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First principles is a physics way of looking at the world … 
what that really means is that you boil things down to the most 
fundamental truths … and then reason up from there.

—Elon Musk
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Foreword

I’ve been a structural engineer now for the best part of 50 years. Over that time, our pro-
fession has moved through a revolution at a bewildering pace. When I started out, my sole 
calculation equipment was a pencil, a rubber and a slide rule. All drawings were prepared 
by hand in ink. Skills in neat lettering were essential. I’ve worked through the era of the 
first pocket calculator, the first programmable calculator, simple desktops and into the era 
of super computers offering incredible facilities to predict structural performance. During 
that same 50 years, the amount of published work on structural behaviour has been phe-
nomenal. So as a profession, we can now rely on a huge knowledge base.

These developments are a huge boon. However, they bring with them enormous chal-
lenges. Students today have to learn most of what I had to learn 50 years ago plus things dis-
covered since. So in many ways, it’s harder for today’s generation than it was for me. Over 
my career, I’ve had the good fortune to work on just about every form of structure imag-
inable, from simple lintels to nuclear power plants. I’ve worked on high-rise, all kinds of 
roller coasters, the London Eye and Wembley Stadium. I’ve had to design for a whole range 
of conditions, from the simplest static loading through to predicting complex dynamic per-
formance and taken on the responsibilities of preventing building collapse in earthquakes. 
However, I was able to work up those skills gradually over a long period.

In facing up to those challenges faster, today’s generation have computers to help. However, 
with that advantage comes the concern of having confidence in the validity of computer pre-
dictions. Paradoxically, the programs that help us most (for complex structures) raise the 
most concern, since the designers involved can lose all ‘feel’ for what the answer should be. 
Chapter 9 of this book highlights the sobering Sleipner disaster as an example: I could tell 
tales of many more.

Hence, my advice to all aspiring structural engineers is to make sure your training includes 
developing a thorough understanding of the basics of how structures perform under stress, 
before you get lost in equations. Make sure you have the skills to check even complex struc-
tures by hand, so you can independently verify that complex strength predictions are of the 
right order. It is not necessary to be precise. Indeed, any presumption that computer output 
is ‘accurate’ is itself a fiction. If you read this book, absorb its timeless principles and work 
your way through the examples, you will learn a great deal and it will serve you well in your 
career.

Allan P. Mann, BSc, PhD, FIStructE, FREng
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Preface

When I began my career in academia, I taught students how to use the British Standards 
to design members. The Eurocodes were introduced and I was faced with the challenge of 
teaching some very complicated design methods to students who had only a basic under-
standing of mechanics. I decided I needed to teach students the first principles and began out 
of necessity to write lecture notes that turned into this book. During this process, I found 
it was possible to tackle some problems that would ordinarily be outside the scope of tradi-
tional undergraduate courses. Topics like the design of long-span bridges, which if treated 
from first principles, become quite easy to understand.

I have not ignored the codes. In fact, I have used the Eurocode safety factors and notation 
throughout. However, the formulae are in many cases quite different. My intention has been 
to convey a firm understanding—not of the current codes themselves—but of the underpin-
ning principles. I hope this will help young engineers to face the future, whichever design 
codes they use.

I would like to express my thanks to Louise (my wife) and also John (my father), who 
patiently proof read the manuscript. I would also like to thank Allan Mann, who found the 
time to read the entire manuscript and write the Foreword to this book. I would also like to 
thank my Editor, Tony Moore, for his help throughout.
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1

Chapter 1

Limit state design

This chapter outlines the philosophy behind what Europeans call limit state design and 
Americans call load and resistance (safety) factor design. This is the method used by regula-
tors to write modern structural design codes and it involves the application of partial safety 
factors to load and resistance. The ‘limit state’ is a condition beyond which a structure no 
longer fulfils the design intent, and there are two types:

	 1.	 Serviceability limit state (SLS) design: The structure must be fit for purpose under 
working loads. For most situations, this means the structure must remain elastic and 
not deflect excessively when supporting unfactored loads.

	 2.	 Ultimate limit state (ULS) design: The structure must be strong enough to support 
loads increased using (partial) safety factors. Unlike SLS design, the engineer can uti-
lise the full plastic design strength if a material is ductile. For example, plastic design 
is allowed for some steel members, whereas brittle materials, such as wood, must be 
designed using elastic principles.



2  Structural design from first principles

1.1  PARTIAL SAFETY FACTORS

The objective of ULS design is to ensure that 

	 ≥Design strength Design load 	

which is expressed as

	
R

S
M

Fγ
≥ × γ 	 (1.1)

where
R is the resistance (strength).
γM is the material partial safety factor.
S is the estimate for load.
γF is the load partial safety factor.

The partial safety factors are normally based on proven work over many years. When new 
design equations are added to codes, they are tested for accuracy in the laboratory. It is 
important to remember that design resistances and loads are only approximations. The 
statistical uncertainty is modelled using the log-normal probability distribution function for 
both load and resistance, a process that is illustrated in Figure 1.1. The partial safety factors 
are selected to ensure that probability of failure is very small.

Lists of partial safety factors (γ-factors) are shown in Tables 1.1 and 1.2. It can be seen 
that different factors are applied to different types of load and materials. Equation 1.1 is 
therefore a simplification, because more than one factor is applied to load and, in the case 
of reinforced concrete, material factors are applied to both steel and concrete separately. In 
the case of structural steelwork, the material factor can be neglected from resistance calcula-
tions because it is set at 1.0.

Resistance
Load

Resistance-load-
Probability of 
failure shaded

0

Fr
eq

ue
nc

y

Force

Figure 1.1  Probability distributions of resistance, load and resistance-load.

Table 1.1  �Eurocode partial safety factors for loads

Load Partial safety factor, γF

Dead, gk 1.35 or 1.0
Imposed, qk 1.5
Wind, wk 1.5
gk, qk and wk combined 1.35
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1.2  CALCULATION OF LOADS

The two types of loading are gravity and non-gravity. Gravity loads include

Dead load, gk (e.g. structural self-weight)
Imposed load, qk (everything that can be removed, e.g. furniture or vehicles)
Snow, sk

and non-gravity loads include

Wind, wk

Seismic forces
Accidental loads, such as impacts

The SLS load (wsls) is simply the combination of these loads; for example, the most common 
SLS load combination is

	 w g qk k= +sls 	 (1.2)

The ULS load (wuls) is calculated using a combination of the loads and the relevant partial 
safety factors from Table 1.1. Some common load combinations are

	 w g qk k= +1.35 1.5uls 	 (1.3)

	 w g q wk k k( )= × + +1.35uls 	 (1.4)

	 w g wk k= +1.0 1.5uls 	 (1.5)

Example 1.1:  Simple steel beam

A steel beam weighs 74 kg/m, spans 12 m and supports an imposed load of 5 kN/m. 
Young’s modulus is 210,000 N/mm2 and the second moment of area of the beam is 
32,670 cm4.

	 1.	 Determine the deflection under SLS loading.
	 2.	 Determine the ULS shear force and design moment.

1. The dead load of the steel beam is

	 w m g= × = × × =−74 9.81 10 0.7 kN/msteel
3 	

Table 1.2  Eurocode partial safety factors for materials

Material strength Partial safety factor, γM

Structural steelwork 1.0
Steel rebar 1.15
Concrete 1.5
Timber 1.3
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From Equation 1.2, the SLS load is

	 w g qk k= +sls 	

	 0.7 5 5.7 kN/m 5.7 N/mmslsw = + = = 	

The second moment of area of the steel I-beam is provided in cm4 and therefore needs 
converting:

	 32670 cm 32670 10 mm4 4 4I = = × 	

The mid-span deflection in a beam subjected to a uniformly distributed load (UDL) is

	
5
384

4wL
EI

δ = 	 (1.6)

Therefore,

	
δ = × ×

× × ×
=5 5.7 12000

384 210000 32670 10
22 mm

4

4
	

The usual deflection limit for a beam is span/360, which in this case is 33 mm; therefore, 
this beam has passed.

2. From Equation 1.3, the total ULS load is

	 w g qk k= +1.35 1.5uls 	

	 w = × + × =1.35 0.7 1.5 5 8.4 kN/muls 	

and the ULS shear force (VEd) and moment (MEd) are

	 V
wL=
2

Ed 	 (1.7)

	 V = × =8.4 12
2

50.4 kNEd

and

	
M

wL=
8

Ed

2

	
(1.8)

	 M = × =8.4 12
8

151.2 kN.mEd

2

The bending moment and shear force capacities now need checking to make sure they are 
higher than VEd and MEd, although these checks are left until later chapters.
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Example 1.2:  Slab supported by beams

Figure 1.2 shows an RC slab supported by I-section beams spanning 7 m between simple 
supports. The 200 mm thick slab is loaded by an imposed load of 5 kN/m2, the density of 
reinforced concrete (RC) is 25 kN/m3 and the I-beams weigh 70 kg/m.

	 1.	 Determine the SLS load for the central beams.
	 2.	 If the I-beams have a second moment of area of 19,500 cm4 and Young’s modulus of 

210,000 N/mm2, determine the mid-span deflection under SLS loading.
	 3.	 Determine the ULS design moment and shear force.

1. The dead load of a beam is

	 w m g= × = × × =−70 9.81 10 0.7 kN/msteel
3

	

The central beams each support a 3 m wide section of 0.2 m thick slab; therefore, the slab 
dead load is

	 w = × = × × =area density 0.2 3.0 25 15 kN/mslab 	

The combined dead load is

	 gk = + =0.7 15 15.7 kN/m 	

and the imposed load is

	 qk = × =3.0 5 15.0 kN/m 	

From Equation 1.2, the SLS load is

	 w = + =15.7 15.0 30.7 kN/msls 	

2. From Equation 1.6, the mid-span deflection is

	
δ = × ×

× × ×
=5 30.7 7000

384 210000 19500 10
23 mm

4

4
	

3. From Equation 1.3, the ULS load is

	 w = × + × =1.35 15.7 1.5 15.0 43.7 kN/muls 	

Beams at 3 m centres

Each beam assumed to support a 3 m section of slab

Figure 1.2  Cross section through a concrete slab supported by steel beams.
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From Equation 1.7, the shear force at the support is

	
V = × =43.7 7

2
153.0 kNEd

	

and from Equation 1.8, the mid-span bending moment is

	
M = × =43.7 7

8
267.7 kN.mEd

2

	

Example 1.3:  Wind loading to a tall building

The 69 m wide, 350 m high tower shown in Figure 1.3 is subjected to a wind load of 
1.4 kN/m2.

	 1.	 If sideways sway is prevented only by the concrete core shown in Figure 1.3b, deter-
mine the base moment and shear force developed by the ULS wind load.

	 2.	 Determine the maximum deflection under SLS wind loading if Young’s modulus for the 
concrete core is 35,000 N/mm2.

	 3.	 Determine the deflection if the columns and the core are connected together by out-
rigger trusses, ensuring that they act compositely to resist sideways sway forces (see 
Figure 1.3c).

	 4.	 If the maximum allowable wind-induced sway is height/500, determine if the building 
satisfies the SLS condition for sideways movement.

68 m
34 m

68
 m

34
 m

   

0.3 m

0.5 m x 0.5 m 
concrete columns

350 m

34 m square 
concrete core

W
in

d 
lo

ad
 =

 1
.4

 k
N

/m
2

(b) (c)

69
 m

Base moment, MEd

Base shear, VEd

(a)

Out-rigger 
trusses link the 
16 perimeter 
columns to the 
concrete core, 
sti�ening the 
building against 
sway

The concrete core shown in grey
cantilevers from the foundation
to prevent sideways sway

Wind direction

Figure 1.3  Tall building design.
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1. The wind load partial safety factor is 1.5 (from Table 1.1) and the building is 69 m wide; 
therefore, the building develops the following load per m of height:

	 w wF k= γ × = × × =1.5 1.4 69 145 kN/muls 	

The central core works as a cantilever extending from the substructure to resist wind load-
ing and the base shear is

	 V w L= × = × = ×145 350 50.75 10 kNEd
3

	

and the base moment is

	
M

wL=
2

Ed

2

	

	
M = × = ×145 350

2
8.88 10 kN.mEd

2
6

	

2. The second moment of area of the central concrete core is calculated in the same way as 
that of a hollow rectangular cross section, i.e.,

	
I = × − − =34 34

12
(34 0.6)

12
7655 mcore

3 4
4

	

and the SLS wind load per m height of the tower is

	 w = × =1.4 69 96.6 kN/msls 	

During the deflection calculation, all the units need to be consistent; therefore, Young’s 
modulus is converted:

	 E = = ×35000 N/mm 35000 10 kN/m2 3 2
	

The maximum deflection is calculated using the equation for a cantilever supporting a uni-
formly distributed load, i.e.,

	 8

4wL
EI

δ =
	

	 δ = ×
× × ×

=96.6 350
8 35000 10 7655

0.7 m
4

3 	 (1.9)

3. The outer columns are fixed in position using the cross bracing shown in Figure 1.3c. 
This will stiffen the building, because the outer columns and core will work together to 
resist sideways sway. The effective second moment of area of the building (Ibuilding) can be 
estimated using the parallel axis theorem:

	 Areabuilding core column column
2I I I r∑( )= + + ⋅ 	 (1.10)
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The second moment of area of each column is

	
I = × =0.5 0.5

12
0.0052 mcolumn

3
4

	

Using Equation 1.10

	
I ( )= + × + × × + × × + × × =7655 16 0.0052 10 0.5 34 4 0.5 17 2 0.5 0 10834 mbuilding

2 2 2 2 2 2 4

and from Equation 1.9 the deflection is

	
δ = ×

× × ×
=96.6 350

8 35 10 10834
0.5 m

4

6
	

It should be noted that this approach will underestimate deflections, because it does not 
account for the stretching and squashing of the members due to tension and compression, 
although the result is good enough for checking the output from a computer-based solution 
or for providing a guide to a likely response during the early phase of a design process.

4. The maximum allowable deflection is

	

Lδ = = =
500

350
500

0.700 m
	

Therefore, the tower is approximately satisfactory in terms of deflection, both with and 
without the outrigger truss, which has reduced the deflection from 0.7 to 0.5 m.

1.3  FACTOR OF SAFETY

The factor of safety (FoS) is not a formal part of limit state design process and it is com-
pletely different from the partial safety factor. The FoS provides the engineer with a measure 
of how much stronger a structure is than is required to support the basic working loads, i.e.,

	 =Factor of safety
Design strength
Working load

	 (1.11)

This is useful because it quantifies the amount of overload possible before failure. The FoS 
can be used to identify the first mode of failure for a given structure. For example, if the 
FoS is calculated for every failure mode in a bridge, then the failure mode with the low-
est FoS is likely to fail first. If that mode was considered to be sudden in nature, then the 
designer may decide to strengthen that part of the structure in order to ensure that a ductile 
failure mode would become critical. This is because ductile failures are less dangerous than 
brittle or buckling failure modes. The working load is the load calculated in the absence of 
partial safety factors; therefore, it is the same as the serviceability limit state load.

1.4  PATTERN LOADING

Figure 1.4a shows the combination of dead + imposed loads for a simply supported, single span 
beam. This combination provides the maximum moments and shears and further combinations 
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are unnecessary. However, the continuous beam shown above is more complicated, as no single 
combination of loads will provide the maximum moment or shear at every position. The com-
bination of full factored loads across the entire two spans (b) provides the maximum moment at 
the internal support (labelled A). Unfactoring the dead load and removing the imposed load on 
the right-hand span provides the maximum midspan moment on the left-hand span (Figure 1.4c) 
and likewise for Figure 1.4d. This process is called pattern loading.

Wind loads need to be combined with up to two separate gravity loads (dead and imposed). 
In addition, wind loads can act upwards, as well as downwards or sideways. Since wind 
loads are often upwards due to suction, the critical load combination for wind is often 
unfactored dead, no imposed + fully factored wind.

Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	 P.1.1.	 A beam is 200 mm wide, 300 mm deep and spans 6 m. It carries an unfactored 
uniformly distributed imposed load of 3 kN/m run. Reinforced concrete weighs 
approximately 25 kN/m3 and Young’s modulus for the concrete is 20,000 N/mm2. 

		  Calculate
	 a.	 The unfactored weight of the beam per m run
	 b.	 The ULS load per m run
	 c.	 The ULS bending moment
	 d.	 The ULS shear force

	 Ans. (a) 1.5 kN/m, (b) 6.53 kN/m, (c) 29.4 kN.m and (d) 19.6 kN.

	 P.1.2.	 An 8 m long, simply supported beam supports a dead load of 1 kN/m and an 
imposed load of 2 kN/m. Determine the ULS load, bending moment and shear 
force. If the second moment of area of the beam is 3500 cm4 and Young’s modulus 
is 210,000 N/mm2, determine the maximum deflection under SLS loads.

	 Ans. 4.35 kN/m, 34.8 kN.m, 17.4 kN, 21.8 mm.

1.35 gk + 1.5 qk 1.35 gk + 1.5 qk

A
(b)

1.35 gk + 1.5 qk 1.0 qk

A
(c)

Load combinations for 
maximum moment at A

(a)

1.35 gk + 1.5 qk

A

1.0 qk 1.35 gk + 1.5 qk

A
(d)

Figure 1.4  Load combinations for beams resisting dead (gk) and imposed (qk) loads.

https://www.crcpress.com/9781498741217
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	 P.1.3.	 The 4 m wide RC slab sketched in Figure 1.5 is supported by two beams that span 
8 m between simple supports. The slab is loaded by an imposed load of 5 kN/m2. 
Each I-beam has a second moment of area of 45,000 cm4, Young’s modulus is 
210,000 N/mm2 and each beam has a self-weight of 1.2 kN/m. The density of con-
crete is 25 kN/m3. For one of the girders only determine

	 a.	 The unfactored UDL
	 b.	 The maximum deflection under SLS dead and imposed loading
	 c.	 The ULS UDL, bending moment and shear force

	 Ans. (a) 26.2 kN/m, (b) 14.8 mm and (c) 36.9 kN/m, 295.2 kN.m, 147.6 kN.

4 m

0.3 m

Figure 1.5  Cross section through a slab supported by two beams.
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Chapter 2

Steel members in flexure

Hot-rolled steel sections are rolled from hot slabs of steel, and the web and flanges are thick 
and stocky. They are therefore not generally prone to ‘local buckling’ during bending. In 
contrast, thin-walled sections, such as plate girders, are composed of thin plates. The com-
pression stresses induced by bending can cause local buckling to initiate failure, and this 
complicates design considerably. This chapter concentrates on the calculation of the shear 
strength and bending strength of hot-rolled sections, although thin-walled sections are also 
briefly considered.

Technicians at steel mills test all rolled sections thoroughly, and any members that fail to 
achieve the design stress are reclassified. As a result, the actual yield stress of steel members 
tends to be higher than assumed during design. It is for this reason that the partial safety 
factor applied to steel member design is set at 1.0. Since it is equal to unity, it is not included 
in the equations presented in this chapter.

2.1  SHEAR STRENGTH

Von Mises yield criteria is the basis of the shear strength calculations for hot-rolled steel 
beams. It is popular because it provides the stress required to cause yielding in members 
subjected to combined bending and shear. Von Mises showed that steel will not yield if

	 fx xz yσ + τ ≤32 2 	 (2.1)
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where σx is the bending stress, τxz is the shear stress and fy is the yield stress (see Figure 2.1). 
If shear is the only applied loading (i.e. σx = 0), then this equation shows that the shear stress 
required to cause yielding is

	
f

y
y

3
τ = 	 (2.2)

2.1.1  Hot-rolled sections

This type of section has thick, stocky webs and these are not liable to buckling due to 
shear stresses. It is relatively easy to determine the shear force required to cause yielding 
(see Figure 2.2b). However, final failure due to shear will occur only after all the web mate-
rial has fully yielded (see Figure 2.2c). In this situation, the design shear strength is approxi-
mately given by the yield shear stress (Equation 2.2) multiplied by the web area. In codes of 
practice, this is usually shown as

	 V
A fv y

3
pl, Rd = 	 (2.3)

where
Vpl,Rd is the design shear strength.
Av is the shear area.

For hot-rolled I- and H-sections (see Figure 2.3a), the shear area is

	 A t Dv = × 	 (2.4)

and for square or rectangular hollow sections (see Figure 2.3b)

	 A t Dv 2= × 	 (2.5)

2.1.2  Thin-walled sections

Shear stresses can cause buckling of thin plates. This is called shear buckling and is illus-
trated in Figure 2.4.

τxz

τxz

σx σx

τxz

τxz

z

z

yy

x

x

(a) (b)

Figure 2.1  Bending and shear stresses for use with the von Mises formula. (a) Axes and (b) bending and 
shear stress.
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This is not a problem for hot-rolled sections, but it is important for plate girders 
and other thin-walled sections, which can buckle at stresses well below the yield value 
of shear stress (Equation 2.2). The design of this type of member is described in more 
detail in Chapter 5, but briefly buckling will occur when the elastic critical shear stress 
is exceeded, i.e.,

	
E t

d
5.34

12(1 )
cr

2

2

2

τ = π
− υ





 	 (2.6)

(a) (c)

τy

(b)

τy

Figure 2.2  Shear stress distributions in hot-rolled I-sections. (a) Hot-rolled I-section, (b) elastic shear 
stress distribution at first yield and (c) plastic shear stress distribution assumed in the web at failure.

Shear area
shaded

t t

Shear area = 
2 × t × DShear area =

t × D

(b)

D

(a)

Figure 2.3  Shear area. (a) Hot-rolled I-sections and (b) hot-rolled hollow sections.

(a)

t

d

(b)

Figure 2.4  Illustration of shear buckling of a thin-webbed member. (a) Shear buckling and (b) side view of 
web with contours showing shear buckling in a web.
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where
τcr is the elastic critical shear stress.
ν is the Poisson’s ratio.
E is the Young’s modulus.
t is the web thickness (Figure 2.4a).
d is the web depth.

For steel, ν = 0.3, E = 210,000 N/mm2 and this becomes

	
t
d

5.34 190000cr

2

τ = × × 



 	 (2.7)

In simple terms, if τcr < τy, then failure will be by shear buckling and design should be in 
accordance with the mechanics of thin-walled sections described in Chapter 5. If however 
τcr > τy, then failure will be by yielding and the section can be designed using Equation 2.3.

Example 2.1:  Shear strength of a hot-rolled cross section

Determine the shear strength of the hot-rolled section shown in Figure 2.5 if the yield stress 
is 355 N/mm2.

The shear area from Equation 2.4 is

	 A t Dv = × 	

	 Av 4.8 177.8 853 mm2= × = 	

Shear buckling is not a problem for hot-rolled sections; therefore, the shear strength from 
Equation 2.3 is

	
V

A fv y

3
pl, Rd =

	

	 V
853 355

3
10 174 kNpl, Rd

3= × × =−
	

t = 4.8 mm

D = 177.8 mm

Figure 2.5  Shear area.



Steel members in flexure  15

Example 2.2:  Thin-webbed cross section

An I-section bridge girder is built up from welded plates. It has a web 1200 mm deep and 
15 mm thick. If the yield stress is 355 N/mm2, determine if the girder web will fail by shear 
buckling or yielding.

From Equation 2.2, the yield shear stress is

	

f
y

y

3
τ =

	

	
y

355
3

205 N/mm2τ = =
	

The elastic critical shear stress from Equation 2.7 is

	

t
d

5.34 190000cr

2

τ = × × 



 	

	 5.34 190000
15

1200
158 N/mmcr

2
2τ = × × 



 = 	 (2.8)

Since τcr < τy, this section will begin to fail by shear buckling when the shear stress reaches 
approximately 158 N/mm2.

2.2  BENDING STRENGTH OF LATERALLY RESTRAINED BEAMS

When a beam bends, one half is thrown into compression and this can cause ‘local buckling’ of 
the flanges and web at stresses well below the yield stress. The susceptibility to local buckling 
is measured by the ‘section classification’, whereby cross sections are classified into one of four 
classes (see Figure 2.6). The classification is based on the web and flange width to thickness ratios 
(b/ T and d/t). These are modified by the parameter ε. This provides tighter limits for high strength 
steels, since these operate at higher stresses and are therefore more prone to buckling.

Figure 2.7 shows the moment versus rotation behaviour for differing section classifica-
tions. In Class 1 and Class 2 sections, local buckling does not adversely affect strength. At 
the other extreme, Class 4 sections fail at stresses below the yield stress due to local buck-
ling. The first step in determining moment capacity is to classify the cross section using the 
limits shown in Figure 2.6.

≤ 72ε
t
d

Class 1

≤ 9ε
T
b

Class 2

≤ 83ε
t
d

≤ 1.0ε
T
b

>124ε
t
d

> 14ε
T
b

Class 4

≤ 124ε
t
d

≤ 14ε
T
b

Class 3

d

b

T

t

ε = (235/fy)
0.5

Notation

Figure 2.6  Limiting width to thickness ratios for hot-rolled I- and H-sections in bending.
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From inspection of Figure 2.6, it can be seen that the limits for flanges are far more oner-
ous than for webs. Flanges of I-beams are more prone to local buckling, because the outside 
edge is unrestrained against buckling. The flanges of rectangular hollow sections can toler-
ate a higher b/t ratio (roughly twice) since they are restrained at each edge.

The design strengths for each class are:

	 Classes 1 and 2	 M f Wypl, Rd pl= 	 (2.9)

	 Class 3	 M f Wyel, Rd el= 	 (2.10)

	 Class 4	� The member needs to be designed as a thin 
walled section in accordance with Chapter 5

where
Mpl, Rd is the plastic moment capacity.
Mel, Rd is the elastic moment capacity.
Wpl is the plastic section modulus.
Wel is the elastic section modulus.

Example 2.3:  Calculate the moment capacity of a cross section

A hot-rolled I-section beam has a yield stress of 355 N/mm2, a plastic section modulus of 
566 cm3 (about the major axis) and is classified as a Class 1 cross section. Determine the 
design moment capacity.

Since this is a Class 1 cross section, Equation 2.9 defines strength. The moment capacity 
must be calculated in consistent units and it is easiest to work in the units of N and mm, thus

	
566 cm 566 10 mmpl,

3 3 2W y = = ×
	

and from Equation 2.9

	
M f Wypl, Rd pl=

	

	 M 355 566000 10 201 kN.mpl, Rd
6= × × =− 	

The 10–6 in the above equation converts the solution from N.mm to kN.m.

Rotation angle
Rotation angle

Mpl, Rd

Class 1

Class 2

Class 3
Class 4

M
om

en
t

Mel, Rd

Plastic hinge

(a) (b)

Point of ultimate failure

Figure 2.7  Moment versus end rotation through to failure for different section classifications. (a) Loading 
and (b) moment rotation behaviour.
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Example 2.4:  Basic beam design

A simply supported beam shown in Figure 2.8 spans 6 m between simple supports and sup-
ports a point load of 10 kN applied at midspan. Yield stress is 355 N/mm2, Young’s modulus 
is 210,000 N/mm2 and the density of steel is 7700 kg/m3.

	 1.	 Determine the self-weight per m length.
	 2.	 Determine the maximum ULS bending moment and shear force.
	 3.	 Determine if the elastic moment capacity of the section is sufficient to resist the applied 

ULS loading.
	 4.	 Determine if the shear capacity of the section is sufficient to resist the applied ULS 

loading.
	 5.	 Determine the deflection under the serviceability limit state dead and imposed loads. 

If the maximum allowable deflection is span/200, is this beam satisfactory?

1. The cross-sectional area of the beam is

	 Area 100 150 (100 2 8) (150 2 8) 3744 mm2= × − − × × − × = 	

and the beam self-weight is

	 Weight 9.81 3744 10 7700 10 0.28 kN/m6 3= × × × × =− −
	

2. The midspan moment (M) in a beam with length (L) supporting a uniformly distributed 
load (w) and a centrally applied point load (P) is

	 M
wL PL

8 4

2

= + 	 (2.11)

The dead load factor is 1.35 and the imposed load factor is 1.5, therefore, the (factored) ULS 
moment is

	
M

1.35 0.28 6
8

1.5 10 6
4

24.2 kN.mEd

2

= × × + × × =
	

x x

y

y

150 mm

100 mm

8 mm

(a) (b)

6 m

Imposed load of 10 kNm 
at midspan

Figure 2.8  Steel beam. (a) Loading arrangement and (b) section through beam.
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and the maximum shear force (V) is

	 V
wL P
2 2

= + 	 (2.12)

Therefore, the applied shear force is

	
V

1.35 0.28 6
2

1.5 10
2

8.6 kNEd = × × + × =
	

3. The second moment of area (I) is

	
I

100 150
12

84 134
12

11.28 10 mm
3 3

6 4= × − × = ×
	

The elastic moment capacity is calculated using the engineer’s beam equation, i.e.,

	 M
f I
d

y

/2
el, Rd = 	 (2.13)

Thus

	
M

355 11.28 10
75

10 53.4 kN.mel, Rd

6
6= × × × =−

	

Since Mel, Rd (53.4 kN.m) > MEd (24.2 kN.m), the beam will easily support the ULS moment.

4. The shear area from Equation 2.5 is

	 Av 2 8 150 2400 mm2= × × = 	

and the shear strength from Equation 2.3 is

	
V

2400 355
3

10 492 kNpl, Rd
3= × × =−

	

Since Vpl, Rd (492kN) >> VEd (8.6kN), the beam will easily support the ULS shear force.

5. The midspan deflection (Δ) for a beam supporting a UDL (w) and point load (P) is

	 wL
EI

PL
EI

5
384 48

4 3

∆ = + 	 (2.14)

Since this is a SLS calculation, no load factors are used; therefore,

	

5 0.28 6000
384 210000 11.28 10

10 10 6000
48 210000 11.28 10

2.0 19.0 21 mm
4

6

3 3

6∆ = × ×
× × ×

+ × ×
× × ×

= + =
	

The maximum allowable deflection is span/200 = 30 mm; therefore, the beam is satisfactory.
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2.2.1 � Bending moment capacity in the presence  
of high shear forces

Von Mises yield criteria (Equation 2.1) show us that shear stresses reduce the tensile or 
compressive stress required to cause yielding. In fact, Equation 2.1 shows that the tensile 
strength falls to zero if the applied shear stress equals the yield shear stress. Therefore, for 
beams that resist high shear forces combined with high moments, the bending strength 
should be reduced.

The flanges of hot-rolled sections develop low shear stresses, as shown by the shear stress 
distribution sketched in Figure 2.2a. Therefore, the effects of shear stresses on the tensile 
strength of the flange material can be safely ignored.

Von Mises yield criteria can be used to determine the moment capacity in the pres-
ence of high shear. It will be seen from the following worked example that the bending 
strength of hot-rolled I-sections is not greatly influenced by high shear stresses. For this 
reason, no reduction in moment capacity is necessary unless the applied shear force is 
greater than 50% of the shear strength. Most hot-rolled sections have relatively high shear 
strengths, because the webs are made thick to prevent distortion when cooling after roll-
ing. Therefore, in most practical situations, the moment capacity of hot-rolled sections is 
unaffected by shear.

Example 2.5:  Bending moments combined with high shear forces

A Class 1 I-section beam has a depth of 260 mm, web thickness of 6.3 mm, plastic section 
modulus of 353 cm3 and yield stress of 355 N/mm2.

	 1.	 Determine the bending strength, Mpl, Rd.
	 2.	 Determine the shear strength, Vpl, Rd.
	 3.	 Determine bending moment capacity if the applied shear force is equal to the shear 

strength, i.e., VEd = Vpl, Rd.
	 4.	 Determine bending moment capacity if VEd = 0.75Vpl, Rd.

1. From Equation 2.9, the bending strength is

	
M 355 353 10 10 125.3 kN.mpl, Rd

3 6= × × × =−

	

2. From Equation 2.4, the shear area is

	 Av 6.3 260 1638 mm2= × = 	

From Equation 2.3, the shear strength is

	
V =

1638 355
3

10 336 kNpl, Rd
3× × =−

	

3. The Von Mises equation (Equation 2.1) shows us that the shear area cannot resist bend-
ing stresses, because the applied shear stress is equal to the yield shear stress (Equation 2.2). 
The moment capacity of the shear area (i.e. the web) is therefore zero, although the moment 
capacity of the flanges is unchanged, because the flanges do not contribute significantly 
to the shear strength. Therefore, the moment capacity of the shear area is calculated and 
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deducted from the moment capacity of the section (125.3 kN.m). The plastic section modu-
lus of a rectangular block of width t and depth D is

	 W
t D

4
pl

2

= × 	 (2.15)

Therefore, the plastic section modulus of the shear area is

	
W

6.3 260
4

106470 mmpl, web

2
3= × =

	

and the bending strength of the shear area in the absence of shear stresses is

	 M 355 106470 10 37.8 kN.mweb
6= × × =−

	

Therefore, the reduced bending strength is the full bending strength minus the web bending 
strength, i.e.,

	
M 125.3 37.8 87.5 kN.mpl, Rd = − =

	

4. The applied shear force is 3/4 of the shear strength. From Equation 2.2, it follows that 
the applied shear stress is

	
xy yτ = × τ = × =3

4
3
4

355
3

154 N/mm2

	

and Equation 2.1 becomes

	
fx xz yσ + τ ≤32 2

	

	 xσ + × =3 154 3552 2

	

	 σx = 234 N/mm2

This means that the tensile strength of the shear area has fallen from 355 N/mm2 to 234 N/mm2 
due to the applied shear stress. The reduction in moment capacity of the shear area is

	 M = − × × =−(355 234) 106470 10 12.9 kN.mreduction
6

	

Thus, the reduced moment capacity is

	
M = − =125.3 12.9 112.4 kN.mpl, Rd 	

In summary, a shear force equal to the shear strength reduced the bending strength by 30%, 
whereas a shear of 75% of the shear strength reduced the bending strength by only 10%.
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2.3  LATERAL TORSIONAL BUCKLING

During bending, one half of a beam is thrown into compression, and this can cause buck-
ling in a similar manner to the buckling of a strut. This is known as lateral torsional 
buckling or LTB and it is illustrated in Figure 2.9. Unlike a strut, half the beam will be 
in tension, and the tensile force will help to restrain buckling. This restraint will cause 
the beam to twist as it buckles and the beam’s torsional stiffness will resist this twisting. 
Tubular members have a high torsional stiffness and therefore do not normally experience 
LTB. However, I-section beams have very low torsional stiffness and are therefore highly 
susceptible.

LTB is responsible for a large proportion of collapses of steel-framed structures. It is 
a particular problem during construction, when the steel may not be fully restrained 
against sideways movement. Site workers have been killed when temporary restraint 
against LTB has not been installed. Since this problem is not always obvious, it is the 
responsibility of the designer to communicate to the construction team the need for 
temporary restraints.

The main factors that affect LTB are as follows:

	 1.	 Lateral restraint. If the compression flange is restrained against sideways movement, 
then LTB will not occur. It is important to appreciate that (a) restraining the tension 
flange will not prevent LTB and (b) the compression flange is not always the top 
flange.

	 2.	 Torsional stiffness. Open cross sections, like I- and H-sections, have low torsional 
stiffness and therefore have little ability to resist twisting. Conversely, closed sections 
(hollow sections) have high torsional stiffness and are much less prone to LTB.

	 3.	 Beams in which the major axis second moment of area are much greater than the 
minor axis second moment of area are particularly vulnerable to LTB, i.e., I-sections.

Elastic critical buckling moment. For a beam, the relationship between the torsional moment 
(T) and the angle of twist (θ) is

	 T GI
d
dx

t= θ
	 (2.16)

z

y

x

Figure 2.9  Lateral torsional buckling caused by vertical loading to a cantilever (note the twisting).
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where
  x is position along the beam.
  G is the shear modulus.
  It is the torsional constant.

The product of GIt is known as the torsional stiffness. For open cross sections, like I- and 
H-sections, an extra term to account for warping is included (see Figure 2.10) and the equa-
tion becomes

T GI
d
dx

EI
d
dx

t w= θ − θ3

3 	 (2.17)

where 
  Iw is the warping constant.

During LTB, deformation occurs about the x-, y- and z-axes and these deformations are 
interrelated in the form of three simultaneous differential equations, the solution of which 
is known as the elastic critical buckling moment, given as

M C
L

EI
I I

GI
EI

L
z

z y
t

w= π
−

+ π



1 /

cr
cr

2

cr
2 	 (2.18)

where
  Iy is the major axis second moment of area.
  Iz is the minor axis second moment of area.
  Lcr is the effective length.
  C is the equivalent uniform moment factor (see Figure 2.11).

Simplification of the Mcr formula. In most practical situations, C makes little difference 
to strength. Therefore, in the interests of simplicity, it can be set as equal to 1.0 for all end 
conditions and therefore eliminated from the design process. In addition, the resistance to 
warping at the ends of the beam can also be neglected with only a slight loss of efficiency. 
These changes lead to the following simpler expression:

M
L

EI GI
I I
z t

z y

= π
−1 /

cr
cr

	 (2.19)

Effective Length, Lcr. It is vital to use the correct effective length when designing later-
ally unrestrained beams, since this critically affects the load capacity. Effective length 
is defined using a very similar approach to that for struts (see Chapter 3), with  the 

Warping displacement

Figure 2.10  Warping at the ends of a beam due to twisting.
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objective to determine the half sine wave buckling mode. Important factors to consider 
include

•	 Lateral restraint. The effective length is based on the distance between lateral 
restraints. Providing lateral restraint to the tension flange will not prevent LTB from 
occurring. Therefore, lateral restraints must be provided to the centre of the beam or 
to the compression flange.

•	 Destabilising loads. Loads that are supported by the top flange and free to displace 
sideways are destabilising. This type should be avoided, because the load can develop 
a torsional moment (see Figure 2.12). If destabilising loads cannot be avoided, then 
the effective length should be increased by 20%.

•	 Support conditions. The degree of torsional restraint provided by the supports has 
a critical influence on LTB. Connections that would be considered as torsionally 
restrained include end plate connections, as shown in Figure 2.13. The fin plate con-
nections can be too flexible and may not have sufficient stiffness to resist LTB. If 
beams are not torsionally restrained at the supports, then the bending strength will 
be adversely affected; therefore, the effective length should be increased.

Loading and support conditions Bending moment diagram C

1.69

2.60

1.35

1.13

1.00

Figure 2.11  Equivalent uniform moment factor, C.

e

P

Torsional moment = P × e

Figure 2.12  Lateral movement due to a destabilising load.
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The calculation of effective length is an important concept and is best described using 
some commonly occurring examples:
		  Case 1. Consider a beam that supports the wet weight of concrete along its length and 

that has partial depth end plate connections as shown in Figure 2.13 (these provide 
adequate torsional restraint). If the load is applied to the top flange and the load is free 
to move sideways, then the wet concrete is classified as destabilising and the effective 
Lcr = 1.2L, where L is the distance between supports.

		  Case 2. Consider a primary beam that supports secondary beams at third span 
points. These beams apply their loads at the centre of the beam and are not there-
fore destabilising. If the secondary beams are capable of provide bracing, then 
Lcr = L/3.

		  Case 3. Consider the common case of a beam supporting an opening in a masonry 
wall. The loading from the masonry wall is applied to the top flange and should there-
fore be considered as destabilising. In addition, the masonry bearings (padstones) 
will provide no torsional restraint. This adverse combination of factors requires an 
increased effective length, where Lcr = 1.2L + 2h, where h is the beam depth and L is 
the span.

Design moment. The elastic critical moment, Mcr, is the theoretical upper limit for bending 
strength. Mcr is by definition purely elastic and can far exceed the yield moment; therefore, 
it needs to be capped for design purposes. The region of the graph shown in Figure 2.14 
bounded by Mcr and Mpl, Rd represents the theoretical upper limit on bending strength.

Imperfections will reduce the strength well below this theoretical upper limit. The most 
important imperfections are the internal shrinkage stresses caused by welding or hot-
rolling. These throw the flange tips of I- and H-sections into compression, and this leads to 
a significant reduction in lateral torsional buckling strength. A quick estimate of the design 
moment shown as Mb, Rd in Figure 2.14 can be obtained using a Gordon–Rankine (empiri-
cal) approximation, as follows:

	
M M Mb

= +1 1 1

, Rd pl, Rd cr
	 (2.20)

Fin-plate connections 
sometimes provide poor
torsional rigidity

End-plate connections 
usually provide adequate 
torsional rigidity

Figure 2.13  Connections with different torsional stiffness.
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or

	 M
M M

b = +






−
1 1

, Rd
pl, Rd cr

1

	 (2.21)

As with any buckling problem, members become increasingly vulnerable to imperfections 
or sideways forces as slenderness increases. For this reason, it is not advisable to use slender 
beams. Figure 2.15 shows a comparison between the moment capacities calculated using this 
Gordon–Rankine type approximation and the full code-based methods that take account of 
imperfections more formally.

Example 2.6: � Lateral torsional buckling check for bridge 
girders supporting wet concrete

The concrete slab of a bridge deck is supported by I-section beams as shown in Figure 2.16. 
The beams span 8.5 m between supports that provide torsional restraint to the ends of the 
beams. During casting of the slab, an imposed load of 1.0 kN/m2 is applied to account for 
the weight of workers and equipment. Determine if the beams can support this load safely. 

Slenderness

Plastic moment
capacity, Mpl, Rd

The theoretical upper limit to
bending strength is shown
by the hatched region

Design bending 
strength, Mb, Rd

Elastic critical buckling moment, Mcr

St
re

ng
th

Figure 2.14  Relationship between moment capacity and slenderness.
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Figure 2.15  Comparison between the simplified method and the code-based methods.
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The beams have the following properties: fy = 275 N/mm2, E = 210,000 N/mm2, G  = 
80,770 N/mm2, Wpl, y = 1501 cm3, Iy = 21,370 cm4, Iz = 1545 cm4, It = 62.8cm4, beam self-
weight = 0.726 kN/m.

The beams are spaced 1.5 m apart; therefore, each inner beam supports a 1.5 m wide section 
of slab. Assuming a density of reinforced concrete of 25 kN/m3 and using Equation 1.3, the 
ULS (factored) dead + imposed load per beam is

	 1.35 25 0.150 1.5 1.35 0.726 1.5 1.0 1.5 10.8 kN/mw = × × × + × + × × = 	

and the applied moment is

	 8
10.8 8.5

8
97.5 kN.mEd

2 2

M
wL= = × =

	

The plastic moment of resistance from Equation 2.9 is

	
275 1501 10 10 413 kN.mpl, Rd

3 6M = × × × =−

	

The applied moment is therefore less than 1/4 of the beam plastic moment capacity. 
However,  the beams are free to buckle sideways, because wet concrete does not provide 
sideways resistance. The beams are torsionally restrained at the supports, and under these 
conditions the effective length would normally be 1.0 L. However, the load is applied to 
the top flange and is therefore classed as a destabilising load. The effective length is there-
fore increased by 20%:

	 L L= × = × =1.2 1.2 8500 10200 mmcr 	

The elastic critical buckling moment from Equation 2.19 is

	
M

L
EI GI

I I
z t

z y

= π
−1 /

cr
cr 	

	 M = π × × × × × ×
−

=−

10200
10

210000 1545 10 80770 62.8 10
1 1545 / 21370

130 kN.mcr
6

4 4

	

Beams at
1500 mm centres

150 mm

Figure 2.16  Cross section through a bridge deck.
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and the bending strength from Equation 2.21 is

	
M

M M
b = +







−
1 1

, Rd
pl, Rd cr

1

	

	
Mb = +



 =

−1
413

1
130

99 kN.m, Rd

1

	

Since the capacity of 99 kN.m is greater than the applied moment of 97.5 kN.m, the beams 
should in theory be sufficiently strong. However, since the beam is very slender (Mb, Rd << 
Mpl, Rd), the beam will be vulnerable to impacts or imperfections. Engineers term this a lack 
of robustness. For example, an accidental impact could trigger failure or overloading may 
occur due to concrete being initially piled up at midspan. To guard against either of these 
eventualities, it would be prudent to install temporary bracing to raise the buckling moment 
and eliminate the danger.

Example 2.7:  Beam design involving LTB

A bridge comprises two I-section beams that span 8 m between simple supports and support 
a 6 m wide, 220 mm deep reinforced concrete deck.

	 1.	 Determine the LTB moment capacity of a beam, if the beams are torsionally restrained 
at the supports but laterally unrestrained along their lengths.

	 2.	 The beams are laterally unrestrained when resisting the wet weight of the concrete in 
addition to an imposed load of 0.75 kN/m2 to account for the weight of the construc-
tion staff and plant. Determine if the beams need temporary restraints against lateral 
torsional buckling during construction.

Beam properties
fy = 275 N/mm2, E = 210,000 N/mm2, G = 80,770 N/mm2, depth = 500 mm, web thickness = 
10 mm, Wpl, y = 1470 cm3, Iy = 29,400 cm4, Iz = 1450 cm4, Iw = 0.70 × 1012 mm6, It = 37.1 cm4, 
self-weight = 70 kg/m

1. From Equation 2.9, the plastic moment capacity is

	
M = × × × =−275 1470 10 10 404.3 kN.mpl, Rd

3 6

	

The more exact method for calculating the elastic critical moment will be used in this exam-
ple. From Figure 2.11, the equivalent uniform moment factor (C) for a simply supported 
beam supporting a UDL is 1.13. In addition, the load is applied to the top flange and is 
therefore a destabilising load and the effective length is increased by 20%; therefore,

	 L L= ×1.2cr 	

	 L = × =1.2 8000 9600 mmcr 	
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Using Equation 2.18

	
M C

L
EI
I I

GI
EI

L
z

z y
t

w= π
−

+ π



1 /

cr
cr

2

cr
2

	

	

1.13
9600

10
210000 1450 10

1 1450 / 29400
80770 37.1 10

210000 0.70 10
9600

141.5 kN.m

cr

6
4

4
12 2

2

M = × π

× × ×
−

× × + × × π





=

−

	

From Equation 2.21, the moment capacity is

	
M

M M
b = +







= +



 =

− −1 1 1
404.3

1
141.5

104.8 kN.m, Rd
pl, Rd cr

1 1

	

2. The two beams each support half of the 6 m wide bridge. The ULS uniformly distributed 
load per beam of the wet concrete, steel sections, construction workers and equipment is

	 w = × × × + × × + × × =−1.35 (25 3 0.22 9.81 70 10 ) 1.5 3 0.75 26.6 kN/m3

	

	
M = × =26.6 8

8
212.8 kN.mEd

2

	

The applied moment (212.8 kN.m) is less than the plastic moment capacity (404.3 kN.m). 
However, it is much greater than the LTB moment capacity (104.8 kN.m); therefore, the 
bridge will collapse. Since buckling occurs without warning, this would probably cause 
casualties. The bridge should therefore be braced against sideways movements during 
construction.

Example 2.8:  Beam design for a multistorey building

Figure 2.17 shows the framing arrangement for the floor of a multistorey steel-framed build-
ing. The frame is ‘simple’, i.e., it is assumed the joints between the beams and columns are 
effectively pinned. The beams support precast concrete slabs that sit on the top flanges of the 
steel sections, with the direction of span indicated by the arrows. The unfactored dead load 
(inclusive of beam self-weight) = 7 kN/m2 and the unfactored imposed load = 3.5 kN/m2, 
fy = 265 N/mm2, E = 210,000 N/mm2, G = 80,770 N/mm2.

	 1.	 Check the shear strength, bending strength and deflection of Beam A, which is laterally 
restrained.

	 2.	 Check the bending strength of Beam B if it is laterally restrained by the supported 
beams but laterally unrestrained between the loading points.
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Beam properties
Beam A: Iy = 126,000 cm4, Wpl, y = 4590 cm3, web thickness = 11.8 mm, section depth = 
612.4 mm

Beam B: Wpl, y = 17,700 cm3, Iy = 720,000 cm4, Iz = 45,400 cm4, It = 1730 cm4

1. Beam A – Laterally restrained. This is known as a secondary beam and these are spaced 
at 3 m centres; therefore, it supports a 3 m wide section of floor slab and the ultimate limit 
state UDL from Equation 1.3 is

	 w = × × + × =3.0 (1.35 7 1.5 3.5) 44.1 kN/m 	

This produces a support shear force:

	
V = × =44.1 12

2
264.6 kNEd

	

and the shear strength from Equation 2.3 is

	
V V= × × × = >> ∴−11.8 612.4 265

3
10 1106 kN passpl, Rd

3
Ed

	

The applied midspan moment is

	
M = × =44.1 12

8
793.8 kN.mEd

2

	

Beam A is considered as laterally restrained due to the frictional force between the concrete 
slabs and the top flange of the beams. The moment capacity is therefore safely calculated 
using Equation 2.9:

	
M f Wy=pl, Rd pl 	

	 M M= × × × = > ∴−4590 10 265 10 1216 kN.m passpl, Rd
3 6

Ed 	

Be
am

 A

12  m

12
 m

8
 m

12  m

Beam B

Figure 2.17  Plan showing framing arrangement.
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The beam deflection must now be checked. The serviceability limit state design load from 
Equation 1.2 is

	 w = × + = =3.0 (7 3.5) 31.5 kN/m 31.5 N/mm 	

and the midspan deflection from Equation 1.6 is

	
δ = × ×

× × ×
=5 31.5 12000

384 210000 126000 10
32 mm

4

4
	

A conventional limit on deflection is span/360, which would provide a limit of 33 mm; 
therefore, this beam is sufficiently stiff.

2. Beam B – Laterally unrestrained. The analysis in point (1) shows that that the load on the 
beams supported by Beam B is 44 kN/m. This will produce point loads, P, at quarter span 
points, where

	 P = + =44.1(12 8)/2 441 kN 	

The midspan moment for a beam supporting point loads (P) at quarter span points is

	 M
PL=
2

	 (2.22)

Therefore,

	
=

441 12
2

2646 kN.mEdM
× =

	

The basic plastic moment of resistance is

	
M = × × × =−17700 10 265 10 4691 kN.mpl, Rd

3 6

	

The beam is laterally restrained by the supported beams but laterally unrestrained in 
between. Therefore, the effective length is 3000 mm (span/4), and from Equation 2.19 the 
elastic critical moment, is

	
M

L
EI GI

I I
z t

z y

= π
−1 /

cr
cr 	

	
M = π × × × × × ×

−
=−

3000
10

210000 45400 10 80770 1730 10
1 45400 / 720000

12487 kN.mcr
6

4 4

	

and the buckling moment from Equation 2.20 is

	
M

M M
b = +







−
1 1

, Rd
pl, Rd cr

1

	

	 M M= +



 = > ∴

−1
12487

1
4691

3410 kN.m OKb, Rd

1

Ed 	
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Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	 P.2.1.	 A simply supported beam spans 5 m and supports an unfactored UDL of 100 kN/m 
dead (including self-weight) and 200 kN/m imposed.

	 a.	 Determine the ULS design load per m.
	 b.	 Determine the ULS design moment.
	 c.	 Determine the minimum plastic section modulus required to support these loads 

if the yield stress is 275 N/mm2.
	 d.	 Determine the ULS shear force at the supports.
	 e.	 Determine the minimum shear area required to resist this shear force.

	 Ans. (a) 435 kN/m, (b) 1359 kN/m, (c) 4942 cm3, (d) 1087.5 kN and (e) 6849 mm2.

	 P.2.2.	 Figure 2.18 shows a hot-rolled I-section beam (section classification is Class 1).

	 a.	 Determine the design moment capacity, Mpl, Rd.
	 b.	 Determine the design shear capacity, Vpl, Rd.
	 c.	 Prove that this section will not fail by shear buckling.
	 d.	 Determine Mpl, Rd if the applied shear force = 100% of Vpl, Rd.
	 e.	 Determine Mpl, Rd if the applied shear force = 75% of Vpl, Rd.

	 Ans. (a) 47.0 kN.m, (b) 135.3 kN, (c) τcr (739 N/mm2) > τy (158.8 N/mm2), (d) 36.6 kN.m 
and (e) 43.5 kN.m.

	 P.2.3.	 An I-section beam resists end moments, as shown in Figure 2.19.

	 a.	 Determine the plastic moment of resistance if Wpl, y = 393 cm3and fy = 275 N/mm2.
	 b.	 Determine the effective length if the beam is laterally unrestrained along its 

length but torsionally restrained at the supports.
	 c.	 Determine the elastic critical buckling moment if Young’s modulus, E = 

210,000 N/mm2, G = 80,770 N/mm2, Iy = 4413 cm4, Iz = 448 cm4 and It = 8.55 cm4.
	 d.	 Determine the lateral torsional buckling design moment.

	 Ans. (a) 108 kN.m, (b) 5000 mm, (c) 53.4 kN.m and (d) 35.7 kN.m.

4.8 mm177.8 mm

Plastic modulus, Wpl = 171 cm3

Yield stress, fy = 275 N/mm2

Figure 2.18  Section details.

5000 mm

MM

Figure 2.19  Beam with end moments.

https://www.crcpress.com/9781498741217
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Chapter 3

Buckling of steel columns and trusses

This chapter explains how to estimate the buckling capacity of steel members subjected to 
compression and bending. The method used is a Gordon–Rankine approach, which pro-
vides a quick estimate of strength that is slightly conservative in comparison with the full 
code-based methods. The equations presented in this chapter do not include a partial safety 
factor on materials. This is because the partial safety factor for steelwork member design is 
taken as 1.0 in the Eurocodes.

3.1  BASIC STRUT BUCKLING

A strut is an axially loaded member under pure compression. This is different from the col-
umns in buildings, which are also subjected to bending moments and are therefore called 
beam columns. Petrus van Musschenbroek discovered in 1729 that the elastic critical buck-
ling force (Ncr) is inversely proportional to the length squared, i.e.,

	
N

L
∝ 1

cr 2
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Leonard Euler (1757) subsequently showed that for a pin-ended strut (Figure 3.1a)

	 N
S

L
= π

cr

2

2 	

Euler also solved the differential equations for struts with a variety of different end condi-
tions. For example, he showed that the critical buckling load for a strut fixed at the base and 
free to sway at the tip (Figure 3.1b) is

	
N

S
L

= π
4

cr

2

2
	

The term S was later defined by Claude-Louis Navier in 1826 as the bending stiffness, EI, 
where I is the second moment of area and E is Young’s modulus.

Effective length, Lcr. It is possible to derive separate equations for struts with a range of dif-
ferent end conditions. However, for design purposes, the same equation is used throughout, 
with the length L replaced by effective length, Lcr,, which compensates for the different end 
conditions.

	 N
EI

L
= π

cr

2

cr
2 	 (3.1)

The effective length is the length of an equivalent strut with pinned end conditions 
(Figure 3.1a). For the cantilever strut shown in Figure 3.1b, the equivalent pin-ended strut 
is not obvious. It is necessary to project the strut into the support to provide the equivalent 
pin-ended strut, where Lcr is twice the length of the original strut. It is sometimes necessary 
to identify points of contraflexure. These are the point(s) of zero moment. Since the moment 
at these points is zero, the response of the strut would be unchanged if a hinge was intro-
duced at that exact location. This is why points of contraflexure are used when determining 
Lcr. In the strut shown in Figure 3.1c, points of contraflexure occur at the quarter points; 
thus, Lcr = 0.5 L. Figure 3.1d and e shows the points of contraflexure for some other com-
monly occurring end conditions.

Lcr

Ncr

L

(a) (b) (c) (d) (e)

L

L
L L

Lcr = L Lcr = 2 L Lcr = 0.5 L Lcr = 0.7 L Lcr = 2 L/2 = L

Point of contraflexure indicated by

Lcr
Lcr

Figure 3.1  The concept of effective length for differing end conditions.
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Slenderness. The technical definition of slenderness (λ) is

	

L
i

λ = cr

	

where i is the radius of gyration. Since the second moment of area, I = Ai2, the Euler critical 
buckling equation can be reconfigured in terms of slenderness:

	 N
EA= π

λcr

2

2 	 (3.2)

Slenderness is a useful design term, because it combines the parameters of length and radius 
of gyration.

Inelastic bucking. Euler’s formula applies only to struts that remain elastic during 
buckling,  i.e., ones that return to their original position when the load is removed. This 
occurs only in very slender struts. In practice, columns fail by a combination of buckling 
and yielding, in which case Euler’s formula will overpredict strength. Figure 3.2 shows the 
relationship between slenderness and the elastic critical buckling force. The actual strength 
will not be greater than the crushing strength, which is given by

	 N fy= × Areapl, Rd 	 (3.3)

Therefore, the theoretical upper limit on strength is the lesser of either Ncr or Npl, Rd and is 
shown as the hatched region on Figure 3.2. The actual strength will be somewhat below 
this region because of imperfections, and the design buckling force (Nb,  Rd) can be esti-
mated using the (empirical) Gordon–Rankine formula, which was routinely used from 1862 
onwards after appearing in Rankine’s famous book entitled A Manual of Civil Engineering. 
In Rankine’s method

	 N N Nb

= +1 1 1

, Rd pl, Rd cr 	

Slenderness, λ

Npl, Rd

Theoretical upper limit
to buckling stress

Nb, Rd 

Ncr

Bu
ck

lin
g 

fo
rc

e

Figure 3.2  Relationship between slenderness and buckling stress of struts.
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which rearranges to

	 N
N N

b = +







−
1 1

, Rd
pl, Rd cr

1

	 (3.4)

This formula works because Nb, Rd → Npl, Rd when slenderness is small and Nb, Rd → Ncr 
when slenderness is high. Modern codes use semi-empirical approaches to define Nb, Rd and 
Figure 3.3 shows the Eurocode 3 design strength compared with the Gordon–Rankine 
strength. For the most important condition of H-sections buckling about the weak axis 
(curve c), this shows that this Gordon–Rankine method gives a good level of accuracy. 
In this book, Equation 3.4 has been adapted to analyse lateral torsional buckling, arch 
buckling and plate buckling, because this technique is simple to understand and generally 
very accurate.

The effect of residual stresses. Most steel sections are formed using a hot rolling process, 
whereby steel is softened by heating in a furnace. The parts of the section that cool fastest 
end up in permanent compression, which is internally balanced by tension in the parts that 
cool slowest. The resulting internal stresses are known as residual or shrinkage stresses. 
Similar stress patterns are caused when plates are welded to form sections.

Residual stresses are safely ignored when calculating the elastic or plastic moment capaci-
ties. However, they are important when considering buckling or fatigue. Residual stresses 
also cause members to bend that are split along their lengths; for example, when T-sections 
are formed by splitting H-sections down the middle. Residual stresses can commonly be as 
high as 50% of the yield stress and they will lower the buckling strength. This is because 
residual stresses promote early yielding and yielding often initiates buckling.

Figure 3.4a shows the residual stress distribution in a hot-rolled H-section. If prevented 
from buckling about the minor axis (Figure 3.4b), then the adverse effects of the compression 
residual stresses are counterbalanced by the positive effect of the tensile residual stresses. The 
more common case is (Figure 3.4c) minor axis buckling. In this case, the maximum buckling 
stress (at the tip of the flanges) coincides with the position of maximum residual compression 
stress. This is the worst combination and causes early buckling. If the section uses very thick 
steel, the residual stresses will be higher and sections built up from plate using welding have 
very high residual stresses and hence the lowest permitted design stresses.
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Figure 3.3  Comparison between Rankine–Gordon method and Eurocode 3 for H-sections buckling about 
the weak axis (illustrated in Figure 3.4c).
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Example 3.1:  Strut design

A rectangular hollow section strut is 2.5 m long and is pinned at its supports. The yield 
stress is 355 N/mm2, E = 210,000 N/mm2, Iy = 607 cm4, Iz =324 cm4 and A = 19.2 cm2.

	 1.	 Estimate the design compression strength if the strut is free to buckle about either the 
y–y or z–z axes.

	 2.	 Estimate the buckling strength if buckling about the weak axis (z–z axis) is prevented 
by bracing.

1. The first step is to determine the crushing strength using Equation 3.3:

	
Areapl, RdN fy= ×

	

	
N = × × × =−355 19.2 10 10 682 kNpl, Rd

2 3

	

The strut is pinned at the supports; therefore, the buckling mode is identical to that sketched 
in Figure 3.1a and the effective length is

	 1.0 = 2500 mmcrL L= × 	

The strut will buckle about the weakest axis unless prevented from doing otherwise. 
Therefore, the weak axis second moment of area (Iz) is used in the elastic critical buckling 
force calculation using Equation 3.1:

	
cr

2

cr
2N

EA
L

= π

	

	
N = π × × × × =−210000 324 10

2500
10 1074 kNcr

2 4

2
3

	

and using the Gordon–Rankine approximation, Equation 3.4, the design strength is

	 N
N N

b = +







−
1 1

, Rd
pl, Rd cr

1
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C C

Figure 3.4  Residual stresses for hot-rolled H-sections. (a) Residual stress distribution in web and flange, 
(b) major axis buckling and (c) minor axis buckling.
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Nb = +



 =

−1
682

1
1074

417 kN, Rd

1

	

2. Since buckling about the weak (z–z) axis is prevented, the major axis second moment of 
area (Iy) is used in Equation 3.1:

	

210000 607 10
2500

10 2013 kNcr

2 4

2
3N = π × × × × =−

	

and from Equation 3.4,

	
Nb = +



 =

−1
682

1
2013

509 kN, Rd

1

	

There is a significant difference between the buckling strength between (1) and (2) and this 
highlights the importance of correctly identifying which of Iy and Iz should be used when 
calculating the elastic critical buckling force.

3.2  BEAM COLUMNS

Members subjected to bending combined with axial compression need to be checked to 
ensure that they will not buckle. The first check is to ensure that the section remains elastic 
under the applied loading. Basic theory tells us that the maximum stress in a section sub-
jected to an axial force and biaxial moments is

	

N
A

M
W

M
W

y

y

z

z

+ + = σ
el, el,

max

	

where
σmax is the maximum stress in the section.
N is the applied axial load.
My and Mz are the applied moments about the strong (y–y) and weak (z–z) axes, respectively.
Wel, y and Wel, z are the elastic section moduli.

Dividing this through by the yield stress, fy, gives
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The maximum stress must not exceed the yield stress; therefore,

	

N
N

M
M

M
M

y

y

z

z

+ + ≤ 1
pl, Rd el, el, 	

This equation is useful because it quantifies the degree of utilisation before yielding (ignor-
ing residual stresses), although it does not include a reduction in strength due to buckling. 
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In order to check for buckling, the crushing force (Npl, Rd) must be replaced by the buckling 
force (Nb, Rd) defined in Equation 3.4, i.e.,

	

N
N

M
M

M
Mb

y

y

z

z

+ + ≤ 1
, Rd el, el, 	

This equation is incomplete, because the axial force amplifies moments. The applied end 
moments are fixed in magnitude, but the moment part way down the strut is magnified and 
it is the moment in the middle that creates buckling. The increased moment increases deflec-
tions and this will be self-propagating if above a critical value. This process is illustrated in 
Figure 3.5a, which shows a column subjected to end moments.

Figure 3.5b shows the additional moment due to the axial force multiplied by the deflec-
tion induced by the end moments (N.δ). It was shown by Timoshenko and Gere (1961) that 
the axial force will amplify the end moment by the following factor:

	 N N
α =

−
1

1 / cr
	 (3.5)

This ‘amplification factor’ is only approximate, but it is still very useful and it appears in 
many different design formulae. It sometimes appears as

	

N
N N−

cr

cr 	

The final beam–column design equation becomes

	
N

N
M

M
M

Mb

y y

y

z z

z

+
α

+ α ≤ 1
, Rd el, el,

	 (3.6)

where
αy and αz are the moment amplification factors for the major and minor axes, respectively.
My and Mz are applied moments about the major and minor axes, respectively.
Mel, y and Mel, z are the major and minor axis elastic moment capacities, respectively.

(a)

δ

M

M

(b)

δ

N

N

Figure 3.5  Amplification of midheight moments due to axial load effect. (a) Deflection due to M and 
(b) secondary moment = N.δ.
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The additional (secondary) moments are only important for slender members. They are not 
significant for ‘stocky’ members, such as the columns found in most multistorey office build-
ings, in which case the interaction equation shortens to

	
N

N
M

M
M

Mb

y

y

z

z

+ + ≤ 1
, Rd el, el,

	 (3.7)

Lateral torsional buckling. If a beam column is susceptible to lateral torsional buckling, 
as described in Section 2.3, then the lateral torsional buckling design moment, Mb,  Rd 
(Section 2.3), replaces Mel, y, i.e.,

	

N
N

M
M

M
Mb

y y

b

z z

z

+
α

+ α ≤ 1
, Rd , Rd el, 	 (3.8)

Example 3.2: � Combined moments and compression 
applied to a hollow section

The walls of an excavation are propped using rectangular hollow sections that have a yield 
stress of 355 N/mm2 and that weigh 0.725 kN per meter length see (Figure 3.6).

	 1.	 Determine the elastic bending strengths for the prop about the strong and weak axes.
	 2.	 Determine the elastic critical buckling forces for each axis of buckling.
	 3.	 Determine the amplification of moment factors for each axis of buckling if the applied 

axial force = 450 kN.
	 4.	 Determine the factor of safety (FoS) against buckling if the prop resists a compression 

force of 450 kN.
	 5.	 Determine the FoS if the prop is also subjected to an accidental sideways force of 

70 kN applied at midspan.

Note: Calculate the FoS using unfactored loads (see Equation 1.11).

1. The first step is to calculate the second moment of area about the strong and weak axes, 
which are calculated by taking away I of the centre void from the I for a solid section, i.e.,

	
200 300

12
180 280

12
121 10 mm

3 3
6 4Iy = × − × = × 	

(a) (b)

7 m Prop
10 mm

y y

z

z

30
0 

m
m

200 mm

Figure 3.6  Design of props for an excavation. (a) Section through excavation and (b) section through prop.
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and

	

300 200
12

280 180
12

64 10 mm
3 3

6 4Iz = × − × = ×
	

and the elastic moment capacities are

	 /2
355 121 10

300/2
10 286 kN.mel,

6
6M

f I
D

y
y y= = × × × =−

	

and

	 /2
355 64 10

200/2
10 227 kN.mel,

6
6M

f I
B

z
y z= = × × × =−

	

2. If the supports are pinned, the buckling mode is the same as that illustrated in Figure 3.1a 
and the effective length equals 7000 mm about both axes. From Equation 3.1

	
N y = π × × × × =−210000 121 10

7000
10 5118 kNcr,

2 6

2
3

	

and

	
N z = π × × × × =−210000 64 10

7000
10 2707 kNcr,

2 6

2
3

	

3. From Equation 3.5, the amplification factors are

	
1

1
cr

N
N

α =
−

	

	
1

1
450
5118

1.10yα =
−

= 	

and

	
1

1
450

2707

1.20zα =
−

= 	

4. The cross-sectional area of the section is

	 = × − − × − =Area 300 200 (300 20) (200 20) 9600 mm2

	

and from Equation 3.3, the crushing force is

	 N = × × =−355 9600 10 3408 kNpl, Rd
3 	
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The strut is free to buckle about either the strong y–y or weak z–z axis. Therefore, buckling 
will be about the weak axis and from Equation 3.4,

	

1
3408

1
2707

1509 kN, Rd

1

Nb = +



 =

−

	

The applied moment due to the self-weight is

	
My = × =0.725 7

8
4.44 kN.m

2

	

The moment about the z–z axis is zero. Inputting the variables into Equation 3.6

	

N
N

M
M

M
Mb

y y

y

z z

z

+
α

+ α ≤ 1
, Rd el, el, 	

	

450
1509

1.10 4.44
286

1.20 0
227

0.315+ × + × =
	

The sum of this equation represents the degree of utilisation, which in this case is 31.5%. 
The FoS is the inverse, i.e.,

	 FoS 0.315 3.21= =−
	

5. The midspan moment in a beam of length L subjected to a point load P at midspan is

	 4
M

PL=
	

and the moment due to the accidental horizontal force is

	

70 7
4

123 kN.mMz = × =
	

Inputting the results into Equation 3.8, we get

	
450

1509
1.10 4.44

286
1.20 123

227
0.96+ × + × = 	 (3.9)

Therefore, the FoS is

	 FoS 0.96 1.041= =−
	

In summary, the FoS has fallen from 3.2 to 1.04, and this illustrates the vulnerability of 
slender compression members to accidental loading. This 70 kN load could easily have 
resulted from a careless crane driver accidentally hitting the prop with a skip of concrete on 
a windy day.
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This analysis included no allowance for moments induced by the propping force multi-
plied by the self-weight deflection. This is known as a N–δ moment and is illustrated in 
Figure 3.7. In this example, the beam deflects by only 0.9 mm under its own self-weight; 
therefore, this effect is negligible.

Example 3.3:  Beam column with lateral torsional buckling 

An H-beam with properties listed below is used to prop an excavation as shown in Figure 3.8.

	 1.	 Determine the moment capacity when bending about the strong axis assuming the 
beam is torsionally restrained at the supports.

	 2.	 Determine the elastic critical buckling forces and corresponding amplification of 
moment’s factors about each axis of buckling, if the prop resists a 470 kN axial force.

	 3.	 Determine the buckling strength of the prop in pure compression (no moments).
	 4.	 Determine the FoS if the prop is also subjected to an accidental sideways force of 

70 kN applied at midspan.

Note: Calculate the FoS using unfactored loads in accordance with Equation 1.11.

Section properties for the H-section shown in Figure 3.8b: Wpl, y = 2680 cm3, Wel, y = 808 cm3, 
Iy = 38,750 cm4, Iz = 12,570 cm4, It = 378 cm4, A = 201 cm2, self-weight = 1.52 kN/m, 
fy = 355 N/mm2, E = 210,000 N/mm2 and G = 80,770 N/mm2

1. Since the beam column is unrestrained against the weak axis, it will be prone to lateral 
torsional buckling. From Equation 2.19, the elastic critical buckling moment is

	

1

7000
10

210000 12570 10 80770 378 10

1
12570
38750

1550 kN.m

cr
cr

cr
6

4 4

M
L

EI GI
I
I

M

z t

z

y

= π

−

= π × × × × × ×

−
=−

	

N

De�ection due to self-weight = δ

N

Figure 3.7  Illustration of additional (N–δ) moment due to self-weight deflection.

(a)

y y

z

z

7 m Prop

(b)

Figure 3.8  Prop supporting an excavation that is susceptible to LTB. (a) Section through excavation and 
(b) section through prop.
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From Equation 2.9, the plastic moment capacity is

	
M f Wy=pl, Rd pl 	

	
M = × × × =−2680 10 355 10 951 kN.mpl, Rd

3 6

	

And from Equation 2.21, the bending moment capacity inclusive of lateral torsional buck-
ling is

	
M

M M
b = +








−
1 1

, Rd
pl, Rd cr

1

	

	
Mb = +



 =

−1
951

1
1550

589 kN.m, Rd

1

	

2. From Equation 3.1, the elastic critical forces are

	
N y = π × × × × =−210000 38750 10

7000
10 16390 kNcr,

2 4

2
3

	

and

	
N z = π × × × × =−210000 12570 10

7000
10 5317 kNcr,

2 4

2
3

	

From Equation 3.5, the amplification factors are

	

1

1
470

16390

1.030yα =
−

=
	

and

	

1

1
470

5317

1.100zα =
−

=
	

3. From Equation 3.3, the crushing strength is

	
N = × × =−355 20100 10 7136 kNpl, Rd

3

	

and the buckling strength, using the weak axis elastic critical buckling force and Equation 3.4, is

	 N
N N

b = +







−
1 1

, Rd
pl, Rd cr

1
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Nb = +



 =

−1
7136

1
5317

3047 kN, Rd

1

	

4. And the moment due to the accidental horizontal force applied at midspan is

	 4
70 7

4
123 kN.mM

PL
z = = × =

	

The self-weight induced midspan moment is

	
My = × =1.52 7

8
9.3 kN.m

2

	

From Equation 2.10, the weak axis elastic moment capacity is

	
M f Wy=el, Rd el 	

	
M z = × × × =−808 10 355 10 287 kN.mel,

3 6

	

Finally, the beam column interaction equation (Equation 3.8) is solved:

	

N
N

M
M

M
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y y

b

z z

z

+
α

+ α = 1.0
, Rd , Rd el, 	

	

470
3047

1.030 9.3
589

1.100 123
287

0.64+ × + × =
	

The FoS is

	 FoS 0.64 1.561= =−
	

To summarise, the prop can resist a 70 kN accidental force with a reasonable FoS of 1.56. 
These calculations did not include load factors, although 1.56 is high enough to accommo-
date load factors and still satisfy the limit state design requirements.

3.3  WEB BUCKLING

Beam webs are vulnerable to buckling under concentrated forces and the strength can be 
estimated by using strut buckling theory. To do this, it is necessary to estimate the effec-
tive length, which is determined in exactly the same manner as for any ordinary strut (see 
Figure 3.1). For the common condition where the top and bottom flanges are not free to 
rotate or move sideways, then Lcr = 0.5 D (Figure 3.9a). This end condition produces an elas-
tic critical buckling strength four times that of the web shown in Figure 3.9b and 16 times 
that of Figure 3.9c because of the inverse squared relationship between buckling force and 
length (Equation 3.1). For this reason, it is very important to establish the correct effective 



46  Structural design from first principles

length during calculations, as well as to ensure that appropriate restraints to buckling are 
provided during construction.

Buckling occurs when the stress at the centre of the buckle exceeds a critical value. 
Therefore, the next objective is to determine the stress at the centre of the buckle, which 
occurs at the centre line of the beam web for the case shown in Figure 3.10a.

The stress from a concentrated force is spread at an angle of approximately 45 degrees 
away from the edges of a stiff bearing (Lb), as shown in Figure 3.10b. For simplicity, it is 
assumed that the concentrated force is spread evenly across the effective width (Weff), which 
is calculated using this load dispersion approximation as shown in Figure 3.10b. The con-
centrated force is assumed to be resisted only by the beam web within the effective width 
region, with the remainder of the beam ignored. The second moment of area of the web 
within the effective width is

	
12

eff
eff

3

I
w t= ×

	 (3.10)

Inputting this into Equation 3.1, the elastic critical buckling force is

	 N
EI
L

= π
cr

2
eff

cr
2 	 (3.11)

Adapting Equation 3.3, the ‘crushing’ strength of the web is

	 pl, Rd effN f w ty= 	 (3.12)

D

(a) (b) (c)

Figure 3.9  Different modes of web buckling. (a) Lcr = 0.5 D, (b) Lcr = D and (c) Lcr = 2 D.

E�ective width, We�

45° load spread

t
Centre line

(a) (b)

D

Lb

Figure 3.10  Principle of load spreading illustrated using a bridge bearing. (a) Cross section showing 
buckling and (b) side elevation showing load spreading away from the bearing.
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The design buckling strength is calculated using the Gordon–Rankine approximation 
(Equation 3.4), i.e.,

	
N

N N
b = +








−
1 1

, Rd
pl, Rd cr

1

	

Example 3.4:  Web buckling due to a concentrated load

I-section beams support a reinforced concrete slab, as shown in Figure 3.11. Determine the 
buckling strength when subjected to the concentrated force of the support reaction at the 
ends of the beam. The top and bottom flanges are restrained against sideways movement; 
the yield stress is 355 N/mm2 and E = 210,000 N/mm2.

The beam flanges prevent rotation of the web at the supports and sideways movement of the 
slab is prevented (Figure 3.12a); therefore, the effective length of the web is

	 Lcr = 0.5 D = 250 mm

The load spreading is illustrated in Figure 3.12b and

	 Weff = 160 + 150 + 250 = 560 mm

9 mm

(a) (b)

500 mm

16
0

m
m

15
0

m
m

Figure 3.11  Web buckling. (a) Cross section and (b) side elevation.

We� = 160 + 150 + 250 = 560 mm

45°  load spread

t = 9 mm

(a) (b)

D = 500 mm
Lb = 150 mm

Lcr = 250 mm

250 mm

160 mm

Figure 3.12  Web buckling at a bearing. (a) Cross section showing effective length and (b) side elevation 
showing calculation of effective width.
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The crushing force from Equation 3.12 is

	
N f ty= wpl, Rd eff 	

	 N = × × × =355 560 9 10 1789 kNpl, Rd
–3 	

The second moment of area of the effective width of the web from Equation 3.10 is

	
I

w t= ×
12

eff
eff

3

	

	
I = × =560 9

12
34020 mmeff

3
4

	

And the elastic critical buckling force from Equation 3.11 is

	
N

EI
L

= π
cr

2
eff

cr
2

	

	
N = π × × × =−210000 34020

250
10 1128 kNcr

2

2
3

	

Finally, from Equation 3.4 the web can (probably) resist the following reaction without 
buckling:

	
N

N N
b = +








−
1 1

, Rd
pl, Rd cr

1

	

	
Nb = +



 =

−1
1789

1
1128

692 kN, Rd

1

	

3.4  SIMPLE TRUSSES 

Many long-span structures are built up from struts and ties. The compression members 
must be checked for buckling. During calculations, the effective length will correspond to 
the distance between intersecting nodes if the nodes are braced against sideways moment, 
as is the case for the truss sketched in Figure 3.13.

Computers can be used to calculate truss deflections, although the parallel axis theorem 
can be used to estimate the effective second moment of area of a truss, for use in approx-
imate deflection calculations. The simplification ignores shear deflections; therefore, the 
solution will underestimate deflection and is thus only suitable as a ‘back of the envelope’ 
check. Shear deflections are caused by the stretching and squashing of the diagonal web 
members due to tension and compression forces.
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Example 3.5:  Lattice girder bridge

The lattice girder sketched in Figure 3.14 is constructed out of steel with a yield stress 
of 355 N/mm2 and Young’s modulus of 210,000 N/mm2. All the truss members are con-
structed out of 200 mm wide square hollow sections, with a cross-sectional area of 87 cm2 
and I of 4860 cm4.

	 1.	 The dead load shown in Figure 3.14 includes the self-weight. Determine the ULS design 
load, midspan moment and maximum compression force in the top chord of the truss.

	 2.	 If the top chord is restrained against sideways movement at node points (i.e. the inter-
sections between members), determine the effective length of the top chord of the truss.

	 3.	 Determine if the top chord is capable of resisting the applied ULS compression force 
without buckling.

	 4.	 Calculate the SLS design load (inclusive of dead weight) and estimate the midspan 
deflection. If the maximum deflection limit is span/200, is the truss satisfactory?

1. From Equation 1.3, the design load is

	 w = × + × =1.35 12 1.5 10 31.2 kN/m 	

and the midspan moment is

	 8
31.2 48

8
8985 kN.m

2 2

M
wL= = × =

	

This is resisted by a couple between the top and bottom chords, in a manner illustrated in 
Figure 3.15.

Forces in response to gravity loads

Buckled shape of compression members (shown dashed)

Lcr top chord

Lcr web

Figure 3.13  Lattice girder in which nodes between members are braced against sideways movement.

gk = 12 kN/m, qk = 10 kN/m

48 m

4 m

3.5 m

Figure 3.14  Lattice girder design example.
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Taking moments about the bottom chord (see Figure 3.15)

	 M N z= × 	 (3.13)

where
  N is the force in the top chord.
  Z is the distance between the centre of the top and bottom chords.

Rearranging Equation 3.13

	 N
M
z

= 	 (3.14)

In this case, the midspan moment produces a force in the chord of

	

8985
3.5

2567 kNN = =
	

2. The truss will buckle in a manner similar to that illustrated in Figure 3.13 if the nodes are 
prevented from buckling sideways. If this is the case, then the effective length is the distance 
between web members, i.e., Lcr = 4 m.

3. From Equation 3.3, the crushing strength of the chord members is

	
N f Ay= = × × × =−355 87 10 10 3088 kNpl, Rd

2 3

	

From Equation 3.1

	
N = π × × × × =−210000 4860 10

4000
10 6296 kNcr

2 4

2
3

	

From Equation 3.4, the compression strength is

	
Nb = +



 =

−1
3088

1
6296

2071 kN, Rd

1

	

Since the applied force (2567 kN) is greater than the buckling strength (2071 kN), the top 
chord is not strong enough.

N

N

z

Figure 3.15  Balance of forces at midspan.
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These calculations ignore the N–δ bending moments induced by the self-weight deflection of 
the top chord (see Figure 3.7), although in this case the top chord sags by less than 1/2 mm 
between nodes, so the loss of strength is insignificant.

4. Using the parallel axis theorem, the effective second moment of area of the truss is

	 I I r∑( )= + Area .chord chord
2 	 (3.15)

where r is the distance from the truss centroid to the chord centroid; therefore,

	
I ( )= × × + × × = ×2 4860 10 87 10 1750 5.34 10 mm4 2 2 10 4

	

The SLS load is

	 w g qk k= + = 22 kN/m or 22 N/mm 	

The midspan deflection (δ) in a beam supporting a UDL is

	

5
384

4wL
EI

δ =
	

	

5 22 48000
384 210000 5.34 10

140 mm
4

10δ = × ×
× × ×

=
	

This answer was rounded up to the nearest 10 mm to reflect the approximate nature of the 
calculation. The max allowable deflection is L/200 = 240 mm; therefore, the truss is stiff 
enough, even though it has insufficient strength. In practice, the actual deflection will be 
slightly higher than 140 mm, because this simplified approach ignores shear deflections. 
These are caused by the stretching and squashing of the diagonal web members.

Example 3.6:  Lattice girder roof

A truss supports a dead load inclusive of self-weight of 10 kN/m (unfactored) in addition to 
an imposed load of 60 kN (unfactored) (see Figure 3.16). The yield stress is 275 N/mm2 and 
Young’s modulus is 210,000 N/mm2.

	 1.	 Determine the ULS compression force in the top chord of the truss at midspan.
	 2.	 The truss members are fabricated from 300 mm wide square hollow sections with 

a wall thickness of 10 mm. Determine the area, second moment of area and elastic 
moment capacity of the top chord.

	 3.	 Determine the compression force required to cause buckling of the top chord if it is 
restrained against sideways movement.

	 4.	 The uniformly distributed dead load is supported directly by the top chord. It there-
fore induces bending moments in addition to the axial compression. Determine 
the maximum moment that can be resisted in addition to the applied compression 
force.

	 5.	 Determine the maximum midspan deflection under serviceability limit state loading.



52  Structural design from first principles

1. The midspan moment due to the fully factored dead is

	 8 4

2

M
wL PL= +

	

	

1.35 10 60
8

1.5 60 60
4

7425 kN.m
2

M = × × + × × =
	

From Equation 3.13, the compression force in the top chord at midspan is

	

7425
4.3

1726.7 kNN = =
	

2. The cross-sectional area of the top chord is

	 A 300 300 280 280 11600 mm2= × − × = 	

and the second moment of area is

	

300 300
12

280 280
12

162.79 10 mm
3 3

6 4I = × − × = ×
	

and the elastic moment capacity from Equation 2.13 is

	
M = × × × =−275 162.79 10

150
10 298.4 kN.mel, Rd

6
6

	

3. From Equation 3.3, the crushing resistance is

	
275 11600 10 3190 kNpl, Rd y

3N f A= = × × =−

	

The effective length is the distance between the nodes with the web members (5 m), since the 
roof provides bracing against sideways movements. From Equation 3.1, the elastic critical 
buckling force is

	 N = π × × × × =−210000 162.79 10
5000

10 13496 kNcr

2 6

2
3 	

gk = 10 kN/m
60 m

5 m

4.3 m

Qk = 60 kN

Figure 3.16  Roof truss.
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and from Equation 3.4, the buckling strength is

	
Nb = +



 =

−1
3190

1
13496

2580 kN, Rd

1

	

This is greater than the applied force of 1726.7 kN; therefore, this is encouraging, although 
no allowance has been made for the moment in the chord due to the UDL supported.

4. The amplification of moment’s factor from Equation 3.5 is

	

1

1
1726.7
13496

1.15zα =
−

=
	

and the main interaction equation (Equation 3.6) is

	
+

α
+ α ≤ 1

, Rd el, el,

N
N

M
M

M
Mb

y y

y

z z

z 	

	

1726.7
2580

1.15
298.4

1.15 0
298.4

1.0
My+

×
+ × ≤

	

	 My ≤ 85.8 kNm.

A quick calculation assuming conservatively that the moment in the top chord was wL2/8 
(where L = 5 m) shows that My < 49 kN.m. Therefore, the top chord should be strong 
enough.

A slight reduction in strength will occur due to the moment induced by the self-weight 
deflection, as illustrated in Figure 3.7. In this example, the top chord sags by only 2 mm 
between nodes and the resulting (N–δ) moment is not significant.

5. The second moment of area of the truss from Equation 3.15 is

	 ( )= × × + × = ×2 162.79 10 11600 2150 1.076 10 mmtruss
6 2 11 4I

	

The SLS loads are a UDL of 10 N/mm and a point load of 60 × 103 N, and the corresponding 
midspan deflection is

	

5
384 48

4 3wL
EI

PL
EI

∆ = +
	

	

5 10 60000
384 210000 1.076 10

60 10 60000
48 210000 1.076 10

90 mm
4

11

3 3

11∆ = × ×
× × ×

+ × ×
× × ×

=
	

This is rounded up to the nearest 10 mm because of the approximate nature of the calcula-
tion. This deflection is unconservative, because it ignores the deflection that occurs due to 
the stretching and squashing of the web members, known as shear deflection.
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3.5  BUCKLING OF SLENDER TRUSSES

Laced props comprises an array of different members (Figure 3.17a). These compound 
members have two modes of buckling: local buckling as sketched in Figure 3.17b and 
global buckling (Figure 3.17c). The actual buckling mode is a combination of both 
modes as illustrated in Figure 3.17d. Whilst a detailed computer-based analysis of these 
structures is desirable, a simple approximation of the buckling strength is possible with 
hand calculations. The local buckling force, Nlocal, shown in Figure 3.17b, replaces the 
crushing force in a conventional strut. The chord members will buckle at a load lower 
than the yield (crushing) load. Therefore, Nlocal (for the truss as a whole) is the sum of 
the buckling strength of the individual chord members, calculated using the effective 
length shown in Figure 3.17b.

The elastic critical buckling force for the global buckling mode shown in Figure 3.17c 
is determined using the second moment of area of the whole lattice member. This can be 
determined using the parallel axis theorem (Equation 3.15). The elastic critical buckling 
force can be calculated using Equation 3.1. The combined failure load, Nb,Rd, (Figure 3.17d) 
is estimated using the combined local and global buckling modes, i.e.,

	
= +1 1 1

, Rd local cr, globalN N Nb 	

Rearranging

	 = +







−
1 1

, Rd
local cr, global

1

N
N N

b 	 (3.16)

Deformation of the diagonal web members (known as shear deflection) will increase lateral 
deflections, reducing Ncr. Although Equation 3.1 is sufficiently accurate for what is already 
an approximate method, greater accuracy can be achieved by using equations published 

(a) (b) (c) (d)

NRd

Lcr, local
Lcr, global

Ncr, globalNlocal

Figure 3.17  Buckling modes for a compound strut. (a) Compound strut, (b) local buckling (restrained against 
global buckling), (c) global (elastic critical) buckling and (d) real behaviour, modes (b) and (c) combined.
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in Timeshenko and Gere (1961). These include the effect of elastic deformation of the 
web members. For the compound strut shown in Figure 3.18a, the elastic critical buckling 
force is

	 = π

+ π
ϕ ϕ

+






1

1
1

sin cos

cr, global

2

cr
2 2

cr
2 2

N
EI

L EI
L A E

b
aA Ed c

	 (3.17)

Ad is the area of two diagonal web members, one on each side of the compound strut 
(Figure 3.18a).
Ac is the combined area of the main chord members.
For the member types shown in Figure 3.18b and c, the elastic critical buckling force is

	 = π

+ π
ϕ ϕ







1

1
1

sin cos

cr, global

2

cr
2 2

cr
2 2

N
EI

L EI
L A Ed

	 (3.18)

Ad is the cross-sectional area of four diagonal members, two on each side of the compound 
strut.

Example 3.7:  Buckling of a lattice girder in compression

A 19 m long prop is sketched in Figure 3.19a. The yield stress is 355 N/mm2 and Young’s 
modulus is 210,000 N/mm2.

	 1.	 Determine the local buckling force (Figure 3.17b).
	 2.	 Determine the elastic critical buckling force of the prop using the approximate method, 

i.e., not the Timoshenko method (Figure 3.17c).
	 3.	 Determine the design compression strength.
	 4.	 The diagonal web members are 25 mm wide square hollow section members with a 

wall thickness of 3 mm. Recalculate the compression strength using Timoshenko’s 
equation (Equation 3.18).

a

b

φ φ φ

(a) (b) (c)

Figure 3.18  Types of compound strut.
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1. The cross-sectional area of an individual chord member is

	 Area 50 (50 2 5) 900 mm2 2 2= − − × = 	

From Equation 3.3, the crushing force is

	
= × × =−355 900 10 319.5 kNpl, Rd

3N
	

and the second moment of area is

	

50 50
12

40 40
12

307.5 10 mm
3 3

3 4I = × − × = ×
	

For local buckling, the effective length, Lcr = 1.0 L = 1200 mm (see Figure 3.19c) and from 
Equation 3.1

	
= π × × × × =−210000 307.5 10

1200
10 443 kNcr, local

2 3

2
3N

	

and the design compression strength of a single chord member from Equation 3.4 is

	
= +



 =

−1
319.5

1
443

186 kN, Rd

1

Nb

	

The local buckling mode (Figure 3.17b) requires all four-leg members to buckle; therefore,

	 = ×4local , RdN Nb 	 (3.19)

	 = × =4 186 744 kNlocalN 	

1200 mm

(b)

1200 mm

50 mm × 50 mm
square hollow section,

5 mm wall thickness

(c)

Lcr = 1200 mm

Nb, Rd
Nb, Rd

Nb, Rd
Nb, Rd

(a)

1.2 m

19 m
yy

z

z

Figure 3.19  Lattice girder in compression. (a) Elevation, (b) cross section and (c) local buckling.
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2. From Equation 3.15, the second moment of area of the lattice girder is

	
4 307.5 10 900 600 1.3 10 mm3 2 9 4I ( )= × × + × = ×

	

The effective length of the global buckling model (Figure 3.17c) is 19 m. From Equation 3.1,

	
= π × × × × =−210000 1.3 10

19000
10 7464 kNcr, global

2 9

2
3N

	

3. The design strength from Equation 3.16 is

	
= +







= +



 =

− −1 1 1
744

1
7464

677 kNRd
local cr, global

1 1

N
N N

	

4. The cross-sectional area of a web member is

	 Area 25 (25 2 3) 264 mm2 2 2= − − × = 	

		  Ad is the combined area of the diagonal web members = 4 × 264 = 1056 mm2.

		  ϕ is the internal angle of the web members, which in this case is 45° (see Figure 3.18b).

It has already been established that the basic value for the elastic critical buckling force is 
7464 kN. From Equation 3.18,

	

7464 10
1

1 7464 10
1

1056 210000 sin45cos 45

10

6815kN

cr, global
3

3
2

3N = × ×
+ × ×

× ×






×

=

−

[Note that an elastic finite element analysis (FEA) solution to this problem predicted an 
elastic critical buckling force of 6940 kN.]

The design strength from Equation 3.16 is

	
= +



 =

−1
744

1
6815

671kNRd

1

N
	

This shows that shear deflections only reduced the design strength from 677 kN to 671 kN. 
An elastic–plastic FEA solution showed a failure load of 1030 kN, which is significantly 
higher than 671 kN. However, the FEA solution is a mathematic prediction, ignoring resid-
ual stresses and other imperfections. It will therefore overestimate strength.
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3.6 � BUCKLING OF SLENDER TRUSSES SUBJECTED 
TO COMPRESSION AND BENDING

It is possible to estimate the strength of lattice girders when subjected to combined compres-
sion and bending by extending the method used for conventional beam columns except that 
the elastic moment capacity is replaced by the moment capacity limited by the buckling of the 
chord members. This will occur at a stress below the yield stress (see Figure 3.20).

The reduced moment capacity is equal to the buckling force in the chords multiplied by 
the lever arm distance between the chords. The combined bending and compression check is

	 +
α

+ α ≤ 1
Rd Rd, Rd,

N
N

M
M

M
M

y y

y

z z

z

	 (3.20)

where MRd, y and MRd, z are the leg moment capacities about the strong and weak axes, respec-
tively, calculated using the product of the buckling force of the leg members and the lever arm. 
This method for estimating the bending strength is accurate, providing the diagonal web mem-
bers are strong enough to carry the shear forces. It would not work for Vierendeel girders.

Example 3.8:  Lattice girder subjected to compression and bending

Determine the FoS, if the lattice girder considered in Example 3.7 supports a propping force 
of 200 kN combined with a bending moment of 50 kN.m about the y–y axis and 25 kN.m 
about the z–z axis, all unfactored. The bending axes are shown in Figure 3.19.

It was shown in Example 3.7 that the chords of the truss each have a compression strength of 
186 kN. Using the method illustrated in Figure 3.20, the moment capacity from Equation 3.13 is

	 M N z= × 	

In this case, the chord members were shown to buckle at 186 kN; therefore, the bending 
strength is

	 = × × =2 186 1.2 446 kN.mRdM 	

M

N

N

zM =

Failure is triggered by 
buckling of the top chord

Figure 3.20  Moment capacity calculation method.
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The objective is to determine the FoS, which is described in Section 1.3. This is a measure of 
the amount of overload the structure can take, and it is determined using unfactored loads. 
From Equation 3.5, the amplification of moments factor is

	

1

1
cr

N
N

α =
− 	

	
1

1
200

7464

1.03α =
−

=
	

From Equation 3.20

	
+

α
+ α ≤ 1

Rd Rd, Rd,

N
N

M
M

M
M

y y

y

z z

z 	

	

186
677

1.03 50
446

1.03 25
446

0.448+ × + × =
	

The FoS is the inverse, i.e.,

	 FoS 0.448 2.231= =−
	

Example 3.9:  Lattice girder propping an excavation

A construction is propped using a series of struts, one of which is sketched in Figure 3.21. 
The steel has a yield stress of 355 N/mm2 and Young’s modulus of 210,000 N/mm2.

	 1.	 Determine the compression strength of the prop in the absence of moments.
	 2.	 Determine the bending moment capacity of the prop.
	 3.	 Determine the FoS (against unfactored loads) if the prop resists a compression force of 

1000 kN in addition to a self-weight of 2.4 kN/m and an accidental sideways force of 
50 kN applied at midspan

Elevation

2000 mm

Cross section

120 mm × 120 mm square hollow 
sections, wall thickness 10 mm

42 m

2000 mm
2000 mm

Figure 3.21  Prop for an excavation.
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1. The cross-sectional area of a chords is

	 Area 120 100 4400 mm2 2 2= − = 	

and the second moment of area is

	

120 120
12

100 100
12

8.95 10 mm
3 3

6 4I = × − × = ×
	

From Equation 3.3, the crushing force is

	
= = × × =−355 4400 10 1562 kNpl, Rd

3N f Ay 	

For local buckling, the effective length is Lcr = 1.0 L = 2000 mm, and from Equation 3.1

	
= π × × × × =−210000 8.95 10

2000
10 4637 kNcr, local

2 6

2
3N

	

From Equation 3.4, the capacity per leg of the strut is

	
= +



 =

−1
1562

1
4637

1168 kN, Rd

1

Nb

	

From Equation 3.19, the compression strength for the buckling mode shown in Figure 3.17b is

	 = × =4 1168 4672 kNlocalN 	

From Equation 3.15, the second moment of area of the prop is

	
4 8.95 10 4400 1000 1.764 10 mm6 2 10 4I ( )= × × + × = ×

	

The effective length of the global buckling mode (Figure 3.17c) is 42 m. From Equation 3.1

	
= π × × × × =−210000 1.764 10

42000
10 20726 kNcr

2 10

2
3N

	

The compression strength (with no moments) from Equation 3.16 is

	
= +



 =

−1
4672

1
20726

3812 kNRd

1

N
	

2. From Equation 3.13, the moment capacity is

	 = × × =2 1168 2.0 4672 kN.mRdM 	
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3. The midspan moment (in the vertical plane) due to self-weight is

	

2.4 42
8

529 kN.m
2

My = × =
	

The midspan moment (in the horizontal plane) due to the accidental force is

	

50 42
4

525 kN.mMz = × =
	

From Equation 3.5, the amplification factor is

	

1

1
1000
20721

1.05α =
−

=

	

Finally, the main interaction equation (Equation 3.20) is solved:

	
+

α
+ α ≤ 1

Rd Rd, Rd,

N
N

M
M

M
M

y y

y

z z

z 	

	

1000
3812

1.05 529
4672

1.05 525
4672

0.50+ × + × =
	

and the FoS against unfactored loads is

	 0.50 2.01FoS = =−
	

This should probably be sufficient; however, the calculations ignore the additional moments 
induced in the chord member if the accidental force is positioned between node points. This 
will reduce the FoS somewhat, and this effect is investigated in the next example.

Example 3.10: � Analysis of impacts on a lattice girder 
propping a construction

The lattice prop sketched in Figure 3.22 is pinned top and bottom and has a yield stress of 
355 N/mm2.

	 1.	 Determine the buckling force in the absence of bending moments (Figure 3.17d).
	 2.	 Estimate the buckling force if the strut is subjected to an accidental force of 70 kN 

applied at Point A (midheight), shown in Figure 3.22 (assume this is the midspan 
position).

	 3.	 Recalculate the buckling force if the accidental force is applied at Point B.

 1. The area of a single chord is

	 Area 200 176 9024 mm2 2 2= − = 	
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From Equation 3.3

	
= × × =−355 9024 10 3203.5 kNpl, Rd

3N
	

The second moment of area of the chords is

	

200 200
12

176 176
12

53.4 10 mm
3 3

6 4I = × − × = ×
	

The effective length of the chord members, Lcr = 1.0 L = 1500 mm; therefore, from 
Equation 3.1

	
= π × × × × =−210000 53.4 10

1500
10 49190 kNcr, local

2 6

2
3N

	

From Equation 3.4, the basic compression strength of a chord member is

	
= +



 =

−1
3203.5

1
49190.1

3008 kN, Rd

1

Nb

	

From Equation 3.19

	 = × =4 3008 12032 kNlocalN 	

From Equation 3.15, the second moment of area of the compound strut is

	
4 53.4 10 9024 750 2.05 10 mm6 2 10 4I ( )= × × + × = ×

	

The effective length, Lcr = 1.0 L = 30,000 mm and the elastic critical buckling force is

	 = π × × × × =−210000 2.05 10
30000

10 47210 kNcr, global

2 10

2
3N 	

1500 mm
Elevation Cross section

1.5 m

1500 mm

Detail A

Detail A

Chord member

Point A

Point B

30 m
12 mm

200 mm

200 mm

Figure 3.22  Lattice girder prop.
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From Equation 3.16, the basic compression strength of the prop is

	
= +



 =

−1
12032

1
47210

9588 kNRd

1

N
	

2. From Equation 3.13, the bending strength is

	 = × × =2 3008 1.5 9024 kN.mRdM 	

The applied moment due to the 70 kN force is

	

70 30
4

525 kN.mM = × =
	

Ignoring the amplification of moments due to axial load, i.e., let α = 1.0, from Equation 3.20

	 9588
1.0 525

9024
0 1

N + × + =
	

which solves to N = 9030 kN. Therefore, this moderately sized accidental force has only 
reduced the load capacity from 9588 kN to 9030 kN; therefore, this appears to be a robust 
design.

3. Moving the accidental force to Point B will introduce bending moments into one of the 
chord members. This moment is conservatively equal to

	
= = × =

4
70 1.5

4
26.25 kN.mEdM

PL

	

The next step is to calculate the reduced buckling strength of the chord member, but first the 
elastic moment capacity of the chord must be calculated from Equation 2.13

	

355 53.4 10
100

10 189.6 kN.mel, Rd

6
6M = × × × =−

	

Using the interaction equation for a beam column (Equation 3.7) and ignoring the amplifi-
cation of moments and the N–δ moment due to the deflection in the chord member due to 
the accidental force

	
+ + ≤ 1

, Rd el, el,

N
N

M
M

M
Mb

y

y

z

z 	

	 3008
1.0 26.25

189.6
1.0 0
189.6

1.0
N + × + × ≤

	

	 N = 2592 kN
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From Equation 3.19, the local buckling force is

	 = × =4 2592 10368 kNlocalN 	

The design strength from Equation 3.16 is

	
= +



 =

−1
10368

1
47210

8501 kNRd

1

N
	

From Equation 3.13, the bending strength of the prop is

	 = × × =2 2592 1.5 7776 kN.mRdM 	

Ignoring the amplification of moments due to axial load

	 8501
1.0 525

7776
1.0 0
7776

1
N + × + × =

	

	 = 7927 kNN 	

Therefore, the change in the position of the accidental force from Point A to Point B has 
reduced the load capacity by 12%. This truss has relatively stocky chord members and is 
therefore less sensitive to accidental loading than a more slender design. The calculations 
included the following simplifications:

	 a.	 The nodes between members were assumed to be pinned, although in practice they will 
be welded and therefore continuous.

	 b.	 The amplification of moment’s factors were set at 1.0 throughout.
	 c.	 The N–δ moment due to the deflection in the chord resulting from the accidental force 

was ignored. In this case, the chord will deflect by only 0.4 mm (between nodes) under 
the accidental force; therefore, this effect is minimal.

Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	 P.3.1.	 The 10 m long vertical strut whose cross section is sketched in Figure 3.23 resists a 
working load of 200 kN in axial compression. The yield stress is 355 N/mm2 and 
E = 210,000 N/mm2. Calculate the axial load capacity and FoS against unfactored 
loads if the strut has the following support conditions:

	 a.	 It is effectively pinned at both ends.
	 b.	 It is fixed against rotation at both ends.
	 c.	 It is fixed against rotation at both ends and restrained against buckling about 

the weak axis.
	 Ans. (a) 203.8 kN, 1.02, (b) 689.6 kN, 3.45 and (c) 2985 kN, 14.9.

https://www.crcpress.com/9781498741217


Buckling of steel columns and trusses  65

	 P.3.2.	 A bridge comprises two I-section beams supporting a reinforced concrete slab (see 
Figure 3.24). The slab is loaded by a uniformly distributed load of 6 kN/m2.

	 a.	 Determine if the elastic moment capacity of the beam sections exceeds the 
applied ULS design moment.

	 b.	 Determine the midspan deflection under SLS loads.
	 c.	 Determine if the shear capacity of the beams exceeds the applied shear force.
	 d.	 The bridge is restrained against sideways movement under load. Determine if 

the buckling capacity of the beam webs is adequate.

		  I-section beam properties
		  Self-weight = 0.8 kN/m, depth = 500 mm, web thickness = 9 mm, major axis elastic 

section modulus = 1800 cm3, major axis second moment of area = 47,500 cm4, yield 
stress = 355 N/mm2, Young’s modulus = 210,000 N/mm2 and reinforced concrete 
density = 25 kN/m3.

	 Ans. (a) yes, 639 kN.m > 491.6 kN.m, (b) 36.3 mm, (c) yes, 922.3 kN > 196.5 kN 
and (d) yes, 556 kN > 196.5 kN.

Iy = 3.267 × 108 mm4

Iz = 1.047 × 107 mm4

Area = 94.5 cm2

Width = 154.4 mm
Breadth = 462.0 mm

z

yy

z

Figure 3.23  Section properties of an I-beam.

10 m

100 mm
100 mm

Imposed load = 6 kN/m2

(a)

(b)

Imposed load = 6 kN/m2

4 m

0.3 m

Concrete slab

Figure 3.24  Simple bridge. (a) Side elevation and (b) cross section through bridge.
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	 P.3.3.	 A contractor intends to use the prop sketched in Figure 3.25 to support a sta-
dium roof during construction. The yield stress is 355 N/mm2 and Young’s 
modulus = 210,000 N/mm2.

	 a.	 Determine the local buckling force for the prop.
	 b.	 Determine the second moment of area and the elastic critical buckling force for 

the prop.
	 c.	 Determine the buckling force and estimate the FoS against buckling if the prop 

supports a compression force of 600 kN.
	 d.	 Determine the FoS if the prop is also subjected to an accidental sideways force 

of 80 kN applied at midheight (at a node).
	 Ans. (a) 2056 kN, (b) 2.16×109 mm4, 11,192 kN, (c) 1737 kN, 2.9 and (d) 1.39.

REFERENCE

Timoshenko, S. P. and Gere, M., 1961. Theory of Elastic Stability. 2nd Edition. New York: McGraw-Hill. 

Cross section

1100 mm

1100 mm

80 mm × 80 mm
square hollow section,
6 mm wall thickness

20 m

Elevation

1.1 m

Figure 3.25  Temporary prop.
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Chapter 4

Buckling of arches

This chapter attempts to shed some light as to how arches can be designed from first prin-
ciples, before relying on full computational solutions. Arches take two forms: parabolic 
or circular. Parabolic are the most common because they do not develop moments when 
subjected to uniformly distributed loads, as illustrated by Figure 4.1a. In large stadiums 
and bridges, the dead load is the dominant load, so this attribute leads to efficient designs. 
In comparison, circular arches do not develop moments when subjected to a uniform load 
applied normal to the tangent of the arch, which is useful for tunnels. This chapter only 
considers parabolic arches.

Since UDLs develop no moments in parabolic arches, a critical situation involves 
increased loading to half of the arch only, since this induces bending moments as illustrated 
by Figure 4.1b. This chapter reviews the basic theory of arch buckling and explains how to 
calculate forces and moments due to the loading shown in Figure 4.1c. Worked examples 
subsequently explain how to estimate the FoS against in-plane buckling. The design method 
presented explains how to calculate the elastic critical buckling force for parabolic arches 
using the basic Gordon–Rankine approximation to convert the elastic critical and crushing 
forces into a design value of buckling strength. This provides ‘back of the envelope’ esti-
mates of strength for initial design or checking purposes, although full designs will require 
codes of practice and the use of finite element analysis.
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4.1  ELASTIC CRITICAL BUCKLING AND EFFECTIVE LENGTH

In-plane buckling. Figure 4.2 shows the two main modes of in-plane buckling. Antisymmetric 
buckling is the most common and is the only mode considered in this chapter, whereas the 
symmetric or ‘snap-through’ mode only becomes of concern in shallow arches, which are 
rarely used in practice.

The famous book Theory of Elastic Stability by Timoshenko and Gere (1961) presents 
a method for calculating the elastic critical buckling load for arches. This book uses the 
less accurate equivalent strut method, as illustrated in Figure 4.3. In this easily understood 
method, the swept length (S) is used to determine the length (Lcr) of a straight strut that 
would buckle at approximately the same load. Both this and the Timoshenko methods make 
no allowance for yielding; therefore, the elastic critical buckling force (Ncr) is not a real 
strength but a mathematical one. In the equivalent strut method, Euler’s buckling equation 
is used, i.e.,

	 cr

2

cr
2N
EI

L
= π

	 (4.1)

(a) (b)

Figure 4.2  Buckling types for the in-plane buckling of parabolic arches. (a) Anti-symmetric buckling and 
(b) symmetric ‘snap-through’ buckling.

S

Equivalent strut

Ncr

Lcr = k × S
2

Figure 4.3  Illustration of the equivalent strut concept for arches.

gk + qkgk gk
qk

+ =

(a) (b) (c)

Figure 4.1  Load combination that induces compression and bending. (a) Dead load, (b) imposed load 
(to half span only) and (c) combined loading.
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where E and I are Young’s modulus and second moment of area, respectively, and Lcr is equiv-
alent to the effective length, which is the swept distance between points of contraflexure.

For antisymmetric buckling, the effective length is

	
2

crL k
S= × 	 (4.2)

where
k is the effective length factor, taken as 1.0 for two- or three-pinned arches and 0.7 for 

arches with clamped supports (see Figure 4.4).
S is the length swept by the arch (see Figure 4.3).

For a parabolic arch, the swept length is
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where L is the span and f is the rise as illustrated in Figure 4.5. The x, y coordinates at any 
point in the parabola are

	
4

2
2y

f
L

Lx x( )= − 	 (4.4)

Out-of-plane buckling. If an arch is free to move sideways when viewed from above (on-plan), 
then out-of-plane buckling must be considered. Arches used for buildings are often restrained 
against out-of-plane buckling by the roof; however, arches used for bridges often have less 
restraint. Figure 4.6 shows some common out-of-plane buckling modes and the associated 
effective lengths. These are the theoretical lower-bound values, although in practice the 
effective lengths will be longer if connections are not fully rigid.

(b) (c)(a)

k = 0.7 k = 1.0 k = 1.0

Figure 4.4  Effective length factors. (a) Clamped supports, (b) two-pinned arch and (c) three-pinned arch.

L

fS

Imposed load (qk) over half span

Dead load (gk) over full span

Figure 4.5  Notation and design loading.
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4.2  APPLIED FORCES AND MOMENTS

The only load combination considered in this chapter is dead load over the full span and 
imposed load over the half span (see Figure 4.5). This provides adverse conditions because the 
moments induced by the imposed load unbalance the arch, inducing sideways sway, which in 
turn promotes buckling. From a buckling perspective, the axial force and moment at the quar-
ter span points are of most interest during the initial design, since these points are the locations 
of the centre of the buckle during antisymmetric buckling as illustrated in Figure 4.2a.

The design moment and axial force at the quarter span points for the loading sketched in 
Figure 4.5 are
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These equations work for both two-pinned and three-pinned arches because the crown of 
the arch is a point of contraflexure. The support reactions shown in Figure 4.7 are
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Figure 4.6  Common out-of-plane buckling modes and associated effective lengths. (a) Rigid supports 
on plan, (b) rigid supports with top bracing and (c) pinned supports with top bracing.

RA, H

RA, V RB, V

RB, H

Figure 4.7  Support reactions.
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4.3  HOLLOW SECTION OR I- AND H-SECTION ARCHES

The elastic critical buckling force, Ncr, tends to infinity at low values of slenderness 
(see Figure 4.8).

In practice, yielding will cap the strength at Npl, Rd shown in Figure 4.8, which is given 
as the cross-sectional area multiplied by the yield stress; thus, the hatched region shown in 
Figure 4.8 represents the theoretical upper limit on strength. Shrinkage stresses from weld-
ing or rolling will reduce the strength further. The simplest way to convert Ncr to a design 
value inclusive of imperfections is to use the Gordon–Rankine approximate method pre-
sented in Chapter 3. Using this approximation, the buckling force in the absence of applied 
moments (Nb, Rd) for a parabolic arch is given by Equation 3.4, i.e.,
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where Npl, Rd is given by Equation 3.3 and Ncr by Equation 4.1.

When checking compression and bending combined, the standard interaction equation pre-
sented in Chapter 3 can be used. The critical cross section is at the quarter span point and 
assuming that out-of-plane moments are zero, Equation 3.6 becomes
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N
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M
Mb

+ α ≤ 	 (4.7)

where α is the amplification of moments factor given by Equation 3.5 and Mel is the elastic 
moment capacity for the axis of buckling.

If the arch is restrained against lateral movements, as would be the case for most roof 
arches, then I- or H-sections would be appropriate. Arches that are unrestrained against 
out-of-plane buckling, such as most arches used for bridges, could also exhibit lateral tor-
sional buckling in addition to the out-of-plane buckling. In which case the stability issues 
will be complex, and for this reason hollow-section members, such as square hollow sec-
tions, should be used where out-of-plane buckling can occur. This is because hollow-section 
members are not normally prone to lateral torsional buckling if the depth is not significantly 
greater than the width.

Slenderness, λ 

Crushing force, Npl, Rd

Nb, Rd

Elastic critical buckling force, Ncr
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Figure 4.8  Relationship between buckling forces and slenderness.
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The interaction equation (Equation 4.7) should also not be used with Class 4 cross sec-
tions, since these will fail by local buckling before attaining their elastic bending strength. 
This is not an issue for any of the standard hot-rolled sections available from the steel mills, 
since these sections are almost all class 1 or 2.

Example 4.1:  Buckling of a simple arch

A two-pinned parabolic arch spans 25 m and has a rise of 9 m. It is restrained against out-
of-plane buckling, which is about the vertical z–z axes shown in Figure 4.9. Determine if 
the arch is likely to exhibit antisymmetric (in-plane) buckling when resisting the ULS loads 
shown. Young’s modulus is 210,000 N/mm2 and the yield stress is 335 N/mm2.

Step 1: Calculate the design moment and thrust at the quarter span points.

From Equation 4.5, the moment at the quarter span points is
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and the axial force from Equation 4.6 is
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Step 2: Calculate the crushing strength of the arch member:

	 Cross-sectional area 800 500 720 420 97600 mm2= × − × = 	

25 m

100 kN/m (factored)

300 kN/m (factored)

(a)

9 m

(b)

800 mm

40 mm

500 mm y

z

Figure 4.9  In-plane buckling of an arch problem. (a) Elevation showing loading and (b) cross section.
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and the crushing strength from Equation 3.3 is

	
Area 355 97600 10 34648 kNpl, Rd

3N fy= × = × × =−

	

Step 3: Estimate the elastic critical buckling strength of the arch.

This example considers only in-plane buckling; therefore, the second moment of area of the 
cross section about the horizontal (y–y) axes is used in calculating Ncr, where
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From Equation 4.3, the arc length of the arch is
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And from Equation 4.2, the effective length is
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32
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From Equation 3.1, the elastic critical buckling force is
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Step 4: Estimate the buckling force in the absence of moments.

From Equation 3.4
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Step 5: Calculate the moment capacity of the arch member.
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Step 6: Check for combined compression and bending.

From Equation 3.5, the amplification of moments factor is
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Now inputting the above results into the main interaction equation (Equation 4.7)
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0.44+ × =
	

Since this is significantly less than 1.0, this would indicate that the arch is unlikely to exhibit 
antisymmetric buckling.

4.4  LACED GIRDER ARCHES

A method for analysing in-plane buckling of slender trusses was presented in Sections 3.5 
and 3.6. This can be adapted to provide approximate solutions for lattice girder arches sub-
jected to in-plane buckling. Equation 3.20 becomes
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+ α ≤ 	 (4.8)

where Nb, Rd is calculated using Equation 3.16 and MRd is the moment capacity of the lat-
tice girder. This is less than the elastic moment capacity, because buckling of the chords 
will occur at a stress lower than the yield stress. The calculation of this moment capacity is 
described in Section 3.6.

The effects of deformations in web members will reduce the elastic critical bucking load 
below that defined by Equation 4.1. If the effects of shear distortions are of concern, then 
the method for calculating the elastic critical buckling loads for slender lattice girders in 
compression presented by Timoshenko and Gere (1961) can give an approximate solution 
(see Equations 3.17 and 3.18), although this often makes little practical difference and has 
therefore been ignored in the examples presented herein.

Example 4.2:  Lattice girder arch buckling

Figure 4.10 shows a lattice girder arch that is restrained against out-of-plane buckling. The 
yield stress is 355 N/mm2, Young’s modulus 210,000 N/mm2 and the main chord mem-
bers are 300 mm wide square hollow section (SHS) members with I = 19,440 cm4 and A = 
142 cm2. The diagonal web members are 200 mm wide SHS members with A = 38 cm2. 
Check the ability to resist the ULS (factored) loads shown in Figure 4.10.

Step 1: Calculate the design moment and thrust at the quarter span points.

From Equations 4.5 and 4.6
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Step 2: Calculate the ‘local buckling’ strength of the arch (illustrated in Figure 3.17b).

From Equation 3.3, the crushing strength of a single chord member is

	
355 142 10 10 5040 kNpl, Rd

2 3N f Ay= = × × × =−

	

For this local buckling mode, the effective length of the chord members is Lcr = 2907 mm 
(see Figure 4.10), and from Equation 3.1, the elastic critical buckling force is
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And from Equation 3.4, the buckling strength of a single chord member is
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The force required to cause local buckling is

	 2 2 4558 9116 kNlocal , RdN Nb= × = × = 	

2.222 m between the 
centroids of the chords

26.6 kN/m (half span)
60.5 kN/m (full span)

100 m span

30 m rise

2.907 m between 
nodes at quarter span

Chord member

Chord member

Figure 4.10  Elevation of a lattice girder arch.



76  Structural design from first principles

Step 3: Estimate the elastic critical buckling strength (Figure 4.3) of the arch.

Figure 4.10 shows that the centroids of the inner and outer chords are 2.222 m apart. From 
Equation 3.15, the second moment of area of the lattice girder is

	
Area .chord chord

2I I r∑( )= +
	

	
2 19440 10 142 10 2222/2 3.54 10 mm4 2 2 10 4I ( )( )= × × + × × = ×

	

From Equation 4.3, the arc length (S) = 120.4 m and from Equation 4.2,
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And the elastic critical buckling force from Equation 4.1 is
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Step 4: Estimate the buckling force in the absence of moments.

From Equation 3.16, the axial force at the quarter span points that is likely to cause anti-
symmetric buckling (in the absence of moments) as illustrated in Figure 4.2a is
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Step 5: Calculate the moment capacity of the arch.

From Equation 3.13

	 M N z= × 	

	 4558 2.222 10128 kN.mRdM = × = 	

Step 6: Check for combined compression and bending.

From Equation 3.5, the moment amplification factor is
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Finally, the main interaction equation that combines compression and bending is solved 
(Equation 4.7)
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Since this is greater than 1.0, the arch is not strong enough. A finite element analysis (FEA) 
solution showed that buckling occurred under the loads shown in Figure 4.10. However, 
the FEA solution will overestimate strength, because it does not include residual stresses, 
amongst some other possible imperfections.

A final consideration is that both the inner and outer chords of the arch need to be restrained 
against out-of-plane buckling. Leaving either free will result in a collapse.

Example 4.3:  Lattice girder arch buckling

Figure 4.11 shows the FEA predicted buckling shape and buckling loads for a long-span 
arch. The arch is restrained against out-of-plane buckling and has similar proportions to the 
arch in Figure 4.12. Check if it can resist the loads shown in Figure 4.11.

Basic data. The cross-sectional dimensions are shown in Figure 4.13. The 12 individual 
struts each have a diameter of 457 mm, wall thickness of 40 mm, cross-sectional area of 
524 cm2 and I of 114,900 cm4. The yield stress is 345 N/mm2 and E is 210,000 N/mm2.

The solution to this problem is broken down into five separate steps.

93 kN/m (half span)
280 kN/m (full span)

300 m

130 m

Figure 4.11  Arch proportions, loading and buckling shape.
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Step 1: Calculate the design moment and thrust at the quarter span points.

From Equations 4.5 and 4.6,
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Step 2: Calculate the local buckling strength of the arch.

Figure 4.12  Wembley Arch, London.
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Figure 4.13  Details of the arch.
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The first part of this process is to determine the crushing capacity of each strut using 
Equation 3.3:

	
345 524 10 10 18.08 MNpl, Rd

2 6N f Ay= = × × × =−

	

The effective length for this local buckling mode, Lcr = 1.0 L, where from Figure 4.13 
L = 10,194 mm.

From Equation 3.1,
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and from Equation 3.4, the compression strength of each strut in the truss is
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The struts are inclined to the centre line of the arch by 9.88o (see Figure 4.13); therefore, the 
resistance along the axis of the arch is

	
10.11 cos9.88 9.96 MN, RdNb = × =

	

The truss comprises 12 separate leg members; therefore, the local compression strength is

	
12 12 9.96 119.5 MNlocal , RdN Nb= × = × =

	

Step 3: Estimate the elastic critical buckling strength (Figure 4.3) of the arch.

From Equation 3.15, the second moment of area of the lattice girder is

	 12 114900 10 524 10 (2 3500 4 3031 4 1750 ) 3.865 10 mm4 2 2 2 2 12 4I = × × + × × × + × + × = ×

Because the arch struts are inclined to the centre line by an angle of 9.88°, the effective sec-
ond moment of area is reduced slightly to

	 3.865 10 cos9.88 3.808 10 mm12 12 4I = × × = × 	

From Equation 4.3, the arc length (S) is 414 m. From Equation 4.2, the effective length is 
207 m and
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Step 4: Estimate the buckling force in the absence of moments.

From Equation 3.16, the buckling force in the absence of moments is
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Step 5: Calculate the moment capacity of the arch.

The bending stress, which will cause buckling of the arch members, is the strut capacity 
divided by the area, i.e.,

N
A
bBuckling stress,
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From the engineer’s beam equation, the corresponding moment is
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Step 6: Check for combined compression and bending.

From Equation 3.5, the amplification factor is
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Finally, Equation 4.8 is solved
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Therefore, this method predicts the arch will certainly buckle under the applied loads. 
A finite element analysis of this problem predicted buckling at the exact loads shown in 
Figure 4.11, although as stated by Allan Mann in his foreword to this book:

“Indeed any presumption that computer output is ‘accurate’ is itself a fiction.”

This is certainly true in this case, since the computational solution did not include residual 
stresses.
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4.5 � CALCULATION OF ELASTIC CRITICAL BUCKLING 
LOAD USING THE TIMOSHENKO METHOD

The equivalent strut method is easy to understand, although the method reported in Theory 
of Elastic Stability by Timoshenko and Gere (1961) is more accurate. The Timoshenko elas-
tic critical buckling load is a mathematical solution and it should correspond exactly with 
the results from an elastic FEA solution. According to Timoshenko, the elastic critical load is

	 cr 3g
EI
L

= γ 	 (4.9)

Table 4.1 shows the arch buckling factor (γ) for parabolic arches resisting pure UDLs. The 
corresponding (elastic critical buckling) force at the quarter span point (Ncr) is calculated by 
inputting gcr into Equation 4.6.

It must be remembered that real structures buckle at loads far below the elastic critical 
buckling load, because imperfections, such as yielding, are not included. Timoshenko and 
Gere did not go beyond elastic theory, although the Gordon–Rankine approach explained 
previously can be used to estimate the strength.

Example 4.4:  Repeat Example 4.1 using the Timoshenko method

Steps 1, 2 and 5 are identical to Example 4.1.

Step 3: Estimate the elastic critical buckling strength of the arch

The f/L ratio of the arch is

	 L
9
25

0.36
f = =

	

From Table 4.1, γ = 44.94 (found by linear interpolation) and from Equation 4.9,
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From Equation 4.6, this will produce a force at the quarter span point of
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Table 4.1  Elastic critical buckling factors (γ)

f
L

No hinges 
(fixed supports) Two hinges Three hinges

0.1 60.7 28.5 22.5
0.2 101.0 45.4 39.6
0.3 115.0 46.5 46.5
0.4 111.0 43.9 43.9
0.5 97.4 38.4 38.4

Source: 	 Adapted from Timoshenko and Gere (1961).



82  Structural design from first principles

Step 4: Estimate the buckling force in the absence of moments.

From Equation 3.4,
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Step 6: Check for combined compression and bending.

From Equation 3.5,
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From Equation 4.7,
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This utilisation factor is slightly higher than that found in Example 4.1 (0.44).

Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	 P.4.1.	 A two-pinned arch spans 22.5 m and has a rise of 11 m (Figure 4.14). It is restrained 
against out-of-plane buckling, the yield stress is 345 N/mm2 and E = 210,000 N/mm2.

	 a.	 Determine the moment and thrust at the quarter span points.
	 b.	 Determine the crushing strength of the arch.
	 c.	 Estimate the elastic critical buckling strength of the arch.
	 d.	 Determine if the arch is likely to exhibit antisymmetric (in-plane) buckling 

under the applied loads.
	 Ans. (a) M1/4 = 514.2 kN.m, N1/4 = 1187 kN, (b) 13,248 kN, (c) 11,244 kN and 

(d) No, 0.48 < 1.

22.5 m

65 kN/m (half span)

115 kN/m (full span)

(a)

11 m

20 mm

500 mm

(b)

500 mm

Figure 4.14  In-plane buckling of an arch for P4.1. (a) Elevation showing loading and (b) cross section.

https://www.crcpress.com/9781498741217
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	 P.4.2.	 A two-pinned arch spans 35 m and has a rise of 17 m (see Figure 4.15). It is restrained 
against out-of-plane buckling, the yield stress is 345 N/mm2 and E = 210,000 N/mm2.

	 a.	 Determine the moment and thrust at quarter span points.
	 b.	 Determine the crushing strength.
	 c.	 Estimate the elastic critical buckling strength.
	 d.	 Determine the FoS against buckling under these loads.

	 Ans. (a) M1/4 = 478.5 kN.m, N1/4 = 935.5 kN, (b) 12,871 N, (c) 3363 kN and 
(d) 1.23.

REFERENCE

Timoshenko, S. P. and Gere, M., 1961. Theory of Elastic Stability. 2nd Edition. New York: McGraw-Hill.

35 m

25 kN/m (half span) 

gk = 62 kN/m (full span)

(a)

17 m

25 mm 500 mm

(b)

Figure 4.15  In-plane buckling of an arch for P4.2. (a) Elevation showing loading and (b) cross section.
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Chapter 5

Buckling of thin-walled structures

The basic theory governing the design of box girder bridges also applies to other thin-walled 
structures, such as ships, which are built up from thin plates stiffened to increase strength. 
Figure 5.1 shows the main types of buckling, namely compression buckling and shear buck-
ling, both of which occur in stiffened plates, such as that shown in Figure 5.2.

Strength is governed by the theoretical values of the elastic critical buckling compres-
sion stress (σcr) and shear stress (τcr). These do not account for yielding; consequently, the 
elastic critical buckling stress can be many times higher than the yield stress because it is 
a mathematical limit rather than a real one. The hatched boundaries shown in Figure 5.3 
provide a basic starting point for defining the upper limit on strength as a function of plate 
slenderness. In practice, imperfections, such as weld shrinkage stresses, lead to buckling at 
compression stresses somewhat below the hatched boundary shown in Figure 5.3a.

Thin-walled structures can have a ‘post-buckling’ reserve of strength, meaning that the 
failure stress can, in some circumstances, be higher than the elastic critical value. This is 
true for shear buckling of stiffened plates. Bridge engineers can utilise this strength, which is 
known as tension field action (Figure 5.4a). However, plate stiffeners require strengthening 
in order to resist the forces developed due to the truss action that forms (Figure 5.4b) and 
the design becomes complex. In the interests of simplicity, tension field action is not covered 
in this chapter.

Very wide plates are often used for box girders. These are stiffened in order to raise the 
buckling stress as shown in Figure 5.2. For an efficient design, engineers aim to raise the buck-
ling stress close to the yield stress. This is called a fully stressed design. Bridge codes contain 
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Figure 5.2  Buckling of a stiffened panel.
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(b) shear buckling.
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Figure 5.1  Buckling of plates supported on all four edges. (a) Compression buckling and (b) shear buckling.
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complex methods, although all bridge codes rely on the use of elastic critical buckling stresses, 
with modifications to account for imperfections, such as yielding and the compression stresses 
induced from the shrinkage of welds after cooling. The theory presented in this chapter is very 
much simplified and uses a simple Gordon–Rankine approach in order to convert elastic critical 
stresses to design stresses (see Figure 5.3a). This provides a quick back-of-the-envelope estimate 
of strength. It also provides a sanity check for the output from more complex methods. Linear 
elastic finite element analysis is used for the design of bridges, which should in theory provide 
buckling stresses equal to the elastic critical buckling stresses determined from plate buckling 
theory. Therefore, the elastic critical buckling stresses provide a useful reference point. Further 
simplification is achieved by omitting the partial safety factors for resistance, which are assumed 
to be equal to 1.0 throughout and therefore not shown in the design expressions.

5.1  UNSTIFFENED PLATES IN COMPRESSION

Figure 5.5a shows buckling of a plate free along two edges. When loaded in axial compres-
sion, the plate will want to expand in the transverse direction. If the supports restrain this 
sideways movement, lateral stress will develop. According to Hooke’s law (1678), the strain 
in an element subjected to stresses in both the x and y directions (σx and σy) is

	 ( )ε = σ − νσ1
E

x x y 	

where
ν is Poisson’s ratio.
E is Young’s modulus.

(a) (b)

Figure 5.4  Post-buckling reserve of strength known as tension field action. (a) Post-elastic buckling and 
(b) the truss model.

(a)

b a

y x

(b) (c)

a

b

Figure 5.5  Coordinate system and buckling modes. (a) Free on two edges, (b) simply supported on 
four edges and (c) simply supported on four edges.
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It can be shown that the elastic critical buckling stress for the plate shown in Figure 5.5a is

	 σ = π
− ν





12(1 )

cr

2

2

2
E t

a
	 (5.1)

where
σcr is the elastic critical buckling stress.
t is the plate thickness.
a is the plate length.

Equation 5.1 is the same as the Euler elastic critical buckling stress equation for a simply 
supported rectangular strut (Equation 3.1), except for the term 1−ν2, which has the effect of 
increasing σcr by 10% for steel plates. For the more useful case of a plate simply supported 
on all four edges (Figure 5.5b and c), the solution becomes

	 σ = π
− ν
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where
k is the buckling coefficient.
b is the plate width (see Figure 5.5c).
t is the plate thickness.

For steel, ν = 0.3, E = 210,000 N/mm2 and Equation 5.2 becomes

	
σ = π

−
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which solves to

	 σ = × × 



190000 N/mmcr

2
2k

t
b

	 (5.3)

It is important to realise that the buckling stress for a plate free on two edges (Figure 5.5a) 
is dependent on the length (a), whereas for a plate restrained on four edges (Figure 5.5b 
and c), it is dependent on width (b). This is illustrated by Figure 5.5c, which shows a plate 
twice as long as that in Figure 5.5b. Since the width of both plates is identical, the elastic 
critical buckling stress is unaffected despite the increased length. This dependency on 
width rather than length means that longitudinal stiffeners are far more effective than 
transverse ones.

The factor k in Equation 5.3 is known as the buckling coefficient, which for a plate simply 
supported on all four edges and loaded in uniform compression (Figure 5.5b and c) is never 
less than 4.0. Figure 5.6 itemises buckling coefficients for a range of different plate types and 
loadings. For example, Figure 5.6c shows that k equals 23.9, for a plate simply supported on 
four edges and subjected to a bending stress distribution.
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Design strength. The elastic critical buckling compression stresses define the theoretical 
upper limit on strength, as illustrated in Figure 5.3a. In practice, yielding and weld shrink-
age stresses, as well as lack of straightness, all combine to reduce strength. The codes of 
practice have a variety of semi-empirical methods to account for these defects. These can 
be complex, but an approximation for the design value of buckling stress (σRd) can be made 
using a Gordon–Rankine type approximation, i.e.,

	 σ
=

σ
+

σ
1 1 1

Rd cry 	

which rearranges to

	 σ =
σ

+
σ


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−
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cr
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where
σRd is the design value for the buckling stress.
σy is the yield stress.

(a)

(b)

(c)

(d)

F

S
SS

S
S

SS

S
S

SS

S
S

SS

B
F

SS

Simply supported

B

Built-in

F

Free

Key: Boundary conditions

S

B
S

SS

B

B
BB

(e)

(f)

(g)

Buckling coe�cient, k

k = 4.0

k = 23.9

k = 5.41

k = 0.425 +
2

a
b

+ 4     If a > b: k = 5.34 + 4If a ≤ b: k = 5.34
2

a
b

2

a
b

2

a
bk = 8.98 + 5.6

bt

a

b

Notation

Support and loading conditions

k = 1.247

Figure 5.6  Buckling coefficients for unstiffened plates.
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Design procedure. The first step is to identify the appropriate buckling coefficient from 
Figure 5.6, which applies to the particular plate concerned. The plate length (a) and width 
(b) are defined by the distance between plates connected at right angles. The boundaries 
are usually either free or simply supported. The next step is to determine the elastic critical 
buckling stress and, finally, the design value of the buckling stress, using Equation 5.4. An 
efficient design will achieve buckling stresses close to the yield value. If this is not the case, 
then stiffeners are added.

Example 5.1:  Plate buckling with different boundary conditions

A 20 mm thick steel plate is subjected to compression stress as shown in Figure 5.7. 
Determine the design buckling stresses for each of the two boundary conditions shown if 
the yield stress is 265 N/mm2.

For the boundary conditions in Figure 5.7a, the buckling coefficient shown in Figure 5.6a 
applies; therefore, the buckling coefficient

	 ( ) ( )= + = + =0.425 / 0.425 1200 / 3000 0.585
2 2

k b a
	

From Equation 5.3, the elastic critical buckling stress is
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From Equation 5.4, the design stress is
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Now considering the boundary conditions in Figure 5.7b, the buckling coefficient shown in 
Figure 5.6b applies (i.e. k = 4.0). Therefore,

	
σ = × 



 =4.0 190000

20
1200

211.1 N/mmcr

2
2

	

and the buckling stress is

	
σ = +
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3000 mm 1200 mm20 mm
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(a) (b)Dimensions

Figure 5.7  Two plates with different boundary conditions.
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It can be seen that adding the additional boundary support has increased the design stress 
from 27.7 N/mm2 to 117.5 N/mm2. This is because the wavelength of the buckle is reduced 
when the edge restraint is added.

5.2  SHEAR BUCKLING OF UNSTIFFENED PLATES

Plate girder webs are usually very slender and fail by shear buckling rather than yielding. 
To control this, intermediate web stiffeners are used to raise the shear strength, as illustrated 
in Figure 5.8. Buckling theory tells us that

	 τ = π
− υ
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where
τcr is the elastic critical buckling shear stress.
k is the buckling coefficient.
b is the plate width.
t is plate thickness.

For steel, Poisson’s ratio ν = 0.3 and Young’s modulus E = 210,000 N/mm2 and  
Equation 5.5 becomes
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τ = × × 



 	 (5.6)

For the most common situation of plates simply supported on all four edges (Figure 5.6d), 
the buckling coefficient is
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Figure 5.8  Illustration of shear buckling for a plate girder web. (a) No intermediate web stiffeners and 
(b) with intermediate stiffeners.
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where a is the length and b is the width as illustrated in Figure 5.8. As stated previously, 
plates bounded on four sides by flanges and web stiffeners have a post-buckling reserve of 
strength due to a phenomenon called tension field action, which is illustrated in Figure 5.4. 
This means that the elastic critical shear stress generally provides a conservative estimate 
of strength, despite imperfections, such as weld shrinkage stresses and lack of straightness. 
For this reason, the design stress can be taken as either the elastic critical shear stress or 
the yield shear stress, whichever is less. The shear stress, which will cause first yielding 
(Equation 2.2), is

	 τ =
σ

3
y

y 	 (5.9)

The design value of shear stress (τRd) is the lesser of either τcr or τy, i.e.,

	 ( )τ = τ
σ

or
3

whichever is lessRd cr
y 	 (5.10)

and the design shear strength (VRd) is approximately given by

	 = τ × plate areaRd RdV 	 (5.11)

Example 5.2:  Shear buckling in a plate girder

A plate girder web is 2100 mm deep and 20 mm thick. The steel has a yield stress of 
265 N/mm2 and web stiffeners are located at 8000 mm centres (see Figure 5.8a).

	 1.	 Determine the shear strength.
	 2.	 Determine what effect adding three intermediate web stiffeners at 2000 mm centres 

will have on the shear strength, as shown in Figure 5.8b.

1. Without intermediate web stiffeners, a = 8000 mm; therefore, a > b and from Equation 5.7
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The elastic critical buckling stress from Equation 5.6 is
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Because the yield stress is 265 N/mm2, the yield shear stress from Equation 5.9 is

	 τ = =265
3

153 N/mm2
y 	
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Since τcr < τy, elastic buckling rather than yielding will initiate failure. The design shear 
strength (VRd) is the design shear stress multiplied by the web plate cross-sectional area from 
Equation 5.11

	 = × × × =−2100 20 96.8 10 4065 kNRd
3V 	

2. The introduction of intermediate web stiffeners reduces the web length (a) to 2000 mm. 
Now a < b and from Equation 5.8
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and from Equation 5.6
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Since τcr > τy, failure will occur by yielding rather than elastic buckling and the design shear 
strength is

	 = × × × =−2100 20 153 10 6426 kNRd
3V 	

To summarise, the introduction of three intermediate web stiffeners has increased the shear 
strength from 4065 kN to 6426 kN. The addition of these stiffeners also has the advantage of 
keeping the web straight, since distortion due to weld shrinkage stresses may occur otherwise.

5.3  UNSTIFFENED PLATES IN COMPRESSION AND SHEAR

It is common for high shear forces to coincide with high moments. Figure 5.9 shows 
buckling from shear, bending and combined shear and bending stresses. Engineers often 
deal with combined loading problems by using ‘interaction equations’ in which the ratios 
of applied forces and strengths are summed, with the objective being to ensure that the 
total sum of these ratios is less than 1.0. A variation of this approach can be used for 
plate buckling.

(a) (b) (c)

Figure 5.9  Buckling shapes for shear, bending and shear + bending combined. (a) Shear stresses, 
(b) bending stresses and (c) shear + bending stresses.
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Shear combined with bending. Plates subjected to shear and bending (Figure 5.9c) can be 
assessed using the following interaction equation:
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where
σEd is the applied compression stress in the web developed by bending moments.
τEd is the applied shear stress.
and
σRd is the design stress for a plate resisting bending stresses (not σcr).
τRd is design shear stress (not τcr).

Shear combined with compression. In plates subjected to compression and shear, the follow-
ing interaction equation should be satisfied:
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Both Equations 5.12 and 5.13 from Allen & Bulson (1980) are semi-empirical, i.e., the 
evidence that they work is partly based on observations and partly on theory.

Example 5.3:  Plate girder with web stiffeners

Figures 5.10 and 5.11 show a plate girder that resists a 200 kN/m UDL inclusive of self-
weight. It is restrained against sideways movement so that lateral torsional buckling is 
not possible and the web is stiffened by 30 mm thick stiffeners positioned at 1.25 m 
centres.

	 1.	 Determine the support reactions and sketch the bending moment and shear force 
diagrams.

	 2.	 If the yield stress is 265 N/mm2, determine if the web stiffeners can resist the concen-
trated force of the support reaction at Support A without buckling.

	 3.	 Determine if the web is strong enough to resist the combined shear force and moments 
at Support A.

	 4.	 Determine if the flanges can resist the applied moments at Support A.

7500 mm 10000 mm

Support A Support B

1250 mm

Figure 5.10  Side view of plate girder with cantilever section.
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1. First take moments about each support to determine the reactions at Supports A and B 
labelled in Figure 5.10

	
= × × =200 17.5 0.5

10
3062.5 kN

2

RA
	

	
= × × =200 17.5 1.25

10
437.5 kNRB

	

Using these reactions, the shear force and bending moment diagrams are calculated, as 
shown in Figure 5.12.

30
 m

m

20 mm
thick web

30
 m

m

13
00
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m

30 mm thick
web sti�eners

600 mm

Figure 5.11  End view of plate girder showing cross-section dimensions.
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–437.5 kN

1562.5/200 = 7.81 m

Shear force diagram

–5625 kN.m

Bending moment diagram

478.5 kN.m

Figure 5.12  Shear force and bending moment diagrams (Example 5.3).
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2. The web stiffeners are simply supported on three edges and free on one; therefore, the 
buckling coefficient shown in Figure 5.6a applies
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The elastic critical buckling stress from Equation 5.3 is
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And the design stress from Equation 5.4 is
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The compression strength is equal to σRd multiplied by the stiffener cross-sectional area (30 
mm thick and 600 mm wide), i.e.,

	 = × × × =−Compression strength 208.4 30 600 10 3751 kN3

	

The reaction at A is 3062.5 kN, which is less than 3751 kN; therefore, the web stiffener 
is strong enough. The full width of the stiffener and web was used in the above calcula-
tion (600 mm), rather than the stiffener width (580 mm). This reflects the very conserva-
tive nature of this calculation, which ignores the contribution of the web to the bearing 
capacity.

3. The maximum shear force and maximum bending moment both coincide at support A; 
therefore, the combined effects of shear buckling and buckling due to bending moments 
must be checked. The first step is to check the resistance against bending stresses.

The second moment of area of the girder is
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The maximum applied bending stress (σEd) in the 1240 mm deep web is
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The buckling coefficient for pure bending (see Figure 5.6c) is 23.9 and from Equation 5.3
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and from Equation 5.4
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Since σRd > σEd, the web can resist the applied moments without buckling.

The second step is to check for shear buckling. The applied shear stress (τEd) is approximately

	 τ =
web area

Ed
EdV

	 (5.14)
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The web plate length and widths are

	 a = 1250 – 30 = 1220 mm

	 b = 1300 – 2 × 30 = 1240 mm

Since a ≤ b, Equation 5.8 applies and
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From Equation 5.6
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The yield value of shear stress, from Equation 5.9, is

	
τ = σ =/ 3 153 N/mm2

y y 	

τcr > τy; therefore, failure will be by yielding and the design stress, τRd = 153 N/mm2.

Since τEd << τRd, the web is easily strong enough in pure shear, although this ignores effects 
of bending stresses. The final check is for the combined effects using Equation 5.12
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Therefore, this cross section just passes the combined bending and shear check.



98  Structural design from first principles

4. The bottom flange also needs checking to determine if it can resist the applied bending 
stress, which is

	
σ = × = × ×
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The flange can be regarded as simply supported along the boundary with the web. Thus, the 
buckling coefficient shown in Figure 5.6a should be used and
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From Equation 5.3
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The design stress is
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This design strength (209 N/mm2) is slightly higher than the applied stress of 207 N/mm2 
and the section is just about adequate.

Example 5.4:  Box girder

A steel box girder cantilevers 25 m over a support and resists a self-weight of 10 kN/m 
(unfactored). An imposed load of 8 kN/m (unfactored) is also applied along one outside edge 
of the girder (1.2 m from the centre line). The girder is stiffened by web stiffeners welded to 
the outside of the section at 1250 mm centres. The yield stress is 275 N/mm2 and the girder 
is sketched in Figure 5.13.

	 1.	 Determine the shear force, bending moment and torsional moment at the base of the 
cantilever.

	 2.	 Determine if the buckling shear stress in the web exceeds the applied shear stress.
	 3.	 Determine if the buckling compression strength of the web exceeds the applied com-

pression stress.
	 4.	 Determine the adequacy of the web for resisting the combined shear and compression.
	 5.	 Determine the adequacy of the beam flange to resist the applied stresses.

1. From Equation 1.2, the ULS uniformly distributed load is

	 1.35 1.5 1.35 10 1.5 8 25.5 kN/mulsw g qk k= × + × = × + × = 	

and the shear force is

	 = × = × =25 25.5 637.5 kNEdV w L 	
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The moment at the base of the cantilever is
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In this example the imposed load is applied along the outside edge inducing a ULS torsional 
load of

	 = × = × =1.5 1.5 8 12 kN/mw qk 	

and a torsional moment of

	 = × × =12 25 1.2 360 kN.mT 	

2. Checking shear buckling of the web: since a ≤ b, the buckling coefficient from Equation 5.8 is

	
= 





+ = 



 + =5.34 4 5.34

1450
1250

4 11.2
2 2

k
b
a 	

From Equation 5.6
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The yield shear stress is
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Figure 5.13  End view of a box girder.
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Since τy > τcr, failure will be by shear buckling rather than yielding. The applied shear stress 
from Equation 5.14 is approximately

	
τ = = ×
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Ed
3
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Shear stress is also developed by the torsional moment. In fact, one of the reasons for using 
box girders is the high torsional stiffness they provide. The torsional shear stress for a closed 
(hollow) cross section is

	 τ =
2

T
tAm

	 (5.15)

where
T is the torsional moment.
t is the wall thickness at the point where the stress is required.
Am is the area enclosed by the midline through the section as shown in Figure 5.14.

Am should be calculated using the centre line of the plates, i.e.,

	 = × ×1475 1588 = 2.34 10 mm6 2Am 	

From Equation 5.15, the shear stress due to the torsional moment is
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The combined shear stress is

	 τEd = 18.3 + 6.4 = 24.7 N/mm2

Since τEd << 146 N/mm2, this is a clear pass.

t

Mid-line

Am is the area enclosed
by the mid-line of the plates

Figure 5.14  Determination of enclosed area for closed cells.
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3. The second moment of area of the girder is

	

2400 1500
12

(2400 2 12) (1500 2 25)
12

71.4 10 mm
3 3

9 4I = × − − × × − × = ×
	

The applied compression stress in the extreme fibre of the web is

	

7969 10 (750 25)
71.4 10

80.9 N/mmEd

6

9
2M y

I
σ = × = × × −

×
=

	

The elastic critical buckling coefficient, k, is 23.9 (Figure 5.6c) and from Equation 5.3

	
σ = × × × 



 =23.9 190 10

12
1450

311 N/mmcr
3

2
2

	

The design stress from Equation 5.4 is

	
σ = +



 =

−1
275

1
311

145.9 N/mmRd

1
2

	

Since the applied bending stress (80.9 N/mm2) is less than the buckling stress (145.9 N/mm2), 
the section passes this check.

4. The combined shear and bending in the web plate is checked using Equation 5.12, where 
the design shear stress is the lesser of τcr (146 N/mm2) and τy (158.7 N/mm2); therefore, 
τRd = 146 N/mm2 and

	

σ
σ







+ τ
τ







≤ 1.0Ed

Rd

2
Ed

Rd

2

	

	





 + 



 =80.9

145.9
24.7
146

0.33
2 2

	

Since this is less than 1.0, this is a pass.

5. The applied compression stress in the flange is

	
σ = × = × ×

×
=7969 10 750

71.4 10
83.7 N/mmEd

6

9
2M y

I 	

The buckling of the outside section of the flange, is checked using the buckling coefficient 
equation shown in Figure 5.6a

	 = + 



 =0.425

400
1250

0.527
2

k 	
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And from Equation 5.3

	 σ = × × × 



 =0.527 190 10

25
400

391 N/mmcr
3

2
2

	

The design stress from Equation 5.4 is

	
σ = +



 =

−1
275

1
391

161.5 N/mmRd

1
2

	

Since this is greater than the applied stress of 83.7 N/mm2, this is a pass.

It is also necessary to check buckling of the inside section of the flange, which in this case is 
governed by Figure 5.6b, where k = 4.0. From Equation 5.3

	
σ = × × × 



 =4.0 190 10

25
1600

185 N/mmcr
3

2
2

	

From Equation 5.4, the design strength is

	
σ = +



 =

−1
275

1
185

110.6 N/mmRd

1
2

	

Since this greater than the applied stress of 83.7 N/mm2, this is also a pass.

Finally, it is necessary from a completeness perspective to check for the combined effects 
of torsional shear and compression in stresses the flange. From Equation 5.15, the applied 
torsional shear stress is

	
τ = ×

× × ×
=360 10

2 25 2.34 10
3.1 N/mmEd

6

6
2

	

Checking shear buckling of flange caused by the torsional shear stress using Equation 5.7

	
= + 





=5.34 4 5.34
2

k
b
a 	

Since the internal section of the flange is not stiffened, b/a tends to zero (1600/25,000) and 
from Equation 5.6

	
τ = × × × 



 =5.34 190 10

25
1576

255 N/mmcr
3

2
2

	

The yield shear stress from Equation 5.9 is

	 τ = =275/ 3 159 N/mm2
y 	
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Therefore, this governs. Finally, check the combined compression and shear using Equation 5.13, 
where the design shear stress is the lesser of τcr and τy; therefore, τRd = 159 N/mm2

	

σ
σ

+ τ
τ







≤ 1.0Ed

Rd

Ed

Rd

2

	

	
+ 



 =83.7

110.6
3.1
159

0.76
2

	

Since this is less than 1.0, this is a pass.

5.4  BUCKLING OF STIFFENED PLATES IN COMPRESSION

A stiffened plate is very weak about the unstiffened axis and this causes the dish-shaped 
buckling mode sketched in Figure 5.15. Due to this low weak axis stiffness, the restraint 
to buckling provided by the side walls of the box girder has little effect on strength and the 
buckling capacity can be determined assuming the stiffened plate is equivalent to a column 
spanning between the internal diaphragms, i.e., ignoring the side walls completely. This will 
involve a conservatism of the order of 2% in comparison with a full stiffened plate assess-
ment. The corresponding Euler elastic critical buckling stress is

	 σ = π
cr

2
st

cr
2

st

EI
L A

	 (5.16)

where
Ist is the second moment of area of the stiffened panel.
Ast is the area of the stiffened plate including the area of stiffeners.
Lcr is the distance between transverse supports, which are the cross-beams shown in 
Figure 5.2 or the distance between the internal diaphragms shown in Figure 5.15.

Direction of applied 
compression stress

Dish shaped buckle of sti�ened 
ange

Internal diaphragms

Figure 5.15  Section through a box girder showing the buckled shape of the top flange when subjected to 
axial compression.
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The Gordon–Rankine equation (Equation 5.4) is then used to estimate the buckling strength of 
this ‘equivalent column’. Whilst this will provide an estimate of the stress at which plate buck-
ling will occur, it will not check for buckling of the individual plate stiffeners or plate material 
between the stiffeners. Therefore, plate buckling checks also need to be carried out for the 
individual plates in the panel using the approach described earlier for plate girders.

5.5  BUCKLING OF STIFFENED PLATES IN SHEAR

Box girders are often used due to their high torsional stiffness and as such they can be subject 
to high shear stresses from torsion, as well as direct shear forces. Since they are thin walled, the 
stiffened panels may be prone to shear buckling. The elastic critical shear buckling stress is

	
τ = π

− υ




12(1 )

cr

2

2

2

k
E t

b 	

which for steel becomes

	 τ = × × 



190000cr

2

k
t
b

	 (5.17)

The buckling coefficient, k, depends on the aspect ratio of the stiffened plate.

	 If 5.34 4
2

sta b k
b
a

k≥ = + 





+ 	 (5.18)

	 If 5.34 4
2

sta b k
b
a

k≤ = 





+ + 	 (5.19)

where
a is the stiffened panel length.
b is the panel width.
t is the panel thickness.
kst is the stiffened panel buckling coefficient.

For the common condition of stiffened plates with three or more longitudinal stiffeners, the 
buckling coefficient is

	 = 









9st

2
st

3

3

4k
b
a

I
t b

	 (5.20)

Imperfections, such as weld shrinkage stresses have much less effect on shear buckling than 
compression buckling. If the plate is bounded on all four edges by strong plates, as can be 
the case in box girder bridges, then stiffened plates can possess a significant post-elastic 
reserve of strength. This means that it is safe to take the design stress (τRd) as the lesser of 
either the elastic critical shear stress or the yield value of shear stress, i.e.,

	 τ = τ
σ

or
3

Rd cr
y 	 (5.21)

This only works if the stiffened plate is bounded on all four edges by strong plates.
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5.6 � STIFFENED PANELS SUBJECTED TO SHEAR 
AND COMPRESSION STRESSES

It is important to check the combined effects of shear and compression and an approximate 
check for combined loading can be performed using the following (empirical) interaction 
equation

	
σ
σ

+ τ
τ







≤ 1.0Ed

Rd

Ed

Rd

2

	 (5.22)

where σEd and τEd are the applied compression and shear stresses, respectively. The design 
compression stress, σRd, should be taken as the whole panel buckling stress determined from 
Section 5.4 or the outer plate buckling stress for buckling between stiffeners, whichever is 
lesser, and τRd should be the whole panel buckling stress determined from Section 5.5.

Example 5.5:  Box girder bridge

Figure 5.16 shows a section through a bridge fabricated from a 70 mm thick plate, which 
has a yield stress of 325 N/mm2. The plates are stiffened with 20 mm thick stiffeners, which 
have a yield stress of 345 N/mm2.

	 1.	 Determine the second moment of area of the bottom stiffened plate sketched in 
Figure 5.17.

	 2.	 Determine if this plate can resist a compression stress (applied along the axis of the 
girder) of 170 N/mm2.

	 3.	 Determine if this plate can resist a shear stress of 50 N/mm2.
	 4.	 Can the plate resist the compression and shear stresses from points (1) and (2) combined?

1. To apply the parallel axis theorem to a stiffened plate, it is simpler to consider each plate 
group separately. The areas (A) and distances (y) between centroids of each element and the 
bottom of the main plate are

	 Main plate:	 A = 6500 × 70 = 455000 mm2

		  y = 35 mm

Diaphragms
at 4.5 m centres

6.50 m
4.50 m

Figure 5.16  Cross section through a box girder.
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	 Stiffener webs:	 A = 8 × 20 × 728 = 116480 mm2

		  y = 70 + 700 / 2 = 420 mm

	 Top plates:	 A = 4 × 20 × 300 = 24000 mm2

		  y = 700 + 70 – 20 / 2 = 760 mm

	 Total area:	 Ast = 595.48 × 103 mm2

Taking moments about the bottom of the main plate, the distance between the bottom of the 
main plate and the centroid of area of the stiffened plate is

	 × × = × + × + ×595.48 10 455000 35 116480 420 24000 7603y 	

	 = 139.5 mmy 	

Now apply the parallel axis theorem to determine the second moment of area of the stiff-
ened plate, Ist

	
( )= × + × − = ×6500 70

12
455000 139.5 35 5.155 10 mmplate

3
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







 = ×4
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12

20 300 760 139.5 9.241 10 mmstiffener, top

3
2 9 4I

	

	
= + + = ×28.134 10 mmst plate stiffener, web stiffener, top

9 4I I I I
	

300 mm

700 mm

700 mm 740 mm

728 mm
20 mm

6500 m
70 mm

4500 mm

20 mm

Figure 5.17  The stiffened bottom flange of the box girder shown in Figure 5.16.
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2. The calculation of the buckling stresses is split into five steps for simplicity.

Step 1: Check buckling of the whole stiffened plate between diaphragms. The elastic critical 
buckling stress of the ‘equivalent column’ from Equation 5.16 is

	
σ = π

cr

2
st

cr
2

st

EI
L A 	

	
σ = π × × ×

× ×
=210000 28.134 10

4500 595.48 10
4835 N/mmcr

2 9

2 3
2

	

Note that in the above calculation, the effective length (Lcr) was the distance between the 
diaphragms (see Figure 5.16). This is because the equivalent column effectively spans these 
points. Using the Gordon–Rankine approximation (Equation 5.4), the design stress is

	
σ = +



 =

−1
325

1
4835

305 N/mmRd

1
2

	

Since the applied stress σEd << σRd (i.e. 170 N/mm2 << 305 N/mm2), there is little danger of 
the plate buckling in this mode.

Step 2: Buckling of the main plate between the stiffeners. The bottom flange of the box girder 
is assumed as being pinned at the boundaries with the stiffeners and the diaphragms; there-
fore the critical buckling coefficient (k) is taken as equal to 4.0 throughout (see Figure 5.6b). 
The bottom plate is 70 mm thick (t) and the maximum distance between stiffeners (b) is 
740 mm. From Equation 5.2

	
σ = × × × 



 =4.0 190 10

70
740

6801 N/mmcr
3

2
2

	

and the design stress from Equation 5.4 is

	
σ = +



 =

−1
325

1
6801

310 N/mmRd

1
2

	

Step 3: Buckling of the stiffener webs. The stiffener webs are bounded on all four edges, 
three of which are simply supported while one is effectively built in. One edge is considered 
as built in because the main plate is 70 mm thick, which is much more than the 20 mm thick 
stiffener. The main plate can therefore be regarded as a rigid boundary from a buckling 
perspective and k = 5.41 (see Figure 5.6f). The webs are 20 mm thick and 728 mm wide; 
therefore, from Equation 5.2

	
σ = × × × 



 =5.41 190 10
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776 N/mmcr
3

2
2
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And the design stress from Equation 5.4 is

	
σ = +



 =

−1
345

1
776

239 N/mmRd

1
2

	

Step 4: Buckling of the stiffener flanges. The stiffener flanges are bounded on all four edges 
by simple supports; therefore, k = 4.0 and from Equations 5.2 and 5.4

	
σ = × × × 



 =4.0 190 10
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2
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σ = +
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
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−1
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1
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1
2

	

Step 5: Identify the critical buckling stress. The analysis presented in the above steps indi-
cates that buckling is likely to occur at the following stresses:

  Whole panel → 305 N/mm2

  Main plate between the stiffeners → 310 N/mm2

  Stiffener web → 239 N/mm2

  Stiffener flange → 313 N/mm2

The stiffener webs are critical because they buckle at the lowest stress. However, the 
stiffened plate is capable of resisting an applied compression stress of 170 N/mm2, 
as is  asked in the question. It can be seen that this design does fall short of a fully 
stressed  design and it would be more efficient if the stiffener web were adjusted to 
increase the buckling stress. This could be done by slightly reducing the length of the 
stiffener webs.

3. Considering shear buckling of the bottom flange of the box girder, from Equation 5.20 
the stiffened plate buckling coefficient is
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Since a ≤ b, from Equation 5.19
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and the elastic critical shear stress from Equation 5.17 is

	
τ = × × 



 = × × 



 =190000 141 190000

70
6500

3107 N/mmcr
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The yield shear stress from Equation 5.9 is

	
τ =

σ
= =

3
325

3
188 N/mm2

y
y

	

From Equation 5.21, the design shear stress is the lesser of τcr and τy, i.e., τRd =188 N/mm2. 
Since this is greater than the applied shear stress (τEd) of 50 N/mm2, the plate is easily passes 
this check.

4. The interaction equation for combined compression and shear, Equation 5.22, is

	

σ
σ

+ τ
τ





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≤ 1.0Ed

Rd

Ed

Rd

2

	

The applied shear stresses will be highest in the outer plate; therefore, the lesser of the fol-
lowing compression buckling stresses is used:

	 Whole panel → 305 N/mm2

	 Main plate between the stiffeners → 310 N/mm2

Therefore, Equation 5.22 becomes

	
+ 



 =170

305
50

188
0.63

2

	

Since this is less than 1.0, this simple analysis would indicate that the plate should able to 
resist these combined stresses; however, these calculations do not include any allowance 
for bending moments resulting from loads supported directly by the stiffened panel. This 
problem is considered next.

5.7  STIFFENED PLATES WITH LATERAL LOADS

Longitudinal stiffeners run along the length of box girders and these are very flexible 
in bending about their weak axis. For this reason, stiffened plates will effectively span 
between the cross frames when supporting lateral loads (see Figure 5.2 and Figure 5.15). 
It is necessary to check the stability of these plates subjected to compression as well as 
bending. An approximate check can be achieved by treating the stiffened plate as an equiv-
alent ‘beam column’ spanning between cross frames or diaphragms. This simplification 
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ignores the restraint provided by the sides of the box girder, although this involves only 
a minor degree of conservatism. The process is spilt into three separate steps:

Step 1: Determine the buckling stress for the stiffened plate, σRd. This would be the stress 
required to cause overall buckling of the stiffened panel, or the stress required to cause 
buckling of one of the individual plate elements, whichever is lowest. This process was illus-
trated in Example 5.5(2).

Step 2: Determine the moment capacity of the stiffened panel. To carry out a ‘beam-column 
analysis’, the moment capacity of the stiffened panel must be established. The stiffened 
panel is a thin-walled structure; therefore, the moment capacity will be lower than the elas-
tic moment capacity, because local buckling rather than yielding will initiate failure. For 
this reason, the buckling stress of the stiffeners must be determined. The moment capacity 
is estimated by setting the extreme fibre stress equal to the design buckling stress for the 
stiffener (i.e. not σy).

Step 3: Check the stability of the stiffened plate when subjected to combined bending 
and compression. This check is essentially the same as that used for the beam-columns as 
described in Section 3.2. The axial force resisted by the stiffened plate (σEd) will amplify 
any deflection resulting from the applied moments (MEd) that occur due to the lateral load. 
A small (secondary) bending moment will be developed due to the axial force multiplied by 
this bending-induced deflection. This secondary moment can be included using the same 
amplification factor used in many different buckling situations in engineering. The amplifi-
cation factor is

	 α =
− σ

σ

1

1 Ed

cr

	 (5.23)

This can also included in design expressions as

	
α = σ

σ − σ
cr

cr Ed 	

where
σEd is the applied compression stress.
σcr is the elastic critical buckling stress for the stiffened panel, from Equation 5.16.

The following interaction equation can be used to assess the ability of the stiffened plate to 
resist combined loading

	
σ
σ

+ α ≤ 1Ed

Rd

Ed

Rd

M
M

	 (5.24)

The design strength σRd, should be taken as the lowest value of compression buckling stress 
calculated for the stiffened panel, as illustrated in Example 5.5(2).
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5.8  STIFFENED PANELS IN SHEAR, COMPRESSION AND BENDING

It is important to check that cross sections will not buckle when subjected to the combined 
effects of shear stresses, compression stresses and/or bending stresses. An approximate 
check can be obtained by combining Equations 5.22 and 5.24, i.e.,

	
σ
σ

+ α + τ
τ





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≤ 1.0Ed

Rd

Ed

Rd

Ed

Rd

2
M

M
	 (5.25)

The design strength, σRd, should be taken as the lowest value of compression buckling stress 
calculated for the stiffened panel and τRd should be the whole panel buckling stress.

Example 5.6: Box girder bridge

A box girder comprises top and bottom stiffened plates with diaphragms spaced at 4000 mm 
centres (see Figure 5.18). The yield stress is 355 N/mm2. For the top and bottom stiffened 
plates shown in Figure 5.18, determine

	 1.	 The second moment of area.
	 2.	 The axial compression stress that results in buckling.
	 3.	 The shear stress that would result in shear failure.
	 4.	 Determine if the stiffened plate can resist 70 N/mm2 of shear stress combined with 

180 N/mm2 of applied compression stress.
	 5.	 The moment capacity of the stiffened plate.
	 6.	 Estimate what uniformly distributed load the top plate can support in addition to 

resisting the combined loading from point (4) above.

1. The areas (A) and distances from plate centroids to the bottom of the panel (y) are as fol-
lows (Figure 5.19):

	 Main plate:	 A = 3900 × 15 = 58500 mm2

		  y = 7.5 mm

4000 mm

Figure 5.18  Perspective view showing a section through a box girder.
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	 Stiffener webs:	 A = 10 × 10 × 306 = 30600 mm2

		  y = 15+310 / 2 = 170 mm

	 Top plates:	 A = 5 × 10 × 180 = 9000 mm2

		  y = 15 + 305 = 320 mm

Total area of top plate including stiffeners:  Ast = 98100 mm2

Taking moments about the bottom of the main plate to locate the centroid of the stiffened 
plate:

	
= × + × + × =58500 7.5 30600 165 9000 320

98100
85.3 mmy

	

Applying the parallel axis theorem to determine the second moment of area of the stiffened 
plate, Ist:
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2. The calculation of the buckling stress of the stiffened plate is broken up into five steps for 
simplicity.

Step 1: Check buckling of the whole stiffened plate between diaphragms.

The elastic critical buckling stress of the equivalent column from Equation 5.16 is

	
σ = π = π × × ×

×
=210000 1319 10

4000 98100
1742 N/mmcr

2
st

cr
2

st

2 6

2
2EI

L A 	

300 mm

310 mm

180 mm

306 mm

15 mm thick
outer plate

10 mm
thick sti
ener

3900 mm

400 mm

Figure 5.19  Dimensions of the stiffened flanges (top and bottom) of the girder sketched in Figure 5.18.
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and the design stress from Equation 5.4 is

	
σ = +



 =

−1
355

1
1742

295 N/mmRd

1
2

	

Step 2: Check buckling of the main plate between the stiffeners.

The critical buckling coefficient, k, is taken as equal to 4.0 (see Figure 5.6b). The bottom 
plate is 15 mm thick and the maximum distance between stiffeners is 400 mm; therefore, 
from Equation 5.2

	
σ = × × × 



 =4.0 190 10
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and the design buckling stress (Equation 5.4)
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Step 3: Check buckling of the stiffener webs.

All four of the stiffener web boundaries are regarded as pinned; therefore, k = 4.0 (see 
Figure 5.6b). The webs are 10 mm thick and 306 mm wide; therefore,

	
σ = × × × 
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The design stress is
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Step 4: Check buckling of stiffener flanges.

The stiffener flanges are bounded on all four edges by simple supports; therefore, k = 4.0 
(see Figure 5.6b) and

	
σ = × × × 
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

 =

−1
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1
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	Step 5: Identify the critical buckling stress.

The analysis showed that the buckling stresses are

  Whole panel → 295 N/mm2

  Main plate between the stiffeners → 266 N/mm2
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  Stiffener web → 247 N/mm2

  Stiffener flange → 308 N/mm2

Of these, the stiffener webs are critical and the maximum compression stress that can be 
resisted by the top and bottom panels of the box girder is approximately 247 N/mm2.

3. Considering shear buckling from Equation 5.20

	
= × 
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×
×
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Since a ≥ b, Equation 5.18 is used to determine the shear buckling coefficient
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From Equation 5.17, the elastic critical shear stress is

	
τ = × × 



 =280 190000

15
3900

787 N/mmcr

2
2

	

And from Equation 5.9, the yield shear stress is

	
τ =

σ
= =

3
355

3
205 N/mm2

y
y

	

Finally from Equation 5.21, the design shear stress is the lesser of τcr and τy; therefore, 
τRd = 205 N/mm2.

4. The interaction equation for combined compression and shear, Equation 5.22, is

	

σ
σ

+ τ
τ







≤ 1.0Ed

Rd

Ed

Rd

2

	

In this check the lesser of the compression buckling stresses for the whole panel (295 N/mm2) 
or the main plate between the stiffeners (266 N/mm2) is used, i.e.,

	
+ 



 =180

266
70
205

0.79
2

	

Since this is less than 1.0, the stiffened plate should be approximately strong enough.



Buckling of thin-walled structures  115

5. The maximum bending stress will occur furthest from the neutral axis, which in this case 
is the top of the stiffener flanges. These are predicted to buckle at a stress of 308 N/mm2 and 
so the moment capacity is

	
= σ × = × ×

+ −
× =−308 1319 10

310 15 85.3
10 1695 kN.mRd

6
6M

I
y 	

6. The interaction equation, Equation 5.25, must be populated to determine the maximum 
value for the applied moment, MEd
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The moment amplification factor (α) is calculated using the applied compression stress and 
the elastic critical stress calculated for the whole stiffened plate, i.e., from Equation 5.23

	

α =
− σ

σ

=
−

=1

1

1

1
180
1742

1.12
Ed

cr 	

In this case, the web is resisting the bending stresses, and since the web has a low buckling 
stress we will use it in the combined stress check to be safe, i.e.,

	
+ × + 



 ≤180
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2
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	 ≤ 234 kN.mEdM 	

This moment is dependent on the loading configuration. For a UDL, the critical hogging 
moment occurs over the diaphragms and it can conservatively be assumed to be equal to

	
≈

8
Ed

2

M
wL

	

	 ∴  = × = × =8 234 8
4.0

117 kN/mEd
2 2w

M
L

	

or

	
= =117

3.9
30.0 kN/m2w

	

This calculation is probably conservative, although it does provide a quick approximation of the 
lateral load capacity, which in this case is approximately 3 tonnes per m2 (1 tonne is 9.81 kN).
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Example 5.7:  Box girder

Figure 5.20 shows a box girder. The top and bottom flanges are 3500 mm wide and 
are stiffened by 10 longitudinal stiffeners, which are placed at 318 mm centres. Each 
stiffener is 150 mm deep and 15 mm thick. Diaphragms spaced at 3000 mm centres also 
stiffen the box girder. The yield stress is 275 N/mm2. Considering the bottom-stiffened 
plate shown in Figure 5.20:

	 1.	 Determine the second moment of area of the stiffened plate.
	 2.	 Determine the compression stress required to cause this plate to buckle between cross 

frames.
	 3.	 Determine the compression stress required to cause the outer plate to buckle between 

longitudinal stiffeners.
	 4.	 Determine the compression stress required to cause the longitudinal plate stiffeners to 

buckle.
	 5.	 Determine the stress required to cause shear buckling of the stiffened plate.
	 6.	 The box girder is subject to a torsional moment of 1700 kN.m, in addition to a hori-

zontal shear of 4000 kN. Determine the maximum applied shear stress in the stiffened 
plate under this applied loading.

	 7.	 Determine the maximum shear stress that the stiffened plate can resist in combination 
with an axial compression stress of 125 N/mm2.

	 8.	 Determine the elastic moment capacity of the stiffened flange.
	 9.	 Determine the maximum UDL that can be supported by the stiffened panel, in addition 

to a compression stress of 125 N/mm2.
	10.	 Recalculate point (9) above but include the loading from point (6), i.e., consider com-

bined bending, compression and shear

150 mm

Side plates
15 mm thick

318 mm centres

3500 mm

3000 mm

3000 mm

2000 mm

Top and bottom
plates 15 mm thick

10 No. 150 mm × 15 mm
sti�eners top and bottom

Figure 5.20  Perspective view showing a section through a box girder.
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1. The cross-sectional area of the stiffened plate is

	 = × + × × =3500 15 150 15 10 75000 mmst
2A 	

The distance to the centroid of the stiffened plate from the outer face of the main plate is

	
= × × + × × × + =15 3500 7.5 10 15 150 (15 75)

75000
32.25 mmy

	

Using the parallel axis theorem, the second moment of area of the stiffened plate is

	 = × × − + × × × + −15 3500 (32.25 7.5) 10 15 150 (15 75 32.25)2 2Ist 	

	
+ × + × × = ×3500 15

12
10 15 150

12
150 10 mm

3 3
6 4

	

2. Considering buckling of the whole plate between the diaphragms, the elastic critical 
buckling stress from Equation 5.16 is

	
σ = π × × ×

×
=210000 150 10

3000 75000
460.6 N/mmcr

2 6

2
2

	

The design stress from Equation 5.4 is
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3. For buckling of the main plate between stiffeners, the coefficient shown in Figure 5.6b 
applies; therefore,

	
σ = × 
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and
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4. Consider buckling of the stiffeners. The outer plate is of the same thickness of the stiffen-
ers (both 15 mm); therefore, it is assumed that the boundary between the plates is simply 
supported, instead of fixed, and the coefficient shown in Figure 5.6a applies, i.e.,

	 ( ) ( )= + = + =0.425 / 0.425 150 / 3000 0.428
2 2

k b a 	
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If the outer plate had been significantly thicker than the stiffeners, then coefficient in 
Figure 5.6e could have been used. From Equations 5.2 and 5.4

	
σ = × 
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2
2

	

	
σ = +
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Cautionary note. This buckling stress of 205.5 N/mm2 may be an overestimate of strength 
because of a form of buckling known as ‘local torsional buckling’ (see Figure 5.21) (Horne, 
1977). In this mode, stiffeners interact and buckle at a lower stress than predicted by 
this simple treatment of buckling. Local torsional buckling is too complex for this book, 
although the easiest way to overcome it is to use closed (box-shaped) stiffeners, such as those 
used in the bridge shown in Figure 5.22. Closed stiffeners (Figure 5.19) do not suffer from 
local torsional buckling and this may in part explain their popularity.

5. From Equation 5.20
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Since a ≤ b, the shear buckling coefficient is determined using Equation 5.19

	 = 



 + + =5.34

3500
3000

4 82.4 93.7
2

k 	

A

A

Section A–A 

Local torsional 
buckling

Sti�ened plate under uniform compression

Figure 5.21  Local torsional buckling of plate stiffeners.
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The elastic critical shear stress from Equation 5.17 is

	
τ = × × 



 =93.7 190000

15
3500

327 N/mmcr

2
2

	

The yield shear stress from Equation 5.9 is

	
τ = =275

3
158.8 N/mm2

y

	

The design shear stress is the lesser of τcr and τy; therefore, τRd = 158.8 N/mm2. This shows 
that shear stresses will cause yielding before shear buckling of the stiffened panel.

6. The shear stress due to the horizontal shear force is approximately equal to the shear force 
divided by the cross-sectional areas of the top and bottom plates, i.e.,

	
τ = ×

× ×
=4000 10

2 3500 15
38.1 N/mm

3
2

	

It should be noted that if the full shear stress equation (Equation 6.11) is used to calculate 
the maximum shear stress in the middle of the plate, the stress rises to 45.3 N/mm2. The 
shear stress due to torsion also needs to be calculated. The area enclosed by the box girder is

	 = × = ×3500 2000 7 10 mm6 2Am 	

Figure 5.22  This bridge over the River Severn in the United Kingdom uses box-shaped stiffeners, similar 
to those shown in Figure 5.18.
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and the stress due to the torsional moment from Equation 5.15 is

	
τ = = ×

× × ×
=

2
1700 10

2 15 7 10
8.1 N/mm

6

6
2T

tAm 	

The total shear stress is

	 τ = + =38.1 8.1 46.2 N/mmEd
2

	

7. The above analysis showed that the buckling stresses are

  Whole panel → 172 N/mm2

  Main plate between the stiffeners → 237 N/mm2

  Plate stiffeners → 205.5 N/mm2

Of these, the whole panel buckling is critical; therefore, σRd = 172 N/mm2 and from 
Equation 5.22
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+ τ
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	 τEd = 83.0 N/mm2

Since the applied shear stress determined above was 46.2 N/mm2, this plate should be more 
than adequate for this load combination.

8. The moment capacity of the stiffened plate will be limited by buckling of the stiffeners, 
since they experience the highest bending stresses, being furthest from the neutral axis, as 
well as having the lowest buckling stress. The buckling stress of the stiffeners was calculated 
as equal to 205.5 N/mm2; therefore, the moment capacity of the stiffened plate is

	
= σ = × ×

+ −
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I
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9. Equation 5.24 needs to be completed to determine the limiting value for the applied 
moment, MEd
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The moment amplification factor (α) is calculated using the applied compression stress and 
the elastic critical stress calculated for the whole stiffened plate in part (2) of this question, 
i.e., from Equation 5.23

	

1

1

1

1
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1.372
Ed

cr

α =
− σ

σ

=
−

=

	

The applied bending stress is σEd = 125 N/mm2 and the compression strength is σRd = 172 
N/mm2; therefore, Equation 5.24 becomes
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This solves to MEd ≤ 46.2 kN.m. This is dependent on the loading configuration and can 
conservatively be assumed as
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or by dividing by the width, the UDL is
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10. The basic interaction, Equation 5.25, is
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This becomes
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This rearranges to provide a maximum applied moment for the stiffened panel, 
MEd ≤ 31.9 kN.m, and

	
= × =31.9 8

3.0
28.4 kN/m2w

	

or dividing by the width, the UDL is

	
= =28.4

3.5
8.1 kN/m2w

	

This shows that addition of shear stresses has caused the load capacity to fall from 
11.7 kN/m2 to 8.1 kN/m2.
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Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	 P.5.1.	 A 34 m long I-section steel plate girder spans between two supports (see Figure 5.23). 
The girder is restrained along its length against lateral torsional buckling and is sub-
jected to a uniformly distributed load (inclusive of self-weight and load factors) of 
180 kN/m. The yield stress is 440 N/mm2.

	 a.	 Determine the shear force and moment at midspan and at the supports.
	 b.	 20 mm thick web stiffeners are located at 3 m centres in the centre of the span; 

determine if the girder flanges can resist the compression force due to bending 
without buckling.

	 c.	 Determine if the girder web can resist the applied loading at midspan without 
buckling.

	 d.	 Web stiffeners are located at 0.75 m centres in the region of the supports; deter-
mine if the girder web can resist the applied loading at the supports without 
buckling.

	 e.	 If the web is stiffened with 20 mm plates that extend across the entire width 
of the beam (600 mm; see web stiffener detail in Figure 5.2), determine if the 
stiffeners are sufficiently strong to resist the applied loads.

	 Ans. (a) 4590 kN.m, 4410 kN.m, 1260 kN, 1800 kN, (b) 290.5 > 203 N/mm2 ∴ 
pass, (c) 194.6 > 192 N/mm2 pass, (d) (184.8/194.6)2 + (158/249)2 = 1.30 > 1.0 fail 
and (e) 217.5 < 255 N/mm2 fail.

	 P.5.2.	 Figure 5.24 shows a box girder. The top and bottom flanges are 4000 mm wide 
and are stiffened by 13 stiffeners that are 150 mm deep, 20 mm thick and located 
at 300 mm centres. Diaphragms spaced at 4000 mm centres stiffen the girder. 
The yield stress is 265 N/mm2. Considering the bottom-stiffened plate shown in 
Figure 5.25:

	 a.	 Determine the second moment of area of the stiffened plate.
	 b.	 Determine the compression stress required to cause the stiffened plate to buckle 

between diaphragms.
	 c.	 Determine the compression stress required to cause the outer plate to buckle 

between stiffeners.

30 mm

10 mm

600 mm

12
00

m
m

7 m 20 m 7 m

Web-sti�ener detailCross-section dimensions

Span dimensions

20 mm thick 
web sti�eners

Figure 5.23  Bridge question.

https://www.crcpress.com/9781498741217
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	 d.	 Determine the stress to cause the stiffeners to buckle (hint: Figure 5.6e).
	 e.	 Determine the elastic critical shear buckling stress of the whole panel.
	 f.	 Determine the yield value of shear stress.
	 g.	 Determine the shear stress that the stiffened plates can resist in addition to a 

compressive stress of 100 N/mm2.
	 Ans. (a) 320.5 × 106 mm4, (b) 131.5 N/mm2, (c) 256 N/mm2, (d) 249 N/mm2, 

(e) 316.4 N/mm2, (f) 153 N/mm2 and (g) 75 N/mm2.
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Figure 5.24  Part of a long box girder showing internal diaphragms spaced at 4000 mm centres.
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Figure 5.25  Bottom-stiffened plate from girder shown in Figure 5.24.
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Chapter 6

Composite structures

Figure 6.1a shows a steel I-beam supporting a reinforced concrete slab. When the 
I-beam flexes, the top flange goes into compression and shortens, whereas the bottom 
fibre of the slab goes into tension and lengthens. This causes slippage to occur between 
the beam and slab. The strength and stiffness can be increased by preventing this slip-
page, as illustrated in Figure 6.1b. In this type of ‘composite beam’, the I-beam and slab 
act together  to resist moments. Slippage is prevented by casting the concrete around 
metal  fixings welded to the top flange of the I-beam. These take the form of ‘shear 
studs’,  which are metal rods with flat heads welded to the beam before the concrete 
is cast.

Composite beams can be either propped or unpropped during casting of the slab. 
If unpropped, then wet concrete is supported by the steel section alone. Contractors prefer 
this, because propping costs money; however, unpropped construction is more complicated 
to design. A lack of understanding by engineers has occasionally led to beams being over-
stressed. This chapter will attempt to explain the theory of how to design unpropped beams 
safely.

6.1  EFFECTIVE WIDTH

When a composite beam flexes, the slab acts like a compression flange. In order to deter-
mine bending strength, it is necessary to establish the width of slab that contributes to 
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the flexural strength. This is known as the effective width and is illustrated in Figure 6.2. 
The effective width should be taken as the lesser of either:

	 1.	 One-eighth of the effective span on each side; see Figure 6.2a, or as illustrated in 
Figure 6.2b for edge beams

	 2.	 Half the distance between beam centre lines

The effective span is the distance between points of zero bending moments. This is the 
distance between supports for simply supported beams. For beams that are continuous over 
supports, such as bridge beams, the effective span is taken as the distance between points of 
contraflexure (zero moments).

(b)

(a)

Shear connectors welded to the top 
�ange and cast into the concrete

Slippage between 
I-beam and slab

No slippage

Slab

I-beam

Figure 6.1  Illustration of the steel concrete non-composite and composite arrangements. 
(a) Conventional beam (without shear studs) and (b) composite beam.

(a)

E�ective width, be�

Concrete 
slab

Span/8Span/8

E�ective width, be�

Span/8

(b)

Shear stud

Figure 6.2  Section through composite beams to illustrate the concept of effective width. (a) Internal beam 
and (b) edge beam.
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Example 6.1: � Calculation of effective width

Figure 6.3 shows a framing arrangement for the floor of a building. The steel beams are 
designed to act compositely with the slab and the beam connections are ‘nominally pinned’. 
Determine the effective widths of the beams labelled A to F.

In this example the beam connections are nominally pinned; therefore, the effective span is 
simply the beam span.

Beam A: This is an edge beam similar to that shown in Figure 6.2b. On the south side, the 
slab extends 0.75 m from the beam centre line; therefore, the effective width on the south side 
is 0.75 m. On the north side, the effective width is the lesser of either half the spacing between 
Beams A and B (2.0 m) or span/8 (1.5 m). Therefore, beff = 0.75 + 1.5 = 2.25 m.

Beam B: On the north side, Beams B and C are spaced at 2.5 m centres; therefore, the 
maximum effective width = 2.5/2 = 1.25 m. The total effective width = 1.25 + 1.5 = 2.75 m.

Beam C: beff = 1.25 + 1.25 = 2.5 m	

Beam D: beff = 0.75 + 1.25 = 2.0 m	

Beam E: beff = 2 × span/8 = 1.25 m	

Beam F: beff = 2 × span/8 = 1.0 m	

6.2  SERVICEABILITY LIMIT STATE DESIGN

During serviceability limit state (SLS) design, loads are unfactored and the primary objectives 
are twofold:

•	 Ensure that the beams remains elastic
•	 Prevent excessive deflection

The first step is to calculate the second moment of area of the composite beam, Icomp. To do 
this, the method of transformed sections is used, whereby the effective width of the slab is 
converted to an equivalent area of steel. This conversion is made by multiplying the effective 
width (beff) by the modular ratio, which is the ratio between Young’s modulus for concrete 

2.5 m

2.5 m

4.0 m

0.75 m

0.75 m12 m8 m0.75 m

A

B

C

D
E

F

Edge of
composite

slab

Supporting
column

Beam F

N

S

Figure 6.3  Plan view of a floor showing beam layout and composite slab.



128  Structural design from first principles

and steel, Ec/Es (see Figure 6.4). Once the cross section is converted into a fully ‘steel’ sec-
tion, it is necessary to take moments of area about the top of the slab to determine the posi-
tion of the centroid of area. The parallel axis theorem is then used to calculate the second 
moment of area of the composite section.

Figure 6.5a shows a composite beam with a solid concrete slab, although it is more com-
mon in buildings to cast concrete slabs onto corrugated metal sheeting, which is left in place 
after concreting. This is known as profiled metal decking and it is widely used in the con-
struction of buildings; see Figure 6.5b and Figure 6.6. In this book, the concrete within the 
corrugations is ignored during analysis in order to speed up calculations.

(a) (b)

bflange = beff Ec/Es

The slab is converted to an
equivalent width of steel
using the modular ratio, Ec/Es

Effective width, beffConcrete slab

Figure 6.4  Using the method of transformed sections to calculate the width of the top flange. 
(a) Cross section through a composite floor beam and (b) the transformed section.

dflange dflange

(a) (b)

Shear 
stud

Permanent 
metal soffit

Soffit Concrete in corrugations 
is ignored during strength 
calculations

Figure 6.5  Two main types of composite beam. (a) Flat soffit and (b) profiled metal deck soffit.

Figure 6.6  Profiled metal deck composite slab under construction (shear studs indicate beam positions).
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Composite beams are vulnerable to lateral torsional buckling (LTB) when supporting 
wet concrete. Beams with the profiled metal decking spanning along the direction of span 
(Figure 6.5b) are laterally unrestrained when supporting wet concrete. If the decking cor-
rugations are perpendicular to the span, then the profiled metal deck will provide some 
restraint against buckling. If in doubt, then all beams should be considered as laterally unre-
strained under wet concrete loads. Although LTB is important, it is not considered again in 
this chapter because it is dealt with in Chapter 2.

Example 6.2: � SLS calculations for a beam in a building

A floor slab is supported by beams spaced at 3 m centres and spanning 6 m between simple 
supports. The beams support the full weight of the 200 mm deep slab, in addition to an 
imposed load of 5 kN/m2. The beams and the slab are joined together by shear studs to act 
compositely and the beams are unpropped when the concrete slab is cast.

	 1.	 Determine the beam stresses and mid-span deflection when supporting wet concrete.
	 2.	 Determine the position of the neutral axis and the second moment of area of the com-

posite beam.
	 3.	 Sketch the elastic bending stress distribution under unfactored dead and imposed loads 

(i.e. SLS loads).
	 4.	 Determine the mid-span deflection under SLS loads.

Basic data
Second moment of area of the steel beam = 15,000 cm4

Cross-sectional area of steel section = 6000 mm2

Beam self-weight = 0.5 kN/m
Depth of the steel section = 400 mm
Young’s modulus for steel, Es = 210,000 N/mm2

Young’s modulus for the concrete, Ec = 25,000 N/mm2

1. The load (w) and midspan moment (M) under the wet weight of the concrete are

	 w = 0.5 + 25 0.2 3.0 = 15.5 kN/m (15.5 N/mm)× × 	

	 M
15.5 6

8
69.75 kN.m

2

= × = 	

Using the engineer’s beam equation, the maximum bending stresses (σ) in the steel section 
under the wet concrete are
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I
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and the midspan deflection from Equation 1.6 is
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5
384

4
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2. The effective width of the slab is the lesser of either the beam spacing (3 m) or

	 b
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2
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2 6000
8

1500 mmeff = × = × = 	

Using the modular ratio required by the method of transformed sections, the width of the 
top flange of the transformed section (Figure 6.4b) is

	 flange effb b
E
E

c

s

= × 	 (6.2)

	 b 1500
25000
210000

178.6 mmflange = × = 	

The neutral axis depth labelled x in Figure 6.7b is located by taking moments of area about 
a reference point, which in this case is the top of the slab. For simplicity, it is assumed that 
the slab remains uncracked (i.e. that it takes a tensile load) and taking moments of area 
about the top of the slab:

	 178.6 200 6000 178.6 200
200
2

6000 200
400
2

x ( )× × + = × × + +



 	

	 x 143 mm= 	

The second moment of area is now calculated using the parallel axis theorem, i.e.,

	
I = × × −



 + × + × + −





+ ×

178.6 200 143
200
2

178.6 200
12

6000 200
400
2

143

15000 10

comp

2 3 2

4

	

	 731.4 10 mmcomp
6 4I = × 	

x = 143 mm

Neutral axis

(a) (b)

178.6 mm

93.0

–93.0

–1.6

0.6 –87.7

135.2

(c) (d)

400 mm

200 mm

be� = 1500 mm

Figure 6.7  Calculation of elastic bending stresses. (a) The composite beam, (b) the transformed section, 
(c) wet concrete stress and (d) SLS stress distribution.
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3. Since the beams are spaced at 3 m centres, the 5 kN/m2 imposed load develops the fol-
lowing beam load:

	 w 3 5 15 kN/m= × = 	

and the corresponding midspan moment is

	
15 6

8
67.5 kN.mEd

2

M = × = 	

The stress at the top of the slab is determined using the engineer’s beam equation and by 
reapplying the modular ratio to convert the transformed section stresses back to concrete 
stresses, i.e.,

	
E
E

M
I

c

s

yσ = × 	 (6.3)

	
25000
210000

67.5 10 ( )143
731.4 10

1.6 N/mm
6

6
2σ = × × × −

×
= − 	

And the stress in the concrete at the bottom of the slab is

	
25000
210000

67.5 10 (200 143)
731.4 10

0.6 N/mm
6

6
2σ = × × × −

×
= 	

The stress at the top of the steel section includes the stress developed when supporting the 
‘wet’ concrete (–93 N/mm2) and the imposed load stress

	 93.0
67.5 10 (200 143)

731.4 10
87.7 N/mm

6

6
2σ = − + × × −

×
= − 	

At the bottom of the section,

	 93.0
67.5 10 (200 400 143)

731.4 10
135.2 N/mm

6

6
2σ = + + × × + −

×
= + 	

The stresses under the wet concrete and under full SLS loads are shown graphically in 
Figure  6.7. Since the maximum stress (135.2 N/mm2) is much less than the yield stress 
(275 N/mm2), the beam will remain elastic under SLS loads.

4. The total deflection = wet concrete deflection (8.3 mm) + imposed load deflection. 
Remember to use different values of second moment of area in these calculations, with Isteel 
used for wet concrete and Icomp used for imposed load deflection, i.e.,

	 8.3
5 15 6000

384 210000 731.4 10
9.9 mm

4

6δ = + × ×
× × ×

= 	
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6.3  ULS BENDING STRENGTH

During ULS design, it is necessary to check the strength and stability under wet concrete (if 
unpropped), as well as when loaded by the fully factored dead and imposed loads. There are 
two approaches to the calculation of the ULS moment capacity of a composite beam. The 
first is elastic design and this is mainly used for bridges. The second is to utilise the plastic 
bending strength, but this is only used for buildings.

The mode of construction affects the stress distribution, i.e., if the section is propped 
or unpropped during construction. However, the absence of propping during construction 
is generally assumed to have little effect on the plastic moment capacity. Specifically, the 
moment capacity of an unpropped beam can be the same as that of a propped beam, provid-
ing the steel section is Class 1 or Class 2 and providing certain other conditions are met. In 
order to determine the moment capacity of a steel beam, it is necessary to classify the cross 
section as described in Section 2.2. If the cross section is Class 1 or Class 2, the full plastic 
moment capacity of the composite section can be utilised. If Class 3, the maximum stress 
must be limited to the yield stress, and if Class 4 the maximum stress is defined using the 
methods described in Chapter 5 for thin-walled structures.

Plastic moment capacity. The plastic moment capacity is easy to calculate. The first step 
is to determine the tensile strength of the steel section, T. The partial safety factor for steel 
is normally set at 1.0; therefore,

	 T f Ay s= 	 (6.4)

where
As is the area of the steel section.
fy is the yield stress.

The next step is to determine the depth to the plastic neutral axis, shown as x in Figure 6.8. 
Remember that this is on a different position to the elastic neutral axis (see Figure 6.7b).

If design is based on concrete cylinder strengths, as is the case for the Eurocodes, then the 
design crushing stress

	 f
f

c

0.85
cd

ck=
γ

	

Since the partial safety factor for concrete (γc) is 1.5

	 f f0.567cd ck= 	 (6.5)

(a)

Plastic neutral axis

fy

fcd

C

T

x

(b) (c)

dc

ds

dp

Profiled 
metal 
decking

Lever arm, z 

Figure 6.8  Basis of the plastic moment capacity design calculations. (a) The composite beam plastic neutral 
axis, (b) design stress distribution and (c) design forces.
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Assuming that the plastic neutral axis lies within the slab, then the compression force in the 
concrete is

	 0.567 ck effC f b x= × × 	 (6.6)

where beff is the effective width (see Section 6.1). If no external axial force is applied, then 
from horizontal equilibrium

	 C T= 	 (6.7)

Combining Equations 6.6 and 6.7, the depth to the plastic neutral axis is

	
0.567 ck eff

x
T
f b

= 	 (6.8)

At this stage, it is necessary to check that x lies within the top part of the slab, i.e., that 
x < (dc – dp); see Figure 6.8. If this is not the case, then Equation 6.6 will need reconfigur-
ing, although this is rarely a problem. The lever arm (z) between T and C (see Figure 6.8c) is

	 = + −
2 2

z
d

d
xp

c 	 (6.9)

where
dc is the depth of the concrete slab.
dp is the depth of the profiled metal decking; see Figure 6.8.

Finally, the plastic moment capacity is the force multiplied by the lever-arm, i.e.,

	 M T zpl, Rd = × 	 (6.10)

Example 6.3: � Calculating the bending strength of a floor beam

A floor slab is supported by (Class 1) I-section beams spaced 3 m apart and spanning 12 m 
(see Figure 6.9). The composite slab is constructed using a profiled metal decking system 
similar to that shown in Figure 6.6, with a depth of the profiled metal decking (dp) of 
100 mm. Determine if the beams can support an imposed load of 5.0 kN/m2 at the ULS. 
The beams are unpropped.

Basic data: fy = 355 N/mm2, fck = 40 N/mm2, cross-sectional area of the I-beams = 58.6 cm2, 
weight of steel beam = 0.45 kN/m and unfactored weight of the slab is 3.75 kN/m2.

dp= 100 mm dc= 200 mm 

Top of profiled metal decking

Beams spaced at 3 m centres

ds= 406 mm

Figure 6.9  Cross section through a composite slab showing beams and metal decking.
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From Equation 1.3, the ULS load is

	 w 1.35 0.45 3.0 1.35 3.75 1.5 5.0 38.3 kN/muls ( )= × + × × + × = 	

and the corresponding midspan moment is

	 M
wL

8
38.3 12

8
689 kN.mEd

2 2

= = × = 	

The effective width of the slab is the lesser of either the beam spacing (3 m) or

	 b
L

2
8

2 12
8

3 meff = × = × = 	

The composite moment capacity remains unaffected by the lack of propping, because the 
beams are Class 1 and are sufficiently ductile to form the plastic stress distribution shown in 
Figure 6.8b. From Equation 6.4, the tensile strength of the steel section is

	 T A fs y 5860 355 10 2080 kN3= = × × =− 	

The neutral axis depth from Equation 6.8 is

	
0.567 ck eff

x
T
f b

= 	

	 x
2080 10

0.567 40 3000
30.6 mm

3

= ×
× ×

= 	

Since x is less than 100 mm, the neutral axis is located well within the top half of the slab. 
The lever arm from Equation 6.9 is

	 z
d

d
xs

c
2 2

= + − 	

	 z
406
2

200
30.6

2
387.7 mm= + − = 	

From Equation 6.10

	 M T z 2080 387.7 10 806 kN.mpl.Rd
3= × = × × =− 	

Since the applied moment (689 kN.m) is less than the moment capacity (806 kN.m), the 
beam has sufficient bending strength.

Example 6.4: ULS strength checks for a bridge

Figure 6.10 shows a composite bridge deck that is unpropped during construction and spans 
36 m between simple supports. Considering Girder A:

	 1.	 Determine if it remains elastic under ULS loads from wet concrete + girder self-weight 
(2.75 kN/m) + workers and equipment (0.75 kN/m2).

	 2.	 Determine the composite beam second moment of area.
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	 3.	 Sketch the stress distribution under ULS dead loads + imposed load of 10.5 kN/m2. 
Check to see if the beam remains elastic.

Basic data: Concrete Young’s modulus = 25,000 N/mm2 and density = 25 kN/m3. 
Girder A properties: yield stress = 265 N/mm2, Young’s modulus = 210,000 N/mm2, 
I = 13,400×106 mm4, cross-sectional area = 39,840 mm2.

1. From Equation 1.3 the ULS dead and imposed load at the construction stage is

	 w = 1.35 2.75 1.35 0.3 1.2 25 1.5 0.75 1.2 17.2 kN/m× + × × × + × × = 	

and the midspan moment is

	 M
17.2 36

8
2786 kN.mEd

2

= × = 	

From Equation 6.1, the maximum stresses in the I-section are

	
2786 10 ( )700

13400 10
145.5 N/mm

6

6
2σ = × × ±

×
= ± 	

This is less than the yield stress of 265 N/mm2, so the beam will remain elastic. It should 
therefore be safe, providing the compression flanges are restrained against sideways move-
ment in order to prevent lateral torsional buckling.

2. The effective width of the concrete flange is the lesser of the beam spacing (1200 mm) or 
2 × span/8 (7.5 m). The corresponding width of the top flange of the transformed section 
(see Figure 6.4b) is

	 b
b E

E
c

s

1200 25000
210000

143 mmflange
eff= = × = 	

The distance from the top of the slab to the elastic neutral axis (x) is determined by taking 
moments of area about the top of the slab, i.e.,

	 x143 300
300
2

39840 300
1400

2
143 300 39840( )× × + × +



 = × × + 	

	 x 559 mm= 	

Girder A

300 mm

1400 mm

1200 mm 1200 mm

Figure 6.10  Composite bridge beam.
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The second moment of area is calculated using the parallel axis theorem, i.e.,

	
143 300 559

300
2

143 300
12

39840 300
1400

2
559 13400 10comp

2 3 2
6I = × × −



 + × + × + −



 + ×

	 28646 10 mmcomp
6 2I = × 	

3. The ULS dead load, when resisting the self-weight of 2.75 kN/m + the wet weight of the 
slab, is

	 w = 1.35×2.75 + 1.35×0.3×1.2×25 = 15.9kN/m

And the corresponding moment is

	 M
15.9 36

8
2576 kN.mEd

2

= × = 	

From Equation 6.1, the stresses in the top and bottom fibres of the section are

	
2576 10 ( )700

13400 10
135 N/mm

6

6
2σ = × × ±

×
= ± 	

Note that the second moment of area of only the steel section was used in the above equation 
and not Icomp. The ULS imposed load is

	 w 1.5 10.5 1.2 18.9 kN/m= × × = 	

and the corresponding moment is

	 M
18.9 36

8
3062 kN.mEd

2

= × = 	

From Equation 6.3, this produces the following stress in the top of the slab

	 E
E

M
I

c

s

y

comp
σ = × 	

	
25000
210000

3062 10 ( )559
28646 10

7.1 N/mm
6

6
2σ = × × × −

×
= − 	

The stress in the bottom of the slab is

	
25000
210000

3062 10 ( 559 300)
28646 10

3.3 N/mm
6

6
2σ = × × × − +

×
= − 	

At the top of the steel beam,

	 135
3062 10 ( 559 300)

28646 10
162.7 N/mm

6

6
2σ = − + × × − +

×
= − 	
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And the bottom of the section

	 135
3062 10 ( 559 300 1400)

28646 10
257.0 N/mm

6

6
2σ = + + × × − + +

×
= + 	

Figure 6.11 shows the stresses when loaded by the ULS loads. The elastic limit is reached 
when this stress > 265 N/mm2; therefore, the steel should just remain elastic under the ULS 
loading.

6.4  SHEAR STUD DESIGN

As discussed earlier, slippage between the steel and slab is controlled using shear studs 
welded to the top flange and cast into the concrete. There are two approaches to the design 
of these studs:

	 1.	 Elastic design, in which each stud is designed to resist the shear force without signifi-
cant deformation. In this approach, the distribution of the shear connectors reflects the 
shear force distribution in the beam. Figure 6.12a shows the shear force distribution for 

+135.0 N/mm2

+135.0 N/mm2

+257.0 N/mm2

–162.7 N/mm2

–3.3 N/mm2

–7.1 N/mm2

Cross section (a) (b)

0 N/mm2

Figure 6.11  ULS stresses in an unpropped composite bridge. (a) Wet concrete stresses and (b) full ULS stresses.

(b)

Sh
ea

r f
or

ce

Distance along the beam

(c)

(a)

Figure 6.12  Comparison of the different approaches to designing shear studs. (a) Shear force diagram, 
(b) beam with elastically designed shear studs (stepped spacing to mirror shear force diagram) and 

(c) beam with plastically designed shear studs (linear spacing).



138  Structural design from first principles

a simply supported beam subjected to a UDL. Figure 6.12b shows the arrangement of 
shear studs that are designed elastically, with the density of shear studs increased at the 
ends to reflect the increased shear force. This approach is used mainly in bridges.

	 2.	 Plastic design, whereby the shear connectors are uniformly distributed (see Figure 6.12c). 
In this approach, shear studs need to be ductile in order to distribute the shear force 
evenly along the beam. This is achieved by using headed shear studs manufactured from 
ductile steel. Plastic design of shear studs must not be used for bridges because of fatigue. 
It is also not suitable for beams supporting concentrated loads near supports or moving 
loads. Despite these limitations it is used for most steel framed multistorey buildings.

6.4.1  Elastic design of the shear studs

The elastic shear stress equation gives the shear stress (τ) a distance y from the neutral axis

	
VA y
b Io

τ = ′
	 (6.11)

where
I is the second moment of area (in this case for the composite section).
V is the shear force.
bo is the width of the section at distance y from the neutral axis.
A′ is the area of the section above the distance y from the neutral axis.

Figure 6.13 shows how to apply this equation to the problem of determining the shear stress 
at the interface between the steel and concrete. In this case, y is the distance between the 
centroid of the slab to the neutral axis of the composite section. From a design perspective, 
shear flow, which is the shear force per length (τbo), is more useful; thus from Equation 6.11,

	 Shear flow
VA y

I
= ′

	 (6.12)

This can be used to determine the stud spacing, because

	 Shear flow
stud strength
stud spacing

= 	 (6.13)

(a) (b)

Neutral axis of 
composite section

Shaded area, A’

Centroid of A’
y

Figure 6.13  Notation used in Equation 6.12. (a) The composite beam and (b) the transformed section.
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Example 6.5: Shear stud design for a floor beam

The composite beam shown in Figure 6.14 is constructed using shear connectors with a 
shear strength of 70 kN spaced at 100 mm intervals. Determine the maximum shear force 
that the beam can resist before the shear connectors reach their limit.

From Equation 6.13, the shear flow from 70 kN shear studs spaced at 100 mm centres is

	 Shear flow
shear stud strength
shear stud spacing

70 10
100

700 N/mm
3

= = × = 	

Rearranging Equation 6.12

	
shear flow

V
I

A y
= ×

′
	

With reference to Figure 6.13,

	 A 366 200 73200 mm2′ = × = 	

	 y 142 200 / 2 42 mm= − = 	

And the shear studs will become overloaded at a shear of

	 V
700 615 10

73200 42
10 140 kN

6
3= × ×

×
× =− 	

Example 6.6: Shear stud design with point loads

The composite beam shown in Figure 6.14 supports two concentrated loads in addition to 
a UDL (see Figure 6.15). Draw the ULS shear force diagram and determine the shear stud 
spacing at the ends of the beam and in the central low shear region. The beam is propped 
during construction and the shear stud capacity is 100 kN per stud.

1500 mm

200 mm

(a) (b)

366 mm

400 mm
Second moment of area of the 
transformed section = 615 × 106 mm4

142 mm
Neutral axis

Figure 6.14  Design information. (a) The composite beam and (b) the transformed section.
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Since the beam has point loads near the supports, elastic design should be used. The beam 
is propped; therefore, composite action resists dead and imposed loading. Therefore, all the 
loads are used to determine the shear stud spacing. The ULS point load (P) is 

	 P G Qk k= 1.35 1.5 1.35 80 1.5 60 198 kN+ = × + × = 	

And the ULS UDL is

	 w g qk k1.35 1.5 1.35 3.5 1.5 4 10.7 kN/m= + = × + × = 	

These loads are used to plot the shear force diagram shown in Figure 6.16.

From Equation 6.12, the shear flow at the supports is

	 Shear flow
230 10 366 200 (142 200 / 2)

615 10
1150 N/mm

3

6= × × × × −
×

= 	

From Equation 6.13

	 Shear stud spacing
100 10

1150
87 mm

3

= × = 	

In the central section,

	 Shear flow
16 10 366 200 (142 200/2)

615 10
80 N/mm

3

6= × × × × −
×

= 	

230 kN 214 kN

16 kN

–230 kN–214 kN

–16 kN

Figure 6.16  Shear force diagram for beam shown in Figure 6.15.

1500 mm

Point load:

Gk = 80 kN
Qk = 60 kN

UDL:

gk = 3.5 kN/m
qk = 4.0 kN/m

3000 mm 1500 mm

Point load:

Gk = 80 kN
Qk = 60 kN

Figure 6.15  Beam with point loads and a uniformly distributed load.
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And the maximum shear stud spacing is

	 Spacing
100 10

80
1250 mm

3

= × = 	

The stud spacing should not be greater than six times the slab depth or 800 mm, in order to 
prevent the slab separating from the beam; therefore, the maximum spacing in the central 
region is 800 mm.

6.4.2  Plastic design of shear studs

Shear studs in buildings are designed to maintain strength after a considerable amount of plastic 
deformation, which means that all the studs can be assumed to develop the full shear force, even if 
they are evenly spread along the length of a beam, as illustrated in Figure 6.12c. This works with 
beams supporting uniformly distributed loads or point loads located at the centre of the span, 
although problems occur in beams supporting point loads away from the centre. Therefore, care 
needs to be applied when designing studs plastically. Elastic design of studs should be used for 
bridges, because fatigue is a design issue and therefore stress is tightly controlled.

To develop the required bending strength, the force from shear studs must be equal to the 
lesser of

	 1.	 tensile strength of the steel section
	 2.	 compression strength of the concrete flange

In buildings, the tensile strength of the steel section is almost always less than the com-
pressive strength of the concrete flange; therefore, the design of the shear studs is easy.

Example 6.7:  Plastic design of shear studs for a uniformly distributed load

A simply supported beam spans 10 m and supports a uniformly distributed load. During 
the design, the plastic neutral axis was found to be in the slab and the tensile strength of the 
steel section = 2080 kN. Determine the spacing of the shear studs if 85 kN studs are used.

The total shear force required from the studs is the lesser of either the tensile strength of the 
section or the compression strength of the slab. In this case, the neutral axis is in the slab; 
therefore, the tensile strength of the section governs. This means that there must be enough 
studs (in each half of the beam) to develop 2080 kN of force. Therefore, the number of studs 
in each half of the beam is

	 Number of studs
2080 kN
85 kN

25= = 	

The span is 10,000 mm; therefore,

	 Stud spacing
10000/2

25
200 mm= = 	

Example 6.8:  Plastic design of shear studs with point loads

Figure 6.17a shows the beam layout for a building. During the plastic analysis of Beam A, the 
neutral axis was found to be in the slab and the tensile strength of the steel section was found 
to be 2080 kN. Determine the spacing of the shear studs in Beam A if 85 kN studs are used.
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The neutral axis is in the slab. This means that there must be enough shear studs to develop 
the tensile force in the steel of 2080 kN. Therefore,

	 Number of studs
2080 kN
85 kN

25= = 	

Figure 6.17b shows the shear force diagram. It reveals that there is very little shear in the 
central third span. Therefore, the 25 shear studs need to be distributed over the end third 
spans instead of the half span, which was the case in the previous example. Therefore,

	 Spacing
10500/3

25
140 mm= = 	

Shear studs should be spaced at 140 mm centres in the end third spans. The shear force in 
the central third span is low and studs can be spaced at the maximum allowable spacing.

Example 6.9:  Elastic design with a point load

Figure 6.18 shows a slab supported by I-beams spaced at 750 mm centres and spanning 
10 m between simple supports. Each beam supports an imposed load of 15 kN positioned at 
midspan + a uniformly distributed imposed load of 20 kN/m (all unfactored).

	 1.	 Calculate the second moment of area of the composite beam.
	 2.	 Determine the maximum midspan deflection under SLS dead and imposed loading if 

the beams are unpropped during construction.
	 3.	 Sketch the elastic stress distribution under ULS dead and imposed loads.
	 4.	 Determine the maximum shear stud spacing at the supports using elastic theory if the 

shear stud capacity is 50 kN/stud.
	 5.	 Determine the distance from the supports that shear stud spacing can be increased to 

300 mm.

(b)

404 kN 400 kN

–1 kN

–401 kN

1 kN

–404 kN

10.5 m

10
.5

m

Beam A

Direction of deck span 
indicated by arrows 
below

(a)

Figure 6.17  Composite beam design for a building. (a) Plan view of floor and (b) shear force diagram for Beam A.



Composite structures  143

Basic data
Beam self-weight = 0.52 kN/m
Second moment of area of the steel section = 21,508 cm4

Cross-sectional area of the steel = 7600 mm2

Young’s modulus for the steel = 210,000 N/mm2

Young’s modulus for the concrete = 14,000 N/mm2

1. The effective width of the composite beam is the lesser of either the beam spacing 
(750 mm) or twice span/8 (2500 mm). The width of the transformed section top flange from 
Equation 6.2 is

	 b 750
14000
210000

50 mmflange = × = 	

The distance (x) between the top of the slab and the centroid of the transformed section is 
defined by taking moments of area about the top of the slab, i.e.,

	 x50 130
130

2
7600 130 406/2 50 130 7600( ) ( )× × + × + = × × + 	

	 x 209.5 mm= 	

Using the parallel axis theorem, the second moment of area is

	

50 130
12

50 130 209.5
130

2
21508 10 7600 130 203 209.5comp

3 2
4 2

I ( )= × + × × −



 + × + × + −

	 475.9 10 mmcomp
6 4I = × 	

2. The dead load from the slab and beam self-weight is

	 w 25.0 0.75 0.13 0.52 2.96 kN/mdl = × × + = 	

Since the beam is unpropped, the deflection is calculated using I for the plain steel section; 
thus, the midspan deflection is

	
5 2.96 10000

384 210000 21508 10
8.5 mmdl

4

4∆ = × ×
× × ×

= 	

10 m750 mm

130 mm

406 mm

(a) (b)

5 m

15 kN

20 kN/m

Figure 6.18  Unpropped beam. (a) Cross section through composite beams and (b) imposed loading 
applied to each beam.
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The imposed loads shown in Figure 6.18b are resisted by the composite action between the 
steel and concrete. Therefore, the composite beam second moment of area is used and the 
imposed load deflection is

	
5
384 48

4 3wL
EI

PL
EI

∆ = + 	

	
5 20 10000

384 210000 475.9 10
15 10 10000

48 210000 475.9 10
29.2 mmil

4

6

3 3

6∆ = × ×
× × ×

+ × ×
× × ×

= 	

And the total deflection from the dead and imposed loads is

	 8.5 29.2 37.7 mm∆ = + = 	

3. The ULS dead load from the slab and beam self-weight is

	 w 1.35 (25.0 0.75 0.13 0.52) 3.99 kN/mdl = × × × + = 	

And the dead load midspan moment is

	 M
3.99 10

8
49.9 kN.mdl

2

= × = 	

The beam supports the dead loads without assistance from the concrete slab; therefore, the 
stresses in the outer fibres are calculated using the second moment of area of the steel section 
only, from Equation 6.1

	 49.9 10 ( 203)
21508 10

47.1 N/mm
6

4
2σ = × × ±

×
= ± 	

The midspan moment due to the factored imposed load is

	
8 4

2

M
wL PL= + 	

	 M
1.5 20 10

8
1.5 15 10

4
431.25 kN.mil

2

= × × + × × = 	

Stress at the top of the slab is

	
E
E

M
I

c

s

yσ = × 	

	
14000
210000

431.25 10 ( )209.5
475.9 10

12.7 N/mm
6

6
2σ = × × × −

×
= − 	

At the bottom of the slab,

	
14000
210000

431.25 10 ( 209.5 130)
475.9 10

4.80 N/mm
6

6
2σ = × × × − +

×
= − 	
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Top of the steel

	 47.1
431.25 10 ( 209.5 130)

475.9 10
119.1 N/mm

6

6
2σ = − + × × − +

×
= − 	

Bottom of the steel

	 47.1
431.25 10 ( 209.5 130 406)

475.9 10
343.0 N/mm

6

6
2σ = + + × × − + +

×
= 	

These stresses are shown graphically in Figure 6.19. The most common grade steel (S355) 
has a yield stress of 355 N/mm2; therefore, the beam should remain elastic if this grade is 
used.

4. The shear studs develop no stress when the beam supports wet concrete. Therefore, only 
loads applied after the concrete has hardened contribute to shear stud loading. The ULS 
shear force from this (imposed) loading is

	 V
wL P
2 2

= + 	

	 V
1.5 20 10

2
1.5 15

2
161.25 kN= × × + × = 	

The shear force at midspan is

	 V
P
2

1.5 15
2

11.25 kN= = × = 	

And the shear force diagram from imposed loads only is sketched in Figure 6.20.

–12.7 N/mm2

–4.8 N/mm2

–119.1 N/mm2

+343.0 N/mm2

(a) (b)

Figure 6.19  Stress distribution under ULS loads. (a) Cross section and (b) stress distribution.

161.25 kN

–161.25 kN

–11.25 kN

11.25 kN
84.5 kN

x

Figure 6.20  Shear force diagram (from imposed loads only).
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From Equation 6.12, the shear flow at the supports is

	 Shear flow
VA y

I
= ′

	

	 Shear flow
161.25 10 50 130 (209.5 65)

475.9 10
318.2 N/mm

3

6= × × × × −
×

= 	

From Equation 6.13, the maximum shear stud spacing at the ends of the beam is

	 Spacing
stud strength
shear flow

= 	

	 Spacing
50 10
318.2

157.1 mm
3

= × = 	

5. If the 50 kN studs are spaced at 300 mm, the corresponding shear flow (Equation 6.13) is

	 Shear flow
50 10

300
166.7 N/mm

3

= × = 	

Rearranging Equation 6.12 provides the shear strength

	
shear flow

V
I

A y
= ×

′ 	

	 V
166.7 475.9 10

50 130 (209.5 65)
10 84.5 kN

6
3= × ×

× × −
× =−

	

The distance (x; see Figure 6.20) from the end of the beam, where the shear force is 84.5 kN, is

	 x
161.25 84.5

1.5 20
2.558 m= −

×
= 	

Therefore, the stud spacing can be increased to 300 mm, 2.558 m from the supports.

Example 6.10:  Primary beam in a building

The framing arrangement for the floor of a building is shown in Figure 6.21. A regular 
column grid layout of 9 by 9 m has been used throughout. All of the beams are unpropped 
and the slab is cast on profiled metal deck sheeting, with the direction of the span indicated 
by the arrows. Using the basic data below and in Figure 6.21, evaluate the following for 
Beam A:

	 1.	 Determine the bending stress under the ULS wet weight of the concrete and construc-
tion imposed loads of 0.75 kN/m2.

	 2.	 Determine the midspan deflection due to dead loads and an imposed load of 5 kN/m2.
	 3.	 Prove that the beam remains elastic under dead and imposed SLS loads.
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	 4.	 Determine if the plastic moment capacity is adequate to resist the ULS moment.
	 5.	 Determine the maximum stud spacing at the ends of the beam using plastic theory.

Basic data
Yield stress = 355 N/mm2

Young’s modulus for steel = 210,000 N/mm2

Crushing strength of concrete = 40 N/mm2

Young’s modulus for concrete = 20,000 N/mm2

Cross-sectional area of Beam A = 9313 mm2

Second moment of area of Beam A = 260×106 mm4

Shear stud capacity = 85 kN per stud
Dead load of concrete slab = 2.5 kN/m2

Beam A self-weight = 0.64 kN/m
Beam B self-weight = 0.40 kN/m

1. The ULS unit loading of the slab and construction imposed loads is

	 w = 1.35gk + 1.5qk = 1.35 × 2.5 + 1.5 × 0.75 = 4.5 kN/m2

The area of slab transferred as point loads onto Beam A = 9×3 = 27 m2 (see Figure 6.22).
The point loads also include the self-weight from beams type B (0.4 kN/m); therefore,

	 P = 27 4.5 1.35 0.4 9 = 126.4 kN× + × × 	

Beam A also supports a UDL developed by its own self-weight of 0.64 kN/m

	 w = 1.35 × 0.64 = 0.86 kN/m

The midspan moment is

	
3 8

2

M
PL wL= + 	

9 m

9
m

Beam A

Direction of deck span 
indicated by arrows below

135 mm

Depth of profiled metal
deck sheeting = 50 mm

(a) (b)

Beam type B
406 mm

Figure 6.21  Composite beam design for a building. (a) Plan view of beam layout and (b) section through Beam A.
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	 M
126.4 9

3
0.86 9

8
387.9 kN.m

2

= × + × = 	

The stress in the top and bottom of the beam under wet concrete is

	
( ) /2 387.9 10 ( )203

260 10
302.9 N/mm

6

6
2M d

I
σ = × ± = × × ±

×
= ± 	

This is less than the yield stress of 355 N/mm2; therefore, this check is passed.

2. The effective width of the slab is the lesser of either the beam spacing (3 m) or

	 b
9000

8
2 2250 mmeff = × = 	

From Equation 6.2, the width of the top flange of the transformed section is

	 b
E
E

c

s

2250 214.3 mmflange = × = 	

The distance from the top of the slab to the elastic neutral axis (x) is determined by taking 
moments about the top of the slab. Only the concrete in the top of the slab is included in 
the calculation, because the concrete in the troughs of the profiled metal decking is ignored 
to keep the analysis simple. The top of the slab is 85 mm thick (i.e. 135 mm – 50 mm; see 
Figure 6.21b); therefore,

	 x214.3 85
85
2

9313 (135 406 0.5) 214.3 85 9313( )× × + × + × = × + 	

	 x 142.5 mm= 	

9 m

9
m

9
m Area of slab

used to
calculate P

9
m

 

3 m

Beam A

P P

Beam A

Figure 6.22  Calculation of point loads.
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Using the parallel axis theorem, the second moment of area of the composite beam is

	

214.3 85
12

260 10 9313 (135 406 0.5 142.5)

214.3 85 (142.3 85 0.5)

comp

3
6 2

2

I = × + × + × + × −

+ × × − ×

	

	 808.3 10 mmcomp
6 4I = × 	

The unfactored dead load of the slab and the self-weight of Beam B is

	 P 2.5 9 3 9 0.40 71.1 kN= × × + × = 	

This point load is applied at third span points to Beam A (see Figure 6.22), in addition to 
the UDL from the self-weight of Beam A, 0.64 kN/m. The dead load deflection is calculated 
using the second moment of area of the bare steel section, since this is unpropped construc-
tion, i.e.,

	
5
384

23
648

dl

4 3wL
EI

PL
EI

∆ = + 	

	
5 0.64 9000

384 210000 260 10
23 71.1 10 9000

648 210000 260 10
34 mmdl

4

6

3 3

6∆ = × ×
× × ×

+ × × ×
× × ×

= 	

Since the imposed loads are transferred first through the secondary beams (marked B), the 
5 kN/m2 imposed loads develop point loads of

	 P 9 3 5 135 kN= × × = 	 (6.14)

The midspan deflection due to the imposed loading is calculated using the second moment 
of area of the composite beam, i.e.,

	
PL
EI

23
648

3

∆ = 	

	
23 135 10 9000

648 210000 808.3 10
21 mmil

3 3

6∆ = × × ×
× × ×

= 	

Finally, the total deflection is

	 34 21 55 mmtotal∆ = + = 	

3. The objective here is to see if the beam remains elastic under working loads. The dead 
load midspan bending moment is

	
8 3

2

M
wL PL= + 	

	 M
0.64 9

8
71.1 9

3
219.8 kN.m

2

= × + × = 	
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And the corresponding stress in the outer fibres of the steel section is

	
219.8 10 ( 203)

260 10
171.6 N/mm

6

6
2σ = × × ±

×
= ± 	

The imposed load (Equation 6.14) develops the following midspan moment

	 M
135 9

3
405 kN.m= × = 	

And maximum stress occurs in the bottom of the steel section, i.e.,

	 171.6
405 10 (135 406 142.5)

808.3 10
371.3 N/mm

6

6
2σ = + + × × + −

×
= + 	

This is more than the yield stress (355 N/mm2); therefore, the steel beam will yield under 
serviceability limit state loading and the section has failed this check.

4. From Equation 6.4, the tensile strength of the steel section is

	 T = fy × A = 355 × 9313 × 10–3 = 3306 kN

The neutral axis depth from Equation 6.8 is

	 x
3306 10

0.567 40 2250
64.8 mm

3

= ×
× ×

= 	

Since x is well above the profile metal decking, Equation 6.8 is correct for this situation. 
From Equation 6.9, the lever-arm depth is

	
2 2
steel

slabz
d

d
x= + − 	

	 z
406
2

135
64.8

2
305.6 mm= + − = 	

From Equation 6.10, the plastic moment capacity is

	 M T z=pl, Rd × 	

	 = 3306 305.6 10 = 1010 kN.mpl, Rd
3M × × − 	

The ULS moment now needs determining. The point loads from beams B are

	 P 1.35 2.5 9 3 9 0.40 1.5 9 3 5 298.5 kN( )= × × × + × + × × × = 	

And the UDL from the self-weight of Beam A is

	 w 1.35 0.64 0.864 kN/m= × = 	
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And the corresponding midspan moment is

	 M
0.864 9

8
298.5 9

3
904.2 kN.m

2

= × + × = 	

Since the applied moment (904.2 kN.m) is less than the moment capacity (1010 kN.m), the 
beam passes this check.

5. In this example, the plastic neutral axis lies in the slab (x = 64.8 mm); therefore, the 
shear studs in each third span of the beam need to develop a shear force equal to the tensile 
strength of the steel section, which was calculated as 3306 kN. The stud capacity is 85 kN 
and the minimum number of studs is

	 = =Number of studs
3306
85

39 	

And the maximum shear stud spacing is

	 Spacing
9000/3

39
77 mm= = 	

Example 6.11:  Bridge beam with point load

Figure 6.23a shows a cross section through a steel–concrete composite bridge spanning 
40 m. The girders are unpropped whilst supporting wet concrete, although the imposed 
loads are resisted by composite action. Yield stress = 355 N/mm2, Young’s modulus for 
steel = 210,000 N/mm2 and Young’s modulus for concrete = 25,000 N/mm2.

	 1.	 Determine the position of the neutral axis and the second moment of area of a single 
composite beam.

	 2.	 The full SLS dead load under the weight of the wet concrete is 10 kN/m (per girder). 
The girders were then subjected to a 12 kN/m (per girder) SLS imposed load after the 
concrete hardened. Determine the midspan deflection under this combined loading.

	 3.	 Determine what uniformly distributed imposed load would result in 335 N/mm2 of 
tensile stress in the steel girders, when combined with a ULS dead load of 13.5 kN/m.

	 4.	 A combination of ULS imposed loads (i.e. with load factors applied) are shown in 
Figure 6.23b. Sketch the corresponding shear force diagram.

	 5.	 The shear stud capacity is 50 kN per stud. Determine the maximum shear stud spacing 
at the support labelled a in Figure 6.23b using elastic theory.

	 6.	 Determine the distance from the end of the beam at which the shear stud spacing can 
be increased to 250 mm.

200 mm

(a) (b)

40 m
10 m

100 kN

UDL = 10 kN/m

a b2500 mm

300 mm

10 mm
thick web

40 mm
thick �ange

2500 mm
1080 mm

Figure 6.23  Composite beam design. (a) Cross section through composite beams and (b) imposed loading 
applied to each beam.



152  Structural design from first principles

1. The second moment of area of the girder is

	
300 1080 290 1000

12
7326 10 mm

3 3
6 4I = × − × = × 	

And the cross-sectional area = 34,000 mm2

The effective width of the composite beam is the lesser of either the beam spacing 
(2500 mm) or

	 b
L

2
8

2 40
8

10 meff = × = × = 	

From Equation 6.2, the width of top flange of the transformed section is

	
2500 25000

210000
297.6 mmflangeb = × = 	

The neutral axis is located by taking moments of area about the top of the slab

	 297.6 200
200
2

34000 200
1080

2
297.6 200 34000x ( )× × + × +



 = × × + 	

	 332.7 mmx = 	

And by using the parallel axis theorem,

	
297.6 200 332.7

200
2

297.6 200
12

34000 200
1080

2
332.7

7326 10

comp

2 3 2

6

I = × × −



 + × + + −





+ ×

	

	 16388 10 mmcomp
6 4I = × 	

2. The deflection during the casting stage is calculated using the plain steel section second 
moment of area

	
5 10 40000

384 210000 7326 10
217 mmdl

4

6∆ = × ×
× × ×

= 	

And the deflection due to the imposed loads is calculated using the composite second 
moment of area

	
5 12 40000

384 210000 16388 10
116 mmil

4

6∆ = × ×
× × ×

= 	

And the total deflection is

	 = 217 + 116 = 333 mmtotal∆ 	
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This large deflection can be partly mitigated by pre-cambering the beam to remove the 
217 mm of dead load deflection.

3. The midspan moment due to the dead load is

	
13.5 40

8
2700 kN/m

2

M = × = 	

which produces the following tensile stress in the section:

	
2700 10 ( )540

7326 10
199.0 N/mm

6

6
2M y

I
σ = × = × × ±

×
= 	

If the imposed load per m length is w, then the corresponding moment is

	
40

8
200

2

M
w

w= × = 	

The maximum tensile stress in the bottom flange due to imposed loading is

	
200 10 1080 200 332.7

16388 10
11.6il

6

6

w
w

( )σ =
× × + −

×
= 	

If the maximum stress is 335 N/mm2 this becomes

	 199.0 11.6 335w+ = 	

Therefore, the maximum UDL is 11.7 kN/m

4. The reactions at supports a and b are determined by taking moments, i.e.,

	
10 40

2
100 30

40
275 kNRa = × + × = 	

	
10 40

2
100 10

40
225 kNRb = × + × = 	

which are used to define the shear force diagram shown in Figure 6.24.

5. From Equation 6.12, the shear flow at support a is

	 Shear flow
VA y

I
= ′

	

275 kN

275 – 10 × 10 = 175 kN

175 – 100 = 75 kN

–225 kN

Figure 6.24  Shear force diagram.
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	 Shear flow
275 10 297.6 200 332.7 100

16388 10
232.4 N/mm

3

6

( )
=

× × × × −
×

= 	

	From Equation 6.13, the maximum shear stud spacing is

	 Spacing
50 10
232.4

215 mm
3

= × = 	

6. The shear flow at 250 mm centre spacing is

	 Shear flow
50 10

250
200 N/mm

3

= × = 	

Rearranging Equation 6.12 provides the shear strength

	
200 16388 10

297.6 200 (332.7 100)
10 236.6 kN

6
3V = × ×

× × −
× =−

	

The distance (x) from the support at which this shear force occurs is

	
275 236.6

10
3.84 mx = − = 	

Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	 P.6.1.	 Calculate the effective width for a composite beam spanning 12 m between simple 
supports. The beams are spaced at 3.5 m centres.

	 Ans. 3.0 m.

	 P.6.2.	 A building floor comprises simply supported beams spanning 10 m and spaced at 
2.5 m centres. The beams are unpropped during construction and the slab uses 
profiled metal decking, as shown in Figure 6.25. Young’s modulus for the con-
crete and steel is 13,667 N/mm2 and 210,000 N/mm2, respectively, and the steel 
section has a cross-sectional area of 7600 mm2 and a second moment of area of 
21,508 cm4.

130 mm80 mm

Permanent metal 
decking soffit

406 mm

Figure 6.25  Composite beam with profiled metal decking.

https://www.crcpress.com/9781498741217
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	 a.	 Determine the maximum stress in the beam under the ULS wet weight of the slab 
(1.92 kN/m2 unfactored) + the steel section self-weight (0.52 kN/m unfactored) 
+ the load of the construction workers and equipment (0.75 kN/m2 unfactored).

	 b.	 Determine the position of the neutral axis and the second moment of area of the 
uncracked composite slab.

	 c.	 The composite beams are designed to support an imposed load of 6 kN/m2, 
in addition to the concrete self-weight (1.92 kN/m2) and the steel section self-
weight (0.52 kN/m). Determine the distribution of stresses under these unfac-
tored loads.

	 d.	 Determine the total deflection at the serviceability limit state under combined 
dead and imposed loads.

	 Ans. (a) ±118 N/mm2, (b) x = 148 mm, Icomp = 634 × 106 mm4, (c) top of the slab = 
–2.85 N/mm2, bottom of the slab = –0.35 N/mm2, top of the steel section = –68.1 N/mm2, 
bottom of section = +177.5 N/mm2 and (d) 30 mm.

	 P.6.3.	 A building floor comprises simply supported beams spanning 8 m between simple 
supports. The beams are spaced at 3.5 m centres. The beams support the full weight 
of the floor slab, which is 150 mm deep, an imposed load of 4 kN/m2 and a centrally 
applied point (imposed) load of 20 kN per beam. The beams and the slab are joined 
together to act compositely and they are unpropped during construction. Determine 
the following:

	 a.	 The beam stresses and deflections when resisting the unfactored dead weight of 
the concrete only.

	 b.	 The position of the neutral axis and the second moment of area of the uncracked 
composite slab.

	 c.	 Sketch the stress distribution under working loads in the composite beam.
	 d.	 The total deflection under working loads.
		  Basic data
		  Second moment of area of the steel beam = 15,000 cm4

		  Cross-sectional area of steel section = 6000 mm2

		  Beam weight = 0.5 kN/m, concrete = 25 kN/m3

		  Depth of the steel section = 400 mm
		  Young’s modulus for the steel = 210,000 N/mm2

		  Young’s modulus for the concrete = 25,000 N/mm2

	 Ans. (a) Maximum stress = ±145 N/mm2, deflection = 23.0 mm, (b) x = 114.6 mm, 
Icomp = 605 × 106 mm4, (c) top of the slab = –3.4 N/mm2, bottom of the slab = 1.1 N/mm2, 
top of section = –136 N/mm2, bottom of section = 254 N/mm2 and (d) 30.6 mm.

	 P.6.4.	 A building floor comprises simply supported beams spanning 9 m between simple 
supports and spaced at 4 m centres. The total unfactored dead load is 2.05 kN/m2 
(inclusive of beam self-weight) and the imposed load is 6 kN/m2. The beam and the 
slab are joined together to act compositely and the beam is unpropped during con-
struction. The 130 mm deep slab uses profiled metal decking with a trough depth 
of 50 mm. Determine:

	 a.	 The bending stresses and deflection under the unfactored weight of the wet con-
crete only

	 b.	 The position of the neutral axis and the second moment of area of the uncracked 
composite beam

	 c.	 The stress distribution under working loads in the composite beam
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	 d.	 The total deflection under working loads in the composite stage
	 e.	 The plastic moment capacity of the composite beam
	 Basic data
		  Second moment of area of the steel beam = 21,508 cm4

		  Cross-sectional area of steel section = 7600 mm2

		  Depth of the steel section = 406 mm
		  Yield stress = 275 N/mm2

		  Concrete cylinder crushing stress = 40 N/mm2

		  Young’s modulus for the steel = 210,000 N/mm2

		  Young’s modulus for the concrete = 25,000 N/mm2

	 Ans. (a) ±78 N/mm2, 16 mm, (b) 116.7 mm, 708 × 106 mm4, (c) top of the slab = 
–4.8 N/mm2, top of profiled metal decking = –1.5 N/mm2, top of section = –73.4 N/mm2, 
bottom of section = 222 N/mm2, (d) 29.3 mm and (e) 653.1 kN.m.

	 P.6.5.	 Figure 6.26 shows a beam supporting a uniformly distributed imposed load of 
6 kN/m2 (unfactored) in addition to a centrally applied imposed load of 30 kN. The 
beam is to be designed elastically and will use unpropped construction, with a 10 m 
span and beams spaced at 2.5 m centres.

	 a.	 Determine the stress distribution in the steel beam under ULS wet weight of 
the concrete.

	 b.	 Determine the second moment of area of the composite section.
	 c.	 Determine the elastic stress distribution in the central part of the beam under 

full ULS dead and imposed loads.
	 d.	 The beam is constructed using 70 kN capacity shear connectors. Determine the 

maximum spacing of the shear connectors at the end of the beam using elastic 
design theory.

		  Basic data
			   Second moment of area of the steel beam = 21,508 cm4

			   Cross-sectional area of steel section = 7600 mm2

			   Beam weight = 0.52 kN/m
			   Slab weight = 1.92 kN/m2

			   Depth of the steel section = 406 mm
			   Young’s modulus for the steel = 210,000 N/mm2

			   Young’s modulus for the concrete = 13,667 N/mm2

	 Ans. (a) ±85 N/mm2, (b) 634 × 106 mm4, (c) top of the slab = –6.0 N/mm2, top 
of profiled metal decking = –2.7 N/mm2, top of section = –95 N/mm2, bottom 
of section = 327 N/mm2 and (d) 238 mm.

2500 mm

80 mm130 mm

406 mm

Figure 6.26  Cross section through a composite beam.
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Chapter 7

Reinforced concrete beams and columns

This chapter introduces the basic theory governing the design of RC members subjected to bend-
ing and compression. The design of beams in bending and shearing is considered, as well as 
the basic applications of mechanics to the detailing of reinforcement and the calculation of the 
minimum area of reinforcement. The control of deflections is not considered, because the stiff-
ness of reinforced concrete (RC) beams is difficult to assess due to cracking, which is normal in 
RC beams. Because of this, deflections are normally controlled by empirical methods involving 
span-to-depth ratios. This chapter then moves on to consider the design of columns and shows 
how to construct moment versus axial force design charts. These include charts for the design 
of non-rectangular and asymmetric columns, as well as columns subjected to biaxial bending.

7.1  MATERIAL PROPERTIES

RC is a composite of steel and concrete. Both materials have the same value of coefficient of 
linear expansion (12 microstrain per °C), although this is the only property that is the same. 
The most important difference is that concrete is brittle, whereas steel is ductile.

There are two ways to test concrete strength, cylinder tests and cube tests. Table 7.1 shows 
the compression strengths for a range of different concrete grades. A typical designation for a 
grade of concrete is ‘C25/30’. In this case, the ‘25’ refers to the compression strength determined 
from cylinder tests and the ‘30’ refers to the cube strength. Cube tests give higher strengths than 
cylinders because of the friction between the test machine and the cube. This book considers 
calculations based on cylinder strengths, since that is the approach used by the Eurocodes.
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The design compressive strength (fcd) of concrete is

	

0.85
cd

ck=
γ

f
f

c 	

	 0.567cd ck=f f 	 (7.1)

where
fck is the crushing strength (see Table 7.1).
γc is the partial safety factor, set at 1.5.

Concrete is brittle and it is assumed to fail after an ultimate strain of only 0.0035 (0.35%). 
This affects many calculations, as does the design strength (fyd) of rebar:

	
yd

yk=
γ

f
f

s 	

	 0.87yd yk=f f 	 (7.2)

where
fyk is the yield stress.
γs is the partial safety factor, which is set at 1.15.

It is often necessary to check to see if rebar yields before the concrete has failed in crushing. 
The yield strain (εy) is needed for these calculations. The yield strength of standard grade 
rebar is 500 N/mm2; therefore

	
500

1.15 210000
0.002ykε =

γ
=

×
=

f
E

y
s s

	 (7.3)

Short-term values for Young’s modulus (Ec) are also shown in Table 7.1. Inelastic move-
ments, which occur over months and years, known as creep, reduce Young’s modulus to less 
than half of these values when resisting permanent loads. The tensile strength (fctm) of con-
crete is another important parameter. It is approximately 1/10th of the crushing strength, 
although more accurate values are shown in Table 7.1. It is worth noting that the tensile 
strength of concrete is not reliable and should not be used to support loads.

The cross-sectional area of groups of standard diameter rebar are shown in Table 7.2. 
The number and diameter of rebar used is written in shorthand as the number, followed 
by the letter H to designate high yield and the diameter. For example, 2H32 designates two 
high yield rebars with a diameter of 32 mm.

Dead weight features in many calculations. In this book, the density of RC is taken as 
25 kN/m3, inclusive of rebar weight.

Table 7.1  Strength grades for concrete

Concrete grade C25/30 C30/37 C35/45 C40/50 C50/60

Cylinder test 28-day compressive strength, fck (N/mm2) 25 30 35 40 50
Short-term Young’s modulus, Ec (N/mm2) 31,000 33,000 34,000 35,000 37,000
Tensile strength, fctm (N/mm2) 2.6 2.9 3.2 3.5 4.1
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7.2  MOMENT CAPACITY OF BEAMS

The basic notation for an RC beam is shown in Figure 7.1a. The hoop-shaped rebar is a 
shear link and these resist shear forces. When a beam flexes, the concrete in tension will 
crack, and can be assumed for design purposes to carry no tensile stress. If the rebar yields, 
then the tensile force in the rebar is

	 0.87 yk=T f As 	 (7.4)

where
As is the cross-sectional area of tension steel (see Figure 7.1a).

The rebar in the compression zone will also develop compression stresses. If the rebar has 
yielded, then the compression force in the rebar (Cs) is

	 0.87 yk= ′C f As s 	 (7.5)

where
′As  is the area of compression steel (Figure 7.1a).

The concrete develops a compression force, shown as Cc in Figure 7.1b. If the crushing strain 
in the concrete is reached (εc = 0.0035 as shown in Figure 7.1c), then a uniform compression 

b

d

d’

h

As’

T

(b) (c)

x

Neutral axis

(a)

εs'

εs

εc = 0.0035 (ultimate strain)

0.8 x
Cs

Cc

As

Lever arm, z

Rectangular stress 
distribution

Shear link

c (cover)

Figure 7.1  Notation, forces and strains in a RC beam at the point of failure. (a) Notation, (b) design forces 
and (c) strains.

Table 7.2  Sectional areas of groups of rebar, in mm2

Diameter
(mm)

Number of bars

1 2 3 4 5 6 7 8 9 10

6 28 57 85 113 141 170 198 226 254 283
8 50 101 151 201 251 302 352 402 452 503
10 79 157 236 314 393 471 550 628 707 785
12 113 226 339 452 565 679 792 905 1018 1131
16 201 402 603 804 1005 1206 1407 1608 1810 2011
20 314 628 942 1257 1571 1885 2199 2513 2827 3142
25 491 982 1473 1963 2454 2945 3436 3927 4418 4909
32 804 1608 2413 3217 4021 4825 5630 6434 7238 8042
40 1257 2513 3770 5027 6283 7540 8796 10053 11310 12566
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stress distribution is assumed to exist in the compression part of the beam, as sketched in 
Figure 7.1b. The compression zone is assumed to extend from the outer edge of the beam 
to a depth of 0.8x, where x is the neutral axis depth. The total force in the concrete (Cc) is 
the design crushing stress (Equation 7.1), multiplied by the area of the compression block, 
which is the width of the compression half of the beam (b) multiplied by the depth of the 
stress block (0.8x), that is:

	 0.567 0.8ckC f b xc = × × × 	 (7.6)

From force equilibrium

	 T C Cc s= + 	 (7.7)

It is very important to ensure that beams are ductile. This is achieved by ensuring that 
failure involves yielding of the tension rebar, which is ductile, rather than crushing of the 
concrete, which is brittle. Ductility is achieved indirectly by limiting the depth to the neutral 
axis (x) to

	 0.45x d≤ × 	 (7.8)

where
d is known as the effective depth and is illustrated in Figure 7.1a, where

	
2

= − − φ − φ
d h c s

b 	 (7.9)

h is the beam depth.
C is known as the ‘cover’; see Figure 7.1a.
ϕs is the diameter of the shear links.
ϕb is the diameter of the tension rebar.

If the beam is in equilibrium, then the applied moment (MEd) is resisted by a couple between 
these opposing forces. The lever arm distance, z (Figure 7.1b), is the distance between 
Cc and T:

	 0.4z d x= − 	 (7.10)

If x is at the limit of 0.45d, then

	 0.4 (0.45 ) 0.82z d d d= − × = 	 (7.11)

If the beam does not have compression steel, it is known as singly reinforced and the maxi-
mum (ultimate) moment such a beam can resist is

	 M C zu c= 	 (7.12)

Combining this with Equations 7.6, 7.8 and 7.11

	 0.567 0.8 (0.45 ) (0.82 )ckM f b d du = × × × × 	

	 0.167 ck
2M f bdu = 	 (7.13)
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This is the maximum moment a beam can resist safely, without compression steel. The addi-
tion of compression steel lowers the depth to the neutral axis. Therefore, compression steel 
is used if the applied moment, MEd > Mu. These beams are termed doubly reinforced and the 
first task is to determine if a beam is to be singly or doubly reinforced.

7.2.1  Singly reinforced beams

The moment capacity of beams without compression steel can be determined by taking 
moments about the centre of the concrete compression force, Cc (see Figure 7.1b):

	 M T z= × 	 (7.14)

Combining this with Equation 7.4 provides the area of tension steel needed to resist the 
applied moment (MEd)

	
0.87

Ed

yk

=A
M

f z
s 	 (7.15)

The lever-arm distance, z, needs to be calculated. This involves the solution of a quadratic 
equation using the following formulae:

	 0.5 0.25 3 / 3.4z d k )(= + − 	 (7.16)

where

	 Ed

ck
2k

M
f bd

= 	 (7.17)

Example 7.1:  Singly reinforced beam

Determine the area of rebar needed to resist the midspan bending moments, for a 275 mm 
wide by 450 mm deep beam, which supports a 22 kN/m imposed load. The beam is simply 
supported and spans 7 m, fck is 35 N/mm2 and 25 mm cover is provided.

The first step is to calculate the effective depth. In this calculation, it is assumed conservatively 
that 8 mm diameter shear links and a 40 mm tension rebar are used. From Equation 7.9

	 2
s= − − φ − φ

d h c b

	

	 450 25 8 40/2 397 mmd = − − − = 	

The maximum moment a beam can resist without compression steel (Equation 7.13) is

	 M f bdu 0.167 ck
2= 	

	 0.167 35 275 397 10 = 253 kN.m2 6Mu = × × × × − 	
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From Equation 1.3, the ULS load is

	 1.35 1.5ulsw g qk k= + 	

	 1.35 0.275 0.45 25.0+1.5 22 37 kN/mw = × × × × = 	

where 25.0 kN/m3 is the density of the concrete. The corresponding midspan moment is

	

37 7
8

227 kN.mEd

2

M = × =
	

Since the applied moment MEd ≤ Mu, this beam can be designed as singly reinforced and 
from Equation 7.17

	

Ed

ck
2=k

M
f bd 	

	

227 10
35 275 397

0.150
6

2k = ×
× ×

=
	

And the lever arm from Equation 7.16 is

	
0.5 0.25 3 / 3.4z d k )(= + −

	

	 397(0.5 0.25 3 0.150 / 3.4) 335 mmz = + − × = 	

And the area of tension steel from Equation 7.15 is

	 0.87
Ed

yk

=A
M

f z
s

	

	

227 10
0.87 500 335

1558 mm
6

2As = ×
× ×

=
	

Inspection of Table 7.2 shows two 32 mm diameter rebars (in shorthand, this is 2H32) pro-
vide 1608 mm2.

Example 7.2:  Investigate the effect neutral axis depth has on ductility

Two beams are identical apart from area of reinforcement used (see Figure 7.2). The beams 
are tested to failure, with the load deflection response shown in Figure 7.3. Use theory to 
calculate the depth to the neutral axis for each beam and comment on its effect on ductility, 
as shown in the load deflection graphs in Figure 7.3. The rebar yield stress is 500 N/mm2 
and the concrete crushing stress is 40 N/mm2.
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Test 1: From Equation 7.4, the design tensile strength of the rebar is

	
0.87 yk=T f As 	

	 0.87 339 500 10 147.4 kN3T = × × × =− 	 (7.18)

From Equation 7.6

	 0.567 0.8ck= × × ×C f b xc 	

	 0.567 40 160 (0.8 ) 10 2.93C x xc = × × × × =− 	 (7.19)

From horizontal equilibrium

	 Cc = T	 (7.20)

Combining Equations 7.18, 7.19 and 7.20, the neutral axis depth is

	

147.4
2.9

51 mmx = =
	

Test 2: From Equation 7.4

	 0.87 942 500 10 409.8 kN3T = × × × =−
	

and it follows that

	
409.8
2.9

141 mmx = = 	

d = 189 mm

Loading arrangement

2250 mm

P

220 mm

160 mm

Cross section Test 1

As = 339 mm2 

Test 2

As = 942 mm2 

Figure 7.2  Test beam setup.
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Figure 7.3  Experimental load versus deflection for beams in Figure 7.2.
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As discussed earlier, x ≤ 0.45d in order to ensure sufficient ductility and in this case 
0.45d = 85 mm.

Test 1 is well within this limit (x = 51 mm) and Figure 7.3 shows that this beam deflected by 
almost 40 mm before reaching the collapse point. The theory suggests that Test 2 should be 
less ductile, since x = 140 mm and is therefore well over the safety limit. Figure 7.3 shows 
that this is indeed the case, with the collapse point occurring quickly after the elastic limit 
is reached.

7.2.2  Doubly reinforced beams

If the applied moment, MEd, is greater than Mu, then strength can be increased by balancing 
tension force with compression steel. Taking moments about the tension steel, as illustrated 
in Figure 7.4b

	 M C z C d dc s= + − ′( )Ed 	 (7.21)

The neutral axis depth, x, is set at the maximum limit of 0.45d; therefore, from Equation 7.11 
and 7.6 the compression force in the concrete becomes

	 0.567 0.8 0.45ck= × × ×C f b dc 	

	 0.204 ck=C f bdc 	 (7.22)

Substituting Equations 7.4 and 7.22 into 7.7

	 0.87 0.204 0.87yk ck yk= + ′A f f bd A fs s 	 (7.23)

Substituting in Equations 7.11 and 7.13 

	
0.87 yk

= + ′A
M

f z
As

u
s 	 (7.24)

Taking moments about the centre of the tension steel (Figure 7.4b)

	
0.204 0.82 0.87 ( )Ed ck yk= × + ′ − ′M f bd d f A d ds 	

x = 0.45 d

d

C c

T

(a)

A s

b 

(b)

A’s

d’

C s

Neutral axis

0.8x

z = 0.82 d

Figure 7.4  Doubly reinforced beam. (a) Cross section and (b) design forces.
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Combined with Equation 7.24, this rearranges to

	
0.87 ( )

Ed

yk
′ = −

− ′
A

M M
f d d

s
u 	 (7.25)

where
As′ is the area.
d′ is the effective depth for the compression steel (see Figure 7.4a).

Yielding check. These calculations assumed that the reinforcement has yielded. This is a safe 
assumption with regard to the tension steel; however, the compression steel is located closer 
to the neutral axis and it may not develop sufficient strain to yield. The strain distribution 
at failure is shown in Figure 7.1c, and the principle of similar triangles can be applied to this 
to show that

	 x d x
s′ε

− ′
= 0.0035

	

Rearranging

	

d
x

s′ = − ′ε
1

0.0035 	

From Equation 7.3, we see that normal quality steel rebar yields at a strain of 0.002; 
therefore

	

d
x
′ ≤ − ≤1

0.002
0.0035

0.43
	

Since the neutral axis depth was set on the limit of x = 0.45d, this becomes

	
d
d

′ ≤ 0.19 	 (7.26)

If this holds true, then the compression steel will yield and moment calculations are correct. 
If not, then the compression steel will not yield before failure and Equation 7.23 will require 
a reduced stress for the compression steel.

Example 7.3:  Doubly reinforced beam

Determine how much rebar is needed to resist the midspan moments for a 275 mm wide by 
450 mm deep RC beam supporting an imposed load of 40 kN/m. The beam spans 7 m, fck 
is 35 N/mm2 and 25 mm cover is provided.

The first step is to calculate the effective depth. Assuming 40 mm diameter main rebar and 
8 mm diameter shear links are used, from Equation 7.9

	 d = − − − =450 25 8 40/2 397 mm 	
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And the depth to the compression steel (see Figure 7.4a) is

	 d ′ = + + =25 8 20 53 mm 	

From Equation 1.3 the ULS load (w) and midspan moment (MEd) are

	 w 1.35 0.275 0.45 25 1.5 40 64 kN/m= × × × + × = 	

	
M = × =64 7

8
392 kN.mEd

2

	

The ultimate moment without compression steel (Equation 7.13) is

	 0.167 ck
2=M f bdu 	

	 Mu = × × × × −0.167 35 275 397 10 = 253 kN.m62

	

Since M > Mu, this beam requires compression steel, and from Equation 7.25

	 0.87 ( )
Ed

yk
′ = −

− ′
A

M M
f d d

s
u

	

	
As′ = − ×

× −
=(392 253) 10

0.87 500(397 53)
929 mm

6
2

	

From Equation 7.11

	 z d= =0.82 326 mm 	

From Equation 7.24

	 0.87 yk

= + ′A
M

f z
As

u
s

	

	
As = ×

× ×
+ =253 10

0.87 500 326
929 2713 mm

6
2

	

For completeness, it is necessary to check that that the compression steel yields using 
Equation 7.26

	

d
d

′ = = ≤ ∴53
397

0.13 0.19 OK
	

Using Table 7.2, the following rebar provision can be shown to meet these requirements:

	 Top → 2 × 25 mm diameter rebar (shorthand 2H25)

	 Bottom → 2 × 40 mm + 1 No. 25 mm rebar (shorthand 2H40 + 1H25)
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Example 7.4:  Calculate the strength of a beam

Determine the bending strength of a 400 mm wide, 350 mm deep beam reinforced with 
8 mm diameter shear links, four 32 mm diameter tension rebars, and four 20 mm dia
meter compression rebars. The cover provided to the shear reinforcement is 25 mm, fck is 
40 N/mm2 and fyk is 500 N/mm2.

From Equation 7.9, the effective depth to the tension steel is

	 d = − − − =350 25 8 32/2 301 mm 	

and the effective depth to the compression steel is

	 d ′ = + + =25 8 20 / 2 43 mm 	

From Table 7.2, the areas of rebar are as follows: As is 3217 mm2 and ′As  is 1257 mm2. From 
Equation 7.4, the tensile strength of the tension rebar is

	
0.87 yk=T f As 	

	 T = × × × =−0.87 3217 500 10 1399 kN3 	 (7.27)

From Equation 7.5

	
0.87 yk= ′C f As s 	

	 Cs = × × × =−0.87 1257 500 10 547 kN3 	 (7.28)

From Equation 7.6

	 0.567 0.8ck= × ×C f b xc 	

	 C xc = × × ×0.567 40 400 0.8 	

	 C xc = 7258 	 (7.29)

From Equation 7.7

	 T C Cc s= + 	

	 x× = + ×1399 10 7258 547 103 3
	

which solves to x = 117 mm, and from Equation 7.29

	 Cc = × × =−7258 117 10 849 kN3 	
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Taking moments about the tension steel (see Figure 7.1b), the moment capacity is

	 M C d d C d xs c= − ′ + −( ) ( 0.4 ) 	 (7.30)

or

	 M = × − × + × − × × =− −547 (301 43) 10 849 (301 0.4 117.5) 10 356 kN.m3 3

	

7.3 � THE MAXIMUM AND MINIMUM AREAS 
OF REINFORCEMENT IN A BEAM

It is not possible to keep increasing strength by unlimited additions of steel. For beams, a 
maximum of 4% of the cross section can be taken as steel.

The minimum area of steel is defined by the objective to ensure that the beam fails in 
a safe and controlled manner. The elastic section modulus (Wel) of a rectangular beam of 
width (b) and depth (h) is

	 W
b h= ×

6
el

2

	 (7.31)

The moment capacity of an unreinforced concrete section is reached when the tensile 
strength of the concrete (fctm) is reached. Thus

	 M f W= ×unreinforced ctm el 	 (7.32)

For safe design, it is necessary to ensure that the bending strength of the cracked (reinforced) 
beam is not less than that of the uncracked (plain) concrete beam, i.e.,

	 M M≥reinforced unreinforced 	 (7.33)

This prevents cracking initiating a complete tensile failure of the reinforcement. If this 
occurs, then the beam can fail almost instantly. The moment capacity of the reinforced sec-
tion is

	 reinforced yk=M A f zs 	

In lightly reinforced sections, the lever arm is

	 z ≈0.95d

Therefore

	 0.95reinforced yk=M A f ds 	 (7.34)

Inputting Equations 7.32 and 7.34 into Equation 7.33

	
0.95

6
yk

ctm
2

≥A f d
f bh

s
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or

	

0.18 ctm
2

yk

≥A
f bh

f d
s

	

Assuming that h ≈1.2d, this becomes

	
0.26 ctm

yk

≥A
f bd
f

s 	 (7.35)

If this minimum area of steel is insufficient to resist the loads after first cracking, then a 
beam may fail suddenly if overloaded. Therefore, providing more than the bare minimum is 
prudent in many situations. Equation 7.35 tells us that the minimum area increases as the 
concrete strength increases; therefore, overstrength concrete could lead to brittle failure.

Example 7.5:  Calculation of the minimum area of reinforcement

Determine the minimum amount of tension reinforcement required for a 1200 mm wide 
beam that has an effective depth of 960 mm. The tensile (cracking) strength of the concrete 
is 3.5 N/mm2 and fyk = 500 N/mm2.

From Equation 7.35

	
As ≥ × × × =0.26 3.5 1200 960

500
2097 mm2

	

7.4  ANCHORAGE OF REINFORCEMENT AND LAPPING OF BARS

The surface of rebar is ribbed to prevent slippage through the concrete (see Figure 7.5). 
Despite this, rebar must be properly anchored in order to generate their design tensile or 
compressive forces. The anchorage length, Lb, is the minimum length required to prevent 
the rebar pulling out or pushing through the concrete (see Figure 7.6a). Bent bars are harder 
to pull out and therefore require less anchorage (see Figure 7.6b). The anchorage length is 
defined using codes of practice, although in simple terms, the basic anchorage length is equal 
to the anchorage length factor multiplied by the rebar diameter (see Table 7.3). For example, 
25 mm diameter rebar in C30/37 concrete would require an anchorage length of 25 × 36 = 
900 mm.

Lapping. The normal way to joint rebar is to lay one next to another and allow the concrete 
to transfer the force. This is known as ‘lapping’ and is illustrated in Figure 7.6c. Lapping can 
be unreliable. For example, the cover at laps can sometimes fail by splitting. Whilst almost 
all rebars are joined by lapping, this technique needs to be used carefully; therefore:

•	 Laps should spread out rather than concentrated.
•	 Avoid lapping more than 50% of the rebar at any one point.
•	 Position laps at positions of low moments.

Curtailment of tension reinforcement. In order to economise on rebar, it is usual to 
match the moment capacity to the bending moment diagram. This process is illustrated 
by Figure 7.7a, which shows the positions of the 50% midspan moment points for a beam 
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Figure 7.5  Rebar showing the ribbed surface designed to improve the bond with concrete.

(b)

A.fyk 

(a)

L b

1.5L b

A.fyk

A.fyk

A.fyk

(c)

0.7L b

Figure 7.6  Anchorage and lapping of rebar. (a) Anchorage of a straight bar, (b) anchorage of a bent rebar 
and (c) lapping of two rebar.

Table 7.3  Anchorage length factors for straight rebar in tension or compression

Concrete grade C25/30 C30/37 C35/45 C40/50

Anchorage length factor 41 36 33 30
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supporting a UDL. Figure 7.7b shows the corresponding points where 50% of the midspan 
rebar can be ended. It is very important to anchor the rebar that continues to the supports 
properly. Failure to do so seriously affects the shear capacity (not just the moment capac-
ity). Figure 7.7b shows an example of how rebar can be anchored using bars bent 90o.

Example 7.6:  Curtailment of rebar

A beam spans 11 m between simple supports and is 300 mm wide and 540 mm deep. 
It  supports its self-weight in addition to an imposed UDL of 15 kN/m and a centrally 
applied unfactored point load of 40 kN (dead) and 40 kN (imposed). The concrete density 
is 25 kN/m3 and the grade is C30/37.

	 1.	 Determine the midspan ULS moment and support shear force.
	 2.	 Determine the distance from the supports that the moment is equal to 50% of the mid-

span moment.
	 3.	 If four 25 mm rebars were used as midspan tension reinforcement, determine the dis-

tance from the supports such that two of the rebars (i.e. 50%) can be curtailed.

1. From Equation 1.3 the ultimate limit state UDL is

	 w 1.35 25 0.3 0.54 1.5 15 27.9 kN/m= × × × + × = 	

and the point load is

	 P = × + × =1.35 40 1.5 40 114 kN 	

50% midspan
moment 

(a)

L b

(b)

a

h

x

V V

L b

Figure 7.7  Illustration of the curtailment of tension reinforcement. (a) Bending moment diagram and 
(b) curtailment points for 50% of the midspan reinforcement.
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The midspan moment is

	
M

PL wL= +
4 8

2

	

	
M = × + × =114 11

4
27.9 11

8
736 kN.m

2

	

and the support shear force is

	
V

P wL= +
2 2 	

	
V = + × =114

2
27.9 11

2
210 kN

	

2. The 50% moment point is located at distance a from the support (see Figure 7.7b), and 
taking moments about this position

	
M V a w

a= × − ×0.5
2

2

	

	
a

a× = × − ×0.5 736 210 27.9
2

2

	

The roots of this quadratic are 2.02 and 13.02 m. In other words, the 50% midspan moment 
is located 2.02 m from each support.

3. From Table 7.3, the anchorage length factor for C30/37 concrete is 36; therefore, the 
anchorage length

	 Lb = × =36 25 900 mm 	

The distance, x, from the support to the point of curtailment (see Figure 7.7b) is

	 x a Lb= − = − =2020 900 1120 mm 	

7.5  SHEAR CAPACITY OF BEAMS

Figure 7.8a shows diagonal shear cracks propagating away from the supports at an angle of 
approximately 45°. Shear strength is provided by vertical rebar (known as shear links) that 
pass through the shear cracks. Similar rebars are shown being fixed in Figure 7.9. During 
design, the objective is to ensure that the shear resistance (VRd) is greater than the applied 
shear force (VEd). Concrete has an inherent shear capacity in the absence of shear links. 
Lightly loaded elements, such as slabs, rely on the shear strength of the concrete without the 
need for shear links. Shear failures tend to be sudden and dangerous; therefore, members of 
significance, such as all beams, must be strengthened with shear links.
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During the design process, the member is assumed to resist shear by truss action, illus-
trated in Figure 7.8b. The main tensile reinforcement comprises the bottom chord of the 
truss. The top chord comprises the concrete compression block developed to resist bending 
moments and the distance between these notional members is the lever arm distance, z. 
The diagonal struts are located at an angle θ and the vertical struts are spaced at a distance 
z/tan(θ); see Figure 7.8b.

The vertical members in the notional truss are composed of the shear links, which have 
an area, Asw. From force equilibrium, the shear capacity (VRd) is equal to the tensile strength 
of the shear links passing through a shear crack. As the shear link spacing (s) is reduced, 
the shear strength increases. This increase is proportional to the ratio between s and the 
distance between vertical members shown in Figure 7.8b. Thus, the design shear strength is

	 0.87
tan( )

Rd yk sw=
θ

V f A
z

s
	 (7.36)

T
z

(d)(c)

Asw

z/tan θ 

(b)

C str
ut

CC

Z cos θ

Shear crack 

b

Shear link

Shear link

(a)

θ

Figure 7.8  The mechanics of shear reinforcement. (a) Beam showing the rebar arrangement and shear 
cracks, (b) truss analogy for shear, (c) stress block for bending and (d) cross section.

Figure 7.9  A steel fixer attaching a shear link to a beam.
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where
s is the shear link spacing.
θ is the angle of the diagonal strut (Figure 7.8b).
z is the lever arm depth.

If z ≈ 0.9d and θ = 45°, then

	 0.78Rd yk
sw=V f d

A
s

	 (7.37)

Maximum shear strength. If shear reinforcement was increased without limit, then the diag-
onal strut labelled Cstrut in Figure 7.8b would eventually be crushed, and this limits the shear 
capacity. Diagonal cracks form, as shown in Figure 7.8a, and these reduce the crushing 
stress in the diagonal strut to

	 fσ = νRd cd 	

where the empirical reduction factor is

	 0.6(1 /250)ckν = − f 	

The diagonal strut width is z cos(θ), as illustrated in Figure 7.8b; therefore, the crushing 
strength is

	 cos( )strut Rd= σ × × θC b z 	

where
b is the width of the beam.

From force equilibrium

	 sin( )Rd, max strut= θV C 	

Combining the above equations

	 0.567 0.6(1 /250) cos( ) sin( )Rd, max ck ck= × − × × θ × θV f f b z 	

If z ≈ 0.9d and θ = 45°, then the maximum shear strength is

	 0.153f 1
250

Rd, max ck
ck= −





V bd
f

	 (7.38)

Maximum spacing of shear links. Since shear cracks tend to run at 45° to the plane of the 
member, it is important that shear links are not spaced so far apart that a crack can form in 
between the links. Therefore, the maximum spacing of the shear links is 0.75d.

Economy of shear reinforcement. The provision of shear links is a comparatively expensive 
operation; therefore, it is usual to match the shear strength to the shear force diagram. 
The method for establishing the position where the shear link spacing can be increased is 
explained in Example 7.7.



Reinforced concrete beams and columns  175

Example 7.7:  Design of shear reinforcement

A 250 mm wide and 400 mm deep RC beam spans 7 m between simple supports. It sup-
ports its self-weight in addition to an unfactored imposed UDL of 25 kN/m and a cen-
trally applied unfactored point load of 20 kN dead and 20 kN imposed. The strengths are 
fyk = 500 N/mm2 for the reinforcement and fck = 35 N/mm2 for the concrete. The cover is 
25 mm and 40 mm diameter main tension rebar are used.

	 1.	 Determine the ULS shear force.
	 2.	 Determine the maximum shear strength the beam can possess, irrespective of how 

much shear reinforcement is used.
	 3.	 It has been decided to use 8 mm diameter shear links in the beam. Determine the shear 

link spacing at the ends of the beam.
	 4.	 Determine the distance from the end supports at which the shear link spacing can be 

increased to 200 mm.

1. From Equation 1.3 the Ultimate limit state UDL

	 w 1.35 0.25 0.4 25 1.5 25 40.9 kN/m= × × × + × = 	

The point load is

	 1.35 20 1.5 20 57 kN= × + × =P 	

and the shear force is

	

57
2

40.9 7
2

171.6 kNEd = + × =V
	

2. The effective depth from Equation 7.9 is

	 400 25 8 40 / 2 347 mm= − − − =d 	

From Equation 7.38, the maximum shear strength the beam can attain is

	
0.153 1

250
Rd, max ck

ck= −





V f bd
f

	

	 0.153 35 250 347 (1 35/250) 10 400 kNRd, max
3= × × × × − × =−V 	

Since this is much higher than the applied shear force, there is no problem from concrete 
crushing resulting in early shear failure.

3. The 8 mm diameter shear links are hoop shaped; therefore, the rebar that comprises the 
shear links must pass through any shear crack twice, as sketched in Figure 7.8. Because of 
this, Asw is twice the cross-sectional area of a single 8 mm rebar, or 101 mm2. The maxi-
mum shear stud spacing is when VRd = VEd and from Equation 7.37 the shear link spacing is

	 0.78 yk
sw

Rd

=s f d
A
V 	
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0.78 500 347 101
171.6 10

80 mm3= × × ×
×

=s
	

Therefore, provide 8 mm shear links at 80 mm centres.

4. From Equation 7.37, shear links at 200 mm spacing develop the following shear capacity

	
0.78 500 347

101
160

10 68.3 kNRd
3V = × × × × =−

	

The UDL is 40.9 kN/m, which means that for every metre away from a support the shear 
force drops by 40.9 kN, until the point load is reached. The shear link spacing can be 
increased when the shear force drops to 68.3 kN. This occurs at a distance x from the sup-
port, where

	

171.6 68.3
40.9

2.53 mx = − =
	

The shear link spacing can increase to 200 mm at a distance of 2530 mm from the supports.

7.6  INTRODUCTION TO COLUMN DESIGN

Columns can fail either by crushing or buckling or a combination of the two. The failure 
mode will depend on the slenderness, as illustrated by Figure 7.11, which is measured by the 
ratio between the effective length (Lcr) and the column depth (h).

The crushing strength is simply the sum of the strengths of the concrete and steel in a 
column, i.e.,

	 crush cd yd= × + ×N f A f Ac s 	 (7.39)

Figure 7.10  A RC column prior to casting.
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where Ac and As are the cross-sectional areas of the steel and concrete, respectively. 
Equation 7.39 combined with Equations 7.1 and 7.2 becomes

	 0.567 0.87crush ck yk= +N f A f Ac s 	 (7.40)

The elastic critical buckling force can be calculated using Euler’s well-known formula, i.e.,

	 cr

2

cr
2= π

N
EI

L
	 (7.41)

Figure 7.11 shows the ratio Ncr/Ncrush plotted against slenderness. This ratio can be used to 
estimate whether failure will be by crushing (short columns) or by buckling (slender col-
umns). In very simple terms, columns can be defined as short if

	 5cr

crush

>N
N

	 (7.42)

If this is the case, then effects of buckling are minor and can be ignored, in which case the 
column must be capable of resisting the combined effects of the compression and moments. 
The columns in most buildings are short, and therefore practical column design is simpli-
fied. Codes of practice provide more exact methods for determining if a column is short or 
slender, but this limiting ratio is a good first principles-based guide. The design of slender 
columns is outside the scope of this book.

Example 7.8:  Classify a column as short or slender

A 3250 mm long column has a 400 mm square cross section and is reinforced with four 
rebars with a combined area of 1963 mm2; it can conservatively be assumed to be sim-
ply supported at the ends. Estimate the mode of failure, i.e., buckling or crushing, if fck = 
40 N/mm2, fyk = 500 N/mm2 and Young’s modulus for the concrete, Ec = 15,000 N/mm2.
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h

Slenderness, Lcr/h

Short
(crushing) 

Slender
(buckling and crushing)

Very slender 
(pure buckling)

Elastic critical buckling

Crushing

Real failure strength

Figure 7.11  Relationship between failure mode and column slenderness.
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The crushing strength from Equation 7.40 is

	
0.567 0.87crush ck yk= +N f A f Ac s 	

	 0.567 40 400 10 0.87 500 1963 10 4483 kNcr
2 3 3= × × × + × × × =− −N 	

The second moment of area of the cross section is

	

400
12

2.13 10 mm
4

9 4= = ×I
	

The elastic critical compression force from Equation 7.41 is

	

15000 2.13 10
3250

10 29854 kNcr

2 9

2
3= π × × × × =−N

	

And from Equation 7.42

	

29854
4483

6.7cr

crush

= =N
N 	

Since this ratio is greater than 5.0, this column is classified as short and in the absence of 
moments, the crushing strength will be approximately 4483 kN. Note that in the interests 
of simplicity, the area of concrete displaced by the rebar was ignored when calculating 
Ncrush. Furthermore, the second moment of area calculation ignored the extra stiffness (EI) 
provided by the steel. A more detailed calculation including both effects would have yielded 
a ratio of 8.8 instead of 6.7.

7.7 � SHORT COLUMNS SUBJECTED TO COMBINED 
COMPRESSION AND BENDING

If it is established that buckling will not influence strength, then the ability of the cross sec-
tion to resist applied compression and moments is established without further consideration 
of buckling. The simplest method of assessing the ability of a column to resist a combination 
of axial force (N) and moment (M) is to construct a design chart, known as an M–N inter-
action diagram. If the combination of M and N lies within the design envelop, as shown in 
Figure 7.12a, then the column is deemed satisfactory.

7.8  M–N INTERACTION DIAGRAMS

Figure 7.12a shows the three key points (1, 2 and 3) needed to define M–N interaction 
diagrams. For each point, the coordinates are calculated by resolving the axial forces to 
determine N and by taking moments about the column centreline to determine M. If the 
column is symmetrical as shown in Figure 7.12a, then the diagram is also symmetrical, 
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whereas unsymmetrical columns have unsymmetrical interaction diagrams (Figure 7.12b). 
If unsymmetrical, then usually the three points (1, 2 and 3) are enough for design pur-
poses, although the process for calculating points 4 and 5 are the same as 2 and 3, except 
that the moment is negative, which means the tension steel becomes compression steel and 
vice versa.

The sign convention for the construction of the interaction diagrams is as follows:

	 1.	 Compression is +ve and tension is –ve.
	 2.	 The lever arm for calculation of moments is +ve if above the column centre line 

and –ve if below.

Point 1: Crushing. Figure 7.13 shows a column subjected to a combination of moment and 
compression that produces uniform crushing throughout the cross section, labelled Point 1 
on Figure 7.12b. A moment is needed to balance the asymmetric forces in the rebar, since 
the cross section in this case is asymmetric (since As1 > As2). From force equilibrium, the 
compression strength is 

	 Rd 1 2= + +N C N Nc s s 	 (7.43)

And from moment equilibrium

	 Rd 1 1 2 2= +M N z N zs s s s 	 (7.44)

Point 1 
(crushing)

Point 2 
(balanced)

NRd

MRd

Any combination of 
M and N allowed if 
within shaded region

N

M

Centre line

Point 1
(crushing)

Point 2
(balanced)

NRd

Point 5
(balanced failure)

MRd

Centre line

(a)

(b)

N

N
M

M (+ve)

N

N
M

M (+ve)

Point 3
(pure bending)

Point 3
(pure bending)

–ve Point 2

–ve Point 3

Point 4
(pure bending)

0

0

Elevation

Elevation

Rebar
Section

Rebar
Section

Figure 7.12  The construction of a column M–N interaction diagram. (a) Symmetrical cross section and 
(b) unsymmetrical cross section.
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where the forces from the concrete and rebar are

	 0.567 ck= × ×C f b hc 	 (7.45)

	 0.871 1 yk=N A fs s 	 (7.46)

	 0.872 2 yk=N A fs s 	 (7.47)

The lever arms for the rebar are

	 /21 = − ′z h ds 	 (7.48)

	 ( /2)2 = − −z d hs 	 (7.49)

Note that zs2 is negative, because the lower rebar is below the column centre line and thus 
produces a negative moment.

Point 2: Balanced failure. This occurs when the outermost steel begins to yield at the same 
time as the concrete begins to crush. Figure 7.14 shows a cross section subjected to a com-
bination of moment and compression that produces this ‘balance failure’, which is labelled 
as Point 2 on Figure 7.12. 

Force equilibrium (Equation 7.43) provides the compression strength and from moment 
equilibrium

	 Rd 1 1 2 2= + +M C z N z N zc c s s s s 	 (7.50)

The lever arms for the rebar are provided by Equations 7.48 and 7.49. In the same manner 
as that used for beams, the concrete stress block is assumed to be 0.8x deep, where x is the 
depth to the neutral axis, as sketched in Figure 7.1b. The lever arm for the concrete force is

	
2

0.8
2

/2 0.4= − = −z
h x

h xc 	 (7.51)

At balance, the strain distribution is defined by the tension steel just yielding and the con-
crete just beginning to crush. The yield strain for the rebar is 0.002 (see Equation 7.2), and 
the crushing strain for ‘normal’ grades of concrete is 0.0035. Using these numbers, the strain 

As2

As1

CC

(c)(a)

h/2
NRd

MRd

(b)

Centre line

d'

dh

b

zs1

Ns1

Ns2

zs2

Figure 7.13  Calculation of maximum compression strength and associated moment. (a) Notation, 
(b) applied M and N and (c) internal forces.
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distribution shown in Figure 7.14c is constructed. The neutral axis depth (x) is determined 
using the method of similar triangles applied to this distribution, i.e.,

	 0.0035 0.002
= −x d x

	

which rearranges to

	 0.636=x d 	 (7.52)

The force in the lower rebar (Ns2) is determined using Equation 7.47. If the upper steel is 
located close to the neutral axis, it may not yield before the concrete crushes. From triangles 
applied to the strain distribution

	

0.00351ε
− ′

=
x d x

s

	

which rearranges to

	

0.0035( )
1ε = − ′x d

x
s

	 (7.53)

From Equation 7.2 it was shown that if εs1 ≥ 0.002, then steel will yield, in which case the 
force is determined using Equation 7.46. If not, then the Ns1 must be calculated using εs1.

Point 3: Pure bending. Since N = 0, the column is treated like a beam when calculating bend-
ing strength. If As1 ≥ As2 (where As1 is the area of compression steel), then the concrete is not 
needed to balance Ns2 (see Figure 7.15). Therefore, from moment equilibrium

	 ( )Rd 2= − − ′M N d ds 	 (7.54)

This equation is conservative, because it ignores compression in the concrete, although 
this conservatism is not normally significant. If As1 < As2, then compression in the con-
crete is needed to balance Ns2 and the design method is the same as that for Point 2, 
except that the neutral axis depth is defined by force equilibrium from Equation 7.43, 
with NRd = 0.

Cc

(c)

x
Neutral 
axis

(a)

εs2 = 0.002

εs1

εC  = 0.0035

x – d’ 

d – x 

(b)

d Centre lineh
zc

zs2As2

As1

b d'

NRd
MRd

Ns2

Ns1

zs1

Figure 7.14  Cross section at ‘balance’. (a) Notation, (b) forces and (c) strain distribution. 
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7.9  BIAXIAL BENDING

Columns with bending about two axes present a problem, because the interaction diagrams 
link N with M about only one axis. A simple and straightforward way to overcome this is 
to set one moment to zero and increase the moment about the other axis, as illustrated in 
Figure 7.16. The design then proceeds on the basis of the magnified moment alone. The first 
step is to identify which of the two moments should be eliminated. For a square column, 
this is usually the smallest moment, although if the column is wider about one axis than the 
other, then a quick check is needed.

Consider the column sketched in Figure 7.16. If

	
/ /′ ≥ ′M h M by z 	

Then Mz is reduced to zero and My is replaced with

	 1 Ed

ck

′ = + × ′
′

× −






M M M
h
b

N
bhf

y y z 	 (7.55)

whereas if

	
/ /′ < ′M h M by z 	

then My is reduced to zero and

	 1 Ed

ck
′ = + × ′

′
× −







M M M
b
h

N
bhf

z z y 	 (7.56)
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M + ve

(b)

Ns1 = –Ns2

N = 0 d – d’

Ns2
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Tension half
As2

As1

d'

d

Figure 7.15  Calculation of moment when N = 0. (a) Notation, (b) applied moment and (c) internal forces.
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Figure 7.16  Analysis of biaxial bending. (a) Notation, (b) biaxial bending and (c) uniaxial bending.
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Example 7.9: � Construction of a M–N interaction diagram 
for a symmetric column

Figure 7.17 shows a cross section through a column. Plot the M–N interaction diagram and 
use it to determine if the column can resist a 280 kN.m moment, combined with a compres-
sion force of 1500 kN.

Basic data:
As1 = As2 = 1963 mm2

fck = 40 N/mm2

Point 1: Crushing

From Equation 7.45

	 0.567 ck= × ×C f b hc 	

	 0.567 40 350 350 10 2778 kN3= × × × × =−Cc 	

And from Equation 7.46

	
0.871 1 yk=N A fs s 	

	 0.87 500 1963 10 854 kN1 2
3= = × × × =−N Ns s 	

And from Equation 7.43

	 Rd 1 2= + +N C N Nc s s 	

	 2778 854 854 4486 kNRd = + + =N 	

Since Ns1 = Ns2, from Equation 7.44 MRd = 0 and Point 1 is located at the (0,4486) coordi-
nates of the M–N interaction diagram.

Point 2: Balance

From Equation 7.52, the neutral axis depth is

	 0.636 191 mm= =x d 	

b = 350 mm 

h 
=

35
0

m
m

d
=

30
0

m
m As1

As2

d’ = 50 mm 

Figure 7.17  Column details.
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From Equation 7.6

	 0.567 0.8ck= ×C f b xc 	

	 0.567 40 350 0.8 191 10 1213 kN3= × × × × × =−Cc 	

From Equation 7.46

	 0.87 500 1963 10 854 kN1 2
3= − = × × × =−N Ns s 	

From force equilibrium (Equation 7.43)

	 1213 854 854 1213 kNRd 1 2= + + = + − =N C N Nc s s 	

From Equations 7.48, 7.49 and 7.51, the lever arms are

	 /2 0.350/2 0.05 0.125 m1 = − ′ = − =z h ds 	

	 ( /2) (0.3 0.350/2) 0.125 m2 = − − = − − = −z d hs 	

	 /2 0.4 0.35/2 0.4 0.191 0.0986 m= − = − × =z h xc 	

From moment equilibrium (Equation 7.50)

	 Rd 1 1 2 2= + +M C z N z N zc c s s s s 	

	 1213 0.0986 854 0.125 ( 854) ( 0.125) 333 kN.mRd = × + × + − × − =M 	

Thus, the coordinates of Point 2 is (333,1213).

Point 3: Pure moment

From moment equilibrium (Equation 7.54)

	 ( ') ( 854) (0.300 0.050) 213 kN.mRd 2= − − = − − × − =M N d ds 	

Thus, the coordinates of Point 3 is (213,0) and Figure 7.18 shows all the coordinates are 
plotted graphically to form an interaction diagram.  This shows that the column can resist 
a 280 kN.m moment in addition to a 1500 kN compression force, since the (280,1500) 
coordinates lie within the design envelope. This graph is symmetrical about the vertical axis 
because it is a symmetrical cross section.

Example 7.10:  Biaxial bending

Using the design chart shown in Figure 7.18, determine if the column shown in Figure 7.17 
can resist 79 kN.m about the horizontal axis as sketched in Figure 7.17 and 35 kNm about 
the vertical axis, in addition to a compression force of 1500 kN.
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In this case, My/h′ ≥ Mz/b′; therefore, Mz is reduced to zero and from Equation 7.55

	
1 Ed

ck
′ = + × ′

′
× −







M M M
h
b

N
bhf

y y z

	

	
79 35

300
300

1
1500 10

350 350 40
103 kN.m

3

′ = + × × − ×
× ×







=My

	

Inspection of Figure 7.18 shows that the (103,1500) coordinates lie well within the M – N 
diagram limits.

Example 7.11:  Asymmetric column

Figure 7.19 shows a cross section through a column that is subjected to an axial compres-
sion force centred over the centre line and a uniaxial (+ve) moment as shown. Plot the M – N 
interaction diagram, if fck = 25 N/mm2.
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Figure 7.18  M–N interaction diagram.
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Figure 7.19  Cross section through a column with asymmetric reinforcement.
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Point 1: Crushing

From Equations 7.45 through 7.47, the compression forces in the concrete and upper and 
lower rebar are

	 0.567 25 250 450 10 1595 kN3= × × × × =−Cc 	

	   0.87 500 1963 10 854 kN1
3= × × × =−Ns 	

	   0.87 500 804 10 350 kN2
3= × × × =−Ns 	

And from force equilibrium (Equation 7.43)

	   1595 854 350 2799 kNRd = + + =N 	

From Equations 7.48 and 7.49, the lever arms for the upper and lower rebar are

	 /2 0.450/2 0.046 0.179 m1 = − ′ = − =z h ds 	

	 ( /2) (0.409 0.450/2) 0.184 m2 = − − = − − = −z d hs 	

From the moment equilibrium (Equation 7.44)

	 854 0.179 350 ( 0.184) 88 kN.mRd 1 1 2 2= + = × + × − =M N z N zs s s s 	

Therefore, the coordinates of Point 1 are (88,2799).

Point 2: Balanced failure (+ve moments)

From Equation 7.52, the neutral axis depth (x) = 260 mm and from Equation 7.6

	 0.567 0.8ck= × × ×C f b xc 	

	 0.567 25 250 0.8 260 10 737 kN3= × × × × × =−Cc 	

The strain in the compression steel is greater than the yield strain (0.002) when calculated using 
Equation 7.53; therefore, Equation 7.46 is used to calculate Ns1. From the force equilibrium

	 Rd 1 2= + +N C N Nc s s 	

	 737 854 350 1241 kNRd = + − =N 	

And from Equation 7.51

	 /2 0.4= −z h xc 	

	 0.450/2 0.4 0.260 0.121 m= − × =zc 	
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From the moment equilibrium (Equation 7.50)

	 Rd 1 1 2 2= + +M C z N z N zc c s s s s 	

	 737 0.121 854 0.179 ( 350) ( 0.184) 306 kN.mRd = × + × + − × − =M 	

Therefore, the coordinates of Point 2 are (306, 1241).

Point 3: Pure (+ve) moment

The tensile force in the lower rebar is balanced by an equal and opposite force in the upper 
rebar; therefore, from Equation 7.54

	 ( )Rd 2= − − ′M N d ds 	

	 ( 350) (0.409 0.046) 127 kN.mRd = − − × − =M 	

The coordinates of Point 3 are (127,0) and all three coordinates are plotted in the interaction 
diagram shown in Figure 7.20.

Example 7.12:  Asymmetric column

Construct the M–N diagram for the column considered in Example 7.11 including the nega-
tive moment region (the coordinates of Points 1, 2 and 3 are shown in Figure 7.20).

Point 4: Pure bending (–ve moment)

Under negative moments, the top steel is in tension and the bottom in compression; therefore, 
from Equation 7.46 and 7.47

	 854 kN1 = −Ns 	

	 350 kN2 = +Ns 	
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Figure 7.20  M–N interaction diagram for an asymmetric column.
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and from force equilibrium (NRd = 0)

	 01 2+ + =C N Nc s s 	

	 854 350 504 kN= + − =Cc 	

From Equation 7.6

	 0.567 0.8ck= × × ×C f b xc 	

	 504 10 0.567 25 250 0.83× = × × × x 	

	 178 mm=x 	

The lever arm for the concrete stress block is negative because Cc is below the neutral axis; 
therefore, from Equation 7.51

	 z h xc ( /2 0.4 )= − − 	

	 zc (0.450/2 0.4 0.178) 0.154 m= − − × = − 	

From moment equilibrium (Equation 7.50)

	 Rd 1 1 2 2= + +M C z N z N zc c s s s s 	

	 504 ( 0.154) 854 0.179 350 ( 0.184) 295 kN.mRd = × − − × + × − = −M 	

Therefore, the coordinates of Point 5 are (–295, 0).

Point 5: Balanced failure (–ve moments)

From Equation 7.52, the neutral axis depth, when measured from the bottom of the section, is

	 0.636 (450 46) 257 mm= × − =x 	

From Equation 7.6

	 0.567 25 250 0.8 257 10 729 kN3= × × × × × =−Cc 	

Under negative moments, the top steel is in tension and the bottom in compression; therefore, 
from Equations 7.46 and 7.47

	 854 kN1 = −Ns 	

	 350 kN2 = +Ns 	
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And from force equilibrium (Equation 7.43)

	 Rd 1 2= + +N C N Nc s s 	

	 729 854 350 225 kNRd = − + =N 	

The lever arm for the concrete is negative, because Cc is below the neutral axis; therefore, 
from Equation 7.51

	 ( /2 0.4 )= − −z h xc 	

	 (0.450/2 0.4 0.257) 0.122 m= − − × = −zc 	

From moment equilibrium (Equation 7.50)

	 Rd 1 1 2 2= + +M C z N z N zc c s s s s 	

	 729 ( 0.122) 854 0.179 350 ( 0.184) 306 kN.mRd = × − − × + × − = −M 	

Therefore, the coordinates of Point 5 are (–306, 225).

Example 7.13:  Non-rectangular, symmetrical column

Plot the interaction diagram for the column shown in Figure 7.22 if fyk = 40 N/mm2 and each 
row of rebar has an area of 630 mm2.

Point 1: Crushing

From Equation 7.45

	 0.567 40 400 250 10 2268 kN3= × × × × =−Cc 	

88, 2799

306, 1241

127, 0–295, 0
–306, 225
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N
)
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Figure 7.21  M–N interaction diagram for the asymmetric column shown in Figure 7.19.
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And the compression strength of each row of rebar is

	 0.87 500 630 10 274 kN1 2 3
3= = = × × × =−N N Ns s s 	

And from Equation 7.43

	 2268 3 274 3090 kNRd = + × =N 	

Since the column is symmetrical, crushing occurs at zero moment and Point 1 is therefore 
located at the (0,3090) coordinates of the interaction diagram.

Point 2: Balance

From Equation 7.52, the neutral axis depth is

	 0.636 350 223 mm= × =x 	

The compression force in the concrete stress block must now be determined. The area of a 
trapezoid (see Figure 7.23) is

	
2

( )= +A
g

e f 	 (7.57)

And the distance from the top edge to the centroid is

	
3

2= × +
+

y
g e f

e f
	 (7.58)

The depth of the stress block from the top edge of the column is 0.8x = 178 mm. From 
Equation 7.57, the area of the compression stress block is A = 43,637 mm2 and the corre-
sponding compression force is

	 0.567 ck=C f Ac 	

	 0.567 40 43637 10 990 kN3= × × × =−Cc 	

h = 400 mm

200 mm

300 mm

300 mm

d = 350 mm

As1

As2

As3

Figure 7.22  Column details.
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The force in the top and bottom rows of rebar is

	 274 kN1 3= − =N Ns s 	

Using similar triangles from the strain distribution, the strain in the middle row of rebar 
(εs2) is

	 0.0035
/2

2
= −

ε
x x h

s 	

	

0.0035 (223 200)
223

360 102
6ε = × − = × −

s
	

And the corresponding stress is

	 2 2σ = ε Es s s 	

	 360 10 210000 76 N/mm2
6 2σ = × × =−

s 	

which develops the following force

	 0.87 0.87 76 630 10 42 kN2 2
3= σ = × × × =−N As s s 	

From the force equilibrium

	 Rd 1 2 3= + + +N C N N Nc s s s 	

	 990 42 274 274 1032 kNRd = + + − =N 	

The lever arm distances for the rows of rebar are

	 0.150 m1 =zs 	

	 0 m2 =zs 	

	 0.150 m3 = −zs 	

e

f

g Centroid

y

Figure 7.23  General trapezoid.
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From Equation 7.58, 94.6 mm=y ; therefore,

	 /2 0.400/2 0.0946 0.1054 m= − = − =z h yc 	

From the moment equilibrium

	 Rd 1 1 2 2 3 3= + + +M C z N z N z N zc c s s s s s s 	

	 990 0.1054 274 0.150 42 0 ( 274) ( 0.150) 187 kN.mRd = × + × + × + − × − =M 	

Point 3: Pure moment

From horizontal equilibrium (for simplicity, ignoring Ns1)

	 02 3+ + =C N Nc s s 	

	 2 274 548 kN= × =Cc 	

since

	 0.567 ck=C f Ac 	

Rearranging to give the area of the concrete stress block

	

548 10
0.567 40

24162 mm
3

2= ×
×

=A
	

which has a depth (g) of 106.6 mm, solved as a quadratic equation from Equation 7.57, with 
a centroid at 55.3 mm=y . Taking the moment about the centroid of the concrete block

	 274 (0.35 0.0553) 274 (0.2 0.0553) 120 kN.mRd = × − + × − =M 	

Figure 7.24 shows Points 1, 2 and 3 plotted graphically to form the design chart.
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Figure 7.24  M–N interaction diagram.
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Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	 P.7.1.	 A 375 mm wide and 600 mm deep RC beam spans 8.5 m between simple supports. 
It supports its self-weight in addition to a uniformly distributed unfactored imposed 
load of 21 kN/m. The strengths are fyk = 500 N/mm2 for the reinforcement and 
fck = 35 N/mm2 for the concrete. A cover of 25 mm is provided and the density of 
concrete = 25 kN/m3.

	 a.	 Determine the ULS moment and shear force.
	 b.	 Assuming 8 mm diameter shear links and 40 mm diameter main reinforcement, 

determine the effective depth used to begin the strength calculations.
	 c.	 Determine the minimum area of tension steel.
	 d.	 Determine the distance from the supports to the 50% midspan moment 

point.
	 e.	 If 50% of the main bending reinforcement is to be curtailed, determine the 

distance from the centre of the end supports to the curtailment point. Assume 
25 mm rebar.

	 Ans. (a) MEd = 353 kN.m, VEd = 166 kN, (b) 547 mm, (c) 1626 mm2, (d) 1250 mm 
and (e) 425 mm.

	 P.7.2.	 A 400 mm wide and 350 mm deep RC beam is reinforced with 8 mm diameter 
shear links, four 32 mm diameter tension rebars and four 20 mm compression 
rebars. The cover provided is 25 mm, fck = 40 N/mm2 and fyk = 500 N/mm2.

	 a.	 Determine the ULS moment capacity.
	 b.	 The beam spans 7 m between simple supports and is subjected to a ULS UDL of 

58 kN/m (inclusive of self-weight). Determine the distance from the support to 
the 50% moment point.

	 c.	 Determine the distance from the end of the beam that 50% of the tension rein-
forcement can be curtailed.

	 Ans. (a) T = 1399 kN, Cs = 546.5 kN, Cc = 852 kN, x = 117.5 mm, M = 357.5 kN.m, 
(b) 1025 mm and (c) 65 mm.

	 P.7.3.	 A 375 mm wide and 500 mm deep RC beam spans 9 m between simple supports. 
It  supports its self-weight plus a 10 kN/m unfactored uniformly distributed 
imposed load (UDL) plus a centrally applied unfactored point load compris-
ing 30 kN dead load and 35 kN imposed load. The characteristic strengths are 
fyk  =  500 N/mm2 for the reinforcement and fck = 35 N/mm2 for the concrete. 
A cover of 25 mm is provided.

	 a.	 Determine the ULS design moment and shear force.
	 b.	 Assuming 8 mm diameter shear links and 40 mm diameter main rebar, deter-

mine the effective depth used to begin the strength calculations.
	 c.	 Determine the minimum area of tension reinforcement required.
	 d.	 It has been decided to use 8 mm diameter shear links. Determine the minimum 

spacing at the ends of the beam.
	 e.	 Determine the distance from the supports that the shear link spacing can be 

increased to 200 mm.
	 Ans. (a) MEd = 424.9 kN.m, VEd = 142.35 kN, (b) 447 mm, (c) 2641 mm2, (d) 123.7 mm 

and (e) 2552 mm.

https://www.crcpress.com/9781498741217
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	 P.7.4.	 Figure 7.25 shows a cross section through a column.

	 a.	 Determine the crushing strength (i.e. Point 1 on Figure 7.12).
	 b.	 Determine the moment and axial force at ‘balanced failure’, i.e., Point 2 on 

Figure 7.12.
	 c.	 Determine the bending strength in the absence of compression (i.e., Point 3).

	 Ans. (a) 2475 kN, (b) 150 kN.m, 857 kN and (c) 69 kN.m.

b = 250 mm 

h
=

34
0

 m
m

d
=

29
7

m
m As/2

As/2
fyk = 500 N/mm2

As = 1257 mm2

fck = 40 N/mm2

d’ = 43 mm 

Figure 7.25  Cross section through a column.
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Chapter 8

Prestressed structures

The purpose of Prestressed Concrete (PSC) is to minimise tensile stresses by inducing com-
pression. This is achieved by the tensioning of high strength steel strands using hydraulic 
jacks. The strands usually comprise seven galvanised steel wires twisted together to form a 
rope. This overcomes concrete’s weakness in tension and helps control cracking, increases 
stiffness, reduces deflections, reduces material costs, as well as allowing for the design of 
elegant and structures.

There are two main types: pre-tensioning and post-tensioning. Pre-tensioning involves 
casting the concrete around tensioned tendons. This is common for manufacturing precast 
concrete members, such as railway sleepers and bridge beams (see Figure 8.1). This chap-
ter concentrates mainly on post-tensioned concrete, where the tendons are stressed after 
the concrete has hardened. Post-tensioning is often used for curved structures, such as that 
illustrated in Figure 8.2a. The tendon forces will not cause buckling, as would be the case 
for a curved member subjected to an externally applied compression force (see Figure 8.2b). 
This makes the technique popular for constructing tanks and silos, since the prestress can 
counterbalance the stresses induced by the liquids and thus maintain the concrete in a state 
of compression. This reduces cracking and leakages, which can be particularly useful when 
storing hazardous liquids.

Prestressing strands can be bonded to the concrete using grout injected into the ducts, or 
they can be left unbonded. This chapter assumes the strands are bonded, and it also assumes 
that the concrete section remains uncracked when supporting SLS loads. This is known as 
full prestress. Experts in prestressing sometimes allow the section to crack, which is a state 
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known as ‘partial prestress’. This requires a spreadsheet solution and is beyond the scope 
of this book, which aims to provide an understanding of the basic design principles for 
undergraduates.

8.1  INTRODUCTION TO THE BASIC THEORY

If a cross section is subjected to a prestressing force located on the centroid (Figure 8.3a), 
the stress is

	
P
A

T Bσ = σ = 	

Figure 8.1  Underside of a bridge constructed using precast and pre-tensioned concrete beams.

(a) (b)

Figure 8.2  Difference in response due to ‘internal’ prestressing force and ‘externally’ applied load. 
(a) Internal prestressing force produces no sideways movement (if applied through centroid) and 

(b) external load results in sideways sway.
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where
σT is the stress in the top of the beam.
σB is the stress in the bottom of the beam.
P is the initial prestress force.
A is the cross-sectional area.

If the tendon is repositioned to below the neutral axis as illustrated in Figure 8.3b, then

	

P
A

Pe
Z

T
T

σ = −
	

	

P
A

Pe
Z

B
B

σ = +
	

where
e is the distance from the prestressing force to the neutral axis, known as the eccentricity.
ZT and ZB are the elastic section moduli required to give the bending stresses at the top 

and bottom fibres of the section, respectively.

If a moment due to gravity loads is added (Figure 8.3c), then

	
P
A

Pe
Z

M
Z

T
T T

σ = − + 	 (8.1)

	
P
A

Pe
Z

M
Z

B
B B

σ = + − 	 (8.2)

(a)

PP

(b)

PP

P/A

+ +
e

–Pe/ZT

–

+
=

P/A Pe/ZB

(c)

PP e

P/A

+ +

–Pe/ZT

–

+
=

P/A Pe/ZB
sB

sB

sT

sT

+

–

–M/ZB

M/ZT

+

P/A

+

P/A

+

+

Figure 8.3  Illustration of the stresses induced due to prestressing (compression is +ve). (a) Tendon on 
centroid, NO gravity moment, (b) tendon below centroid, NO gravity moment and (c) tendon below 

centroid + gravity moment.
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Example 8.1:  Beam with straight tendon

Figure 8.4 shows a 400 mm wide and, 800 mm deep beam that spans 14 m between sim-
ple supports. It supports an imposed load of 21 kN/m and is prestressed with a force of 
1500 kN. If the tendon is straight and is located 260 mm below the centroid, sketch the 
stress distribution at midspan and at the end of the beam.

Since this is a rectangular cross section, the elastic moduli of the top and bottom fibres of 
the section are equal. The elastic section modulus is

	 12
2

6

3 2

Z
I
y

bh
h

bh= = × =
	 (8.3)

	 Z = 400 × 8002/6 = 42.7 × 106 mm3

And the cross-sectional area is

	 A = 800 × 400 = 320 × 103 mm2

From Equation 8.1, the stress at the ends of the beam, where M = 0, is

	

P
A

Pe
Z

M
Z

T
T T

σ = − +
	

	

1500 10
320 10

1500 10 260
42.7 10

0
3

3

3

6Tσ = ×
×

− × ×
×

+
	

	 4.7 9.1 0 4.4 N/mm2
Tσ = − + = − 	

And from Equation 8.2

	 4.7 9.1 0 13.8 N/mm2
Bσ = + − = + 	

The uniformly distributed Serviceability Limit State (SLS) load (assuming concrete density 
is 25.0 kN/m3) is

	 w = 25 × 0.4 × 0.8 + 21 = 29 kN/m

And the midspan moment is

	 M = 29 × 142/8 = 710.5 kN.m

P

P = 1500 kN

260 mm

21 kN/m

14 m

Figure 8.4  Beam prestressed with straight tendon.
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From Equations 8.1 and 8.2, the stresses at midspan (top and bottom) are

	

P
A

Pe
Z

M
Z

T
T T

σ = − +
	

	
σ = ×

×
− × ×

×
+ ×

×
1500 10
320 10

1500 10 260
42.7 10

710.5 10
42.7 10

3

3

3

6

6

6T
	

	 4.7 9.1 16.6 12.2 N/mm2
Tσ = − + = + 	

	 4.7 9.1 16.6 2.8 N/mm2
Bσ = + − = − 	

These stresses are shown graphically in Figure 8.5. This demonstrates that the worst tensile 
and compression stresses occur at the supports, rather than midspan. This problem can be 
easily overcome by using a draped tendon, as demonstrated in Example 8.2.

Example 8.2:  Beam with draped tendon

A 400 mm wide and 800 mm deep simply supported beam spans 14 m (see Figure 8.6). 
It supports an imposed load of 45 kN/m. The tendon is located on the centroid at the sup-
ports and 375 mm below the centroid at midspan. Sketch the stress distribution at midspan 
and at the ends of the beam.

From Equations 8.1 and 8.2, the stresses at the support’s top and bottom are

	

P
A

Pe
Z

M
Z

T
T T

σ = − +
	

	

2500 10
320 10

2500 10 0
42.7 10

0
42.7 10

3

3

3

6 6Tσ = ×
×

− × ×
×

+
× 	

+4.7

+ +

–9.1

–

+
=

+12.2

–2.8

+

–

+16.6

++ +
–

+
=

(b)(a)

+4.7 +9.1 –16.6

+4.7 –9.1

+4.7 +9.1 +13.8

–4.4

Figure 8.5  Stress distributions in N/mm2 for Example 8.1. (a) Stress distribution at support and 
(b) stress distribution at midspan.

P

P = 2500 kN
375 mm

45 kN/m

14 m

Figure 8.6  Beam with draped tendon.
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	 7.8 0 0 7.8 N/mm2
Tσ = + − + = + 	

	 7.8 0 0 7.8 N/mm2
Bσ = + + − = + 	

The UDL (w) and midspan moment (M) are

	 w = 25 × 0.4 × 0.8 + 45 = 53 kN/m

	 M = 53 × 142/8 = 1298.5 kN.m

From Equations 8.1 and 8.2, the stresses at midspan (top and bottom) are

	

P
A

Pe
Z

M
Z

T
T T

σ = − +
	

	
7.8

2500 10 375
42.7 10

1298.5 10
42.7 10

3

6

6

6Tσ = − × ×
×

+ ×
× 	

	 T 7.8 22.0 30.4 16.2 N/mm2σ = − + = + 	

	 B 7.8 22.0 30.4 0.6 N/mm2σ = + + − = − 	

Figure 8.7 shows the stress at the support and midspan. When these are compared with 
those from Example 8.1 it can be seen that the stresses are more favourable, even though 
the load increased from 21 kN/m to 45 kN/m. This explains why draped tendons are used 
if possible.

8.2  SLS DESIGN

The prime objective during the SLS design is to prevent either tensile stresses causing crack-
ing or compressive stresses causing crushing. Failure can occur immediately after loading 
the tendons, known as at transfer, or under the full SLS (working) loads.

At transfer, the gravity loads will be lower than the SLS loads and the tendon forces may 
cause the beam to arch, leading to possible cracking at the top and crushing of the concrete 
at the bottom (see Figure 8.8a).

(b)

+7.8

+ +

–22.0

–

+
=

+16.2

–0.6

+

–

+30.4

+

+22.0 –30.4

(a)

+

+7.8

Figure 8.7  Stress distributions in N/mm2 for Example 8.2. (a) Support stresses and (b) midspan stresses.
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Under full SLS loading, these failure modes are reversed, with the top of the beam poten-
tially failing by crushing and the bottom by cracking (see Figure 8.8b). Another complica-
tion is the difference in concrete strength at transfer and under SLS conditions. The fresh 
concrete may be low strength at transfer, whereas it would be full strength under the SLS 
conditions. In addition, the loss of prestress under SLS conditions will be greater than at 
transfer. Using these factors, four design inequalities are formed.

At transfer,

	 Tendon force = α × P

And under SLS loads

	 Tendon force = β × P

where
α is the short-term loss factor, accounting for friction, elastic shortening, and anchorage draw-in.
β is the total loss factor, which accounts for short-term losses + long-term losses from 

shrinkage, creep, and relaxation of stress in the steel.
P is the jacking force applied to the prestress stands.

When the tendons are first stressed, the main load is from the prestress, which may cause 
the top of the section to crack in tension and the bottom to be liable to crushing (see 
Figure 8.8a). The stress at the top of the section must be less than or equal to the crack-
ing stress, i.e.,

	
P

A
Pe

Z
M
ZT T

t
dl

min.
α − α + ≥ σ 	 (8.4)

And at the bottom of the section, crushing is the failure mode and

	
P

A
Pe

Z
M
ZB B

t
dl

max.
α + α − ≤ σ 	 (8.5)

where
σmin.t is the minimum permissible (tensile) stress at transfer.
σmax.t is the maximum permissible compression stress at transfer.
Mdl is the moment at transfer, which is usually just the dead load moment.

(a) (b)

Tension cracking

Crushing

Crushing

Tension cracking

Dead + imposedDead load only

αP βP

Figure 8.8  Illustration of conditions at transfer and under SLS loading. (a) Loading ‘at transfer’ and 
(b) SLS loading.
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Under full SLS dead and imposed loading (Figure 8.8b), the loading increases and the con-
crete gains its full strength, although the prestress force diminishes further due to long-term 
prestress losses. At the top of the section, crushing becomes the failure mode and

	
P

A
Pe

Z
M
ZT T

sls
max.sls

β − β + ≤ σ 	 (8.6)

And at the bottom, tension cracking needs to be prevented and

	
P

A
Pe

Z
M
ZB B

sls
min.sls

β + β − ≥ σ 	 (8.7)

where
σmax.sls is the maximum permissible compression stress.
σmin.sls is the minimum permissible (tension) stress.
Msls is the SLS moment.

8.2.1  Member sizing

Equations 8.4 through 8.7 can be reconfigured to provide minimum values for section mod-
uli of the member

	 Z
M M

T
t

sls dl

max.sls min.
≥ α − β

ασ − βσ
	 (8.8)

	 Z
M M

B
t

sls dl

max. min.sls

≥ α − β
βσ − ασ

	 (8.9)

8.2.2  The permissible ranges of tendon force

The four inequalities (Equations 8.4 through 8.7) can be rearranged to provide four inequal-
ities defining the acceptable limits of the tendon force. Considering the first inequality 
(Equation 8.4)

	 P
A

e
Z

M
ZT

t
T

min.
dlα − α





≥ σ − 	 (8.10)

And Equation 8.5 through 8.7 each rearrange to
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t
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
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≤ σ + 	 (8.11)
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≤ σ − 	 (8.12)
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≥ σ + 	 (8.13)



Prestressed structures  203

Remember that the sign of an inequality changes when divided by a negative number. 
For example:

	 P ( 2) 8× − < − 	

Dividing both sides by –2 reverses the sign, i.e.,

	
P

8
2

> −
− 	

The negatives cancel; therefore and

	 P > 4

Example 8.3:  Beam sizing and prestressing force calculation

A 500 mm wide rectangular beam spans 12 m between simple supports and supports a 
5 kN/m imposed load. The limiting stresses and prestress loss factors are listed in the basic 
data below.

	 1.	 Determine the minimum beam depth required to support the load.
	 2.	 If the depth of the beam is set at 0.35 m and the tendons are located 0.125 m below the 

centroid at midspan, determine the minimum and maximum values of tendon force.

Basic data
Loss factors: α = 0.92 and β = 0.82
At transfer: σmin = –1.0 N/mm2 (tension) and σmax = 18 N/mm2

At SLS: σmin = 0.0 N/mm2 and σmax = 20 N/mm2

1. If the concrete density is 25 kN/m2, then the dead load of a 0.5 m wide and h deep beam is

	 w h h25 0.5 12.5 kN/mdl = × × = 	

The dead load and SLS load midspan moments are

	 M
12.5h 12

8
225h kN.mdl

2

= × = 	 (8.14)

	 M M
5 12

8
225h 90 kN.msls dl

2

( )= + × = + 	 (8.15)

From Equation 8.3, the section modulus in m3 for a 0.5 m wide beam of depth h is

	
Z

h0.5 h
6 12

2 2

= × =
	

Looking at the first inequality (Equation 8.8)

	 Z
M M

T
t

sls dl

max.sls min.
≥ α − β

ασ − βσ
	



204  Structural design from first principles

It is convenient to carry out Equation 8.8 calculations in units of kN and metres. This only 
works if the units of stress are converted from N/mm2 to kN/m2. In this example, 20 N/mm2 = 
20 × 103 kN/m2 and inputting into Equation 8.8

	

h h h
12

0.92(225 90) 0.82 225
0.92 20 10 0.82 ( 1.0) 10

2

3 3≥ + − ×
× × − × − × 	

which simplifies to

	 h h1601 22.5 82.8 02 − − ≥ 	

The roots of this quadratic equation are 0.235 m and –0.220 m. Repeating for the second 
inequality (Equation 8.9)

	
≥ + − ×

× × − × ×12
0.92 (225 90) 0.82 225

0.82 18 10 0.92 0.0 10

2

3 3

h h h

	

Simplifying

	 h h1230 22.5 82.8 02 − − ≥ 	

The roots are 0.269 m and –0.250 m. Thus, the minimum depth is the largest of the four 
roots, i.e., h ≥0.269 m.

2. Inputting a depth of 0.35 m into the previous working shown in Equations 8.14 and 8.15, 
the dead load and SLS moments are

	 M 225 0.35 78.75 kN.mdl = × = 	

	 M 225 0.35 90 168.75 kN.msls = × + = 	

The cross-sectional area and elastic section modulus are

	 A 0.5 0.35 0.175 m2= × = 	

	 6
0.5 0.35

6
0.01021 m

2 2
3= = × =Z

bh

	

Inputting these into the inequalities provides the limits on P, from Equation 8.10
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
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0.92 0.125
0.01021

1 10
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3− ×


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	 6.006 8713P− ≥ − 	
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Dividing though by –6.006 changes the sign

	

8713
6.006

P ≤ −
− 	

The negatives cancel; therefore,

	 P ≤ 1450 kN

The second inequality (Equation 8.11)

	

0.92
0.175

0.92 0.125
0.01021

18 10
78.75

0.01021
3P + ×



 ≤ × +

	

	 P ≤ 1556 kN

The third inequality (Equation 8.12)

	

0.82
0.175

0.82 0.125
0.01021

20 10
168.75
0.01021

3P − ×



 ≤ × −

	

	 5.353 3472P− ≤ 	

Dividing though by –5.353 changes the sign

	

3472
5.353

P ≥
− 	

	 P ≥ −648 kN

And the final inequality (Equation 8.13)

	

0.82
0.175

0.82 0.125
0.01021

0
168.75
0.01021

P + ×



 ≥ +

	

	 P ≥ 1122 kN

The four inequalities, P ≤ 1450 kN, P ≤ 1556 kN, P ≥ −648 kN, and P ≥ 1122 kN, can be 
satisfied within the following limits:

	 1122 kN 1450 kNP≤ ≤ 	

8.2.3� � Determining the allowable tolerance in the 
positioning of the prestressing tendons

Civil engineering contractors require information on the accuracy needed in the positioning of 
the prestressing strands. The tolerance in cable zone positioning is illustrated in Figure 8.9, and 
the tolerance can be determined by manipulating the previously derived inequalities.
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The inequalities (Equations 8.10 through 8.13) rearrange to

	 dl min.e
M Z

P
Z
A

t T T≤ − σ
α

+ 	 (8.16)

	 dl max.e
M Z

P
Z
A

t B B≤ + σ
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− 	 (8.17)

	 sls max.slse
M Z

P
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A

T T≥ − σ
β

+ 	 (8.18)

	 sls min.slse
M Z

P
Z
A

B B≥ + σ
β

− 	 (8.19)

By using these, it is possible to determine the region within the beam in which the tendons 
can be placed without overstressing the concrete. It should be noted that e is positive when 
the tendon is below the centroid.

Example 8.4:  Tolerance in tendon position

A bridge spans 25 m and comprises 600 mm deep precast concrete beams. Each is 1000 mm 
wide and is subjected to an imposed load of 12 kN/m. The maximum compressive stress in 
the concrete is limited to 22 N/mm2 (or 22,000 kN/m2) and no tensile stresses are allowed 
to develop. A total of 8% of the prestress is lost at transfer and 18% during serviceability. 
Each 1000 mm wide unit is prestressed with a force of 8000 kN. Determine the tolerance 
for the cable zone at the ends of the beam and at midspan.

The prestress loss factors at transfer (α) and under SLS loads (β) are

	
1.0

8
100

0.92 8% loss at transfer( )α = − =
	

	 1.0
18

100
0.82 18% loss at SLS( )β = − = 	

Upper limit on cable position

Lower limit on cable position

Upper limit on cable position

Lower limit on cable position

Figure 8.9  Tendon positioning tolerance.
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The elastic section modulus (Z) from Equation 8.3 and cross-sectional area (A) are

	 6
1.0 0.6

6
0.06 m

2 2
2Z

bh= = × =
	

	 A = 0.60 × 1.0 = 0.6 m2

At transfer (i.e. when the tendons are stressed), the UDL and midspan moments are

	 wdl = 25 × 1.0 × 0.6 = 15 kN/m

	 Mdl = 15 × 252/8 = 1172 kN.m

And under full SLS loading

	 wsls = 15 + 12 = 27 kN/m

	 Msls = 27 × 252/8 = 2109 kN.m

Solving the inequality in Equation 8.16:

	

dl min.e
M Z

P
Z
A

t T T≤ − σ
α

+
	

	

0 10 0.06
0.92 8000

0.06
0.6

dl
3

e
M≤ − × ×

×
+

	

	 0.000136 0.1e Mdl≤ + 	

At the supports, 0 kN.m 0.1 mdlM e= ≤ 	

At midspan, 1172 kN.m 0.259 mdlM e= ≤ 	

Repeating for the second inequality (Equation 8.17):

	

max.e
M Z

P
Z
A

dl t B B≤ + σ
α

−
	

	
e

M≤ + × ×
×

−22 10 0.06
0.92 8000

0.06
0.6

dl
3

	

	 0.000136 0.0794dle M≤ + 	

M e= ≤At the supports, 0 kN.m 0.0794 mdl 	

M e= ≤At midspan, 1172 kN.m 0.239 mdl 	
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The third inequality (Equation 8.18):

	
e

M≥ − × ×
×

+22 10 0.06
0.82 8000

0.06
0.6

sls
3

	

	 ≥ −0.000152 0.101slse M 	

M e= ≥ −At the supports, 0 kN.m 0.101 msls 	

M e= ≥And at midspan, 2109 kN.m 0.220 msls 	

And the final inequality (Equation 8.19):

	
e

M≥ + × ×
×

−0.0 10 0.06
0.82 8000

0.06
0.6

sls
3

	

	 0.000152 0.1slse M≥ − 	

	 e ≥ −Supports 0.1 m 	

	 e ≥Midspan 0.221 m 	

The final tolerance limits on cable position are

	 e− ≤ ≤Supports 0.10 m 0.0794 m 	

	 e≤ ≤Midspan 0.221 m 0.239 m 	

Inspection of these limits shows that there is a great deal of tolerance on cable position at the 
ends of the beam, although the cable zone width is only 18 mm at midspan.

8.2.4  Prestress losses

There are two types of prestress loss: short-term and long-term losses. Short-term losses occur 
immediately the tendons are stressed: whereas long-term losses occur during the working life. 
The short-term losses are accounted for by the α-factor applied to the prestress force and total 
losses by the β-factor, which include the sum of the short-term and long-term losses.

Short-term losses include the following:

	 1.	 Anchorage draw-in
	 2.	 Elastic shortening of the concrete
	 3.	 Friction during tensioning of tendons

Long-term losses include the following:

	 1.	 Concrete shrinkage
	 2.	 Relaxation of the steel tendons
	 3.	 Concrete creep

In this book each of these is considered separately when calculating the α and β factors, 
although that is a conservative approach.
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8.2.4.1  Anchorage draw-in

The tendons are stressed using jacks, which when released draw wedges into anchor blocks. 
Some tendon force is lost as the wedges are drawn into the anchors, although this is often 
ignored because friction normally prevents the loss reaching a critical section. However, 
anchorage draw-in can be important with unbonded straight tendons and the loss is easily 
calculated.

Strain is defined as

	
L

ε = ∆
	 (8.20)

where
Δ is the elastic movement, which in this case is the anchor draw-in distance.
L is the tendon length.

Young’s modulus is

	 E = σ
ε

	 (8.21)

Combining these simple formulae provides the stress, or in this case the loss of prestress:

	
E

L
σ = ∆

	 (8.22)

Example 8.5:  Anchorage draw-in

A manufacturer of an anchorage system specifies 5 mm draw-in for their anchorage sys-
tem. Determine the loss of prestress if the tendons are 10 m long with Young’s modulus of 
210,000 N/mm2.

From Equation 8.22, the loss of prestress is

	

E
L

σ = ∆
	

	
σ = × =5 210000

10000
105 N/mm2

	

8.2.4.2  Elastic shortening

The concrete will shorten under the compression force exerted by the tendons. If prestressed 
by only one tendon, then this shortening will not cause a drop in prestress; however, it is 
common for more than one tendon to be used, in which case the tendons jacked first will 
experience a loss of prestress due to the shortening induced by the tendons that are jacked 
subsequently.

The first tendon to be stressed will incur full elastic shortening losses, whereas the 
final tendon will incur no such losses. For simplicity, the average loss of prestress can 
be taken as 50% of the full loss due to elastic shortening, if multi-tendons are used. 
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In other words, the average loss of strain (εs) due to elastic shortening is equal to 50% 
of the concrete strain (εc), i.e:

	 s
cε = ε

2
	 (8.23)

Converting these strains to stress using Equation 8.21 provides the loss of stress

	
E
E

c s

c

σ = σ ×
2

loss 	 (8.24)

where
σloss is the average loss of stress in the tendons.
σc is the average stress in the concrete along the line of the tendons.
Ec and Es are Young’s moduli for concrete and steel, respectively.

Example 8.6:  Losses due to elastic shortening

A simply supported beam is 800 mm deep, 300 mm wide, spans 22 m and is prestressed with a 
force of 1400 kN. The eccentricity of the prestressing force is zero at the supports and 320 mm 
at midspan. Determine the loss of prestress due to elastic shortening if Es = 210,000 N/mm2 and 
Ec = 28,000 N/mm2.

The UDL and corresponding midspan moment due to the self-weight are

	 w = × × =25 0.8 0.3 6 kN/m 	

	
M = × =6 22

8
363 kN.m

2

	

The area and second moment of area are

	 A = × =800 300 240000 mm2
	

	
I = × = ×300 800

12
1.28 10 mm

3
10 4

	

The tendons are located a distance e from the centroid. The stress in the concrete at a dis-
tance e from the neutral axis, due to the prestressing force P and applied moment M, is

	
P
A

Pe
I

Me
I

σ = + −
2

	 (8.25)

At midspan, e = 320 mm; therefore,

	
σ = ×

×
+ × ×

×
− × ×

×
=1400 10

240 10
1400 10 320

1.28 10
363 10 320

1.28 10
7.96 N/mm

3

3

3 2

10

6

10
2
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At the supports, e = 0; therefore,

	
σ = ×

×
+ − =1400 10

240 10
0 0 5.83 N/mm

3

3
2

	

The average stress is approximately equal to the average of the stress at the supports and 
midspan, i.e.,

	
σ = + =5.83 7.96

2
6.89 N/mm2

	

And from Equation 8.24, the loss of prestress due to elastic shortening is approximately

	

E
E

c s

c

σ = σ × = × =
2

6.89
2

210000
28000

25.8 N/mmloss
2

	

A more exact solution could be gained by using a spreadsheet, although this illustrates the 
process.

8.2.4.3  Loss of prestress due to friction

Ducts are cast into members and steel tendons are passed through the ducts. When the ten-
dons are stressed, a frictional force develops along their length and this reduces the tensile force 
exerted on the member. The tendons are usually draped; therefore, a frictional force develops 
along the inside of the drape due to the curvature (see Figure 8.10a). The ducts also have unin-
tended imperfections in their profile, known as ‘wobble’, and this also induces additional friction 
(see Figure 8.10b). The resulting friction can be accounted for using the following loss factors:

	 Curvature = e−μθ	 (8.26)

	 Wobble = e−μxK	 (8.27)

(a)

(b)

Wall of cable duct

Friction Friction
Friction

Friction

FrictionFriction

Wall of cable duct

Wall of cable duct

Wall of cable duct

Figure 8.10  Types of friction loss. (a) Friction due to curvature and (b) section of a tendon illustrating 
friction due to ‘wobble’ of cable duct.
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where
μ is the coefficient of friction.
θ is the total change in slope between the jacking point and the point where the tendon 

force is required.
K is the wobble factor.
x is the distance from the jack to where the tendon force is required.

Combining Equations 8.26 and 8.27

	 Friction loss factor = e−μ(θ + xK)	 (8.28)

The tendon force at distance x from the jack is determined by multiplying this by the jack-
ing force.

Example 8.7:  Calculation of friction losses in a continuous beam

Figure 8.11 shows a two-span beam that is 1000 mm wide and 340 mm deep. It is stressed 
with a prestressing force of 1000 kN; the cable ducts have a coefficient of friction μ = 0.2 
and a wobble factor K = 0.01/m. Determine the tendon force at Point A if the tendons are 
jacked from the far end, as illustrated in Figure 8.11.

The tendon will form a roughly parabolic shape, and the equation of a parabola of coordi-
nates x, y and of span L and rise f is

	
= −4 4 2

2y
fx
L

fx
L 	

Differentiating

	
= −4 8

2

dy
dx

f
L

fx
L 	

The slope is

	
= θtan

dy
dx 	

When x = 0, the end slope is

	 θ = 





−tan
41 f
L

	 (8.29)

100 mm

115 mm10.5 m 10.5 m

8 m 2.5 m 2.5 m

Point A

Prestressing 
cable profile

Jacking end

4.0 m 4.0 m

Figure 8.11  Continuous beam showing the dimensions of the prestressing tendon profile.
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Considering the sagging region shown in Figure 8.12a

	
θ = ×



 = °−tan

4 115
8000

3.291
1

	

Repeating for the hogging region shown in Figure 8.12b

	
θ = 





−tan
41 f
L 	

	
θ = ×



 = °−tan

4 100
5000

4.572
1

	

The total change in slope between the jack and Point A (see Figure 8.12c), is

	 θ = θ + θ = × + × = °3 2 3 3.29 2 4.57 19.0total 1 2 	

or

	

× π =19
180

0.332 radians
	

When calculating the loss due to wobble, x is the total length between the jack and Point A. 
From Equation 8.28

	 Loss factor = e−0.2(0.332 + 17 × 0.01) = 0.904

And the tendon force at Point A (excluding other losses) is

	 = × =1000 0.904 904 kNP 	

L = 8000 mm

f = 115 mm

f = 100 mm

(a) (b)

x = 5000 mm

Point A

θ2

θ1

Total change in slope is 3θ1 + 2θ2 

θ1
θ2 θ2

θ1θ1Jacking end

(c)

x

For wobble loss, x = 17 m

Figure 8.12  Determining end slope of prestressing strands. (a) Sagging regions, (b) hogging region over 
central support and (c) calculation of total change in slope between Point A and jacking end.
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8.2.4.4  Relaxation of the tendons

Relaxation in the steel will cause a small decline in the tendon force over a period of years. 
A total of 4% loss of tendon force due to relaxation would be typical during the lifetime of 
a structure, although tendon manufacturers and design standards specify precise figures.

8.2.4.5  Concrete creep

Elastic movements occur immediately concrete is stressed, in accordance with Hooke’s law; 
however, concrete will continue to deform with time, with movement decreasing to zero 
over a period of years. This is called creep and prestressing induces stresses that will result 
in creep, which will in turn reduce the prestressing force.

Creep strain is a function of the stress in the concrete (σc), as well as the specific creep 
strain (εspecific). The strain induced by creep is

	
ε = σ εspecificc 	

Since

	 = σ ε/E 	

The loss of stress in the tendons is

	 σ = σ εloss specificEs c 	 (8.30)

where
σc is the concrete stress at the tendons.
εspecific is the specific creep strain, which can be calculated using codes of practice and 

should allow for the age of the concrete at stressing.

Example 8.8:  Loss of prestress due to creep

Determine the loss of prestress for the beam described in Example 8.6 if the specific creep 
strain is 0.050 × 10–3 per N/mm2.

From the previous working in Example 8.6, the average concrete stress was calculated approxi-
mately as 6.89 N/mm2; therefore, from Equation 8.30 the loss of stress in the tendons is

	
σ = σ εloss specificEs c 	

	 σ = × × × =−210000 6.89 0.050 10 72 N/mmloss
3 2

	

8.2.4.6  Shrinkage

Concrete shrinks over a period of years after casting, due to loss of water from evaporation 
and the chemical bonding of water molecules during hydration of the cement. Shrinkage 
strain will reduce the stress in the tendons and the loss of stress is

	 σ = εloss shrinkageEs 	 (8.31)
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The shrinkage strain (εshrinkage) can be determined from codes of practice and is dependent 
on factors such as the size of the member, the concrete grade, and type of aggregate.

Example 8.9: � Calculation of prestress losses at transfer and SLS loading

A two-span continuous post-tensioned beam spans 20 m between simple supports and is 
800 mm wide and 550 mm deep (see Figure 8.13). The tendons are jacked from both ends 
and the total prestress force is 4400 kN. Determine the short and long-term losses in pre-
stress force at the central support.

Basic data. Tendon stress at transfer = 1200 N/mm2
, Es = 210,000 N/mm2, Ec = 28,000 N/mm2, 

4 mm anchorage draw-in, coefficient of friction of cable duct μ = 0.20 and wobble factor K = 
0.01/m, shrinkage strain 100 × 10–6, specific creep strain = 0.050 × 10–3 per N/mm2, and 
there is a 2% relaxation of stress due to creep in the steel over time.

Anchorage draw-in. Friction between the strand and the cable duct will prevent the loss of 
prestress due to anchorage draw-in reaching the central support, so this loss is ignored.

Elastic shortening. The first step is to calculate the average stress due to bending and pre-
stress along the line of the tendons. The UDL due to the self-weight is

	 = × × =25 0.8 0.55 11 kN/mw 	

This beam can be considered as a propped cantilever. The first support moment is zero, 
because the beam is simply supported and the maximum sagging moment is

	
= = × × =9

128
9 11 20

128
309 kN.m

2 2

M
wL

	

and the internal support moment is

	
= − = − × = −

8
11 20

8
550 kN.m

2 2

M
wL

	

The area and second moment of area of the beam are

	 = × =800 550 440000 mm2A 	

	 = × = ×800 550
12

1.11 10 mm
3

10 4I 	

230 mm

210 mm20 m 20 m

14 m 6 m 6 m 14 m

Figure 8.13  Continuous beam showing tendon profile.
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From Equation 8.25, the stress at the first support (where e = 0) is

	
σ = ×

×
+ × ×

×
− ×

×
=4400 10

440 10
4400 10 0

1.11 10
0 0

1.11 10
10 N/mm

3

3

3 2

10 10
2

	

And the maximum sagging stress (e = 210 mm) is

	
σ = ×

×
+ × ×

×
− × ×

×
=4400 10

440 10
4400 10 210

1.11 10
309 10 210

1.11 10
21.63 N/mm

3

3

3 2

10

6

10
2

	

And the internal support stress (e = 230 mm) is

	
σ = ×

×
+ × × −

×
− − × × −

×
=4400 10

440 10
4400 10 ( 230)

1.11 10
( 550) 10 ( 230)

1.11 10
19.57 N/mm

3

3

3 2

10

6

10
2

	

The average stress in the concrete along the profile of the tendon is approximately

	
σ = + + =10 21.63 19.57

3
17.1 N/mm2

	

And from Equation 8.24, the corresponding loss of prestress is

	
σ = σ × = × =

2
17.1

2
210000
28000

64.1 N/mmloss
2E

E
c s

c 	

Friction losses. The question states that the tendons are stressed from both ends of the 
beam; therefore, only one of the two spans is considered during the friction loss calcula-
tions. From Equation 8.29, the end slope of the tendon at the outer supports is

	
θ = ×



 = °−tan

4 210
14000

3.431
1

	

Repeating for the hogging region over the central supports

	
θ = ×



 = °−tan

4 230
12000

4.382
1

	

The total change in slope between the jack and central support

	 θ = θ + θ = × + = ° =2 2 3.43 4.38 11.24 0.196 radstotal 1 2 	

When calculating the loss due to wobble, x is the total length between the jack and central 
support and from Equation 8.28

	 Friction loss factor = e−μ(θ + xK)

	 Friction loss factor = e−0.2(0.196 + 20 × 0.01) = 0.92
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And the loss of stress at the central support is

	 1200 (1 0.92) 96 N/mmloss
2σ = × − = 	

Relaxation of the tendons. The loss of stress is

	 σ = × =1200 0.02 24 N/mmloss
2

	

Concrete creep. Assuming that the concrete stress remains unchanged over the life of the 
member, from Equation 8.30

	 210000 17.1 0.050 10 180 N/mmloss
3 2σ = × × × =−

	

Shrinkage. From Equation 8.31

	
σ = ε = × × =−100 10 210000 21 N/mmloss shrinkage

6 2Es 	

Losses at transfer. The combined losses from anchorage draw-in, elastic shortening, and 
friction are

	 ∑σ = + =60 96 156 N/mm
loss

2

	

Total long-term losses. The combined losses including losses at transfer in addition to creep 
in the steel, as well as concrete and shrinkage, are

	
156 24 180 21 381 N/mm

loss

2∑σ = + + + =
	

8.2.5  Deflections

In conventional RC beams, it is impossible to accurately predict deflections because of 
the loss of stiffness due to cracking. However, Prestressed Concrete (PSC) beams can be 
designed to ensure no cracking occurs under SLS loads; therefore, accurate predictions are 
indeed possible.

Deflections need to be calculated at two separate stages in the life of a beam:

Stage 1.	 At ‘transfer’ (dead load only) (see Figure 8.14a)
Stage 2.	 Under full SLS loading (dead and imposed loads) (see Figure 8.14b)

Under Stage 1, the short-term value for Young’s modulus and the α-loss factor are used, 
whereas under Stage 2, long-term Young’s modulus and the β-loss factor apply. Early 
loading should quickly reduce the initial upwards deflections, although the creep deflec-
tion (due to the reduction of concrete’s Young’s modulus with time) will take 2 or more 
years to develop fully.

The calculation of deflection is split into two parts:

	 1.	 The uplift due to the tendon attempting to straighten, as illustrated in Figure 8.15b
	 2.	 Downwards deflection (sag) due to gravity loads; see Figure 8.15c
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8.2.5.1  Simply supported beam

The curved tendon shown in Figure 8.15a will try to straighten out. This will have a lift-
ing effect, and the uplift force can be equated to a uniformly distributed load, we, shown in 
Figure 8.15b. The midspan moment is

	 =
8

2

M
w Le 	 (8.32)

This moment is also equal to the tendon force multiplied by the eccentricity (Figure 8.15a), i.e.,

	 = midM Pe 	 (8.33)

Combining Equations 8.32 and 8.33

	 = −8 mid
2w

Pe
L

e 	 (8.34)

Provided the beam remains uncracked, the uplift deflection at midspan can now be calcu-
lated using the standard deflection equation for a beam with a UDL, i.e.,

	 δ = 5
384

4wL
EI

	 (8.35)

(a) (b)

Dead and imposed loadingDead load

Short-term Ec Long-term Ec

αP βP

Figure 8.14  Short and long-term deflections. (a) Deflection ‘at transfer’ and (b) long-term (SLS) deflection.

emid

we

(a)

(b)

PP

(c)

Figure 8.15  Simply supported beam. (a) Tendon profile, (b) uplift from tendon force and (c) sag from gravity loads.
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Example 8.10:  Deflection of a simply supported beam

A beam spans 20 m between simple supports and comprises a 0.8 m wide by 0.55 m deep 
PSC section subjected to an imposed serviceability load of 10 kN/m. The tendons are located 
on the centroid at the ends and 75 mm above the base of the beam (soffit) at midspan. 
Determine the following:

	 1.	 The deflection under the dead weight of the concrete at transfer (when tendons are first 
stressed)

	 2.	 The deflection under the dead and imposed loads (SLS loading)

Basic data
P = 6000 kN, α = 0.9, β = 0.8, Young’s modulus of the concrete = 35,000 N/mm2 at transfer 
and 14,000 N/mm2 long term.

1. The second moment of area of the uncracked concrete section (ignoring rebar and ten-
dons) is

	
= × = ×800 550

12
11.1 10 mm

3
9 4I

	

From Equation 8.34, the uplift shown in Figure 8.15b, calculated using the short-term loss 
factor, is

	
= − α8 mid

2w
Pe
L

e
	

	
= − × × × = −8 0.9 6000 0.200

20
21.6 kN/m2we

	

From Equation 8.35 and using the short-term value of Young’s modulus

	

5 ( )21.6 20000
384 35000 11.1 10

116 mm
4

9δ = × − ×
× × ×

= −
	

The beam self-weight is

	 w = 25 × 0.8 × 0.55 = 11 kN/m (= 11 N/mm)

From Equation 8.35, the corresponding sag is

	
δ = × ×

× × ×
=5 11 20000

384 35000 11.1 10
59 mm

4

9
	

Finally, the total deflection at transfer is

	 δ = − + = − ↑116 59 57 mmtotal 	
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2. The uplift force now decreases as the long-term tendon losses are applied, from Equation 8.34

	
= − × × × = −8 0.8 6000 0.200

20
19.2 kN/m2we

	

From Equation 8.35, the tendon force uplift (using the long-term value for Young’s modulus) 
is

	
δ = × − ×

× × ×
= −5 ( )19.2 20000

384 14000 11.1 10
257 mm

4

9
	

The SLS dead and imposed load is

	 w = 11 + 10 = 21 kN/m

And the corresponding downwards deflection is

	
δ = × ×

× × ×
=5 21 20000

384 14000 11.1 10
282 mm

4

9
	

And finally, the total deflection under SLS loading is

	 257 282 25 mmδ = − + = + ↓ 	

8.2.5.2  Continuous beam

In this situation, the beams will have a tendon eccentricity at the supports (eend) and at mid-
span (emid) (see Figure 8.16a). The calculation of the uplift deflection from the tendon force 
is more complex than for the simply supported case. It is best calculated using the uplift 
from the total drape of the tendons (Figure 8.16b), minus the deflection due to end moments 
(Figure 8.16c).

δ1 is the uplift due to the total drape of the tendon, emid + eend (see Figure 8.16b). This 
develops the following midspan moment

	 = − +( )mid endM P e e 	 (8.36)

Combining Equations 8.32 and 8.36

	 = − +8 ( )mid end
2w

P e e
L

e 	 (8.37)

And the corresponding deflection is calculated using Equation 8.35, which is for a simply 
supported beam, not a beam with fixed ends.

δ2 is the downwards movement due to the support moments, shown in Figure 8.16c. 
The support moment is

	 M = Peend	 (8.38)
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And the midspan deflection for a beam loaded with support moments, M, is

	 δ =
8

2ML
EI

	 (8.39)

Combining Equations 8.38 and 8.39

	 δ =
8

2
end

2Pe L
EI

	 (8.40)

The final step is to calculate the downwards deflection due to gravity loads using the stan-
dard equation for a beam with fixed supports

	 δ =
384

4wL
EI

	 (8.41)

In all of the above calculations, downwards deflection is taken as positive.

Example 8.11:  Deflection in a continuous beam

Figure 8.17 shows a 0.24 m deep and 1.0 m wide continuous beam with fixed supports sub-
jected to a uniformly distributed load. Determine the following:

	 1.	 The deflection under the dead weight of the concrete at transfer
	 2.	 The deflection under an SLS imposed load of 6 kN/m2

We (calculated using eend+ emid)

Peend
Peend

δ1

δ2

eend

emid

(b)

(c)

(a)

eend + emid 

Figure 8.16  Tendon eccentric at supports. (a) Tendon profile, (b) deflection due to uplift from draped 
tendon and (c) deflection component due to support moment.
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	Basic data
	P = 450 kN, α = 0.9, β = 0.8, Ec = 35,000 N/mm2 at transfer and 14,000 N/mm2 at the SLS

1. The second moment of area of the uncracked concrete section is

	
= × = ×1000 240

12
1.152 10 mm

3
9 4I

	

From Equation 8.37, the uplift load from the tendon (with α-factor of 0.9 applied to tendon 
force) is

	
= − × × × + = −8 0.9 450 10 (75 70)

7500
8.352 N/mm

3

2we
	

From Equation 8.35 and using the short-term E

	
δ = × − ×

× × ×
= −5 ( 8.352) 7500

384 35000 1.152 10
9 mm1

4

9
	

And the end-moment deflection, from Equation 8.40, is

	
δ = × × × ×

× × ×
=0.9 450 0.07 10 7500

8 35000 1.152 10
5 mm2

6 2

9
	

The self-weight is

	 w = 25 × 0.24 × 1.0 = 6 kN/m

Now, the self-weight deflection is calculated for a fixed end beam using Equation 8.41:

	
δ = ×

× × ×
=6 7500

384 35000 1.152 10
1 mm

4

9
	

Finally, the combined deflection is

	 δ = − + + = − ↑9 5 1 3 mm 	

i.e., the beam is expected to lift by 3 mm as soon as the tendons are stressed.

70 mm

75 mm

240 mm

7.5 m

Figure 8.17  Continuous beams with approximately fixed supports.
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2. From Equation 8.37 and using the β factor (0.9) on the tendon force

	

8 0.8 450 10 (75 70)
7500

7.424 N/mm
3

2we = − × × × + = −
	

From Equation 8.35 using long-term E

	
δ = × − ×

× × ×
= −5 ( 7.424) 7500

384 14000 1.152 10
19 mm1

4

9
	

From Equation 8.40

	
δ = × × × ×

× × ×
=0.8 450 0.07 10 7500

8 14000 1.152 10
11 mm2

6 2

9
	

The UDL from the dead and imposed loadings is

	 w = 6 + 6 = 12 kN/m

Equation 8.41

	
δ = ×

× × ×
=12 7500

384 14000 1.152 10
6 mm

4

9
	

Finally, the combined deflection under SLS loads is

	 δ = − + + = − ↑19 11 6 2 mm 	

8.2.5.3  Deflection in a propped cantilever

Figure 8.18 shows an edge beam (or slab) with one support simply supported and the other 
continuous. Deflections can be estimated using a similar approach to that described in 
Section 8.2.5.2, but with δ1 determined using a reduced drape in the tendon (emid + 0.5eend).

The midspan moment due to the tendon eccentricity is also

	 = − +( 0.5 )mid endM P e e 	 (8.42)

Combing Equation 8.42 with Equation 8.32, the uplift load is

	 = − +8 ( 0.5 )mid end
2w

P e e
L

e 	 (8.43)

The end moment from Figure 8.18 is

	 = endM Pe 	 (8.44)

The midspan deflection in a beam with one end moment only is

	 δ =
16

2ML
EI

	 (8.45)
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Combining Equations 8.44 and 8.45

	 δ =
16

2
end

2Pe L
EI

	 (8.46)

Finally, the dead load deflection is calculated using the standard propped cantilever with a 
UDL equation

	 δ =
185

4wL
EI

	 (8.47)

Example 8.12:  Propped cantilever

A double-span continuous PSC beam spans 12 m between simple supports and is 450 mm 
wide and 500 mm deep (see Figure 8.19). The beam is subjected to a uniformly distributed 
imposed load of 12 kN/m. Determine the midspan deflection under

	 1.	 Self-weight at transfer
	 2.	 Serviceability limit state dead and imposed loads

Basic data
P = 1100 kN, α = 0.9, β = 0.8, Ec = 28,000 N/mm2 (short term) and 13,000 N/mm2 (long term)

160mm

150 mm12 m 12 m

9 m 3 m 3 m 9 m

Figure 8.19  Two-span continuous beam.

eend

emid
(a)

Peend

δ2

(b)

emid + 0.5eend

Figure 8.18  Unsymmetrical support conditions. (a) Tendon profile and (b) deflection due to downwards 
force from support moment.
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1. The second moment of area of the section is

	
= × = ×450 500

12
4.69 10 mm

3
9 4I

	

From Equation 8.43 and using the short-term loss factor (α = 0.9)

	 = − × × × × + = −8 0.9 1100 10 (150 160 / 2)
12000

12.66 N/mm
3

2we 	

From Equation 8.35 and using the short-term E

	
δ = × − ×

× × ×
= −5 ( 12.66) 12000

384 28000 4.69 10
26 mm1

4

9
	

From Equation 8.46 and using the short-term loss factor for tendon force

	
δ = × × × ×

× × ×
=0.9 1100 10 160 12000

16 28000 4.69 10
11 mm2

3 2

9
	

The self-weight is

	 w = 25 × 0.45 × 0.5 = 5.6 kN/m

From Equation 8.47

	
δ = ×

× × ×
=5.6 12000

185 28000 4.69 10
5 mm

4

9
	

And the total deflection at transfer is

	 δ = − + + = − ↑26 11 5 10 mm 	

2. From Equation 8.43 and using the total loss factor (β = 0.8)

	
= − × × × × + = −8 0.8 1100 10 (150 160 / 2)

12000
11.25 N/mm

3

2we
	

From Equation 8.35 and using the long-term E

	
δ = × − ×

× × ×
= −5 ( 11.25) 12000

384 13000 4.69 10
50 mm1

4

9
	

From Equation 8.46

	 δ = × × × ×
× × ×

=0.8 1100 10 160 12000
16 13000 4.69 10

21 mm2

3 2

9 	
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The UDL from the dead and imposed loads is

	 w = 5.6 + 12 = 17.6 kN/m

From Equation 8.47

	
δ = ×

× × ×
=17.6 12000

185 13000 4.69 10
32 mm

4

9
	

Total deflection under SLS loads is

	 δ = − + + = ↓50 21 32 3 mm 	

8.3 � COMPOSITE CONSTRUCTION USING PRE-TENSIONED 
PRECAST CONCRETE BEAMS

Prestressed concrete beams are often used compositely with conventional RC. Examples are 
shown in Figures 8.1 and 8.20, in which pre-tensioned beams support concrete slabs. The 
basic principles of ULS design are the same as for ordinary prestressed concrete; however, the 
checks for the SLS condition are slightly different. As with the conventional steel–concrete 
composite construction, the beams support the wet weight of the concrete if unpropped, 
with all loads thereafter supported by the combined action of the precast concrete section 
and the conventional concrete.

A freshly cast slab, such as that shown in Figure 8.20, will initially have a lower Young’s 
modulus than the older precast sections due to the difference in age. In addition, Young’s 
modulus is dependent on the concrete grade. The precast manufacturer may choose a high 
grade concrete because of the early strength gain it will provide. Thus the slab and the pre-
cast units may have significantly different values of Young’s modulus. The effect on stress of 
different Young’s modulus values can be assessed using the method of transformed sections. 
To do this the modular ratio is required, which is the ratio of Young’s moduli For the two 
different grades of concrete.

If the composite action second moment of area is calculated using uncracked properties 
for the concrete, the SLS checks must include a check that the tensile stresses are within 
the permissible tensile stress limits. The shear strength of the contact face between the con-
crete elements also needs assessing, with steel shear links used to transfer the shear forces 
required to develop the composite action.

600 mm

130 mm

375 mm

150 mm 

Centroid

Concrete slab

Beams at 
460 mm centres

Prestressing 
strands

. . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.20  Cross-section through a PSC bridge deck at midspan.
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Example 8.13:  Stress calculations for a composite bridge deck

Figure 8.20 shows a bridge that spans 13.5 m between simple supports. The pre-tensioned 
beams support the concrete slab during casting, i.e., they are unpropped during casting. 
Once hardened, both the slab and the beams support loads through composite action. 
Determine the stress distribution in the cross section at midspan at the following stages:

	 1.	 At transfer, but before the concrete slab has been cast
	 2.	 When supporting the wet weight of the slab
	 3.	 When supporting an imposed load of 9 kN/m per beam

Basic data
Each beam has self-weight of 3.26 kN/m, cross-sectional area of 0.136m2, second moment 
of area of 6.5 × 109 mm4 and is pretensioned with a force (after losses) of 1000 kN. The 
pre-tensioning strands are located 130 mm below the centroid, as shown in Figure 8.20. 
The (modular) ratio between the Young’s moduli of the slab over beam is 0.667.

1. The midspan moment due to the 3.26 kN/m self-weight is

	
= × =3.26 13.5

8
74.3 kN.m

2

M
	

The section moduli for the top and bottom of the precast concrete sections are

	
Z

6.5 10
375

17.3 10 mm
9

6 3
T = × = ×

	

	
Z

6.5 10
225

28.8 10 mm
9

6 3
B = × = ×

	

The tendon eccentricity (i.e. the distance between the tendons and centroid) is 130 mm, and 
from Equation 8.1 the stress at the top of the section at the interface with the slab soffit is

	
σ = − +P

A
Pe
Z

M
Z

T
T T 	

	
σ = ×

×
− × ×

×
+ ×

×
1000 10
0.136 10

1000 10 130
17.3 10

74.3 10
17.3 10

3

6

3

6

6

6T
	

	 σ = − + = +7.4 7.5 4.3 4.2 N/mm2
T 	

And from Equation 8.2 at the bottom

	
σ = + −P

A
Pe
Z

M
Z

B
B B 	

	 7.4 4.5 2.6 9.3 N/mm2
Bσ = + − = + 	
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2. The dead weight of the concrete slab is

	 = × × =25 0.46 0.15 1.72 kN/mw 	

And the corresponding midspan moment per beam is

	
= × =1.72 13.5

8
39.2 kN.m

2

M
	

The additional bending stresses are now added to those from Step 1, i.e.,

	
σ = + + = + ×

×
= +4.2 4.2

39.2 10
17.3 10

6.5 N/mm
6

6
2M

Z
T

T 	

	
9.3 7.9 N/mm2M

Z
B

B

σ = + − = +
	

3. The midspan moment due to the imposed load is

	
= × =9 13.5

8
205 kN.m

2

M
	

This is resisted by the combined action of the precast concrete sections and the slab. The 
top slab has a lower value of Young’s modulus than the precast concrete beams; therefore 
the method of transformed sections must be used to determine the effective width of the top 
flange. The effective width of the 460 mm wide slab is determined using the modular ratio 
(0.667), i.e.,

	 Eff. width 460 0.667 306.7 mm= × = 	

Taking moments of area about the top of the slab to determine the position of the centroid 
of area

	
= × × + × × +

× + ×
=306.7 150 0.5 0.136 10 (375 150)

306.7 150 0.136 10
411 mm

2 6

6y
	

Using the parallel axis theorem, the second moment of area is

	
= × + × × − + × + × + −306.7 150

12
306.7 150 (411 75) 6.5 10 0.136 10 (375 150 411)

3
2 9 6 2I

	

	 = ×13.5 10 mm9 4I 	

At the top of the slab

	 mod. ratio
M
I

yσ = × 	
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0.667

205 10 411
13.5 10

4.2 N/mm
6

9
2σ = × × ×

×
= +

	

And at the bottom of the slab

	
0.667

205 10 (411 150)
13.5 10

2.6 N/mm
6

9
2σ = × × × −

×
= +

	

At the top of the precast concrete beams the imposed load stresses are added to the previ-
ously calculated values

	
6.5

205 10 (411 150)
13.5 10

10.4 N/mm
6

9
2σ = + + × −

×
= +

	

And at the bottom of the beams

	
7.9

205 10 (600 150 411)
13.5 10

2.8 N/mm
6

9
2σ = + − × × + −

×
= +

	

The build-up of the stresses at transfer, supporting the wet weight of the concrete and under 
the imposed loads is sketched in Figure 8.21.

8.4  ULS BENDING STRENGTH

The basic method for determining the ultimate moment capacity of a PSC beam is the same 
as that used for the design of conventionally reinforced beams, as described in Chapter 7. 
However, there are subtle differences related to the greater strength of prestressing ten-
dons in comparison with conventional rebar. The basic design assumptions regarding the 
assumed stress distribution at the ULS are sketched in Figure 8.22b.

The compressive force in the concrete is

	 0.8cd= × ×C f b xc 	

where
x is the neutral axis depth
b is the width of the beam (see Figure 8.22a).

+4.2+4.2

+9.3

+6.5

+7.9

+10.4

+2.8

+2.6

+4.2

(a) (b) (c)Cross-section 

Figure 8.21  Stress distribution at the different stages, in N/mm2. (a) At transfer, (b) with wet concrete and 
(c) SLS loading.
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Inputting the design strength of concrete from Equation 7.1, this becomes

	 0.567 0.8ck= × ×C f b xc 	 (8.48)

From Equation 7.4, the tensile strength of the steel is

	
0.87 yk=T f As 	

If no external axial force is applied, then horizontal equilibrium tells us that

	 T = Cc

The lever arm distance between the steel and the concrete (Figure 8.22c) is

	 z = d – 0.4x	 (8.49)

And the moment capacity is

	 M = T z	 (8.50)

As with any RC beam (Equation 7.8), the neutral axis depth is limited to not greater than 
0.45d, in order to ensure that the beam has sufficient ductility.

In PSC beams, it is also necessary to check that the steel tendons have yielded. This is 
because the yield stress of prestressing steel is very high, so there is a real risk that the 
concrete will crush before the tendons have yielded. The maximum compression strain (εc) 
acceptable in normal strength concrete is 0.0035. From similar triangles (Figure 8.22d), the 
bending strain in the steel (εs) is

	
0.0035ε

−
=

d x x
s 	 (8.51)

The pre-tensioning strain is

	 pre
preε =

βσ
E

	 (8.52)

0.8xx

d

Cc = 0.567fck.b. 0.8x

T = 0.87 fyk As

NA

Tensile stress = 0.87 fyk

(a)

fcd

As

0.4x

b 

Lever arm, z = d–0.4x

(b) (c) (d)

d –x

x

εs

εc = 0.0035

Figure 8.22  Moment capacity assumptions. (a) Cross-section, (b) design stress distribution, 
(c) design forces and (d) strain distribution.
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where σpre is the prestress. The total strain in the tendons at the ULS is the bending strain 
(σs) + pre-tensioning strain (σpre). If the total strain ≥ yield strain, then yielding occurs and 
the design assumptions hold true, where the yield strain is

	

ykε =
f
E

y
	

If total strain < yield strain, then the stress in the tendons will remain below the yield stress 
when the concrete fails in crushing. In that case, the moment capacity must be recalculated 
accounting for the reduced stress in the steel.

Example 8.14:  Moment capacity calculation

A 250 mm wide, 600 mm deep beam is reinforced with 2 × 25 mm diameter conventional 
rebar, in addition to 4 × 10 mm diameter pre-tensioning tendons. The centroids of the reinforce-
ments are all located 50 mm above the soffit of the beam. The tendons are initially stressed at 
1200 N/mm2, although the yield stress is 1600 N/mm2. Determine the ULS moment capacity.

Basic data
Conventional rebar As = 982 mm2, fyk = 500 N/mm2; fck = 35 N/mm2, crushing strain = 
0.0035. Prestressing tendons As = 314 mm2, β = 0.8; Es = 210,000 N/mm2.

Effective depth, d = 600 – 50 = 550 mm and rearranging Equation 8.48 in terms of x

	 0.567 35 250 0.8
=

× × ×
x

Cc

	

	 3969
=x

Cc

	

The combined tensile strength of the rebar and prestressing tendons from Equation 7.4 is

	 (1600 314 500 982) 0.87 10 864 kN3= × + × × × =−T 	

From horizontal equilibrium, Cc = T; therefore

	

864 10
3969

218 mm
3

= × =x
	

This is less than the limit of x = 0.45d (248 mm); therefore the section should be ductile. 
From Equation 8.49, the lever arm is

	 z = d – 0.4x

	 z = 550 – 0.4 × 218 = 462.8 mm

And from Equation 8.50, the moment capacity is

	 M = T z = 864 × 103 × 462.8 × 10–6 = 400 kN.m
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This assumes that the prestressing steel has yielded, although this needs to be checked. From 
Equation 8.51, the bending strain is

	

0.0035ε
−

=
d x x

s

	

	

0.0035 550 218
218

0.0053
( )

ε =
−

=s
	

From Equation 8.52, the pre-strain is

	
pre

preε =
βσ

E 	

	

1200 0.8
210000

0.0046preε = × =
	

	 Total strain = 0.0047 + 0.0053 = 0.0100

The yield strain is

	
= = =Yield strain

1600
210000

0.0076ykf
E 	

Since the total strain (0.0100) > yield strain (0.0076), the tendons will yield and the moment 
calculation is correct.

8.5  ULS SHEAR STRENGTH

The basic theory for the design of shear reinforcement for prestressed concrete is the 
same as that for conventional RC, as described in Chapter 7. However, axial compression 
from prestressing can enhance the shear strength. If uncracked because of prestressing, 
then shear strength will be enhanced further. This section considers the theory behind 
the estimation of the shear strength for uncracked beams without conventional shear 
reinforcement.

Figure 8.23a shows an element of concrete subjected to a compression stress due to pre-
stress (σc) and a shear stress (τ). Mohr’s circle of stress (Figure 8.23b) tells us that the centre 
of the circle is located at a distance σc/2 from the y axis. The radius of Mohr’s circle (R) is

	 2
= σ − σR c

t
	

From Pythagoras

	
2

2
2

2= σ



 + τR c 	
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Combining these equations

	 2 2

2 2
2σ − σ



 = σ



 + τc

t
c

	

which simplifies to

	 2τ = σ − σ σt c t 	 (8.53)

where
σt is the principal tensile stress (negative for tension).
τ is the shear stress.

The shear stress (τ) a distance y from the neutral axis (see Figure 8.24) is

	 τ = ′VA y
b Io

	 (8.54)

where I is the second moment of area of the cross section and V is the applied shear force. 
Combining Equations 8.53 and 8.54 provides the shear strength of the (uncracked) PSC 
beam without shear reinforcement, i.e.,

	 2=
′

σ − σ σV
b I
A y

o
t c t 	 (8.55)

0

τ

τ

τ

τ
σc σt σ

σc

0
0, –τ

R

R

(a) (b)

σc/2

σc , τ
τ

τ

σc/2
σc

Figure 8.23  Mohr’s circle of stress. (a) Element under compression and shear and (b) Mohr’s circle of stress.

Hatched area = A’

yy

Centroid of hatched area

Neutral axis

bo

Figure 8.24  Notation used in the shear equation.
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This calculation assumes that the shear capacity limit is reached when the concrete first 
cracks, i.e., when σt reaches the tensile strength. Figure 8.25 shows the distribution of shear 
stress for beams of rectangular and box-shaped cross sections. These show that the maxi-
mum shear stress occurs at the centroid. For this reason, the critical shear strength calcula-
tion is performed at the centroid.

Example 8.15:  Shear strength of a prestressed concrete unit

Figure 8.26 shows a Prestressed Concrete unit. The total combined force from all the pre-
tensioning cables P = 18MN, and the combined eccentricity from all the tendons is 233 mm 
below the centroid. If the units are uncracked and the maximum tensile stress in the con-
crete is limited to 2.5 N/mm2, determine the maximum shear force that the units can resist 
in the absence of shear reinforcement.

1. The second moment of area and cross-sectional area are

	

2100 2800
12

1800 2000
12

2.64 10 mm
3 3

12 4I = × − × = ×
	

	 2100 2800 2000 1800 2.28 10 mm6 2A = × − × = × 	

The stress due to the 18MN prestress at the centroid is

	
σ = +P

A
Pey
I 	

	

18 10
2.28 10

18 10 233 0
2.64 10

7.89 N/mm
6

6

6

12
2σ = ×

×
+ × × ×

×
=

	

Cross section Shear stress Cross section Shear stress

Figure 8.25  Distribution of shear stress.
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Figure 8.26  Cross section through a PSC rectangular tube.
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And taking moments of area about the centre line as shown in Figure 8.27

	 300 1400 700 (2100 300) 400 (1400 200) 0.5 2.28 106× × + − × × − = × × ×y 	

	 1016 mm=y 	

And from Equation 8.55, the shear strength of the uncracked section is

	

2=
′

σ − σ σV
b I
A y

o
t c t

	

	

(2100 1800) 2.64 10
0.5 2.28 10 1016

10 ( 2.5) 7.89 ( 2.5) 3485 kN
12

6
3 2= − × ×

× × ×
× − − × − =−V

	

8.6  DESIGN OF ANCHORAGES

The anchorage imposes large stress concentrations to the ends of members and this can lead 
to splitting. This can be prevented by the use of anchorage reinforcement, which can be 
designed using the strut and tie method described in Chapter 9. During design, the stress in 
the rebar should not be greater than 60% of the yield stress. This keeps the rebar strain low 
and helps to control crack widths.

The exact form of the strut and tie model allows for some variation, although a dispersion 
of 1:2 is commonly used for simplicity. An example of the simplest strut and tie model is 
shown in Figure 8.28. This section provides only a brief introduction into the principles of 
designing anchorage, without reference to the checking of stresses in the concrete. These can 

Centre line
y

A’ hatched

Centroid of hatched half

Figure 8.27  Design parameters for calculation of shear stress.

P 0.25 P

(a) (b)

Figure 8.28  Examples of strut and tie models for anchorages. (a) Strut and tie model and (b) reinforcement detail.
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be checked using the full strut and tie method presented in Chapter 9, and more variations 
in strut and tie models are presented in Nawy (2009).

Example 8.16:  Single tendon anchorage

A 400 mm deep beam is post-tensioned with a force of 500 kN using one tendon located on 
the centroid. Design the anchorage reinforcement if fyk = 500 N/mm2.

Figure 8.28a shows the strut and tie model developed for this question. A 2:1 load dispersion 
is assumed; therefore, from equilibrium the splitting force is

	

500
4

125 kN= =T
	

The stress in the steel is limited to 60% of the yield stress; therefore, by adjusting Equation 7.4

	
0.6 0.87 ykT A fs= ×

	 (8.56)

The steel area is

	

125 10
0.6 0.87 500

479 mm
3

2= ×
× ×

=As
	

The rebar are provided in a hoop shape around the tendon anchor; it follows that each bar 
passes through the crack twice. Therefore, 9 × 6 mm diameter links provide 2 × 254 mm2 > 
479 mm2, which is thus adequate (see Table 8.1 and Figure 8.28b).

Example 8.17:  Two tendon anchorage

A 400 mm deep beam is post-tensioned using two tendons, each of which is located 120 mm 
to either side of the centroid. Each tendon is prestressed with a tendon capable of loading 
the beam with a force of 260 kN at the ULS. Design the anchorage reinforcement if fyk = 
500 N/mm2.

Figure 8.29a shows the two types of cracking that can occur, which include splitting between 
the two point loads and bursting of the concrete behind the bearing plates. Figure 8.29b 
shows the strut and tie model for splitting. From equilibrium and assuming a 1:2 slope of 
the diagonal struts, the tension force is

	

260
tan(63.4)

130 kN= =T
	

Table 8.1  Cross-sectional areas of groups of rebar, in mm2

Diameter

Rebar Number

1 2 3 4 5 6 7 8 9

6 28 57 85 113 141 170 198 226 254
12 113 226 339 452 556 679 792 905 1020
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From Equation 8.56, the area of steel needed to prevent splitting is

	

130 10
0.6 0.87 500

498 mm
3

2= ×
× ×

=As
	

Provide 3 × 12 mm diameter links – this gives a total cross-sectional area of 2 × 339 = 678 mm2 
(see Table 8.1). The anti-bursting strut and tie model is shown in Figure 8.29c. From equilib-
rium, T = 65 kN; therefore,

	

65 10
0.6 0.87 500

249 mm
3

2= ×
× ×

=As
	

Provide 5 × 6 mm diameter rebar = 2 × 141 = 282 mm2 (see Table 8.1). The final rebar 
arrangement is sketched in Figure 8.29d.

Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	 P.8.1.	 A beam is 300 mm deep and 200 mm wide and spans 4.6 m between simple sup-
ports. It supports a UDL of 9.7 kN/m. If a prestress force of 200 kN is applied to the 
section, with a maximum eccentricity of the tendon of 70 mm below the centroid, 
determine the stress distribution at the top and bottom of the beam at midspan 
under unfactored loads.

	 Ans. +8.5 N/mm2 top and –1.9 N/mm2 bottom.

260 kN

260 kN

260 kN

260 kN

(b)

(c)

(a)

T = 130 kNT

T = 65 kN

T

T

Bursting 

Splitting 

Bursting 

Slope 1:2 (63.4 degrees)

(d)

Bursting force rebar
5 × 6 mm φ 

Splitting force rebar
3 × 12 mm φ Slope 1:2

Figure 8.29  Beam resisting two point loads from prestressing. (a) Crack patterns, (b) splitting force strut 
and tie model, (c) bursting force strut and tie model and (d) rebar arrangement.

https://www.crcpress.com/9781498741217
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	 P.8.2.	 A post-tensioned RC beam is 0.5 m wide and spans 14 m between simple sup-
ports. It supports a UDL of 14 kN/m and the tendon is located 0.15 m below the 
centroid at midspan. The limiting stresses and anchorage loss factors are listed 
below.

	 a.	 Determine the minimum beam depth to resist the applied SLS loads without 
cracking or crushing.

	 b.	 If the beam depth is set at 0.6 m, determine the maximum and minimum limits 
on tendon force.

	 Basic data
	 α = 0.9, β = 0.8, σmin, t = 0, σmin, sls = 0, σmax, t = 20 N/mm2, σmax, sls = 16 N/mm2

	 Ans. (a) h = 0.52 m and 0.495 m and (b) P ≤ 4083 kN, P ≤ 3483 kN, P ≥ 1169 kN, 
P ≥ 2634 kN, → 2634 kN ≤ P ≤ 3483 kN.

	 P.8.3.	 A 500 mm deep and 700 mm wide beam spans 18 m between simple supports and 
is prestressed with tendons that develop a combined force of 3500 kN. The eccen-
tricity of the tendons at the end of the beams is zero and at midspan is 170 mm. 
Ec = 28,000 N/mm2, Es = 210,000 N/mm2.

	 a.	 Determine the stress in the concrete at the tendon position at the supports and 
at midspan.

	 b.	 Determine the loss of prestress due to elastic shortening.
	 Ans. (a) 10.0 N/mm2 and 15.6 N/mm2 and (b) 48.0 N/mm2.

	 P.8.4.	 A 220 mm deep and 1000 mm wide beam is shown in Figure 8.30.

	 a.	 Determine the midspan deflection at transfer (dead load only).
	 b.	 Determine the midspan deflection under an SLS imposed load of 8 kN/m.

	 Basic data
	 P = 550 kN, α = 0.9, β = 0.8, Ec = 35,000 N/mm2 short term, Ec = 14,000 N/mm2 

long term
	 Ans. (a) –2.86 mm and (b) 3.9 mm.

	 P.8.5.	 A bridge deck comprises inverted T-beams that span 16 m between simply sup-
ported bearings (see Figure 8.31). Using the basic data provided below determine 
the following:

	 a.	 The stress distribution in the inverted T-beam at transfer.
	 b.	 The stress distribution when resisting the wet weight of the concrete.
	 c.	 The stress distribution supporting an imposed load of 8 kN/m.

	 Basic data for the inverted T-beams
	 Prestress force = 1200 kN, I = 8.6 × 109 mm4, cross-sectional area = 0.16 m2, 

concrete density = 25 kN/m3

65 mm

70 mm7.25 m 7.25 m

220 mm 

Figure 8.30  Two-span continuous beam.
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	 Ans. (a) 0.55 and 10.98 N/mm2 top and bottom, (b) 18.4 and 2.1 N/mm2 and 
(c) +3.1 N/mm2 top of bridge deck, 20.6 and –1.0 N/mm2 top and bottom of inverted 
T-section.

	 P.8.6.	 A 160 mm wide and 220 mm deep beam is post-tensioned with 2 × 8 mm diam-
eter tendons located 30 mm above the soffit. The tendons are initially stressed at 
1200 N/mm2, although the yield stress is 1600 N/mm2.

	 1.	 Determine the ULS moment capacity.
	 2.	 Determine the strain in the tendons at the ULS.

	 Basic data
	 fck = 40 N/mm2, Es = 210,000 N/mm2, concrete crushing strain = 0.0035, β = 0.8, 

As = 100.5 mm2

	 Ans. (a) 23.9 kN.m and (b) 0.015.

	 P.8.7.	 Figure 8.32 shows prestressed concrete units. The total combined force from all the 
prestress tendons is 13 MN and the combined eccentricity of the tendons is 207 mm 
below the centroid. If the units are uncracked and the maximum tensile stress in the 
concrete is limited to 4 N/mm2, determine the maximum applied shear force that 
the units can resist.

	 Ans. 6212 kN.

REFERENCE
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Chapter 9

Strut and tie modelling of 
reinforced concrete

This chapter describes strut and tie modelling (STM) of RC. Finite Element Analysis (FEA) 
analysis cannot easily deal with cracking that normally occurs in RC structures. In contrast, 
STM provides safe estimates of strength irrespective of cracking. The problems of FEA mod-
elling of concrete were illustrated by the Sleipner-A oil rig, which sank whilst being lowered 
into a Norwegian fiord. When it hit the seabed, it caused an earthquake recorded at 3.0 on 
the Richter scale and cost $700 million. The investigators found that the failure could have 
been avoided if STM had been used in conjunction with FEA.

9.1  INTRODUCTION TO STM

Elastic beam theory becomes inaccurate when the span-to-depth ratio of a beam is less 
than 4. This problem is illustrated by the deep beam sketched in Figure 9.1. Elastic beam 
theory would forecast a linear distribution of bending stresses as shown in Figure 9.1a, 
whereas FEA would predict the stresses shown in Figure 9.1b. In practice, tensile stresses 
would cause the concrete to crack. The tensile forces previously carried by the concrete 
would transfer to the steel reinforcement located along the base of the beam. The arrange-
ment of struts and ties shown in Figure 9.1c provides a realistic representation of the cracked 
behaviour, where compression struts are indicated by the letter C and the tension force in 
the rebar is indicated by the letter T.
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The STM method is used for modelling areas of stress concentration within structures. 
These are termed ‘D-regions’, with D for discontinuity. Areas where conventional beam the-
ory proves accurate are termed ‘B-regions’, where B stands for beam. The D-regions are 
generally assumed to be square in proportion, i.e., equal in length to the member depth 
(see Figure 9.2).

The D-regions result from either geometric discontinuities (Figure 9.3) or from concentrated 
loading (Figure 9.4). Typical examples of D-regions include connections, corners, openings 
in beams, and deep beams, such as pile caps. The STM is used to design the reinforcement 
within the D-regions, whereas standard theory is used for the B-regions.

9.2  FORMULATION OF THE STRUT AND TIE MODEL

The positioning of the struts and ties should ideally correspond with the natural flow 
of stresses in cracked RC. Figure 9.5a shows the flow of compression stress away from 
a point load. Below the D-region, the concentrated stresses under the load become uni-
formly distributed. This uniform distribution can be represented by two compression 
struts positioned centrally in the two halves of the member, labelled C1 in Figure 9.5b. 
The angle of the diagonal compression struts labelled C2 can vary, although an easy and 
safe approximation is to assume a 1:2 slope. This angle makes the calculation of the tie 
force particularly easy, with resolution of the forces showing that the tie force T1 = P/4 
(see Figure 9.5b).

(a) (b)

T

C

C C

C

C

(c)

Figure 9.1  Midspan bending stress distributions. (a) Bernoulli’s stress distribution, (b) stress distribution 
from elastic FEA and (c) notional arrangement of struts and ties.
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B
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Figure 9.2  Illustration of B-regions and D-regions.
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Rebars are positioned on the centreline of the ties. If more than one rebar is used, then the 
centre of the group of bars should be located on the centreline of the tie, as is the case for the 
rebar shown in Figure 9.5c, which is spread to either side of the centre line of T1.

The standard models shown in Figure 9.6 can be adapted to cover a wide range of practi-
cal situations. When deciding upon which model to use, the designer should select one that 
involves the lowest strain energy, where

	 strain energy force length strain= × × 	

Strain energy is highest in ties, because rebar strain tends to be much higher than the strain 
in the concrete struts. Therefore, the length of the ties should be minimised when deciding 
which arrangement of struts and ties to use.
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C C

C

= = = =
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Rebar arrangement for ties

Figure 9.3  Strut and tie models for geometric discontinuities.
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Figure 9.4  Strut and tie models for concentrated loads.
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P/2 P/2

Figure 9.5  Formulation of STM for an element with concentrated load. (a) Flow of compression stress, 
(b) the strut and tie model and (c) rebar distribution for T1.
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Figure 9.7a shows a member composed of B- and D-regions because b < H/2. This is called 
a partial discontinuity, whereas if b > H/2 (Figure 9.7b) the entire member is a D-region and 
this is called a full discontinuity member. The classification of full or partial discontinuity 
has design implications when defining the forces in the struts and ties.

9.2.1  Partial discontinuity

The positions and forces in the members can be defined by considering the diagrams in 
Figure  9.8, which can represent the D-regions from Figure 9.7a. The transverse stress 
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Notation:
C is for strut
T is for tie
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Figure 9.6  Common strut and tie models.
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Figure 9.7  Design parameters for struts with partial and full discontinuities. (a) Strut with partial disconti-
nuity, b < H/2 and (b) strut with full discontinuity, b > H/2.
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distribution is shown in Figure 9.8b. This shows tension stresses caused by the spreading 
compression stresses, which will cause cracking. The node positions shown in Figure 9.8c 
are taken from Eurocode 2 and the forces in the members are shown in the free body dia-
gram sketched in Figure 9.8d. Considering moment equilibrium around point X

	
0.5

4 4
= 0.5F

b L
T bb× −





×
	

Therefore, the force in the tie is

	
4

T
F b L

b
b= −





	 (9.1)

Figure 9.8e shows the positioning of the rebar. These are represented by the force T in the 
STM. According to the theory, the zone directly below the point load (0.4H) can go unrein-
forced; however it would be inadvisable to not reinforce this area, because laboratory tests 
show that the crack will grow and extend higher. Therefore, the reinforcement should be 
extended above to control cracking.

9.2.2  Full discontinuity

Figure 9.9a shows a member that is entirely comprises a D-region in which a concentrated 
load creates tensile stresses in the central region (Figure 9.9b). The geometry of the strut and 
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0.5F
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CLSti� bearing, Lb

(e)

0.4H

0.6H

C

Figure 9.8  A partial discontinuity member. (a) Stress trajectories, (b) transverse stresses, (c) strut and tie 
model, (d) idealised forces one side and (e) position of rebar.
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tie model used in Eurocode 2 is shown in Figure 9.9c and considering moment equilibrium 
about X in Figure 9.9d

	
0.25

0.5 0.65
4 4 2

H T
H L L Fb b× = + −



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which rearranges to
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
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4

1
0.7

T
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H
b= −



 	 (9.2)

9.3  DESIGN OF THE TIES

The strength of a tie is calculated using Equation 7.4

	 T = 0.87 ykA fs 	 (9.3)

(a)
Sti� bearing, Lb

(b)
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(c) (d)
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0.15H
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0.2H
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Figure 9.9  A full discontinuity member as defined by Eurocode 2. (a) Stress trajectories, (b) transverse 
stresses, (c) strut and tie model, (d) idealised forces one side and (e) position of rebars.
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More than one rebar can be represented as a single tie, in which case the rebars are spread 
equally either side of the centre line of the notional tie in the STM. Particular care must be 
taken to ensure that ties are adequately anchored beyond node points; Figure 9.10 shows 
examples of end anchorages.

9.4  CONTROL OF COMPRESSION STRESSES

Compression struts are classified into two main types: prismatic and bottle shaped (see 
Figure 9.11). The important difference between these is that stress is spreading in bottle-
shaped struts, whereas it is uniform for prismatic ones. This is important, because spreading 
stresses create sideways tensile stresses and these (a) cause tension cracking and (b) reduce 
compression strength. The sloping (diagonal) struts shown in Figure 9.6 are bottle shaped, 
whereas the short vertical struts located under loads are prismatic.

The struts and ties intersect at nodes, which fall into the three types shown in 
Figure 9.12. The allowable stresses depend on the type of node, with stresses falling in 

(a) (b)

(c) (d)

σ C1σ C1

σ C2 σ C2

σ C2

σ C1

σ T1

σ C2

σ C1

σ T1

σ T1

σ T1

Figure 9.10  Examples of end anchorages. (a) Straight bar, (b) standard 90-degree hook, (c) T-headed bar 
and (d) bearing plate.

(b)(a)

a a

Figure 9.11  Strut compressive stress fields. (a) Prismatic and (b) bottle-shaped.
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the presence of tensile stresses from ties. The Eurocode 2 limiting stresses of the struts 
are as follows:

	 Prismatic struts in CCC nodes, 1.00Rd cdfσ = × ν′ 	 (9.4)

	 Prismatic struts in CCT nodes, 0.85Rd cdfσ = × ν′ 	 (9.5)

	 Prismatic struts in CTT nodes, 0.75Rd cdfσ = × ν′ 	 (9.6)

	 Unreinforced bottle-shaped struts, 0.6Rd cdfσ = ν′ 	 (9.7)

	 Reinforced bottle-shaped struts, 1.0Rd cdfσ = ν′ 	 (9.8)

where fcd is the design compressive stress for concrete, given by Equation 7.1, and

	 1
250

ckfν′ = − 	 (9.9)

Combining Equations 9.7, 9.9 and 7.1 provides the limit for unreinforced bottle-shaped 
struts, which tend to be critical over the other stress limits, i.e.,

	 0.6 1
250

0.567Rd
ck

ck
f

fσ = × −





× 	 (9.10)

9.4.1  Reinforced bottle-shaped struts

If transverse (bursting) reinforcement is required, a submodel of the bottle-shaped strut 
is needed (see Figure 9.13). The dimensions of the bottle-shaped strut will depend on the 
width-to-length ratio of the strut (b/H). If b/H > 0.5, then the full discontinuity approach 
should be used, as shown in Figure 9.9c.

Providing reinforcement perpendicular to the strut angle is not usually practical; therefore, 
the bursting stress reinforcement should be provided in two layers: horizontal and vertical 
(as shown in Figure 9.14b). The combined tensile strength of the horizontal and vertical 
reinforcement is

	 0.87 sin 0.87 cosyk ykT f A f Ah v= θ + θ 	 (9.11)
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T
C

T

C-C-T Node C-C-C Node C-T-T Node
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Crushing stress

Figure 9.12  Node types and the strut crushing stresses.
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where
T is given by Equation 9.2 (H is shown in Figure 9.14a).
Ah andAv are the areas of reinforcement in the horizontal/vertical direction
θ is the angle of the strut (see Figure 9.14a).

More useful are the rebar areas per metre width, which are given by

	  per m width
0.3

A
A

A
v

v= 	 (9.12)

	  per m width
0.3

A
A

B
h

h= 	 (9.13)

where A and B are shown in Figure 9.14a. These areas can be restricted to the central 0.6 
region of the strut shown in Figure 9.14b or more sensibly extended to the whole of the 
diagonal strut for extra control of cracking.

9.4.2  The calculation of strut widths

The width of the diagonal struts needs to be calculated in order to determine the stress. The 
process for calculating strut width is illustrated in Figure 9.15a, which shows a Compression 
Compression Compression (CCC) node where the bottle-shaped strut width is

	 sin cos3 2w L wC b C= θ + θ 	 (9.14)

Full discontinuity STM 
model, see Figure 9.7a

T

T T

T

Figure 9.13  Strut and tie model for a bottle-shaped strut.
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0.6A

0.6BH

Av
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(b)(a)

Figure 9.14  Bottle-shaped strut reinforcement. (a) Basic STM and (b) minimum spread of reinforcement.
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where wC2 is twice the depth to the compression strut C1, and Lb is the stiff bearing 
width, which in this case is half the width of the bearing plate. In the example shown in 
Figure 9.15a, the load is split into two separate loads; therefore, Lb is half the plate width. 
For the Compression Compression Tension (CCT) node shown in Figure 9.15b, the bottle-
shaped strut width is

	 sin cos3 1w L wC b T= θ + θ 	 (9.15)

where wT1 would be twice the depth to the centre of the rebar (see Figure 9.15).

9.5  MINIMUM REINFORCEMENT

Each face of a deep beam should have a minimum area of reinforcement to control crack-
ing. This would usually be taken as 0.1% of the area of the concrete on each face, although 
for deep beams (>1 m) the minimum area is 0.2% on each face, provided horizontally and 
vertically to create a mesh. If this minimum area is greater than the area required from the 
STM calculations, then this replaces the STM reinforcement.

Example 9.1: � Control of cracking for a column supporting 
a concentrated load

A 600 mm square column is subjected to an 840 kN concentrated load, applied through a 
240 mm square bearing plate. Design the reinforcement at the head of the column to control 
cracking. fyk = 500 N/mm2 and fck = 40 N/mm2.

Step 1: Formulate the strut and tie model. The D-region is taken as a square 600 × 600 mm 
region from the top of the column, as shown in Figure 9.16a. The remaining column is 
B-region; therefore, this is a partially discontinuous model (see section 9.2.1). The node 
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Figure 9.15  Calculation of strut width for the beam shown in Figure 9.14. (a) CCC Node and (b) CCT Node.
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positions can be defined using the approach illustrated in Figure 9.8c, where b = 600 mm 
and the depth to the centroid of the CCC node is 0.2b = 120 mm (see Figure 9.16b). This is 
a 2D model of a 3D problem, because splitting can occur on all four faces of the column. 
Therefore, the rebar (T1) is required in both orthogonal directions.

Step 2: Design the tie. Since this is a partial discontinuity, Equation 9.1 is applied

	 4
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F b L
b

b= −



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840
4

600 240
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And from Equation 9.3, the minimum cross-sectional area of rebar is

	

126 10
0.87 500

290 mm
3

2As = ×
×

=
	

T1

C2

C4C4

(a) (b)

(d)

600 mm b/4 b/2 b/4

C2

840 kN
120 mm

420 kN420 kN

240 mm

120 mm

Lb = 120 mm

(c)

420 kN

43
8.

5 
kN

θ

w
s

C1

C1

0.7b to centroid 
of rebar group

C3 0.7b = 420 mm

D-Region

Approx 0.6b
spread

Figure 9.16  Square column STM. (a) Cross-section, (b) e strut and tie model, (c) calculation of ws for 
CCC node and (d) rebar distribution for T1.
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Since the reinforcement is hoop shaped, each rebar counts twice. Thus, 6 × 6 mm diameter 
rebar would provide an area of 340 mm2 (i.e., 2 × 170 mm2, see Table 9.1). The centroid of 
the group of bars needs to be 0.7b (420 mm) from the top (see Figure 9.16d). The six bars 
should be spread across the width of the tie member, which in this case is 0.6b or 360 mm 
(see Figure 9.16d). Therefore, 6 mm diameter shear links at 75 mm spacing would be suf-
ficient. For extra control of cracking, this reinforcement should be continued to the top of 
the column. Provide 6 mm diameter shear links at 75 mm spacing across the top 600 mm 
of the column.

Step 3: Check compression stresses. The width of the bottle-shaped strut needs to be deter-
mined using Equation 9.14. The stiff bearing length (Lb) is 120 mm, because the model 
shown in Figure 9.16b splits the load into two equal 420 kN forces. The width of C3 is 
twice the distance from the top of the column to the centre of the node, i.e., wC3 = 2 × 120 = 
240 mm, and from the geometry of the model the angle of inclination of the diagonal strut is

	
tan

0.5 600
600/4 240/4

73.31θ = ×
−





 = °−

	

From equilibrium, the force in the bottle-shaped strut, C2, is

	
2

420
sin73.3

438.5 kNC = =
	

From Equation 9.14

	 θ + θ= sin cos2 3w L wC b C 	

	 120sin(73.3) 240cos(73.3) 184 mm2wC = + = 	

The compression stress is

	
σ ×

×
==

438.5 10
184 240

9.9 N/mm2

3
2

C
	

Table 9.1  Sectional areas of groups of rebars, in mm2

Diameter 
(mm)

Number of bars

1 2 3 4 5 6 7 8 9 10

6 28 57 85 113 141 170 198 226 254 283
8 50 101 151 201 251 302 352 402 452 503
10 79 157 236 314 393 471 550 628 707 785
12 113 226 339 452 565 679 792 905 1018 1131
16 201 402 603 804 1005 1206 1407 1608 1810 2011
20 314 628 942 1257 1571 1885 2199 2513 2827 3142
25 491 982 1473 1963 2454 2945 3436 3927 4418 4909
32 804 1608 2413 3217 4021 4825 5630 6434 7238 8042
40 1257 2513 3770 5027 6283 7540 8796 10053 11310 12566
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From Equation 9.10, the limiting stress is

	
0.60 1

40
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0.567 40 11.4 N/mmRd
2σ = × −



 × × =

	

Since this is greater than the applied stress, the strut is adequate. The 3D effects were not 
accounted for in this 2D estimate of σc2. A (more complicated) 3D model would have pro-
duced lower stresses.

Example 9.2:  Deep beam

A deep beam supports a 400 × 400 mm square column with a force of 2600 kN and is sup-
ported by two 350 mm square columns (see Figure 9.17). Use the STM method to design the 
reinforcement. The material properties are fyk = 500 N/mm2 and fck = 40 N/mm2.

Step 1: Formulate the strut and tie model. Since the span-to-depth ratio < 3, the entire deep 
beam can be considered as a D-region. Considering equilibrium and symmetry, the reac-
tions are established and a STM is created, as shown in Figure 9.17b. In this case, a 1:2 slope 
on the diagonal struts works well and is simple, although other slopes are possible, i.e., you 
do not need to use a 1:2 slope.

Step 2: Design the ties. The force in the bottom tension member is

	

1300
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And from Equation 9.3
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Figure 9.17  Deep beam. (a) Side view and (b) front view.
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Provide 8 No. 16 mm diameter bars (1608 mm2).

A transverse strut and tie model is also needed to control cracking above the piles (see 
Figure 9.18a). The slope of the diagonal struts is assumed conservatively to be 1:2; therefore, 
the tie force is

	
=

1300
4

325 kNTA =
	

And from Equation 9.3
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Provide four No. 16 mm diameter bars (say 804 mm2) as transversal reinforcement over the 
piles and double this below the supported column since the load is doubled.

Step 3: Check the compression stresses. From Equation 9.10, the limiting stress is
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The strut force is

	 ( )= =C
1300

sin 63.4
1453.9 kNAB

	

From Equation 9.15, the width of the bottle-shaped strut AB at Node A is

	 sin cosAB ACw L wb= θ + θ 	

	 350 sin 63.4 200 cos(63.4 ) 403 mmABw ( )= × ° + × ° = 	
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Figure 9.18  Node details. (a) Section A–A showing the transversal model of node A, (b) node A from the 
front and (c) node B from the front.
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And the compression stress is

	
=
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From Equation 9.14, the width of the strut AB at Node B is
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And the applied compression stress is
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Since the applied stresses (10.3 and 10.2 N/mm2) are less than 11.4 N/mm2, the strut need 
not be reinforced.

The limiting stress for prismatic struts in CCT nodes from Equation 9.5 is
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The stress in the prismatic strut directly below Node A is
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And the stress induced by the rebar is
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Both of these stresses are significantly lower than 16.2 N/mm2 and are not therefore critical. 
Indeed, prismatic strut stresses are rarely critical if bottle-shaped struts are unreinforced.

Step 4: Design the minimum reinforcement A mesh of orthogonal reinforcement with a 
minimum area of 0.2% of the cross section should be provided on all faces, because the 
beam depth exceeds 1 m. This area can most easily be calculated by considering the beam as 
a 700 mm deep slab and working out the area requirement per square metre using Table 9.2.

	
Area

0.2
100

1000 700 1400 mm /m2= × × =
	

From Table 9.2, it can be seen that 16 mm diameter rebars at 125 mm centres provide 
1608 mm2/m and are therefore adequate to be provided horizontally and vertically on all 
faces.
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Example 9.3:  Deep beam

A 450 mm wide beam supports a 450 mm square column and is supported on two 
500 mm × 450 mm rectangular columns as shown in Figure 9.19. The ultimate applied 
load is 3360 kN. Develop a STM and calculate the reinforcement required. Material 
properties are fyk = 500 N/mm2 and fck = 35 N/mm2.

Step 1: Formulate the strut and tie model. As the span-to-depth ratio is less than 3, the entire 
deep beam can be considered as a D-region. The centroid of the tension steel is assumed to 
be 100 mm above the soffit and all the diagonal struts have a 1:2 slope for simplicity. Using 
these assumptions, a STM is created as shown in Figure 9.20. In this example, the 1:2 slope 
works perfectly, although other angles can be used if the 1:2 slope does not fit the geometry.

Step 2: Design the ties. Considering member AC, from Equation 9.3

	

1120 10
500 0.87

2575 mm
3

2As = ×
×

=
	

Provide six No. 25 mm diameter rebars from Nodes A to E with the bar ends bent 90° at 
the ends of the beam to provide anchorage at the nodes. The vertical tie CD has the same 

Table 9.2  Rebar cross-sectional area per metre width

Diameter

Spacing of bars in mm

50 75 100 125 150 175 200 250 300

6 565 377 283 226 188 162 141 113 94
8 1005 670 503 402 335 287 251 201 168
10 1571 1047 785 628 524 449 393 314 262
12 2262 1508 1131 905 754 646 565 452 377
16 4021 2681 2011 1608 1340 1149 1005 804 670
20 6283 4189 3142 2513 2094 1795 1571 1257 1047
25 9817 6545 4909 3927 3272 2805 2454 1963 1636

16
00

 m
m

3360 kN

500 mm

450 mm

1300 mm650 mm

Figure 9.19  Side elevation of a 450 mm wide transfer beam.



258  Structural design from first principles

force and thus requires the same reinforcement. This should be spread across the tie width, 
which is 650 mm; therefore,

	
/m

2575
0.65

3962 mm /m2 2As = =
	

From Table 9.2, it can be seen that 16 mm diameter links at 100 mm spacing will provide 2 × 
2011 = 4021 mm2/m (the links pass through each side of the beam and therefore are counted 
twice in this area calculation).

Step 3: Check compression stresses. The length of stiff bearing under the central column 
must be calculated. The force CBA = 2 × CBC; therefore, the 450 mm wide column is divided 
up on a 2/3 and 1/3 basis for the purpose of calculating Lb, i.e., the length of stiff bearing for 
strut BA is 300 mm and for BC is 150 mm. This arrangement gives an even distribution of 
stress under the supported column and is therefore consistent with the real condition. From 
Equation 9.14, the width of the strut BA at Node B is

	
300 sin 63.4 400 cos(63.4 ) 447 mmBAw ( )= × ° + × ° =

	

From Equation 9.15, the width of strut AB at Node A is

	
500 sin 63.4 200 cos(63.4 ) 537 mmABw ( )= × ° + × ° =

	

wBA < wAB; therefore, the maximum applied stress in CAB is at Node B, where

	
=

2504 10
447 450

12.5 N/mmBA

3
2σ ×

×
=

	

2240 kN 1120 kN

A

D

ETAC = –1120 kN –560 kN

–1
12

0 
kN

1300 mm

200 mm

100 mm

33
60

 k
N

B

C

63.4° 63.4°

560 kN

C
BC  = = 1252 kNC AB

 =
 2

50
4 

kN 1252 kN

1300 mm 650 mm

Figure 9.20  Forces in the struts and ties.
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From Equation 9.10, the limiting stress in the bottle-shaped struts is

	
0.60 1

35
250

0.567 35 10.2N/mm 12.5 N/mmRd
2 2 FAILσ = × −



 × × = < ∴

	

From Equation 9.8, the limiting stress for a reinforced strut is

	
1.00 1

35
250

0.567 35 17.1 N/mm 12.5 N/mmRd
2 2 PASSσ = × −



 × × = > ∴

	

The applied stress (12.5 N/mm2) is greater than the limit for unreinforced struts (10.2 N/mm2) 
but less than the limit for reinforced struts (17.1 N/mm2); therefore, the strut will be acceptable 
if reinforced. Now checking the stress in strut BC at Node B

	
150 sin 63.4 400 cos(63.4 ) 313 mmBCw ( )= × ° + × ° =

	

	
=

1252 10
313 450

8.9 N/mm 10.2 N/mmBC

3
2 2 PASSσ ×

×
= < ∴

	

Since strut AB is to be reinforced, the stresses are increased and the prismatic struts need to 
be checked. Node B is a CCC node, and from Equation 9.4 the limiting stress for a intersect-
ing prismatic strut is

	
1.00 1

35
250

0.567 35 17.1 N/mmRd
2σ = × −



 × × =

	

The stress in the prismatic strut directly above Node B is

	

3360 10
450 450

16.6 N/mm 17.1 N/mm
3

2 2 PASSBσ = ×
×

= < ∴
	

Node A is a CCT node; therefore, from Equation 9.5 the limiting stress is

	
0.85 1

35
250

0.567 35 14.5 N/mmRd
2σ = × −



 × × =

	

And the applied stress below Node A is

	
=

2240 10
500 450

9.95 N/mm 14.5 N/mm
3

2 2 PASSAσ ×
×

= < ∴
	

And the sideways stress induced by the tie (TAC) is

	
=

1120 10
200 450

12.4 N/mm 14.5 N/mmAC

3
2 2 PASSσ ×

×
= < ∴
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Step 4: Design of the bursting reinforcement. In summary, bursting reinforcement is needed 
for strut AB but not for the other bottle-shaped struts (BC and DE). Using the design param-
eters for a strut with full discontinuity (Figure 9.9c) the length of stiff bearing Lb = wBA = 
447 mm and the strut length is

	 650 1300 1453 mm2 2H = + = 	

From Equation 9.2, the tension force illustrated in Figure 9.13 is

	 4
1

0.7
T

F L
H

b= −



 	

Lb is taken as wBA; therefore,

	

2504
4

1
0.7 447

1453
491 kNT = − ×



 =

	

Equation 9.11 is

	
0.87 sin 0.87 cosyk ykT f A f Ah v= θ + θ

	

Letting AH = 2AV, this rearranges to

	
=

0.87 (sin 0.5 cos )yk

A
T

f
h θ + × θ 	

	
=

491 10
500 0.87(sin63.4 0.5 cos63.4)

1010 mm
3

2Ah
×

× + ×
=

	

From Equation 9.13

	
/

1010
0.3 1.3

2590 mm /m2A mh =
×

=
	

Spread over the central 0.6 × 1300 = 780 mm (see Figure 9.14), and since AH = 2AV from 
Equation 9.12

	
/

1010/2
0.3 0.65

2590 mm /m2A mv =
×

=
	

Spread over the central 0.6 × 650 = 390 mm. Inspection of Table 9.2 reveals that 16 mm 
diameter links at 150 mm centres provide 2 × 1340 = 2680 mm2/m of reinforcement 
(i.e. 1340 mm2 on each face).
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Step 5: Minimum reinforcement.  In deep beams, the minimum area of rebar is 0.2% of the 
cross section; thus,

	

0.2
100

1000 450 900 mm /mmin
2A = × × =

	

From Table 9.2, it can be seen that 16 mm rebar at 200 mm centres provided horizontally 
and vertically on all faces meets this requirement. This does not have to be provided in addi-
tion to the already calculated reinforcement, and the arrangement of rebar is summarised 
in Figure 9.21.

Example 9.4:  Corbel

A 600 × 600 mm square column supports a girder through a corbel, illustrated in Figure 9.22. 
The ULS reaction from the girder is 750 kN applied through a 200 × 400 mm steel plate. 
Use the strut and tie method to determine the reinforcement required to support this load. 
The corbel is 600 mm wide.

Basic data fyk = 500 N/mm2, fck = 40 N/mm2, 25 mm cover

Step 1: Formulate the strut and tie model. The node positions are shown in Figure 9.23. 
Initially, Node B was located 50 mm from the front face of the column. This created high 
stresses below Node B, which was moved to 100 mm from the column face as shown. The 
strut and tie model shown is statically determinate, so taking moments and resolving was 
used to determine the member forces. Figure 9.23a shows a 2D model through the corbel, 
although there are 3D effects. These are taken into consideration using the 2D model in the 
orthogonal plane shown in Figure 9.23b.

780 mm

390 mm

16 mm diameter @ 150 mm centres, 
horizontally and vertically, both faces

16 mm diameter @ 100 mm 
centres, both faces

6 × 25 mm rebar

Minimum of 
16 mm diameter @ 200 mm 
centres, vertically and 
horizontally, on all faces

650 mm

Figure 9.21  Final arrangement of reinforcement.
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Step 2: Design the ties. The amount of reinforcement required in the ties is calculated by 
taking the higher of the two tensile forces at Node C. From Equation 9.3

	
=

0.87
484 1000
0.87 500

1113 mm
yk

2A
T

f
s

C = ×
×

=
	

Provide 10 No. 12 mm diameter rebars, which Table 9.1 shows have an area of 1131 mm2. 
These should be continuous past Nodes A and C as shown in Figure 9.24.

A transversal model shown in Figure 9.23b is assumed under the loading plate to prevent 
splitting of the corbel. For simplicity, a 2:1 load dispersal is assumed, which provides a split-
ting force of

	
==

375kN
2

187.5 kNT
	

And from Equation 9.3

	 =
187.5 1000
0.87 500

431.0 mm2As
×
×

= 	

750 kN

600 mm

200 mm

300 mm

300 mm

200 × 400 mm 
bearing plate

200 mm

Figure 9.22  Corbel geometry and loads.
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T
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750 kN

Figure 9.23  Strut and tie models for a corbel. (a) side elevation and (b) front elevation.
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Provide six No. 10 mm diameter rebars. In order to provide anchorage, these should be 
U-shaped; the rebar are shown in Figure 9.24.

Step 3: Check compression stresses. The stresses in the struts and nodes are checked and 
any unsatisfactory nodes are revised. Strut BA is critical over BC because of the higher force. 
From Equation 9.10, the limiting stress in the bottle-shaped strut is

	
0.6 1

40
250

0.567 40 11.4 N/mmRd
2σ = × −



 × × =

	

And from Equation 9.15, Node A:

	
200 sin 59 100 cos(59) 222.9 mmABw ( )= × + × =

	

	
=

875 10
222.9 400

9.8 N/mm 11.4AB

3
2 PASSσ ×

×
= /> ∴

	

And Node B:

	 sin 200sin(59) 171 mmBAw Lb≅ θ = = 	

	
=

875 10
171 600

8.53 N/mmBA

3
2

Rd PASSσ ×
×

= /> σ ∴
	

The bottle-shaped struts are unreinforced; therefore, it is not necessary to check the node 
stresses.

Example 9.5:  Bridge pier

A bridge pier supports two 2800 kN loads placed on either side. A cross section (Figure 9.25) 
of the pier shows it is 8 m wide at the top and tapers to 6 m wide below the top face. The 
pier is 1 m deep. The loads are transferred to the pier through 700 × 350 mm square bearing 
plates, placed at 200 mm from either edge of the pier. Using the strut and tie method, design 

10 No. 12 mm 
diameter rebar

6 No. 10 mm diameter 
U shaped bars

Figure 9.24  Cross section showing rebar from strut and tie models (other rebar not shown).
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the reinforcement required at the top of the pier to prevent splitting cracks from occurring due 
to the concentrated loads, assuming fyk = 500 N/mm2 and fck = 40 N/mm2.

Step 1: Formulate the strut and tie model. The whole bridge pier can be considered a 
D-region from the front face (see Figure 9.26a). The depth to the centre of the tie T is taken 
as 200 mm. This is the position that the centroid of the tension steel must be placed in. The 
diagonal strut is assumed to be inclined at a slope of 1:2 (63.4o), which produces a force of

	
=

2800
sin63.4

3131.0 kNC =
	

It follows from equilibrium of the node that a tensile force of 1400 kN is developed along 
the top of the pier. A transverse model is required to prevent splitting under the bearings 
(see Figure 9.26b). The dimensions of this are taken from the partial discontinuity member 
shown in Figure 9.8.

Step 2: Design ties. From Equation 9.3, the minimum area of steel along the top of the pier is

	

1400 10
0.87 500

3220 mm
3

2As = ×
×

=
	

Provide seven No. 25 mm diameter rebars, which from Table 9.1 provide 3436 mm2.

A transversal model is used to prevent lateral cracks (Figure 9.26b). Since this is a partial 
discontinuity, Equation 9.1 is applied

	 4
T

F b L
b

b= −



 	

	

2800
4

1000 350
1000

455 kN2T = −



 =

	

700 mm

6 m

2800 kN2800 kN

200 mm

5 m

1.5 m

8 m

Figure 9.25  Bridge pier problem.
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And from Equation 9.3, the minimum cross-sectional area of rebar is

	

455 10
0.87 500

1046 mm
3

2As = ×
×

=
	

If the reinforcement under the bearings is hoop shaped, then each rebar counts twice. Thus, 
eleven No. 8 mm diameter rebars would provide an area of 1106 mm2 (see Table 9.1). The 
centroid of the group of bars needs to be 0.7b (700 mm) from the top and spread across the 
width of the tie, which in this case is 0.6b or 600 mm (see Figure 9.26b). Therefore, 8 mm 
diameter links at 50 mm spacing would be more than sufficient. For extra control of crack-
ing, this should be continued to the top of the pier. Thus, provide twenty No. 8 mm diameter 
links at 50 mm spacing under the bearings (see Figure 9.27).

Step 3: Check compression stresses. From Equation 9.10, the limiting stress is

	
0.60 1

40
250

0.567 40 11.4 N/mmRd
2σ = × −



 × × =

	

The width of the diagonal strut next to the bearing from Equation 9.15 is

	
700 sin 63.43 400 cos(63.43 ) 805 mmwC ( )= × ° + × ° =

	

And the applied stress is

	
=

3131 10
805 350

11.1 N/mmEd

3
2σ ×

×
=

	

Since this is less than σRd, this bottle-shaped strut passes. Since the strut is unreinforced, it 
is not necessary to check the prismatic strut stresses.

T1 = 1400 kNC = 3131 kN

2

1.5 m 3.0 m 1.5 m

200 mm

(a)

1000 mm

175 mm

500 mm

200 mm

300 mm

1400 kN1400 kN

T2

500 mm

(b)

1

Figure 9.26  Bridge pier strut and tie models. (a) Main STM and (b) transverse STM.
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Step 4: Design the minimum reinforcement. The minimum reinforcement horizontally and 
vertically on all faces is 0.2% on both faces, because this deep beam has a depth > 1.0 m. 
Therefore:

	

0.2
100

1000 1000 2000 mm /m2As = × × =
	

From Table 9.2, 16 mm diameter rebar at 100 mm centres satisfies this requirement, provid-
ing 2011 mm2/m.

Example 9.6:  Bridge diaphragm

The solid diaphragm section in a box girder bridge transfers the web forces from the 
hollow box sections to the columns (see Figure 9.28). Use the strut and tie method to 
calculate the reinforcement required in the solid diaphragm section to prevent crack-
ing due to the 7500 kN column reaction. The geometry and design loads are shown in 
Figure 9.29.

Basic data

fyk = 500 N/mm2 and fck = 35 N/mm2.

Step 1: Formulate the strut and tie model. The whole diaphragm is a D-region and the strut 
and tie model selected to resist the suppport reaction is shown in Figure 9.30. A transverse 
STM over the support is not required, because the lower part of the diaphragm is a high 
compression zone due to the hogging moments and the prestress force.

The forces can be calculated from equilibrium of the nodes:

	 C =
3750

sin(44.2)
5379 kN12 = 	

7 × 25 mm rebars

20 × 8 mm links @ 50 mm spacing

16 mm dia.  @100c/c
horizontally and 
vertically on all faces

Figure 9.27  Rebar arrangement for bridge pier.
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3750
tan(44.2)

3856 kN11C = =
	

	
=

3750
cos(15)

3882 kN23T =
	

	 =5379 cos(44.2) 3882 sin (15) 2852 kN22T × − × = 	

Step 2: Design the ties. From Equation 9.3, the area of the top reinforcement to resist, T22, is

	
=

2852 10
0.87 500

6556 mm22

3
2As

×
×

=
	

From Table 9.1, provide a 22×20 mm diameter rebar, which provides 6912 mm2.

And the area of the shear reinforcement to resist, T23, is

	 =
3882 10
0.87 500

8924 mms23

3
2A

×
×

= 	

Box girder 
bridge

Hollow box section

Solid diaphragm 
section

Bearing
plate

Column

Figure 9.28  Prestressed concrete box-girder bridge.

(a)

Rd = 7500 kN
1.00 m

75°

0.
4 

m

0.4 m

A

A

(b)

Rd = 7500 kN
1.00 m

1.4 m

Figure 9.29  Cross section with geometry (in metres) and loads. (a) Cross section and (b) section A–A.
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Provide 23 × 16 mm diameter shear links, which provide 2 × 201 × 23 = 9246 mm2 
(see Table 9.1). The arrangement is sketched in Figure 9.31.

Step 3: Check the compression stresses. From Equation 9.10, the limiting stress for an unre-
inforced bottle-shaped strut is

	
0.60 1

35
250

0.567 35 10.24 N/mmRd
2σ = × −



 × × =

	

At Node 1: From Equation 9.14, the width of the bottle-shaped strut between Nodes 1 
and 2 is

	
sin cos 500 sin 44 400 cos(44 ) 635 mm12 2w L wb C ( )= θ + θ = × ° + × ° =

	

And the applied stress is

	
=

5379 10
635 1000

8.5 N/mm12

3
2σ ×

×
=

	

Since this is less than 10.24 N/mm2, this is a pass.

T22 = 2852 kN

C11 = 3856 kN

44°

15

1

2

3 1

2

1.79 m

1.50 m

1.79 m

0.20 m

0.20 m

Node 1

Node 2

Node 3

(a)

(b)

C
12 = 5379 kN

T
23 = 3882 kN

Figure 9.30  Strut and tie model for the diaphragm. (a) Node positions and (b) forces.
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At Node 2: The calculation of the width of the bottle-shaped strut (C21) at Node 2 is 
described in Figure 9.32. The calculation is complicated by the inclination of the tie T23, 
although Equation 9.15 can still be applied. The length of stiff bearing is approximately

	 ( ) ( )= × = =web width cos 15 400cos 15 386 mmLb 	

And

	 ( ) ( )= × ° + × ° =386 sin 44 400 cos 44 555 mm21w
	

And the applied stress is

	
=

5379 10
573 1400

6.7 N/mm21

3
2σ ×

×
=

	

Since this is less than 10.24 N/mm2, this is a pass and from inspection the CTT node stresses 
due to forces T22 and T23 will not be critical.

Step 4: Minimum reinforcement. The arrangement of reinforcement is established, as shown 
in Figure 9.31. Each face of this deep beam should have a minimum area of reinforcement 

T23

T22

C21

w21

0.2 m

15°

Node 2

44°

Figure 9.32  Arrangement of reinforcement, cross section.

25 mm rebar @ 125 mm 
spacing at each face

22 No. 20 mm rebar

23 No. 16 mm links

Figure 9.31  Node 2 details.
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to prevent cracking. Since the depth >1 m deep, the minimum area is 0.2% on each face, 
provided horizontally and vertically.

	

0.2
100

1000 1400 2800 mm /m 25@175 mm c/c2A Hs = × × = ⇒
	

From Table 9.2, it can be seen that 25 mm diameter rebar at 175 mm centres will be suf-
ficient and the final rebar arrangement is summarised in Figure 9.32.
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Chapter 10

Control of cracking in reinforced concrete

Cracking is normal in reinforced concrete. If they are less than approximately 0.5 mm wide, 
cracks will not usually cause corrosion, which is normally caused by the permeation of dis-
solved salt or carbon dioxide through the cover. Cracking needs to be controlled, mainly 
because it is unsightly and causes complaints.

Cracking occurs when the tensile strain exceeds the cracking strain. Tensile strains occur 
due to loads, shrinkage and temperature changes. This chapter is concerned with all these 
actions.

The chemical reaction between cement and water is exothermic and causes an effect known 
as the heat of hydration. When the concrete cools, the resulting contraction is the cause of 
the first cracks to form, known as early age cracking. This can lead to internal cracks in deep 
sections, because of the temperature gradient due to differential rates of cooling between the 
inner and outer parts. Early age cracks widen over time due to climatic temperature changes 
and drying, and these effects combine to form a life cycle of movements, i.e.,

Stage 1 Heat of hydration movements → within the first 3–4 days
Stage 2 Winter–summer thermal movements → every 6 months
Stage 3 Shrinkage due to drying → potentially up to 10 years

These effects build up with time, and cracks may take years to develop.
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10.1  HEAT OF HYDRATION SHRINKAGE

The temperature rise due to heat of hydration will depend on the size of the member, with 
deep sections developing the highest temperatures. In extreme situations, the temperature 
rise can be 60°C or more. Cracking results from the temperature gradient within a member 
or restraint to contractions during cooling. The insulation properties of formwork influence 
heat build-up, as does the type of cement used. Insulated formwork can be helpful in reduc-
ing internal cracking, even though the temperature will increase. This is because insulation 
can reduce the internal temperature gradient.

Cements incorporating large percentages of ground granulated blast furnace slag or pul-
verised fuel ash develop lower heats of hydration than 100% ordinary Portland cement 
concretes, and the codes of practice contain methods to estimate the temperature rises for 
different types of cements.

The heat of hydration expansion does not induce compression stresses, because the con-
crete is not hardened. Problems occur when the concrete gains strength and cools. The 
temperature change ΔT shown in Figure 10.1 causes a contraction and the corresponding 
tensile strain, ε, is

	 ε = α × ∆T 	 (10.1)

And the corresponding movement, δ, is

	 δ = ε × L 	 (10.2)

where
L is the member length.
�α is the coefficient of linear expansion, which for steel and concrete is approximately 
12 × 10–6 per °C.

If the length L is replaced with crack spacing (S), then Equation 10.2 can be rewritten to 
provide an approximate prediction of crack width, w

	 = ε ×w S 	 (10.3)

10.2  DRYING SHRINKAGE

Drying shrinkage is due to loss of water from (a) evaporation and (b) water being chemically 
bonded during the hydration of the cement, known as autogenous shrinkage. These shrink-
age strains widen the cracks formed due to heat of hydration movements (early age cracks). 

Ambient temperature

ΔT

Te
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re

Time

4 days0 days

Figure 10.1  Heat of hydration temperature changes.
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Codes of practice present procedures for estimating shrinkage strains, which depend on fac-
tors such as the rate of drying, which is influenced by the atmospheric humidity (i.e. inside 
or outside) and the size of the member. Rates of drying therefore decrease with increasing 
member size, thereby reducing shrinkage strains.

10.3  CREEP STRAIN

Long-term stress permanently deforms concrete with time in a process known as creep. 
This can be beneficial because it can reduce cracking due to shrinkage; however, creep does 
increase deflections because creep strains are significantly greater than the initial elastic 
strains (see Figure 10.2). Therefore, long-term deflection calculations need to be based on 
modified values of Young’s modulus.

Codes of practice contain detailed procedures for calculating short-term Young’s modulus 
values and the modification factor to account for creep, which depends on the duration of load-
ing and the age at loading, since fresh concrete creeps more than mature concrete. The strength 
grade and aggregate type affect Young’s modulus, and creep strains increase with increased 
moisture content. Therefore, the creep strains are also linked with member size and atmospheric 
humidity, since these factors affect the rate of drying and moisture content.

10.4  CRACKING DUE TO RESTRAINED SHRINKAGE

Many elements, such as walls, are not subjected to significant loads. Instead, the main loading 
is from shrinkage movements which induce tensile stresses. These stresses are transferred to the 
steel when the concrete cracks. For example, Figure 10.3 shows a wall cast onto a foundation. 
The wall is restrained from shrinking by the foundation, which was cast first. Since shrinkage is 
restrained, tension cracks can form, and if uncontrolled these can create visual defects that are 
particularly obvious after rain.

Creep strainSt
ra

in

Time 4 years0 years

Elastic strain

Figure 10.2  Strain under constant stress versus time.

Restraint force from existing structure (cast �rst)

New structure
(cast second)

Crack spacing, S

Figure 10.3  Cracking due to restrained shrinkage for a wall cast onto a slab.
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This can be controlled by the adequate provision of rebar, which has the effect of reducing 
the crack spacing, as illustrated in Figure 10.4. Since crack width is a function of crack spac-
ing, the crack width will also be reduced (see Equation 10.3). The maximum crack width is 
often limited to 0.2 mm, because cracks smaller than 2 cm self-seal with time.

If concrete is insufficiently reinforced, then the rebar will yield when the first crack forms 
as the element shrinks due to heat of hydration movement (see Figure 10.4a). Since the 
tensile strength of the rebar < tensile strength of the slab, all subsequent shrinkage will be 
taken up by yielding of the rebar in the first crack formed. However, if the tensile strength of 
the rebar > concrete, then the rebar in the cracks will remain elastic. Elastic movements are 
much smaller than plastic ones; therefore, the crack width will be less. More cracks will be 
formed to take up the movement (see Figure 10.4b), but the crack width will be less.

The guiding principle to control cracking is to ensure that the tensile strength of the rebar 
is not less than the tensile strength of the concrete at 3 days after casting.

	 ≥Rebar strength Concrete tensile strength 3 days after casting 	

The crack pattern developed during the first few days is known as early age cracking and all 
subsequent shrinkage movements will be accommodated by widening of these cracks. The 
tensile strength at 3 days after casting is used in calculating the minimum area of reinforce-
ment and the primary design requirement is

	
≥yk ct.3daysA f A fs c 	

where
As is the area of reinforcement.
Ac is the area of concrete.
fyk is the tensile strength of the rebar.
fct, 3days is the tensile strength of the concrete 3 days after casting.

This rearranges to provide the minimum area of reinforcement

	 = ct.3days

yk

A
A f

f
s

c

	 (10.4)

This would normally be distributed equally between both faces of a slab or wall. The 3-day 
strength of concrete is approximately half of the 28 day strength, and the tensile strength of 
concrete is approximately 1/10th of the crushing strength; therefore,

	 = /20ct.3days ckf f 	 (10.5)
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Figure 10.4  Cracking due to restrained shrinkage for a slab. (a) Insufficient rebar and (b) sufficient rebar.
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This helps to ensure that the steel remains elastic in the cracks. Importantly, it does not 
guarantee that crack widths will be within acceptable limits. Therefore, crack width calcula-
tions are also required.

10.5  CALCULATION OF CRACK WIDTHS

Estimation of crack width is based on simple empirically based methods that give very 
approximate solutions. As a simple guide, cracking is likely if the tensile strain exceeds 
100 με (×10–6), in which case the crack width (w) is approximately

	 = × εw S r 	 (10.6)

where
S is the approximate crack spacing.
εr is the restrained shrinkage strain.

The restrained shrinkage strain is approximately

	 ε = × ε0.75 freeRr 	 (10.7)

where
εfree is the strain that would occur if there was no restraint to shrinkage, known as the free 

shrinkage strain.
R is the restraint factor.

The 0.75 factor accounts for creep strains relieving heat of hydration shrinkage strains. 
Creep is more significant for long-term drying shrinkage, where this factor can be reduced 
to 0.5, although 0.75 is assumed throughout this chapter for simplicity.

Restraint factor. The restraint factor depends on the degree of restraint to shrinkage. 
The worst case is when a wall or slab is cast between two rigid boundaries, in which 
case it would equal 1.0 (see Figure 10.5a). This is why slabs should not be cast in alter-
nate bays, since this would provide restraint on two opposite edges, as illustrated in 
Figure 10.5b. This is also why the construction sequence is important for water-retaining 
structures.

Many slabs and walls are restrained from shrinking when cast onto an existing struc-
ture. For example, the wall shown in Figure 10.6 will tend to shrink after casting, 
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Figure 10.5  Examples of end restraint to shrinkage movements (hatching indicates a rigid boundary). 
(a) End restraint to shrinkage and (b) plan view of a slab cast in alternate bays.
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although the shrinkage is restrained by the foundation, which was cast first. From force 
equilibrium

	 Shrinkage force = Restraint force

Looking at Figure 10.6, this becomes

	 ( )ε = ε − ε1 1 2 2 freeA E A Er r 	

Dividing through by εr

	
ε

ε
= − ε

ε






11 1

free
2 2A E A Er r

free
	

If

	 ε = × εfreeRr 	

This becomes

	 = −1 1 2 2 2 2A E R A E RA E 	

And the restraint factor is

	 =
+
2 2

1 1 2 2
R

A E
A E A E

	 (10.8)

In this calculation, Young’s modulus for the freshly cast wall would be approximately 70% 
that of the hardened foundation, i.e., E1 = 0.7E2.

Crack spacing. The crack spacing can be estimated using the following expression:

	 3.4 0.34 /S c p= + ϕ ρ 	 (10.9)

where
	 c is the cover.
	 ρp is the reinforcement ratio.

Shrinkage force = A1E1εr

Restraint force = A2E2(εfree–εr)

εfree–εr

εr

εfree

Side elevation Cross section

A1, E1

A2, E2

Wall

Foundation

Figure 10.6  A wall is cast onto a slab, which provides a restraint to shrinkage.
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The reinforcement ratio is the ratio of the rebar and concrete areas, i.e.,

	 ρ = A
A

p
s

c

	 (10.10)

where
As is the area of steel.
Ac is the area of concrete.

Equation 10.9 indicates that rebar diameter should be minimised when controlling cracking.

Example 10.1:  Control of cracking in a basement slab

The basement slab of a building is cast in one section and restrained against shrinkage 
by piled walls. The slab is 290 mm thick and 25 mm cover is provided, fck = 40 N/mm2, 
fyk = 500 N/mm2.

	 1.	 Determine the maximum reinforcement spacing to control shrinkage cracking if 12 mm 
diameter rebars are used.

	 2.	 Heat of hydration causes the temperature to increase to 35°C before falling back to an 
ambient temperature of 15°C after 3 days. Estimate the crack width due to this fall in 
temperature.

	 3.	 A drying shrinkage strain of 80 με is expected over the 2 years after casting. Calculate 
the final crack width.

1. From Equation 10.5, the 3 day tensile strength is

	
= =/20 2.0 N/mmct.3days ck

2f f
	

And from Equation 10.4, considering a 1000 mm wide section of the 290 mm thick slab

	
= = × × =290 1000 2.0

500
1160 mm /mct.3days

yk

2A
A f

f
s

c

	

This equates to 580 mm2/m top and bottom and in both directions. Provide 12 mm diameter 
rebars at 175 mm centres in both directions, which equates to 1292 mm2/m (see Table 9.2).

2. From Equation 10.10, the reinforcement ratio is

	
ρ = =

×
= × −1292

1000 290
4.455 10 3A

A
p

s

c 	

And from Equation 10.9, the crack spacing approximately is

	
3.4 0.34 /S c p= + ϕ ρ

	

	 = × + ×
×

=−3.4 25
0.34 12

4.455 10
1001 mm3S 	
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From Equation 10.1, the free shrinkage strain is

	 ε = α × ∆ = × × − = ×− −12 10 (35 15) 240 10free
6 6T 	

The question says that the slab is prevented from shrinking by the piled walls that surround 
the slab. In the absence of other information, it is conservatively assumed that these are rigid 
boundaries as illustrated in Figure 10.5a, although in practice they will have some flexibility. 
Thus, the restraint factor, R, is 1.0 and from Equation 10.7 the restrained shrinkage strain is

	 ε = × ε = × × × = ×− −0.75 0.75 240 10 1.0 180 10free
6 6Rr 	

And from Equation 10.6, the crack width is

	 = × ε = × × =−1001 180 10 0.18 mm6w S r 	

Since this is less than 0.2 mm, the crack will probably self-seal over time.

3. The free shrinkage strain due to shrinkage after 2 years is 80 με.

	 0.75 0.75 80 10 1.0 60 10free
6 6Rrε = × ε = × × × = ×− −

	

	 1001 60 10 0.06 mm6w S r= × ε = × × =−
	

Final crack width is

	 = + =0.18 0.06 0.24 mmw 	

Example 10.2:  Control of cracking for a wall cast onto a foundation

A wall is cast onto a foundation as shown in Figure 10.7. The engineer is worried that the 
foundation will restrain shrinkage of the wall and lead to unsightly cracking. The wall does 
not resist significant loading and only requires reinforcement to control cracking. The cover 
is 25 mm thick, fck = 30 N/mm2, fyk = 500 N/mm2.

	 1.	 Determine the minimum reinforcement spacing if 6 mm diameter rebars are used.
	 2.	 Determine the crack width due to early thermal cracking if the wall heats up by 15°C 

due to the heat of hydration.
	 3.	 Determine the crack width after 2 years if drying causes 120με of shrinkage strain.

1. From Equation 10.5, the 3 day tensile strength is

	
= =/20 1.5 N/mmct.3days ck

2f f
	

From Equation 10.4, the minimum area of reinforcement for a 1000 m wide section of 
wall is

	 = = × × =175 1000 1.5
500

525 mm /mct.3days

yk

2A
A f

f
s

c
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Provide 6 mm diameter horizontal rebars at 100 mm centres on each face, which provide a 
total of 2 × 283 = 566 mm2/m (see Table 9.2). The vertical rebar can be designed using the 
minimum area for beams, which is less onerous (Equation 7.35).

2. From Equation 10.10, the reinforcement ratio is

	
ρ = =

×
= × −566

1000 175
3.234 10 3A

A
p

s

c 	

And from Equation 10.9, the crack spacing is

	
3.4 0.34 /S c p= + ϕ ρ

	

	
S 3.4 25

0.34 6
3.234 10

716 mm3= × + ×
×

=−
	

And from Equation 10.1, the free shrinkage strain due to a 15oC temperature change is

	 ε = α × ∆ = × × = ×− −12 10 15 180 10free
6 6T 	

It is assumed that Young’s modulus for the freshly cast concrete is only 70% of the more 
mature foundation; therefore,

	 = ×0.701 2E E 	

And from Equation 10.8, the restraint factor is

	
=

/
/ + /0.7
2 2

1 2 2 2
R

A E
A E A E 	

	
= ×

× × + ×
=250 1750

0.7 175 1200 250 1750
0.75R

	

And from Equation 10.7, the restrained strain is

	 ε = × × ε = × × × = ×− −0.75 0.75 0.75 180 10 101 10free
6 6Rr 	

Foundation

Wall

Shrinkage

Restraint

Side elevation Cross section

Cracking

175 mm

1750 mm

250 mm

1200 mm

Figure 10.7  Wall restrained from shrinking after being cast onto a foundation.
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From Equation 10.6, the crack width is

	 101 10 716 0.07 mm6w S= ε × = × × =−
	

This is well within acceptable limits.

3. Drying shrinkage causes the early age cracks to widen by

	 120 10 716 0.09 mm6w S= ε × = × × =−
	

Therefore, the crack width after 2 years is 0.07 + 0.09 = 0.16 mm.

10.6  CALCULATION OF CRACK WIDTHS FOR BEAMS

For beams, the crack width (w) is approximately equal to the crack spacing (S) multiplied by 
the strain in the steel (εs), i.e.,

	 w Ss= ε × 	 (10.11)

The strain in the steel can be easily calculated from basic mechanics because beams should 
be elastic under SLS loads. The crack spacing (S) can be estimated using the following 
empirical expression for beams and slabs

	 3.4 0.17 / , effs c p= + φ ρ 	 (10.12)

where
c is the cover.
ϕ is the rebar diameter.
ρp, eff is the effective reinforcement ratio given by

	 , eff
ct

A
A

p
sρ = 	 (10.13)

where
As is the area of steel within the tension zone.
Act is the area of the tension zone.

The tension zone is the hatched region shown in Figure 10.8 for beams and slabs.

dh

b

2.5(h–d) 

Tension zone 
area, Act

Figure 10.8  The ‘tension zone’ area shown as the hatched region for members in bending.
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Example 10.3:  Calculation of crack width in a beam

Figure 10.9a shows a beam subjected to a 30 kN.m moment under SLS loads. Estimate the 
crack width if the rebar diameter is 20 mm, Ec is 18,000 N/mm2, Es is 210,000 N/mm2 
25 mm is the cover.

The concrete in compression will have a linear stress distribution, because the beam remains 
elastic under SLS loads (see Figure 10.9c). The position of the neutral axis must be deter-
mined. To do this, the method of transformed sections is used to convert the rebar into an 
equivalent area of concrete, as illustrated in Figure 10.9b, i.e.,

	
Transformed area of rebar 628

210000
18000

7327 mm2A
E
E

s
s

c

= = × =
	

It is necessary to determine the distance from the top of the member to the neutral axis, 
shown as x in Figure 10.9a. This is also the centroid of area of the transformed section, 
which is located by taking moments of area about the top face, i.e.,

	
200

2
7327 310 200 7327x

x
x x( )× + × = +

	

	 100 7327 2271370 02x x+ − = 	

The roots are x = 118.5 mm and –191.7 mm. The centroid of the concrete compression force is 
centred at x/3 below the top of the beam (see Figure 10.9c). Taking moments about this point

	 3
M A d

x
s s= σ −



 	

Rearranging provides the stress in the steel

	 3

M

A d
xs

s

σ =
−



 	
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Figure 10.9  Calculation of crack width. (a) Cross-section, (b) ‘transformed section’ and (c) stress distribution.
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And the corresponding strain is

	

176.6
210000

841 10 6

E
s

s

s

ε = σ = = × −

	

The crack spacing must now be determined, and from Figure 10.8 the tension zone depth is

	
2.5( ) 2.5 350 310 100 mmh h dc ( )= − = − =

	

From Equation 10.13

	

628
200 100

0.0314, eff
ct

A
A

p
sρ = =

×
=

	

From Equation 10.12, the crack spacing is

	
3.4 0.17 / 3.4 25 0.17 20 / 0.0314 193 mm, effs c p= + φ ρ = × + × =

	

And finally from Equation 10.11, the crack width is

	 841 10 193 0.16 mm6w Ss= ε × = × × =−
	

10.7  CONTROL OF CRACKING DUE TO SOLAR GAIN

Solar gain is a temperature rise due to sunshine and the resulting expansions are a cause of 
cracking. For example, in buildings, this can result in cracking of columns. Consider the 
building shown in Figure 10.10. By combining Equations 10.1 and 10.2, the end movement 
due to an increase in roof temperature (ΔT) is

	 T Lδ = α × ∆ × 	

Cracking

Expansion

Cracking

Hot δ

Cold

L

Figure 10.10  Building cross section showing column cracks due to solar gain.
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If α = 12 με/°C, ΔT = 30°C and L = 50 m, then the end movement would be

	 12 10 30 50 10 18 mm6 3δ = × × × × =−
	

This can cause cracking, for example, 2 cracking of columns as shown in Figure 10.10.
Solar gain can also result in a strain gradient within a member. This induces curvature 

causing ‘dishing’, which results in support movements and in extreme cases to cracking, as 
illustrated in Figure 10.11.

Example 10.4:  Movements in a roof slab due to solar gain

The roof of a hotel heats up and expands, causing the edge columns to move sideways by 
20 mm, as illustrated in Figure 10.12a. The storey to storey height (L) is 4.0 m and the 
columns are 400 mm square, with 25 mm cover; each is reinforced with four No. 25 mm 
diameter rebars + 12 mm links. The columns are far less stiff (EI) than the beams; therefore, 
the supports can be assumed to be clamped. Estimate the crack width.

The first step is to estimate the strain in the rebar. An approximate solution is to idealise 
the column as fixed supports subjected to a sideways movement of Δ, as illustrated in 
Figure 10.12b. Formulae tables will tell us that the end moments are

	
6

2M
EI
L

= ∆
	

Cold

Hot 

Figure 10.11  Dishing induced by a temperature gradient in a beam.

∆ = 20 mm

∆

(b)(a)

Cracking

Cracking

L

Figure 10.12  Analysis of column cracking due to expansion of roof slab. (a) Cross-section and 
(b) idealisation of deflection.
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The engineer’s beam equation tells us that

	
M

I
y

= σ

	

Combining these

	

6
2

EI
L

I
y

∆ = σ

	

Since

	
E = σ

ε 	

The above rearrange to provide the strain as

	

6
2

y
L

ε = ∆

	

If y is half the depth of the column, the outer edge strain is

	

6 20 200
4000

1500 102
6ε = × × = × −

	

The next step is to calculate area of the tension zone (see Figure 10.8). The effective depth is

	 400 25 12 25/2 350.5 mmd = − − − = 	

And the area of the tension zone as shown in Figure 10.8 is

	 400 2.5 (400 350.5) 49500 mmct
2A = × × − = 	

A total of four rebars are used in the column (one in each corner), although only two are 
in the tension zone. Therefore, the area of two No. 25 mm diameter rebars = 981 mm2 and 
from Equation 10.12

	
/ 981 / 49500 0.0198, eff ctA Ap sρ = = =

	

Equation 10.12, the crack spacing is

	
3.4 0.17 / 3.4 25 0.17 25/0.0198 300 mm, effs c p= + φ ρ = × + × =

	

Equation 10.11, the crack width is

	 S 1500 10 300 0.45 mms
6w = ε × = × × =−

	

This approximate analysis indicates that cracking may be a problem.
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Example 10.5:  Dishing of a floor slab

The roof of a shopping mall car park comprises 450 mm deep precast concrete floor slabs, 
which span 16 m between supports. A temperature gradient of 30°C is induced between the 
top and bottom of the slab due to solar gain.

	 1.	 Estimate the dishing deflection and support movements.
	 2.	 Describe the problems that would likely occur if the precast units were not supported 

using appropriate bearings.

Basic data  α = 12 με/°C and Ec = 20,000 N/mm2

1. The total change in temperature between the top and bottom is 30°C, although the 
temperature difference between the top and centre of slab is half of this, at 15°C. From 
Equation 10.1, the resulting strain at the outer edge of the slab is

	 12 10 15 180 106 6Tε = α∆ = × × = ×− −
	

The engineer’s beam equation tells us that

	
M
I y

E
R

= σ = 	 (10.14)

Since E = σ/ε, the curvature (1/R) is

	

1
R y

= ε

	

Inputting the strain induced by the solar gain

	

1 180 10
450 / 2

0.8 10
6

6

R
= × = ×

−
−

	

This curvature would be induced along the full length of the beam and would produce a 
strain distribution the same as a beam subjected to equal and opposite end moments, as 
illustrated in Figure 10.13a. In that case, standard tables of formulae tell us that the end 
slope and midspan deflection are

	
2
ML
EI

θ = 	 (10.15)

And

	
8

2ML
EI

∆ = 	 (10.16)

Equation 10.14 rearranges to

	
1
R

M
EI

= 	 (10.17)
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Combining Equations 10.15 and 10.17 gives the end slope

	 2
1 16000

2
0.8 10 6.4 10 radians6 3L

R
θ = × = × × = ×− −

	

And combining Equations 10.16 and 10.17 gives the midspan deflection

	 8
1 16000

8
0.8 10 25.6 mm

2 2
6L

R
∆ = × = × × =−

	

Assuming that the point of end-rotation occurs at the top corner of the slab (Figure 10.13b), 
the support sideways movement is approximately

	 6.4 10 450 3 mm3hδ = θ × = × × =−
	

2. The frictional force resulting from 3 mm of movement would be sufficient to cause 
cracking of the concrete supports, as shown in Figure 10.14a. Problems can be solved 
with elastic bearings, as illustrated in Figure 10.14b, because dishing does not cause stress 
unless movements are restrained.

Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	P.10.1.	 A slab is restrained against shrinkage by stiff perimeter walls. The slab is 200 mm 
thick, 25 mm cover is provided, fck = 40 N/mm2 and Ec = 18,000 N/mm2.

	 a.	 Determine the maximum reinforcement spacing if 10 mm diameter rebars are 
used to control cracking.

	 b.	 Heat of hydration causes the temperature to increase to 20°C before falling back 
to an ambient temperature of 10°C after 3 days. Estimate the crack width due to 
this fall in temperature.

16 m

MM ∆θ

(a) (b)
δ

h
θ

Figure 10.13  Beam idealisation for dishing movements. (a) Beam idealisation and (b) support movements.

(a) (b)

Elastic bearings 

Figure 10.14  Dishing of a slab due to solar gain. (a) Resulting cracking and (b) solution.

https://www.crcpress.com/9781498741217
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	 c.	 The slab was cast in the summer, but the temperature falls to –2°C during the 
extreme winter cold. Recalculate the crack width.

	 d.	 A further 120 με of shrinkage is expected over a 2-year period after casting. 
Recalculate the maximum crack width.

	 Ans. (a) As.min = 800 mm2/m use 10 mm diameter at 175 mm c/c top and bottom, 
(b) s = 842 mm and w = 0.076 mm, (c) 0.167 mm and (d) 0.243 mm.

	P.10.2.	 Precast concrete floor slabs that span 12 m between supports and are 300 mm deep. 
Determine the vertical displacement and horizontal end-rotation at the supports due 
to dishing of the slabs caused by a temperature gradient of 35°C existing between the 
top and bottom of the slab resulting from heating by the summer sun. The coefficient 
of thermal expansion is 12 με/°C, Ec = 20,000 N/mm2, fck = 40 N/mm2.

	 Ans. Δ = 25.2 mm, θ = 8.4 × 10−3 radians, δ = 2.52 mm.
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Chapter 11

Timber beams, columns and trusses

Timber is a non-ductile material, which means that it fails in a brittle manner when the 
failure stress is exceeded (see Figure 11.1). For this reason, plastic design is not allowed and 
all strength calculations are based on elastic principles. This makes the analysis relatively 
simple, based on straightforward mechanics.

This chapter does not dwell on how to determine the design values of material proper-
ties, which can be easily determined using one of the many codes of practice. Instead, first 
principles are used to calculate the strength of beams and columns, as well as the strength-
ening of timber sections with steel plates and finally the design of trusses. Lateral torsional 
buckling is not considered, although it can occur in deep sections if the compression half of 
the member is free to buckle sideways. Fortunately, most timber sections have the compres-
sion half-restrained by the floor or roof that they support, so this is not a common problem.

11.1  MATERIAL PROPERTIES

Engineers have the choice to either specify a certain strength grade of timber or a species, 
although in practice strength grades are most popular. The codes of practice help by specify-
ing design stresses, known as grade stresses for various grades and species. Grade stresses 
include shear, bending, tension and compression stresses. The engineer can modify these to 
account for moisture content, load duration, load sharing, section size and notching.
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Moisture content. Grade stresses are specified for dry timber, because commercial timber 
is supplied dried as standard. However, the strength falls if timber is allowed to get wet or 
damp, as illustrated in Figure 11.2. Therefore, if timber is going to be exposed to damp or 
rain, then grade stress and Young’s moduli are reduced using a modification factor.

Load duration. Timber is significantly stronger when loads are applied for a short duration, 
as illustrated in Figure 11.3. The grade stresses are modified depending on the load duration. 
Long-term loading normally means dead loads, whereas short-term loads include wind and 
snow. The shorter the duration, then the higher the modification factor.

Load sharing. Grades stresses and Young’s modulus can be increased if closely spaced mem-
bers jointly support a load, i.e., floor joists or rafters. This is because imperfections (such as 
knots) are less critical when more than one member supports a load.
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Figure 11.2  Effect of moisture content on strength.
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Figure 11.3  Effect of load duration on strength.
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Figure 11.1  Stress versus strain for timber.
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Section size. The failure stresses increase slightly as the depth of timber sections decreases. 
For this reason, the codes include a modification factor to increase grade stresses for small 
timber sections.

Notching. Sharp changes in cross section are generally avoided in engineering, because they 
introduce stress concentrations that can induce cracking, especially in brittle materials like 
timber. Despite this, the ends of timber beams are often notched, as shown in Figure 11.4, 
in which case the shear stresses are modified accordingly.

11.2  SHEAR STRENGTH

The elastic shear stress equation gives the shear stress (τ) a distance y from the neutral axis

	
VA y
b Io

τ = ′
	 (11.1)

where
I is the second moment of area of the cross section.
V is the applied shear force.
A′ is the area above the shear plane considered (see Figure 6.13).
bo is the width of the shear plane.
y is the distance from the neutral axis to the centroid of the zone above the shear plane.

Shear flow. From a design perspective, shear flow (q) is more useful, where shear flow is

	 q bo= τ × 	 (11.2)

Combining Equations 11.1 and 11.2

	 q
VA y

I
= ′

	 (11.3)

This can be used to determine the spacing of screws, because

	
screw strength
screw spacing

q = 	 (11.4)

Figure 11.4  Splitting of a timber beam with a notched end.
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Screw spacing is measured along the length of the member and screw strength is the load 
capacity of the given screw. For example, screws may be spaced at 100 mm centres along the 
length of a beam and the code of practice may tell us that the shear strength of the screw is 
700 N. This would produce a shear flow of 7 N/mm.

Rectangular cross sections. For a section of width b and depth h, the second moment of 
area is

	
12

3

I
bh= 	 (11.5)

The maximum shear stress occurs at the midpoint where A′ = bh/2 and /4y h= , which when 
input into Equation 11.1 provide

	

τ =
× ×

×

V
bh h

b
bh
2 4

12

3

	

which simplifies to

	
3
2

V
bh

τ = 	 (11.6)

which rearranges to give the shear strength for an allowable shear stress

	
2
3

V bh= × τ 	 (11.7)

11.3  BENDING STRENGTH

Since timber is brittle, plastic design is not allowed under any circumstances. Deep beams in 
which the compression half is unrestrained against lateral movement can suffer from lateral 
torsional buckling, although this check is rarely required for joists or rafters. If beams are 
strengthened using steel plates, then the method of transformed sections can be used to 
determine stresses and deflections.

The elastic bending strength is

	 = σM Wel Rd el 	 (11.8)

where
fd is the design stress in bending.
Wel is the elastic section modulus, which is the second moment of area divided by the dis-

tance from the centroid to the extreme fibre of the cross section.

For a rectangular section of width b and depth h

	
= = ×W

I
y

bh
h12
1
/2

el

3

	

	 W
bh
6el

2

= 	 (11.9)
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Example 11.1:  Floor beam

Rectangular timber beams 80 mm wide and 300 mm deep are used as floor beams (joists). 
The beams are restrained against lateral torsional buckling and span 4 m between simple 
supports. Determine the maximum uniformly distributed load if

	 1.	 Bending stresses are limited to 9.8 N/mm2.
	 2.	 Shear stresses are limited to 1.34 N/mm2.
	 3.	 Deflection is limited to 16 mm and Young’s modulus is 8000 N/mm2.

1. Consider bending stresses. From Equation 11.9, the elastic section modulus is

	
= = × = ×W

bh
6

80 300
6

1.2 10 mmel

2 2
6 3

	

From Equation 11.8

	 = σM Wel Rd el 	

	 = × × × =−9.8 10 1.2 10 11.8 kN.mel
6 6M 	

If the applied moment reaches the elastic limit

	
=

8
el

2

M
wL

	

which rearranges to

	
= × =8 11.8

4
5.9 kN/m2w

	

2. Consider shear stresses. From Equation 11.7

	
= × τ2

3
maxV bh

	

	
= × × × × =−2 80 300 1.34

3
10 21.4 kN3V

	

The maximum shear force is

	
=

2
V

wL

	

If the applied shear force equals the shear strength

	
= ×

21.4
4

2
w

	

which solves to w = 10.7 kN/m.
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3. Consider deflection. From Equation 11.5

	
= × = ×80 300

12
180 10 mm

3
6 4I

	

For a UDL the maximum deflection, ignoring shear deflection is

	
5
384

4wL
EI

∆ = 	 (11.10)

which rearranges to

	
= 384

5 4w
EI

L 	

	
= × × × ×

×
= =384 8000 180 10 16

5 4000
6.9 N/mm 6.9 kN/m

6

4w
	

Example 11.2:  Built-up member

A box beam is constructed using four timber sections screwed together as shown in 
Figure 11.5. If each screw has a shear capacity of 1300 N and they are spaced (in pairs, 
one each side) at 100 mm centres along the length of the beam, determine the shear force 
required to cause failure of the screws.

The second moment of area of the box section is

	
= × − × = ×220 300 140 270

12
265.4 10 mm

3 3
6 4I

	

From Equation 11.4, the shear flow is

	
= = × =screw strength

screw spacing
2 1300

100
26 N/mmq

	

220 mm

40 mm

15 mm

300 mm

Figure 11.5  Cross section through beam built with screws.
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At the screwed joint

	 300 / 2 15 / 2 142.5 mmy = − = 	

And 

	 ′ = × =220 15 3300 mm2A 	

Rearranging Equation 11.3

	
=

′
V

Iq
A y 	

	
= × ×

×
× =−265.4 10 26

3300 142.5
10 14.7 kN

6
3V

	

Therefore, failure of the screws should occur at a shear force of 14.7 kN.

Example 11.3:  Section strengthened with steel plates

A beam spans 6 m and is subjected to a point load at midspan of 18 kN, in addition to a 
UDL of 7.33 kN/m. The section is built up from a solid timber section with steel plates on 
the top and bottom faces (see Figure 11.6). Young’s moduli are 8000 N/mm2 for timber and 
210,000 N/mm2 for steel.

	 1.	 Determine the distribution of bending stresses at midspan.
	 2.	 If the plate is connected to the timber using rows of three screws, each with a shear 

capacity of 2 kN, determine the spacing of the rows of screws.
	 3.	 Determine the distance from the support that the spacing of the screws can be doubled 

(i.e. the 50% shear force point).
	 4.	 Determine the midspan deflection when supporting only a UDL of 5.5 kN/m.

300 mm

220 mm

2.5 mm

Figure 11.6  Cross section through a timber beam strengthened with steel plates screwed to the top 
and bottom faces.
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1. The midspan moment is

	
= + = × + × =

4 8
18 6

4
7.33 6

8
60 kN.m

2 2

M
PL wL

	

This is a composite beam, and therefore the transformed sections method is needed. The 
modular ratio is

	 1

2
n

E
E

= 	 (11.11)

In this case, the timber will be transformed into steel; therefore,

	
= =8000

210000
0.038n

	

The timber is transformed into an equivalent width of steel as shown in Figure 11.7b

	 = × = × =' timber width 0.038 220 8.38 mmb n 	

The second moment of area of the transformed section is

	

× − − × − = ×220 300
12

(220 8.38) (300 5)
12

42.3 10 mm
3 3

6 4

	

The stress distribution in the section is calculated using the engineer’s beam equation, i.e.,

	

My
I

σ =
	

The outer fibre stress is

	
σ = × × ±

×
= ±60 10 ( )150

42.3 10
213 N/mm

6

6
2

	

–209 N/mm2

(a) (b) (c)

–8.0 N/mm2

–213 N/mm2

8.0 kN/mm2

207.3 N/mm2

213 N/mm2

8.38 mm

Figure 11.7  Bending stress distribution at midspan. (a) Strengthened beam, (b) transformed section and 
(c) bending stress distribution.
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On the inside of the steel plate

	
σ = × × ± −

×
= ±60 10 (150 2.5)

42.3 10
209 N/mm

6

6
2

	

The stresses at the top and bottom of the timber section are

	
σ = × = × × × ± −

×
= ±0.038

60 10 (150 2.5)
42.3 10

8.0 N/mm
6

6
2n

My
I 	

And the stress distribution is sketched in Figure 11.7c.

2. The shear force at the supports is

	
= + = + × =

2 2
18
2

7.33 6
2

31kNV
P wL

	

At the screwed joint:

	 = − =300 / 2 2.5 / 2 148.75 mmy 	

And 	

	 ′ = × =220 2.5 550 mm2A 	

From Equation 11.3

	
= ′

q
VA y

I 	

	
= × × × − ×

×
=31 10 550 (150 0.5 2.5)

42.3 10
60.0 N/mm

3

6q
	

From Equation 11.4 for the sets of three screws, each with a 2000 N capacity, the screw 
spacing is

	
= = × =screw spacing

screw strength 3 2000
60.0

100 mm
q 	

3. The shear force diminishes by 7.33 kN for every metre away from the support. If the 50% 
shear force point is z metres from the support, then

	
− × =31 7.33

31
2

z
	

which solves to z = 2.1 m or, in other words, the screw spacing can be doubled 2.1 m away 
from the supports.
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4. From Equation 11.10, the midspan deflection when subjected to a UDL of 5.5 kN/m 
(=5.5 N/mm) is

	
∆ = × ×

× × ×
=5 5.5 6000

384 210000 42.3 10
10.5 mm

4

6
	

Note that Young’s modulus for steel was used in the above calculation. This is because the 
timber was transformed into steel when calculating I.

Example 11.4:  Timber and steel sandwich beam (flitch beam)

A beam is made of a steel plate sandwiched between two wooden beams, as sketched in 
Figure 11.8. The beam spans 5 m between simple supports and supports a UDL of 1.4 kN/m 
dead and 1.0 kN/m imposed. Young’s moduli are 8000 N/mm2 and 210,000 N/mm2 for the 
timber and steel, respectively.

	 1.	 Determine the midspan deflection.
	 2.	 Determine the stresses in the timber and steel under factored loads.

1. The second moment of areas of the timber and steel are

	
2

75 200
12

100 10 mm
3

6 4It = × × = ×
	

	

10 175
12

4.47 10 mm
3

6 4Is = × = ×
	

The stiffness (EI) of the timber and steel are

	 8000 100 10 800 10 N.mm6 9 2E It t = × × = × 	

75 mm

200 mm

75 mm

10 mm

175 mm

Steel plate prevented from buckling by 
clamped timber sections

10 mm diameter bolts at 500 mm 
centres clamp the member tight

12.5 mm gap provided because 
timber will shrink with time

Figure 11.8  Cross section through a flitch beam (connecting bolts not shown).
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	 210000 4.47 10 938 10 N.mm6 9 2E Is s = × × = × 	

And the total stiffness of the compound section is

	
(800 938) 10 1738 10 N.mm9 9 2EI∑ = + × = ×

	

The SLS load is

	 1.4 1.0 2.4 kN/mslsw = + = 	

And the midspan deflection is

	

5
384

4wL
EI

∆ =
Σ 	

	

5 2.4 5000
384 1738 10

11 mm
4

9∆ = × ×
× ×

=
	

2. The ULS load is

	 = × + × =1.35 1.4 1.5 1.0 3.39 kN/mwuls 	

The midspan moment is

	
= = × =

8
3.39 5

8
10.6 kN.m

2 2

M
wL

	

The moment is shared between the timber and steel sections. The proportion each section 
carries is dependent on the relative stiffness.

The moment supported by the timber is

	
=

Σ
× = × =800

1738
10.6 4.9 kN.mM

E I
EI

Mt
t t

	

And the moment in the steel is

	
=

Σ
× = × =938

1738
10.6 5.7 kN.mM

E I
EI

Ms
s s

	

The top and bottom stresses in the timber are

	
σ = ± = × × ±

×
= ±( ) 4.9 10 ( )100

100 10
4.9 N/mm

6

6
2M y

I
t

t

t 	
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And the steel stresses are

	
σ = ± = × × ±

×
= ±( ) 5.7 10 ( )87.5

4.47 10
112 N/mm

6

6
2M y

I
s

s

s 	

11.4  COMPRESSION STRENGTH

Members subjected to a combination of compression and bending need to be checked against 
the combined loading. The Gordon–Rankine method will produce a quick estimate of com-
pression strength, although it tends to be conservative in comparison with code-based meth-
ods. Using this method, the axial buckling force is

	
1 1

, Rd
crush cr

1

N
N N

b = +





−

	 (11.12)

where
Nb,Rd is the design buckling load in the absence of bending moments.
Ncr is the (Euler) elastic critical buckling force.
Ncrush is the crushing capacity of the member.

	 Areacrush RdN = σ × 	 (11.13)

where σRd is the design stress (in compression) and the elastic critical buckling force is

	
EI

cr

2

cr
2N

L
= π

	 (11.14)

where Lcr is the effective length, which is calculated in the same way as for any other com-
pression member (see Chapter 3). The crushing capacity is equal to the cross-sectional area 
multiplied by the design stress, E is Young’s modulus and I is the second moment of area 
of the member about the axis of buckling (usually the minor axis). Equation 11.12 works, 
because Nb, Rd → Ncrush when slenderness is low and Nb, Rd → Ncr when slenderness is high.

11.5  COMPRESSION AND BENDING

Members subjected to compression and bending (beam columns) must satisfy the following 
interaction equation

	 1
, Rd el, el,

N
N

M
M

M
Mb

y y

y

z z

z

+
α

+ α ≤ 	 (11.15)

where
N is the applied axial force.
My and Mz are applied moments about the major and minor axes, respectively.
Mel,y and Mel,z are the major and minor axis elastic moment capacities, respectively.
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αy and αz are the moment amplification factors for the major and minor axes, respectively. 
These are calculated using the following approximate expressions:

	
1

1
cr,

N
N

y

y

α =
−

	 (11.16)

And

	
1

1
cr,

N
N

z

z

α =
−

	 (11.17)

where Ncr,y and Ncr,z are elastic critical values calculated using Lcr and I for their respective 
buckling axes. The amplification factor is α→1.0 for low slenderness columns, although it 
rapidly becomes significant as column length increases, because Young’s modulus is low for 
timber.

Equation 11.15 requires modification if lateral torsional buckling is an issue.

Example 11.5:  Timber beam column

Timber struts 100 mm square in cross section are used as horizontal props. Each spans 2.5 
m and the supports are effectively pinned. Young’s modulus is 4000 N/mm2, the design 
stress is limited to 10.5 N/mm2 and the density is 400 kg/m3.

	 1.	 Determine the buckling force in the absence of moments.
	 2.	 Determine if each strut can resist a compression force of 20 kN (inclusive of load fac-

tors) in addition to the (factored) bending moment induced by the self-weight.
	 3.	 Determine what accidental sideways force a strut could resist without breaking.

1. The second moment of area and cross-sectional area are

	 = 100 mm2 2A 	

	

100 100
12

8.33 10 mm
3

6 4I = × = ×
	

The strut is pinned at the supports; therefore, Lcr = 2500 mm and from Equation 11.14 the 
elastic critical buckling force is

	
cr

2

cr
2N
EI

L
= π

	

	

4000 8.33 10
2500

10 52.6 kNcr

2 6

2
3N = π × × × × =−
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And from Equation 11.13

	 Area 10.5 100 10 105 kNcrush Rd
2 3N = σ × = × × =−

	

And using Equation 11.12, the compression strength is

	

1 1
, Rd

crush cr
N

N N
b = +



 	

	

1
52.6

1
105

35.0 kN, Rd

1

Nb = +



 =

−

	

2. The self-weight is

	 400 9.81 10 0.1 0.039 kN/m3 2w m g A= × × = × × × =−
	

And the factored self-weight induced moment is

	 8
1.35 0.039 2.5

8
0.041 kN.m

2 2

M
wL= = × × =

	

From Equation 11.16, the amplification of moments factor is

	

1
1 N/N

1
1 20 / 52.6

1.613
cr

α =
−

=
−

=
	

The elastic section modulus of the timber section from Equation 11.9 is

	 6
100

6
el

2 3

W
bh= =

	

From Equation 11.7, the elastic moment capacity is

	
10.5

100
6

10 1.75 kN.mel

3
6M = × × =−

	

Now the interaction equation (Equation 11.15) is populated

	
1

, Rd el, el,

N
N

M
M

M
Mb

y y

y

z z

z

+
α

+ α ≤
	

	
20
35

1.613 0.041
1.75

1.613 0
1.75

0.609+ × + × = 	 (11.18)

Since 0.609 < 1.0, this strut should be safe, although no allowance has been made for 
moments due to accidental forces.



Timber beams, columns and trusses  303

3. Assuming the accidental force (P) is applied at midspan, the associated moment is

	 4
0.625M

PL
P= =

	

		  Now adding this to Equation 11.18

	

20
35

1.613 0.041
1.75

1.613 0.625
1.75

1.0
P+ × + × =

	

which solves to P = 0.68 kN, which is equivalent to the weight of an average size person.

Example 11.6:  Timber truss

A flat roof is supported by simply supported trusses, as sketched in Figure 11.9. These sup-
port a dead load (inclusive of self-weight) of 1.0 kN/m and an imposed load of 0.75 kN/m. 
The top and bottom chord members are made of 100 mm square timber sections with 
Young’s modulus of 7200 N/mm2 and a design stress of 7.0 N/mm2.

	 1.	 Determine the maximum compression force in the top chord under ULS loads.
	 2.	 Determine the buckling capacity of the top chord if it is restrained against sideways 

movement by the roof decking.
	 3.	 Determine if the top chord can support the ULS loading.
	 4.	 Estimate the midspan deflection of the truss under SLS loading.

1. From Equation 1.3, the factored uniformly distributed design load is

	 1.35 1.5 1.35 1.0 1.5 0.75 2.475 kN/mw g qk k= + = × + × = 	

And the midspan moment is

	 8
2.475 10

8
30.9 kN.m

2 2

M
wL= = × =

	

From Equation 3.13, taking moments about a chord provides the axial force in the other 
chord

	 lever arm
30.9
1.0

30.9 kNN
M= = =

	

gk = 1.0 kN/m, qk = 0.75 kN/m

10 m

1 m 1 m

Figure 11.9  Timber flat roof truss.
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2. The second moment of area of the top chord is

	

100 100
12

8.333 10 mm
3

6 4I = × = ×
	

It is assumed that lateral buckling of the truss is prevented by the roof. The top chord is 
restrained against buckling at node points by web members; therefore, Lcr = 1000 mm and 
from Equation 11.14, the elastic critical buckling force is

	
cr

2

cr
2N
EI

L
= π

	

	

7200 8.333 10
1000

10 592 kNcr

2 6

2
3N = π × × × × =−

	

And from Equation 11.13, the crushing force is

	 7.0 100 10 70 kNcrush
2 3N = × × =−

	

From Equation 11.12, the compression strength is

	

1
70

1
592

62.6 kN, Rd

1

Nb = +



 =

−

	

3. The elastic section modulus of the top chord from Equation 11.9 is

	

100 100
6

167 10 mmel

2
3 3W = × = ×

	

From Equation 11.8, the bending strength is

	 7.0 167 10 10 1.17 kN.mel
3 6M = × × × =−

	

The amplification of moment’s factor from Equation 11.16 is

	

1
1 N/Ncr,

y
y

α =
− 	

	

1
1 30.9 / 592

1.055yα =
−

=
	

The UDL induces a moment in the top chord. If it is assumed conservatively that the top 
chord is pinned at the nodes (because of joints in the timber), then the sagging moment in 
the top chord between nodes

	 8
2.475 1

8
0.309 kN.m

2 2

M
wL= = × =
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Equation 11.15 can now be populated

	
1.0

, Rd el, el,

N
N

M
M

M
Mb

y y

y

z z

z

+
α

+ α ≤
	

	

30.9
62.6

1.055 0.309
1.17

0 0.77+ × + =
	

Since this is less than 1.0, the top chord of the truss should be sufficiently strong. This solution 
ignored the moment induced in the top chord caused by the axial force multiplied by the sag 
induced by the UDL, termed a P–δ moment (see Figure 3.7). In this instance, the top chord 
sags by 0.5 mm between nodes with web members; therefore, this moment is insignificant.

4. Using the parallel axis theorem, the second moment of area of the truss is

	 I 2 8.333 10 2 100 500 5.017 10 mm6 2 2 9 4= × × + × × = × 	

The unfactored (SLS) load is

	 1.0 0.75 1.75 kN/m 1.75 N/mmw = + = = 	

And the midspan deflection is approximately

	

5
384

5 1.75 10000
384 7200 5.017 10

6.3 mm
4 4

9

wL
EI

∆ = = × ×
× × ×

=
	

This calculation will underestimate deflection, because it ignores shear deflection (caused 
by the stretching and squashing of the web members). Regardless, the deflection is low and 
a more accurate analysis would not change the overall conclusion that the deflection is well 
within reasonable limits. 

Problems

Solutions to these problems are provided at https://www.crcpress.com/9781498741217

	P.11.1.	 The cross section of a wood box beam is shown in Figure 11.10. Webs of the 
beam are fastened to the flanges by screws having an allowable load in shear 

25 mm

50 mm

300 mm

300 mm

Figure 11.10  Wooden box beam cross section.

https://www.crcpress.com/9781498741217
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of F = 3000 N per screw. The beam spans 5 m between simple supports and is 
subjected to a point load at midspan of 15 kN in addition to a UDL of 8 kN/m, 
both factored.

	 a.	 Determine the second moment of area of the section.
	 b.	 Determine the maximum permissible spacing of the screws.
	 c.	 Determine the distance from the support that the spacing of the screws can be 

doubled (i.e. the 50% shear force point).
	 Ans. (a) 587.5 × 106 mm4, (b) 68 mm and (c) 1.7 m.

	P.11.2.	 Timber struts prop an excavation, as shown in Figure 11.11. E = 3000 N/mm2, the 
design stress is limited to 10.5 N/mm2 and the density of the timber is 400 kg/m3. 
Ignore P–δ moments due to the self-weight deflection.

	 a.	 Determine the elastic moment capacity of the strut about each axis.
	 b.	 Determine the unfactored moment from the strut’s self-weight.
	 c.	 Determine the buckling strength of the prop in the absence of moments.
	 d.	 Determine the FoS if the strut resists an unfactored propping force of 75 kN.
	 e.	 What is the maximum sideways force that the strut can resist in addition to the 

75 kN propping force?
	 Ans. (a) 31.5 kN.m, 21 kN.m, (b) 0.80 kN.m, (c) 199.7 kN, (d) 2.48 and (e) 8.3 kN.

	P.11.3.	 A 6 m long beam supports a uniformly distributed load of 4 kN/m dead + 12 kN/m 
imposed, in addition to an imposed point load of 2 kN at midspan. The section is 
built up from a solid timber section strengthened with two plates, top and bottom 
(Figure 11.12). Young’s modulus for the timber and steel are 3000 N/mm2 and 
210,000 N/mm2, respectively, and the crushing strength of the timber is 10 N/mm2.

	 a.	 Determine the ULS moment and shear force.

(a) (b)

4.5 m Prop

30
0 

m
m

200 mm

Figure 11.11  Excavation propped with timber struts. (a) Cross-section through excavation and (b) cross-
section through strut.

300 mm

5 mm

400 mm

Figure 11.12  Timber beam strengthened by steel plates.
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	 b.	 Determine the second moment of area of the transformed section (transform 
timber into steel).

	 c.	 Determine the maximum stresses in the steel and timber.
	 d.	 If the plate is connected to the timber section using groups of two screws, each 

with a shear capacity of 4.5 kN, determine the spacing of the screws along the 
length of the beam.

	 e.	 Determine the distance from the support that the spacing of the screws can be 
doubled (i.e. the 50% shear force point).

	 Ans. (a) 110 kN.m, 72 kN, (b) 138 × 106 mm4, (c) 159 N/mm2 and 2.2 N/mm2, 
(d) 58 mm and (e) 1.54 m.

	P.11.4.	 A flitch beam is made of steel plates and timber joists bolted together to form a 
single member (see Figure 11.13). The beam spans 8 m between simple supports and 
supports a UDL of 2.6 kN/m dead and 2.2 kN/m imposed (unfactored). Young’s 
moduli are 8000 N/mm2 and 210,000 N/mm2 for the timber and steel, respectively.

	 a.	 Determine the total stiffness (EI) of the compound member.
	 b.	 Determine the midspan deflection under SLS loads.
	 c.	 Determine the ULS design moment.
	 d.	 Determine the stresses in the timber and steel under ULS loads.

	 Ans. (a) 2.95 × 1013 N.mm2, (b) 8.7 mm, (c) 54.5 kN.m and (d) ±2.96 N/mm2 
and ±73.7 N/mm2.

400 mm 380 mm

140 mm

400 mm

1 140 mm

Timber

Steel

380 mm

140 mm 1

Timber

m140 mm

Timber Timber

140 mm

6 mm 6 mm

Figure 11.13  Cross section through a flitch beam (connecting bolts not shown).
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A

Accidental loads, 3, 42
Amplification factor, 39, 41
Anchorage draw-in, 209, 215
Anchorage of reinforcement, 169–172
Anchorages

design of, 235–237
single tendon, 236
two tendon, 236–237

Antisymmetric buckling, 68
Applied moment, 26, 27, 28, 42
Arches

applied forces and moments, 70
buckling of, 67–83
circular, 67
effective length, 68–70
elastic critical buckling, 68–70
hollow section, 71–74
I- or H-section, 71–74
laced girder arches, 74–80
parabolic, 67
simple, 72–74

Asymmetric columns, 185–189
At transfer, 200–201
Autogenous shrinkage, 272–273
Axial force, 39

B

Balance failure, 180–181
Basement slab, control of cracking in, 277–278
Basic strut buckling, 33–38
Beam columns, 33–34

buckling of, 38–45
with lateral torsional buckling, 43–45

Beams
bridge, with point load, 151–154
built-up member, 294–295
calculation of crack widths for, 280–282
composite, 125–156

effective width, 125–127
primary, 146–151

serviceability limit state design, 127–131
ULS bending strength, 132–137

deep, 254–261
deflection, 30
in continuous width, 220–223
design

basic, 17–18
involving LTB, 27–28
for multistorey building, 28–30

with draped tendon, 199–200
ductility of, 160, 162–164
effective depth, 160
flitch (timber and steel), 298–300
floor

calculating bending strength of, 133–134
shear stud design for, 139
timber, 293–294

laterally restrained, bending strength of, 15–20
laterally unrestrained, 30
pre-tensioned precast concrete, 226–229
primary, 146–151
reinforced concrete, 157–194

anchorage of reinforcement, 169–172
calculating strength of, 167–168
doubly reinforced, 161, 164–166
lapping of bars, 169–172
maximum and minimum areas of 

reinforcement, 168–169
moment capacity of, 159–168
shear capacity of, 172–176
singly reinforced, 160, 161–162

secondary, 29
simply supported, 218–220
sizing, 203–205
SLS calculations for, 129–131
with straight tendon, 198–199
timber, 293–305

Bending
biaxial, 182–192
compression and, 300–305
lattice girder subjected to, 58–59
pure, 181
shear combined with, 94
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short columns subjected to, 178
stiffened panels in, 111–121
stiffness, 34
stress, 98, 228
ULS bending strength, 229–232

Bending moment capacity, in presence of high 
shear forces, 19–20

Bending strength
calculation of, for floor beam, 133–134
laterally restrained beams, 15–20
timber, 292–300
ULS, 132–137

Biaxial bending, 182–192
Boundary conditions, plate buckling with 

different, 90–91
Box girder bridge, 105–109, 111–115
Box girders, 85, 98–103, 116–121
Bridge diaphragm, 266–270
Bridge girders, 25–27
box girder bridge, 105–109, 111–115
Bridge pier, 263–266
Bridges

beam with point load, 151–154
box girder, 105–109, 111–115
stress calculations for composite bridge deck, 

227–229
ULS strength checks for, 134–137

Buckling
antisymmetric, 68
applied forces and moments, 70
of arches, 67–83
basic strut, 33–38
beam columns, 38–45
elastic critical, 21–22, 24–27, 68–71, 79, 81–82
global, 54, 57
inelastic, 35–36
lateral torsional, 21–31, 40, 43–45, 129, 292
lattice girder arch, 74–80
of lattice girder in compression, 55–57
local, 54, 56, 75, 78–79
local torsional, 118
out-of-plane, 69–70
in-plane, 68–69, 74
shear, 97
in stiffened plates, 104
of simple trusses, 48–53
of slender trusses, 54–57
of slender trusses subjected to compression 

and bending, 58–64
of steel columns and trusses, 33–66
of stiffened plates in compression, 103–104
of thin-walled structures, 85–123

shear buckling in a plate girder, 92–93
shear buckling of unstiffened plates, 

91–93
stiffened panels in shear, compression, 

and bending, 111–121
stiffened panels subjected to shear and 

compression stresses, 105–109

stiffened plates in compression, 103–104
stiffened plates in shear, 104
stiffened plates with lateral loads, 

109–110
unstiffened plates in compression, 87–91
unstiffened plates in compression and 

shear, 93–103
web, 45–48

Buckling coefficient, 88–89
Buckling strength, 44–45, 53
Buckling stress, 85
Built-up member, 294–295

C

Cantilever, propped, 223–226
Circular arches, 67
Columns

asymmetric, 185–189
biaxial bending, 182–192
classification as short or slender, 177–178
design, 176–178
M-N interaction diagrams, 178–182, 

183–184
non-rectangular, symmetrical, 189–192
reinforced concrete, 157–194
short, subjected to combined compression 

and bending, 178
supporting concentrated load, control of 

cracking, 251–254
symmetric, 183–184
timber beam, 301–303

Composite bridge deck, stress calculations for, 
227–229

Composite structures, 125–156
effective width, 125–127
primary beams, 146–151
serviceability limit state design, 127–131
shear stud design, 137–154
ULS bending strength, 132–137
using pre-tensioned precast concrete beams, 

226–229
Compound struts, 55
Compression

bending and, 300–305
buckling of stiffened plates in, 103–104
lattice girder in, 55–57, 58–59
shear combined with, 94
short columns subjected to, 178
stiffened panels in, 105–109, 111–121
strength, timber, 300
stresses, control of, 248–251, 253–254
unstiffened plates in, 87–91, 93–103

Compression flange, 21
Compression struts, 248–251
Compressive force, 229
Concrete

See also Reinforced concrete
control of cracking in, 271–287
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prestressed, 195, 234–235; see also 
Prestressed structures

pre-tensioned precast concrete beams, 
226–229

properties of, 157–159
shrinkage, 214–215, 217
strength grades for, 157–158
strut and tie modelling of 

reinforced, 241–270
tensile strength of, 158

Concrete creep, 214, 217
Continuous beams, deflection in, 220–223
Contraflexure, points of, 34
Corbel, 261–263
Cracking

calculation of crack widths, 275–277, 
280–282

control of, 251–254
in basement slab, 277–278
due to solar gain, 282–284
in reinforced concrete, 271–287
for wall cast onto a foundation, 278–280

crack spacing, 276–277
creep strain, 273
drying shrinkage, 272–273
early age, 271
heat of hydration shrinkage, 272
restrained shrinkage, 273–275

Creep, 158, 214, 217
Creep strain, 273
Critical buckling force, 76
Critical buckling stress, 108
Crushing, 179–180
Crushing force, 39
Crushing strength, 37, 44

D

Dead loads, 3, 67, 70, 136, 143, 144
Dead weight, 158, 228
Deep beams, 254–261
Deflections, 30, 217–226

continuous beams, 220–223
in propped cantilever, 223–226
shear, 48, 53, 54
simply supported beams, 218–220

Design compressive strength, of concrete, 158
Design moment, 24–25, 70
Design strength, 89, 102
Design stress, 102
Destabilising loads, 23, 26, 27–28
Doubly reinforced beams, 161, 164–166
Drying shrinkage, 272–273
Ductility, 160, 162–164

E

Early age cracking, 271
Effective depth, 160

Effective length, 34, 68–70
calculation of, 24

Effective span, 126
Effective width, 125–127
Elastic critical buckling, 68–70, 79

compression stress, 85
force, 33, 52, 54, 71, 177
load calculation using Timoshenko method, 

81–82
moment, 21–22, 24–25, 26–27
stress, 87–91

Elastic critical buckling force, 58
Elastic critical shear stress, 109
Elastic design, 137–138

with point loads, 142–146
Elastic moment capacities, 18, 41, 45, 52, 58
Elastic neutral axis, 132
Elastic shortening, 209–211, 215–216
Equivalent strut method, 68, 81
Euler, Leonard, 34
Euler’s buckling equation, 68, 177
Eurocodes, 132, 157
Excavations, lattice girder propping, 59–64

F

Factor of safety (FoS), 8
Finite element analysis (FEA), 57
Flitch beams, 298–300
Floor beams

calculating bending strength of, 133–134
shear stud design for, 139
timber, 293–294

Floor slab, dishing of, 285–286
FoS. See Factor of safety (FoS)
Free shrinkage strain, 275
Friction losses, 211–213, 216–217
Full discontinuity, in STM, 246–247
Full prestress, 195
Fully stressed design, 85

G

Global buckling, 54, 57
Gordon-Rankine approximation, 24–25, 33, 

35–38, 67, 71, 87
Grade stresses, 289–291
Gravity loads, 3

H

Heat of hydration, 271
Heat of hydration shrinkage, 272
Hollow sections

arches, 71–74
combined moments and compression 

applied to, 40–43
Hot-rolled sections, 11, 12, 14
H-section arches, 71–74
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I

Imposed load deflection, 131
Imposed loads, 3, 70, 144, 145
Inelastic buckling, 35–36
In-plane buckling, 68–69, 74
Interaction equations, 93
I-section arches, 71–74

L

Laced girder arches, 74–80
Lapping, 169, 170
Lateral loads, stiffened plates with, 109–110
Laterally restrained beams

beam design for multistorey building, 28–30
bending strength of, 15–20

Lateral restraint, 21, 23
Lateral torsional buckling (LTB), 21–31, 40, 

129, 292
beam column with, 43–45
beam design involving, 27–28
check for bridge girders supporting wet 

concrete, 25–27
Lattice girder

arch buckling, 74–80
bridge, 49–51
propping an excavation, 59–64
roof, 51–53
subjected to compression and bending, 58–59

Limit state design, 1–10
calculation of loads, 3–8
factor of safety, 8
partial safety factors, 2–3
pattern loading, 8–10
types of, 1

Load and resistance (safety) factor design, 1–10
Loads calculation, 3–8

simple steel beam, 3–4
slab supported by beams, 5–6
wind loading to tall building, 6–8

Loads/loading
accidental, 3, 42
dead, 3, 67, 70, 136, 143, 144
destabilising, 23, 26, 27–28
gravity, 3
imposed, 3, 70, 144, 145
non-gravity, 3
pattern, 8–10

Local buckling, 11, 54, 56, 75, 78–79
Local torsional buckling, 118
Long-term losses, 208

M

Maximum area of reinforcement, 168–169
Maximum shear strength, 174
Maximum stress, 38
Member sizing, 202

Method of transformed sections, 127–128, 130, 
228, 292

Midspan deflection, 51
Midspan moment, 42, 50, 52, 131, 135, 

144, 228
Minimum area of reinforcement, 168–169, 

251–270
control of cracking, 251–254

M-N interaction diagrams, 178–182, 183–184
Modular ratio, 127–128, 130, 226
Mohr’s circle of stress, 232–233
Moment capacity, 230

bending, 19–20
calculation, 16, 29, 76, 80, 231–232
of cross section, 16
determination of, 15–16
elastic, 18, 41, 45, 52, 58
plastic, 25, 26, 44, 132
of RC beams, 159–168

Multistorey buildings, beam design for, 28–30
Musschenbroek, Petrus van, 33

N

Navier, Claude-Louis, 34
Neutral axis depth, 162–164
Non-gravity loads, 3
Non-rectangular, symmetrical columns, 

189–192
Notching, 291

O

Out-of-plane buckling, 69–70

P

Parabolic arches, 67
Parallel axis theorem, 48, 51, 106, 112, 117, 

128, 130, 228
Partial discontinuity, in STM, 245–246
Partial prestress, 196
Partial safety factors, 2–3, 11, 132
Pattern loading, 8–10
Plastic design

of shear studs, 141
with point loads, 141–142
for uniformly distributed load, 141

Plastic moment capacity, 25, 26, 44, 132
Plastic neutral axis, 132, 133
Plate buckling, with different boundary 

conditions, 90–91
Plate girders, 11

with web stiffeners, 94–98
Point loads

bridge beam with, 151–154
elastic design with, 142–146
plastic design of shear studs with, 141–142
shear stud design with, 139–141
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Points of contraflexure, 34
Poisson’s ratio, 91
Post-buckling strength, 85
Post-tensioning, 195
Prestressed concrete (PSC), 195
Prestressed structures, 195–239

anchorage design, 235–237
basic theory, 196–200
beam sizing, 203–205
composite construction using pre-tensioned 

precast concrete beams, 226–229
prestressing force calculation, 203–205
SLS design, 200–226

deflections, 217–226
determining allowable tolerances in 

positioning of prestressing tendons, 
205–206

member sizing, 202
permissible ranges of tendon force, 202–203
prestress losses, 208–217
tolerance in tendon position, 206–208

ULS bending strength, 229–232
ULS shear strength, 232–235

Prestress losses, 208–217
anchorage draw-in, 209, 215
calculation of, at transfer and SLS loading, 

215–217
concrete creep, 214, 217
due to friction, 211–213, 216–217
elastic shortening, 209–211, 215–216
relaxation of the tendons, 214, 217
shrinkage, 214–215, 217

Pre-tensioning, 195, 196
Primary beams, 146–151
Profiled metal decking, 128
Propped cantilever, 223–226
PSC. See Prestressed concrete (PSC)
Pure bending, 181

R

Rebar, 159–162, 165–167, 169–172
curtailment of, 171–172
tensile strength of, 274

Reduced moment capacity, 58
Reinforced bottle-shaped struts, 249–250
Reinforced concrete (RC)

control of cracking in, 271–287
strut and tie modelling of, 241–270

Reinforced concrete beams and columns, 
157–194

anchorage of reinforcement, 169–172
biaxial bending, 182–192
calculating strength of, 167–168
column design, design, 176–178
doubly reinforced, 161, 164–166
ductility of, 162–164
lapping of bars, 169–172
material properties, 157–159

maximum and minimum areas of 
reinforcement, 168–169

M-N interaction diagrams, 178–182, 
183–184

moment capacity, 159–168
shear capacity of, 172–176
short columns, subjected to combined 

compression and bending, 178
singly reinforced, 160, 161–162
strut and tie modelling of, 241–270

Residual stresses, effect of, 36–37
Restrained shrinkage, 273–275
Restraint factor, 275–276
Robustness, 27
Roof slabs, movement of, due to solar gain, 

283–284

S

Secondary beams, 29
Seismic forces, 3
Self-weight deflection, 43
Serviceability limit state (SLS) design, 1, 

127–131, 200–226
deflections, 217–226
determining allowable tolerances in 

positioning of prestressing tendons, 
205–206

member sizing, 202
permissible ranges of tendon force, 202–203
prestress losses, 208–217
tolerance in tendon position, 206–208

Serviceability limit state (SLS) load, 3, 198, 
215–217

Shear
buckling of stiffened plates in, 104
combined with bending, 94
combined with compression, 94
stiffened panels in, 111–121
unstiffened plates and, 93–103

Shear buckling, 12–14, 97, 99, 108
in plate girder, 92–93
in stiffened plates, 104
of unstiffened plates, 91–93

Shear deflections, 48, 53, 54
Shear flow, 291
Shear forces, 172

bending moment capacity in presence of 
high, 19–20

Shear links, 172–173
maximum spacing of, 174

Shear reinforcement
design of, 175–176
economy of, 174

Shear resistance, 172
Shear strength, 11–15, 172

hot-rolled sections, 12, 14
of prestressed concrete unit, 234–235
thin-walled sections, 12–14, 15
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timber, 291–292
ULS, 232–235

Shear stress, 85, 92, 99–100
stiffened panels subjected to, 105–109
Shear studs, 125

design, 137–154
elastic, 137–138
for floor beam, 139
plastic, 141–142
with point loads, 139–141

Ships, 85
Short-term losses, 208
Shrinkage, 214–215, 217

autogenous, 272–273
drying, 272–273
free shrinkage strain, 275
heat of hydration, 272
restrained, 273–275

Shrinkage stresses, 36
Sideways moment, 48
Simple trusses, buckling of, 48–53
Single tendon anchorage, 236
Singly reinforced beams, 160, 161–162
Slab supported by beams, load calculation, 5–6
Slenderness, 35, 85, 86
Slender trusses, 71

buckling of, 54–57
buckling of, subjected to compression and 

bending, 58–64
SLS design. See Serviceability limit state (SLS) 

design
Snow, 3
Solar gain, 282–284
Span-to-depth ratios, 157
Steel, properties of, 157–159
Steel beams

load calculation, 3–4
timber and, 298–300

Steel members in flexure, 11–31
bending strength of laterally restrained 

beams, 15–20
hot-rolled sections, 12, 14
shear strength, 11–15
thin-walled sections, 12–14, 15

Stiffened panels/plates
buckling of, in compression, 103–104
buckling of, in shear, 104
with lateral loads, 109–110
in shear, compression, and bending, 111–121
subjected to shear and compression stresses, 

105–109
STM. See Strut and tie modelling (STM)
Stress distribution, 132
Strut and tie modelling (STM), 235–236, 

241–270
bridge diaphragm, 266–270
bridge pier, 263–266
control of compression stresses, 248–251
control of cracking, 251–254

corbel, 261–263
deep beams, 254–261
full discontinuity, 246–247
introduction to, 241–242
minimum reinforcement, 251–270
model formulation, 242–248
partial discontinuity, 245–246
ties design, 247–248

Struts
compression, 248–251
design, 37–38
reinforced bottle-shaped, 249–250
width calculation, 250–251

Support conditions, 23
Symmetric columns, 183–184

T

Tendon eccentricity, 227
Tendon force, 202–203
Tendon position, 206–208
Tendons

relaxation of, 214, 217
single tendon anchorage, 236
two tendon anchorage, 236–237

Tensile strength, of concrete, 158
Tension field action, 85, 92
Tension reinforcement, curtailment of, 169, 

171–172
Theory of Elastic Stability (Timishenko and 

Gere), 68, 81
Thin-walled structures, 12–14, 15

buckling of, 85–123
shear buckling in a plate girder, 92–93
shear buckling of unstiffened 

plates, 91–93
stiffened panels in shear, compression, 

and bending, 111–121
stiffened panels subjected to shear and 

compression stresses, 105–109
stiffened plates in compression, 103–104
stiffened plates in shear, 104
stiffened plates with lateral loads, 

109–110
unstiffened plates in compression, 87–91
unstiffened plates in compression and 

shear, 93–103
Timber, 289–307

bending strength, 292–300
built-up member, 294–295
columns, 301–303
compression and bending, 300–305
compression strength, 300
grade stresses, 289–291
load duration, 290
load sharing, 290
material properties, 289–291
moisture content, 290
notching, 291
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section size, 291
section strengthened with steel plates, 

295–298
shear strength, 291–292
and steel sandwich beam (flitch Beam), 

298–300
truss, 303–305

Timoshenko method, 81–82
Torsional stiffness, 21, 22
Total deflection, 131
Trusses

simple, 48–53
slender, 54–57, 58–64
timber, 303–305

Two tendon anchorage, 236–237

U

ULS. See Ultimate limit state (ULS)
Ultimate limit state (ULS)

bending strength, 132–137, 229–232
design, 1, 2, 3
shear strength, 232–235

Unstiffened plates
in compression and shear, 87–91, 93–103
shear buckling in, 91–93

V

Vierendeel girders, 58
Von Mises equation, 19
Von Mises yield criteria, 11–12

W

Wall, cast onto foundation, 278–280
Warping constant, 22
Web buckling, 45–48

due to concentrated load, 47–48
Web stiffeners, plate girders with, 94–98
Weld shrinkage stresses, 104
Wembley Arch, 78
Wet concrete deflection, 131
Wind, 3
Wind loading to tall building, 6–8

Y

Yielding, 85
Yielding check, 165
Yield shear stress, 99–100, 102, 109
Yield stress, 38, 51, 85
Young’s modulus, 17, 34, 49, 51, 69, 91, 127, 

135, 158, 217, 273



http://www.taylorandfrancis.com

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Symbols and abbreviations
	Foreword
	Preface﻿﻿
	Author
	Chapter 1: Limit state design
	1.1 Partial safety factors
	1.2 Calculation of loads
	1.3 Factor of safety
	1.4 Pattern loading

	Chapter 2: Steel members in flexure
	﻿﻿2.1﻿ ﻿﻿﻿Shear strength﻿
	﻿﻿2.1.1﻿ ﻿﻿﻿Hot-rolled sections﻿
	﻿﻿2.1.2﻿ ﻿﻿﻿Thin-walled sections﻿

	2.2 Bending strength of laterally restrained beams 
	2.2.1  Bending moment capacity in the presence of high shear forces

	﻿﻿2.3﻿ ﻿﻿﻿Lateral torsional buckling﻿

	Chapter 3: Buckling of steel columns and trusses
	﻿﻿3.1﻿ ﻿﻿﻿Basic strut buckling﻿
	﻿﻿3.2﻿ ﻿﻿﻿Beam columns﻿
	﻿﻿3.3﻿ ﻿﻿﻿Web buckling﻿
	﻿﻿3.4﻿ ﻿﻿﻿Simple trusses ﻿
	﻿﻿3.5﻿ ﻿﻿﻿Buckling of slender trusses﻿
	﻿﻿3.6﻿ ﻿﻿﻿Buckling of slender trusses subjected to compression and bending﻿
	Reference

	Chapter 4: Buckling of arches
	﻿﻿4.1﻿ ﻿﻿﻿Elastic critical buckling and effective length﻿
	﻿﻿4.2﻿ ﻿﻿﻿Applied forces and moments﻿
	﻿﻿4.3﻿ ﻿﻿﻿Hollow section or I- and H-section arches﻿
	﻿﻿4.4﻿ ﻿﻿﻿Laced girder arches﻿
	﻿﻿4.5﻿ ﻿﻿﻿Calculation of elastic critical buckling load using the Timoshenko method﻿
	Reference

	Chapter 5: Buckling of thin-walled structures
	﻿﻿5.1﻿ ﻿﻿﻿Unstiffened plates in compression﻿
	﻿﻿5.2﻿ ﻿﻿﻿Shear buckling of unstiffened plates﻿
	﻿﻿5.3﻿ ﻿﻿﻿Unstiffened plates in compression and shear﻿
	﻿﻿5.4﻿ ﻿﻿﻿Buckling of stiffened plates in compression﻿
	﻿﻿5.5﻿ ﻿﻿﻿Buckling of stiffened plates in shear﻿
	﻿﻿5.6﻿ ﻿﻿﻿Stiffened panels subjected to shear and compression stresses﻿
	﻿﻿5.7﻿ ﻿﻿﻿Stiffened plates with lateral loads﻿
	﻿﻿5.8﻿ ﻿﻿﻿Stiffened panels in shear, compression and bending﻿
	References﻿﻿

	Chapter 6: Composite structures
	﻿﻿6.1﻿ ﻿﻿﻿Effective width﻿
	﻿﻿6.2﻿ ﻿﻿﻿Serviceability limit state design﻿
	﻿﻿6.3﻿ ﻿﻿﻿ULS bending strength﻿
	﻿﻿6.4﻿ ﻿﻿﻿Shear stud design﻿
	﻿﻿6.4.1﻿ ﻿﻿﻿Elastic design of the shear studs﻿
	﻿﻿6.4.2﻿ ﻿﻿﻿Plastic design of shear studs﻿


	Chapter 7: Reinforced concrete beams and columns
	﻿﻿7.1﻿ ﻿﻿﻿Material properties﻿
	﻿﻿7.2﻿ ﻿﻿﻿Moment capacity of beams﻿
	﻿﻿7.2.1﻿ ﻿﻿﻿Singly reinforced beams﻿
	7.2.2 Doubly reinforced beams

	7.3 The maximum and minimum areas of reinforcement in a beam
	7.4 Anchorage of reinforcement and lapping of bars 
	7.5 Shear capacity of beams 
	7.6 Introduction to column design 
	﻿﻿7.7﻿ ﻿﻿﻿Short columns subjected to combined compression and bending﻿
	﻿﻿7.8﻿ ﻿﻿﻿M–N Interaction diagrams﻿
	﻿﻿7.9﻿ ﻿﻿﻿Biaxial bending﻿

	Chapter 8: Prestressed structures
	﻿﻿8.1﻿ ﻿﻿﻿Introduction to the basic theory﻿
	﻿﻿8.2﻿ ﻿﻿﻿SLS design﻿
	﻿﻿8.2.1﻿ ﻿﻿﻿Member sizing﻿
	﻿﻿8.2.2﻿ ﻿﻿﻿The permissible ranges of tendon force﻿
	﻿﻿8.2.3﻿ ﻿﻿﻿Determining the allowable tolerance in the positioning of the prestressing tendons﻿
	﻿﻿8.2.4﻿ ﻿﻿﻿Prestress losses﻿
	﻿﻿8.2.4.1﻿ ﻿﻿﻿Anchorage draw-in﻿
	﻿﻿8.2.4.2﻿ ﻿﻿﻿Elastic shortening﻿
	﻿﻿8.2.4.3﻿ ﻿﻿﻿Loss of prestress due to friction﻿
	﻿﻿8.2.4.4﻿ ﻿﻿﻿Relaxation of the tendons﻿
	﻿﻿8.2.4.5﻿ ﻿﻿﻿Concrete creep﻿
	﻿﻿8.2.4.6﻿ ﻿﻿﻿Shrinkage﻿

	﻿﻿8.2.5﻿ ﻿﻿﻿Deflections﻿
	﻿﻿8.2.5.1﻿ ﻿﻿﻿Simply supported beam﻿
	﻿﻿8.2.5.2﻿ ﻿﻿﻿Continuous beam﻿
	﻿﻿8.2.5.3﻿ ﻿﻿﻿Deflection in a propped cantilever﻿


	﻿﻿8.3﻿ ﻿﻿﻿Composite construction using pre-tensioned precast concrete beams﻿
	﻿﻿8.4﻿ ﻿﻿﻿ULS bending strength﻿
	﻿﻿8.5﻿ ﻿﻿﻿ULS shear strength﻿
	﻿﻿8.6﻿ ﻿﻿﻿Design of anchorages﻿
	Reference

	Chapter 9: Strut and tie modelling of reinforced concrete
	﻿﻿9.1﻿ ﻿﻿﻿Introduction to STM﻿
	﻿﻿9.2﻿ ﻿﻿﻿Formulation of the strut and tie model﻿
	﻿﻿9.2.1﻿ ﻿﻿﻿Partial discontinuity﻿
	﻿﻿9.2.2﻿ ﻿﻿﻿Full discontinuity﻿

	﻿﻿9.3﻿ ﻿﻿﻿Design of the ties﻿﻿﻿
	﻿﻿9.4﻿ ﻿﻿﻿Control of compression stresses﻿
	﻿﻿9.4.1﻿ ﻿﻿﻿Reinforced bottle-shaped struts﻿
	﻿﻿9.4.2﻿ ﻿﻿﻿The calculation of strut widths﻿

	﻿﻿9.5﻿ ﻿﻿﻿Minimum reinforcement﻿
	References﻿﻿

	Chapter 10: Control of cracking in reinforced concrete
	﻿﻿10.1﻿ ﻿﻿﻿Heat of hydration shrinkage﻿
	﻿﻿10.2﻿ ﻿﻿﻿Drying shrinkage﻿
	﻿﻿10.3﻿ ﻿﻿﻿Creep strain﻿
	﻿﻿10.4﻿ ﻿﻿﻿Cracking due to restrained shrinkage﻿
	﻿﻿10.5﻿ ﻿﻿﻿Calculation of crack widths﻿
	﻿﻿10.6﻿ ﻿﻿﻿Calculation of crack widths for beams﻿
	﻿﻿10.7﻿ ﻿﻿﻿Control of cracking due to solar gain﻿
	References

	Chapter 11: Timber beams, columns and trusses
	﻿﻿11.1﻿ ﻿﻿﻿Material properties﻿
	﻿﻿11.2﻿ ﻿﻿﻿Shear strength﻿
	﻿﻿11.3﻿ ﻿﻿﻿Bending strength﻿
	﻿﻿11.4﻿ ﻿﻿﻿Compression strength﻿
	﻿﻿11.5﻿ ﻿﻿﻿Compression and bending﻿

	Index
	﻿﻿A﻿
	﻿﻿B﻿
	﻿﻿C﻿
	﻿﻿D﻿
	﻿﻿E﻿
	﻿﻿F﻿
	﻿﻿G﻿
	﻿﻿H﻿
	﻿﻿I﻿
	﻿﻿L﻿
	﻿﻿M﻿
	﻿﻿N﻿
	﻿﻿O﻿
	﻿﻿P﻿
	﻿﻿R﻿
	﻿﻿S﻿
	﻿﻿T﻿
	﻿﻿U﻿
	﻿﻿V﻿
	﻿﻿W﻿
	﻿﻿Y﻿


