is equal to (dwldy) d>' and is inclined with respect to the verti-
cal B"B' by the angle dw/dx. Consequently the segment CEr is equal to (dwl
dx) (dwldy}&y, and the angle CO'B', which represents the shearing strain due
to the deflection w, is equal to (dw/dx) (dwldy).

The total potential energy of the deflected plate is therefore equal to the sum
of the integrals of the strain energy expressed by equation (17.125) and of the
potential energy of the membrane forces expressed by equation (17.126)

W- la f f f e + f ^ f - (17.127)
2 JA [( dx2 d>>2 )

™ JY^wY^vo r^wfiL .2(1"v) 3^ITTH AoH Kd-v +
^ dx2 j{ dy- ) \dxdy )

1 f L f^Y », f*"Y -,«(*"Y*"YL A-\ W,. — + AU^H + 2 ^U— l ^ r drdv
2JA[ \dx) \dy) "•(dx\dy)\ '

The variational equation of equilibrium can be obtained by imposing the
stationarity of W, in a way similar to that already seen for the rectilinear beam:

Dfe + 2*£ + £) (17,28)
^ dx4 dx-dy- dy^ )

A T d2w ,7 d2w ^ ^ T d2w
= ̂ ^r + A^vl-T + 2^,.-—

ax~ oy- axay

Note that equation (17.128) is formally analogous to equation (17.57).
In the case of a plane rectangular plate of sides a, b, supported on the

four sides and compressed by a force Af per unit length of the edge, acting
orthogonally to the side b, equation (17.128) assumes the following form:

fe^^)..^) (,,129)^ofr4 dxzdyz oy ) D\dx2 j

The constraints impose w = 0 on the four sides, and the annihilation of the
bending moment on the edge:
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w = 0' rTT l + v I ^TT r°< for j = 0,Z? (17.130a)
^ <?y2 J V <&2 J

w = 0, I ̂ H + v |^r!r 1 = 0, forjc = 0,fl (17.130b)
\dx2 ) (dy2 J

Each function

x y
w(x, y) = Anmsin nn — sin mn — (17.131)

a b
satisfies the preceding boundary conditions for n, m = natural numbers. Sub-
stituting equation (17.131) into equation (17.129) and dividing by the com-
mon factor Anm sin (njzxla) sin (m nylb), we obtain

r-r+2r-vr-f+r-r^«2
 (17.132)

{a ) ( a j ( b ) ( b j D(a J

and hence

"c"=*204(4+?ff (17-133>n2 {a2 b2 j

The smallest value of N"m is to be considered the critical load for instability
of the elastic equilibrium of the plate. This value is obtained for m = 1, since m
appears only in the numerator in equation (17.133)

N?i=x2Dfb+}_a\2
 (1?_134)

b- \ a n b)

and corresponds to a deformed configuration with only one half-wave along
side b and n half-waves along side a.
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Figure 17.20 presents the diagram of the critical load non-dimensionalized as
a function of the ratio a/b between the sides of the rectangle. In actual fact, a
succession of curves is obtained as n varies, but, for each value a/b, we have a
certain value of n for which N%1 is a minimum. For a/b < V2, the minimum is
obtained for n = 1. The critical deformed configuration thus presents a half-wave
in each direction (Figure 17.21(a)). For V2 < a/b < V6, we have n = 2, and the
critical deformed configuration presents two half-waves in the X direction and
one half-wave in the 7 direction (Figure 17.21(b)). For a/b > V<5, we have
A^1 - 47?D/b2 and n is such as to give rise to half-waves of comparable ampli-
tude along X and along Y (Figure 17.21(c)).

The behaviour of the plate previously analysed is analogous to that of a
beam on an elastic foundation. In fact it may be assimilated to that of a system
of longitudinal beams constrained to a system of transverse beams. This pre-
vents the value of N£l from dropping below the value 4 T^D/b2, whatever the
value of a may be.

The total potential energy of a beam on an elastic foundation is (Figure
17.22).

1 Cl

W = - \(EIv"2 -Nv'2 +Kv2)dz (17.135)
2 Jo

where K is the elastic modulus of the foundation.
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Figure 17.23

In the framework of the Ritz-Galerkin method, let us assume for the deflec-
tion v the following series expansion:

v (z) = V Ansin nn- (17.136)

n

Substituting equation (17.136) into equation (17.135) and recalling the
orthonormality of the trigonometric functions

f /

I sinn;r- sin mx-dz (17.137)
Jo / /

f ; 7
= I cosnn-cosm7t-dz = — Snm

J o I 1 2

where 8nm is the Kronecker symbol, we obtain

W4I4 -̂*1?H (17-138)
n

Equation (17.138) is a diagonal quadratic form in the coefficients Aw, which
ceases to be positive definite as soon as N is such as to cause one of the terms
in round brackets to vanish:

NC^EI^+K-^ (n.139)

Figure 17.23 presents the diagram of the critical load as a function of the
length / of the beam. As in the case of the plate, we have a succession of
curves according to the variation in n, but, for each value of /, we have a cer-
tain value of n for which Ncn is a minimum. The above curves present local
minima for values of / equal to

j_

l = n^(—}2 (17.140)
\ K J



INSTABILITY OF ELASTIC EQUILIBRIUM

Ncn=2(KEI)2 (17.141)

Figure 17.24

17.9 Flat arches

Let us consider the flat arch of Figure 17.24, consisting of two axially deform-
able rods of stiffness K, hinged together both in the crown, as well as in the
foundation. Let the distance between the two springers of the arch be 2/, and the
angle that the two rods AC and BC form initially with the horizontal be a. Under
the action of the force F, let this angle diminish by the infinitesimal quantity (p.

If only symmetrical deformations are considered, the system will have only
one degree of freedom, and the strain energy of the arch will then be expres-
sible as follows:

<D(<p) = K I — ± -1 (17.142)
[cos a cos(a-<jp)J

In the hypothesis of a flat arch, we can set

cosa^l-— (17.143a)
2

cos(a-<p)=*l--(a-<p)2 (17.143b)

and hence, with a further application of the Taylor series expansion,

—!— =*! + — (17.144a)
cosa 2

=*l + -(a-p)2 (17.144b)
cos(a - (p) 2

Substituting equations (17.144) into equation (17.142), we obtain

0(<p) = -Kl2<p2(2a - <p)2 (17.145)
4

The deflection caused by the load F is equal, on the other hand, to

7)(<p) = / tan a -1 tan(a - q>) (17.146)

whereby, to a first approximation
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ri(<p)*l<p (11.147)

Finally, the total potential energy of the system is found from equations
(17.145) and (17.147),

W(q» = 0(<p) -F7j(<p) (17.148)

whereby it is equal to

W((p) = -Kl2<p2(2a-(p)2 - Flcp (17.149)
4

The conditions of equilibrium are all those and only those for which the
function (17.149) is stationary

W'((p) = Kl2<p(2a2+(p2-3a(p)-Fl = Q (17.150)

from which we obtain

F = Klq>((p-a)((p-2a) (17.151)

Relation (17.151) is displayed in Figure 17.25. There thus exist three positions
of equilibrium with F = 0, when <p = 0, a, 2 a. Whilst the first and the last rep-
resent conditions of stable equilibrium with the connecting rods unloaded, the
intermediate one is the condition of unstable equilibrium represented by the
configuration with the connecting rods aligned and compressed. A rigorous
study of the stability is conducted by examining the second derivative of the
total potential energy

W'X<p) = £/2(3<p2-6a<p + 2a2) (17.152)

which is greater than zero for

<p<a 1-— 1 or <p>a 1 + — (17.153)
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Figure 17.26

The function (17.151) is hence stationary for <p = a (I - jV3), where
it presents a maximum, and for (p = a(l + j V3), where it presents a minimum
(Figure 17.25). Since the third derivative of the total potential energy

W'"(<p) = 6Kl2(<p - a) (17.154)

is different from zero for (p ̂ a, it may be concluded that both the maximum
and the minimum of the curve F((p) represent states of unstable equilibrium.

Therefore, if the flat arch ACB of Figure 17.24 is loaded, the portion OM of
the curve F(<p) of Figure 17.25 is traversed in a stable manner until the station-
ary point M is reached. If the load F continues to be increased, there is an
abrupt jump on the stable branch PQ, which, with the force F being equal,
presents an angle <p, which is much greater, and a configuration of the system
which is inverted with respect to the initial one (Figure 17.26).

If, instead, we wish to go along the virtual branch MNP, it is necessary to
control the phenomenon by imposing an angle <p, which presents a continuous
growth. In this case the force F can be interpreted as a constraint reaction,
which between M and N decreases, becoming even negative beyond the point
O'. This means that, beyond the aligned connecting rod configuration, a force
is necessary in an upward direction so as to proceed along the curve F(<p) in a
controlled manner.

The energy recovered by the system in the jump MP (Figure 17.25) is equal
to the area MO'NO"P multiplied by the length /. This energy will thus be
transformed into vibrational kinetic energy of the system about the condition
represented by the point P. The instability phenomenon just described, and in
particular the jump MP at constant load, is termed snap-through, and is thus
analogous to the phenomenon of snap-back described in Section 8.11.

Also in the more complex cases of flat arches and shells, which are also
flexurally compliant, the phenomenon of snap-through can develop, so giving
rise to a sudden change of configuration. Figure 17.27 shows the load vs.
deflection curves corresponding to spherical thin shells built in at the edge,
loaded by a uniform pressure q. The dashed curves correspond to a linear anal-
ysis, while the continuous line curves correspond to a nonlinear analysis. On
the linear response curves the instability loads are also marked, correspond-
ing, respectively, to a complete spherical shell, of equal radius and thickness,
and to the same built-in spherical shell. The parameter A represents the
slenderness of the shell

A = 2[3(1 - v2)]1 /4(H/fc)1 /2 (17.155)
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where H is the rise of the shell with respect to the edge plane, and h is the
thickness.

For A ̂  3.5, the behaviour of the shell does not present the phenomenon of
snap-through. For A = 0, the load vs. deflection curve presents a stiffening due
to the intervention of the tensile force as the plate is deflected. For 3.5 ̂  A ̂
7, in the curves of Figure 17.27 the phenomenon of snap-through emerges.
Finally, for A ̂  7, both the phenomenon of snap-back and that of snap-
through present themselves. Note that, in this latter interval, the behaviour of
the shell prior to instability tends to be increasingly linear as A increases.

Similar snap-back and snap-through phenomena occur during the phases of
cracking of high-strength concrete reinforced beams (Figure 17.28). Whereas
snap-back is due basically to brittle fracturing of the concrete, snap-through is
due to pulling-out, yielding and hardening of the steel reinforcing bars.

Finally, it is worthwhile recalling how the phenomena of snap-back and
snap-through are theoretically predicted both for complete spherical shells
subjected to external pressure (Figure 17.29(a)) and for cylindrical shells sub-
jected to axial compression (Figure 17.29(b)). On the other hand, it is difficult
to bring out such phenomena experimentally, in view of the considerable sen-
sitivity to initial imperfections displayed by the above-mentioned geometries.
With the increase in the initial inherent imperfections, the structural response
tends to become less unstable, the phenomenon of snap-back disappearing.
Figure 17.30 represents the load vs. axial contraction response in the case of
an axially loaded cylindrical shell, as the eccentricity of the cross section var-
ies. For particularly high eccentricities, also the phenomenon of snap-through
disappears.
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Figure 17.30
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18 Theory of plasticity

18.1 Introduction

On the basis of the hypotheses of the linear elastic behaviour of the material
and of small displacements, the problem of the elastic solid may be resolved,
as we have found in Chapters 8, 9 and 10, by means of Lame's equation^
where the operator [^]is always linear. If, that is, {J^is the vector of the
external forces and {77} is the corresponding displacement vector, obtained by
resolving equation (8.52(a)), should the loads be multiplied by a constant c,
also the displacements, and hence the deformation and the static characteris-
tics will be multiplied by the same constant

[^]{crj} = -{c^ (ig.l)

Furthermore, if {jT), {>~} are two different vectors of the external forces
and {Hah {f? j>} tne corresponding displacement fields, in the case of superpo-
sition of the forces the Principle of Superposition will hold good also for
displacements:

U1tofl+%} = -{^-+J|-} (18.2)

A first case of nonlinearity was examined in the previous chapter, where it
was shown how the external loads do not always increase proportionally to the
induced displacements (Figure 17.1(b), 17.2(b), 17.8(b), 17.9(b)) in the case
where such displacements cannot be considered small. A second case of non-
linearity will be examined in this chapter, where the ductile behaviour of the
material will be considered, as already introduced in Section 8.11. The first is
the case of geometrical nonlinearity, while the second is the case of consti-
tutive nonlinearity of the material.

A first simple example of nonlinear structural behaviour may be offered by
the system of parallel connecting rods of Figure 18.1 (a), if we assume that
they follow a law of elastic-perfectly plastic behaviour (Figure 18.1(b)). This
case has already been considered in the elastic regime in Section 14.2, where

'//s////////// 0.

1^^^^^^"]A A
/ 2 /
'' |° 0p-7 '

f^^^^ 0V_\ „T *
(a) (b)

Figure 18.1
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the reactions of the individual connecting rods have been determined, once the
behaviour of the cross member is assumed to be rigid. Applying the relations
(14.3) and (14.4) and considering each of the two lateral connecting rods as
having a cross section equal to half of the cross section of the central connect-
ing rod, the two reactions in the elastic field are obtained

A^

Xj = F A
 l] , = F—^— (18.3a)7 A + A / /+/ / /

'/ '//
A/2

X =F_(//__ = ̂ _L (183b)

A + A 2 /,+/,/
'/ ///

If If < lu, the higher tension is developed in the central connecting rod;
therefore, if the external force F is increased, this element is the one which
first undergoes plastic deformation. Yielding of the central connecting rod
occurs for

Fj =aPA ( l + — I (18.4a)
V hi)

8}=^- (18.4b)

where the subscript 1 denotes the characteristics of first yielding (force
applied to the cross member and vertical displacement thereof).

Yielding of the lateral connecting rods, on the other hand, occurs for

F 2 =2c7 F A (18.5a)

S2=2LllL (18>5b)

where the subscript 2 indicates the characteristics of second and ultimate
yielding. For S > 52, in fact, the reaction of the connecting rods cannot
increase and remains stationary at the value of ultimate plasticity F2.

Hence, recapitulating, we obtain a global elastic behaviour for 0 < 5«51

F = EA|- + — 5 (18.6a)
VI hi)

a globally strain-hardening behaviour for Sl <8< S2

FA
F = oPA + — d (18.6b)

hi

and a perfectly plastic behaviour (plastic flow) for <5> <52

F = 20pA (18.6c)

Figure 18.2 presents in non-dimensional form the force-displacement
curves for different values of the ratio // ////. For // —» 0, the force is sustained
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°P>n

Figure 18.2

in the elastic phase entirely by the central connecting rod, which then yields for F
= 0PA. When /7 = /7/, on the other hand, the hardening phase is not present because
all three connecting rods yield at the same time. It may be noted that the straight
line to which the hardening portion of the diagram of Figure 18.2 belongs does not
depend on the ratio ///?//. This is due to the fact that, once the central rod has
yielded, its length // no longer enters into the analysis.

Although the example just considered is particularly simple, since it con-
tains only three elements subjected to axial force, it reflects conceptually the
mechanical behaviour of the more complex beam systems, where the preva-
lent characteristic is bending moment. In such cases the local plastic flow will
be represented by a localized rotation and, as the number of such rotations
increases, the degree of redundancy of the frame will diminish simulta-
neously.

In the sequel various examples of incremental plastic analysis of beam
systems will be shown. In these will be determined, step by step and as the
external load increases, the position of the cross sections in which the local-
ized plastic rotation occurs. To this type of incremental analysis of the process
of plastic deformation there corresponds the so-called plastic limit analysis,
which, on the basis of two specific theorems, directly identifies an interval
(one that is generally restricted) within which the ultimate load of global plas-
tic flow must necessarily fall. This load is called the load of plastic collapse.
Once this load is reached, the structure is reduced to a mechanism, i.e. it is
hypostatic, even though in equilibrium on account of the particular load con-
dition, and it is not able to sustain further increments of load. On the basis of
the aforementioned theorems it is possible to identify also the mechanism of
collapse, that is, the positions of the centres of plastic relative rotation.

More particularly, beam systems loaded by concentrated forces will be
distinguished from those loaded by distributed forces. In the latter, in fact,
identification of the mechanism of collapse is generally more complex. The
closing sections of this chapter will deal briefly with problems of non-
proportional loading and problems of repeated loading (shake-down), as well
as with the problem of plastic collapse of deflected plates.
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18.2 Elastic-plastic flexure

Let us consider the rectangular cross section, of base b and depth h (Figure 18.3),
of a beam made of elastic-perfectly plastic material, with equal elastic modulus
E and yield stress op both in tension and in compression (Figure 18.1(b)).

Let us assume that as the applied bending moment increases, the cross sec-
tion of the beam remains plane, even though part of the beam undergoes plas-
tic deformation. As has already been noted in Section 9.4, this is equivalent to
considering linear variations of the axial dilation ez through the depth of the
beam (Figure 18.3(a)). The axial stress <J,, on the other hand, will not be able
to exceed its limit value op, and, once the moment of first plastic deformation
Me has been overstepped, will hence present a linear variation in the central
part of the cross section and two plateaus in the outermost parts (Figures
18.3(b), (c)). The diagrams of Figure 18.3 present the succession of the pat-
terns that both £~ and <JZ follow through the depth, rendering the scales uni-
form with the values at yielding ep and o>, respectively. Therefore it clearly
emerges from these diagrams that the maximum dilation £max, which is
reached at the outermost edges of the beam, exceeds the dilation ep, which is
the one that corresponds to yielding. When £max —» °°, and hence when plastic
flow has occurred, the variation of the stress is bi-rectangular, while the exten-
sion 2d of the elastic core of the beam vanishes (Figure 18.3(d)).

The moment of first plastic deformation (which is the maximum moment
in the elastic regime) is readily obtainable via relation (9.23),

Me=aP-^ = aPb¥- (18.7a)

while the moment of ultimate plastic deformation or plastic moment may
be evaluated using the diagram of Figure 18.3 (d),

MP = Opib-}- = Gpb — (18.7b)P P( 2)2 P 4

this being equal to that of a couple op(bh!2} with moment arm h!2. The plastic
moment MP is therefore equal to 4 Me> a fact that enables further exploitation

Figure 18.3
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of the load-bearing capacity of metal materials, with loads substantially higher
than those that meet the criterion of admissible stresses.

On the basis of equations (9.23) and (9.41), it is possible to put the axial
dilations £. in relation with the curvature #v of the beam element straddling
the section under consideration,

£:=jj-y = x>y d8.8)

from which we obtain (Figure 18.3)

~ =Jimax_ = f> (189)

** h/2 d
Equation (18.9) warns us that, for £max —» °°, or for d -» 0, the beam curvature
tends to infinity, giving rise to a localized rotation in the cross section under
examination.

We now intend to determine the moment-curvature law, Mv-#v, correspond-
ing to the plastic evolution of the cross section (Figure 18.3). At each step of
this evolution the applied moment may be evaluated on the basis of the known
distribution of the forces:

rY v^ r" /2
AfT = 2 o> - U'fedy + 2 Gpyb&y (18.10)

Jo V d) Jd

Substituting the half-depth d of the elastic zone with the expression deriving
from equation (18.9), we have

"y f f / » / / . v f / ? / 2

Mv = 2o> b ^L >>2d.y + ydy (18.11)
\_£p Jo ^tpiXx

from which, evaluating the integrals, we obtain

Mx=aPb^ 1-^ P/ ̂  (18.12)

Via equation (18.7a) the foregoing function can be cast in a particularly
expressive form,

^L = l-lfl,l2 (,8.13)
Me 2 2 ( X x )

where %e denotes the beam curvature when first plastic deformation occurs.
The diagram of Figure 18.4 thus represents a linear law for %x < %e, or Mx <
Me, and the hyperbolic law of equation (18.13) for %x > %e, or Mx > Me. This
strain-hardening law is replaced in practice by the elastic-perfectly plastic law
represented by the dashed line in the same figure.

When the cross section of the beam presents double symmetry (Figure
18.5), while at the same time not being rectangular, the foregoing reasoning to
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a large extent still applies. In particular, relation (18.11) must present the
width b(y), which in general is a function of y, under the integral sign

r t£r/x* fh/2

Mx = 2aP ^i y2b(y)dy + yb(y)dy (18.14)
_£p Jo Jepix.*

The plastic moment is therefore

Wr/2

MP = lim Af, = 2cJF >'fc(y)dy (18.15)
^-*°° Jo

where the integral represents the half-section static moment S*/2 with respect
to the X axis. The ratio

M 1SA/2

^W\
("/ 2)

is, as has been stated, equal to 1.5 in the case of a rectangular section, while, in
the limit case of a section consisting of two concentrated areas set at a distance
h apart, it is equal to unity. This means that in such a case the moments of first
and ultimate plastic deformation coincide. In the technically highly recurrent
case of an I-section, there is no great departure from the limit case just consid-
ered, and the ratio given by equation (18.16) is approximately equal to 1.15
(Figure 18.4). The I-sections are thus the most convenient in the elastic
regime, while, in the plastic regime, they reveal poor reserves of flexural bear-
ing capacity.

Consider a cross section with a single axis of symmetry, which coincides
with the axis of flexure (Figure 18.6). The neutral axis remains orthogonal to
the axis of symmetry, even though its position may vary during the entire
loading process. In the condition of full plastic deformation (Figure 18.6(d)),
we have

Op A, =(TFA2 (18.17)

(18.16
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Figure 18.6

578

where Al = A2 - A/2 are the areas of the portions of cross section which
remain, respectively, above and below the plastic neutral axis np. Conse-
quently, the plastic moment is

MP=aP — ( d { + d 2 ) (18.18)

where d\ and d2 are the distances of the plastic neutral axis np from the cen-
troids of the two half-sections. When Me < M < MP, the neutral axis is
between ne and np, as is shown in Figures 18.6(b), (c). Whereas, therefore, the
elastic neutral axis renders the static moments of the two portions into which it
divides the section equal in absolute value, the plastic neutral axis makes the
areas equal.

As regards the other static characteristics, the twisting moment applied to a
circular section presents a behaviour altogether similar to that described previ-
ously for bending moment. The twisting moment of first plastic deformation,
on the basis of equation (9.85), is

Mze=-^-rP=-R3TP (18.19a)
R 2

where, according to Tresca's criterion, rp - 1 o>. The plastic twisting
moment is, on the other hand, equal to the producf of the yielding stress o> by
the polar static moment of the cross section

MzP= — R3rP (18.19b)

The ratio M.P/M-e is hence 4/3.
The case of centred axial force is trivial and has already been dealt with in

advance in Section 18.1. Clearly the plastic axial force is

NP=aPA (18,20)

whilst the case of shearing force should be considered together with that of
bending, although, generally speaking, in the framework of plastic calculation
this characteristic has a negligible influence.

As regards the combined loading conditions, the case of eccentric axial
force is noteworthy. For a rectangular cross section loaded by an axial force N,
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applied on the Y axis with eccentricity e (Figure 18.7), four different phases
succeed one another as TV increases. These phases are relative to the conditions
represented in Figure 18.7:

(a) elastic;
(b) elastic-plastic, with yielding only at one edge;
(c) elastic-plastic, with yielding at both edges;
(d) full plasticity.

The diagram of Figure 18.7(d) can be split into two as shown in Figure 18.8,
part (a) representing the resultant force N,

N = apb(h-2h') (18.21a)

and part (b) representing the moment M = Ne,

M = apbh'(h-h') (18.21b)

On the basis of the plastic loadings

Np=epbh (18.22a)
i ••>

MP=aPb— (18.22b)
4

q
P

H l* P 'r
h

°P I Jh' |

°p

(a) (b)

Figure 18.8
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it is possible to define the following non-dimensional ratios:

f •!-<£) d«»NP V / z )

-*u4f>qi-*:i (i8.23b)
MP (hA h)

such that

-^- = l-f-T 08.24)MP (NP)
The plastic limit in the M-N plane is given by the closed curve of Figure

18.9, which is also called the curve of interaction. The couples M-N, which
are internal to the domain, represent elastic-plastic conditions, whilst the
couples that are on the boundary represent ultimate conditions of full plastic
deformation (plastic flow of the cross section). These, as shall be seen in the
sequel, occur with a localized rotation of the beam to which a localized axial
dilation is added.

18.3 Incremental plastic analysis of beam systems

Let us consider a cantilever beam of length /, loaded by an orthogonal force F
at the free end (Figure 18.10(a)). As the force increases, the plastic collapse of
the cantilever beam is reached as soon as the fixed-end moment equals the
plastic moment,

FPl = MP (18.25)

and hence for FP = MP /1. At that point a localized rotation is produced in the
fixed-end cross section, whilst the fixed-end moment cannot continue to grow
and remains stationary at its limit value MP. This situation is usually repre-
sented by inserting a hinge instead of the built-in constraint and by applying a
moment MP in the neighbourhood of the hinge (Figure 18.10(b)). The hinge
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Figure 18.10

allows localized rotations, while the moment MP represents the rotational
reaction exerted by the fixed-end cross section. The system has thus become
hypostatic but is in equilibrium on account of the particular loading condition.
It should be noted that we have

FP = ~Fe (18.26)

where Fe denotes the maximum force applicable in the framework of the crite-
rion of admissible stresses. The ratio 3/2 thus represents a sort of safety factor
in the framework of the criterion of admissible stresses in regard to the ulti-
mate plastic condition.

As a second elementary case, let us take that of a simply supported beam with
a force applied in the centre (Figure 18.11 (a)). As the force increases, plastic col-
lapse is reached as soon as the moment in the centre equals the plastic moment,

-¥Pl^MP (18.27)

(a)

(b)

(c)

Mp

Figure 18.11
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from which we obtain the collapse load FP = 4MP / /. At that point a plastic
hinge is created in the centre, i.e. a hinge having a constant rotational reaction
equal to Mp. Note that the moments M/>, acting in the scheme of Figure
18.1 l(b), tend to oppose the action of the external load and to cause the two
arms to rotate in the direction opposite to that of the collapse mechanism. Also
in this case, the mechanism is in equilibrium by virtue of the particular load
condition. This equilibrium condition is neutral in the case of small displace-
ments. If, on the other hand, the plastically deformed beam element is iso-
lated, as shown in Figure 18.1 l(c), the moments MP acting on the element and
on the two arms of the beam, in all cases, stretch the lower longitudinal fibres.
Here again relation (18.26) applies along with the observations deriving there-
from.

The safety factor, defined in accordance with equation (18.26), is 3/2 for all
the statically determinate systems of deflected beams of rectangular cross sec-
tion, once the contributions of the axial force and shearing force are neglected.
The formation of a single plastic hinge in fact directly leads to the collapse of
the system (Figure 18.12). In statically determinate trusses, or, at any rate, in
systems made up of bars and hence subjected to axial force alone, this factor is
obviously equal to unity. In the case of statically indeterminate systems of
deflected beams, the safety factor is generally greater than 3/2. The formation
of the first plastic hinge in fact does not bring about the collapse of the struc-
ture. In general, it may be stated that in a frame with n degrees of redundancy
the number of plastic hinges that are activated for collapse to occur is less than
or equal to (n + 1).

Let us consider, for instance, the beam built in at both ends of Figure
18.13(a). As has already been established in Section 13.3, the fixed-end
moments and the moment in the centre are equal to F//8, and stretch the upper
and lower fibres, respectively. The fixed-end cross sections and the cross sec-
tion at the centre hence reach full plasticity simultaneously

-FPl = MP (18.28)

Figure 18.12
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(a)

(b)

(c)

Figure 18.13

from which we obtain the collapse load FP = 8 MP / L Applying the Principle
of Virtual Work to the collapse mechanism of Figure 18.13(b), it is possible to
reobtain the previous value,

FP(p--4MP(p = Q (18.29)

The absence of a strain-hardening phase in the loading process (Figure 18.13(c))
is due to the substantial statical determinacy of the structure (Section 13.3).

In the case of the closed framework of Figure 15.8(a), the maximum bend-
ing moment in the elastic phase is that found in the loaded cross sections. This
equals -A. Fl, whereby the load producing the first two plastic hinges (Figure
18.14(a))is

F , = — -^ (18.30)

The scheme of Figure 18.14(b) describes this situation, taking into account the
double symmetry of the framework, whilst Figure 18.14(c) gives the corre-
sponding moment diagram. The subsequent four hinges are formed simulta-
neously at A, B, C, D, when the moment in the nodes also attains the value MP,
as the external forces F increase,

MA= — -Mp=MP (18.31)
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whence we find the collapse load

F2=FP=$MP/l (18.32)

It should be noted that this load is the same as that obtained in the case of the
beam built in at both ends. This is due to the substantial identity of the corre-
sponding mechanisms of collapse (Figure 18.13(b) and Figure 18.14(d)). The
safety factor, in the framework of the criterion of admissible stresses and in
regard to plastic collapse, is in this case

Fp_ F2 _ 3 (mPii) _9
— ~^r — "T" r~ — v lO.JJl

Fe 2 2(l6MP/3/) 4
3 '

In the case of the asymmetrical portal frame of Figure 15.12(a), the force
that causes the formation of the first plastic hinge is (Figure 18.15(a))

^TTT <18-M>
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For F > FJ the portal frame is transformed into a three-hinged arch, loaded by the
external force F and by the two plastic moments MP. The partial moment dia-
grams for the two loads are given in Figures 18.15(b), (c). The diagram corre-
sponding to the plastic moments MP is virtual since it shows on the cross member
values M>MP.A second plastic hinge is formed when the global moment in the
left-hand node becomes equal to MP (stretching the internal fibres)

2F21-2MP=MP (18.35)

from which there follows

F2=FP=-¥*- (18.36)

The value of FP may alternatively be found by applying the Principle of Vir-
tual Work to the collapse mechanism of Figure 18.15(d):

FP(2l(p) - MP(p - MP(2(p) = 0 (18.37)
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In this case the safety factor is

• ^ = / L = 3 (3MP/2/) 81

/V 1F 2(23MF/18/) 46
3 J

So far only concentrated loads have been considered. A first simple example
of distributed load is furnished by the scheme of the beam built in at both ends
shown in Figure 13.10(a). It is known from Section 13.3 that the maximum
moment in the elastic regime is that of the built-in constraint, which is equal to
ql2/\2 (Figure 13.10(c)). Therefore when the external load reaches the value

9, =12^ (18.39)

two plastic hinges are formed at the built-in constraints. In line with the
scheme of Figure 18.16(a), the third plastic hinge in the centre forms when

/2
q2 — -MP=MP (18.40)

8

whence we obtain the collapse load

M
I2=4p=™-jr (18-41)

It is possible to arrive at this collapse load also by a simple application of the
Principle of Virtual Work. The safety factor in this case is

qp_ q, _3( l6MP / /2)

qt-2qi-2(!2Mf/P)-2 (18'42)

The deflection in the centre for q = q\ (Figure 18.16(a)) is given by the con-
tributions of the external load q\ and of the plastic moments MP, respectively

^_^__M^1 384 El SEI

which, via equation (18.39), becomes

5,=^i (18.44)1 32EI

On the other hand, the deflection in the centre for q = q2 likewise is

J_i^_M£/i
2 384 El 8E7

and hence, inserting equation (18.41)

*-3£ (18-4W
Plotting the points (5b q}) and ($2, q2) on the non-dimensionalized plane of
Figure 18.16(b), we immediately find the curve S(q), i.e. the structural

(18.38

(18.43

(18.45)
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response as the external load increases. It may be noted that this response is
elastic between points 0 and 1, strain-hardening between points 1 and 2, and
finally perfectly plastic for 8> 82.

Let us now examine the case of the beam built in at one end and supported
at the other, illustrated in Figure 13.4(a). In the elastic regime, the maximum
bending moment occurs at the built-in constraint and is equal to <?/2/8.^Hence a
first plastic hinge is formed at the built-in constraint for q} - 8 MP II2. At this
point the structure becomes statically determinate and presents a globally
strain-hardening behaviour, until the second and last plastic hinge is formed
(Figure 18.17(a)). Whereas in the case of concentrated loadings it is straight-
forward to identify the location of the subsequent plastic hinges, in the case of
distributed loads such an identification is not usually immediate. In the case in
point, for instance, which does not even present particular symmetries, it is
necessary to calculate the maximum of the moment function in the hardening
phase and to determine the value q2 which makes this maximum equal to the
plastic moment MP. Expressed in formulas, this is

M(z) = -MfLz + (±qlz-±qz2} (I8.47a)
/ \ 2* L )

T{z}^ = -MlL+
l
ql-qz (18.47b)

dz 1 2

The shear vanishes for

z = !__MfL (18.48)
2 ql
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whence we obtain

0.3 0.4 0.5 0.6
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"--i'T-^J
Setting Mmax = M/>, we obtain a second degree algebraic equation in the
unknown #2

(,-^=4^ (18.50)I <h'2 J qii2

which, resolved, yields the two roots

^f = 3±2V2 (18.51)
q2l

2

Whereas the first root must be rejected, since it would imply q2 < q\, the sec-
ond yields the collapse load

^Hh-̂  (18-52)

or

M
q2=qP*11.656&-£- (18.53)

(18.49)
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The safety factor is therefore

i£- = ̂ _ = * »2.19 (18.54)
qe 2 8(3-2V2)

3*

To represent the structural response with the increase in the load q, it is nec-
essary to choose a suitable kinematic parameter, for example the rotation of
the end cross section B. In the elastic phase (0 ̂  q ̂  qi)we have

,B=_*1_(^-L = -2<L (18.55a)YB 24EI ( 8 ) 6EI 4SEI

whilst in the hardening phase (ql ^ q ̂  #2)
 we obtain

#/3 _ . / P ( AMp\ , 1 0 ccux(pB=— Mo = o - 4 — f ~ (18.55b)YB 24EI P 6EI 24EIV I2 )

Therefore the rotations for the notable loads q{ and q2 are respectively

<p Bl=-^- (18.56a)r51 6 £/
11.6568-4 JV AM

™2 24 El El

The diagram <5£>#(g) is given in non-dimensional form in Figure 18.17(b).
Between the points 0 and 1 the global behaviour of the structure is elastic,
between 1 and 2 it is hardening, while beyond this point it is perfectly
plastic.

In the case of the continuous beam of Figure 13.33(a), the maximum bend-
ing moment is reached in the right-hand span, and hence it will be at this cross
section that the first plastic hinge will be formed. Isolating the right-hand span
(Figure 18.18(a)), we obtain

M(z) = ̂ qlz-^qz2 (18.57a)

T(z) = ̂ - = ̂ ql-qz (18.57b)
dz 7

The shear vanishes for z = •=• /, where we have

Mmax=^2 08-58)

Setting Mmax = MP, we obtain the load that produces the first plastic hinge

^^t.,0.89^ (18.59)

589
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Figure 18.18

At this point it is easy to understand that the second and last plastic hinge will
be formed at the central support (Figure 18.18(b)). Applying the Principle of
Virtual Work to the collapse mechanism yields the equation

-MP\l^-M& + \±q^<^i} + (18.60)

f!4!,Y-L/U
I?* A7*A14 J

whence, performing the computation, we find

70 Mp nssssMp , i o / : i x42=4p=—-T71-11.6666-f- (18.61)
D LL 1L

Note that the collapse load of equation (18.61) is greater than the collapse load
of equation (18.53) corresponding to the previously considered scheme by
what, from an engineering standpoint, is a negligible amount (~l%o). The
safety factor is, however, less, even though the structure in this case has two
degrees of static indeterminacy:

f-14p _ 42 _ 3 \ 6 J , ™, n Q ,0v

r-f^-Tfr""7
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This is due to the fact that, in order to bring about the collapse mechanism, the
formation of two plastic hinges is sufficient, instead of three, as the global
static determinacy would require in the proximity of collapse. Cases of this
sort are referred to as instances of partial collapse, as opposed to complete
collapse, whereby the entire structure becomes hypostatic.

As a final example, let us consider the portal frame with inclined stanchion
of Figure 15.21(a). As has already been shown in Section 15.5, the maximum
bending moment is reached, in the elastic phase, in the left-hand fixed joint-
node (Figure 15.22(a)), whereby the load that produces the first plastic hinge
in the same node is obtained from equation (15.45(a)).

112 Mp cc^Mp / io / :o\

*=T^W2^5-53— (18'63)

Application of the Principle of Virtual Work yields the moment X2 in the right-
hand fixed joint-node, for q> q\ (Figure 18.19 (a))

2MP<p + 2X2(p - ql( - (p j = 0 (18.64)

whence we obtain

X2=-ql2-MP (18.65)

(a)

(b)

Figure 18.19
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Equilibrium with regard to rotation of the cross member about the right-hand
node yields the shear V, transmitted to the cross member by the left-hand stan-
chion (Figure 18.19(b))

yi -14/2 _ !0/2=o (18.66)
4 2

whence we obtain

V = -ql (18.67)
4

The shear on the cross member vanishes, and, therefore the moment is max-
imum, for V = qz, and hence for z = j /

MmM=M(^l] = ̂ Vl-MP-l-qt^l] (18.68)
\ T - y T - L \i\ }

or

Mmm=-j^ql2-MP 08-69)

The condition of second and ultimate plastic hinge formation is Mmax = MP,
from which we find the collapse load,

64 MP MPi2=<ip = -$-jr-1'll-jr (18-7°)
whilst the mechanism of collapse consists of the articulated parallelogram of
Figure 18.19(c). The safety factor is

^- = ̂ 2-* 1.93 (18.71)

18.4 Law of normality of incremental plastic deformation

As will be illustrated in this and the ensuing sections, it is possible to avoid the
unwieldy incremental plastic calculation and focus attention on the ultimate
condition of collapse, when the entire structure, or part thereof, undergoes
large increments of displacement resulting from small increments of load.
This can be achieved by means of the Theorems of Plastic Limit Analysis,
which shall be demonstrated in the next section.

The present section will provide a preliminary demonstration of the two
fundamental properties possessed, respectively, by the surface of plastic
deformation in the space of principal stresses,

F(<7i,(T2,cr3) = 0 (18.72)

and the incremental plastic deformation.
As in the uniaxial condition, where the element of material is in the elastic

state for | a\ <op, likewise in the biaxial (plane stress) condition, the element
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Figure 18.20

of material is in the elastic state for F(a{, O2) < 0. The function F was obtained
in Section 8.12 according to Von Mises' criterion

FM(a}9a2) = (a?+a$-Gla2)-a
2p (18.73)

and Tresca's criterion

Fr(a1,C72) = max{|a1|,|a2|,a1 -<J2|}-a> (18.74)

Whereas in the uniaxial condition the characteristics of plastic flow are evi-
dent (i.e. there is a dilation collinear to stress), in multiaxial conditions it is
difficult to make out the mechanics of the deformation.

Let us consider an element of a two-dimensional solid subjected to the
stress condition (Figure 18.20)

{(70} = [a,,a2]
T (18.75)

Suppose that an increment {a} - {a0} is applied to the same element, and that
subsequently this increment is removed in a quasi-static manner. Drucker's
Postulate states that the material may be defined as stable when the work per-
formed in the loading cycle is non-negative. For a stress condition {a] lying
on the surface of plastic deformation F({cr}) = 0, and for each stress condition
{<T0} which is admissible and thus contained within the elastic domain or
lying on the boundary, we must have

({cr}-{cJ0})T{eP}^0 (18.76)

where { ep} is the incremental plastic strain which occurs when the stress
reaches { cr}. It is possible to give a highly significant geometrical interpreta-
tion, superposing the spaces {cr} and { ep] (Figure 18.20): the scalar product
(18.76) is always positive or at least zero. It thus follows that:

1. in each regular point of the surface of plasticity (single tangent plane), the
incremental plastic strain { sp] is normal to the surface itself;

2. the surface of plasticity is convex.
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Figure 18.21

Figure 18.22

In the cusps of the surface of plasticity (Figure 18.21 (a)), { EP} cannot be
external to the cone defined by the normals to the infinite tangent planes. In
this case, more than one vector { sp} may correspond to a single vector {a}.
On the other hand, in the portions where the surface of plasticity is linear (i.e.
not strictly convex), more than one vector {a} corresponds to a single vector
{ sp} (Figure 18.21(b)). These two conditions are both present in Tresca's
hexagon.

The elastic domain includes the origin, and hence the inequality (18.76),
when {<T0} = {0}, becomes

{cr}T{£P}=tf>({£p})>0 (18.77)

where <Z> represents the energy dissipated in the unit of volume and is a func-
tion solely of the incremental plastic strain. This consideration remains valid
also when the surface of plastic deformation presents cusps and linear por-
tions. Consequently, the following statement is equivalent to Drucker's Postu-
late: the energy dissipated in the unit of volume is a function only of the
incremental plastic strain. Also from this it is possible to deduce the law of
normality and the convexity of the surface of plastic deformation. Equa-
tion (18.77) shows in fact that each stress condition {<r} capable of producing
the incremental plastic strain { ep] must be on the plane normal to { sp} and
distant <j>({ ep}) from the origin (Figure 18.22). As { ep} is made to turn
about the origin, all these planes envelop the surface of plastic deformation,
which is thus convex.

If { a } is the incremental stress vector corresponding to the incremental
plastic strain vector { sp], we have

{(7}T{£p}^0 a8.78)

assuming {a} to be the initial stress condition and applying equation (18.76).
For an elastic-perfectly plastic material we have in particular

{CF}T{£P} = 0 (18.79)
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whereas for a strain-softening material we have

0,-E,

Figure 18.23

{<7}T{£P}<0 (18.80)

and Dmcker's Postulate is violated.
Figure 18.23 represents Tresca's criterion in two dimensions and the corre-

sponding mechanisms of plastic flow (incremental plastic strain). Along the
sides AB, BC, DE, EF only one of the principal dilations eh e2 *s activated,
whilst along the sides CD and FA one dilation is positive and the other is neg-
ative; these are activated simultaneously and with equal intensity.

18.5 Theorems of plastic limit analysis

Let us consider a rigid-perfectly plastic solid, subjected to a condition of pro-
portional load, measured by the parameter A (Figure 18.24). A stress field is
said to be statically admissible when it is in equilibrium with the external
load A and at each point of the solid we have F ^ 0. On the other hand, a col-
lapse mechanism is said to be kinematically admissible when the external
constraints are respected and the corresponding dissipated energy is positive.

Theorem of maximum dissipated energy
Given an incremental plastic strain { sp], the energy dissipated by the stress
{<r} corresponding to this strain (Figure 18.22) is greater than or equal to the
energy dissipated by any other possible stress {&'}'.

{aY{eP}^{a'Y(eP} (18.81)

The foregoing inequality is valid at each point of the solid and therefore, on
the basis of equation (18.77), it is possible to write

(*<*> ({£P})dV^ |V}T{eP}dV (18.82)
Jv Jv

XP.

Figure 18.24
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Static theorem (upper bound theorem)
The multiplier of the loads A~ corresponding to any statically admissible stress
field is less than or equal to the multiplier of collapse A/,.

Let (<T "} be a statically admissible stress field and A~ the corresponding mul-
tiplier of the external loads. Then let {a} be the stress field of collapse and
{ 7]}, { EP} the incremental fields of displacement and of plastic strain,
respectively, at the moment of collapse. Application of the Principle of Virtual
Work yields the following relations:

J{a-}T{eP}dV = 2Vfy7f. (18.83a)
/

J{cT}T{eP}dV = ^AF/>77, (18.83b)
/

where with P,-, / = 1,2, ..., n are indicated the external loads applied to the
solid. Recalling the inequality (18.76), we obtain

f({<7}-{<7~})T{£P}dV^O (18.84)
Jv

and hence

A p ^ A ~ (18.85)

Kinematic theorem (lower bound theorem)
The multiplier of the loads A+ corresponding to any kinematically admissible col-
lapse mechanism is greater than or equal to the multiplier of actual collapse AP.

Let { 7]+}, { £ +} be the incremental fields, respectively, of displacement and
of plastic strain, corresponding to a kinematically admissible mechanism of
collapse. Then let { or} be the stress field of actual collapse. The multiplier of
the external loads A+ corresponding to the kinematically admissible collapse
mechanism is given by the following energy balance:

J<Z>({e+})dV = ^A+/>J7,+ (18.86)
/

Application of the Principle of Virtual Work to the stress field of actual collapse
{cr} and to the kinematically admissible collapse mechanism { e +} yields

f{a}T{e+}dV=YAp/?i]r (18.87)
Jv -̂*/

On the other hand, for the inequality (18.82) we have

f#({£+}) dV ^f {cr}T{£+}dV (18.88)
Jv Jv

From relations (18.86), (18.87) and (18.88), there follows

A + ^ A p (18.89)
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Mixed theorem
If the multiplier of the external loads A corresponds to a statically admissible
stress field and, at the same time, to a kinematically admissible collapse mech-
anism, then we have

A = AP (18.90)

This statement follows immediately from the two theorems demonstrated pre-
viously, since the actual collapse mechanism represents a kinematically
admissible mechanism and, at the same time, presupposes a statically admis-
sible stress field.

Theorem of addition of material
A dimensional increment of a perfectly plastic solid cannot produce a decre-
ment in the collapse load.

In fact, the sum of the stress field of collapse in the original solid and of an
identically zero stress field in the portion of additional material constitutes a
statically admissible stress field. This means that the collapse load of the new
solid is greater than or equal to that of the original solid, and certainly not less.

The properties of convexity of the elastic domain and of normality of the
plastic incremental deformation, as well as the theorems of limit analysis,
just demonstrated for the three-dimensional solids, can readily be extended to
two-dimensional solids (plates) and one-dimensional solids (beams), replac-
ing the stress vector {a} with the static characteristics vector {(?}, and the
vector of incremental plastic strains { e/>} with the incremental vector of the
deformation characteristics { qp}. As an example of convexity of the elastic
domain and of normality of the plastic flow, consider the plastic limit of
bending moment vs. axial force interaction in Figure 18.9. In the case where,
as often occurs, only the bending moment M is considered as the active
characteristic rather than the incremental vector { qp}, it is sufficient to con-
sider the plastic increment of the curvature, XP or, more simply, the relative
rotation <p.

18.6 Beam systems loaded proportionally by concentrated forces

In the case of statically indeterminate systems of beams loaded proportion-
ally by concentrated forces, application of the static theorem reduces the
solution to that of a problem of linear programming. As an illustration of
this, let us consider the continuous beam of Figure 18.25(a), constrained by
three supports and a built-in constraint and loaded proportionally by two
forces concentrated in the first and third spans. This structure has three
degrees of redundancy, as is noted from an examination of the equivalent
statically determinate system of Figure 18.25(b), and presents five critical
cross sections for the formation of the plastic hinges; viz. the two central sup-
ports, the built-in constraint and the two sections in which the external forces
are applied.

The total bending moment is expressible as the sum of four contributions,
due to the external forces and to the redundant moments (Figure 18.25(b))

n

M(z) = AM(0} + V XjM<» (18.91)
• j
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with n = 3. In the m = 5 critical cross sections we thus have

n

Mi = AM<0)+Vx ;.Mp, for i = l,2,...,m (18.92)

7=1

The static theorem states that the plastic collapse load is represented by the
maximum value that the target function A can assume in respect of the follow-
ing 2m constraints:

n

-Mp^AM^+^XjMV^Mp, fori = l,2,...,m (18.93)

7=1

In the case of structures with many degrees of redundancy, this problem is
resolvable with procedures of automatic calculation. It is in fact a problem of
linear programming in the variables A; Xj, X2, ..., Xn.

As an example, let us reconsider the elementary case of a beam built in at
either end and subjected to the vertical load AF in the centre (Figure 18.26(a)),
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whereby n = 1, m = 2. Designating the built-in constraint moment as X (Figure
18.26 (b)), we have

M}=-X (18.94a)

M2=-X + -XFl (18.94b)
4

and hence the inequalities (18.93) in this case take on the following form:

-Mp^-X^Mp (18.95a)

-Mp^(-X + -kFl\^MP (18.95b)

From relations (18.95) we deduce the following four inequalities:

X^-MP (18.96a)

X^MP (18.96b)

X^MP+-kFl (18.96c)

X^-MP+-XFl (18.96d)

which, on the plane X-A, define the parallelogram represented in Figure
18.27. The maximum value of A on this domain is given by the ordinate of
point A

Amax=8^ (18.97)

from which we again find the collapse load

/> = AmaxF = 8^ (18.98)

-If
X/F*

F/

Figure 18.27
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An alternative method, for solving beam systems loaded proportionally by
concentrated forces is that proposed by Neal and Symonds, which is also
called the method of combining mechanisms. According to this method,
each mechanism of collapse can be considered as the combination of a certain
number of independent mechanisms. To each mechanism of collapse it is pos-
sible to apply the Principle of Virtual Work, so as to determine the correspond-
ing multiplier of the loads A. The actual mechanism of collapse is
distinguished from amongst all the virtual mechanisms by the fact that,
because of the kinematic theorem, it presents the minimum value of the multi-
plier A. It is then a matter of examining the independent mechanisms with low
values of the multiplier A, and seeking to combine them to form mechanisms
with values of A still lower. To verify the validity of the result, it is then neces-
sary to check its static admissibility.

The method proposed by Neal and Symonds will now be illustrated with
reference to a simple portal frame, subjected to two equal forces, one horizon-
tal and the other vertical (Figure 18.28(a)). Since the degrees of redundancy
are n = 3, and the number of critical cross sections is m = 5, the number of
supplementary equations of equilibrium and hence the number of independent
mechanisms must be m - n = 2. As independent mechanisms, let the two rep-
resented in Figures 18.28(b) and 18.28(d) be chosen. These cause the horizon-
tal force and the vertical force alternately to perform work. On the other hand,
it may be demonstrated that both involve moment diagrams that are statically
admissible (Figures 18.28(c), (e)). Applying the Principle of Virtual Work to
the beam mechanism (Figure 18.28(b)) produces the equation

Fl(p-4MP(p = 0 (18.99)

from which we obtain

F = 4^- (18.100)

Applying the Principle of Virtual Work to the sidesway mechanism (Figure
18.28(d)) produces, on the other hand, the same result.

If we now proceed to sum up algebraically (or combine) the two above-
mentioned mechanisms, we shall obtain the combined mechanism of Figure
18.28(f), with four plastic hinges in the cross sections 1, 3, 4, 5. The corre-
sponding moment diagram (Figure 18.28(g)) proves to be statically admissi-
ble, and hence we may conclude that the collapse mechanism of Figure
18.28(f) is the actual one. On the other hand, application of the Principle of
Virtual Work yields a collapse load smaller than the one corresponding to each
of the two elementary mechanisms

2Fl(p-6MP(p = Q (18.101)

whence we obtain

Fp=3^ (18.102)
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18.7 Beam systems loaded proportionally by distributed forces

The solution of statically indeterminate beam systems loaded proportionally
also by distributed forces presents greater difficulties than does the solution of
systems involving concentrated forces. This is due to the impossibility of
identifying from the outset a finite number of critical cross sections. Since
therefore there does not exist any systematic method, the procedure is one of
trial and error, applying the kinematic and static theorems alternately.

Let us consider, for instance, the portal frame of Figure 18.29(a), subjected
to a load uniformly distributed over the cross member and to a horizontal con-
centrated force of equal intensity. Let us take as collapse mechanism the
actual one of the concentrated force scheme (Figure 18.28(a)) and apply the
Principle of Virtual Work (Figure 18.29(b))

2ql(-(p\ + 2ql(l<p)-6MP(p = 0 (18.103)

from which we obtain the load

<7 = 2^ (18.104)

The constraint reactions at cross section 5 are obtained by assuming that,
also in sections 3 and 4, the bending moment is equal to its plastic value MP

(Figure 18.29(c))

M4 = -MP + Hl = MP (18.105a)

M3=MP-Hl + Vl--ql2=MP (18.105b)

whence we obtain

H = 2^- (18.106a)

V = 3^- (18.106b)

The moment function on the beam is given by the sum of four contributions,

M(z) = MP+3^-2^/-I(2^ (18.107)

= -MP + ̂ Z-^
whilst the shear is given by two contributions,

7Xz) = ̂  = 3^-2^L* (18.108)

and vanishes for z = \ I. The maximum moment is thus

Mmax=M^lj = ̂ MP (18.109)
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and, since it is greater than MP, it reveals the static inadmissibility of the
mechanism of Figure 18.29(b). On the other hand, dividing the load resulting
from equation (18.104) by 5/4, we obtain a statically admissible scheme, and
hence an application of the static and kinematic theorems leads to the conclu-
sion that the actual collapse load must fall within the following interval:

1.6^«7P<2^ (18.110)

Since the interval given by relation (18.110) is still not sufficiently narrow,
we assume as collapse mechanism of second approximation that presenting
three plastic hinges, again in the sections 1, 4, 5, and the fourth hinge in the
section which, in the previous scheme, was subjected to the maximum
moment Mmax (Figure 18.29(d)). Applying the Principle of Virtual Work
yields the equation

«^(^] + |̂ |/J^) + 2^W- (18.111)

4MP(p-2MP(~(p} = Q

which presents the solution

«-££
The constraint reactions at section 5 are obtained by assuming that, also in

cross sections 4 and 6 (Figure 18.29(c)), the bending moment is equal to its
plastic value MP

M4 = -MP + Hl = MP (18.113a)

M6=MP-Hl + V-l--q(-l\ =MP (18.113b)

whence we obtain

H = 2^- (18.114a)

V = ̂ ^ <18.114b)
15 /

The bending moment and shearing force on the horizontal beam are there-
fore represented by the following functions:

~K^>-^'-0^>' «••»*
™-£-inH!£<

The shear vanishes for z = ̂ /, and the maximum bending moment is thus

Mmax=M^/} = ̂ MP (18.116)
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605

On the other hand, dividing the load obtained from equation (18.112) by 8417
840, we obtain a statically admissible scheme, and thus an application of the
static and kinematic theorems yields the following interval for the actual col-
lapse load:

840 28 MP 28 MP / 1 0n^
x f-<qP< ~ (18.117)

841 15 I2 P 15 I2

This interval is extremely narrow and, for engineering purposes, yields the
actual collapse load with sufficient approximation (~1 %c).

To improve this approximation still further, it would suffice to consider a
third mechanism with the hinge in z - ^/, but this is not necessary, since it is
possible to identify the actual collapse mechanism by minimizing the load q as
the position of the plastic hinge on the horizontal beam varies (kinematic
theorem).

Consider the mechanism of Figure 18.29(e), with the plastic hinge in an
intermediate position of the cross member, at a distance x from the left-hand
fixed joint-node. As the diagram of vertical displacements shows, the left-
hand portion turns clockwise by the angle (p, whilst the right-hand portion
turns counterclockwise by the angle

tf = <p—— (18.118)
21-x

Application of the Principle of Virtual Work provides the following equation:

qx( J<?1 + \q(2l -x)2<p-^— + 2ql(l<p)- (18.119)
V2 ) 2 21-x

4MP(f> - 2MP(p —— = 0

from which we obtain the load

q(x}^^ (18-120)
The derivative of this load with respect to the coordinate x

^-,2+8^-4/2

etc (4/2-jr2)2

vanishes for

x = 2/(2±V3) (18.122)

The larger root is to be rejected, whereas if we substitute the value x = 21 (2-
^/3) in expression (18.120), we obtain the actual collapse load

qp=¥f- I—,- (18.123)
*P I2 12-6^/3

(181.21
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Rationalizing the ratio (18.123) up to the seventh decimal place, we have

M
?P= 1.8660254-^- (18.124)

so that the inequalities (18.117) are verified:

1.8644471 < 1.8660254 < 1.8666667

Finally it should be noted that, if we put 2ql - F to make a comparison with the
case where also the vertical load on the beam is concentrated (Figure 18.28(a)),
the collapse load given by equation (18.124) can be expressed in the form

FP=2qPl^3.13^- (18.125)

and is thus greater than the collapse load given by equation (18.102) for the
concentrated force in the centre.

The case of the portal frame with inclined stanchion of Figure 15.21 (a) has
thus been solved in Section 18.3 by means of an incremental analysis. If,
instead, we had chosen to proceed by trial and error, applying the upper bound
and lower bound theorems, we could have assumed the first-approximation
mechanism illustrated in Figure 18.19(a), with two plastic hinges located in
the fixed joint-nodes. Application of the Principle of Virtual Work yields the
load

M
3 = *-f (18.126)

which turns out to be greater than the collapse load given by equation (18.70)
by virtue of the kinematic theorem. The fact of having imposed at the ends of
the cross member the two plastic moments MP means that the bending
moment in the right-hand part of the cross member exceeds the value MP (Fig-
ure 18.30 (a)). This is, on the other hand, a statically inadmissible situation.

To determine the maximum value of the moment, let us isolate the cross
member (Figure 18.30 (b)) and identify the cross section in which the shear
vanishes

M 1
T(z) = 2^ + -ql-qz = Q (18.127a)

for z = - + 2 ̂ - = -1 (18.127b)
2 ^ / 4

The maximum bending moment is thus

Mmax J6^Y1/VM,-I(8^Y*/T = 5-MP (18.128)max V / A 4 ) P 2V I2 A 4 J 4 P )

Then dividing the load given by equation (18.126) by 5/4, the system is
reduced to a statically admissible one, whereby the following inequalities
result:

6A^<qP<%^ (18.129)
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Figure 18.30

These inequalities are confirmed by solution (18.70). Finally, it should be
noted that the second-approximation mechanism, with the hinge at a distance
z = j I from the left-hand node of the beam, is identified with the actual col-
lapse mechanism (Figure 18.19 (c)).

As our last example of application of the limit analysis theorems, let us
examine the case of the portal frame with a strut, illustrated in Figure 15.9(a).
The moment and the shear on the portion BF are described by the following
functions (Figure 18.31(a)):

?Q 3 1
M(z) = m«lz-wqr-29z2 (18'130a)

T(z) = — = —ql-qz (18.130b)
dz 124* *

The point of zero shear is given by

29
z = —/ (18.131)

124
and hence the maximum bending moment is

Mrnax = Aff— l\ = -^-ql2 (18.132)
U24 J 30752*
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Figure 18.31
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The load which produces the first plastic hinge is therefore

,,̂ ^46.*^ (,8J33,

If we consider the mechanism of Figure 18.31(b), the Principle of Virtual
Work yields the equation

HMI^HMI')-^- ̂
from which we obtain the load

(33^x29 + 33x29^ *±
*( 1242x62 ) I2

or

4^64.27^ (18.136)

On the other hand, the scheme of Figure 18.31(b) proves not to be statically
admissible, since in an intermediate portion of the beam BF the moment
assumes values greater than MP (Figure 18.31(c)). In fact, isolating the portion
of length y^/, contained between the plastic hinges F and F' (Figure 18.31 (d)),
we find the shear at F:

Va, 2M^ ^J3_>] M,,
(33//124) I2 1248 ) I

The shear between F and F',

T(z) = V-gz (18.138)

vanishes for

V a 16.067
q 64.27

from which we obtain the maximum bending moment

Mmax=A^£| (18.140)

..̂ (I).,,-!̂ !)'
^l.OOSMp

which is not statically admissible.
Dividing the load given by equation (18.136) by 1.008, we obtain, on the

other hand, a statically admissible system. The actual collapse load qp must
then be greater than

64VM,,
q 1.008 I2

(18.1735

(18.137

(18.139

(18.14)
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and consequently contained within the following interval:

M M
63.76-^- < qp < 64.27^f- (18.142)

Let us assume as our second-approximation mechanism the one presenting
the plastic hinges at B, F and in the centre of the portion BF, which proved to
be the location of the maximum bending moment in the previous step (Figure
18.31(e)). The Principle of Virtual Work yields the load

^=64^f (18.143)

As the scheme of Figure 18.31(f) shows, the corresponding bending moment
diagram is statically admissible, whence, by virtue of the mixed theorem, a
mechanism that is both kinematically and statically admissible coincides with
the actual collapse mechanism. The inequalities (18.142) are in fact verified
by the collapse load given by equation (18.143).

18.8 Non-proportionally loaded beam systems

In the case of statically indeterminate beam systems, loaded non-proportionally
by two or more concentrated forces, applying the kinematic theorem makes it
possible to define the limit of collapse in the space of these forces.

In the case, for example, of the continuous beam of Figure 18.32(a), loaded
by two non-proportional forces F, and F2, the introduction of five plastic
hinges in the critical sections makes it possible to define two different collapse
mechanisms (Figure 18.32 (b)). Applying the Principle of Virtual Work to
each of them (and to its converse) yields the following equations:

-3MP<p± F{ -<p = 0 (18.144a)

-4MP<p±F2-<p = 0 (18.144b)

whence we obtain

F}=±6^- (18.145a)

F2=±8^- (18.145b)

The limit of collapse in the plane F,-F2 is thus represented by the rectangle of
Figure 18.32 (c). In the case where

--< — <- (18.146)
3 F, 3

we have the activation of the first mechanism; otherwise, we have the activation
of the second mechanism. The properties of convexity of the surface of plastic
deformation and of normality of the incremental plastic deformation in fact also
apply in the case of beam systems loaded by two or more concentrated forces.

A second example may be represented by the portal frame, already
examined in Sections 18.6 and 18.7, loaded in this case by two independent
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Figure 18.34

concentrated forces, H and V (Figure 18.33). The introduction of five plastic
hinges in the critical sections enables the four different collapse mechanisms
1, 2, 3, 4 to be defined (Figure 18.34). Applying the Principle of Virtual Work
to these four collapse mechanisms and to their respective opposites, 5, 6, 7, 8,
yields the following equations:

612
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(18.147)

Once the factor <p, which does not affect the problem, has been cancelled out,
we then have the equations of the eight straight lines in the plane H-V, to
which the respective sides of the boundary of collapse belong (Figure 18.35).
The activations for each of the four pairs of mechanisms are given by

— <- (18.148a)
H 2

-< — <2 (18.148b)
2 H

— >2 (18.148c)

-2< —<-- (18.148d)
H 2

respectively. Also in this case the properties of convexity of the plastic limit
and of normality of the incremental deformation are both verified. In fact,
when the ratio V/H is sufficiently small, the sidesway mechanism is activated

Vn

Figure 18.35
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- 4MP(p±Hl(p = Q

- 6MP<p ± (Vlcp + Hl<p) = 0

-4MP<p±Vlq> = 0

-6MP(p + (Vl<p-Hl(p) = 0
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Figure 18.36
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(1, 5). For intermediate values of V/H the combined mechanisms are acti-
vated (2, 4, 6, 8). For sufficiently high values of V/H the beam mechanism is
activated (3, 7).

18.9 Cyclic loads and shake-down

Let us consider again the system of parallel connecting rods of Figure 18.1,
and let us suppose that the rigid cross member is loaded repeatedly with a pul-
sating force (Figure 18.36). As was seen in Section 18.1, for

Af_=^/2[l-^J (18.149)

the behaviour of the system is elastic, and hence both loading and unloading
occur along the segment 01 of Figure 18.37.

Force A
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For greater values of the maximum load F, the central rod yields, so that, on
unloading, this rod is found to be compressed by the lateral ones, which are
assumed to obey an elastic constitutive law, devoid of yielding. On these
hypotheses, a value FSD of the load is shown to exist, such that the central rod
also yields in compression.

When the external force is maximum, we have

X7(max) + 2X77(max) = F (18.150a)

whereas, when the external force is zero, we have

X/(min) + 2X//(min) = 0 (18.150b)

When the external force is maximum, the dilation of the central rod is

£7(max) = -^-£/7(max) (18.151)
h

and hence

e,(m«) = ̂ ^> (18.152)
// (£4/2)

since the lateral rods are in elastic conditions.
On the other hand, when the external force is zero and in the case where

inverse plastic deformation occurs, the dilation of the central rod is

£7(min) = £7(max)- ̂ - (18.153)

Since it is also found that

£7(min) = ^£77(min) (18.154)
h

by virtue of the transitive law, we obtain

lu X77(min) = ln X/7(max) 2ap (18155)
lj (£4/2) /7 (£4/2) E

From equation (18.155) we deduce the reaction of the lateral rods at the maxi-
mum load

X7/(max) = X7/(min) + <7PA-^- (18.156)
*//

On account of equilibrium of the rigid cross member, equation (18.150b)
yields

X//(min) = --X/(min) (18.157)
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The hypothesis of inverse plastic deformation of the central rod gives

X7(min) = -0>A (18.158)

so that

X//(min) = <jP- (18.159)

From equation (18.156) we thus obtain

A I
XH(max) = aP — + o>A^- (18.160)

2 ln

Since at maximum load the central rod has yielded, we have

X/(max) = (TpA (18.161)

Finally, the substitution of equation (18.160) and (18.161) into equation
(18.150a) yields the force of inverse plastic deformation

( A i ^
FSD=aPA + 2\aP — + aPAJ-\ (18.162)

V 2 hi J

or

FSD = 2oPA\l + ̂ } (18.163)
V lu)

Only for

F>FSD (18.164)

inverse plastic deformation of the central rod occurs. Note that this threshold
load FSD is exactly twice the load of first plastic deformation Fl given by
equation (18.4a).

Summarizing, it is possible to state:

1. For 0 ̂  F ̂  Fh the system behaves elastically and its representative point
in the plane F-8 (Figure 18.37) oscillates on the segment 01.

2. For F} < F ^ FSD, the central rod yields only in tension and the represen-
tative point of the system oscillates on the corresponding segment OT
(shake-down).

3. For F > F5Z> the central rod yields both in tension (loading) and in com-
pression (unloading) and the representative point of the system traverses
cyclically the parallelogram SD-A-B-C. More precisely, at the first load-
ing the point moves to A; on subsequent elastic unloading, the point moves
to B, where the plastic flow in compression of the central rod starts. This
flow ceases at C. From here the second loading cycle begins, which devel-
ops first elastically along the segment C-SD, and then plastically along the
segment SD-A, and so forth. The energy which is dissipated in each hys-
teresis cycle is equal to the area of the parallelogram SD-A-B-C. The
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phenomenon of plastic dissipation just described is called alternating
plastic deformation.

In the case where the cyclic load, instead of being pulsating (Figure 18.36),
is alternating and symmetrical (Figure 18.38), it is possible to demonstrate
how the hysteresis cycle assumes the appearance represented in Figures
18.39(a) and (b), for F < FSD and F > FSD respectively. In the cases of cyclic
loads pulsating not from zero (Figure 18.40(a)), or of alternating non-
symmetrical cyclic loads (Figure 18.40(b)), the hysteresis cycle will again
take on the appearance of a parallelogram, with the sides parallel to those of
the alternating and symmetrical cycles. On the other hand, it will not be sym-
metrical with respect to the origin (Figures 18.41(a), (b)).

Finally, it should be noted that in the cases where there is more than one
hardening portion (Figure 18.42(a)), or in the cases where the plastic collapse
of the system is reached (Figure 18.42(b)), the alternating plastic deformation

Force

-F

Figure 18.38

Time

Figure 18.39
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develops through polygonal cycles which are polar-symmetrical with respect
to specific points of the plane F-8.

18.10 Deflected plates

Let us consider the case of a deflected circular plate, consisting of elastic-
perfectly plastic material. The indefinite equations of equilibrium (12.33b) can
be written in explicit form as follows:

— (rTr) = qr (18.165a)
dr

— (rMr)-M#-rTr=Q (18.165b)
dr

Differentiating equation (18.165b) and using equation (18.165a), we obtain
the differential equation

*L(rMr)-^-qr = Q (18.166a)
dr2 dr

which is valid for 0 ̂  r ̂  R, if R is the radius of the plate, with the boundary
condition

Mr(K) = Q (18.166b)
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if the plate is supported at the boundary. On account of the isotropy of the
stress condition in the centre of the plate, we also have

Mr(0) = M^(0) (18.166c)

Let us assume, as a statically admissible regime, a condition of complete
plastic deformation of the plate. According to equation (18.166c), the repre-
sentative point of the characteristics that develop in the centre of the plate
must fall in the vertex B of Tresca's hexagon illustrated in Figure 18.43. More-
over, since the condition (18.166b) holds good, it is legitimate to assume that
the static regime is always represented by points belonging to the side BC of
the same hexagon. Since on this side we have MQ = MP, the static equation
(18.166a) is transformed as follows:

t O

^-(rMr)-qr = Q (18.167)
dr2

and, on integration, yields

Mr=q — + CJ+-S- (18.168)
6 r

Applying the boundary conditions

Mr(Q) = MP (18.169a)

M,.(R) = Q (18.169b)

the two constants of integration are determined

Q = M P (18.170a)

C 2 = 0 (18.170b)

(b)
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Figure 18.42

as well as the load

(18.171)
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,MPq = -6—f-
* R2

The radial bending moment thus becomes

V \2

Mr(r) = -MP ( — 1 - 1 (18.172a)
\RJ

whilst the circumferential bending moment has been assumed to be constant
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and equal to the plastic moment

621

M$=MP (18.172b)

By virtue of the static theorem, the load given by equation (18.171) represents
a lower limit for the actual collapse load. On the other hand, on account of the
property of normality of the incremental plastic deformation (Figure 18.43),
the variations of the radial and circumferential curvatures must satisfy the
conditions

j r=0, x^O (18.173)

Via the kinematic equations (12.33a), the corresponding conditions on the
deflection are obtained:

^ = 0, -i^O (18.174)
dr2 r dr

It is possible to verify immediately that the mechanism of Figure 18.44

w = 8\l--} (18.175)
v R)

where 8 is the incremental plastic deflection of the central point, satisfies
equations (18.174) and may thus be associated with the static regime
expressed by equation (18.172).

Since the load given by equation (18.171) corresponds both to a statically
admissible condition and to a kinematically admissible mechanism, by virtue
of the mixed theorem it is possible to state that this load represents the actual
collapse load of the plate.



1Q Plane stress and plane strain
J conditions

19.1 Introduction

This chapter will deal with two-dimensional elastic problems in the plane
stress condition or the plane strain condition. The plane stress condition has
been defined in Section 7.10, in reference to a single point. The stress condi-
tion at a point is said to be plane if the stress vector belongs to the same plane
independently of the cross section chosen. Likewise, the strain condition is
said to be plane if the displacement vector belongs to the same plane regard-
less of the direction chosen. As has already been seen, a necessary and
sufficient condition for a state of stress or strain to be defined as plane at a
point is that one of the three principal values (of stress on the one hand and of
strain on the other) should be equal to zero.

Whilst it is possible for stress conditions that are plane at a point, but not
globally, to exist, such as in the case of the Saint Venant solid, where the indi-
vidual stress planes (Figure 9.40) for the different points of the solid are not
necessarily parallel, in what follows we shall deal only with cases that are
globally plane, i.e. ones having planes of stresses or strains which are all
parallel.

Having first introduced a mathematical method which is generally suited to
the situation of plane problems and which is based on the Airy stress func-
tion, we shall consider a number of notable cases, such as the deep beam, the
thick-walled cylinder, the circular hole in a plate in tension and the concen-
trated force acting on an elastic half-plane. The subsequent introduction of an
additional method, based on the theory of complex functions of a complex
variable (Muskhelishvili's Method) will make possible the treatment of the
elliptical hole in a plate in tension. This latter topic will, in turn, serve as an
introduction to the problems of stress concentration and of fracture mechanics
which will form the subject matter of the closing chapter. In the appendices
will be illustrated the cases of a circular disk subjected to inertial forces
(Appendix M) and to thermal stress (Appendix N).

19.2 Plane stress condition

The plane stress condition tends to occur in thin plates, loaded by forces con-
tained in their own middle plane (Figure 19.1). There are originally five
unknowns in plane stress problems: the three components of stress crA, <JV, TVV,
and the two components of displacement u and v. There are likewise five
resolving equations, which are the two indefinite equations of equilibrium

^L + %+^0 (19.1a)
ax ay

% + ̂ L + jr = 0 (19.1b)
ax ay

622
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Plane stress condition (az = 0)

Figure 19.1
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and the three elastic constitutive equations

£.v=^K-v<T v ) (19.2a)

£v=|(c7v-vcrv) (19.2b)

7,.=^r,, (19.2c)

The equation of compatibility (7.45a)

fH£-l£ „„,ay- ox" oxoy

on the basis of relations (19.2), may be expressed in stress terms

!^K-wv) + !rK-v<7v) = 2(l + v)^ (19.4)
oy^ ^ • ' dx- v ! dxoy

On the other hand, differentiating the indefinite equations of equilibrium
(19.1), in order with respect to x and y, and adding together the resulting equa-
tions, we obtain

_^_^L_M_^E = 2^ (19.5)
ox" ay^ ox oy dxoy

If we multiply both sides of equation (19.5) by (1 4- v), the right-hand side
becomes the same as that of equation (19.4). By the transitive law, we have
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|jK-^) + |fK-v<7,) (19.6)

\d2ex d*ev d^ a^r]=-(1+v)-£^+~Ar+~5r+~3T|_ ca- or ax ay J

Finally, collecting terms, we obtain

V 2 ( f f J + f f v ) = -<l + v)fe + ̂ ] (19.7)
I ax dy ]

If the body forces are zero, from equations (19.1) and (19.7) we obtain the
following system of three differential equations in the three unknown func-
tions ax ,<rv ,TVV:

lH=f = 0 (19.8a)

<9rn, dav
—-L + —-^ = 0 (19.8b)

cor <?y

V2(0;V+(7V) = 0 (19.8c)

The elastic characteristics E, v of the material do not appear in the resolving
equations (19.8). It follows therefore that the plane stress field does not
depend in any way on the material, but only on the boundary conditions. Of
course it is not possible to say the same of the strain field expressed in equa-
tions (19.2), and hence of the elastic displacements induced by it.

Let us assume that the components of the stress field are obtainable by deri-
vation of an unknown function <P, called the Airy stress function

d2<P
°*=^T (l*9a)dy-

d2<P
<Tv=^h (19'9b)

d2&r- = -|dr <19-9c)axay

In this case the indefinite equations of equilibrium (19.8a,b) are identically
satisfied, while the equation of compatibility (19.8c) is satisfied if and only if

V2V2<2> = 0 (19.10)

or

V4<£ = 0 (19.11)

A function 0 which satisfies equation (19.11) is said to be biharmonic.

19.3 Plane strain condition

The plane strain condition tends to occur in cylindrical or prismatic solids of
large thickness, loaded by orthogonal forces on the generatrices, the forces
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Plane strain condition (ez = 0)

Figure 19.2
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having constant distribution along these (Figure 19.2). If the end planes are
considered as being constrained axially, it is legitimate to assume a zero dila-
tion in the axial direction, £, = 0, and a strain condition which is repeated
section by section.

The condition of annihilation of the axial dilation

ez=j(az-vax-vay) = Q (19.12)

yields the axial stress as a function of the other two normal stresses

at = v(0x+ay) (19.13)

Substituting equation (19.13) in the elastic constitutive equations (8.73), we
find

ejt=I[(l-v2)<r,-v(l + v)<T,] (19.14a)

e,=;|[(l-v2K-v(l + v)<7j <19'14b)

7^^f^ (I9.14C)
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If we consider the so-called stiffened elastic characteristics,

E' = ̂ T <19'15a)

v' = — (19.15b)
1-v

equations (19.14) may assume the following form:

^=^K-v'cTv) (19.16a)

ey=±(ay-v'ffx) (19.16b)

7,=^k, (19,6c)

which corresponds to that of relations (19.2).
The equation of compatibility, analogously to equation (19.7), can therefore

be expressed as follows:

V'(<T,+ f f y) = -<l + v')^£ + ̂ ] (19.17)

and hence, on the basis of equation (19.15b)

^->-7^[f+f] «'•«>
If the body forces are zero, we again obtain the three equations (19.8) that
resolve the plane stress problem, plus a fourth equation

% = 0 (19.19)
OZ

which implies the constancy of axial stress along the thickness.

19.4 Deep beam

Let us consider a deep beam of rectangular cross section and unit base, in
which the ratio of length / to depth h is not so high as to enable application of
the elementary theory presented in Chapters 9 and 10 (Figure 19.3). Let this
beam be supported at the ends and loaded by a constant distribution of vertical
forces q. The boundary conditions on the upper and lower edges are

T,V(W^) = 0 (19.20a)

cr,(>' = |) = 0 (19.20b)

<ry(y = ~!) = -9 09.20c)

626



DEEP BEAM

h/2

h/2

, tI
^ r Y

q

t,r
(a) (b)

Figure 19.3

(c)

h/2

h/2

627

The conditions at the ends x = ±1/2 are

f h / 2 l

Txydy = +q- (19.21a)
J-h/2 2

f h / 2

c^d;y = 0 (19.21b)
J-h/2

f h / 2

axydy = 0 (19.21c)
J-h/2

Equations (19.21b, c) impose the annihilation of the axial force and the
bending moment on the end sections.

Let us assume for the stress components polynomial expressions with
unknown coefficients

<Tx=a(x2y--y3} (19.22a)

Gy=-ay3+by + c (19.22b)

Txy,=-axy2-bx (19.22c)

that satisfy equations (19.8a, b).
From the conditions expressed by equations (19.20) we obtain the system

-a- £ = 0 (19.23a)

-a — + b- + c = Q (19.23b)
3 8 2

--a — -b- + c = -q (19.23c)
3 8 2 H V ;
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which, on resolution, yields

a = -64r (19.24a)
/i3

b = --?- (19.24b)
2/ i V }

c = -$- (19.24c)

Noting that the moment of inertia of the rectangular cross section of unit base
is / = /z3/12, we obtain a = -q/2I, and therefore equations (19.22) offer the
following expressions:

°^~2](x2y~ly3} (19'25a)

a -__2_(!y3_*iy+*l> | (i9.25b)
-y 2/1,3 4 12 J

^-^(T^) (19-25c)

These three components of stress also satisfy the conditions set by equa-
tions (19.21a, b). In order for the moments on the end cross sections also to
become zero, it is necessary to superpose on the solution represented by
expressions (19.25) a stress field of pure bending, ax = yd, ay = rxy = 0, so as to
determine the constant d via the condition (19.21c) for x = ±1/2

ph/2 *h/2 |~ / ,2 9 \ 1

axydy=\ \-6^\^y--y^\ + yd\ydy = 0 (19.26)
J_/ j / 2 J-h/2[_ h*\4 3 ) \

from which we find

*=M4--1 (i9-27)2h(h2 5) V 7

whereby finally we have

a =-?-(—-x2}y + -2- f^y3- — h2y] (19.28)x 2l(4 )y 2/U 10 J V ;

The first term on the right of equation (19.28) represents the stress given by
the usual elementary theory of bending, whereas the second term represents
its correction. This term does not depend on the abscissa x and is negligible
only in the cases where the span of the beam is large compared with its depth.
Note that expression (19.28) represents an exact solution, only if the axial
stresses at the ends are distributed according to the following law:

•"("±i)-6*(f''-W (m9)

These stresses present both the resultant force and the resultant moment zero.
Consequently, by virtue of Saint Venant's Principle, it is possible to deduce
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that their effect, at distances from the ends greater than the depth h of the
beam, diminishes sensibly until it vanishes altogether.

From solution (19.25b) we detect the existence of compressive stresses <7y,
which instead are absent in the elementary theory. The distribution of these
compressive stresses over the depth of the beam is shown in Figure 19.3(c).
The distribution of the shearing stresses T^, given by equation (19.25c),
coincides instead with that furnished by the usual elementary theory.

Using relations (19.2), (19.25b, c) and (19.28), we obtain the components
of strain

e,=_24(£_,2U(2 ,3__L h * y ] ] + JL,3_*iy+*i]j (1930a)

* 2E/j|_U Y {3 10 *)\ [3 4 7 12 JJ V '

e, = ̂ {4V_^1-Jf<i_A JV^ J (19.30b)y 2EI\ [3 4 12J [U Y U 10 JJJ V '

r*y="ji(l + v)(^-y2}* (19.30c)

Integrating the first two of these equations, we have

H = -2_||(—x- — }y + (-y3- — hiy}x\+ (19.31a)
2£/[LU 3 Y (l 10 J J

ri , k2 /J3ii tt,™[-3y*~y+n\\+f(y}

w=_9_J_f2!l_*i,2 + *iJ_ (19.3lb)
2EI\ [\2 8 127J

v\(P..x2}^ + (^.^}l + g(x)

[(4 )2 U 20^ JJJ S( '

where / and g represent unknown functions of the coordinates y and jc,
respectively.

Equation (19.30c) then becomes

*+*=_^|rr^.£i]+f2yZ_*i],i+ (19.32)dy ok 2EI\\\4 3 ) ( 10J J v '

F 7 h2l\ $
™[J2-TJM+

JLLJ^ZilL*
2EI ( L ' 2\\ dx

=_jL(1+v)(^i_A
£/V \ 4 ' J
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Collecting terms, we obtain

*+jLf4£+A2(2+^]_*iL_ * (19J3)
dx 2EI\ [4 {5 4J\ 3 j dy l '

Since the left-hand side is a function only of the variable x, whilst the right-hand
side is a function only of the variable y, both must represent a constant C]:

|=jL(ii_4ii+/l2f2+vi]j+Ci (1934)
dx 2EI(3 L 4 V ^ 4)\\ l v '

Integrating equation (19.34), we find the function g:

a f jc4 j c 2 f / 2 f2 vYfl

*>-£{7rT[7+*'(f+l)Jrq"'i ("'35)

The constants C} and C2 can be inferred from the vertical displacement in
the centre and from the conditions at the ends:

v(Q9Q) = 8 (19.36a)

t/±-,ol = 0 (19.36b)

Applying equations (19.36) to equations (19.31b) and (19.35), we have

C j = 0 (19.37a)

C2=S (19.37b)

and hence the geometrical axis of the beam bends according to the following
curve:

v(jcf0) = -2-{^-^[^ + A2f2+^l l + « (19.38)
V ' 2EI\12 2 |_4 V5 4)\\ V }

Since the condition (19.36b) must hold, the vertical displacement in the centre is

,=j.«/ir1+«*ir1+o] (1939)
384 El L 25 /H 8 JJ v ;

It may be noted that the first term which contributes to equation (19.39)
coincides with the vertical displacement (10.70a) deriving from the elementary
theory. The second term, which on the other hand represents its correction,
diminishes with the increase in the ratio l/h. For low values of this ratio, it may be
seen how the cross sections of the beam do not remain plane, much less orthogo-
nal to the centroidal axis. The effect of shear, according to the Saint Venant the-
ory, can, on the other hand, be estimated by applying equation (9.168):

r / / 2 r / / 2 6 T
ST=\ y,dx= ^dx (19.40)

Jo Jo 5 Gh
Substituting the linear function of shear into equation (19.40), we obtain

XT 6 f' /2 ( l \ 1 + V f f t V g / 4 „. ...5T = I q\--x\dx = - (19.41)
5G/J0 \2 ) 40 (l) El v '
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and hence

S = SM+8T=— ̂ - [l + — — (l + v)l (19.42)
384 El [ 25 T- }\ ^ }

It is interesting to note that, for v = 0, equation (19.39) and equation (19.42)
coincide, while, for v > 0, equation (19.42) overestimates the exact
deflection.

19.5 Thick-walled cylinder

The indefinite equations of equilibrium in cylindrical coordinates were pre-
sented for the solid of revolution in Section 12.12. In the case of a plane stress
condition, the components <7,, T,T, T#-, disappear, and the equations of equilib-
rium with regard to translation in the radial and circumferential directions are
obtained directly from equations (12.95b)

^ + l^*+5LZ2t + Jr=0 (i9.43a)
dr r d$ r

l^ + ̂ +2r dv or r
In the case where the body forces vanish, equations (19.43) are identically
satisfied by

1 d0 I d2® ,t. . . ,
ar=--r: + —377 09-44a)

r or r- dul

d2<P
d,=^— (19.44b)

07-

1 d<P 1 d20 d (I d®} . . . . . . .
T-*=-?-dJ-r*to=-*(-rto) (19"44C)

where d> denotes the Airy stress function.
To obtain the biharmonic equation (19.11) in polar coordinates, consider the

coordinate transformation

r2 =x2+y2 (19.45a)

?> = arctan^ (19.45b)
x

from which there follow

^ = - = costf (19.46a)
ox r

^ = Z = sin^ (19.46b)
oy r

d& v sintf m\A£. \
-5- = -^t = (19.46c)dx r- r
d»=±^cos» 46d)

dy r2 r
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The partial derivative of 0 with respect to x may be expressed, as is known, in
the following way:

* »»+|»» (19,7)
ax or dx ov ox

A d® sin $ d®
= cos v

dr r d$

The second partial derivative is thus equal to

d2® ( d s i n t f ( ? Y .d® sintid®} , i n . 0 v— — = costf cos$ (19.48)
dx2 ( dr r <9i»A * r d#) V '

2 ,<?2<Z> . . . d ( I d ® }
= COSZ 17 COST7 SinZ7 —

dr2 dr{rd$)

sin^> d ( Qd®} sintf (9 ( . Q<90^|
cost^-—- +—; smi?

r d${ dr ) r2 d&( d&)

Differentiating, we obtain

d2® 2 ^d2® .7fld® Id2®} / m > m \
— =c«^_ + sm2^7- + -—J- (19.49a)

o • a ad (I 30}2 smi^ cos$—
dr\r dd)

In like manner we have

d2® . , ,d2® 9 o f l d * 1 ^<^^ / ,n>in^—— =sm2!?—— + cos2^ —— + ——:-+ (19.49b)
dy2 dr2 (r dr r2 d$2)

„ . Q Q ^ f l ^ ^
2 smi^ cos^—

dr\rd&)

d2® . Q 0 ( i 50 1 52^ 520A / i n x n ,
-——- = sm# cos^ + —-— - (19.49c)

dxdy (r dr r2 d$2 dr2 ) V '

(cos^-Sin2t,)|^^lV ''dr{rd&J

Taking into account equations (19.49a, b) and equations (19.44a, b), equation
(19.8c) may be cast in the following form:

(£+£H') (19-50>
(d2 I d I d2 \ ,s(v+-r*+-?wr'+o*)

_(P I d I d 2 f
"l^+7^+^^Ja>~°
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the sum of the normal stresses, Gx + ay - ar + o#, being constant and equal to
the first invariant J/.

When there is polar symmetry, the Airy stress function depends only on the
radial coordinate r, and the equation of compatibility (19.50) becomes

(j!L+iAY£* i**l (19.51)(dr2 r d rAdr 2 r dr ) V '

d4® 2 d3<Z> 1 d20 1 d® n
—. I |_ — Q

dr4 r dr3 r2 dr2 r3 dr

It is possible to verify that the complete integral of equation (19.51) is

0(r) = A logr + Br2 logr + Cr2 + D (19.52)

The stress components are thus obtained from equations (19.44)

C7r=!^ = A + fl(l+ 21ogr) + 2C (19.53a)
r dr r2

d2tf> A
a#=-— = —- + £(3 + 2 logr) + 2C (19.53b)

dr2 r2

T r t f = 0 (19.53c)

In the case where there is not a hole at the origin, the only possible solution is
that of uniform stress: or = <J$ = 2C.

In the case of a thick-walled cylinder, subjected to uniform pressure both
internally and externally (Figure 19.4), we have B = 0 with the boundary
conditions

a,(r = *,) = -Pi (I9.54a)

or(r = Rl) = -pt (19.54b)

Imposing the conditions (19.54) on relation (19.53a), we obtain two equations
in the two unknowns A and C :

-j^ + 2C = -Pi (19.55a)

~ + 2C^-pe (19.55b)
K2

from which we find

-^f^
2C=PiR\~p*f* (19.56b)

/?2 -/?!

Substituting these two constants into equations (19.53), we have:

(19.5
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_ _*?gj( f t -P/ ) 1 PlRl-peRJ f l957a)

°r~ Rt-R? ^ + Ri-R? (19'57a)

_*W(pe-P>}^prt-peRl (19>57b)

* ^-^ r2 tf2-*2 V '
It is interesting to note that the sum (err + cr#) is constant throughout the

thickness of the cylinder. Consequently the stresses ar and o$ produce a uni-
form dilation or contraction in the axial direction, so that the cross sections
remain plane.

When the external pressure is zero, pe = 0, and the cylinder is subjected to
the internal pressure alone, equations (19.57) become

•'•^('-2) «"••>
"•-^M) <i9-58b)

These equations show that ar is always compressive and a$ is always tensile.
The latter is maximum on the internal surface of the cylinder, where

a,(m», = ̂ L±|i) ,„,,)

This tensile stress is greater than the pressure p{ for any value of the ratio R2I
R\. In the extreme cases we have

lim CTT>(max) = /?/ (19.60a)
R2 //?,->«

lim a,(max) = 4^T-M (19'60b)
R2 //?,->! t(2R) t

where R designates the mean radius and t the thickness, in the case of a thin
cylinder. The formula (19.60b) has already been obtained in Section 12.8,
following another path.
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19.6 Circular hole in a plate subjected to tension

Let us consider an infinite plate, subjected to a uniaxial tensile stress a in the X
direction (Figure 19.5). In the case where a circular hole of radius R is present
in the plate, the distribution of the stresses is perturbed in the neighbourhood of
the hole itself. In the sequel we intend to calculate the effect of stress
concentration, i.e. the amplification of the stresses on the edge of the hole.

Consider the portion of the plate which remains within the circumference of
radius /?', where R' » R. The stresses acting upon this circumference are
approximately the same that would result in the absence of the hole and can
therefore be deduced from Mohr's circle

or(r = R') = l<r(l + cos2tf) (19.61a)

Tri}(r = R') = --e sin2tf (19.61b)

The radial stress is made up of two parts: the first is constant and produces a
stress field, inside the ring, given by equations (19.57):

a R2R'2 1 a R'2 _^ ,
a--I7r^F^+77FrF (19'62a)

a R2R'2 1 a R'2 /^^i^ff"=+T^^F^+I^TF (19'62b)

In the limit whereby R' —> <», equations (19.62) become

*,=f(l-£) 09.63a)

<^=f(1 + 7r) 09.63b)

The second part of a;, \a cos2#, together with the shearing stress, - \a x
sin 2$, produces a stress field that can be derived from an Airy stress function
of the form

0 = /(r)cos2tf (19.64)

Substituting this function into the equation of compatibility (19.50), we obtain
the following total derivative differential equation:

f*+I£.4)V.O (.9.65)
V dr2 r dr r2 )

the complete integral of which is

/(r) = Ar2 + Br4 + — + D (19.66)
/2

The components of stress are thus found from equations (19.44), (19.64) and
(19.66)

ar =-(2A + ̂  + ̂ -}cos2$ (19.67a)
V r4 r^ J
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G# = (2A + l2Br2 + -^lcos2tf (19.67b)

Trl? = | 2 A + 6£r2- — -^|sin2tf (19.67c)
V r4 r2 )

The four constants of integration can be determined from the boundary con-
ditions on the external circumference, i.e. the two equations (19.61), and from
the boundary conditions on the internal circumference, respectively

ar (R') = -cos 2$ (19.68a)

Trt, (/*') = - —sin 2t> (19.68b)

0r(R) = Q (19.68c)

Tr#(R) = Q (19.68d)

From equations (19.67) and (19.68) we obtain the system of equations

^ + —^—^-- (19.69a)
fl/4 R>2 2 V ^

2A + 6/»"-^-2D=-£ (i9.69b)
/?'4 #'2 2 V ;

2A + — + ̂ £ = 0 (19.69c)
/?4 /?2 v '

2A + 65/?2 - ̂  - ̂  = 0 (19.69d)
R4 R2 V ;

For R' -> c», we have

A = ™, J5 = 0, C = -~R\ D = -R2 (19.70)

Substituting these values into equations (19.67) and adding the contribution
given by equations (19.63), produced by the uniform stress a/2, we finally
arrive at

'-fKK('+3£-4£H (i9-7ia)

*'=f(i+*K(i+3£)co82* (l9-7lb)

^=-1^1-3^ + 2^-jsin2tf (19.71c)

This solution was obtained by Kirsch in 1898.
It may be verified how, for r -> oo? the stress field, expressed by equations

(19.71), reproduces the conditions at infinity (19.61), while on the edge of the
hole, r = /?, we have

<Ttf =<r(l-2cos2tf) (19.72)
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with ar - rr# = 0.
The circumferential stress o# is maximum for # = 7t/2 and # = f n, i.e. at

the extremities of the diameter orthogonal to the direction of tension (Figure
19.5):

<Ttf(max) = 3(7 (19.73)

The so-called stress concentration factor, in the case of a circular hole, is
therefore equal to 3, and is regardless of the radius of the hole.

On the other hand, the circumferential stress o$ is minimum for # = 0
and & = n, i.e. at the extremities of the diameter collinear to the direction
of tension (Figure 19.5):

00(min) = -(T (19.74)

At these points a compression is thus expected, as in all the other points for
which-i^- < # < -i^and in < # < Ln.

On the section of the plate perpendicular to the axis X and passing through
the origin of the axes, we have

-.-f(* + £*3£) (,9.75a)

r^=0 (19.75b)

From an examination of expression (19.75a) the local character of stress con-
centration around the hole is evident. As r increases, the stress <T# tends rap-
idly to the value d, as is shown by the diagram of Figure 19.5. At a distance
from the edge of the hole equal to its diameter 2/£, the stress <J# is higher than
the asymptotic value erby 22%, whereas at a distance equal to twice the diam-
eter it is higher only by 4%. The solution (19.71) is applicable also to a plate
of finite width, provided that this width is not less than four times the diameter
of the hole. In these cases the error does not exceed 6%.

In the cases of biaxial tensile and/or compressive loading, the stress field is
obtained, by superposition, from solution (19.71). When, for instance, there
are two orthogonal tensile stresses of intensity a, i.e. a uniform tensile condi-
tion a, the circumferential stress on the edge of the hole is also uniform and
equal to 2<7. When, instead, there is a tensile stress a in the X direction and a
compressive stress -a in the Y direction, i.e. in the case of pure shear, r = a,
the stress is maximum and equal to 4<T (tensile) for # = fl/2 and ft = | n,
whereas it is minimum and equal to -4cr (compressive) for # = 0 and ̂ -K.

19.7 Concentrated force acting on the edge of an elastic half-plane

Consider a vertical force acting on the horizontal boundary of an elastic
half-plane (Figure 19.6(a)). Let the distribution of the force along the thick-
ness of the plate be uniform (Figure 19.6(b)), and let P denote the load per
unit thickness.

The solution of this elastic problem may be found from the Airy stress
function,

<£ = -.^rtf sintf (19.76)
n
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(a)
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Figure 19.6
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Using equations (19.44) we obtain the stresses

ar=-^C-^- (19.77a)
n r

fftf=Tri,=0 (19.77b)

which produce a field of radial compression. The boundary conditions are
satisfied by equation (19.77b), while the compression (19.77a) presents a sin-
gularity at the point of application of the force. The resultant of the forces
which act on a cylindrical surface of radius r (Figure 19.6 (b)) is in equilib-
rium with the external force P. Summing up the vertical components, <7rrd#
cos#, of the elementary forces that act on each elementary portion rd# of the
surface, we have

f* /2 4p [ X / 2
2 arr costfdtf = — - I cos2tfdtf = -P (19.78)

Jo n J0

If we consider a circumference of diameter d, with centre on the X axis and
tangent to the Y axis at the point of application of the force (Figure 19.6 (a)),

(")
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for each point C of this circumference we have r = dcos#, and hence relation
(19.11 a) becomes

*,=-^ (19.79)

This means that the radial stress is the same at each point of the
circumference, with the exception of the point of application of the force.

Rendering explicit the strain components (12.95a) corresponding to the
cylindrical geometry, we have

^ = ,|,=_2Pcostf 8Qa)

or nE r
u 1 dv 2P costf / t ^ n ™ _ \

^ = -+ -— = v — 19.80b
r r dv nE r

I du dv V _ / i rv r,r, \

/r*=-TT + -Tr = 0 (19.80c
r d& or r

Integrating the first equation, we have

M = - — costf logr + /(tf) (19.81)
nE

where / is a function only of ft. Substituting into equation (19.80b) and
integrating, we find

2vP 2P f
v =—sintf + — logr sintf- /(i?)dtf + g(r) (19.82)

nE nE J

where g is a function only of r. Substituting equations (19.81) and (19.82) into
equation (19.80c), we have finally

f(&) = -" ~V^P & sin# + A sintf + £ cosi> (19.83a)
nE

g(r)=Cr (19.83b)

where A, B, C are constants of integration.
From equations (19.81) and (19.82), we obtain the field of displacements

14 = - — costf logr-^'^fl sint^ + A sint> + 5 cosi? (19.84a)
nE nE

2vP 2P (\-v\P
v =^-sin^ + —logr sint?-^ ^-tf cosi?+ (19.84b)

nE nE nE
(1 - v)P

— sint> + A cos^-5 sint^ + Cr
^E

From symmetry we have v = 0 for t? = 0, and hence we must find A = C = 0.
With these values of the integration constants, the vertical displacements of
the points of the X axis are

M(0 = 0) =- — logr+ 5 (19.85)
7(xl
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To determine the constant J5, it may be assumed that a point of the X axis at
a distance d from the origin does not undergo a vertical displacement. From
equation (19.85) we obtain

B =— logJ (19.86)
nE

and hence

M(t» = 0) =— log - (19.87)
TEE r

As may be noted, the solution thus determined predicts an infinite displace-
ment of the point of application of the force, and likewise a non-integrable
strain energy in the area around the same point

r /2 CRo2 2P2 r / 2 f ^ d r ,
-^-rdrdtf = —— cos2tfdtf — (19.88)

J-x/2Je 2£ n - E J - n / 2 Je r
P° nl" /Y

The limit for £ —> 0 of expression (19.88) is infinite, but the same expression
can be considered finite for e ^ 0. This means that, if ideally we take away a
portion of material around the point of application of the force, the incongru-
ences pointed out above can in a sense be removed. This portion of material is
the one which actually undergoes plastic deformation and flows under the
action of the concentrated force.

19.8 Analytical functions

A function Z is said to be complex when it is made up of two parts, one real U
and the other imaginary V:

Z = U + iV (19.89)

Z is also referred to as the dependent variable, and, in general, each of its two
parts, U and V, is a function of the independent variable

z = x + iy (19.90)

where x is the real part and y is the imaginary part of that complex variable. It
may be stated that Z(z) = U(z) + iV(z) is a complex function of a complex
variable.

The complex function of a complex variable Z(z) is said to be analytical at
a point in the complex plane when its derivative is unique and does not depend
on the direction of the increment.

Conditions are shown to exist on the components U and V which imply that
the function Z is analytical. As is usually done in the case of real functions, let
the derivative of the function Z be defined as the limit of the difference quotient:

dU dU .(dV dV }

Z' - lim — = — = (19.91)
AC-*o Az dz dx + idy
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If we multiply both numerator and denominator by (dx-idy),

(dV . dU J .3V , .dV J X, ., ,
— ck + —dy + i —d* + i —d>' (dx-idy)

r, k* » * » J (19.92)
djc2 + d>'2

and designate as m the slope dy/djc, we
obtain

dU (dU dV} 2dV .\dV (dV dU} ^dU~
~37+mr^r+^: +m ^r+1 ~^:+m ^r~^rrm^^r^c 1,4' <&J 4' [& ^ ^j jy j

1 + m2 l ' J

The function Z is analytical, and consequently its derivative is unique in z, if
and only if the following differential relations, referred to as Cauchy-
Rlemann conditions, hold:

f-? ("-94a)
ox ay

S-.-Z- (19-Mb)
cn' ox

If these conditions do hold, we havez'-f+if <i9-95)

If a function Z is analytical, its derivative is also analytical and vice
versa. To demonstrate this, it is sufficient to differentiate relations (19.94)
with respect to x

%-£ (.9.96.)ax- ay ax

H-f^ "9-%b>axay ox~

Taking into account equation (19.95), equations (19.96) can be transformed as
follows:

— Re Z' = — Im Z' (19.97a)
ox oy

-^-Re Z' = ~1m Z' (19.97b)
ay ox

which represent the Cauchy-Riemann conditions for the derivative function.
If a function Z is analytical, its real and imaginary parts are harmonic

functions. To demonstrate this, it is sufficient to derive relations (19.94a, b)
with respect to x and y

!£•£
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(19.93

(19.
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%"% <™"»
and to apply the transitive law

^+f£-° <»•">dx2 dy2

Differentiating equation (19.94a) with respect to y, and equation (19.94b) with
respect to x, we obtain, on the other hand

fr?
ir-f

and hence

£*£-'
Consider, for example, the function

Z(z) = i - x + \y

Since

3U_=dV^ = l

dx dy

and

— = -—= 0
<?y c&

the Cauchy-Riemann conditions are satisfied at each point in the complex
plane, and hence the function z is always analytical.

On the other hand, the function

Z(z) = z=x-iy,

which associates with each point of the complex plane its conjugate, is not
analytical at any point in the complex plane. We have in fact

— = l — = -l
dx ' dy

that is

dU_ dV_

dx dy

The function

Z(z) = z2=(x + iy)(x + iy) = (x2 - y2) + 2vcy

(19.110

(19.100

(19.101)
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is analytical because

dU _dV _

dx dy

dU_ = _dV_ = __2

dy dx

More generally, all the polynomial functions are analytical.
The function

Z(z)=
l= X i y

z x2 +y2 x2 H-y2 '

since it is verified that

dU_dV_ y2-x2

dx~ dy " (x2+y2}2

du _ dv _ 2xy
dy~ dx~ (*2+y2)2

is analytical at all points in the complex plane, excluding the origin, where 1/z
is not definite.

Finally as regards the modulus function

Z(Z) = \Z\2=X2+y2

since

^ = 2*, ̂  = 0
dx dy

— = 2 - —= 0
dy ' dx

it is analytical only at the origin, while at the other points in the complex
plane, it does not satisfy the Cauchy-Riemann conditions.

19.9 Kolosoff-Muskhelishvili method

Using the properties of the analytical functions, presented in the foregoing
section, Kolosoff (1909), and subsequently Muskhelishvili (1933), developed
a method for resolving plane elastic problems. According to this method, the
Airy stress function becomes expressible as follows:

<P = Re(zV + ;t) (19.102)

where y/and x are two analytical functions, called complex potentials. It may
be demonstrated that the biharmonic equation (19.11) is satisfied by equation
(19.102).
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Equation (19.102) may be transformed as follows:

<P-Refzz^ + ̂ l (19.103)
V z )

whence we have

& = (x2+y2)Re¥- + Rex (19.104)

Since 1/z, if/ and % are analytical functions, and the product of two analytical
functions is itself an analytical function, as can very easily be demonstrated,
Re (ylz) and Re# are two harmonic functions. The procedure therefore is to
demonstrate that the product (x2 + y2)f, with / as a harmonic function, repre-
sents a biharmonic function.

Applying the Laplace operator, we obtain

V 2 [ ( x 2 + y 2 ) f ] = ±\j-(x2+y2) + 2#] + l\j-(X*+y*) + 2yf](l9.\05)L ax\_ax J oy\^dy J

= ( j t 2+>> 2)V 2 / + 4;t^ + 4y^ + 4/
dx ay

and hence, if /is harmonic

V2[(*2+J2)/] = 4J^|U y^/) (19.106)

To demonstrate that the function is biharmonic, a second application of the
Laplacian is necessary:

V2V2[(*2+y2)/] = 4 V2(*£W(y£l (19-107)

Performing the calculations, we have

va(,f] = |f£«f(UL||l (19,08)
V ax) dx\dx dx2 ) dy\ dxdy)

-2^L+x^^i+^L]
dx> d X ( d x ^ dyi)

Since/is a harmonic function, it follows that

v>(,f)-2££ (i9,».,
and likewise

V2f^f]=2ff (19-109b)I dy) dy

Finally, substituting equations (19.109) into equation (19.107), we obtain

V4[(^2+J2)/] = 8V2/ = 0 (19.110)
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Since the sum of a complex function and its conjugate is equal to twice its
real part

/(z) + 7(z) = 2Re/(z) (19.111)

from equation (19.102) we find

20=zv(z) + z(z) + zV(z) + X(z) (19-112)

Applying to equation (19.112) the following rules of differentiation of com-
posite functions:

£ = £*=£ = /' (19.H3.)
dx dzdx dz

££ = £*=i£ = jr (19.ll3b)
dy dz dy dz

f4| = f = 7 (1,,,3c)
dx dz ox, dz

^/ = d/^_.d/=_ i F
cty dz ay dz

we obtain

2 ̂  = ̂ (z) + z\r'(z) + X'(z) + V(z) + z^(z) + ?(z) (19.114a)

d(f) _

2 ̂ - = -i v(z) + izy'(z) + i*'(z) + ii^(z) - izy'(z) - i^'(z) (19-114b)
dy

Multiplying equation (19.114b) by the imaginary unit, we have

2i?j?- = ¥(z) - zv'(z) - X'(z) - V(z) + W'W + ?U) (19-115)
dy

The sum of equations (19.114a) and (19.115) yields

^ + i^ = V(*) + ̂ (2) + ?(z) (19.H6)dx dy

The partial derivation with respect to x and to y of expression (19.116) leads
to the following equations:

|5r + i|̂  = V'/(z) + ̂ (z) + zP(z) + r(z) (19'117a)dxz obcc/y
,92d) ^2^
jr± + i ̂ t = i V'W + i^'(z) - ^V'(z) - i*"(z) (19.117b)oaofy c/y^

Multiplying equation (19.117b) by the imaginary unit, we have

~?T + iff = -^)-^) + ̂ W + FW 09.118)
dyL oxdy

(19.11d)
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The difference and the sum of equations (19.117a) and (19.118) give,
respectively

<92d> d2<P
^ + ££ = 2vf'(z) + 2vr'(z) = 4 Revr'fc) (19.119a)
dx2 dy2

^-^ + 2i^ = 2[^(z) + F(z)] (19.119b)
dx2 dy2 dxdy L J

Since the second partial derivatives of the Airy stress function represent, in
agreement with equations (19.9), the stress components, equations (19.119)
can be written as follows:

ax+ay=4 Rev'(z) (19.120a)

ay ~ox -21^ =2[z^(z) + F(z)] (19.120b)

or

ax+ay=4 Rev'(z) (19.121a)

or^-CT,+2iT^ =2[z^(z) + r(z)] (19.121b)

Equations (19.121) may be cast in an alternative form, which allows the
individual stress components to be separated. Subtracting and adding them,
we obtain, respectively

2(dJt-iTv) = 4 Rev'(z)-2[zv"(z) + ;r(z)] (19.122a)

2(<7, + it J = 4 Rev'(z) + 2[zV"(z) + ̂ "(z)] (19.122b)

whilst from equation (19.121b) we find

Txy = lm[zv"(z) + X"(z)} (19.122c)

Isolating the real parts of equations (19.122a) and (19.122b), we obtain

ox =Re[2v\z)]-Re[x'\z)]-xRe[¥'\Z)]-ylm[¥"(Z)] (19.123a)

ff, =Re[2¥r'(z)]+Re[r(z)] + *Re[¥f*(z)] + yIm[vr''(Z)] (19.123b)

whilst from equation (19.122c) we have

^ = Im[X"(z)]-yRe[¥"(z)] + XIm[¥"(z)} (19.123c)

In the case of problems that are symmetrical with respect to the X axis, it
must follow that

T^(x,0) = 0 (19.124)

and hence, from equations (19.122a, b)

Im[zy"(z)+ *"(*)] = 0, for y = 0 (19.125)



647

ELLIPTICAL HOLE IN A PLATE SUBJECTED TO TENSION

On the real axis, since z = z, the following relation also holds good:

Im[zvT(z) + ;r''(z)] = 0, for y = 0 (19.126)

If we extrapolate the foregoing condition to the entire complex plane, we can
write

zV"(z) +*"(*) +* = 0, V z e t * (19.127)

where B is a real constant and C is the set of all the points of the complex
plane. Note that B cannot be a real function of the complex variable z, since if
it were it would not obey the Cauchy-Riemann conditions (19.94) at each
point of the complex plane.

If the expression (19.127) is identically zero over the entire complex plane,
so must its real and imaginary parts likewise be zero:

x Re[ yr"(*)] - y Im[y"(z)] + Re[ j" M] + B = 0 (19.128a)

^Imf^^z^+vRefv/^z^ + Im^z^O (19.128b)

Substituting equations (19.128) in equations (19.123), we obtain finally

a.= Re[2v'(z)]-ylm[2\i/"(z)] + B (19.129a)

<rv =Re[2\i/'(z)] + ylm[2\i/"(z)]-B (19.129b)

Tvv=-yRe[2<//'(z)] (19.129c)

The extrapolation of the condition (19.127) to the entire complex plane thus
allows one of the two Muskhelishvili complex potentials to be eliminated. As
shall be seen in the next chapter, the application of equations (19.129) leads to
a relatively simple solution of the problem of a plate in tension with a rectilin-
ear crack. This solution was obtained by Westergaard in 1939 on the basis of
Muskhelishvili's treatment, which had previously been published in Russian
in 1933 and was subsequently republished in English in 1953. However, in his
original publication, Westergaard used a different notation, Z/(z) instead of
2\ffr(z), and disregarded the real constant B. The latter implicit and erroneous
assumption was pointed out by Sih in 1966.

19.10 Elliptical hole in a plate subjected to tension

Let us consider an infinite plate in a condition of uniaxial tension a in a direc-
tion that forms an angle /? with the X axis (Figure 19.7). Let this uniaxial con-
dition be disturbed by an elliptical hole having its major axis along the X axis
and its minor axis along the Y axis.

Let X *7 * be the cartesian axes obtained from rotation of the XY axes by the
angle /?, such as to bring the X axis parallel to the tension a (Figure 19.7),
Evaluating equation (7.90), we obtain the following equations of transformation:

<7*r = cx cos2/? + crv sin2/? + 2rrv sin/3 cos£ (19.130a)

a* = ax sin2/? + av cos2/? - 2rvv sin/? cos/? (19.130b)

T*v = (crv -CTr)sinj3cosj3H-T^v(cos2/?-sin2j3) (19.130c)
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which, via the well-known trigonometric formulas, become

a>
x=^(ax+ay) + ̂ (ax-ay)cos2ft + Txy^2p (19.131a)

at
y=^(ax + ay)-^(ax-ay)CO&2ft-Txy^2ft (19.131b)

rt
xy=~(ax-ay)sia 2/? + r^, cos 2£ (19.131c)

From equations (19.131) the following relations are easily obtained:

ax + a*y=<Tx+ay (19.132a)

a;-a;+2irt
xy=e^(ay-ax+2iTxy) (19.132b)

Since at infinity we have

CT>CT, < T ; = T ^ = O (19.133)

equations (19.132) yield

ax+ay=a (19.134a)

ay-ax+2ii;Xy=-ae-2W (19.1345)

and hence, via equations (19.121), at infinity we have

4Rev'(z) = <r (19.135a)

2[zv"(z) + x"(z)] = -°e-2lP (19.135b)
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The elliptical coordinates £, 77, shown in Figure 19.8, are defined by the
following relation:

z = ccosh£ (19.136a)

with

f = £ +if? (19.136b)

From equations (19.136) we have

x = c cosh£ cos 77 (19.137a)

y = c sinh<f; sin 77 (19.137b)

The coordinate £ is constant and equal to £0, on an ellipse of semiaxes
c cosh £0 and c sinh <f;0, just as the coordinate 77 is constant and equal to 770 on
a hyperbola which has the same focuses (±c, 0) as the ellipse. It is sufficient in
fact to take into account the relations

cos2 77 +sin2 77 = 1 (19.138a)

cosh2£-sinh2£ = l (19.138b)

to obtain

^^br^-si" (19-139a)

V^ A- = l (19.139b)
c2 cos217 c2 sin2 77

Whereas then the semiaxes of the ellipse to which the point of elliptical coor-
dinates (<^o, rj0) belongs are

at- = ax sin2j3 + <rv cos2£ - 2rvv sin/J cos/? (19.130b)

770 represents the angular coordinate of the same point, on the basis of the
scheme of Figure 19.9.

Since the ellipses % = £0 and the hyperbolas 77 = 770 are mutually orthogonal,
it is possible to write a transformation analogous to equations (19.132),

a^+an = <JV + ay (19.141a)

an -cr{ +2irft =e2 i f f(<rv -a, +2irv,) (19.141b)

where <Te and cr^ are the normal stresses on the curves £ = constant and 77 = con-
stant, respectively, t^the shearing stress along the same curves, and a the angle
that the tangent to the curve 77 = constant forms with the X axis (Figure 19.10).

On the edge of the elliptical hole, of equation £ = £0, we have

C7 { =T { f ? =0 (19.142)

whereby, subtracting equation (19.141b) from equation (19.141 a), we obtain

2Re^'(z)-[z<'(z) + X"(z)]e2ia =0 (19.143)
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for£ = &.
The boundary conditions at infinity, given by equations (19.135), and on the

edge of the hole, given by equation (19.143), can be satisfied by the following
complex potentials:

4y/(z) = Accoshi; + £csinh£ (19.144a)

4%(z) = Cc2£ + Dc2 cosh2f + £c2sinh2£ (19.144b)

where A, B, C, D, £ are constants to be determined.
Substituting the foregoing forms given by equations (19.144) in the condi-

tions (19.135), we obtain

RQA + ReB = a (19.145a)

2(D + E) = -cre-2^ (19.145b)

just as, substituting the same equations in equation (19.143), we have

cosech£[(2A + B cotanh£) sinh£ + (19.146)

(fl + Z?cosech2£) cosh£ +

(C + 2E) cosech£ cotanh£ -

4Dsinh£-4£cosh£] = 0

once having taken into account that

e-=^4 (19.147)
sinh £

On the edge of the hole we have £ = §0 and £ = 2^0 - £. If this expression
for £ is substituted into equation (19.146), and the ifunctions sinh(2<^0 - f),
cosh(2£0 - 0

 are suitably expanded, the same equation becomes

(2Asinh2£0-2i ImBcosh2§0-4£)cosh^- (19.148)

(2A cosh2^0 - 2i Im Bsinh2^0 + 4D)sinh^ +

(C + 2E+B cosh2^0)cotanhf cosechf = 0

This equation is satisfied if the coefficients of cosh£, sinhf and cotanh^
cosech£ become zero. We therefore find three equations, which, together with
the two equations (19.145a, b), yield a system of five equations in the five
unknowns A, B, C, D, E. The solution is given by the following expressions:

A = <re2«o cos2/J (19.149a)

B = cr(l-e2£o+2i/^ (19.149b)

C = -cr(cosh2^0 - cos2j3) (19.149c)

D = --ae2«o cosh2(^0 + i]8) (19.149d)

E = -ae2^ sinh2(^0 +i^3) (19.149e)
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The complex potentials (19.144) are given congruently by

4y/(z) = 0t[e2&> cos2/2 coshf + (l-e2^i/?)sinh£J (19.150a)

4%(z) = -0t2[(cosh2£0-cos2/3) f + (19.150b)

ie%cosh2(C-&-i#]

The normal stress <7^ along the contour of the hole may be obtained from
the relation (19.141a), because there o> becomes zero,

( 7 ^ = 4 Re v'(z) (19.151)

whence, via equation (19.150a), we find

^,^,^^,^-^^-n) (19J52)' cosh2§0-cos27j

When the stress cris orthogonal to the major axis, i.e. for /? = 7Z/2, equation
(19.152) becomes

^ Fsinh2^0(l + e-2«o)
a £ = & =ae^ —-gi -l-l (19.153)

' I cosh2£0 -cos2?7

and the maximum value of er^ is reached at the ends of the major axis (cos 2r]
= 1):

climax) = erf 1 + 2- j (19.154)

This value tends to infinity for alb -^ «>, i.e. in the case where the ellipse
becomes particularly eccentric, whilst it is equal to 3d when a = b, i.e. in the
case of a circular hole. This latter result has already been obtained in Section
19.6. The minimum value of o^ is instead -o and, as in the case of the
circular hole, is reached at the ends of the axis collinear to the external load
(cos 2r? = -1).

When the stress a is orthogonal to the minor axis, i.e. for /? = 0, the
maximum value of a^ is reached at the ends of the minor axis, and is equal to
o[l + 2 (bid)}. This value tends to a in the case of very eccentric ellipses. At
the ends of the major axis, on the other hand, the stress is -a for any value of
the ratio a/b.

The case of uniform tension a can be considered as the combination of the
two cases previously considered. The maximum stress 2(7 (alb) is therefore
reached at the ends of the major axis, while the minimum stress 2(7 (bid) is
reached at the ends of the minor axis.

The perturbing effect of the elliptical hole on a condition of pure shear,
r = <J, parallel to the axes XY, is obtainable by superposition of the two cases,
that of tension a, with j3 = ± n, and that of compression -a, with )3 = | n :

g,(g = fe) = -2g e2"Sin2T? (19.155)
"^ So' cosh2£0-cos2;7 V '
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This stress vanishes at the ends of both the axes and presents the extreme values

fmax\ (a + b}2

<rJ . = ±Cyi2±?L 19.156
\minj ab

at the points for which tan 77 = +bla.
When the ellipse is very eccentric, the stresses, given by equation (19.156),

are very high, and the points where these are developed are very close to the
ends of the major axis. When instead a - b, we find again the result for the
circular hole, with a concentration factor equal to 4.

To summarize the conclusions both of Section 19.6 and the present section,
Table 19.1 gives a complete presentation of the stress concentration fac-
tors for circular and elliptical holes.

Table 19.1

Scheme Hole shape Loading Stress concentration
condition factor

•*— ( } —*• Circular Uniaxial 3

1
-— C J—+ Circular Uniform 2

I
I

O Circular Pure shear 4

^
I

*— C~~r~"^ —*" Elliptical Uniaxial along
major axis 1 + 2b/a

t
^~~ ~^y Elliptical Uniaxial along

i minor axis 1 + lalb

1
*— ̂ ^_^> —** Elliptical Uniform 2alb

1
N /
<^~^) Elliptical Pure shear (a + b)2/ab

/ ^



20 Mechanics of fracture

20.1 Introduction

With the scientific advances of the last few decades in the field of Material
Mechanics it has been realized that the classical concept of strength, under-
stood as force per unit surface causing fracture, is in need of revision, espe-
cially in the cases where particularly large or particularly small structures are
involved. The strength of the material must, that is, be compared against
another characteristic, the toughness of the material, in order to define, via the
dimension of the structure, the ductility or the brittleness of the structure
itself. Two intrinsic characteristics of the material, plus a geometrical charac-
teristic of the structure, are in fact the minimum basis for being able to predict
the type of structural response. A foretaste of what will be dealt with in the
present chapter has been provided in Section 8.11. In that section we defined
the fracture energy fic, one of the parameters capable of measuring the
toughness of the material. We also described how the structural response to
uniaxial tension varies as (fic and/or the length of the bar longitudinally sub-
jected to tension varies. In that case a tendency emerged towards a ductile
behaviour in the case of short lengths of the bar and, on the other hand, a ten-
dency towards a brittle behaviour (snap-back) in the case of greater lengths of
the bar. This tendency will be encountered again, in the present chapter, also
in the case of two- and three-dimensional solids, in such a way as to associate
ductile behaviour with relatively small solids, and brittle behaviour with rela-
tively large solids. Just as in structures acted upon prevalently by a compres-
sive force (Figure 17.11), there is a transition from plastic collapse to
instability of elastic equilibrium as slenderness increases, so in structures
acted upon prevalently by a tensile force, there is a transition from plastic
collapse to brittle fracture as the size scale increases.

Two extreme cases of the above properties are shown in Figure 20.1. The
first (Figure 20.1 (a)) depicts one of the hundreds of Liberty ships which, in
the years of the Second World War, split into two parts, with extremely clean
and brittle fractures and without the slightest evidence to forewarn of such an
eventuality. What caused profound astonishment in the technicians who first
looked into those accidents was, on the one hand, the extremely low stresses
present in the hull at the moment of failure and, on the other, the contrast
between the extreme brittleness of the failure and the considerable ductility
shown in the laboratory by specimens of the same steel.

The second case (Figure 20.1(b)) depicts a microscopic filament of
glass, used for fibre reinforcement of polymer materials. The filament is
elastically bent with a large curvature, so that it undergoes a regime of
large strains and stresses as much as two orders of magnitude greater than
the tensile strength of glass, as measured in the laboratory with specimens
of normal dimensions.

The two cases just examined bring out starkly and unequivocally how both
strength and ductility are functions of the size scale, such as to lead to brittle-
ness and low strength in enormous steel structures as well as ductility and high
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(a) (b)

Figure 20.1

strength in microscopic structures made of glass. On the other hand, it is well-
known that, in the size scale of the laboratory, steel is a particularly ductile
material and glass a particularly brittle one.

It is not necessary, however, to consider extreme cases to realize how duc-
tility is not a characteristic of the material, but rather a characteristic of the
structure. Even at laboratory scale, the ductile-brittle transition with
increase in size of the specimen has been brought to light (Figure 20.2). If the
material and the geometrical shape are kept unvaried, increasing the size scale
leads to a distinct transition towards a brittle type of behaviour accompanied
by a sudden drop in the loading capacity and a rapid crack propagation which
is in fact found for all materials, whether they be metal, polymer, ceramic or
cement. On the other hand, with specimens of relatively modest dimensions, a
ductile behaviour with slow crack propagation is encountered. In the case, for
instance, of three-point bending, it is possible to witness the formation of a
plastic hinge in the centre and the impossibility of separating the specimen
into two distinct parts by applying a simple monotonic loading (Figure 20.2).

In this chapter, after a brief reference to the by now classic Griffith's
energy criterion (1920), the major physico-mathematical theories which,
between 1920 and 1950, paved the way to modern-day fracture mechanics
will be presented; these are:

1. Westergaard's method (1939), or the method of complex potentials,
which in fact is a simplification of Muskhelishvili's method (1933),
already referred to in Section 19.9;

2. Williams' method (1952), or the series expansion method, which proves
to be a new and more general approach.

Both these fundamental methods lead to the determination of the power of
the stress singularity which is produced at the tip of the crack, and thus to the
definition of the stress-intensity factor.
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In addition to the problem of the opening of a symmetrically loaded crack
(Mode I), the problem of the same crack loaded skew-symmetrically by in-
plane shear forces (Mode II) will also be addressed. In this more general con-
text the more widely known branching criterion will be proposed, that of the
maximum circumferential stress.

Subsequently the concept of fracture energy will be taken up again and directly
correlated to the critical value of the stress-intensity factor. Finally, the plastic zone
(or process zone), which always develops at the tip of each real crack, will be con-
sidered; the amplitude of the zone will be estimated, and a mathematical and
numerical model will be proposed which is able to provide a continuous descrip-
tion of the ductile-brittle size-scale transition referred to above.

20.2 Griffith's energy criterion

Raws in materials are often considered as the major causes of onset of brittle
fractures. The effects of stress concentration in the vicinity of imperfections
or irregularities have been well-known for a long time. Already in 1898
Kirsch provided a solution to the problem of an infinite plate with a circular
hole, subjected to tension. As was shown in Section 19.6, the maximum stress
on the edge of the hole is three times as great as that applied externally (Figure
20.3(a)). This means that the strength of a plate of dimensions much greater
than the hole present in it is reduced to one third of that of the intact plate, regard-
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less of the size of the hole. Thus there is a compromise situation between the
amount of material removed and the curvature of the hole. At the limit, even an
infinitesimal hole causes a concentration factor equal to 3, even though the
amount of material removed is practically nil. The radius of curvature of the hole
is in fact in this case very small and creates conditions of particular severity.

Inglis (1913) extended investigations into stress concentration to the more gen-
eral case of the elliptical hole (Figure 20.3(b)). As has been shown in Section
19.10, the maximum stress on the edge of the hole with major axis orthogonal to
the external force is, in this case, multiplied by the factor [ 1 + 2 (a/b)\ The
strength of the plate with a hole thus comes to depend solely on the ratio between
the semiaxes of the ellipse bounding the hole. The stress concentration factor
increases with the increase in eccentricity of the ellipse. For a/b-*<*>, that is when
the ellipse is very eccentric, the concentration factor tends to infinity. This model
does not therefore prove useful for describing the critical condition of a crack of
length 2a and initial width 2b tending to zero (Fig. 20.3(c)). In fact, very small
external stresses suffice to exceed the tensile strength <ru at the tip of the crack. In
actual practice, instead, cracked solids can even stand up to considerable stress.
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In 1920 Griffith, an aeronautics engineer engaged in the study of glass
materials, thus felt the need to introduce energy considerations, and not only
stress considerations, into the analysis of the fracture phenomenon. He
showed that the elastic strain energy We, released by a uniformly extended
plate of unit thickness, when a crack of length 2a is formed, and the displace-
ments at infinity are maintained constant, is proportional to the energy con-
tained in the circle of radius a before the crack originates (Figure 20.4),

We=na^ (20.1)

where E is the elastic modulus of the material.
On the other hand, to create a crack of length 2a requires a surface energy

equal to

Ws = 4ay (20.2)

where /is the energy per unit surface.
Griffith supposed that, for a pre-existing crack of length 2a to extend, the

elastic energy released in a virtual extension must be greater than or equal to
that required by the new portion of free surface that is created:

™U*S- (20.3)
da da v '

The condition of instability is therefore the following:

2na— 2* 47 (20.4)

The foregoing inequality is valid both for the stress applied cr and for the half-
length a of the crack. The pairs of values crand a which fall beneath the curve
of Figure 20.5 constitute stable cases, whereas the pairs that fall above it con-
cern unstable cases. Rendering the condition (20.4) explicit with respect to the
applied stress, we obtain in fact

»»&£ (».5)V na

Twice the value of the unit surface energy is usually termed fracture energy,
(fic, so that equation (20.5) takes the form

<T*JM (20.6)
V na

The curve of Figure 20.5, which indicates the instability stress as a function
of the half-length of the crack, presents two asymptotes. The horizontal asymp-
totic branch represents the decrease of plate strength with the increase in the
crack length. When this length tends to infinity, the strength of the plate consis-
tently tends to zero. The vertical asymptotic branch represents the increase of
plate strength with the decrease in the crack length. For a —» 0, the strength
tends to infinity. This result is not, on the other hand, consistent with the
assumed existence of an intrinsic strength ap of the material of which the plate
is made. A similar problem has already been met with in our discussion of the
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limits of validity of Euler's formula, in Section 17.4 (Figure 17.11). In that case
a limit slenderness was defined, beneath which the compressive yielding of the
bar precedes the instability of the elastic equilibrium. In the present case, anal-
ogously, it is possible to define a length 2aQ of the crack, beneath which tensile
yielding of the entire plate precedes the unstable propagation of the crack:

*-r^r (2a"
The length 2a0 represents the equivalent length of the microcracks and of the
flaws, pre-existing in the material of which the plate is made.

Equation (20.7) offers an explanation of the fact that glass filaments show a
strength as much as two orders of magnitude greater than that found using
macroscopic test specimens. The fibre cross section has in fact a diameter
which is considerably less than the size of the flaws that are found in macro-
scopic test specimens. An increase of two orders of magnitude in the apparent
strength <7P derives in fact from the reduction in the characteristic length 2aQ
by a factor of 104. In this perspective, the tensile strength ceases to represent a
characteristic of the material and becomes a function of the length 2«0 of the
preexisting microcracks.

20.3 Westergaard's method

In this section we shall show how Westergaard (1939), taking up the treatment
of the subject by Muskhelishvili (1933), identified the power of the singularity
that the stresses present at the tips of the crack. It is known that if discontinu-
ities or slits are considered instead of elliptical holes (Figure 20.3(c)), the
stress that develops in the area around the tip tends to infinity as the distance
from the tip itself tends to zero (Figure 20.6). At this point the stress field is
not defined and, in actual practice, around it there forms a zone of plastic
deformation, albeit small, even in the most brittle materials.

It is possible to demonstrate that each function of the form

4> = Ul+xU2+yV3 (20.8)
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where Ul9 U2, U3 are harmonic real functions, satisfies the Airy equation
(19.11). Obviously

V4!/! = V^V2^) = V2(0) = 0 (20.9)

On the other hand, we have

v2(xU2}=(^+^}(xU^ (mio)

with

& t r,\ d[df,,\~\ 9\.. #/2l -^2 d2U2 ,„,,,^xU^A*(xU*r*[U2+x^r^+x^ (20-lla)

and

frW = ̂  (20.1 lb)

Equation (20.10), on the basis of equations (20.11), becomes

V2(xU2) = 2^ + xV2U2 (20.12)
ax

and, since the function U2 is harmonic by hypothesis,

V'(rf/2) = 2^. (20.13)

Further applying the Laplace operator to equation (20.13) and reversing the
order of this with the partial derivative, we obtain finally

V4(jcf/2) = V2f2^1 = 2^(V2[/2) = 0 (20.14a)
V dx ) dx

Likewise, it is also possible to demonstrate that

V4(y£73) = 0 (20.14b)

Consider an analytical function Z (z), and its subsequent derivatives, them-
selves also analytical,

d£ = z, ** = Z, ** = Z' (20.15)
dz dz dz

where the overbars represent Westergaard's original notation and have nothing
to do with the symbol indicating the conjugate of a complex number. The
rules of differentiation (19.113) in this case become

f = ̂ | = Z (20.16.)
ax az ax

^ = ̂ I* = iZ (20.16D)
ay dz ay

and likewise for the subsequent derivatives.
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From equations (20.16) there follow the rules of differentiation of the real
part and the imaginary part of an analytical function:

-\ ~\ ry

— ReZ = Re—= ReZ (20.17a)
dx ax

— Re Z = Re — = -ImZ (20.17b)
dy dy

f) = r)7 —
— ImZ = Im^ = ImZ (20.17c)
dx dx
3 _ 37 __

— ImZ = Im~- = ReZ (20.17d)
dy ay

Notice that, by the transitive law, from the two pairs of relations (20.17a, d)
and (20.17b, c) we find again the Cauchy-Riemann conditions (19.94).

The first of Westergaard's hypotheses concerns the Airy stress function,
which is written in the form

__ i
<£7=ReZ^ + ;yImZ/+-#(;y2-jt2) (20.18)

where the subscript / indicates a symmetrical situation with respect to the X
axis. The real and imaginary parts of an analytical function are in fact har-
monic functions, just as it is easy to verify that the function i B(y2-x2) with B
as a real constant, is also harmonic.

The stress components are obtained by double derivation of the Airy stress
function. Applying the rules of derivation (20.17) we have

d&r —

^ = Re Z/ + y Im Z7 - Bx (20.19a)
ax

r)&
?-]- = yReZI+By (20.19b)

dy

and hence, via equations (19.9)

d2&
ax = ̂ —!- = ReZ; - y ImZ; + B (20.20a)

dy2

<924>,
ay =^r = ReZ7 + jlmz; -5 (20.20b)

T^=-^ = -yReZ; (20.20c)

Note that, as had already been anticipated in the foregoing chapter, equations
(20.20) coincide with equations (19.129), once the following substitution of
complex potential is made:

Zl(z) = 2vf'(z) (20.21)
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Now consider a rectilinear crack of length 2a, along the ̂  axis between -a
and +# (Figure 20.7). The boundary conditions expressing the absence of
stresses on the faces of the crack are

crv (jc, 0) = T^. (x, 0) = 0, for - a < x < a (20.22)

The second of Westergaard's hypotheses concerns the complex potential,
which is written in the form

Zl=Tf v^ M'"+ B ' VZ^ (2°'23)
[(z + ̂ -fl)]

where g(z) is a real function of a complex variable and B is the real constant
previously introduced in equation (20.18). The function (20.23) satisfies, via
equations (20.20b, c), the boundary conditions (20.22). On the basis of equa-
tion (20.20a) we then find on the faces of the crack

(TA.(jc,0) = 2£, foi-a<x<a (20.24)

Carrying out in equation (20.23) the substitution of the variable

z = £ + a (20.25)

and, therefore, considering a reference system centred in the right-hand tip of
the crack (Figure 20.7), we obtain

Z,=^°W:^\B (20.26)
In the area surrounding the right-hand tip of the crack, the function (20.26)
can be approximated with

Z, = *^- + B (20.27)
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If we put

$&=*L (20.28)
V<z V#

finally we obtain

Z,~jj^ + B (20.29)

The real constant Kt represents the so-called stress-intensity factor.
To be able to understand the physical meaning of the factor Kf, it is neces-

sary to introduce the polar coordinates into the study of the stresses given by
equations (20.20). From complex analysis it is known that

f = re1* = r(cos d + i sin t>) (20.30a)

ri/2=r-i/2e-±u>=r-i/2fcos |_ i s in£j (20 30b)

£-3/2 = -3/2 -*i* = r-3/2fCQS3 ^ _isinl^ (20.30C)

* I 2 2 J V '

y = r sintf = 2r sin-cos- (20.30d)

The complex potential (20.29) can thus be expressed as follows:

Z^-fLfcos-^-isinfl + B (20.31)V2^r \ 2 2 J

having taken care to introduce also the constant B, which, at non-infinitesimal
distances from the origin, cannot be considered negligible.

The derivative of the complex potential (20.29) may itself also be expressed
in polar coordinates:

z;=-W--V3/2 = r -g ' . fcos- t f - i s in^ t f ) (20.32)1 Jln\ iT 2^2ff(r3 /2)l 2 2 ) v '

Substituting equations (20.30d), (20.31) and (20.32) into equations (20.20),
we obtain the stress field that is valid in the crack tip vicinity

*< =^COSf -2""1!"""1272^573)Sin!" + 2B (m33>)

ff'=^c°sf2"infc°sIW27^sl11!1' (m33b)

,,.̂ *|a.i(-i35^_a.|,) (20.33C)

Gathering common factors, we have finally

ax =-¥±= cos—[l- sin -sin- tf 1 + 25 (20.34a)
V2^r 2 V 2 2 J
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crv = -^cos-fl + sin-sin-tfl (20.34b)
-x ^27tr 21 2 2 ) V '

t = r_L- sin — cos — cos — # (20.34c)
* V2^ 2 2 2 V ;

In regard to the stress components (20.34), the following observations may
be made:

1. All three stress components (20.34) present a singularity r~1/2 at the tip of
the crack. The power -1/2 of this singularity depends only on the boundary
conditions on the faces of the crack, and not on the conditions at infinity.

2. The angular profile of the stress field depends itself also on the boundary
conditions on the faces of the crack, and not on the conditions at infinity.

3. The stress field in the crack tip vicinity is uniquely defined by the factor
Kb which is, on the other hand, a function of the conditions at infinity, or,
in the case of plates of finite dimensions, a function of the conditions
imposed on the external contour.

4. The physical dimensions of KI are somewhat unusual: [F][L]~3/2. It is pre-
cisely these dimensions that are the substantial cause of the size effects,
both in fracture mechanics and, indirectly, in strength of materials.

The third of Westergaard's hypotheses regards the function g(z), present in
expression (20.23) of the complex potential, and is related to the conditions at
infinity, which have so far been disregarded. Let it be assumed that the stress
condition at infinity presents the principal directions parallel to the XY coordi-
nate axes, with principal stresses equal, respectively, to ko and <7, k being a
real constant (Figure 20.7). Setting

g(z) = ffz (20.35)

and hence

Zl=Y< v^ M"2+*' V 'G^ (2036)

[(z + aXz-a)]

the aforementioned conditions at infinity remain satisfied. From equations
(20.20) we have in fact

lima, =a + 2B (20.37a)
-—>oo

lim crv = CT (20.37b)

l imr v v =0 (20.37c)
c->°° ' "

and the limit (20.37a) yields the value fccrfor

B = -a(k-l) (20.38)

From positions (20.28) and (20.35) we obtain the expression of the stress-
intensity factor

Kj = G^a (20.39)
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a which turns out to depend on the stress at infinity orthogonal to the crack and on
the half-length of the crack. The normal stress at infinity parallel to the crack does
not enter into expression (20.39), since the latter is not a function of the factor k.

Moreover, from equations (20.24) and (20.38) we derive the value of the
stress Gx on the faces of the crack:

<jv(jt,0) = (7(£-l), for-a<x<a (20.40)

Whereas the radial and angular variation of the stress field around the crack
tip is independent of the specific geometry under examination and is described
by relations (20.34), the information on the geometry and on the external bound-
ary conditions (loads and constraints) is summed up in the factor Kj. In the case,
for instance, of a plate of finite width 2h with a centred crack of length 20,
loaded at infinity with a stress a orthogonal to the crack (Figure 20.8), we have

( V / 2

K}=a^a sec— (20.41)
v 2h J

For h/a —» oo, the foregoing expression tends to equation (20.39).
In the case of a three-point bending specimen, with a crack in the centre of

length a, we have (Figure 20.9)

*'-sMf) <2°-42a)
with

^M?)"2-4-<0"!+ <20-42b)

2,8f£f_37.6f2r+38.7f»rUJ UJ UJ
where h is the depth, t the thickness and / the length of the plate, while P is the
external force.

As regards the elastic crack opening displacement (COD), this may be
found from the stress field, via the dilation

•'•^•>'-iw-) (2°-43)

P

tri wri\
A J t__JllL_.

wm?, 'mvfr,
r—^

L I J
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in the case of a plane stress condition. From equations (20.20a, b) we have

v = j*£vdy (20.44)

= - f(ReZ7+jImZ;-J5)d>'—- f (ReZ7 -ylmZ; + B)dy
tL J tL J

It is easy to verify that the derivative of the following expression coincides
with the integrand of equation (20.44):

2 — 1 + v 1-fv
v = — Im Z/ y Re Z7 Bv (20.45)

E E ! E " V '

From expression (20.29) of the complex potential we obtain by integration

Z/=^2£ 1 / 2+£f + C (20.46)
v2;r

and, in polar coordinates

2 IS f jQ. jQ. \

Zi=^=Lr]/2 cos- + isin- + £r(costf+ isintf) + C (20.47)
V2;r V 2 2 j v ) \ >

The displacements in the Y direction of the points belonging to the upper face
of the crack are therefore

v($ = n) = 2(-} ^r1/2 (20.48a)

whereas, of course, the points belonging to the lower face present opposite
values

/ 7 y / 2 K
v(& = -n) = -2 - ^r1/2 (20.48b)

\nj E

The relative displacement of crack opening in the vicinity of the tip is thus

^ ? V / 2 K
COD = v(7i)-v(-n) = 4 - ^-r172 (20.49)

\n) E

The crack opening displacement is directly proportional to the factor Kj
(which in turn is always directly proportional to the external load) and
inversely proportional to the elastic modulus E. It varies according to a para-
bolic law along the crack itself, presenting, of course, a null value in the tip
(Figure 20.10). It is interesting to observe how the deformed configuration of
the crack reveals a blunting with vertical tangent at the tip.

20.4 Mode II and mixed modes

Westergaard's treatment also concerns Mode II, i.e. those cases in which the
crack undergoes skew-symmetrical loadings with respect to the X axis (Figure
20.11). It will be shown that, as with Mode I (symmetrical loadings), also with
Mode II the stress field around the tip of the crack has a radial variation r~1/2,
with a singularity at the tip of an equal power -1/2, and that the angular varia-
tion does not depend on the geometry or on the boundary conditions.
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Figure 20.11

For the in-plane skew-symmetrical cases (Mode II) Westergaard chose an
Airy stress function of the following form:

<P / 7=-;yReZ// (20.50)

The stresses are obtained with a double derivation of equation (20.50)

ax = 2 Im Z7/ + y Re Z'u (20.5 la)

CTv=-yReZ;7 (20.5 Ib)

T,v = Re Z7/ - y Im Z'u (20.5 Ic)

The boundary conditions on the faces of the crack are still represented by
equations (20.22), and are satisfied by a potential of the form

ZH=T(—((
(z) o i / 2 * v^ (2°-52)[(z + a)(z-a)\

with/as a real function.
The substitution of variable (20.25), in the vicinity of the right-hand tip of

the crack, yields

z"-j^ (2°-53)
where

Kn=f(a)l£ (20.54)
V a

is the second stress-intensity factor.
Differentiating the function (20.53) and expressing equations (20.51) in

polar coordinates, we obtain

ax = —£u= sin - f 2 + cos — cos - t?l (20.55a)
42rcr 2 V 2 2 ; ;
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<JV = -^U= cos - sin - cos -1> (20.55b)
V2;rr 2 2 2

TJV = -^ cos - f 1 - sin - sin - tf 1 (20.55c)xy ^Jtr 2 V 2 2 ; V '
The stress field given by equations (20.55) holds in the crack tip vicinity

and is independent of the skew-symmetrical conditions at infinity, except for
the factor Klb which is instead a function thereof. In the particular condition of
pure shear at infinity, parallel to the XY axes, with tension cr = r at 45° and
compression a = -rat -45° (Figure 20.11), let us assume the function

f(z) = rz (20.56)
so that equation (20.52) becomes

Z// = r, , '' rf/2» V^ (20'57)[(z + a)(z~a)\

This equation satisfies the conditions at infinity. In fact, via equations (20.51),
we have

lim <jv = 0 (20.58a)
-—>oo

lim crv = 0 (20.58b)

lim rvv = r (20.58c)
~ >00

Finally, from positions (20.54) and (20.56) we find the expression for the
stress-intensity factor

Kn = rV5r7 (20.59)

which turns out to be analogous to equation (20.39).
Having resolved separately the symmetrical problem, with equations

(20.34), and the skew-symmetrical problem, with equations (20.55), it is pos-
sible to demonstrate that each generic problem presents a solution, asymptoti-
cally valid in the crack tip vicinity, which is the sum of the two elementary
modes, i.e. Modes I and II:

{<T}=^{0/ (t?)}+T&r{0// w} (20-60)

It is therefore sufficient to know the expressions of the factors Kf and Kn in
order to define univocally the stress field around the tip of the crack. In the
particular case of a stress condition set at infinity (Figure 20.12), with the prin-
cipal directions inclined with respect to the crack, the Principle of Superposi-
tion furnishes the expression (20.60), with K} and Ku given by equation
(20.39) and equation (20.59), respectively.

So far we have considered the two elementary modes of loading the crack
corresponding to plane stress or plane strain conditions: Mode I, or the open-
ing mode, which is symmetrical with respect to the crack (Figure 20.13(a));
Mode II, or the sliding mode, which is skew-symmetrical with respect to the
X axis (Figure 20.13(b)). There also exists a third elementary mode, corre-
sponding to three-dimensional conditions: Mode III, or the tearing mode,
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which is skew-symmetrical with respect to the XZ plane. This mode is char-
acteristic of the tearing of a sheet of paper (Figure 20.13(c)). The above three
modes represent all the modes that exist for subjecting a crack to stress, in the
sense that, around a point belonging to the front of a skewed crack, in turn con-
tained in a three-dimensional solid (Figure 20.14), the stress field, consisting of
the five stress components, an, ab, rnh, Tnt, Tht, can be expressed as follows:

{a} = (2nr)-V2[F(&,(p}}{K} (20.61)
5x1 5X3 3x1

where r is the radial distance from the point of the crack front,

"*/"
{K}= KI} (20.62)

KUI _in

is the vector of the stress-intensity factors for that same point, and !/<{#, <p)\ is
a (5 x 3) matrix which represents the angular profile of the asymptotic field, as
a function of the latitude # and the longitude <p, in the local reference system
tub, consisting of the tangent, the normal and the binormal to the crack front.

20.5 Williams' method

The problem of the determination of the stress field around the vertex of a re-
entrant corner was tackled and solved by Williams in 1952. Five years later
the same author extrapolated it to the limit case of the crack at the edge and so
confirmed the stress singularity r~ 1 / 2 , already identified by Muskhelishvili and
Westergaard. Williams' method is also known as the series expansion
method, because the Airy stress function is expanded, as we shall see, in a
series of functions.

Consider a plane sector of elastic material with angular amplitude 2 a, and a
polar reference system centred at the vertex of this sector (Figure 20.15). Let r and
ft be the radial and the angular coordinates, respectively, the angle # being consid-
ered positive if it is counterclockwise and zero if it is in the direction of the bisec-
tor inside the elastic sector. Let it be assumed that a function series expansion may
be carried out on the Airy stress function, and that each term of the series may be
separated into a parabolic radial function with an a priori unknown exponent
(eigenvalue) and an a priori unknown angular function (eigenvector)

*M) = 5V.+i/B(0) (20-63)
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Whereas the exponents (A^ + 1), and hence the power of the stress singularity,
will be identified on the basis of the boundary conditions on the free edges of
the sector, the functions/„ can be fully defined only on the basis of the loading
conditions at infinity

Applying relations (19.44) to the series expansion (20.63), we obtain the
stresses

°r = X ̂  "to*) + (A« + O/" W] (2(X64a)
n

a* ̂ 'MM^ +0/«(tf)] (20.64b)
n

^-J/*--1^/-'^) (20'64c)

n

where the prime indicates derivation with respect to #. The equation of congru-
ence (19.50) can therefore be evaluated by summing up the following terms:

-L^(ar + <y») = ̂ -i[f>v + (ln+l)2f;} (20.65a)
n

; J>r +<^) = ]T rA"~3(A« -l)[/n"+(4 + l)2/_] (20.65b)
n

|i((Tr+CTI?) = ̂ r^-3(An-l)(An-2)[/;+(An+l)2/n](20.65c)
n

Gathering common factors, finally we obtain

V2((Tr + cr(,) = ̂ A-3{(An-l)
2[/n"+(An + l)2/n]+ (20.66)

n

[/^+(An + l)2/«"]} = 0

Equation (20.66) is identically satisfied by equating to zero the expression in
the braces, which contains only angular functions:

/„" + [(An -I)
2 + (An +l)2]/;+[(An -l)2(An +l)2]/n =0 (20.67)

The fourth-order differential equation (20.67), and hence the congruence, are
identically satisfied by the following trigonometric form:

/n(tf) = An cos(An + l)tf + Bn cos(An - l)tf + (20.68)

Cnsin(An+l)^ + Dnsin(AM-l)t>

Whilst the first two terms of equation (20.68) represent the symmetrical
solution (Mode I), the two remaining terms represent the skew-symmetrical
solution (Mode II).

The boundary conditions on the edges of the elastic sector express the fact
that the circumferential stress (and hence the one normal to the edge) and the
shearing stress become zero,
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00(±a) = 0 (20.69a)

Trt,(±a) = 0 (20.69b)

for any radius r > 0.
From equations (20.64b, c) we obtain

/,(±«) = 0 (20.70a)

/n'(±a) = 0 (20.70b)

Using solution (20.68), equations (20.70) become

An cos(An + l)a + Bn cos(An - \}a ± Cn sin(An + \}a ± (20.7 la)

Dn sin(Art - l)a = 0

±AW(AW + l)sin(A, + l)a±£n(An -l)sin(An -l)a+ (20.71b)

CW(AW + l)cos(An + l)a + Dn(An - l)cos(An -l)a = 0

These two equations can be separated, so as to obtain two systems of
homogeneous linear algebraic equations in the unknowns An, Bn and Cn, Dn,
respectively:

An cos(A/I + l)a + Bn cos(An - l)a = 0 (20.72a)

An(An + l)sin(An + l)a + £rt(An -l)sin(Aw -l)a = 0 (20.72b)

Cw sin(Aw + l)a + £>rt sin(Art - l)a = 0 (20.72c)

Cn(An + l)cos(^ + l)a + Dn(An - l)cos(Aw - l)a = 0 (20.72d)

The first two equations correspond to the symmetrical problems (Mode I),
whereas the last two correspond to the skew-symmetrical problems (Mode II).
To obtain solutions different from the trivial one, the determinants of the
coefficients of the two systems must become zero. The unknowns An and Bn

will therefore be defined save for one factor, in the case of

(An - l)sin(An - l)acos(Aw + l)a - (20.73a)

(An + l)cos(Art - l)asin(An + l)a = 0

just as the unknowns Cn and Dn will be defined but for one factor, in the case of

(An +1) sin(An - l)a cos(Aw + \)a - (20.73b)

(An - l)cos(Aw - l)asin(Aw + l)a = 0

Note that in the case of Al and Bl the aforementioned proportionality factor
coincides with the stress-intensity factor Kb just as in the case of Q and D\ it
coincides with Kn.

From equation (20.73a) and taking into account the well-known trigono-
metric relations

sinx cosj - cos* siny = sin(x - y) (20.74a)

sin* cosy + cos* sin y = sin(* + y) (20.74b)
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we find the condition

-An sin 2a = sin 2 Ana (20.75a)

Likewise, from equation (20.73b) we have

+AH sin 2a - sin 2A,2a (20.75b)

Equations (20.75) are the eigenvalue equations for the elastic sector problem,
from which the exponents (A,7 + 1) of the series expansion (20.63) are obtain-
able. More precisely, from equation (20.75a) we obtain the eigenvalues of the
symmetrical problem, whilst from equation (20.75b) we obtain the eigen-
values of the skew-symmetrical problem.

The terms of the series expansions (20.64) are finite or infinitesimal for r ->
0+, should the corresponding eigenvalue satisfy the inequality

A,, > 1 (20.76)

On the other hand, the strain energy contained in an infinitesimal circular area
of radius R around the vertex of the sector is infinite if

A, ,=£0 (20.77)

Thus, we have

r*
W(R)~ r^-Ordr (20.78)

Jo

and the integral is divergent for (2An -1) ^ -1. Hence, for the analysis of the
dominant singularity of the stress field at the vertex of the sector, the only
eigenvalues of interest are those contained in the interval

0 < An < 1 (20.79)

The eigenvalue equations (20.75) can be written in the following form:

sin2A,?a=_sin2a
2A/7a 2a v '

with 0 *s= 2a =s= 2n.
From the graphical viewpoint, equations (20.80) may be resolved rather

neatly by intersecting the oscillating function y - sin2Aa/ (2Aa) with the hori-
zontal straight lines y = + sin 2o/(2o). In this way four principal cases can be
distinguished (Figure 20.16).

1. 0 ̂  2a ̂  n (convex angle or wedge). The first eigenvalue of the symmet-
rical problem, A/, does not exist or else A/ ^ 1. The first eigenvalue of the
skew-symmetrical problem is A// = 1. Consequently there is no stress-
singularity in the case where the elastic sector is convex.

2. 7t<2a^ 1.43/r (obtuse concave angle). The first eigenvalue of the sym-
metrical problem is A/ < 1, whilst we again have A// = 1. There is therefore
only one symmetrical stress-singularity.

3. \A3it <2a<2n (acute concave angle). The first eigenvalues, whether of
the symmetrical problem or of the skew-symmetrical one, are both less
than one: A/ < 1, A// < 1. We thus have both the symmetrical and the

(20.80
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Figure 20.16

skew-symmetrical stress singularities, albeit the symmetrical one of a
higher order.

4. 2a = 2n (null concave angle or crack). In this case we have A/ = A// = 1/2.
Only in the case of a null concave angle (as well as that of a flat angle) is
the first eigenvalue followed by a numerable infinity of other eigenvalues

A / n=A / / n=|,l, | ,2,. . . (20.81)

or equivalently

Kn - —, n = natural number (20.82)

The power of the symmetrical stress singularity is represented in Figure
20.17 as a function of the notch angle 7 For 7=0, the notch becomes a crack,
and in fact we find again the classical singularity r~1/2. As 7 increases there is a
transition, which up to 7^ n/2 is very slow, but subsequently, between Ttl2 and
n, undergoes a rapid acceleration. Obviously, when 7= n, the notch disappears,
just as the singularity of the stress field vanishes. When instead the re-entrant
corner angle is a right angle, 7= n!2, we have the power (1-A,) =* 0.45.
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20.6 Relation between fracture energy Y//c and critical value KK of the
stress-intensity factor

Griffith's criterion, discussed in Section 20.2, represents the first energy crite-
rion of fracture mechanics. In the years that followed, between 1920 and
1950, the efforts of the research workers were all directed, as has been seen in
the foregoing sections, towards defining the singular stress field around the tip
of the crack. It was only in 1957 that Irwin made a direct correlation of the
two different treatments: the energy approach of Griffith and the stress
approach of Muskhelishvili, Westergaard and Williams.

As regards a more general energy criterion than that of Griffith, which had
reference to a particular geometry (infinite plate with rectilinear crack, sub-
jected to a loading condition uniform at infinity) and to a deformation-
controlled loading process, we shall see how the concept of total potential
energy allows a criterion to be defined which is independent of the control
exercised over the loading process.

Let us consider an imposed-force loading process on a plate with an initial
crack of length 2a (Figure 20.18(a)). For a certain critical value of the force F,

2a

iF

2(a + da)

(a) 1F
(b)

F = constant

2{a+da)
5 = CF

(c)

Figure 20.18
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let the crack be assumed to extend for the length 2da (Figure 20.18(b)), so as
to produce an increment of compliance dC and hence an incremental displace-
ment of each end of the plate equal to (Figure 20.18(c))

d<5 = FdC (20.83)

The variation in the total potential energy due to the infinitesimal propagation
of the crack is

dW = dL-2Fd<5 (20.84)

where dL denotes the variation in elastic strain energy and the second term
represents the variation in the potential energy of the external loads. By virtue
of Clapeyron's Theorem and evaluating graphically the shaded area of the tri-
angle of Figure 20.18(c), we have

dL = 2(-Fd$J (20.85)

and hence, applying equation (20.83)

dL = F2dC (20.86)
In conclusion, we therefore obtain a decrease in total potential energy

dW = -F2dC (20.87)
Let us now consider an imposed-displacement loading process on the pre-

viously considered plate (Figure 20.19(a)). For a certain critical value of the
displacement 8 let us assume that the crack is extended by the length 2da (Fig-
ure 20.19(b)), so as to produce a decrement of stiffness dK and hence a decre-
ment of the external force equal to (Figure 20.19(c))

dF = SdK (20.88)

The variation in the total potential energy due to the infinitesimal propagation
of the crack, in this second case, is equal to the variation in elastic strain
energy, since the external loads by hypothesis do not perform incremental
work:

dW = dL (20.89)

By virtue of Clapeyron's Theorem and evaluating graphically the shaded area
of the triangle of Figure 20.19(c), we have

dW = 2(~SdF\ (20.90)

and hence, applying equation (20.88),

dW = 82dK (20.91)

Since stiffness is the inverse of compliance, we have

dK = d(^ = -±.dC (20.92)
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Substituting equation (20.92) into equation (20.91), we obtain

dW = -^-dC (20.93)
o

and finally, since 8/C = /% we once again obtain expression (20.87),
Differential calculus shows basically how the difference between the areas

of the two shaded triangles of Figures 20.18(c) and 20.19(c) constitutes an
infinitesimal of an order higher than the areas of the triangles themselves. We
have therefore demonstrated how the total potential energy diminishes always
by the same amount F2dC, following an infinitesimal extension of the crack,
regardless of the control exercised over the loading process.

By virtue of the Principle of Conservation of Energy, the following balance
between the variation in the total potential energy and the fracture energy
must hold:

dW+4yda=0 (20.94)

<c)
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where y = 'f }c/2 is the specific surface energy, i.e. the energy necessary for
breaking the chemical and atomic bonds connecting two unit and contiguous
surfaces of matter. Equation (20.94) represents the more general formulation
of Griffith's criterion, expressed by equation (20.3).

Considering also virtual, and not only real, propagations of the crack, the
concept of strain energy release rate is defined as

dW + ;f7dA = 0 (20.95)

where dA represents the incremental fracture area. The parameter ^ is thus
defined as the total potential energy released per unit increment in fracture area,

*--£ <»*>
and is a positive quantity, dW always representing a decrement.

Brittle crack propagation occurs really when ^/ reaches its critical value

#=#c (20-97a)
Since the stress field in the crack tip vicinity is univocally defined by the
factor Kh it is on the other hand legitimate to assume that the unstable
propagation of the crack occurs when it attains its critical value

Kj = KIC (20.97b)

It is thus evident how the two fracture criteria, the energy one (20.97a) and the
stress one (20.97b), have completely different origins. The two critical values,
%c of the variation in total potential energy (fracture energy), and KIC of the
stress-intensity factor, are not, however, independent, but linked by a funda-
mental relation, which will be described in the sequel.

A first simple way of arriving at the relation that links ^]C and KIC is that of
considering the case of the infinite cracked plate, loaded at infinity by a uni-
form stress condition. According to Griffith the condition of instability is
given by equation (20.6), whilst according to Irwin and taking into account
equation (20.39), it is

a ̂ -^= (20.98)
-^n a

Since the conditions expressed by equation (20.6) and equation (20.98) con-
cern the same physical problem and both of them present the half-length a of
the crack raised to the power -1/2, we immediately obtain

K/c = V^E (20.99)

It may be noted that KIC and ̂ IC are related via the elastic modulus E of the mate-
rial. In Chapter 19 it was demonstrated that the plane stress fields do not depend
upon E. There thus follows the independence of the factor Kt from the elastic
modulus £", as well as from Poisson's ratio v. If, instead, one reasons in energy
terms, and hence in terms of fracture energy, the influence of E emerges clearly.

Relation (20.99) concerns the critical values of the stress-intensity factor
and the strain energy release rate. It can, however, also be extended to the
generic values of these two parameters, using a demonstration due to Irwin.

Consider a cracked plate, subjected to a plane stress condition and to displace-
ments imposed on its external border (fixed grip condition). Let a be the length of

676
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(a)

Y

(b)

Figure 20.20

the crack and Aa the extension of the segment of the X axis on which the stresses
ay are assumed to be known (Figure 20.20(a)). Consider then a virtual extension
of the crack, so that it presents the incremented length a + A0 (Figure 20.20(b)).
Let v be the vertical displacements of the faces of the crack in this new configura-
tion, which we take as being known on the same segment of extension A0.

If we assume that the extension Act is so small that on it Westergaard's
asymptotic stress and displacement fields hold, and if we apply Clapeyron's
Theorem to the phenomenon of crack reclosure (from scheme (b) to scheme
(a) of Figure 20.20), we have the following variation in total potential energy:

AW = 2f -ayvdr (20.100)
Jo 2

with

ay = ay(# = 0) = K!
 i / 2 (20.101)

[2;r(Afl-r)]

from equation (20.34b), and

/9 \1/2 v
v = u(0 = jr) = 2 - ^-r1/2 (20.102)

\n) E

from equation (20.48a).
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Substituting equations (20.101) and (20.102) into the integral (20.100), we have

9 j^2 C^af r V / 2

AW = -^- M— dr (20.103)
n E Jo Utf-rJ V '

and evaluating the integral gives

K2

AW = -^-Aa (20.104)

On the other hand, from equation (20.95) we have

AW = ^7A0 (20.105)

omitting the negative algebraic sign, since the process of crack reclosure is
exactly the inverse of the one so far considered.

The comparison between relations (20.104) and (20.105) gives finally the
generalization of equation (20.99)

%=^ (20.106a)

which applies in cases where a plane stress condition obtains.
For plane strain conditions, it is not difficult to demonstrate, via a revision

of the position (20.43), that the following relation instead holds:

^=^(l-v2) (20.106b)

A check on the coherence of formulas (20.106) is afforded by dimensional analysis:

^=I™^=CF][Lr' (2°'107)

The physical dimension of fracture energy corresponds in fact to that of work
per unit area, or force per unit length.
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CRACK BRANCHING CRITERION IN MIXED MODE CONDITION

In the case of the mixed mode (Mode I + Mode II) condition, it is possible
to extrapolate the foregoing reasoning:

f*° i f A* i
AW = 21 -<Jvvdr + 2\ -Txvudr (20.108a)

Jo 2 J0 2

&W=f/M (20.108b)

Performing the calculations, we obtain

y = *L+*i (20.109)
d /-<

In this case ^ represents the variation in total potential energy per virtual
extension of the crack. In fact, when subjected to a mixed mode loading, a
crack does not extend collinearly to itself (self-similar propagation). In real-
ity, as we shall see in the next section, it branches (Figure 20.21).

20.7 Crack branching criterion in mixed mode condition

As already mentioned in the previous section, Griffith's energy criterion
applies consistently only to the case of collinear crack propagation, i.e. in the
case of Mode I. It cannot be conveniently applied to situations where the crack
branches out and changes direction, once subjected to biaxial load conditions.
These conditions produce a superposition of Mode I and Mode II, which is
conventionally termed mixed mode. The procedure then will be to determine
all the pairs of values K} and Kn which cause the critical condition around the
crack tip and hence crack propagation.

The first branching criterion, chronologically speaking, is that of maximum
circumferential stress, proposed by Erdogan and Sih in 1963. It is based on
the hypothesis that the crack extends starting from its tip, in the direction nor-
mal to that of maximum circumferential stress o$. Since the stresses around
the crack tip are expressible as products of a radial function by an angular
function, the above direction does not depend on the radius r of the circumfer-
ence on which the maximum of the stress o# is evaluated.

Translating expressions (20.34) and (20.55) into polar coordinates, and
summing up the corresponding results, we obtain

°r = (i^p005! [*{1+sin2f)+*»(fsint?-2tanf)](2(ul0a)

°* =7T-WcosT^'cos2T-^"sini?l (20.1 lOb)\27tr) 2. L L L J

Tr$ = ^Tycos — fo sin tf + tf,, (3 cos 0-1)] (20.110c)
2(27tr) " 2

The branching angle $ is obtained from the condition of stationarity

%= - ,,3^[g/si"fl + K//(3cosfl-l)]cos^ (20.111)
du 4(27tr) ^

= -f*r*=°
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which can be satisfied by setting cos#/2 = 0, which corresponds to the zero
shearing stress surface condition (rr$ = 0) for # = ±TT, or

KIsind + KlI(3cos&-l) = Q (20.112)

which yields the branching angle of the crack.
For a crack of length 2a, subjected to a generic biaxial stress condition at

infinity (Figure 20.22), the stress-intensity factors are

KI=aj3^m (20.113a)

Ku=-Cp<Jna (20.113b)

where Gp and T^ are, respectively, the normal stress and the shearing stress
with respect to the crack line, acting at infinity. The usual Mohr relations lead
to the following expressions:

KI =(£L±^+*L^Cos2/3)V^ (20.114a)

Kn=(a2~a{sm2p}jw (20.114b)

where dj, <T2
 are the principal stresses at infinity and /? is the angle of inclina-

tion of the crack (Figure 20.22). If we denote by m the ratio O^/o^, equations
(20.114) can be recast in the following form:

Kl = 024na[m + (1 - m)sin2 /J] (20.115a)

Ku =a2V^(l-m)sin/3cosj8 (20.115b)
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Equations (20.112) and (20.115) lead to a condition which relates the branch-
ing angle ft to the angle of inclination /3

[m + (l-m)sin2£]sintf+ -(l-m)sin2j3 |(3costf-l) = 0 (20.116)

Equation (20.116) is equivalent to the following:

( 0V
2(1-m)sin2/? tan- - (20.117)

2[m + (1 - m)sin2 j8]| tan — ] - (1 - m)sin 2/J = 0

The solution is represented in Figure 20.23 for various ratios m.
If m = 1 (uniform stress at infinity), we always have ft = 0, and the exten-

sion of the crack is collinear by symmetry. On the other hand, if m = 0 (uniax-
ial stress at infinity), a discontinuity occurs for /3 = 0. In fact

tf(m = 0,/3 = 0) = 0 (20.118a)

by symmetry, whereas instead

lim t?(/n = 0,/J)«70° (20.118b)
p^o+ v ' v '

Then if m is small but other than zero, the discontinuity disappears and is
replaced by a rapid variation, represented by a very steep branch in Figure
20.23. From a mathematical standpoint, this is a case of non-uniform conver-
gence of the function #(m, j3) in /? = 0 for ra—> 0+.
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Whereas equation (20.111) defines the direction of maximum circumferen-
tial stress, the biaxial critical condition may be obtained from the comparison
with the simple Mode I case:

*j2nrat=KIC (20.119)

Introducing the nondimensional factors

Kl = K,/Klc, K*n = Kn/KIC (20.120)

the branching conditions given by equation (20.111) and equation (20.119)
may be expressed as follows:

K] sint? + £;7(3cos tf -1) = 0 (20.121a)

g;cos*g-|^sintf = * (20.121b)
2 2 cos($/2)

As the angle # varies, all the points of the critical domain are thus defined in
parametric form. These points are symmetrical with respect to the axis K] and
valid only in the half-plane K] ^ 0 (Figure 20.24).

20.8 Plastic zone at the crack tip

The stress components around the tip of a real crack present a radial variation
r~m only beyond a certain distance from that singular point. For smaller dis-
tances plastic phenomena occur which mean that the stresses are in fact smaller
than those theoretically expected. In this way a plastic zone is created around
the tip of the crack, which is the more extensive, the greater the ductility of the
material. To a first approximation, since in front of the crack tip (Figure 20.6)

,,-JL. (20,22,
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it follows that the radius rp of the plastic zone can be estimated from (Figure
20.25)

ap= ,Kl (20.123)
V27D>

where o> is the yield stress of the material. At the moment of crack propaga-
tion we thus have the following estimation:

•*-s£ (2ai24)

As will be understood better in the sequel, the ratio KIC/aP therefore repre-
sents a measure of the material's ductility.

In actual fact, as Irwin observed in 1960, relation (20.124) provides only
the order of magnitude of the plastic radius. A more accurate evaluation can
be achieved by considering the redistribution of stresses, both elastic and
plastic, that develop ahead of the crack. In other words, the singular stress
distribution of Figure 20.25 is to be translated along the axis r, so that the
integral of elastic and plastic stresses is equal to the integral of the aforesaid
distribution. From the graphical viewpoint, therefore, the hatched areas of
Figure 20.25 must be equal.

The integral of the singular stress distribution, between the crack tip and the
plastic radius />, is

j_

r^dr = f-]2Ar/rJi
/2 (20.125)

Jo V2^ UJ

Finding K, from equation (20.123) and inserting it into equation (20.125), we
obtain

[ ' -%L* dr = 20prP (20.126)
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From relation (20.126) we deduce that the left-hand hatched area (Figure
20.25) is equal to that of the rectangle of sides o>, />. Also the right-hand
hatched area, obtained with a translation rp, is equal to that of the rectangle,
since both of them are complementary of the same area. Finally, we obtain the
following extension of the plastic zone at the moment of crack propagation,
according to Irwin's evaluation:

apc=2rpc (20.127)

or, considering equation (20.124),

apc = l% (20.128)
7t Up

A fracture may be defined as brittle when the plastic zone is much smaller
than the initial crack and the solid containing it,

aPC « a (20.129a)

aPC « h (20.129b)

where h denotes a characteristic dimension of the cracked solid under
examination.

From equations (20.129) and taking into account equation (20.128), we
obtain the following limitations in non-dimensional form:

-^£=«Wff (20.130a)
CTpVfl

-^£=«:Vtf (20.130b)
o-p-Jh

While equation (20.130a) may be obtained trivially from the condition

CJ«CTp (20.131)

once account is taken of relation (20.39) and the graph of Figure 20.5, equa-
tion (20.130b) is highly significant for structural purposes, and will be taken
up again in the next section.

A different evaluation of the extension of the plastic zone is due to Dugdale
(1960) and is based on the simulation of the plastic stresses via a constant dis-
tribution of forces directly applied to the faces of a fictitious crack, longer
than the real one (Figure 20.26). The condition to be applied is that of making
the total stress-intensity factor zero,

^/(a) + ̂ /(cTp) = 0 (20.132)

where the first term is that of the stresses applied at infinity, whilst the second
term represents the stress intensity due to the restraining stresses ap, applied
orthogonally to the faces of the crack at distances from the tips less than or
equal to ap (Figure 20.26).
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Since two concentrated forces F, applied orthogonally to the faces of the
crack at a distance x from the centre, cause at the two tips, respectively near
and far, the following stress-intensity factors (Figure 20.27):

]_

K,(A) = -T-(—f (20.133a)
V f l f c \ a - x j

j_

*7(£) = ̂ =f—I2 (2Q.133b)
VTRZ \a + x)

where la is the length of the crack, integrating the effects of the plastic
stresses ap (Figure 20.26), we have

-*,(„,). <» , pffc±!El±if Jfclahif „, po.,34)
[«(.+«,)]*J- l(°+°>)-*J l("+"<.)+*J

Evaluating the integral, we obtain

-*7(c7p) = 2cr/^^l' arccosf-^—1 (20.135)
\ n ) \a + ap)

while the factor corresponding to the external load a equals

Kj(a) = a^n(a + ap) (20.136)

Substituting equations (20.135) and (20.136) into the condition (20.132), we
have

^- = cos-^- (20.137)
a + ap 2aP

The limit cases of zero external stress, or external stress equal to the yield
strength o>, consistently produce, according to Dugdale's model, a null plas-
tic zone (ap = 0), or a general yielding (ap —> «>), respectively.

Neglecting the terms of a higher order in the series expansion of the cosine,
relation (20.137) is transformed as follows:

_e_=i-!f^:l2 (20.138)
a + ap 2\2aP)

from which we obtain

-^L^^^L (20.139)
a + ap Scr/s

Substituting equation (20.136) into the foregoing equation, we find finally

*-?f (mi4o>
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The extension of the plastic zone at the moment of crack propagation
according to Dugdale's evaluation is therefore

•*-ff <mi4»
Also in this case, in estimating aPO the material's ductility ratio K]C/aP is
present.

The comparison between the plastic extensions according to Irwin (equa-
tion (20.128)) and Dugdale (equation (20.141)) shows how the two models,
albeit notably different, lead to estimations that closely resemble one another.
The plastic extension, as given by Dugdale, is greater than that given by Irwin
by about 20%:

aPC(Dugdale)=^l23

apc(lrwin) 8 v ;

20.9 Size effects and ductile-brittle transition

A first size effect has already been considered in Section 20.2, and is that cor-
responding to the length of the crack. As emerges clearly from Figure 20.5, for
crack half-lengths greater than a0, where a0 is a characteristic length given by
equation (20.7), the collapse due to brittle crack propagation precedes the
plastic collapse of the plate. For a < a0, the plastic collapse of the plate instead
precedes the collapse due to brittle crack propagation. Recalling the funda-
mental relation (20.99) which links ^IC and KIO the characteristic length,
given by equation (20.7), can also be expressed as a function of KIC:

S-i£ (20,43)

The limitations defined by the inequalities (20.130) thus take the form

a»a0 (20.144a)

/*»a0 (20.144b)

A second dimensional effect, which derives directly from the one just con-
sidered, is that corresponding to the dimensions of the cracked solid, once
constant ratios are assumed between crack length and characteristic dimen-
sions of the solid. In the case of the geometrically similar plates of Figure
20.28, the collapse stress will be only a function of the half-length of the
crack, when the plates are sufficiently large to allow the effects of the free
edge to be neglected:

fc

<7 = -r^, for a^a0 (20.145a)

d = dp, for a<a0 (20.145b)

Since, on the other hand, by virtue of the supposed geometrical similitude,
the half-length a is proportional to the characteristic dimension h of the plate,

a = £h (20.146)
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where £ is the relative crack length, equations (20.145) can be recast in the
form

(7 = 4ffi-, for h^ (20.147a)
V^gfc s

a = C7p, for A<^- (20.147b)

There thus exists a dimension of the plate, hQ = OQ/%, below which the plastic
collapse of the plate precedes the brittle propagation of the crack. This dimen-
sion depends not only on the geometrical shape of the plate and of the crack,
but also on the ductility KIclaP of the material of which the plate is made.

From the simple example just dealt with, the absence of physical simili-
tude in tensile collapse of geometrically similar solids is immediately
inferred, once the existence of a crack of a length proportional to the dimen-
sion of the solid is assumed (Figure 20.28). As has already been observed, it is
not possible to state the same thing in the case of an elliptical hole, for which
the stress-concentration factor depends on the ratio between the semi-axes and
not on their absolute dimensions.

The hypothesis of negligibility of edge effects can, on the other hand, be
removed without vitiating the important conclusions displayed above; indeed,
they are enriched with fresh insights. Let us consider a plate of finite width 2h9

with a crack of length 2a,Q<a/h<l, loaded at infinity by a stress a orthogo-
nal to the crack (Figure 20.8). Since the stress-intensity factor is given by rela-
tion (20.41), the brittle propagation of the crack occurs for

v / -y.V'2
a = 4£ cos— (20.148)

<Jm\ 2h) v ;
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or, in non-dimensional form,

^=_^rcos(^/2^y/2

Op ap^/2h( m/2h ) v '

Denoting by

* = -%T (2ai5°)apV2/i

the so-called brittleness number, we obtain

a_= rco^aoy"
dp 1̂  na!2h ) V ;

On the other hand, the plastic limit analysis carried out on the net section
complementary to the crack, which is referred to as a ligament, provides a
second collapse condition, different from equation (20.151):

— = 1-- (20.152)
Op h V '

The diagrams of equations (20.151) and (20.152) are presented in Figure
20.29 as functions of the relative crack length a/h. Whilst the first of these
equations gives a family of curves related to the non-dimensional number 5-,
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the second is represented by a single curve (thick line). When s < 0.54, it may
be noted that the plastic collapse precedes the brittle crack propagation, both
for sufficiently short cracks and for sufficiently long ones. Whilst the first ten-
dency is by now familiar, starting from Section 20.2 onwards, the second rep-
resents a new, non-intuitive development. It is basically due to the
unlikelihood of a singular stress distribution developing in the cases where
there is an excessively reduced ligament. As the number s increases, the
interval of alh for which brittle propagation of the crack precedes plastic col-
lapse contracts until it vanishes for s - SQ ^ 0.54, the value for which the
corresponding fracture curve is tangential to the curve of plastic collapse. For
s > 0.54, plastic collapse precedes brittle crack propagation for any relative
crack length, there existing no point of intersection between the fracture curve
and the plastic collapse curve. Consequently the condition expressed by equa-
tion (20.130b) is reconfirmed following another path. This condition means
that brittle types of collapse tend to occur with low material toughness, high
yielding stress and/or large structural sizes. It is not the individual values of
KIO ap and h that are responsible for the nature of the collapse mechanism,
but rather only their function s (cf. equation (20.150)).

Also in the case of three-point bending of a plate (Figure 20.30), it is
possible to arrive at the same conclusions. Recalling expression (20.42) of the

— Plastic collapse

"" First plastic deformation

0.2 0.4 0.6 0.8

Relative crack length, a/h

Figure 20.30
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factor Kj at the moment of potential collapse due to brittle crack propagation,
we have

Kic=^f(l] (20-153)

from which, in non-dimensional form

-5ssL = _£_ (20.154)
<V*2

 f^\
J(h)

where

"3fc <2<U55)

denotes the brittleness number which considers the plate depth h as the charac-
h teristic dimension, and where/is the shape function (20.42b), which like the

function ((7tal2h) sec (ml2h))m of equation (20.41) vanishes for alh = 0 and
tends to infinity for a/h -» 1~ (Figure 20.31).

On the other hand, the force P which potentially produces plastic collapse
can be held to be the one that generates a plastic hinge at the ligament

7W-<V&^£ (20.156)
4 4

from which follows, in non-dimensional form,

-^ = fl--l (20.157)
Opth2 \ h) ^

The diagrams of equations (20.154) and (20.157) are presented in Figure
20.30. For this structural geometry, the brittleness number that marks the tran-
sition from ductile collapse to brittle collapse is s0 ̂  0.75. For this value the
fracture curve is tangential to the plastic collapse curve.

If the ductility of a material is therefore measurable via the ratio KIC/aP, in
order for the ductility of a structure to be defined, it is necessary that also a
dimension of that structure be entered into the equation. The brittleness num-
ber s provided by equation (20.155) is certainly the most synthetic way of
describing the degree of ductility of a structure. Plastic limit analysis therefore
represents a reliable method of calculating only in the cases where the brittle-
ness number of the structure being examined is not excessively low.

Table 20.1 gives indicative values of tensile strength ap and fracture tough-
ness KIC for some materials. The ratio OP/KIC then provides a measurement

Table 20.1

Strength Toughness Brittleness
oXMN/m2) AT/c(MN/m3/2) GplK^m112}

Concrete 3.57 1.96 1.8
Aluminium 500 100 5
Plexiglass 33 5.5 6
Glass 170 0.25 680

Figure 20.31
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(in m~1/2) of the brittleness of the material. Glass proves to be by far the most
brittle, while concrete proves to be unexpectedly the most ductile. This ductil-
ity in the case of concrete cannot be put down to a hardening behaviour of the
material but to its softening behaviour. On the other hand, in view of the
dimension h in the brittleness number s, it is at this point easy to understand
how glass can prove ductile for small structural dimensions and steel brittle
for large structural dimensions (Figure 20.1). Basically, then, the size effects
are caused by the different physical dimensions of strength and toughness.

Notice finally how, via definition (20.143) of the characteristic length of the
microflaws, it is possible to give the brittleness number the following alterna-
tive form:

f V / 2

H/r^M (20.158)
v h J

20.10 Cohesive crack model and snap-back instability

One way of describing the behaviour of materials in a consistent manner is
that of using a pair of constitutive laws:

1. a stress-strain relation that describes the elastic and hardening behaviour
of the uncracked material up to the maximum stress cru, unloadings
included (Figure 20.32(a));

2. a stress-crack opening displacement relation that describes the soften-
ing behaviour of the cracked material up to the critical opening wc, beyond
which the interaction between the crack faces becomes zero (Figure
20.32(b)).

The double constitutive law represented in Figure 20.32 has already been
proposed in Section 8.11 for brittle materials having an elastic-softening
behaviour, where the energy is dissipated exclusively on the crack surface. In
the more general case of material presenting an elastic-hardening-softening
behaviour (Figure 20.32), the energy is dissipated both in the volume of the
uncracked material and on the surface of the crack. The energy Jv dissipated
in unit volume is equal to the hatched area in Figure 20.32(a), while the
energy Js dissipated over unit surface is equal to the hatched area in Figure
20.32(b). If a bar is subjected to tension, cracks and eventually breaks into two

0)

55

u £

Strain

Figure 20.32
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parts, the total dissipated energy is given by the sum of the energy dissipated
in the volume of the bar plus that dissipated over the surface of the crack,

Energy dissipated = Jv x Area x / + Js x Area (20.159)

from which we find that the energy dissipated per unit surface of the crack, /c,
depends on the dimensions of the bar:

JC = JV1 + JS (20.160)

Only in the case of elastic-softening material, for which Jv - 0, does the so-
called integral Jc not depend on the dimension of the bar:

Jc=*s=Wic (20.161)
In the case of steels, the constitutive law is generally of the more complex

type, i.e. elastic-hardening-softening, and consequently it is particularly
difficult to find models to describe their behaviour, as any model must account
for two different mechanisms of dissipation, on the surface and in the volume.
However, in the case of concrete, rocks and ceramic materials, the simpler
elastic-softening law is able to describe the actual behaviour consistently.

The so-called cohesive crack model is analogous to Dugdale's model of
Figure 20.26, but with the difference that in the latter the distribution of the
cohesive forces is not constant, but decreases as the crack opening increases,
following a softening law like that of Figure 20.32(b). The zone ahead of the
real crack tip appears damaged and presents microcracks. It represents a por-
tion of the developing macrocrack, still, however, partially sutured by inclu-
sions, aggregates or fibres (Figure 20.33(a)). This zone, in which nonlinear
and dissipative phenomena of a microscopic nature occur, is termed the pro-
cess zone (or plastic zone). If it is sufficiently small compared to the real
crack, then the concepts of Linear Elastic Fracture Mechanics (LEFM) are
fully applicable. On the other hand, if the extension of the process zone is

Figure 20.33
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comparable with that of the real crack, then it must be appropriately modelled
(Figure 20.33(b)). The tip of the cohesive (or fictitious) crack coincides with
the tip of the process zone, in which the opening w goes to zero and the
restraining stress is equal to the tensile strength <7U. The tip of the real crack is
found instead at the critical crack opening wc, for which the interaction van-
ishes. In the intermediate points of the process zone, the pairs o-w are given
by the diagram of Figure 20.32(b).

Figure 20.34(a) represents the structural response, in terms of load vs.
deflection curve, of a three-point-bending concrete slab, as the relative depth
a/h of the initial crack varies, for , /̂c = 0.05 kg/cm and h = 15 cm. The
response predicted by the cohesive crack model is always of a softening type,
and, as can be noted, with the increase in a/h, a decrease in stiffness and in
loading capacity is found, together with an increase in ductility. The tail of the
P-8 response proves insensitive to the length of the initial crack.

Figure 20.34(b) represents the structural response of the same slab for a
lower toughness: flc = 0.01 kg/cm. The trends are the same as in the previous
case, but the responses, however, all appear more brittle, and especially the
one corresponding to the initially uncracked slab (a/h = 0.0), which shows a
marked phenomenon of snap-back. Snap-back disappears for a/h ^ 0.25. This
type of instability has already been encountered in Section 8.11, where brittle
materials were dealt with, and again in Section 17.9, where mention was made
of the instability of the elastic equilibrium of axially loaded cylindrical shells.

Figure 20.35 gives the diagrams of the load P as a function of the crack
mouth opening displacement (CMOD). Whereas with the tougher material,
the crack starts to open before the maximum load is reached, with the more
brittle material, onset of crack opening corresponds exactly to the point of
maximum load, and the crack continues to open in a monotonic way as the
load diminishes in the softening stage. From this diagram it is possible to
understand how, in order to detect the snap-back branch EC experimentally

1600

_ 1200

"g 800
o

400

0 CMOD

0.0 2.5 5.0 7.5 10.0

Crack mouth

opening displacement (cm x 10~3)

Figure 20.35
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(Figure 20.34(b)), control is necessary via crack opening and not via deflec-
tion, which proves not to be a monotonic function of time and crack length.

The notable embrittlement of the structural response, which in Figure 20.34
is produced by a drop in toughness ̂ IC of the material, can equivalently be gen-
erated by a dilation of the size scale h. Figure 20.36 gives the structural
responses of the previously considered slab, for ff]C - 0.05 kg/cm and four dif-
ferent sizes: (a) h = 10 cm; (b) h = 20 cm; (c) h = 40 cm; (d) h = 80 cm. Whereas
with h = 10 cm the response is of a softening type for each depth of the initial
crack, with h = 20 cm there is a practically vertical drop in the loading capacity
for the initially uncracked slab, and with h = 40 cm a clear instance of snap-
back is recorded, which, with h = 80 cm, turns into a very sharply pointed cusp.

( a ) ( b ) h = 20cm
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Figure 20.36
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The embrittlement of the structural response, produced both by the decrease
in toughness fjc and by the increase in strength cru and/or in the size /z, can be
described in a unitary and synthetic manner via the variation in the following
dimensionless number:

"-^ <2ai62>
Whereas the brittleness number (20.155) is of a stress type, the brittleness
number (20.162) is of an energy type. Taking into account the fundamental
relation (20.99) which links KIC and %c, it is possible to demonstrate that
between the two brittleness numbers referred to above there is the following
relation:

sE=8us
2 (20.163)

where £u = au/E represents the ultimate tensile dilation. It may be shown that
there is a perfect physical similarity in the failure behaviour, when two of the
three pure numbers s, s& e^ are equal.

Figure 20.37(a) gives the load vs. deflection response in non-dimensional
form, for a/h = 0.1, £u = 0.87 x 1Q-4, v = 0.1, / = 4h, as the brittleness number
SE varies. It is clearly evident that, as SE varies through four orders of magni-
tude, the shape of the non-dimensional curve changes totally, from ductile to
brittle. For SE ^ 10.45 x 10~5, the softening branch acquires, at least for a por-
tion, a positive slope, and hence the phenomenon of snap-back is seen to
occur.

The area bounded by each individual curve of Figure 20.37(a) and the hori-
zontal axis represents the product between fracture energy </IC and initial area
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Figure 20.38

of the ligament (h - d)t. The areas under the non-dimensional P-S curves are
therefore proportional to the respective brittleness numbers SE. This simple
result is made possible by the hypothesis that the energy dissipation occurs
exclusively on the fracture surface and not in the volume of the slab. Figures
20.37(b), (c) illustrate the cases o/h = 0.3 and 0.5, respectively, which show a
greater ductility.

The maximum load deriving from the cohesive crack model can be com-
pared with the load of brittle crack propagation, expressed by equation
(20.154). The values of their ratio are presented in the graphs of Figure 20.38
as functions of the inverse of the brittleness number SE. This ratio can be
regarded as the ratio between fictitious toughness and actual toughness. Fic-
titious toughness is always lower than actual toughness, because, for high val-
ues of s& plastic collapse tends to precede potential collapse due to brittle
crack propagation. It is evident that, for SE —» 0, the results of the cohesive
crack model tend to converge with those deriving from Linear Elastic Fracture
Mechanics, and that consequently the phenomenon of snap-back tends to rep-
resent the classical Griffith's instability. The cohesive crack model thus mani-
fests its ability to describe the ductile-brittle transition, the existence of which
has already been revealed in the foregoing sections.

Another demonstration of the fact that the cohesive crack model tends to
approach asymptotically Linear Elastic Fracture Mechanics is provided by the
diagrams of Figure 20.39, which give the relative depth of the fictitious crack
at maximum load as a function of the inverse of the number SE. For SE —> 0,
this depth tends to that of the initial crack and hence, at the point of snap-back
instability, there is the absence of the process zone, or a completely brittle-
type fracture. On the other hand, for SE —» <», the process zone at maximum
load invades the entire ligament.
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Appendix A Calculation of the internal reactions in a
circular arch subjected to a radial
hydrostatic load

A.1 Analytical method

The differential equation (5.9) in the case of Figure 5.4, whereby

p = m = 0 (A.la)

3(1?) = -ytf(l-cost?) (A.lb)

reduces to the following form:

^+™=7#to* (A.2)
dtf3 dtf '

For the calculation of the complete integral, i.e. of the integral of the associ-
ated homogeneous equation, consider the characteristic equation

A3 + A = 0 (A.3)

which presents the following roots:

A! = 0, A2 = +i, A 3 = -i

where i is the imaginary unit. As is known from mathematical analysis, the
complete integral therefore takes the form

Mg (t?) = Ci + C2 cos t? + C3 sin i? (A.4)

As regards the particular solution, since we are considering a case in which
the known term is of the sort

b($} = Pm(d)ea» (A.5)

where /*,„($) indicates a polynomial of the mm order, with m = 0, and a = i,
this may be sought in the form

M0(t?)-??X(t?)e^ (A.6)

where r = 1 is the multiplicity with which a= i is the solution of the character-
istic equation, and Rm (ft) is a polynomial in ft of the order m = 0, and thus in
this case is a constant. We have therefore

M0(t?) = atfsintf (A.7)

Substituting equation (A.7) in equation (A.2), we obtain the coefficient a.
Differentiating equation (A.7) sequentially, we have in fact

^- = 0(1? cos i? + sin i?) (A.8a)
di?
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^k = a(-0 sin 0 + 2 cos 0) (A.8b)
dt>z

^-^- = a(-0 cos ̂  - 3 sin #) (A.8c)
dt7J

and thus substituting equations (A.8a, c) in equation (A.2)

-2asintf = y/?3sintf (A.9)

or

fl = -2y- (A.10)

Summing the complete integral (A.4) and the particular solution (A.7), with
the coefficient a given by equation (A. 10), we can write finally

r/?3

M(tf) = C1+C2costf + C3sini?-^—tfsintf (A.ll)

The arbitrary constants Q, C% C3 are calculated using the following boundary
conditions:

MA=0 (A.12a)

r A = 0 (A.12b)

M f l =0 (A.12c)

since in A there is a roller support and in B a hinge (Figure 5.4). Recalling the
relation (5.6), which links shear and bending moment, we have

M(0) = C 1 +C 2 =0 (A.13a)

r(0) = -̂ - = 0 (A.13b)
R

ML|j=Cl-C3-^-3=0 (A.13c)

The linear algebraic system (A. 13) admits of the following roots:

Ci=2-£-jr (A.14a)

C2=-^-n (A.14b)
4

C 3 =0 (A.14c)

Finally we obtain from equation (A.I 1)

M(tf) = ̂ -(;r-;rcostf-2tfsmtf) (A.15)
A
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Applying equations (5.6) and (5.8), we obtain also the shearing force and the
axial force

r(tf) = -^[(2-7r)sintf + 2tfcostf] (A. 16)

AT(tf) = ̂ -M + ;rcostf + 2tfsintf] (A. 17)
4

A.2 Direct method

The equations of equilibrium to horizontal translation, vertical translation and
rotation about point B, respectively, appear as follows (Figure A.I):

fTT/2

HA + HB = I k(#)| sin# *d# (A-18a)
Jo

fjf/2
VB=\ |?(tf)|costf tfdtf (A.18b)

Jo
fTtll

HAR= |?(tf)|costf/?2dtf (A.18c)
Jo

Computing the integrals, we obtain a linear algebraic system in the three
unknowns HA, HB, V&

HA^HB=^- (A.19a)

VB=yR2(l-?-} (A.19b)
v 4y

HA=7R
2(l-^ (A.19c)

which gives the solution

HA=rR2(l-^ (A.20a)

#B=r*2(j-£| (A.20b)

VB=YR2(l-~} (A.20c)

The bending moment acting in a generic cross section of angular coordinate
# is obtained by summing the contributions which precede the cross section
itself (Figure A.I)

f*
M(d) = -HAR(l - cos i?) + \g((Q^R2 sin(t? - o>)do> (A.21)

Jo



DIRECT METHOD

703

Figure A.I

Substituting the distribution (A.lb) into the integral, we have

r^
\q(co)\R2sm($-co)dco (A.22)

Jo
*& *&

= y/?3 I sin($ - G))do) - y/?3 I coscosin($ - co)dco
Jo Jo

Applying the well-known trigonometric formulas, we obtain

r^
\q(co)\R2$m($-(D)dCQ (A.23)

Jo

c*= yR3 I (sin^coso)-cos^sina>)d6)-
Jo

f*7/?3 cos G)(sin & cos co - cos ̂  sin co)dco
Jo

= 7/?3 \ sin ^[sin ft)]^ + cos ^[cos co]^ -

i r i T? i 1
— sini? 0) + -sin2ft) —cost>[cos2d)]^ \
2 L 2 Jo 4 L Jo|

= y/?3Jsin2i> + cosd(cost>-l)-

-sim?(rt? + -sin2i?>|--cosi>(cos2t>-l)l
L \ L ) *\ }
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Af(t?)= -7/m--j(l-costf) + (A.24)

7/?3 f l - cos tf - -i> sin i? - - sin i? sin 2tf -

— COS $ COS 2l> H COS $
4 4 )

The expression (A.24) reduces to equation (A.15), just as equations (A.16)
and (A. 17) for shearing force and axial force can be found again using the
direct method.

Figures A.2(a), (b), (c) represent the variations of Af($), T(ff)9 N(&), respec-
tively. It may be noted how the bending moment in each case stretches the
fibres at the intrados, the configuration of the pressure line being that of Figure
A. 1, and how it presents a maximum absolute value for # ̂  62°, where the
shear vanishes. It is further to be noted how the axial force is always
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compressive, with a minimum absolute value for # =* 60° and equal maximum
absolute values at the two extremes.
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Appendix B Calculation of the internal reactions in a
circular arch subjected to a uniformly
distributed vertical load

B.1 Analytical method

The differential equation (5.9) in the case of Figure 5.8, whereby

/w = 0 (B.la)

p = g0 cos $ sin # (B. Ib)

g = -g0cos2$ (B.lc)

reduces to the following form:

^ + ̂  = -3K^oSini?cosi? (B.2)

The complete integral is the same as in the case studied in Appendix A,
equation (A.4), while the particular solution is to be sought in the form

Af0(t?) = flcos2tf (B.3)

the known term being expressible as

b(&) = --R2q()sm2$ (B.4)

Differentiating equation (B.3) sequentially we obtain in fact

^- = -2asin2tf (B.5a)
d$

H° KA
—f = -4flcos2tf (B.5b)
dtf2

^^- = 8flsin2tf (B.5c)
dt?3

and thus substituting equations (B.5a, c) in equation (B.2)

60sin2tf = R2qQsin2& (B.6)
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or

« = -*£- (B.7)

The solution thus appears as follows:

M(&) = Q + C2 cos $ + C3 sin $ - ^— cos 2t> (B.8)

The arbitrary constants Clt C2, C3 are calculated via the boundary condi-
tions (A. 12):

M(0) = Q + C2 - ̂ L = 0 (B.9a)

7(0) = Q- = 0 (B.9b)
/?

M(-|) = Cl-C3+^i.O (B.9c)

The linear algebraic system (B.9) possesses the following roots:

C,=-^ (B.lOa)

C2=-^- (B.lOb)

C 3 =0 (B.lOc)

so that the solution becomes

M(l?) = _Mi+io^icosl)_Micos2z? (B11)
4 2 4

or

M(tf) =--^^(l-costf-sin2 tf) (B.12)

Applying equations (5.6) and (5.8), we obtain also the shearing force and the
axial force

r(tf) = -^(sintf-2sintfcostf) (B.13)

#(tf) = -^(costf + 2sin2t>) (B.14)
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B.2 Direct method

The equations of equilibrium with regard to horizontal translation, vertical
translation and rotation about point B, respectively, appear as follows:

HA=HB (B.lSa)

VB=^ (B-lSb)

HAR = q(}^- (B.ISc)

from which the constraint reactions are obtained:

HA=^qQR (B.16a)

HB=^q0R (B.16b)

VB=^ (B.16c)

The bending moment acting in a generic section of angular coordinate # is
obtained by summing the contributions which precede the section itself
(Figure 5.8):

M(tf) = -//^/?(l-cos#) + -40/^sin2tf (B.17)

Substituting equation (B.16a) in equation (B.17) we obtain again equation
(B.12).

In the same way the shearing force is

T(&) = ~HA sin tf + (<?0#sin tf)cos& (B.18)

just as the axial force is

#(#) = ~HA cos?? -(#o#sintf )sintf (B.19)

Equations (B.18) and (B.19) coincide with equations (B.13) and (B.14),
respectively.

Figures B.2(a), (b), (c) represent, in order, the variations of M(#), T(#),
N(d). It may be noted that the bending moment in each case stretches the
fibres at the extrados, the configuration of the pressure line being that of
Figure B.I, and that it presents a maximum for # =* 60°, where the shear van-
ishes. It should further be noted how the axial force is always compressive,
with a minimum absolute value at the end A and a maximum for i? ̂  75°.

Figure B.I
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Appendix C Anisotropic material
C.1 Anisotropic elastic constitutive law

The matrix expression of elastic potential is given by equation (8.44a), which
represents a quadratic form in the components of strain, just as the elastic con-
stitutive law is given by equation (8.44b), which links components of stress
and components of strain. In both formulas there appears the Hessian matrix
[H], which, in the case of isotropic material, has been rendered explicit in the
expression (8.74). The expression of complementary elastic potential, on the
other hand, is given by equation (8.49), just as the inverse constitutive law is
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formally represented by equation (8.46) and rendered explicit for isotropic
material in equation (8.73).

Whereas in the case of isotropic material the inverse matrix [H]~l is a func-
tion only of the two parameters E and v, in the case of anisotropic material the
independent parameters can even amount to 21, as has been seen in Chapter 8.
There are, however, a number of intermediate cases, related to the properties
of symmetry of the material. It is possible to show how, if there is a plane of
symmetry z = 0, the material in the point under consideration is called mono-
clinic, and the relation (8.46) reduces to the following:

XI [Qi C12 C13 C14 0 OYcr/
£y C12 C22 C23 C24 0 0 Gy

ez = C13 C23 C33 C34 0 0 az ^^

Yxy C14 C24 C34 044 0 0 Tyy

y* o o o o c55 c56 TXZ
_rj [ o o o o c56 cJv

with 13 independent parameters.
If there are two perpendicular planes of symmetry, it is possible to demon-

strate that there exists then a third plane of symmetry which is perpendicular
to both. The relation (8.46), in the reference system oriented according to the
principal directions of the material, takes the following form:

~£*1 FCii Ci2 Ci3 0 0 0 Yd/
£y Cn C22 C23 0 0 0 Oy

£z = Ci3 C23 C33 0 0 0 az

Yxy ~ 0 0 0 €44 0 0 Tjy

Yxz 0 0 0 0 C55 0 TXZ

Yyz\ L ° ° ° ° ° ^66JLTyz.

with nine independent parameters, and the material at the point under consid-
eration is said to be orthotropic. It should be noted that, in this case, there is
no interaction between dilations and shearing stresses, just as there is none
between normal stresses and shearing strains.

If the material is transversely isotropic, i.e. if the properties are the same
in all the directions that define one of the three principal planes, for example
the plane z = 0, the relation (8.46) then presents only five independent
parameters:

"£*] [Cn Cw Cn 0 0 0 ircr/

ey Cn Cn Ci3 0 0 0 ay

ez = Cn Ci3 C33 0 0 0 CTZ

7xy " 0 0 0 2(Cn-Ci2) 0 0 T^
YXZ 0 0 0 0 €55 0 Txz

_Yyz] [ 0 0 0 0 0 C55j[T^_
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If, finally, the planes of symmetry are infinite, i.e. the material is trans-
versely isotropic on any plane, we have

"ex~\ FC,, C12 CI2 0 0 0 ¥<JV"
£v C12 C,, C12 0 0 0 CTV

£- CI2 CI2 C,, 0 0 0 <r_

rvv o o o 2(cn-c12) o o rvv
7v: 0 0 0 0 2(Cn-C12) 0 rxz

Yv, 0 0 0 0 0 2(Cn-C12) rv.

(C.4)

the material being completely isotropic at the point under consideration, with
Cj , = l/£ and CI2 = -v/£, equation (8.73).

C.2 Orthotropic material

Fibre-reinforced materials, which are by now extensively used in all manner
of engineering sectors, are generally orthotropic, or, at least, transversely iso-
tropic. The principal planes of the material are naturally defined by the direc-
tions of the reinforcing fibres. The technical constants of these materials are
the normal elastic modulus and the shear modulus, as well as the Poisson
ratios, according to the following explicit compliance matrix:

"_L _Y2L _^1L o 0 G "
£, E2 £3

_*i2. _L _±2L o 0 0
£] E~> ET>

_Ill _^31 _L o 0 0

[H]~l= E] E2 E> (C.5)
0 0 0 — 0 0

G,2

0 0 0 0 — 0
G,3

0 0 0 0 0 —
G23

The Poisson ratio Vy represents the transverse dilation in the j direction,
when the material is stressed in the i direction

^=-7- <C-6>
C/

By virtue of the symmetry of the compliance matrix we have

^ = ̂ , for ij = 1,2,3 (C.7)
Li LJ
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so that there are only nine independent parameters, as is known. The symme-
try of the matrix [H]~l ensures, on the other hand, that Betti's Reciprocal The-
orem is satisfied.

The elements of the stiffness matrix [H] are obtained by inverting the com-
pliance matrix, and are as follows:

„ _1-V23V 3 2 , r o_v
HH'~E^~ (C8a)

„ V 2 . + V 3 . V 2 3 g V . 2 + V 3 2 V . 3 (Q8b)

E2E3A
 E\Ei&

tfn = v , l + v 2 l v 3 2 = v , 3 + vl2v23 (Cgc)

E2E3A E}E2&

H22 -
1^i (C.8d)
£,£3 A

g,3 = V 3 2 + V . 2 V 3 . = V 2 3 + V 2 . V . 3 (Q8e)

E^E3 A E}E2A

^3=^^ (C.8f)
£,£2A

#44=^12 (C.8g)

H55=Gn (C.8h)

//66 = G23 (C.8i)

with

A = ^ -Vl2V21- v 23V32-V3i V i3 - 2 v 2l V 32Vl3 (C 9)

£,£2£3

As in the case of isotropic material, also in the more general case of ortho-
tropic material the elastic constants must respect certain conditions, so as to
render both the stiffness matrix and the compliance matrix positive definite.
From equations (C.8) there follows

(l-v23V32),(l-v13V3 1),(l-v1 2v2 1)>0 (C.lOa)

A = l-v,2v21 -V23v32 - V31v13 -2v21v32v,3 >0 (C.lOb)

Via the relations of symmetry (C.7), the inequalities (C.lOa) may be repro-
posed in the form

(v Y / 2 ( Y / 2

N<MM ' ^^ f- (ciia)
\E\) \E2)

( ^1 /2 ( ^1 / 2

h2 <|H - N< f- (c.nb)
\E2) {ElJ

|v,3<(f)"", K^fff" (CllO\El) \E\)
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just as equation (C.IOb) can alternatively be expressed thus:

'-4f]"4f Mf),
W,,< l -' }>' ^<| (C.12)

As an example, it is possible to mention that of a composite material made
up of boron fibres embedded in an epoxy polymer matrix, for which v ]2 — 2,
E}/E2 — 10, so that the second of inequalities (C.Ila) is satisfied. The
coefficient of transverse contraction, though appearing surprisingly high, is
consistent with the conditions obtained previously. On the other hand, the
mutual coefficient V21 - 0.22 satisfies the first of inequalities (C.I la).

C.3 Stress-strain relations for plane stress conditions

In the case of a plane stress condition (in the plane z = 0) the relation (C.2)
reduces to the following:

£1 J_ V2} o °l

Ei E2

£•> = - — — 0 <r-> (C.13a)
Ei E2

.H [ ° ° eH k
whilst its inverse is

"a, 1 |~#n Hn 0 Ifa
a2 = Hn H22 0 82 (C.13b)

rn\ [ 0 0 //44J[ri2.

with

#,i=—^ (C.14a)
l-v ] 2v2 1

H = **& = v^ (C.l4b)
l-v12v21 l-v12v21

H „ =—^ (C.14c)
" !-V12V21

/ /44=G1 2 (C.14d)

Frequently the principal directions of orthotropy 12 do not coincide with
the directions of the XY coordinate axes, which are the geometrically natural
directions for solving the problem (Figure C.I). For this reason it is necessary
to determine a relation that can connect stresses and strains in the principal
system of the material with stresses and strains in the coordinate system of the
body.
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Figure C.I

Recalling relations (2.33) introduced in the framework of the geometry of
areas, the transformation equation which expresses the stresses in the system
12 as functions of the stresses in the system XY is as follows:

a' cos2 tf sin2tf -2 sin i? cos tf °"-v
a2 = sin2tf cos2tf 2sintfcostf ay (C.15)
, sin 7? cos $ -sin$cos$ cos 2$

L T i 2 j [ JLr-^.

where ft is the angle between the axes X and 1 (Figure C.I). The transforma-
tion corresponding to strain is analogous

£j cos21? sin2 $ -2 sin & cos $ £v

£2 = sin2tf cos2tf 2sintfcostf £y (C.16)

— y,2 sin i? cos ̂  -sin^cosi? cos 2^ ~~7V \

The two foregoing transformations can be put in a compact form

{a}r_=[T]{a}XY (C.17a)

{e}l2=[RinR]-l{e}xr (C.lTb)

where

Wxr=K^,^,v] (C-18a)

{£}[2=[£l,£2,y12] (C.18b)

and [R] is the so-called Reuter matrix

"1 0 0"

[R]= 0 1 0 (C.19)

0 0 2
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which serves to consider the shearing strain and not its half, which appears as
an off-diagonal term in the strain tensor.

Casting equation (C.13a) in the form

{e}l2=[C]{a}l2 (C.20)

and substituting equations (C.I7) in equation (C.20), we obtain

[RlTlR]-l{e}XY = [C][T]{a}XY (C.21)

Premultiplying both sides of equation (C.21) by [/flirj-'t/?]"1, we have

{£}XY = fflm-'WlclrMtt- (c.22)
Since it is possible to show that

[*I7T '[*]-' =[7f (C.23)

finally we can write

{e}XY=[Tnc][T]{a}XY (C.24)

or

{«}»'= [C'Mxy <C25)

The compliance matrix, rotated, may be cast in the following form:

J_ vyx !\XtXy

Ex Ey G^

[C*]= -^2L J_ !kfL (c.26)
Ex Ey G^

*ky.* tlxy.y 1

Ex Ey G^

which is symmetrical by virtue of Betti's Reciprocal Theorem. Herein there
appear Lekhnitski's coefficients, with the following physical meaning: rj^,,
dilation in the / direction caused by the shearing stress r^

%/=7~ (C-27)
'ij

Tfjjj, shearing strain of the axes ij caused by the normal stress in the i direction,

^=7- <c-28>
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Note that the rotated compliance matrix [C*] is a fully-populated matrix,
unlike the principal compliance matrix [C]. Notwithstanding this, the
independent parameters remain four (E}, E2, V12, G\2)

— = — cos4 i? +1 — - ̂ - sin21?cos2tf + — sin4 t? (C.29a)
£, £, [G12 £, J £2

v v v = E v -^-(sin4tf + cos4tf)- [ — + - — sin2 ^ cos2 ^ (C.29b)
E\ \ E\ E-> £*p y

— = — sin4tf +1— -^- sin2z?cos2tf + — cos4 i? (C.29c)
£, £, (G,2 £, J £2

— = 2|— + — + ̂ ^—Hsin2t?cos2tf+ (C.29d)
G,v ^£, £, £, G12J

— (sin4?? + cos4 i?)
G,2 l ^

1w., = £, I J- + ̂  - 7^ ]sin tfcos31> - (C.29e)
_l£i £i G i 2y

fA+^_ osin.^cos;
U: £, G1 2J

J]v v .v=£v (^- + ̂ -^-]sin^cos??- (C.29f)
_V^i ^i ^uv1

[ A + ̂ ii Llsin^cos-^
(E2 £, G1 2J

The apparent parameters (C.29) are plotted as functions of the angle $, in
Figure C.2, in the case of the epoxy-boron composite material, already con-
sidered. It may be noted that:

1. the shear modulus Gvv is maximum for # = 45°;
2. the coefficient r/vv v vanishes, obviously, for # = 0° and d = 90°;
3. the normal elastic modulus Ey varies identically as £v, exchanging ft with

90°-d (the same applies for vvv and r;vv v);
4. £v may be less than both £, and E2> just as it may be greater than both (cf.

what occurs in the case where # — 60°). In other words, the extreme val-
ues of the parameters are not found necessarily in the principal directions
of the material.
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C.4 Strength criteria for orthotropic materials

Since in orthotropic materials strength varies with the variation of direction,
the direction of maximum stress may not be the most dangerous one.

Let different properties be assumed in tension and in compression (Figure C.3):

Xt = tensile strength in the direction 1;
Xc = compressive strength in the direction 1;
Yt = tensile strength in the direction 2;
Yc = compressive strength in the direction 2;
S = shear strength.

Figure C.3
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Figure C.4
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Note that the foregoing strengths have been defined in the principal directions
of the material, and that of course they vary as the coordinate axes vary.

The criterion of maximum stress requires that all the following inequali-
ties should be satisfied at the same time:

-Xc < (J, < Xt (C.30a)

-Yc < cr2 < yr (C.30b)

|r12|<5 (C.30c)

If only one of equations (C.30) is not satisfied, the critical condition of the
material is assumed according to the mechanism of rupture associated with
Xc, Xt, Yc, Yf or S. Hence interaction is not assumed to exist between the vari-
ous modes of rupture.

Let us consider a material that is fibre-reinforced in one direction, submit-
ted to a condition of uniaxial stress inclined at an angle # with respect to the
fibres (Figure C.4). The stresses in the principal reference system of the mate-
rial are obtained from equations (C.I5):

a, = <7_ vcos 2 i? (C.31a)

<72 =e r v s in 2 t f (C.31b)

Tp = <TX sin$cos$ (C.31c)

Substituting equations (C.31) in inequalities (C.30), we obtain three mutually
competing criteria:

—^T«r,<-^rr (C-32a)cos- u cos- u
Y Y
^—«rv<—~- (C.32b)

sin2 tf A sin2tf

«rv < (C.32c)
sin $ cos $ sin $ cos $

These criteria are plotted in Figure C.5 for a glass-epoxy composite having
the following properties:

X( = 150ksi
Xr=150ksi
7( =20 ksi
F=4 ksi
5=6 ksi

Hence the uniaxial strength is represented as a function of the angle # in
Figure C.5 (some experimental results are also given). The criterion of maxi-
mum stress, both tensile and compressive, consists in fact of three curves, the
bottom one of which in each case governs the rupture phenomenon.

The Tsai-Hill criterion instead consists of a single curve devoid of cusps
which presents the following general form:

(G + #)<72 + (F+H)ol + (F + G)ff$ - (C.33)

2Ha}a2 ~2Gala,>~2Fo2a^ +

2LT I
2

2+2Mr,2
3+2NT?3=l



APPENDIX: D: HETEROGENEOUS BEAM

0° 15° 30° 45° 60° 75° 90°

Angle &

Figure C.6

Appendix D Heterogeneous beam
D.1 Multilayer beam in flexure

Let us consider a beam having rectangular cross section, consisting of n layers
of different materials (Figure D.l(a)). If, as in the case of homogeneous mate-
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The parameters F, G, H, L, M, N are correlated with the strengths X, Y, S intro-
duced previously. If only T12 acts, we have in fact

2L = \ (C.34)
S2

just as, if only al acts, or, respectively <72 or <73

G + H = ± (C.35a)
A ~

F + H = ± (C.35b)

F + G = ̂  (C.35c)

where Z indicates the strength in the direction 3, normal to the stress plane.
From equations (C.35) it follows that

2ff = -V + -V—T (C36a)X- Y2 Z2 V '

™ = i + i~W <«6b)

2F-^+i-i (06c>
If the body is assumed to be transversely isotropic in the plane 23, then we

have Y= Z, and thus equation (C.33) reduces to the following form:

O2 C72
2 ( T i f f , * , 2 , ,

H* Y* X2 S2~ ( '

Finally, substituting equations (C.31) in equation (C.37), we obtain

cos4^ sin4^ M 1 V , . , 0 1 _0 0 .
:̂  + — + \ —r sm2tfcos2tf = —- (C.38)

X2 Y2 (S2 X 2 ) a2

The criterion (C.38) is represented in Figure C.6 for the glass-epoxy compos-
ite, both in the case of tension and in that of compression. It is possible to note
an excellent agreement between theory and experimentation. In particular, a
notable improvement has been obtained in comparison with the criterion of
maximum stress for # — 30°, where the latter fails by approximately 100%
(Figure C.5).
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rial, we assume the conservation of the plane sections and thus the linear vari-
ation of axial dilation

£ z=JL(iy + C) (D.I)
L\

and consider the conditions of equivalence (9.16a, d), we have

« n n

Y \(by + c)^M = b\^\ydA + cy^\dA = Q (D.2a)
~ JA( £} ^ k\ JAt ~ &1 JA,i=\ ' i=\ ' 1=1 '

n n n

Y \(by + c)y^M = b\ |L| j'dA + cY ̂  | y*A = Mx (D.2b)^jAj. ^ ~f£iJA i~f I^A>
Equations (D.2) can take the form

bSx + cA = 0 (D.3a)

b!x+cSx=Mx (D.3b)

where the usual symbols introduced in Chapter 2, corresponding to the geom-
etry of areas, must be translated into the ones corresponding to the geometry
of masses, each elementary area dA being weighed via the ratio of the moduli
of elasticity E{ /E{. If we define the centroid of the cross section as the point
of the Y axis for which Sx - 0, results are obtained that are formally analogous
to those obtained in Section 9.4:

^=^^y (D-4a)
L\ 'x

ai^^MjLy (D4b)
z J7 TLl lx

Whilst equation (D.4a) represents the supposed linear function (Figure
D.l(b)), equation (D.4b) represents a step function, the stresses being greater
in more rigid materials (Figure D.l(c)), as well as in the points farther from
the neutral axis (Figure D.l(d)).
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As regards the strain condition of the beam, it may be stated, in an analo-
gous way to the case of homogeneous material, that the curvature of the cent-
roidal axis is

**=fr (D-5)
^\lx

where of course the moment of inertia is the one corresponding to the elemen-
tary areas weighed via the moduli of elasticity:

n

/^T-^f^dA (D.6)
tf£ 'JA<

D.2 Reinforced concrete

Reinforced-concrete beams may be considered as multilayer beams. Steel bars
have the function of withstanding tensile forces and are thus usually embedded
in the concrete on the side of the fibres in tension. Concrete and steel present
excellent adherence and the same coefficient of thermal expansion, so that their
dilation tends to occur without differential displacements or discontinuities.

The basic hypotheses for the statics of reinforced concrete are the following:

1. Concrete behaves like a linear elastic material in compression, whilst it is
non-traction-bearing. In other words, concrete presents a zero elastic
modulus in tension.

2. Steel behaves as a linear elastic material both in compression and in
tension.

3. The steel bars cannot slip inside the concrete.
4. The cross section of the beam remains plane.

In bending, the neutral axis divides the section into two parts: one part is in
compression with elastic modulus Ec, while the other is in tension with zero
elastic modulus (Figure D.2). The steel bars are below the neutral axis, in the
part in tension, and present an elastic modulus Es. On the other hand, the posi-
tion of the neutral axis and thus the area of material with elastic modulus Ec is
a priori unknown. Hence this area has to be identified first, and then the for-
mulas seen in the previous section are applied.
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The condition of axial equivalence for the rectangular cross section in
Figure D.2 is

asAs=acbx/2 (D.I)

where os is the tensile stress in the steel, ac is the maximum compressive
stress in the upper edge of the concrete, As is the area of steel, b is the width of
the beam, and x is. the unknown distance of the neutral axis from the upper
edge of the beam.

The condition of equivalence corresponding to the bending moment is written

M = asAs(h-^ (D.8)

where M is the moment applied to the section and h-x/3 the arm contained
between the two resultants of the tensile and compressive forces, respec-
tively. Note that the thickness of the concrete cover does not enter into this
calculation.

The condition of linear variation of the axial dilations gives

^ = ̂  (D.9)
ec x

where es is the dilation of the bars, whilst £c is the dilation of the concrete at
the upper edge of the section (Figure D.2).

Introducing the stresses we have

<y j=:n<Tc*Z£ (D.10)

where n is the ratio between the elastic modulus of the steel and the elastic
modulus of the compressed concrete,

H = -^-=*10 (D.ll)

Combining equations (D.7) and (D.10), we obtain

. h-x orbx ,^ . _ .
nacAs—— = ̂ - d>.12)

or

-bx2-nAs(h-x) = Q (D.13)

The positive root jc of the quadratic equation (D.13) gives the position of the
neutral axis.

From equations (D.7) and (D.8) it is possible to obtain the stresses in the
concrete and in the steel as functions of the distance x

<*,= (
M ^ (D-14a)

4 *--Jl 3J
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Appendix E Heterogeneous plate
Let us consider a laminate, i.e. a multilayer plate, in which each layer (or lam-
ina) is orthotropic in a particular principal orientation (Figure E.I). The
stress-strain relation in the principal coordinates of each layer is of the type
represented by equations (C.13b) and (C.14). In an external reference system
the inverse relation of equation (C.25) is presented as follows:

{a}XY = [#*]{£}„ (E.1)
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ac=— -r (D.14b)
bxlh--}

( 3J
Equations (D.I4) resolve the problem of verifying the strength of the re-

inforced section. If, instead, we are faced with the design problem, the
unknowns to be determined are h, x, As. Equation (D.10) then transforms as
follows:

, = _5Sk*_ (D.15)
<r,+»ac

Equations (D.7) and (D.15) yield on the other hand

A = r^ rbh (D.16)5 2as(as+nac)

Equation (D.8), via equations (D.15) and (D.16), becomes

M = (l--}pasbh2 (D.17)

with

a= n°c (D.18a)
as+noc

1 = "°* r (D.18b)
2as(as+nac)

From equation (D.17) we obtain finally

i

I1

h= r-^- (D.19)
1-f }^b

\ \ 3 / J

The admissible values of <jc and os having been assigned, equation (D.19)
gives the depth of the beam, whilst equations (D.15) and (D.16) give the posi-
tion of the neutral axis and the area of steel, respectively.
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with

//3*3 = Hu cos4 i> + 2(H}2 + 2^44)sin2 tf cos2 tf + #22 sin4 tf (E.2a)

//,*2 = (#,, + #22 -47/44)sin2 tf cos2 tf+ //12(sin4 tf+ cos4 tf) (E.2b)

#22 = Hu sin4 tf+ 2(#I2 + 2#44)sin2 #cos2 tf+ #22 cos4 tf (E.2c)

#*4 = (#n -//12 -27/44) sin tf cos3 tf + (//12 -#22 +2#44)sin3tfcostf

(E.2d)

7/*4 = (#n _//12 -27/44 )sin3tfcostf + (//12 -7/22 +2/7^)sintfcos3tf

(E.2e)

H*44=(Hll+H22-2Hl2-2H44)sin2 ^cos2 ^ + #44(sin4 ^ + cos4 tf) (E.2f)

Also in the case of the multilayer plate it is possible to formulate Kirch-
hoff's hypothesis, already described in Section 10.10. In the case where the
plate presents a membrane regime, in addition to a flexural regime, equations
(10.158) are completed as follows:

e.v fej l |~Z,

ey = e? +z Zv (E.3)

' XV t X\ A X\

where e^, £^., y^ are the strains of the middle plane. Substituting equation
(E.3) in equation (E.I), the stresses in the &th layer can then be expressed as
functions of the strains and curvatures of the middle plane:

{o}k
XY=[H*]k({e»}XY + z{X}XY) (E.4)

Since the stiffness matrix [H*]k can vary from layer to layer, the variation of
the stresses through the thickness of the laminate is not necessarily linear,
although the variation of the strains is (Figure D.I).

The internal forces and moments acting in the laminate are obtained by
integration of the stresses that develop in each lamina

^1 r/>4av] « r-M
Ny =\ <rv dz= > <JV dz (E.5a)
AT" J-/?/2

 r T^J^-' riv.vvj L -v-vJ L -x-v_
M,I rft/2r^i " f:t Ki
M, = a, zdz = > crv zdz (E.5b)
M h'2 T 7^C l - ' rjo'j L -v-vJ L v-v

where zt and z^_! are defined in Figure E.2, with z0 = -h/2. Substituting equa-
tion (E.4) in equations (E.5), we obtain

{N} = ̂ [H*]k{{e°}XYr<b + {X}XY fzdz] (E.6a)
7T7 v J--A-I J=*-i )
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\l I ~z° I t 2 ^zl z Middle plane
. 1 1 \ h

_ Jik-»'zi<k — L *„-! z n

n """* ^ i i

' Order number of layer

Figure E.2

w=i>if{*% n *+{*}»- r*2*1 ^
f^ I J:*-, ' J^-; y

Finally we can write

"AU TAn A12 AI4 Bn B,2 ^"IfeS"
AT,. A12 A22 A24 B12 B22 524 £«

"ji>- _ ^14 ^24 -^44 ^14 ^24 ^44 7xy ,p 7^

M^ ~ ~Bt"~B^~"^'l~D^"~Dl2"^ ~x~

M, Bn B22 B24 D12 D22 D24 Xy

Mxy\ [fi14 B24 BM D14 £>24 ^JU,,.

with

n

A*j=^Hiik(zk-Zk-i) (E-8a)
^t=i

n _

B<j=^Hvk(zi-zi-J (E-8b)

^=1
n

D«=j£Hok(zl-zLi) <E-8c>
k=\

Expressions (E.8a) represent membrane stiffness, expressions (E.8c) represent
flexural stiffness, whilst expressions (E.8b) represent the mutual stiffness or
coupling stiffness, which produces flexure and/or torsion of the laminate sub-
jected to tension, as well as stretching of the middle plane when the laminate
is bent.
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Appendix F Finite difference method
F.1 Torsion of beams of generic cross section (V2co = 0)

As we have seen in Section 9.7, the warping function, introduced in treating
the problem of torsion of beams of generic cross section, is harmonic and
thus satisfies Laplace's equation (9.98) with the boundary condition (9.106).
Here we shall mention the solution based on the Finite Difference Method,
which is a numerical method of discretization that is useful for dealing with
problems for which closed-form solutions are not possible.

If a regular function y(x) presents, in a series of equidistant points, the val-
ues y$, Y!, y2, ..., for x = 0, x = 8, x = 25, ..., the first differential at these
points can be approximated as follows:

(A>')v = 0=^-j0 (F.la)

(Ay)x=6=y2~yi (F.lb)

(Ay)xs2S=yi-y2 (F.lc)

Dividing the differentials (F.I) by the length 5 of the intervals, we obtain an
approximate value of the first derivative at the corresponding points, in the
form of an incremental ratio:

tef) ^ZizA (R2a)
\<bJx=o <5

(%.] .JiZA (R2b)
Vdx^= < 5 5

(%] ^^>1 (F.2c)
\dxjx=26 S

It is then possible to approximate the second differentials using the first differentials

(A2>'),=, = (A>'),=5 - (A>').v=0 = >'2 - 2>', + )'o (F.3a)

(A 2y)^ 2 5=y 3 -2y 2+y, (F.3b)

(A2y)_ t = M =>' 4 -2>- 3 +y 2 (F.3c)

so that the second derivatives, calculated again as incremental ratios, appear
thus:

fdV| J*2yLs=y2-2y>+y0
(^2Ls V 52

(SL-*^
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10 A 12

Figure F.I
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fdM ay4-2y3+y 2 (R4c)

UaJ,.M *2

If we have a function of two variables (o(x, y), it is possible to calculate the
partial derivatives using expressions similar to equations (F.2) and (F.4). Let
us consider, for instance, a generic compact cross section (Figure F.I) and the
superposition of a regular square-mesh grid of nodal points. We can then
approximate the values of the partial derivatives of the function CD in the
generic point 0:

dco^-cpQ do)_0)2- G)O (p5a)

dx 8 ' dy 8

d2co G){ - 2ft>0 + ft)3 d2co co2 - 2(0^ + co4 „_. - , ̂  _ (K5b)

Using the foregoing expressions and similar ones, the differential equation
(9.98) is transformed into a system of algebraic finite difference equations of
the type

— («! + 0)2 + G>3 + (04 - 4fl)0) = 0 (F.6)

As many equations as there are unknowns o)f will thus be obtained. For each
node of the grid, in fact, we have one unknown and one equation. This equa-
tion is the field one (F.6) if the node is internal, while it represents the dis-
cretized form of the integrodifferential boundary condition (9.106) if the node
belones to the boundary.



PLATES IN FLEXURE

F.2 Plates in flexure (V4iv=q/D)

The Finite Difference Method is applied to advantage also for the approximate
numerical solution of the plate equation (10.184), which is a fourth-order dif-
ferential equation, like the equation governing the Airy stress function 0 for
plane problems, which is introduced in Chapter 19.

Consider once more the grid of Figure F. 1. The second partial derivatives in
the points 0, 1, 3 may be approximated, respectively, as follows:

f§]"^(W'"2W0+M'3) (R7a)

V ox Jo °~

(£?)"^(M'5-2wl+w0) (F.Tb)

(^\^W°~2W>+W^ (R7C)

so that the fourth partial derivative becomes

(£) .£(1*)
V dx4 )0 dx2 V dx- )0

,J_[PM 2W +PM"
^[U2J, U2J0 U2J3_

- -j; (6w0 - 4wj - 4w3 + w5 + w9)

Likewise we have

~TT - Tj(6wo - 4w2 - 4w4 + w7 + wj!) (F.8b)
V & JQ 54

^2^2 " xT[4Wo ~ 2(Wl + W2 + H;3 + ^4 ) + H6 + H?8 + H'iO + H']2 ] (F'8c)\^ax*-c(y y0 c>

Substituting equations (F.8) in equation (10.181), we obtain the finite differ-
ence equation corresponding to the node 0:

20w0 - 8(w, + w2 + w3 + w4) + 2(w6 + w8 + w10 + w,2) + (F.9)

w5 + w7 + w9 + Wj j = q^/D

Also in this case, as many algebraic equations will be obtained as there are
unknowns. For each node within the grid we have in fact a field equation
(F.9), whilst for the boundary nodes it is possible to write two kinematic
conditions:

w =0, -̂ - = 0 (F.10)
an

which represent a built-in edge of the plate, or three static conditions corre-
sponding to the free-edge loadings, which are the shearing force, given by
equations (10.167), as well as the bending and twisting moments, given by
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equations (10.180). These loadings can be expressed as linear combinations of
the second and third partial derivatives of the function w, and thus involve a
further two fictitious nodes, which are outside the domain of interest. Like-
wise, the second of the two kinematic conditions (F.10) involves a fictitious
supplementary node, outside the domain.

Appendix G Torsion of multiply-connected
thin-walled cross sections

Figure G.I

The problem of torsion of doubly-connected closed thin-walled sections has
been dealt with in Section 9.9 and solved by applying equations (9.136) and
(9.140).

Consider, instead, the case of a triply-connected cross section consisting of
a tubular element with a diaphragm (Figure G.I). Let T, and bt be the shearing
stress and the thickness in each of the portions that make up the cross section.
From the hydrodynamic analogy, the products t\b\, T2b2, T3Z?3, are constant
in each point of each portion, and

TJ&! = T2b2 +T3&3 (G.I)

If h(s) denotes the distance of the centroid from the generic tangent to the
mid-line, by equivalence we have

TJ&, I/*(s)ds + T2fc2J h(s)ds + T3b3 \ h(s)ds = Mz (G.2)

Using equation (G.I) and indicating with Ql and Q2
 me areas enclosed in the

circuits 1-3 and 2-3, we obtain

2(1,̂ 12, + T2b2&2) = M. (G.3)

The unit angle of torsion is in general expressed by equation (9.109). Intro-
ducing the factor of torsional rigidity (9.140) and expressing the thickness
b(s) on the basis of equation (9.136), we have

e = -AJ _* =^-Lds (G.4)
4G& Jr (M. / 20Ty) 2GQ Jfs **

or

&Tzsds = 2G0Q (G.5)

This relation applies to any closed line, also in the case of multiply-connected
cross sections. If it is applied to circuits 1-3 and 2-3, in the case where the
thicknesses blt b2, b3, and therefore also the stresses r{, T2, T3, are constant
in each of the three portions 1, 2, 3, we have

Vi + T353 = 2G6>jQj (G.6)
T2S2 ~ ?3S3 = 2GOQ2 (G.I)
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The linear algebraic system consisting of the four equations (G.I), (G.3),
(G.6), (G.7), in the four unknowns rlf r^ r3, @, provides the solution to the
problem.

Appendix H Shape functions
H.1 Rectangular finite elements: Lagrange family

A recursive and relatively simple method for generating shape functions of
any order is that of multiplying appropriate polynomials which go to zero at
the mesh nodes. Let us take, for instance, the element of Figure H.I, where a
series of nodes, both internal and boundary ones, is located on a regular grid.
Suppose we have to define the shape function of the node indicated by the
double circle. Of course, the shape function sought will be given by the prod-
uct of a fifth-order polynomial in £ having a value of unity in the second col-
umn of nodes and zero in all the others, and a fourth-order polynomial in rj,
having a value of unity in the first row of nodes and zero in all the others.

d G>

Figure Rl
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(a) (b)

> 0

> o

0 <

o <

(c)

Figure H.2
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Polynomials in one variable which present the above properties, are termed
Lagrange polynomials. For the nodes of abscissa £,-, we have the following
polynomial:

7(.)= (g-giX5-fe)-(5-6-.Xg-6+i)-(5-S.) m n1 " (6 -6X6 -&)•••($ -6-.X6 -&.)-(&-4) ( u

The shape function of the node of coordinates (£7, fy) is thus given by the
product

A^,77) = 4")(£)4")('7) (H.2)

where n and m represent the number of subdivisions in each direction.
Figure H.2 shows some elements of this unlimited family. The shape func-

tions of the element (b), which presents an internal node, are shown in Figure
11.5. Notwithstanding the ease with which such shape functions may be gen-
erated, their use is limited on account of the high number of internal nodes and
the poor ability of higher-order polynomials to approximate the solutions. The
next section will outline a method of obviating such drawbacks.

H.2 Rectangular finite elements: Serendipity family

Consider the elements of Figure H.3, which present the nodal points, spaced at
equal intervals, only on the boundary sides. In the case of element (a) equation
(H.I) yields

Nn($ri) = 1(1-3(1 + 17) (H.3a)

*12(£f]) = l(l + 3(l + i7) (H.3b)

N2l($,v) = ±(l-Q(l-fi) <H.3c)

^22(5>i/) = l(i+5X»-^) (H-3d)
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/""-1 .
9 L n n 0 ;»

t* 1j = -i-^ I—^t ^.t=1 A o

o • • i 6 6 o 4 >

(a)^T? = -l (b)

(c)

Figure HJ

In the case of element (b), which presents intermediate nodes on the sides,
we have

A^.TJ) = 1(1 + £0)(1 + *Jo)(£o + n0 -1) (H.4a)

at the corner nodes, and

^(^77) = l(l-^)(l + rj0), for & = 0 (H.4b)

^(^7j) = I(l + ̂ )(l-772), for 7) ;=0 (H.4c)

at the mid-side nodes, having introduced the new coordinates

&=56. % = W y (H-5)
It is possible to verify that in the case of the element of Figure H.3(c) we

have

ty(fcn) = £(l + Ul + 1o)[-«> + 9(F +H2)] (H.6a)

at the corner nodes, and

^(^'/) = ̂ (l + ̂ X1-J72X1 + 9%)' for &=±l,^=±l(H.6b)

Nij($ii) = ̂ (l-?)(l + Tlo)(l + 9S0), for .̂ = ±l,7/ ;=±l(H.6c)

at the mid-side nodes.
It is interesting to note how the Lagrangian and Serendipity finite elements

are identical only in their linear form (Figures H.2(a) and H.3(a)), whereas
they differ, by the existence or otherwise of the central node, in their quadratic
forms (Figures H.2(b) and H.3(b)). The corresponding shape functions are
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(a)

"y>" xT_._>^

V î̂ SSS^

Figure H.4

shown in Figure H.4(a) (Serendipity element) and Figure H.4(b) (Lagrangian
element).

. _n H.3 Triangular finite elementsLi -°\ °
3

L =0.25 >ft<*3 ^3) ft *s well-known how the triangular shape is the simplest and most appropriate
y^*A ^or construct*nS meshes on complex-shape plane structural elements. Whereas

LI =0 5\ / \ cartesian coordinates constitute the most natural choice for the rectangular
Lt = 0.75 s element, the most appropriate choice for the triangular element is represented

V P H i by areacoordinates (FigureH.5)
L = 1 /^ J 2 3 «^^^li

}^/ \ \ \ M . . AreaP23 / U _ AJ T \ \ \ ^<2 L, = (H.7a)
, \ x v v , * . Area 123(x, Yl) (x2y2)

_ Area 1P3
F*««ILS ^-7^al^3" (R7b)
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Figure H.7
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* Area UP
A (a) ''-A^ia (R7C)

yX^ \ For the triangular element of Figure H.6(a), the shape functions are given
1 a o 2 simply by the area coordinates

A #! = £,, N2=Lz, N3=L, (H.8)

/ \ For the triangular element of Figure H.6(b), which also presents mid-side
^jf 65 (b) nodes, we have

/ \ ^=(214-1)1+ (H.9a)

^ o 1 A^2 = (212 -1)12 (H.9b)

^3=(2Ig-l)l3 (H.9c)
Figure H.6 3 V ̂  /^ /

at the corner nodes, and

#4 = 4^12 (H.9d)

N5 = IL^Ls (H.9e)

N6=4L,L, (H.9f)

at the mid-side nodes.
The area coordinates are, on the other hand, linked to the cartesian coordi-

nates by the following relations:

x = L{xl + 1^X2 + L$x3 (H. lOa)

y = L[yl+L2y2+Lsy3 (H.lOb)
1 = ̂ +12+13 (H.lOc)



APPENDIX H: SHAPE FUNCTIONS

8 nodes

20 nodes

32 nodes

(a)

(b)

(c)

Figure H.8

H.4 Three-dimensional finite elements

In the case of three-dimensional finite elements, shape functions altogether
similar to the foregoing ones may be generated by simply adding a dimension.

In the case of rectangular prisms, the Lagrange family of functions (Figure H.7)
is generated from the product of three polynomials. Extending the notation of
equation (H.2), we have

^(|,J7,f) = 4")(«)4")('?)4')(0 (H.H)

On the other hand, the family of elements shown in Figure H.8 is altogether
analogous to that of Figure H.3 (Serendipity). For eight-node linear elements
we have (Figure H.8(a))

%(^n,C) = ̂ (l + loX1 + %X1 + Co) (H.12)
O
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(b) 10 nodes

Figure H.9

Appendix I Application of the Finite Element Method
to diffusion problems
The phenomenon of heat conduction in solid bodies can be described by a
set of quantities and of equations which correspond exactly to those intro-
duced in Chapter 8 for studying elastic solids. These equations can, moreover,
be discretized in the form described in Chapter 11.

Let us take as principal unknown the temperature T. This is a scalar
quantity and corresponds to the displacement vector in the elastic case. On the
other hand, the quantity that corresponds to the deformation characteristics
vector is the temperature gradient

|gradr}=[<?] T (LI)
(3xl) (3xl) (Ixl)
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whereas for 20-node quadratic elements we have (Figure H.8(b))

M^'f) = ̂ l1 + &X1 + loX1 + CoX§> + Vo + Co -2) (H-13a)

at the corner nodes, and
odes

AV(&^) = ̂ M2X1 + %X1 + £o).for6 =(H =±1'£* =±1 (R13b>

at four typical mid-side nodes.
Finally for tetrahedral elements (Figure H.9) the properties are similar to

those of triangular plane elements. Introducing volume coordinates analogous
to those of equations (H.7)

Volume P234
4 = , etc. (H.14)
^ Volume 1234

we obtain linear shape functions coinciding with the corresponding volume
coordinates (Figure H.9(a)), while the quadratic shape functions (Figure
H.9(b)) for the 10-node tetrahedron are

#,.=(24-1)4, 1 = 1,2,3,4 (H.15)

for the corner nodes, and

#5=4^12 (H.16a)
#6=4413 (H.16b)
#7=441,4 (H.16c)
#8=4L>4j (H.16d)
#9=44^4 (H.16e)
^0=4^4 (H.16f)

for the mid-side nodes.

(a) 4 nodes
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which is a three-component vector.
The 'kinematic' operator [<?] in this case is the following differential vector:

~_d_~
dx

M- |- (..2)

_d_

dz

The quantity corresponding to the static characteristics vector is the heat
flux, which is a vector with three components that, according to the corre-
sponding coefficients of thermal conductivity, are proportional to the
respective components of the temperature gradient. Expressed in formulas, we
have the following 'constitutive' equation:

\df
<?,] *, o o &
<?v =- 0 ky 0 J^ (1.3)

4; 0 0 jfc. 3T_

[dz.

or, in compact form

{*}=- Mferadr} (1.4)
(3x1) (3x3) (3xl)

The energy balance, for the infinitesimal element in the steady state
regime yields, on the other hand, the following scalar equation:

div{q} = Q (L5)

where Q denotes the power generation per unit volume, and the diver-
gence operator can be represented in matrix form thus:

div = [<9]T (L6)
(1x3)

where [d] is the differential operator (1.2).
Finally, combining the 'static' equation (1.5) with the 'constitutive' equa-

tion (1.4) and the 'kinematic' equation (I.I), we obtain the operator equation

IWM [*]V + fi = 0 (1.7)
1^(1x3) (3x3)(3xl)J
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which has the same form as the Lame's equation for elastic problems. At this
point it is clear how, whereas the gradient and the divergence correspond
respectively to the kinematic and static operators, the coefficients of thermal
conductivity correspond to the stiffness, the power generation to the external
force, and the temperature to the displacement.

Since the energy balance in the transient regime yields, instead of equa-
tion (1.5), the following equation:

divW + c? = C (1-8)at

where c is the thermal capacity of the material, and t represents time, equa-
tion (1.7) can be generalized in this regime as follows:

((d]T(k}[d})T + Q = c^ (L9)

As regards the boundary conditions, these may be of two kinds, as in the
elastic problems. In fact on the boundary it is possible to assign the tempera-
ture or the normal heat flux

r=T 0 , VPeST (I.lOa)

[^f [*] [d] \T = -qn, VPES, (UOb)
^ (1x3) (3x3)(3xl)J

The matrix [,<] represents the normal unit vector on the external surface

V
[„*]= n, (LID

/i,

and corresponds to equation (1.2) in the spirit of Green's Theorem.
The Finite Element Method can therefore be applied to discretize heat con-

duction problems and, more generally, all diffusion problems which are
governed by equations altogether analogous to those introduced hitherto.
Referring to Table 11.1, for such problems we have g = 1, d = 3. This means
that the principal unknown is scalar, while the characteristic vector represents
a flux that is, in isotropic cases (kx = ky = &- = &), proportional to the gradient of
the scalar unknown.

Examples of diffusion problems of applicational importance are: infiltra-
tion of fluids in porous media, for which the scalar is the fluid pressure,
whilst the constant k represents the permeability of the medium; electrical
conduction, for which the scalar is the potential whilst the constant k repre-
sents the electrical conductivity.

Finally, it should be noted that, in the case of a thermally isotropic material,
equation (1.9) simplifies to the well-known form

fcV2I + <2 = c^ (L12)
'at
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Appendix J Initial strains and residual stresses
Initial strains {e0} may be due to non-mechanical internal causes, such
as temperature variations, shrinkage and phase transformations. The stresses
will result from the difference between the actual and the initial strains. On the
other hand, at the outset of analysis, the body could be stressed by some
known field of initial residual stresses {CTO}, due, for instance, to imposed
displacements, constraint settlements, assemblage defects and welding effects.
These stresses must simply be added on to the general definition.

If a general elastic behaviour is assumed, the relationship between stresses
and strains will be linear and of the form

{<r} = [#]({£}-{e0})+{a0} (J.I)

where [//] is the Hessian of the elastic potential energy. Substituting the con-
stitutive equation (J.I) and the kinematic equation (8.9) into the static equa-
tion (8.11), we get

(P]T[*P])M - [*]T[»W+0>o}+{*} - {0} 02)
or, in compact form

[¥}{r]} = -{.y}-{^} + {^} (J.3)

where {̂  } and -{ J£ } represent equivalent body forces, due to residual
stresses ana initial strains, respectively.

If the effects of residual stresses and initial strains are merged with the body
forces, the Principle of Minimum Total Potential Energy may be demonstrated
as in Section 11.3, and likewise the Finite Element Method may be defined in
the same manner as in Sections 11.3 and 11.4. In particular, the vectors of the
equivalent nodal forces, according to equation (11.44), are

fc}=f k]T{^)dV (J.4a)
Jve

{F/«} = £[fie]
T{<T0}dV (J.4b)

{*'} = -[ [Bj(H]{e0}dV (J.4c)
Jve

where the matrix [Be] is given in equation (11.39). After the expansion and
assemblage procedures, the finite element equation (11.55) may be general-
ized as follows:

[K]{S] = {F} + {F*o} + (F*o} (j.5)
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Appendix K Dynamic behaviour of elastic solids
with linear damping
When the dynamic behaviour of elastic solids with linear damping is consid-
ered, two sets of additional body forces are called into play. The first is the
inertial force, which for an acceleration cP-{r\}ld?-, can be represented by its
static equivalent

-Wf-W (K.D

using the well-known d'Alembert Principle (Section 11.7).
The second force is that due to frictional resistances opposing the motion.

Usually a linear, viscous-type force is taken into account with its static equivalent

-M|W (K.2)
where \jj] is the matrix of the damping coefficients.

The equivalent static problem, at any instant of time, may be discretized in
the manner of Chapter 11 by replacing the static Lame's operator with its
equivalent dynamic and damping operator:

[^]-M|-[P]£ (K.3)
The difference between the problem of initial strains and residual stresses and the
problem of dynamic damping is manifest. In the former case (Appendix J) we
have to consider additional equivalent body forces, whereas in the latter case we
have to assume a different operator where additional equivalent terms appear.

In the presence of inertial forces and viscous forces, relation (11.58) becomes

[*-] = -( k]r[^]K]dV+ f [u,]rM[u.]dV.|+ (K.4)
Jve Jve w

Jvklr[p]k]dv.^+Jj[n.]>o]k]ds

or, in compact form

[*-H^MC«]£+[M.]£ a")
with

[CJ=f klVWdV (K.6a)
Jve

which represents the local damping matrix, and

[Me]=f kf[p]k]dV (K.6b)
Jve
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Appendix L Plane elasticity with couple stresses
In the classical theory of elasticity due to Cauchy it is assumed that the action
of the material on one side of an elementary surface upon the material on the
other side of the same surface is equivalent to a force (Figure 7.13). In the
couple-stress theory, introduced by Cosserat, the interaction is assumed to
be equivalent to a force and a couple. The couple stresses are taken to be
moments per unit area, just as the body couples are moments per unit volume.

For the plane problem, the indefinite equations of equilibrium in the case of
a medium that can support couple stresses are (Figure L.I)

" or* "

Pi o o 1 o ol °y |>.l [~°~
3* ty

o 1 A o o o TV + r, = o (L.I)
*y dx

_ ° ° +1 -1 I i\ ma UJ k
_myz.

Accordingly, for non-constant couple stresses (dmxz/dx * 0, dmyz/dy * 0), the
shearing stresses are not necessarily equal (i.e. t^ # ryx).
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which represents the local mass matrix.
At this point, expanding and assembling the local matrices, we obtain

£M = £[4]TM4] (K.7)
e e

a relation which is altogether analogous to equations (11.51) and (11.52), and
provides the global matrices

[C] = £[Ae]
T[C,l4] (K.8a)

e

[M] = £[Ae]
T[M.]K] (K.8b)

e

Finally we obtain then the equation

[̂ ]{5} + [C]{5} + [M]{5} = {F} (K.9)

which is formally analogous to the equation of an oscillator with one degree of
freedom, subjected to viscous forces and forcing loads. It should be noted that
[C] and [M] are generally not diagonal matrices.
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dy

dx
0 T,

Figure L.I

In the definition of the deformation characteristics, it is possible to follow a
heuristic procedure and consider the adjoint of the static operator

(L.2)

Observe that, just as in the static equations (L.I) also rotational equilibrium is
contemplated, so in the kinematic equations (L.2) also the dual generalized dis-
placement appears, namely the rotation <p:. Consistently with this, in addition to
the dilations, two shearing strains and two curvatures form the vector of the
deformation characteristics. It is evident how the structure of the equations (L.I)
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Y
ay + (doyldy)dy

' myz + (dmyzldy)dy

^ *yx + (<hyxtd/)dy

Txy + (drxy/dx)dx

—-L. cx + (dax/dx)dx

I mxz + (dmxz/dx)dx

£*1 I IT ° °ox

£V 0 |- 0

^ r -i
a «
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APPENDIX M: ROTATING CIRCULAR DISK

and (L.2) is a combination of the equations (8.8) and (8.10) for the elastic solid,
and the equations (10.19) and (10.20) for the elastic beam.

The constitutive equations may be written as follows:

'ox 1 ("A B 0 0 0 OlIX "

Gy B A 0 0 0 0 ey

T^, 0 0 G 0 0 0 Yxy

ryx ~ o o o G o o ryx

mxz 0 0 0 0 C 0 Xx-

™yz\ [ 0 0 0 0 0 C\[Xyz_

with

A = ̂ -, a = J5L G = _§_
1-v2 1-v2 2(1+ v)

where E is Young's modulus and v is Poisson's ratio.
The three elements of the elasticity matrix, A, B, G, have the dimensions of

stress, whereas C, i.e. the bending modulus, has the dimensions of a force. By
considering the ratio C/G~ /2, we can define a length scale /, which represents
the scale at which local rotations (pz take place. Above this scale, rotations may
be neglected as in the classical theory of elasticity.

742

Appendix M Rotating circular disk
Equation (12.97) can be written in the form

— (ra r ) -<J t f+pf t> 2 r 2 =0 (M.I)

where the body force JjTis set equal to the inertial force pafr, where p is the
material density and CD the angular velocity of the rotating circular disk.

The strain components in the case of symmetry are, from equations
(12.95a)

e r=^ (M.2a)
dr

e»=± (M.2b)

The constitutive elastic equations then are

E fdu u} /A ,0 N<rr = -—T -T+V- (M3a)
l - v 2 V d r r)

E (u du^\ ,*f~^a#=- r - + v— (M.3b)
l-V \r drj

(1.3)
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When the stresses (M.3) are substituted in equation (M.I), we find that u
must satisfy

2 d
2u du 1-v2

 2 ^r1—2+r — -u = —pco V (M.4)
dr dr E

The general solution of this equation is

M = i[(1"V)Cr"(1 + V)Clr"^^P6)2r3] (M'5)

where C and C} are arbitrary constants. The corresponding stress components
are now found from equations (M.3):

ar = C + Ct 4- ~ ̂ ^ P<» V (M.6a)
r 8

a#=C-C]^T-l-^-pG)2r2 (M.6b)
r 8

The integration constants C and Ct are determined from the boundary conditions.
For a solid disk we must take Q = 0 to have u = 0 at the centre. The con-

stant C is determined from the condition at the periphery (r = b) of the disk:

7 + y
ar(r = b) = C-^—^pco2b2 = 0 (M.7)

8
from which

^ + v
C = ̂ —^-po)2b2 (M.8)

8
The stress components (M.6) then take the following form:

ar = ̂ ^ pco2 (b2 - r2) (M.9a)
8

3 + V 7 , 7 1 + 3V 7 7 rLMnt.\0$ = pco2b2 pco2r2 (M.9b)
8 8

These stresses are greatest at the centre of the disk:

3 +v
<jr(max) = climax) = pct)2b2 (M.10)

8
In the case of a disk with a circular hole of radius a at the centre, the con-

stants of integration in equations (M.6) are obtained from the conditions at the
inner and outer boundaries:

or (r = a) = ar(r = b) = Q (M. 11)

The calculation gives

C = ̂ -pG)2(a2+b2) (M.12a)
8

C^-^-paWb2 (M.12b)
8



Appendix N Thermal stress in a circular disk
The thermal stresses ar and cr# satisfy equation (12.97) with ,9r = 0, in the
case of a circular disk with a temperature distribution symmetrical about the
centre. The strain is due partly to stress and partly to thermal expansion:

er=^-(ar-vo^ + oT (N.la)
tL

£tf=-K-va r) + aT (N.lb)

Solving equations (N.I) for or, a$, we find
77-

ar = -^—j- [er + ve6 - (1 + v)oT] (N.2a)

a* = Y^T [etf + ver - (1 + v)oT] (N.2b)

Equation (12.97) then becomes

r|-(er + Wtf) + (l-vXe r-e t f) = (l + v)ar^ (N.3)

Substituting equations (M.2) in equation (N.3), we obtain

d2w 1 dw M _ /i \ ^^
d^+7d7~^~ ( +VJad7 (N.4)
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Substituting in equations (M.6) we have

a,=—p<02(y+fc2-^-r2l (M.13a)

^~P«2(«2^2^-^^) (M.13b)

We find the maximum radial stress at r = -Jab,

<7r(
max) = p(02(b - a)2 (M.14a)

o

and the maximum circumferential stress at the inner boundary:

a#(max) = :^pCQ2(b2+l—^a2} (M.14b)

The latter is larger than ar (max).
When the radius a of the hole approaches zero, the maximum circumferen-

tial stress approaches a value twice as great as that for a solid disk (M.10); i.e.
by making a small circular hole at the centre of a rotating disk we double the
maximum stress. This is a phenomenon of stress concentration similar to that
discussed in Section 19.6.
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which may be written

±riffe>L(1.v)ai: (R5)
dr\_r dr j dr

Integration of this equation yields

1 f C
w = (l + v)a- 7>dr + C1r + -̂ - (N.6)

r Ja r

where a is the inner radius for a disk with a hole, or zero for a solid disk.
The stress components are found by using the solution (N.6) in equations

(M.2) and substituting the results in equations (N.2)

I f " E [ 1 1
or = -aE — 7rdr + Cj(l +v)-C,(l-v)— (N.7a)

r~ Ja I-VI " r J

o$=aE\ frrdr-oEr + —^-r|c1(l + v) + C,(l-v)4-| (N.7b)
r~ Ja \-v~L ~ r-J

The constants Q and C2 are determined by the boundary conditions.
For a solid disk (a = 0), the constant C2 must be equal to zero in order that

u may be zero at the centre, since

lim - f Trdr = limf- vl = 0 (N.8)
r->orJ 0 "o(2 ° )

T(} being the temperature at the centre.
The boundary condition ar(r = b) = 0 gives

a tb

C i = ( l - v ) — Trdr (N.9)
b- Jo

so that the final expressions for the stresses are consequently

(i fh i r }<J, =aE\ — \ Trdr~— Trdrl (N.lOa)
{b~ Jo ^~ Jo J

T 1 f / ? 1 f "1
0> =aE\-T + — Trdr + — Trdrl (N.lOb)

V *• Jo r~ J0 J

These give finite values at the centre, since

lim-V f lVdr^-To (N.ll)
r->o r2 Jo 2
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668
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Angular congruence 385
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Anisotropic elastic constitutive
law 708-10
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buckling behaviour 556-9
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internal reactions calcula-
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methods 515-29
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flat, buckling behaviour
566-8, 569
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see also Hypostatic arch; Portal
frame; Three-hinged
arch
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Areas

elementary 30-3
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454, 467

double
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555-6
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467-70, 497-8
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469, 470, 472, 473, 476

statically indeterminate struc-
tures 386, 387
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beam systems with 350-4
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354-9
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421-6
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characteristics 72, 107-38
Beam strength analysis 280-1

examples 282-5
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Beam systems
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354r-9
buckling 552-6
dynamics 444-9
energy methods for solution
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multi-indeterminate, automatic

computation 429-36
parallel-arranged 426-9
plastic limit analysis

non-proportional loading
610-14
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360-1
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407-10
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582-3
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405-7
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L-shaped, elastic displacements

determination 490, 491
multilayer, in flexure 718-20
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asymmetrical portal frame

468, 585
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cantilever beam 117, 118, 119
circular plates 376, 377
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164, 167, 169, 171, 584
continuous beam 400, 418,

419, 420
gerber beam 142, 143, 145
inclined beam 115
overhanging-ends beam 133
plane frames

with non-orthogonal beams
480

rotating-node frames 456,
459, 460, 461, 464, 465,

466
translating-node frames

468, 469, 472, 475, 476,
496

portal frame 135,497, 601
statically indeterminate struc-

tures 389, 390, 391, 392,
394, 396, 397, 398, 404,
407, 408, 409, 410

supported beam 123, 124, 125,
126, 127, 128, 129, 130,
131

Betti's Reciprocal Theorem
216-18

applications 267, 274, 307,
336, 338, 424, 501, 711,
714

Biaxial flexure, Saint Venant solids
250

Biaxial shearing force, Saint
Venant solids 273-4

Biharmonic function 624
Boron-epoxy composites 712,

715, 716
Boundary conditions

of equivalence 202, 214, 334
plane plates 325
rectilinear beams 291
Saint Venant solids 237,

254
kinematic 344-5, 549, 550-1
static 549, 550-2

Box section

shearing stresses 277
torsion 265-6

Braced structure, equilibrium
equations 80

Bredt's formula 264
applications 265

Bridges
joints/supports 13, 15
types of structure 5, 5, 7, 8-10

Brittle crack propagation, critical
fracture energy 676

Brittle fracturing 15
definition 684
example 653, 654

Brittle materials
softening 226, 229
stress-strain diagram 227

Brittleness 224, 653
values quoted for various

materials 690
Brittleness number

energy type 696
stress type 688, 690, 691

Broken-axis beams, internal reac-
tion characteristics 132, 134

Buckling 14, 532-71
beam systems 552-6
curvilinear beam 556-9
discrete mechanical systems

with one degree of freedom
532-5

with two or more degrees of
freedom 535-43

flat arches 566-8
lateral torsional buckling

559-61
plates under compression

561-5
rectilinear beam with distrib-

uted elasticity 543-51
shells 568-71

Built-in supports 53
Butterfly-shaped thermal varia-

tions 411, 412, 413, 414

Canonical form 349
Cantilever beams

curvilinear
internal reaction characteris-

tics 121-2
resolution using energy

methods 515-17
displacements and rotations

298-9
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bending moment at end
298

concentrated force at end
299, 306-7

distributed load 299
dynamics of deflected beam

318-19
elementary loading cases 116,

117, 118, 119, 298
incremental plastic analysis

580-1
internal reaction characteristics

116-19
L-shaped

displacements and rotations
307-8

internal reaction characteris-
tics 120, 121

skewed-axis, internal reaction
characteristics 121

thermal distortion 413
Cantilever trusses, equilibrium-of-

nodes method applied
154-5

Cardinal equations of statics 69,
89, 185

Cartesian coordinates, relation to
area coordinates 733

Castigliano's Theorem 529-30,
531

and Principle of Virtual Work
530

Catenary 101
Cauchy elasticity theory 188, 740
Cauchy relations 188, 202
Cauchy-Riemann conditions

641, 642, 660
Central axis of inertia 29-30
Central core of inertia 248

circular cross section 251
rectangular cross section 251

Central moments of inertia 25
Centre of reduction 57
Centred axial force, Saint Venant

solid 239-42
Centroid

of area 21
calculations, examples 35-47
of cross section 719
distributive law 20

Centroidal moment of inertia 24
Characteristic equation

buckling analysis 541
dynamics of elastic solids 347

principal directions of strain
182

principal directions of stress
191

Circular arch
buckling behaviour 556-9
indefinite equilibrium equa-

tions 110
internal reactions, calculations

700-8
pressure line coinciding with

axis 101-3
resolution using energy meth-

ods 515-29
Circular cross section

eccentric axial loading 251
shear factor 272
torsion 253-6

Circular disk
rotating 742-4
thermal stress in 744—5

Circular holes
in plates under tension 635-7,

655-6
in rotating disks 743-4
stress concentration factors

quoted 637, 652, 655-6
Circular plates 371-7

concentrated central loading
375-7

uniform distributed loading
374-5, 376

Circumferential stress, maximum
679, 744

Clapeyron's Theorem 215-16
applications

and Castigliano's Theorem
529

in finite element method
335, 336

in fracture mechanics 674,
677

rectilinear beams 290
Saint Venant solids 241,

247, 256, 259, 264, 272,
274

Clebsch solid 280
Closed-frame structures 140, 153,

162-74
incremental plastic analysis

583-4
Cohesive crack model 692, 694,

698
Cohesive law/characteristic 228

Collapse mechanisms 14-16, 532
effect of size scale 653, 654, 655
method of combining 600
see also Brittle fracturing;

Buckling; Yielding
Compatibility equations 184-5

for plane strain condition 626
for plane stress condition 623

Complementary elastic potential
210, 213

Complex function 640
Complex potentials 643

method (for fracture mechan-
ics) 654

see also Westergaard...
in Westergaard's method 661

Complex variable, complex func-
tion of 640

Compliance matrix, orthotropic
material 710

Composite areas
calculation 30

examples 35-47
Composite materials 224

laminated, cause of delamina-
tion 271

see also Anisotropic material
Compressed plates, buckling of

561-6
Concrete

properties quoted 223, 690,
720

softening behaviour 226, 691
see also Reinforced concrete

Congruence equations 1, 2, 385
curvilinear beams 521, 522
cylindrical vessels 381, 382
matrix form 202-3
statically indeterminate struc-

tures 387, 390, 391, 394,
396, 401, 403, 405, 406,
410, 499, 504

Conical membrane 369, 370
Connecting rods

concurrent at point 424-6
double

external 52, 53, 70
internal 55, 71
static (constraint) conditions

70, 71
external 51-2, 70
internal 55, 71
kinematic (constraint) condi-

tions 51-2, 55
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Connecting rods contd
in parallel-arranged bar sys-

tems 421, 572
static (constraint) conditions

70, 71
in symmetrical beam systems

358
Constitutive equations

curvilinear beam 294
double-curvature shell 330
plane plate 322-3, 325
rectilinear beam 292
see also Elastic constitutive

equations
Constitutive nonlinearity 572
Constraint reactions 1

determination 79-106
algebraic methods 57-63,

72-7, 79-83
graphical method 89-95
semi-graphical method

83-9
and external loading 11-14

Constraint reaction vector 431
Constraints

double 52, 70
external 51-5
ill-disposed 54-5
internal 55-6
simple/single 51-2, 70
triple 53, 71
see also Built-in supports;

Connecting rods; External
constraints; Fixed joint;
Hinge; Internal con-
straints; Plane constraints;
Rigidity constraints;
Roller support

Continuous beams 417
equivalent statically determi-

nate structures 417-20
incremental plastic analysis

589-91
plastic limit analysis 597-8,

610, 611
Conventional dilation 225
Couple-stress theory 740
Crack branching criterion

branching angle vs crack incli-
nation angle 681

in mixed mode condition
679-82

Crack mouth opening displace-
ment (CMOD) 694

Crack opening displacement
(COD) 664, 665

relation with stress 691
Crack propagation

energy 657
mixed mode 667-8, 679
Mode I (opening mode) 655,

665-7, 668
Mode II (sliding mode) 655,

667, 668
Mode III (tearing mode) 667,

668
self-similar propagation 679

Crack tip
plastic zone around 682-6,

692
stress singularity at 658, 663,

668
Cramer's rule 501
Crank mechanism 57

kinematic study 64-5
Critical multiplier, of loads 542
C-section, shearing stresses

276-8
Cubic dilation 184
Cubic splines 339
Curvilinear beams 2

buckling 556-9
elastic problem summarized

294
indefinite equations of equilib-

rium 110-11,293
resolution using energy meth-

ods 515-29
Cyclic loading 614-18
Cylindrical membranes 369
Cylindrical shells

buckling behaviour 568, 570,
571

symmetry 378-80
Cylindrical vessels, with faces sub-

jected to internal pressure
380-3

Damage mechanisms 224
Damping, dynamics of elastic

solids 739-40
Deep beam 626-31

compressive stresses 629
Deflected beams

deflection 294
dynamics 313-19

Deflected plates
degrees of freedom 334

elastic problem summarized
326

plasticity 618-21
Deflection

free length of 550
expressions quoted for vari-

ous cases 550-1
Deformable bodies

elasticity 207
Principle of Virtual Work

applied 204-7
Deformation characteristics vector

341
Deformed-configuration diagrams

beam built-in at one end and
supported at other 389,
392

built-in beam 394, 554
cantilever beam 117, 118
circular plate 374, 376, 377
continuous beam 418, 419,

420
L-shaped cantilever beam 120
oscillating beam system 446
plane frames

with non-orthogonal beams
480

rotating-node frame 450,
456, 461

translating-node frame
451,468, 472

plates in compression 564
portal frames 553
rigid systems 57, 59, 61, 64,

66, 67, 68
statically indeterminate struc-

tures 389, 392, 394, 397,
399, 400, 402

thermal distortion effects
415

supported beam 123, 124, 543
thin beam in torsion 560
trusses 147

Degrees of freedom 48-51, 334
quoted for various solids 334

Delamination 271
Density matrix 345
Dependent variable 640
Deviatoric tensor 193, 233
Diffusion problems, finite element

method applied 735-7
Dilations

and shearing strains 177-8
thermal 412
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see also Conventional...;
Cubic...; Specific...;
Volumetric dilation

Direct equilibrium method 534
Disconnections 55, 82
Discretization method, finite ele-

ment method as 332, 333
Displacement function 174

regularity 175
Displacement vector field 341
Displacements method 421

statically indeterminate struc-
tures resolved using
421-50

Displacements and rotations
beams and plates 298-305

composition 305-8
determination in statically

determinate structures
488-94

Distortion energy, criterion of
maximum 233, 281

see also Von Mises' criterion
Distribution coefficients

multi-storey frame in forced
oscillation 448

parallel-arranged bar systems
423

parallel-arranged beam systems
flexural coefficient 428
shear coefficient 429

torsion of thin-walled sections
263

Distributive laws
of centroid 20
of static moments 30

Domes 3, 8, 11
Double articulated parallelograms

53, 56, 71, 72
Double connecting rods 52, 53,

55, 70, 71, 72, 82
in symmetrical beam systems

356, 357
Double-curvature shells 4

degrees of freedom 334
flexure 327-31
non-symmetrically loaded

361-4
symmetrically loaded 364-7

Drucker's Postulate 593, 594
Duality, kinematic-static, see

Static-kinematic duality
Ductile-brittle transition 654

size effects 655, 686-91

Ductile materials, stress-strain
diagram 225

Ductility 224, 653
relation as measure 683

Dugdale's (crack propagation)
model 684, 685, 686

and cohesive crack model 692
compared with Irwin model

686
Dyadic product 22
Dynamic stiffness matrix 346
Dynamics

beam systems 444-9
deflected beams 313-19
elastic solids 345-9

with linear damping 739-40

Earthquakes
inertial forces caused by

11-12, 14
see also Seismic analysis

Eccentric axial force, Saint Venant
solid 248-53

Effective nodal forces, vectors
435

Eigenvalue equation 182
Eigenvalue spectrum, deflected

beams 318
Eigenvalues 183, 192, 314, 347,

537, 668
Eigenvectors 183,192, 347, 537,

668
Elastic body 207, 208
Elastic constitutive equations

207-11
anisotropic materials 708-10
circular plates 373
Saint Venant solids 240, 253,

257
thin plates 623

Elastic constraint settlement,
determination of effects
487, 507

Elastic constraints 399-404
Elastic displacements, determina-

tion in statically determinate
structures 488-94

Elastic equilibrium
instability of 14, 532-71

see also Buckling
Elastic foundation, beam on

309-13
analogy to cylindrical shells

380

analogy to plates in compres-
sion 564

buckling behaviour 564-5
Elastic half-plane, concentrated

force acting on edge 637-40
Elastic-hardening-softening

behaviour 691-2
Elastic line

differential equation 294-7,
543

for curvilinear beams 556
with second-order effects

544
Elastic modulus 221

composite material, as function
of angle 715, 716

and fracture energy 676
see also Shear elastic modulus;

Young's modulus
Elastic plane 327
Elastic-plastic flexure 57S-80
Elastic potential 208, 209

complementary 210, 213
Elastic problems

approximate solution 332
see also Finite element

method
curved beams and arches 294
deflected plane plate 326
operator formulation 335
rectilinear beam 291

Elastic solids, dynamics 345-9
with linear damping 739-40

Elastic stiffness matrix 542, 555
Elasticity

linear 210, 211-13
nonlinear 210

Elasticity theory 200-35
Electrical conduction, finite ele-

ment method applied 737
Elementary areas 30-3
Elementary schemes 116

displacements and rotations
298-305

internal reaction characteristics
116-31

see also Cantilever...; Simply
supported beams

Elliptical coordinates 649
Elliptical holes

in plates under tension
647-52, 656

stress concentration factors
quoted 651, 652, 652
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Energetically orthogonal systems
217-18

Energy Conservation Principle
675

Energy dissipation
elastic-softening materials

226, 691
hysteresis 209, 616-17
plastic limit analysis 595

Energy methods, beam systems
resolved using 486-31

English truss 148
Epoxy-based composite materials,

see Boron-epoxy compos-
ites; Glass-epoxy composite

Equilibrant systems of loads 69
Equilibrium

equations 1,2
indefinite equations 200-2

circular plates 372
curvilinear beams in flexure

293
double-curvature shells in

flexure 328-30
matrix form 203, 289, 324,

329
plane beams 109-16, 293
plane plates 323-4
rectilinear beams in flexure

289
solids of revolution 384
thin plates 622

variational equation 562
Equilibrium-of-nodes method (for

trusses) 150-2
examples of application 154-9

Equivalence
boundary conditions of 202,

214, 334
on end planes of Saint

Venant solid 254
on lateral surface of Saint

Venant solid 237, 254
plane plates 325

Equivalent nodal force vectors
342, 435, 436, 555

Equivalent stress 231
Euler's critical load 547-8
Eider's critical pressure 548
Euler's formula 548

limits of validity 549
Euler's hyperbola 548
Expansion of vectors (from local

to global dimension in finite

element method) 342, 433,
555

External constraints 51-5
External double articulated paral-

lelogram 53
External fixed joint 53, 71
External loading, and constraint

reactions 11

Fibre-reinforced materials 710,
717

see also Orthotropic material
Fictitious crack approach 684,

694
Finite difference method 327,

725
applications

plates in flexure 727-8
torsion of beams 725-6

Finite element meshes, examples
16, 17, 18, 19

Finite element method 17-18,
332-49

applications
buckling of beams 552,

554-6
diffusion problems 735-7

isoparametric 338
minimum total potential ener-

gy principle used 333,
334-7

virtual work principle used
333, 339-44

Finite elements 339
rectangular

Lagrange famdy 729-30
Serendipity family 730-2

rectangular prism 734-5
tetrahedral 735
three-dimensional 734-5
triangular 732-3

Fink truss 148
Fixed joint

external 53, 71
internal 55-6, 72

Flat arch, buckling 566-8, 569
Flexural coefficient of distribution

428
Flexure

beams 286-319
double-curvature shells

327-31
elastic-plastic 575-80
multilayer beam 718-20

plates 319-27, 727-8
Saint Venant solids 242-8

Fluid infiltration, finite element
method applied 737

Force polygon 97, 98
Forced oscillations, beam systems

446-9
Forces, method of 385

for statically indeterminate
structures 385-420

Foundations, constraint reactions
12-13

Fracture energy 228, 653, 657
dimensions 678
dissipation of 227, 228
low values 230
relation with critical stress-

intensity factor 673-9
Fracture mechanics 653-99
Fracture mechanisms 224
Fracture stress, values quoted 223
Frames

loaded out of plane 483-5
with non-orthogonal beams

478-83
plane

associated truss structures
453, 454, 466, 468, 474,
477

rotating-node frames
438-9, 450, 454-66

translating-node frames
439, 451, 466-74

space 441-74
see also Plane...; Rotating-

node...; Space...;
Translating-node frames

Framework, types 5, 5-7
Free oscillations, beam systems

316, 444, 445-6
Freedom, see Degrees of freedom
French truss 148
Fundamental mode of vibration

(of beam system) 446
Funicular curve 101
Funicular polygon 98

Geometrical features 20-47
Geometrical nonlinearity 572
Geometrical stiffness matrix 542,

555
Gerber beams 139, 140-5

determination of elastic dis-
placements 492, 493
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distributed load on all spans
141-3

truss elements in 149, 150
two out of three spans uniform-

ly loaded 143-4 ,145
Glass, properties quoted 690
Glass-epoxy composite, strength

criteria vs angle 717
Glass filaments 654

strength 653, 658
Global matrix of masses 346
Global shearing stress 255
Global stiffness matrix 344, 435
Graphical methods

kinematics of systems with one
degree of freedom 64-9

moments of inertia 26-8
Green's Theorem, applications

202, 258
Grid framework 7

see also Plane grids
Griffith's energy criterion 654,

655-8
approach compared with stress

approaches 673-9
Gyroscopic areas 26

Hardening behaviour 225, 533
Harmonic functions 624, 641
Harmonic oscillator, analogies

211-12, 346
Heat conduction, finite element

method applied 735-7
Heat flux 736
Hessian matrix 212, 538, 541

positive definite 213, 220, 538
Heterogeneous beam 718-22
Heterogeneous plate 722-4
Hinge 13, 15

external 52, 70
ideal 52
internal 55, 71
kinematic (constraint) condi-

tions 52, 55
static (constraint) conditions

70, 71
in symmetrical beam systems

356
Holes

in plates under tension
circular holes 635-7, 655-6
elliptical holes 647-52, 656

Homeomorphisms, displacement
function 175

Homogeneous body 223
Howe truss 148
H-section

area/moment-of-inertia calcula-
tions 35, 37, 43-4

strength analysis 283
Huygens' laws 23

application 31, 34, 41
inverse applied 32

Hydraulic loads 11
Hydrodynamic analogy, multiply

connected thin-walled cross
sections 728

Hydrostatic loading, circular arch
700-5

Hydrostatic tensor 192, 193
Hyperstatic constraint condition

54
Hyperstatic problems 2
Hyperstatic systems 76, 77, 78
Hyperstatic unknowns 385
Hypostatic arch

constraint reactions deter-
mined, graphical method
used 93

kinematic study 65-6
with rigid L-shaped bodies,

kinematic study 66-7
Hypostatic constraint condition

53, 54
Hypostatic systems 49-50, 75, 77
Hysteresis, energy dissipation by

209, 616-17

Ideal stress 231
Ill-disposed constraints 54-5
Imposed displacements 405-10,

474-3
crack growth affected by 674-5

Imposed-force loading, crack
growth affected by 673-4

Incremental plastic analysis
beam systems 574, 580-92

asymmetrical portal frame
584-7

built in at one end and sup-
ported at other
587-9

built-in beams 582-3
cantilever beams 580-1
closed framework 583-4
continuous beams 589-91
simply supported beams
581-2

Incremental plastic deformation,
law of normality 592-5

Indefinite equations of equilibri-
um 200-2

circular plates 372
curvilinear beams in flexure

293
double-curvature shells in flex-

ure 328-30
matrix form 203, 289, 324, 329
plane beams 109-16, 293
plane plates 323-4
rectilinear beams in flexure

289
solids of revolution 384
thin plates 622

Independent variable 640
Inelastic body 209
Inelastic constraints 405-11
Inertia

central axis of 29-30
central core of 248
see also Moment of inertia

Inertial forces 11-12
Influence coefficient 499
Influence matrix 502
Initial strains 738
Interaction curve, and plastic limit

580
Internal connecting rod 55, 56,

71, 72
Internal constraints

kinematic definitions 55-6
static definitions 71-2

Internal double articulated paral-
lelogram 56, 71

Internal fixed joint 55-6, 72
Internal hinge 55, 56, 71
Internal reaction characteristics

72, 107, 239
beam sections 72, 107-38
circular arches 700-8
differential equations govern-

ing 109-16
direct method of determination

116-19, 702-5, 707-8
graphical method of determi-

nation 119-36, 163, 165
plates 322
three-hinged arches 155, 157,

159, 161-2
trusses 146-53
Virtual Work Principle used in

determination 136-8
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Interpolation method, finite ele-
ment method as 332, 333

Inverted parabolic truss 148
Irwin's (crack propagation) model

683
compared with Dugdale model

686
I-section

elastic-plastic flexure 577
shearing stresses 275-6

Isoparametric finite element
method 338

Isostatic arch, constraint reactions
determined 95, 97-8

Isostatic constraint condition 54
Isostatic problems 2
Isostatic systems 75, 77

internal stresses induced 139
see also Statically determinate

systems
Isotropy 218-23

see also Transversely isotropic
material

Jacobian matrix, and rotation
matrix 175-6

Joints
bridges 13, 15
fixed

external 53, 71
internal 55-6, 72

sliding 52, 53
timber-beam 14, 16

Jourawski formula 269
application 275, 277

example of cross section
269, 270

Kinematic boundary conditions
344-5, 549, 550-1

Kinematic chains 64
First Theorem 64, 67, 69
Second Theorem 64, 69

Kinematic equations
beams in flexure 288, 291, 293
beams in torsion 253
circular plates 371, 372
curvilinear beams 293, 556
cylindrical shells 378
deformable bodies 203
double-curvature shells in flex-

ure 327-8
rigid bodies 77
shells of revolution non-sym-

metrically loaded 364

three-dimensional solids of
revolution 383

Kinematic matrix 77
Kinematically admissible collapse

mechanism 595, 596, 597
Kinematically admissible systems

205, 206
Kinematics

one-degree-of-freedom sys-
tems, graphical study
6-9

rigid systems, algebraic study
57-63

Kinematic-static duality, see
Static-kinematic duality

Kirchhoff s kinematic hypothesis
320, 321, 723

Kirchhoffs Theorem 214
application 241

Kronecker delta 315, 340, 347
K truss 148

Lagrangian (finite) elements
729-30

Lagrangian polynomials 730
Lame's equation 213, 290-1, 334
Lame's (matrix) operator 214,

291, 325, 331, 572, 739
Laminates 722-4

cause of delamination 271
Laplace operator 644
Laplace's equation 258, 725
Lateral torsional buckling 559-61
Lekhnitski's coefficients 714

variation with angle 715, 716
Liberty ships 653, 654
Ligament 688
Linear elastic body 210

problems involving 213-15
Linear elastic fracture mechanics

(LEFM)
applicability 692
and cohesive crack model 698

Linear elasticity 210, 211-13
Linear programming, plastic limit

analysis using 597, 598
Linear splines 339
Linearized rigidity constraints

49, 51
Line of pressure 95-106
Live loads 11
Load-deflection plots

non-dimensional form, effect
of brittleness number
696-7

snap-back instability 228, 693,
695

Load diagrams 11, 12
Loading axis 243, 250
Loading plane 243
Loads, critical multiplier of 542
Local damping matrix 739
Local mass matrix 346, 740
Local stiffness matrix 342
L-section

area/moment-of-inertia calcula-
tions 35, 36, 41-2

strength analysis 282-3
L-shaped beam

constraint reactions deter-
mined, graphical method
used 89-90, 92

kinematics calculations 57-9
pressure line 103-4
statics calculations 73-4

L-shaped cantilever beam
displacements and rotations

307-8
internal reaction characteristics

120, 121

Maclaurin expansion 211
quadratic form 212

Masses
global matrix 346
local matrix 346, 444

Mean normal stress 192
Membranes 3, 367-71

conical 369, 370
cylindrical 369
prestressed 9, 11
spherical 369
toroidal 370-1

Menabrea's Theorem 530-1
Meridians and parallels 361
Meusnier's Theorem 362
Minimum strain energy, theorem

530
Minimum total potential energy,

principle 333, 334-7, 738
Modal analysis 332, 446-9
Modal matrix 348-9
Modulus function 643
Mohnie, truss 148
Mohr-Coulomb criterion 233
Mohr relations 27, 680
Mohr's circles method 26-8

examples of use
circumferential stresses

around hole 635
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moments of inertia 35, 36,
37, 38, 39, 40

principal stresses 193-4,
195, 197-9, 280-1

Mohr's plane 194, 195, 198
pure shear stress condition

256, 257
Tresca's criterion represented

on 231,232
Moment diagrams, see Bending-

moment diagrams
Moments of inertia

calculations, examples 35-47
centroidal 24
distributive law of 30
polar 24
principal 25
and principal axes 25-6

Moment-of-inertia tensor
definition 23
transformation laws 22-5

Monoclinic material 709
Monodromy 209
Multilayer plate 722-4
Muskhelishvili's method 622,

643, 647
approach compared to

Griffith's method 673-9
Westergaard's method based

on 647, 654, 658
see also Westergaard's method

Mutual shear factor 274
Mutual work 216, 274

Natural angular frequencies,
deflected beams 317, 318

Natural modes of vibration (of
oscillating beam) 316-17,
317, 446

Necking (in uniaxial tensile test)
226

Neumann problem 258
Neutral axis

eccentric axial loading 248,
249, 250

flexure 243
Neville truss 148
Nielsen truss 148
Nodal displacements (in finite ele-

ment method), global vector
343, 435, 436

Nodes
finite element method 333
truss 146

Nominal stress 224

Nonlinearity
constitutive 572
geometrical 572

Non-orthogonal beams, frames
with 478-83

Non-symmetrical section, centre
of torsion 278, 279

Normal component (of stress ten-
sor) 187

Normal reaction 72
Normal stress, criterion of maxi-

mum 232
Numerical models 16-19

Oblique axial symmetry 28-9
Oblique polar symmetry, centre of

torsion 278, 279
Orthonormality,

eigenfunctions/eigenvectors
314, 347

Orthotropic material 709, 710-12
strength criteria 716-18
stress-strain relations for plane

stress conditions 712r-15
Oscillating beam

natural modes of vibration
316-17, 317

see also Forced oscillations; Free
oscillations

Oscillating frame, modes of vibra-
tion 446

Ovalization of tubes 559
Overhanging-end beams

displacements and rotations
303-5, 308

internal reaction characteristics
132, 133

Overturning (of bending moment)
120, 121

Parabolic arch 101
Parallel-arranged bar systems

cyclic loading 614-18
elastic-plastic behaviour 572-4
resolution 421-6

Parallel-arranged beam systems
426-9

Parallelogram, articulated 57
double 53, 56, 71, 72, 360

Parallelogram law 89
Partial collapse (in plastic analysis)

591
Participation coefficient (for

forced oscillations) 447,
449

Perfectly plastic structural
response 229

Permanent loads 11
Perturbation, buckling analysis

544
Plane beams

with curvilinear axes, flexure
292-7

degrees of freedom 334
indefinite equations of equilib-

rium 109-16
Plane constraints

kinematic definition 51-7
static definition 69-72
see also Connecting rods;

Hinge; Roller support
Plane elasticity, with couple

stresses 740-2
Plane frames 6, 438-9, 450-85

associated truss structures
453, 454, 466, 468, 474,
477

imposed displacements 474-8
rotating-node frames 438-9,

450, 454-66
translating-node frames 439,

451, 466-74
Plane grids 440-1
Plane plates

definition 319-20
deflected, elastic problem sum-

marized 326
flexure 320-6

Plane sections, principle of conser-
vation 247

Plane steel frame 6
Plane strain condition 624-6

fracture energy relations 678
Plane stress condition

at point 195-9
and Tresca's equivalent

stress 232
and Von Mises' equivalent

stress 235
fracture energy relations 678
stress-strain relations for

orthotropic material
712-15

in thin (two-dimensional)
plates 622-4

Plane trusses 436-8
Plastic analysis, incremental 574,

580-92
Plastic collapse, transition to other

collapse mechanisms 653
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Plastic collapse load 574
Plastic collapse mechanisms 574,

597
Plastic deformation 14-15

alternating 616-17
convexity of surface 594
law of normality of incremen-

tal 592-5
moment of first 575
moment of ultimate 575

Plastic hinges 582, 597, 600
Plastic limit analysis 574

applications
beam systems loaded pro-

portionally by concen-
trated forces
597-600, 601

beam systems loaded pro-
portionally by distrib-
uted forces 602-10

ductile-brittle transition
688-90

proportionally loaded beam
systems 610-14

kinematic theorem 596
material-addition theorem

597
maximum dissipated energy

theorem 595
mixed theorem 597
static theorem 596
theorems 592, 595-7

Plastic moment 575
Plastic transverse contraction 226
Plastic zone (at tip of crack)

682-6, 692
Plasticity theory 572-621
Plates 3, 4, 319

circular 371-7
in compression, buckling

behaviour 561-5
deflected

degrees of freedom 334
elastic problem summarized

326
plasticity 618-21

in flexure 319-27, 727-8
multilayer 722-4
in tension

circular holes 635-7
elliptical holes 647-52

Plexiglass, properties quoted 690
Pneumatic loads 11
Poisson ratio 222

orthotropic material 710
values quoted 223

Polar moment of inertia 24
Polar-symmetrical beam systems

359-60
skew-symmetrical loading

360-1
Polar-symmetrical thin-walled sec-

tion
area/moment-of-inertia calcula-

tions 40, 41, 47
strength analysis 284, 285

Pole
Mohr's circle 27
of reduction 57

Polonceau truss 148
Polygon of forces 97, 98
Portal frame

asymmetrical three-hinged
constraint-reactions deter-

mination 93, 94
incremental plastic analysis

584-6
internal reaction characteris-

tics determination
136-8

kinematics 59-62, 65-6, 67,
68

pressure-line representation
105-6

resolution 460, 462, 463,
467-70, 497-8

statics 74-6
thermal distortions 505-6

with connecting rod and hinge
constraint reactions deter-

mined by graphical
method 93-4

kinematic analysis 62
static analysis 76

constraint-reactions determina-
tion

algebraic calculations
59-62, 74-6

graphical method used
93-5, 96

Principle of Virtual Work
applied 85-9

double
constraint reactions deter-

mined by graphical
method 94-5, 96

kinematics 62-3, 67, 68, 69
statics 76-7

with inclined stanchion
incremental plastic analysis

591-2
plastic limit analysis 606-7
resolution 478-83, 498-9

kinematics
algebraic study 59-62
graphical study 67, 68

plastic limit analysis 600-6,
610, 612r-14

as rotating-node type frame
460, 462, 463

statics, algebraic study 74-6
with strut

plastic limit analysis
607-10

resolution 460, 462, 463
as translating-node type frame

467-70
Position vector, transformation

laws 20-1
Potential energy

minimum 333, 338
principle of minimum total

333, 334-7
Potential well 211, 212, 333
Power generation per unit volume

736
PrandtTs formula 561
Pratt truss 148
Pressure line 95-106

arch having axis coinciding
with 100-2

closed-frame structures 160,
162, 165, 166, 168, 170, 172

inclined beam 113
plane frames 459-60, 469, 470,

474, 476
with non-orthogonal beams

481
supported beam 126

Pressurized vessels
flat-faced 381-2
with free edges 381
hemispherically faced 382-3

Prestressed membranes 9, 11
Principal dilations/strains 183
Principal directions

of curvature 327
of inertia 25
of moment, deflected plate

327
of strain 182-4
of stress 191-4
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Principal moments of inertia 25
Principal stresses 192, 193

Mohr's circles method applied
193-4, 195, 197-9

Principle of Minimum Total
Potential Energy, see

Potential energy...
Principle of Virtual Work, see

Virtual Work Principle
Process zone (at tip of crack)

692
see also Plastic zone

Pure shear condition, at edge of
hole in plate 637, 651

Quadratic splines 339

Rankine's criterion 232
Rayleigh ratio 446
Reading list 746
Reciprocity law

for displacement-vector projec-
tions 180

for shearing stresses 190, 263,
270

for tension-vector projections
190

Rectangle
central moments of inertia 31
static moments 31

Rectangular cross sections
eccentric axial loading 250,

251
open thin-walled cross section,

torsion 261-2
torsion 260

Rectangular finite elements
Lagrangian 729-30
Serendipity 730-2

Rectangular prism elements
734-5

Rectilinear beams
with distributed elasticity,

buckling 543-50
elastic problem summarized

291
flexure 286-92

in-plane loading 291-2
indefinite equations of equilib-

rium 111-12
Reduced external forces, vector

73
Redundant beam systems 385,

387

Re-entrant corner, stress field
around vertex 668-72

Reinforced concrete
beams 389, 390, 720-2

buckling behaviour 570
trusses 5

Residual stresses 738
Reuter matrix 713
Right axial symmetry 29
Right triangle, moments of inertia

31-2
Rigid cross members

method (in dynamics) 444-9
translating-node frames with

438, 439
Rigid joint moments 404

vector 438
Rigid systems

kinematics, algebraic study
57-63

statics, algebraic study 72-7
Rigidity constraints 48-9

linearized 49, 51
Rings

buckling behaviour 556-9
indefinite equilibrium equa-

tions 110
resolution using energy meth-

ods 515-29
Ritter sections 152-3
Ritz-Galerkin matrix 338

and global stiffness matrix
343, 344

Ritz-Galerkin method 337-9
application 565

Roller support 13, 15
kinematic (constraint) condi-

tions 51, 52, 56
static (constraint) conditions

70
in symmetrical beam systems

355
Ropes 2

in tension
dynamics on deflection

319
see also Caternary;
Suspension bridges

Rotating circular disk 742-4
Rotating-node frames 438-9, 450,

454-66
Rotation matrix 50, 175, 176, 294
Rotation vector 50
Rotations and displacements

beams and plates 299-305
composition 305-8

Rouche-Capelli Theorem 74
applications 74, 75, 76, 95,

405

Safety factor 230
plastic collapse

asymmetrical portal frame
586

beam built-in at one end
and supported at
other 589

built-in beam 586
cantilever beam 581
closed framework 584
continuous beam 590
simply supported beam

582
Saint Venant problem 236-85
Saint Venant solid 236

and beam strength analysis
280-1

examples 282-5
and biaxial shearing force

273-4
in combined shearing and tor-

sional loading 266-7
complex loadings 239

biaxial flexure 250
eccentric axial force 248-53
shear-torsion 266-7

elementary loading cases 239
centred axial force 239-42
flexure 242-8
shearing force 267-73
torsion

circular cross-section
beams 253-6

closed thin-walled sec-
tions 263-6

generic cross-section
beams 257-9

open thin-walled sec-
tions 260-3

thin-walled sections
shearing 274-9
in torsion 260-6

Saint Venant's Principle/Theory
237

applications 238-9, 628, 630
fundamental hypotheses

236-9
slenderness limit 270

757



INDEX

Scalar invariants
of strain 183
of stress 191

Sections, method of (for trusses)
152-3

Seismic analysis
multi-storey frame 446-9
see also Earthquakes

Seismic intensity coefficient 448
Self-similar (crack) propagation

679
Semi-fixed joints 146
Serendipity (finite) elements

730-2
Series expansion method (fracture

mechanics) 654, 668
Shake-down 574, 616
Shape functions 340, 729-35
Shear, centre of 267
Shear coefficient of distribution

429
Shear elastic modulus 222

composite material, as function
of angle 715, 716

Shear factor 272
Shear reaction 72
Shear-torsion, Saint Venant solids

266-7
Shear-type frames 438, 444
Shearing force 107

beam systems with skew-sym-
metry 355, 360

cantilever beams 117, 118
Saint Venant solids 267-73

biaxial shearing force 273-4
combined with torsional

loading 266-7
sign conventions 107, 108

Shearing-force diagrams
broken-axis beam 134
cantilever beam 117, 118, 119
closed-frame structures 161,

164, 167, 169, 171, 173
continuous beam 400, 418,

419, 420
gerber beam 142, 143, 145
inclined beam 115
L-shaped cantilever beam 120
overhanging-ends beam 133
plane frames

with non-orthogonal beams
481

rotating-node frames 458,
459, 460, 461, 464, 465

translating-node frames
468, 470, 472, 473, 476

statically indeterminate struc-
tures 389, 390, 392, 394,
397, 398, 407, 408, 409

supported beam 123, 124, 126,
127, 128, 129, 130, 131

three-hinged arch 136
Shearing strain 178-9, 271-2

mean 272
Shearing stress

components 187
criterion of maximum 231-2,

281
see also Tresca's criterion

determination, algebraically
269-70

global 255
law of reciprocity 190, 263

Shells
buckling of 568-71
cylindrical 378-80
double-curvature 4, 327-31

flexural regime 327
membrane regime 327

of revolution
non-symmetrically loaded

361-4
symmetrically loaded

364-7
see also Cylindrical...; Double-

curvature shells
Simply supported beams 122

buckling 543-51
displacements and rotations

299-305
asymmetric loading 301,

302
central concentrated force

300, 301
concentrated moment acting

at end 299-301, 300
determination using energy

methods 488-90
distributed load 300, 301

dynamics of deflected beam
316-18

incremental plastic analysis
581-2

internal reaction characteristics
122-31

asymmetric loading 130-1
central concentrated force

122-4

concentrated moment acting
at end 125, 126

concentrated moment acting
in centre 124-5

distributed load 126-7
distributed load on interme-

diate portion of beam
128-30

equal concentrated forces
127, 128

truss elements in 149, 150
Single-degree-of-freedom system

332-4
minimum total potential energy

333
position of equilibrium 332
total potential energy 332
see also Degrees of freedom

Size scale
collapse mechanism type

affected by 653, 654
ductile—brittle transition affect-

ed by 655, 686-91
Slabs 3
Slenderness

beams
and buckling behaviour

548, 549
limit in failure 549, 658

cylindrical shells, and buckling
behaviour 568, 569, 570

Sliding joint 52, 53
Snap-back 230, 570, 653, 694
Snap-through 568, 570
Softening behaviour 226, 229,

534, 691
Solids of revolution

three-dimensional 383-4
see also Thick-walled cylinder

Solution Uniqueness Theorem
214

application 241
Sophie Germain equation 326-7

numerical solution using finite
difference method 727-8

Space frames 441-4
Special stress components 188
Specific dilation 178
Spherical hinges 441-2, 483
Spherical membranes 369
Spherical shells, buckling of 568,

570, 571
Splines, isoparametric finite ele-

ment method 338-9, 339
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State function 207
Static boundary conditions 549,

550-1
Static characteristics vector 341
Static equations

beams in flexure 293
circular plates 372
curvilinear beams 293
cylindrical shells 378
deformable bodies 203
plates in flexure 324
rigid bodies 77
shells of revolution non-sym-

metrically loaded 364
three-dimensional solids of

revolution 383
Static-kinematic duality

deformable bodies 202-4
plates in flexure 324
rigid bodies 70, 73, 77-8

Static matrix 77
Static moment vector

definition 21
transformation laws 21-2

Static moments
calculations, examples 35-47
distributive law of 30

Statics
cardinal equations 69
rigid systems, algebraic study

72-7
Statically admissible stress field

595, 596, 597
Statically admissible systems

204-5, 206
Statically determinate beams

138-73
displacements and rotations

289-90
determination using energy

methods 488-94
see also Closed-frame struc-

tures; Gerber beams;
Three-hinged arch;
Trusses

Statically determinate problems
1, 2

Statically determinate systems
75, 76, 77

see also Isostatic systems
Statically determinate trusses, plas-

tic collapse safety factor 582
Statically indeterminate problems

1, 2

Statically indeterminate structures
displacements method for reso-

lution 420-49
elementary schemes 388-99
energy method for resolution

one degree of static determi-
nacy 494-9

two or more degrees of static
determinacy 499-505

forces method for resolution
385-420

Statically indeterminate systems
76, 78

Statically indeterminate truss
structures, resolution
507-15

Steel
properties quoted 223, 720
in reinforced-concrete beams

390, 720
Stiffness matrix

dynamic 346
elastic 542, 555
of element 431
geometrical 542, 555
global 344

and Ritz-Galerkin matrix
343, 344

local 342
plane frame 431, 438, 439
plane truss 436

Strain
principal directions 182-4
scalar invariants 183

Strain condition 207
Strain energy

release rate, in crack propaga-
tion 676

theorem of minimum 530
Strain matrix 176, 188
Strain and stress analysis 174-99
Strain tensor 174-7

transformation of 179--82
Strain vector 203
Strains, initial 738
Strength

definition 653
values quoted for various

materials 690
Strength criteria 230-5

orthotropic material 716-18
Stress

criterion of maximum 717
mean normal 192

principal directions of 191-4
scalar invariants of 191

Stress concentration, effects 635,
655, 744

Stress concentration factor 637
circular hole 637, 652, 655-6
elliptical hole 651, 652, 652,

656
Stress condition 207
Stress-intensity factor 662

critical value, relation with
fracture energy 673-9

dimensions 663
Mode I 663, 664, 680
second (Mode II) 666, 680

Stress matrix 188
Stress plane 195, 196
Stress singularity, at tip of crack

658, 663, 668
Stress-strain diagrams 691

brittle material 227
ductile material 225
elastic body 209
inelastic body 209
suddenly yielding metal alloys

226
Young's modulus calculated

221
Stress-strain relations

as law for behaviour of materi-
als 691

orthotropic material, for plane
stress conditions 712-15

Stress tensor 185-9
normal component 187
for Saint Venant solid 280
special stress components

188
total shearing stress component

187
transformation of 189-91

Stress vector 203
Stresses

nominal 224
residual 738

Structural collapse 14-16
Structural elements, classification

2-4
Structural mechanics, meaning of

term 1
Structural symmetry 350-84

see also Axial symmetry; Polar
symmetry

Structural types 2-9,10-11
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Stubby beams
failure mechanism 549
shearing stresses 270

Stubby solids 3
Superposition Principle 214

applications
beams in flexure 290, 305,

311, 314
plane frames 462
Saint Venant solids 238
statically determinate struc-

tures 386, 504, 529
Supported beams, see Simply sup-

ported beams
Surface energy, crack growth

affected by 657
Suspension bridges 7, 10, 101
Symmetry

areas 28-30
beam systems

axial skew-symmetry
354-9

axial symmetry 350-4
polar skew-symmetry

360-1
polar symmetry 359-60

Taylor series expansions 536,
540, 543, 566

Temperature gradient 735
components 736

Tensile fracture/yield stress, val-
ues quoted 223

Tetrahedral finite elements 735
Thermal capacity 737
Thermal conductivity coefficients

736
Thermal curvature 412
Thermal dilation 412
Thermal distortions

plane frames 474-8
statically indeterminate struc-

tures 411-16, 505-7
Thermal expansion coefficient

412
Thermal stresses, in circular disks

744-5
Thermal variations

butterfly-shaped 411, 412,
413, 414

uniform 411
Thermoelastic line, equation of

413
Thick plates 3

Thick-walled cylinder 631-4
see also Solids of revolution

Thin plates, plane stress condition
in 622-4

Thin shells 367-71
Thin-walled beams 3, 4
Thin-walled sections 33-5

arc of circumference consid-
ered 35

area/moment-of-inertia calcula-
tions 38-40, 41, 44-7

centre of torsion 278
rectilinear segment considered

33-4
strength analyses 283-4
torsion 260-6, 728-9
see also Tubular sections

Three-dimensional finite elements
734-5

Three-dimensional frame 7
Three-dimensional solids of revo-

lution 383-4
Three-hinged arch 57, 139

constraint-reactions determina-
tion 91

internal reaction characteristics
132, 135-6, 153, 155, 157,
159, 161-2

Three-moments equation 417
Three-point bending

ductile-brittle transition
689-90

stress-intensity factor calculated
664

Three-rigid-body structure
kinematics

algebraic study 62-3
graphical study 67, 68, 69

statics, algebraic study 76-7
Tied arch 149
Timber-beam bridge 5
Toroidal membrane 370-1
Torsion

axis of 257
beams of generic cross-section

257-9, 725-6
centre of 257, 267, 278
circular cross-section beams

253-6
combined with shearing, Saint

Venant solids 266-7
Saint Venant solids 253-66
thin-walled sections 260-6,

728-9

tubular sections 263-6
unit angle of 253, 255, 259,

728
Torsional rigidity factor

generic cross section beams
259

thin-walled sections 262, 264,
728

Total potential energy
and fracture energy 673-4
principle of minimum 333,

334-7, 738
Toughness 653

ratio of fictitious to actual 698
values quoted for various

materials 690
Trace (of tensor) 183, 191
Transformation laws 20

moment-of-inertia tensor
22-5

position vector 20-1
static moment vector 21-2
strain tensor 179-82
stress tensor 189-91

Translated reference system 20
Translating-node frames 439,

451, 466-74
imposed displacements 474-8

Transverse contraction ratio 222
see also Poisson's ratio

Transverse reaction 72
Transversely isotropic material

709, 710
Tresca's criterion 231

applications
beam strength analysis 281
elastic-plastic flexure 578
plastic strain 593, 595

and Von Mises' criterion 235,
281

Tresca's equivalent stress 232
Tresca's hexagon 232, 594, 619,

621
and Von Mises' ellipse 235

Triangular finite elements 732-3
Trussed framework 5
Trusses 139, 146

axial-forces determination
150-2

examples 150-2, 154-9
elastic-displacements determi-

nation 493-4
internal reaction characteristics

146-53
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nodes 146
plane 436-8
reinforced-concrete 5
statically indeterminate struc-

tures, resolution 507-15
types most widely used 147,

148
Tsai-Hill criterion 717-18
Tubular sections

buckling 559
torsion 263-6

Turnover (of bending moment)
120, 121

Twisting moment 108

Uniaxial tensile test 224, 229
brittle materials 226-30
ductile-brittle transition

688-9
ductile materials 224-6

Uniaxial yielding stress 226
Uniform tensile condition, at edge

of hole in plate 637, 651
Unit angle of torsion 253, 255,

259, 728

Variational equation of equilibrium
562

Variational formulation 337

Vaults 3, 8, 11
Virtual crack propagation, energy

considerations 676, 679
Virtual work 209
Virtual Work Principle 83-9

applications 8, 53
curvilinear beams 515, 517,

519, 526
deformable-bodies mechan-

ics 204-7, 208, 215
in finite element method

333, 339-44
in incremental plastic analy-

sis 586, 590, 591
internal reaction characteris-

tics determination
136-8

plane frames 453, 467, 471,
479, 483, 495

in plastic limit analysis
596, 600, 604, 605

statically determinate beam
systems 486, 488, 493

statically indeterminate
frames 501, 502, 505

statically indeterminate
truss structures 509,
511, 513

and Castigliano's Theorem 530

Volumetric dilation 184
Von Mises' criterion 233-4

applications 281, 593
and Tresca's criterion 235, 281

Von Mises' ellipse, and Tresca's
hexagon 235

Von Mises' equivalent stress 234

Warping function 257, 725
Weight load 11
Westergaard's method (for frac-

ture mechanics) 647, 654,
658-65

approach compared to
Griffith's method
673-9

Williams' method (for fracture
mechanics) 654, 668-72

approach compared to
Griffith's method
673-9

Yield stress, values quoted 223
Yielding 14-15

see also Ductility; Plastic col-
lapse

Young's modulus 221
values quoted 223
see also Elastic modulus
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