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Dedication

The strut-and-tie model (STM) is an extension of the limit analysis 
as applied to continuous media by Drucker, Greenberg, and 

Prager in 1952, and extended to reinforced concrete members. The 
concept of using the method of STM to the inelastic-reinforced-

concrete analysis was introduced and illustrated for the first time 
in 1961 by Drucker in his estimate of the load-carrying capacity 
of a simply supported reinforced concrete beam. The application 
of the theory of plasticity to the design of members under shear 

and torsion began in the 1970s, especially by Thürlimann, Nielsen, 
and others. The efforts of Schlaich, Schäfer and their colleagues, 

and students at the institute of structural design, University of 
Stuttgart, in the 1980s and 1990s, have established the method in 
its current form by the generalization of the original truss model 
concept proposed to treat shear problems by Ritter (1899) and 

Mörsch (1902, 1906, and 1909) and utilization of the achievements 
in the area of the lower bound theorem of limit analysis. They 
treated all technical problems including model development, 
material strength of the different components, and solution 

scope, in order to achieve a unified and consistent treatment of 
all regions of structural concrete including those with or without 
web reinforcement and with or without axial force or pre-strains 

(tension or compression); all are treated in the same manner.

In recognition of their efforts and remarkable contributions to 
the method of strut-and-tie model, this book is dedicated to:



em. Prof. Dr.-Ing. Jörg Schlaich

em. Prof. Dr.-Ing. Kurt Schäfer

Salah El-Din E. El-Metwally 
Wai-Fah Chen 
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Preface
One of the most important advances in reinforced concrete in recent years is the 
extension of lower-bound limit theorem-based design procedures, for example, the 
strut-and-tie model (STM), to shear, torsion, bearing stresses, and the design of 
structural discontinuities, such as joints, corners, openings, and deep beams. The 
concept of using the method of strut-and-tie models to the inelastic-reinforced-
concrete analysis was introduced and illustrated for the first time in 1961 by 
Drucker in his estimate of the load-carrying capacity of a simply supported rein-
forced concrete beam.

The application of the theory of plasticity to the design of reinforced concrete 
members under shear and torsion began in the 1970s, especially by Thürlimann and 
Nielsen and their coworkers. This also formed the basis for the method of strut-and-
tie models after the work of Schlaich and his coworkers in the 1980s and 1990s. The 
method has been well-developed worldwide over the past two decades, presented 
in several texts, and also introduced in many codes of practice, which triggered the 
acceptance and wide daily use of the method. The development of the method has 
brought a major breakthrough in design for a consistent theory in the design concept 
covering both discontinuity- and Bernoulli-regions with similar models. In particu-
lar, the method provides a formal design procedure for reinforced concrete detailing.

This book is devoted to the application of the method of strut-and-tie models in 
the design of structural concrete. In order to put the method into perspective, the the-
orem of limit analysis with its lower and upper bounds is first presented. The method 
of STM, as a lower bound solution, is further demonstrated with emphasis on model 
development and optimization and modeling of standard discontinuity-regions. The 
failure criteria of the model elements are discussed, with attention to the provisions 
and recommendations of the ACI 318-14 Code. The method is applied to different 
classes of regions with attention to the detailing. Structural concrete design is treated 
in a unified manner with consistency in the treatment of both discontinuity- and 
Bernoulli-regions. The method is also utilized to explain the behavior of concrete 
elements and regions in response to boundary forces and reinforcement detailing.

This book is addressed to students, researchers, and, in particular, practicing 
engineers.

We are grateful to the sincere efforts of engineers R. M. El-Garayhi and A. K. 
Ghoraba who prepared the drawings of the book. The authors especially thank engi-
neer A. K. Ghoraba for his effort in checking the solutions of some book examples.

Salah El-Din E. El-Metwally 
Wai-Fah Chen
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1

1 Principle of the Strut-
and-Tie Model

1.1  INTRODUCTION

This chapter traces the method of strut-and-tie model (STM) back to its roots, the 
limit analysis. Then, the method as a lower-bound solution is introduced by first 
explaining why the method is a necessity in those regions where the bending theory 
cannot be applied. The method has come as an appropriate approach to treat all 
structural concrete elements and components consistently and in a unified manner.

The chapter covers the limit theorems with both the upper- and lower-bound 
solutions, the principle of the method of STM, the approaches to develop a STM, 
and the constituent elements of the model; struts, ties and nodes. The regions where 
the bending theory is applicable, B-regions, are distinguished from those disturbed 
regions, D-regions, where that theory cannot be applied. The chapter also gives a 
historical sketch on (1) the development of the truss model which is the basis for the 
design of B-regions; (2) the start of the STM from the limit analysis; and (3) the major 
development of the STM method with connection to the truss model for unified and 
consistent design of structural concrete.

1.2  LIMIT THEOREMS OF PERFECT PLASTICITY

1.2.1  Introduction

In order to carry out plastic analysis and design effectively in the real world of engi-
neering, we shall deal with idealizations of idealizations. As observed from tests, 
once the material is well into the plastic range, it exhibits relatively low additional 
resistance to increasing load. This feature can be simply captured by ignoring the 
small resistance in the plastic range and idealizing the material as perfectly plastic. 
The consequence of such an idealization and the selection of proper flow strength 
depend on the problem to be solved as on the material itself. For example, for mod-
erate plastic strain range in most structural engineering design, the flow strength to 
be chosen for the perfect plasticity idealization should be the average strength of the 
applicable range of the strains of the nonlinear stress–strain behavior as represented 
by the horizontal solid lines in Figure 1.1 (Chen and El-Metwally, 2011).

1.2.2  Why Limit Analysis

In order to obtain a valid solution in continuum mechanics, three conditions should 
be satisfied: equilibrium, compatibility, and constitutive relations. For some cases, 
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it is difficult to satisfy all three conditions. For simplicity, in limit analysis instead, 
only two of the three conditions are necessary for a simpler solution. Historically, 
engineers, based on intuition, developed many simple solutions from equilibrium 
for weak-tension material and from kinematics for ductile materials, which have 
now been justified by limit analysis. The theorems of limit analysis give us a very 
powerful tool to estimate lower and upper bounds of the collapse load of structures 
or structural members without having to go through a very tedious calculation pro-
cedure. In both theorems, strain-hardening of material is ignored but its effect can be 
reflected realistically in the selection of a proper level of flow strength as illustrated 
in the preceding section, which is acceptable from the practice point of view. This 
further idealization of perfect plasticity enables the proof of the powerful limit theo-
rems, which provide an excellent guide for preliminary design as well as analysis of 
structure. The development of the limit theorems and their illustrative engineering 
applications are described next.

In case of a lower-bound solution of the collapse load, only equilibrium and yield 
criterion are satisfied; equilibrium is satisfied for stress or generalized stress. The 
solution so obtained represents a good safe guidance for the structural engineer and 
it can be used to verify solutions from other methods quickly. The method is useful 
for application to different materials, especially tension-weak material, for example, 
stones or concrete. Hence, the safety of monumental structures such as cathedrals 
can be checked very well with such a simple equilibrium method following the flow 
of forces using simple hand calculations.

In an upper-bound solution of the collapse load, only kinematics and yield criterion 
are satisfied. The method is especially good for ductile material and even applicable to 
some material with limited ductility but with modifications. The method uses an engi-
neer’s physical intuition on failure modes and their corresponding collapse analysis 
can be made by hand calculations. Thus, it gives the engineer enough clarity of vision 
to produce a structure that is understandable and works well with the force of nature.

1.2.3  Basic Assumptions

The collapse load obtained from limit analysis is different from the actual plastic col-
lapse load since it is calculated for an ideal structure in which the deformation is assumed 

σ σ
Loading 

σo Idealized
actual

σo

Unloading 

Crush ε ε

(a) (b) 

FIGURE 1.1  Uniaxial stress–strain relationship of an elastic-perfectly plastic material: 
(a) material with limited plastic strain, and (b) highly ductile material.
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to increase without limit while the load is held constant. Of course, this assumption is 
not expected to happen in real structures but only in idealized structures in which nei-
ther work-hardening of the material nor significant changes in geometry of the structure 
occur. However, the limit load still represents a good estimate of the real collapse load.

The idealization of a structure analyzed using the limit analysis theorems 
comes from the following two basic assumptions (Chen and Han, 1988; Chen and 
El-Metwally, 2011):

	 1.	Perfectly plastic material, that is, the material of the structure is assumed to 
be perfectly plastic with the associated flow rule without strain-hardening 
or softening, Figure 1.1b. In this simplification, many effects are ignored; 
for instance, effect of time is eliminated from calculations, while effect of 
residual stresses on initial yielding and effect of local buckling on maxi-
mum plastic moment capacity of steel sections are ignored. In addition, the 
complex states of stresses and strains in reinforced concrete as a result of 
bond and cracks are very much simplified.

	 2.	Small deformation of the structure, that is, the changes in geometry of the 
body or the structure which may occur at the limit load are negligible; hence, 
the geometric description of the body or structure remains unchanged dur-
ing the deformation at the limit load. This assumption allows the use of the 
principle of virtual work, which is the key to the proof of the limit theorems.

1.2.4 T resca Yield Criterion

The elastic limit of a material is defined as yielding and it is determined under a 
combined state of stresses by a yield criterion. For the simple tension test, this limit 
is the yield stress, σo, while in shear test it is the yield shear stress, τo. For the general 
state of stress, this limit can be expressed as

	
f k kij( , , , )σ 1 2 0… =

	 (1.1)

where k1, k2, … are material constants to be determined experimentally.
For isotropic material, the orientation of the principal stresses is immaterial, 

and the values of the three principal stresses suffice to describe the state of stress 
uniquely. A yield criterion therefore consists in a relation of the form

	 f k k( , , , , , )σ σ σ1 2 3 1 2 0… = 	 (1.2)

For isotropic material independent of hydrostatic pressure, such as metals, the 
influence of hydrostatic pressure on yielding for such type of material is not appre-
ciable; therefore, the yield criterion can be simplified as in the von Mises and Tresca 
yield criteria.

For illustration only, the Tresca yield criterion (1870) is used here. This criterion 
states that yielding would occur when the maximum shear stress at a point reaches a 
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critical value k. In terms of principal stresses, the maximum shear stress is the maxi-
mum value of half the difference between the principal stresses taken in pairs, that is,

	
max | |, | |, | |

1
2

1
2

1
2

1 2 2 3 3 1σ σ σ σ σ σ− − −






 = k

	
(1.3)

The material constant k can be determined from the simple tension test

	
k o=
σ
2 	

(1.4)

where σo is the material yield stress. In this criterion, yielding is governed by the 
maximum and minimum principal stresses.

1.2.5  Lower-Bound Theorem

This theorem states that “if an equilibrium distribution of stress can be found which 
balances the applied loads, and is everywhere below yield or at yield, the structure 
will not collapse or will be just at the point of collapse.”

Hence, the lower-bound theorem requires the justification of only two of the three 
sets of conditions necessary for solution in continuum mechanics, that is equilibrium 
and yield condition (material law). This theory therefore expresses the ability of the 
ideal body to adjust itself to carry the applied loads if at all possible. In practice, 
the application of the lower-bound theorem has different versions depending on the 
structural material of the system. For example, in steel frames the method is called 
the statical method, while in concrete there is the strut-and-tie model (STM) method.

In order to illustrate the application of the lower-bound theorem, the following 
two examples are discussed. In the first example, Figure 1.2, a long prismatic bar 
of a rectangular cross section (b × t) with one hole of diameter d is subjected to an 
axial force P. If the yield stress of the bar material is σo, the simple two discontinuous 
stress fields shown in the figure can be assumed. In the two stress fields, the bar is 
divided into strips, the continuous strips have simple tension σo, and the discontinu-
ous strips are stress free. Then the lower-bound load of this bar is

	 P b d tL
o= −σ ( ) 	 (1.5)

The second example is a rigid punch indentation into a half-space of perfectly 
plastic material, Figure 1.3. Assume that the width of the punch in the direction 
perpendicular to the plane of paper is so large that this punch problem is considered 
a plane strain problem.

As a first attempt, consider the simple discontinuous stress field shown in Figure 
1.3a, which yields a lower bound on the limit load

	 P bL
o1 2= =σ kb 	 (1.6)
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This is of course not a good lower bound because the load is considered to be car-
ried only by a single vertical strip of material directly beneath the punch. To improve 
the answer, consider adding a horizontal pressure field as shown in Figure 1.3b. In 
the overlapping region, the material is subjected to a biaxial compression so that 
the vertical stress can be increased to 2σo without violating the yield condition. The 
improved lower bound obtained is

	 P bL
o2 2 4= =σ kb 	 (1.7)

Alternatively, the concept of the truss-action approach can be assumed. If the load 
P is carried by two inclined truss bars as shown in Figure 1.4a and, further, a vertical 
leg is added directly below the punch area AA of amount 2k to give the stress field 
shown in Figure 1.4b, in this case the stress discontinuities are admissible. It is noted 

Stress
free

PL

PL

b
d

σo σo

FIGURE 1.2  Lower-bound solution of a bar with a hole.
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freeb b
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2 = 4 kb
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2σo = 4k

σo = 2k

σo

σo

FIGURE 1.3  Stress fields for punch indentation in plane strain: (a) single vertical strip, and 
(b) two dimensional load transfer.
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that the yield condition is violated in regions I and II. In region I, for example, the 
difference between the greatest and the least principal stress is 4k. This violation can 
be accommodated by introducing at the free surface a horizontal strip in which there 
is a horizontal compressive stress 2k. The width of this strip is as shown in Figure 
1.4c. Using this stress field, a better lower-bound solution can be obtained.

	 PL
3 5= kb 	 (1.8)

1.2.6 U pper-Bound Theorem

This theorem states that “the structure will collapse if there is a compatible pattern 
of plastic failure mechanism for which the rate of work of the external forces equals 
or exceeds the rate of internal dissipation.”

The upper-bound theorem thus requires the justification of only two of the three 
sets of conditions necessary for solution in continuum mechanics, that is, kinematics 

b
P

P

AA 60°
60°ββ

60°
C

2k 2k
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FIGURE 1.4  Load P carried by truss bars: (a) two-leg stress field, (b) three-leg stress field, 
and (c) combined stress field.
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and yield criterion. The theory therefore states that if a path of failure exists, the 
ideal body will not stand up. In practice, the mechanism method of steel beams and 
frames and the yield line theory of concrete slabs are two different versions of appli-
cations of the upper-bound theorem.

In order to illustrate the application of the upper-bound theorem, the following 
two examples are discussed. The first example is the bar with one hole, Figure 1.2, 
which was solved using the lower-bound theorem. For this bar, three different com-
patible discontinuous failure modes are shown in Figure 1.5. In mode 1, Figure 1.5a, 
the upper and lower parts of the bar move as rigid bodies relative to each other 
by sliding along the planes AB and CD perpendicular to the face of the bar and 
making angle α as shown in the figure. If the relative tangential velocity of separa-
tion is �δ , the velocity of separation is �δ αsin  and the rate of external work is then 
PU

1
�δ αsin . The rate of energy dissipation over the whole sliding surface is therefore 

k b d t�δ α( ) cos .− /  Hence,

	
P

k b d tU
1

2
2

=
−( )

sin α 	

For a minimum value of PU
1 , sin 2α is set equal to 1 (α = 45°). This gives

	 P k b d tU
1 2= −( ) 	 (1.9)

k is the yield shear stress which is equal to ( / )σo 3  according to von Mises and (σo/2) 
according to Tresca. Based on the von Mises yield criterion

	
P b d t PU o L

1 1
2

3
1 15= − =

σ
( ) .

	
(1.10)
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.
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FIGURE 1.5  Kinematically admissible velocity fields of a bar with a hole: (a), (b) and 
(c) failure modes 1, 2 and 3.
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Based on the Tresca yield criterion

	 P b d t PU
o

L
1 1= − =σ ( ) 	 (1.11)

Mode 2, if the bar is assumed to be very thin (i.e., it is an assumed plate), and 
mode 3 will give the same results as mode 1.

The second example is the rigid punch indentation into a half-space of perfectly 
plastic material, Figure 1.6, for which a lower-bound solution was derived in the pre-
ceding section. Since the punch is assumed to be rigid, the geometric boundary condi-
tion requires that when the contact plane moves it always remains plane. Two types of 
mechanisms, rotational and translational, are discussed next.

The simple rigid-body rotational mechanism about O, Figure 1.6b, is considered 
geometrically admissible if there are no constraints to hold the punch vertical. The 
block of material B rotates as a rigid body about O with an angular velocity �α , and 
there is a semicircular transition layer between the rotating material and the remain-
der of the body. Since the angular velocity is �α , the rate of work done by the external 
force P is the downward velocity at the center of the punch, �αb/2 , multiplied by P, 
while the total rate of energy dissipation along the semicircular discontinuity surface 
is found by multiplying the length of this discontinuity, πb, by the yield stress in pure 
shear, k, times the velocity across the surface b �α . Equating the rate of external work 
to the rate of total internal energy dissipation gives

	
P b k b bU ( ) ( )( )1

2
� �α α π=

	

or

	 PU = =2 6 28π kb kb. 	 (1.12)

It is noted that the upper-bound solution is independent of the magnitude of the 
angular velocity �α , which means that �α  can be assumed to be sufficiently small not 
to disturb the overall geometry. In other words, the proofs of the limit theorems can 
carry through using the initial geometry of the problem.

(a) (b)

Sliding Rigid

Rigid
α
.

.

B b

A

PP

b o

bα

FIGURE 1.6  Punch indentation problem: (a) punch indentation and (b) rotational mechanism.
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The rotational mechanism of Figure 1.6b may be generalized by taking the radius 
and the position of the center of the circle as two independent variables, aiming to 
obtain a better upper-bound estimate. In this case, a better estimate of the upper-
bound solution can be obtained,

	 PU = 5 53. kb 	 (1.13)

The mechanism involving only rigid-body translations, shown in Figure 1.7, 
involves rigid-block sliding separated by plane velocity discontinuities. This mecha-
nism represents a rough punch, which requires that the punch and the triangular 
block ABC have the same velocity and therefore move together. It is noted that the 
mechanism is symmetrical about the center line and therefore only the right half of 
each is examined for kinematics. In this case, the triangular region ABC in Figure 
1.7a moves downward with the punch as a rigid body, that is, both have the same 
velocity, v1 = vo. The two triangular regions of material BCD and BDE move as rigid 
bodies in the direction parallel to CD and DE, respectively. The velocity of the tri-
angle BCD is determined by the condition that the relative velocity v12 between this 
triangle and the triangle in contact with the punch must have the direction of BC. 
The velocity of the third triangle is determined in a similar manner. The information 
regarding velocities is represented by the velocity diagram (or hodograph) as shown 
in Figure 1.7b.

From Figure 1.7b, the velocities of the rough punch mechanism of Figure 1.7a are

	 v v v v vo2 3 23 12 2 3= = = =/ / 	

G A
60°

60°
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v2v0

v0 = v1 v12

1

20

3

v3

v23v3

Rigid

Rigid

(a) (b)

F C D

B

P
b

E

FIGURE 1.7  Simple rigid-block translation and associated velocity diagram for a rough 
punch: (a) rigid-block translation, and (b) velocity diagram.
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and the work equation is

	 P v k bv bv bv bvU
o = + + +2 12 2 23 3( ) 	

Thus,

	 PU = 5 78. kb 	 (1.14)

It is noted that the best upper-bound estimate is that given by Equation 1.13, 
PU = 5.53 kb, while the best lower-bound estimate from the preceding section is 
PL = 5.0 kb. The correct limit load for this problem is P = 5.14 kb.

1.3  THE STRUT-AND-TIE MODEL - A LOWER BOUND SOLUTION

1.3.1  Introduction

The application of stress fields to reinforced concrete design based on the concept of 
a lower-bound theorem of limit analysis is of more recent development and it repre-
sents one of the most important advances in reinforced concrete. STM is based on the 
lower-bound theorem of limit analysis, and hence it provides a safe solution. Since 
the method is based on the equilibrium approach, only two conditions are justified, 
equilibrium, and failure criteria. In this model, the complex stress distribution in the 
structure is idealized as a truss carrying the imposed loading through the structure to 
its supports. Similar to a real truss, STM consists of compression struts and tension 
ties interconnected at nodes. Using stress legs similar to those sketched in Figure 1.8, 
a lower-bound stress field that satisfies equilibrium and does not violate yield criteria 
at any point can be constructed to provide a safe estimate of capacity of reinforced 
concrete structures with discontinuities (Chen and Han, 1988; Chen, 1982). As will 
be illustrated in later examples, these techniques will have the advantage of allow-
ing a designer to follow the forces through a structure with discontinuities which 
formerly were beyond the scope of engineering practice.

A C

B

A C

B

FIGURE 1.8  Using stress-legs as truss members to produce a stress field at a stress joint.
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The strut-and-tie model, STM, is a logical extension of the truss model and the 
major difference between the two methods is that STM is a set of forces in equi-
librium but do not form a stable truss system. Thus, STM is a generalization of the 
truss model. The truss model has been recognized in academia and practice to be 
the most reliable tool for the treatment of shear and torsion in structural concrete 
Bernoulli or bending regions (or simply B-regions). STM is currently recognized as 
the most reliable tool for the treatment of discontinuity or disturbance regions (or 
simply D-regions).

1.3.2 C oncept

STM is an idealization of the stress resultants derived from the flow of forces within 
a region of structural concrete. The successful model should satisfy two conditions, 
equilibrium and failure criteria, and the solution so obtained is a safe or lower-bound 
solution.

STMs are derived from the flow of forces within structural concrete regions, 
namely, those of high shear stresses, where the Bernoulli hypothesis of flexure, plane 
sections before bending remain plane after bending, does not apply. Those regions 
are referred to as discontinuity or disturbance regions (or simply D-regions), in con-
trast to those regions where the Bernoulli hypothesis is valid, and are referred to as 
Bernoulli or bending regions (or simply B-regions). The flow of forces in B-regions 
can be traced, of course, but in this case the model will yield to as the special case 
of STM.

Discontinuity (which is associated with high shear stresses) is either static (as 
a result of concentrated loads) or geometric (as a result of abrupt change of geom-
etry) or both. Examples of D-regions are illustrated in Figure 1.9. The dividing sec-
tions between B- and D-regions can be assumed to lie approximately at a distance 
h from the geometric discontinuity or the concentrated load, where h is equal to the 
thickness of the adjacent B-region, Figure 1.9. This assumption is justified by Saint 
Venant’s principle (1870).

In an STM, a strut represents a concrete stress field with prevailing compression 
in the direction of the strut. On the other hand, a tie represents one or several lay-
ers of tension reinforcement. However, concrete ties may exist in models where no 
reinforcement is available and reliance is on the concrete tensile strength. Examples 
where tensile stress fields are necessary for equilibrium can be traced in members 
such as slabs, where no web reinforcement is used, or in bar anchorage with no 
transverse reinforcement. Meanwhile, compression reinforcement is represented by 
a strut in case the need arises.

1.3.3 S trut-and-Tie Modeling

Before modeling a D-region, the boundary forces acting from attached B-regions or 
supports or external forces should be determined, Figure 1.10a. The stress diagrams 
of all forces applied to the D-region boundaries are subdivided in such a way that the 
individual stress resultants on opposite sides of the D-region correspond in magnitude 
and can be connected by streamlines which do not cross each other, Figure 1.10b. 
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FIGURE 1.10  The load path method (Schlaich and Schäfer, 1991): (a) the region and bound-
ary loads, (b) the load paths through the region, and (c) the corresponding STM.
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FIGURE 1.9  D-regions (shaded areas) with nonlinear strain distribution due to (Schlaich 
et al., 1987; Schlaich and Schäfer, 1991, 1993): (a) geometric discontinuity, (b) static discon-
tinuity, and (c) geometric and static discontinuity.
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Then the flow of forces through the region can be traced using the load path method, 
Figure 1.10b, which are smoothly curved. Next, the load paths are replaced by poly-
gons as in Figure 1.10c, and additional struts or ties are added for equilibrium, such as 
the transverse strut and tie in the figure. In some cases, the stress diagrams or forces 
are not completely balanced with forces on the opposite side; for this, the load path of 
the remaining forces enters the structure and leaves it on the same side after a U-turn 
within the region, Figure 1.11.

The development of an STM can be simplified if an elastic finite-element analysis 
is performed to obtain the elastic stresses and principal stress directions (Schlaich 
and Schäfer, 1991). The location and direction of struts and ties can then be located at 
the center of stress diagrams, Figure 1.12. The orientation of struts and ties based on 
results from the theory of elasticity may not be the best choice in some cases where 
the profile and distribution of stresses may be altered as the load increases from the 
working load level to the collapse load with the associated nonlinear behavior of 
structural concrete. However, ductility of structural concrete may account for such 
a deviation. Also, the ties and hence the reinforcement may be arranged according 
to practical considerations, that is, the structure adapts itself to the assumed internal 
structural system. Nevertheless, modeling requires good design experience in order 
to set up proper design objectives such as safety and economy, and come up with a 
design which fulfills such objectives.

1.3.4 E lements of STM

STM visualizes a truss-like system in the structure, or its components, to transfer the 
load to the supports. It consists of three types of elements: struts (to resist compres-
sion), ties (to resist tension), and the connecting nodes (of the struts and ties) or nodal 
zones, Figure 1.13. Next, these elements are described in more detail.

Strut: A strut is a compression member in an STM, which represents the resultant 
of a parallel or a fan-shaped compression field. In design, struts are usually ideal-
ized as prismatic compression members, as shown by the straight line outlines of the 
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FIGURE 1.11  The load path method including a U-turn (Schlaich and Schäfer, 1991): (a) the 
region and boundary loads, (b) the load paths through the region, and (c) the corresponding 
STM.
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struts in Figure 1.13. If the effective compression strength (or failure criterion) fce
s  

differs at the two ends of a strut, due either to different nodal zone strengths at the 
two ends or to different bearing lengths, the strut is idealized as a uniformly tapered 
compression member.

Bottle-Shaped Strut: It is a strut that is wider at the mid-length than at its ends and 
it is located in a part of a member where the width of the compressed concrete at the 
mid-length of the strut can spread laterally. The curved dashed outlines of the struts 

Bottle-shaped
strut Nodal zone

Idealized
prismatic strut

Tie

P

FIGURE 1.13  Description of STM.

L+a L+a L+a L+a
4 4 4 4 

F 
a a

L 

q

C

C1 C1

(+)

σx

θ

(–)

T
z2

z
z1

h

Strut 
F Tie 

FIGURE 1.12  Elastic stress trajectories, elastic stress distribution, and the corresponding 
STM (Schlaich and Schäfer, 1991).
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in Figure 1.13 and the curved solid outlines in Figure 1.14 approximate the boundar-
ies of bottle-shaped struts. The internal lateral spread of the applied compression 
force in this stress field is similar to that of a split cylinder test. To simplify design, 
bottle-shaped struts are idealized either as prismatic or as uniformly tapered, and 
crack control reinforcement is provided to resist the transverse tension. The amount of 
confining transverse reinforcement can be computed using the STM shown in Figure 
1.14 with the struts that represent the spread of the compression force acting at a slope 
of 1:2 to the axis of the applied compressive force. The strength of a bottle-shaped 
strut is taken as the smaller of the strengths at the two ends of the strut, Figure 1.14a.

Tie: It is a tension member in an STM where the force is resisted by normal rein-
forcement, prestressing, or concrete tensile strength. The reinforcement may consist 
of one or more layers and the force is always at the center of these layers.

Node: It is the point in a joint in an STM where the axes of the struts, ties, and 
concentrated forces acting on the joint intersect. For equilibrium, at least three forces 
should act on a node, as shown in Figure 1.15. Nodes are classified according to the 
signs of these forces. A C − C − C node resists three compressive forces, while a 
C − C − T node resists two compressive forces and one tensile force, and so on.

Nodal Zone: The volume of concrete around a node that is assumed to transfer 
strut-and-tie forces through the node is the nodal zone. Different types of nodal 
zones are illustrated in Figure 1.16 (ACI 318-14).
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FIGURE 1.14  Bottle-shaped strut: (a) cracking of a strut and (b) STM for transverse 
reinforcement.
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FIGURE 1.15  Nodes classification: (a) C − C − C node, (b) C − C − T node, (c) C − T − T 
node, and (d) T − T − T node.
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1.4  D-REGIONS VERSUS B-REGIONS

1.4.1  Introduction

A concrete structure can be subdivided into two types of regions based on the 
strain distribution within a cross section, which is an influential factor in the design 
approach of these regions. Those regions where the Bernoulli hypothesis of flexure, 
plane sections before bending remain plane after bending, can be assumed valid, are 
referred to as Bernoulli or bending regions (or simply B-regions). The other regions 
where the Bernoulli hypothesis does not apply are referred to as discontinuity or 
disturbance regions (or simply D-regions).

B-regions have been successfully treated using the truss model. On the other hand, 
this truss model has been extended and generalized leading to the STM method for the 
treatment of D-regions. With this, the entire structure is treated in a consistent manner. 
The validity and success of the method have been proven in academia and in practice.

D-regions are usually the most critical regions in a concrete structure since they 
are by nature most vulnerable to environmental loading conditions. The STM as a 
transparent and translucent tool represents a rational approach to understanding the 
behavior of such regions.
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1.4.2  B-Regions

B-regions are found in plates and beams where the depth is either constant or changes 
gradually and loads are continuously distributed. The state of stress at any section of 
a B-region can be adequately derived from sectional effects (bending, torsion, shear, 
and normal force).

The solution of uncracked B-regions can be satisfactorily formulated based on 
the theory of elasticity as in standard mechanics books. On the other hand, if the 
tensile stresses in B-regions exceed the tensile strength of concrete, the truss model 
will apply instead of the elasticity-based solutions. In addition to the truss model, 
codes of practice (ACI 318-14, and Eurocode 2, among others) permit other standard 
methods that have passed the test of experiment.

1.4.3 D -Regions

In D-regions, the strain distribution is significantly nonlinear as a result of discon-
tinuity which results from the sudden change of geometry (geometric discontinuity) 
or concentrated loads (static discontinuity). Examples of geometric discontinuity are 
recesses in beams, frame corners, bends, and openings, Figure 1.9a and c. Examples 
of static discontinuity are the regions of concentrated loads, reactions, and local 
pressure (such as prestressing anchorage zones), Figure 1.9b and c. Structures such as 
deep beams, where the strain distribution is significantly nonlinear, are considered 
one entire D-region, Figure 1.9b.

Uncracked D-regions can be satisfactorily analyzed based on the theory of 
elasticity by using, for instance, finite element codes. Nevertheless, this is not the 
case in most practical applications even under service loads. Once cracks form in 
a D-region and bond stresses between reinforcement and concrete develop sig-
nificantly, linear elastic analysis is not applicable any more. On the other hand, a 
complete nonlinear analysis may turn out to be uneconomical, especially in the 
early stages of design; besides, it does not help in the development of the right 
detailing. Moreover, if structure behavior is not precisely simulated, the results 
may be a cause of poor performance or future failure. With this in mind, the STM 
method represents the rational approach for the treatment of D-regions (Schlaich 
and Schäfer, 1991, 1993).

In B-regions, the state of stress may be derived from sectional effects, whereas in 
D-regions this is not the case. Nevertheless, conventional structural analysis is essen-
tial, and with the division of structure into B- and D-regions, the boundary forces of 
D-regions can be identified. These boundary forces come from the effect of attached 
B-regions and other external forces and reactions, Figure 1.17.

1.4.4 D efining the Boundaries of D-Regions

In contrast to D-regions, the stresses and stress trajectories in B-regions are smooth, 
Figure 1.18. In D-regions, stress intensities decrease rapidly with the distance from 
the origin of the stress concentration. Such behavior is the key in the identification of 
B- and D-regions of structure.
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In order to illustrate how the division lines between B- and D-regions are defined, 
the two illustrative examples shown in Figures 1.19 and 1.20 are considered. The 
common principle is to subdivide the real structure in Figures 1.19a and 1.20a into 
the state of stress which satisfies Bernoulli’s hypothesis, Figures 1.19b and 1.20b, 
and the compensating state of stress, Figures 1.19c and 1.20c. Upon applying the 
principle of Saint Venant (1980), Figure 1.21, it is assumed that the nonlinear stresses 
in Figures 1.19c and 1.20c are negligible at a distance which is approximately equal 
to the maximum distance between the equilibrating forces themselves. The distance 
defines the range of the D-regions, as illustrated in the examples in Figures 1.19d 
and 1.20d. It should be noted that for most cases of beams, this distance is practi-
cally equal to the height of the cross section of adjacent B-regions attached to the 
D-region.

In cracked concrete members, the stiffness in different directions may be altered 
as a result of cracking; consequently, the boundaries of D-regions may be altered 

D DB

FIGURE 1.18  Stress trajectories in a B-region and near discontinuities (D-regions).
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FIGURE 1.17  Frame structure containing both B- and D-regions , (a) frame structure; and 
(b) bending moment diagram. (Adapted from Schlaich, J., Schäfer, K., and Jennewein, M., 
Journal of the Prestressed Concrete Institute, 32(3), 1987, 74–150.)
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as well. Nevertheless, the preceding approach for the determination of the division 
lines between B- and D-regions, which was based on elastic material behavior, is 
still applicable. This is due to the fact that the principle of Saint Venant itself is not 
precise and the dividing lines between B- and D-regions serve only as a qualitative 
aid in the development of STMs.

1.5  HISTORICAL SKETCH

1.5.1 T he Development of the Truss Model for B-Regions Design

The design of the Bernoulli regions, B-regions, where linear strain distribution is 
assumed valid or applicable, for bending moments and/or axial forces has the same 
basis in almost all codes leading to minor differences in the design methods for all 
nations. On the other hand, the design of B-regions for shear and/or torsion still shows 
wide differences. In the past, there have been two basic approaches used to analyze 
shear and torsion problems in reinforced concrete, namely, the mechanism method 
and the truss model method. From a theoretical point of view, the mechanism method 
cannot satisfy compatibility conditions and, in certain cases, even equilibrium condi-
tions. In contrast, the truss model theory has been conceived by most researchers to 
provide a more promising way to treat shear and torsion (El-Metwally, 1995).

The original truss model concept was first proposed to treat shear problems by 
Ritter (1899) and Mörsch (1902, 1906,1909), in which the concrete in the web is 
separated by diagonal cracks into a series of struts. The compression struts interact 
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FIGURE 1.19  Example 1 of subdivision of structure into their B- and D-regions using Saint 
Venant’s principle—column or wall with concentrated loads: (a) structure with real load, 
(b) loads and support reactions applied in accordance with the Bernoulli hypothesis, (c) self-
equilibrating state of stress, and (d) real structure with B- and D-regions. (Adapted from 
Schlaich, J. et al., Journal of the Prestressed Concrete Institute, 32(3), 1987, 74–150; Schlaich, 
J. and Schäfer, K., The design of structural concrete, IABSE Workshop, New Delhi, 1993.)
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with the stirrups and the longitudinal top and bottom chords (compression and ten-
sion chords) to form a plane truss. The stirrups are treated as the vertical members 
and the concrete struts are considered as the diagonal compression web members. 
For simplicity, the angle of inclination of the concrete struts is assumed to be 45°, 
based on the fact that the principal stresses at the neutral axis, from the linear elastic 
analysis of section subjected to bending, make an angle 45° with the neutral axis. 
Therefore, this theory has been called the 45° truss model. Unfortunately, there is a 
very wide discrepancy between experiments and the 45° truss model.

In order to improve the predictions of the truss model, the angle of inclination 
of the concrete struts was assumed by Lampert and Thürlimann (1968, 1969) to 
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d1 = h1 d2 = h2
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FIGURE 1.20  Example 2 of subdivision of structures into their B- and D-regions using 
Saint Venant’s principle—beam with recess: (a) structure with real load, (b) loads and support 
reactions applied in accordance with the Bernoulli hypothesis, (c) self-equilibrating state of 
stress, and (d) real structure with B- and D-regions. (Adapted from Schlaich, J. et al., Journal 
of the Prestressed Concrete Institute, 32(3), 1987, 74–150; Schlaich, J. and Schäfer, K., The 
design of structural concrete, IABSE Workshop, New Delhi, 1993.)
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be variable, and therefore this theory has been known as the variable-angle truss 
model. This theory could also be called the plasticity truss model since plasticity was 
assumed at failure. The basic equations derived from this model could explain why 
longitudinal and transverse steel with different percentages can both yield at failure. 
The angle of inclination of the concrete struts in members subjected to shear was 
derived by Collins (1978) from compatibility conditions. Since the angle of inclina-
tion was assumed by Collins to coincide with the angle of inclination of the principal 
stress and strain, this theory has therefore been known as the compression field 
theory. The softening of concrete struts was discovered by Robinson and Demorieux 
(1968, 1972) and quantified by Vecchio and Collins (1986). This quantification of 
the compressive and tensile strength of concrete subjected to shear has been called 
the modified compression-field theory in which the principal stresses and principal 
strains were assumed to coincide. The variable-angle truss model with the softening 
of the struts as predicted by the modified compression field theory has been called 
by Hsu (1988) the softened truss model.

1.5.2 T he Start of the Strut-and-Tie Model for D-Regions Design

With the extension of the limit design theorems to continuous media by Drucker, 
Greenberg, and Prager (1952), applications of the powerful limit analysis techniques 
were expanded to plates and shells for both metal and reinforced concrete materials 
as well as soil mechanics. The yield-line theory for flexure analysis of reinforced 
concrete slabs is the most successful application of the upper-bound method of per-
fect plasticity to concrete structures. Also, for flexure analysis of reinforced con-
crete beams and frames, the limit analysis has become standard since the 1950s. 
Considering shear problems, however, very few theoretical advances had been made 
before the 1970s. The application of the theory of plasticity to the design of members 
under shear and torsion began in the 1970s, especially by Thürlimann et al. (1975, 
1983) and Nielsen and Hoang (1984) and their co-workers. This also formed the basis 
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for the method of STMs after the work of Schlaich et al. (1987) and Schlaich and 
Schäfer (1991, 1993, 2001).

The development of the method of STMs has brought a major breakthrough in 
design for a consistent theory in the design concept covering both D-regions and 
B-regions with similar models. The method provides a formal design procedure 
for detailing in design in particular. All this development was brought out in the 
state-of-the-art report on shear by the ASCE-ACI Committee 445 in 1998. The ACI 
Committee 318 introduced the method of STMs into its 2002 ACI code. Appendix 
A of the ACI-318-2002 documented this international development in research that 
formed the basis of other codes around the world. This step was an important mile-
stone in the direction toward the development of a more consistent design concept. 
It triggered the acceptance and wide use of the method of STMs for daily use. The 
method is now adopted by many international codes; e.g., ACI 318, Eurocode 2, 
AASHTO, …, etc.

The concept of using the method of STMs in the inelastic analysis of reinforced 
concrete was introduced and illustrated for the first time in 1961 by Drucker in his 
estimate of the load-carrying-capacity of a simply supported ideal reinforced con-
crete beam. It took a great physical insight to fully understand the fundamental 
difference between a tension-weak material such as concrete or soils in its load-
carrying capacity through arching compared to that of a ductile material like metal 
through flexure or bending. Thanks to this revolutionary thinking, the concept of 
STMs was born. The subsequent development, refinement, and expansion resulted in 
the modern techniques of STMs for detailing and design of shear, torsion, joints, and 
bearing in structural concrete in a consistent manner.

Next, we shall present Drucker’s original simple beam model (1961) to illustrate 
his concept of lower- and upper-bound techniques of limit analysis as applied to a 
reinforced concrete beam in Figure 1.22. For simplicity, he assumed a concrete beam 
with negligible weight and zero-tensile strength, so it must act as a very flat arch. 
The outward thrust of the arch is shown in Figure 1.22a as being taken by a steel 
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FIGURE 1.22  Drucker’s simple beam model (Drucker, 1961): (a) a lower-bound or equilib-
rium picture of arch action and (b) a kinematical picture of collapse mechanism.
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tension tie between two endplates bearing on the concrete. The steel was assumed 
unbonded. Efficient use of material would seem to dictate at first, at the ultimate 
or collapse load, that both steel and concrete should be at their yield and failure 
stresses, respectively.

Since the equilibrium distribution of stress as shown in Figure 1.22a is nowhere ten-
sion in the concrete and is everywhere at or below yield in the concrete and steel, the 
beam would not collapse at this load or would be just at the point of collapse, according 
to the lower-bound theorem. This approach so far focused on the lower-bound equilib-
rium technique and thus it might underestimate the strength of the beam.

Figure 1.22b is a kinematical picture associated with an assumed plastic failure 
mechanism which gives an upper bound on the collapse load. The assumed failure 
mechanism as drawn shows the stretching or yielding of the steel tie and the crushing 
plastically of the shaded areas of concrete at the ends as well as in the center. This 
failure mechanism results in an upper-bound solution which turns out to be equal to 
the lower-bound solution of Figure 1.22a. Thus, Drucker obtained the correct answer 
for the idealized beam according to the limit theorem despite the fact that neither 
the stress field as constructed in Figure 1.22a nor the plastic collapse mechanism as 
assumed in Figure 1.22b was the real stress distribution or the real failure mechanism, 
respectively. This simple example clearly illustrates Drucker’s basic concept and 
power of limit analysis as applied to reinforced concrete structures. It also physically 
shows how the load is carried in a composite structure through arching for tension-
weak concrete and stretching for tension-strong steel to its supports or foundations.

1.5.3  STM for a Unified and Consistent Design

Professor J. Schlaich and his colleagues, particularly Professor K. Schäfer, and stu-
dents at the Institute of Structural Design, University of Stuttgart, had worked for 
decades on the application of the method of STM for the treatment to all different 
D-regions in order to achieve a unified and consistent treatment of B- and D-regions. 
Consistency also means that structural concrete with or without web reinforcement 
and with or without axial force or pre-strains (tension or compression) is treated in 
the same manner.

The contributions of Professor J. Schlaich and his colleagues and students 
have been greatly influential, particularly in exploring and identifying all differ-
ent D-regions based on geometry and boundary conditions for a unified treatment 
of these regions. In addition, they illustrated, based on logic and transparency or 
from mechanics, how D-regions can be modeled. Besides, they set simple, but reli-
able, failure criteria of STM elements. The paper by J. Schlaich, K. Schäfer, and M. 
Jennewein, entitled “Toward a Consistent Design of Structural Concrete,” Journal 
of the Prestressed Concrete Institute, Vol. 32, No. 3, May-June 1987, represents a 
landmark in this area. The efforts of Professor J. Schlaich and his group from the 
University of Stuttgart have made the method of STM widely recognized in the aca-
demia and widely adopted in practice.

In this book, we have used freely the method of STM and some of the exam-
ples developed by Professor J. Schlaich and his group with proper acknowledgment 
where it is appropriate.
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2 Developing a 
Strut-and-Tie Model

2.1  INTRODUCTION

Every individual D-region has different geometry, loading, and boundary conditions. 
Hence, the design of any D-region generally requires the development of a particular 
STM. In some cases, known models can be adapted to suit specific conditions of 
D-regions under consideration, as will be illustrated in this chapter. On the other 
hand, B-regions can be handled by few standard models since they have limited 
variation in conditions.

Before the development of the STM of D-regions in a structure, the boundary con-
ditions (geometric and force) should be fully defined. This can be achieved through 
the following steps (Schlaich and Schäfer, 1993; Schäfer and Schlaich, 1998):

	 1.	Define the geometry, loading, and support conditions of the entire structure.
	 2.	Subdivide the three-dimensional (3D) structure into different planes to 

facilitate individual analyses by means of plane STMs.
	 3.	Determine the support reactions by means of idealized statical systems, for 

example, frames, continuous beams, etc.
	 4.	Subdivide the structure into B- and D-regions.
	 5.	Determine the internal stresses of the B-regions and dimension these 

regions by either the STMs or using the standard methods of codes.
	 6.	Define clearly all the forces acting on the individual D-regions. This also 

includes the boundary stresses or boundary forces in the sections between the 
D- and B-regions which are to be taken from the B-regions for equilibrium.

	 7.	Check the individual D-regions for equilibrium.

Due to its particularity in geometry, loading and boundary conditions the 
design of any D-region generally requires the development of a particular strut-
and-tie model (STM). Nevertheless, in some cases, known models can be adapted 
to suit specific conditions of D-regions into consideration. In order to develop a 
STM, designer has to rely on one of two approaches; either the load path method or 
the elastic finite element analysis, to determine the flow of forces for best service-
ability. The merit of limit analysis in terms of strut-and-tie model procedures to 
design lies in the fact that engineers can make practical and safe decisions on the 
detailing of complex structural discontinuities in reinforced concrete on the basis 
of relatively simple calculations. The procedure of developing a STM is explained 
in the following sections. It should be noted that such a procedure requires some 
practice and training; afterwards, it becomes a very simple matter. Accounting for 
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practical detailing in developing an STM in addition to model optimization are dis-
cussed. The STMs of some basic discontinuous stress fields, which are frequently 
encountered in different versions and combinations even in apparently different 
structures, are developed. Moreover, practical examples of discontinuous stress 
fields are modeled. These include local pressure, beam with a dapped end, beam 
with a recess, deep wall-like column with a recess, walls with openings, deep 
beam with an eccentric large opening and B-regions with web reinforcement. The 
chapter also explains how to handle three-dimensional reinforced concrete blocks 
such as pile caps, with either two-dimensional or three-dimensional modeling.

2.2  THE LOAD PATH METHOD

The development of an STM using the load path method is illustrated in the following 
steps (Schäfer and Schlaich, 1998, and Schlaich and Schäfer, 1993) with reference to 
the two examples in Figures 2.1 and 2.2.

	 1.	The boundary forces acting on a D-region from the attached B-regions 
or supports or external forces should be determined, as illustrated for the 
D-regions in Figures 2.1a and 2.2a.

	 2.	Subdivide the stress diagrams to match with opposite forces. Locate the 
resultants of the subdivided stress diagrams in their center of gravity, 
Figures 2.1b and 2.2b.

	 3.	Connect the opposite forces by streamlined load paths which are straight or 
smoothly curved, Figures 2.1b and 2.2b:
•	 Start in the direction of load
•	 Avoid crossings with other load paths
•	 Choose curvature near discontinuities of load or geometry as large as 

possible
	 4.	 Indicate deviation forces as a basis for transverse struts and ties, Figures 

2.1b and 2.2b.

A A
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AB B B

BB

T
T

T

C C
C

Load path

(a) (b) (c)

FIGURE 2.1  The load path method (Schlaich and Schäfer, 1991): (a) the region and bound-
ary loads, (b) the load paths through the region, and (c) the corresponding STM.
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	 5.	Replace the curved load paths by polygons with kinks (bends) at the points 
of largest curvature or the estimated location of the deviation force resul-
tant, Figures 2.1c and 2.2c. In the model, dashed lines indicate struts and 
solid lines indicate ties.

	 6.	Connect the remaining stress diagrams by loop-shaped load paths.
	 7.	Extend the ties (reinforcement) preferably straight as far as needed to meet 

and balance the transverse forces of primary load paths.

It should be noted that additional struts or ties are added for equilibrium, such 
as the transverse struts and ties in the figures. In some cases, the stress diagrams or 
forces are not completely balanced with forces on the opposite side; for this, the load 
path of the remaining forces enters the structure and leaves it on the same side after 
a U-turn within the region, Figure 2.2.

The previous procedure is explained next in more detail for the previous two 
examples in Figures 2.1 and 2.2 (Schäfer and Schlaich, 1998).

The D-region in Figure 2.1 is loaded with asymmetric linear stress from the 
adjoining B-region. The stress diagram is subdivided in such a way that the associ-
ated resulting loads in the upper part of the structure find their equivalent counter-
part on the opposite side. The pattern that develops when drawing a line to link the 
opposite forces is the so-called load path (Figure 2.1b).

The load paths begin and end at the center of the corresponding stress diagrams 
and they have the direction of the applied loads or reactions at their start and end. 
Streamlines may be straight or smoothly curved in order to connect the opposite forces. 
Load paths tend to take the shortest possible streamlined way in between. This is based 
on the fact that a structure will exert the minimum strain energy for load transfer.

The stress fields due to concentrated forces tend to spread out wherever possible in 
the structure. Considering such behavior, the resulting load paths, originating from 
the supports or the concentrated forces, propagate inward and show their maximum 
curvature near such forces.
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FIGURE 2.2  The load path method including a U-turn (Schlaich and Schäfer, 1991): (a) the 
region and boundary loads, (b) the load paths through the region, and (c) the corres
ponding STM.
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So far equilibrium in the direction of the applied loads has been considered. 
Nevertheless, the curvature of the load paths gives rise to deviation forces C, Figure 
2.1b, which, for the sake of simplicity, are plotted horizontally. Having in mind that 
the D-region under consideration is not subjected to horizontal loads, it follows that 
the deviation forces of the two load path are in equilibrium. From the horizontal 
equilibrium of the two load paths, the resultants of their deviation forces are in equi-
librium. Finally, the load paths are replaced by polygons, the break points of which 
intersect the resultants of the deviation forces, Figure 2.1c.

The developed model reflects the principal paths of forces and illustrates the load-
bearing behavior of the D-region. The tension and compression members are repre-
sentative of curved 2D or 3D stress fields with the main stream of stress oriented in 
the direction of their centerlines. Though the nodes of the members should always be 
in equilibrium, they do not represent real hinges but rather regions where the internal 
forces (stresses) are diverted or introduced (anchored).

For modeling the D-region in Figure 2.2, the same procedure followed in the first 
example is applied. In this example, the stress distribution acting at the bottom of the 
region is determined from equilibrium with the vertical force F, Figure 2.2b. This 
stress diagram is divided into a stress block of resultant F in addition to two forces 
B1 and B2, where the last two forces are equal in magnitude but of opposite direc-
tions and they balance the moment due to the eccentricity of the applied force. The 
load path of these two forces enters the D-region at B1, makes a U-turn, and exists at 
B2. This U-turn of the load path and its associated deviation forces are necessary to 
equilibrate the deviation forces of the real load F as it travels through the D-region. 
In this regard, it is noted that the load path of the force B2 remains straight since it is 
tension and for practicality should be carried by straight bars. By replacing the plot-
ted load paths with polygons and linking them by means of the deviation forces, the 
STM is obtained, Figure 2.2c.

2.3  ELASTIC STRESS ANALYSIS

The development of an STM can be simplified if an elastic finite-element analysis 
is performed to obtain the elastic stresses and principal stress directions (Schlaich 
and Schäfer, 1991). The location and direction of struts and ties can then be located 
at the center of stress diagrams, Figure 2.3. In addition, the position of the devia-
tion force resultants can be determined from the stress distribution of the indi-
vidual sections. Thus, for example in Figure 2.3, the distances z and z1 can be easily 
determined.

The orientation of struts and ties based on results from the theory of elastic-
ity may not be the best choice in some cases where the profile and distribution of 
stresses may be altered as the load increases from working load level to collapse load 
with the associated nonlinear behavior of structural concrete. However, ductility of 
structural concrete may account for such a deviation. Also, the ties, and hence the 
reinforcement, may be arranged according to practical considerations, that is, the 
structure adapts itself to the assumed internal structural system. Generally the strut-
and-tie directions should be within ±15° from the direction of the compressive and 
tensile stress trajectories, respectively. Nevertheless, modeling requires good design 
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experience in order to set up proper design objectives, such as safety and economy, 
and come up with design which fulfills such objectives.

The combination between the load path method and the elastic stress analysis 
is an efficient approach for developing STMs for complicated structures. For the 
D-region in Figure 2.4, the vertical struts and ties are traced by the load path method 
as explained before. It is noted that the stress distribution q is obtained from simple 
statics. The stress diagram is divided into four resultants: C3 and C4 which equili-
brate the force F, and two equal forces T2 and C2 forming a U-turn which balances 
the moment due to force eccentricity, Figure 2.4c. The curvatures in the stream-
lines of the compression forces C2, C3, and C4 generate transverse stresses (deviation 
stresses). The corresponding horizontal struts and ties of these stresses are located at 
the center of gravity of their diagrams obtained from linear elastic analysis, Figure 
2.4b. The diagonal struts are determined subsequently in order to achieve equilib-
rium at the model nodes, Figure 2.4c.

2.4  MODEL OPTIMIZATION

Knowledge of the stress distribution helps the designer to reduce the great number of 
possible models in order to ensure good performance of the structure under service 
loads. It is therefore appropriate to orient the STM along the flow of forces from elas-
tic analysis. Nevertheless, in some cases, this approach may seem inconvenient for 
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reinforcement layout. Hence, a model optimization is meant to adjust the mainstream 
of forces according to elastic stress trajectories and, at the same time, making due 
allowance for the specific properties and characteristics of structural concrete. This 
is further illustrated in the following steps (Schäfer and Schlaich, 1998):

	 1.	The arrangement of the reinforcement should satisfy the practical require-
ments for simplicity of construction. For instance, the designer should use 
straight bars with a minimum number of bends, laid out in orthogonal 
arrangement parallel to the edges of the structure, wherever possible.

	 2.	The edges and surfaces of a structure should be fitted with near-surface 
reinforcement in order to control cracking.

	 3.	 In the cracked state of concrete, the reinforcing bars will channel the flow 
of tensile forces. Therefore, they should be introduced in the model in the 
form of tensile ties, wherever their position is known in advance. In doing 
so, several ties, within the same zone of tension, may be resolved into one 
single tie located in their common axis of gravity.

	 4.	The arrangement of the reinforcement should be so designed that it covers 
various cases of loadings.

	 5.	The formation of cracks in concrete and the plastic deformations of the 
structural members will be associated with redistribution of the internal 
forces, obtained from linear elastic analysis. In selecting the model, it is 
useful to realize that the structure tends to carry the loads with the least 
possible strain energy. This can be expressed by the following equation for 
cracked reinforced concrete:

	 ΣFi i i� ε = minimum 	
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FIGURE 2.4  Application of the load path method, with the location of the deviation forces 
T3 and C1 derived from the elastic stress trajectories (Schlaich and Schäfer, 1993): (a) linear-
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		  where Fi is the force in the strut or tie number i, λi is the length of member 
i, and εi is the mean strain of member i. Since reinforced ties are much more 
deformable than concrete struts, the model with the least and shortest ties 
will be the best. In case of doubt, the following equation can be used as a 
simplified criterion for model optimization:

	 ΣTi i� = minimum 	

		  where Ti is the tension force in the tie number i.

It should be noted that the STMs are quite often kinematic; nevertheless, this does 
not mean that the structure lacks stability since any slight change of the model geom-
etry associated with any movement of the model nodes evokes diagonal compression 
forces in the concrete, which stabilize the system. Of course, the designer has the 
freedom to introduce any diagonal members into the model in order to make the 
model stable. These additional members will be essentially zero members, or will 
carry very small forces; hence, they will not affect the flow of forces.

A kinematic model applies to a specific case of loading since it is developed 
from equilibrium and hence it cannot be employed to other cases of loading. On 
the other hand, a statically determinate or statically indeterminate truss system 
is capable of withstanding different cases of loadings. Therefore, it is advisable 
to deal with STMs which are either statically determinate or statically indeter-
minate. For hand calculations, statically indeterminate models can be developed 
from a combination of statically determinate models, as illustrated by the example 
in Figure 2.5.

If the only possible STM does not properly match the case of loading under con-
sideration, due reinforcement layout for instance, the structure will adjust its path 
of forces to the given model. In this case, significant deformations will take place, 
which can be accommodated with reinforcement; however, the width of cracks 
under service conditions may increase above the allowed limits. This risk is particu-
larly important when singular cracks issuing from reentrant corners or point loads 

F F1

(a) (b) (c) (d)

+ =
F2 F

FIGURE 2.5  Statically indeterminate STM (Schlaich and Schäfer, 1993): (a) geometry and 
loading, (b, c) two statically determinate models for different stress flows, and (d) statically 
indeterminate model from the superimposition of the models of (b) and (c).
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intersect the reinforcement steel at acute angles. Therefore, it is recommended to 
either choose such a model where reinforcement intersects the cracks at an angle as 
close to 90o as possible or use additional reinforcement, not included in the model, 
for crack control (Schlaich and Schäfer, 1993), Figure 2.6.

2.5  BASIC DISCONTINUOUS STRESS FIELDS

2.5.1  Why

In the practical applications of the method of STM, some typical models are fre-
quently used in different versions and combinations even in apparently differ-
ent structures. An example of the application of the model of the deep beam in 
Figure 2.3, applied to three different structures, is illustrated in Figure 2.7 (Schäfer 
and Schlaich, 1998): the distribution of cable forces in a bridge deck, Figure 2.7a; 
a wall with a large opening, Figure 2.7b; and a box girder with anchor loads from 
prestressing tendons, Figure 2.7c. The reason for this phenomenon is the fact that 
the number of discontinuities with substantially different stress patterns is very lim-
ited. With realizing such feature of structures, the design engineer can trace the 
apparently different cases back to their common roots and will thus be able to avoid 
mistakes in modeling. In addition, it is very confusing to give the same phenomenon 
different names only because it appears in different contexts.

In their modeling, D-regions with their respective boundary conditions can be 
looked at as isolated discontinuous stress fields. Many of these fields are basic (or 
standard) stress fields and hence have standard STM solutions. These regions are 
designated by Schlaich and Schäfer (1993) as D1, D2 … D12; nevertheless, only D1 to 
D10 are the important basic D-regions and are illustrated next.

2.5.2 R egion D1

Region D1 represents a state of concentric local pressure, Figure 2.8. The deviation 
of compressive stress trajectories, Figure 2.8a, generates transverse tensile, splitting, 
stresses, σx, Figure 2.8b, which is a function of (a/∙), where a and ∙ are as shown in 
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FIGURE 2.6  Risk of unacceptable width of cracks at discontinuities; orientation of appro-
priate oblique reinforcement (Schlaich and Schäfer, 1993): (a–c) single cracks issuing from 
reentrant corners and (d) internal transverse crack from concentrated load application within 
a deep beam (tendon anchorage).
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the figure. The resultant of these transverse tensile stresses, T, can be calculated from 
the respective STM, Figure 2.8c, as

	
T F

a
= −







0 25 1.
� 	

The value of the lever arm, z, is assumed equal to ∙/2 for h ≥ ∙, based on linear-
elastic analysis. If otherwise, h < ∙, and the distance z should not exceed 0.8h. The 
force T should be resisted by closed stirrups since there is no space for reinforcement 
anchorage.

2.5.3 R egion D2

Region D2 represents a case of eccentric local pressure, Figure 2.9. Owing to the 
applied force eccentricity, the balancing tensile stresses have their resultant, T2, close 
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FIGURE 2.7  Three examples for the application of the model of the deep beam of Figure 
2.3 (Schäfer and Schlaich, 1998): (a) anchorage of stay cables in a bridge deck, (b) wall with 
a large opening, and (c) anchorage of tendons in a box girder bridge.
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to the longitudinal edge. The associated transverse stresses, as shown in the figure, 
constitute a tensile stress field underneath the load with its resultant T1 close to the 
loaded edge, and a compressive stress field with its resultant C1, as illustrated. The 
force T1 may reach a magnitude (F/3) with a very limited spread, and hence it should 
be resisted by closed stirrups located close to the loaded edge in order to avoid the 
corner to break off. The force T2 requires longitudinal reinforcement in the form of 
U-bars in order to overcome the anchorage problem at the right top corner.

2.5.4 R egion D3

Region D3, Figure 2.10, can be considered as a constituent of two D1 regions, leading 
to the STMs in Figures 2.10b and c. However, for a very small (h/∙) ratio, the refined 
STM in Figure 2.10d is more appropriate.

2.5.5 R egion D4

Region D4, Figure 2.11, is composed of two D2 regions, with the stress diagrams 
shown in Figure 2.11b. Thus, the appropriate STM can be generated from that of D2 
as shown in Figure 2.11c and d.
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FIGURE 2.10  Region D3 (Schlaich and Schäfer, 1991, 1993): (a) principal stress pattern 
from a linear-elastic finite element analysis, (b, c) STMs, and (d) refined STM for h/∙ < 1.
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2.5.6 R egions D5 and D6

Both regions D5, Figure 2.12, and D1, Figure 2.8, are the most common patterns. 
From linear-elastic analysis, the lever arm of region D6 with a hanging load, Figure 
2.13, is the same as that of D5.

2.5.7 R egion D7

In region D7, Figure 2.14, for the case of h/∙ ≤ 1, either the model in Figure 2.14c or 
the refined model in Figure 2.14d is applicable; however, the refined model directly 
gives the transverse tension associated with the spread of the compression stress 
trajectories. For the simple model, the transverse tension can be derived by remodel-
ing separately the individual strut C2 leading to the same result as the refined model; 
otherwise, a reduced strength of the concrete strut should be adopted and minimum 
skin reinforcement, according to the respective code, should be added. If the ratio 
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from a linear-elastic analysis, (b) corresponding stress diagrams, and (c, d) STMs.
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h/∙ is greater than 2, the upper part of region D7 can be treated as region D1, Figure 
2.8, and the lower part as region D5, Figure 2.12, as illustrated in Figure 2.14f.

2.5.8 R egion D8

Region D8, Figure 2.15, can be considered as consisting of two regions D5, Figure 
2.12, for the case of h/∙ > 2, and two D4, Figure 2.11, for the case of h/∙ < 1/2.

2.5.9 R egions D9 and D10

The model of region D9, Figure 2.16, is a combination of the two models of regions D1, 
Figure 2.8c, and D5, Figure 2.12c. The model of region D10, Figure 2.17, is a combina-
tion of the two models of regions D3, Figure 2.10c, and D8, Figure 2.15c. For the case of 
h/∙ > 2 in D10, the top and bottom parts of region D10 blend into region D9. It should be 
noted that the models of D9 and D10, Figures 2.16b and 2.17, are statically indeterminate.
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2.6  EXAMPLES OF DISCONTINUOUS STRESS FIELDS

2.6.1  Local Pressure

The problem of local pressure, Figure 2.18 (Schäfer and El-Metwally, 1994), is simu-
lated as D1-region for the case of concentric load, Figure 2.8, and D2-region for the 
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case of eccentric load, Figure 2.9. The amount of necessary transverse reinforce-
ment and its position can be determined from the respective STM. It is noted that 
the two models of local pressure reveal the requirement of different reinforcement in 
the transverse direction and longitudinal reinforcement for the case eccentric local 
pressure only. In both cases of local pressure, the transverse reinforcement should be 
closed stirrups in order to overcome the anchorage problem and in order to avoid the 
corner to break off in the case of eccentric local pressure. The longitudinal reinforce-
ment in the case of eccentric local pressure should be in the form of U-bars in order 
to overcome the anchorage problem at the right top corner.

2.6.2  Beam with Dapped End

In order to hang the reaction of a dapped beam, two possible models are shown in 
Figure 2.19 (Schäfer and El-Metwally, 1994). The first model, Figure 2.19a, illus-
trates that in addition to the shear reinforcement, T3, and the reinforcement necessary 
for hanging the reaction, T1, additional reinforcement is necessary for a safe transfer 
of the forces within the D-region, that is, tie TA and the increase in the magnitude of 
tie T2 above the shear requirement.

The second alternative, Figure 2.19b, requires less reinforcement; nevertheless, 
anchorage of the inclined reinforcement at the upper node may become a problem 
in case of thick bars. In practice, some reinforcement is always detailed as indicated 
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by the first model, which is necessary for keeping the integrity of the D-region. 
Hence, though the two presented models are correct, a more efficient detailing can 
be achieved by a combination of the two models, Figure 2.19c.

If a horizontal reaction force H exists, the model shown in Figure 2.19d can be 
used for the evaluation of the required additional reinforcement.

2.6.3  Beam with Recess

The beam in Figure 2.20a has the shown shaded D-region as a result of the shown 
recess. For illustration, the D-region is assumed to be subjected to two cases of con-
stant moment (no shear), positive and negative moment, Figure 2.20b, and the moment 
lever arm on the left end of the D-region is assumed to be one-half of that on the right 
end.

Upon the examination of all possible load paths for either case of end moment, the 
appropriate STMs can be derived as shown in Figure 2.20c (Schäfer and El-Metwally, 
1994).

2.6.4 D eep Wall-Like Column with Recess

A deep wall-like column, for simplicity referred to as wall-column, with a recess 
is shown in Figure 2.21a carrying a uniform load and in Figure 2.21b carrying an 
edge local pressure, with the appropriate STMs (Schäfer and El-Metwally, 1994). 
For the first load case, Figure 2.21a, a balancing moment is required at the bottom 
section in addition to the axial force which is equal to the pressure resultant. For 
this case, the STM of the D-region reveals that the tension reinforcement resisting 
the moment tension component, T1, should be anchored beyond the middle height 
of the D-region, and half of its anchorage length should start at about the middle 
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height of the D-region. In addition, stirrup reinforcement should be placed across 
the D-region (centered about the middle height of the D-region) to carry the tension 
force T2. Obviously these stirrups are preferred to have their closing hooks within the 
compression stress field at the right side of the D-region.

For the case of edge local pressure, Figure 2.21b, the wall-column would have two 
D-regions, D2 and D. The D2-region should be treated in the same manner as in the 
case of eccentric local pressure. The D-region is similar to the D-region in Figure 
21a, noting that a part of the reinforcement of T1 should be extended to the top of the 
wall-column to carry T3 and the rest of the reinforcement can be anchored above the 
middle height of D2.

In this example, it is recognized that sectional design would not have revealed 
the necessity of extending the reinforcement of T1 a distance within the D-region 
(beyond sectional requirements) and the stirrups of T2 and their particular location, 
for the safety of this structural member. While the reinforcement of T4 is required for 
the case of edge pressure, it is not required for the case of uniform pressure, which 
may not be obvious by merely guessing and also without knowing the distribution of 
the applied load. The reinforcement of T4 should be closed stirrups in order to over-
come the anchorage problem and in order to avoid the corner to break off.

2.6.5  Walls with Openings

In Figure 2.22, STMs of a wall with a rectangular opening are given for two cases 
of uniform compression and uniform tension applied to two opposite boundaries of 
the wall (Schlaich and Schäfer, 1991). It is obvious from Figure 2.22a that the tie 
T1 would require reinforcement parallel to and near the edge of the opening, which 
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agrees in principle with normal practice. The quantification of this tie force, and 
hence the amount of the required reinforcement, is given by the STM shown in the 
figure. On the other hand, for a wall under tension, the model in Figure 2.22b reveals 
that reinforcement would be required along the edges parallel to the load to carry the 
tie T2, which agrees with normal practice too. Nevertheless, the reinforcement of the 
tie T1, parallel to the edges and perpendicular to the load direction, has to be placed 
at a distance from these edges and not along the edges, which may not be satisfied in 
normal practice. In addition, the anchorage of the reinforcement of ties T2 and T3 has 
to be checked considering the additional length due to the lateral shift of the respec-
tive forces as shown by the model.

2.6.6 D eep Beam with Eccentric Large Opening

Owing to the applied concentrated load, the deep beam with an eccentric large open-
ing shown in Figure 2.23a has the stress trajectories shown in Figure 2.23b. Two dif-
ferent STMs are combined together for rational representation of the beam behavior 
(Schlaich et al., 1987). The simple STM shown in Figure 2.23c for the right part of 
the beam can be refined in order to account for the transverse stresses of the strut, as 
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shown by the refined model in Figure 2.23d, which apparently confirms better with 
the stress trajectories. As for the left part of the beam, Figure 2.23e, either one of 
the two models shown in Figure 2.23f and g is justifiable by the stress trajectories. 
In both models, the support reaction A is transferred vertically until a level above 
the opening by axial action through the B1-region rather than horizontally by bend-
ing action through the B2-region. This approach is justified by the fact that the axial 
stiffness of the B1-region is much greater than the bending stiffness of the B2-region.

The second model, Figure 2.23g, requires less reinforcement than the first model, 
Figure 2.23f. Nevertheless, the inclined reinforcement may have an anchorage prob-
lem at the upper left node; in addition, some reinforcement has to be detailed accord-
ing to the first model for keeping the integrity of the concrete material around the 
opening. A combination of the two models would lead to the most efficient detailing, 
for example, by assigning 50% of the load to each model. The combined model is 
shown in Figure 2.23h with the corresponding tension reinforcement layout shown 
in Figure 2.23i. Of course, web reinforcement and a minimum reinforcement of the 
B2-region, below the opening, would still be required.

2.7  MODELING OF B-REGIONS WITH WEB REINFORCEMENT

2.7.1  B-Region with Vertical Web Reinforcement

The beam in Figure 2.24a, apart from the end zones, represents a typical B-region. 
The appropriate STM of such a region is the original truss model as illustrated in the 
figure, but with the possibility of varying the angle of struts along the beam. The 
strut angle takes a maximum value at the support node. The mechanism of force 
transfer within a B-region is illustrated in more detail in this section.

The segment between sections x1 and x2 of the beam in Figure 2.24a is illustrated 
in more detail in Figure 2.24b and c. For section x2 of this segment, Figure 2.24b, 
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the moment Mu is resolved into two equal forces, Mu/z (a compression force at the 
top chord and a tension force at the bottom chord), where z is the lever arm. The 
shear force Vu is resolved into a diagonal compression force Fcd = Vu/sin θ and a hori-
zontal tension force Vu/tan θ, where θ is the angle of inclination of the compression 
strut (angle of the force Fcd). The diagonal compression Fcd is carried by the concrete 
within the web as illustrated in Figure 2.24b and c, causing diagonal compressive 
stresses, σ θcd cd cd u cdF ba V ba= =( ) ( sin )/ / / , where b is the beam breadth and acd is the 
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FIGURE 2.24  STM of a beam under uniform load: (a) the STM (truss model), moment and 
shear of the beam, (b) force transfer within section x2 of the segment, (c) force equilibrium of 
the segment between sections x1 and x2, and (d) tension and shifted tension diagrams of the 
bottom chord.
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strut width, acd = z cos θ. Thus, σcd = Vu/bz sin θ cos θ = 2vu/sin 2θ, where vu is the 
factored shear stress. The horizontal tension force Vu/tan θ is divided equally between 
the top and bottom chords. This finally leads to a compressive force at the top chord 
( ) ( tan )M z Vu u/ /−( )2 θ  and a tensile force at the bottom chord ( ) ( tan ) .M z Vu u/ /+( )2 θ  

Thus, the final force in the tension reinforcement, Figure 2.24d, is obtained by shift-
ing the force diagram due to Mu, a (vertical) amount equal to 1

2 Vu cotθ . The additional 
force in the bottom chord 1

2 Vu cotθ  is accounted for in design practice by shifting 
the design bending moment diagram a (horizontal) distance equal to δ θ= 1

2 z cot , 
Figure 2.24d.

The force of the vertical tie, Vu, is resisted by vertical stirrups which cover a 
distance Δx = z cot θ. This indicates the significance of choosing an appropriate 
value of the angle θ; the smaller value leads to saving in the web reinforcement. 
On the other hand, a smaller value of the angle leads to higher diagonal compres-
sive stresses, σcd = 2vu/sin 2θ, and a larger shift distance of the moment diagram, 
δ θ= 1

2 z cot .
The value of the angle θ should be chosen between 30° and 60°; however, it could 

go as small as 26.56° (tan )−1 1
2 . Usually the solution starts with a small value of θ at 

the zone of low shear stresses and a check of σCd will indicate the appropriateness 
of the selected value. Near the support region, the value of θ should be increased in 
order to allow for smaller diagonal compressive stresses and better anchorage of the 
remaining tension reinforcement.

2.7.2  B-Region with Inclined Web Reinforcement

If the need arises for inclined web reinforcement, the appropriate STM of the 
B-region will be as shown in Figure 2.25. In this model, the inclined stirrups make 
an angle β with the beam axis, where β should be within the range 45–90°. The dif-
ferent parameters of the model are given in Table 2.1.

2.8  2D AND 3D MODELING

In the preceding sections, structural elements have been treated with 2D STMs, pla-
nar models. In some cases, it may not be adequate to employ 2D models, such as the 

z M

z(cotθ + cotβ) z(cotθ + cotβ)

Vβθ

aT ac

FIGURE 2.25  STM of a B-region with inclined web reinforcement.
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FIGURE 2.26  Applied STM in two different planes.

TABLE 2.1
The STM Parameters of a B-Region with Inclined and Vertical Web 
Reinforcement

Stirrups 45° ≤ β ≤ 90° β = 90°

aT z(cot θ + cot β) sin β z cot θ
aC z(cot θ + cot β) sin θ z cos θ

Shift rule δ 1
2 z(cot cot )θ β− 1

2 zcotθ

Compression chord C
M
z

Vu
u=









− −1

2 (cot cot )θ β C
M
z

Vu
u=









− 1

2 cotθ

Tension chord T
M
z

Vu
u=









+ −1

2 (cot cot )θ β T
M
z

Vu
u=









+ 1

2 cotθ

Diagonal compressive stress, 
σCd

vu

(cot cot )sinθ β θ+ 2
vu

sin cosθ θ

Stirrup force per unit length
V zu

(cot cot )sinθ β β+ 2

V
z
u







tanθ

v
V
bz

u
u=










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design of transfer slabs, pile caps and wind power plant foundations, which are sub-
jected to loads that result in 3D stress fields. If the state of stress is not predominantly 
plane, 3D STMs should be used (Schlaich et al., 1987). However, most of the time, 
details have not been provided on how to deal with 3D STMs, for instance concern-
ing the verification of nodes.

FIGURE 2.27  Example of a 3D STM and corresponding reinforcement arrangement for a 
pile plinth.

FIGURE 2.28  Combination of 2D STMs.
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With large 3D reinforced concrete blocks, load paths for the concentrated load 
may be considered in two directions, as illustrated in Figure 2.26, where the strut-
and-tie method is applied in two perpendicular planes. Unlike 2D STMs, 3D STMs 
are required when the structure and loading are considerably spread over all 3Ds, 
such as pile caps with two or more rows of piles.

There are two different approaches for the construction of a 3D STM, by modeling 
in three dimensions or by combining 2D models. A 3D STM for a centric loaded pile 
cap (Engström, 2011) is shown in Figure 2.27.

Figure 2.28 indicates how 2D STMs can be combined to solve spatial structure 
(Engström, 2011), one model in the plane of the flanges and the other in the plane 
of the web. For such a model, each STM transfers the load in its own plane. The two 
models are joined with common nodes.

The utilization of 3D STMs in the design of spatial structures is associated with 
a very tedious computation procedure. Therefore, the use of such a procedure is 
restricted to structures where there is no other alternative or for verification pur-
poses. The subject of 3D strut-and-tie modeling with its challenging issues is dis-
cussed in Chapter 8 of pile caps.
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3 Failure Criteria

3.1  INTRODUCTION

As explained in Chapter 1 (Section 1.2) and with reference to the illustrative example 
in Figure 3.1, an STM consists of three types of elements:

	 1.	Concrete strut in compression (with or without reinforcement).
	 2.	Ties with or without reinforcement. Ties with reinforcement using 

reinforcing steel or prestressing steel are dominant. Nevertheless, concrete 
ties in zones without tension reinforcement are necessary too if equilibrium 
cannot be achieved unless tensile forces exist; for example, lap splice, slab 
without stirrups, …, etc. 

	 3.	Nodes and nodal zones. Nodes are the points of intersection of struts, ties, 
and concentrated forces. The volume of concrete around a node that is 
assumed to transfer STM forces through the node is the nodal zone.

The STM shown in Figure 3.1 may fail by one of the following modes:

•	 The tension tie could yield, or anchorage of the ties may fail.
•	 One of the struts could crush when the stress in the strut exceeds the 

effective compressive strength of concrete.
•	 A nodal zone could fail by being stressed greater than the effective 

compressive strength of concrete.

For safe design, the different elements of an STM have to be checked or dimen-
sioned according to the material failure criterion of the element. Dimensioning not 
only means sizing and reinforcing the individual struts and ties for the forces they 
carry, but also ensuring the load transfer between them by checking the node regions. 
There is a close relation between the detailing of the nodes and the strength of the 
struts bearing on them and the ties anchored in them, since such detailing affects the 
flow of forces. Therefore, it is necessary to check whether the STM initially chosen 
is still valid after detailing or needs adjustment. Thus, both the modeling and the 
dimensioning converge to refined solutions through an iterative process.

In the literature, there have been different assessments and different approaches 
for calculating strength values for elements of STMs. However, there is a notice-
able variation and inconsistency between reported values. This chapter covers the 
strength of the different elements of strut-and-tie model (STM), struts, nodes (or 
nodal zones) and ties. For the concrete struts, the behavior of concrete under differ-
ent loading conditions and the different basic compression stress fields; prismatic, 
bottle-shaped and fan-shaped, are discussed. The geometry and strength of nodes 
(nodal zones) under different boundary conditions are explained. The strength of 
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reinforced ties and the influence of their detailing on the geometry of the connect-
ing nodal zones are examined. The chapter also presents the nominal strength and 
design strength of struts, nodal zones and ties according to the ACI 318-14 provi-
sions. Finally, this chapter covers the reinforcement anchorage with regard to bond 
action of straight bars, anchorage length, lap joints and curved reinforcement.

3.2  CONCRETE STRUTS

3.2.1  Behavior and Strength

The shape of a strut is highly dependent upon the force path from which the strut 
arises and the details of any tie tension reinforcement connected to the strut. Although 
the reinforced tie, Ts, is essentially linear or a one-dimensional element between 
two nodes, the concrete strut in compression, C, or the concrete tie in tension, Tc, 

P

Tie

Bottle-shaped
strut Nodal zone

Idealized
prismatic strut

FIGURE 3.1  Components of STM of a deep beam.

Crack detection surface Uniaxial tension

σ1

σ2

Biaxial tension

Biaxial compression

Uniaxial compression

FIGURE 3.2  Kupfer biaxial failure surface of concrete (Kupfer et al., 1969).
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represents a two-dimensional or three-dimensional stress field that tends to spread 
in between two end nodes. The associated deviation of the stress trajectories causes 
transverse tensile and compressive stresses which must be reflected in the design 
strength of concrete struts, Figures 3.2 and 3.3.

According to Schlaich et al. (1987), there are three major geometric shape classes of 
struts: prismatic, bottle-shaped, and compression fan, as shown in Figures 3.4 and 3.5.

Prismatic struts are the most basic type of struts, and they are typically used 
to model the compressive stress block of a beam element as shown in 
Figures 3.4a and 3.5a.

Bottle-shaped struts are formed when the geometric conditions at the end of the 
struts are well defined, but the rest of the strut is not confined to a specific 
portion of the structural element. The geometric conditions at the ends of 
bottle-shaped struts are typically determined by the details of bearing pads 
and/or the reinforcement details of any adjoined steel. The best way to visu-
alize a bottle-shaped strut is to imagine forces dispersing as they move 
away from the ends of the strut as shown in Figures 3.4b and 3.5b. The bulg-
ing stress trajectories cause transverse tensile stresses to form in the strut 

fc2 fc2
fc1

fc1

fc2

fc2

fcrfc
′

εc′ ε2 ε1εcr

ε1

ε1

ε2

ε2

FIGURE 3.3  Stress–strain relationships of diagonally cracked concrete (Vecchio and 
Collins, 1986).

(a) (b) (c)

FIGURE 3.4  Basic compression stress fields: (a) the prism, (b) the bottle, and (c) the fan.
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which can lead to longitudinal cracking of the strut; therefore, appropriate 
crack control reinforcement should always be placed across bottle-shaped 
struts to avoid premature failure. For this reason, most design specifica-
tions require minimum amounts of crack control reinforcement in regions 
designed with STMs.

Compression fan struts are formed when stresses flow from a large area to 
a much smaller area. Compression fans are assumed to have negligible 
curvature, and therefore they do not develop transverse tensile stresses. 
The simplest example of a compression fan is a strut that carries a uni-
formly distributed load to a support reaction in a deep beam as shown in 
Figures 3.4c and 3.5c.

The strength of the concrete in compression stress fields depends to a great extent 
on the multiaxial state of stress and on the disturbances from cracks and reinforcement. 
The effective compressive strength of the concrete in a strut fce

s  may be obtained from:

	 f f fce
s

c s cu s= ′0 85 0 67. ( . )β βor 	 (3.1)

where ′fc  is the concrete cylinder strength, fcu is the concrete cube strength, and βs is 
an effectiveness factor of concrete strut, which takes into account the stress condi-
tions, strut geometry, and the angle of cracking surrounding the strut.

Schlaich et al. (1987) proposed the following values of the effectiveness factor for 
different types of concrete struts.

βs = 1.0 for an undisturbed and uniaxial state of compressive stress that may 
exist in a prismatic strut;

βs = 0.8 if tensile strains and/or tensile reinforcement perpendicular to the axis 
of the strut may cause cracking parallel to the strut with a normal crack width;

βs = 0.6 if tensile strains and/or tensile reinforcement cause cracks at skew 
angles to the strut axis;

(b) Bottle-shaped (c) Compression fan

(a) PrismaticIdealized straight
line strut

FIGURE 3.5  Geometric shapes of struts.
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βs = 0.4 for struts with skew cracks with an extraordinary crack width. Skew 
cracks would be expected if modeling of the strut departs significantly from 
the theory of elasticity flow of internal forces.

The values of βs according to the ACI 318-14 Code are adopted in this book.
The nominal compressive strength of a strut without longitudinal reinforcement, 

Fns, shall be calculated at the two strut end, as follows, and the smaller value is used;

	 F f Ans ce
s

cs= 	 (3.2)

where fce
s  is the smaller of:

•	 The effective compressive strength of the concrete in the strut.
•	 The effective compressive strength of the concrete in the nodal zone.

and Acs is the cross-sectional area at one end of the strut. In calculating Acs, the strut 
width is measured perpendicular to the strut axis at its end, Figure 3.6. fce

s  shall not 
exceed the failure criterion of the node at the strut end under consideration. The 
smaller value of Fns at the two ends of the strut will control the design.

The design of struts shall be based on

	 φF Fns us≥ 	 (3.3)

In another form

	 φ β( . )0 85 ′ ≥f A Fc s cs us 	 (3.4)

where Fus is the largest factored force acting in a strut and obtained from the appli-
cable load combinations and the φ factor is the material strength reduction factor 
which is equal to 0.75 for ties, struts, and nodes according to the ACI 318-14 Code.

Width used to compute Ac

Crack Tie

Strut

1

1

2

2

(b)(a)

FIGURE 3.6  Bottle-shaped strut: (a) cracking of a strut; and (b) STM for transverse 
reinforcement.
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3.2.2  ACI 318-14 Effectiveness Factor for Struts

The values of an effectiveness factor for struts, βs, are recommended by ACI 318-14 
as follows:

βs = 1.00 for a strut of uniform cross-sectional area over its length; i.e., pris-
matic strut.

βs = 0.75 for a bottle-shaped strut when providing transverse reinforce-
ment to resist the lateral tension according to the model in Figure 3.6, 
or if  ′ ≤fc 44 0. MPa  and the reinforcement crossing the strut, Figure 3.7, 

satisfy the following ∑ ≥
A

bs
si

i
isin .γ 0 003, where Asi is the total area of rein-

forcement at spacing si in a layer of reinforcement with bars at an angle γi to 
the axis of the strut and the other parameters are as illustrated in the figure.

βs = 0.60λ for a bottle-shaped strut when the transverse reinforcement does 
not satisfy the requirement of the model in Figure 3.6. λ is a modification 
factor to account for the use of lightweight concrete since lightweight 
concrete has a lower tensile strength and higher brittleness, which can 
reduce the strut strength. λ = 0.85 for sand-lightweight concrete and 
0.75  for all-other lightweight concretes. λ = 1.0 for normal weight 
concrete.

βs = 0.40 for struts in tension members or in the tension flanges of members.
βs = 0.60 for all other cases; for example, fan-shaped struts, compression fields 

in the web of a beam where parallel diagonal cracks are likely to divide the 
web into struts, and struts are likely to be crossed by cracks at an angle to 
the struts, Figure 3.8.

Strut

S2

As2

As1

S1

γ2

γ1

Axis of
strut

Strut
boundary

FIGURE 3.7  Reinforcement crossing a strut.



59Failure Criteria

3.3  NODAL ZONES

3.3.1 G eometry and Strength

The compressive strength of concrete of a nodal zone depends on a number of factors 
such as the tensile straining from intersecting ties, the confinement provided by com-
pressive reactions, transverse reinforcement, compression struts, anchorage plates of 
prestressing, and the effects of strain discontinuities within the nodal zone. Different 
types of nodal zones are illustrated in Figure 3.9.

To distinguish between the different straining and confinement conditions of 
nodal zones, these zones are identified as follows, Figure 3.10:

•	 C − C − C nodal zone bounded by compression struts only
•	 C − C − T nodal zone bounded by compression struts and one tension tie
•	 C − T − T nodal zone bounded by a compression strut and two tension 

ties and
•	 T − T − T nodal zone bounded by tension ties only

As discussed by Brown and Bayrak (2006), nodes can be detailed to be either 
hydrostatic or non-hydrostatic in theory. For a hydrostatic node, the stress acting 
on each face of the node is equivalent and perpendicular to the surface of the node, 
Figure 3.11. Since stresses are perpendicular to the faces of hydrostatic nodes, there 
are no shear stresses acting on the face of a hydrostatic node. However, achiev-
ing hydrostatic nodes for most STM geometric configurations is nearly impossible 
and usually impractical. For this reason, most STMs utilize non-hydrostatic nodes. 
For non-hydrostatic nodes, Schlaich et al. (1987) suggested that the ratio of the maxi-
mum stress on a face of a node to the minimum stress on another face of the node 

Strut

Strut

Strut

Cracks
Strut in a beam web with inclined cracks parallel to struts

Struts crossed by skew cracks

Cracks

(a)

(b)

FIGURE 3.8  Types of struts in a beam web.
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should be less than 2. The states of stress in both hydrostatic and non-hydrostatic 
nodes are shown in Figure 3.11.

The effective compressive strength of the concrete in a nodal zone, fce
n , can be 

obtained from:

	 f f fce
n

c n cu n= ′0 85 0 67. ( . )β βor 	 (3.5)
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where βn is the effectiveness factor of a nodal zone.
Schlaich et al. (1987) proposed the following values of an effectiveness factor for 

different types of nodes:

βn = 1.1 for compression–compression–compression nodes and
βn = 0.8 for nodes where reinforcement is anchored in or crossing the node

For safety purposes, for C − C − C nodes, the value of the effectiveness factor 
of a nodal zone, βn = 1.1 suggested by Schlaich et al. (1987) can be reduced to 1.0. 
Also, in order to appropriately consider the effect of the tensile strains on the con-
crete compressive strength, the value of 0.8 proposed by Schlaich et al. (1987) for 
other nodes can be replaced by 0.8 for C − C − T nodes, 0.6 for C − T − T nodes 
(two or more ties), and 0.4 for T − T − T nodes. The values of βn recommended by 
the ACI 318-14 Code are adopted in this book.

The nominal compressive strength of a nodal zone, Fnn, shall be

	 F f Ann ce
n

nz= 	 (3.6)

where fce
n  is the effective compressive strength of the concrete in the nodal 

zone and Anz is the area of each face of the nodal zone and shall be taken as the 
smaller of:
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FIGURE 3.11  States of stress in hydrostatic and non-hydrostatic nodes (Brown and Bayrak, 
2006).
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•	 The area of the face of the nodal zone perpendicular to the line of action 
of Fus, where Fus is the largest factored force acting in a strut, reaction, or 
external force and obtained from the applicable load combinations.

•	 The area of a section through the nodal zone perpendicular to the line of 
action of the resultant force on the section.

The nodes of the model are derived from the intersection points of three or more 
straight struts or ties. A node, as introduced into the model, which implies an abrupt 
change of direction of forces, is called a singular or concentrated node, for example, 
nodes I and II in Figure 3.12. On the other hand, for wide concrete stress fields 
joining each other or with tensile ties, the deviation of forces may be smeared or 
spread over some length. Therefore, they are called smeared or continuous nodes, for 
example, node III in Figure 3.12.

In smeared nodes, where the deviation of forces may be smeared or spread over 
some length, the check of stress is often not critical and the only requirement is to 
check the anchorage length of the reinforcing bars. On the other hand, singular or 
concentrated nodes have to be carefully checked.

3.3.2  ACI 318-14 Effectiveness Factorfor Nodal Zones

The ACI 318-14 code recommends the following values of an effectiveness factor for 
nodal zones, βn.

βn = 1.00 for nodal zones bounded by struts or bearing areas or both, C–C–C 
node

βn = 0.80 for nodal zones anchoring one tie, C–C–T node
βn = 0.60 for nodal zones anchoring two or more ties with the presence of one 

strut, C–T–T node
βn = 0.40 for nodal zones anchoring ties only, T–T–T node

h

III

I

II

ℓ

FIGURE 3.12  Types of nodes.
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3.4  REINFORCED TIES

Reinforced ties are STM members that are subjected to tensile forces carried by 
reinforcement. The tie cross section is constant along its length and is obtained from 
the tie force and the yield stress of the steel. The nominal strength of a tie, Fnt, shall 
be taken as

	
F A fnt st y=

	 (3.7)

where Ast is the cross section of area of steel and fy is the yield stress of steel.
The width of a tie is to be determined to satisfy safety for compressive stresses 

at nodes. Depending on the distribution of the tie reinforcement, the effective tie 
width wt may vary between the following values but with an upper limit given 
afterward.

•	 In the case of using one row of bars without sufficient development length 
beyond the nodal zones (Figure 3.13a):

	 wt = 0 0. 	 (3.8)
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FIGURE 3.13  The width of the tie, wt, used to determine the dimensions of the nodal zone.



64 Structural Concrete

•	 In case of using one row of bars and providing sufficient development 
length beyond the nodal zones for a distance not less than 2c, where c is the 
concrete cover (Figure 3.13b):

	 w ct bars= +φ 2 	 (3.9)

	 where φbars is the diameter of the reinforcing bars.
•	 In case of using more than one row of bars and providing sufficient develop-

ment length beyond the nodal zones for a distance not less than 0.5s, where 
s is the clear distance between bars (Figure 3.13c):

	 w n c n st bars= + + −φ 2 1( ) 	 (3.10)

	 where n is the number of layers of reinforcing bars.

In the three cases in Figure 3.13, the development length according to the ACI 
318-14, Lanc, begins at the intersection of the centroid of the bars in the tie and the 
extensions of the outlines of either the strut or the bearing area.

In case of multiple layers of reinforcement, the upper limit of the height of the 
nodal zone, wt,max, is established as the width corresponding to the width in a hydro-
static nodal zone, calculated as

	

w
F

f b
t

nt

ce
n,max =

( )
	

(3.11)

where fce
n  is the applicable effective compressive strength of the nodal zone and is 

computed from Equation 3.5, and b is the breadth of the beam.

3.5  ANCHORAGE OF REINFORCEMENT

3.5.1  Bond Action of Straight Bars

Inherently, bond is known to form as a result of the reinforcement roughness and 
adhesion of the surrounding concrete. If the anchorage length is defined as Lanc, the 
average bond stress, τb, is then calculated as

	
τ

πφb
s

bar anc

T

L
=

	
(3.12)

where Ts is the force in the bar to be transferred along the length Lanc, and φbar is the 
bar diameter.

In reality, bond action is developed by compressive and tensile stresses as illus-
trated by their trajectories in Figure 3.14a and the STM in Figure 3.14b. The compres-
sive stresses are carried by concrete which is supported by the bar ribs, whereas the 
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tensile stresses are either resisted by concrete or by reinforcement, Figure 3.14b and 
c, hence leading to a higher bond strength.

In the anchorage of reinforcement, there are two possible cases as shown in 
Figure 3.15. The anchor force (T1 − T2) is better accommodated in case 1, with a 
favorable condition in version (a). For this case, version (a) exists where bar anchor-
ing is inside a member, whereas version (b) exists where the bar is anchored above 
a support or beneath a concentrated load. Case 2 exists where bars are anchored 
near the surface of a member with version (d) representing anchoring development 
depending on unreinforced concrete ties.

3.5.2  Anchorage Length

For practical dimensioning of the anchorage length, the respective codes of prac-
tice should be referred to. When terminating bar reinforcement, it should be noted 
that the dispersion of the anchor forces perpendicular to the plane of reinforcement 
should be considered. Such dispersion of forces generates transverse tensile stresses 
in the concrete, which may cause splitting of the structure along the anchorage bars, 
as illustrated in Figure 3.16.

Some of the anchorage may be achieved by not only extending the reinforce-
ment through the nodal zone but also developing it beyond the nodal zone, as shown 
in Figure 3.13b and c. If the tie is anchored using 90° hooks, the hooks should be 
confined within reinforcement to avoid cracking along the outside of the hooks in 
the support region. In deep beams, hairpin bars spliced with the tie reinforcement 
can be used to anchor the tie forces at exterior supports, provided that the beam 

Ts

(a) (b) (c)

b b b
Ts

FIGURE 3.14  Symmetrical anchorage of a reinforcing bar in a concrete body: (a) stress 
trajectories, (b) plane STM, and (c) associated transverse reinforcement. (From Schlaich, J., 
and Schäfer K., IABSE Workshop, New Delhi, 1993.)

(a) (b) (c) (d)

ConcreteC2

C1 C1

T1 T1
T1 T1

T2 T2
T2 T2

T3

T3C2
C C

Case 1 Case 2

FIGURE 3.15  Typical examples of reinforcement anchorage by bond. Anchor forces are 
supported by: (a, b) two concrete compression struts, (c) one concrete compression strut and 
one steel tie, and (d) one concrete compression strut and one concrete tie. (From Schlaich, J., 
and Schäfer K., IABSE Workshop, New Delhi, 1993.)
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width is large enough to accommodate such bars. The development length of the 
tie reinforcement can be reduced by using hooks, headed bars, mechanical devices, 
additional confinement, or by splicing it with layers of smaller bars.

3.5.3  Lap Joints

The common method for force transfer between two steel bars is to place them 
alongside each other, Figure 3.17a. In this method, the concrete contributes to the 
force transfer between the two bars via diagonal compression stresses and associ-
ated transverse tensile stresses as illustrated by the STM in Figure 3.17b. While the 
compressive stresses are resisted by concrete, the tensile stresses are either resisted 

C2

C1

TT

(a)

(b)

Fa Fa = Ts
Fa/4
Fa/4
Fa/4
Fa/4

Fa/2

Fa/2

Ts/2

Ts/2
Ts/2

Ts/2

FIGURE 3.16  Distribution of anchor forces perpendicular to the plane of deep beam: 
(a) STMs of two different reinforcement patterns and (b) transverse reinforcement to cover 
the tensile forces perpendicular to the plane of the deep beam. (From Schlaich, J., and Schäfer 
K., IABSE Workshop, New Delhi, 1993.)

Ts

Ts

Enlarged cross-section
(c)

(b)(a)

FIGURE 3.17  Lap joint of tension reinforcement: (a) reinforcement and (b, c) models in two 
planes. (From Schlaich, J., and Schäfer K., IABSE Workshop, New Delhi, 1993.)
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by concrete alone or by concrete and reinforcement; conservatively, these tensile 
stresses can be assessed based on a 45° model. With providing such transverse rein-
forcement the bond strength is significantly improved and hence the required splice 
length is reduced.

For a compression lap splice, Figure 3.18a, the appropriate STM is shown 
in Figure  3.18b. Hooks are not suited to anchor compression bars as illustrated 
in Figure  3.19. For a tension lap splice, the model in Figure 3.17b illustrates the 

Cs

Cs

(a) (b)

FIGURE 3.18  Lap joint of compression reinforcement: (a) reinforcement and (b) model. 
(From Schlaich, J., and Schäfer K., IABSE Workshop, New Delhi, 1993.)

Bad Good
Cs

T   ?
Bursting of
concrete cover

Cs

FIGURE 3.19  Hooks are not suited to anchor compression bars. (From Schlaich, J., and 
Schäfer K., IABSE Workshop, New Delhi, 1993.)
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necessity of providing transverse reinforcement in the vicinity of the spliced ends. 
For a compression lap splice, the STM in Figure 3.18b illustrates the necessity of 
extending the transverse reinforcement beyond the splice region, Figure 3.18a. 
In a lap splice, the transverse reinforcement should be located as close to the con-
crete surface as possible.
Codes of practice usually give detailed rules on the required lap length and the 
arrangement of laps and transverse reinforcement in concrete members.

3.5.4 C urved Reinforcement

The deviation forces developed by reinforcement curvature are essentially trans-
ferred into the concrete in the form of radial pressure. The dispersion of this pressure 
in the concrete varies according to the reinforcement arrangement as illustrated by 
the three cases shown in Figures 3.20 through 3.22.

C

(a) (b)

C

Bond
bC

Ts

Tc

Tcσc

σc

TS2

<TS1

TS1

StSt

Ts

r

FIGURE 3.20  Curved reinforcement with near-symmetric dispersion of deviation forces 
with the corresponding STM: (a) curved bars in a frame corner under a closing moment and 
(b) bent-up chord bars in beams. (From Schlaich, J., and Schäfer K., IABSE Workshop, New 
Delhi, 1993.)
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FIGURE 3.21  Hoop reinforcement in an annular plate (deviation forces near the component 
surface): (a) cross section, (b) plan detail, and (c) STM model and forces at the node. (From 
Schlaich, J., and Schäfer K., IABSE Workshop, New Delhi, 1993.)
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For the case in Figure 3.20, the admissible bar curvatures should be applied at 
best such that any transverse tension associated with any force redistribution due to 
cracking is resisted by transverse reinforcement. The tensile forces, as they develop 
for the case in Figure 3.21, are equivalent to the ties which are required to carry the 
shear forces in slabs without stirrups. For the case in Figure 3.22, the magnitude of 
the transverse tensile stresses associated with hoop forces should not exceed any 
level that could cause spalling of the concrete cover. It should be noted that the 
hoops of the inner side should be arranged in the second layer as illustrated in 
Figure 3.22a.

In case of heavy hoop reinforcement, the associated transverse tensile stresses 
should be resisted by appropriate transverse reinforcement as illustrated in Figure 3.23.
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4 Illustrative Design 
Examples

4.1  INTRODUCTION

The design procedure using the method of STM is illustrated with the flow chart in 
Figure 4.1 (Chantelot and Mathern, 2010). In this chapter, few design examples are given 
in order to illustrate how the method of STM is applied. The examples include (1) a 
deep beam subjected to a concentrated load; (2) a deep beam with variable depth loaded 
symmetrically with two concentrated loads; (3) the same aforementioned deep beam 
with variable depth loaded unsymmetrically with a single concentrated load; (4) a beam 
with a dapped end; (5) a beam with a recess; (6) local pressure problems; concentric and 
eccentric; (7) a deep beam with large opening; (8) a high wall with two large openings; 
and (9) strength assessment of a continuous deep beam with large openings. The failure 
criteria adopted by the ACI 318-14, as illustrated in Chapter 3, are adopted in in these 
examples. For most of these examples, a complete design procedure including the devel-
opment of the STM, dimensioning and reinforcement detailing, is presented.

4.2  DEEP BEAM UNDER CONCENTRATED LOAD

It is required to determine the reinforcement for the simply supported transfer girder 
shown in Figure 4.2a. The single column at the mid-span carries a factored load 2800 kN. 
The concrete cylinder strength is f ′c = 32 MPa and the steel yield stress is fy = 420 MPa. 
Neglect the beam’s own weight. The solution is given in the following steps.

Reactions:
With reference to Figure 4.2a,

	 R RA B= = 1400 kN 	

Establish an STM:
In this beam, the shear span to depth ratio is less than 2; therefore, the entire beam 
is considered a D-region, that is, deep beam. The appropriate STM is shown in 
Figure 4.2b, in which the lower nodes are assumed to coincide with the centerlines 
of the supports. Usually the upper nodes are located approximately at a distance 
equal to one-quarter the width of the bearing plate; in this example, the distance 
is 500 mm/4 120 mm≈ . As for the lower nodes, they are located at the expected 
centroid of reinforcement; in this example, the distance is assumed equal to 120 mm.

With reference to Figure 4.2b, the length of the diagonal strut = 

( ) ( )1260 2000 125 22592 2+ − = mm

The force in strut C1 1400
2259
1260

2510= × = kN
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Consider a structure to design under a certain
load combination

Identify B-and D-regions

Determine the support reactions and the stress
destribution at the boundaries of D-regions

Yes 

Yes 

Check bearing capacities
at loads and supports

Sketch the flow of
forces through D-regions

Develop an STM

Calculate the forces in the struts and ties 

Design the required amount of reinforcement
for each tie and the position of its axis 

Steel fits in assumed STM geometry 

Yes 

Determine the provided area for each strut 

Check the nodal zones
and the struts 

Arrange the reinforcement 

No 

No 

No 

Modify dimensions or
number of bearing areas

Refine the strut-and-tie
model as STM

-geometry of structure
-size of bearing areas
-location of ties

FIGURE 4.1  Flowchart of the design procedure using the STM.
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The force in tie T = ×
−

=1400
2000 125

1260
2083kN

The force in strut C2 = T = 2083 kN

The angle between C1 and T, θA =
−

= ° >− −tan . tan1 11260
2000 125

33 9
1
2

, O.K.

Effective concrete design strength of the struts:
For simplicity in the calculation procedure, the strength reduction factor, φ = 0.75, 
is implemented in the design strength of the struts and the nodes, as illustrated next.
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(a)

(b)

FIGURE 4.2  (a) Deep beam under concentrated load, (b) STM of the deep beam under 
concentrated load.
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For strut C1: f fce
s

c s= ′ = × × × =φ β( . ) . . . .*0 85 0 75 0 85 32 0 75 15 30MPa

* Transverse reinforcement to resist the lateral tension will be provided since strut 
C1 is a bottle-shaped stress field.

For strut C2: f fce
s

c s= ′ = × × × =φ β( . ) . . . .0 85 0 75 0 85 32 1 0 20 40MPa

Effective concrete design strength of the nodes:
Node A is a C − C − T node; thus, f fce

n
c n= ′ = × × ×φ β( . ) . . .0 85 0 75 0 85 32 0 8 = 

16.32 MPa
Node C is a C − C − C node; thus, fce

n = × × × =0 75 0 85 32 1 0 20 40. . . . MPa

Node C:

The bearing stress is 
1400 10
250 500

11 20 20 40
3×

×
= < =. .MPa MPafce

n , which is O.K.

For the section at the interface between strut C2 and the node, the design strength 
should be the smaller of the node strength and the strut strength, both of which are 
the same in this case, 20.40 MPa.

The required width of strut C2, wC2

2083 10
500 20 40

204
3

=
×

×
=

.  
mm

The difference between the assumed width (240 mm) and the required width 
(204 mm) is on the safe side and is not significant. The solution will proceed without 
modifying the dimensions of the STM until strut C1 is checked.

For the section at the interface between strut C1 and the node, the design strength 
should be the smaller of the node strength (20.40 MPa) and the strut strength 
(15.30 MPa), which is 15.30 MPa in this case. With reference to Figure 4.2b, the 
width of strut C1 at node C is

wC A A1 250 240 339= + =sin cosθ θ mm, which corresponds to a stress 
2510 10
339 500

14 81 15 30
3×

×
= <. .MPa MPa , which is O.K.

Node A:

The bearing stress is 
1400 10
400 500

7 00 16 32
3×

×
= < =. ( . )MPa MPafce

n , which is O.K.

In the calculations of this node, the tension reinforcement of the tie T is expected 
to consist of multiple layers and to continue beyond the bearing pad a distance 
greater than one-half the clear spacing between the reinforcement layers. Hence, an 
extended nodal zone can be considered.

For the section at the interface between strut C1 and the node, the design strength 
should be the smaller of the node strength (16.32 MPa) and the strut strength 
(15.30 MPa), which is 15.30 MPa in this case. The height of the node, wt = 240 mm, 
should be checked against a maximum value wt,max, where

	
w

T

f b
wt

ce
n t,max

.
. ,= =

×
×

= >
2083 10

16 32 500
255 3

3

mm which is O.K.
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With reference to Figure 4.2b, the width of strut C1 at node A is
wC A A1 240 400 422= + =cos sinθ θ mm , which corresponds to a stress = 2510 × 

10 422 500 11 90 15 303 /  MPa× = <. .MPa , which is O.K.

Strut C1:
The strut strength has been checked at the two ends during the check of nodes A and 
C. Since the stress field of this strut is bottle-shaped, transverse reinforcement of the 
strut is required to resist a total force TC1 . From the STM of Figure 4.3,

	 T
C C

C1

1
2 2

2
2

2510
2

12551 1= ×






× = = = kN.	

Thus, the total required reinforcement in perpendicular to the strut is (1255 × 103)/
(0.75 × 420) = 3984 mm2. The length of the strut is 2259 mm; hence, the required 
transverse reinforcement is 1.764 mm2/mm, in perpendicular to the strut. This can be 
covered with a skin reinforcement of vertical bars of diameter 16 mm every 200 mm 
and horizontal bars of diameter 12 mm every 200 mm, on each side. The larger diam-
eter is assigned to the vertical bars since they are more effective in substituting for the 
inclined reinforcement because the angle θA is less than 45°. The selected skin rein-
forcement is equivalent to a transverse reinforcement along the strut of 1.74 mm2/mm, 
which is close enough since the formula used for calculating this reinforcement is 
slightly conservative. With reference to Figure 3.7, the used transverse steel is equiva-
lent to inclined reinforcement ∑Asi sin γi /bsi = 0.0046 > 0.003 (the ACI minimum 
value for ′ ≤fc 44 MPa).

Strut C2:
The strut strength has been checked at the two ends during the check of node C. 
Since this strut is prismatic, there are no more checks.

Tie T:
The reinforcement required to resist the force of this tie is (2083 × 103)/
(0.75 × 420) = 6613 mm2, which can be covered with 14 bars of diameter 25 mm 
(14φ25). This reinforcement should be extended in the node and beyond, the 

F/2F/2

(a) (b)

Tc1

1

1
2

2

F

FIGURE 4.3  Stress deviation in a bottle-shaped stress field.
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anchorage length required to develop the force in the tie with a minimum distance, 
beyond the bearing plate, equal to one-half the clear spacing between the reinforce-
ment layers.

4.3 � SYMMETRICALLY LOADED DEEP BEAM 
WITH VARIABLE DEPTH

In this section, the design procedure of a beam with an abrupt change of thick-
ness (Schlaich and Schäfer, 1993), Figure 4.4a, is illustrated. The width of the beam 
b = 300 mm and the other dimensions in mm are shown in the figure. The factored 
design value of the applied force is Fu = 1200 kN. The concrete cylinder strength is 

′ =fc 30 MPa and the steel yield stress is fy = 460 MPa.

Reactions and straining actions:
With reference to Figure 4.4a,

	 R RA B= = 1200 kN 	

The bending moment and shearing force diagrams are shown in Figure 4.4a.

D- and B-regions:
Based on Saint Venant’s principle, the boundaries of the D-regions are determined. 
Figure 4.4b illustrates both the D- and B-regions.

Dimensioning of B-region:
The bending moment of the B-region is a constant value of Mu = 3600 kN.m 
and  the  shear is zero. If the contribution of the compression reinforcement is 
neglected,

	
M M f ab d

a
u n c= = = ′ −



















3600 0 85

2
kN.m φ φ .

	

Since the moment is a constant value, the dividing section between the B- and 
D-regions requires the use of a strength reduction factor of the STM, φ = 0.75 
instead of 0.9 (the value used in flexure). Substituting for b = 300 mm, d ≈1900 mm 
and  ′ =fc 30 MPa, the obtained value of a = 365 mm. For simplicity in the calcula-
tions, assume a ≈ 400 mm, which leads to a lever arm, YCT = d − a/2 = 1700 mm. 
From moment equilibrium, Figure 4.4c,

	
C T

M

Y
u

CT
1 1

63600 10
1700

2118= = =
×

= kN
	

	
A

T

f
s

y
1

1
3

22118 10
0 75 460

6138 13 25= =
×
×

= =
φ

φ
.

mm
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FIGURE 4.4  Symmetrically loaded deep beam with variable depth: (a) beam, dimen-
sions, loads, and straining actions, (b) D- and B-regions, (c) force equilibrium of B-region
� (Continued)
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FIGURE 4.4 (Continued)  (d) load path and STM, (e) geometric relations of the STM, 
(f) node A� (Continued)
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Establish an STM:
The load path and the corresponding STM are shown in Figure 4.4d. The com-
pression block at the dividing section between the B- and D-regions is subdivided 
into two parts, one to balance the force C3 and the other to balance the horizontal 
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FIGURE 4.4 (Continued)  (g) node B, (h) node C, (i) node D, (j) node E, (k) reinforcement 
layout of the symmetrically loaded deep beam with variable depth.
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component of the force C4. From equilibrium of the D-region, Figure 4.4d, and with 
the aid of the geometric relations in Figure 4.4e,

	
C T3 3 1200

3 0
3 3

1091= = × =
.
.

kN
	

	 C C1 3 2118 1091 1027− = − = kN 	

	 C2
2 21200 1091 1622= + =( ) ( ) kN 	

If the angle α is assumed equal to 45°, then the force T2 will be

	 T T2 3 1091= = kN 	

which leads to

	 C T T5 2
2

3
2 1543= + = kN 	

	 C C C T4 1 3
2

2
2 1498= − + =( ) kN 	

Effective concrete design strength of the struts:
For simplicity in the calculation procedure, the strength reduction factor, φ, is imple-
mented in the design strength of the struts and the nodes, as illustrated next.

Struts C1 and C3 are prismatic stress fields for which βs = 1.0; hence, 
f fce
s

c s= ′ = × × × =φ β( . ) . . . .0 85 0 75 0 85 30 1 0 19 13MPa .
Struts C2, C4, and C5 are bottle-shaped stress fields for which βs = 0.75*; hence, 

fce
s = 14 34. MPa . *Transverse reinforcement to resist the lateral tension will be 

provided.

Effective concrete design strength of the nodes:
Nodes A, D, and E are C − C − T nodes; therefore, βn = 0.8; hence, 
f fce
n

c n= ′ = × × × =φ β( . ) . . . .0 85 0 75 0 85 30 0 8 15 30 MPa .
Node B is a C − C − C node; therefore, βn = 1.0; hence, fce

n = 19 13. MPa .
Node C is a C − T − T node; therefore, βn = 0.6; hence, fce

n = 11 48. MPa .

Node A:
With reference to Figure 4.4f, the length of the bearing plate, a

R

f b
A

ce
n

* = = 
1200 10
15 30 300

261
3×

×
=

.
mm

Use a bearing plate 300 × 300 mm.
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With reference to Figure 4.4f, if two layers of reinforcement are used, then 
wi ≈ 200 mm. According to ACI 318-14,

	
w

T

f b
wt

ce
n t,max

.
,= =

×
×

= >3
31091 10

15 30 300
238mm which is O.K.

	

From Figure 4.4e, tan θA = (3.3/3.0) = 1.1, which gives θA = 47.7°. The width of 
strut C2 at node A, Figure 4.4f, is

	 w a wC A t A2 357= + =* sin cosθ θ mm 	

The stress in the strut, σC2 , should be compared with the smaller of the strut 
strength (14.34 MPa) and node A strength (15.30 MPa), which is 14.34 MPa.

	
σC

C

C

w b2

2

2
31622 10

357 300
15 15 14 34= =

×
×

= . .MPa > MPa
	

Either increase wt or use a larger bearing plate. Upon using a bearing plate 
400 × 300 mm and redoing the calculations, it is found that wC2 431= mm  and 
σC2 12 54 14 34= <. .MPa MPa ; the bearing plate size is adequate.

Node B:
Try a bearing plate 300 × 300 mm, Figure 4.4g. The bearing stress is 
( ) .1200 10 300 300 13 333× × =)/( MPa, which is less than fce

n ( . )=19 13MPa . The 
depth of the compression block of strut C3 should be computed on the basis of 
the smaller value of the strut strength and node B strength, both of which have the 
same value in this case.

The required width of strut C3 is

	
w

C

f b
C

ce
s3

3
31091 10

19 13 300
190= =

×
×

=
.

mm 
	

With reference to Figure 4.4g, the width of strut C2, wC2
 = 300 sin θB + 

190 cos θB = 350 mm, where θB = θA = 47.7°. The stress of the node at the inter-
face of strut C2 is

	
σC

C

C

w b2

2

2
31622 10

350 300
15 45= =

×
×

= . MPa
	

This stress should be compared with the smaller of the strut strength (14.34 MPa) 
and node B strength (19.13 MPa), which is (14.34 MPa). Thus, the stress σC2  is unsafe. 
Upon increasing the size of the bearing plate to 350 × 300 mm, wC2 387= mm, and 
σC2 13 97= . MPa , which is safe.
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Node C:
The width of strut C5, Figure 4.4h, is based on the smaller value of the strut strength 
( . )fce

s =14 34MPa  and node C strength ( . )fce
n =11 48MPa , which gives a value of 

11.48 MPa in this case.

	
w

C

f b
x xC

ce
n5

5
3

2 2
1543 10
11 48 300

448 45= =
×
×

= = = °
.

sin sinmm α
	

which results in: x2 = 634 mm. The reinforcement resisting T2 should be closed stir-
rups and placed within a distance at least equal to x2.

Node D:
The depth of the compression block of (C1 − C3 = 1027 kN) is x13, Figure 4.4i. 
This depth is based on the smaller value of the strut strength ( . )fce

s =19 13MPa  and 
node D strength ( . )fce

n =15 30MPa , which gives a value of 15.30 MPa in this case.

	
x

C C

f bce
n13

1 3
31027 10

15 30 300
224=

−
=

×
×

=
.

mm
	

The width of strut C4, Figure 4.4i, is based on the smaller value of the strut 
strength ( . )fce

s =14 34MPa  and node D strength ( . )fce
n =15 30MPa , which gives a 

value of 14.34 MPa in this case.

	
w

C

f b
x xC

ce
s4

4
3

22 13
1483 10
14 34 300

345= =
×
×

= = +
.

sin cosmm β β
	

With reference to Figure 4.4e, the angle β ≈ = °−tan .1 1600
1500

46 85 , which gives:  

x22 = 263 mm. x22 is the minimum distance within which the closed stirrups resisting 
T2 should be placed. Since x22 < x2, the value of x2 should be used, which increases 
the width of strut C4 to 616 mm.

Node E:
The widths of struts C4 and C5 at the node, Figure 4.4j, can be calculated in the same 
manner as before based on the smaller design strength of the node ( . )fce

n =15 30MPa  
and the struts ( . )fce

s =14 34MPa , which gives 14.34 MPa. The width of strut C5 
should therefore be C f bce

s
5

31543 10 14 34 300 359/ )/( mm= × × =( . ) , which gives a 
projection in the direction of T1, xE = 507 mm.

For strut C4, the width is C f bce
s

4
31498 10 14 34 300 348/ )/( mm= × × =( . ) , which 

gives a projection in the direction of T1, xE = 477 mm.
Take the larger value of xE = 507 mm in detailing the reinforcement of T1. The 

anchorage of the reinforcement resisting T1 should be extended, from the start of 
the node, a distance equal to the largest of the anchorage length and xE, Figure 4.4j.
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Struts C1, C3 and C1 − C3:
Since these struts are prismatic stress fields and their safety was checked within the 
checks of the nodes, there are no more checks for these struts.

Strut C2:
The strut strength has been checked at the two ends during the check of nodes A and 
B. Since the stress field of this strut is bottle-shaped, transverse reinforcement of the 
strut is required to resist a total force TC2. From the STM of Figure 4.3,

	 T C C
C2

1
2 2

2
2

1622
2

8112 2= ×






× = = = kN. 	

Thus, the total required reinforcement in perpendicular to the strut is (811 × 103)/
(0.75 × 460) = 2351 mm2. The length of the strut is 4460 mm; hence, the required 
transverse reinforcement is 0.527 mm2/mm, in perpendicular to the strut. This can 
be covered with a skin reinforcement of diameter 12 mm every 200 mm, both verti-
cally and horizontally on each side. With reference to Figure 3.7, the used transverse 
steel is equivalent to inclined reinforcement ΣAsi sin γi/bsi = 0.0053 > 0.003 (the 
ACI 318-14 minimum value for ′ ≤fc 44 MPa).

Strut C4:
The stress field of this strut is bottle-shaped, and as for strut C2, the transverse rein-
forcement of the strut is required to resist a total force C4/2 = 1498/2 = 749 kN, 
which requires a total reinforcement in perpendicular to the strut = 2171 mm2. 
The length of the strut is 2193 mm; hence, the required transverse reinforcement 
is 0.99 mm2/mm, in perpendicular to the strut. This is covered with the predeter-
mined skin reinforcement of diameter 12 mm every 200 mm, both vertically and 
horizontally on each side. Also, the used transverse steel is equivalent to inclined 
reinforcement 0.0053 > 0.003 (the ACI 318-14 minimum value for f′c ≤ 44 MPa).

Strut C5:
The stress field of this strut is bottle-shaped, and as for strut C2, the transverse rein-
forcement of the strut is required to resist a total force required to resist a total force 
C5/2 = 1543/2 = 772 kN, which requires a total reinforcement in perpendicular to 
the strut = 2236 mm2. The length of the strut is 2121 mm; hence, the required trans-
verse reinforcement is 1.05 mm2/mm, in perpendicular to the strut. This is covered 
with the predetermined skin reinforcement as stated for strut C4.

Checking the strength of the B-region and tie T1:

	

φM C d C C dn = −






+ − − −









=

3 1 3
190

2
190

224
2

3610

( )

kNN m  kN m which is O.K.. ( . ),> Mu 3600 	
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The previously selected reinforcement of 13φ25 is adequate as a tension rein-
forcement of T1.

Tie T2:
The reinforcement required to resist this force is T2/(0.75 × 460) = 3162 mm2, which 
can be covered with two-branches closed stirrups 8φ16 to be distributed within a 
distance x2 634 640= ≈mm mm.

Tie T3:
The reinforcement required to resist this force is T3/(0.75 × 460) = 3162 mm2, which 
can be covered with 10φ20.

Reinforcement:
The used skin reinforcement φ12@200 mm on both sides in the vertical and horizon-
tal directions gives a ratio of 0.38% both vertically and horizontally, which is ade-
quate. The final beam reinforcement is illustrated in Figure 4.4k. It should be noted 
that the ends of the vertical and horizontal web reinforcement should have a U shape.

4.4 � UNSYMMETRICALLY LOADED DEEP 
BEAM WITH VARIABLE DEPTH

In this section, the design procedure of the previous beam with an abrupt change 
of thickness in Section 4.3 is designed for an unsymmetrical loading case. All the 
beam data are the same as before except the loading case which consists of a single 
factored load Fu = 1200 kN, Figure 4.5a.

Reactions and straining actions:
With reference to Figure 4.5a

	 RA = 1028 6. kN 	

	 RB = 171 4. kN 	

The bending moment and shearing force diagrams are shown in Figure 4.5a.

D- and B-regions:
The B- and D-regions are the same as in the previous example (Section 4.3).

STM and design:
The appropriate STM is shown in Figure 4.5b. The calculation procedure of the 
forces and the dimensioning of struts, ties, and nodes are the same as followed in the 
previous example (Section 4.3).

4.5  BEAM WITH DAPPED END

In order to hang the reaction of a dapped beam, two possible models are shown in 
Figure 4.6 (Schäfer and El-Metwally, 1994). The first model, Figure 4.6a, illustrates 
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that in addition to the shear reinforcement, T3, and the reinforcement necessary for 
hanging the reaction, T1, additional reinforcement is necessary for a safe transfer of 
the forces within the D-region, that is, tie TA and the increase in the magnitude of tie 
T2 above the shear requirement.

The second alternative, Figure 4.6b, requires less reinforcement; nevertheless, 
anchorage of the inclined reinforcement at the upper node may become a problem 
in case of thick bars. In practice, some reinforcement is always detailed as indicated 
by the first model, which is necessary for keeping the integrity of the D-region. 
Hence, though the two models pointed here are correct, a more efficient detailing 
can be achieved by a combination of the two models. The combined model shown 
in Figure 4.6c leads to a more efficient detailing with the inclined reinforcement 
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FIGURE 4.5  Unsymmetrically loaded deep beam with variable depth: (a) beam, dimen-
sions, loading, and straining actions, (b) STM.
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assigned at most 70% of the load and the first model assigned at least 30% of the 
load. While the anchoring of the inclined reinforcement is difficult in the second 
model, this problem is relieved by the combined model. The reinforcement layout 
for the combined model is shown in Figure 4.6d. The calculation procedure of the 
forces and the dimensioning of struts, ties, and nodes are the same as followed in 
the example of Section 4.3.

If a horizontal reaction force H exists, the model shown in Figure 4.6e can be used 
for the evaluation of the required additional reinforcement.

4.6  BEAM WITH A RECESS

The beam with a recess in Figure 4.7a has the shown shaded D-region as a result 
of the recess. For illustration, the D-region is assumed to be subjected to two cases 
of constant moment (no shear), positive and negative moment, Figure 4.7b, and the 
moment lever arm on the right end of the D-region is assumed to be double of that 
on the left end.

Upon the examination of all possible load paths for either case of end moment, 
the appropriate STMs can be derived as shown in Figure 4.7c (Schäfer and 
El-Metwally, 1994). From the obtained models, it is noted that anchoring the 
curtailed longitudinal reinforcement should start at a distance beyond what is 
required by sectional design. In addition, for the safety of the D-region, transverse 
reinforcement in the shape of closed stirrups is necessary in order to carry the 
transverse tension ( ) tan1 2/ T θ. The appropriate reinforcement detailing is shown 
in Figure 4.7d.

TA =

TA
T3 = F1

T4 = F2/sin α

TA = H

H

α θ

T3 = F2

F1

F1 ≥ 0.3 F

(a)

(c)

(b)

(d)

(e)

F = F1 + F2

T3 = F1 + F2 = F

F

T1 = F1

T1 = F1

T2 = F1

T2 = F1

F2

F1
tan θ

TB =

T4 = 

T1
tan θ1

F2

sin α

θ1

θ1

θ

α θ

FIGURE 4.6  Dapped beam: (a) STM1, (b) STM2, (c) combined model from 1 and 2, (d) rein-
forcement layout, and (e) STM for a horizontal reaction H.
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4.7  LOCAL PRESSURE

4.7.1 C oncentric Local Pressure

The problem of concentric local pressure, Figure 4.8 (Schäfer and El-Metwally, 
1994), is simulated as D1-region, Figure 2.8, of the standard D-regions. The amount 
of necessary transverse reinforcement and its position can be determined from the 
respective STM. The tension force, T, can be calculated from the model as

	
T F

a

h
= −







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1
4

1
	

If the width of the bearing plate, a, is very small compared to the depth of the 
D-region, h, the tension force, T, can be approximated to T F≈ 0 25. . It is noted that 
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FIGURE 4.7  Beam with a recess: (a) D-region, (b) moments applied to the D-region, (c) 
STMs, and (d) appropriate reinforcement detailing.
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the reinforcement resisting the tension T has to be closed stirrups and its center is 
located at a distance from the edge equal to (( ) ( ))h a/ /2 4+  as shown in the figure.

4.7.2 E ccentric Local Pressure

The problem of eccentric local pressure, Figure 4.9 (Schäfer and El-Metwally, 1994), 
is simulated as D2-region, Figure 2.9. For this region, it is required to provide lon-
gitudinal reinforcement in addition to the transverse reinforcement, which can be 
determined from the respective STM. The transverse reinforcement of T1 is very 
close to the edge and has to be closed stirrups with their center located at a distance 
z2 from this edge. This distance can be adjusted in order to properly place this rein-
forcement, and therefore the geometry of the model is adjusted subsequently. As for 
the longitudinal reinforcement of T2, the distance z2 will not be adequate for anchor-
age; therefore, it is recommended to use U bars for this case.

4.8  DEEP BEAM WITH LARGE OPENING

The deep beam in Figure 4.10a with an abrupt change of thickness, includes a large 
opening and carries a concentrated load; and hence, it is entirely considered as a 

a
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FIGURE 4.8  Concentric local pressure.
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FIGURE 4.9  Eccentric local pressure.



89Illustrative Design Examples

D-region (Novak and Sprenger, 2002). The part of the beam above the opening 
behaves as a deep beam supported by two inclined struts, C3 and C4, the parts to the 
left and right of the opening. This part can be modeled as illustrated in Figure 4.10b; 
the model consist of two struts, C1 and C2, and one tie, T1, in addition to the horizon-
tal strut Co. The part of the beam below the opening supports the two inclined struts 
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FIGURE 4.10  Example of deep beam with large opening: (a) beam geometry and loading. 
(b) STM. (c) Reinforcement arrangement.
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C3 and C4, and is supported by the reactions RA and RB. With the vertical component 
of strut C4 greater than the reaction RB, the force C4 has to be transferred to both 
supports A and B. As for the force C3, the vertical component will go directly to sup-
port A and the horizontal component shall be resisted by a horizontal tie as shown 
in Figure 4.10b, where the complete STM is illustrated. In the model, the horizontal 
ties are located near the edges where the longitudinal reinforcements are expected to 
be placed. The forces of the vertical ties are resisted by the vertical web reinforce-
ment. Thus, the web reinforcement should resist both the vertical tie forces and the 
transverse tension of the struts.

From the STM geometry, the forces in the struts and ties can be obtained. The 
design calculations should start with estimating the dimensions of the bearing plates 
at A, B and C, followed by the assessment of the ties reinforcement. Afterwards, the 
struts dimensions can be calculated based on an effectiveness factor βs = 0.75 if the 
skin reinforcement is assumed to cover the transverse tension of struts; otherwise, 
βs = 0.6 if only minimum skin reinforcement is provided. Then, the safety of nodal 
zones A, B, and C can be verified; the effectiveness factor is βn = 0.8 for nodes A and 
B and is βn = 1.0 for node C. In this step, the strength of the nodal zone at any side 
bounded by a strut is governed by the smaller of the strength of the nodal zone and 
the strength of that strut.

The reinforcement details at all nodes should ensure adequate anchorage. The 
design should also justify both minimum reinforcement required by the design code, 
minimum required for shrinkage and temperature. In addition, the skin reinforce-
ment should justify the code requirements. The reinforcement layout of the beam is 
shown in Figure 4.10c. It should be noted that the ends of the vertical and horizontal 
web reinforcement should have a U shape.

4.9  HIGH WALL WITH TWO LARGE OPENINGS

From its geometry, presence of openings and loading, the entire high wall with 
two large openings in Figure 4.11a is considered a D-region. The wall thickness is 
405 mm and each of the left and right bearing support is 1016 × 405 mm. The wall is 
examined in this section for the following cases of loadings (Barnes, 2002):

	 1.	Two vertical loads of 2000 kN each;
	 2.	Two lateral loads of 760 kN each, acting on the right-hand side of the wall;
	 3.	Combined loads from 1 and 2;
	 4.	Two lateral loads of 760 kN each, acting on the left-hand side of the wall;
	 5.	Combined loads from 1 and 4.

If the wall is modeled as simply supported, the lateral loads resultant has to be 
resisted by one single support. The choice of the lateral load resisting support is 
based on the direction of the resultant horizontal force. Upon assuming that the 
concrete above the support in tension is expected to crack and hence its stiffness 
is reduced and becomes much less than that of the concrete above the support in 
compression, this latter support is relied on to transfer the horizontal forces to the 
foundation by shear-friction (Barnes, 2002).
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FIGURE 4.11  Example of high wall with two large openings: (a) wall geometry and load-
ing. (b) to (f) STM for load cases 1–5, respectively.� (Continued)
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Upon following the load path and placing the tension reinforcements as they are 
practically arranged, the STMs of the wall for the different cases of loading are 
shown in Figure 4.11b–f. The STM of load case 1, Figure 4.11b, is statically inde-
terminate and in order to estimate the forces in the model, based on engineering 
judgement, the outer parts of the wall, to the right of the upper opening and to the 
left of the lower opening, are assigned a larger portion of the load than the passage 
between the two openings. In addition, a linear elastic finite element analysis may be 
used to refine the model geometry and hence the forces in the model elements. The 
significance of this analysis lies in improving serviceability conditions, better crack 
control, and also the need for load redistribution will be less and hence the required 
reinforcement will be less. It should be noted that the two forces transferred through 
the passage between the two openings can be lumped into one single force.

The models for load cases 2–5, Figure 4.11c–f, are also statically indeterminate 
and a linear elastic finite element analysis may be used to refine the model geometry 
and the assessment of the forces in the model elements and to improve serviceability 
conditions. In the shown models, the skin reinforcements are utilized to carry the 
tension forces of some ties. Also, it is noted that the angle between the struts and the 
ties connected with these struts satisfy the minimum limit (25°).

For wall design, the solution should start with verifying the bearing stresses at 
the supports and loading nodes. The appropriate effectiveness factor of struts is 
βs = 0.75 if the skin reinforcement is assumed to cover the transverse tension of 
struts; otherwise, βs = 0.6 if only minimum skin reinforcement is provided. The 
appropriate effectiveness factor of the nodes is variable based on the boundary con-
ditions of the node. The respective code provisions for reinforcement anchorage, 
minimum reinforcement requirements and skin reinforcement should be justified. 
The reinforcement layout of the beam is shown in Figure 4.10g. It should be noted 
that the ends of the vertical and horizontal web reinforcement should have a U shape.

4.10 � EXAMPLE ON STRENGTH ASSESSMENT OF A 
CONTINUOUS DEEP BEAM WITH LARGE OPENINGS

General Description:
In this example the strength of the continuous deep beam with large openings shown 
in Figure 4.12a is assessed. The beam was tested by Wu and Li (2009) under equal 
point loads, P, at the middle of each span. The beam consists of two equal spans, 
2000 mm length each, with overall height h = 750 mm, depth d = 705 mm, breadth 
b = 180 mm and the openings and loadings are symmetrically arranged as shown 
in the figure. Four openings, 400 mm × 200 mm each, with their centers located 
at the 1/4 and 3/4 points of each span were introduced. The width of bearing plates 
b1 = 150 mm, and b2 = b3 = 200 mm. Due to its geometry and also the presence of 
openings the beam is entirely considered a D-region.

The concrete cylinder strength of the beam was ′=fc 27 7. MPa  and the steel yield 
stress was fy = 460 MPa for high strength deformed bars φ10, φ13, and φ20 and 
fy = 250 MPa for mild steel bars φ10. The detailed reinforcement layout is shown in 
Figure 4.12b. The clear cover for the top and bottom reinforcement was 25 mm and 
it was 20 mm for the transverse reinforcement. 2φ20 were provided for both top and 
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bottom longitudinal reinforcement with corresponding longitudinal reinforcement 
ratio ρv = 0.5%. 2φ13 at 90 mm spacing were placed as transverse reinforcement at 
both sides of the opening. The tension steel, As1 = As2 = 628.3 mm2.

In addition to the reinforcements required at the tie positions, confining reinforce-
ments were incorporated to improve the strength of nodes where potentially high 
compressive stresses were encountered. Confining reinforcements were used under 
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the concentrated loads, above the supports and around the openings as shown in 
Figure 4.12b.

To eliminate potentially the detrimental effects of apparently inadequate rein-
forcing details on load carrying capacity, the reinforcing bars passing the nodes were 
extended beyond the nodal zones and the bottom longitudinal reinforcing bars were 
extended into the end supports and were anchored at the supports using standard 
180-degree hooks.
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Experimental Results:
The ultimate test load of the specimen was 555.0 kN. The failure mode was a com-
bination of yielding of the bottom reinforcement and crushing of the strut (ductile 
failure). The cracking pattern of the specimen at failure is shown in Figure 4.12c.

Establish an STM:
From a nonlinear finite element analysis of the beam, the stress trajectories in Figure 
4.12d has been obtained (Ghoraba, 2017). From the cracking pattern in Figure 4.12c 
and the stress trajectories in Figure 4.12d it is obvious how the struts go around the 
openings in order to transfer their forces to the supports. In addition, the connecting 
ties maintaining equilibrium are logical and adhere with the reinforcement details. 
Thus, developing an STM of the beam becomes a straightforward matter. The pro-
posed STM of the beam is shown in Figure 4.12e, where the numbering of ties and 
struts is illustrated on the left part of the model and the numbering of the nodes is 
illustrated on the right part.

With reference to Figure 4.12e, the reinforcement of each of the ties T1, T2, and T13 
is 2φ20. Since the reinforcement details allow the use of extended nodal zone, the 
width of each of these ties, height of nodes 1, 2, 11, and 15, is

	 w w h dT T1 2 2 2 750 705 90= = = − = − =� ( ) ( ) mm 	

or

	
w w cT T stirrup bars1 2 2 2 25 10 20 90= = = + + = + + =� ( ) ( )φ φ mm

	

Each of the ties T1, T2, and T13 has a nominal strength, T1n = T2n = T13n = 460 × 
628.3 = 289 kN. With reference to Figure 4.12e, each of the ties T3, T6, T8, and T11 is 
represented by two vertical stirrups φ13, each stirrup has two branches and the spac-
ing between the stirrups is 90 mm. The width of each of these ties is

	 w w c n n sT T bars3 6 2 1 2 25 2 13 1 90 166= = = + + − = + × + × =� φ ( ) ( ) ( ) mm 	

The nominal strength of each of the ties T3, T6, T8, and T11 is

	 T Tn n3 6 460 2 2 132 7 144 4= = = × × × =� ( . ) . kN. 	

In the same manner, each of the ties T4, T5, T7, T9, T10, and T12 is represented by 
2φ13 + 2φ10 horizontal bars with width 143 mm and nominal strength 194.2 kN.

Reactions and forces:
From linear elastic analysis the reactions can obtained in terms of the load P,

	 V P1 0 3125= . 	

	 V P2 1 375= . 	
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To obtain the forces in the model elements, the reinforcement of a selected tie 
is assumed to reach its yield stress. The choice of the tie to start with is up to the 
designer; however, some elements come to mind at the first glance; e.g., ties T2 or T13, 
Figure 4.12e. Nevertheless, the solution of this problem is initiated with assuming 
that the reinforcement of tie T10 reaches its yield stress, T10 = 194.2 kN. Then, from 
simple truss analysis the model forces are obtained as given in Figure 4.12f.

Effective concrete strength of the struts:
The effective concrete strength of strut, f fce

s
c s= ′0 85. β .

For prismatic strut, fce
s = × × =0 85 27 7 1 0 23 55. . . . MPa .

For bottle-shaped strut with sufficient reinforcement to resist the transverse ten-
sion, fce

s = × × =0 85 27 7 0 75 17 66. . . . MPa . This value will be used throughout the 
example and at the end there will be a discussion on this point.

Effective concrete strength of the nodes:
The effective concrete strength of a node, f fce

n
c n= ′0 85. β

For C − C − C node, fce
n = × × =0 85 27 7 1 0 23 55. . . . MPa

For C − C − T node, fce
n = × × =0 85 27 7 0 8 18 84. . . . MPa

For C − T − T node, fce
n = × × =0 85 27 7 0 6 14 13. . . . MPa

Check the bearing of the nodes:
For node 1, the nominal value of the reaction V1, V1n = 18.84 × 150 × 180 = 508.6 kN, 
which is greater than the reaction, V1 = 186.8 kN.

For nodes 8 and 9, the nominal value of the load P, Pn = 23.55 × 200 × 180 = 
847.8 kN, which is greater than the load, P = 598.0 kN.

For node 16, the nominal value of the reaction V2, V2n = 23.55 × 200 × 180 = 
847.8 kN, which is greater than the reaction, V2 = 822.4 kN.

Check of stresses:
Node 1:
Since the bearing stress has been checked before, there is no need to check it again. 
For strut C1, its angle of inclination θ1 = 70.3°, which gives a width of the strut.

wC1

1
1 1150 90 171 5= + =sin cos .θ θ mm . Then, the nominal strength of the strut.

C1n = 17.66# × 171.5 × 180 = 545.1 kN (# the smaller of the node strength and 
the strut strength), which is greater than the strut force, C1 = 198.4 kN.

Node 2:
The width of tie T2, wT2 90= mm and of tie T3, wT3 166= mm, and the 
angle of inclination of strut C4, θ4 = 25.0°; hence; the width of strut C4, 
wC4

2
4 4166 90 151 7= + =sin cos .θ θ mm. Then, the nominal strength of the strut C4n = 

14.13# × 151.7 × 180 = 385.7 kN (# the smaller of the node strength and the strut 
strength), which is greater than the strut force, C4 = 189.2 kN.

Nodes 3, 7, 10, and 14:
These nodes need not be checked, since all of these nodes are smeared nodes and 
“the reinforcing bars passing the nodes are extended beyond the nodal zones and 
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they have sufficient anchorage length.” In addition, the strength of the struts con-
nected with these nodes is governed by either the strength of the other connecting 
nodes or the strength of these struts.

Node 4:
The width of tie T3, wT3 166= mm , and of tie T5, wT5 143= mm, and the angle of 
inclination of strut C2, θ2 = 50.2°; hence; the width of strut C2,

wC2

4
2 2166 143 219 0= + =sin cos .θ θ mm. Then, the nominal strength of the strut,

C2n = 14.13# × 219.0 × 180 = 556.8 kN (#the smaller of the node strength and 
the strut strength), which is greater than the strut force, C2 = 243.2 kN.

For strut C3, the angle of inclination is θ3 = 25.0°. Then, the width of the strut,
wC3

4
3 3166 143 199 7= + =sin cos .θ θ mm. Then, the nominal strength of the strut,

C3n = 14.13# × 199.7 × 180 = 508.0 kN (#the smaller of the node strength and 
the strut strength), which is greater than the strut force, C3 = 252.6 kN.

Node 5:
As before for nodes 1, 2, and 4, wT6 166= mm, wT7 143= mm, θ4 = 25.0°,

wC4

5 199 7= . mm, C4n = 508.0 kN, greater than C4 = 189.2 kN. Also, θ5 = 54.0°,
wC5

5 218 4= . mm, C5n = 555.2 kN, greater than C5 = 231.2 kN.

Node 6:
For this node, assuming that the force in the prismatic strut C7 is equal to its nominal 
strength; then, C wn C7 228 9 23 55 1807= = × ×. .kN , which gives wC7 54= mm . The 
width of tie T6, wT6 166= mm and the angle of inclination of strut C3, θ3 = 25.0°; 
hence, the width of strut C3, wC3

6
3 3166 54 119 1= + =sin cos .θ θ mm. Then, the nom-

inal strength of the strut,
C3n = 17.66# × 119.1 × 180 = 378.6 kN (# the smaller of the node strength and 

the strut strength), which is greater than the strut force, C3 = 252.6 kN.

Node 8:
Since the bearing stress has been checked before, there is no need to check it again. 
The width of the prismatic strut C8 can be obtained upon assuming that the force in 
the strut is equal to its nominal strength; then, C wn C8 273 3 23 55 1808= = × ×. .kN , 
which gives wC8 64 5= . mm. The angle of inclination of strut C6 is θ6 = 76.6°; hence, 
the width of strut C6, wC6

8
6 6100 64 5 112 2= + =sin . cos .θ θ mm. Then, the nominal 

strength of the strut,
C6n = 17.66# × 112.2 × 180 = 356.6 kN (# the smaller of the node strength and 

the strut strength), which is greater than the strut force, C6 = 192.0 kN.

Node 9:
Since the bearing stress has been checked before, there is no need to check it again. The 
width of the prismatic strut C8, wC8 64 5= . mm, and the angle of inclination of strut C10 
is θ10 = 76.6°; then, the width of strut C10, wC10

9
10 10100 64 5 112 2= + =sin . cos .θ θ mm. 

The nominal strength of strut C10 is then, C10n = 17.66# × 112.2 × 180 = 356.6 kN 
(# the smaller of the node strength and the strut strength), which is less than the strut 
force, C10 = 422.7 kN; i.e., C10n = 0.843C10.
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Node 11:
The width of tie T8, wT8 166= mm , and of tie T13, wT13 90= mm , and the angle of 
inclination of strut C14, θ14 = 25.0°; then, the width of the strut,

wC14

11
14 14166 90 151 7= + =sin cos .θ θ mm. Then, the nominal strength of the 

strut,
C14n = 14.13# × 151.7 × 180 = 385.7 kN (#the smaller of the node strength and the 

strut strength), which is less than the strut force, C14 = 486.5 kN; i.e., C14n = 0.793C14.

Node 12:
As before for nodes 1, 2, and 3, wT8 166= mm , wT7 143= mm, the angle of inclina-
tion of strut C12, θ12 = 54.0°, and wC12

12 218 4= . mm. The nominal strength of strut 
C12, C12n = 555.2 kN, which is greater than the strut force, C12 = 508.9 kN. As for 
strut C13, the angle of inclination θ13 = 25.0°, and wC13

12 199 7= . mm, C13n = 508.0 kN, 
which is greater than the strut force, C13 = 485.9 kN.

Node 13:
As before for nodes 1, 2, and 3, wT11 166= mm , wT12 143= mm , the angle of inclina-
tion of strut C14, θ14 = 25.0° and wC14

13 199 7= . mm. The nominal strength of strut C14, 
C14n = 508.0 kN, which is greater than the strut force, C14 = 486.5 kN. As for strut 
C15, the angle of inclination θ15 = 54.0°, and wC15

13 218 4= . mm; then, C15n = 555.2 kN, 
which is greater than the strut force, C15 = 508.9 kN.

Node 15:
As before for nodes 1, 2, and 3, wT11 166= mm , wT2 90= mm , the angle of incli-
nation of strut C13, θ13 = 25.0° and wC13

15 151 7= . mm. The nominal strength of 
strut C13, C13n = 385.7 kN, which is less than the strut force, C13 = 485.9 kN; i.e., 
C13n = 0.794C13.

Node 16:
Since the bearing stress has been checked before, there is no need to check it again. 
The width of the prismatic strut C18 can be obtained by assuming that the force in 
the strut is equal to its nominal strength; then, C wn C18 300 1 23 55 18018= = × ×. .kN , 
which gives wC18 70 8= . mm. The angle of inclination of strut C16, θ16 = 76.6°; hence, 
its width,

wC16

16
16 16100 70 8 113 7= + =sin . cos .θ θ mm. Then, the nominal strength of the 

strut,
C16n = 17.66# × 113.7 × 180 = 361.4 kN, which is less than the strut force, 

C16 = 422.7 kN; i.e., C16n = 0.855C16.
From obtained results all model elements are safe except elements C10, C13, C14, 

and C16, with C14 the most critical, C14n = 0.793C14. Therefore, the load P should 
be reduced to 79.3% of the calculated value; i.e., the predicted collapse load from 
the STM, PSTM = 0.793 × 598 = 474.2 kN. Since the measured collapse load was 
555.0 kN; then, the predicted collapse load from the STM is 85.4% of the measured 
value in the test.

In the preceding calculations it has been assumed that bottle-shaped struts have 
adequate reinforcement to resist the transverse tension, which should be verified. 
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However, with the obtained beam capacity from STM, the forces in all elements have 
been reduced to 79.3% of the calculated value, which makes the check unnecessary 
for all struts that attained nominal strength exceeding their original forces (the ratio 
between the strength of struts without transverse reinforcement to that with adequate 
transverse reinforcement is 0.8). To this, only struts C10, C13, C14, and C16 need to be 
checked. Upon checking these latter struts it is found that they have adequate trans-
verse reinforcement.
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5 Deep Beams

5.1  INTRODUCTION

As per ACI 318-14, each shear span, av, of the beam in Figure 5.1a, where av < 2h, 
is a D-region. If two D-regions overlap or meet as shown in Figure 5.1b, they can 
be considered as a single D-region for design purposes. The maximum length-to-
depth ratio of such a D-region would approximately equal 2. Thus, the smallest angle 
between the strut and the tie in a D-region is tan−1(1/2) = 26.56°, rounded to 25°. If 
there is a B-region between the D-regions in a shear span, as shown in Figure 1c, 
the strength of the shear span is governed by the strength of the B-region if the B- 
and D-regions have similar geometry and reinforcement. This is because the shear 
strength of a B-region is less than that of a comparable D-region.

In most building codes, the conventional approach of shear design of deep 
beams is based on some empirical equations in which the nominal shear strength, 
Vn, includes two parts: the concrete contribution, Vc, and the steel contribution, Vs. 
Separate equations are introduced for both. Though this approach is easy to apply, 
it ignores the interaction between Vc and Vs, whereas the strut-and-tie model, STM, 
satisfies this goal.

This chapter covers the design of deep beams, either simply supported, continu-
ous or corbels, top or bottom loaded, directly or indirectly supported. The chap-
ter starts with the modeling of simply supported deep beams and continuous deep 
beams. Applications to simply supported deep beams are given to cover different 
types of models. Bottom loaded deep beams and deep beam with ledge are covered 
as well. Deep beams with indirect supports are discussed too. Applications to con-
tinuous deep beams, top or bottom loaded, are given. The final part of the chapter 
is devoted to brackets and corbels, where the modes of failure and modeling of dif-
ferent corbel problems are discussed. In addition, the detailing of critical nodes is 
examined, a step by step design procedure is illustrated, and the assessment of the 
web reinforcement of corbels is explained. An example on strength assessment of 
double corbel is given at the end. The failure criteria adopted by the ACI 318-14, as 
illustrated in Chapter 3, is applied to all the examples of this chapter.

5.2  MODELING

5.2.1 S imply Supported Deep Beams

On the basis of the shear span-to-depth ratio, three STMs are considered: Type I, 
Type II, and Type III, Figure 5.2. Types I and II cover deep and short beams, respec-
tively, and Type III deals with slender beams. In Type I, a direct STM is utilized, 
whereas a fan- or arch-action model is used in Type II. The choice between the two 
types I and II in some cases is controlled by the shear span-to-depth ratio, a/d, pres-
ence of vertical web reinforcement, and the concrete strength.
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In Type I (direct model), the load is transferred from the loading point to the sup-
port directly by only one compression strut, and thus no direct account is taken for 
the forces that may exist in any vertical web reinforcement as shown in Figure 5.2a. 
The presence of such reinforcement will only contribute to the strength of the diago-
nal strut by participating in the resistance of transverse tension of this strut. Type II 
may be divided into two subtypes: arch- and fan-action, and this model is usually 
applied to beams where the shear span-to-depth ratio is within the range 1.5–2.0. 
In Type II arch-action, Figure 5.2b(i), the load is transferred by struts forming an 
arch mechanism with vertical web reinforcement acting as a single tie. In Type II 
fan-action, Figure 5.2b(ii), the load is transferred to the supports by a combination of 
major and minor compression struts. Therefore, hanger reinforcement is required to 
return the vertical components of forces developed in the minor compression struts 
to the top of the member. In Type III (which exists when the shear span-to-depth 
ratio a/d exceeds 2.0), the load is transferred across a strut-and-tie system which has 
an arch- or fan-action model as shown in Figure 5.2c.

5.2.2 C ontinuous Deep Beams

In simple deep beams, the region of high shear coincides with the region of low 
moment. On the other hand, in continuous deep beams, the regions of high shear and 
high moment coincide and failure usually occurs in these regions. Hence, the failure 
mechanisms of continuous deep beams are different from those of simply supported 
deep beams. Continuous deep beams are divided into two major groups according to 
their loading conditions: top and bottom loading. Top loaded continuous deep beams 
are commonly used in reinforced concrete buildings, while indirectly loaded or bot-
tom loaded deep beams are widely used as cross-girders, for example, in concrete 
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D-region D-region
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hh
h h

h h
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av ≤ 2h

(a) (b)
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av ≤ 2h av ≤ 2h

av > 2hav > 2h

av ≤ 2h≤ 2h

Min. of 25 deg

FIGURE 5.1  Description of deep and slender beams: (a, b) deep beams and (c) slender beam.
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bridges and water tanks. The two groups behave differently under the same applied 
loads.

Considering the effect of negative moment at interior supports, continuous deep 
and short beams can be simply modeled utilizing Type I, Figure 5.3, and Type II, 
Figure 5.4, models (El-Shora, 2005; El-Zoughiby et al., 2013). For simplicity sake 
and since the Type II model, Figure 5.4, requires more complex calculations, the 
Type I model may be the first choice in the design of continuous beams.

5.3  APPLICATIONS TO SIMPLY SUPPORTED DEEP BEAMS

5.3.1 �E xample 5.1: Type I Model for Strength Assessment 
of Beam under Two Point Loads

The normal strength concrete simple deep beam 0A0-48, Figure 5.5a, tested by 
Smith and Vantsiotis (1982) under two top point loads, is analyzed in this exam-
ple for the collapse load. The proposed STM is illustrated in Figure 5.5b and c, 
in which the load is transferred directly from the two point loads at the top to the 
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FIGURE 5.2  The strut-and-tie modeling of simple deep beams: (a) Type I direct model, 
(b) Type II: (i) arch-action and (ii) fan-action, and (c) Type III: (i) arch-action and (ii) fan-action.
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bottom supports through the concrete struts C2. With reference to Figure 5.5, the 
beam height, h = 356 mm, depth, d = 305.2 mm, breadth, b = 102 mm, the width of 
the bearing plates, b1 = b2 = 102 mm, the shear span, a = 304.3 mm, and the beam 
effective length, L = 811.8 mm. The shear span-to-depth ratio, a/d ≈ 1.0. The ten-
sion steel, As = 3φ16 mm. The concrete cylinder strength is ′ =fc 20 9. MPa  and the 
steel yield stress is fy = 421.5 MPa. The solution is given in the next steps, in which 
the beam’s own weight is neglected.

Reactions:
With reference to Figure 5.5a,

	 R R V1 3= = 	

h

(a)

(b)

h

FIGURE 5.4  Type II STM for continuous deep beams subjected to a single top point load: 
(a) arch-action model and (b) fan-action model.

h

(a)

(b)

(c)

h

h

FIGURE 5.3  Simplified STM for continuous deep beeams, Type I, subjected to: (a) a single 
top point load, (b) two top point loads, and (c) bottom loads.
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Model geometry and forces:
Assuming that the tension reinforcement, 3φ16 mm, reached the yield stress, the 
tension force,

	 T C f bwc C= × × = = = ′3 201 421 5 254 2 0 851 1. . .kN 	

where wC1  is the width of the horizontal strut C1. The value of wC1  is then 140.3 mm; 
thus, the lever arm, Ld = 305.2 − 0.5 × 140.3 = 235.1 mm.

The angle α = tan−1(235.1/304.3) = 37.69° > tan−1(1/2)
The force in strut C2 = T/cos α = 321.2 kN and the reaction R1 = V = 

T tan α = 196.4 kN.

Effective concrete strength of the struts:
The width of strut C1 was calculated based the conditions that it is prismatic and is 
connected between two C –C – C nodes; therefore, there is no need to check this strut.

For strut C2, f fce
s

c s= ′ = × × =0 85 0 85 20 9 0 60 10 66. . . . .*β MPa

h = 356 mm

h = 356 mm

(a)

(b)

(c)

a = 304.3 mm

a = 304.3 mm

V V
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25.4

28.6
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C2

C2

WT
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T

Node 1

Node 2

Ld

b2

T 31

C2

α

α

2 4

L = 811.8 mm

FIGURE 5.5  Details of the Type I model for a simple deep beam subjected to two top point 
loads: (a) beam, (b) STM, and (c) details of nodes 1 and 2.
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*Since strut C2 is a bottle-shaped stress field and there is no reinforcement to 
resist the transverse tension.

Effective concrete strength of the nodes:
Node 1 is a C − C − T node; thus, f fce

n
c n= ′ = × × =0 85 0 85 20 9 0 8 14 21. . . . .β MPa

Node 2 is a C − C − C node; thus, f fce
n

c n= ′ = × × =0 85 0 85 20 9 1 0 17 77. . . . .β MPa

Node 1:
The nominal value of the reaction is based on the bearing strength, which leads to 
R1n = 14.21 × 102 × 102 = 147.8 kN

The strength of strut C2 is based on the smaller of the node strength (14.21 MPa) 
and the strut strength (10.66 MPa); thus, the strut strength will govern. The height of 
this node is assumed ≈102 mm since the center of the tension T is at 50.8 mm ≈ 51 mm 
from the bottom fibers; this height is to be verified. The width of strut C2 at this node is

	 w b wC T2

1
1 102 102 143 1= + = + =sin cos sin cos .α α α α mm 	

Thus, the nominal strength of strut C2 at this node is C2n = 155.6 kN.

Node 2:
The nominal value of the load, Vn = 17.77 × 102 × 102 = 184.9 kN, which is less than 
force V. The strength of strut C2 is based on the smaller of the node strength (17.77 kN) 
and the strut strength (10.66 MPa); thus, the strut strength will govern. The width of strut 
C2 at this node is w b wC C2 1

2
2 102 140 3 173 4= + = + =sin cos sin . cos .α α α α mm . 

Thus, the nominal strength of C2n is 188.5 kN.
Take the smaller strength of the two values of C2 calculated at the two connecting 

nodes; thus, the nominal strength of strut C2n = 155.6 kN. The results of the calcula-
tions are summarized in Table 5.1

The weakest link in the model is strut C2 and it will govern the model strength. 
Therefore, in order to determine the model capacity, the model forces should be 
reduced to 48.4%. Hence, V = 0.484 × 196.4 = 95.1 kN and the STM beam capacity, 
PSTM = 2V = 190.2 kN. The actual collapse load of the beam, PEXP = 272.2 kN; hence,

	
P PSTM EXP/ = =

190 2
272 2

0 70
.
.

.
	

TABLE 5.1
Example 5.1: Summary of Calculation Results

Member Force (kN) Capacity (kN) Satisfaction

C1 254.2 254.2 Yes

C2 321.2 155.6 No, 48.4%

V 196.4 184.9 No, 94.2%

R1 196.4 147.8 No, 75.3%
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According to the STM results, failure had occurred due to the crushing of the 
concrete strut C2 and it is a diagonal shear failure.

Since there is a significant discrepancy between the ratios of the strengths to the 
forces in Table 5.1, it is possible to reduce such discrepancy and improve the solution 
accuracy by going through an iterative procedure. From the solution results, it is real-
ized that the forces T and C1 did not reach their nominal values; hence, the iterative 
procedure starts with assuming a new value for each of the two forces, which is about 
the average between their nominal values and their values at the end of the solution. 
The new assumed values are

	 T C= = + × =1 0 5 1 0 484 254 2 188 6. ( . ) . . kN 	

Upon redoing the calculations, wC1 104 1= . mm , Ld = 253.2 mm, α = 39.76°, 
C2 = 245.3 kN, R1 = V = 156.9 kN, wC2

1 143 7= . mm, wC2

2 145 3= . mm, C2n = 
158.0 kN, Vn = 184.9 kN, and R1n = 147.8 kN. A summary of the calculation results 
is given in Table 5.2.

Finally, V = 0.644 × 156.9 = 101.0 kN and the STM beam capacity, PSTM = 
2V = 202.0 kN.

	
P PSTM EXP/ = =

202 0
272 2

0 74
.
.

.
	

5.3.2 E xample 5.2: Design of a Wall-Type Column

This example covers the design of a wall-type column, Figure 5.6a, which carries 
13 floors, one floor at the wall bottom plus 12 floors above. The 13 floors give a total 
factored load as shown in the figure. The effective span between the supporting col-
umns is 2.22 m, and therefore the height of the D-region, h, is assumed to be equal 
to 2.22 m.

From equilibrium, the reactions of the wall columns, RA and RB, can be calcu-
lated. The appropriate STM is shown in Figure 5.6b, but with the assumption that the 
full load is applied at the top of the D-region. As part of the load act at the bottom 
of the D-region, additional vertical reinforcement will be provided in order to carry 
such load to the top of the D-region. In the model, the lever arm, z, is assumed to be 
equal to 0.6h = 1.33 m. The solution should proceed as usual.

TABLE 5.2
Example 5.1: Summary of Calculation Results of the Iteration

Member Force (kN) Capacity (kN) Satisfaction

C1 188.6 188.6 Yes

C2 245.3 158.0 No, 64.4%

V 156.9 184.9 Yes

R1 156.9 147.8 No, 94.2%
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The reinforcement required to hang the load of the lowest slab can be calculated 
from the largest load ordinate of this floor between the two columns, 224.8 kN/m, 
which requires 714 mm2/m, assuming fy = 420 MPa. This vertical reinforcement 
should be added to the vertical web reinforcement required for struts C2 and C3.

From the model geometry, the angles θA = 71.7° and θB = 76.6°, the reactions 
RA = 3365.2 kN and RB = 4664.8 kN, the tension T = 1113.3 kN, and the forces in 
struts C2 and C3 are 3544.6 kN and 4795.4 kN, respectively. The tension T requires a 
reinforcement of 3529.7 mm2 = 10φ22. Of course, a part of the lowest slab reinforce-
ment in the direction of T and close to the wall can contribute to the reinforcement of 
this tie. The two struts C2 and C3 require web reinforcement to resist the transverse 
tension. As a result of the large values of the angles θA and θB, reliance will mainly be 
on the reinforcement in the horizontal direction in resisting this transverse tension. 
A choice of bars of diameter 22 mm every 140 mm horizontally and bars of diameter 
16 mm every 200 mm vertically, on both sides, will be just sufficient to carry both 
the tranverse tension and to hang the load of the lowest slab.

5.3.3  Application of a Type II Arch-Action Model

In this model, Figure 5.2b(i), the influence of the horizontal web reinforcement is 
ignored, but the vertical web reinforcement is considered as a vertical tie at the 
middle of the shear span. The model is illustrated in more detail in Figure 5.7. The 
calculation procedure of this model starts with assuming some geometrical param-
eters, which is illustrated next.

With reference to Figure 5.7, the height of the tie T3, wT3, can be assumed from

	 w c n n sT str bars3 2 1= + + + −( ) ( )φ φ 	

where c is the concrete cover, φstr is the diameter of stirrups, n is the number of 
reinforcement rows, and s is the clear spacing between rows. If the width of strut 
C4, wC4, can be assumed to be equal to 0 8 3. wT , the lever arm, Ld, can be assumed, 
L d wd C= −0 5 4. . The length of tie T1, LT1 , can be assumed to be equal to 0.5a, where 

8030 kN(a) (b)

2300 kN 2300 kN3200 kN 3200 kNFloor #2

Floor #1

h = 2220 h = 2220
2920

500 1520

2220 2220
RA = 3362.20 kN

RA

1342 1578

RB = 4664.80 kN

RB

RA RB

Z1

C1

C3
θBθA

C2

T
Z = 0.6 h

900

690 767

FIGURE 5.6  Example 5.2—Wall-type column: (a) elevation and (b) STM.
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a is the shear span, since the location of T2 is at the center of the vertical reinforce-
ment within the shear span. The length of tie T2, LT2 , can be assumed as

	 L kLT d2 = 	

where k (strut factor) measures the inclination of the struts C1 and C2. According to 
Tan et al. (1997), k is given by

	 k a d a d= + < <0 40 0 20 0 50 2 5. . ( ) . ( ) ./ for / 	 (5.1)

Thus, the angles α1, α2, and α3 can be estimated. Alternatively, the angles α1, α2, 
C1, and C2 can be determined from the equilibrium of nodes 1 and 2 and from the 
model geometry, as will be illustrated in Example 5.3.

Figure 5.8 shows a simple reinforced concrete deep beam subjected to a single 
top point load along with the proposed STM. In this model, the tension ties T1 and 
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V
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(b)

(c)
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Node 3

Node 4

Node 1
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T1

FIGURE 5.7  Details of the Type II arch-action model for a simple deep beam subjected to 
two top point loads: (a) STM, (b) details of the STM, and (c) details of nodes N1 and N2.
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T3 represent the main longitudinal reinforcement, while the vertical reinforcement 
is represented by the tie T2. This model is similar to the previous model after the 
omission of the horizontal strut. The calculation procedure is illustrated by Example 
5.3 in the next section.

Figure 5.9 shows a simple deep beam subjected to two bottom point loads along 
with the proposed Type II arch-action model. The main longitudinal reinforcement 
is represented by the two ties T3 and T4. The tie T1 represents the vertical reinforce-
ment and the tie T2 is used to transfer the bottom load to the top of the beam, to node 
4. In this model, if the height of node 1 can be assumed as wT3 , the width of the 
horizontal strut C4 can be assumed as w kwC T4 32= , where k as stated before is the 
strut factor which defines the inclination of struts C1 and C2 and is given by Equation 
5.1. Nevertheless, the designer can assume any reasonable value of wC4  and verify it 
during the course of analysis. The remaining parameters, α1, α2, C1, and C2, can be 
determined from the equilibrium of nodes 1 and 2 and from the model geometry, as 
will be illustrated in Example 5.3.

5.3.4 �E xample 5.3: A Type II Arch-Action Model for Strength 
Assessment of a High Strength Concrete Deep Beam

A Type II arch-action model is applied to the HSC deep beam (B3.0-1), Figure 5.10a, 
tested by Foster and Gilbert (1998) under a top single point load. The beam model 
is illustrated in Figure 5.10b. In this model, the effect of the horizontal web rein-
forcement is neglected. The beam size: height, h = 700 mm, depth, d = 624 mm, 

V
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V

P

FIGURE 5.8  Type II arch-action model for a simple deep beam under a single point load.
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FIGURE 5.9  Details of the Type II arch-action model for a simple deep beam subjected to 
two bottom point loads.
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breadth, b = 125 mm, the width of the bearing plates, b1 = b2 = 250 mm, the shear 
span, a = 1175 mm, and the beam effective length, L = 2350 mm. The shear span-
to-depth ratio, a/d = 1.88. The main tension steel is As = 6φ20 mm, the vertical 
web reinforcement is Asv = 13 × 2φ6.3 mm (horizontal spacing = 75 mm), and the 
horizontal web reinforcement is Ash = 3 × 2φ6.3 mm (vertical spacing = 135 mm). 
The concrete cylinder strength is ′ =fc 80 0. MPa , the main steel yield stress is 
fy = 440 MPa, and the vertical web steel yield stress is fyv = 590.0 MPa. The solu-
tion is given in the next steps, in which the beam’s own weight is neglected.

The STM Geometry and forces:

	 w h dT1 2 2 700 624 152= − = − =( ) ( ) mm 	

or with reference to Figure 5.10, the height of node 1, or tie T1, wT1 , can be assumed 
as

	 w w h dT T1 3 2 2 700 624 152= = − = − =( ) ( ) mm 	

Upon assuming that the reinforcement of the tie T3 yielded, then,

	
T f Ay s3 440 0 1885 0 829 4= × = × =. . . kN
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FIGURE 5.10  Example 5.3—A Type II arch-action model for a simple deep beam subjected 
to a top point load: (a) beam, (b) visualized STM, and (c) part STM.
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The height of node 4, w4, can be assumed with the aid of T3, 
w T f bc4 3 0 85 97 6 98= ′ = ≈/ mm mm. . .

Then the lever arm, Ld, can be approximately assumed as, Ld ≈ d − 0.5w4 = 624 
− 0.5 × 98 = 575 mm.

	 tan . ( . ) . , .α α3 2 30 5 0 25 1 034 45 95= − = =L a bd  that is, o

	

Upon assuming that the reinforcement of the tie T2 yielded, then,

	
T f Ayv sv2 590 0 374 220 7= × = × =. . kN

	

The vertical web reinforcement is 13 stirrups, the middle stirrup is neglected and 
the 6 stirrups on either side contribute to T2.

From equilibrium of node 3,

	 C3 = T2/sin α3 = 307.1 kN

	 T1 = T3 − C3 cos α3 = 615.9 kN

The remaining parameters, α1, α2, C1, and C2, can be determined as follows.
From equilibrium of node 1,

	 C T1 1 1= / cosα 	 (5.2)

From equilibrium of node 2,

	 C C2 1 1 2= cos cosα α/ 	 (5.3)

	 C T C1 1 2 2 2sin sinα α= + 	 (5.4)

Upon utilization of Equations 5.2 and 5.3 to eliminate C1 and C2 from Equation 5.4, 
the following equation is obtained

	 tan tan . . .α α1 2 2 1 220 7 615 9 0 358− = = =T T/ / 	 (5.5)

From geometry,

	 tan . ( . )α1 22 0 5 0 25= −L a bT / 	 (5.6)

where LT2
 is the length of tie T2.

	
tan . ( . )α2 22 0 5 0 25= −( ) −L L a bd T / 	 (5.7)

Upon adding Equations 5.6 and 5.7,

	 tan tan ( . ) .α α1 2 22 0 25 1 034+ = − =L a bd / 	 (5.8)
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Upon solving Equations 5.5 and 5.8,

	 α α1 234 83 18 68= ° = °. . .and 	

Then the following can be obtained,

	 C C V1 2750 3 650 1 428 5= = =. , . .kN kN and kN. 	

Effective concrete design strength of the struts:
All struts are bottle-shaped stress fields; therefore, for all struts f fce

s
c s= ′ =0 85. β

0 85 80 0 0 6 40 8. . . .× × = MPa

Effective concrete design strength of the nodes:
Nodes 1 and 2 are C − C − T nodes; thus, f fce

n
c n= ′ = × × =0 85 0 85 80 0 0 8 54 4. . . . .β MPa

Node 3 is a C − T − T node; thus, f fce
n

c n= ′ = × × =0 85 0 85 80 0 0 6 40 8. . . . .β MPa
Node 4 is a C − C − C node; thus, f fce

n
c n= ′ = × × =0 85 0 85 80 0 1 0 68 0. . . . .β MPa

Node 1:

The bearing stress = 
428 5 10
250 125

13 71 54 4
3.

. .
×

×
= < =MPa MPafce

n , which is O.K.

For the section at the interface between strut C1 and the node, the design strength 
should be the smaller of the node strength (54.4 MPa) and the strut strength 
(40.8 MPa); thus, the strut strength will govern.

Node 1 can be considered as an extended nodal zone as a result of the heavy 
horizontal stirrups provided in the short column and extruded within the beam. 
Then  the  width of strut C1 at this node = b wT1 1 11 267 6sin cos .α α+ = mm. This 
gives a nominal strength of the strut equal to 1364.5 kN.

Nodes 2 and 3:
These two nodes need not be checked, since node 2 is a smeared node and node 3 
is very wide.

Node 4:

The bearing stress = 
2 428 5 10

250 125
27 42 54 4

3× ×
×

= < =
.

. .MPa MPafce
n , which is O.K.

The struts C2 and C3 connected to the node, Figure 5.10b and c, are replaced with 
their resultant, RC C2 3, , in order to simplify the solution.

	

R C C C CC C2 3 2 2 3 3
2

2 2 3 3
2

2 2829 4 428 9

, ( cos cos ) ( sin sin )

. .

= + + +

= +

α α α α

== 933 8. kN 	

and the angle of inclination with the horizontal, αC C2 3

1 428 9 829 4 27 34, tan . . .= = °− / . 
The strength of the resultant strut is the same as that of all other struts, 40.8 MPa. The 
required width of the strut, wC C2 3 933 8 10 125 40 8 183 13

, ( . ) . ) .= × × =/( mm, which 
requires a height of node 4, w4 = 141.5 mm, w wC C C C C C2 3 2 3 2 3125 4, , ,sin cos= +α α . 
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This required value of w4 is larger than the assumed value, 98 mm. Therefore, an 
iterative process should be followed using this last obtained value of w4 and the cal-
culations are repeated. Upon assuming a value of w4 = 140.0 mm and repeating the 
calculation process, the following values are obtained: Ld = 554 mm, α3 = 44.88°, 
T2 = 220.7 kN, C3 = 312.8 kN, T1 = 607.8 kN, α1 = 34.2°, and α2 = 17.56°, 
C1 = 734.9 kN, C2 = 637.5 kN, and V = 413.1 kN. All the bearing stresses are safe. 
The width of strut C1 upon considering the extended nodal zone = 266.2 mm. Thus, 
the nominal strength of strut C1 is 1357.8 kN.

RC C2 3 829 4 413 1 926 62 2
, . . .= + = kN and the angle of inclination with the 

horizontal, αC C2 3 26 474, .= °. The required width of the strut, wC C2 3 181 7, .= mm, 
which requires a height of node 4, w4 = 140.7 mm, very close to the assumed value.

The force V = 413.1 kN (less than the nominal strength); hence, PSTM = 
2 × 413.1 = 826.2 kN. The measured collapse load of the beam was PEXP = 1020 kN. 
Thus,

	 P PSTM EXP/ /= =826 2 1020 0 81. . 	

This beam has been analyzed using the Type I model (direct model) and the 
obtained nominal strength PSTM was 0.77PEXP .

5.3.5  Application of the Type II Fan-Action Model

In this model, Figure 5.11, the influence of the horizontal web reinforcement is 
ignored; on the other hand, the vertical web reinforcement is accounted for by a ver-
tical tie in the middle of the shear span. The numerical scheme for the analysis of the 
Type II fan-action is, in general, similar to that of the Type II arch-action. In order to 
start the calculation procedure, the designer has to assume the height of the tension 
ties T1 and T3, and the width of the compression strut C5. In checking the nodes, only 
nodes 1 and 4 need to be checked since the size, horizontal dimension, of either node 
2 or 3 is large enough to make it safe.

2 C4 C5

C1

T1 3

C3

T3

V V

V V

4

a

C2

1

T2

FIGURE 5.11  A Type II fan-action model for a simple deep beam subjected to two top point 
loads.
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5.4  BOTTOM LOADED DEEP BEAMS

5.4.1 E xample 5.4: Design of a Top and Bottom Loaded Deep Beam

It is required to determine the reinforcement for the simply supported beam shown in 
Figure 5.12a if subjected to a top and bottom load q = 180 kN/m. The concrete cyl-
inder strength is ′ =fc 30 MPa and the steel yield stress is fy = 420 MPa. The beam 
width is 300 mm. The solution is given in the next steps, in which the beam’s own 
weight is neglected.

Reactions:
With reference to Figure 5.12a,

	 R RA B= = × × =( ) ( . )180 2 5 6 2 1008/ kN 	

Establish an STM:
This beam is subjected to a distributed load and the span is less than twice the depth; 
therefore, the entire beam is considered a D-region, that is, deep beam. The appropriate 
STM is shown in Figure 5.12b, in which the lower nodes are assumed to coincide with 
the centerlines of the supporting columns and are located at the expected centroid 
of reinforcement; in this example, the distance from the center of reinforcement to 
the edge of the beam is assumed to be equal to 100 mm. For this beam, the lever 
arm z is chosen within 0.6h − 0.7h, where h is the beam height, but z should not be 
greater than 0.4l, where l is the beam span, refer to the standard D-regions D5 and 
D6; z = 2000 mm. Thus, the geometry of the STM will be as illustrated in the figure.

With reference to Figure 5.12b,
The force in strut C1 = q × (5.6/2) = 504.0 kN
The angle θA = tan−1(2000/1400) = 55.0° > 30.0°
The force in strut C3 = RA/sin θA = 1230.4 kN
The force in tie T1 = C3 cos θA = 705.7 kN
The force in strut C2 = T1 = C3 cos θA = 705.7 kN
The force in tie T2 = q × (5.6/2) = 504.0 kN
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FIGURE 5.12  Example 5.4—deep beam under top and bottom distributed loads: (a) beam 
and loads; and (b) STM.



116 Structural Concrete

Effective concrete design strength of the struts:
For simplicity in the calculation procedure, the strength reduction factor, φ = 0.75, 
is implemented in the design strength of the struts and the nodes, as illustrated 
next.

For strut C3 f fce
s

c s= ′ = × × × =φ β( . ) . . . .*0 85 0 75 0 85 30 0 75 14 34 MPa
*Transverse reinforcement to resist the lateral tension will be provided since strut 

C3 is a bottle-shaped stress field.
Struts C1 and C2 need not be checked since they are very wide.

Effective concrete design strength of the nodes:
Node A is a C − C − T node; thus, f fce

n
c n= ′ = × × × =φ β( . ) . . .0 85 0 75 0 85 30 0 8

15 30. MPa
Node C is very wide and therefore there is no need to check.

Node A:
The bearing stress = ( ) ( ) . .1008 10 300 400 8 40 15 303× × = < =/ MPaMPa fce

n , which is O.K.
For the section at the interface between strut C3 and the node, the design strength 

should be the smaller of the node strength (15.30 MPa) and the strut strength 
(14.34 MPa); thus, the strut strength will govern. The required width of strut C3, 
wC3 1230 4 10 300 14 34 286 03= × × =( . ( . ) .)/  mm.

The bearing width of the node is 400 mm, which gives a width of the 
strut = 400 sin θA = 327.7 mm, without any consideration to the extended nodal 
zone which gives an even larger strut width. Thus, the node is safe.

Tie T1:
The reinforcement required to resist the force of this tie is (604.8 × 103)/
(0.75 × 420) = 1920 mm2, which can be covered with 8 bars of diameter 18 mm, 
8φ18. This reinforcement should be extended in the node such that the anchorage 
length required to develop the force in the tie is satisfied.

Tie T2:
The reinforcement required to resist the force of this tie is (504.0 kN × 103)/
(0.75 × 420) = 1600 mm2, which can be covered with vertical skin reinforcement 
of an area 0.57 mm2/mm. Upon choosing vertical bars of diameter 12 mm every 
200 mm on each side, the reinforcement of the tie and the vertical reinforcement of 
strut C3 are covered.

Strut C3:
The strut strength has been checked for stresses during the check of node A. Since 
the stress field of this strut is bottle-shaped, transverse reinforcement of the strut is 
required to resist a total force TC3, where T CC3 3 2 1230 4 2 615 2= = =/ / kN. . . Thus, 
the total required reinforcement in perpendicular to the strut is (615.2 × 103)/
(0.75 × 420) = 1953 mm2. Select a skin reinforcement of diameter 12 mm every 
200 mm, both vertically and horizontally, on each side, equivalent to 1.13 mm2/mm 
vertically and horizontally. From the selected vertical reinforcement, 0.57 mm2/mm 
is used to hang the bottom load and the remaining 0.56 mm2/mm is utilized to 
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reinforce the strut. Then the strut reinforcement will be 0.56 × 1400 × sin θA + 
1.13 × 2000 × cos θA = 1938.5 mm2, which is very close to the required reinforce-
ment. Having in mind that the formula T CC3 3 2= /  is conservative, the selected skin 
reinforcement is thus adequate.

5.4.2 D eep Beam with a Ledge

Inverted-T bent caps, that is, beams with ledges, are typically used to support incom-
ing beams as shown in Figure 5.13. The use of beams with ledges allows a reduction 
in the overall height of the structure system, either in bridges or buildings. One of 
the main complications to the design of these beams is the behavior of the ledge. 
Traditionally, when designing the ledge of an inverted-T beam, or any other ledged 
member, there are five main types of failure that must be prevented, Figure 5.14:

	 1.	Direct shear friction failure at the interface between the ledge and the web
	 2.	Punching shear failure of the ledge at the point of loading

FIGURE 5.13  Bent cap.

4 2

3

5

1

FIGURE 5.14  Cross section and longitudinal view of a beam ledge showing the differ-
ent failure modes of the ledge (Garber et al., 2017): (1) shear friction, (2) punching shear, 
(3) yielding of hanger reinforcement, (4) ledge flexure, and (5) bearing capacity.
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	 3.	Failure of the hanger reinforcement (hanging the load up to the compres-
sion chord of the beam)

	 4.	Flexural failure of the ledge reinforcement
	 5.	Failure of concrete beneath the load point bearing

The STM can be used to design a ledge against these aforementioned failure 
mechanisms by proper modeling.

The use of a proper STM accounts for all of the possible failure mechanisms 
observed in practice. A 3D STM for an inverted-T deep beam is shown in Figure 5.15a. 
This 3D model can be broken down into two complimentary 2D models in the cross 
section and in the longitudinal directions, as shown in Figure 5.15b for the cross-
section model and Figure 5.15c for the longitudinal model. Upon considering the 
safety of struts, ties, and nodes of the STMs including bearing strength and adequate 
anchorage, the design should lead to a safe solution.

5.5  DEEP BEAMS WITH INDIRECT SUPPORTS

Sometimes deep beams are supported by or support other deep beams, as in the case 
of the two examples in Figure 5.16. For the tee-shaped deep beam in Figure 5.16a, the 
beam ABC is supported at B by a rigid support and at C by the indirect support from 
the perpendicular beam DE. For the 3D structure in Figure 5.16b, the deep beam I is 
supported by the two beams II, whereas each of these latter beams is supported by 
a column and beam III. For illustration of the design procedure of such systems, the 
two examples in Figure 5.16 are discussed next.

For the Tee-shaped deep beam in Figure 5.16a, the statical system is shown in 
Figure 5.17a and the applied loads and reactions are illustrated in Figure 5.17b. 

E F

A B

C D

(b)

(a)

(c)

FIGURE 5.15  STM of a beam with a ledge (Garber et al., 2017): (a) three-dimensional 
strut-and-tie model for an inverted-T beam; (b) two-dimensional cross-sectional model; and 
(c) two-dimensional longitudinal model.
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FIGURE 5.16  Examples of deep beams with indirect supports: (a) tee-shaped deep beam 
and (b) 3D structure. (Adapted from Schlaich, J. and Schäfer, K., The design of structural 
concrete, IABSE Workshop, New Delhi, 1993.)
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FIGURE 5.17  Statical system, loads, and reactions of the tee-shaped deep beam of 
Figure 5.16a: (a) statical system and loads, and (b) reactions. (Adapted from Schlaich, J. and 
Schäfer, K., The design of structural concrete, IABSE Workshop, New Delhi, 1993.) 
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In tracing the load path, Figure 5.18a, the shear forces along axis C are assumed to 
be uniformly distributed over the depth of the deep beam. The corresponding STM 
is given in Figure 5.18b.

For the 3D structure in Figure 5.16b, beam I is bottom loaded at the middle of 
the span and is indirectly supported by the two beams II. If the shear forces along the 
connection between beams I and II are assumed to be uniformly distributed over the 
depth of the beams, the load path and the corresponding STM will be as illustrated 
in Figure 5.19a. Thus, the orthogonal web reinforcement is utilized in the load trans-
fer. Alternatively, the shear forces resultant can be assumed to act near the bottom 
where the bottom tension reinforcement may be extended, as shown in Figure 5.19b, 
leading to the STM in the figure. However, this model is associated with difficulty 
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FIGURE 5.18  Load path, loads, and STM of the tee-shaped deep beam of Figure 5.16a: 
(a) load path and loads and (b) STM. (Adapted from Schlaich, J. and Schäfer, K., The design 
of structural concrete, IABSE Workshop, New Delhi, 1993.)
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in anchoring the reinforcement at the lower nodes, leading to the need for anchoring 
plates. The solutions for deep beams II and III of this three-dimensional structure 
are given in Figures 5.20 and 5.21.

5.6  APPLICATIONS TO CONTINUOUS DEEP BEAMS

5.6.1 �E xample 5.5: Strength Assessment of Top 
Loaded Beam Using Type I Model

The nominal strength of the NSC continuous deep beam (CDB1) subjected to a sin-
gle top point load in every span, Figure 5.22a, tested by Ashour (1997) is assessed 
in this example. The beam height: h = 625 mm, depth, d = 585 mm, breadth, 
b = 120 mm, the width of the bearing plates b1 = 120 mm, and b2 = b3 = 250 mm. 
The shear span, a = 660 mm. The shear span-to-depth ratio, a/d = 660/585 = 1.12. 
The  tension steel, As1 = 4φ12 mm and As2 = 4φ12 + 2φ10. The concrete cylinder 
strength is ′ =fc 30 6. MPa  and the steel yield stress is fy = 480 MPa. The solution is 
given in the next steps.

Geometrical parameters:
The solution procedure starts with assuming some geometrical parameters. Since 
the reinforcement detailing allows the use of an extended nodal zone, the height of 
node 1, wT1 ,
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FIGURE 5.19  Deep beam I of the 3D structure of Figure 5.16b: (a) bearing forces, loads, 
load path and corresponding STM, (b) alternative load path, and corresponding STM. (Adapted 
from Schlaich, J. and Schäfer, K., The design of structural concrete, IABSE Workshop, 
New Delhi, 1993.)
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	 w t dT1 2 2 625 585 80= − = − =( ) ( ) mm 	
or

	
w c n n sT stirrup bars1 2 1= + + + −( ) ( )φ φ

	

The height of the tie in the upper node, node 2, wT2,

	
w c n n sT stirrup bars2 2 1 2 10 8 2 12 1 10 2 10 9= + + + − = + + × + × + × =( ) ( ) ( ) ( )φ φ 00mm
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FIGURE 5.20  Bearing forces, loads, and load path and STM of deep beam II of the 3D structure 
of Figure 5.16b: (a) bearing forces, loads, and load path and (b) STM. (Adapted from Schlaich, J. 
and Schäfer, K., The design of structural concrete, IABSE Workshop, New Delhi, 1993.)
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Then the lever arm Ld is

	 L d wd T≈ − × = − × =0 5 585 0 5 90 5402. . mm 	

The angle
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FIGURE 5.21  Load path and STM of deep beam III of the 3D structure of Figure 5.16b 
(Schlaich and Schäfer, 1993): (a) bearing forces, loads and load path; and (b) STM.
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FIGURE 5.22  Details of STM for top loaded continuous deep beam CDB1 subjected to 
single point load: (a) beam, (b) STM.� (Continued)
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Reactions:
From linear elastic analysis,

	 V P1 0 313= . 	

	 V P2 1 375= . 	

Model geometry and forces:
The model of the beam is shown in Figure 5.22b. Assuming that the tension 
reinforcement As1 of tie T1 and As2 of tie T2 reach their yield stress,
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FIGURE 5.22 (Continued)  Details of STM for top loaded continuous deep beam CDB1 
subjected to a single point load: (c) details of the model, (d) details of nodes 1, 2, and half node 
3, and (e) details of the detailed model.
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	 T1 480 4 113 217= × × = kN 	

	 T2 480 4 113 2 78 5 292 4= × × + × =( . ) . kN 	

The strut force C1 = T1/cos α1 = 292.5 kN
The reaction V1 = C1 sin α1 = 196.1 kN
Since V1 = 0.313P from linear elastic analysis, the load P is then P = 

V1/0.313 = 626.7 kN
Then V2 = 1.375P = 861.7 kN
From equilibrium of node 3, the strut force C2 = 0.5V2/sin α2 = 606.4 kN
From equilibrium of node 2, the tie force T2 = C2 cos α2 − C1 cos α1 = 209.8 kN, 

which is less than the previously calculated value assuming yielding of the tie 
reinforcement.

Effective concrete strength of the struts:
The effective concrete strength of a strut, f fce

s
c s= ′0 85. β

For a prismatic strut, fce
s = × × =0 85 30 6 1 0 26 01. . . . MPa

For a bottle-shaped strut with sufficient reinforcement to resist the transverse 
tension, fce

s = × × =0 85 30 6 0 75 19 51. . . . MPa

Effective concrete strength of the nodes:
The effective concrete strength of a node, f fce

n
c n= ′0 85. β

For the C − C − C node, fce
n = × × =0 85 30 6 1 0 26 01. . . . MPa

For the C − C − T node, fce
n = × × =0 85 30 6 0 8 20 81. . . . MPa

Check the bearing of the nodes:
For node 1, the nominal value of the reaction, V1n = 20.81 × 120 × 120 = 299.7 kN, 
which is greater than the force V1, V1 = 196.1 kN.

For node 2, the nominal value of the load Pn = 20.81 × 120 × 250 = 624.3 kN, 
which is close to the force P, P = 626.7 kN.

For node 3, the nominal value of the reaction, V2n = 20.81 × 120 × 250 = 624.3 
kN, which is less than the force V2 . V2 = 861.7 kN. Therefore, the force V2 should be 
reduced to the value of V2n, that is, V2 = 624.3 kN. Hence, the load P is then reduced 
to P = V1 + 0.5V2 = 508.3 kN and the strut force C2 is subsequently reduced to 
C2 = 439.4 kN. The force in tie T2 is further reduced to T2 = 92.2 kN.

Refinement of the model geometry and forces:
With reference to Figure 5.22c, the width of the tension tie T2, wT2 , at node 2 should not 
exceed a value w T f bT ce

n
2 2

392 2 10 20 81 120 36 9max . ( . ) .= ( )= × × =/ / mm; therefore, 
consider wT2 38≈ mm. The width of the prismatic strut C*, wC*, can be obtained as  
C T kN f w b wce

s
C C

*
* *.= = = × × = × ×1 217 26 01 120, giving wC* = 69.52 mm ≈ 70 mm.

The strut C2 is split into two components C21 and C22, with C21 equilibrating the 
force C1 and a part of the load P at node 2 and equilibrating the force T1 and a part 
of the reaction V2 at node 3. The force C22 equilibrates the force T2 and a part of the 
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load P at node 2 and equilibrates the force C** and a part of the reaction V2 at node 
3. Subsequently, the vertical force V2 is split into two vertical components V21 and 
V22. This will lead to the detailed STM shown in Figure 5.22e, with geometrical 
relations and forces calculated upon applying equilibrium at the nodes. For instance, 
for obtaining C21 and α21, we start by assuming α21 ≈ α2; then, from horizontal 
equilibrium at the nodes, C21 can be calculated. Next, from vertical equilibrium, V21 
is calculated, followed by the assessment of the center of V21 at nodes 2 and 3. Next, a 
better estimate of α21 can be obtained followed by calculating C21, V21, and the center 
of V21 at nodes 2 and 3, until convergence takes place. Then the component V22 and 
the center of V22 at nodes 2 and 3 can be determined, followed by estimating α22, T2, 
and C22.

Finally, the following forces and geometrical parameters are obtained.
α1 = 41.19°, α21 = 42.85°, α22 = 43.22°, V1 = 189.9 kN, V21 = 201.3 kN, 

V22 = 110.9 kN, T1 = C* = 217.0 kN, T2 = C** = 118.0 kN, C1 = 288.4 kN, 
C21 = 296.0 kN, and C22 = 161.9 kN.

Check of Stresses:
Node 1:
Since the bearing stress has been checked before, there is no need to check it again. 
For strut C1, wC1

1
1 1120 80 139 2= + =sin cos .α α mm . Then the nominal strength 

of the strut is C1n = 19.51# × 120 × 139.2 = 326.0 kN (#the smaller of the node 
strength and the strut strength), which is greater than the strut force. A check of the 
web reinforcement will be carried out later for all struts.

Node 2:
Since the bearing stress has been checked before, there is no need to check it again.

For sub-node 21, the width of strut C1, wC1

21
1 1100 70 118 5= + =sin cos .α α mm . 

Then the nominal strength of the strut is C1n = 19.51 × 120 × 118.5 = 277.5 kN, 
which is less than the strut force, C1n = 96%C1. There is no need to check the pris-
matic strut C* since this step was considered during the estimate of the height of this 
sub-node.

For sub-node 22, the width of strut C21, wC21

22
21 2196 70 116 6= + =sin cos .α α mm. 

Then the nominal strength of the strut is C21n = 19.51 × 120 × 116.6 = 273.0 kN, 
which is less than the strut force, C21n = 0.92C21.

For sub-node 23, the width of strut C22, wC22

23
22 2254 38 64 7= + =sin cos .α α mm. 

Then the nominal strength of the strut is C22n = 19.51 × 120 × 64.7 = 151.5 kN, 
which is less than the strut force, C22n = 0.94C22.

Node 3:
For sub-node 31, the width of strut C21, wC21

31
21 2180 80 113 1= + =sin cos .α α mm. 

Then the nominal strength of the strut is C21n = 19.51 × 120 × 113.1 = 264.7 kN, 
which is less than the strut force, C21n = 0.89C21.

For sub-node 32, the width of strut C22, wC22

32
22 2245 38 58 5= + =sin cos .α α mm. 

Then the nominal strength of the strut is C22n = 19.51 × 120 × 58.5 = 137.0 kN, 
which is less than the strut force, C22n = 0.85C22.

The load P = V1 + V21 + V22 = 502.1 kN, which is less than the nominal value 
Pn = 624.3 kN. Also, all bearing stresses are safe. From the obtained results 
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the critical members are C1, C21, and C22, while the other members attain nomi-
nal strength greater than their forces. Since all the bearing stresses are safe, the 
values of V1, V21 and V22 should be reduced according to the nominal strength 
of C1, C21 and C22, respectively. This gives V1 = 0.96 × 189.9 = 182.3 kN, 
V21 = 0.89 × 201.3 = 179.2 kN and V22 = 0.85 × 110.9 = 94.3 kN. This leads to a 
value of P = 455.8 kN; i.e., the nominal strength from the STM, 2P = 911.6 kN. 
Since the measured collapse load was 2P = 1100.00 kN; then the STM solution is 
83% of the measured value in the test.

Upon examining the previous calculations, it is noted that the critical members, 
which control the capacity, have different strength at their ends. Hence, in order to 
improve the solution results, new geometries of the nodes may be assumed in order 
to have the strength of each critical member at its two ends closer, then performing 
the calculation steps once more.

5.6.2 T ype I Model for a Bottom Loaded Beam

The indirectly or bottom loaded continuous deep beams behave in a manner differ-
ent from that of top loaded beams. Indirect application of loads changes the mecha-
nism of load transfer, the failure mode, and the role of reinforcement in continuous 
deep beams. Bottom loaded continuous deep beams exhibit lower ultimate loads 
than that for top loaded beams. Introductory bars and hence compression struts 
C2 in Figure 5.23 are needed to transmit the external bottom load to the top of the 
model.

Figure 5.23 shows a continuous deep beam (two bays) with two point bottom loads 
at nodes N3 and N4 along with the proposed STM. The model has three compression 
struts, C1 to C3, and five tension ties, T1 to T5. An additional concrete strut C is intro-
duced for equilibrium of the model forces; in addition, it reflects the beam continuity 
which increases the reaction of the interior support and reduces the reactions of the 
exterior supports in comparison with the simple beam solution. The main bottom lon-
gitudinal reinforcement is represented by the tension ties T1 and T3 and the main top 
longitudinal reinforcement is represented by the tension tie T2. The introductory bars 
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FIGURE 5.23  STM for a bottom loaded continuous deep beam.
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are represented by the tension ties T4 and T5. The load is transferred indirectly from 
the points of load application at nodes N3 and N4 by these introductory bars to the 
external and the intermediate supports through the two struts C1 and C2, respectively.

5.7  BRACKETS AND CORBELS

5.7.1 M odes of Failure

Brackets, corbels, and beam ledges are widely used short cantilever members having 
a short shear span, and therefore they are deep structural elements. Hence, shear 
plays a key role in controlling the overall behavior of these elements, leaving corbels 
with their own particular modes of deformation and modes of failure.

Niedenhoff (Van Mier, 1987) carried out full-scale tests in order to obtain some idea 
about the stress distribution in reinforced concrete corbels. One example of Niedenhoff 
tests is illustrated in Figure 5.24. Hardly any stresses developed in the lower outside 
corner of the corbel, and it was found that the resultant force of the principal compres-
sive stresses followed the diagonal from the loading point to the lower inner corner of 
the corbel, Figure 5.24. Tensile stresses developed in perpendicular to this diagonal.

One specimen of the tests on corbels carried out by Zeller (1983) is shown in 
Figure 5.25. In this test, the deterioration of the compression strength of the concrete 
rather than the yielding of the main tension reinforcement led to the failure of the 
corbel. The crack pattern depicts quite well the internal flow of forces, Figure 5.25b, 
which is illustrated by the STM in Figure 5.25d.

There are four possible failure modes of brackets and corbels, which should be 
controlled, Figure 5.26:

	 1.	Direct shear friction failure at the interface between the corbel and the 
supporting member
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FIGURE 5.24  Niedenhoff experiment: (a) dimensions (mm), (b) reinforcement, and 
(c) crack pattern at failure.
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	 2.	Yielding of the tension reinforcement due to moment and direct tension
	 3.	Crushing of the internal compression strut
	 4.	Localized bearing or shear failure under the loading area

With an appropriate strut-and-tie modeling, the previous modes of failure can be 
controlled.
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FIGURE 5.26  Failure modes of corbels.
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5.7.2 S trut-and-Tie Modeling

Figure 5.27 illustrates the discontinuity regions, shaded, for different corbel prob-
lems. In order to arrive at a safe design of corbels, the boundary conditions of each 
problem should be individually considered. Thus, each case leads to a different STM, 
Figure 5.28.

For illustration, an STM of a corbel subjected to the boundary conditions shown 
in Figure 5.29a is drawn in detail in the figure. Upon following the load path of the 
force C1, it is realized that this force at node 2, Figure 5.29a, should be balanced 
by the vertical force C2 and the horizontal force C3. The force C2  is a part of the 
compression stress block associated with the column moment and vertical reaction 
at node 2. The horizontal strut C3 represents the horizontal stress block associated 
with the corbel moment at section S – S or section A – A, Figure 5.29a and f. Strut 
C4, Figure 5.29a, is a part of the compression stress block required to balance the 
moment and the compression force applied to the column at the horizontal level of 
nodes 2 and 3, Figure 5.29g.

5.7.3 N odes Detailing for Safety

In brackets and corbels, the distance between the load and the supporting face is 
usually too short; hence, special anchorage should be provided at the outer end of 
the tension reinforcement. With reference to Figure 5.29a, the anchoring of the main 
reinforcement (tie T1) at node 1 could have different options: bending the reinforce-
ment back to form a horizontal loop; a structural weld to a transverse bar of equal 
size (or welding to an armor angle) across the ends of the tension reinforcement 
beyond the edge of the loaded area; or using free anchoring, Figure 5.30.

(c) t

t

t

B B

B B

B

h h

(b)

t

t

h

(a)

h

t

t

t

FIGURE 5.27  D-regions in examples of corbel problems.
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The use of loops results in a confining effect for the concrete within the zone 
of node 1, and therefore their use, rather than the use of free anchoring, is pre-
ferred. Also, the curvature of the loop results in more uniform horizontal pressure 
in comparison with welding the reinforcement to a transverse bar where the hori-
zontal pressure will be essentially concentrated because of the deviation of forces 
associated with the right angle, and therefore the use of the loop is again preferred. 
If anchorage is provided by a hook or a loop, the load should not project beyond 
the straight portion of the hook or loop, Figure 5.30a. In case a horizontal force is 
expected, the bearing plate should be welded to the tension reinforcement.

The thickness of the compression stress block (C2 + C4) and the thicknesses of 
struts C3 and C5 at node 3 can be based on a value of effectiveness factor equal to 
βs = 1.00 even if the tie T4 exists, since the stirrups of T4 are distributed over some 
height and enclose nodes 2, 3, and 5, Figure 5.29a, which means that the concrete 
between nodes 2 and 3 will generally be under a state of biaxial compressive stresses. 
As a result of using the same design strength for all struts at node 3, the location of 
this node can be determined from the thickness of strut C4 and it will not be altered 
by the design of strut C5, Figure 5.29a and g.

The detailing of node 4 should be based on a value of effectiveness factor βn = 0.80, 
and the full reinforcement of tie T1 should be curved at node 4 with the appropriate 
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FIGURE 5.28  Different support and geometric conditions lead to different STMs and dif-
ferent reinforcement arrangements of corbels. (Adapted from Schlaich, J. and Schäfer, K., 
The design of structural concrete, IABSE Workshop, New Delhi, 1993.)
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radius of curvature, r4. The difference between the reinforcement of T1 and the 
reinforcement of T2 can be terminated beyond node 4 provided that it is adequately 
anchored, with its anchorage length, as specified by the code, measured from the start 
of the reinforcement curvature. The radius of curvature r4 should justify the required 
width of strut C5 at node 4, wC5

4 , which can be derived from equilibrium.

	 r wC4
40 7 1 3 45 60 305= + °− ° ≥ ≥ °. ( tan | |)β βfor 	

If the angle β does not lie within the range indicated in the previous equation, the 
corbel model should be revised. Of course, r4 should not be less than what is allowed 
by the Code.
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FIGURE 5.29  Details of STM of corbel: (a) strut-and-tie model; (b) equilibrium of node 
1, (c) stress fields of struts C1 and C5, (d) increasing the size for a single-layer reinforcement 
node, (e) multi-layered reinforcement node, (f) state of equilibrium of node 2, and (g) state of 
equilibrium of node 3.
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FIGURE 5.30  Possible anchorage options of reinforcement at node 1: (a) horizontal loops, 
(b) structural weld to a transverse bar, and (c) free anchoring.
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Node 1 is checked for a value of effectiveness factor βn = 0.80 and the bearing 
plate is sized such that the bearing strength is justified. The size of the node depends 
on the node detailing, Figure 5.29d and e.

For the case of multilayered reinforcement, the geometry of the node will differ 
from that of a single-layer reinforcement (Schlaich and Schäfer, 1991), Figure 5.29e; 
therefore, the design of this node has to be revised for the respective geometry. 
In this case

	
w w wC p T1

1 = +sin cosθ θ
	

where wT is the height of node 1 as shown in Figure 5.29e, provided that the value 
of wT when substituted for into the previous equation should be at most equal to 
0.2h, where h is the corbel height. Also, for the case of a single-layer reinforcement, 
Figure 5.29d, wT could be taken as equal to 2dc, provided that the reinforcement 
is extended a distance ≥ 2dc beyond the node as in Figure 5.29d, where dc is the 
thickness of the concrete cover measured from the extreme tension fiber to the center 
of the reinforcement.

5.7.4 S tep-by-step Design Procedure

With reference to Figure 5.29a and realizing that the design output may be essentially 
controlled by node 1, it is realistic to start with the determination of the angle θ 
which is prescribed by the locations of nodes 1 and 2. The location of node 1 is 
decided if the concrete cover, dc, is assumed, whereas the location of node 2 can be 
determined by the lines of action of either struts C1 and C2 or struts C2 and C3. It is 
more convenient to deal with struts C2 and C3, as will be illustrated later, in position-
ing node 2.

With reference to Figure 5.29, the design procedure of corbels can be systemati-
cally achieved as follows.

	 1.	From the equilibrium of node 2, Figure 5.29f, C2 = C1 sin θ = V; then 
the width of strut C2 at node 2, wC2

2 , can be determined independently of 
the value of the angle θ and based on an efficiency factor βs = 1.0; thus, the 
line of action of C2 can be determined.

	 2.	From the geometry of node 1, the shift of the force V due to the horizontal 
force H at the level of node 1, Δa, for the case of a single layer of reinforce-
ment, Figure 5.29a, is

	
∆a

H t d

V
p c=

+( )

	

	 and for the case of multilayered reinforcement, Figure 5.29a and e,

	
∆a

H t w

V
p T=

+( )0 5.
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	 where tp is the thickness of the bearing plate.
	 3.	Assume a trial value of the corbel depth, d, unless the total height of the 

corbel, h, is dictated by another means; then the concrete cover dc can be 
assumed.

	 4.	Determine the moment MS−S at section S − S caused by the load V (in its 
shifted position due to the horizontal force H).

	
M V w a aS S C− = + +( )0 5 2

2. Δ
	

	 5.	Calculate the width of the compression block of MS−S, wC3

2 , which is the 
width of strut C3. Then the force of strut C3 can be obtained.

	
C

M

d w
S S

C
3 20 5 3

=
−

−

. 	

		  With this, the location of node 2 is determined.
	 6.	Determine the angle θ from

	
tan

.
.

θ =
−

+ +
d w

w a a
C

C

0 5
0 5

3

2

2

2 Δ 	

	 7.	Calculate the tension force T1 from

	 T V H1 = +( tan )/ θ 	

		  Then choose the necessary reinforcement. Check if the assumed value of d 
is satisfactory and if the reinforcement is single-layer; otherwise, assume a 
new value of d and go to either step 2 or step 3.

	 8.	Calculate C1 from the equilibrium of node 1, C1 = V/sin θ; then calculate 
the width of strut C1 at node 1, wC1

1 .
	 9.	Calculate the width of the bearing plate, wp, from the appropriate equa-

tion. Check if the width of the bearing plate is possible (or acceptable); 
otherwise, revise the design. Calculate the vertical stress at node 1, σv

1, and 
choose the other dimension of the bearing plate to satisfy the allowable 
bearing stresses.

	 10.	Calculate the thickness of the compression block (C2 + C4) required to bal-
ance the moment and the compression force applied to the column cross 
section at the horizontal level of node 2; then, by subtracting the force C2 
from the compression block, the value and thereafter the line of action of C4 
can be determined.

	 11.	Calculate the angle β; then calculate the force in strut C5, C5 = T1/cos β.
	 12.	Determine the required width of strut C5 at node 4, wC5

4 ; then detail the 
node such that this obtained strut width is justified.
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	 13.	Calculate the angle γ and the forces in strut C6 and the ties T2 to T4; then design 
these ties. Check the strength of strut C6, realizing that the thickness of the 
strut is from the middle distances between nodes 4 and 5 and nodes 5 and 6.

	 14.	Determine the horizontal and vertical stirrups of the corbel as illustrated in 
the next section.

5.7.5 T ransverse Reinforcement of Struts

In principle, the stirrup reinforcement should be placed in perpendicular to the con-
crete strut; nevertheless, for practicality and convenience, this reinforcement could 
be placed either vertically and/or horizontally. The confinement or stirrups of struts 
C1 and C5, astC1, and astC5  are determined from,

	
a

C

f
stC

y
1

1 2
=

/
φ 	

	
a

C

f
stC

y
5

5 2
=

/
φ 	

This reinforcement can be covered by vertical and horizontal reinforcement, ast
v  

and ast
h , according to the following equations,

	
a a a lstC st

v
st
h

C1 1

2 2= +( )cos sinθ θ
	

	
a a a lstC st

v
st
h

C5 5

2 2= +( )cos sinβ β
	

where ast
v  ( )ast

h  is the area of selected stirrup reinforcement, to be placed vertically 
(horizontally), per unit length measured horizontally (vertically), and lC1  and lC5  are 
the lengths of struts C1 and C5, respectively.

The amount of the required stirrup reinforcement, if placed either horizontally or 
vertically, will be mostly governed by the reinforcement requirement from strut C1. 
Therefore, if the angle θ ≤ 45°, the stirrups are more effective if placed vertically; 
otherwise, they will be more effective if placed horizontally. It should be stated, 
however, that if the kinematics of strut C1 is considered in more detail, it will be 
realized that vertical stirrups are more beneficial than horizontal stirrups even if the 
angle θ is slightly greater than 45°. In practice, stirrups are placed both horizontally 
and vertically, and therefore for saving of reinforcement a larger percentage of the 
more effective reinforcement (horizontal or vertical) should be considered. The stir-
rups should be closed for more efficient anchorage; furthermore, closing the stirrups 
results in a beneficial confining effect which improves the ductility of the corbel.

As for the reinforcement of tie T4, which exists only if the horizontal force H is 
present, it should be closed stirrups and centered with nodes 2 and 5.
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5.7.6 E xample 5.6: Strength Assessment of Double Corbel

The corbel tested by Zeller (1983), Figure 5.25, is analyzed in this section. In this 
example, compression failure took place at the loading node of the compression strut 
at a failure load, F = 1425 kN (the strain in the tension reinforcement was signifi-
cantly below the yield strain). The concrete cylinder strength was ′ =fc 26 3. MPa  
and the steel yield stress was fy = 452.0 MPa. The breadth of the corbel was 
b = 300 mm, while the dimensions of the bearing plate were 300 mm width and 
200 mm breadth. Thus, the limiting value of bearing stress given by ACI 318-14, in 
this case, is; fb = × × × × × =0 85 26 3 0 8 400 300 300 200 25 30. . . ./ MPa. The bear-
ing stress at failure was σb = (1425 × 103)/(300 × 200) = 23.75 MPa, which is less 
than the limiting value of bearing stress given by the ACI 318-14.

In this example, the compressive stresses on the column due to the force 2F, if 
assumed uniform, will be equal to 7.9 MPa, which is much less than the concrete 
strength. This allows for shifting the node location as close as possible to the knee 
of the corbel in order to develop the maximum possible carrying capacity. Shifting 
the node for maximum strength position would require nonuniform normal stress 
distribution on the column section as the section location becomes closer to node 2, 
Figure 5.25c. The redistribution of normal stresses is possible as long as the transverse 
tension associated with this redistribution is within the transverse tensile strength of the 
column. Upon examining the tensile strength of the column using an STM, it is found 
that an equivalent compression block of an intensity equal to 0 85 22 36. .′ =fc MPa is 
possible for idealizing the normal stress distribution in the column near node 2, strut 
C2, as shown in the appropriate STM of the corbel in Figure 5.25d.

In this example, node 1 is treated as an extended nodal zone since the 
reinforcement at this node is horizontal loops with sufficient projection 
beyond the bearing plate. From the reinforcement layout in Figure 5.25, the 
height wT = 350 mm; hence, d = h − 0.5wT = 825 mm. The width of strut 
C2 at node 2, w F f bC u c2

2 0 85 212 4= ′ =/ mm. . . The moment at section S − S, 
M F wS S u C− = +( ) =870 0 5 13912

2. MN.mm, which requires a compression stress 

block of depth wC3

2 309 3= . mm; this is the width of strut C3. Then the angle of incli-

nation of strut C1, θ= −( ) +( )



 = °−tan . . .1 2 20 5 870 0 5 34 483 2d w wC C . Upon imposing 

this angle on Figure 5.25b of the corbel under consideration, it is noticeable that the 
value of θ fits reasonably with the recorded cracking pattern at failure.

The next step in the verification process is to check the strength of the compres-
sion strut C1 at nodes 1 and 2. From the equilibrium of node 1, the force in strut 
C1 = V/sin θ = 2517.14 kN. From the geometry of nodal zone 1, the width of the 
strut w w wC p T1

1 458 63= + =sin cos .θ θ mm. Then the stress in strut C1 at node 1 is 
σC1

1 18 3= . MPa . The strength limit in this case is the smaller of the node strength and 
strut strength; the node strength is 0 85 0 8 17 89. . .′× =fc MPa and the strut strength 
is 0 85 0 75 16 77. . .′× =fc MPa; assuming the adequacy of transverse reinforcement 
of the strut, this latter value of strength governs. Thus, the nominal strut strength is 
2307.4 kN, which is 92% of the strut force, the same as the ratio (16.77/18.30).

From the geometry of nodal zone 2, the width of strut C1, wC1

2 =  
w wC C2 3

2 2 375 21sin cos .θ θ+ = mm. The strength of the strut at this node is based on 
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the smaller of the node strength, 22.36 MPa, and the strut strength, 16.77 MPa; this 
latter value governs. Then the nominal strut strength is 1887.7 kN, which is 75% of 
the strut force.

From the equilibrium of node 1, the tension force in the tie T = (V/
tan θ) = 2074.94 kN; hence, the steel stress = 353.3 MPa, corresponding to a steel 
strain =  1.77 × 10−3 (less than the yield strain as detected in the experiment).

In conclusion, the predicted strength of the corbel using the STM is 75% of the 
recorded value. However, the calculations can be refined in order to obtain a better 
estimate of the corbel capacity.

The improvement of the strength prediction can be approached upon noting that the 
strength of strut C1, controlling the capacity, is weaker at node 2 than at node 1, due 
to the small size of the strut at node 2. The strength of node 2 is 22.36 MPa while the 
strut strength is 16.77 MPa; hence, the strength of node 2 should be revised. This can 
be achieved by using an average value of the node and strut strengths (19.6 MPa) in the 
assessment of the node height (wC3

2 ), in other words increasing the node size. Upon using 
this assumed value and redoing the calculations, the following results are obtained.

The width of strut C2, wC2

2 242 4= . mm. The moment MS−S = 1412.42 MN.mm. 
The width of strut C3, wC3

2 377 6= . mm . The angle θ = 32.7°. For node 1, the force 
in strut C1 = 2638.0 kN, and the width of the strut, wC1

1 456 6= . mm . The nomi-
nal strength of the strut at this node, C1n = 2297.2 kN. For node 2, the width of 
strut C1, wC1

2 448 7= . mm; thus, the nominal strength of the strut at this node, 
C1n = 2257.3 kN. Then the nominal strength of C1 is the smaller of the obtained two 
values; i.e., C1n = 2257.3 kN, which is 85.6% of the force in the strut. As for the tie 
T, the tension force T = 2219.63 kN; hence, the steel stress = 377.9 MPa (less than 
the yield stress as detected in the experiment). In a final conclusion, the accuracy of 
the prediction is 85.6%.

The transverse reinforcement required to resist the transverse tension of strut 
C1 can be assessed according to ACI 318-14 since the concrete cylinder strength 

′ = <fc 26 3 44 0. .MPa MPa . The actual stirrups consist of a horizontal reinforcement 
of an area = 1438 mm2 and a vertical reinforcement of an area = 1207 mm2. Upon 

calculation, Σ
A

bs
si

i
isin . .γ = >0 0072 0 003, which means the adequacy of the trans-

verse reinforcement, as assumed in the solution.
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6 Openings in Shallow 
and Deep Beams

6.1  INTRODUCTION

Inserting openings in the web of a reinforced concrete beam is not only associated 
with a sudden change in the dimensions of its cross-section, but also with a concen-
tration of stresses at the corners of the openings. In addition, openings may induce 
transverse cracks and reduce the stiffness of the beam leading to excessive deforma-
tions and considerable redistribution of forces. The effect of an opening on the flow 
of forces and hence the capacity of a beam depends largely on the size and location 
of the opening.

In shallow beams, an opening (circular, square, or nearly square in shape) can be 
considered large when its depth (or diameter) is greater than 40% the beam thick-
ness (Mansur and Tan, 1999). The introduction of a large opening in a reinforced 
concrete beam would normally reduce its load-carrying capacity considerably. In 
practice, openings are located near supports where shear is predominant. In such 
a case, tests have shown that a beam with insufficient reinforcement and improper 
detailing around the opening region fails prematurely in a brittle manner.

This chapter presents a brief but comprehensive treatment of the design of rein-
forced concrete simple and continuous shallow and deep beams that contain trans-
verse openings (small or large) through the web. The chapter starts with the treatment 
of shallow beams with small openings, where the term small opening is defined fol-
lowed by the strut-and-tie modeling of such a beam. Next, shallow beams with large 
openings are treated, where the term large opening is defined and the appropriate 
location, size and reinforcement detailing of the opening zone are discussed. Strut-
and-tie modeling of shallow beams with large circular or rectangular openings at 
different locations of the beam, within the span or depth, is discussed thoroughly. 
The appropriate locations of openings in deep beams, simply supported or continu-
ous, are examined based on the flow of forces. The different schemes of modeling 
deep beams, simply supported or continuous, with web openings, small or large, 
with accounting for practical reinforcement detailing, are discussed.

6.2  SHALLOW BEAMS WITH SMALL OPENINGS

6.2.1 S mall Openings

When the size of an opening is concerned, many researchers have used the terms 
small and large; nevertheless, the essence of such classification lies in the structural 
response of the beam. When the opening is small enough to maintain the beam-type 
behavior or, in other words, if the usual beam theory applies, then the opening may 
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be termed as a small opening. In such a case, the beam action may be assumed to 
prevail. Therefore, the analysis and design of a shallow beam with small openings 
may follow the similar course of action as that of a solid beam. Small openings are 
thus defined as openings which are small enough and located in such a way that 
an STM is able to jump over the openings without causing additional vertical or 
horizontal struts in the chords above and below the openings (Schlaich and Schäfer, 
1993). When beam-type behavior ceases to exist due to the presence of openings, 
the opening may be classified as a large opening. Thus, beams with small and large 
openings need separate treatments in design.

The assumption that an STM is able to pass by openings without any additional 
struts or ties in the bottom- or top-chord might be interpreted in this case as an indi-
cation of almost linear strain distribution in the cross-section of the opening, Figure 
6.1a (Schlaich et al., 1987). In this case, the opening is considered small; otherwise, 
it is considered large, Figure 6.1b. In either case, the presence of openings produces 
discontinuities or disturbances in the normal flow of stresses, thus leading to stress 
concentration and early cracking around the opening region. Similar to any discon-
tinuity, special reinforcement, enclosing the opening close to its periphery, should 
therefore be provided in sufficient quantity for crack control and to prevent a possible 
premature failure of the beam.

In beams, shear is always associated with a bending moment, except for the sec-
tion at inflection point. When a small opening is introduced in a region subjected to 
predominant shear and the opening is enclosed by reinforcement, as shown by solid 
lines in Figure 6.2, the beam may fail in two distinctly different modes, beam-type 

N.A.

(a) (b)

FIGURE 6.1  Definition of small and large openings. (Schlaich and Schäfer, 1993): (a) beam 
with small openings and (b) beam with large openings.

Failure crack

(a) (b)

Failure crack

VV

MM

FIGURE 6.2  Failure modes of a beam with a small opening in a region of predominant 
shear: (a) beam-type shear failure and (b) frame-type shear failure.
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failure and frame-type failure (Hanson, 1969; Somes and Corley, 1974; Salam, 1977; 
Tan et al., 2001). The first type is typical of the failure commonly observed in solid 
beams, except that the failure plane passes through the center of the opening, Figure 
6.2a. In the second type, the formation of two independent diagonal cracks, one in 
each member bridging the two solid beam segments, leads to the failure, Figure 6.2b.

Tan et al. (2001) tested seven T-beams with circular web small openings which 
were designed for moderate to high shear force. They were tested in an inverted 
position to simulate the conditions that exist in the negative moment region of a 
continuous beam, Figure 6.3. The results of the test indicated that crack control and 
preservation of ultimate strength are achievable through providing reinforcement 
around the opening. It was found that diagonal bars reduce the high stresses in the 
compression chord and avoid premature crushing of the concrete. However, the test 

FIGURE 6.3  Cracking patterns of beams tested by Tan et al. (2001).
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results illustrated that the provision of transverse openings alters the simple beam 
behavior into a more complex behavior.

6.2.2 S trut-and-Tie Modeling of Beams with Small Openings

Two parts of beams with two different patterns of small openings in the web are 
shown in Figure 6.4a and c (Schlaich and Schäfer, 1991). The truss model of the 
beam with the first pattern of openings, Figure 6.4a, shows how much shear reinforce-
ment is necessary; the corresponding reinforcement layout is shown in Figure 6.4b. 
A check of the concrete stresses within the struts should be carried out based on a 
strength ≤ ′φ β( . )0 85 fc s , with βs = 0.6. Thus, the maximum possible size of openings 
can be determined. The preceding statement also applies to the beam with the second 
pattern of openings, Figure 6.4c; the reinforcement layout of this beam is shown in 
Figure 6.4d.

It should be noted that the truss model clearly shows where the pattern of open-
ings should be placed. Of course, in these examples, the standard shear design can 
never be applied.

For a single small circular hole in a shallow beam, D < h/3, where D is the hole 
diameter and h is the beam height, it is easy to trace an STM around the hole as illus-
trated in Figure 6.5 for three different cases. These include a hole within the beam 
span, a hole within the beam span but in the presence of concentrated load near the 
hole, and a hole close to the beam support.

The beam in Figure 6.6 with a small circular hole, D < h/3, carries two concen-
trated loads, one of which is close to the hole. For this beam, the STM can go around 
the hole as illustrated in the figure. In this model, the inclined ties around the hole 
can be carried by either inclined or equivalent vertical and horizontal reinforcement.

For shallow beams with small openings, a suitable reinforcement detail for the 
opening zone is illustrated in Figure 6.7.

Model
(a) (b)

(c) (d)

Reinforcement

Model

βs = 0.60

βs = 0.60

Reinforcement

FIGURE 6.4  Beam with small web openings: (a, b) pattern 1 of openings and correspond-
ing reinforcement detailing and (c, d) pattern 2 of openings and corresponding reinforcement 
detailing. (Adapted from Schlaich, J. and Schäfer, K., Journal of the Structural Engineer, 
69(6), 1991, 113–125.)
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6.3  SHALLOW BEAMS WITH LARGE OPENINGS

6.3.1  Large Openings

In analogy to a beam with small openings, large openings can be defined as an 
opening that requires additional vertical and horizontal struts in the chords above 
and below the opening (Schlaich and Schäfer, 1993). Bernoulli’s hypothesis of plane 
strain distribution is invalid concerning the whole cross-section through a large 
opening as in Figure 6.1b.

Tan et  al. (1996) tested 15 specimens (each simulating either the negative or 
positive moment regions of a reinforced concrete continuous T-beam) with large 
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FIGURE 6.5  STM of a shallow beam with a small circular hole, D < h/3, for three different 
cases: (a) hole within the beam span, (b) hole within the beam span and in the presence of 
concentrated load near the hole, and (c) hole close to the support.
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openings through the web, to failure, Figure 6.8. The test results indicated that the 
presence of web openings leads to a reduction in both the cracking and ultimate 
strength as well as the post cracking stiffness. For the same passageway, beams with 
multiple openings were found to perform better in terms of strength and service-
ability than those with a single opening. Test results confirmed the Vierendeel panel 
behavior at the opening segment of the beam. From their study, Tan et al. (1996) 
concluded as follows:

	 1.	The width of the post between adjacent openings should not be less than 
one-half the overall beam depth, and the post should be adequately rein-
forced to avoid premature failure.

	 2.	A continuous T-beam containing a large rectangular opening behaves 
similarly to a Vierendeel panel at the opening segment. Under combined 
bending and shear, the chord members bend in double curvature with con-
tra-flexure points located approximately at their mid-span.

	 3.	The total applied shear may be apportioned between the top and bottom 
chords in accordance with their flexure stiffnesses, based on either gross or 

Long stirrups

Short stirrups

Additional bars
b

Diagonal bars

hb

ht

D

FIGURE 6.7  Reinforcement details around a small web opening.

FIGURE 6.8  Failure of a beam with multiple rectangular large openings. (Adapted from 
Tan, K. H. et al., ACI Structural Journal, 93(3), 1996, 404–411.)



145Openings in Shallow and Deep Beams

cracked transformed sections. This distribution applies at both the service 
load and ultimate conditions, irrespective of whether the opening is located 
within the positive or negative moment.

Considering continuous beams, reduction in stiffness due to the presence of open-
ings causes a redistribution of internal forces and moments, the amount of which 
needs to be properly evaluated to achieve a satisfactory design.

From tests on unstrengthened large openings made in existing concrete 
beams, Siao and Yap (1990) indicated that the beams failed prematurely by the 
sudden formation of a diagonal crack in the compression chord when no addi-
tional reinforcement was provided to the members above and below the opening 
(chord members). The experiments showed that an increase in the opening size 
decreases the strength as well as the stiffness of the beam. However, the eccen-
tricity of the opening has a minor influence on both the strength and the stiffness 
of the beam.

For shallow beams with large openings, a suitable reinforcement detail (consisting 
of additional longitudinal bars near the top and bottom faces of the bottom and top 
chords, respectively) to resist the combined effect of moment and axial force in each 
chord member should be designed (Mansur and Tan, 1999). Such reinforcement can 
be symmetrically detailed, with the addition of short stirrups in both chords, Figure 
6.9a, to resist the forces carried by the chords. At each vertical edge of the opening 
(the critical section for cracking), a combination of vertical stirrups and diagonal 
bars should be used. At least 50% of the shear resistance is provided by the diagonal 
bars; thus, the chords behave in a manner similar to a Vierendeel panel and failure 
occurs in a ductile manner (Mansur and Tan, 1999), Figure 6.9b. Clearly, the failure 
mechanism consists of four hinges, one at each end of the top and bottom chords.

Additional
longitudinal bars

(a)

(b)

Diagonal bars Full-depth stirrups

Short stirrups

FIGURE 6.9  Reinforcement details around large openings in a shallow beam and expected 
failure mode: (a) suitable reinforcement detail and (b) corresponding failure mode.
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The following requirements (Mansur and Tan, 1999) can help to facilitate the 
selection of size and location of web openings in shallow beams, Figure 6.10:

	 1.	For tee beams, openings should preferably be positioned flushed with the 
flange.

	 2.	For rectangular beams, openings are commonly placed at mid-depth of the 
beam section, and they may be placed eccentrically if situation dictates.

	 3.	For both tee- and rectangular beams, care must be exercised to provide suf-
ficient concrete cover to the reinforcement for the chords above and below 
the opening. The compression chord should also have sufficient concrete 
area to develop the ultimate compression stress block in flexure as well as 
sufficient depth to provide effective shear strength.

	 4.	Openings should not be located closer than 0.5h from the supports to avoid the 
critical region of shear and reinforcement congestion. Similarly, positioning 
of an opening closer than 0.5h to any concentrated load should be avoided.

	 5.	The depth of an opening should be limited to 0.5h.
	 6.	The factors that limit the length of an opening are the stability of the com-

pression chord member and the deflection requirement. It is preferable to 
use multiple openings providing the same passageway instead of using a 
single long opening. For multiple openings to behave independently, the 
width of the post separating two adjacent openings should not be less than 
0.5h or 100 mm, whichever is larger.

6.3.2 M odeling

Modeling the shallow beam with an eccentric large opening in Figure 6.11a is illus-
trated by Schlaich et  al. (1987) as explained in the following. Only the regions 
affected by the eccentric opening of the beam in Figure 6.11a, D2, D3, B2, and B3, 
are examined in this example with regard to the moment and shear force diagrams 
shown in the figure. The boundary forces of the B1- and B4-regions have to be 
applied as loads to the D2- and D3-regions as shown in Figure 6.11b. The B1-region 
is treated by the standard truss model, C2 = (V1/ sin θ), C1 = (M1/z) − (0.5V1 cot θ), 
and T1 = (M1/z) + (0.5V1 cot θ), which yields θ = 31° and a lever arm z = 1.15 m, 
T1 = 3.92Fu. The B3-region obviously has a very small bending stiffness, and therefore 
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FIGURE 6.10  Size and location of web openings.
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it should be designed for a constant axial tension T2, where T2 = M2/z = 5.35Fu. The 
lever arm z = 1.15 m is determined by standard methods based on the assumption 
of linear strain distribution of the cross-section at the opening. Therefore, the B2-
region has to carry the axial compressive force C = T2 (eccentrically with respect to 
the axis of the B2-region) plus the differential moment ΔM = M − M2 plus the total 
shear force V. Under the combined action of these forces, the B2-region shows the 
transition from the column type B-region on its left end (resultant C3) to the truss 
type B-region at the other end (C4, C5, and T3). For simplicity, the model of the B2-
region is extended somewhat into the D2- and D3-regions leaving over for modeling 
only the D2- and  D3-regions in Figure 6.11b (Schlaich et al., 1987).
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FIGURE 6.11  Shallow beam with an eccentric large opening: (a) B- and D-regions and 
moment and shear diagrams, (b) reduced D-regions at the opening ends with boundary forces 
from the B-regions, (c) STMs of D2- and D3-regions, and (d) reinforcement layout. (Adapted 
from Schlaich, J. et al., Journal of the Prestressed Concrete Institute, 32(3), 1987, 74–150.)
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Upon knowing the boundary conditions from B1, B2, and B3, the model for the 
D2-region can be developed, Figure 6.11c. Looking for the counterparts of C1, C2, 
and T1 at the opposite side of the ′D2-region, it helps in establishing the load paths 
to split up C3 into three forces: ′ ′′ ′′′C C C3 3 3, ,and , where the horizontal components of 
these forces balance those of C1, C2, and T1 ( , ).′ = ′′ = ′′′ = −C C C C T Th h h h3 3andC1 3 2 2 1  
Vertical equilibrium in the ′D2 -region is established by two forces, a vertical ten-
sion tie T5 and by the vertical component of a compression strut C8, the magnitudes 
of which depend on the choice of their position. Knowing that T5 and C8 represent 
transverse stresses which are inside the D2-region and that these stresses tend to fill 
the available space, the resultant tension T5 is chosen in the middle of the ′D2-region 
and the resultant compression C8 is chosen at the right end of the ′D2 (which is inside 
D2). Then T5 =  (T2 − T1) tan θ1 = 1.48 Fu, where θ1 = 46°. The tie force T5 may be 
interpreted as the transverse tension necessary to anchor the differential force of the 
beam’s tension chord, T2 − T1.

In a similar way, the ′D3-region at the other end of the opening may be treated. The 
transverse tension forces are: T7 = V = Fu and T6 =  (T8 − T2) tan θ2 =  (T4 − T2 − V 
cot θ) tan θ2 = 2.12Fu, where θ2 = 50°.

The results of this example indicate that the stirrup forces in some places con-
siderably exceed the “normal shear” reinforcement of a beam without an opening.

Modeling a shallow beam with a large opening depends on many factors such 
as the shape, size, and location of the opening within the beam span and within the 
beam depth. Also, the presence of a concentrated load near the opening is very influ-
ential in the modeling. The STMs of a shallow beam with a large circular opening 
of diameter, 0.3h < D ≤ 0.5h, where h is the beam height, are illustrated in Figure 
6.12 for different cases. These include the opening location, either within the span 
or near the support, either in the middle height or shifted to the bottom of the beam. 
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FIGURE 6.12  STMs of a shallow beam with a large circular opening, 0.3h < D ≤ 0.5h, at 
different positions within the beam depth for: (a) an opening within the span and (b) an open-
ing near the support.
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Other models similar to those in Figure 6.12a are given in Figure 6.13, but with the 
presence of a concentrated load near the opening.

For the case of a rectangular opening, the opening geometry and location, in 
addition to the presence of concentrated loads near the opening, are the main factors 
affecting the beam modeling. In Figure 6.14, two STMs are illustrated for a shallow 
beam with an opening of height a < h/3, and width b ≤ 3a, where h is the beam 
height, one model for the case of opening centered with beam axis and the other if 
the opening is shifted toward the beam tension reinforcement. If the opening height 
is increased up to a = 0.5h, the models will be as illustrated in Figure 6.15. In trac-
ing the truss model above and around a rectangular opening, as given in Figures 6.14 
and 6.15, it is appropriate to assume that the angle of inclination of the truss struts is 
around 45°; then the number of truss panels can be easily determined.

Figure 6.16 illustrates the STMs of shallow beams with rectangular openings cen-
tered with the beam axis, with opening height, a ≤ 0.5h, where h is the beam height, 
and the rectangularity of the opening, b/a ≤ 3, where b is the opening width. The 
influence of both the opening location within the beam span and the presence of a 
concentrated load near or far from the opening are very obvious.
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FIGURE 6.13  STMs of a shallow beam with a large circular opening, 0.3h < D ≤ 0.5h, in the 
presence of a concentrated load near the opening at different positions within the beam depth.
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6.4  SIMPLY SUPPORTED DEEP BEAMS WITH WEB OPENINGS

6.4.1 M odeling

In the modeling of a deep beam, either the openings are the choice of the designer or 
are dictated by other design specialty. If it is up to the designer to decide the location 
of the openings, the STM can help in this respect, Figure 6.17. Otherwise, the STM 
should go around the openings in order to ensure a path for load transfer, Figure 6.18.
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FIGURE 6.15  Modeling of a beam with a large rectangular opening, a ≤ 0.5h and b/a < 3.
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FIGURE 6.14  STM of a shallow beam with a rectangular opening, a < h/3 and b/a ≤ 3, at 
different positions within the beam depth.
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FIGURE 6.17  Examples where the STM guides in the choice of the opening location in 
deep beams.
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FIGURE 6.18  Examples where the STM should go around the openings in deep beams.
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In the development of the STM, it is up to the designer to either use the load 
path method or to rely on a linear elastic analysis for tracing the stress trajectories 
and hence develop the model, Figure 6.19. Nevertheless, in some cases, different 
STMs can be developed from the same stress trajectories, as for the deep beam with 
two symmetric openings in Figure 6.20a with the stress trajectories in Figure 6.20b, 
where the two STMs in Figure 6.20c and d are valid. In addition, owing to the practi-
cality of reinforcement detailing, other models are valid as well, Figure 6.20e and f.

6.4.2 �E xample on Strength Assessment of a Deep 
Beam with a Large Opening

The beam in Figure 6.20a, with the reinforcement details in Figure 6.21, had been 
tested by El-Azab (2007), beam DSON3. The concrete cylinder strength of the 
beam, ′ =fc 30 45. MPa , the yield stress of the 16 mm and 10 mm bars longitudi-
nal steel, fy = 410.0 MPa, of the 6 mm vertical web bars, fyv = 244.5 MPa, and 
of the 8 mm horizontal web bars, fyh = 260.2 MPa. The beam failed under a load 
PEXP = 2V = 140.0 kN.

Four different STMs of beam DSON3 are proposed as illustrated in Figure 6.20c–f. 
As stated in the previous section, all models were initiated from the stress trajectories 
but the two models in Figure 6.20c and d utilize inclined web reinforcement, whereas 
the two alternative models in Figure 6.20e and f utilize vertical and horizontal web 
reinforcement near the edges of the openings.
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FIGURE 6.19  Example where the stress trajectories provide convenience in developing an 
STM: (a) a deep beam with two symmetric openings, (b) the stress trajectories, and (c) the STM.
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Both the simplified model in Figure 6.20d and the alternative simplified model in 
Figure 6.20f were utilized by El-Sawi et al. (2015) to assess the strength of beam DSON3 
by employing the ACI 318-14 failure criteria. The simplified model in Figure 6.20d gave 
a nominal strength of the beam, PSTM = 121.0 kN = 0.86PEXP, whereas the alternative 
simplified model in Figure 6.20f gave a nominal strength, PSTM = 130.0 kN = 0.93PEXP . 
The alternative simplified model with vertical and horizontal ties near the opening 
edges, Figure 6.20f, is better than that with inclined ties, Figure 6.20d, because it better 
reflects the reinforcement detailing of the beam, and therefore it has resulted in a larger 
capacity of the beam. Using the same analogy, the alternative refined model in Figure 
6.20e is better than the refined model in Figure 6.20c.

6.4.3 E xample on Design of a Deep Beam with Eccentric Large Openings

This example had been presented by Schlaich and Schäfer (1993) and Schlaich et al. 
(1987) and it has been discussed in Chapter 2. The geometry and loading of the deep 
beam are shown in Figure 6.22a. The beam data, stress trajectories, modeling, and 
reinforcement details have been presented in Chapter 2. Nevertheless, this example 
is presented here again because of its illustrative function. The STM in Figure 6.22b 
demonstrates the significance of combining both inclined web reinforcement and 
horizontal and vertical reinforcement near the edges of the opening in obtaining 
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better performance of the beam. Hence, the reinforcement layout in Figure 6.22c is 
tailored according to this combined model.

6.5  CONTINUOUS DEEP BEAMS WITH WEB OPENINGS

6.5.1 E xample on a Continuous Deep Beam with a Small Opening

The analysis of the reinforced concrete continuous deep beam with small openings 
in Figure 6.23a resulted in the stress trajectories shown in Figure 6.23b. Upon utili-
zation of the load path method or the stress trajectories, it is a straightforward matter 
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FIGURE 6.22  Example of a deep beam with an eccentric large opening (Schlaich et al., 1987; 
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to obtain the appropriate STM in Figure 6.23c. In the model, the strut framing from 
the loading point to the outer support has been detailed as shown in order to account 
for web reinforcement.

6.5.2 M odeling of Continuous Deep Beams with Large openings

Continuous deep beams, may function as transfer girders in multi-story frames, pile 
caps, foundation wall structures, etc. The strut-and-tie method offers different options 
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FIGURE 6.23  Example of a continuous deep beam with small openings: (a) geometry and 
loading, (b) stress trajectories, and (c) STM.

FIGURE 6.24  Modeling of continuous deep beam showing the possible locations of open-
ings without disturbing the flow of forces.
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for opening locations without jeopardizing the beam strength. The example in Figure 
6.24 demonstrates this vision, where the appropriate STM of a continuous beam pro-
vides such convenient locations of openings. Nevertheless, the locations of openings 
are often dictated by engineering disciplines other than the structural design. In such a 
case the model has to go around the openings in order to find means for load transfer, 
Figures 6.25 and 6.26. The models of the beams in Figure 6.25 mainly utilize inclined 
web reinforcement, whereas the model of the beam in Figure 6.26 adhere with orthogo-
nal web reinforcement details around the openings, which is frequently used in practice.
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7 Beam–Column 
Connections

7.1  INTRODUCTION

Beam–column connections in framed structures represent geometric and stiffness 
discontinuity and hence regions of force concentration. The regions at and near the 
joints have been observed to be common points of distress in frame buildings. When 
the framing beams are stressed near or beyond the yield, particularly in case of 
cyclic loads, the joints of the structure will be subjected to stresses which, if not 
properly provided for, can result in undermining the load-carrying capacity of the 
columns and beams forming the joints.

It is usually assumed in some codes that beam–column joints will perform sat-
isfactorily using any detailing of the reinforcement where the anchorage require-
ments for the reinforcement are satisfied. This conception is completely wrong since 
beam–column connection is a discontinuity region which experiences disturbance in 
the flow of forces associated with nonlinear strain distribution. Hence, conventional 
design is not applicable to this region and a different methodology, based on realistic 
physical models which can be easily understood, should be adopted. This leads to the 
STMs method as the appropriate approach for the design of such structural concrete 
element. In addition, the desired quality of performance regarding either strength or 
ductility requirements can be attained in only a well-detailed connection.

In this chapter all types of frame joints are treated. These include knee corner 
joints under opening and closing moments, obtuse corner joints, wide beam sup-
ported on narrow column and vice versa, and exterior, tee and interior beam-column 
connections. The treatment includes the examination of the joint behavior and a 
discussion on the role of detailing in controlling the joint performance. Different 
strut-and-tie models for every type of connection are proposed with the correspond-
ing reinforcement detailing based on the boundary forces of the joint region. In order 
illustrate the calculation procedure the strength of selected examples of beam-col-
umn connections that have been tested experimentally is assessed using the method 
of STM.

7.2  KNEE CORNER JOINTS UNDER OPENING MOMENTS

7.2.1  Joint Behavior

Corners subjected to opening loads have been found in experimental tests to be far 
more critical than those subjected to closing loads (Yuan et al., 1982). The distri-
bution of elastic stresses before cracking is illustrated in Figure 7.1. Large tensile 
stresses occur at the reentrant corner and in the middle of the joint, Figure 7.1b. As a 
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result, cracking develops as shown in Figure 7.1c. A free body diagram of the portion 
outside the diagonal crack, as shown in Figure 7.1d, indicates that the compression 
forces near the outer corner give rise to a resultant that tends to push off the triangu-
lar portion of the joint. The internal tension force, T, is necessary for equilibrium. If 
reinforcement is not provided to develop this force, the joint will fail almost imme-
diately after the development of the diagonal crack (MacGregor and Wight, 2005).

In tests at the University of Nottingham (Park and Paulay, 1975), the full moment 
capacity was attained with steel content 0.75%. On the other hand, joints studied by 
Swann (Park and Paulay, 1975) with steel content 3.0% failed at a load less than 80% 
of the theoretical ultimate values, derived from the flexural capacity of the adjoin-
ing section. Thus, it can be concluded that the full flexural capacity of the adjoining 
members at the face of the joint was attained when the steel content was small. For 
higher values of steel content, a brittle splitting failure occurred at less than the full 
strength of adjoining members (Park and Paulay, 1975).

7.2.2 R ole of Detailing

When the knee corner joint is subjected to an opening moment, the effect of rein-
forcement detailing on the strength is significantly pronounced. Figure 7.2a com-
pares the measured efficiency of a series of corner joints reported by Balint and 
Taylor (1972) and Nilsson and Losberg (1976). The efficiency is defined as the ratio 
of the failure moment of the joint to the moment capacity of the members enter-
ing the joint. The reinforcement was detailed as in Figure 7.2b–e. The solid curved 
line corresponds to the computed moment at which diagonal cracking is expected 
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Tension
(a) (b)

(c) (d)

σx

σx

σy

σy

FIGURE 7.1  Behavior of corner joint due opening moment: (a) internal forces of the joint, 
(b) elastic stresses, (c) cracking pattern, and (d) free body diagram of the portion outside the 
diagonal crack.
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to occur in such a joint. Typical beams have reinforcement ratios about 1%. At this 
reinforcement ratio, the very common joint details shown in Figure 7.2d and e can 
transmit only 25%–35% of the moment capacity of the beams.

Nilsson and Losberg (1976) have shown experimentally that a joint reinforced as 
shown in Figure 7.2b will develop the needed moment capacity without excessive 
deformations. The joint consists of two hooked bars enclosing the corner and diago-
nal bars having a total cross-sectional area of half that of the beam reinforcement. 
The tension in the hooked bars has a component across the diagonal crack, helping 
to provide the force in Figure 7.1d. The inclined bar limits the growth of the crack at 
the reentrant corner, slowing the propagation of cracking in the joint. The symbols 
in Figure 7.2a show the efficiency of the joints shown in Figure 7.2b–e, both with 
and without the diagonal corner bar. It can be seen that the corner bar is needed to 
develop the full efficiency in the joint. The inclined reinforcement should have a total 
cross-sectional area approximately 50% of the largest main reinforcement.

7.2.3 S trut-and-Tie Modeling

In the design of a reinforced concrete moment-resisting frame structure, the corner 
geometry can be defined from the dimensions of the structural elements meeting 
at the joint, beam, and column. The first step in the design of connection using the 
method of STM is to identify all forces acting on the D-region (connection). Based on 
the observed joint behavior and the proposed reinforcement detailing, the appropri-
ate STM can be derived.

The different STMs shown in Figure 7.3a were suggested by Schlaich et al. (1987) 
for frame joints under an opening moment. In order to circumvent the tensile chord 
reinforcement and prevent cracking of the compression chord due to radial tensile 
stresses, either the chord reinforcement must be extended as a loop around the corner 
or inclined stirrups must be adequately arranged. For further explanation of the joint 
behavior, other STMs are suggested as illustrated in Figure 7.3b.
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FIGURE 7.2  Influence of detailing on the behavior of corner subjected to opening moment: 
(a) joint efficiency, (b)–(e) details.
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7.2.4 E xample 7.1: Strength Assessment of an Opening Corner

The strength of the reinforced concrete opening corner in the frame specimen tested 
by Nilsson and Losberg (1971), shown in Figure 7.4a, with the reinforcement detail-
ing of Figure 7.4b, is assessed via the strut-and-tie method.

In this specimen, the concrete cylinder strength was ′ =fc 24 MPa , whereas 
all reinforcement bars were 13 mm diameter deformed bars with a yield stress 
fy = 400 MPa. The specimen failed at a moment equal to 22.27 kN.m, when a diago-
nal crack inside the joint ran along the reinforcement into the compression zone and 
the outside of the corner was pushed off.

The nominal moment capacity of the smallest member entering the joint, Mu = As

fy(d − 0.5a) = 32.95 kN.m, where d = 170 mm, a A f f bs y c= ′ =/ mm( . ) .0 85 29 7 . The 
nominal strength is much larger than the failure moment of the joint, which means 
that failure occurred within the joint itself and that the stresses in the beam and the 
column were within or near the elastic limits.

The appropriate STM of the joint is shown in Figure 7.4c. In this model, the lever 
arm of the column is smaller than that of the beam, and therefore the calculations 
start with the column.

(a)

(b)

FIGURE 7.3  Strut-and-tie modeling of an opening corner joint: (a) models proposed by 
Schlaich et al. (1987) and (b) additional suggested models.
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Effective strength of nodes and struts
Both nodes 1 and 2 are C − C − T nodes; hence, the effective strength of either node 
of the model, f f fce

n
c n c= ′ = ′× =0 85 0 85 0 8 16 32. . . .β MPa

Both struts Cc and Cb are prismatic struts; hence, the effective strength of either 
strut, f f fce

s
c s c= ′ = ′× =0 85 0 85 1 0 20 4. . . .β MPa

Strut Cd is a bottle-shaped stress field with no transverse reinforcement; hence, 
f f fce
s

c s c= ′ = ′× =0 85 0 85 0 6 12 24. . . .β MPa

STM forces:
With reference to Figure 7.4c,

	
T A fc s y= = 212 4. kN

	

	 C Tc c= = 212 4. kN 	

The strength of strut Cc is the smaller of the strut strength and the strength of 
node 1; the latter governs. C wc Cc= = × ×212 4 16 32 350. .kN , giving the width of 
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FIGURE 7.4  Example 7.1—corner subjected to an opening moment (a) test specimen, 
(b) reinforcement details, and (c) the STM details.
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the strut wCc = 37 2. mm . Then the lever arm zc = 170 − 0.5 × 37.2 = 151.4 mm. 
The moment capacity of the column is therefore Mcn = 212.4 × 151.4 = 32.16 kN.m.

From equilibrium, the moment of the beam is Mb = 32.16 kN.m.
M C d w w wb b b C C Cb b b= − = × × −( . ) . ( . )0 5 16 32 350 220 0 5  giving wCb = 27 28. mm, 

Cb = Tb = 155.82 kN and lever arm zb = 206.36 mm.
The angle θ = tan−1(zb/zc) = 53.74°.
Then the force in the diagonal strut Cd = Cc/sin θ = 263.43 kN.

Node 1:
There is no need to check strut Cc since the strut size was calculated based on the 
appropriate strength.

For strut Cd, the width of the strut is w wC Cd c= =sin .θ 30 0mm . The effective 
strength is the smaller strength of the node and the strut strength; the latter governs. 
Then the nominal strength of the strut is C wdn Cd= × × =12 24 350 128 52. . kN, which 
is 49% of the strut force.

Node 2:
There is no need to check strut Cb since the strut size was calculated based on the 
appropriate strength.

For strut Cd, the width of the strut is w wC Cd b= =cos .θ 16 1mm . This width will 
give a much smaller strength than that at node 1. Therefore, the width of strut Cb 
can be increased in order to increase the capacity of the diagonal strut at node 2 to 
become close to that at node 1. Of course, the lever arm zb will be reduced and the 
force Cb will increase.

Assuming zb = 195.0 mm, the force of strut Cb = 164.9 kN and the width 
wCb = 50mm . Then the angle θ = tan−1(zb/zc) = 52.17°. The force in the diagonal 
strut Cd = 268.9 kN and the width of the strut is 29.4 mm at node 1 and 30.7 mm 
at node 2. Then the smaller nominal strength of the diagonal strut is that at node 1, 
Cdn = 126.0 kN, which is 47% of the strut force. Therefore, the joint capacity should 
be reduced to Mn = 0.47 × 32.16 = 15.11 kN.m.

The obtained strength from STM is 68% of the measured value. This obtained value 
can be optimized upon increasing the size of nodes 1 and 2 to become wCc = 52mm, 
wCb = 70mm , zc = 144 mm, zb = 185 mm, θ = 52.1°, and Cb = 165.3 kN. Then the 
force in the diagonal strut Cd = 269.2 kN and the width of the strut are 41 mm at 
node 1 and 43 mm at node 2. The nominal strength of Cd is then 175.0 kN, which is 
65.3% of the strut force. Then the joint capacity should be Mn = 0.653 × 212.4 × 
144 = 20.0 kN.m. The obtained strength from STM is 90% of the measured value.

7.3  KNEE CORNER JOINTS UNDER CLOSING MOMENTS

7.3.1  Joint Behavior

The elastic stresses in a closing corner joint subjected to a negative bending moment 
are exactly opposite to those in an opening corner joint, Figure 7.1b. The forces at the 
ends of the members forming the joint are illustrated in Figure 7.5. It is assumed that 
these forces are introduced into the joint core in the form of uniform shear stresses 
resulting from an anchorage bond. As a result, cracking of such a joint occurs with a 
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major crack on the diagonal. The diagonal crack can be avoided by limiting the diago-
nal tensile stress within the concrete tensile strength, ft, (MacGregor and Wight, 2005).

	
σ ρt s y y tT bd A f bd f f= = = ≤

	

where σt is the diagonal tension stress, T is the tensile force, b and d are the breadth 
and depth of the cross-section, respectively, As is the cross-sectional area of the main 
steel reinforcement, fy is the yield stress of steel reinforcement, and ρ is the flexural 
steel content. This condition would limit the flexural steel content to

	
ρ= f ft y 	

If the diagonal tension stress, σt, in the closing corner joint is not carried by the 
concrete tensile strength, ft, secondary reinforcement must be used (Park and Paulay, 
1975), Figure 7.6.

7.3.2 R ole of Detailing

Problems arise due to the bearing inside the bent bars in the corner since these 
bars must transfer a resultant force to the concrete on the diagonal of the joint. The 
resultant force is relatively large and acts on an arc of a length equal to 1

2 πr , where 
r is the radius of the bend. A smaller value of the radius r will be associated with a 
higher intensity of bearing stresses from the diagonal compression and hence larger 
splitting tensile stresses. For this reason, the radius of this bend should satisfy the 
following equation (El-Metwally, 1992),

	
r

C

f bce
n

=
2 	

T = As Fy

FIGURE 7.5  Stresses and cracking in a closing corner joint.
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where C is the compressive force of the diagonal strut, and fce
n  is the node 

design strength. For this case, according to ACI 318-14, f fce
n

c n= ′ =φ β( . )0 85
0 75 0 85 0 6 0 383. . . . ,× × ′× = ′f fc c  where φ is the strength reduction factor.

Secondary reinforcement, as shown in Figure 7.6, is required for a corner joint of 
large structural members having substantial reinforcement content, as stated before.

7.3.3 S trut-and-Tie Modeling

Different STMs suggested by Schlaich and Schäfer (1991) are shown in Figure 7.7a. 
Other STMs, illustrated in Figure 5.7b, are suggested to explain the joint behavior.

7.3.4 E xample 7.2: Strength Assessment of a Closing Corner

The channel-shaped frame specimen tested by Yuan et al. (1982) for closing moments, 
shown in Figure 7.8a, is examined in this example for strength assessment. In this 
specimen, the concrete cylinder strength was ′ =fc 31 6. MPa  and the steel bars were 
9.53 mm diameter deformed bars with a yield stress fy = 420 MPa. The radius of 
bars bend was 38.1 mm.

The test set up is shown in Figure 7.8b. The specimen failed due to yielding 
of reinforcement at a load P = 16.8 kN, which corresponds to a moment equal to 

Nominal steel for crack control

Transverse ties or pins

FIGURE 7.6  Secondary reinforcement at a closing corner joint.
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(a)

(b)

FIGURE 7.7  Strut-and-tie modeling of a closing corner joint: (a) models proposed by 
Schlaich and Schäfer (1991) and (b) additional suggested models.
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FIGURE 7.8  Example 7.2 - corner subjected to a closing moment: (a) channel specimen, 
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5.33 kN.m. The specimen developed cracks at the joint-member interfaces of the 
channel-shaped frame, and the representative crack pattern is shown in Figure 7.8c, 
but no cracks developed across the corner.

The nominal moment capacity of the smallest member entering the joint, Mn = As fy

(d − 0.5a) = 45.14 kN.m, where d = 79 mm, a A f f bs y c= ′ =/ mm( . ) .0 85 7 3 .
The nominal strength is less than the measured strength, which means 

that failure may not have occurred within the joint. Therefore, the nodes and the 
diagonal strut of the joint are checked first. The appropriate STM is shown in 
Figure 7.8d.

Effective strength of nodes and struts
Node 1 is a C − C − C node; hence, the effective strength of the node is 
f f fce
n

c n c= ′ = ′× =0 85 0 85 1 0 26 86. . . .β MPa
Node 2 is a C − T − T node; hence, the effective strength of the node is 

f f fce
n

c n c= ′ = ′× =0 85 0 85 0 6 16 12. . . .β MPa
Both struts Cc and Cb are prismatic struts; hence, the effective strength of either 

strut is f f fce
s

c s c= = × =0 85 0 85 1 0 26 86. . . .’ ’β MPa
Strut Cd is a bottle-shaped stress field with no transverse reinforcement; hence, 

f f fce
s

c s c= ′ = ′× =0 85 0 85 0 6 16 12. . . .β MPa

STM forces:
With reference to Figure 7.8d, the solution will start with investigating the diagonal 
strut. Upon assuming yielding of the tension reinforcement, Tc = Tb = As fy = 59.9 kN. 
The force in the diagonal strut Cd = × =2 59 9 84 7. . kN. The width of this strut at 
node 2 is w rCd

2 2 53 9= = . mm , where r is the radius of bend. Then the nominal 
strength of this strut is C wdn Cd= × × =16 12 305 265 02. . kN at node 2, which is larger 
than the strut force. For the diagonal strut to carry its force at node 1, it requires a 
width at this node, wCd

1 384 7 10 16 12 305 17 2= × × =( . . ) .)/( mm , which corresponds to 
a width of either strut Cc or Cb equal to 12.2 mm. The width of Cc or Cb corresponds 
to a nominal strength 26.86 × 12.2 × 305 = 99.94 kN, which is larger than the force 
of either strut, 59.9 kN. Then the lever arm zc = zb = 79 − 0.5 × 12.2 = 72.9 mm, 
giving a nominal moment, Mcn = Mbn = 59.9 × 72.9 = 4.4 kN.m.

The obtained nominal moment is 83% of the measured moment. This result can 
be slightly improved by reducing the width of the diagonal strut at node 1 to about 
0.5(1 + 0.83) = 0.92 times the previously used width, 17.2 mm, and redoing the 
calculations.

Thus, failure could not take place due to the failure of either strut Cd or the nodes, 
and the only possible failure mode is flexural failure by yielding of tie Tc or Tb. 
Crushing of struts Cc and Cb is not possible since on one side node 1 is stressed to 
less than its strength, and on the other side the beam and column forming the frame 
are under-reinforced.

7.4  OBTUSE CORNER JOINTS

At the obtuse corner joint, the internal forces generated in the joint must be con-
sidered when the members entering into the joint are being detailed, Figure 7.9a. 
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The two tensile forces T1 and T2 generated at the kink of the reinforcing bars 
are not unidirectional, which results in a third force R that should be resisted by 
stirrups.

From the results of the experimental investigation carried out by Abdul-Wahab 
and Ali (1989) on obtuse corners formed by joining two walls or slabs of equal 
or varying stiffness, and subjected to a positive (opening) moment, the following 
remarks have been pointed out:

	 1.	The efficiency of the joint detail is improved when inclined bars are added 
to take the tensile force in the inner corner. Loop bars with inclined bars 
resulted in the highest efficiency of 139%, and appear to be the most suit-
able detail for a continuous corner between lightly reinforced slabs.

	 2.	The efficiency of a corner is greatly improved when the thicknesses of 
the adjoining members were different. The efficiency increased to 197% 
when the thickness of one leg was increased from 100 to 300 mm. The 
mode of failure was also changed from diagonal tension failure to flex-
ural failure as a result of the difference in the stiffness between the two 
legs.

	 3.	The increase in the length of one leg resulted in a gradual change in the 
cracking and failure pattern from a typical diagonal tension to an extensive 
flexural cracking with secondary diagonal tension failure. The efficiency of 
the corner also increased by 32% when the length ratio was doubled.

The appropriate STM for an obtuse joint is illustrated in Figure 7.9a, with the 
corresponding reinforcement. In this model, the longitudinal bars carry the tension 
forces T1 and T2, while the stirrups carry all other tension forces. An alternative 
model is illustrated in Figure 7.9b with the corresponding reinforcement, where the 
main steel takes the U-shape and carries all the tension forces; nevertheless, horizon-
tal reinforcement, as illustrated, is added for crack control.

Main reinforcement
Horizontal reinforcement

T2

T2

T1

T1
R

(a) (b)

FIGURE 7.9  STM and the corresponding reinforcement details for an obtuse corner joint 
under an opening moment: (a) STMs and (b) corresponding reinforcement details.
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7.5 � WIDE BEAM SUPPORTED ON A NARROW 
COLUMN AND VICE VERSA

An experimental study on frames of wide beams supported on narrow columns had 
been conducted by Metawei (1990). From the observed experimental behavior, the 
following conclusions were obtained:

	 1.	Upon increasing the percentage of reinforcement concentration in strip 
width equal to column width, the initial cracking load decreased and failure 
load increased.

	 2.	Central deflection of a beam with steel concentration showed a smaller 
deflection than a beam with uniform steel distribution. On the other hand, 
edge deflection of both beams was the same up to the cracking load of the 
section near the support, but after the cracking load, the steel concentration 
has increased the deflection till failure.

	 3.	Crack patterns at the bottom surface of the frame with uniform distribu-
tion of steel indicated a bigger number and longer cracks than those for the 
frame with steel concentration and vice versa for crack patterns at top sur-
faces. Crack widths measured for the frame with steel concentration were 
bigger than the width for the frame with uniform steel distribution at the 
same loading level.

The appropriate STM for this joint is shown in Figure 7.10, with the corresponding 
reinforcement.

7.6  EXTERIOR BEAM–COLUMN CONNECTIONS

7.6.1  Joint Behavior

The system of internal forces generated around the joint zone of the exterior 
beam–column connection in the cast-in-place frame construction is indicated in 
Figure 7.11a. In the connection zone, axial compression stresses from the column 
axial load act in combination with high shear stresses caused by the rapid change of 
the bending moment across the beam depth. This system leads to bending moments 
being transmitted into the connection zone by a couple formed from the tensile force 

T

T

2T

FIGURE 7.10  STM and the corresponding reinforcement of a wide beam-narrow column 
joint.
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in the main beam reinforcement and an equal and opposite force on the compression 
side of the beam.

From the position of the stress resultants, apparently diagonal tension stress ft and 
compression stress fc are induced in the panel zone of the joint. The diagonal tension 
may be high when the ultimate capacity of the adjoining members is developed. This 
can lead to extensive diagonal cracking. The severity of diagonal tension is influ-
enced by flexural steel content and the magnitude of the axial compression load on 
the column (Park and Paulay, 1975).

As a consequence, bond stresses are developed along the beam tension steel as 
the load is transferred into the concrete. For the load pattern in Figure 7.11a, assum-
ing that the axial compression on the column is small, the surrounding concrete is 
subjected to sedimentation and it is exposed to transverse tension. Usually a split-
ting crack forms along these bars at a relatively early stage of the loading. Repeated 
loading will aggravate the situation and a complete loss of bond up to the beginning 
of the bent portion of the bar may occur (Park and Paulay, 1975; Scott et al., 1994). 
Consequently, high bearing stresses generated in the bend arise due to the bending 
of the beam steel either down or up into the column, or into a U-bar. Thus, there is a 
combination of stresses acting in the joint zone of the beam–column connection—
axial compression, shear, bond, and bearing stresses—which makes the behavior of 
this zone complex and difficult to resolve (Scott et al., 1994).

The straight vertical portion following the bend must be sufficiently long if the 
full strength of the top bar is to be developed. It may be noted that bending the top 
steel into the joint induces concrete hoop forces along the "right" direction. The 
forces transmitted from the bars to the concrete by the bearing or bond are indicated 
by the small arrows in Figure 7.11b (Park and Paulay, 1975).

The bottom beam bars, in compression, enter the joint in a region of ideal bond 
conditions, since the surrounding concrete is also in compression transversely to the 
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FIGURE 7.11  Internal forces and cracking of exterior beam column connection: (a) internal 
forces and (b) cracking pattern.
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bars. Owing to reversed loading and subsequent possible tensile yielding of these bars, 
however, serious bond deterioration can occur here too. The straight portion of the 
bars beyond the bend remains largely ineffective for compression loads. Therefore, 
after a few cycles of reversed seismic loading, serious anchorage losses can occur, 
particularly when the beam frames into a shallow column (Park and Paulay, 1975).

The outer column bars are subjected to perhaps the most severe bond conditions. 
Over the depth hb of the beam, a total bond force needs to be transferred to the 
concrete in the joint, if the internal forces at the critical sections across the column 
are to be sustained. If the code recommendations are to be adhered too, the avail-
able anchorage length hb is grossly inadequate. Moreover, the entire bond force is 
to be transferred into the panel zone of the joint and not, as one might be tempted 
to assume, partly into the cover and partly into the core of the joint. The extremely 
high bond stresses along the outer column bars can be the cause of vertical split-
ting cracks. These might interconnect and in turn cause the cover to separate itself. 
Unfortunately, the failure planes along the splitting cracks around these bars coin-
cide during reversed loading (Park and Paulay, 1975).

Under severe lateral loads, ductile moment-resisting reinforced concrete frames 
will be subjected to large loads and displacements. These deformations result in large 
shear and bond stresses that must be resisted by the joint. Cyclic loading in cross-
cracked concrete causes a repeated opening and closure of cracks. Owing to the 
dominance of shearing action across the joint, movements parallel to the open cracks 
will also occur. When the cracks become large, because the transverse reinforcement 
has yielded, the process of grinding and progressive splitting due to uneven concrete 
bearing begins. A complete disintegration of the concrete within the body of the 
joint may result. This is associated with a drastic volumetric increase in the core 
unless containment is provided (Park and Paulay, 1975).

A study of exterior beam–column connections was undertaken by Hanson and 
Conner (1967). They demonstrated that without transverse reinforcement, exterior 
beam–column connections could not sustain much load after the third moderate 
cycle of reversed loading, where the concrete burst and the column bars buckled. In 
joints that contained hoop reinforcement equal to that required for confinement in 
the column above and below, the hoop steel stresses increased during cyclic alternat-
ing loading till yielding occurred. This clearly showed the important role of trans-
verse joint reinforcement for seismic-type loading.

Compression from the column axial load, when it acts in combination with 
high shear, bond, and bearing stresses, can be expected to improve joint behavior 
and reduce the demand for joint shear reinforcement. Such effect has been studied 
experimentally by Scott (1992). It was found that high column axial load specimens 
had developed, or had closely approached, their full theoretical moment of resis-
tance when initial joint cracking occurred, but low column axial load specimens had 
reached only about 50% of their theoretical moment of resistance when the joint first 
cracked. High column axial load specimens with beam tension steel ratio of 1%, had 
failed by the development of a plastic hinge in the beam at the face of the column; 
therefore, high reinforcement strains were recorded due to gross yield of the beam 
bars. A low column axial load with similar specimens had resulted in failure by 
extensive joint cracking and low strains were recorded.
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7.6.2 R ole of Detailing

Tests on 15 reinforced concrete exterior beam–column connections were studied 
by Scott (1992). Three reinforcement details were used (bending beam tension steel 
up or down into the column and the U-bar detail, Figure 7.12) in the conjunction 
between the column and the beam. Also, the beam depth, beam tension steel per-
centage, and column axial load were varied. Specimens with 1% beam tension rein-
forcement bent down into the column, or bent into a U-bar, failed by development of 
a plastic hinge in the beam at the face of the column when a high column load was 
used. High reinforcement strains were recorded due to the gross yield of the beam 
bars. All other specimens with the beam tension reinforcement bent up detail, failed 
by extensive joint cracking and reinforcement strains, were lower and sometimes in 
the elastic range. Up to joint cracking, load transfer in all three beam details (up, 
down, and U-bar detail) was predominantly by bond stresses developed at the bend. 
After joint cracking, bars bent down and the U-bars compensated for loss of bond 
at the bend by developing bond stresses over an increasing part of their length, giv-
ing substantial load increments between joint cracking and failure. The bars bent up 
detail were unable to do this, resulting in brittle failure. Overall, the beam tension 
bars bent down into the column and U-bars details performed significantly better 
than the beam tension bars bent up detail. However, if ductility is a prime consider-
ation, use of the beam tension bars bent down detail would appear preferable.

Park and Paulay (1975) have suggested some reinforcement detailing of exterior 
beam–column connections which are made to satisfy the requirement of anchor-
age. As shown in Figure 7.13a, the development length of the beam reinforcement 
should be computed from the beginning of the 90° bend, rather than from the face 
of the column, because of the inevitable loss of bond at an exterior joint. In wide 
columns, any portion of the beam bars within the outer third of the column could 
be considered for computing the development length as shown in Figure 7.13b. In 
case of narrow columns, the use of stub beams, as shown in Figure 7.13b, will be 
imperative. A large diameter bearing bar fitted along the 90° bend of the beam bars 
should be beneficial in distributing bearing stresses. In deep columns and whenever 
straight beam bars are preferred, mechanical anchorages, as shown in Figure 7.13c, 

(a) (b) (c)

FIGURE 7.12  Reinforcement details for exterior beam column connection: (a) beam bars 
bent down into the column, (b) beam bars bent up into the column, and (c) “U” bar detail.
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could be advantageous. The top bars in a beam passing through holes in a bearing 
plate may be welded to a steel plate. Joint ties should be so arranged that the critical 
outer column bars and the bent-down portions of the beam bars are held against the 
core of the joint.

7.6.3 S trut-and-Tie Modeling

In Figure 7.14, different STMs of the exterior beam–column connection are shown 
for different stiffness of the adjacent members connected with the joint. The simple 
STM as shown in Figure 7.14a suggests that the shearing and compression forces 
resulting from the particular load pattern are largely transmitted by a diagonal strut 
across the joint. In fact, there are several struts separated by diagonal cracks, which 
can be represented by the truss model in Figure 7.15. It would be extremely optimis-
tic to assume that the full compression strength could be approached in these struts. 
Not only are they subjected to indeterminate eccentricities, but also they are exposed 
to transverse tensile strains. In this biaxial state of stress, a considerable reduction of 
compressive strength ensues (Park and Paulay, 1975).

Assume no bond

Assume no
bond

Mechanical
anchorage

Stub beam

(a) (b) (c)

h

1
3 h 2

3 h

FIGURE 7.13  Suggested anchorage of bars in columns for exterior beam column connec-
tion using: (a) bent-up bars, (b) bent-up bars in stub beam, and (c) mechanical anchorage.

(a) (b) (c)

FIGURE 7.14  Suggested STMs and corresponding details for exterior beam–column con-
nection with beam to column thickness: (a) between 0.67 and 1.5, (b) less than 0.67, and 
(c) greater than 1.5.
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7.6.4 E xample 7.3: Strength Assessment of an Exterior Joint

In this example, the strength capacity of a reinforced concrete exterior beam–
column connection tested by Abrams (1987) is assessed via the method of STM. The 
test specimen is a planner exterior beam–column assembly, Figure 7.16a. Nonlinear 
flexural behavior was expected to occur at the ends of the beam while the columns 
were expected to crack but not to yield. The connection upper and lower columns 
are 343 mm wide and 457 mm overall depth with 8φ16 reinforcing bars as shown in 
Figure 7.16a. The connection beam is 343 mm wide and 343 mm overall depth with 

FIGURE 7.15  Truss model for exterior beam–column connection.
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FIGURE 7.16  Example 7.3—an exterior beam–column connection: (a) connection, (b) STM, 
and (c) STM details.
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3φ19 top and bottom reinforcing bars. The beam depth db = 289 mm and the column 
depth dc = 403 mm. The steel yield stress, fy = 470 MPa and the concrete cylinder 
strength, ′ =fc 32 6. MPa .

It is obvious that the beam is the weakest member, though it carries a moment 
equal to the summation of the moments of the columns. Therefore, the solution starts 
with investigating the beam. The appropriate STM is illustrated in Figure 7.16b.

Geometry of the STM and Forces:
The beam tension steel is 3φ19 = 850.6 mm2. Upon assuming the beam tension rein-
forcement yields, the tension force of the beam, Tb = 470 × 850.6 = 399.8 kN. The 
compression force of the beam, C f w bb c s Cb= = ′399 8 0 85. ( . )kN β . Though strut Cb is 
a prismatic strut, it is acting at node 2, which is a C − C − T node, and therefore it is 
better to take βs equal to βn of node 2, that is, 0.8. Then wCb = 52 6. mm.

The beam lever arm, zb = 289 − 0.5 × 52.6 = 262.7 mm. Then the nominal 
moment of the beam, Mbn = 399.8 × 262.7 = 105.0 kN.m. Thus, the column moment 
is Mc = 0.5Mbn = 52.5 kN.m.

The column reinforcement on either side is located at 54 mm from the outer edge of 
the column. Therefore, the width of either Cc or Tc can be taken as 2 × 54 = 108 mm, 
giving a lever arm, zc = 403 − 54 = 349.0 mm. The width of Tb can be taken as 
2 × (343 − 289) = 108 mm. As for the width of strut Cb, it has been calculated 
before as 52.6 mm. These geometrical relations are illustrated in Figure 7.16c. The 
force Cc = Tc = Mc/zc = 150.4 kN. The angle θ = tan−1zb/zc = 36.97°. The force in 
the diagonal strut is Cd = Tb/cos θ = 500.4 kN.

Effective concrete strength of the nodes and the struts:
Node 1 is a C − T − T node; thus, f fce

n
c n= ′ = × × =0 85 0 85 32 6 0 6 16 63. . . . .β MPa

Node 2 is a C − C − T node; thus, fce
n = × × =0 85 32 6 0 8 22 17. . . . MPa

Struts Cb and Cc are prismatic struts; thus, f fce
s

c s= ′ = × × =0 85 0 85 32 6 1 0. . . .β
27 71. MPa

Strut Cd is a bottle-shaped stress field; thus, f fce
s

c s= ′ = × × =0 85 0 85 32 6 0 75. . . .β
20 8. MPa if transverse reinforcement to resist the lateral tension is provided; other-
wise, f fce

s
c s= ′ = × × =0 85 0 85 32 6 0 6 16 63. . . . .β MPa

Node 1:
The nominal strength of strut Cc is Ccn = 16.63 × 108 × 343 = 616 kN > Cc

The width of strut Cd at node 1, wCd
1 108 108 151 2= + =sin cos .θ θ mm

The nominal strength of strut Cd, Cdn = 16.63 × 151.2 × 343 = 862.7 kN > Cd, 
that is, the strut is safe without consideration for the transverse reinforcement.

Node 2:
The nominal strength of strut Cc is Ccn = 22.17 × 108 × 343 = 821.3 kN > Cc

The nominal strength of strut Cb is Cbn = 22.17 × 52.6 × 343 = 400.0 kN > Cb

The width of strut Cd at node 2, wCd
2 108 52 6 106 7= + =sin . cos .θ θ mm

The nominal strength of strut Cd, Cdn = 16.63 × 106.7 × 343 = 608.6 kN > Cd, 
that is, the strut is safe without consideration for the transverse reinforcement.

From the previous results, all the model components have nominal strength above 
the requirement from the forces acting on these elements. This finally means that 



177Beam–Column Connections

the assembly can carry a moment applied to the beam equal to MSTM = 105.0 kN.m. 
This assembly failed in the test under a moment, MEXP = 119 kN.m; that is, 
MSTM/MEXP = 88.2%

7.7  TEE BEAM–COLUMN CONNECTIONS

7.7.1  Joint Behavior

Under gravity loads, the tee beam–column joint transmits tension and compression 
forces due to the loads from the roof beams loads at the beam–column interface 
directly through the joint into the internal column without developing extensive 
cracking and diagonal tensile stresses in the joint.

In laterally loaded frames, the system of external action and the corresponding 
internal forces generated around the joint zone of the tee beam–column connection 
in cast-in-place frame construction is indicated in Figure 7.17. In this case, the joint 
behavior is similar to that of the exterior beam–column connection (MacGregor and 
Wight, 2005).

7.7.2 R ole of Detailing

The most common detail, shown in Figure 7.18a, produces unacceptably low 
joint efficiency. Joints reinforced as shown in Figure 7.18b and c had a much better 
performance in experimental tests (Nilsson and Losberg, 1976). The hooks in those 
two reinforcement details act to restrain the opening of the inclined crack and to 
anchor the diagonal compressive strut in the joint. The reinforcement detail shown 
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Tc″
Cc″ Cs″
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1

ft V
1

Cs2

Cs1

FIGURE 7.17  Internal forces of the tee beam–column connection.
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in Figure 7.18c is satisfactory to develop the strength in the case of the retaining wall. 
The diagonal bar, shown in dashed lines, can be added if control of cracking at the 
base of the wall is desired.

7.7.3 S trut-and-Tie Modeling

In Figure 7.19a, the appropriate STM for the case of the gravity load is shown. In a 
laterally loaded frame, the forces acting on a T-joint can be idealized as shown by the 
simple STM in Figure 7.19b (or 7.19c). This model suggests that the internal forces 
resulting from the particular load pattern are largely transmitted by a diagonal strut 
across the joint.

Additional STMs of the tee beam–column connection for different geometry and 
detailing of the adjacent members connected with the joint are shown in Figure 7.19d 
and e.

(a) (b)

(d) (e)

(c)

FIGURE 7.19  Suggested STMs and corresponding details for tee beam–column connec-
tions: (a) due to gravity loads and (b–e) due to lateral loads.

Crack(a) (b) (c)

FIGURE 7.18  Different details of the tee beam–column connection: (a) unsatisfactory 
detail, (b) satisfactory detail, and (c) satisfactory detail in case of retaining walls.



179Beam–Column Connections

7.8  INTERIOR BEAM–COLUMN CONNECTIONS

7.8.1  Joint Behavior

An interior joint under gravity loads transmits the tension and compression forces at 
the beam–column interface and the forces from the upper column, directly through 
the joint into the lower column without developing extensive cracking in the joint. 
In a laterally loaded frame, interior joints experience significant shear forces which 
develop extensive cracking in the joint core.

There are two mechanisms that are capable of transmitting the joint horizontal shear 
forces from one face of the joint to the other: the compression strut mechanism and the 
panel truss mechanism, as shown in Figure 7.20. In the first mechanism, the compression 
strut mechanism, a large strut is formed between the two opposite corners of the joint in 
compression. In the second mechanism, the panel truss mechanism, a truss is formed by 
the intermediate joint ties acting as tension members and smaller inclined struts acting in 
compression. Both of the two mechanisms represent the two extremes of the joint behav-
ior. The compression strut in the first mechanism depends mainly on the compression 
blocks in the beams and columns, and on the crushing strength of the concrete in the strut. 
On the other hand, the panel truss in the second mechanism counts on the transfer by bond 
inside the joint and on the horizontal transverse steel and the vertical column reinforce-
ment to sustain the truss action (Paulay, 1989).

In practice, the behavior of the joint probably falls somewhere between the two 
mechanisms. Since the joint is loaded to the first yield, both the strut and the truss 
mechanisms contribute to the joint shear resistance with the strut contributing more 
because large strains are required to activate the tension members in the panel truss. 
After the first yield had occurred, two paths are possible depending on the bond 
condition (Leon, 1990).

For design purposes, it is important to quantify the contribution of each of the 
aforementioned mechanisms. If a strut mechanism is accepted, compressive forces 
will be introduced into the joint by the bearing of the beam concrete blocks and the 
tensile forces by bond stresses where the joint is loaded to the first yield. In this case, 

FIGURE 7.20  Shear transfer mechanisms in the interior beam column connection: (a) strut 
mechanism and (b) truss panel mechanism.
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the required joint reinforcement reduces to that which is necessary to confine the 
concrete properly (Leon, 1990).

On the other hand, if a truss panel mechanism is accepted, then all forces will be 
introduced into the joint by bond from the bars because large cracks are presumed to 
exist at the joint beam interface where the beam steel has yielded. In this case, a large 
amount of transverse steel is required in the joint which is necessary to maintain the 
joint strength (Leon, 1990).

7.8.2  Bond Condition and Confinement

The anchorage length of the joint reinforcement is influenced by the bond condi-
tion which has a main role in joint behavior. After joint loading to the first yield has 
occurred, two paths are possible, depending on the bond conditions.

If a very good bond is present, and therefore all yielding takes place at the joint 
face with little or no yield penetration into the joint, the panel truss mechanism as 
shown in Figure 7.20b will prevail. Yielding of reinforcement at the column face 
results in a separation of the beams from the column, and the lack of a bar slip pre-
vents the beam concrete compression blocks from confining the joint. Therefore, all 
the compressive forces are transferred to the joint by bond stress, and the efficiency 
of the strut mechanism is consequently reduced. To sustain this type of behavior 
through a severe load history, a large amount of transverse reinforcement as well 
as long anchorage lengths is required. Theoretically, there would be only a small 
amount of distributed cracking in the joint since shear stress levels are low, and 
therefore there is little or no loss of energy dissipation capacity with cycling.

If, on the other hand, the bond conditions are poor such that yield penetration and 
bar slip begin to occur, a completely different situation arises. The beam bars are 
then anchored in the beams at the opposite side of the joint, increasing the size of 
compressive blocks on the beams and thus increasing the effectiveness of the strut 
mechanism. The joint corner is therefore better confined and the strut mechanism 
is more effective. The increased use of the strut mechanism is associated with large 
compressive strains and therefore with more shear cracking of the joint. This results 
in larger shear deformations and losses of energy dissipation capacity (Leon, 1990).

7.8.3 S trut-and-Tie Modeling

The appropriate STM for the case of gravity load is shown in Figure 7.21a. For a 
laterally loaded connection, the simple STM as shown in Figure 7.21b suggests that 
the shearing and compression forces resulting from the particular load pattern are 
largely transmitted by a diagonal strut across the joint. The STM shown in Figure 
7.21c considers both the strut and truss mechanism contribution in transferring shear.

7.8.4 E xample 7.4: Strength Assessment of an Interior Joint

In this example, the strength capacity of a reinforced concrete interior beam–column 
connection tested by Abrams (1987) is assessed via the method of STM. The test 
specimen is a planner exterior beam–column assembly, Figure 7.22a. Nonlinear 
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(a)

(b)

(c)

FIGURE 7.21  Suggested STMs and corresponding details for interior beam–column con-
nections: (a) due to gravity loads and (b, c) due to lateral loads.
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FIGURE 7.22  Example 7.4—an interior beam–column connection: (a) connection, (b) STM, 
and (c) STM details.
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flexural behavior was expected to occur at the ends of the beams while the columns 
were expected to crack but not to yield. The connection upper and lower columns 
are 343 mm wide and 457 mm overall depth with 8φ16 reinforcing bars as shown in 
Figure 7.22a. The connection beams are 343 mm wide and 343 mm overall depth 
with 3φ19 top and bottom reinforcing bars. The beam depth db = 289 mm and the 
column depth dc = 403 mm. The steel yield stress, fy = 470 MPa and the concrete 
cylinder strength, ′ =fc 25 5. MPa .

It is obvious that the beams are weaker than the columns. Therefore, the solutions 
starts with investigating the beams. The appropriate STM is illustrated in Figure 7.22b.

Geometry of the STM and forces:
The tension steel of either beam is 3φ19 = 850.6 mm2. Upon assuming that the beam ten-
sion reinforcement yields, the tension force of the beam, Tb = 470 × 850.6 = 399.8 kN. 
The compression force of the beam, C f w bb c s Cb= = ′399 8 0 85. ( . ) kN β . Though strut 
Cb is a prismatic strut, the strut is connected to node 1 (or 2), and therefore it should 
be influenced by the strength of this node. Node 1 is a C − T − T node; however, the 
effectiveness factor of this node is taken as 0.8 since 50% of the load is transferred as a 
C − C − C node and the other 50% is transferred as a C − T − T node. Another way 
to look at the node is by dividing it diagonally, giving two equal C − C − T nodes. 
Hence, the size of strut Cb is based on an efficiency factor 0.8, giving wCb = 67 2. mm .

The beam lever arm, zb = 289 − 0.5 × 67.2 = 255.4 mm. Then the nominal 
moment of the beam, Mbn = 399.8 × 255.4 = 102.1 kN.m. Thus, the column moment 
is Mc = 102.1 kN.m.

The column reinforcement on either side is located at 54 mm from the outer edge of 
the column. Therefore, the width of either Cc or Tc can be taken as 2 × 54 = 108 mm, 
giving a lever arm, zc = 403 − 54 = 349.0 mm. The width of strut Cb can be taken 
as calculated before wCb = 67 2. mm; however, for simplicity, it is taken to be the 
same as that of Tb. Then the width of either Cb or Tb is 2 × (343 − 289) = 108 mm. 
Hence, zb is modified to zb = 289 − 0.5 × 108 = 235.0 mm. These geometrical 
relations are illustrated in Figure 7.22c. The force Cc = Tc = Mc/zc = 292.6 kN. 
The angle θ = tan−1zb/zc = 33.95°. The force in the diagonal strut is Cd = (Tb + Cb)
cos θ + (Tc + Cc)sin θ = 990.1 kN.

Effective concrete strength of the nodes and the struts:
The strength of nodes 1 and 2, as explained before, is f fce

n
c n= ′ = × ×0 85 0 85 25 5. . .β

0 8 17 3. .= MPa
Struts Cb and Cc are prismatic and their strength is f fce

s
c n= ′ = × ×0 85 0 85 25 5. . .β

1 0 21 7. .= MPa
Strut Cd is a bottle-shaped stress field with sufficient transverse reinforcement, 

hence its strength is f fce
s

c n= ′ = × × =0 85 0 85 25 5 0 75 16 3. . . . .β MPa .
The strength of either strut Cb or Cc is controlled by the strength of the node; 

whereas the strength of strut Cd is controlled by the strength of the strut itself.

Node 1 or 2:
The nominal strength of strut Cb is Cbn = 17.3 × 108 × 343 = 640.9 kN > Cb

The nominal strength of strut Cc is Ccn = 17.3 × 108 × 343 = 640.9 kN > Cc

The width of strut Cd at either node, wCd = + =108 108 149 9sin cos .θ θ mm
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The nominal strength of Cd, Cdn = 16.3 × 149.9 × 343 = 838.1 kN < Cd.
Strut Cd is the only critical component, Cdn = 0.85Cd, and all other elements attain 

nominal strength exceeding their forces. Hence, the forces in all elements should be 
reduced to 85%, giving Cb = 339.8 kN and Mb = 339.8 × 235.0 = 79.9 kN.m. The 
assembly failed due to a moment MEXP = 106.0 kN.m; hence, MSTM/MEXP = 75.3%.
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8 Pile Caps

8.1 � INTRODUCTION

If the state of stress is not predominantly plane, three-dimensional strut-and-tie 
models (3D STMs) should be used (Schlaich et al., 1987). With large 3D reinforced 
concrete blocks, load paths for the concentrated load may be considered in two direc-
tions, as illustrated in Figure 8.1, where the strut-and-tie method is applied in two 
perpendicular planes. Unlike two-dimensional strut-and-tie models (2D STMs), 3D 
STMs are required when the structure and loading are considerably spread over all 
the three dimensions, such as pile caps with two or more rows of piles.

Loads are essentially transferred in pile caps through 3D stress fields; there-
fore, 3D STMs should be used, Figure 8.2 (Engström, 2011). Nevertheless, in some 
instances, 2D models are possible to employ. 3D models usually require less amount 
of reinforcement since the load path is direct and hence shorter. In 3D models, the 
geometry of struts and nodal zones may represent difficulty and therefore simplified 
geometry can be adopted as will be illustrated in a subsequent section. On the other 
hand, 2D models are easier to handle than 3D models.

As a result of the spatial nature of pile caps, Figure 8.2, their struts and nodal 
zones are distinct from those of 2D structure members. Struts in pile caps are sur-
rounded by significant volumes of concrete with very low stress levels. These con-
crete volumes are called inactive concrete and they play a role in improving the 
strength of struts. Such effect will be discussed in a subsequent section.

Nodal zones in pile caps are bounded by 3D stress fields. Hence, such effect 
should be implemented in the estimate of their strength. This feature is discussed in 
a subsequent section.

In addition to the aforementioned features of pile caps, this chapter provides 
examples to illustrate the design procedure and strength assessment of pile caps. The 
design procedure and modeling of pile caps subjected to vertical loads and moments 
are covered. Nevertheless, the treatment of pile caps under vertical or vertical and 
lateral loads using 2D modeling is illustrated with two examples before proceeding 
to the 3D aspects. Since the solution of pile caps starts with the determination of pile 
loads, this point is discussed first in this chapter.

8.2 � DISTRIBUTION OF PILE LOADS

The flexural rigidity of a pile cap significantly affects the distribution of pile loads. 
Design engineers very often assume that pile caps are rigid enough such that a uni-
form distribution of loads among piles is guaranteed. This assumption is acceptable 
if the piles are close to the column such that the angle of inclination of every strut 
deviating from underneath the column to a pile is larger than 45°. Of course, if the 
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FIGURE 8.1  Applied STM in two different planes.
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FIGURE 8.2  Example of a pile cap, showing a 3D STM and inactive concrete.
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distance between the column and every supporting pile is the same, the pile loads 
will be equal.

On the basis of a linear elastic finite element analysis, Ghali (1999) stated that 
if the ratio ℓ/t exceeds 2.4, a flexible behavior is expected, where ℓ is the distance 
between the column centerline and the center of the furthermost corner pile and t is 
the thickness of the pile cap. Beredugo (1967) has shown that the load applied to a 
rigidity caped free-standing pile group is usually not uniformly distributed. Adebar 
et al. (1990) carried out tests on pile caps of different geometry and properties of 
concrete and reinforcement. They arrived at the same conclusion of nonuniform dis-
tribution of pile loads. In such a case, a reliance on a linear elastic finite element 
analysis would be reasonable for pile load assessment.

8.3 � 2D (INDIRECT) MODELING OF PILE CAPS

8.3.1 �D esign Example 8.1

A pile cap 4200 × 3600 × 1400 mm is supported by four piles of 600 mm diameter 
each and supports a 500 × 1500 mm column as shown in Figure 8.3. Using 2D STM 
design the reinforcement and check the nodes and struts of the pile cap for the fol-
lowing load combinations

Case 1: Nu = 6000 kN and Muy = 0.0
Case 2: Nu = 2700 kN and Muy = ±4950 kN.m

Assume that the concrete cylinder strength, ′ =fc 30 0. MPa , and the yield stress of 
steel reinforcement, fy = 420.0 MPa.
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1 2

600 750 1500 750 600

4200

1 2

950

3600

FIGURE 8.3  Example 8.1.
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Column sectional design
For the given straining actions of the two cases of loading, the column reinforcement 
is 15φ28 on each short side. The bars are placed in three rows and their centroid is 
approximately located at 130 mm from the column short edges.

Load case 1
With reference to Figure 8.3, the column forces are first transferred in the x-
direction  to the lines connecting the piles on axes (1) and (2); then the forces are 
transferred to the piles. For this case, Nu = 6000 kN and Muy = 0.0 are replaced by 
two stress resultants, 3000 kN each, located approximately at 330 mm from the col-
umn short edges, and transferred in the x-direction via the STM shown in Figure 8.4a. 
Of course, for design optimization, these resultant forces can be located closer to the 
column edges (at ≈160 mm). From the model illustrated in the figure, the tension 
force T = 2700 kN can be resisted by a reinforcement = 8571.4 mm2 = 14φ28 to be 
arranged in one layer within a width equal to twice the column breadth (1000 mm).

For either axis (1) or (2), Figure 8.3, the 3000 kN force is transferred to the piles 
on the axis via the STM shown in Figure 8.4b. From the model, the tension force 
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T
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330 330

1200

100

100

600600 3000

(a) (b)

(c) (d)

FIGURE 8.4  Example 8.1—STM details of loading case 1: (a) STM of the force transfer in 
the x-direction, (b) STM of the force transfer through axis (1) or (2), (c) nodal zone nA of the 
model in Figure 8.4b, and (d) layout of bottom reinforcement from STM.
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T1 = 1343.8 kN, which requires a reinforcement = 4266 mm2 = 7φ28 to be arranged 
within a width equal to the pile diameter (600 mm).

Design strength of nodes and struts
With reference to Figure 8.4b

The design strength of the upper nodes, f fcd
n

c= × × ′× =0 75 0 85 1 0 19 13. . . .* MPa
*The strength reduction factor.
The design strength of the lower nodes, f fcd

n
c= × × ′× =0 75 0 85 0 8 15 3. . . . MPa

The design strength of the upper strut, f fcd
s

c= × × ′× =0 75 0 85 1 0 19 13. . . . MPa
The design strength of the diagonal struts, f fcd

s
c= × × ′× =0 75 0 85 0 6 11 48. . . .† MPa

†Unreinforced bottle-shaped strut.

Node nA as an example of the lower nodes
Since the reinforcement will extend beyond the node a distance greater than 
twice  the concrete cover and the reinforcement will be arranged in one layer, 
the node is detailed as shown in Figure 8.4c. Since the distance between the ten-
sion tie T1 and the pile cap edge is assumed to be 100 mm, the height of the node 
wT1 200= mm .

The bearing stress = pile load/pile area = 1500 kN/[π(600)2/4] = 5.31 MPa, 
which is less than the design strength, 15.3 MPa.

The upper side of the node is checked by the stress from the diagonal strut, 
C2 = 2013.9 kN. The design strength of this side is the smaller of the node strength and 
the strut strength, which gives a value of 11.48 MPa. The strut width is 200 cos θA + 
600 sin θA = 580.4 mm, and the breadth is the pile diameter, 600.0 mm. Thus, the 
node stress at the interface with the strut = 2013.9 kN/[600 × 580.4] = 5.78 MPa, 
which is safe.

Upon completing the check for the upper nodes, it is found that the nodes and 
struts are safe. The layout of the reinforcement from the STM is given in Figure 8.4d.

Load case 2
The column forces are first transferred in the x-direction to the lines connecting the 
piles on axes (1) and (2); then the forces are transferred to piles. Considering the case 
that the column moment causes compression to the piles on axis (2) and tension to 
the piles on axis (1), then Nu = 2700 kN and Muy = ±4950 kN.m are replaced by 
equivalent two stress resultants on the column section, a downward force 5440 kN 
and an upward force 2740 kN, as shown in Figure 8.5a. Then the resultant force 
of both piles on axis (1) is ((2700/2) + (4950/3)) = 3000 kN (downward) and 
the resultant force of both piles on axis (2) is ((2700/2) − (4950/3)) = −300 kN 
(upward). The appropriate STM of this plane is shown in Figure 8.5b. From the 
model in Figure 8.5a, the tension force T3 = 2275 kN can be resisted by a rein-
forcement = 7222.2 mm2 = 12φ28, which is less than the corresponding rein-
forcement in case 1. The tension force T4 = 220 kN requires reinforcement 4φ16 
to be distributed within a width 500 mm, which is covered by the minimum rein-
forcement required by ACI 318-14. The tension force T5 = 2740 kN requires a 
vertical reinforcement 8698.4 mm2 = 15φ28, which is covered by the column 
reinforcement.
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The 3000 kN downward force on axis (2) is transferred to the piles on the axis 
via the STM shown in Figure 8.4b as for load case (1) and the reinforcement of the 
two cases is the same. The 300 kN upward force on axis (1) is transferred to the 
piles on the axis via the STM shown in Figure 8.5b. From the model, the tension 
force T6 = 134.4 kN requires a reinforcement = 426.6 mm2 = 3φ16 to be arranged 
within a width equal to the pile diameter (600 mm), which is covered by the mini-
mum reinforcement required by ACI 318-14, and therefore it is not illustrated in the 
reinforcement layout.

The layout of the reinforcement from the STM is given in Figure 8.5c and d.
The final reinforcement layout from STMs is illustrated in Figure 8.6. It should 

be noted that a minimum reinforcement for temperature and shrinkage in the areas 
where there is no reinforcement from the model, equal to 0.2% of the concrete area, 
required by ACI 318-14, should be placed. This reinforcement is not illustrated in 
Figure 8.6.

8.3.2 D esign Example 8.2

A pile cap 4200 × 8000 × 1400 mm is supported by eight piles of 600 mm diam-
eter each and supports two columns of cross-section 500 × 1500 mm, as shown in 
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FIGURE 8.5  Example 8.1—STM details of loading case 2: (a) STM of the force transfer 
through the x-axis, (b) STM of the tension force transfer through axis (1) or (2), (c) layout of 
bottom reinforcement from STM, and (d) reinforcement of the model in (b).



191Pile Caps

600

600

7φ28

15φ28

1000

15φ28

7φ28
7φ28

14φ28

Bottom reinforcement

Alternative bottom reinforcement from 3D modeling

From
minimum

reinforcement

Cross-sectional elevation
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Figure 8.7. Using a 2D STM design, the reinforcement for the following load combi-
nations if the concrete cylinder strength, ′ =fc 30 0. MPa , and the yield stress of steel 
reinforcement, fy = 420.0 MPa.

Case 1: for each column Nu = 6000 kN and Mux = 0.0
Case 2: for each column Nu = 2700 kN and Mux = ±4950 kN.m

Column section and Reinforcement
Will be the same as in Example 8.1.

Load case 1
With reference to Figure 8.7, the forces of each column are first transferred in the 
y-direction to the lines connecting the piles on axes (1) and (2) as in Example 8.1 
and as shown in Figure 8.8a. This will result in the load pattern illustrated in Figure 
8.8b for either the piles on axis (1) or (2). The model in Figure 8.8b is twice stati-
cally indeterminate; however, upon utilization of symmetry, only one equation in 
one unknown can be formed leading to the indicated reactions. Then the pile forces 
will be as follows:

	 P P P PA D A D1 1 2 2 1250, , , ,= = = = kN 	

	 P P P PB C B C1 1 2 2 1750, , , ,= = = = kN 	

The appropriate STM for load transfer on either axis (1) or (2) is illustrated in 
Figure 8.8c, leading to the reinforcement layout shown in Figure 8.8d.

Load case 2
With reference to Figure 8.7 and considering the case that the column moment 
will cause compression to the piles on axis (2) and tension to the piles on axes 
(1), the forces of each column are first transferred in the y-direction to the lines 
connecting the piles on axes (1) and (2) as in Example 8.1 and shown in Figure 
8.9a. This will result in the load pattern illustrated in Figure 8.8b for the piles on 
axis (2) and in Figure 8.9b for the piles on axis (1). For the load pattern of axis 
(2), the solution will proceed as in case (1) of this example. For the load pattern 
of axis (1), Figure 8.9b, the solution as explained in case (1) leads to the following 
pile forces.

	 P PA D1 1 125, , ( )= = − kN upward 	

	 P PB C1 1 175, , ( )= = − kN upward 	

The appropriate STM for load transfer on this axis is illustrated in Figure 8.9b. 
The reinforcement layout of this case will be as shown in Figure 8.9c.



193Pile Caps

30
00

 k
N

30
00

 k
N

30
00

 k
N

12
50

 k
N

12
50

 k
N

12
50

 k
N

12
50

 k
N

14
00

12
50

 k
N

12
50

 k
N

10
4

14
6

25
0

10
4

14
6

25
0

39
00

10
0

10
0

60
0

12
00

12
00

12
00

12
00

A
B

C
D

A
B

C
D

60
0

20
00

24
00

24
00

20
00

44
00

60
0

60
0

12
00

14
00

17
50

 k
N

45
0 

kN

45
0 

kN

17
50

 k
N

17
50

 k
N

17
50

 k
N

17
50

 k
N

17
50

 k
N

11
25

 k
N

2370 kN

1663.7 kN

1663.7 kN

2370 kN 11
25

 k
N

30
00

 k
N

30
00

 k
N

30
00

 k
N

1
2

30
0084
0 c T

c 1 θ 1

33
0

33
0

12
00

10
0

10
0

60
0

(a
)

(b
)

(d
)

(c
)

Bo
tto

m
 re

in
fo

rc
em

en
t

8φ
25

14
φ2

8

5φ
20

To
p 

re
in

fo
rc

em
en

t

60
0

FI
G

U
R

E 
8.

8 
E

xa
m

pl
e 

8.
2—

ST
M

 d
et

ai
ls

 o
f 

lo
ad

in
g 

ca
se

 1
: (

a)
 S

T
M

 o
f 

th
e 

fo
rc

e 
tr

an
sf

er
 th

ro
ug

h 
th

e 
y-

ax
is

, (
b,

 c
) 

lo
ad

s 
an

d 
co

rr
es

po
nd

in
g 

ST
M

 o
f 

th
e 

fo
rc

e 
tr

an
sf

er
 th

ro
ug

h 
ax

is
 (1

) 
or

 (2
),

 a
nd

 (d
) 

la
yo

ut
 o

f 
re

in
fo

rc
em

en
t f

ro
m

 S
T

M
.



194 Structural Concrete

30
0 

kN
30

0 
kN

12
5 

kN
50

 k
N

50
 k

N

17
5 

kN
17

5 
kN

12
5 

kN
12

5 
kN

12
5 

kN

A
B

C
D

12
00

10
0

10
0

12
00

12
00

12
00

12
00

20
00

17
6.8

 kN

176.8 kN

247.4 kN

24
7.4

 kN

27
40

 k
N

54
40

 k
N 16
0

13
0

22
0 

kN

22
75

 k
N

30
00

 k
N

Bo
tto

m
 re

in
fo

rc
em

en
t

(c
)

8φ
25

12
φ2

8

5φ
20

To
p 

re
in

fo
rc

em
en

t

(a
)

(b
)

30
0 

kN

1
2

12
00

10
0

10
0

12
10

12
10

91
0

88
0372 kN

3765 kN

3891.1 kN

FI
G

U
R

E 
8.

9 
E

xa
m

pl
e 

8.
2—

ST
M

 d
et

ai
ls

 o
f 

lo
ad

in
g 

ca
se

 2
: (

a)
 S

T
M

 o
f 

th
e 

fo
rc

e 
tr

an
sf

er
 th

ro
ug

h 
th

e 
y-

ax
is

, a
nd

 (
b)

 S
T

M
 o

f 
th

e 
te

ns
io

n 
fo

rc
e 

tr
an

sf
er

 
th

ro
ug

h 
ax

is
 (1

) 
or

 (2
),

 a
nd

 (c
) 

la
yo

ut
 o

f 
re

in
fo

rc
em

en
t f

ro
m

 S
T

M
.



195Pile Caps

The final reinforcement layout which covers both cases (1) and (2) is shown in 
Figure 8.10.

8.4  GEOMETRY OF 3D STMs

8.4.1 C hallenges

As explained in the introduction section, 3D models mean direct transfer of the col-
umn loads to the piles, which is associated with shorter load path and hence less ten-
sion reinforcement. However, it is more difficult to deal with the geometry of struts 
and nodal zones than in the case of 2D models. To facilitate dealing with 3D STMs, 
revisions were made to the ACI Building Code where Section 23.9.5 was added to 
simplify the detailing of nodal zones in 3D, by not requiring exact geometry compat-
ibility between the struts and the faces of the nodal zone. ACI 318-14 recommended 
the following: “23.9.5 In a three-dimensional strut-and-tie model, the area of each 
face of a nodal zone shall be at least that given in 23.9.4, and the shape of each face 
of the nodal zone shall be similar to the shape of the projection of the end of the strut 
onto the corresponding face of the nodal zone.”

8.4.2 S implification of Nodal Zone Geometry

In order to simplify the calculation procedure of 3D models, the geometry of nodal 
zones, and subsequently the geometry of struts, can be simplified to the convenience 
of the designer but keeping the axes of struts and locations of nodes unchanged. As 
an example, in order to simplify the nodes geometry of the pile cap in Figure 8.11a 
underneath the column if subjected to vertical loads, the column cross-section can 
be divided into five equal areas as shown in Figure 8.11d. In this division, the cen-
tral square area corresponds to the central pile, and the other four trapezoidal areas 

6φ28

14φ28

8φ25

8φ25 5φ20

8φ28

Bottom reinforcement Top reinforcement

Alternative bottom reinforcement from 3D modeling

FIGURE 8.10  Example 8.2—final layout of reinforcement from STMs.
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correspond to the outer four piles. The centroid of the trapezoidal area can be deter-
mined and then this area can be replaced with an equivalent rectangular area that has 
the same centroid as the trapezoid, as shown in Figure 8.11d.

For the pile cap example in Figure 8.12a, under vertical loads, the column cross-
sectional area is divided into four equal triangular areas, each corresponding to a 
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pile of the four supporting piles. The triangular area is replaced with a rectangular 
area of the same centroid as shown in Figure 8.12b for the two farther piles.

For the pile cap in Figure 8.11a, if the column is subjected to vertical force and 
bending moment such that one side of the column reinforcement is under tension, 
the 3D model is shown in Figure 8.13a. For the column section, the shaded area 
(area A) surrounding the tension reinforcement, Figure 8.13b, has the same centroid 
as the tension reinforcement. The rest of the column area is divided as shown in 
the figure such that equilibrium is satisfied. Both the area B corresponding to the 
central load and the area A corresponding to the tension reinforcement, are easy to 
deal with. The areas C, L-shaped, can be replaced with equivalent rectangular areas 
having the same centroids as the original L-shaped areas.

8.4.3  Limits of Strut Angle

As in 2-D STMs, the limitation of the 3D strut angle has to be respected due to 
the need for strain compatibility and the limited ductility of concrete. In 3D, the 
limitations should apply to the real angle between the tie and the strut, which is dif-
ferent from the angle between the tie and the projection of the strut in the vertical 
plane of the tie. As in 2-D, this angle should be within the range from 26.56 degrees 
(tan−11 2/ ) to 60 degrees.

8.5  STRENGTH OF STRUTS IN PILE CAPS

8.5.1 E ffect of Inactive Concrete on Bearing Struts

As a result of the spatial nature of pile caps, very significant volumes of concrete, far 
from any strut or tie or confinement, are subjected to low stresses, and therefore are 
called “inactive concrete,” Figure 8.2. These volumes surround the struts deviating 
from underneath the column and heading to the piles. When the column is loaded, 
these important volumes of inactive concrete give rise to significant internal restraint. 
Confinement by inactive concrete greatly reduces the tendency of compressive struts 
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FIGURE 8.13  Example 8.3—geometry simplification of 3D nodes.
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to develop transverse tensile stresses within the strut, hence increasing the compres-
sive capacity of these struts.

8.5.2  Bearing Strength of Struts Confined by Inactive Concrete

In deep members such as pile caps, Adebar and Zhou (1993) stated that compressive 
struts do not fail by crushing of concrete and the failure may occur due to longitudi-
nal splitting of these struts as a result of the transverse tension caused by the stress 
deviation and spreading of compressive stresses in order to maintain compatibil-
ity. Such deviation will cause biaxial or triaxial compression in the nodal zone, but 
transverse tension near the mid-length of the strut, Figure 8.14.

In the case of plane stress, when the tension is resisted only in one direction field 
as in walls or deep beams, the influence of the “amount of spreading” on the bearing 
stress to cause transverse splitting is shown in Figure 8.15 (Schlaich et al., 1987). In 
3D structures such as pile caps, the compressive stresses spread in two directions, 
reducing the transverse tension in any one direction. Hence, in such a case, the risk 
of splitting is less decisive than for the 2D case because the tension in the bottle 
shape is reduced due to the confinement provided by the surrounding concrete, and 
the tensile stresses are reduced in each single direction.

For a better understanding of the transverse splitting in the struts of pile caps, 
Adebar and Zhou (1993) carried out linear elastic finite element analysis to deter-
mine the triaxial stresses at first cracking within cylinders of various diameters, 
D, and heights, H, subjected to concentric axial compression over a constant-size 
circular bearing area of diameter d, Figure 8.16a. The geometry of the problem 
can be summarized in terms of two parameters, namely, the ratio of the cylinder 
diameter to the load diameter D/d and the ratio of the cylinder height to the load 
diameter H/d.

FIGURE 8.14  Linear elastic stress trajectories with transverse tension due to spreading of 
compression stress trajectories (Adebar and Zhou, 1993).
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Figure 8.17 summarizes the influence of D/d and H/d on the bearing stress at 
first cracking, with the assumption that the ratio of compressive strength to tensile 
strength ′ ′=f fc t/ 15 . When D/d = 1.0, the cylinder is subjected to cylinder uniaxial 
compression, while D/d ≫ 1.0, the compression stresses are spread out, creating a 
state of triaxial compression close to the loaded surface and biaxial tension near 
the mid-height of the cylinder, Figure 8.16b. Increasing the values of D/d and H/d 
beyond a certain limit does not noticeably affect the internal stress flow and hence 
the bearing stress which causes first cracking, Figure 8.17.

Upon carrying out experimental tests to verify the finite element results of Figure 
8.17, Adebar and Zhou (1993, 1996) proposed that when designing deep member 
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FIGURE 8.15  Maximum bearing stress to cause transverse splitting in a biaxial stress 
field.

d

H

D

Tension Compression

σr = σθ σz

fb z(a) (b)

r
θ

FIGURE 8.16  Analytical study of transverse tension in a triaxial stress field: (a) geometri-
cal parameters and (b) typical stress distribution under a bearing plate (Adebar and Zhou, 
1993).
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(disturbed region) without sufficient reinforcement, to ensure redistribution after 
cracking, the maximum bearing stress should be limited to

	 fb c cf f≤ ′ + ′ ≤0 6 1 2 34 5. ( ), .αβ MPa 	 (8.1)

	
α = −( )≤0 33 1 1 02 1. ( ) . ,A A/

	
(8.2)

	 β= − ≤0 33 1 0. (( ) ) .h b/ 1 	 (8.3)

where the ratio representing the aspect ratio (height/width) of the compression strut, 
h/b, should not be taken to be less than 1.0 (i.e., h/b ≥ 1.0). The parameter α accounts 
for the amount of confinement, while the parameter β accounts for the geometry of 
the compression stress field. In the calculation of the strut aspect ratio, h/b, some 
simplification can be introduced as will be illustrated in Examples 8.3 and 8.4.

The formulas for confinement and geometry (aspect ratio), α and β, were cho-
sen to give reasonably simple expressions and yet correspond well with the finite 
element predictions and the experimental results. The lower bearing stress limit 
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H/d = 6
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8 d
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(b) 4fb
fc′

fc′
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1

0 1 2 3 4 5 6 7
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D/d = 4
D/d = 5
D/d = 6
D/d = 7

128 9 10 11 d
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FIGURE 8.17  Analytical study of the ratio between stresses at cracking, fb, to concrete 
strength, ′fc  (Adebar and Zhou, 1993): (a) influence of confinement and (b) influence of height.
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of 0 6. ′fc  is appropriate if there is no confinement (i.e., A2/A1 ≈ 1.0), regardless of 
the height of the compression strut, as well as when the compression strut is rela-
tively short, h/b ≈ 1.0, regardless of the amount of confinement. The upper limits 
on α and β were set by Adebar and Zhou (1993) to guarantee an upper limit on fb 
which corresponds approximately to the upper limit of bearing strength given in 
ACI-318-14.

For actual structural members, the size effect has to be implemented, leading to 
the following design value,

	 f f fb c c≤ ′ + ′ ≤0 6 0 85 1 2 34 5. ( . )( ), .αβ MPa 	 (8.4)

Since the concrete bearing strength is actually proportional to the concrete tensile 
strength, Equation 8.1 may give unsafe values if the concrete compressive strength is 
significantly greater than 34.5 MPa. Therefore, the following equation was given by 
Adebar and Zhou (1993) in this case.

	
f f f fb c c c≤ ′+ ′ ′>0 6 6 34 5. ( ), .αβ MPa

	 (8.5)

Equation 8.5 expresses the bearing strength enhancement in a form similar to 
what was proposed by Hawkins (1968).

Thus, the design bearing strength of a strut in a pile cap, if the concrete compres-
sive strength is significantly greater than 34.5 MPa, should be

	
f f f fb c c c≤ ′ + ′ ′>0 6 0 85 6 0 85 34 5. ( . ) ( . )( ), .αβ MPa

	
(8.6)

where ′fc  is in MPa.

8.6  STRENGTH OF NODAL ZONES IN PILE CAPS

8.6.1 S trength of the Nodal Zone underneath the Column

The nodes underneath the column are essentially subjected to a state of triaxial 
compression, which increases the node strength. Wang et al. (1987) conducted some 
experimental tests on cubes loaded by triaxial compression, and the results indicated 
that rather low transversal stresses produce an important increase in the bearing 
strength. For instance, if the two transversal stresses are equal to the uniaxial cube 
strength, the strength in the third direction is raised to approximately five times the 
uniaxial strength. Also, if the two transversal stresses are equal to 20% of the uni-
axial cube strength, the strength in the third direction is of the order of two times the 
uniaxial strength.

The strength of concrete under a triaxial state of compressive stress, ′fcc , can be 
expressed as Park and Paulay (1975),

	
′ = ′+f f fcc c l4 1. 	 (8.7)
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where fl is the lateral confining pressure (i.e., the other two perpendicular stresses). 
If fl is assumed any small value such that f fl c≥ ′0 24. , the corresponding value of 

′ ≥ ′f fcc c2 0. , which reduces to ′ ≥ ′f fcc c1 7.  if the size effect is accounted for.
Several standards give recommendations for the triaxial compressive strength. 

Eurocode 2 gives the following upper limit for the concrete design strength for tri-
axial compression, fcd4, which may be used if the transverse stresses are known and 
larger than 0.75fck,

	 f k f fcd ck cd4 4 1 250= −[ ( )]/ 	 (8.8)

With k4 = 3.0 as recommended by Eurocode 2, fck is the characteristic value of 
concrete compressive strength at 28 days and fcd is the design value of concrete com-
pressive strength.

In the Recommendations of FIP (1999), the following value is recommended.

	 f fcd cd4 3 88= . 	 (8.9)

In ACI 318-14, the design bearing strength of concrete, fce shall not exceed 0 85. ′fc , 
except when the supporting surface area, A2, is wider on all sides than the loaded area, 
A1, Figure 8.18; then the following value is recommended:

	 f f A A A Ace c= ′ ≤0 85 2 02 1 2 1. , ./ / 	 (8.10)

The ACI 318-14 upper limit on A A2 1/  limits the maximum strength of a node 
under a triaxial state of stress, fce, to 1 7. ′fc .

q Loaded area A1

A2 is measured on this planeA1

45°45°

Elevation

Plan

Loaded area
12

FIGURE 8.18  Application to find A2 in stepped or sloped supports (ACI 318-14).



203Pile Caps

8.6.2 �S trength of the Nodal Zone above the Piles

The pile cap lower nodal zones, above the piles, are bounded by the inclined strut 
coming from underneath the column, the pile force, and the reinforcement tension. 
Any of these nodes represents one end of the inclined strut. The strength of the 
strut at this node is derived from either Equations 8.4 or  8.6, based on the concrete 
strength, with the assumption that there is no tension anchored at this node. In 
order to account for the tension anchored at the node, the obtained strength should 
be reduced by 20% or 40% based on the number of tension ties connected to the 
node; that is, the node strength is 0.8fb, obtained from the strut strength equation 
at this node, if one tension tie is connected to the node, and 0.6fb in case of two or 
more ties.

8.7 � EXAMPLE 8.3: STRENGTH ASSESSMENT OF PILE CAP 
SUPPORTED BY 4 PILES VIA 3D MODELING

In this example, the strength of pile cap B, Figure 8.19, tested by Adebar et  al. 
(1990), is assessed using 3D strut-and-tie modeling. The pile cap size: overall depth 
h = 600 mm, number of piles = 4, square column of size 300 mm, circular piles 
of diameter 200 mm, with 100 mm embedded into the underside of the pile cap. 
The cylinder compressive strength of concrete, ′ =fc 24 8. MPa , the yield stress of 
longitudinal steel, fy = 479 MPa, the area of main reinforcement, As(TB1) = 12 No. 
10 (1200 mm2), with depth to steel centroid = 390 mm in the short direction and 
As(TB2) = 22 No. 10 (2200 mm2), with depth to steel centroid = 400 mm in the long 
direction. The solution procedure is given next.

Strut-and-Tie modeling
Figure 8.20 illustrates a simple 3D STM of pile cap B of this example. The concen-
trated column load is transmitted directly to the four supports (piles) by four inclined 

400

46
0 m

m

400

400

400
900

TB1

TB2
450

450

780 780

FIGURE 8.19  Example 8.3—geometry of pile cap B.
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compression struts, while the horizontal tension ties (longitudinal reinforcement) are 
required to prevent the piles from being spread apart. The analysis will be performed 
in both the short and long directions in the following sections.

Analysis of the short direction

	 1.	The internal lever arm, hs1:
	 As shown in Figure 8.21, the height of the lower node is termed as wT1  and 

can be computed from:

	 w n c n sT bar1 2 1= + + −φ ( ) 	

	 where n is the number of steel layers, φbar is the longitudinal steel diameter, 
c is the clear concrete cover, and s is the clear distance between bars. This 
can be alternatively expressed as wT1  = 2 × (overall thickness—depth to 
steel centroid—embedded part of pile)

	 wT1 2 600 390 100 220= × − − =( ) mm 	

	 The column cross-sectional area, 9.0 × 104 mm2, is divided to four equal 
triangles of an area 2.25 × 104 mm2 each and each triangle corresponds to 
a strut. This triangular bearing area can be simplified to a rectangle of the 
same centroid as the triangle as shown in Figure 8.21.

	 The width of the horizontal strut Chor,1, a1, can be computed as follows.

	
T A TB f C f bas y hor c1 1 11 1 7= × = = ′( ) ., 	

FIGURE 8.20  Example 8.3—3D STM of pile cap B.
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	 where 1 7. ′fc  is the assumed strength of the upper nodal zone C − C − C node 
and b is the equivalent breadth of the upper node (i.e., b = 225 mm); then

	 T C ahor1 1 11200 479 574 8 1 7 24 8 225= × = = = × × ×. . .,kN 	

          a1 60 6= . mm 	

	 Thus, hs1 = depth to steel centroid—0.5a1

	 hs1 390 0 5 60 6 359 7= − × =. . . mm 	

	 2.	Angle of inclined strut, θ1:
	 From pile cap geometry,

	
θ1 1 359 7

350
45 8= =−tan

.
. o

	

	 3.	Widths of struts:
	 The upper width of strut C1, wC

u
1 , and the lower width, wC

l
1 , can be calculated as 

shown in Figure 8.21 based on the dimension of column and piles as follows:
•	 With reference to Figure 8.22a, the width of strut C1 at the upper node, 

wC
u

1 , is

	 w a cC
u

1 1 1 1 1 60 6 45 8 100 45 8 113 9= + = × + × =cos sin . cos . sin . .θ θ mm 	

300

300
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FIGURE 8.21  Example 8.3—STM for pile cap B in the short direction.
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•	 With reference to Figure 8.22b, the width of strut C1 at the lower node, 
wC
l

1 , is

	 w b wC
l

T1 11 1 1 200 45 8 220 45 8 296 8= + = × + × =sin cos sin . cos . .θ θ mm 	

	 4.	STM forces:

	
V

T
h kNs1

1

350
574 8
350

359 7 590 71= × = × =
.

. .
	

	
C

T
kN1

1

1

574 8
45 8

824 5= = =
cos

.
cos .

.
θ 	

	 5.	Checking stress limits:

Struts:

Horizontal strut, Chor,1

The width of strut Chor,1 was determined based on its effective strength; hence, there 
is no need to carry out any further checks for this strut.

Diagonal strut, C1

The width of the diagonal strut C1 changes linearly between the upper and lower 
nodes (uniformly tapered). The effective compression strength of this strut fce

s  differs 
at its two ends, due either to different nodal zone strength at the two ends (upper node 
and lower node), or to different bearing areas.

The compressive strength of concrete in this strut is significantly enhanced with 
the confinement from the surrounding inactive concrete. This strength can be com-
puted from Equation 8.4, f fb c≤ ′ +0 6 0 85 1 2. ( . )( )αβ . The parameter α accounts for 
the amount of confinement (Figure 8.23), α = −( )≤0 33 1 02 1. ( ) .A A/ 1 ,

At the column nodal zone (upper node):

( ) .A A2 1
1244 1244
300 300

4 15/ =
×
×

= , this gives α = 0.33(4.15 − 1) > 1.0, take α = 1.0.

V1

c1sinθ1 θ1

c1

Chor.1

Upper node Lower node

C1

a1

a1cosθ1
b1

b1sinθ1

wT1

wT1
cosθ1

θ1 T1

C1

V1

50

(a) (b)

FIGURE 8.22  Example 8.3—nodes of 3D STM of pile cap B in the short direction.
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•	 At the pile nodal zone (lower node):

( ) .A A2 1
674 674
200 200

3 37/ =
×
×

= , which gives α = 0.33(3.37 − 1) = 0.78.

The parameter β accounts for the geometry of the compression stress field, 
β = 0.33((h/b) − 1)  ≤  1.0, where (h/b) signifies the geometry of the compression 
strut (i.e., h is the strut length and b is the strut width at either the upper or lower 
node). For easiness in the calculations, the ratio (h/b) can be expressed, based on 
trigonometry, as (hs/bb), where hs is the strut vertical height and bb is the equivalent 
diameter of the bearing area of the nodal zone connected with the strut.

For strut C1, h hs s= =1 359 7. mm. For the upper node of the strut, the bear-
ing area is the column cross-sectional area divided by the number of piles; thus, 
bb = = × =( )( ) ( )300 4 4 22500 4 1692 / / / mmπ π . For the lower node of the strut, 
the bearing area is the pile area; hence, bb is the pile diameter, bb = 200 mm. Thus,

•	 At the column nodal zone (upper node):
h/b = hs/bb = 359.7/169 = 2.13, which gives β = 0.33(2.13-1) = 0.37.
•	 At the pile nodal zone (lower node):
h/b = hs/bb = 359.7/200 = 1.8, which gives β = 0.33(1.8-1) = 0.264.
Thus, the bearing strength of strut C1 at the upper node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 1 0 0 37 0 89. ( . )( . . ) . 	

The bearing strength of strut C1 at the lower node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 0 78 0 264 0 72. ( . )( . . ) . 	

For the strength of strut C1, take the average strength at the upper and lower nodes;

	 f f f fce
C

c c c
1 0 5 0 89 0 72 0 81= ′+ ′ = ′. ( . . ) . 	

The strength of strut C1 at the upper node is controlled by the smaller of the strut 
strength, 0 81. ′fc , and the node strength, 1 7. ′fc . Hence, the strut strength at the upper 
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FIGURE 8.23  Amount of confinement for the pile cap example.
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node, f fce
C

c
1 0 81= ′. . Upon substitution in C f bwn ce

C
C
u

1
1

1= , where b is the equivalent 
breadth of strut at the upper nodal zone, b = 225 mm, C1n = 514.8 kN.

The lower node is a C − C − T node, βn = 0.8. Thus, the limiting compressive 
strength of this node is 80% of the strength of the strut at this node; that is,

	 f f fce
n

c c= ′ = ′0 8 0 72 0 58. ( . ) . 	

The strength of strut C1 at the lower node is controlled by the smaller of the strut 
strength, 0 81. ′fc , and the node strength, 0 58. ′fc . Hence, the strut strength at the lower 
node, f fce

C
c

1 0 58= ′. . Upon substitution in C f bwn ce
C

C
l

1
1

1= , where b is the pile diam-
eter, b = 200 mm for the lower node, C1n = 853.8 kN.

It is noted that there is a significant difference between the strength of strut C1 
at the upper and lower nodes, and this can be attributed to the significant differ-
ence between the strength of the upper nodal zone, 1 7. ′fc , and the strut strength, 
0 81. .′fc  In order to reduce the gap between the two values of strut strength, the 
height of the upper node should be re-estimated based on a strength lower than 
1 7. ′fc , ≤ × ′≈ ′( . . ) . .514 8 853 8 1 7 1 0/ f fc c .

Upon using a strength of the upper node of 0 8. ′fc , and redoing the calculations, 
the following has been obtained.

The width of the horizontal strut Chor,1, a1 = 128.8 mm, hs1 = 325.6 mm, and the 
angle θ1 = 42.93°. The width of strut C1 at the upper node, wC

u
1 162 4= . mm  and 

at the lower node, wC
l

1 297 3= . mm . The pile force V1 = 534.7 kN, the force in the 
diagonal strut, C1 = 785.0 kN.

•	 At the column nodal zone (upper node):
h/b = hs/bb = 325.6/169 = 1.93, which gives β = 0.31.
•	 At the pile nodal zone (lower node):
h/b = hs/bb = 325.6/200 = 1.63, which gives β = 0.21.
Thus, the bearing strength of strut C1 at the upper node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 1 0 0 31 0 83. ( . )( . . ) . 	

The bearing strength of strut C1 at the lower node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 0 78 0 21 0 68. ( . )( . . ) . 	

For the strength of strut C1, take the average strength at the upper and lower nodes;

	 f fce
C

c
1 0 76= ′. 	

The strength of strut C1 at the upper node is thus f fce
C

c
1 0 76= ′. . Upon substitution 

in C f bwn ce
C

C
u

1
1

1= , C1n = 688.8 kN.
The limiting compressive strength of the lower node is

	 f f fce
n

c c= ′ = ′0 8 0 68 0 54. ( . ) . 	

The strength of strut C1 at the lower node is 0 54. ′fc , giving C1n = 796.3 kN. Take 
the smaller value of C1n at the two ends of the strut, upper and lower nodes. Then 
C1n = 688.8 kN.
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Nodes:
There is no need to carry out any checks for the upper node since the strength of 

the node is greater than or equal to the strength of the surrounding struts. The criti-
cal node is the lower node, and as estimated before, f fce

n
c= ′0 54. . Based on this, the 

nominal value of the pile reaction is

	 V fn c1 0 54 200 200 535 7= ′× × =. . kN 	

Since the reinforcement of the tie, T1, is arranged in multiple layers, the assumed 
height of the node wT1  should not exceed a maximum limiting value, wT1,max. This is 
checked next.

	
w

T

f b

T

f
T

ce
n

c
1

1 1

0 54 200
214 6,max

.
.= =

′×
= mm

	

Since a value of wT1 220= mm  ( . ),max> =wT1 214 6mm  was used in estimating 
the width of strut C1 at the lower node, a new value of the strut width should be 
calculated. This value is wC

l
1 293 4= . mm, leading to a new nominal value of the 

strut strength at this node C1n = 785.7 kN. This last value of the nominal strength of 
the strut is still greater than the value at the upper node, and therefore, the solution 
should proceed with no change for this strut.

In order to determine the predicted failure load in this direction, Table 8.1 gives 
the final results of the short direction.

From the results in the table, the size of the upper nodal zone and hence the forces 
should be reduced to 88%. This finally gives a value of V1n = 470.5 kN. It should be 
noted that the reinforcing steel does not yield at this obtained pile load.

Analysis of the long direction

As performed for the short direction

	 1.	The internal lever arm, hs2 :
		  As shown in Figure 8.24, the term wT2  (height of the lower node)

	 wT2 2 600 400 100 200= × − − =( ) mm 	

TABLE 8.1
Example 8.3—Summary of Calculation Results of the Short Direction of 
Pile Cap B

Model Label Member
Actual 

Force, kN
Maximum 

Capacity, kN Satisfaction

Struts Chor,1 574.8 574.8 yes

C1 785.0 688.8 No, 88%

Lower node, C − C − T V1 534.7 535.7 yes
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	 The width of the horizontal strut Chor,2, a2, can be computed as follows.

	

T A TB f

C f ba

s y

hor c

2

2 2

2 2200 479 1053 8

1 7 1 7 24 8

= × = × =

= = ′ = × ×

( ) .

. . .,

kN

2225 2×a 	

			   a2 = 111.1 mm

	 hs2 400 0 5 111 1 344 5= − × =. . . mm 	

	 2.	Angle of inclined strut, θ2:

	
θ2

1 344 5
680

26 9= = °−tan
.

.
	

	 3.	Widths of struts:
•	 With reference to Figure 8.25a, the width of strut C2 at the upper node, 

wC
u

2 , is

	

w a cC
u

2 2 2 2 2 111 1 26 9 100 26 9

144 3

= + = × + ×

=

cos sin . cos . sin .

.

θ θ

mm 	

•	 With reference to Figure 8.25b, the width of strut C2 at the lower node, 
wC
l

2 , is

	

w b wC
l

T2 22 2 2 200 26 9 200 26 9

268 8

= + = × + ×

=

sin cos sin . cos .

.

θ θ

mm 	

	 4.	STM forces:

	
V

T
hs2

2
2

680
1053 8

680
344 5 533 9= × = × =

.
. . kN

	

	
C

T
2

2

2

1053 8
26 9

1181 7= = =
cos

.
cos .

.
θ

kN
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FIGURE 8.24  Example 8.3—STM of pile cap B in the long direction.
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	 5.	Checking stress limits:

	 	 Struts:

		  Horizontal strut, Chor,2

		  The width of strut Chor,2 was determined based on its strength; hence, there 
is no need to carry out any further checks for this strut.

		  Diagonal strut, C2

		  With reference to Figure 8.23, and as explained before, α = 1.0 for the 
upper node and α = 0.78 for the lower node. In order to obtain the param-
eter β, the ratio (h/b) is calculated in the same manner as for the short direc-
tion. The strut vertical height hs = hs2 = 344.5 mm. For the upper node, the 
equivalent diameter of the bearing area is bb = 169 mm and for the lower 
node, bb = 200 mm. Thus,
•	 At the column nodal zone (upper node):

		      h/b = hs/bb = 344.5/169 = 2.04, which gives β = 0.33(2.04-1) = 0.34.
•	 At the pile nodal zone (lower node):

		      h/b = hs/bb = 344.5/200 = 1.72, which gives β = 0.33(1.72-1) = 0.24.
Thus, the bearing strength of strut C2 at the upper node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 1 0 0 34 0 86. ( . )( . . ) . 	

The bearing strength of strut C2 at the lower node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 0 78 0 24 0 7. ( . )( . . ) . 	

For the strength of strut C2, take the average strength at the upper and lower 
nodes;

	 f f f fce
C

c c c
2 0 5 0 86 0 7 0 78= ′+ ′ = ′. ( . . ) . 	

V2

c2 sinθ2 θ2
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Chor.2
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b2 sinθ2
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50
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FIGURE 8.25  Example 8.3—nodes of 3D STM of pile cap B in the long direction.
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The strength of strut C2 at the upper node is controlled by the smaller of the strut 
strength, 0 78. ′fc , and the node strength, 1 7. ′fc . Hence, the strut strength at the upper 
node, f fce

C
c

2 0 78= ′. . Upon substitution in C f b wn ce
C

C u2
2

2= × × , where b is the equiva-
lent breadth at the upper node width, b = 225 mm, C2n = 628.1 kN.

The lower node is a C − C − T node, βn = 0.8. Thus, the limiting compressive 
strength of this node is 80% of the strength of the strut at this node, that is,

	 f f fce
n

c c= ′ = ′0 8 0 7 0 56. ( . ) . 	

The strength of strut C2 at the lower node is controlled by the smaller of the strut 
strength, 0 78. ′fc , and the node strength, 0 56. ′fc . Hence, the strut strength at the 
lower node, f fce

C
c

2 0 56= ′. . Upon substitution in C f bwn ce
C

C
l

2
2

2= , where b is the pile 
diameter, b = 200 mm for the lower node, C2n = 746.6 kN.

Upon taking the smaller value of C2n at the two ends of strut nodes, upper and 
lower nodes, C2n = 628.1 kN.

Nodes:
There is no need to carry out any checks for the upper node since the strength of 

the node is greater than or equal to the strength of the surrounding struts. The criti-
cal node is the lower node, and as estimated before, f fce

n
c= ′0 56. . Based on this, the 

nominal value of the pile reaction is

	 V fn c2 0 56 200 200 555 5= ′× × =. . kN 	

Since the reinforcement of the tie, T2, is arranged in multiple layers, the assumed 
height of the node wT2  should not exceed a maximum limiting value wT2 ,max, as illus-
trated next.

	
w

T

f b

T

f
T

ce
n

c
2

2 2

0 56 200
379 4,max

.
.= =

′×
= mm

	

Since the assumed value of wT2 200= mm, employed in the estimate of the width 
of C2 at the lower node, is less that its maximum limit, wT2 ,max , the assessment of the 
nominal strength of C2 is correct and the solution should proceed.

The final results of the long direction are given in Table 8.2.
From the results in the table, the size of the upper nodal zone and hence the forces 

should be reduced to 53.2%. This finally gives a value of V2n = 284.0 kN. It should 
be noted that the reinforcing steel does not yield at this obtained pile load.

If an iterative process is followed with the objective to have the nominal strength 
of strut C2 at its two ends close, the strength prediction will improve.

Finally, the nominal strength of pile cap B from STM,

	 P V VSTM = + = + =2 2 470 5 284 0 1509 01 2( ) ( . . ) . kN 	

	
P PSTM EXP/ = =

1509 0
2189

69
.

%
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8.8 � EXAMPLE 8.4: STRENGTH ASSESSMENT OF PILE CAP 
SUPPORTED BY 6 PILES VIA 3D MODELING

In this example the strength of pile cap C, Figure 8.26, tested by Adebar et al. (1990), 
is assessed using the strut-and-tie method. The pile cap, with an overall depth, 
h = 600 mm, is supporting a square column of size 300 mm, and is supported by 
six circular piles of diameter 200 mm, with 100 mm embedded into the underside 
of the pile cap. The cylinder compressive strength of concrete, ′ =fc 27 1. MPa, and 
the yield stress of the reinforcing steel, fy = 479 MPa. The area of the main rein-
forcement in the short direction, As(TB1) = 12 No. 10 (1200 mm2), with depth to 
steel centroid = 390 mm and As(TC2) = 11 No. 10 (1100 mm2) with depth to steel 
centroid = 390 mm, and in the long direction and As(TC3) = 21 No. 10 (2100 mm2), 
with depth to steel centroid = 400 mm. The solution procedure is given as follows.

Strut-and-Tie modeling:

Figure 8.27 illustrates a simple 3D STM of pile cap C. The concentrated column load 
is transmitted directly to the six supports (piles) by six inclined compression struts while 

TABLE 8.2
Example 8.3—Summary of Calculation Results of the Long Direction of 
Pile Cap B

Model Label Member
Actual Force, 

kN
Maximum 

Capacity, kN Satisfaction

Struts Chor,2 1053.8 1053.8 yes

C2 1181.7 628.1 No, 53.2%

Lower node, C − C − T V2 533.9 555.5 yes

TB1

TC2

400 900 900 400

40
0

40
0

90
0

17
00

2600

TC3
TC2

FIGURE 8.26  Example 8.4—geometry of pile cap C.
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the horizontal tension ties (longitudinal reinforcement) are required to prevent the piles 
from being spread apart. Figure 8.28 illustrates a top view of the proposed STM.

The analysis will be performed in both the short direction, strut C1, and diago-
nal direction, strut C2, as follows.

Analysis of the short direction

	 1.	The internal lever arm, hs1:
		  As shown in Figure 8.29, the height of the lower node is termed as wT1  and 

can be computed from:

	 w n c n sT bar1 2 1= + + −φ ( ) 	

FIGURE 8.27  Example 8.4—3D-STM of pile cap C.
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FIGURE 8.28  Example 8.4—top view of STM of pile cap C.



215Pile Caps

	 where n is the number of steel layers, φbar is the longitudinal steel diameter, 
c is the clear concrete cover, s is the clear distance between bars. This can 
be alternatively expressed as

	 wT1  = 2 × (overall thickness—depth to steel centroid—embedded part of pile),

	 wT1 2 600 390 100 220= × − − =( ) mm 	

	 The width of the horizontal strut Chor,1, a1, can be computed as follows:

	
T A TB f C f bas y hor c1 1 11 1 7= × = = ′( ) ., 	

	 where 1 7. ′fc  is the strength of the upper nodal zone, C − C − C node, and 
b is the equivalent breadth of the upper node (i.e., b = 225 mm); then,

	 T1 = 1200 × 479 = 574.8 kN = Chor,1 = 1.7 × 27.1 × 225 × a1, from which 
a1 = 55.5 mm

	 Thus, hs1 = depth to steel centroid—0.5a1

	 hs1 390 0 5 55 5 362 3= − × =. . . mm 	

	 2.	Angle of inclined strut, θ1:
		  From pile cap geometry

	
θ1 1 362 3

350
46 0= = °−tan

.
.

	

300

300

C1 = 100 C1 = 100
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FIGURE 8.29  Example 8.4—STM for pile cap C in the short direction.
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	 3.	Widths of struts:
		  The upper width of strut C1, wC

u
1 , and the lower width, wC

l
1 , can be calculated 

as shown in Figure 8.30 based on the dimensions of column and piles as 
follows:
•	 With reference to Figure 8.30a, the width of strut C1 at the upper node, 

wC
u

1 , is

	 w a cC
u

1 1 1 1 1 55 5 46 0 100 46 0 110 5= + = × + × =cos sin . cos . sin . .θ θ mm 	

•	 With reference to Figure 8.30b, the width of strut C1 at the lower node, 
wC
l

1 , is

	 w b wC
l

T1 11 1 1 200 46 0 220 46 0 296 7= + = × + × =sin cos sin . cos . .θ θ mm 	

	 4.	STM forces:

	
V

T
hs1

1

350
574 8
350

362 3 595 01= × = × =
.

. . kN
	

	
C

T
1

1

1

574 8
46 0

827 5= = =
cos

.
cos .

.
θ

kN
	

	 5.	Checking stress limits:

		  Struts:

	 	 Horizontal strut, Chor,1

		  The width of strut Chor,1 was determined based on its design strength; hence, 
there is no need to carry out any further checks for this strut.

V1

c1 sinθ1 θ1

c1

Chor.1

Upper node Lower node

C1

a1

a1 cosθ1
b1

b1 sinθ1

wT1
θ1 T1

C1

V1

50

(a) (b) wT1
cosθ1

FIGURE 8.30  Example 8.4—nodes of STM of pile cap C in the short direction.
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Diagonal strut, C1

With reference to Figure 8.31, the parameter α is calculated as follows:
•	 At the column nodal zone (breadth at the upper node);

( ) .A A2 1
1700 1700
300 300

5 7/ =
×
×

= , which gives α = 1.0.

•	 At the pile nodal zone (lower node);

( ) .A A2 1
800 800
200 200

4 0/ =
×
×

= , this gives α = 0.99.

In order to calculate the parameter β, the same procedure followed in Example 
8.3 is followed here. The vertical height of strut C1, h hs s= =1 362 3. mm. The equiv-
alent diameter of the bearing area of the upper nodal zone connected with strut C1, 
bb = =( )( )22500 4 169/ mmπ . For the lower node, the bearing area is the pile area; 
hence, bb is the pile diameter, bb = 200 mm. Thus,

•	 At the column nodal zone (upper node):
h/b = hs/bb = 362.3/169 = 2.14, which gives β = 0.33(2.14 − 1) = 0.38.
•	 At the pile nodal zone (lower node):
h/b = hs/bb = 362.3/200 = 1.81, which gives β = 0.33(1.81 − 1) = 0.27.
Thus, the bearing strength of strut C1 at the upper node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 1 0 0 38 0 9. ( . )( . . ) . 	

The bearing strength of strut C1 at the lower node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 0 99 0 27 0 78. ( . )( . . ) . 	

For the design strength of strut C1, take the average strength at the upper and 
lower nodes:

	 f f f fce
C

c c c
1 0 5 0 9 0 78 0 84= ′+ ′ = ′. ( . . ) . 	
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FIGURE 8.31  Example 8.4—amount of confinement for pile cap C.
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The strength of strut C1 at the upper node is controlled by the smaller of the strut 
strength, 0 84. ′fc , and the node strength, 1 7. ′fc . Hence, the strut strength at the upper 
node, f fce

C
c

1 0 84= ′. . Upon substitution in C f bwn ce
C

C
u

1
1

1= , where b is the equivalent 
upper node width, b = 225 mm, C1n = 566.0 kN.

The lower node is a C − C − T node, βn = 0.8. Thus, the limiting compressive 
strength of this node is 80% of the strength of the strut at this node; that is,

	 f f fce
n

c c= ′ = ′0 8 0 78 0 62. ( . ) . 	

The strength of strut C1 at the lower node is controlled by the smaller of the strut 
strength, 0 84. ′fc , and the node strength, 0 62. ′fc . Hence, the strut strength at the 
lower node, f fce

C
c

1 0 62= ′. . Upon substitution in C f bwn ce
C

C
l

1
1

1= , where b is the pile 
diameter, b = 200 mm for the lower node, C1n = 997.4 kN.

Take the smaller value of C1n at the two end nodes of the strut, upper and lower 
nodes. Then C1n = 566.0 kN.

The significant difference between the strength of strut C1 at the upper and lower 
node is a result of the significant difference between the strength of the upper nodal 
zone, 1 7. ′fc , and the strut strength, 0 84. ′fc . In order to reduce the gap between the 
two values of strut strength, the height of the upper node is re-estimated based on a 
strength lower than 1 7. ′fc , ≤ × ′ ≈ ′( . . ) . .566 0 997 4 1 7 0 96/ f fc c . Upon using a strength 
of the upper node = ′0 8. fc , and redoing the calculations, the following has been 
obtained.

The width of the horizontal strut Chor,1, a1 = 117.9 mm, hs1 331 0= . mm , and the 
angle θ1 = 43.4°. The width of strut C1 at the upper node, wC

u
1 154 4= . mm  and at the 

lower node, wC
l

1 297 3= . mm . The pile force V1 = 543.6 kN, the force in the diagonal 
strut, C1 = 791.1 kN.

•	 At the column nodal zone (upper node):
h/b = hs/bb = 331.0/169 = 1.96, which gives β = 0.32.
•	 At the pile nodal zone (lower node):
h/b = hs/bb = 331.0/200 = 1.66, which gives β = 0.22.
Thus, the bearing strength of strut C1 at the upper node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 1 0 0 32 0 84. ( . )( . . ) . 	

Thus, the bearing strength of strut C1 at the lower node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 0 78 0 22 0 69. ( . )( . . ) . 	

For the design strength of strut C1, take the average strength at the upper and 
lower nodes;

	 f fce
C

c
1 0 77= ′. 	

The strength of strut C1 at the upper node is thus f fce
C

c
1 0 77= ′. . Upon substitution 

in C f bwn ce
C

C
u

1
1

1= , C1n = 724.9 kN.
The limiting compressive strength of the lower node is
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	 f f fce
n

c c= ′ = ′0 8 0 69 0 55. ( . ) . 	

The strength of strut C1 at the lower node is 0 55. ′fc , giving C1n = 886.3 kN. Take 
the smaller value of C1n at the two end nodes of the strut, upper and lower nodes. 
Then C1n = 724.9 kN.

Nodes:
Since in Example 8.3 the critical node is the lower node, and as estimated before, 
f fce
n

c= ′0 55. , based on this, the nominal value of the pile reaction is

	 V fn c1 0 55 200 200 596 2= ′× × =. . kN 	

Since the reinforcement of the tie, T1, is arranged in multiple layers, the height of 
the node wT1  should be checked against a maximum value as illustrated next.

	
w

T

f b

T

f
T

ce
n

c
1

1 1

0 55 200
192 8,max

.
.= =

′×
= mm

	

Since a value of wT1 220= mm  ( . ),max> =wT1 192 8mm  was used in estimating 
the width of strut C1 at the lower node, a new value of the strut width should be 
calculated based on wT1,max. This value is wC

l
1 277 5= . mm , leading to a new nominal 

value of the strut strength at this node C1n = 885.7 kN. This last value of the nominal 
strength of the strut is still greater than the value at the upper node, and therefore the 
solution should proceed with no change for this strut.

The final results of the short direction are given in Table 8.3.
From the results in the table, the size of the upper nodal zone and hence the forces 

should be reduced to 92%. This finally gives a value of V1n = 500.1 kN.

Analysis of the diagonal direction

As performed for the short direction

	 1.	The internal lever arm, hs2 :

		  As shown in Figure 8.32, the term wT2  (height of the lower node)

	 wT2 2 600 400 100 200= × − − =( ) mm 	

TABLE 8.3
Example 8.4—Summary of Calculation Results of Short Direction of 
Pile Cap C

Model Label Member
Actual 

Force, kN
Maximum 

Capacity, kN Satisfaction

Struts Chor,1 574.8 574.8 yes

C1 791.1 724.9 No, 92%

Lower node, C − C − T V1 543.6 596.2 yes
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	 From the STM top view of pile cap C, Figure 8.28,

	

T T TC C2 2 326 6 26 6 1100 479 26 6 2100 479

26 6

= + = × × + ×
×

sin . cos . sin .

cos . ==1135 4. kN 	

	 With reference to Figure 8.32, the breadth of the horizontal strut Chor,2, b, is 
106.1 mm. Then the width of the strut, a2, can be computed as follows.

	   T kN C f ba ahor c2 2 2 21135 4 1 7 1 7 27 1 106 1= = = ′ = × × ×. . . . ., , which leads 
to a2 = 232.3 mm.

	 hs2 400 0 5 232 3 283 9= − × =. . . mm 	

	 2.	Angle of inclined strut, θ2

		  With reference to Figures 8.28 and 8.32,

	 θ2
1 2 2283 9 800 400 17 61= + = °−tan . ./ 	

	 3.	Widths of struts
•	 With reference to Figure 8.33a, the width of strut C2 at the upper node, 

wC
u

2 , is

	

w a cC
u

2 2 2 2 2 232 3 17 61 106 1 17 61

253 5

= + = × + ×

=

cos sin . cos . . sin .

.

θ θ

mm 	

•	 With reference to Figure 8.33b, the width of strut C2 at the lower node, 
wC
l

2 , is

	

w b wC
l

T2 22 2 2 200 17 61 200 17 61

251 1

= + = × + ×

=

sin cos sin . cos .

.

θ θ

mm 	
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FIGURE 8.32  Example 8.4—STM for pile cap C in the long direction—elevation.
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	 4.	STM forces:

	

V T
hs

2 2
2

2 2800 400
1135 4

283 9
894 43

360 4= ×
+

= × =.
.

.
. kN

	

	
C

T
2

2

2

1135 4
17 61

1191 2= = =
cos

.
cos .

.
θ

kN
	

	 5.	Checking stress limits:

		  Struts:

		  Horizontal strut, Chor,2

		  The width of strut Chor,2 was determined based on its designed strength; 
hence, there is no need to carry out any further checks for this strut.

		  Diagonal strut, C2

		  With reference to Figure 8.31 and as explained for the case of short direction, 
α = 1.0 for the upper node and α = 0.99 for the lower node. In order to cal-
culate the parameter β, the vertical height of strut C2, h hs s= =2 283 9. mm. 
The equivalent diameter of the bearing area of the upper nodal zone connected 
with strut C2, bb = =( )( ) .11250 4 119 7/ mmπ . For the lower node, the bear-
ing area is the pile area; hence, bb is the pile diameter, bb = 200 mm. Thus,
•	 At the column nodal zone (upper node):

h/b = hs/bb = 283.9/119.7 = 2.37, this gives β = 0.33(2.37 − 1)
= 0.45.

•	 At the pile nodal zone (lower node):
h/b = hs/bb = 283.9/200 = 1.42, this gives β = 0.33(1.42 − 1)

= 0.14.
Thus, the bearing strength of strut C2 at the upper node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 1 0 0 45 0 97. ( . )( . . ) . 	

V2

c2 sinθ2 θ2

c2

Chor.2

Upper node Lower node

C2

a2

a2 cosθ2
b2 

b2 sinθ2

wT2

wT2 
cosθ2

θ2 T2

C2

V2 

50

(a) (b)

FIGURE 8.33  Example 8.4—nodes of 3D STM of pile cap C in the long direction.
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The bearing strength of strut C2 at the lower node is

	 f f fb c c= ′ + × × = ′0 6 0 85 1 2 0 99 0 14 0 65. ( . )( . . ) . 	

For the design strength of strut C2, take the average strength at the upper and 
lower nodes:

	 f f f fce
C

c c c
2 0 5 0 97 0 65 0 81= ′+ ′ = ′. ( . . ) . 	

The strength of strut C2 at the upper node is controlled by the smaller of the strut 
strength, 0 81. ′fc , and the node strength, 1 7. ′fc . Hence, the strut strength at the upper 
node, f fce

C
c

2 0 81= ′. . Upon substitution in C f bwn ce
C

C
u

2
2

2= , where b is the equivalent 
upper node width, b = 106.1 mm, C2n = 590.4 kN.

The lower node is a C − T − T node, βn = 0.6. Thus, the limiting compressive 
strength of this node is 60% of the strength of the strut at this node; that is,

	 f f fce
n

c c= ′ = ′0 6 0 65 0 39. ( . ) . 	

The strength of strut C2 at the lower node is controlled by the smaller of the strut 
strength, 0 39. ′fc , and the node strength, 0 81. ′fc . Hence, the strut strength at the 
lower node, f fce

C
c

2 0 39= ′. . Upon substitution in C f bwn ce
C

C l2
2

2= , where b is the pile 
diameter, b = 200 mm for the lower node, C2n = 530.8 kN.

Take the smaller value of C2n at the two end nodes of the strut, upper and lower 
nodes. Then C2n = 530.8 kN.

Nodes:
There is no need to carry out any checks for the upper node since the strength of 

the node is greater than or equal to the strength of the surrounding struts. The criti-
cal node is the lower node, and as estimated before, f fce

n
c= ′0 39. . Based on this, the 

nominal value of the pile reaction is

	 V fn c2 0 39 200 200 422 8= ′× × =. . kN 	

Since the reinforcement of the tie, T2, is arranged in multiple layers, the height of 
the node wT2  should be checked against a maximum value as illustrated next.

	
w

T

f b

T

f
T

ce
n

c
2

2 2

0 39 200
537 1,max

.
.= =

′×
= mm

	

Since the assumed value of wT2 200= mm, employed in the estimate of the width 
of C2 at the lower node, is less that its maximum limit, wT2 ,max, the assessment of the 
nominal strength of C2 is correct and the solution should proceed.

The final results of the long direction are given in Table 8.4.
From the results in the table, the size of the upper nodal zone and hence the forces 

should be reduced to 45%. This finally gives a value of V2n = 162.2 kN.
Upon comparing the strength of strut C2 at the two ends, there is a noticeable 

difference between the two values. This difference can be reduced by another 



223Pile Caps

cycle of calculations, which starts with reducing the force in tie T2. Upon assuming 
T2 = Chor,2 = 1000.0 kN, then

a2 = 204.6 mm, hs2 297 7= . mm; θ2 = 18.41°; wC
u

2 227 6= . mm; wC
l

2 252 9= . mm;
V2 = 332.8 kN; C2 = 1053.9 kN; C2n = 548.3 kN = 0.52C2 (the weakest link).
Hence, V2n = 173.1 kN
Finally, the nominal strength of pile cap C from STM,

	 P V VSTM = + = × + × =2 4 2 500 1 4 173 1 1692 81 2 . . . kN 	

	 P PSTM EXP = =1692 8 2892 59. % 	
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strength assessment, type I model for, 

103–107
Beam–column connections, 159

exterior, 170–177
interior, 179–183
knee corner joints under closing moments, 

164–168
knee corner joints under opening moments, 

159–164
obtuse corner joints, 168–169
tee, 177–178
wide beam supporting on narrow column and 

vice versa, 170
Bearing

forces, loads, and load path, 122
inactive concrete effect on bearing struts, 

197–198
strength of struts confined by inactive 

concrete, 198–201
stress, 74, 93, 97, 189

Behavior
concrete struts, 54–57
of corner joint due opening moment, 160
joint, 159–160, 164–165, 170–172, 177, 179
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Bent cap, 117

Bernoulli hypothesis, 11, 16, 19, 20
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84, 147
dimensioning of, 76
modeling with inclined web reinforcement, 

49, 50
modeling with vertical web reinforcement, 

46, 48–49
stress trajectories in, 18
truss model development for B-regions 

design, 19–21
Bond action of straight bars, 64–65
Bond condition and confinement, 180
Bond stresses, 17, 171, 172, 173, 179–180
Bottle-shaped strut, 14–15, 55–56, 57, 58
Bottom loaded deep beams, 102–103, 115

deep beam with ledge, 117–118
design of, 115–117
Type I model for, 127–128

Boundaries of D-regions, 17–19, 20
principle of Saint Venant, 19, 20, 21
stress trajectories in, 18

Brackets, 128
failure modes, 128–129
nodes for safety, 130–133
step-by-step design procedure, 133–135
STM, 130
strength assessment of double corbel, 

136–137
transverse reinforcement of struts, 135

B-regions, see Bernoulli regions

C

Cathedrals, 2
Compression fan, 56
Compression field theory, 21
Compression reinforcement, 11

contribution, 76
lap joint, 67

Compression strut mechanism, 179
Concentrated load, deep beam under, 71–76
Concentrated node, 62
Concentric load, 41–42
Concentric local pressure, 87–88
Concrete, 22

contribution, 101
structure, 16
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Concrete struts, 53, 54
ACI 318–14 effectiveness factor for, 58–59
behavior and strength, 54–57

Continuous deep beams, 102–103; see also 
Simply supported deep beams

applications, 121
STM for, 104
top loaded beam strength assessment, 

121–127
type I model for bottom loaded beam, 

127–128
Continuous deep beams with web openings, 155

example with small opening, 155–156
modeling with large openings, 156–157

Continuous deep beam with large openings, 
strength assessment of, 93–100

Continuous nodes, 62
Corbels, 128–137

failure modes, 128–129
nodes for safety, 130–133
step-by-step design procedure, 133–135
STM, 130
strength assessment of double corbel, 

136–137
transverse reinforcement of struts, 135

Corners, 159
knee corner joints under closing moments, 

164–168
knee corner joints under opening moments, 

159–164
obtuse corner joints, 168–169

Cracking, 69, 164–165
of exterior beam, 171
patterns, 95, 141, 170
of strut, 15, 57

Curved reinforcement, 68–69

D

Dapped end, beam with, 42–43, 84–86
Deep beam(s), 101; see also Shallow beams

applications to continuous deep beams, 
121–128

applications to simply supported deep beams, 
103–114

bottom loaded deep beams, 115–118
brackets and corbels, 128–137
under concentrated load, 71–76
continuous, 102–103
design with eccentric large openings, 

154–155
with eccentric large opening, 45–46, 47
with indirect supports, 118–121, 122, 123
with large opening, 88–90
with ledge, 117–118
modeling, 101
simply supported, 101–102

strength assessment with large opening, 
152–154

Deformation of structure, 3
Diagonal tension, 169, 171
Diagonal tension stress, 165, 171
Direct STM, 101
Discontinuity regions (D-regions), 1, 11, 12, 16, 

17, 27, 43, 76, 84, 101, 147
boundaries, 17–19, 20, 21
in examples of corbel problems, 130
frame structure, 18
with nonlinear strain distribution, 12
start of STM for design, 21–23
stress trajectories in, 18

Discontinuous stress fields, 28, 34
beam with dapped end, 42–43
beam with recess, 43
deep beam with eccentric large opening, 

45–46, 47
deep wall-like column with recess, 

43–44, 45
examples of, 41
local pressure, 41–42
practical applications of method of STM, 34
region D1, 34–35, 36
region D2, 35–37
region D3, 37
region D4, 37–38
region D5, 38, 39
region D6, 38, 40
region D7, 38–39, 40
region D8, 39, 41
region D9, 39, 41
region D10, 39, 42
walls with openings, 44–45, 46

Disturbance regions, see Discontinuity regions 
(D-regions)

Double corbel strength assessment, 136–137
D-regions, see Discontinuity regions

E

Eccentric large opening, 147
deep beam with, 45–46, 47, 154–155
shallow beam with, 147

Eccentric load, 42
Eccentric local pressure, 35–36, 42, 44, 88
Efficiency, 160–161

of corner, 169
of joint, 169

Elastic finite-element analysis, 13, 27–28, 30
Elastic limit of material, 3
Elastic stress(es), 13, 164–165

analysis, 30–31
application of load path method, 32
trajectories, 32
trajectories, distribution, 14, 31
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Equilibrium, 1–2, 10, 11, 30
Exterior beam–column connections  see also 

Interior beam–column connections; 
Tee beam–column connections

detailing role, 173–174
effective concrete strength of nodes and 

struts, 176–177
geometry of STM and forces, 176
joint behavior, 170–172
strength assessment of exterior joint, 175
strut-and-tie modeling, 174–175

F

Failure criteria, 10, 11
anchorage of reinforcement, 64–69
concrete struts, 54–59
nodal zones, 59–62
reinforced ties, 63–64

Failure mechanism, 144
Finite element codes, 17

G

Geometry
of 3D STMs, 195–197
nodal zones, 59–62

Gravity loads, 177, 178, 179, 180, 181

H

High wall with two large openings, 90–93
Hoop reinforcement, 172

in annular plate, 68, 69

I

Illustrative design examples
beam with dapped end, 84–86
beam with recess, 86–87
deep beam under concentrated load, 71–76
deep beam with large opening, 88–90
high wall with two large openings, 90–93
local pressure, 87–88
strength assessment of continuous deep beam 

with large openings, 93–100
symmetrically loaded deep beam with 

variable depth, 76–84
unsymmetrically loaded deep beam with 

variable depth, 84, 85
Inactive concrete, 185, 186

bearing strength of struts confined by, 
198–201

effect on bearing struts, 197–198
example of pile cap, 186

Inclined web reinforcement, B-region with, 
49, 50

Indirect modeling of pile caps, see 2D 
modeling—of pile caps

Interior beam–column connections  see also 
Exterior beam–column connections; 
Tee beam–column connections

bond condition and confinement, 180
effective concrete strength of nodes and 

struts, 182–183
geometry of STM and forces, 182
joint behavior, 179–180
strength assessment of interior joint, 180
strut-and-tie modeling, 180, 181

Internal forces system, 170–171
Inverted-T bent caps, 117

J

Joint behavior
exterior beam–column connections, 

170–172
interior beam–column connections, 179–180
knee corner joints under closing moments, 

164–165, 166
knee corner joints under opening moments, 

159–160
tee beam–column connections, 177

Joint cracking, 173

K

Kinematic model, 33
Knee corner joints under closing moments

detailing role, 165–166
effective strength of nodes and struts, 168
joint behavior, 164–165, 166
STM forces, 168
strength assessment of closing corner, 166
strut-and-tie modeling, 166, 167

Knee corner joints under opening moments
detailing role, 160–161
effective strength of nodes and struts, 163
joint behavior, 159–160
STM forces, 163–164
strength assessment of opening corner, 162
strut-and-tie modeling, 161–162

Kupfer biaxial failure surface of concrete, 54

L

Lap joints, 66–68
Large opening, 139, 148

continuous deep beam modeling with, 
156–157

example on deep beam strength assessment, 
152–154

shallow beams with, 143–150
Ledge, deep beam with, 117–118
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Limit theorems, 1
basic assumptions, 2–3
limit analysis, 1–2
lower-bound theorem, 4–6
of perfect plasticity, 1
Tresca yield criterion, 3–4
upper-bound theorem, 6–10

Linear elastic analysis, 17, 38
Linear strain distribution, 19
Load path method, 12, 13, 27–30, 32
Loads, 185
Local pressure, 41–42, 87

concentric local pressure, 87–88
eccentric local pressure, 88

Lower-bound equilibrium technique, 23
Lower-bound solutions, 1, 2, 10

D-regions, 11, 12
elements of STM, 13–16
STM, 11–13, 14
stress-legs as truss members to produce stress 

field, 10
Lower-bound theorem, 4–6

M

Maximum shear stress, 4
Metals, 3
Model optimization, 31–34
Modified compression-field theory, 21

N

Niedenhoff tests, 128
Nodal zones, 15, 16, 53, 59

ACI 318–14 effectiveness factor for, 62
geometry and strength, 59–62
geometry simplification, 195–197
nominal compressive strength, 61
in pile caps, 185
strength, 201–203

Nodes, 15, 53
for safety, 130–133

Nominal compressive strength
of nodal zone, 61
of strut, 57

Nominal strength of tie, 63
Nonlinear flexural behavior, 175
Nonlinear stress–strain behavior, 1

O

Obtuse corner joints, 168–169
Openings, 139

continuous deep beams with web openings, 
155–157

deep beam with eccentric large opening, 
45–46

high wall with two large openings, 90–93
shallow beams with large openings, 143–150
shallow beams with small openings, 139–143
simply supported deep beams with web 

openings, 150–155
strength assessment of continuous deep beam 

with large openings, 93–100
walls with, 44–45

Outer column bars, 172

P

Panel truss mechanism, 179
Pile caps, 185

applied STM in two different planes, 186
distribution of pile loads, 185, 187
geometry of 3D STMS, 195–197
showing 3D STM and inactive concrete, 186
strength assessment of pile cap, 203–223
strength of nodal zones, 201–203
strength of struts, 197–201
2D modeling, 187–195

Plastic analysis, 1
Plasticity

limit theorems of perfect, 1–10
truss model, 21

Plastic material, perfectly, 3
Prestressing anchorage zones, 17
Prismatic struts, 55

R

Recess
beam with, 43
beam with, 86–87
deep wall-like column with, 43–44, 45

Rectangular opening, 150
STMs of different beams, 151

Reinforced ties, 63–64
Reinforcement, anchorage of, 64

anchorage length, 65–66
bond action of straight bars, 64–65
curved reinforcement, 68–69
lap joints, 66–68

Rigid-body rotational mechanism, simple, 8
Rigid punch indentation, 4

S

Shallow beams, 139; see also Deep beam
with large openings, 143–146
modeling, 146–150
with small openings, 139–142
strut-and-tie modeling of beams with small 

openings, 142–143, 144
Shear, 128

reinforcement, 42
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Simple beam model, 22–23
Simply supported deep beams, 101–102; see also 

Continuous deep beams
applications to, 103
deep beam design with eccentric large 

openings, 154–155
deep beam strength assessment with large 

opening, 152–154
modeling, 150–152, 153
STM of, 103
type II arch-action model application, 

108–110
type II arch-action model for strength 

assessment, 110–114
type II fan-action model application, 114
type I model for strength assessment of beam, 

103–107
wall-type column design, 107–108
with web openings, 150

Singular node, 62
Slabs, 11
Small opening, 139

continuous deep beam with, 155–156
shallow beams with, 139–142
strut-and-tie modeling of beams with, 

142–143, 144
Smeared nodes, 62
Softened truss model, 21
Soils, 22
Splitting crack, 171
Statical method, 4
Steel contribution (Vs), 101
Step-by-step design procedure, 133–135
STM, see Strut-and-tie model
Straight bars, bond action of, 64–65
Strain distribution, 16
Strength

concrete struts, 54–57
nodal zones, 59–62

Strength assessment
of closing corner, 166–168
of continuous deep beam with large openings, 

93–100
of exterior joint, 175–177
of interior joint, 180–183
of opening corner, 162–164
of pile cap supported by 4 piles via 3D 

modeling, 203–213
of pile cap supported by 6 piles via 3D 

modeling, 213–223
Stress fields, 29

for punch indentation in plane strain, 5
Stress–strain relationships of diagonally cracked 

concrete, 55
Strut-and-tie model (STM), 1, 27, 53, 101, 130, 

161, 185, 203–204, 213–214
of beams with small openings, 142–143

components of STM, 54
D-regions versus B-regions, 16–19, 20, 21
design procedure, 71, 72
development, 27
development of truss model for B-regions 

design, 19–21
discontinuous stress fields, 34–41, 42
elastic stress analysis, 30–31, 32
examples of discontinuous stress fields, 

41–46
exterior beam–column connections, 

174–175
forces, 163–164, 168
geometry of STM and forces, 176, 182
historical sketch, 19
interior beam–column connections, 

180, 181
knee corner joints under closing moments, 

166, 167
knee corner joints under opening moments, 

161–162
limit theorems of perfect plasticity, 1–10
load path method, 28–30
lower bound solution, 10–16
modeling of B-regions with web 

reinforcement, 46, 48–49, 50
modes, 31–34, 53
start of STM for D-regions design, 21–23
STM members, 63
tee beam–column connections, 178
2D and 3D modeling, 49–52
types of elements, 53
for unified and consistent design, 23

Strut(s), 13–14
angle limits, 197
bearing strength of struts confined by inactive 

concrete, 198–201
effective concrete design strength, 73–74
inactive concrete effect on bearing struts, 

197–198
mechanism, 179–180
in pile caps, 185
strength, 197
transverse reinforcement of, 135

Symmetrically loaded deep beam with variable 
depth, 76–84

T

Tee beam–column connections  see also Exterior 
beam–column connections; Interior 
beam–column connections

detailing role, 177–178
joint behavior, 177
strut-and-tie modeling, 178

Tee-shaped deep beam, 117–118, 120
Tension reinforcement, lap joint of, 66
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3D modeling, 49–52, 185, 195
diagonal direction analysis, 219–223
long direction analysis, 209–213
of pile caps, 187–195
procedure of, 195–196
short direction analysis, 204–209, 

214–219
strength assessment of pile cap, 203
strength assessment of pile cap, 213
strut-and-tie modeling, 203–204, 

213–214
Three-dimensional structure (3D structure), 27
Three-dimensional strut-and-tie models (3D 

STMs), 185
geometry, 195–197

Tie(s), 15; see also Strut-and-tie model (STM)
with or without reinforcement, 53

Top loaded continuous deep beams, 102
design of, 115
strength assessment using Type I model, 

121–127
Transverse reinforcement of struts, 135
Tresca yield criterion, 3–4, 8
Truss model, 11, 17

development for B-regions design, 19–21
Truss panel mechanism, 180
2D modeling, 49–52
Two-dimensional strut-and-tie models (2D 

STMs), 51, 52, 185, 197
Type II and III strut-and-tie model, 101–102
Type II arch-action model, 102

application, 108–110
for strength assessment of high strength 

concrete deep beam, 110–114
Type II fan-action model, 102

application, 114
Type I strut-and-tie model, 101–102

for beam strength assessment, 103–107
for bottom loaded beam, 127–128
top loaded beam strength assessment using, 

121–127

U

U-bar, 173
Uncracked D-regions, 17
Uniaxial stress–strain relationship, 2
Unsymmetrically loaded deep beam with 

variable depth, 84, 85
Upper-bound

solutions, 1, 2
theorem, 6–10

V

Variable-angle truss model, 21
Variable depth

symmetrically loaded deep beam with, 76–84
unsymmetrically loaded deep beam with, 

84, 85
Vertical web reinforcement, B-region with, 46, 

48–49
von Mises yield criterion, 7

W

Wall-type column design, 107–108
Web openings

continuous deep beams with, 155–157
simply supported deep beams with, 150–155

Web reinforcement, B-regions modeling with, 
46, 48–49

Wide beam supporting on narrow column and 
vice versa, 170

Width of tie, 63

Y

Yielding of reinforcement, 166–167, 180
Yield-line theory, 21–22

Z

Zeller test, 128, 129
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