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PREFACE TO THE ENGLISH EDITION

This edition of my work on finite elements is substantially identical to the
first Italian edition, but has been improved by some emendations to the text and
the correction of a few errors and misprints. I wish to thank, in this regard, my
friend and colleague Engineer Giorgio Nieri, who carefully read the text in order
to find the errors that had escaped notice in the Italian edition and so allowed
them to be corrected here.

The Italian version of the book includes a CD with a limited version (fifty
nodes) of the finite element program "SARGON", which I developed over the
course of some twenty years of work. Without disparaging the other programs
available, I believe that free access to a program which is perfectly functional and
can serve as a trial is extremely helpful, both for those who are learning to work
with finite elements for the first time and those who already own other programs
and wish to try another one. Before undertaking complex models with many
degrees of freedom, it is important for beginners to have a clear understanding
of how the finite element method works on small models. The English demo
version of Sargon is available as shareware at this website:
www.steelchecks.com/pro/st/demo.asp.

I wish to thank the publisher, Thomas Telford, for their willingness to
publish this work, and for their openness to new ideas, and in particular I
sincerely thank Matthew Lane and Daniel Keirs, who showed an interest in my
work from the very beginning.

The present English edition of this volume is the result of the scrupulous
translation from the original Italian by Kim Williams, a specialist in the
translation of scientific works from Italian to English: the author has found in
her a valuable collaborator. To her go my most profound thanks.

Paolo Rugarli
Milan, February 2010
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PREFACE TO THE ITALIAN EDITION

This book grew out of the desire to provide an easily understandable
guide illustrating some of the principal aspects of the Finite Element Method, in
order to facilitate awareness of the considerable power of the tools at the
engineer’s disposal today. It is designed as an intermediate link between books
that provide no theoretical information whatsoever and specialised textbooks:
the aim during its composition was to arrive at a clear articulation of the essential
core of the problems, without allowing concerns about rigorous formal
orthodoxy to obstruct that object. Ironically, in some case a simplification would
have required another book (for instance, chapter 3, references to simplified
theory, or chapter 11, the in-depth description of basic finite elements), and thus
in this context greater formality was required for brevity’s sake.

This present volume presumes to be nothing motre nor less than an aid.
While writing it, I have seen more cleatly its limits, and the limits of my effort: I
am well aware that works of this kind can easily be accused of oversimplification,
approximation, incompleteness and presumption. Be that as it may, it is still
necessary and urgent to provide engineers with a text on the finite element
method that is less irksome and thorny, and thus of greater advantage to the
quality of structural calculations, than is usual.

This book is an effort in that direction.

I wish to thank all of my colleagues who, over the years, through the
questions and observations that arose in the course of actual practice, as well as
their trust in me, have made it possible for me to examine carefully and better
understand many problems which are dealt with here. I also wish to thank Mrs
Clea Nardi, who helped with drawing the illustrations. Finally, I wish to thank
my school, the Politecnico di Milano.

Milan, July 2003
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1 INTRODUCTION

The 1980s witnessed a progressive spread of the use of the finite element
method (or mote briefly, the FEM) by professionals, engineering societies, and
construction firms. In fact, the spread of software programs for finite elements
began in the 1970s with the famous SAP (Structural Analysis Program!?), the
mother of all acronyms in this field. However, the difficulty of use and the scant
availability of instruments for calculation outside of universities posed notable
limitations on the spread of the FEM.

It should be noted, however, that the demand for analyses of finite
clements was also limited: the standards and regulations did not require
calculations of this kind, and — except in very special cases — clients did not ask
for reports of calculations containing the results of finite elements computations.
This was the era of handbooks of all kinds, of those works which had been
growing in number since the nineteenth century, whose object was to give a
sampling of the most frequent cases in order to provide a rapid guide for the
engineer who was not up on the principle of virtual work, and was justifiably
reluctant to solve by hand ‘a small system’ of five or ten unknowns. It was the
glorious age of graphic statics.

Of course, this all changed with the advent of personal computing.

The increasing application of the FEM (and of the software related to it)
brought with it such consequences as an evolution of the standards and
regulations, which today require calculations that are increasingly sophisticated
and less capable of being dealt with by hand; a greater demand for results that
are general and comprehensible in concise forms such as colour maps,
deformations, internal force diagrams, etc.; the rapid obsolescence of tools such
as values arranged in tables, and many others.

One might expect that this would have led to an improvement in the
quality of engineering works, and an increase in their level of safety.
Unfortunately, with regard to quality, the situation is all too obvious.? With

1 The SAP program was developed at the University of California Berkeley by Klaus Jurgen Bathe and Edward
Wilson. Various versions of the program were released, the last being SAP V. Following SAP V the authors
developed a code for nonlinear calculations, NONSAP (1973), and then split up. Prof. Wilson developed with
others SAP80 and then SAP90, while Prof. Bathe developed ADINA.

2 Among the many possible citations, I quote G. Sara and R. Nudo, who say, for example, “it might appear
surprising that the elevated quantity of recent structural failures regard not only old, decayed structures but
newly built structures as well” (in “Fallimenti strutturali e deficienze previsionali”’[Gori R. Ed. 2001]).
Regarding the causes of this disastrous situation, along with the greed of those who profit at the expense of
safety, ignorance and abuse, he says, “It should also be noted that the increasing recourse to computer
instruments tends to induce in the designer a passive reception of data obtained by increasingly sophisticated
programs for calculation, with the consequent progressive reduction of recourse to traditional but fundamental
tools for evaluation, such as experience and critical judgement”.
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regard to an increase in the level of safety, for various reasons it has yet to be
demonstrated that this has been actually achieved.

Even though the FEM is greatly in demand and its use widespread today,
an awareness of its foundations and the rules underlying the calculations used
does not appear to be equally widespread. This is both because there has not
been ample time (many professionals have not been able to take university
courses in the subject) and because the management of a finite elements
program is often only one part of the work to be performed: there are a vast
number of professionals who perform calculations but also do many other
things as well, and so don’t have time to dedicate themselves to learning the
FEM and the software program they own that makes its use possible.

Specialised texts on the subject’ require a significant commitment of time
and concentration, and it is rare that the professional who already has so many
claims on his time is able to get through them. Some of the textbooks are quite
fine, but unfortunately they are not as well known as they should be, requiring as
they do the passion and constancy of those who can devote months or even
years to their study.

While it is understandable that specialised texts present an obstacle that
not everyone can overcome, it is also true that the complete lack of study is quite
dangerous: objectively, the use of a finite element software program without
possession of basic notions about the FEM can give rise to a series of oversights
and errors which, even if they remain undiscovered, nevertheless pose a
formidable barrier to progress in rea/ structural engineering.

Even today only a small minority of students of engineering and
architecture attend courses that specifically deal with this subject.

The idea for this present book came to me during the course of
experience 7 practice that spanned eleven years. The work during those years was
providing explanations and assistance for users of the finite element software
program named SARGON, which I had been writing since 1991. It was precisely
while doing this that I realised that many explanations that were asked of me,
regarded not the operative aspects, but those that were intimately connected to
theory (the vast case histories of lack of proper constraints, which finite elements
were appropriate for a given problem, on modal analysis, etc., etc.).

This book is arranged as follows:

e Chapter 2 is a panoramic overview of the FEM, and serves as an initial
introduction to the material that will be dealt with. The idea is to provide
from the very beginning a frame of reference into which the topics that

3 The texts [Zienkiewicz and Taylor 1989], [Cook, Malkus & Plesha 1989] and [Bathe 1996] are genuine
“bibles” that are cited universally and are fundamental for anyone who wants in-depth studies written by some
of the authors who “created” the FEM.
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are dealt with in successive chapters are inserted. Although a maximum of
clarity has been sought, various concepts that will be illustrated later are
just sketched out here: the reader should understand that these will be
explained in greater depth in later chapters.

® Chapter 3 is a summary of the main points of the various simplified
theories that must be known at least in broad terms by those who want to
produce models. Those already familiar with the various theories might
look at this in order to review the notation used. Those who do not
know anything abut the theory of elasticity will encounter some difficulties
that might lead them to want to study this in greater depth (Appendix IV
is also intended to help with this). Most will find in this chapter a brief
summary of pertinent facts to refresh their knowledge. Knowing the
differential equations by heart is not indispensable, but mastery of the
basic hypotheses is.

® Chapter 4 goes into the details of what the FEM presumes about a generic
finite element, introducing all of the most important concepts. The emphasis
has been placed on describing the problem in general terms, with
reference to the displacement method, which was the first to be
established historically and which represents the main route for
understanding the FEM. This chapter is fundamental.

® Chapter 5 describes the assembly that brings together all the information
about various finite elements.

® Chapter 6 deals with forces, and Chapter 7 with constraints, in the
attempt to describe all of the main errors that can occur.

® Chapter 8 explains the typical problems related to the numeric solution of
the final algebraic problem (solving), as well as the stress recovery of the
elements. This chapter will reveal some of the tricks that make beautiful
(and inaccurate) colour maps possible.

® Chapter 9 deals with the techniques that can be used for error evaluation
(checking), for verifying every analysis for correctness and reliability.

® Chapter 10 briefly illustrates the problems typical of each of the various
theoretical models examined in Chapter 3, from the point of view of finite
clements, in order to relate the theories to problems encountered in actual
practice.

® Chapter 11 describes the characteristics of finite elements most used in
the various models. It does not pretend to provide detailed descriptions of
all the elements (though it does provide descriptions of beams, rods, and
basic elements of plane stress and plane strain), but does however present
information on their effectiveness.

Copyright © ICE Publishing, all rights reserved.



Structural analysis with finite elements

® Chapter 12 deals with the most typical problems of modelling, in order to
provide guidelines for identifying and overcoming them. Listed are
numerous examples of erroneous models and tables useful for creating
new ones. The study of the errors made by others and of problems of
mesh refinement can be helpful in understanding how to proceed, bearing
in mind that use of a medium-level softwatre was envisioned, such as those
in widespread use among professionals.

® Chapter 13 mentions typical problems related to the implementation of
automatic checkers, aimed at providing enough information to make it
clear that these are not miracle programs but present problems and
difficulties of their own.

® Chapter 14 is a collection of some real cases of calculation of finite
elements.

® Appendix I is dedicated to notation and a review of some notions of
calculus.

® Appendix II is dedicated to a very brief review of the theory of elasticity.
® Appendix III lists the principal symbols used in the book.

® Appendix IV is an essential glossary for quick reference.
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2 OVERVIEW
2.1 A SIMILE

According to astrology, it is supposed to be possible to predict and
interpret the destiny of an individual (or a group of individuals) on the basis of
the relative motion of a set of celestial bodies such as stars, planets, etc. All facts
of life, small and large, are supposedly governed by the movement of about
twenty bodies in space.
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Figure 2-1: Partial view of a structure without a representation of the
elements: the firmament of structural analysis.

This idea is ancient and lasting: still today magazines and newspapers
publish horoscopes, and certain kinds of professional seers — astrologists —
pocket hefty profits.

We wouldn’t even go into that, except that there is a kind of point of
contact between the finite element method (FEM) and astrology: like astrology,
the FEM presumes knowledge of the details of a complex situation — what takes
place within a given piece of a structure (a single finite element) — on the basis of
the relative motion of a few points that are part of it. The points are called rodes,
and the prediction is made — not unlike that of astrology — on the basis of an
arbitrary judgment: the hypothesis that all the points within the finite element
obey a certain mathematical law (for example, that the displacements vary

Structural analysis with finite elements © Thomas Telford 2010
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linearly or parabolically). We will call this assumption briefly and unofficially the
astrological pﬂ'ncz'p/e.
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Figure 2-2: Model of the finite elements of the cruise ship Seabourn
Odyssey, some like 1,066,000 degrees of freedom (Castalia srl for Studio
Engineering).

Unlike astrology, the FEM is used to solve a system of differential
equations of a known form, and thus it is possible to evaluate the efficiency — or
if you prefer, the exactitude — of the solution quantitatively. In doing so, it is
possible to see that the method works: it can be proven that by increasing the
number of elements (which thus become progressively smaller), the approximate
solution converges to the exact solution.!

Taking as it does its point of departure from an arbitrary judgment, how
does the FEM work?

The answer lies in the fact that the finite elements can be made as small as
desired, so that the “exact” answer is sufficiently comparable, within the element,
to the displacement field whose shape has been arbitrarily hypothesised. It is a
little like creating a complex image through the use of many coloured rectangular
pixels arranged on a grid: if the pixels are sufficiently numerous, the image will
have a high resolution, up to the point where the image is so clear that we

1Tt is also possible to prove that by increasing the complexity of the interpolating functions in keeping with the
dimension of the element, the method converges to the exact solution. Something similar happens with the
series that transform a complex function — such as sin(x) — into the sum of a given number of elementary

functions: 1 — x2/2 +....
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completely forget how it was created. If instead there are not enough points,
then the image appears visibly “erose” and the means of its creation evident.

This kind of approach is very similar to interpolation, with the added
advantage that it is possible to choose the points where the unknown function is
to be sampled. As we said, the points are called nodes, and we effectively decide
on their collocation in the structure.

In describing how the FEM works and what must be kept in mind when
working with an analytical software program, we will proceed by successive
approximations, exploring the concepts set forth in increasing depth.

Above all it is necessary to clarify what the general characteristics of the
problems that we intend to resolve are: we will be dealing with problems of
linear elasticity in a static environment. Further, we will presume the validity of
the hypothesis of small displacements, thus allowing us to write the equilibrium
equations with respect to the undeformed configuration (in many cases this is
not possible: think of a cable in tension due to the force of its own weight).

In these terms, the problem is thus: given a body or a set of bodies that are
constrained in varions ways, subject to a set of forces applied almost statically, constructed with
materials that satisfy the theory of linear elasticity, and supposing that the displacements of the
system are small enough to allow writing the equilibrium equations with respect to the
undeformed configuration, what is the response of the system to the application of forces, in
terms of displacements, stresses and strains?

Complementary to this, but not less important, is the next problem: Is zhe
Structure capable or not of resisting the displacements, stresses and strains consequent to the

application of forces?

A first question arises spontaneously: What must be done to describe
correctly the problem to be solved? Then: What are the successive steps to be
taken to arrive at its solution?

Here is the briefest possible summary.

The finite element method consists in dividing the structure into parts, on
the assumption that it is possible to describe, by means of simplified rules, the
displacements, stresses and strains within each part (which becomes therefore a
finite element). The application of these rules requires only the knowledge of the
displacements of a few points that belong to the elements (the #odes).

The loads applied to the structure are then transformed into forces and
couples that act on the nodes. Once this is done, equilibrium is imposed on all
nodes of the structure (or, equivalently, the total potential energy is determined
to be stationary in the equilibrium configuration; we shall see better in what
follows what this really means).
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Figure 2-3: Wireframe, deformed and solid representations of a braced
structure (finite elements model created with SARGON by Eng. Paolo
Gustin, Milan, reproduced with permission).

The presumptions are:

1) the external forces applied to the nodes and the reactions of the distorted
elements of the nodes are in equilibrium;

2) the reactions of each element on its own nodes depend on the relative
displacements of the nodes of the element itself; these are evaluated on the basis
of the simplified rules that typify the finite element in question (the astrological

principle).

Bearing these in mind, in order to satisfy the equilibrium of all nodes it is
necessary to solve a system that has as a known term the vector of forces and
couples applied to the nodes (p), and as an unknown vector the set of the
translations and rotations of the nodes (u). The coefficient matrix of this system
(K) is called the global stiffness matrix.

Ku=p

Once the system is solved, and thus the displacements of the nodes are
known for each element, on the basis of the simplified rules that characterise the
element in question, we know what happens within the element itself in terms of
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displacements, strains and stresses. All that remains to be done is to save these
results in the appropriate files for all the elements that make up the structure.

L)

In what we have just discussed, it is fundamental to understand the fact that in
displacing any node whatsoever, (re)actions are communicated to nodes both
nearby and very far away, if these are connected to the node of origin by the
clements. Imagine being in the last car of a train: without warning you can be
thrown against your seatmate. Effectively all the reactions of all the other cars
are released into the last car, reactions due to the fact that the locomotive, two
hundred metres ahead, has been jolted.

This extremely brief synthesis requires an in-depth explanation. In order
to do this, we will examine one by one the necessary steps from start to finish.

2.2 THE PRINCIPAL STEPS

In order to describe the basics of what normally takes place in a finite
elements software program, it is useful to state the following assumptions:

a) the problem can be descrtibed by means of a unique set of
equations (in other wotds, it is a problem concerning plates, membranes, solids,
etc.);

b)  asingle type of finite element is used.

In what follows we shall see how this scheme can be generalised to treat
the cases in which these two assumptions do not hold.

This said, the principal steps are:

1) Choosing the most suitable mathematical model for the problem at
hand;

2) Choosing the most suitable type of finite element for the problem at
hand;

3) Subdividing the structure into finite elements (meshing);

4)  Assigning the material and geometrical characteristics to the finite
elements;

5)  Assigning the constraints;

6) Describing the loads for each load case;
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7) Renumbering of the nodes and creation of vectors;
8) Assembly;

9) Solution;

10)  Stress recovery;

11)  Output and interpretation of the results.

Each of these steps is fundamental and indispensible: the steps in bold are
performed by the engineer, while the others are performed automatically by the
computer. Step 3 appears in italics as a reminder that today it is partly done
automatically by software programs, in accordance with rules that are in any case
established by the engineer.

The requirement that steps 1-6 and 11 are performed by the engineer
indicates that the FEM is still not completely foolproof. It is a fact that in each
of these steps there exists the possibility that errors will be introduced that can
result in unreliable output or can even make it impossible to solve the problem.

2.2.1 CHOOSING THE MATHEMATICAL MODEL

Strictly speaking, all problems of elasticity are three-dimensional problems,
and the equations that are applied are the general ones of the theory of elasticity.
However, in a great many cases the problem is formulated so as to make
possible the use of one of the various approximate or specialised theoretical
treatments, making many simplifications possible. We can briefly list the theories
that are most often used:

- technical beam theotry;

- plane stress;

- plane strain;

- axial symmetry;

- thin plate theory (Germain-Kirchhoff);
- thick plate theory (Mindlin-Reissner).

The choice of one of these models is inevitably linked to approximations,
which must be correctly evaluated by the engineer. For example, the condition of
a slab might possibly quite closely resemble that of a thin plate, while on the

10

Copyright © ICE Publishing, all rights reserved.



Overview

other hand this is highly unlikely in the case of a foundation plinth. The good
engineer should know how to deal with the effects of the choice of formulation.

The errors due to an inappropriate model remain unatfected by a variation
in discretisation, and do not generally depend on the type of finite element
initially chosen. No matter how many elements are used to subdivide the plinth,
if the plate element is not the appropriate one, the calculated results will only
vaguely approach the “exact” ones. Many inexperienced users do not realise this
and, for example, believe that they can study a contact problem with beam
elements a micrometre long.

There are two reasons why more general elements — that is, elements that
subdivide the solid into small solids (brick elements) — are not used. One is
because they involve a greater quantity of calculations that have to performed,
and a larger volume of data that has to be dealt with. The other is that the
answer would naturally be more complicated, even when the part of the solution
that interests the engineer is coherent and organised: no one would create a
three-dimensional model to evaluate the axial forces of a truss.

Although this may appear obvious, it should be recalled that, as
mentioned, many errors in modelling derive from an inappropriate use of the
theories listed above. Not all users of finite elements can provide a ready
response to the question, “Should a membrane or a plate be used?”.

Chapter 3 contains a summary of and helpful observations about the
models listed above.

2.2.2 CHOOSING THE MOST SUITABLE TYPE OF FINITE ELEMENT

Once the theoretical context of the problem, and thus the equations that
must be solved, have been established, it is necessary to choose the type of finite
element to be used in performing the analysis.

The software programs most widely used allow little choice in the finite
elements: they usually propose at most two kinds of elements, and the user must
choose one. Programs that are more refined (but also more costly and difficult to
use) provide complete freedom of choice within an ample range of possibilities.

For technical beam theory, the choice is between the truss element, which
models only the axial behaviour of the beam, or the more general beam element,
with six components of stress. Although these elements are quite distinct from
each other and their use fairly intuitive, we have found that inexperienced
professionals using the FEM sometimes confuse them. It suffices for now to
note that — as was the case in the choice of the model — the erroneous or

11
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inappropriate choice of finite element has irreparable consequences: the model
can be vague, or worse, whole parts of the solution can be lost, so that the final
calculated result is quite distant from the exact one. An extreme example is a
Vierendeel girder whose horizontal members are modeled with beam elements,
and the verticals modeled with truss elements: the entire typical stress regime of a
girder thus constructed (as regards the bending of the struts) would be lost.

The choice of the correct finite element usually involves problems of
either plane stress or plane strain or plate-shells. In this last case in particular, the
presence of many kinds of elements makes this a delicate problem indeed. For
plane conditions the choice is often between elements with three nodes
(constant strain) and those with four nodes (linear strain), with or without
drilling degrees of freedom.

14 9 s

L.

Figure 2-4 : 4-node quadrangular and 3-node triangular elements.

In an actual problem various kinds of elements can be used in different
zones of the model. Indeed, the good engineer takes advantage of this possibility
as he sees fit, with the aim of optimising the model. Chapter 11 deals with the
elements most often used.

2.2.3 MESHING

Once the appropriate model and finite elements have been chosen, it is
necessary to divide the structure into parts, or finite elements. The mesh cannot be
defined randomly, but must be created in accordance with a given set of rules.

The first rule concerns the fact that the shapes of the individual finite
clements must be compatible with their type. For example, it is not possible to
represent an arch of curved elements using ordinary (straight) beam elements
because beam elements must have a rectilinear shape. In addition to the

12
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requirement that their shape be possible, the finite elements must not be overly
distorted, or present internal anomalies.
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Figure 2-5: The mesh of an electricity pylon (Sargon model by Eng.
Verrillo, reproduced courtesy of the engineering firm Colombo S.p.a.).
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Figure 2-6: An excessively distorted triangular element.

For example, a triangular element with angles 89.5°-89.5°-1° is inefficient
because it is too distorted.

To identify the nodes in the model, a progressive number is assigned to
each one. The set of nodes in a model and of their coordinates with respect to a
given reference system is called the coordinate table.

There cannot be more than one node with a given number.

13
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Figure 2-7: Numbering of nodes and elements.

There can, however, be two different nodes occupying the same point in
space; these are called double nodes.

The finite elements can be one-, two- or three-dimensional. Some finite
elements have the form of a point (0-dimensional), but this will be addressed
later.

Each one-dimensional element is defined by a given numer of nodes and
by a type. Identifying the type makes it possible to connect the nodes in order to
describe the element’s geometry properly. Rectilinear elements (the most
frequently used) generally have an axis defined by two nodes. Thus the form of
the element is defined by two nodes.

Two-dimensional elements (such as plates or membranes) are defined by a
given number of consecutive sides. In addition to the two extremes, each side is
defined by a given number of definable points, called intermediate nodes (typically
midside nodes). It can be seen that, when the type of element and the nodes on
the sides are known, the element is unequivocally defined, thus when the type of
element is known, its geometry is unequivocally defined by its nodes.

Three-dimensional elements are defined by a given number of faces
delimited by sides defined by nodes. Each face shares a side, defined by two or
more nodes, with another face. When the type of element is known, each face is
unequivocally defined by sides, and thus, it can be said definitively that the shape
of cach element whose type is known is unequivocally determined once the
nodes of the element are known.

14
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Thus, in general, given a type of element (beam, truss, CST, etc.) #ts form is
unequivocally defined by its nodes and their ordering.

The table for each element of a given type specifies the ordering of its
nodes, and is called the connectivity table.

Two elements are said to be comnected if they share at least one node.
However, in some cases the connection can be incomplete or faulty.

Figure 2-8: An example of an faulty connection between two elements: the
sides are partially connected.

One side of a two- or three-dimensional element is said to be connected
to the side of another two- or three-dimensional element of the same type? if and
only if the nodes of the side of the first element are also the nodes’ of the side of
the second element. If only some of the nodes are identical, the side is said to be
partially connected, or equivalently, partially disconnected.

A face of a three-dimensional element is said to be connected with the
face of another three-dimensional element if all the nodes of the face of the first
clement are exactly the same as the nodes of the face of the second element. If
only some of the nodes are identical, the faces are said to be partially connected,

2 The connection between elements of different types will be covered in a later chapter.

3 It should be noted that it was not said that the nodes had to coincide: in fact, two nodes can be coincident but
different, that is, they can have different progressive numbers. In such cases, the nodes are called double nodes.
Later we will see how double nodes can constitute a serious problem if they occur by chance and not on

purpose.

15
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or equivalently, partially disconnected. If two faces do not have any nodes in
common they are said to be disconnected.

The above statements indicate that elements that have sides with different
numbers of nodes can only be partially connected. Likewise, elements that have
faces with different numbers of nodes can only be partially connected.

If two elements are partially connected, they are generally not congruent. Thus partial
connections should be avoided, unless the model is intended to simulate cracks,
construction joints or, more generally, situations which present discontinuities.

10 z

L.

Figure 2-9: Facing elements. Note that since the elements are not
numbered it is impossible to understand whether they are connected or
not.

If a node of one element lies on the edge of another element without
having a connection with it in that point, the two elements are simply said to be
facing elements. Elements that are simply facing are not connected, and thus are
not congruent.

As has been seen, a mesh is not a drawing, but is rather a set of relationships between
nodes and elements satisfying requirements of congruence.

The subdivision of the structure into finite elements is one of the trickiest
steps in the entire procedure, since in addition to satisfying all of the
requirements of regularity that a mesh must satisfy, the elements must be
sufficiently small where there is a larger gradient of displacements or forces
(which is somewhat like decreasing shutter speed in order to photograph rapidly
moving objects).

A priori, it is not possible to say with certainty whether a mesh is

sufficiently fine or not (although in the case of a coarse mesh it is easy enough to
predict that the results will be unreliable). Often in order to decide if the

16
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discretisation is sufficient a new mesh is constructed that contains all the nodes
of the original mesh plus a new set of nodes, in order to compare the results
obtained by the two meshes, the one less and the other more refined. If the
differences between the results are modest overall, it is reasonable to consider
the results acceptable; if, on the other hand, the differences are notable, then a
third mesh, denser than the second, is necessary, and so on, until the desired
precision is achieved; this is known as remeshing. Actually, some software
programs are capable of executing remeshing completely automatically, because
they memorise the geometry of the problem not only in the form of nodes and
elements but also in the form of geometric primitives (solid modelling). If this is
not available, remeshing requires the painstaking work of remodelling.

In any case, the subdivision of the structure in elements results in a set of
nodes with a coordinate table, and a set of elements with an connectivity table.
These two tables, which can be written in various ways, constitute the most part
of the input file for all finite element software programs.

2.2.4 ASSIGNING MATERIAL AND GEOMETRIC CHARACTERISTICS

Once the form of the finite elements has been defined it is necessary to
establish the geometric and material characteristics of each individual element.
“Geometric characteristics” concerns the fact that for some finite elements (the
majority) it is not sufficient to specify the form in order to know with precision
which material part the element simulates. In many cases it is necessary to
furnish additional data, such as the thickness of the plate/-shell or membrane
elements, areas or moments of inertia for beam elements, and so forth. It should
be noted that in specifying these characteristics it is not as important to simulate
the physical reality, as it is to depict the behaviour of an element correctly. For
example, for a stiffened slab, the thickness, which must be furnished if a plate
element is used, only has a numerical value: it is not the true thickness of the real
slab, which is undefined. It is also for this reason that it is not always easy to
input data regarding thicknesses, moments of inertia, and cross-sectional areas.

A second difficulty is related to the possibility of making errors (including
banal errors of calculation or typing). The latest software programs are furnished
with databases that make it possible to attribute characteristics to elements by
calling up the appropriate files. Earlier programs of the 1970s, which require
writing a formatted input file, can lead to problems.

In addition to geometric characteristics, material characteristics must be
attributed to the elements as well. In theory, each finite element might have its
own material. More often there are groups of elements with similar materials
which simulate different parts of the structure (for example, in a mixed structure

17
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of steel and concrete). It is generally for this reason that material characteristics
are defined for a group of elements of a similar type. The definition of material in
the context of the FEM, and in the software programs using the FEM, is not, as
might be thought, similar to the theoretical definition of the material (isotropic,
anisotropic, orthotropic with all of the constants involved): it has a conventional
meaning, due to the fact that by definition certain finite elements make sense
with particular types of materials, of which they in any case use some but not all
parameters. For example, a rod element uses only Young’s modulus of elasticity
relative to the direction defined by the axis of the rod. In this case the possible
anisotropy of the material is not relevant, since we are only interested in the
material’s behaviour along the axis of the rod itself. Further, it is not necessary to
specify either Poisson’s ratio or the shear modulus of elasticity, because the
formulation of the element is concerned with neither of these. On the other
hand, the material’s weight density, which is in fact usually required, can be
helpful in evaluating the weight or mass of the element. Instead, in the case of
the ordinary beam element, it is implicitly hypothesised that the material is
homogeneous and isotropic, even if it is relatively easy to deal with an element
whose material is, for example, orthotropic. The element is simply designed in
this way.

Generally speaking, the software programs do not cover the full range of
the set of possible choices: they furnish some of them, most often the best
known or most used. It should also be noted that a correct use of material and
geometric constants often makes it possible to model situations that it would
appear cannot be modeled. For example, in the case of a beam of orthotropic
material, we need only deal with the moments of inertia appropriately in order to
model this situation correctly.

This discussion makes it clear that the phase of assigning material and
geometric characteristics to the elements requires great care and refinement, and
even recourse to icks of the trade, in order to obtain meaningful modelling: it is
thus of primary importance to understand completely not only how each
individual finite element functions, but also how it has been implemented in the
software program being used. For now it is sufficient to repeat that such
characteristics are intended to be only indirectly realistic, in order to make it
possible to deal with the behaviour of the elements as we wish. Their object is to
model, not photograph. They should therefore be thought of more as the
commands needed to fly a model airplane by remote control than as precise
references to theory.
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2.2.5 ASSIGNING THE CONSTRAINTS

Once the finite elements have been completely defined, it is necessary to
specify the constraints to which the structure is subject. In the context of the
FEM the constraints always and only concern the nodes. This does not mean
that more general, real situations cannot be modeled: it simply means that in
order to do this with the FEM it is necessary to define constraints for a certain
number of nodes. In some cases, as we shall see below, in order to model some
constraint situations completely it is necessary to add elements as well as to
constrain nodes, but again the concept of constraint only applies directly to the

nodes.
L]

Figure 2-10: Planar frame (Sargon). The solid dots at the bottom indicate
constraints; the smaller solid dots at the top indicate end releases; the
squares indicate the presence of a node.

The constraints of the nodes can affect one or more of the node’s
possible movements. In general, a node has six degrees of freedom, that is, six
different possibilities of movement:* constraining its possibility of movement,
these can be reduced to five, then four, and so on, until all possibility of
movement is excluded. The six degrees of freedom typical of a node are the
three translations in directions x;, y and g of the global reference system, and the

4 In some cases the nodes begin with less than six degrees of freedom. These are cases involving a kind of
problem that does not require all six degtees of freedom. For example, if a planar rectangular structure is
studied using truss elements, each node has at most two degrees of freedom. If the problem involves a flat
plate, each node has at most five degrees of freedom, and so on. In these case the constraints would further
limit the nodes’ possibility of movement.
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three rotations about straight axes such as x, y and z. Constraining one of these
components means making it equal to zero.?

The number of constraints placed on nodes in the structure directly
influences the dimension of the mathematical problem to be solved. If all of the
nodes were constrained there would be no problem at all to solve (nor would
there be, in general, forces or deformations in the model). The mathematical
problem in question is a system of linear equations, having a number of
unknowns equal to the number of degrees of freedom of all the nodes of the
structure. Each component of constrained displacement means, as we shall see,
that there is one equation less.

If there are insufficient constraints or they are ineptly positioned, the
problem can turn out to be impossible to solve, or useless. It becomes
impossible to solve when rigid body displacements are present, that is, zones of
the structure that can move without giving rise to any internal forces. It becomes
useless when the constraints are placed so that they distort structural behaviour,
making the model inadequate. Unfortunately, both of these cases occur
frequently. The second is most to be feared, because it is possible to obtain
absurd results without realising it.¢

2.2.6 DESCRIPTION OF LOADS

The /oads — or more generally, the actions — present in a structure are
usually grouped into /ad cases, meaning that all the forces associated with a load
case act contemporaneously. The response of the structure will therefore be, in
obedience to the principle of the superposition of effects, the sum of responses
of the structure to the individual forces. From this it follows that in order to
maintain a distinction between responses due to different causes, they should be
put in different load cases.

Actions can be of various types: they can be forces or couples applied
directly to points of the structure where nodes are present (nodal forces), or they
can be forces or couples applied at points other than nodes in the finite
elements, such as on their edges (distributed loads).

There are also distributed loads of pressure applied to the elements (for
example, a uniform load on the axis of a beam element). One particular kind of

5 The term “constraint” is also used to refer to the reduction of the node’s possibility of movement. For
example, a node connected to a spring would be considered, in this sense, constrained. Here the term
“constraint” means the annulment of one of the components of generalised displacement.

6 Tt goes without saying that a good engineer will always be aware, in analysing the results, that “something’s not
right”. Unfortunately, the reality is that the results are not always analysed ...
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action is the thermal load, which in general can be either nodal or distributed.
Finally, another type of action is fixed displacement (for example, the settling of
constraints). Fixed displacement and thermal loads are called coactions.

As will be made clear in what follows, all of the actions have to be
translated, by means of the appropriate procedure, into nodal forces or couples,
with the exception of the fixed displacements: rather than being made equal to
zero, the displacement is made equal to the value assigned.”

Figure 2-11: Various types of forces applied to elements and nodes.

In all events, the load is made to correspond to a wmodal force vector, which
sums up the set of effects of actions on the nodes (even when the actions are
distributed). This vector is the known term of the system of equations that
solves the structure for the given load case, and to it corresponds a solution
vector that contains the displacements of all the nodes. Thus, a different solution
vector corresponds to each load case. Generally speaking, if # load cases have
been defined, it is necessary to solve # linear systems all having the same
coefficient matrix and different vectors of known terms: the nodal force vectors
corresponding to the load cases in question.

7 In truth, in the technique most widely used by software programs, the fixed displacements are also
transformed into applied forces or couples.
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2.2.7 RENUMBERING THE NODES AND CREATING THE VECTORS

Once the load cases have been created and the applied loads assigned to
them, the problem is ready to be solved. The first step traditionally performed by
all good finite elements software programs is the renumbering of the nodes, and
in some cases,? the renumbering of the elements. The object of renumbering is
to artrive at a system of equations that is identical to the original one but easier to
solve because the coefficient matrix has a much smaller band: we will see what
this means in greater detail in Chapter 8. In solvers of the newer sparse matrix
type, the renumbering phase is replaced by the phase of the analysis of the
coefficient matrix of the solving system, necessary in order to evaluate the voids
and solids,how many non-zero elements there are, or the sparseness. Some sparse
matrix solvers still require some kind of renumbering in order to optimise the
space occupied in memoty.

In terms of the time required for calculation, the effort required for
renumbering is always more than compensated for by the advantages it brings;
this is true even when the solution proposed by the renumberer is not optimal
(the optimal solution is that which gives the minimum band in absolute).

Renumbering is done with the use of criteria adopted from graph theory
and is an extremely delicate and important step, because its performance —
especially its incorrect performance — can lead to insurmountable problems
during the solution phase.

Renumbering requires updating the connectivity and coordinate tables: in
effect, a node which had number # before renumbering will have number 7 after
and, consequently, where number # occurred it is necessary to write 7.

After renumbering, the generic solver is able to create the vectors of the
unknown terms and the sets of vectors of known terms. In order to do this,
usually a table is constructed that associates a given displacement of a given node
to each equation of the system, that is, to each line of the coefficient matrix. One
such line in the table is shown in Table 2-1.

This line tells us that line 567 of the coefficient matrix refers to translation
x of the node numbered 113 (which before renumbering was 1280). The number
0 corresponding to translation y and rotation y indicates that there are no
equations associated with these, since the two displacements are impeded by the
constraint. Finally, the rotations of node 113 in relation to the x- and -axes are
found at lines 569 and 570 of the system. This table is often called the vector ID
table, from the ID symbol associated with it in the SAP source.

8 The renumbering of the elements is performed by frontal solvers.
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NODE | OLD Tx Ty Tz Rx Ry Rz

113 1280 567 0 568 569 0 570

Table 2-1. Nodal degrees of freedom numbering

Now we can see that after renumbering it is possible to associate
biunivocally a line in the coefficient matrix to a component of unknown
displacement, that is, to a degree of freedom.

The vectors of known terms correspond to the nodal forces due to loads
applied directly at the nodes, as well as to distributed loads. There are as many
vectors of known terms as there are load cases. The part of the force due to
loads directly applied to the nodes can be constructed during this phase: if more
than one force is acting on the same degree of freedom in the same load case,
these are summed (in obedience to the law of superposition of forces). The part
of the nodal forces due to distributed loads is calculated and summed during the
next phase, that is, during assembly.

2.2.8 ASSEMBLY

Assembly is perhaps the most difficult phase to understand: in simplified
terms we might say that assembly is the procedure during which the coefficient
matrix of the system (global stiffuess matrix) is created, and which completes the
vectors of known terms due to distributed loads. In effect, if this is what
happens here, it is necessary to understand only why this is done. There are
various ways to illustrate what assembly means: we will use the static approach and
the energy approach. Both of these approaches will be further described in later
chapters, and here we will limit the discussion to a brief overview.

In the static approach, assembly is the procedure that calculates and sums,
node by node, the forces that act on the node itself due to the motion of other
nodes and to applied loads. The forces arrive at the node in question by means
of the elements connected to it: the forces due to the displacements of
connected nodes are called reactions; forces due to applied loads are called actions.
The single term K;; of the global stiffness matrix is equal to the force required in
the direction of the degree of freedom i due to the existence of a unitary value of
displacement of the degree of freedom j.° If the node associated with degree of
freedom "i" through the vector ID appertains to elements that are not connected

9 For example: if I rotate the end of a beam, what forces and couples have to be applied to the ends in order for
there not to be other displacements (either translations or rotations) other than those that I have applied?
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in any way to the node associated with degree of freedom j, then K = 0.1 This
case occurs quite frequently, and in fact matrix K is generally rich in null terms (a
sparse matrix). The sum of all the forces acting on degree of freedom i, due to the
movement of the nodes (that is, the sum of the reactions) is given by

R, =Y Kyuj,
J

where the sum is extended to all degrees of freedom of the structure (j=1, ).

Let £; be the sum of the actions on degree of freedom i. In order for equilibrium
to exist, the action has to be equal and opposite to the reaction, or in other
words:

and thus it is necessary to solve the system that has as unknowns the #
displacements uj

z:Kijuj =f,. [2-1]
j

-

In the energy approach the assembly is seen essentially as the procedure
that sums the contributions of each element to the elastic strain energy,!! and to
the load potentials (with the contribution of the distributed loads).

In effect, the strain energy of the entire structure is given by the sum of
the strain energy of the parts of which it is composed, and this simply on the
basis of the additive properties of integrals. Each of the contributions Z to the
total strain energy is expressed as a function of the vector of unknown nodal
displacements, in the guise of a quadratic form associated to a square matrix
whose order is equal to the total number of the degrees of freedom, or in other
wotds, of the type

z, =%uT K, u, 2-2]

where u is the vector of unknown nodal displacements, of # dimensions; ¢ the
generic element; and Ke the expanded stiffness matrix of the individual finite

10 What forces must be applied to the right brake of a bicycle to keep it in balance when the left brake has been
used? None, obviously.

11 Besides the theory of linear elasticity, it is always possible to use variational principles, by which it is possible
to generalise the ideas set out here.

24

Copyright © ICE Publishing, all rights reserved.



Overview

element. The reason why the strain energy of the individual finite element
depends on a matrix, as was expressed in the preceding equation, will be
explained later. If we accept eq. 2-2, the strain energy for the entire structure
becomes

Z:Z%UT-Ke ‘u E%UT K-u.

An analogous principle holds for the load potentials. In fact, summing the
contributions of each element, we can write

w=>u"f=u"-f.

Using the principle of minimum potential energy 11, where
[H=z-w

it can be seen that this principle is satistied when U satisfies the matricial
equation (that is, the system of algebraic equations)

K-u=f, [2-3]

where K is exactly the sum of the expanded stiffness matrices of the individual
elements.

Regardless of the way in which it is obtained, the system of equations 2-3
gives the vector of the unknown nodal displacements, with which, on the basis
of the astrological principle described at the beginning of this chapter, it is possible
to obtain the stresses and deformations within the elements.

Later we will return to the assembly in greater detail. Here it is sufficient
to say that the system 2-3, in both forms in which it has been written, is the
discretised expression of precise physical principles, and assembly constitutes
that system on the basis of rules that rely on those principles.

2.2.9 SOLUTION

Once the matrix of the system has been constituted and the vectors of
known terms completed with the effect of the distributed loads, a generic
program for calculation is used to solve the system, calculating as many vectors
of # unknowns as there are load conditions. Each of these vectors contains 7
values, representing the displacements of the nodes according to the 7 degrees of
freedom of the structure. Therefore, by the end of the solution process, how
much each node has moved in each load condition is known. The displacement
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is expressed in reference to a global system of coordinates, and is thus an
absolute displacement: the relative displacement of two nodes can easily be
obtained from two absolute displacements.

Later we will discuss solutions of sparse systems, symmetric systems, and
those with a large number of equations. Here we shall only say that the actual
solving phase can create problems of RAM and disk space that have been
addressed in many ways by the solvers now available. In some cases (and
frequently with some solvers) the solving phase is even faster than the successive
phase of stress recovery, so that by now it seem excessive to underline the difficuly
of this task: today there is little difference between solving a system of a
thousand equations and one of ten thousand, and the larger system is only
slightly more unwieldy.

If errors were made during the phase of assigning the constraints, these
will become evident, where this is possible,'? during the solving phase. This is the
situation where “something’s not working”, “the program is giving me some
strange messages”, and so on. Often the non-expert will find himself outside of
the solving program and not know why. Without digressing into the issue of the
“user-friendliness” of the software, as interesting as that is, we will only say that
when this happens, it is very often due to problems of a lack of constraints. In
order to make the problem explicit, it is necessary to assemble the global
stiffness matrix, because that is the only way to verify that it cannot be inverted,
and thus that the system has no solution.

When the solving phase is complete, the displacements are memorised on
disk, and the next phase, szress recovery, begins.

2.2.10 STRESS RECOVERY

Usually the expression stress recovery indicates the procedure that conducts
the nodal displacements to the stresses within elements. In a certain sense this
procedure can be seen as an assembly in reverse, a kind of disassembly, in that it
goes from general data proper to the entire structure to that proper to the
individual finite elements, which at this point are considered to be independent
of each other, small microcosms in their own right.

In stress recovery a decisive role is played by the astrological principle: after
the system has been solved, the displacements that determine what takes place
within the finite element are known: it is sufficient to apply the simplified rules
using these displacements in order to know, within the limits of the FEM, what

12 Bear in mind that errors in constraints are not always made explicit by an unexpected halt in the program: in
these cases only the skill of the engineer stands between erroneous results and their being used in practice.
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the stresses, strains and displacements of all of the points appertaining to the
element are.

Because the astrological  principle makes it possible to know the
displacements of the nodes of the element, the first thing that must be done is to
extract from the vector that gives the displacements of all the nodes of the
structure the smaller vector that gives the displacements of the nodes of the
individual element. Frequently, the astrological principle uses displacements
expressed according to a particular system of reference, the element’s system of
reference, or local system: therefore, once the vector that gives the displacements
of the nodes of the elements has been constructed, it must be transformed to

arrive at those displacements in the local system.

Sfarza diVon Mises - Scarti eliminati - - Faccia Visibile - Totali

000e+000 5.940e+000 1.1688e+001 1.782e+001 2.376e+001 2.970e+001 3.564e+001 4.158e+001 4.752e+001 5.346e+001 5.9402+00

Figure 2-12: Rendering of the Von Mises stress values on a plate clamped
on four sides with a central load (Sargon model, 10x10 element mesh).

Once the transformation has been accomplished, in order to know the
stresses within the element itself, it is only necessary to apply to the nodal
displacements of the element the simplified rules proper to them. Generally
speaking, the stresses are calculated at a predetermined number of points in the
element, which can more or less coincide with the nodes of the element. All of
these stresses are then memorised, element by element, and constitute the result
of stress recovery, as well as the large part of the final result as a whole.
Obviously, it doesn’t make sense to try to determine displacements or stresses
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outside of the element using the rules proper to the element itself and to its
nodal displacements: would you ever cast a horoscope for Tom using the
positions of Dick’s planets?

2.2.11 OUTPUT AND INTERPRETATION OF THE RESULTS

The output phase, automatically performed by the software program,
concludes the solution of & problem, but not the phase of analysis of #be
problem. Indeed, in output we arrive at the beginning of the most interesting
part of the problem.

Output is usually given in the form of two sets of files: ASCII and binary.
The results, that is, the displacements and stresses, can figure in both sets of
files, but generally the results in the ASCII file are unusable. This is mainly
because the results of a finite element analysis are only rarely the final results
desired, but even if this were the case, they would still be unusable because it is
not humanly possible to manage thousands and thousands of numbers organised
in huge tables efficiently. Often the desired result can be obtained indirectly from
the results of a finite element analysis, which must be in any case validated.

However, the ASCII file should be checked to make sure that there are no
“warnings” or other anomalies that might signal a problem during the course of
reading the input data, during assembly, or in the solution itself. Often the
diagnostics are small, easily managed ASCII files.

It can thus be seen that the most interesting results are those written in
the binary files, and this is because they can be further processed with ease, in
order to give them a graphic interpretation, and permit immediate access to
significant values. Today the phase of graphic rendering cannot be dispensed with.

In close relationship to the preceding is the very important step of checking
results, which provides us with a guarantee that the solution respects the
characteristics of the problem to be solved. It is thus necessary to: check the
deformation in qualitative as well as quantitative terms; check the reactions of
the constraints, which must be balanced according to the loads we want to
impose; check the progress and intensity of measured stresses, which must not
be contrary to the general rules (exceptions or special cases are always suspect),
and so forth, checking as much as possible.

The danger of errors is ever present, the fact that reliable precision
instruments are used does not guarantee that they are correctly used, or state of
the art. Very often the outcome of these checks is a return to step 5, but
sometimes it is necessary to go back to step 1. Of course, as more experience is
gained this happens less and less frequently.
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Figure 2-13: Verification of the deformation makes zones of large

deformation evident.
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3 ELASTICITY: SPECIAL
FORMULATIONS

3.1 INTRODUCTION

The analysis of the stresses and strains of a solid can be performed in accordance
with several theories that describe the behaviour of the material under the action
of the forces applied. Our theory of choice is that of linear elasticity, the fruit of
centuries of studies and research which described with increasing clarity what
takes place within a solid as a result of the application of external actions. It
continues to be the theory most widely used even today.

Within the limits of these pages it is not possible to provide a detailed
explanation of all the concepts employed by the theory of elasticity, and thus we
will briefly describe the concepts and conclusions, referring the reader to other
texts when more in-depth explanations are desired. Appendices I and II contain
a brief review and list of symbols used.

In general, the theory of elasticity refers to solids, that is, to three-dimensional
bodies that are generic in terms of shape and applied actions.

In order to describe completely what takes place as a result of the application of
forces either on the boundary (where the actions are known because they are
directly applied, and the displacements are unknown), on the volume, or on
both, it is necessary to know the displacements of each point of the solid as a
consequence of the application of the forces, and the stresses and strains at each
point of the solid. On the parts of the boundary where the displacements are
assigned (that is, where constraints are present), it is also necessary to know the
extent of the reactions exerted by the constraints of the structure.

Although this is far from a simple problem, it is one that has been solved, and
for which there are closed-form solution equations: the theory of elasticity has
been able to provide answers to all the questions and generate a set of coherent
equations to relate all the various unknown terms to each other.

Although the general solution does exist (see Appendix II), it does not lend itself
to each and every case. The presence of special conditions (which abound in
practice) makes it evident that the answer sought has important regularities that a
general kind of answer does not satisfy. The existence of these special cases has
made it possible to arrive at theories in which the solution is simplified, losing
some of its complexity.

Thus were born the theories of beams, plates, plane stress, plane strain and
others, which will be described briefly in the sections that follow. However, it
should be underlined (should there be any doubt) that these theories do not alter
the more general theory, but are instead specific to some special cases, and
introduce ulterior simplifying hypotheses. Such theories are extremely important
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because, with only rare exceptions, constructive elements possess some kind of
geometric property that, on the one hand, makes possible a simplification or

economy of construction and, on the other — fortunately — leads to a
simplification of the problem from a strictly analytical-mathematical point of
view.

At least summary knowledge of these theories is indispensible for the correct
application of the FEM. Also indispensible is a correct understanding of the
fundamental energy aspects of the problem of elasticity. The following sections
will provide a brief explanation of the theories as well as the fundamental energy
aspects, summarising the principal hypotheses.

3.2 THE ENERGY ASPECTS OF THE PROBLEM OF
ELASTICITY

The study of the state of stress and strain in a solid in equilibrium can be
performed in a particularly clear way by means of principles that make use of the
potential energy of loads and potential elastic energy (strain energy). Obviously,
the other great form of energy that appears when we deal with mechanics —
kinetic energy — does not appear when we deal with statics. Scientists of past
centuries used the term /s viva for kinetic energy, to indicate that it was a form of
enetgy in progress, so to speak. In contrast, potential energy is a kind of energy
stored in the form of a position or of a configurational variation: a weight placed
at a certain height, a spring shortened to half its length, and so on. The potential
energy of loads or elastic potential energy can be transformed into kinetic energy
(or other forms of energy) at any time, for example, by eliminating the
constraints or loads that establish the original configuration of equilibrium.

In the theory of elasticity in statics, all energy expended by the forces enters
into the body without dissipation or the appearance of other forms of energy.
The elastic strain energy stored in a solid depends solely on its state of stress and
strain, and since the strain and the stress can be calculated starting from the
displacements, the elastic strain energy depends only on the deformed
configuration assumed by the body, it is a so-called state function.

When an elastic body is subjected to forces, those forces perform a certain
quantity of work, which is then stored in the body in the form of strain energy.
In order to exclude the appearance of kinetic energy, it is hypothesised that the
loads are applied guasi-statically, that is, so slowly that dynamic effects are
negligible. Naturally, if final load P is to be applied, it cannot be applied all at
once, because this would heighten the dynamic effects; the load has to be
applied through infinite states of equilibrium, very slowly, so that it increases
gradually. Thus during the course of applying a load up to P, #he force is not constant
but varies.
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If instead load P is applied all at once, the system would begin to oscillate with
respect to the equilibrium configuration, and these oscillations — in the absence
of dissipation — would continue infinitely. In real systems the oscillations
attenuate, and the equilibrium configuration that is finally reached is the same
that would have been reached if the process of loading had been quasi-static.

F

[
X

WM;

x=F/k

Figure 3-1: Spring of rigidity K with applied force F.

In order to fix these ideas, let’s look at a simple spring of rigidity 4, with a force
F applied to mass m. Let x be the displacement of the end of the spring. The
strain energy of the spring is Z=kx*/2, while the potential of force IF (presumed
constant and applied all at once) is equal to —Ix, and both energies are state
functions. At first glance one might think to set the work performed by force F
(W=Fx) equal to the stored strain energy, setting

W=7 [3-1]
Fx = kx*/2.
In fact, this reasoning is erroneous, because #f force I remains constant the load

process is not quasi-static and there has to be kinetic energy C. That is, there
must always be

W=Z7+C [3-2]
Fx = kx*/2+ mv?/2.

The system begins to oscillate with the centre in the future equilibrium
configuration, equation 3-2 is satisfied at every instant, there is a continuous
exchange between the various forms of energy, and in theory the oscillations
would continue indefinitely.

In reality, the kinetic energy dissipates, and finally the spring stops in the final
equilibrium configuration, from which it no longer moves. Why? Because in this
configuration, given a very small displacement of quantity dx, the variation of
work of the forces is exactly compensated for by the variation in strain energy
and there is no room for kinetic energy, which must be null in order for there to be
equilibrium.
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(@D

Figure 3-2: Oscillations about the future equilibrium configuration.

If we take the variation of energy' with the variation of the configuration
(that is, by x), equation 3-2 becomes

dW=dZ+dC,
but if dC must be null, we necessarily obtain that
dW=dZ
or, denoting as Z-W the #tal potential energy I1
d(Z-W)=dII=0.  [3-3]

Equation 3-3 represents the principle of the stationarity of total potential energy:
in the equilibrium configuration the first variation of total potential energy that is obtained by
varying the equilibrinm configuration itself is null. Note that in the case in which the
configuration is the function of more than one variable (as happens in a solid),
the configurational variation can take place in an infinity of different ways.
Consequently, we must impose that equation 3-3 is valid for all the possible
confignrational variations, not just for some. In fact, if there were to exist some
configurational variations such to permit the appearance of kinetic energy in
violation of equation 3-3, the initial configuration could not be one of
equilibrium. Thus, a system is in equilibrium in a given configuration if and only
if the variation of total potential energy is null for every possible configurational
variation. It should be noted that in the presence of constraints, the generic
configurational variation has to respect the existing constraints.

Let’s return to the example of the spring. The condition 3-3 occurs only when x
assumes a particular value such that

dW=Fdx=dZ = kxdx
for every possible dx, that is,
(F-kx)dx = 0,

1 For simplicity’s sake we have used the symbol for the differential “d” and not that for variation “8”.
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for every possible dx
x = F/k.

This is the only configuration with respect to which a small variation produces
an identical variation of the work of the loads and of the strain energy.

It can be seen that, by using the conservation of energy, it is easy to obtain the
velocity with which mass m moves through the configuration that will become
that of equilibrium when all of the kinetic energy has dissipated. If v is the
velocity of the mass, the kinetic energy that the mass has when it moves through
the equilibrium configuraton x=F/k, after having applied all at once the
constant force F, is

C=mv’/2=W(E/k) - ZE/K) = (F*/k) — kF*/ 2K*) = (F*/ 2 K)

and thus
F* F |m
=1—=—1—:F 0
v km  m\k /(me)

where v is the velocity of the mass, and ® the angular frequency (rad/sec) of the
oscillatory motion.

L J
Let’s see now what happens if the loading process is quasi-static. If the loading
process is quasi-static the final quantity work done by the forces is the sum of all
the elementary quantities of work done by force F, which is not constant during
the loading process, but varies linearly with x, according to Hooke’s law. Let’s
suppose that F is proportional to x by the unknown constant “a”:
F=ax.
The total work is the integral sum of all the elementary quantities of work Fdx:
W= [F(x)dx= Jaxdx= ax?/2.
Setting W=7 (which we can now do because there is no kinetic energy, since W
was evaluated in the hypothesis of a quasi-static loading process), we obtain

ax’/2=kx"/2
and thus
a=k
F=kx
x=F/k.
This is what we had found previously using the real loading process.
L J

Summarising, we have found a particularly elegant way of imposing equilibrium:
writing the expression of total potential energy and specifying that this total
potential energy does not change when the configuration is arbitrarily varied in
ways that are infinitely small and compatible with the constraints. There exists a
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unique configuration for the given problem that satisfies this condition, and that
is the desired equilibrium configuration.

In the general case, the elastic strain energy is obtained by summing the strain
energies of all the infinitesimal volumes dV of which it is composed. At a generic
point P(x, y, z) where there are present stresses O and strains €, the strain energy

dZ is

dz=0.50"edV
(see Appendix I for the notation and Appendix II for a review of the theory of
elasticity).

The total strain energy is thus
7=[d7=0.5]c"edV.

3.3 TECHNICAL BEAM THEORY

3.3.1 INTRODUCTION, REVIEW OF PROPERTIES OF PLANE AREAS

Let’s assume a rectilinear right-angle prism obtained by rigidly translating a
generic section Q in the direction normal to the plane of the section itself. Given
an axis 7', and s the distance of a generic point on the section from axis 7', the
[frst moment of area of section Q with respect to axis ' is defined by the quantity

S, = |sda,

which is essentially the sum of all the infinitesimal areas of the section times the
distances of these areas from the axis in question.

<"\

.

Figure 3-3: physical interpretation of the first moment of area

The first moment of area can be easily interpreted geometrically. If a heavy plate
of a shape identical to that of section Q is placed on a horizontal plane, it can be
seen that moment M, of the weight forces of the plate with respect to axis 7' is
given by
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My;=¢p S

where t is the thickness of the plate and p the weight density of the material
used. Among all the possible parallel axes there exists one particular axis r with
respect to which the static moment of section Q is null.

If a different direction is chosen (for example, the direction perpendicular
to the previous one) it will be found that there exists one and only one axis “s”
for which the static moment is null. The common point G of axis r and axis s is
called the centroid of the section (when suspended by a thread that passes through
this point the plate will not rotate).

When the section is placed with reference to a pair of orthogonal centroidal
Cartesian axes (1, s), the following magnitudes, called moments of inertia, can be

defined:
I = jssz
I = Jrsz
I, = |rsdA.

The first two of these are the moments of inertia of the section with
respect to axis r and axis s respectively. The third is called the mixed second moment
of area of the section with respect to axes (t, s). Generally, the mixed second moment of
area of the section is non-null. However, if axes (r, s), are rotated by a suitable angle
of rotation @, it is always possible to find a pair of centroidal Cartesian axes (y, z)
for which the mixed second moment of area is null. These axes are called
principal axes and are characterised by the property of rendering respectively
minimum and maximum the moment of inertia of the section with respect to
any centroidal axis: graphically representing the variation of the moments of
inertia with the variation of the placement of the axes with respect to which they
are calculated gives rise to an ellipse, the axes of which correspond to the
principal axes of the section.

It can be easily proven that, given I, I, I, angle & by which the pair of
axes (1, s) must be rotated in order to find the pair of axes (y, z) is given by:

1 to( 21, )
— —arctg(—=—
o= 8 I -1

If there is an axis of symmetry in a section, this is also a principal axis, and
the other principal axis will be simply an axis perpendicular to that and passing
through the barycentre of the section. The formulas of the technical theory of beams are
valid using the principal axes system of coordinates, and are not valid (unless appropriate
modifications are made) if the axes of reference are not the principal axes. This
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is an important point and must be borne in mind: if a section is L-shaped, the
principal axes are 7ot parallel to the sides.

Figure 3-4: Finding the principal axes.

The locus of the points G for all the sections that make up the prism will be
called the axis /ine or, more briefly, the axis.

Various sub-theories (also called Saint-Venant cases) converge in beam theory,
each of which deals with particular conditions of stress that the prism is subject
to.

3.3.2 ELONGATION/SHORTENING

One of the possible conditions of stress occurs when the prism is loaded with
forces in the same direction as its axis, with resultants lying on the axis itself. In
this case the prism is subject to elongation or shortening, and the prism’s axis —
after deformation — remains rectilinear. A classic example of this is a bar
suspended by one end.

Elongation is the simplest case, and we will examine it in detail because it allows
us to demonstrate vatious things that will be useful later. The formal steps of this
simple example can be generalised to much more complicated cases, and share a
kind of common structure with more complex examples (for which we will omit
the steps), and therefore a thorough understanding is worth the effort.

Let’s presume that the sections of the prism are translated parallel to its axis. If
this is true, then all the points of the section that have abscissa x are subject to
the same displacement u in the direction of the axis of the prism, and thus all the
points of a section have the same strain and the same stress.

If u is equal for all the points of the same section of the prism, then it
depends only on the x-coordinate, and not on the y- or z-coordinate. In this case
for the displacement function u(x, y, z), we have:

u(x, y, z) = u(x).
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Figure 3-5: Kinematic model of elongation/shortening.

We can therefore write the fundamental equations of the theory of elasticity,
modified to deal with the particular set of displacements taken into account
(displacement field). Let’s hypothesise about the the displacement field and see what
happens. For the sake of rigour it is necessary to add hypotheses about the
displacements v(x, y, z) and w(x, y, z). We can see that to the following
hypotheses

v(x,y,z) = -Vyu'

w(X,y, z) = -Vzu/,
where V is Poisson’s ratio, there corresponds the fact that

6,=0,=0.

In essence, the fibres of the prism are under normal stress only in the direction
of the prism’s axis, and to this force correspond free transversal contractions (or
dilatations) which are responsible for displacements v and w. Since these
transversal contractions are, as we said, free, the stresses in the direction normal to the

axis of the prism are identically null. Analogously, it can be seen that the shear strains
are everywhere null, and thus the shear stresses are null.

TX}‘ :Ty'z :TZX = O

Let’s continue taking into consideration only the normal stresses in the direction
of the prism.

Congruence relation (relationship between strains and displacements):

e=du/dx=u'. [3-4]
Constitutive relation (relationship between stresses and strains):
o=Eke. [3-5]
We will use the term axial force to refer to the quantity N(x) defined thus:
N(x) =JodA=GA. [3-6]
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We shouldn’t be put off by this integration. We have written others and will
write more, so it is worthwhile to look at it more closely. A normal tension O is
applied to the individual infinitesimal element of area of section dA. The
consequent infinitesimal force dF is given by the product of the infinitesimal area
dA and the normal tension acting on it: dF=0dA. If we now want to know the
total sum of all these infinitesimal forces — that is, if we want to know the value
of the resultant — we must add all of the infinite terms that correspond to all of
the infinite points of the section. We need only place the “S” symbol for sum,
stretched into the symbol for integral sum “P in front of the products.

[aF=JodA
The sum of all these infinite infinitesimal forces is a finite value? called ‘“axial

force”, symbolised by N. The symbol “=" indicates that quantity fodA defines the
term “axial force”.

It should be noted that in the previous formula tension G can been placed before
the integral sign because it depends not on y or z (and thus not on the various
points of the section), but only on x (as does the € from which it derives). In the
same way as when we factor out a value common to all terms in a sum,

(act+bct+dctec) = clat+b+d+e),

we can place outside the integral a term that does not change in the various
points that contribute to the integral sum that the integral represents:

JodA=cldA

The introduction of this new term N, axial force, is useful because it defines an
aggregate of forces with a particular significance in terms of statics. This is also
the case in the theories of membranes and plates. Instead of keeping the stresses
in the point we keep an appropriate sum, either simple or weighted, of the
stresses that have a particular significance in the context of the theory. It is like
substituting the individual invoices of individual businesses with the total sum
that represents gross national product. Here we evaluate the total effects on the
section, rather than the effects on individual points. The quantities introduced by
this procedure are called gemeralised stresses (and for the corresponding strains,
generalised strains) indicating that the concepts that are valid for a single point have
been generalised for a set of points. For example, the generalised relationship
between stresses and strains in this case is:

N=EAu’ 3-7]

(note that here the generalised strain coincides with the point strain).

2 As you might guess, if we add a finite number of infinitesimal terms we obtain another infinitesimal quantity.
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If the generic segment of a bar is subjected to a distributed axial load (that is, a
distributed load in the direction of the axis of the element) of intensity p(x), the
resulting equilibrium is:

N+p(x)dx+N+dN)=0,
which becomes

dN/dx=-p(x). [3-8]

Nx) p) N(E) + dIN

— b

By combining the three equations for equilibrium, constitution, and congruence
we arrive at the solution equation in which the displacement u(x) is unknown:
EAu"=-p(x). [3-9]

As you can see, the solution to the problem relates the second derivative of the
unknown displacement u to the given distributed load. This kind of equation, in
which the unknown is a function (rather than one or more numbers) and in which
the derivatives of the function appear, is called a differential equation. This is a very
simple differential equation, inasmuch as the derivatives appear in respect to a
single variable rather than to several.

In our equation the unknown is function u(x), that is, the displacement
undergone by the various sections of the element. When u(x) is known, by
means of the relationships between displacements and strains (congruence), we
can evaluate the strain and from that the stress, by means of the relationship
between strains and stresses (an example is given below). It is very important to
understand this series of logical and mathematical steps because this is the series
of steps perfomed by the FEM, at least in its most widely used formulation (the
displacement formulation, that is, the one in which the displacements are the
primary unknowns). It is actually possible to solve the equations keeping the
forces as unknowns, but this is not the most widely-used formulation.

Example:

Given a bar subject to its weight per unit of length p and suspended by one end,
what is the total elongation? What is the tension at the joint section?
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p=pA

—
[ —

Tum=-

U

I

ks

Successively integrating the differential solution equation, we get
EAu"=-p
EAu'= -px+c,
EAu = —px2/2+x-cl+c2.
Setting x=0, u=0 (the displacement is null because we are at the point of
suspension) and x=L, €=0 (the strain is null because it is the free end), we have
¢,=pL
c,=0
EAu = —pXZ/Z-‘r—pLX
EAu'=EAg=-px+pL
o=p(L-x)/A.
Therefore,
u(l) = pL’/(2EA)
o(0)=pL/A.

For the sake of completeness, let’s look at the problem from the point of view
of energy, applying the principle of stationarity of total potential energy
discussed in section 3.2. We will take some rather difficult steps, but bear in
mind that these are mathematical steps related to integral calculus. Even if the
steps themselves are not completely clear, the general procedure should be.

The strain energy Z is obtained by taking the integral sum of all the

contributions (1/2)0€ multiplied by the infinitesimal volume dV on which they
act:

Z=Y:loedV= 14 [[Ee(dAdx)= 2 JEAudx. [3-10]
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Note that taking the sum of all the volumes is equivalent to taking the sum of
the infinitesimal areas at all infinitesimal “heights” dx, and the sum of all the
“dx” for which this takes place (two sums, two integral signs). The expression
for strain energy is first written in the most generic form, and this used in the
particular situation under examination, for which the strain € is equal to u’. The
final expression is the generalised strain energy.

It can be seen in the last step that not all quantities vary from point to point on
the section, and thus one of the two sums — that with respect to dA — is equal to
A, inasmuch as the other terms can be placed outside the integral sign (factored
out).

With only a few substitutions, strain energy Z can also be written equivalently in
a generalised sense thus:

Z="2J(N?/EA)dx. [3-11]
The infinitesimal quantity of work performed by the axial loads dW is obtained
by multiplying the infinitesimal force pdx by the displacement u(x):
dW=p(x)u(x)dx.

The work of the loads is easily obtained by taking the sum of all the segments
along dx:

W= p(x)ux)dx.

Note that the solution equation can also be found by the stationarity of total
potential energy. In fact, it turns out that

I=7Z-W= %JoedV-[puds=%[[Ee dAdx)-[pudx =
=B A w?dx - Ip u dx.
If u(x) undergoes an infinitesimal vatiation du(x), the new configuration is
obtained with a total displacement u(x)+0u(x). Making IT stationary, we get
SIM=TIT(u+du)-IT(w)=0.
1f we perform the previous calculation we get
[EAu &udx - Ipﬁudxz 0.
Partially integrating the first integral, and after a few steps, we get
[EAduul"-[EAduu, - I(E A u" + p) Ou dx=0.

The value inside the first brackets is null because in x=L, being the free end,
u'=0; the value inside the second brackets is null because in order to respect the
constraints in x=0, there must always be du=0. In order for the integral for all
possible values of du to be null, the parentheses at all points of the rod must be

null. If we imagine that du is null everywhere except in a generic point Q, one
possible choice has to be in point Q
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EAu"+p=0
But Q can be any point whatsoever, and thus in all points the previous equation
must be true and, moreover, equal to equation 3-9 found previously by other
means.
L J

As you can see, applying the principle of stationarity of total potential energy
leads directly to writing the conditions for equilibrium. In this example the
mathematical steps may seem very complex. In actual practice, in the application
of the FEM things are much simplified because functions u(x) and Ou(x)
generally become simple polynomials.

We have :

1. written the elastic strain energy Z as a function of the unknown
displacement u;

2. written the work W performed by the loads as a function of the unknown
displacement u;

3. annulled the first variation of the total potential energy II=Z-W for all
possible variations of the configuration u(x);

4. arrived at the equations (in this case differential, but in future cases
algebraic) that are used to find the unknown displacements directly;

5. calculated the strains by means of the displacements (see example);

calculated the stresses by means of the strains, thanks to the constitutive
relation.

We will take steps that are very similar to these when we solve problems using
the FEM. The difference is that we will make further, significant simplifying
hypotheses (#he astrological prinicple).

3.3.3 BENDING AND SHEAR (EULER-BERNOULLI)

Beam theory refers to slender, right-angle, rectilinear prisms (as we shall see, with
a length that is at least 10 to 15 times greater than the maximum transversal
dimension of the plane figure which, when translated, gives rise to the prism). If
the solid being examined for the stress and strain has these characteristics, and if
the answer is examined in areas that are sufficiently far from those in which the
forces are directly applied,’ it will be found that the results predicted by the
theory closely agree with those observed and verified by experiment. If the
length of the prism is increased, the sections remaining the same, the agreement

3 According to Saint-Venant’s principle [1], the effect related to distribution of forces applied to the two ends of
the prism, given equal resultants, rapidly become negligible as the distance from the extreme area where the
forces are applied increases. Further, in zones that are sufficiently far from the base of the prism, the
distribution is independent of the particular way in which the resultants are applied.
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of theory with experimental data also increases. The theory disregards problems
tied to the diffusion of the stresses in areas close to the point where the loads are

applied. The theory only takes into account stresses O in the direction of the axis of the prism.
Strictly speaking, the theory considers — as we shall see — shear stresses to be

null.

e

¥

u v o=v
_____E_)}{ =y

Figure 3-6: Notation and kinematic model for bending along two principle
axes.

The whole theory derives from the hypothesis that zhe sections undergoing
deformation rotate remaining planar and perpendicular to the axis line in their deformed
position. The prism will be referred to a system of centroidal axes (that is, a
system of axes whose origin coincides with the barycentre) in which the x-axis
coincides with the axis of the prism, and the other axes of the section, y and 2, will be
the principal ones.
Given u(x, y, 2), v(x, y, 2), and w(x, y, z) as the unknown displacments of a
generic point P with coordinates (x, y, z), we make the following hypotheses
about the displacements (let’s imagine that bending takes place only about the z-
axis, and thus that the movements of the points on the axis take place in
direction z):
u(x, ¥, 2) = yW(x)

v(x, v, z) =v(x)

w(x, v, z) = 0.
Imagining the displacements to be very small (and thus that angle  can be fused
with its tangent), and recalling that the sections must remain perpendicular to the
axis line in its deformed position, we have

Y=(tgy)=v".
Thus:
u(x,y, z) = -yv'
v(x, 7, z) = v(x) [3-12]
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w(x,y,z) = 0.

The first hypothesis, regarding u(x, y, z), follows from that of maintaining the
sections planar and perpendicular to the axis line. The third hypothesis,
regarding v, means admitting that all the points of the same section are displaced
along the y direction in the same way (v is only a function of x) and implies that
strain € is null. Strictly speaking, these hypotheses about the displacement field
(including the second one) lead to normal stresses G, and G, that are not equal to
zeto (mote precisely, they would be equal to Vo, /(1-V)), but these stresses are
not dealt with. In order for there to be null stresses the displacements w cannot
be null, and the displacements v must also depend on y. In fact, the fibres in
tension or compression that are left free to shrink transversally (so as not to give
rise to stresses O, and O,) determine a certain quantity of displacement v(y) and
w(z). These displacements are not dealt with. Therefore, it is not possible to use the
technical theory of beams to obtain normal stresses that are not in the direction of the axis of
the prism. This should not be forgotten here, or during the analysis of finite
elements either.

In other words, we have the following approximations of the normal
stresses:

O, = 0, (%, y)=0=Ee=Eu'=—Eyv"
c,=0
c,=0.
The shear stresses are subject to significant simplifying hypotheses as well. In

fact, in coherence, the kinematic hypotheses made lead to the annulment of the
shear and shear stresses

T, =0
T,=0
T, = 0.

In dealing with the beam the generalised stresses of bending moment M and shear T
are introduced in the following way (note that we are dealing with a definition):

M=M,(x)=loydA
T=T, (x)=hdA.

If a uniformly distributed load q(x) in the direction of y acts on the beam, we
have the following indefinite equations of equilibrium

dT/dx = -q(x)
dM/dx=T [3-13]
&M/ dx*=-q(x).
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The first is equilibrium in translation, the second equilibrium in rotation. The
third is a restatement of the second using the first.

The generalised strain is given by the curvature of the axis line C(x), which, if the
displacements are small, can be approximated by the second derivation of the
curve that represents the axis line in the deformed position, w(x), called the elastic
line.

C=v".
The relationship between stresses and strains is particularised in the following
way, with I, the moment of inertia of the section with respect to the principal
axis z
M,=-ELC=-ELv". [3-14]

This result is obtained simply by applying the definition of bending moment,
substituting the expression found for the stress O, and recalling the definition of
the moment of inertia about the y-axis. The negative sign “-” is due to the fact

that a bending moment assumed to be positive generates a downwards rather
than upwards concavity, given the choice made as to the axes’ positive direction.

If we were to calculate the value of the moment M, we would find an identically
null value, thanks to the fact that the system of reference used is the principal
one (I, =0). In fact,

M, =lozdA=-Ev"lyzdA=-Fv"I,=0.
The differential equation that must be satisfied is:
Elv'Y - qx) = 0, [3-15]

that is, a differential equation in which the fourth derivative of the elastic line
v(x) appears. This equation can be found simply by substituting the expression 3-
14 found for bending moment in the third equation 3-13.

Differential equation 3-15, called the elastic line equation, tells us that the function
that gives the deformation of the axis line of a rectilinear beam has significant
regularities, which we can briefly summarise:

® In segments that are without distributed loads, v is in the form of a cubic
function;

® In the segments where distributed load is constant, v is in the form of a
quartic function;

® In the segments where the distributed load is linear, v is in the form of a
quintic function.
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v is a cubic function
(v=ax’+bx*+cx+d)

v is a quartic function
e (v=ax*+bx’+cx’+dx+e)

‘ v is given by two cubic functions

‘ ‘ v is given by three cubic functions

v is a quintic function

—T T T [ ] (v=ax’+bx*+cex’+dx*+ex+)
v is given by a cubic function, a
o T 1 | 8 quintic function, and another cubic
function

Table 3-1: Examples of beams and their relative elastic lines.

The strain energy of a segment of a beam is written
7 =(1/2) MCdx=(1/2) [EI v"dx.
In fact, if we appy the usual rule that gives the strain energy and we write
7= (1/2) loedv=(1/2)E[’dV,
and substitute the expression found for €, we obtain
dz= (1/2Ek*dV=(1/2)E[ v")* dx (fy*dA)=(1/2)E1, [y"*dx.
It should be noted that the strain energy related to shear does not appear. The
work performed by the distributed load is
dW=q(x) v(x) dx,
while the total potential energy for a finite segment of a beam, summing the
various infinitesimal contributions, becomes

I1=(1/2) JEL v"dx - [qv dx. [3-16]

In what we have just discussed it should be noted that the shear has appeared
only in the equilibrium equation. In effect, the intial hypotheses about the
displacement field would lead to considering the shear stress on the section to be
null, and thus shear to be null as well. To be precise, the hypothesis that the

sections remain perpendicular to the axis line means that the value of strain Y, and
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thus of stress T, are identically null.* Actually, the equilibrium equation M'=T tells
us that when the moment varies along the element there necessarily has to be
shear, and consequently shear stresses. The error is one of the consequences of
the arbitrary hypotheses made about the displacement field. In the technical
theory of beams the shear is evaluated by means of the equilibrium conditions,
when the distribution of the bending moment is known.

3.3.4 BENDING AND SHEAR (TIMOSHENKO)

To get around the problems inherent in the Euler-Bernoulli beam theory, while
at the same time maintaining a theory that is easy to use, some cotrections have
been made to the intial hypotheses. The hypothesis that the sections rotate while
remaining planar is kept, but the hypothesis that the section remains
perpendicular to the axis line in the deformed position is discarded. This leads us
to write the following displacement field:

u(X’ Y, Z) = ‘Y\V
v(x, ¥, z) = v(x) [3-17]
y=v-B(x)

where B(x) is an additional angle that moves the section from the normal to the
axis line. This angle is made only depending on x, and thus is supposed to be
constant for all the points of the section (an obvious consequence of the
hypothesis that the sections remain planar).

The expressions for the two strains € and 7y are found using the definitions:

e=u,=-y(v"-B)
’Y:u’\'+V’X: u’\+v,:B(X) °

Note that the stress T is considered to be constant on the section (inasmuch as 'y
does not depend on either y or z).
If we apply the definition of T and the relationship between stress and strain, we
would get

Tx)=GAB()
but, in order to take into account the fact that the distribution of shear stresses is

actually not constant, we add the shear factor ), which makes it possible to
evaluate a mean value in the sense of energy (that is, the value that gives rise to a
strain energy equal to that which we would have taking into account the
distribution of shear stresses). Essentially, if Z is the strain energy associated with
the “exact” shear, which takes into account the distribution of the stresses, and

41t is sufficient to write Yy=u,+v,= -W+ v,x and to remember that if the sections are perpendicular to the axis
line Y=+v,: from y=0 it turns out that T=0.
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Z* that predicted by these formulas, we set the corrective factor ¥, called the
shear factor, such that
Z=Y7L*.
As a consequence, after a few steps (not shown here), we obtain:
TE)=GABX)/%
ot briefly, with the introduction of the shear area A*=A/Y,
T)=GA*B(x). [3-18]
This is the generalised relationship between stresses and strains that is added to

that of bending.
There are tables available that give the values for the shear factor in function of
the various section shapes (see, for instance [Zienkiewicz and Taylor 1989]).
Table 3-2 summarises the values of the shear factor for some section typologies.
The relationship between bending stress and bending strain has to be modified
thus:

M(x)= -EIy'=EI(B"-v") [3-19]
(we need only apply the definition of bending moment).

In essence, there appears a new unknown, the function B(x). Substituting the
expressions for the generalised stresses found in the indefinite equilibrium
conditions, we find the equations that solve the problem:

GA*B'=q(x)
[3-20]
EIB"")=-q().
Section Shear factor )
Rectangular 1.2
Solid circular 1.11
Hollow circular, thin section 2
1. Shear parallel to the web A/Ht,
I. Shear parallel to the flanges | (3/5)(A/Bt)

A, area of the section;
H total height;
B, flange width;
tyweb thickness;
t, flange thickness.

Table 3-2: Shear factor values.
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The problem is obviously a complicated one. We can simplify it by hypothesising
that there are no distributed loads q(x). In this case the first of the two previous
equations tells us that § must be constant as x is varied:

B(x)=constant.

The second equation then becomes the known equation of the elastic line when
there are no distributed loads:

v'V=0,
which has a cubic equation as its solution. It would appear that nothing has
changed with respect to the Euler-Bernoulli beam, but in reality when we set

conditions on the rotations of the faces, we must set them on W, not on v'" as before.
This leads to differences in the calculation of the forces that are precisely the
approximate solution we are looking for.

Let’s consider, for example, a simple cantilever beam with a concentrated load at
the end (pointing upwards). The solution for v is a cubic equation, thus

v=ax’+bx*+cx+d
v'=3ax’+2bx+c.
We set:
v(0) =0 — d=0
v (0)=0 - =B
Now recall that
M=Px — PL = -EIv" = -EI(Gax+2b)
that is,
PL-Px=EIv"=EI(6ax+2b).
We find, making similar monomials equal,
b=PL/2EI
a=-P/6EI
Since T=P, we have further
T=P=GAB
B=P/GA".
The coefficients a, b, ¢, and d being by now known, we evaluate the
displacement at the end f=v(L)
f = -PL’/(6EIl) + PL’/(2EI) + PL/(GA*) = [PL’/(3EI)] + PL/(GA*) =
= [PL’/(BED)] [1 + 3E1/(GA* 17)].
The term [1+3EI/(GA* L?)] represents the factor by which we multiply the

displacement that we have found with the theory that excludes shear, in order to
arrive at the predicted displacement of the more complete theory. The term
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3EI/[GA* 1]
is thus the correction. For the sake of brevity we will call it c. If we set I=kAh?,
where h is the total height of the section, A its area, and k a parametre equal to,
for example, 1/12 for the rectangular section and 1/16 for the circular section,
the factor in question becomes

c=3Exkh*/(GL?).
Since it turns out that E/G= 2(1+V), where V is Poisson’s ratio, we again have

c=6 (1+v) x k (h/L)%
Now let’s look at the value of c according to different types of section and
different relationships L/h, presuming that steel is useds (v=0.3).

From table 3-3 it is possible to extrapolate the engineering values for the
percentage differences between the values of the simplified theory and those of
the theory that includes shear. These appear in the table 3-4.

If we had performed exact calculations for beams supported at both ends with a
distributed load we would have found differences that were 2-3 times greater.

As you can see, it is clear that if the beam is sufficiently shallow the error that
results when strain energy is neglected is acceptable. In the case of hyperstatic
beams, errors of a similar order of magnitude are found in the components of
stress, with values varying in function of the constraints, of the point along the
beam, and of the individual components of stress. In this case we need only point ont
that use of the Euler-Bernoulli beam theory used for prisms that are not sufficiently shallow
will lead to errors that can be quite significant. Further, when L/h tends to approach 4,
3 or less, then Timoshenko’s theory cannot be applied either, inasmuch as the
kinematic hypothesis upon which it is based is no longer valid.

Section L/h=5 L/h=10 L/h=20 L/h=30
Rectangular 0.03120 0.00780 0.00195 0.00087

Solid circular 0.02167 0.00542 0.00135 0.00060
Hollow circular(D/t=30) 0.078 0.01950 0.00487 0.00217
IPE300 0.13616 0.03404 0.00851 0.00378
HEA300 0.25680 0.06420 0.01605 0.00713
HEB300 0.26426 0.06606 0.01652 0.00734
HEM300 0.22391 0.05597 0.01399 0.00622

Table 3-3 Percentage differences between the displacement values
predicted by simplified theory and those predicted by the theory including
shear

5 Given that V cannot exceed 0.5, values generally close to these are obtained with other materials as well.
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Section L/h=5 L/h=10 L/h=20 L/h=30

Rectangular l 3.1% 0.8% 0.2% <0.1%

Solid circular . 2.2% 0.5% 0.1% <0.1%
Hollow circular (D/t=30) O 7.8% 1.9% 0.5% 0.2%
IPE300 I 13.6% 3.4% 0.9% 0.4%
HEA300 I 25.7% 6.4% 1.6% 0.7%
HEB300 I 26.4% 6.6% 1.7% 0.7%
HEM300 I 22.4% 5.6% 1.4% 0.6%

Table 3-4: Differences in bending between shallow beam and deep beams,
end-loaded cantilever.

3.3.5 TORSION

For torsion as well it is possible to arrive at simplified results by beginning with a
set of reasonable hypotheses about the way that points on the section move.

Let’s imagine that the sections rotate by an angle that varies linearly with the
distance from the end of the prism (and thus linearly with x, that is, that
“angle”= 0'x with 8" a constant), and that the points of the section move in the
direction of the axis of the prism independent of the point on the section, but

not independent of x (free and constant warping, uniform torsion, fig. 3-7).

\ 0% (5, )

A

Y 2

e

Figure 3-7: Notation and kinematic model for torsion.

These hypotheses can be written
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u(x, y, 2) = u(y, z) = 0" f(y, 2)
V(X V, 2)= v(x, 2) = -0'xz [3-21]
w(x, y, 2)=w(x, y) = 0'xy.
From these hypotheses, applying the congruency relations, we deduce the strains:
e,~¢,=¢,=0
1,=0 (£,7)
Y.=0" (£,+y)
Y,,=0.
Thus, applying the constitutive relatioris, we deduce the stresses
6,=6,=6,=0
1,=GO (f,-2)
T,=GO (£, +y)
T, =0.

Recalling the indefinite equilibrium equation, and admitting null volume force,
there must be (cfr. Appendix II)

Txy,y + sz,z = 0

and thus
f .20,

Further, for global equilibrium, the sum of all the contributions that the shear
stresses make to the torsional moment has to be equal to the applied torsional

moment, and thus the elementary forces T dA and T dA multiplied by the

respective lever arms “y” and “2” and summed at all the points must give the
applied torsional moment
M= f(—ztnyry*cXZ) dA.
Substituting the expressions of T and T,, in the previous equation we find
M=GO" (I +[(-zf +yf )dA).
Having defined the moment of polar inertia thus:
L=l +2)dA=1,+1,
if we now define the moment of torsional inertia 1, as the quantity
I, =L+ J(2f +yf,)dA

we can write

M=GL#", [3-22]
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which is the relationship that relates generalised stresses and strains. The

proportionality constant 6 is called the angle of twist per unit length and can be
measured as a derivative of the angle of rotation of the section about the axis of
the prism, with respect to the x coordinate:

0'=d0/dx=9".
From the condition for indefinite equilibrium of the beam segment subject to
distributed torsional moment per unit length m_

dM,+m dx=0
it can be seen that when there is no distributed torsional moment we must have
M,'=0
and thus for equation 3-22
0"=0,

which implies a linear variation for 0, while 8'=0" is constant.

It should be noted that the moment of torsional inertia is a quantity proper to
the geometry of the section, inasmuch as it can be calculated beginning with the
moment of polar inertia and from the function f(y,z) that has to satisty the
conditions on the domain. In the case of a solid circular section, the moment of
torsional inertia coincides with the moment of polar inertia. This is not the case
with other types of section.

Table 3-5 gives the values for I, for some of the principal sectional shapes
currently used.

This can lead us to the known stress values as well as to the expression of the
warping function f(y,z). Various theories that further simplify the problem have
been developed according to the shape of the section, arriving at the formulas
that are widely used in engineering practice. For hollow, closed profiles with thin
walls the well-known formula of Bredt is used

M

e 13

205

where s is the thickness of the profile (and can also vary) and € the area
enclosed by the median line of the profile: the shear stress is understood as being
tangential to the median line. For profiles created by one or more elongated
rectangles, the shear stress is obtained from

2M,
T= z
1

t

with the presumption that the elongated rectangle in question is parallel to the y-
axis, and that z varies between —0.5s and +0.5s. The values contained in the table
are valid for the value of the moment of torsional inertia.
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[Timoshenko and Goodier

Section 1 Section 1
t t
Solid circular . R* Rectangular section b/a=2.0 0.229 a’b
— [Timoshenko and Goodier 1970]
2
Solid elliptical a 3b3 Rectangular section b/a=2.5 0.249 a3b
. 5 3 [Timoshenko and Goodier 1970]
a +b
Hollow section with thin walls 4592 Rectangular section b/a=3.0 0.263 a°b
of constant thickness [Timoshenko and Goodier 1970]
r
Hollow section with thin walls 492 Rectangular section b/a=4.0 0.281 a’b
of varying thickness O —ir [Timoshenko and Goodier 1970]
{s
Section composed of elongated 1 5 Rectangular section b/a=5.0 0.291 a’b
rectangles 5 Zlisi [Timoshenko and Goodier 1970]
| i
Square section [Timoshenko 0.1406 L* Rectangular section b/a=10. 0.312 a’b
and Goodier 1970] [Timoshenko and Goodier 1970]
Rectangular section b/a=1.2 0.166 a’b Rectangular section b/a=co 0.333 a’b
[Timoshenko and Goodier [Timoshenko and Goodier 1970]
1970]
Rectangular section b/a=1.5 0.196 a’b

1970]
Q area enclosed by the median line
T perimeter, borderline
s thickness
1 length of an clongated rectangle
ab

Table 3-5: Values for the moment of torsional inertia.

side of a rectangle (shott side), semiaxis of an ellipse

3.3.6 FINAL CONSIDERATIONS

3.3.6.1 THE EULER-BERNOULLI “BEAM”.

The behaviour of a “beam” is usually described as a combination of the axial,
bending and torsional behaviour that are mutually decoupled (admitting axial
forces to be applied at the centroid: where this is not the case it is necessary to
add offset bending moments that are calculated by multiplying the axial forces by
the eccentricity with respect to the principal axes).

For the sake of brevity and simplicity, we will adopt matrix notation, constructed
in such a way as to respect the formulas and the results that we have already
introduced. Here we will also generalise the results found for bending about the
principal Z-axis, including bending about the principal Y-axis (a beam in space).

In the case of the Euler-Bernoulli beam (that is, without the contribution of
shear strain energy), the vectors of the unknown displacement functions U,

strains € and generalised stresses @ can be defined in the following way:
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U={u,v,w,6}"
€ E{u’, e>’ —W”, -V”}T

6 ={N,M, M, M,}".

Thus we have the following fundamental relationships:

€=CU
oc=De
where we have set
| | |
il 0 1 0 10
lox_ | _____ [ 1
ol o | o |9
N R I R -3
| | az }
01 0 1=—10
EA, 0 0 1 O
0IGL 0 0
p=f o i 019
0! 0 'EI O
01010 LE

The strain energy of a beam segment is written
7=0.5)6"edx=0.5" D edx
(note that D is symmetric), and thus
7=0.5u"c"Dcudx.

This last formula is fundamental, because it expresses the strain energy directly as
a function of the unknown displacement functions, contained in the vector U.

The work performed by the distributed loads can be expressed in a similar way
with the introduction of vector p:

P=1{Ps Py P, 0}
where the contribution of distributed torsion is presumed to be null. Thus
W= _&)TUdX.
Writing in matrix form prepares us for the discussion in Chapter 4, when we will

go into the FEM in detail. The organisation in rows and columns is largely
arbitrary, in the sense that given equal values of Z (which is a number, not a
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matrix) the matrices can be defined in many different ways by changing the
order in which the unknown displacement functions or strains appear.

3.3.6.2 THE TIMOSHENKO “BEAM”

It is possible to write the equations for the Timoshenko beam in matrix form as
well, bringing together the various contributions. However, in this case 7 is
necessary to add the contribution of shear strain energy and to model explicitly the two new
unknown displacement functions, one for bending about the Y-axis, the other for
bending about the Z-axis. In both cases the unknown displacement functions are

rotations of the faces, that is, rotation @ for bending about the Y-axis, and
rotation Y for bending about the Z-axis.

These two relationships are valid

o=w'-o

y=v-p
where & and P are the cotrections, that is, the additional angles related to shear
strain.

The vectors of unknown displacement, strains and generalised stresses are
U={yv,w, 0,0, y}"
€ E{u” a’ B’ 97’ _(p>’ _‘II,}T: {u>’ V"W, W’—(p, 67’ _(p7’ _\V,} T
G E{N) Ty’ TZ’ Mt’ M)" MZ}T'

The fundamental relationships we saw earlier

€=CU
o6=De
still continue to be valid, where we set
| | | | |
il 01010 0 1 0
ox
oiiioioi 0 1 -1
k,,,\,g)f,\,,,J,,,i,,,,J ,,,,,
| | a | | |
0,0 —10,;-170
C:~———1———4—a&4—3—4————4 —————
01010i=—=1010
k,,,\,,,J,,,J,a,x,l,,,,J ,,,,,
| | | ] a |
0/0/0/0|-——=—1 0
| | | Ioox |
k777\7777\777777777777j77737
01010101 0 I——
! ! ! ! loox
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EAL 0 | 0 1 01 0 0
r——t-----t--—--+t+-—-—44-—-——=-+t—-=-—--
0!GA,1 0 10! 010
b [0 0 GA [0 T0 0
01010 IGLI 010
"67TbﬁTb*T()TEi‘Tb"
o000 0 EL.

where A is the shear area when the shear is acting in direction y and A, the shear
area when the shear is acting in direction z. For strain energy Z on a segment of
the beam, the following equation is still formally valid

7=0.5J6"edx=0.5e” D £dx
and thus also
7=0.50"c"DCUdx.

3.4 PLANE STRESS

Let’s consider a thin planar lamina subject to a set of forces acting in the
same plane as the lamina and uniformly distributed along the thickness. If the
thickness “t” of the lamina is very small, we can consider the normal tension
acting perpendicular to the plane of the lamina to be null, as are the shear
stresses directed normal to the lamina. In fact, there are no applied normal or
tangential forces on the two surfaces of the lamina, because there are no forces
that have components that are perpendicular to the lamina. Since they are null
on both faces, given the modest thickness, it is hypothesised that they are
everywhere null.

Let’s presume that the plane of the lamina is plane x, y. Thus we can set
6,-7,=71,=0. [3-23]

In a problem of plane stresses the only stresses that are not null are parallel to the median
plane of the lamina; there are no stresses normal or shear stresses perpendicular to the plane

itself.
Pl v, 2)
;
¥
T%
T U!u’

Figure 3-8: Plane stresses, notation.

59

Copyright © ICE Publishing, all rights reserved.



Structural analysis with finite elements

Therefore, for the vector of unknown strains we can set
_ T
8_ {Sx’ Syi ’ny}
and for the stresses the vector
— T
0={0,0,T,} .

Neither the stress vector nor the strain vector depends on z; both depend
only on x and y.

The strain €, is obtained by means of the most general constitutive
relationship (cfr. Appendix II), while the two strains 7,, and v, are null
g, =-v(o, +6,)/E.
The vector of unknown displacements is
U= {u, v},
which means that there are only two unknown translations.

The matrix D that gives the relationship between strains and stresses (cft.
Appendix II) becomes:

o=De¢
E 14 0
D:l 5 0
-V _
2

where v is Poisson’s ration, and E is Young’s modulus. The indefinite equations

of equilibrium become
o, +7,,+b =0

XX

Ty, tO,, +b'v =0

(understanding that T = T ), while the relationships between displacements and
strains are reduced to

€=CU
having set
_i -
ox 5
=0 —
dy
9 9
| dy Ox |
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The problem is generally solved making use of Airy stress functions. In

fact, given a certain unknown function {(x, y), if we place (presuming volume
forces b, and b, to be constant)

2

o, = 99_ b,

2 ayz 2
d’¢
o, = o> - yb)‘
2

T =- 09
® oxdy

it can be seen that the conditions of indefinite equilibrium are automatically
satisfied. In order for the strains associated with the stresses to satisty the
compatibility conditions, there must also be

2 2
a—2+a—2 (GX +0'),):O,
ox° dy
which corresponds to the following condition
d'e o' 03¢
— 25t =
dx dx“dy” dy
Therefore, if we are able to find the function that satisfies the above

differential equation on the whole domain, respecting as well the boundary
conditions, the problem is solved.

As seen in the problems of plane stress, we are looking for displacements,
stresses and strains that are functions of only two coordinates, x and y. The
possible displacements in direction 2 imposed on the lamina by external factors do not give rise
to any stresses in the lamina, which does not have any bending stiffness. The stresses are
constant along the thickness (the z coordinate), and only change when the point
on the plane (x, y) is changed. Often these laminae are called membranes, to
distinguish them from plates, which on the contrary do have bending stiffness.

It is possible to define the generalised stresses by multiplying the tensions by
the thickness of the lamina. In this case the stresses fake the physical dimensions of a
Jorce per unit of length and can be regarded as forces transmitted by a segment of
lamina of unit length. The stiffness matrix of the material is also multiplied by
thickness t, giving rise to a matrix called the extensional stiffness matrix.

To be precise, when we set:
t/2
n, = Idxdz =t0,
—t/2

6 These compatibility conditions are obtained by taking the differential of the stress-strain relationships and
making the consequent mixed derivatives equal.
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112
n, = Ia),dz =10,
—t/2
112
'fz'xydz =17,
—t/2

S
Il

Xy

the vector of generalised stresses becomes
_ T
6_ {nX’ ny’ n(}}
and the extensional stiffness matrix becomes

1
tE

1-v

D=

0
0
: 1-v

2

(for simplicity we will leave the symbols the same). For the generalised stresses as
well the formal relationship is

14
v 1
00

6=De

and the successive relationship which gives the elastic strain energy, and which is
formally identical to that found for beams (except for the fact that here the
integration is on an area rather than a line) is

7=0.50"c"DCUdA.

To summarise: plane stress is for thin laminae loaded parallel to the median
plane. There is no stress component perpendicular to the median plane. There
are only two unknown displacement functions, generalised stresses, called
membrane stresses, having the dimensions of a force per unit of length. The
domain of study is an area.

3.5 PLANE STRAIN

Consider a structure obtained by translating continuously a given plane
figure normal to its plane, subject to equal forces on each of the infinite plane
sections of which it is composed. Further, these forces do not have any
longitudinal components.

In these conditions we can make the following simplifying hypotheses about the
strain regime to which the body is subject, presuming that the axis of extrusion is
the z-axis.

gz:’sz:’sz:O' [3_24]
The strain vector is then

_ T
&= {Ex: Ey) ’ny}
and for the stress vector we have
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o= {Gx, o,, TXY}T.

Figure 3-9: (left) A typical problem of plane strain; (right) a problem that
cannot be studied in plane strain because the loads are not equal at every
section.

The stress O, is obtained by means of the most general constitutive
relationship (cfr. Appendix II), while the two stresses T, and T, are null
G, =V(G, +G,).
The formulation of plane strain problems closely resembles that already seen for

plane stress problems, with the only difference found in the stiffness matrix of
the material, which becomes

E 1-v v 0
+v)(1-2v -
0 0 1 221/

Like plane stress problems, in the case of plane strain problems the only two
unknown displacement functions are translation u and translation v. The plane
strain formulation is quite useful in the treatment of tunnels, conduits and dams,
where the notable development in one direction can be made by comparing it to
a development in infinite length. Naturally, the results found can be applied to
areas that are sufficiently far from the ends (of the tunnel, gallery or dam).

In plane strain problems the domain is a plane. In theory, the thickness is
infinite. Even though in reality it is finite, it does not enter into the formulation,
inasmuch as all of the magnitudes are calculated by unit of thickness.

The strain energy per unit of thickness Z* can be written using the usual rules,
inasmuch as a null strain €, is associated with the non-null component of stress
O, it therefore does not contribute to strain energy Z*, which can be written

7*¥=0.5u"cTDCUdA,
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that is, in a way that is formally identical to what we have already seen for plane
stress.

3.6 THIN PLATE (GERMAIN-KIRCHHOFF)

The problems of thin plates and thick plates have given rise to numerous studies,
both because they are intrinsically rather complex, and also because we
encounter these problems very frequently in actual practice. Volume 2 of
Corradi dell’Acqua’s excellent book [1992] contains a panoramic, modern
treatment of the subject, with a formulation that is very close to matrix
calculation and therefore to the FEM. The classic text of Timoshenko-Krieger
[1959] offers a broad overview, including the various special solutions that have
been found.

Here we will limit ourselves to a summary and discussion of the hypotheses and
the fundamental results.

Let’s consider a solid that is a plane figure with a given thickness t, subject to
forces perpendicular to its median plane. A solid with these characteristics is
called a plate, and it has various characteristics that serve to simplify the general
problem of the theory of elasticity. Essentially, the median plane deforms,
generating a bending in the plate; this bending will give rise to stresses in
bending as well as in shear. The domain to be studied, originally a solid, is
reduced to a plane. Of the three unknown displacement functions we started
with, there remains only one.

M

¥

Figure 3-10: Plate stresses, kinematic hypothesis for a thin plate.

For the sake of simplicity, let’s suppose that the median plane of the solid is
plane xy. If we presume that the segments perpendicular to the median plane
before deformation rotate while still remaining perpendicular to the median
plane after deformation, we can set
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u=-zw,,
V=-ZW, [3-25]
w=w(x, V)

where w is the translation of the points of the median plane in a direction
normal to the median plane itself.

This hypothesis about the displacements defines the Germain-Lagrange-
Kirchhoff thin plate,” in which, as we will see, the strain energy due to the effects
of shear is not taken into consideration.

We calculate the strains by applying the definitions (cfr. Appendix II):
EX:—ZW,XX
€=-zw
€,=0
[3-20]
ny:‘ZZW,xy
Y,.=0
¥=0.
The last two equations tell us that the shear stresses related to the forces
perpendicular to the median plane are null, and thus the formulation of the

Kirchhoff plate excludes strain energy associated with shear, a circumstance which is
acceptable only if the plate is sufficiently thin.

The following generalised stresses are defined:

t/2

m, = J'zedz
—1/2
112
m, = J.Gyzdz
—t/2
t/2
m, = [tz [3-27]

—t/2

7 Marie-Sophie Germain (1776-1831) presented a mémoire to the Paris Académe des Sciences during the years
in which Napoleon was wreaking havoc in Europe. In 1811 Joseph-Louis Lagrange (1736-1813) reexamined the
mémoire and introduced some modificatons. Later, Gustav Robert Kirchhoff (1824-1887) broadened and
clarified the significance of the various hypotheses.
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t/2
x _[sz ZdZ

—t/2

~
I

t12
t, = IT‘.szz.

»
—t/2

These stresses are moments and shears per anit of length (thus the use of lower-
case letters), and bending stresses, that is, they are related to the curvature of the
median plane of the plate. We repeat, to obtain the moments and shears it is
necessary to multiply these generalised forces by a width (usually of one unit).
The membrane stresses, as can be easily seen, are everywhere null, inasmuch as
they depend on integrals of the type

t/2

membrane stress = constant jzdz =0.
—t/2

In a flat plate subject to loads normal to the median plane there is no membrane bebavionr.

As far as shears t_and t are concerned, from the equations 3-26 it follows that
the values of shear behaviour are everywhere null, inasmuch as the shear strains
associated with them are null because of the initial hypotheses made about the
displacement field. What we obtain recalls what we had already obtained for
Euler-Bernoulli beams.

Given that the shears have been estimated to be everywhere null, we can state
the generalised stress vector as follows:

If we apply the relationships that allow us to go from point strains to point
stresses (constitutive relations), we can express all the point stresses as functions
of the coordinates and the displacement w derived in an appropriate way. To be
precise, we find

_ E
o, __1—1/2 (aw, +zvw )
o E (zw , +zvw )
, == w FIVw
¥ 1—12 B .

T, =—2Gzw,, .
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By substituting the expressions thus found for the point stresses in the equations
that define the generalised stresses, we find the following final relation:

m, 1 v 0 W
m,|=Dlv 1 0 -w,, | [3-28]
m\'\' 0 0 1_7‘/ - 2W xy

g 2

where “D” is the bending stiffness of the plate (note the analogy with the EI of
the rectangular beam, EI=Ebh’/12):

3
D = Eitz .
12(-v?)
If we define the vector
- w.)C.X
&= —w,, [3-29]
- 2wv¥y

as the vector of generalised strains, these definitions relate the generalised stresses
to the generalised strains, that is, as usual

o=Dege
where
1 v 0
D=Div 1 0 |. [3-30]
1-v
0 0 —
2

The only unknown displacement function is the function w(x, y). We can write the relation
between the displacement and the strain in a generalised sense in the usual way

€=CU
as long as we set

U=w
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aZ
S ox

82
S
2
oxdy

The generalised stresses have to satisfy the appropriate indefinite equilibrium

conditions (a small segment of a generic plate has to be in equilibrium), a

relationship that is written in the following way, imagining that there exists a
[T

load distributed per surface unit “q” acting in the direction normal to the median
plane

-m, —m, +i = 0

t X+ty’y+q=0

X,
m, +m_ —t =0.

If we substitute the relations between generalised stresses and generalised strains
in the indefinite equilibrium equations, we arrive at the following differential
equation that formally solves the problem (the Germain-Lagrange equation):

*w oa'w  d'w ¢

+ + =21,
ox* ox’9y> oy* D

The strain energy on a given part of the domain is written thus

7=0.5J06"edA=0.5g"DedA=0.5 U"CTDCUdA, [3-31]
that is,

_a2

b ;|2 Py %x;
2205 -2 -2 2% lipy b o | -2 i B3]

ox dy dxdy D(1-v) dy

0 0 82

2 _, 9

dxdy

It should be noted that the integral has to be taken on a surface, not a volume.

To summarise, in a thin (or Germain-Kirchhoff) plate the membrane stresses are
null, as are the normal and shear stresses acting perpendicular to the median
plane of the plate. In contrast, the moments of the plate, which have the physical
dimensions of moments per unit of length, are non-null. From the moments of the plate
it is possible to calculate the stresses by applying the following formulas:
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m.z
o, =12—
t

myz
c,=12 e

ml\'z

T, =12——.
' t

On the median plane the point stresses are null (z=0), while on the planes at the

ends they are maximal (z=% t/2). There is only one unknown displacement
function, but it is a function of two variables, and no longer of only one as in
beam theory.

3.7 THICK PLATE (MINDLIN-REISSNER)

LI
__:__E =-If

\:%V
—_—— =-Is

Figure 3-11: Notations and cinematic hypotheses for the Mindlin-Reissner
plate.

To overcome the difficulties related to the use of a formulation in which the
cross-sectional strain energy is neglected, a theory was proposed that does away
with the hypotheses that require that segments perpendicular to the median
plane before deformation remain perpendicular to the median plane affer
deformation as well. The hypothesis that such segments remain rectilinear when rotating
remains (fig. 3-11). It is quite clear that we are dealing with a generalisation of
plates similar to what we have already seen for beams. The theory is tied to the
names of Raymond D. Mindlin (1906-1987) and Eric Reissner (1913-1996).
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The hypotheses about the displacement field become

u=-zr (%, y)
v=-z5 (X, ) [3-32]
w=w(x, V),

that is, the rotation of the segment is no longer identified with one of the partial
derivatives of the unknown function w. Thete are thus three unknown fuctions —

w(x, y), (%, y), and s(x, y) — and “t” and “s” represent the rotations of the
segment about the y-axis and x- axis.

The point strains are written
€ =-zr
€=-2zs
€,=0 [3-33]
YXS,:—z(r,}fl— S
Yy =W,8

'sz: W,x —t.
For the vector of generalised stresses we have to maintain the vector complete
with unitary shears, and thus

applying the theoretical point-level stress-strain relation and using the definitions
of generalised stresses, we can find the generalised stress-displacement relations

D Dv 0 10 O
|
mn, Dv D 0 '0 0 R
— |
m, o o pi¥io of %
R e v —ry-s. | [3-34]
t 0 0 0 31 0| w, —r
|
Sl o 0 0 to G
| 12

If we now define the vector of unknown displacements as

U={w,1,s}"
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and define the generalised strains in the following way

€=\ -1, -5, [3-35]
w,—r
w,—s

as
0 —3 0
ox 5
0 0 -
dy
=l o -9 _9
- dy ox
9 0
aax
— 0 -1
dy

Thus the relations between strains and generalised stresses becomes the usual

o=De=DCU,
as long as we set

D Dv 0 !0 0

|
Dv D 0 !0 0

0 0 Dl_Tvi 0
0 1) I R
0 0 0 ilG—’ 0

1.
o o o lo <
| 12

(note that the shear factor for 1.2 is applied in a way that is analogous to what
we saw eatlier for rectangular sections in the beam problems).

Elastic strain energy on a thick beam of domain A is written (dA=dxdy)
7=0.5l6"edA=0.5"DedA.

This expression is obtained by applying the definition that is valid for continua,
that is, by writing the integral on the volume as a function of the point stresses
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and strains, and then recalling the definitions introduced for generalised stresses
and strains.

By substituting in place of the vector of generalised strains its expression as a
function of unknown displacements, we obtain the by now familiar formula

7=0.5Ju"CTDCUJA. [3-36]
That is, explicitly,
0121 o
o o Di/Dv, O |00 | __! ox! ___
Fo——d————F—————— Fo——t———o
010l 0 :ai:ai pviDp 0 _10olo0]olo 3_ai
| | | | | I — I |
bt 2 0 Lo Y 0 o eyl |
Z=05[wirisl| =10 =201} 0 e 20 - -2
L ) 0o ! o G|l 9yi Ox|-
————————————————— | | | | I T s
9 1 9! | | | 1120 E |
0 |l =200 =1 g HEtad =1 =11 0
tdy 1 oxi 010! 0 101> Lox. il
| | | ! i} 0 | —1
dy | ?
[3-36a]

The above expression simply tells us in matrix form what the strain energy Z is
equal to.

As for thin plates, it is possible in the case of thick plates to arrive at the
differential equations that solve the problem (cfr. for example Timoshenko-
Krieger [1959]). Here we omit the description of these differential equations
since their solution is not necessary if the properties of the FEM are used (we
need only know equation 3-306).

Summarising, the formulation for thick plates often includes the addition of
strain energy contributed by shear, using as an unknown function #hree functions of
x and y (w, 1, s) and excludes the membrane stresses. To the functions for
calculating the stresses already examined for thin plates are added the following

two formulas
, 5 o,
xz | ¢
xZ l3 4

6, (1>
T, =t3’£4—z J,

which make it possible to calculate the shear stresses normal to the median plane
if the generalised shear stresses are known.

The shear stresses are distributed parabolically with a maximum value on the
median plane and null values at the end planes. The maximum value of shear
stress is
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T,=1.5t /¢,

obtained by dividing the generalised shear by the thickness and multiplying by
1.5.

3.8 AXIAL SYMMETRY

Consider a solid generated by a 360° rotation about the axis of a plane
tigure of some generic form (a solid of revolution). If this solid is subjected to
identical forces in each of its infinite sections obtained by a plane passing
through the axis of revolution, and none of these forces has a component of
circumference, but there do exist components that are radial or parallel to the
axis of rotation (axially symmetric forces), then it is possible to write the
equations of elasticity theory in a particularly useful way.

First, the solid is placed in reference to a cylindrical coordinate system, (t, 6,
z), fig. 3-12. In this reference system we will have at each point P the three
displacements (u, v, w), which are respectively in the radial, circumferential and
vertical directions.
Given the axial symmetry of the problem, we can set
Trezfezzo.

The components of strain in the cylindrical reference system are defined as

W

Tor |
Trz| 17z
or ¥ | or

Tp

T

[

Figure 3-12: Notation for axially symmetrical structures.
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81'_ u,r
€= u/r

[3-37]
E=w

z >z
’YfZ: u’Z +W’r
The conditions for axial symmetry are such that
v=0,

that is, that there is no displacement of the points in the circumferential
direction. Thus result the following two vectors of strains and stresses:

&= {gra €0, €, 7., }T
o= {6r9 Gy, 0,, T,, }T’

and each involves functions that depend solely on (r, z).

The only components of unknown displacement are the translation u(r, z) and
the translation w(t, z), neither of which depend on 6. We can create the vector
of unknown displacements U={u, w}" and introduce the congruence matrix C,
defined so that

€=CU

0
50
L
C:(r)i
dz
0 0
0z or

This matrix simply repeats what has already been explained about the formulas
that relate the displacements to the strains (in the cylindrical reference system).
The indefinite equilibrium equations can be written:

Jo, +8rrz L0 =%

or 0z r

[3-38]
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0t d0. T.
K=,
or 0z r

The relationship between stresses and strains can be written in the usual way:

o=D¢
with matrix D defined as
T v 0
1-v 1-v
1% 1%
— 1 e 0
_ (d-E j1-vy 1-v
a+wa-a2»n v v 4 0
1-v 1-v
0 0 1-2v
20 -v)

(note that the matrix is symmetrical).

The strain energy Z accumulated in the solid in question can be written as
7=0.5lc"e dv,
and bearing in mind that

dV=rd0 dA=rdO drdz

7 =0.5J0"e r dO dr dz.

That same strain energy can be written as a function of the displacements using
the formulas that relate the displacements to the strains, and the strains to the

stresses, and observing that nothing depends on the variable 0, which must be
integrated between 0 e 2 T

Z=n [UT"C"DCUrdrdz [3-39]

As in the cases of plane stresses and plane strains, it is possible to introduce a

suitable stress function O(t, z), called Love’s function? that makes it possible to
express the unknown stresses

9 ,, 0°¢
= —_— VV —_——
I az( Brzj

8 A. E. H. Love (1863-1940).
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Oy

_9( 2y 199
_BZ(VV¢ rar)

] ,, 0°¢
=~ | 2=-W2p-

o, az[(z v)Vg 812]
0 , ., 0°¢
=—|(1-VW"p——L]|.
T, Br[(l V)V BZZJ

Love’s stress function has to satisfy the conditions

ViV’ =0,

where the operator V> corresponds to the Laplace operator in Cartesian
coordinates, and is written

2 2
V= 4 S +1i+a—2,
or’ radr 0z

bearing in mind that our functions do not depend on 6.

The complicated equations that we have given must not cause us to lose track of
the significant results that we have obtained:

1. In an axially symmetrical solid loaded axially symmetrically only two
translations are held as unknowns, u and w, neither of which depend on

the 0 coordinate;

2. Only four of the six components of stress and strain are unknown, and
these depend solely on (r, z);

3. The domain of the problem is no longer a volume, but a plane.

3.9 GENERIC SOLIDS

For generic solids the only thing to do is to use the general equations of elasticity
theory, which lead to holding as unknowns the three translations u(P), v(P), w(P)
at every point of the structure.

Given that the solution involves six different components of stress and strain at
every single point of the solid, it is easy to understand that solid modelling is
generally the analyst’s last resort, to be used when none of the simplified theories

is capable of dealing with all of the most important aspects of the problem at
hand.
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For a review of the main results in elasticity theory in the most general case of
solids, see Appendix II.

3.10 SUMMARY

In examining the various special formulations of elasticity theory we have seen
that it is possible to follow a scheme which is common to all the formulations
and which we will briefly summarise here.

First, the vector of unknown displacements U is introduced. This vector can
contain one or more unknown functions of one or more variables. Next, the
generalised strains € and the generalised stresses O are defined. The generalised
strains are related to the displacements of the congruence relations, generally
differential (matrix C):

€=CU.

The generalised stresses are related to the generalised strains by the constitutive
relation (the generalisation of Hooke’s law):

o=De.

Finally, by expressing the strain energy Z as a function of the stresses and strains
we arrive at the general expression

7=0.50"c™DCUdz,

in which dZ is an infinitesimal portion of the domain typical of the problem at
hand (a line, plane, etc.).

As you can see, the strain energy is made to depend solely on the unknown
displacements U. This expression, when suitably used in relation to the principle
of the stationarity of total potential energy, leads directly to the differential
solution equations. If displacements U are expressed approximately as the
weighted sum of known functions (and unknown weights), the differential
solution equations become algebraic.

This will be seen in chapter 4.
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4 THE FINITE ELEMENT
4.1 INTRODUCTION

We have reviewed the various formulations of elasticity theory that are used in
different cases as a framework within which to search for the solutions to a
given structural problem. As we have said, the choice of formulation is a
necessary first step in performing any kind of modelling. The modelling of the
different parts of a structure are made by applying, for the various parts,
different simplified theories to which correspond different ideal geometric point
loci.

In fact, the choice of a given formulation automatically results in the choice of
the type of domain, since, although it is true that nature always furnishes us with
three-dimensional objects, this is not the case with theory, which makes ample
use of schematisations and simplifications. The domains that we deal with are
essentially the following:

Problem Domain Displacement
functions
Euler-Bernoulli Straight line u, v, w,0
“beam” (in space)
Timoshenko “beam” Straight line u,v,w, 0,0,V
(in space)
Rod Straight line u
Thin plate Plane surface w
Thick plate Plane surface W, 1,S
Axial symmetry Plane surface u, v
Plane stresses Plane surface u, v
Plane strains Plane surface u, v
Solid Volume u v, w

Table 4-1: Problems, corresponding domains and unknown displacement
functions.

In a qualitative sense we can say that the simpler the domain is to study (a
plane is simpler than a volume, a line simpler than a plane), the more complex
the unknown displacement field, since this has to satisfy an increasing number of
regularity conditions. For example, the curve that gives the strain of a beam
cannot contain cusps, and thus its first derivative must be continuous, while the
function that gives the displacement field of a solid can contain discontinuities in

Structural analysis with finite elements © Thomas Telford 2010
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the derivative while still respecting the congruity of the displacements, that is, the
fundamental characteristic that there be no gaps or overlaps.

Having established what kind of domain is suitable for the part of structure in
question, we can begin to investigate the system used by the FEM to find an
approximate solution to the problem. It bears repeating that the solution is
approximate not only because it solves the system of solution equations
approximately, but also because the solution equations themselves introduce
significant approximations with respect to the actual structure. If the hypotheses
that lead to the choice of a given formulation are erroneous, or not sufficiently
verified, then even though the solution is in keeping with the given problem, the
solution is not “exact”.

Although there are cases in which the structure in question can be modelled
entirely using only one of the formulations of elasticity theory discussed earlier, it
often happens that in a given structure there are some parts that can be modelled
with one theory, and others that can be modelled through the use of a different
theory. For example, if we want to study a building with a steel frame whose
service core is in reinforced concrete, we have to model all the beams with one-
dimensional elements by using beam theory, where the core in reinforced
concrete has to be modelled with spatial membranes or plate-shell elements
(depending on whether membrane behaviour is considered sufficient or if it also
requires the bending component). In another example, if we want to study the
deck of a ship, and we want to limit the degrees of freedom, we cannot model
the transversal and longitudinal beams with plate-shell elements: it is necessary to
model the deck with plate-shell elements, and the beams and girders with
appropriately calibrated one-dimensional elements.

In principle, all structures can be modelled as a solid, but this approach, unitary
and logical though it may be, would be extremely unwieldy in many cases, and
essentially impossible in some.

For the sake of simplicity, in this chapter we will presume that the structure can
be modelled by means of a single formulation, and thus a single domain. Later
this hypothesis will be omitted so that we can study the most general cases.

4.2 INSIDE THE FINITE ELEMENT

4.2.1 THE PROBLEM

Let us consider a domain (line, plane or solid) divided into many elementary
parts, each of which has a given position and a given shape. Let us now consider
a generic part of those into which we have divided the domain, and ask ourselves
these questions: How is it possible to describe what takes place within the
“piece” of that domain in terms of stresses and strains in a simple way? How can
we ensure that each piece respects what happens in adjacent pieces in order that
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there is no tearing or interpenetration? Is it possible to make it so that the
displacements of the boundaries of the piece in question respect the
displacements of the boundaries of adjacent pieces, the condition that in fact
prevents tearing and laceration? Can we make it so that in addition to
displacement the stresses and strains as well maintain the necessary requisites of
continuity between pieces, while still remaining an approximate solution? What
kind of analogy does there have to be between all the pieces that we have
divided the domain into? Under what conditions can we expect that, while still
described in an approximate way, the simplified problem comes close to the
original problem?

The finite elements method! provides clear answers to all these questions.

We will begin with the observation that if the function that desctibes the
displacements were known, then all of the stresses and strains would also be
calculated; in fact, we can calculate the strains from the displacements (thanks to
congruity), and we can calculate the stresses from the strains (thanks to the
constitutive relation, which is essentially a generalisation of Hooke’s law).

The fact is that the function that gives the displacements is enormously complex
and therefore totally unknown.

Let us see how, by successive steps, we can arrive at the answers to these
questions.

4.2.2 ELEMENT TYPE, ELEMENT SHAPE

A first way to simplify the problem lies in simplifying the domain where the
solution is sought. Given that it is up to us to establish the “pieces”, that is, the
[finite elements, it is certainly simpler to have to deal with elements whose shapes
are regular and simplified rather than irregular and complex.

Intuition tells us that we can expect that as the shape changes so does the #pe of
finite element: in fact, we have to look for an approximate solution within the
simplified, differently shaped domains. On the other hand, there is no reason
why there can’t be different formulations and different kinds of simplifications
for a given domain, even assuming elements of an identical shape. While it is
possible to find cases where elements with the same shapes have different
[formulations, there are no cases where elements have djfferent shapes but identical
Jformmulations, that is to say, identical sets of governing equations, unless we assume
that one or more points co/lapse onto others (which can generally be excluded
since they lead to very particular consequences). As we shall see, the shape that
the finite element has to have is strictly related to its formulation, that is, to the
system of hypotheses that identify the element itself.

1.0. C. Zienkiewicz [2] retraces the earliest use of the term “finite elements” to a 1960 work by Clough: “The
finite element in plane stress analysis”, Proc. 2nd ASCE conf. On Electronic Computation, Pittsburgh, PA, Sept 1960.
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> A )
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A B A

Figure 4-1: finite element shapes, examples

Now, let’s suppose that we have chosen a given shape (for example, triangular
for a plane domain, or triangular with curved sides, etc.). Given equal shapes, the
elements can have different positions (that is, they may lie in different areas of
the structure), different dimensions, and even different appearances: they can be
more or less regular, or more or less distorted. If the elements were generated
haphazardly and there were no precise rules for generating them, they would be
quite difficult to desctribe. But because the shapes of the elements obey very
precise, pre-established rules, it turns out that zhe geometry of an element can be
reconstructed as long as a certain number of ifs points are known; these points are called
nodes.

For example, if the domain being studied is a line element, it can be straight (two
nodes), parabolic (three nodes) or cubic (four nodes). In the case of curved
beams the use of curved elements necessarily leads to a better performance, for
obvious reasons of geometry. If the domain is a surface, the element can be a
triangle (with three nodes required for its identification), a quadrilateral (with
four nodes required), or by assuming that the sides can be, for example,
parabolic, it can be a triangle with curved sides (with six nodes required) or a
quadrilateral with curved sides (with eight nodes required).

Once the shape that the element has to have has been established, it is necessary
that the element itself pass through a certain number N nodes of the domain of
study, such that when the coordinates of these N nodes are known, the aspect
and the position of the finite elements can be completely determined. Choosing
the #pe of finite element also immediately determines the number of nodes
required to identify it. In contrast, the position of the nodes on the domain, is
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largely a matter of choice, in the sense that with the exception of a few
significant points on the structure which must correspond to nodes, the majority
of the points that identify the element, and thus the choice of its exact aspect, is
up to the engineer.

What criteria are used to determine the geometry of an element? We will learn
more about this later, but we can begin right away by saying that there are three
essential criteria.

The first is that of the formulation, which is related to the type of element. It
should be noted that even if in principle it is convenient to be able to decide,
given a particular problem, what kind of element is most suitable, in practice the
choice of the type of finite element is quite limited in many of the most widely
available software programs, which actually make use of only one or two types
of element for every possible formulation. This situation changes radically when
one of the more advanced software programs is used: these allow access to many
different types of elements for a given problem, which implies a thorough
knowledge of the differences between the various types of elements, a
knowledge that usually only specialists have. Non-specialists are better off
working with a few dependable elements whose behaviour they know well rather
than attempting to work with very complicated systems without having the
requisite background.

The second criterion is that of dimension. In general we can say that the greater
the rapidity with which the stresses change (the greater the stress gradiend), the
smaller the finite element has to be, and thus, the greater the number of
elements in the area under examination.

The third critetion is that of regularity. As we will see, the ideal shape for finite
clements is the most regular one, with sides that do not vary too much in
dimension or angles that deviate too much from 60° (for triangular elements) or
90° (for quadrangular elements).

4.2.3 THE COORDINATE AND CONNECTIVITY TABLES

Once the formulation and the nodes through which the finite element has to
pass are known, then its geometry is also completely known.

If we leave for a moment our individual finite element and go back to examine
the situation of the structure, we can easily compile a list of the structure’s nodes,
that is, a list of points identified by a unique marker, and by a position.

The position of each node is identified by its coordinates (x, y, z), so that if “n”
is the number of nodes of a structure, in general “3n” coordinates are necessary
to identify the nodes. The table that lists each node numbered progressively
along with its the coordinates is called the coordinate table and is certainly one of
the fundamental data used by every finite element analyst (e.g. Table 4-1).
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NODE X Y z > TY TZ RX RY Rz
7 0.000E+00 | 0.000E+00 | 0.000E+00 | FIXED | FIXED | FIXED | FIXED | FIXED | FIXED
8 3.000E+03 | 0.000E+00 | 0.000E+00 | FIXED | FIXED | FIXED | FIXED | FIXED | FIXED
9 3.000E+03 | 3.000E+03 | 0.000E+00 | FIXED | FIXED | FIXED | FIXED | FIXED | FIXED

Table 4-1: Nodes 7-9 of a coordinate table in SARGON; in addition to the
coordinates the constraints have also been listed.

With this table, when the progressive number of a node is known, then its
position is established. The number of each node acts as a wunigue identifier that
distinguishes it from all others.

We said that three coordinates are always necessary to identify the position of a
point, even if in certain cases the problems being studied are planar. Some finite
element software programs exploit the fact that the structural problem being
studied is two-dimensional?> (either because the frame or truss is planar, or
because the problem is planar in its stresses or strains, or because the problem
being studied is a thin plane or is axially symmetric) requiring only two of the
three coordinates. This approach was justified at the dawn of computers when
the difficulties related to the input of data on one hand and a shortage of RAM
on the other made it necessary to limit the information furnished. Today,
however, breaking up the work of a program into many submodes depending on
the planarity of the problem at hand creates more disadvantages than
advantages: given the amounts of RAM available, CPU capacity and instruments
for graphic interface, we might as well always describe a problem by inserting it
into a three-dimensional space, eliminating explicitly, if anything, the non-
necessary degrees of freedom. Further, in the important area of frames and metal
trusses, the hypothesis about plane stress does not limit the three-dimensionality
of problems of stability normally addressed: in this context the use of a planar
schematisation can even be misleading.

We find an important special case when in the coordinate table there exist two
nodes that have different numbers but the same coordinates (that is, two nodes
that occupy the same position in space). Two such nodes are called double nodes.
Later on we will see that double nodes can sometimes be desirable, but they can
also greatly hinder the problem solving.

Let’s return now to the situation as seen from the point of view of the individual
element.

It should be noted that there is a unique correspondence between the nodes in
the domain and the nodes of a given element. In fact, the elements used to

2 By a two-dimensional problem we mean one in which the structure is planar.
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model the structure are numbered, and the nodes of the element are purposely
marked with node 1Ds (generally by using letters — i, j, k, , m, n..., — but also
referring to them /ocally as nodes N1, N2, N3, etc.). When we say that the ID
identifies a node /locally, we mean that it does not take into consideration the fact
that the element is positioned in a given structure with a given nodal numeration.
It is very important to understand this thoroughly. When we speak of node “”
of a certain element, we mean the second node of that element, independent of
the particular node on the particular structure to which node “j” corresponds. In
evaluating what takes place within a finite element, we have to “forget” what
takes place all around it, and thus we need a local system of reference and a local
numeration in order to be able to formulate the problem for that kind of
element definitively and generally.
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Figure 4-2: Example of connection in a truss.

The nodes of the structure that serve to describe the elements are also identified by
means of a progressive numeration (1, 2, 3, 4, ...) which is unique and relates to
the structure as a whole. Thus (see figure 4-2) node “G” of element 177 is
uniquely identified as node 192 in the overall numeration. Note that the
correspondence is not two-way; there can be various nodes of various elements
that correspond to node 192 of the structure; all that is needed for this to
happen is for the vatious elements all to have that node in common. For
example, in fig. 4-2 we see that in addition to element 177, elements 458, 443,
459, 445 and 187 all have node 192 in common (some elements as node “i”
others as node “”).

>
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Element 177, node j —  Node 192
Element 458, node j —  Node 192
Element 443, node i —  Node 192
Element 459, node i —  Node 192
Element 445, node j —  Node 192
Element 187, node i —  Node 192

Up to now we have said that the shape of a given element is determined by its
type and by the position of its nodes. Thus, in order to know the geometry of an
element it suffices to know the global number attributed to each of the nodes
that describe the element. If a certain element requires nodes (i, j, k, ...), it is
possible to substitute for these local nodes (i, j, k, ..) the unique global
numeration of the corresponding nodes, thus arriving at the definition of the
concept of element connectivity: the element connectivities are defined by the
ordered set of global numbers associated to local nodes (i, j, k...) of the element
itself. The set of connectivities of all elements is a table called the connectivity table,
which constitutes a datum of fundamental importance for all users of the FEM.

---------- CONNECTIVITY SECTION-———
PLATE | NI N2 | N3 | N4

1 7 11 17 16

2 11 12 18 17

3 12 13 19 18

4 13 14 20 19

5 14 15 21 20

Figure 4-3: Connectivity table in Sargon, in reference to plate elements.
The local nodes are called “N1”, “IN2”, etc.

Thanks to the incidence table and the coordinate table we can construct the mesh,
that is, the set of all the finite elements that describe the structure, along with the
areas where they are located, dimensions, and exact positions. The ctreation of a
good structural mesh is the first intermediate result of an analysis, and in large
part the final outcome depends upon it. In order for an analysis to be
meaningful, the mesh has to be constructed with care.

4.2.4 CONNECTION

We have seen that in order to define the shape of an element whose type is
known, we must know what its nodes are, and then, once the coordinate table is
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known, find its connectivities. The nodes of each element not only serve to
define the shape, but also serve to establish its connections. In simplified terms, we
can say that the node is connected to the element since it is attached to the element
such that, if the node moves, # transmits at least a part of its movement to the element

itself.

42

Figure 4-4: Connection. The rotations and translations of nodes i (43) and
node j (42) of the elements are transmitted to points of the element (see
the deformed configuration).

What do we mean when we say that the point of the element identified by the
node has to transmit a least a part of its displacement? Might there be cases in
which one of the movements of a node connected to an element does not
transmit anything to that element?

Yes, this can occur, and not having understood this fact is one of the most
common errors made by those lacking in expertise in finite elements.

For example, the rotation of a node transmits nothing at all to a rod element,
since by definition this has no stiffness in bending. The node rotates, but nothing at
all happens to the element. In contrast, if this same node were connected to an
unreleased beam element, the same rotation of the node would give rise to
effects in the beam element, whose axis line would be subject to the same
rotation.

The rotation of a node about an axis normal to the plane of a membrane doesn’t
provoke anything at all in the membrane? (see fig. 4-6). The translation of a node
to which a certain number of rods in the same plane are connected, in a
direction normal to that plane, does not provoke anything in the rods. The rods,
on the other hand, do not offer any resistance to this movement (see fig. 4-5).

3 The membrane elements described in §11.5.3. (cf. Taylor and Simo [28]), which also use this degree of
freedom in their formulation, are exceptions to this rule.
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How much of the displacement is shared by the node and the element is
determined by the type of finite element and by the given problem. Later, when
we examine the most frequently used types of finite elements in detail, we will
see clearly what the significant displacements are.

Figure 4-5: In this truss modelled with rod elements all the rotations of the
nodes are free. All of the translations in a direction normal to the plane of
the truss are free.

"

. 4

Figure 4-6. The rotation indicated by the given node does not
communicate anything to the membrane connected to that node, since in
the formulation of the element, rotation does not play a role (but see foot

note 3). Note that the elements shown are “shrunken” for the sake of
clarity.

By definition, each node of an element is connected to it, that is, it allows at least part of its
displacement to be transmitted unaltered to the corresponding point of the element.

More generally, we can say that there are rules that relate the displacements of
the nodes to the displacements of points of the elements: these rules concern
not only the points of the elements that correspond to the nodes, but also #e
points within the element itself that do not correspond to the nodes. This will bring us to an
examination of the essential core of the FEM.

88

Copyright © ICE Publishing, all rights reserved.



The finite element

4.2.5 THE BASIC HYPOTHESES: THE “ASTROLOGICAL PRINCIPLE”

What happens in the points in a finite element? Strictly speaking we cannot say
for sure unless we completely solve the system of differential equations that
solve the problem at hand (of beams, of plates, of plane stress, etc.). Answering
this question means facing insurmountable difficulties of calculation, since when
the form of the domain is complex it is practically impossible to arrive at a
closed-form solution for the system of solution equations.*

In general, each component of unknown displacement is a complex
function of the point’s position within the element, of the constraints, and of the
applied loads. We can simplify the problem by making it so that the functions
being sought are obtained by combining £nzown functions by means of a certain
number of coefficients whose combination is wnknown. The procedure is
qualitatively similar to that of series: a “strange” function is expressed as the
weighted sum of certain simple functions.

It needs to be understood (we will come back to this in more detail
further along) that the set of displacement functions that have to be found
changes according to the kind of problem being studied. In some cases, precisely
because of the type of problem, certain displacements are not relevant inasmuch
as they are not part of the unknowns (see Table 4-1). For example, while it is
true that in a generic problem of three-dimensional elasticity the unknown
functions are the three translations of point P of the solid u(P), v(P), w(P) and
the rotations are irrelevant, for a Euler-Bernoulli beam located in space the
unknown functions are the three translations u, v, w (associated with the
clongation of the beam and with the bending in the two principal planes) and a
rotation O (associated with torsion) of the points oz the axis of the beam. In a rod
the only unknown function is the displacement u(x) of the points oz the axis in
the direction of the axis of the rod itself. In a flat plate, in order to know the
bending behaviour it is sufficient to know the displacements w(x, y) of the points of
the median plane in the direction normal to that plane. In a problem of a planar
membrane we need only know the displacements u(x, y) and v(x, y) of the points of
the membrane’s median plane in the plane of that membrane. And so on.

It is thus clear that the number and the type of unknown functions
(translations or rotations) depend on the type of elasticity problem being studied
and by the kind of domain that has to be discretised (whether one-, two- or
three-dimensional).

Since we have the list of the unknown displacement functions, we can
imagine expressing the unknown functions by means of the weighted sum of
suitable known functions. Practically speaking, we limit ourselves to leaving the numbers

4 On the other hand, there are various solutions to classic problems of elasticity when the form of the domain is
simple or regular. Scientists worked for quite a long time to find these solutions.
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as unknowns while supposing that we fnow the functions. Let’s consider that the
displacement function of z(P) in a given element related to a certain problem of
elasticity is unknown (we are deliberately using a symbol that does not appear in
some of the formulations in order to underline the fact that we are speaking in
general terms). The idea that the unknown function can be expressed as the
weighted sum of known functions can be expressed by writing

z(P) = aI1,(P) + a,IL(P) + a,IL;(P) + ... a II,(P).  [4-1]

Equation 4-1 expresses the fact that the unknown function z(P) is
arbitrarily presumed to correspond to the sum of a certain number of &nown
Sunctions I1 multiplied by the appropriate number of wnknown coefficients “a”. Note
that while the II functions are just that — functions —, the weights “a” are
numbers. It is well known that when one or motre numbers are unknown, we
are dealing equations, while if one or more functions are unknown, we are
dealing with differential equations. Equation 4-1 makes it possible for us to
transform differential equations (unknown functions) into algebraic equations
(unknown numbers). In fact, in all of the equations in which z(P) appears we can
write its approximation from equation 4-1, thus arriving at a set of equations in
which the only unknowns are the weights “a”.

We see that in equation 4-1 we have only made use of the fact that z(P)
has to be expressed by means of the sum of a certain number of known
functions weighted by unknown coefficients. Let’s now take the next step: /t’s
imagine that if we know the displacements of its nodes, then we know everything that takes
place in terms of displacements within a finite element. In the introduction we have
referred to this idea as the “astrological principle” to underline the fact that at
the heart of the FEM there is really a presumption: we presume to know what
takes place within an element because we know the movements of a few of its
points (the nodes). From a formal point of view this second presumption leads

to the establishment of these conditions by the IT functions and the “a” weights.
z(P)=all,(P) + aIL,P) + a,II,(P) + ... a I1,(P))
2(P)= a IL,(Py) + a,I1,(P) + a,IL,(Py) + ... a I1,(P)) [4-2]

z(P)=a Il (P) + aIL,(P) + aIl,(P) + ... a IT,(P,).
If we make it so that points P coincide with the nodes, then the displacements of the first
member of equation 4-2 are in fact the displacements of the nodes, or briefly, the nodal
displacements. For the sake of brevity we write z(P) = z, and we call z, nodal
displacement i. These conditions express the element’s nodal displacements in
function of the original weights “a”. If we accept equation 4-1, these tell us what
the value of the unknown displacement is in the various nodes of the element.
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In equation 4-2, since the quantities II(P) are known functions calculated at
known points, they are known numbers.

Note that among the “nodal displacements” we can, if necessary, list the
derivatives of the displacements as well. To do so, we need only write conditions
such as

2'(P)= a Il (Py) + a,II(P)) + a,II5(P) + ... o IT' (P
or

2"(P)= a I1",(P) + a,I1",(Py) + a,I1",(P)) + ... a 1", (P))
in which the sum weighted by the dervatives of the interpolation function is
identified with the required derivative of the displacement of the given point. In
this case, certain displacement derivatives also figure among the “nodal

displacements”, derivatives which, for example, can have the physical meaning
of rotations in certain cases.

We see that if # is the number of elementary functions used, and thus the
number of unknown coefficients, then 7 is also the number of the relations that
have to be written to eliminate 4/ of the original parameters in order to
substitute them with the nodal displacements. Thus the unknown parameters become
the nodal displacements.

As we can see, we obtain a system of equations — 4-2 — that link the weights a, to
the nodal displacements z, . Thanks to these relations — which we can solve in
function of the weights a, — we can express the weights a, as functions of the
nodal displacements z;. In general we obtain relations such as

= 2,0y T 20 T 250 F Lz

= 21Cy T 25Cpp T 250 T ... 2,0y [4-3]

a,= 2,Cy T 2,¢p T 25¢5 T ... Z.C

nn

where the coefficients ¢ are the known numbers (such as II(P) in equations 4-2).

If we want to write equations 4-3 more concisely, we can organise the
parameters a; in a (column) vector of parameters a, the nodal displacements in a
(column) vector of nodal displacements z, and the coefficients ¢ in a square matrix
A. Thus equation 4-3 becomes

a= Az [4-3a]
By substituting the equations 4-3 in equations 4-1, we obtain the canonical form
of the astrological principle:

5 For the sake of simplicity we have presumed total derivatives, but they can also be partial derivatives.
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2(P) = 2@, (P) + 2,8,(P) + 2,@5(P) + ... 2, P, (P), [4-4]
or, by arranging the functions ®; in a (row) vector o7,

2(P)=¢"z. [4-5]

€, 9

We can see that since the coefficients “a” are a linear combination of the nodal
displacements u (by equations 4-3), the functions @ are in their turn linear
combinations of the original functions II.

Let’s look closely at formula 4-4: we find there the ® functions, which are called
shape functions, and the nodal displacements z. Equation 4-4 tells us that #be
displacements of a generic point P can be calculated if we know the displacements of the nodes
of the finite element. In fact, if the nodal displacements are known, then by applying
equation 4-4 it is possible to calculate the displacements in any point of the
element whatsoever. It is worthwhile to undetline that equation 4-4 #s only an
approxcimation, which can be reasonably verified if certain conditions exist.

Looking at equation 4-4, we can also see that there one important condition has
to be present. The shape functions have to be such that it must be true that the
7th shape function has to equal 1 in the 7/th node and 0 in any other node that is
not the zth:

D,P) =1
[4-0]
o,P) = 0.
If this were not the case, then it would be impossible that z(P,)=z, a condition
that we accepted by definition when we introduced nodal displacements. The

conditions just written are actually the conditions of congruity: they guarantee
that the displacement field respects the nodal displacements.

Example
Let us consider a rod with two nodes, with coordinates x=0 and x=L.. For the
unknown displacement u we set

u(x) = a;tax [4-7]
that is, recalling equation 4-1
I1,=1, IL=x.
Now let us recall the definition of nodal displacement, and applying equation 4-7
u,=a,
u,= a,+a,l.
and thus, expressing this in terms of the parameters a:
4=y

a,= (-u;+u,) /L.
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Substituting this in equation 4-7 we obtain
u®) = u,+(u,u)x/L= (1x/L)u+ (x/L)u,
which implies that
®, = (1x/L)
D, =x/L.
As we can see, the shape functions automatically satisfy the conditions in 4-0.

L)

In what has just been explained we have seen that the number of the elementary
functions II that are combined is equal to the number of nodes of the element.
In fact, the number of weights in 4-1 is equal to the number of elementary
functions, and the number of nodal displacements necessary to express all the
weights in equation 4-2 is equal to the number of those weights. Thus the number
of available nodes determines the number of elementary functions that can be combined: the
greater the number of available nodes, the greater the number of elementary
functions. On the other hand, the greater the number of elementary functions,
the more articulated and complex the prediction that can be made by equation 4-
4, and thus the better — generally speaking — the performance of the finite
element.

For example, in the case of a rod with three nodes, for a /near approximation for
the displacement field as in equation 4-7 for the rod with two nodes, we can
substitute a parabolic approximation that allows us, for instance, to comprehend
correctly the behaviour of a rod subject to a uniformly distributed axial force
(suspended rod). In the case in which the rod itself is modelled with elements
with two nodes, the unknown (parabolic) displacement field must be
approximated by means of as many straight line segments as there are finite
elements with two nodes used to model the rod.

L)

Up to now we have talked about an unknown displacement function “z(P)” and
we have tacitly admitted that this is the only unknown. In reality, depending on
the type of problem, we can have various unknowns, and thus need to model
more than one function. This doesn’t necessarily represent a problem. In fact,
we need only associate to each unknown function the nodal displacements
proper to it in order to arrive at as many “astrological principles” (equation 4-4)
as we need. For example, in a problem of plane stress in plane (x, y) the
displacement functions (u, v) are unknown. At each node “i” we can consider
the displacement in direction x, u;, and the displacement in direction y, v;, and
write:

uP) = u,®,(P) + w,P,P) + u;d;P) + ... u, P, (P)
v(P) = v,®,(P) + v,®,(P) + vi®@,P) + ... v, P, (P)
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or, in matrix form, having made the vector of unknown displacement functions

U={u(P), v(P)}"

U=, 4
where this time
o T 0 P 0 @ 0
0 & 0 @&, .. .. 0 @
u,={u,, v;, Uy, Vayervgern, U, Vo)

This reorganisation of the equations in matrix form 4-8 doesn’t tell us anything
different from what we have already established. It simply allows us to rewrite
concisely the relations which in substance we have already understood but
which, essentially because of the number of different functions to look for, and
of the different number of nodes to take into account, can become quite
numerous.

Equation 4-8 represents the fundamental result of the approximations
€€ _2>

introduced. The subscript “e” indicates that we are referring to the nodal
displacements of a given finite element.

-

The system of hypotheses outlined here is that used historically when the FEM
was in its beginnings, and is still used in many of the most frequent finite
elements belonging to the various formulations (rod, beam, three- or four-node
membrane, three- or four-node plane strain, solid problems using elements with
four nodes, etc.). However, it is not the only one. In some cases only some of
the parameters “a” can be associated with nodal displacements “u”, while others
have no immediate geometric interpretation. In general, these parameters, which
are in addition to those of nodal displacements, do not cause any particular
problems, and are dealt with from the point of view of analysis in the same

manner as normal unknown nodal displacements.

There are other cases when, even if the number of nodes used to express the
approximation of the displacement field is equal, for example, to #, only 7 of
these are effectively used in connecting the element to the rest of the structure:
in this case we speak of condensation, indicating that fewer parameters for
calculation are used to describe the external behaviour of the element than are
used in its formulation.

There are still other cases which use a rather high number of parameters, and
which establish ulterior conditions for regularity in some points of the element in
such a way that it is possible to keep only part of the original parameters as
unknowns, that is, only the “final” nodal displacements of the element.
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Thus we can see that there are numerous techniques, just as there are numerous
and diverse formulations of the various finite elements, even when the number
of nodes remains the same.

Here it sufficient to observe that each finite element is identified by a set of
arbitrary hypotheses concerning the displacement field and/or the way that
appropriate conditions for regularity are established. Such hypotheses make it
possible to express all the relevant mechanical quantities such as strain energy,
strains or stresses in function of a limited number of unknown numeric
parameters, which generally coincide with the nodal displacements.

4.3 FORMAL DEVELOPMENTS: FINITE ELEMENT
ANALYTICS

4.3.1 CONGRUITY

Now that we have introduced the hypotheses that make it possible for us
to describe what takes place within a finite element solely as a function of nodal
displacements, we can take advantage of these simplifying hypotheses to arrive at
a set of important results.

The passage from displacements to strains is made, for each possible
formulation, thanks to congruity relations. From the point of view of
mathematics, the congruity relations tell us that the strains can be obtained
starting from the displacements by taking a certain number of derivatives. For
example, in the elongation of a beam, when the displacement u(x) is known, the
strain is obtained from the first derivative, u'(x). In Euler-Bernoulli bending,
when the translation of axis w (the elastic line) is known, we can obtain the
strain from the second derivative w”(x). In plane stress theory, when the
displacements u(x, y) and v(x, y) are known, the strains are obtained from
suitable partial derivatives of u and v, such as Y, =0.5(u, +v,). And so on.

If U is the vector of unknown displacements for the formulation being

studied, vector €° of the generalised strains associated with that formulation can
thus be obtained by means of the fundamental relation

£ =CU [4-9]

where the rectangular matrix C is a matrix of operators, that is, each of its
elements is a certain derivative applied to a suitable component of displacement.
If nfis the number of functions of unknown displacements and #s the number of

% In order to avoid notation that is too elaborate we have used symbol € for generalised strains as well. It should
be understood the strains “€” can be defined in different ways according to the kind of formulation.
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unknown generalised stresses or strains, then matrix C has zs rows and #7f
columns, and thus is of the type (s, 7).

For example, for plane stresses in plane (x, y), #5=3, n/=2:

0,
ox 4 ___
{st €, ’va}ngz 0 iQ F‘(X,y)«{ =cu
- 19y [[v(xy)
90) 1 90)
dy | ox

These relations simply express in matrix form, and therefore concisely,
what the various formulations say about unknown displacement fields, congruity
relations, and generalised strains.

Now, recalling the result obtained in the previous section, we can write
€ =CU=C®Pu,
and defining rectangular matrix B as
B=C® [4-10]
we finally obtain
€=Bu,. [4-11]
Rectangnlar matrix B is a matrix of known functions. It is obtained by applying
the derivatives required by the congruity relations to the (known) shape
functions @. Thanks to these passages, analogous to those we have already seen
for the displacements, we are able to express the strains by means of known functions

(appropriately derived from the shape functions) and unknown numeric coefficients, the same
nodal displacements u, that we use to express the displacement functions.

4.3.2 CONSTITUTION

Knowing the strains immediately opens the way to obtaining the stresses.
In fact, there is a quite precise relationship between the vector of generalised
stresses O and the vector of generalised strains €. This relationship expresses the
generalisation of Hooke’s law by means of a certain number of suitable numeric
coefficients depending on the material and the geometry. This relationship is
linear, and can be written concisely as:

0=Dk. [4-12]

Matrix D, square and symmetrical, expresses this relationship between stresses
and strains. This matrix is made of numbers that we are perfectly capable of
calculating when the characteristics of the material and the geometry of the
structure are known. But then, for equations 4-11 and 4-12 we can write

0=DBu,, [4-13]
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relations that also mafke it possible to express the stresses as a function only of the unknown
nodal displacements u,

We have thus arrived at the conclusion that the displacements, strains and
stresses within the finite element can all be expressed by means of known
functions and coefficients, and by means of the unknown nodal displacements.
The Astrological Principle has been taken to its extreme: #f we know the nodal
displacements, then we are able to calcnlate approximately what takes place within the finite
element.

4.3.3 ENERGY ASPECTS

Now let’s take what we have found up to this point and apply it to define
the situation of a finite element in equilibrium after application of the loads.

There are two ways of studying the situation of equilibrium of a finite
clement: by means of the energy method, that is, writing the stationariness of
total potential energy, or by means of the static method, that is, setting in
equilibrium all the forces acting on the element itself.

The strain energy stored in a finite element following the strains to which it
has been subjected can be written as

7= 0.5"cdV.

This means taking the integral sum of all the “volumes” dV of the finite element
(the “volumes” can be a segment of volume, or a segment of surface or of line,
depending on the kind of problem being studied) of the elementary strain

energies. In this expression, € and © are generalised strains and stresses.
Applying what we have found up to this point, the strain energy can be written’
Z=05u," (B" DB dV)u,.

This important relation was found by simply substituting the simplified
expressions found for stresses and strains in the expression for strain energy, and
placing the values that don’t depend on the point in the element outside the
integral sign. In this case as well we have obtained the fundamental result of
making the value of a complex quantity depend essentially on two contributions:
the contribution of the integral (IB "D B dV), which is the sntegration of a set of

known functions taken inside the finite element, and the contribution of the nodal
displacements w, which are unknown numbers.

Integral [BT D B dV is the integral of a square matrix of the same order as
vector u,. The integral is simply a matrix whose components are the integrals of
the individual terms. Matrix BT D B dV, square and symmetrical, is called stiffness
matrix K, of the finite element. Thus we can write

7 Recalling that (Bu)™=u™ BT.
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K =B"DBdV [4-14]
7Z=05u"K_ u, [4-15]

To obtain the strain energy in the deformed configuration of a finite element,
starting from its nodal displacements, the element’s stiffness matrix is pre- and
post-multiplied by the vector of nodal displacements, and the number found is
divided by 2. Even though it is obtained by multiplying a matrix by vectors, the
strain energy Z is a number, a scalar quantity, as required by definition. K, u, is a
column vector and u, " (K, u,) is a number.

It is easy to see that the matrix has to be symmetrical:
kT
K=K, .
We need only transpose equation 4-14 and remember that D itself is
symmetrical.

Let’s look now at the applied loads. Loads can be divided into two categories: on
the one hand there are the known “volume” forces b and the known “surface”
forces p; on the other hand there are the unknown actions s that the finite
element exchanges with those adjacent to it. Both of these cases concern
functions that we have ordered in a vector that has the same characteristics as
the vector of displacement U. Forces b and p are £nown applied actions; forces r
are unknown reactions that obey the principle of action/reaction: they act in a
certain direction on our finite element, and in the opposite direction on the
adjacent finite element.

Let’s look first at the first set’s contribution to the work. If we use the symbol V
for “volume” and S for “external surface” of the finite element, meaning the
element’s domain (be it a line, surface or volume) and its boundaries (be they
points, lines or surfaces), we can write the first of the two contributions as

W,=[u"bdV + [u"pdS
that is, by first multiplying the elementary volume forces bdV by the
corresponding displacements U, and then taking the integral sum, and next

multiplying the elementary surface forces by the corresponding displacements U
and then taking the integral sum.

Taking into account that the displacement functions can be expressed by means
of equation 4-8, the work can be written

— T[T T ([T
W,=u, " ("bdV) + u,” (@ pdS).
Once again everything is made to depend on the displacements u,. The
quantities defined here

sz(h) deV)
f=(Jp"pds)
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are two vectors of numbers, perfectly capable of being calculated beginning with
the known functions p, b, and ®. If there are » unknown displacement
functions and » nodal displacements, then matrices @ have # rows and »
columns, and thus the product ®'p has the following dimensions
(n, W) (n, 1) = (m, ) (m, 1) = (m, 1)
that is, both f; and f, have the dimensions of a vector with 7 rows (a column
vector).
We can then write
W, = u,(f, + f)= u,'f.
Since we set
f=1 + fp
the vector is called he vector of equivalent nodal forces. 1f W = u,'f,, then the work
performed by the volume and surface forces is obtained by multiplying the #oda/
displacements u, by the odal forces f, so that this product of the forces and
displacements of the nodes gives rise to the work performed by the loads applied
on the element as a whole. In reality, the f, do not exist; they are not applied on the
nodes of the actual structure. They are fictitious forces which have, however, as far as
work is concerned, the same effects that volume and surface forces weighted by
the corresponding displacements would have. They are equivalent nodal forces.
Applying this same logic to the reaction forces s as well, it is easy to intuit that
we can say that the contribution W, of the reaction forces to work W as a whole
is obtained by
W, =u,'t

r € €

since we established

£ =([®7sdS).
In contrast to the forces f,, the nodal forces r, are completely unknown. The
total potential energy therefore becomes (recalling that II=2-W)

M=05u,"K u,-u'f -u'r, [4-16]

4.3.4 EQUILIBRIUM

If we want to establish equilibrium we have make II invariable for a generic
variation of configuration (the principle of stationariness of total potential
energy). Now, the configuration — that is, the set of displacements — is
completely contained in the vector of nodal displacements, since we presume
that the shape of the displacement field does not vary, because it is always
described by the same shape functions. Therefore, in going from one configuration to
another the only thing that changes are the nodal displacements, which are solely responstble for
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the quantity of displacement within our finite element. The variation in total potential
energy is thus equal to

OIM=0.58u,"K u, + 0.5u," K_du, - du,'f, -du,'r,.

Given that K, is symmetric, and that the transpose of a number is still the same
number, then the second term,

0.5u,” K du,,
can be written equivalently as
0.58u," K_u,
and thus
OIl= 6u," K_u, - 8u,'f, -0u,'r,.
Factoring out the vector du, ", we get
OIl=du," (K u,-f, -r.).

Since the variation of IT has to be null for all possible du,, it necessatily follows
that in order for there to be equilibrium, the following fundamental relation has
to exist:

K, u, - f, -r.=0.
That is, in terms of r,
r=K u,-f. [4-17]

This tells us that the necessary condition for a finite element to be in equilibrium is that the
vector of the equivalent nodal reactions is equal to the difference between the elastic recall forces
K. u, and the equivalent nodal forces f,. This condition corresponds to having
established equilibrium in a certain number of points: the nodes. This node
equilibrium averages out in terms of energy to the equilibrinm of the finite element as a whole.

Each row of the vector equation corresponds to writing the equilibrium along

one of a node’s components of displacement (translation or rotation) and, in

scalar terms rather than vector terms, if 7is the index of the /th row, we can write
=YK, - f; [4-18]

(here for the sake of simplicity we have omitted the subscript “e”).

Each component of displacement of a generic node of the finite element
under study therefore has to be impeded by the equilibrium of three forces:

® The resultant r; on the node, in the given direction, of the reactions
that arrive to the node from adjacent elements attached to it; this
force is unknown;

® The resultant f; of the action directly or indirectly applied to the
node via known external loads; this force is known;
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® The resultant XKju; of the elastic recall forces of the given finite
clement, acting on the given node in the given direction in relation
to the displacements to which the eclement is subject; this is
unknown a priori, since the displacements are unknown. If the
displacements were known, then the force would be known.

If we look at equation 4-17, we can see that it concerns a vector relation. That is
to say, there are vectors whose number of components is given by the N
number of nodes of the finite element by the » number of nodal displacements
taken as parameters for calculating at each node the unknown displacement
functions of the given formulation: 7=Nn.

For example, in a plane problem of # = 2 (unknown functions u(x, y) and v(x, y),
unknown nodal displacements u; and v, that is, each node’s two translations in
the plane), if the element has three nodes (IN=3), then 7»=3x2=6, and equation
4-17 corresponds to 6 distinct equations.

For a solid problem of #» = 3 (unknown functions u(x, y, z), v(, ¥, z), WX, ¥, 2),
unknown nodal displacements v, , v; and w, , that is, each node’s three

translations in space) and if there are eight nodes (IN=8), then 7 = 3x8=24, and
equation 4-17 corresponds to 24 distinct equations.

For a beam in space with two nodes (IN=2), with #»=6 (unknown functions u, v,
w, 0 and unknown displacements u;, v,, w,, 0, @, N,® that is, each node’s three
translations and three rotations), then m=12, and there are thus 12 distinct
equations.

4.3.5 A SIMPLIFIED MODEL FOR THE STRUCTURE

1f we look for a moment at what we have found up to this point, we can see that
writing the simplified relations 4-1 meant that we were no longer dealing with
the equilibrium of a segment of the domain under study with all of its infinite
internal points, but rather with the situation in which a certain limited number of
points are considered to be subjected to the action of a given number of forces,
some of which are known and some of which are not: #he nodes.

We can consider the nodes as miniscule rigid cubes, each of which is
generally subject to six distinct components of movement, six degrees of
freedom. In fact, as far as equilibrium is concerned, these miniscule cubes behave
exactly like miniscule rigid bodies in space, and ate thus subject to three possible
translations and three possible rotations, each of which is independent of the
others: the three nodal transiations and the three nodal rotations.

8 It should be noted that in the case of beams the number of unknown functions (4) does not coincide with the
number of unknown nodal displacements (6) in each node. We will discuss the reasons for this later.
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Figure 4-7: The nodes of the model of a building, without a
representation of the elements. Each node has six degrees of freedom, and
is subject to forces that tend to make it move, and stiffnesses that restrain

it. The finite element method imposes equilibrium at each node by
calculating the displacements that give forces of elastic recall that are
equal to the applied forces.

The nodes of each finite element are induced to move from their original
position either by volume or surface forces applied directly to the element, or
communicated to the nodes by it, or by actions communicated to the element by
adjacent elements, which are in their turn distorted.

The forces that make the nodes move are above all caused by actions
applied directly (when the forces are actually applied to the nodes) or indirectly
(when these forces derive from the volume and surface forces applied to the
clement). But they are also caused by the fact that other elements are attached to
that node, and these other elements in their turn are subject to distortions which
they counter with elastic reaction forces: an example of this mechanism is when
we place a book on a glass that rests on a table: the table will be pressed down
because the glass, compressed by the weight of the book, communicates the
actions to the table.

The movement of the nodes of the element in question (caused by the
forces listed earlier) is countered by a set of reaction forces due to the fact that,
since they are attached to the element, the nodes are held to it by means of the
clastic recall forces. These forces act on the nodes in ways that depend on the
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formulation of the element (that is, depending on the chain of simplifying
hypotheses made first about the formulation and then about the element), and
these should not be confused with the forces that are applied on a part of a real structure.

The elastic recall forces increase as the movement of the nodes increase,
so that, up to a certain amount of movement, they exactly counterbalance the
forces that make the nodes want to move; the nodes thus remain in equilibrium.
In this situation any ulterior variation of the configuration would annul the first
variation of total potential energy.

So, we can imagine the nodes of an element to be like little cubes that are
solicited by forces that want to make them move, and are recalled by “springs”
that tend to put them back in their places: part of these springs are owing to the
finite element in question, and part to adjacent finite elements.

If there is no “spring” attached to a certain component of translation or
rotation of a given node, then there are two possible cases:

1. There are forces that want to make the node move in that direction
(that is, in the direction of the translation or rotation);

2. There are no forces that want to make the node move in that
direction.

In the first case, equilibrium is obviously impossible, in that there are no
elastic recall forces that can oppose the node’s movement.

In the second case equilibrium doesn’t matter, since nothing makes the
node move and, at the same time, nothing opposes any movement.

In its turn, the lack of a “spring” attached to the degree of freedom in
question can be due to two distinct causes:

1. No elements of any kind are attached to the node in question;

2. None of the elements attached to the given node possess a stiffness
for the degree of freedom, due to the formulation of the elements
themselves.

In the first case, the node is said to be free or disconnected. In the second case
we say that the degree of freedom is inactive, or that the stiffness associated to is
null stiffness.

4.4 THE PROBLEM OF CONGRUENCE AND
COMPATIBILITY

The displacement field predicted by equation 4-1 does not contain gaps or
overlaps since it is obtained by combining continuous functions linearly. We can
thus expect that congruity is satisfied within the finite element. But what
happens on the edge?
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Up to this point we have looked at what happens to a certain finite element
by imagining it to be extracted from its context. We have not worried about any
coherences between what takes place within “our” finite element and what takes
place in others, especially in adjacent ones.

This is not acceptable, because it is evident that there has to be some kind of
coherence between what happens in one finite element and what happens in
elements adjacent to it.

For the sake of simplicity, let’s consider two adjacent finite elements of the same
type, and look at what takes place at the points that lie along the shared edges.
The edge in question can be a point (as is the case when the two elements in
contact have linear domains, for example, beam or rod elements), a line (as
happens when the domains of the elements are segments of surfaces, for
example in plates or membranes), or a surface (as happens when the domains are
solids, such as for tetrahedral or brick elements). The points that lie on the
shared edge appertain simultaneously to both elements.

In order to avoid contradictions in our hypothesis, the displacement of the
points on the shared edge, conceived as belonging to one of the finite elements,
should be equal to the displacements of the points of the shared edge, conceived
as belonging to the other finite element. This circumstance is called compatibility.
Compatibility is simply a particular aspect of congruity, that is, of the
requirement that there are no gaps or overlaps at the boundary between two
finite elements. In the earlier definition we spoke of displacement, but we must
also add all the derivatives of displacement required by the formulation. For
example, if two plate elements are adjacent, then the deflection must be
continuous, but so is the derivative of the displacement (that is, there must be no
cusps in the deformed surface).

An element is compatible if it is paired with another that is identical with respect
to congruity. If instead two identical and adjacent finite elements predict
different displacements (or derivatives of the displacements), then for identical
points in the domain in question it is clear that congruity will be violated, and the
element is incompatible.

For example, figure 4-8 shows two adjacent triangular elements, 934 and
933, in a problem of plane stress. Let’s suppose that the shared side is the side of
nodes i-j for element 934 and j-k for element 933. If a linear displacement
function is used, of the type

u(x, y)=a,raxtay

for the displacement, and if A is a parameter comprised between 0 and 1 that
allows us to move along the shared side, then for element 934 we must have
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Figure 4-8: Part of the mesh of a membrane (plane stress).

Ugzy (A’):ui—"—}\‘(uj_ui)
and for element 933
Ugs3 (k):uj—’_}\‘(uk_uj)'
In fact, this is the only way to satisfy the linearity that was hypothesised and

at the same time satisfy the equations 4-6. Substituting A =0 and A =1 results in
the desired nodal displacements, and furthermore, the variation is linear in the

abscissa A.
But according to the table of global node numbering, we have
element 933 node j global numbering 508
element 933 node k global numbering 488
element 934 nodei global numbering 508
element 934 node j global numbering 488

since the two elements are attached at the same nodes, and therefore, according
to global numbering, for displacement u along the shared edge, for element 934
we have

Ug34(A) =0T AU 55-Us )

and for element 933

Ugss (M) =55 FA(W55-Us0g)
(the number in bold is the element number; the non-bold number is a node
number). For each A,

Ugsa(M)=ug55 (V)
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a relation that indicates the complete compatibility of the two elements along the
shared edge. Since similar justifications can be applied to the other sides as well,
the element for the stress plane whose displacement functions are linear is
compatible.

The lack of compatibility is a price we must sometimes pay, given that the
hypotheses about the displacement field are only approximate. In certain cases
the lack of compatibility is therefore a known and accepted characteristic of the
finite elements used. Obviously the lack of compatibility has significant
consequences, since when the elements’ dimension tends to zero, the violation
of congruity does not tend to zero, and thus it may be impossible for the
approximate solution to converge to the exact one. The presence of non-
compatible elements also leads to the loss of important properties such as the
monotonicity of the convergence, that is, the fact that successive meshes which
are increasingly refined, lead to necessarily increasing degrees of precision.

In the case of non-compatible elements it is not possible to satisfy congruity
completely since a part of the inter-element displacement field is discontinuous.
There is no remedy for this.

However, we do find a series of errors in meshing that lead to violations of
congruity even though this isn’t necessary. For example, take the mesh shown in
figure 4-9, which is made as before with triangular elements whose displacement
field functions are linear (for clarity, the elements are shrunken).

It is clear that congruity is violated here even though the elements are
compatible. I7 is the way the mesh was constructed that prevents congruity from being
respected. In fact, along the side defined by nodes 7-9, the displacement of the
points predicted by element 1 is linear, while along the same segment the
displacement will be given by two linear segments when these points are thought
of as appertaining to elements 2 and 3.

Figure 4-9: An example of a violation of congruity (for clarity, elements are
shrunken).
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The displacement of the points between node 7 and node 10 depends on node 7
and node 9 if the points are thought of as belonging to element 1, while it
depends on node 7 and node 10 if the points are thought of as belonging to
element 3. The displacements can never be identical. The same discrepancy
exists for segment 10-9. The position of node 10 will not be that predicted by
the shape functions of element 1, and thus there will be an ovetlap or gap along
nodes 7-10-9.

The correct mesh is shown in figure 4-10 (the elements have been renumbered).

i §

Figure 4-10: Congruity restored.

In order to treat this material systematically, we need to go into greater detail.

4.4.1 CLASSIFICATION OF CONNECTIONS

An element is said to be connected to a node when that node communicates at
least a part of its displacements to the corresponding point of the element. The
fact that a node is located in correspondence to a point of an element does not
imply connection; in fact, the node can simply be located in that point without
transferring its movements to the point itself. To be more specific, we can say
that a node is connected to an element if it is part of the connectivity table of that element.
Let’s consider the kinds of relationships that can exist between two elements.
Two elements are said to be connected if they have at least one node in
common, that is, if there is at least one node that is found in the connectivity
table of both elements.

Elements are divided into three categories based on their domains: one-
dimensional elements (the domain is part of a line); two-dimensional elements
(the domain is part of a surface); three-dimensional elements (the domain is part
of a solid). The edge of a one-dimensional element is constituted of two points
(the nodes at the end). The edge of a two-dimensional element is constituted of
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a certain number of sides, be they straight lines or curves, each defined by a
certain number of nodes (in general there are two nodes per straight line sides
and three nodes for curved sides). The edge of a solid element is constituted of a
certain number of faces (planes or curves). The edge of each face is defined by a
certain number of sides, be they straight lines or curves. The faces usually have
three nodes (triangles), four nodes (quadrilaterals), six nodes (curved triangles),
or eight nodes (curved quadrilaterals).

Let’s now look at the relationships that exist between finite elements of the same

type.

W i

1211

Figure 4-11: Connected sides. Side N1-N2 of the first element is connected
to side N2-N3 of the second element (cfr. table 4-2).

Element N1 N2 N3 N4
1 7 8 9 10
2 11 8 7 12

Table 4-2: Elements connected on a side.

A side of a two- or three-dimensional element is said to be connected with the
side of another two- or three-dimensional element (or connected on a side) if all and
only the nodes of the side of the first element are the same nodes of the side of the second
element. 1f this is true, and if the element is compatible, then the displacements
(and possibly the derivatives of the displacements) of the point on the side
predicted by one of the two finite elements will be identical to those predicted by
the other one.

If only one node of the edge is common to two two-dimensional elements,
without any geometric superimposition of the sides connected at the node, then
the elements are said to be have a cuspidal connection. A cuspidal connection
between two identical finite elements indicates the identity of the displacements
of the common point.
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Figure 4-12: Elements 1 and 2 are cuspally connected, 1 and 3 are
connected on a side, and 2 and 3 and connected on a side (cft. table 4-3).

Element N1 N2 N3 N4

1 7 8 9 -
2 8§ 10 1M1 -
3 8§ 1 9 -

Table 4-3: Node 8 is common to element 1 and element 2. Side N2-N3 of
element 1is connected to side N3-N1 of element 3. Side N3-N1 of element
2 is connected to side N1-N2 of element 3.

11 10

12

L o]
| [

Figure 4-13: Partially connected elements: node 7 is common to side 7-10
and side 7-9, but one node is not sufficient (cfr. the incidence table, table

4-4).
Element N1 N2 N3 N4
1 7 8 9 -

2 12 7 10 11

Table 4-4: Incidence table for the structure in fig. 4-13.
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If only part of the nodes are identical, and the two sides are geometrically
superimposed, then the sides are said to be partially connected. Two sides with a
different number of nodes can only be partially connected. For example, a side
with two nodes cannot be connected to a side with three nodes.

If two sides do not have any nodes in common, they are said to be not
connected, ot disconnected.

When two sides are (totally or partially) geometrically coincident but do not have
any nodes in common, the two elements are simply said to be facing. Elements
that are simply facing are not connected, thus there is no structural continuity
between them.

For example, figure 4-14 shows two elements with the following incidence table:

Element N1 N2 N3 N4
1 7 8 9 10
2 11 14 13 12

Table 4-5: Facing elements (incidence table for the structure in fig. 4-14).

Even though nodes 11 and 12 lie on the side defined by nodes 7 and 8, nodes 11
and 12 do not appear in the connectivity table for element 1, and thus they are
not connected to this element. Consequently, elements 1 and 2 are not
connected, even though they face each other. This could immediately be seen
from the mesh in the figure on the left.

10 9 10

[ 1€+]

1 13 14 13

Figure 4-14: Facing elements shown without shrink (at left) and with
shrink (at right).
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Figure 4-15 again shows two facing elements (which have the same connectivity
table as before, shown in table 4-5), but here the figures do not make it
immediately apparent that the mesh is not well made: the two elements appear to
be connected, but in order to see the double nodes that effectively make them
disconnected, we have to see the node numbering (which shows that the
numbers are superimposed).

The concepts we have seen for two-dimensional elements can be generalised to
the cases of three-dimensional elements as well. A face of a three-dimensional
element is said to be connected to the face of another three-dimensional element
of the same type if all the nodes of the face of the first element are all and only
the nodes of the face of the second element. If the faces have a node in
common but they are not geometrically coincident, they are said to be cuspidally
connected. If two faces don’t have any nodes in common they are said to be
disconnected. Two faces with different numbers of nodes can only be partially
connected.

If two elements are partially connected but have a face or a side in common
geometrically, they generally violate congruity. Thus partial connections should
be avoided, unless we want to simulate cracking, construction joints, or more
generally, situations which present discontinuities.

A B C

Figure 4-15: Facing elements, double nodes. A) without shrink; B) with
shrink; C) with nodes numbered.

Sometimes it is not at all easy to recognise a violation of congruity within an
existing mesh. Figure 4-16 shows elements that are partially connected: we can
thus expect to find violations of congruity and the mesh must be corrected.

To summarise, we can subdivide the connections as follows:
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DISCONNECTED ELEMENTS CONNECTED ELEMENTS
Disconnections Cuspidal connections
Facing, without double nodes Partial connections
Facing, with double nodes Effective connections

=
i
i
i
i
=

. m

Figure 4-16: An example of a mesh with congruities violated (partially
connected elements). The plate elements are shown with shrink, the beam
elements are shown with dashed lines.

4.5 LOCAL AND GLOBAL SYSTEMS

Up to this point we have implicitly assumed that the element was oriented such
that its own intrinsic reference systems coincided with the global reference
system of the structure as a whole. By zntrinsic reference systems we mean the
reference system used to describe everything that takes place within the element:
in the intrinsic reference system for a rod element, the first of three axes of
reference coincides with the axis of the rod and the other two axes are irrelevant;
in the intrinsic reference system for a beam element, the first axis coincides with
the axis of the beam, and the other two axes coincide with the principal axes of
the section; in the intrinsic reference system for a plate or membrane, plane (x, y)
coincides with the plane of the element, and so forth.

In practice this condition of coincidence is very seldom if ever present. The
elements can have different orientations with respect to each other and with
respect to the global reference system adopted for the structure as a whole (see

figure 4-17).
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Because of this, the /ca/ description of what takes place within a finite element
made when it is observed from a point of view coincident with the element’s
own intrinsic reference system is not the same as when it is observed from a
point of view that coincides with the reference system of the structure as a
whole, that is, the global reference. The “x-axis” or “axis 17 of a finite element
might be a directrix that is s#range from the global point of view, and vice versa,
the global x-axis might be a directrix that is s#range from the point of view of the
finite element in question.

Figure 4-17: Local reference systems of two finite elements (indicated by
axes 1, 2 and 3) and the global reference system. The local reference
systems of the other elements are not shown.

Of course, we don’t want to lose the advantages that come with using the
reference system that is most convenient for the case at hand, since this means
that the data as well as the results can be presented in a much simpler way.

However, we have to understand, in general terms, how we go from a
description in one system to a description in another, and vice versa.

The point of departure is constituted of relations that allow us to go from an
(x,y,2z) coordinate system, called 1, to an (X, Y, Z) coordinate system, called g.
Let’s suppose that (x,y,z)=1is the local coordinate system and (X, Y, Z)=g is the
global coordinate system. It results that

g=T1
whete T is a matrix that is square and orthogonal® Matrix T is simply created with

the cosine directors of the versors of the three local axes. This can be made clear
by an example.

9 Recall that an orthogonal matrix is such that its inverse coincides with its transpose: TTT=I=TTT.
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Let’s suppose that the three local axes are directed as follows with respect to the
global axes (see figure 4-18):

local x-axis (0, 1, 1)
local y-axis (0, -1, 1)
local z-axis (1, 0, 0).

First we find the versors of the three local axes:

local x-axis (0, 1/72, 1/42)
local y-axis (0, -1 /N2, 1/\/2)
local z-axis (1, 0, 0).

Next we form square matrix T with the cosine directors we have found, ordered

by rows

o - L

V2 2

1 1
T=0 -— —.

V2 2

1 0 0

2 1

Figure 4-18: An example of going from local to global reference systems,
and vice versa. The local axes (x, y, z) are indicated respectively by the
numbers ((1”’ ‘(2))’ (‘3”.

The following direct relations hold:
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o L _L
X| \/E \/E X
1 1
=P - =,
V2 A2
g h o ol4
which can be written in concise form as
1="Tg.
The inverse relations also hold
X 0 0 1) x
1 1
Y|=|= -— oy
V2 A2
V4 1 1 Z
— = 0
V22

and can be written in concise form as
g=T"L.

Let us now look at the nodal displacements, that is, the displacements of a given
node 7 of a certain element. These displacements u; are defined in the local
reference system, while the displacements u,, are defined in the global reference
system: we have added the subscript “g” to indicate “with respect to the global
reference system”. The number of nodal displacements varies according to the
formulation (two for planes, three for solids, six for beams, etc.) and according
to displacement type (translations or rotations). In each case we can write a suitable
square and orthogonal matrix T* that makes it possible to go from the global reference system
to the local one according to the matrix formnla

u=T*u,.
If we now look at the overall nodal displacements of the element, and we form

the vector u,={u,, u,, ...., uy }", with N the number of nodes of the element,
we can also form the larger matrix T such that

u=Tu,,. [4-19]
To do this we need only set
T 0 .. 0
0 T* .. 0

T=
0 0 0 TH*
We can now use equation 4-19 to update what we had found in the previous
section. Thus we no longer express all of the formulas as a function of nodal
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displacement 7 reference to the local coordinate system, but as a function of the nodal
displacements 7z reference to the global coordinates. This is an indispensable step
towards ultimately combining all of the data relating to the various finite
elements.

First of all, we can see that since each element has its own collocation, which is
different from all other elements, each thus has its own transformation matrix:
thus we have to write “T.” rather than “I”, that is, we have to introduce
subscript “e” into the transformation matrix as well.

The relationship between global nodal displacements u,, and local nodal
displacements u, is:

u=T, u,. [4-20]

Now let’s define the following new quantities, which represent the extension to
the global reference system of what we have seen earlier for the local reference
system:

Stiffness matrix K, of the global system
=T T
K,=T, K T. [4-21]
Equivalent nodal forces f,, in the global reference system

£ =T'f. [4-22]

eg —

Equivalent nodal reactions r, in the global reference system
= T
t, =T, 1. [4-23]

With these definitions the results that we found in section 4-3 can easily be
expressed in the following way (we will omit the steps, but these can be
reconstructed easily enough from the definitions just introduced and substituting
for each instance of u, its equivalent expression T u,,, and for each instance of
u," its equivalent expression uegTTCT):

Strain energy (see equation 4-15)

Z=05u,"K_u, [4-24]
Work performed by the applied loads
— T
W,=u,,  f. [4-25]
Work performed by the reaction forces
— T
W, = u,, fe, [4-26]
Finally, the element’s equilibrium equation (see 4-17)
.~ K, v — £ [4-27]
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In essence, we have expressed already known results in function of
quantities that refer to the global rather than to the local reference system, and in
particular, i function of the nodal displacements referred to the global rather than to the local
reference system. We are thus taking steps towards describing in a unified way what
takes place in the various finite elements. In order to do this we need to describe
everything in accordance with the same reference system. We are dealing with
equations that may appear difficult, but actually, if we keep in mind that the
subscripts “eg” simply mean “of element ‘e’ with respect to the global reference

system ‘g’”, the equations are much simpler to understand.

4.6 CALCULATING THE INTEGRALS

4.6.1 INTRODUCTION

We have seen that the situation of a finite element can be described by
means of a set of simplifications that lead us to write the equilibrium in discrete
form. In order to write the equilibrium equations materially we have to be able to
evaluate both the stiffness matrix and the equivalent nodal force vectors.

Let’s look again at the definition of the stiffness matrix of an element, in relation
to its local reference system

K.=B"DBdV. [4-28]

This matrix is composed of a certain number of integrals. Matrix D is composed
of material or geometric constants, and thus its calculation does not present any
particular difficulties. On the other hand, matrix B is composed of functions,
and since the product B'DB appears in the matrix, these functions have to be
multiplied by each other, giving rise in their turn to functions that are much
more complex (as well as being of a higher order).

Two distinct problems arise in evaluating these integrals numerically: the first is
that the integral is generally taken over a domain (that of the element) whose
form can be complex, a problem related to the element’s geometry; the second is
that it is not always possible to integrate in closed form the functions that result
from the product B'DB, and thus there arises a genuine problem of integration.

4.6.2 PROBLEMS OF GEOMETRY

To overcome the problems related to the complexity of the finite element’s
shape (which, remember, can also have curved sides), a computation trick is
often used that makes use of the concept of transformation. Without going into
the formulas in great detail (which is beyond the scope of this book, although
some examples will be seen in chapter 11), we can say that to the real domain of
the element there is associated a fictitious domain of regular shape, defined in a
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space in which the coordinates assume non-dimensional values that are generally
comprised between —1 and 1.

The fictitious domain has a very simple shape. For example, if the original
domain was a quadrilateral with sides whose slopes are all different, the fictitious
domain is a square whose centre is at the origin, with sides that go from —1 to 1.
In the literature, the coordinate system of the fictitious element is often indicated

by the tern (EM,0). In essence, the actual finite element with its nodes is
transformed into a fictitious finite element with an equal number of nodes but
whose shape is regular.

In substance, we use transformation formulas such as
x=x(En.)
y=yEn.8)
7=2(EM.0).

These formulas tell us to which point P(x, y, z) of the real finite element

cotresponds a certain point P(EM,L) of the fictitious finite element. They also
model the finite element’s edge as a function of the non-dimensional coordinates

(SyRO¥
For example, if we are dealing with two-dimensional elements, the equation
=1
corresponds to a side of the fictitious element, while the curve
x=x(-1.n)
y=yELm
Z=r(-1)
corresponds to the respective side of the real finite element.

As the values assumed by N (comprised between —1 and 1) vary, there
corresponds a seties of points P on the real element which describe one of its
“strangely shaped” sides.

Let x be vector {x,y, z}". If x, is the vector obtained with the coordinates of the
element’s nodes (in a three-dimensional problem X, ={x,, v}, Z;, X, V2» Zoye-- Xy
Vo 2.0") and @ is the matrix of the shape functions used to model the
displacements, the equations that relate the (§n,{)coordinates to the (x, y, 2)
coordinates can be written

x= P x,.
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Fictitious Real Y

Figure 4-19: Correspondences between the fictitious finite element and the
real one.

This is a particular choice for the transformation. The shape functions @ are

now defined in the space (§n,0), that is, =P EM,L), and from this it turns out
that zo model the shape of the element’s edge the same functions have been used that were used
to model the unknown displacements, an important circumstance. In fact, in equation
4-8 we had written

U = ®u,.
The elements created from this particular assumption are called zsoparametric

elements, and they constitute an important and widely used family.

Thanks to these formulas, with a few mathematical steps we can see that the
integral that must be calculated in domain (x,y,z) with dV as an infinitesimal

portion of the domain, is equal to the integral taken in domain (§,1,8) with dV*
as an infinitesimal portion of the domain, as long as JdV* is substituted in place
of dV, where ] is the Jacobian of transformation. In short,

K. =B(xy,)" D B(xy.2) dV=BENLT D BENL JdVE  [4-29]
If the domain is a surface in the plane (§,1)) we will have
dV*= d&dn.
If instead the domain is a volume, we will have
dVv#*= d&dn dC.
Formula 4-29 tells us that rather than calculate the integral over a “strangely
shaped” domain (for example, one whose edges are curves) we can calculate the

integration for a domain whose shape is simple (with straight line sides), as long
as the formula is modified as shown.
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Figure 4-20: A distorted quadrilateral element: the transformation is not
univocal, and the element is unacceptable.

The Jacobian of the transformation is a complicated function of the fictitious
coordinates (1,0). It is also an indicator of the validity of the transformation. It
is easy to see that if the real element is too distorted or folded onto itself, then
the transformation is not biunigne, that is, for a point in the fictitious domain there is
more than one corresponding point in the real domain; it is also possible that for
a point in the fictitious domain there is no corresponding point in the real
domain.

We therefore have to create elements that bhave interior angles no greater than 180° and, if
possible, with interior angles that are not too different from each other.

4.6.3 PROBLEMS OF INTEGRATION

Even though the domain of integration has been simplified by a suitable
transformation, the fact remains that the integral to be evaluated is generally too
complicated to be calculated in closed form.

To overcome this difficulty, a numeric integration is used, that is, rather than
evaluate the integrals in closed form, the integral is usually calculated in a
simplified way, making use of techniques of integration that do not require
finding the primitive of the function to be integrated.

The technique known as Gaussian integration is particularly important and widely
used. In Gaussian integration the integral

ffede

(presumed to be only of variable &) is evaluated by means of a weighted sum,
that is, by setting

[£E) d & = w fE)+w,f(E) Tw,f(E)+...w,f(E,).
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Function f is evaluated at a certain number of points (called Gauss points), and
to each point is associated a given weight, an appropriate number w.
Transforming an integral into a sum is very convenient, but does it work?

In effect we can see that the precision of a Gaussian integration depends on the
number of Gauss points used to evaluate the integral: as the number of Gauss
points increases, so does the precision with which the integral is evaluated.

Note that the position of the Gauss points does not remain the same as the
number of points is varied, nor when the weights change. In table 4-6 we see the
first Gauss weights and the first abscissas, presuming that the domain of
integration varies between —1 and 1.

In order to understand how it works, let’s take a simple integral such as
fx*dx.
The exact resultis (1/5 -(-1/5))= 2/5= 0.4.

If we adopt the Gauss formula using various numbers of points, we obtain the
following results:

1 point 0

2 points (0.5773502692)*+(-0.5773502692)*= 0.22222 22222

3points  2x0.5555555556(0.77459 66692)*+0=0.3999999999

4 points  2x0.347... (0.8611363116)'+2x0.652...(0.3399810436)"=0.3999.

As you can see, from three points and up the formula gives rise to an “exact”
result (the weights and the non-dimensional abscissas are written to the tenth
significant digit).

It can be proven that the formulas for Gaussian integration with # points can
exactly integrate polynomials of order (2n-1). Thus, a polynomial of order m=4
requires at least three Gauss points (2x3-1=5 > 4).

The use of Gaussian integrations significantly simplifies the calculation, because
a complex integral is transformed into a simple weighted sum.

The formula for Gaussian integration is also valid when integrating functions of
several variables: in this case the sum is not simple but double, in that it is
necessary to integrate in one or more directions.

Thus the integral
BEn.0)" D BEMN.L) Jdv*

which gives the stiffness matrix is transformed into a weighted sum of the values

of
BEN.H)' DBEND) ]

of a suitable number of points in the domain of the fictitious element, called
Gauss points.
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Number of Position Weights
points
1 0 2
2 +0.57735
02692
3 +0.77459 0.55555
66692 55556
0 0.88888
88889
4 +0.86113 0.34785
63116 48451
+0.33998 0.65214
10436 51549

Table 4-6: Non-dimensional abscissas and weights for Gauss points
(integrated from —1 to 1).

How to choose the correct number of Gauss points to be used in numerically
evaluating the stiffness matrix has been the subject of many studies. While it is
true that as the number of Gauss points increases, so does the precision, it is also
true that the computational burden of evaluating the functions by integrating in
several points also grows correspondingly. Further, since it can be demonstrated
that the FEM tends to overestimate stiffness, some authors have proposed the
deliberate use of techniques of reduced integration (that is, integration with fewer
Gauss points than necessary) in order to come closer to the correct values for
stiffness.

Regarding this, we quote K. J. Bathe:

“We recommend that full numerical integration always be used for a
displacement-based or mixed finite element formulation .... The
reason for recommending [full] numerical integration ... is that the
reliability of the finite element procedures is of utmost concern,
and if an integration order lower than the “full” order is used [for a
displacement-based formulation|, the analysis is in general
unreliable” [1996: 469].

This will be discussed further in chapter 11.
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5 ASSEMBLY
5.1 ARRIVING AT A COHERENT DESCRIPTION

Up to this point we have described what takes place within a finite element
without worrying about the relationship between what takes place in the
individual element and what takes place in the structure as a whole. It is evident
that we can’t really do this, since what happens in one element is largely
determined by what happens in the others, and we cannot understand the
structure unless we reconstruct the overall situation.

The forces acting on a finite element are in part communicated to adjacent
elements. These forces are determined by the resistance that each element makes
to its distortion, and this distortion depends on the quantity of relative
displacement to which its nodes are subjected.

The search for the values of displacement that simultaneously establish
equilibrium among the finite elements and the set of applied loads can only be
undertaken in a global way, that is, by considering the set of all possible
displacements in all nodes of the structure.

There are at least two different ways to arrive at the same set of final relations.
One is the static method, in which equilibrium equations are directly written in
discrete form (that is, not everywhere, but only in some points). The other is the
energy method, in which the total potential energy is written as the sum of the
potential energies of the various elements that make up the structure.

Before describing these two methods, we first need to clarify how we go from
the element’s nodal displacement vector to the nodal displacement vector of the
structure as a whole.

5.2 NODAL DISPLACEMENT VECTORS: FROM
ELEMENT TO STRUCTURE (AND VICE VERSA)

Let’s consider the vector of nodal displacements of the nodes of a given element
“e” with reference to the global system “g”, that is, u,,. This vector is obtained
by ordering the nodes of the element from first to last — i, j, k ... (or N1, N2,
N3...) — and then forming a vector constructed of as many blocks as there are

nodes. That is,
— T
ueg_{uig7 uigs AR uNg } .
Each block is a small vector that groups the displacements of a node; the

number of these displacements depends on the type of formulation and on the
finite element in question (for example, there are 6 displacements for a beam
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element in space, 2 for an ordinary element of plane stress, 3 for a plate element
without a membrane component, and so forth).

To be precise, we will have

Ng

Nodes 1, j, k, (or N1, N2, N3,...) of the element have a certain global
numeration that is different from the local one, and the correspondence between
the two numerations, as we have seen, is given in the connectivity table. Node
“” (or “N27, if you prefer) will be, for example, node 345 in global numeration.
The nodal displacement block 2 in the nodal displacement vector of that element
will be thus block 345 (that is, the three hundred and forty-fifth block) in the
vector of global nodal displacement. Each individual block of the nodal displacement
vector of the element corresponds to a precisely determined position in the nodal

displacement vector of the structure.

5 o 7 2

1 2 3 4

Figure 5-1: A simple structure made up of 8 nodes and 4 elements.

Let’s consider, for example, the simple structure described in fig. 5-1. Fig. 5-2
shows the correspondences between the blocks of the nodal displacement
vectors of element 1 and element 2 (which are both elements with 4 nodes). Fig.
5-3 shows the analogous correspondences for elements 3 and 4 (which are
clements of 3 nodes).

We can say that there exists a system that acts to transform the nodal
displacement vector of element “e”, u,, (with reference to the global reference
system), into the nodal displacement vector of the entire structure, u. In practice,
this system corresponds to a redistribution of the individual blocks that make up
u,,. Formally, the same result can be obtained by multiplying vector u,, by an
appropriate rectangular matrix, A
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Figure 5-3: Element 3 and element 4.

Assembly

In fact, it is possible to find matrix A, (the subscript “e” indicates that the matrix
varies from element to element) such that

u=A u,

o

[5-1]

For example, for element 1 of the structure shown in fig. 5-1, we can write,

where I is the unit matrix on the individual block.

Copyright © ICE Publishing, all rights reserved.
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Formally, equation 5-1 tells us how to obtain the global nodal displacement
vector starting from the nodal displacement vector of the element, and tells us
what global nodal displacements correspond to given local nodal displacements.
It tells us that the displacements of the nodes of the elements are not arbitrary, but are
instead quite precise displacements of the nodes of the structure to which the elements belong.

Matrix A, applied to a vector that is meaningful in the context of “e”, fransforms
that vector into the corresponding vector that is meaningful in the context of the overall
structure. Naturally, just as it is possible to define a matrix that allows us to go
from the element to the structure, it is likewise possible to define a matrix that
allows us to go from the structure to the element. This is a rectangular D, such
that

u,,=D, u. [5-2]

For example, for element 1 shown in fig. 5-1, this matrix is the result of the
following relation

| Yie |
| Yz |
u, [ [110;0;0/0{0{00]u,
——=——t——tr ===t ——t === -
u, | (0/1!0!0/0!0/0!0]u,
1 it i A R R B B B [ el
W | [9,010,0,0,1,0,0]u,
u, | (07000 L0000,
| Y7 |
l.lsg
It is easy to see that there must be
DA, =I
AD, =I

We need only substitute equation 5-1 in equation 5-2, or vice versa. In the first
two of these equations, I is of the same order as u; in the second, I is of the
same order as u. Additionally, taking into account that there necessarily has to

be,
u, u,=u'uy,
(given that operations 5-1 and 5-2 imply only a repositioning of the same
numbers, leaving the quantities unchanged), it must also be that
DEZAET
[>-3]
A=D.

€
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5.3 STATIC METHOD

In examining the situation of an individual finite element we have arrived at a
matrix equilibrium equation that summarises the various forces in play. On every
node of an individual finite element there are reactions exerted by adjacent
elements connected to that node (vector r,), the elastic actions exerted by the
finite element in question due to its various distortions (vector K, u,,), and the
actions due to external loads (vector f,). It must result that

reg:Keg ueg - feg [5_4]

(see equations 4-17, 4-27).

Looking at this equation, we can see that each of these vectors is expressed using
the nodes of the element, ordered in a way that is coherent with the numbering
of the element itself. If we want to obtain the same relation exploding these
vectors in order to give them their dimension as global vectors, that is, zf we want
to see what takes place in this element using global vectors instead of local vectors, then we
have to multiply by the rectangular matrix A, of the element in question, as
indicated by equation 5-1.

Ar,=A K, u,— Af,
If we now substitute the nodal displacement vector of the element with its
expression 5-2, in place of the nodal displacement vector of the element g we find the nodal
displacement vector of the structure u:

Ar,-AK,Du-Af,. [5-5]

Equilibrium equation 5-5 doesn’t tell us anything substantially different from
what equation 5-4 told us, it only says it in a different way. Rather than writing the
equilibrium of the element without regard to the rest of the structure, equation 5-
5 writes the equilibrium of the element 7 function of vectors that have the dimension of
the wvectors of the structure, not the dimensions of the vector of the element. The nodal
displacement vector u is the same for all of the elements of the structure, and no
longer changes from element to element as did u,,.

At this point we can impose a new condition. If it is true that A ., is the vector
that represents the reaction forces exerted on the nodes of element “e” by
adjacent elements, then it must be true, in obedience to the principle of action and reaction,
that the sum of all these reactions internal to the structure, as the elements vary, has to be null.
If we take the sum with respect to all elements “e”, we can write this condition
thus

> A r, =0. [5-6]

In effect, this condition says something new, because it takes into consideration
the fact that all the finite elements are part of a single structure, and thus that the
sum of all the internal reactions exchanged between the finite elements has to be
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null. If we place a glass on a table, the glass acts on the table, but the table acts
on the glass, with a force that is equal and opposite. The sum of the reaction
exchanged between the table and the glass has to be null.

Note that in equation 5-6 the sum is possible because we have converted the
description of what takes place from a local point of view (equation 5-3) to a
global point of view: all the vectors A, ., have the same dimension (equal to the
overall number of degrees of freedom of the structure), regardless of “e”, and
thus can be summed. If we apply equation 5-6 to equation 5-5, we obtain the
condition that eliminates the integral reaction forces and leaves only the forces
connected to actions A, f,, and the forces of elastic recall:

c Teg
A, K,D.u - A, f..=0. [5-7]

In the first summation in equation 5-7 the term u can be factored out since it is
always the same nodal displacement vector of the structure u

A K D)u-2A f =0.

g e, e Teg
Thus we can define two new matrices. The first is a square matrix of an order
equal to the number of degrees of freedom of the structure, and is called the
global stiffness matrix

K=Y A K, D. [5-8]

This is obtained by taking the sum of as many contributions as there are finite
elements in the structure. Each local stiffness matrix is “exploded” by the
assembly operation untl it has the dimension of the final matrix, then the
various thus obtained are summed. If K, is the stiffness matrix of the element in
the global reference system but with the local dimension and order of the nodes, then the
exploded stiffness matrix of the element is

A K,D.
The second matrix that we define is a column vector whose order is equal to the

number of degrees of freedom of the structure, and is called the eguivalent nodal
Sforces vector

f=YA f, [5-9]

e “eg’
This is also obtained by summing all the contributions of the various elements,
and is called “equivalent” because it does not generally deal with forces that are
actually applied, but rather with forces that, when multiplied by the
corresponding nodal displacements, give an amount of work that is “equivalent”
to that of the forces originally applied.

With equations 5-8 and 5-9 we can write an equation in matrix form that is the
solution to the structural problem in question

K u - £=0. [5-10]
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In this equation, the nodal displacement vector u is unknown, K acts as the
coefficient matrix, and f as the vector of known terms.

5.4 ENERGY METHOD

In obtaining the result in equation 5-10 we made use of the equilibrium
conditions of the individual element, found by means of the principle of the
stationarity of total potential energy applied to the situation of the individual
element. Nothing prevents us from establishing the equilibrium of the overall
structure in the same way, that is, by writing first the total potential energy, and
then establishing the stationarity.

The total potential energy II. of the individual finite element can be
written as

— T T T
[I=05u, K u, -uf -ur,
(see equation 4-16). If we express the quantities transforming them into the
global reference system, we can write

_ T T T
I[I=05u, K,u,—u,f

eg leg ~ Ueg Teg:

If we introduce equation 5-2 into this expression, we obtain the total
potential energy of the element written as a function of the nodal displacement
vector of the structure

II=05u"D' K,D.u~— u'D’ foo— u'D’ fog

Recalling equation 5-3, we can write

[I=05u"A K.,D u-— u'a, f,-u'A r,

If we want to obtain the total potential energy of the entire structure, we need only take
the sum of all the contributions of the elements that make up the structure :

IM=X0.5u" A, K,D u-— u'A f, —u'A r)

e teg e Teg
(the sum varies depending on “e”).

In the above expression the last term of the summation has to be null, in
that the work performed by the internal reaction forces is globally equal to 0,
thus, factoring out of the summation the terms u and u’, which don’t depend on

[TPR2]

e”, we can write:
— T T
N=05u” (XA K,D)u-u" AL,
If we now introduce equations 5-8 and 5-9, we arrive at

MI=05u"Ku-u'f
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The condition of the stationariness of total potential energy is written
3= 6u™ (Ku-f)

and must be verified for every possible du compatible with the constraints. It
follows that

Ku-f=0,

which is equation 5-10 found by other means.

5.5 REMARKS ABOUT THE SYSTEM OF SOLUTION
EQUATIONS

The matrix equation
Ku-f=0

corresponds to a system of equations in which the stiffness matrix K acts as a
coefficient matrix, and vector f as the vector of known terms, while vector u is
the vector of unknown terms. In chapter 8 we will discuss in depth the numeric
problems that arise during the solution of this system.

Finding the values of u that satisfy this equation means finding the
displacements that correspond to the distortions of the finite elements that are
able to generate the reaction forces that establish global equilibrium and that put
the structure in equilibrium under the loads applied. Finding vector u means
finding the configuration of the structure such that an infinitesimal variation of
configuration, made starting from the configuration found, leads to a null first
variation of total potential energy II. The strain energy Z of the structure
increases, but this variation is exactly compensated for by the work performed
by the loads W, and thus there cannot be any kinetic energy C or any movement.
If there exists some variation of configuration capable of allowing the onset of a
variation of kinetic energy, the structure would move from that configuration,
and could not be in equilibrium.

The matrix equation found expresses all of these facts by means of a
configuration that is not described in the most general way possible, but rather
starting from simplifying hypotheses made about the displacement field within
each element.

Once the displacements of the structure are known, we can disassemble these
displacements, to arrive at the displacements of the nodes of each element
(thanks to equation 5-2), and from these, by means of the relationships between
displacements and strains and the constitutive relations, to the stresses.
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5.6 REMARKS ABOUT THE STIFFNESS MATRIX

5.6.1 ASSEMBLY OF A SIMPLE STRUCTURE

Let’s look more closely at what is involved in the assembly of global
stiffness matrix K, formally defined in equation 5-8.

If we look again at the simple structure shown in fig. 5-1, we can see what
happens regarding the assembly of the stiffness matrix of the various elements.
Let’s first consider the stiffness matrix of element 1.

12345678

iTme | ‘ee® |
12 6 ¢ 2 jom " elel T

® Extradiagonal
W Diagonal

A N

Figure 5-4: Schematic representation of the assembly of element 1 shown
in fig. 5-1.

The element has as nodes (i, j, k, 1) the nodes (1, 2, 6, 5). On the left in fig. 5-4 is
the matrix of the element before its “explosion”. The matrix is divided into small
blocks that can be identified by the node number corresponding to the “row”
and by the node number corresponding to the “column”. For example, block Ay
corresponds to the row marked by node “5” and to the column marked with
node “2”. On the right in fig. 5-4 is the global stiffness matrix of the structure.
The block marked with the same node on the row and on the column is the
“target” block on which the block of the matrix on the left will position itself.
Fig. 5-4 shows the positioning of a certain number of blocks. Each individual
block is a small sub-matrix with a certain number of terms, depending on the
type of finite element and on the formulation. Practically speaking, the assembly of
the stiffness matrix of the individnal element K, consists in the appropriate redistribution of
the blocks of the starting K into the stiffness matrix of the structure K.

Fig. 5-5 shows the same kind of reasoning applied to the matrix of element 3.
The matrix K, of this element does not have the same dimension as element 1, because
element 3 has only 3 nodes, but final matrix K remains the same. We begin with
an empty matrix, filled only with zeroes, and then we sum all of the blocks of the
various matrices of all the elements. If, when a block is “placed” it does not find
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null values in the destination block, #he new block is summed (in keeping with 5-8) with

the pre-existing block.
12345678
R .
3 4 7 ZUTTTT| e extmdiagonal

7l s [T e W diagonal
4 [Co i Tiria 21 I
7 |Tu ; r .

Al i ]

5 i

Figure 5-5: Schematic representation of the assembly of element 3 shown
in fig. 5-1.

For example, consider the diagonal block corresponding to node 6 on the global
stiffness matrix. Because of what is shown in fig. 5-4 after the assembly of the
stiffness matrix of the first element, we will have

Ke6= A
But node 6 is also connected to element 2; more precisely, node 6 corresponds
to “node 1” of element 2. Thus, if we imagine that the blocks of the matrix of
element 2 are identified by the letter “B” (in the same way we used the letter “A”
for the first element and the letter “C” for the third), after the assembly of the
second element we will have

Ke= A By,
Summarising the data about the four elements in the following table, we can
write how the stiffness matrix of the structure looks after assembly.

Element Letter of sub-blocks Local Global
nodes nodes

1 A L, k1 1,2,6,5

2 B L, k1 2,3,7,6
3 C iLj, k 3,4,7
4 D i,k 4,8,7

Table 5-1: Data relative to the structure shown in fig. 5-1.

The final matrix is shown in fig. 5-6:
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Figure 5-6: Stiffness matrix for the structure shown in fig. 5-1 after
assembly

Although a matrix like this can be obtained formally by applying equation 5-8,
no computer program does it this way. Instead, the procedure used by the
programs follows the kind of distribution of blocks described in figs. 5-4 and 5-
5. The first thing a program does is to create an empty space that corresponds to
the space required for the stiffness matrix.! Then it cycles through the various
clements that make up the structure and constructs the stiffness matrix of each
clement K. Next, the program converts this stiffness matrix to the global
reference system by means of expressions like 4-2, obtaining K. Once K, has
been obtained, the program partitions it into blocks and sums each block in the
position appropriate for that block of that element, in the context of the more
general stiffness matrix K. The transfer of blocks into the various positions is
what effectively constitutes the operation of assembly. Naturally, analogous
reasoning is also valid for vectors of known terms, which are also partitioned
into blocks and appropriately transferred.

If we analyse the matrix in fig. 5-6, we can note the following important features:

1. Some blocks remain completely null, and they have no corresponding
stiffness terms;

Some blocks are particularly full (for example, block 7-7);
Some contain only a single term;

The global stiffness matrix is symmetrical;

AR

The only blocks that lie on the main diagonal are those that lie on the
main diagonal of the starting matrix (that is, blocks with equal indices).

1To be more precise, it prepares a space relative to part of the stiffness matrix, that is, the part that contains
terms that are sute to be non-null. This will be discussed in detail in chapter 8.
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5.6.2 THE STATIC INTERPRETATION OF THE TERMS OF THE
STIFFNESS MATRIX

Let’s consider a generic row of the solution equation. In algebraic terms,
presuming N to be the total number of degrees of freedom, we can write the
generic /~th row of the solution system in the following way:

Kju+ Kyu,+ Kpust+..  Kut.o Koy -£=0

i
or more concisely, introducing the summation with ; going from 1 to N,

> K.u-£=0.

17 1

The terms K represent the elements of the /~th row of the stiffness matrix. The
written equation corresponds to the displacement of a certain node in a certain
direction, to the #th degree of freedom, and expresses the fact that the sum of
all the action and reaction forces acting on #hat node in that direction, and thus
on that degree of freedom must be null. The K terms cotrespond to the forces
on the /~th degree of freedom because of the wnitary movement of the /-th degree
of freedom, all the other degrees of freedom being null.

In contrast, Kju; terms correspond to the forces on the #th degree of freedom
because of the fact that the j~th degree of freedom has undergone a displacement
u;. It shouldn’t come as a surprise that forces appear on the /-th degree of
freedom when the j-th degree of freedom moves. Imagine a cord attached to a
pole; we pull the cord to its full length and then move its free end. When we
exert a force on the free end, a force acts on the constrained end. The cord transmits
the stresses to the other end, which hasn’t actually been touched. Thus, in order
for some force to be transmitted to the ~th degree of freedom when the j~th
degree of freedom is moved, the two must be connected by something. In the
context of the FEM we can see that in order for the displacement of degree of
freedom / to transmit something to degree of freedom 7, a// of the other movements
different from u; being null, the two degrees of freedom have to be directly
connected by at least one element that procures a reaction like the one being
sought. In order for this to take place, it is necessary (but not sufficient, as we
will see) that the node to which degree of freedom 7 belongs and that to which
degree of freedom ; belongs are both connected to a single element that is
distorted. In fact, let’s suppose that degree of freedom ; moves. If none of the
elements containing degree of freedom 7 contain degree of freedom /, then none
of these elements will be deformed (since the displacements of their nodes are
aull) and thus they will not transmit any force due to movement u; to the nodes belonging to
them. As a consequence, the corresponding term in the stiffness matrix has to be

null:

jj
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Figure 5-7: Unitary displacement of node 7 to 7'.

The term K represents that force on degree of freedom 7 due to its own
movement, called direct stiffness. As we can see, the terms of direct stiffness lie on
the main diagonal of the stiffness matrix. If all of the nodes of the structure are
connected to elements, then the diagonal terms of the stiffness matrix associated
to movements limited by the stiffness of the element are all non-null. This is a
translation into mathematical terms of the fundamental circumstance that #f one
node attached to an element is moved while all the others remain fixed, a certain resistance is
encountered.

Let’s look at fig. 5-7. If we imagine that displacement u is the translation of node
7 in direction x, such that it goes to 7', we can see that element 1 remains
undeformed, while elements 2, 3 and 4 all deform. Because of the deformation
of these elements, forces are transmitted to all of the nodes excep? for nodes 1 and
5, which are not connected fo node 7 by any element. This is why, if we look at the
matrix in fig. 5-6, the blocks obtained by combining numbers 1 and 7 and
numbers 5 and 7 — that is, blocks 1-7, 7-1, 5-7 and 7-5 — are null.

If we look at the nodes one at a time, by examining the distorted and undistorted
elements we can predict the blocks where there will be a null stiffness (see table
5-2).

If we look at what we have found, we see that all of null blocks present in the
global stiffness matrix have been identified. The most crowded terms are those
in which the displacements of a node distort the greatest number of elements
(for example, term 7-7), while those that correspond to a single term are those in
which the movements of a node transmit forces to another node by means of a
single finite element (for example, 5-1 or 1-5). Choosing a row and a column of
blocks in the stiffness matrix means choosing one of its blocks: the number of
blocks in the stiffness matrix converging to that “global” block is equal to the
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number of finite elements that are distorted by the movement of the node

corresponding to the row in question.

Node Distorted Undistorted |Nodes Nodes with
movement elements elements without |reactions
reactions
1 1 2,34 3,4,7,8 |1,2,56
2 1,2 3,4 4,8 1,2,3,5,6,7
3 2,3 1, 4 1,5,8 2,3,4,6,7
4 3,4 1,2 1,2,5,6 |3,4,7,8
5 1 2,3, 4 3,4,7,8 |1,2,5,6
6 1,2 3,4 4,8 1,2,3,5,6,7
7 2,3, 4 1 57 1,2,3,4,6,8
8 4 1,2,3 1, 2, 3, 5,|4,7,8
6

Table 5-2: Movements of the nodes and resulting distortions of the
elements.

5.6.3 ENERGY INTERPRETATION OF THE STIFFNESS MATRIX
Let’s look at the quantity expressed by the quadratic form in u:

7=0.5u"Ku. [5-11]

In terms of its physical meaning, this is a number that indicates the elastic strain
energy stored in the structure as a consequence of the displacements u. An
examination of the physical significance leads us to the conclusion that there
must be
K'=K,

since according to Betti’s theorem the work performed by displacements u,
times the forces Ku, has to be equal to the work performed by the displacements
u, times the forces Ku,:

u,"Ku,=u, " Ku,= u,"K"u,.
That matrix K is symmetrical had already emerged from equation 5-8 together
with equation 5-3. In fact, recalling that the matrix of each K,, is symmetric, by
transposing equation 5-8 we obtain

T__ T_— T T Ty — T —
K'= (ZAe Keg De) _(Z De Keg Ae )_ (z Ae Keg De)_K‘

The quadratic form described by equation 5-11 would appear to say that given
any set of displacements u there must be a non-negative strain energy Z. In
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reality, we see that this cannot be true: if we rigidly translate the entire structure
then the strain energy must be null. In effect, the quadratic form is not strictly
positive (that is, it is not always greater than zero for every possible non-null
vector w), but is only semi-defined positive (that is, it is always egual to or greater than
zero for every possible non-null vector u), since the stiffness matrix K written up
to this point is actually singular, that is,

Det(K)=0.
Example.
"1 4z
- -
-l -2 7 1 = [12
- - uyS ] u = u

Figure 5-8: Various possible movements of a structure composed of rods.

In order to demonstrate this cleatly, let’s consider a structure composed of a
simple rod and look at what form the strain energy takes. The rod has two
nodes, and there are two unknown displacements, u, and u,. The rod can be
likened to a spring of stiffness £. The strain energy Z can be written

which, when multiplied out, becomes,

7=0.5(ku,*2k u, u,+ ku,’).
Let’s look now at what happens when there is a rigid translation, such that u,=
u,=u (cfr. fig. 5-8):

7=0.5(ku*-2k u u+ ku?)=0.
We can see that the strain energy is null. If instead we consider the movement
defined by u,;=0, u,=u (that is, an elongation of the rod, cfr. fig. 5-8), we obtain

7=0.5(ku?)#0.

If we calculate the determinant of the stiffness matrix of the structure composed
of a single rod, we obtain

DetX)=k>k*=0.
that is, the determinant of the stiffness matrix is null, as was said eatlier.

L)
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What we have just established for a simple rod is equally valid for a complex
structure: the assembly itself of the elements leads to a singular stiffness matrix,
since the rigid motions have not yet been excluded. It is possible to have these
rigid motions without the system storing any strain energy Z.

Note that system 5-10 cannot be solved as long as the stiffness matrix K remains
singular: it is thus necessary to modify the system in order to make it solvable.
The modifications mainly regard establishing the constraints that prevent there
from being any rigid motions in the structure, and this will be discussed in detail
in chapter 7.

5.6.4 TYPICAL CHARACTERISTICS OF THE STIFFNESS MATRIX

To summarise the characteristics of the stiffness matrix discussed up to this
point (and to list others that have not yet been discussed), we can say that after
assembly the stiffness matrix K has the following characteristics:

® It is symmetrical;
o It is semidefined positive;
® It has a null determinant;

® It is sparse (that is, it contains many null terms and few non-null
terms);

® It is banded (that is, the non-null terms tend to be grouped around
the main diagonal).

The last two characteristics require comment. The fact that the matrix is sparse
depends on the fact that if we consider a generic node (and thus, a generic “row”
of the matrix partitioned into blocks), this node will turn out to be connected to
only a few of the elements that make up the structure (the example shown in fig.
5-1 is misleading; in real models there are many elements and many nodes), and
so only a few nodes are in a condition to receive reactions when the node in
question moves. The majority of the nodes will not be directly connected to the
node in question, and thus all of the “mixed” blocks of the stiffness matrix
involving that node and nodes not directly connected will be null.

The fact that the matrix is “banded” is related to the fact that in general the
nodes ate located in geometric proximity, and are not numbered very differently,
and thus the nodes connected to the elements converging at a generic node will
have numbers that are not too different from it. The terms will thus tend to
arrange themselves about the main diagonal, including, as we said eatlier, the
terms of “direct” stiffness.
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S

S

Figure 5-9: Typical appearance of a stiffness matrix: symmetrical, sparse
and banded.

As we shall see in more detail in chapter 8, the fact that the matrix is
symmetrical, sparse and banded is very helpful for solving the problem
numerically, since there are special solving techniques that make it possible to
put these characteristics to good use.

5.7 HETEROGENEITY OF ELEMENTS

Up to now we have implicitly hypothesised that all the finite elements of a
structure are identical, and thus that all the blocks A; or By, and so forth
belonging to the global stiffness matrix are of the same dimension. However,
this is never the case in practice, since there can be various elements in a
structure, either because they are used to model different parts of the structure
subjected to different formulations (beams, plates, membranes, etc.), or perhaps
because, even within the context of a single formulation, there are elements

designed in different ways.

In order to understand how to deal with these cases, we need to
understand better how to describe the generic “block” of stiffness matrix K.

Let K;; be the block relative to the forces acted on node 7 caused by movements
of node /. If at each node there are » possible components of unknown
displacement and  degrees of freedom, then block Kj is of order . The
problem is that the unknown displacements can be different for the various
elements, given that different formulations are possible.

The best way to address the problem is to consider the most general case
possible. In ordinary finite element software programs each node can have at
most 6 different unknown nodal displacements, 3 translations and 3 rotations.
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Therefore we have to start from the principle that the order m of the typical sub-block of the
stiffness matrix is equal to 6, and that the generic vector of unknown displacements in a node 1
is made like this: 2

ui: {U., v, W, e’ (P’ W}T

where

u is the translation of the node in direction x ;
v is the translation of the node in direction y ;
W is the translation of the node in direction g ;
0 is the rotation of the node about the x-axis;
(0] is the rotation of the node about the y-axis;

L is the rotation of the node about the z-axis.

In some particular cases, when the structure is made up of homogeneous finite
clements, and when the formulation does not make systematic use of certain
nodal displacements, only some of these nodal displacements will be associated
with stiffness, while the others — that is, those that are not used and those to
which there are no corresponding stiffness terms in the formulation — are znactive.

For the sake of clarity, let’s first consider a rod element defined in plane xz. The
only two components of the displacement of the two nodes of the element
associated with stiffness are translation u and translation v: u = {u, w}T. Neither
translation v nor any of the rotations of the nodes of the element provoke any
reaction on the part of the element itself.

The assembly procedure is briefly summarised in fig. 5-11. Note that here, in
contrast to what was shown in figs. 5-4 and 5-5, we don’t see the assembly of the
blocks, but rather the assembly of the terms that correspond to & block. For
example, imagine that the end nodes of the rod in fig. 5-10 are nodes 7 and /, and
that, in the stiffness matrix of the element, the block corresponding to the
reactions transmitted to node 7 by the movements of node ; is block A;;. Given
the formulation of the rod element, this block has dimension 2x2. In the global
stiffness matrix K, block A corresponds to the position of block K, but block K;;
does not have dimension 2x2, but rather dimension 6x6. In fig. 5-11 we see that, in the
sub-block of the global matrix, each term is put exactly in its proper place, while
the stiffuesses associated with the global degrees of freedom that are not connected to any
stiffness of the rod remain null.

2 There ate of course cases that are still more general, in which are used, for example, higher order detivatives,
but they are not normally found.
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Figure 5-10: Rod element in plane xz.
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Figure 5-11: Inside a sub-block: assembly of a sub-block of the matrix of a
rod element of dimensions 2x2 and with only 2 translational degrees of
freedom in a sub-block of matrix K of dimensions 6x6 and with 3 degrees
of freedom in translation and 3 degrees of freedom in rotation.

We can now understand what happens when different elements are assembled:
these elements have stiffnesses that generally involve different degrees of
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freedom of the nodes of the structure (in this example only u, w; in other
examples there might be only w, 6, @, and so forth). During the assembly
procedure these stiffnesses are gradually added in their proper positions
(whatever these might be, and even different among themselves), until the list of
the elements is exhausted. A¢ the end of assembly there might be rows of the global
stiffness matrix that are composed of only zeroes: these rows will be associated with inactive or
fictitions degrees of freedom. To ascertain if a degree of freedom is inactive or
fictitious, it is only necessary to imagine that the node to which it is connected
moves in the direction associated with that degree of freedom: 7 #he finite elements
with their formulations possess at least one stiffness capable of opposing that movement, the
degree of freedom is active; if there is no element that possesses such a stiffuess, then the degree
of freedom is inactive.

Each row of the stiffness matrix that corresponds to an inactive degree of
freedom is entirely made up of null terms, and so is the corresponding column
(that is, the one with the same number as the row). Hence, we can see that each
inactive degree of freedom is an independent cause for the determinant of the
coefficient being null, and thus of the impossibility of solving the system of
fundamental equations. Like rigid motions, inactive degrees of freedom may also matke it
impossible to solve the system of equations.

Note that the considerations about inactive degrees of freedom do not pertain to
the actual structure, but rather to the idealisation and schematisation inherent in the finite
element model.

For example, if we are considering the nodes of a membrane, there is no
stiffness at all of the membrane element associated to the rotation of a node
connected to it, but this does not mean that when we rotate a T-bar embedded
in a wall (modelled with membrane elements), that rotation is free! Nor can we
say that a beam “hinged” at its ends and thus modelled with end releases
effectively rotates freely around its ends, given that there are connecting plates
and three or four bolts.

The inexperienced user of finite elements typically confuses the physical reality,
which is one thing, with the finite elements model, which is another thing
altogether. Thus to the question, “Can the finite element that simulates a T-bar,
connected to the membrane, rotate freely?”, the inexperienced user, thinking of
the physical reality, answers “no”, while in fact, in the context of the FEM, the
answer is “yes”.
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6.1 INTRODUCTION

Now that we have seen how to assemble the stiffness matrix for the
structure as a whole and the vector of equivalent nodal forces, we will now go
into detail about how to generate the known terms of the system of equations
that solve the problem, that is, the vector of equivalent nodal forces.

It is clear that assembly of the vector of known terms follows rules that
are quite similar to those already described for the matrix of the system: to each
element corresponds a vector of equivalent nodal forces, and each of these
vectors will come to be assembled, “exploded” to the complete dimension of the
problem, situating the various blocks that make up the vector itself in their
appropriate positions in the global vector. These are transformed into the system
of global coordinates and then assigned to the vector of known terms in the
appropriate position for each node.

We must better explain how these equivalent nodal forces are generated,
what they correspond to, and what kind of approximation we can expect when
the loads are schematised in one way rather than in another.

“Nodal forces” or “nodal couples” are actions that are applied directly to
the nodes of a structure. “Distributed loads” are actions that are applied to
points within the finite elements and which thus do not have any particular node
that corresponds to the point where they are applied. Note that in the
vocabulary of finite elements the term “distributed” has a slightly different
meaning than when it is used in statics and structural engineering in general.
Specifically, a “concentrated” force applied at a point in a finite element is
designated as a “distributed” load in the terminology of finite elements.

In addition to actions that are directly applied in the form of forces or
couples (whether concentrated or not), there are also actions that act on the
structure without their being any direct application of forces or couples: these are
the important family of “thermal loads”, that is, those belonging to the family of
actions that correspond to a warming or cooling of the structure as a result of
atmospheric agents and/or artificial causes.

In this chapter we will also look at a series of other questions related to
modelling the actions in the context of the FEM.

6.2 NODAL FORCES OR COUPLES

The first and most immediate type of action that can be applied to a
structure modelled with the FEM is constituted by #odal forces or couples. As a
convention we will use the term “forces” in a generalised sense, that is, to refer

Structural analysis with finite elements © Thomas Telford 2010
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to forces as well as couples, and thus for the sake of brevity we will speak of
nodal forces.

Nodal forces produce an amount of work given by the product of their
modulus by the displacement (translation or rotation) of the node to which they
are applied, in the direction of the forces themselves. Since the displacements of
each unconstrained node are part of the vector of unknowns, the work
performed by nodal forces can be evaluated directly by multiplying the (known)
forces by one or more of the primary unknowns of the problem at hand (the
nodal displacements). Even though these are approximate, we can see that in the
context of the FEM this is the best possible kind of schematisation, since the
work is modelled with the same degree of precision used for the displacement
tield of the nodes.

On the other hand, having to position a node in correspondence to each
force acting on the structure can be too tedious, because this approach can lead
to both excessive breaking or distortion of the mesh, and an excessive number
of nodes (and thus of degrees of freedom). Further, in the cases of loads that are
spread out rather than concentrated, the schematisation by means of “nodal”
forces can turn out to be impossible. In the next section we will see how this
difficulty can be overcome.

In general we can say that it is good practice to place a node where there
are significant concentrated applied loads — significant in the sense that,
presumably, a significant part of the structural response depends on them —, with
the aim of modelling the loads in question as nodal forces.

The nodal forces have to be applied to nodes to which elements are
attached, and furthermore, these elements have to have a degree of stiffness
(translational for forces, bending or rotational for couples) capable of opposing
the action of the force. If this is not the case, the force is applied to an inactive
degree of freedom and creates a problem during solving (cfr. chapter 7,activated
mechanism).

=

Figure 6-1: An example of a “grounded” nodal force.
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A particular case of nodal forces occurs when these are directly applied to
nodes that are completely or partially constrained. If the force is such that all of
its components in reference to the global axes act on a constrained degree of
freedom, it is completely “grounded”; if instead only some of its components are
in this condition while the others are directed according to effective degrees of
freedom, then it is partially “grounded”. If we consider the components, we can
see that the component of a nodal force can only be either completely
“grounded” or not at all.

“Grounded” forces do not lead to any additional work, since the
displacements that cause them are null. Thus the unknown nodal displacement
field does not depend on them. The software programs for finite elements
follow two possible routes for their treatment: the first consists in eliminating
these forces altogether, since they are irrelevant; the second consists in
eliminating these forces while, however, taking the reactions of the constrains
into account in the calculations. This second approach is clearly preferable,
because it is quite possible for the algorithms that automatically generate the
forces that result in the creation of these “grounded” nodal forces. It is a good
idea then to remain aware of these forces, even though they are neutral as far as
stress and strain are concerned.

Nodal forces do not require a genuine “assembly”, since they are directly
applied to the nodes. They are usually defined directly in the global reference
system, thus no coordinate transformation is required either.

In defining the nodal forces it must be borne in mind that not all
software programs allow forces to be applied additively. In fact, in some
programs the application of a force on a node eliminates all the forces previously
applied on the node.

6.3 LOADS “DISTRIBUTED” ON ELEMENTS

When the generalised force to be applied does not act on a node but
rather on a point within a finite element, or when the action — by its nature —
does not act on a particular point but is spread over a certain area of the
structure, then it is necessary to use “distributed loads”.

go0daks m
o i
23dan
[, J/ ]

Figure 6-2: Examples of distributed loads in a beam element.
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How do we evaluate the effect of distributed loads on the nodes of each
element? There are two methods for doing this, each with its pros and cons.

6.3.1 THE CONSISTENT APPROACH

The first approach is the one described in chapter 4, and uses an energy
criterion: the equivalent nodal forces are evaluated so that they produce a
quantity of work identical to that produced by the original loads in the context
of the most general possible displacement described by the shape functions. The
work performed by the actions is obtained by multiplying the force modulus by a
displacement that is not modelled directly but rather indirectly by means of the
shape function. This is thus an approximation that is intimately related to what
we called the astrological principle, that is, to an ulterior approximation with respect
to what was predicted by the nodal forces. The displacement of the nodes is
explicitly set as an unknown and its value is directly calculated in an approximate
way, while the displacement of the points within an element is obtained from the
nodal displacements and the shape functions, that is, by means of the simplifying
hypotheses made about the set of displacements within the finite elements.

2
¢,

Figure 6-3: Shape functions for beam elements.

For greater clarity, let’s look at how to calculate the equivalent nodal
forces with the consistent approach, for an ordinary finite beam element with a
load concentrated at % of its clear length. In this case the displacement function
is the elastic line v(x), and the nodal displacements atre given by the vector u={v,

Y, Vi, \|Ii}T. In practical terms, we take into consideration the translations and the
rotations of the element’s two nodes. It results that

v(x) =¢u

where

3x? x|
¢:{¢]) ¢2a (])3: ¢4}= 1—7-{—2? } x—=2
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The work W performed by force P applied at %4 of the clear length is

obtained by multiplying the force by the deflection w(3/4L), thus
W=Pv(3/41)=P{5/32, 31./64, 27/32, -9L/64} {v, W,, v,, ¥} ".

To this expression for the work correspond the following equivalent

nodal forces:!
{5P/32, 3PL/64, 27P/32, -9PL/64}.

The two forces are not divisible in a way that can be predicted @ prior:

while it is true that the sum of the two nodal forces gives tise to the applied load

(5+27=32), the division between nodes is not ¥4 - % as we might think. Further,
couples appear whose values likewise cannot be predicted @ priori.

/
e

{38l 15/6470)

(5/30p (2742)p

Figure 6-4: Equivalent nodal forces evaluated using the consistent
approach.

The use of energy criteria to evaluate the equivalent nodal forces,
rigorously in keeping with the hypotheses made about the displacement field,
gives tise to a set of equivalent nodal forces which can have properties that cannot
be immediately traced back to balanced elementary schemes. For example, a load
can be divided unequally between the various nodes of the element, or it is
possible that along with a translational component there is also an unforeseen
rotational component (couples in addition to forces).

The so-called consistent approach, which makes use of shape functions, is
the one that is most coherent with the concepts of the FEM, but as we said, it is
not the only one.

1 We omit the calculation of the variation of work for a generic variation in configuration, since this can be
immediately obtained through the variation of the vector u: du.
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6.3.2 THE LUMPED APPROACH

A second method, quicker than the consistent method, is often used for
evaluating the equivalent nodal forces. This method consists in dividing up the
resultant of the distributed load on the nodes in proportion to the respective
areas of influence, or by means of considerations about equilibrium (instead of
the energy equivalents of quantities of work). This second approach, called the
lumped approach, has the advantage of making calculation of the equivalent nodal
forces simpler and faster, but it is only reliable when the elements are sufficiently
small in size or when the effects of the loads on the elements is negligible with
respect to the distortional effects, related to movement relative to the element’s
nodes.

The stress within an element can always be evaluated as the sum of a
“local” stress and a “global” stress.

2 N/ mm

—
S—
S—
—-—

FrEry

the nodes do not move
166667 N mm 166667 N mm

83036.1 N mm

Figure 6-5: The effect of keeping nodes fixed within an element: deformed
configuration and “local” bending moment diagram of a element fixed at
both ends.

The “local” stress can be obtained by imagining that the element’s nodes
do not move, and evaluating the effect that the loads applied to the element has
on it. This stress corresponds to a strain that cannot be represented by the shape
functions, because it occurs at fixed nodes. For example, for a beam element
constrained at both ends and subject to a uniformly distributed load, only the
stress to which a strain that does not imply any rotation or translation of the
nodes can be read.

On the other hand, the “global” stress is the one that depends on the
fact that the nodes of the eclement move, and in moving have generated
distortions in the element itself that are responsible for strains and thus for
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stresses. These stresses arise in the element because of the displacements of its
nodes — connected to the rest of the structure — caused by the structure itself.

In the context of the FEM, usually only the “global” patt of the stress is
evaluated, the part due to the movement of the nodes, and thus in general the
“local” part has to be negligible with respect to this, a condition that is obtained
only by adopting finite elements that are sufficiently small.

Using the lumped approach in the same example used for evaluating the
forces with the consistent approach, we see that in a lumped approach, the
equivalent nodal forces corresponding to the element with a load at % of its
clear length, are as shown in fig. 6-6, with "4P at the end furthest from the load
and %P at the end closest to it, on the basis of simple considerations of
equilibrium. There are no couples.

(14)p (3 )p

Figure 6-6: Equivalent nodal forces using the lumped approach.

6.3.3 FIXED END FORCES (BEAMS)

As we have seen, the second method for evaluating equivalent nodal
forces divides the resultant of the loads applied on the element between the
nodes on the basis of elementaty considerations. The aim is to evaluate the
forces that act on the nodes and make them want to move. These forces are
evaluated as a lump sum, and thus an error is committed. What has to be done in
order to evaluate these forces exactly?

We have to think of the finite element as a small, isolated structure (fig.
6-7), keep the nodes fixed, apply the loads, and read the constraint reactions on
the nodes. The constraint reactions would have the same modulus and the
opposite sign of the equivalent nodal forces we are looking for. Normally, this
approach isn’t useful on generic finite elements, because examining this kind of
“little  structure” would present all the problems typical of the beginning
structure, and so the “little structure” could not be solved. There is, however, an
important special case in which the “little structure” can be solved in closed
form: the case of the beam.

In this particular case the constraint reactions under the most diverse
load conditions can be calculated separately with relative ease. In the case of
beam elements, the equivalent nodal forces are also called fixed end forces. In
essence, the equivalent nodal forces are — except for the sign — constraint forces
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applied on the nodes, when the structure is considered to be made like the single
tinite element, with the distributed loads applied to the finite element itself. The
sign changes, because the distributed loads and the nodal forces equivalent to
them would tend to move the nodes, while the constraint reactions instead keep
them still.

2]

Figure 6-7: Distributed loads on beam elements and schemes for
calculating the corresponding fixed end forces. It is possible to calculate
the exact values in all cases.

If we look again at the case already examined of the element with the
load concentrated at %4 of its clear length, the fixed end forces are evaluated by
solving the structure given by a beam whose clear length is equal to the clear
length of the finite element, fixed at both ends, and subject to a load equal to P
at %4 of its clear length.

The result obtained, shown in fig. 6-8, is the vector of equivalent nodal
forces opposite to the vector of the constraint reactions:

{5P/32, 3P1./64, 27P/32, -9PL./64}.

As we can see, this vector coincides with that obtained using the consistent
approach; this is because the cubic shape functions represent the exact solution
in the case where the displacements and rotations of the ends of the beam
clement are set. This case is an exception, and is valid only for beam elements.
The proof that the identity does not occur by chance follows from the
application of the principle of virtual work and by observing that the cubic shape
function is the exact displacement field as a consequence of the displacement of
the end nodes.
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Figure 6-8: Constraint reactions opposite to equivalent nodal forces.

(364

6.3.4 WHICH METHOD?

We have looked at two possible approaches for calculating equivalent
nodal forces, but which method should be used?

The choice of which method to use to calculate equivalent nodal forces
is usually made, not by the engineer, but rather by the software program. The
engineer might go around what is predicted by the program and apply equivalent
nodal forces evaluated with some criteria iz place of the distributed loads, but if
distributed loads are applied, then it is the program that calculates the equivalent
nodal forces.

However, defining a load as distributed generally only means that we are
asking the program to evaluate in our stead the equivalent nodal forces. Indeed,
the program always transforms distributed loads into equivalent nodal forces, and usually
once this is done the program forgets that “distributed loads” exist: the
equivalent nodal forces are added to the nodal forces proper, the displacements
are calculated, and from these the stresses are calculated, without any further
evaluation of local effects.

There is an important exception to this methodology in the case of
beams, where the local effects of distributed loads can be evaluated accurately. In
this case during the phase of stress recovery it is possible to add the effects of
distributed loads on the individual element, and evaluate the local component of
the stress, thus arriving at a calculation of the overall stress that is quite precise.
Not all software programs make use of this possibility; it is typical of specialised
programs for calculating frames.
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Analogous to what we have seen for stresses, knowing the exact
deformation of the beam with two fixed ends under various distributed loads
makes it possible to evaluate the local component of the displacement, which
can be added to the global displacement predicted by the shape functions, finally
arriving at an exact solution for the displacements as well. When we discuss the
beam element we shall see better why it is possible in this case to arrive at exact
results if the local effects are re-added, but here we need only say that not all
programs make use of this possibility because it appertains only to the beam
element and is not therefore typical.

The /umped approach is implicitly utilised when a software program
transforms a pressure acting on a region of the model into many forces divided
up between the nodes on the basis of the areas of influence (area loads).
Examples of these kinds of load are wind loads, hydrostatic pressures, the action
of pressure loads that are uniformly divided, and so forth. In these cases the
speed with which the loads are generated often makes the /Jumped approach
preferable to the consistent approach.

The consistent approach is the preferred method of software programs for
evaluating the equivalent nodal forces, and is generally the one adopted,
especially if the formulation of the finite element is in the displacements.
However, the /umped approach is also frequently used to evaluate the effects of
distributed loads in the elements: in this case it is implicitly taken for granted that
the discretisation is sufficiently dense.

On the other hand, even though it is visually satisfying, it is wrong to use
a consistent approach on a mesh that is not sufficiently dense. If, for example,
given a square plate measuring 4 m. to a side modelled with only a few finite
elements (say 3x3), it might appear satisfactory to have positioned a concentrated
force right in the middle of one of the elements and far from the nodes, because
the model appears to reflect the actual situation: the force is shown where it
should be, and from a pictorial point of view things look right. However, if the
dimensions of the elements are significant (that is, the mesh is not very dense),
given that that force will in any case be converted by the software program into
equivalent nodal forces, it is clear that the precision is purely apparent.

We will discuss the pitfalls of the pictorial approach to modelling finite
elements in depth in chapter 12: the model should not appear correct; it has to be
correct in light of the theory. Many inexperienced users and practitioners settle
for a pictorial resemblance at the expense of effective precision.
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Figure 6-9: Use of area loads to simulate wind on a glass curtainwall
supported by a tensile structure: the use of the lumped approach is
implicit.

6.3.5 EXAMPLES
To illustrate these ideas let’s first look at the example shown in fig. 6-10.

Let there be a beam of two meters clear span subject to a uniformly distributed
load equal to 1kN/m.

In fig. 6-10a the beam is shown modelled with two finite beam elements, and the
distributed loads are considered exactly by the software programs by means of
the techniques used to re-add local effects discussed in the previous sections.
The exact displacement at the mid-point is equal to 5.49. In this case the
distributed loads were transformed into fixed end loads, and the final
displacement is obtained by summing the “local” displacement found by
calculating the contribution of the distributed load (see, for example, fig. 6-5)
and that found with the shape functions (two cubics, one per element). The
result is completely exact.

In fig. 6-10b the distributed loads have been transformed into equivalent nodal
forces by evaluating the fixed end forces, as in the preceding case, but then,
however, the local effects were not re-added. To simulate what would be done
by a software program that does not re-add the local effects in a program that
does re-add them, the loads were directly described as equivalent nodal forces
and not as distributed loads. At the mid-point there is a force equal to
(pL/2+pL/2)=pL, where L is the length of each element (L=1m, pL=1kN). The
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two couples that should be added to the central node have opposite directions
and equal moduli and therefore cancel each other out. On the end nodes there is
a force equal to pl./2=0.5kN, and a couple equal to pl.*/12=0.0833kNm.

0.500 ki 1.000 kM 0.500 Kk
T KNS T RN 1

0.083 0.083 kN

a 549 b 549

0.500 KM 1.000 kK 0500 KN

C 451

Figure 6-10: Example of the approach for fixed end forces, re-adding the

local effects (a) and not re-adding the local effects (b), and of the Jumped

approach (c) in calculating the equivalent nodal forces (from the author’s
C.E.S.CO software program).

The displacement calculated at the mid-point is exact, and coincides with the
theoretical value, but intermediate displacements are not. The program has used only
the global part of the displacement, that is, only the shape functions (two
cubics). Even if it cannot be seen visually, the deformation in 6-10a is different
from that in 6-10b; in particular, the displacements (except at the mid-point,
where there was a node) are less than the exact displacements. As far as the
internal actions are concerned, those of 6-10b obviously do not appear to be
equal to those of 6-10a. For example, the moment diagram is linear rather than
parabolic, and the moment at the ends is not null.

In 6-10c, the distributed loads have been transformed into equivalent nodal
forces using the /umped approach, that is, the load has been divided up between
the nodes in proportion to the beam length of influence. There are no couples.
The local effects of the distributed loads are not added to the final calculated
results. The calculated value of the displacement at the mid-point is equal to only
4.51, and thus there is an error of 17.8%. The moment diagram is triangular.
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Figure 6-11: Lumped approach with a high level discretisation.

Fig. 6-11 shows what happens when the same /umped approach is used after the
mesh is made much more dense (20 elements instead of 2). The calculated
displacement is equal to 5.45, an error of only 0.7%.

This shows that the concept of “greater” or “lesser” discretisation has to be
understood in relation to the particular problem being dealt with. Take, for
example, the structure shown in fig. 6-12.

2kN/m

R T A I e S

A IR IR IR IR IR IR IR IR R IR IR IR IR IR AR IR IR IR R

Figure 6-12: Structure partitioned by stiffeners under a distributed load.

A thin rigid element is stiffened by a series of vertical stiffeners placed close
together. The putpose of the stiffeners is to diminish the clear span of the
hotizontal element, which will come to function as a kind of continuous beam
with an elevated number of spans. Fig. 6-13 shows the bending moment
diagram, which shows that not only can we expect to have a bending moment
for each span, but a bending moment at the centre of each bay as well, so that
the thin horizontal element has to be dimensioned in order to absorb these
stresses.
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Figure 6-13: Bending moment field for the structure shown in fig. 6-12.

Now let’s look at what might happen if the engineer decides that — given the
close spacing of the stiffeners — it is only necessary to model each segment with
a single finite element. Fig. 6-14 shows the model (made using the /Jumped
approach). In this case we have to understand that almost all of the stress is due
to the distributed load on the element and not to the movement of the nodes.
Thus if the software program does not readjust the local effects on the elements the result will be
wrong.

0.3 kb 0.6 kM OB kM 06 kM OLE kMO kN O KN 06 KMOG KN O KN OB kMO kN 0B kN 0.6 kb 06 kM 06 KR 06 KN OUG KR D6 kN 06 kR 0.3 kN

77K IR IR K IR IR IR IR IR IR IR IR K IR IR IR IR IR IR

Figure 6-14: Insufficient discretisation.

Figure 6-15. The effects of insufficient disctretisation on the calculation of
the stresses.

The result is shown in fig. 6-15: the stress situation is completely contorted,
especially in the horizontal elements of the central area that are typically the most
relevant. All of the bending actions of the typical bay have disappeared, the
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forces are transferred directly to the stiffeners, the bending moment regime
typical of the problem has disappeared. An analysis made in this way might lead
to a dangerous under-dimensioning of the elements, and possibly even a collapse
of the structure as soon as it is erected.

Note that in a case like this one, even the use of the conmsistent approach or the
fixed end forces might have led to the same problems. The problem typical of
this structure cannot be correctly evaluated when taking into account only a
single finite element on a typical bay wnless the software program re-adds the local effects
in evalnating the stresses, which can occur only in certain programs and only for beam elements.
If the problems had been relative to a plate it would have been necessary to increase the
discretisation, or lose a good part of the stress. In fact, no software program
readjusts the local effects of distributed loads on plate elements? this can only be
hoped for with beam elements.

In order to evaluate whether or not a software program adds the effects of local
loads to the stress and to the deformation of bean elements it is sufficient to create
a model that includes a single finite element fixed at both ends subject to a
distributed load. If the answer given is that shown in fig. 6-5, then the program
readjusts the local effects; if instead the answer given is an undeformed beam
with a null moment diagram, then the program does not readjust local effects. In
this case it is necessary to adopt a rather dense discretisation, even when beam
elements are used.

In the case of finite elements other than beams, software programs do not add local effects, and
it is thus necessary to use meshes that are sufficiently dense in order to evaluate the stress and
strain.

6.4 THERMAL LOADS

The presence of elements that are at a temperature that is different from
the temperature of reference leads to the generation of a set of actions that act
on the model in question so that the effects of these thermal variations can be
implicitly evaluated. In physical terms, we can imagine that an element subject to
a certain variation in temperature tends to expand (or contract), and that there is
a set of forces applied to the nodes that impedes this. The containing forces
exerted by the nodes over the element are immediately matched by the forces
that the element transmits to the nodes, forces that will be added to the vector
of equivalent nodal forces.

From a formal point of view it is possible to understand what takes place
if we consider that the fundamental relation between the generalised stresses and
generalised strains,

2 This example is adapted from a case that actually happened. The horizontal element was a circular plate,
stiffened by ribs in both directions. The error in modelling was made by a person expert in physics but inexpert
in finite elements. The piece was constructed, and then failed when loaded.
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o=Dg,
has to be modified when the stresses are not entirely due to the stresses present
in the structure but are partly due to non-elastic actions such as heat or cold.
Denoting as €, the anelastic strains, that is, strains not caused by stresses, the
relationship between the stresses and strains must be corrected to read

6=D(e—¢,).
The elastic component of the strain is obtained as the difference between total
strain € and anelastic strain &,.

It must be borne in mind that the anelastic strains €, are known « priori and thus
are not new unknowns. If we retrace the various steps that we took, in chapter 4,
to write the equilibrium conditions for the individual finite element, we can see
that to the vector of equivalent nodal forces we have to add the term

£,=(B"D g,dV),

which quantifies the forces due to thermal effects so that, for the individual finite
element, we must have

rezKe u, - fe - fT
(cfr. 4-17).

The effects due to a change in temperature applied to an element can be
quantified by adding a vector of nodal forces eguivalent to applied thermal loads to
the vector of equivalent nodal forces due to applied loads. This additional vector
is assembled in the same way the othet one was and contributes to the creation
of the vector of known terms of the problem.

It should be noted that thermal actions are by no means negligible. They should
always be taken into consideration, since they can generate significant stresses
when the structure is not free to expand or contract. Take, for example, the case
of a structure supporting a glass curtainwall which had significant problems
because it was designed without taking thermal loads into consideration (fig. 6-
16).

The analysis of the structure shows that each vertical and horizontal element
(without any play between bolts and boltholes) transmitted to adjoining
reinforced concrete beams a load amounting to 10.7 tons. An increase in
temperature of only 15° C. was sufficient to generate a thrust equal to ten times
the weight of an automobile.
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Figure 6-16: Axial actions and reactions on the edges of a frame whose
temperature is increased by 15 °C.

6.5 APPLIED ACTIONS AND CONSTRAINT REACTIONS

Here we want to bring up an aspect that will be discussed in further detail in
chapter 9, when we examine the checking of results.

Since the structure can be viewed ultimately as a single rigid body in
equilibrium, it follows that the sum of all the actions applied to the structure has
to be matched by the reactions exerted by the constraints on the structure. This
fact can be used in two different ways, both to extreme advantage.

The first way is to use the constraint reactions to check that the solution
is correct. Except for residuals, which should be modest, the reactions of
constraints have to balance the applied loads: significant differences are never
acceptable, and must lead to an in-depth search for the causes (these
discrepancies can even be due to an error in entering the values for the loads, an
error that can remain undiscovered for a number of reasons).

The second way, in programs that do not make it possible to know the
resultant of the applied loads before solving, is to use the reactions of the
constraints to evaluate the magnitude of the loads. If hundreds of actions are
added it is possible to lose track of what has effectively been done. It is clear that
in this way we have to take for granted that the program has correctly performed
the calculation, although this is something that, strictly speaking, should never be
taken for granted. For this reason the programs should always be equipped with
tools for evaluating the resultant of applied loads before solving is performed and
independent of it.
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6.6 LOAD CASES AND COMBINATIONS

6.6.1 THE CONCEPT OF “LOAD CASE”

In performing structural calculations on a finite elements model we normally use
the concept of “load case”. By “load case” we mean the set of a certain number
of actions applied in various ways at different points on the structure, presumed
to be acting contemporaneously, in order to arrive at an overall vision of what
takes place in the structure as a result of a common physical cause.

Even though it is possible to group the actions on a structure into arbitrary load
cases, it is good practice to keep in the same load case only those actions that
have a common origin or nature. This is because different physical causes are
treated in different ways by the practices of checking. It is helpful to list some of
the most common independent physical causes acting on a normal structure:

® Gravity loads (GL)

® Dead loads (DL)

® Live loads (L)

® Maintenance

* Wind loads (WL)

® Snow loads (SL)

® Thermal loads (TL)

® Farthquake loads (EL)
¢ Constraint failure

¢ Malfunctions

® Impacts, explosions, attacks

Dead loads are usually independent from gravity loads on structural elements
since gravity loads are normally subject to revision as the project evolves. It thus
makes sense to keep gravity in its own load case, generally the first one, which
can be annulled at will and redefined automatically.

Each physical cause can generate several load cases. For example, wind is often
presumed to act along two orthogonal axes, but in some cases it is necessary to
plan for other cases, either in order to evaluate the effects of wind acting along
other axes, or in order to evaluate the effects of a change in direction along the
same axis. In the case of wind, it is not always the case that

Wind —X = —Wind X

160

Copyright © ICE Publishing, all rights reserved.



Actions

since the effect of the coefficients of exposure can vary depending on the
direction the wind comes from.

Corresponding to each load case is a different vector of equivalent nodal
forces, a different set of displacements, and a different set of stresses on the
structure. In terms of the computational profile, the solution of a problem where
different load cases are present involves a one-time only triangularisation of the
stiffness matrix K, and the solution of as many systems of linear equations as
there are load cases to be solved. To each load case there corresponds a vector
of known terms f and a set of nodal displacements u, and to those, a given set

of structural stresses O.

6.6.2 NORMATIVE COMBINATIONS: LIMIT STATES AND
ALLOWABLE STRESSES

Laws currently in force specify that the effects of various physical causes acting
contemporaneously on a structure must be evaluated by means of the concept of
load combination. By “load combination”, what the norms are asking for is an
evaluation of the contemporaneous presence in the structure of a certain number
of elementary actions, each of which is suitably factored.

In the case of the norms regarding allowable stresses, it is generally up to the
designer to determine the worst-case scenario in which the various elementary
physical causes combine to create the greatest threat to the structure. In general,
this leads to just a few combinations whose physical significance is immediately
clear. The same cannot always be said for limit states, which sometimes require
the application of algorithms that can lead to many hundreds of combinations,
the physical implications of which are not immediately clear (for example, see
the European standard Eurocode 0 - EN 1990). The idea is to generate a vast
quantity of cases that are meaningful statistically.

In cach of these combinations the elementary physical causes are weighted by a
factor that takes into account the composite probability of a particular physical
cause presenting itself in contemporary with another one that is assumed to be
the basis for the combination in question. For example, if the base hypothesis
assumes the presence of an exceptionally strong wind, then an exceptional
amount of snow and an exceptional ecarthquake are considered after being
appropriately weighted by a coefficient that takes into account the
(im)probability that there will be contemporaneously an exceptionally strong
wind and an exceptional amount of snow, an exceptionally strong wind azd an
exceptional earthquake, and so forth. The combination coefficient reduces the
exceptional value to a frequent value and so should be seen as a “intensity
corrective”, and not as a linear combination coefficient. The normative
combinations do not imply a [Juear combination of effects, but only the
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contemporaneons presence of physical causes with different values, each of which is
obtained by weighting the exceptional values with reductive factors.

The practical consequence of this requirement varies a great deal depending on
whether the structure behaves linearly or non-linearly. In the case of linear
behaviour, it is possible to use the fundamental principle of the superposition of
effects, but not in the case of non-linear behaviour.

6.6.3 THE PRINCIPLE OF SUPERPOSITION OF EFFECTS

In every load case there are presumed to be many — sometimes even several
hundred — different individual actions in effect at the same time, and their overall
effects are evaluated as a whole.

Even when the effects of the actions are not evaluated
contemporaneously, it is possible to evaluate the overall contemporaraneous
effects, independent of the order in which the actions are applied. This is
possible because the conditions of elastic linearity permits the use of the
principle of the superposition of effects, which says that the overall effect of a
set of actions is obtained by summing the effects of individual, separately
evaluated actions.

Thanks to this principle it is possible to evaluate the effects on the
structure of a set of actions by simply summing the effects of individual actions.
In particular, it is possible to evaluate the effect of a weighted sum of actions by
weighting the effects of the individual actions in the same way. This leads
directly to the concept of “load combination”, which in terms of the FEM, takes
on the particular meaning of “weighted sum of the effects of a given number of
elementary load cases”.

The principle of the superposition of effects is not valid when the
problem is non-linear. Thus it is not valid when the equilibrium equations have
to be written with respect to the deformed configuration (“external” geometric
non-linearity, physically large displacements), nor when the deformations have to
be written to include the second-order terms (“internal” geometric non-linearity,
geometrically large displacements), and not even in the simplest case of “tension
only” rods (rods that are always only in tension; if not, they are eliminated from
the structure), or of monolateral constraints.

In all of these cases, the contemporaneous effect of a certain set of
actions arising from different physical causes (the “combinations” specified in
the norms) has to be obtained by means of a single load case that contains all of
the elementary actions appropriately combined, or more propetly, by means of a
genuine reconstruction of the load path taken in order to arrive at the desired
contemporaneousness of actions. Given that there can be a high number of
normative combinations, it is easy to understand how in non-linear structures the
amount of “load cases” increases drastically.
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Figure 6-17: Effects of linearity: the superposition of effects.

Instead, when the problem is linear, it is possible to solve the load cases
separately, and then evaluate the effects of the normative “combination” by
means of a genuine linear combination of the effects foreseen for the individual
cases. Obwviously, this kind of “combination” can occur at any time after solving, since the
effects of the elementary load cases are by then known.

The most recent software programs make it quite easy to evaluate the combined
effects, by simply defining the weights to be assighed to each elementary load
case. In general, the combination does not necessarily require writing
“combination” files to disk, since for problems of a normal dimension the speed
of the processors is such that the operations can be performed in real time.

6.7 EQUIVALENT STATIC ANALYSIS (EARTHQUAKE)

6.7.1 OVERVIEW OF THE PROBLEM

In order to present a simplified view of the effects of an earthquake on a
structure a simplified system of calculation called “equivalent static analysis”, is
often used. We will briefly discuss it here.

Equivalent static analysis can be used when treating structures with a
high degree of structural regularity in plan as well as in elevation in terms of both
stiffness and mass. Given these hypotheses we can expect that the structure has
a dominant way of vibrating, one whose form can be roughly represented by a
straight line deformed configuration.
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Each mass present in the structure is found to generate a d’Alembert’s
force (an “apparent” or fictitious force) equal to the value of the mass itself
times the peak acceleration expected in the course of oscillatory motion. On
generic mass 7, m,, will act a force F, equal to

F=kmgh, Xm) / (Xmh)
where g is the acceleration of gravity, equal to 9.81m/ sec’; k is the reference
acceleration in unit g (a pure number). This reference acceleration is evaluated

with the response spectrum method; h; is the height of the generic mass m, with
respect to the top of the foundations.

An examination of the formula, which varies slightly in standards around the
world, makes it possible for us to make the following observations.

Each mass is subject to a force equal to its weight (mg) suitably multiplied
by two factors. The first factor is k, which indicates the intensity of the reference
acceleration. When the response spectrum is known for an earthquake expected
in the area where the structure is found, we see that a simple oscillator has a
maximum response that depends on the period with which it oscillates.
Generally, the structure oscillates in many modes, but of all these only the
dominant mode is considered (that which effectively predominates over all the
other modes). The period of the dominant mode makes it possible to read the
peak acceleration expected on the curve of the response spectrum. For example,
if in a given location the peak ground acceleration for an earthquake with a
return period of 2000 years is 0.1g, and the structure oscillates in the dominant
mode with T=0.8 sec, the peak acceleration can be read as 0.25g. In that case,
k=0.25.

The second factor is called the distribution coefficient; we indicate it here
with the letter Y
Y, =h, Zm) / Zmph)
where the summations are with respect to the index “1”.

Given the same earthquake and structure (total mass and mass
distribution), the force grows linearly with the mass and with the height. The
> g y g
greater the height, the greater the force; the greater the mass, the greater the
force.

Thus for the application of the method of equivalent static analysis, the
correct evaluation of both the size of the masses and of their distribution is
fundamental.

6.7.2 CONVERSION OF ACTIONS INTO MASSES

In order to be able to generate automatically the set of forces related to
equivalent static analysis for earthquakes we must have information about the
position and intensity of the masses present in the structure. There is one
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particularly satisfying way to generate the masses which maintains both their
distribution and their intensity, both determining factors for obtaining a realistic
analysis. In most cases there is a precise correspondence between the masses
present in the model and the static actions. Many static actions are effectively
tied to the presence of masses in the structure. This is certainly the case for all
members of the important family of actions related to gravity, while it is not true
for the actions related to wind, actions related to temperature variations, and
actions related to structural settling.

In general the masses necessary for evaluating seismic effects are obtained with a
step-by-step procedure starting with the applied actions in cases when there are
non-seismic loads. Each load case is investigated in order to establish whether or
not it corresponds to the masses. There are three possible sets: the set of load
cases that generate masses that correspond to the sum total of applied loads; the
set of load cases that do not generate any masses at all; the set of load cases that
generate masses that correspond to a part of the applied loads.

st s &

Figure 6-18: Model of a building. The nodal masses are shown as solid
circles. These masses were generated automatically starting from the
applied static loads.

The dead loads due to the presence of weights are part of the first set; loads
related to wind and temperature belong to the second set; the live loads, or those
due to snow, generally belong to the third set. In this last case, it is necessary to
evaluate the partial quota of mass present at the moment of the earthquake. The
existing norms generally have different rules for evaluating how much of variable
mass is present at the moment of the earthquake. In any case, the corresponding
masses are generated by appropriately factoring the load case in question. The
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resulting masses are scaled with respect to the overall masses with an analogous
factor.

Note that it is possible to generate the masses we are interested in, those which
must be attributed to each node, with a “consistent” or “lumped” approach like
the ones seen ecarlier for static actions. In this case, the rotational part of the
mass will be effectively associated to its moment of inertia with respect to the
axis of rotation of the node to which it is attributed. In equivalent static analysis
the moments of inertia are not taken into consideration.

Generally speaking, the “lumped” approach is the one used. Masses on the
nodes are made to cotrespond to the forces applied directly to the node. Masses
corresponding to the resultant, appropriately distributed among the nodes of the
element, are made to correspond to the distributed loads. When the mesh is
sufficiently dense, the effect related to lumping, as we have already seen in the
context of statics, tends to be negligible.

6.7.3 EQUIVALENT STATIC ACTIONS

If the masses were generated starting from the applied loads and with the same
degree of precision, assuming that the structure effectively has a dominant
vibration mode that is more or less linear, we can expect a quite realistic
distribution of masses. This has the immediate effect of generating a realistic
distribution of forces on the structure, which has at least two advantages. The
first is that all the zones of the structure will be appropriately solicited, without
there being any zones that are unrealistically without suitable forces.

The second advantage is that the resultant of the seismic forces can be evaluated
exactly without necessitating any mannal calenlation aimed at identifying the centre of the
masses. The elementary forces will automatically produce a set of actions
consistent with the masses in the structure, without requiring separate evaluation
of those effects.

In this regard, note that when the structure is highly symmetrical, we
should always presume that there will be conditions of asymmetric masses for at
least the variable part, so that an appropriate accidental eccentricity between the
two barycentres (masses and stiffness) can be generated.

Today seismic analyses are usually performed by modal analysis, which evaluates
the acting forces more correctly than equivalent static analysis does. However,
what we have said about the transformation of forces into masses still holds,
because a realistic distribution of masses is required in order to perform modal
analysis correctly.
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thanks to the addition of numerous elementary forces distributed with the
same accuracy as the masses where they originated.
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7 CONSTRAINTS
7.1 INTRODUCTION

We have seen that after assembly the solving system turns out to be unsolvable,
cither because of rigid motions or inactive degrees of freedom within the
structure. In both cases, the determinant of the square matrix becomes null,
which makes it operatively impossible to solve the problem.

Although both of these circumstances lead to the same result, that is, they cause
the determinant of the stiffness matrix to become null, there are actually many
different reasons for why this happens.

In the first case, that of possible rigid motions, the structure can effectively be
subject to rigid motions which can involve either part or all of the structure itself.
Without suitable constraints, the structure can move without developing any
strain energy. In this case it is either hypostatic or labile. A structure is hypostatic
when the number of constrains is objectively insufficient to keep it immobile:
this is the case when a solid has fewer than six constraints, for example. A
structure is labile when, even though in theory there is a sufficient number of
constraints to prevent rigid motions, they still do not eliminate the possibility of
the structure’s moving because they are not independent of each other: the
classic example is an arch with three aligned hinges. We will be referring to both
of these situations when we speak of "mechanism".

In the second case, that of inactive degrees of freedom, there are no actual
movements associated with the structure’s degrees of freedom, but there is a
(free) movement of a node. If we consider the node as a minute rigid body, then
these motions effectively constitute “an act of rigid motion”. Actually, there is
no real movement of the structure associated with these movements, and thus
we speak of “pseudo-mechanism”.

In order to eliminate actual rigid motions it is necessary to set boundary conditions,
that is, to impose that the displacements by the structure’s boundary are all equal
to certain predetermined values (which are generally null). This will be discussed
in the next section about “real constraints”.

In order to eliminate the inactive degrees of freedom it is necessary to impose
that such degrees of freedom are not part of the problem, or, if they are part of
the general problem, then it has to be clearly stated that they are identically null.
The techniques used to achieve this will be discussed in the sections that follow
about ad hoc formulations (§7.3) and fictitious constraints (§7.4).

Structural analysis with finite elements © Thomas Telford 2010
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Copyright © ICE Publishing, all rights reserved.



Structural analysis with finite elements

7.2 REAL CONSTRAINTS

7.2.1 OVERVIEW

In general, in order to function correctly structures need to be constrained in
some way. The presence of constraints makes it so that the applied loads and
actions force the structure to deform in such a way that a suitable quantity of
strain energy is stored. All structures are composed of solids, and their constraint
takes place by establishing that the displacements of their boundaries assume
certain values. In the context of the FEM, however, structures may resemble
domains that might not be volumes: it is thus necessary to translate the
components of constraint of the real structure into the corresponding
components of constraint of the ideal model being used. Thus, for instance, a
cantilever clamped into a wall can be modelled by imposing that the translation
and the rotation of the end face of the solid are null. A beam or a slab that is
simply supported will have their translations blocked, but their rotations with
respect to the end point of the axis line (in the case of the beam) or along the
boundary considered at the median plane (in the case of a slab) will be free.

This first observation, related to the necessity of having to translate the
conditions of real constraints into the formulation being used, is followed by
another one: the displacement field of the boundary of the model follows the
pre-established rules defined by each finite element that that particular boundary
simulates, and 27 is therefore completely dependent on the displacements of appropriate nodes
of the model according to the different possible shape functions used by the varions elements.
Take, for example, the (part of) a structure shown in fig. 7-1, which simulates the
end part of a wall embedded into the ground, modelled in plane stress. If we
presume that the system of reference has axes X and Y, we can be certain that
what counts are the displacements (u, v) of the nodes, since the other
components of displacement remain outside of the formulation that we are
using. We want to impose that the entire boundary corresponding to nodes 7,
11, 12, 13 and 8 be completely fixed.

If we consider the first element on the lower left, we want to set that all the
points corresponding to segment 7-11 are immobile. In order to do this we need
only make nodes 7 and 11 immobile. Actually, for the displacements u and v on
segment 7-11 the equations related to the shape functions used for the element
are valid:

uM)=ut (u-u)h
V)= v+ (v v

where A is 2 non-dimensional abscissa comprised between 0 and 1. If we set
u= = v, = vy =0,

then for each A we must have
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u(h)=v(A)=0.
Setting the boundary conditions therefore translates into making it so that the
displacements of a suitable set of nodes assume certain values (generally 0).
Because of the way itself in which the elements are formulated, these conditions
on the nodes are actually translated into conditions o a// the points belonging to the
boundary influenced by the intended constraints.

10 19 20 21 9

Figure 7-1: The end part of a vertical wall modelled as plane stress.

In order to constrain the side corresponding to nodes 7, 11, 12, 13 and 8 it is
necessary to constrain all the nodes of the group (7, 11, 12, 13, 8) without
exceptions. Actually, if there were an unconstrained node, the constraint would
be only partial and not complete: fig. 7-2 shows clearly what would happen if,
for example, nodes 12 and 13 were not constrained: the displacements of those
two nodes do not satisfy the necessary conditions of congruity.
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Figure 7-2: Partial constraint of the nodes of the side (nodes 12 and 13 are
not constrained).

The lack of appropriate constraints is not always evident when examining only
the deformed configuration of the structure. Fig. 7-3 shows the same structure
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shown in fig. 7-2 modelled more finely, “forgetting” to constrain a node. No
problems are evident when the deformed configuration is examined, but an
examination of the maximum principal stress clearly shows a suspicious

discontinuity.
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Figure 7-3: The effects of partial constraint on a structure modelled more
finely.

It is very important that setting the boundary conditions does not eliminate all
possibility of the structure’s moving, a situation that can only lead to an
erroneous solution. If we take, for example, a beam clamped at both ends
modelled with a single finite element, we can see that the boundary conditions
have been set so as to eliminate any possible movement of the structure. In cases
like this, generally related to a coarse discretisation, it is necessary to increase the
number of elements so that free intermediate nodes appear. If not, an identically
null solution is found for no apparent reason. In effect, in this example, the only
cubic function that respects the boundary conditions is a straight line coincident
with the axis of the beam, that is, with the undeformed structure.

7.2.2 FIXED CONSTRAINTS

“Fixed” constraints are those that call for a null displacement, while constraints
that call for a known displacement not equal to zero are called “settles”. If the
displacements whose values are known (null or non-null) are parallel to the
structure’s axes of reference, then the constraints are orthogonal. 1f the
displacements whose values are known are inclined with respect to the reference

axes, then the constraints are skew.
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Fixed orthogonal constraints do not pose any particular problems for the
engineer: it is always possible to assign a null value to the “orthogonal” degrees
of freedom by simply imposing constraints on the components of displacement
of the nodes that correspond to the degrees of freedom to be made null
Actually, there are generally six degrees of freedom associated to each node, all
of which can be either free (in which case their value is unknown), or
constrained (in which case their value is null when the constraints are fixed).
Constraints are usually assigned to the nodes by selecting particular ones and
specifying for them which degrees of freedom are fixed. In the 1970s and 1980s
when the alphanumeric software programs were just being developed, it was
necessary to provide an appropriate series of constraint codes for each node,
essentially “0” and “1”.

In contrast, fixed skew constraints do pose some problems because the low- and
medium-range software programs for finite elements do not offer the option of
explicitly applying skew constraints. From an analytical point of view a skew
constraint on a node is simply an equation of this type:

>A.u=0,

i
that is, a linear relation between unknown displacements. If, for example, in a
plane problem in plane xy (unknown displacements, # and ») the translation in
the direction normal to the straight line y=x is constrained along a certain row of
nodes, we need only write the obvious condition

u-v=0
in all the nodes that are part of that row. This problem comes up in all the

software programs that do not make it possible to apply constraints that are not
orthogonal. How can this be resolved?

The solution consists in adding very stiff elements that are capable of forcing the
unknown displacements to respect the required conditions of skew constraint.

For example, fig. 7-4 shows that the points on the left cathetus have been
forcibly prevented from translating in the direction perpendicular to that
cathetus by means of the addition of very stiff springs arranged normal to the
cathetus. Note that it is essential that the springs be sufficiently stiff to result in
displacements so small that they can be considered null (in the example shown
here the displacements # and » are equal to at least the seventh significant digit).

Both stiff springs and rod elements either made of stiff material or with a very
large area can be used to introduce skew constraints. Both of these make it
possible to model the desired kinematic behaviour.
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Figure 7-4: Setting skew constraints thanks to the addition of rigid springs.

7.2.3 SETTLING CONSTRAINTS

7.2.3.1 ASSIGNED SETTLEMENTS

It is possible that some points of the structure are forced to move in a
predefined way as a result of causes external to the structure in question. This is
the classic case of settlement in foundations or other parts of the structure in
contact with external agents such as other structures, which “push” on the given
structure, imposing a certain set of displacements. It is also correct to speak of
“constraints” in this case, even though they do not impose any null
displacements.

From a strictly mathematical point of view, the presence of this kind of contraint
translates into a certain number of equations of this type:

#=constant

where #, is one of the nodal displacements that was originally unknown. From a
numerical point of view, in software programs currently in use, the condition just
written can be set both directly and indirectly. If this condition is set directly, the
program has to eliminate the corresponding equation (eliminating a row and a
column of the stiffness matrix) and add a certain number of fictitious forces to
the vector of equivalent loads. Actually, the generic equation on the generic jth
row of the system, which takes this form:
Kiut Kyu+ + Ky +...=/
can be rewritten
Kijut+ Kyt .= /- K,

that is, the terms related to the displacements, whose (non-null) value z are
known a priorz, can be taken to the second member and added to the vector of
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known terms. Even if this operation is extremely clear from an analytical point
of view, from a computational point of view it might not be efficient. For
example, the fact that different settlements can be applied in different load cases
might lead to matrices that are different for the various load cases, which is quite
inefficient computationally.

In order to overcome this, an indirect system is often adopted to apply the
desired settle, that is, applying a spring of elevated stiffness R in the precise
direction of the settle, and then assigning, in the load case involving that settle, a
force of an appropriate value. In this method the row and column relative to the
degree of freedom involved are not eliminated. The 7th row corresponding to the
degree of freedom whose value is known, which was originally given as

Ko+ Kyt + Kau+...=0,

with the addition of a very high value of stiffness R and an appropriate force I
becomes,

K+ Ko+ + K AR+ ...=F.

Given that R is very large with respect to K,, the equation is numerically equivalent
to

Ru,=F.
If we are careful to set F= Ru, that is, to apply a force F calculated by

multiplying the elevated stiffness R by the displacement u,, the equation above
becomes

u — u.
This method is very convenient, because it makes it possible to not have to
manipulate the stiffness matrix in different ways from load case to load case.
Morteover, in other load cases, those in which there is no settle, since no force F
has been applied, but where there is still a stiffness R related to the spring,

equations of this type are obtained:

Ru, = 0,
which are equivalent to imposing null displacements (and thus non-settling
constraints).
The only practical problem in applying this method is deciding what value to
give stiffness R. Actually, a too-low value for stiffness R might mean that the
added stiffness cannot predominate over existing stiffness, while a too-high
value can give rise to numeric problems in the solution of the solving system.
One efficient method for determining what stiffness R to apply to the spring is
the following. If K is the maximum stiffness existing in the model, then R can be
set such that R=(10>+10°K, that is, applying to the spring whose stiffness is
equal to a hundred thousand, a million times the maximum stiffness of the
structure. In an ordinary frame structure, it is easy to determine K since the
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maximum stiffness is generally tied to the axial behaviour of the columns. We
can thus set

K= EA/L,

where E is the modulus of elasticity, A the area and L the length of the stiffest
column in the model. Note that what counts is not the mantissa but the
exponent: the order of magnitude is enough as far as simplicity is concerned. If,
for example, it turns out that EA/L.=6.57989¢7, we set R=1.0(10"*+10"). Note
that when K cannot be determined with precision, or in order to exclude
numerical instability, a couple of trial-and-error calculations can be made in order
to determine how sensitive the solution is with respect to this parameter.

7.2.3.2 ASSIGNED STIFFNESSES (SOIL-STRUCTURE INTERACTION, WINKLER
FOUNDATION)

One particular case of not fixed constraints are those in which the amount of the
displacement is unknown a priorz, while the stiffness provided by the soil,
presumed to behave in a way that is linearly elastic, is known. This approach is
often used when a simplified way is needed to determine the effects of
interaction between the soil and the structure. Although it may appear overly
optimistic to presume that the behaviour of the soil is linearly elastic,' it should
be remembered that the principal objective of this kind of investigation is to
determine the extent of the possible settlement at least approximately, in order
to be able to estimate the order of magnitude of the stresses that such settling
places on the structure.

We can distinguish between two cases: the case of point foundations (plinths)
and that of continuous foundations (reverse beams, slabs).

In the case of point foundations, in correspondence to the nodes where joints
are ordinarily placed, springs of a suitable stiffness are placed instead, calibrated
by means of formulas that take into account the dimensions of the foundation,
its shape, the type of soil, its state of consolidation, and even the static or
dynamic context in which the investigation is taking place. Six springs can be
placed in correspondence to a foundation plinth: three translational springs, and
three rotational springs for the three possible rotations of the plinth about the
axes parallel to the axes of reference.

The degree of the stiffnesses is usually such that the displacements that are
measured in the model are quite small. The advantage of this approach over that
which involves setting particular displacements (or settlements) in one or more
load conditions, is that the displacements of the foundations will be to a certain

1 Anyone with even a vague idea about soil behaviour knows quite well that practically anything can be
presumed exceps that it is linearly elastic. Nevertheless, the hypothesis is used in a technical context in order to
avoid calculations that would be too complex and costly otherwise.
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extent related to the different load configurations presumed for the structure,
and thus more in keeping with them.

In the case of continuous foundations, putting a few springs in suitable
directions is not sufficient: the surface of contact between structure and soil is
not negligible and, unless more complex systems that explicitly model the soil are
employed, it is necessary to use the hypothesis of a “Winkler foundation”. In this
scheme, the foundation is modelled thanks to a bed of springs that have a given
appropriate stiffness. If k is Winkler’s constant (for example, k=2Kgf/cm’), then
the stiffness of each spring to be placed is obtained by multiplying the given k by
the surface of each node’s influence. The operations that have to be performed
differ slightly depending on whether there is a slab or beam foundation.

In the case of a slab, the surface S pertaining to the given node is determined by
taking into account the finite elements of the slab attached to that node. The
stiffness of each spring will be kS.

L1 Lz L3 L4 L5

Figure 7-5: Example of calculating the length of influence for various
nodes (beam foundation).

In the case of beam foundations, if the beam has width B, and L is the segment
of the beam pertaining to the given node, the stiffness of the spring to be placed
on the node is kBL. Note that if the elements are not all equal (as usually
happens because of meshing requirements), the various springs will have
different stiffnesses.

Some software programs (for example, Sargon, the author’s own program) make
it possible to calculate automatically the stiffness to put on each node in a group
of selected nodes, simply starting from the Winkler constant “k” for slabs and
from the product “kB” for beams. In this case the program itself orders the
nodes and determines, for each node, S in the case of a slab or L if for a beam,
and applies the appropriate spring automatically. If, as should always be the case,
the mesh is sufficiently dense, this approach is not any more difficult and leads
to results that are very close to the “exact’™ ones, obtained by means of more

2 Given that the Winkler formulation already involves significant approximations, it seems appropriate to
maintain “exact” in quotation marks.
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refined finite elements (beams on Winkler’s soil or plates on Winkler’s soil, both
also available in Sargon) formulated so that they contain equilibrium equations
that are modified to take the resistance provided by the soil into account.

Element number | Maximum Average % Deviation of

moment displacement moment from exact

moment in the case
of 32 elements

1.605¢6 3.195e-1 6.03%
8 1.684e6 3.169¢-1 1.41%
16 1.703e6 3.160e-1 0.29%
32 1.708e6 3.158e-1 -

Table 7-1. Response variation with mesh density

For example, table 7-1 shows the series of values obtained by doubling the
number of elements in each of the three bays of the problem shown in fig. 7-6.
It can be seen that already by increasing the number of finite elements in the bay
from 4 to 8 the value of deviation of the moment from the “exact” value
(assumed to be that obtained when there are 32 elements) has decreased from
6.03% to only 1.41%.

Figure 7-6: Beam on Winkler’s soil (cfr. table 7-1).

7.2.4 KINEMATIC CONSTRAINTS (MULTIPOINT CONSTRAINT)

A generalisation of the preceding type of constraints leads to consideration of
the case in which there necessarily exists some kinematic constraint among
varions degrees of freedom of the model 7 relation to each other (multipoint
constraint, or MPC, in the language of the FEM). This situation occurs, for
example, when we want the various nodes belonging to a floor of a building to
move in such a way so that the floor remains undeformed, and is thus made to
translate and rotate as a single body. A similar situation occurs when we want the
distance that originally separated two nodes to remain unaltered, even when the
nodes move (rigid /ink), and so forth.

In this case, as in the previous one, it is worthwhile to note that there are
different techniques for simulating the desired kinematic conditions. Some
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software programs use techniques that are more evolved, making use, for
example, of Lagrange multipliers, while others do not offer explicit tools for
setting these conditions, but only implicit tools.

In effect, it is generally possible to simulate the desired kinematic conditions by
means of the addition of a certain number of elements of a high degree of
stiffness that impose, through their indeformability, the required constraint. If
we want to ensutre that the distance between two nodes remains constant, we
need only add a “stiff” rod that joins them. If we want a floor to move as a rigid
body, we need only add a sufficient number of “rigid” membrane elements in
order to impose the undeformability of the floor.

Figure 7-7: Deformed configuration in twisting of a building viewed from
above: here the MPC is implicitly related to the presence of the membrane
elements on the floors.

In some cases the requirement that there be an MPC is a conditioned reflex tied
to outdated techniques of calculation. For example, in the case of building floors,
there is no reason why they have to be necessarily modelled as a “rigid” plane
today, when it is clear that no floor is like that. Instead, years ago, when the
number of degrees of freedom was a problem, setting such a condition could
mean saving a significant number of degrees of freedom, and so it made sense to
do so. Today we can solve systems of thousands of degrees of freedom, and it is
much more correct to model the floors of a building with appropriate two-
dimensional elements, leaving it up to the model to keep track of the effects that
derive from that.?

3 In the context of earthquakes as well, the hypothesis of a rigid plane and the manual calculation of the mass
centre and the stiffnesses no longer appears to be necessary, except to check the results of the analysis. By
setting the masses on the model where they are effectively found, thanks to there being many nodes available,
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7.2.5 LABILITY AND HYPOSTATICITY (MECHANISMS)

7.2.5.1 TRUE MECHANISMS

The problem of lability and structural hypostaticity, or static indeterminacy, is
generally related to errors during the design phase, so that the structure, rather
than being rigorously free of the possibility of rigid motions (mechanisms), is still
capable of possible movements that can occur without the expenditure of any
work.

The presence of hypostaticity can be made glaringly evident in the model by an
abrupt halt in the procedure of solving, a halt due to the singularity of the
stiffness matrix. Unfortunately, as we shall see, there are solvers which, through
an exaggeration of the concept of “user-friendliness” go forward with the
calculation of stresses and displacements without signally any problems.

3t ) 51 ) ) 51

v

i
D

Figure 7-8: A statically indeterminate structure with unactivated
mechanism.

First we have to distinguish between numerical instances and design instances.
From the numerical point of view a system has a mechanism when the
determinant of the stiffness matrix is null. From a design point of view a system
has a mechanism when either there are not sufficient constraints to restrain all
the rigid motions of a structure, or when, even though these constraints exist,
they are not capable of completely restraining the rigid motions of the structure.
For example, if we were to construct the structures shown in fig. 7-8, they could
be made without placing an actual hinge at the base, but with a constraint whose
stiffness was so inconsequent that it could be considered like a hinge: for
instance, a thin base plate without ribs, connected only at the centre, etc. Thus,

and using the available techniques in appropriate ways, it is possible to obtain results that are much more
precise than those that can be obtained by presuming a rigid plane.
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the static indeterminacy is established in the model, while in the structure the
static indeterminacy is actually tied to the impossibility of the constraint at the
base to guarantee congruity. Because of this it might not be immediately
apparent (as is often the case) but becomes obvious only after a certain period of
time, when chance actions lead to deformations or even failures within the
structure itself.

Note that in the structures shown in fig. 7-8 the static indeterminacy is not
activated because the forces are perfectly vertical, and thus in theory it is possible
to do away with the equations of horizontal equilibrium and consider only the
vertical equilibrium of the nodes, thus arriving at a solution that is acceptable in
terms of displacements, stresses and strains. Some software programs behave
like this: they see the mechanism, but since it is not activated by any force, they
go ahead.

This kind of bebaviour is extremely dangerous because it can lead to problems as severe as
actual collapse. It should always be remembered that:

1. No force in nature is actually “vertical”;
2. No member can ever be made perfectly straight;

3. Mechanisms that are not activated in the model are cerfain to be
activated in the real project;

4. It is not always possible to discern a priori if there is a local
mechanism; the solver has to examine the structure node by node
in order to spot possible mechanisms.

It is thus extremely important that the solver refuse to solve a structure where
the possibility of rigid motions exists, even if these are not directly activated by
the forces placed on the model.

Once the mechanism has been identified, we have to hope that it is possible to
see clearly what rigid motion the structure might perform (fig. 7-9). This result
can be obtained numerically by means of a technique called singular valne
decomposition (SVD). Because this involves a significant calculation cost, not many
solvers offer this feature. Generally, when in the course of the solution the solver
encounters an abnormal situation (such as when a term of direct stiffness
becomes null, or when a negative number appears under the radical sign), the
solver stops, and the mechanism has to be looked for starting with the scant
information available: the cryptic message that often appears is “check dof 78567
(ot “3478” or any other number).
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Figure 7-9: Local lability and how it is evidenced (from the author’s
C.E.S.CO software program).

In this case it is necessary to consult the table that associates the various degrees
of freedom to the nodal displacements in order to understand exactly which
degree of freedom (dof) is being referred to (fig. 7.10). In our example we might
find that “dof 7856” corresponds to “translation Y of node 14897, or that “dof
3478” corresponds to “rotation Z of node 786”. This information is not
complete, but in most cases it is enough to understand the nature of the
mechanism and see to its elimination.

Degrees of freedom
New no. 01ld no.
node node Tx Ty Ts Rx Ry Rz
1 30 1 2 3 4 5 6
2 22 7 ] 9 10 i | 12
3 13 13 14 15 16 17 18
4 33 19 20 21 22 23 24
5 32 25 26 27 28 29 30
6 14 0 1] 1] 31 32 0
7 29 33 34 35 36 37 | 38
B 28 39 40 41 42 43 44
9 21 45 46 47 48 49 50

Figure 7-10: Sample table of correspondences between degrees of freedom
and nodes with old and new node numbers (Sargon solver, CLEVER,
from the ASCII output).

A concise way of providing information about a mechanism without solving an
entite SVD problem is that of creating a fictitious displacement field that gives a
unitary value (1) to the degree of freedom involved in the arrest of the solving
process, and a null value (0) to all the others. While in some fortunate cases, this
immediately produces an image of the desired rigid deformed configuration (fig.
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7-9), more frequently it produces an unrealistic deformed configuration which,
however, at least puts us on the road to understanding the problem. For
example, in the cases shown in fig. 7-8, the fictitious deformed configuration
might be that shown in fig. 7-11.

0 O

R

Figure 7-11: Fictitious deformed configuration aimed at finding static
indeterminacy.

7.2.5.2 QUASI-MECHANISMS: LOOKING FOR AREAS AT RISK

Even when we are dealing with systems that are strictly speaking non-singular,
and thus which can be inverted and calculated, it is still possible to find
structures with insufficient stiffness to resist all possible motions. In this case,
the structure’s “weak spot” can be identified through modal analysis. Actually, to
the large period vibration modes, which are the first to be extracted, correspond
displacements that activate the structure’s particularly flexible zones (those with a

lower stiffness value “k”; recall the formula that gives the pulsation ® of the
simple oscillator: a)=\/? ). Modal analysis can thus be used as a “structural
m

weakness detectot”.

Consider, for example, the multi-storey building shown in fig. 7-12. The first
vibration mode is the one that deforms the typical floor by means of an
oscillation on the weak axis of the longest beams. Actually, the structure doesn’t
have any floor bracing, and thus is particularly weak in regard to all those
displacements that involve a variation in the shape of the floor itself. The first
vibration mode (0.23 sec, the structure in the example carries only its own
weight) is followed by various other modes that all have more or less the same
petiod (0.23 sec), and all of which show bending on the weak side of the beams
with the greatest length. Note that the only elements that are distorted are
essentially the beams on the long side, deflected along their axis of least inertia.
The rods that act as bracing neither elongate nor shorten, since the node moves
perpendicular to the floor that they identify.
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Mode 1 Mode 6

Figure 7-12: Multi-storey building, modes 1 and 6.

Frequency
Mode rad/sec Period (sec) Tollerance
1 2.6837e+001 2.3412e-001 1.3238e-016
2 2.7090e+001 2.3194e-001 3.9343e-016
3 2.7112e+001 2.3175s-001 0.0000=+000
4 2.7125e+001 2.3164e-001 1.3097e-016
5 2.7125e+001 2.3164¢-001 5.2390e-016
6 2.7125e+001 2.3164e=-001 5.2390e-016
7 3.7525e+001 1.67442-001 1.1361e-015
8 3.8057e+001 1.6510e-001 1.8670=-016
a 3.68102e+001 1.6491e-001 3.7297«-016
10 3.8125e+001 1.6480e-001 1.8637e-016
11 3.8125e+001 -001 9.3185e-016
12 3.8125e+001 1‘363?e-01d
13 9.6490e+001 3 &= 0.0000=+000
14 1.004%9e+002 6.2528e-002 1.1314e-015
15 1.0952e+002 5.7371s-002 1.8166e-015
16 1.1161le+002 5.6296e-002 3.8198e-016
17 2.4071e+002 . e— 1.0627e-015
18 2.4919%e+002 2.5215e-002 3.763%9e-015
19 2.7184e+002 2.3113a-002 7.9459%-014
20 3.0697e+002 2.0468s-002 4.6553e-013
21 3.8388e+002 1.6368-002 3.7572e-012
22 3. B667e+002 1.6250e-002 1.1677«-010
23 3.8734e+002 1. 6222e~-002 1.3164e-010
24 4,2135e+002 1.4912e-002 2.2166e-009

Figure 7-13: Multi-storey building, period table, modes 1-24.
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Mode 7 Mode 12

Figure 7-14: Multi-storey building, modes 7 and 12.

From mode 7 to mode 12 we find a second group of modes, all of which show
the deflection of the shortest beam on the side of least stiffness. In this case as
well the only deformed elements are the beams, but this time those of the short
side (and thus stiffer than the previous ones).

Mode 13 Mode 16

Figure 7-15: Multi-storey building, modes 13 and 16.

From mode 13 to mode 16 we have modal deformed configurations that are
distorsional or torsional, with a period that is clearly smaller on average, since,
resulting in the bending of the verticals, they solicit a stiffness that is much
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greater than the previous ones. Finally, from mode 17 on, we find modal
deformed shapes that are closer to those that we can expect to find in a structure
of this kind. The examination of the values that fall on the diagonal of the
stiffness matrix allows us to see that for the minimum and maximum diagonal
term we have, respectively,

Max Kii = 1.3348e+010
Min Kii = 9.3695e+001.

The difference between these two is quite significant, about 8 orders of
magnitude.

The examination of this type of modal shapes naturally leads the designer to
stiffen the floor by adding suitable bracing, in the form of either diagonals or as
continuous plane structures. For purposes of comparison, we have added
membrane elements to the previous model, leaving the overall mass unaltered.
The membrane elements thus have an effect similar to those of MPC-type
constraints, even if they actually simulate more closely what effectively takes
place in the structure, which is not undeformable. Incidentally, with regard to the
size of the mesh adopted for the membrane, it should be noted here that the
determination of the stress within those elements does not enter into this
problem: otherwise the dimensions of the elements would have to have been
completely different.

The maximum and minimum values on the diagonal of the stiffness matrix have
become:

Max Kii = 1.3348e+010
Min Kii = 6.3474e+004,

with a difference of 5.5 orders of magnitude (note that the term of maximum
stiffness has remained unchanged). An examination of the mode table shows
period values that are clearly smaller (the first is 7.e-2 sec), and much more
uniformly distributed, except for the first three modes, which refer, as expected,
to the translation in the X and Y directions and to the torsion.

Thus we see that there can effectively be an insufficient or inappropriate internal
or external constraint even without it having to generate an actual mechanism.
Modal analysis is therefore also extremely useful searching out areas that are
insufficiently constrained within the structure.
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Mode rad/sec
1 8.9617e+001
2 9.9463e+4+001
3 1.1199%e+002
4 2.2676e+002
5 2.51%Be+002
é 3.0713e+002
7 3.5377«+002
8 3.85Z2B8e+002
9 3.9193e+002
10 4.2641e4+002
11 5.0241e+002
12 5.1303e+002
13 6.1427e+002
14 6.7150e+002
15 6.7745«4002
16 7.06807e+002
17 7.0607e+002
18 7.3928e+002
19 7.8758e+002
20 7.9077e+002
21 7.9360e+002
22 8.2771le+002
23 8.2771e+002
24 8.9241e+002

Period (sec)

7.011le-002
6.3171e-002
5.6105e-002
2.7709%e-002
2.4936e-002
2.0458e-002
1.7760e-002
1.6308e-002
1.6031e-002
1.4735e-002
1.2506e-002
1.2247e-002
1.0229e-002
9.356%e-003
9.2748e-003
8.8988e-003
9.8988e-003
B8.4990e-003
7.9781e-003
7.9457e-003
7.9173e-003
7.5911e-003
7.5910&-003
7.0407e-003

Tollerance

1.8870e-014
5.857%e-015
4.0606e-015
0.000D0e+000
1.8047e-015
3.7016e-016
0.0000e+000
0.0000e+000
5.8014e-016
1.3331e-016
1.1314e-016
&,
1]
5
1
3
1
1
7
4
1
5
2
3

64080e-016

.0000e+000
.0791e-016
.6782e-016
.1720e-014
.2124e-013
-5378Be-015
.2177e-016
.3130e-016
-1317e-014
.7687e-014
.7104e-011
.B821Be-016

Constraints

Figure 7-16: Table of vibration modes of a structure stiffened with floor

bracing.

Figure 7-17: Stiffened structure, modes 1, 2 and 3.

7.2.6 SYMMETRICAL CONSTRAINTS

There are cases in which the problem to be studied is symmetrical, not only in its
geometry but also in the constraints and loads. In such cases, when there is a
pressing need to save time and degrees of freedom, it is possible to study only a

part of the model by setting suitable conditions of constraint.

The need to avail ourselves of this possibility occurs much less frequently today
than in the past, because of the significant increase in the performance of
computers. Not so very many years ago, available RAM amounted to only 640
kilobytes, while today we easily find computers with several gigabytes of RAM,
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an increase by a factor of more than 10,000. The requirements for mesh density
have not increased at the same rate, and so it is often more convenient and
simpler to generate the entire structure rather than only a part of it.

However, when we are grappling with a very large problem (say, from 20,000
degrees of freedom up), it still makes sense — where possible — to take advantage
of the symmetries that exist in the structure.

In order for a structure to be considered “symmetrical” there has to be symmetry
in the geometry, in the material properties, in the constraints and end releases
present, and in the applied loads. When all of these requirements are met, then
“the problem is symmetrical” and it can be simplified by modelling only half of
the structure (the half either to the left or the right of the plane of symmetry)
with half of the applied loads and suitable “symmetrical” constraint conditions
on the particular plane of symmetry. Table 7-2 summarises the symmetrical
constraints to be applied at nodes lying on the plane of symmetry for the various
possible symmetry planes. It should be noted that the forces applied exactly on
the plane of symmetry have to be halved (fig. 7-18); if not, the problem is not
correctly modelled.

Plane of Null degrees of freedom on the plane
symmetry of symmetry (symmetrical loads)
XY Tz, Rx, Ry
YZ Tx, Ry, Rz
XZ Ty, Rx, Rz

Table 7-2: Constraints on various possible planes of symmetry.

Note that when a symmetrical structure — or one believed to be symmetrical — is
modelled without taking advantage of the symmetry conditions, the calculated
displacement field must satisty the structure’s expected symmetry conditions. If
this is not the case then we can expect to see errors in modelling (i.e., the model
is not symmetrical as believed). This circumstance is quite useful for checking
complex models. For example, fig. 7-19 shows a model that is apparently
symmetrical, but whose deformed configuration is obviously not symmetrical. In
cases such as these there is always an unwanted asymmetry in the modelling,
often difficult to track down.

In the model shown in fig. 7-19, two finite elements (shown in fig. 7-20) were
were lacking. This resulted in a deformed configuration that was decidedly
asymmetrical.
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gt . . . . 25t

Figure 7-18: Halving of the forces (necessarily parallel to the plane of
symmetry) acting on the plane of symmetry (from the author’s C.E.S.CO
software program).

0 Y N 8 N N
< P W P P i K P P P

Figure 7-19: Asymmetry in the deformed configuration of a structure that
is apparently symmetrical (SARGON model, reproduced courtesy of Gruppo
Marcegaglia — Spa Divisione Ponteggi Dalmine, which provided the
model for the example).

In addition to the case of a symmetrical structure, the case of a symmetrical
Structure  with antisymmetrical loads is interesting. We call a load situation
“antisymmetrical” when a single reflection of the structure with the loads
followed by an inversion of sign of all the loads leads back to the initial structure
[cf. Cook, Malkus, Plesha 1989].
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Figure 7-20: From among the circa 10,000 elements of the model shown in
fig. 7-19, the two that are highlighted were lacking. As a result the
structure was effectively asymmetrical. Note that in the orthogonal view it
was impossible to see that the two end elements were missing because the
intermediate elements were present.

In essence, the loads are antisymmetrical if the “symmetrical” forces acting on
the structure are perpendicular to the plane of symmetry and all with the same
sign, or if the forces acting parallel to the plane of symmetry have opposite
directions left and right to the plane of antisymmetry. In this case the answer in
terms of displacement is antisymmetrical and the constraints to be placed on the
plane of symmetry are antisymmetrical constraints. Table 7-3 shows the
antisymmetrical constraints to be placed in these cases, for the structure’s various
planes of antisymmetry.

Plane of Null degrees of freedom on the plane

symmetry of symmetry (antisymmetrical loads)
XY Tx, Ty, Rz
YZ Ty, Tz, Rx
X7 Tx, Tz, Ry

Table 7-3: Constraints for a symmetrical structure with antisymmetrical
loads.
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Figure 7-21: Symmetrical structure with antisymmetrical loads. Note the

null vertical displacement of the point that was originally on the plane of

symmetry, and the identity of the displacements found (from the author’s
C.E.S.CO software program).

7.3 INACTIVE DEGREES OF FREEDOM: AD HOC
FORMULATIONS

Now that we have discussed real constraints, that is, those aimed at eliminating
actual occurrences of rigid motion within the structure, let’s look at the
techniques that can be used to exclude a priori, if not all, then at least many of
the inactive degrees of freedom.

When the structure in question satisfies the given requirements of homogeneity,
we can expect that all of the structure’s nodes possess a certain identical set of
degrees of freedom which are effectively inactive.

Computer applications address this situation in one of three ways:

1. Some software programs require nothing more than explaining to
the program what particular kind of problem is concerned (plane
stress, plane grid structure, etc.);

2. Some software programs require choosing a certain “constraint
mask” for the problem;

3. Some programs don’t use constraint mask and ask the user instead
to set appropriate fictitious constraints.

The first approach requires the user to choose from a menu of possible typical
problems, and the program generally requites that the structure be defined
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through the use of a very precise coordinate system. The advantages are that the
user gets to solve a problem that is much simpler, and that from the outset the
algebraic problem is much less complex because, since none of the inactive
degrees of freedom are even taken into consideration, when stiffness matrix K is
created, it is already free of irrelevant degrees of freedom. The disadvantage is a
certain unwieldiness that is tied to the fact that the structure has to be defined in
the reference system contrived by the software developer, rather than the one
that is most convenient for the user (for example, in plane xy instead of xz, or xg
instead of xy). Further, the adoption of a correct formulation doesn’t mean that
there are no longer any inactive degrees of freedom in any of the nodes of the structure, and
these still have to be eliminated explicitly using the techniques described in the
section that follows. For example, given a plane frame, if # beams, all hinged,
converge in a node, then the rotation of that node is inactive (we will see why
this is so in more detail in chapter 12) but this could not be established a priori for
all nodes.

The second approach, which can be considered an intermediate one between the
first and the third, requires that the user tell the software which degrees of
freedom are inactive in the problem. Defining these inactive degrees of freedom
leads to the creation of a constraint mask, and thus none of the nodes in the
structure will have these degrees of freedom. The structure is effectively simpler,
since these inactive degrees of freedom have been eliminated from the
beginning. A constraint mask is a detailed specification of a given set of global
degrees of freedom that are to be null for all nodes of the structure without
exception. For example, a constraint mask might be

R R, R),

meaning that in all nodes of the structure the rotations about the global axes (x;
9, g must be null. While the advantage of this approach is flexibility, the
disadvantage is that in order to define the constraint mask one has to know
exactly what one is doing and why, and unfortunately this cannot always be
taken for granted. Further, as in the first approach, the constraint mask does not
necessarily eliminate all inactive degrees of freedom. To help make this clear,
table 7-4 gives a list of problems and their corresponding constraint masks; the
reasons behind what is shown here will be treated in detail when the finite
elements proper to each formulation are dealt with in chapter 11.

In the third approach, the unnecessary degrees of freedom are explicitly
eliminated through their association with a constraint that causes them to
become null. In this way the “constraint masks” are made to be equivalent to
actual (fictitious) constraints assigned to the nodes of the structure (of course,
many constraints can be applied at the same time). The disadvantage is that in
principle every single node has to be treated (though this is not true in practice: it
is only necessary to select all the nodes that have the same constraints and apply
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them). The advantage is that this approach does away with unwieldy options and
choices that don’t make the problem easier anyway.

Problem Constraint template
Truss structure plane xy Tz, Rx, Ry, Rz
Truss structure plane yz Tx, Rx, Ry, Rz
Truss structure plane xz Ty, Rx, Ry, Rz
Space grid Rx, Ry, Rz
Frame plane xy Tz, Rx, Ry
Frame plane yz Tx, Ry, Rz
Frame plane xz Ty, Rx, Rz
Space frame [ -
Plane stress, plane strain, axial symmetry xy Tz, Rx, Ry, Rz
Plane stress, plane strain, axial symmetry yz Tx, Rx, Ry, Rz
Plane stress, plane strain, axial symmetry xz Ty, Rx, Ry, Rz
Solid problems (solid elements) Rx, Ry, Rz

Table 7-4: Constraint masks for various possible structural problems. It is
presumed that the loads also lie in the plane of the structure (otherwise
there might be no possible solution). It is presumed that the formulation
of the elements does not use drilling DOF (see chapter 11, § 11.5.3). If this
is not the case, then the degrees of freedom shown in bold should not be
constrained.

7.4 INACTIVE DEGREES OF FREEDOM: PSEUDO-
MECHANISM

7.4.1 ACTIVATED AND INACTIVATED PSEUDO-MECHANISM

If the inactive degrees of freedom are not all eliminated by an appropriate
formulation of the problem, then it is possible that during assembly some of the
rows (and columns) of the stiffness matrix will remain null. The degrees of
freedom that correspond to null rows are called inactive degrees of freedom; it is
to these that fictitious mechanisms, called pseudo-mechanisms, are associated. If
we examine more closely the corresponding equation of the solving system, we
will find that the general form

ZKﬁuj -£=0
can degenerate into two possible limit situations when there are inactive degrees
of freedom:
0=0
—f£=0.
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The first degenerate form is an identity, and it is found when there are no
equivalent forces acting on the inactive degree of freedom (unactivated psendo-
mechanism). Although this poses a difficulty in the solving process by introducing
a pseudo-mechanism, in principle there is no difficulty in solving the problem:
we need only discard this identity as irrevelant, or modify the system in some
way — we will see how later — so that we can calculate some fictitious value for
the inactive displacement u,.

activated
pseudo lability

unactivated
pseudo lability

Figure 7-22: Examples of activated and unactivated pseudo-labilities.

The second degenerate form is not an identity, nor even an equation. It is a false
statement, and it occurs when equivalent forces are applied to the inactive degree
of freedom (activated pseudo-mechanism). Since no element is connected to the
inactive degree of freedom, these equivalent forces must be either the result of
numerical errors in calculation, or the result of an error on the part of the
engineer, who applied a force to a degree of freedom that did not have any stiffuness. It is
important to note that in the case of an error by the engineer it is impossible to
solve the problem, because it is imprudent to discard a priori the inequality in
question. Actually, the presence of a force might not be an error of the engineer,
but rather the absence of a stiffness that is wrong (due, for example, to the the
use of inappropriate finite elements).

7.4.2 ELIMINATING PSEUDO-MECHANISMS

Software programs usually have at least two possible approachees to pseudo-
mechanisms.

The first approach is to discard them, both when they are activated and when
they are inactivated. This approach has the advantage of not requiring any action

194

Copyright © ICE Publishing, all rights reserved.



Constraints

aimed at identifying and removing the pseudo-mechanisms on the part of the
engineer (and it is thus quite popular among non-experts). However, it has the
disadvantage of making it impossible to trace back to unintentional
inconsistencies and problems in the mesh. The presence of tens or hundreds of
inactive degrees of freedom is not a good indicator of the engineer’s skill, and it
is also possible that the automatic removal of all of these pseudo-mechanisms —
especially the activated ones, which almost certainly indicate that there is a
problem — can compromise the reliability of the analysis. The software program
will come up with a solution, but there is no way of knowing if that solution is
dependable or not.

The second approach is that of always interrupting the execution and refusing to
go forward until the pseudo-mechanism has been explicitly removed by means
of the attribution of as many added constraints as there are pseudo-labilities in
the model. This approach has the disadvantage of requiring the analyst to make a
careful investigation of the causes of the pseudo-lability, and see to their removal
using the instructions explicitly provided by the software. However, it has the
advantage of guaranteeing that the model is a propetly constructed one,
consistent with itself and with the rules of the FEM. This does not yet prove
that the model is reliable, but it is certainly an important step in this direction.
Once the presence of a certain number of pseudo-mechanisms has been
identified in the model, these can be eliminated by means of the addition of a
certain number of fictitious constraints on the inactive degrees of freedom.
Actually, if a given degree of freedom is constrained, its equilibrium equation is
essentially discarded by the solving procedure and at the end of solving the value
of that degree of freedom is set equal to 0. The addition of these constraints
doesn’t have anything to do with the actual constraining of the structure: in the
most widely-used software programs each node is “born” with six independent
degrees of freedom (unless a particular kind of formulation is specified), but it is
possible that only a part of these degrees of freedom are effectively necessary for
solving the problem. In this case it is up to the analyst to remove all of the
inactive degrees of freedom from the structure through the addition of fictitious
constraints.

To these two approaches we can add a third one. It is possible to establish that
the standard functioning of a software program is the one typical of the second
approach, that is, it stops the procedure when there is a pseudo-lability, which is
signalled in an output file. However, this behaviour can be accompanied by an
option that makes it possible to eliminate the pseudo-labilities automatically, as
long as these are not activated. This route allows the user to calibrate the degree of
protection of the software as a function of his or her own individual needs, and
in any case provides protection against activated pseudo-mechanisms, which are
the most dangerous ones.
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Pseudo-mechanisms are one of the most frequent causes for the interruption of
the procedure of solving, and one of the typical reasons why the beginner finds
it impossible to carry out his work. It is thus of the utmost importance to
understand thoroughly the reasons for pseudo-mechanisms and to learn to
identify them before the solver locks up.

An in-depth discussion of the techniques for recognising pseudo-mechanisms
requires that we first explain the various finite elements that are usually used, and
thus we refer to the examples in chapter 12.

7.4.3 IDENTIFYING PSEUDO-MECHANISMS NUMERICALLY

From a numeric point of view, the identification of pseudo-labilities can pose
some problems for the solver, because due to rounding errors, or because of the
inevitable small inaccuracies related to the position of the local tern of the
elements, it is also possible that the terms of the stiffness matrix or the vector of
known terms are not rigorously null, but instead have some very small value.

The condition

K,=0
is no longer sufficient to identify a pseudo-lability, because it might be that

K;=0
that is, that the diagonal term is not rigorously null, but that it is very close to
zeto.
In this case the task of the solver is to identify the pseudo-lability by means of a
comparison between the order of magnitude of the term in question of the
diagonal of the stiffness matrix K, and the maximum diagonal term of the
stiffness matrix itself, M (see also chapter 9). The quantity

K, /M
is compared to an appropriate value of tollerance T, which depends on the
precision with which the floating point operations have been performed. The
condition

(K, /M) < T

is then used to distinguish the case of a very small stiffness (>T) from that of a
“null” stiffness (<T). Naturally, just as it is possible that a pseudo-mechanism
can be hidden by rounding errors, it is also possible that a structural quasi-
mechanism, related for example to the way in which the structure has been built,
can be numerically confused with a pseudo-mechanism. The boundary can be

defined in a purely numerical way, and it is up to the skilful analyst to understand
whether he is dealing with the first or the second case.
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7.5 SELF-EQUILIBRATING STRUCTURES

It sometimes happens that we have to study structures which actually don’t have
any constraints at all, but which are subject to a set of self-equilibrating actions
that bring about a certain regime of stresses and strains. Not being constrained
to anything that is fixed, the structure is free to move rigidly without any work
being performed, and in this sense it can be considered hypostatic. At the same
time, the fact that the actions are globally in equilibrium means that no
constraint is actually needed for the study of the regime of stresses and strains.

W_'i;i'“': __:jc'.lz. EEREREmSREERREBNIIISHBSNRERRNY
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Figure 7-23: A cruise ship subject to a design wave (SARGON model).
The dots represent fictitious constraints.

The situation is such that, in the absence of any constraint, the structure cannot
be solved, because the stiffness matrix of the system of solving equations is
singular (as many times singular as there are independent rigid motions allowed
to the structure). The problem is solved by adding fictitious “ground”
constraints, in just sufficient number to prevent rigid motions, and then
checking, once solving is finished, that the reactions exerted by the constraints
are effectively close to zero. If the structure is effectively self-balanced, the
constraint reactions of the isostatic system created have to be null, and thus do
not essentially influence the analysis.

For example, fig. 7-23 shows the study of an ocean liner subject to a design
wave. In this case the weight of the ship (variously distributed along its entire
surface both in length and in height) is exactly compensated for by a complex
distribution of pressures on the ship’s shell, which in their turn depend on the
form of the wave over which the ship is passing. Constraints are of no use, but
in order to solve the structure numerically it is necessary to take three nodes, two
at the stern and one at the stem. The node at the stem is constrained in this way

Tx=Ty=Tz=0;
the first node of the stern in this way
Ty=T2z=0;

and the second node of the stern in this way
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Tz=0.

As you can see, the total number of constraints is equal to 6, that is, exactly equal
to the overall number of global degrees of freedom of the ship. The nodes were
placed quite far apart from each other, so that the constraint reactions capable of
perturbing the stress locally were reduced to a minimum. Actually, while it is true
that in principle the model could be considered self-balancing, in practice this
objective could only be reached approximately, given the complexity of the form
of the wave and the dimensions of the plate elements simulating the shell. The
calculated constraint reactions thus had to be “null” in a numerical sense, that is
to say, negligible with respect to the overall resultant. The ship shown in fig. 7-23
weighs more that 22,000 tons, and thus constraint reactions on the order of 3t
can be considered negligible (3/22000=0.0136%).
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8 SOLVING AND STRESS RECOVERY
8.1 SOLVING

The main problems related to the actual solution of the system of solving
equations are connected to the precision and the efficiency of the solution. We
will deal with how to determine the precision of the solution in the next chapter.
This present chapter will be dedicated to the efficiency of the solving procedure,
an efficiency that can only be attained by making the best possible use of the
computer resources available according to the requirements of each individual

problem.

When the FEM was just coming into use, even ordinary problems were
significantly difficult in terms of computation, and this immediately gave rise to a
series of studies aimed at achieving the objective of performing efficient
numerical analyses even though the available quantity of memory was quite
modest.

The discerning user should be familiar with the basic problems related to the
solution of very large systems of linear equations, so that he or she knows what
to do should situations arise where it is necessary to use particular methods in
order to manoeuvre around obstacles to computation. Further, knowing at least
summarily the problems that the solver must be able to address, makes the user
better able to understand why possible interruptions might occur during this
phase of the job.

8.1.1 BRIEF REVIEW OF METHODS OF SOLVING LINEAR SYSTEMS

The solution of large systems of linear equations is one of the most important
topics in numerical calculation, and certainly one with a seemingly endless
bibliography. It is beyond the scope of this book to provide a detailed discussion
of the most commonly used techniques, and thus we will limit ourselves to
providing some fundamentals relative to the three most widespread solutions as
far as the FEM is concerned, namely, the method of Gaussian reduction, the
Cholesky method, and the Gauss-Seidel method.

As we have seen, the problem that must be solved takes the form

Ku=p,
and stiffness matrix K has the important characteristics of being symmetrical and
positive definite. Contrary to what might be believed, the problem is not

normally solved by looking for the inverse matrix K of the stiffness matrix K,
and obtaining the solution by means of the product

u=K'p,
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because this tactic would make the computational task decidedly more unwieldy
than it needs to be (remember that we are talking about systems of thousands,
tens of thousands, or even hundreds of thousands of equations). It should also
be borne in mind that more than solving @ system of equations, in reality it is
necessary to solve a certain number of systems, that is, a number equal to the
number of load cases that are expected to occur in the structure. Actually we
haven’t made just a single vector p of known terms, but many vectors p;, P,
Pps- -- of known terms, and therefore there are as many problems to solve as there
are load cases.

It is thus of the utmost importance that the algorithms are such that they do not
require repeating operations that only involve the stiffness matrix K, which
should be performed only a single time.

8.1.1.1 DIRECT METHODS

Direct methods are those that make it possible to solve a system of linear
equations with a finite, predetermined number of steps. All of these methods
include a first phase called the “reduction” of the stiffness matrix K of the
system. During this phase, matrix K is decomposed into the product of two
triangular matrices!, a lower triangle L and an upper triangle U, such that

K=LU.

This reduction is calculated only once, and it is the most onerous phase in terms
of computational effort.

Once decomposed, the matrix of the original problem,

Ku=p,
becomes
LU)u=p,
which is equivalent to solving the following two systems:
Lx=p [8-1]
Uu=x. [8-2]

This procedure might not appear advantageous, but in reality, since the two
systems of linear equations 8-1 and 8-2 are triangular (given that their coefficient
matrices are, as we said, lower triangular matrix L. and upper triangular matrix
U), they can be solved quite rapidly, because each equation directly provides the
final value of an unknown, which can then be used as a known term in the
equations that follow. In the first system, 8-1, we start with a first equation
containing a single unknown, and go forward (forward solving). In the second

T Recall that a lower triangular matrix is one in which all the terms lying above the main diagonal are null, while
an upper triangular matrix is the opposite, that is, all the terms lying below the main diagonal are null.
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system, 8-2, we start with the last equation, which also contains a single
unknown, and work backwards to the next to last, and so forth (backward solving).
The first system determines x (which is an intermediate unknown), the second
system determines the actual unknown u.

What is remarkable is that the phase of reduction is performed only a single

time, and that the solution of # load cases requires the solution of # systems like
those of 8-1 and # like those of 8-2.

REDUCTION
FORWARD SOLVING CASE 1
FORWARD SOLVING CASE 2

FORWARD SOLVING CASE n

BACKWARD SOLVING CASE 1
BACKWARD SOLVING CASE 2

BACKWARD SOLVING CASE n

Figure 8-1: Diagram of the typical steps in a generic solving with the direct
method

The solving phase can be represented in diagram form, as shown in figure 8-1.
Generally speaking, the majority of errors and problems take place during the
reduction phase, which is that which typically brings to light problems of
mechanisms or pseudo-mechanisms. The reduction phase is the slowest, while
the phases of forward and backward solving are usually quite rapid.

8.1.1.1.1 (GAUSSIAN REDUCTION

The technique of Gaussian reduction is the most widely used. The idea is that of
transforming the system into triangular form by means of a series of steps aimed
at eliminating the various unknowns one at a time, starting with the first one,
from successive equations.

In order to achieve this end, each equation is multiplied by an appropriate term
and then summed to the equation relative to the unknown to be eliminated. By
repeating this procedure for all of the unknowns in the problem, we finally arrive
at a system in triangular form that can be easily solved.

Let’s consider the following system:
3xty+2z=11
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x+2y+63=23
2x+06y+52=29.

We multiply the second equation by 3, and subtract it from the first equation; we
then multiply the third equation by 3/2 and subtract it from the first. Thus we
obtain the equivalent system:

3x+y+2z=11
—5)-163=-58
—8y-5.52=-32.5.

As you can see, the x has disappeared from the second and third equations. Now
we multiply the third equation by —5/8 and subtract it from the second. We thus
obtain the following equivalent system:

3x+y+2z=11
—5)-163=-58
—12.56253=-37.6875,

which has the desired triangular form. Now, from the last equation — with a
single unknown — we find that

From the second,
we find that

Finally, from the first equation
3x+2+2(3)=11
we find that
x=1.
This simple example allows us to understand a series of things.

1. When multiplying the equations by the “convenient” factor aimed
at eliminating the variable that has to disappear from an equation,
we might have to generate “strange” numbers that give rise to
rounding errors (see, for example, the last equation found in g: in
this particular case there aren’t any errors, but there could have
been had the numbers been different).

2. The factors of multiplication depend on how the equations are
ordered, thus they can be reordered so as to obtain situations that
are more favourable in numetric terms;

3. The procedure of Gaussian reduction incorporates both the
reduction phase as well as that of forward solving, since the final
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result is a system with an upper triangular matrix (U), which must
be followed by a backward solving phase.

An efficient implementation of the method of Gaussian elimination calls for
various techniques that are intended to improve the numerical quality of the
solution, which might otherwise turn out to be sufficiently impoverished because
of rounding errors. Such techniques call for a pre-multiplication of the equations
so that there are not too many dissimilar terms such as order of magnitude
(scaling), as well as a reordering of the equations in order to be able to use the
most favourable terms of the matrix for performing the necessary operations

(pivoting).

8.1.1.1.2 THE CHOLESKY METHOD

The Cholesky method is particularly useful for solving structural problems,
because it requires that the coefficient matrix not only be symmetrical but
rigorously positive definite as well. Thus if the matrix contains any mechanism at
all, the system cannot be solved and the algorithm locks up.

The Cholesky method decomposes the stiffness matrix K in the following
manner

K=LL",
that is, the upper triangular matrix U of the decomposition K=LU is simply the

lower triangular matrix L transposed. The formulas that express the terms I, of
the matrix can be written in the following way:

j-1

K i Z L, le

=1

These formulas make it possible to calculate the terms of L immediately starting
from those of K. As you can see, the formulas contain a square root that can be
calculated in the context of real numbers only if what is under the radical sign is
greater than or equal to zero. This fact is a mathematical manifestation of the
condition mentioned eatlier that matrix K is rigorously positive definite. If during
the solution a square root of a negative number appears, then this implies that
the matrix was not positive definite.

8.1.1.2 ITERATIVE METHODS

In addition to direct methods for solving systems of linear equations, there are
also iferative methods. In iterative methods, in contrast to what occurs with direct
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methods, the number of operations necessary to arrive at the result is not known
a priori. The solving procedure is considered to end with the achievement of
convergence, that is, to the minimisation, within a predetermined limit, of error.
There is some debate about the exact definition of error, since in general this
makes use of 2 norm for the vector error e, which can be calculated as

e=Ku-p,
where u is an approximation of the “true” vector u. Generally speaking the

norm of the vector e is established within a certain tolerance, and the
achievement of this condition leads to the achievement of convergence.

Iterative methods require a certain number of matrix-vector products of the
order of the problem in question. Given that the matrix always remains the
same, and that there is no reordering of its terms, iterative methods are especially
suitable for techniques like sparse matrix technology (ctr. par. 8.1.2), which makes it
possible to reduce the amount of memory required to an absolute minimum. In
general, iterative methods are most suitable when there is a large number of
equations. These methods can also be used to refine the solutions obtained with
one of the direct methods (“cleansing” them of rounding errors).

8.1.1.2.1 THE GAUSS-SEIDEL METHOD

The Gauss-Seidel method is a refinement of another iterative method, Jacobi’s
method. Stiffness matrix K is written as the sum of three matrices: matrix L,
lower triangular, which takes the terms under the main diagonal of K; matrix D,
diagonal, which takes the diagonal terms of K; and matrix U, upper triangular,
which takes the terms above the main diagonal of K; that is, bearing in mind that
K is symmetrical, and thus U=L"

K=L+D+L".
The Gauss-Seidel method consists in taking the succession of vectors u
(L+D)u,,,=-L'u,+p
where £ is the index of iteration. Calculating u,, starting from u, requires the
forward solving of a triangular system, and thus it is extremely easy to do; the
known term is obtained by multiplying the result of the previous iteration by L,

and then summing p. The iterative procedure comes to a halt when the
following condition is met:

||“k+1 _uk"2

o]

where the symbol used for the norm of the vectors indicates “norm 27 (the
square root of the sum of the squares). In practice, the iterative procedure
becomes blocked when two vectors corresponding to two successive iterations
are practically identical (within pre-established limits of tolerance).

<tol
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If the initial stiffness matrix K is symmetrical and positive definite, we can see
that the Gauss-Seidel method converges for each initial choice of the trial vector
u,.

8.1.1.2.2 THE PRECONDITIONED CONJUGATE GRADIENT METHOD

The preconditioned conjugate gradient method is a very general methodology
that minimises the quantity

1
IMI=—u"Ku-p'u
2 b
that is, the total potential energy, when K is presumed to be symmetrical and
positive definite.? The vector u that minimises this property is such that
Ku=p.
We begin with an initial estimate of the solution u,, then determine the residual
r; as
r,=p-Ku,.
We then set s;=t,.
Once this is done an iterative procedure in £ (which is now equal to 1) is started:
T
o -5t
Ks
Sk k

I, =r—a Ksk

T
r T,

Sin =T+ s,
This comes to a halt when a suitable condition of convergence is reached.

If there are no errors in the floating point operations, then in matrices that are
symmetrical and positive definite the procedure will converge in a number of
steps equal to # degrees of freedom. Because of rounding errors, in reality the
procedure is not direct but iterative, and it is not possible to know a priori how
many iterations are necessary to achieve convergence. The lower the condition
number of the matrix is, the faster the speed with which it converges; in physical
terms, the speed of convergence increases as the quasi-mechanisms diminish
(that is, when small or extremely small forces correspond to large displacements).
To increase the speed of convergence, the preconditioned version of the algorithm

2 A generalisation of the method that can also be used for matrices that are not symmetrical and not positive
definite is that of preconditioned biconjugate gradients. However, this lies outside the scope of our discussion.
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is often used, that is, the original system of linear equations is multiplied by a
suitable matrix A, called the preconditioner:

AKu=Ap.
One possible choice of a preconditioner might be the matrix D, obtained from

the main diagonal of K. Other choices make suitable preliminary numerical
investigation possible, with the aim of analysing the structure of matrix K.

As we can see, this method only requires matrix-vector products, or scalar
products, and so it is especially efficient when used with techniques for storing
sparse matrices, which we will discuss in the next section.

8.1.2 TECHNIQUES FOR STORING STIFFNESS MATRICES

We have seen that each finite element problem requires solving a system of
algebraic linear equations of the form

Ku=p.
Now that we have discussed the methods used to solve the kinds of systems
typically encountered in the FEM, let’s look at the problem of the space

requirements (that is, the amount of computer memory) that the solution of
such systems implies.

As is well known, there are two kinds of computer memory: cache memory on
the hard disk, and random access memory, or RAM. Access to cache memory is
noticeably slower than access to RAM, and so solvers tend to want to store the
stiffness matrix entirely in RAM (or as it is often written, a// in core, in order to be
able to perform rapid calculations.

Up until just a few years ago, the amounts of both cache memory and RAM
were rather limited (my first computer, bought in 1989, had a 100Mb? hard disk,
and a 20MHz processor, with 1Mb of RAM). Only towards the end of the 1990s
would large amounts of RAM begin to be available on normal computers. Today
we commonly find computers with several gigabytes of RAM and hard drives of
100 gigabytes and more.

So here is the question: can the stiffness matrix K be entirely stored in RAM
during the fundamental phase of reduction, and then during forward or
backward solving?

Stiffness matrix K is square, and if # is the number of degrees of freedom in the
problem then K contains #° real numbers. In today’s computers, each real
number in double precision requires 8byte for storage. Thus the memory
required in to deal with the stiffness matrix is equal to 8#”. Table 8-1 shows what
this means as the number of degrees of freedom increases.

3 Mb = megabyte; 1kb = 1024byte; 1IMb = 1024%byte = 1,048,576 byte; 1Gb=1 gigabyte; 1Gb=10243
bytes=1,073,741,824 bytes.
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Number of Degrees of Number of bytes
Freedom (approximate)
100 80KB
1000 8Mb
10,000 800Mb
100,000 80Gb
1,000,000 8000Gb

Table 8-1: Nominal memory requirements per number of degrees of
freedom to store stiffness matrix K.

As we can see, the amount of memory required to store the stiffness matrix
increases quite drastically, so that a problem that has 10,000 degtrees of freedom,
not at all uncommon in technical practice today, becomes almost impossible to
manage even with modern personal computers. Further, to the memory required
to store the stiffness matrix we have to add the memory necessary to hold the
vectors of equivalent nodal forces, the software program itself, the operating
system and any other programs that might be running at the same time.

The stiffness matrix is the coefficient matrix of the system of linear equations
and has the following characteristics:

1. Itis symmetrical;

2. Itis sparse;

3. Itis banded;

4. Itis (or should be) positive definite.

The fact that the stiffness matrix is symmetrical allows us to say right away that
in reality we don’t have to store #° terms (where # is the number of degrees of
freedom) but only about half (the terms on the diagonal have no corresponding
values). More precisely, NR1, the number of terms to be stored, turns out to be

NR1 = 77-( - ) /2 = (+ 1)/2
The fact that the stiffness matrix is banded means that non-null terms are

actually found only up to a certain point in a given row, starting with the
diagonal.
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Figure 8-2: What the stiffness matrix looks like: maximum, minimum and
mean values.

This has an important consequence. The number of non-nul/ terms that has to be
effectively stored is not equal to NR1, but is actually much smaller: all of the
terms that lie beyond the maximum bandwith are certainly null, and thus it is not
necessary to store them.

Thus, if BMAX is the maximum width of the half-band (4a/, because the matrix
is symmetrical and the other half, being equal, does not interest us), the second
approximation of the quantity of numbers to be stored, NR2, can be written as

NR2 = »* BMAX

This second scheme makes it possible to save quite a bit of space in memory,
because the maximum band is only a fraction of the order of the matrix. To be
precise, the maximum band can be reduced to a fraction that is often less than
1/10, 1/20, or even 1/40 of the order of the matrix, thanks to the techniques of
renumbering, which we will discuss in the following section.

The scheme using the maximum bandwidth to determine the quantity of
numbers to be stored is used frequently because it makes it rather easy to
improve the situation and does not lead to significant difficulties from a
programming point of view.

However, this scheme can still be improved. Rather than storing rows that all
have the same dimension (BMAX)), it is possible to store each row with its exact
dimension, and a vector of integer numbers that memortises, for each row, the
exact dimension of that row. Thanks to this expedient, the quantity of numbers
to be stored is:

NR3 = »* BAVE

208

Copyright © ICE Publishing, all rights reserved.



Solving and stress recovery

where BAVE is the mean band dimension of the stiffness matrix. Memorising
each row with its exact dimension is the same as memorising each column with
its exact dimension (given that K is symmetrical); since the columns are vertical,
their differing heights recall a city skyline, and thus this technique is called
“skyline” (fig. 8-3).

skyline

Figure 8-3: A “skyline” diagram of a matrix.

The skyline technique makes possible another drastic reduction in the number of
terms to be stored, because the relationship between the maximum and
minimum band values can be quite large (3, 4, 10 or even more, depending on
the problem). Not using the skyline technique can result in taking up five or ten
times more memory that what is actually necessary.

If R is the relationship between the mean band value and the order of the system
n, the size in bytes of the stiffness matrix becomes

8*R*i
Table 8-2 shows the expected sizes in bytes of the stiffness matrix for various
values of maximum and minimum band values (in the case of skyline matrixes).

As Table 8-2 shows, using the skyline techniques makes it possible for the solver
to achieve a solution “all in core” for problems of the order of tens of thousands
of degrees of freedom. This dimension (with ten or twenty thousand degrees of
freedom) is often amply sufficient, especially for studies of frame systems which
don’t require meshes that are particularly dense.

However, it can happen that in spite of these reductions the stiffness matrix is
still too big to be stored in memory. In this case the technique used by the
solvers involves dividing the matrix into blocks.

The solution is loaded into RAM two blocks at a time: the block to be reduced,
in triangular form, and the block of the previous equations, already reduced,
which is required to reduce the current block. The two blocks can have different
dimensions, using a single block “bordered” by only those previous equations
that are strictly necessary because of pairing, making it possible to optimise the
use of memory. Each block has to be read and written to the hard disk, and this
causes interruptions in the solving process.
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241 BAVE 3% n BAVE 6% n | BAVE10% n | BAVE 15% n
Degtees of
Freedom
100 2,4Kb 4,8Kb 8Kb 12Kb
500 60Kb 120Kb 200Kb 300Kb
1000 240Kb 480Kb 800Kb 1,2Mb
5000 6Mb 12Mb 20Mb 30Mb
10000 24Mb 48Mb 80Mb 120Mb
50000 600Mb 1,2Gb 2Gb 3Gb
100000 2,4Gb 4,8Gb 8Gb 12Gb
500000 60Gb 120Gb 200Gb 300Gb

Table 8-2: Space requirements in memory for stiffness matrix K
using the skyline technique.

It is quite common for a matrix to be divided into 2, 4, 8, 12 or even more
blocks, but it is incorrect — or at least, not optimal — to divide it into dozens or
hundreds of blocks. In fact, in this case the frequent interruptions during the
reduction phase, and the continual reading and writing to disk, constitute an
inordinate waste of time, and generally speaking, lengthen the calculation time
significantly, sometimes to an impossible extent. When this happens, it means
that the system resources (that is, the RAM) are not sufficient to solve the
problem in question.

To sum up, when the system does not have the resources necessary to carry out
an optimal solution, we might have to accept a solution based on a subdivision
of the initial matrix into quite large numbers of blocks, but this kind of solution
is much less preferable than one that is all in core or just adequately subdivided,
where this can be accomplished by increasing the memory resources of the

system (see §8.1.4.1).
-

Even though skyline techniques have resulted in a significant reduction of
requirements in terms of memory and have been used for years, the growing
number of required degrees of freedom have led to the need to develop
techniques aimed at reducing still further the space required to store the stiffness
matrix. These techniques, called sparse matrix: technology, exploit the fact that even
the zone inside the band of the matrix contains zeroes. It is thus possible to
think of storing only the terms that are effectively non-null in a single, large
vector, accompanied by a system intended to reconstruct the original position of
a generic element of the vector itself, as well as identifying the position of the
vector in a given element of the stiffness matrix (by means of the so-called double
linked lisf). The advantages in terms of computation are considerable: only the
non-null terms, wherever they might be found, are stored. The number used in
these cases to determine the necessary amount of memory is not the bandwidth
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but rather the percentage of fill in, which grows as the coupling of the equations
grows: the higher on average the number of finite elements connected to a node,
and the more complete their contribution to stiffness, the greater the number of
non-null terms in the stiffness matrix.

This results in a drastic decrease in calculation times and in the amount of
RAM occupied, so much so that today sparse matrices are the most commonly
used.

This topic could easily fill a whole volume by itself, so we cannot discuss it
in depth, but in what follows we will clarify some of the aspects most helpful for
managing the use of these solvers.

The most important observation is that, as we have seen, not all solving methods
are equivalent. Of particular importance is whether or not the matrix can be
positive semi-definite, that is, if it can contain singularities. As we have seen, the
Cholesky method has the advantage of blocking the solving and making it clear
when the matrix is only positive semi-definite, while the other methods limit
themselves, in this case, to not guaranteeing convergence. It would thus be
particularly interesting to be able to use the Cholesky method for sparse
matrices, but not all sparse solvers adopt this method, because it requires a
triangularisation that is far from simple when working with sparse matrices. It is
by no means given that if the original stiffness matrix K is highly sparse, then so
is matrix L, and it is even less certain that L is of the same identical type. It can
in fact be that K is highly sparse and that L is not at all: in this case a preliminary
treatment is required for matrix K in order to obtain a matrix L that is sparse
enough to stay all in core. Even if the procedure used to optimise the problem is
totally different than the one used for non-sparse matrix techniques (that is, the
renumbering that will be discussed in the next section), it is clear that this
preliminary phase also tends, as in the classic techniques, to interfere with the
algorithm’s efficiency, requiring additional time.

If the sparse matrix solver adopted by the program does not come with a feature
that clearly signals when there are mechanisms or, more generally, singularities,
then the user has to be aware of this and ready to guard against it in some way:
the lack of this information can be dangerous, since a singularity in the
coefficient matrix always indicates that a problem has been poorly formulated
either structurally or numerically.

With the amounts of RAM currently available, it is probable that even a classic
skyline solver is capable of solving systems with tens of thousands of linear
equations in short spaces of time. Given this situation, it is preferable to choose
solving methods that effectively guarantee that stiffness matrix K is positive
definite, rather than methods which, although they are capable of solving the
system a few seconds quicker, provide no such check.
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The situation obviously changes if we are dealing with systems that have some
hundreds of thousands of equations, or even more. In this case the skyline
methods won’t work, and sparse matrix solvers that are sufficiently stable and
capable of identifying singularities are required.

8.1.3 RENUMBERING

In the preceding section we saw that the space in memory necessary for storing
the matrix increases in direct proportion to either maximum bandwidth (the
rectangularisation method) or mean bandwidth (skyline method).

The bandwidth is directly related to the way in which the nodes of a structure are
numbered. Any given row of the stiffness matrix refers to a given degree of
freedom of a certain node of the structure. When assembly was discussed in
chapter 4, it was explained that the non-null terms located on a given row of the
matrix referred to indirect stiffness, which were due in their turn to the presence
of elements connected at different nodes.

39 40 41 42 15 24 33 42
3ppl 738 14— ——3——
31 S 132 40
27——2g——2s—30 12521 30139

- H=5 H=10
N 11 g g tag
19 20 (Z o2 10 9 28 a7
15 gl 7 g 9 17 ae
1 1 8 17eas
7 8 9 10 7 1 astay

Figure 8-4: The effects of numeration on the normalised band.

To make this clear, let’s look at the structure on the left in fig. 8-4. If, for
example, we move node 21, keeping all the others fixed, we have to apply forces
on some other nodes in order to ensure that they don’t move. To be precise, we
have to apply forces on nodes 16-17-18-20-22-24-25-26. This is because all the
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nodes listed are connected to node 21 by at least one element. No force is
required to keep all of the other nodes fixed, and the indirect stiffnesses are
identically null everywhere.

half-band
[0]

main diagonal

Figure 8-5: Blocks of direct and mixed stiffnesses on the row of node 21.

If we consider a stiffness matrix that is partitioned into small square blocks that
refer to the degrees of freedom of each node, we can see that the presence of
one mixed stiffness term 21-26 gives rise to the presence of one small non-null
stiffness block that is five blocks away, starting from the diagonal term relative to
node 21.

Let H be the maximum difference that can be obtained between the node
number in question (21) and the number of any one of the nodes connected to

the elements that are connected to node 21 (16-17-18-20-22-24-25-26). In our
case
H=|21-16|=121-26| =5.

If all the nodes have the same number of degrees of freedom, then a good
approximation of the half-bandwidth can be obtained by multiplying H by the
number of degrees of freedom per node. If the nodes do not all have the same
number of degrees of freedom, we can expect to end up with remainders due to
the nodes that are missing one of the degrees of freedom typical of the problem.
In any case, H is a direct indicator of bandwidth: if H can be minimised, then the
bandwidth is also minimised.

Looking at figure 8-4 we can see that a different numbering — all else remaining
the same — is all that is needed to obtain a model where H is greater. The
numbering of the structure shown on the right of 8-4 gives preference to the
long side, and this leads to a value of H=10, that is, a normalised bandwidth that
is the double of the structure shown on the left. What was node 21 in the
structure on the left has become node 28, and since nodes 38 and 18 are
connected to nodes 28 by elements, we can expect to have H=10, that is, double
the previous value of H=5.
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By choosing different node numbering it is possible to obtain different bandwidths, and
thus increase or decrease problems of the amount of space required in memory during the solving

phase.

Generally speaking the solvers begin their task by attempting to renumber the
nodes of the structure so as to render bandwidth a minimum. From the very
beginnings of the FEM, quite a number of studies have been undertaken to try
to find systems that efficiently renumber the nodes of a structure.

Even if there is always an “optimum” numbering, it is not always possible to
establish immediately just what this system is. If the structure has a side that is
“long” (that is, one with more nodes, not necessarily the longest geometrically)
with respect to other, shorter ones, it is usually helpful to renumber giving
preference to the “short” sides, or better, to the “shortest” side (again, that with
the fewest nodes). On structures that are highly regular (such as that shown in
figure 8-4), it is easy to see that such numbering is also the “optimum”
numbering. On irregular structures (those with steps or the like), it can be seen
that this criterion, though still valid, does not necessarily lead to the optimum
solution.

The algorithms for renumbering make use of graph theory, assigning a point
value to each node on the basis of the number of elements or nodes that are
connected to it. The nodes are thus arranged according to a hierarchy, and in
general a path is constructed starting from an initial node, aimed at maximising
or minimising the global point value of the “path”. These algorithms are not
always ideal, because the solution depends on the starting node, and it is
practically impossible to try out each of the nodes to see which is the ideal
starting node because this greatly increases calculation time.

Since the amount of time required for the renumberer to generate and try out a
new numbering can sometimes be quite significant, the algorithms used to seek
the best renumbering are not usually programmed to find the “optimum”
numbering, but are rather limited to finding the best solution among a set of
possible numberings, each of which is tested to determine bandwidth.

If the software program is equipped with the right commands, it is possible for
the user to find on his own a numbering that is suitable for his purposes. In this
case it is helpful to ask the solver to not execute any renumbering, so that no
time is wasted in the useless search for a renumbering that is better than the one
already in place.

It is quite clear that renumbering upsets the labelling of the nodes, reassigning a
progressive number to them. Thus, when the solver gives messages about
labilites or problems during solving, it gives them using the “new” numbering
and not the “old”. Some software programs limit themselves to giving cryptic
messages such as

Error your model is not tied down enough-check dof 14326.
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In such cases it is up to the analyst to find which node corresponds to DOF
14326 and what its original number was (for example, 2345), in order to locate it
within the structure.

8.1.4 THE USER’S POINT OF VIEW

In this section we will look at the problem of solving from the point of view of
the person using the software program, rather than that of the one who writes it
or optimises it. We will briefly review some of the fundamental aspects that the
user must bear in mind when working with the software programs currently in
use.

8.1.4.1 PREDICTING HOW MUCH MEMORY IS OCCUPIED

We have seen that once he knows the method that his software program uses
for storing stiffness matrix K, the user can arrive at a first estimate of the
amount of space that will be taken up in memory by the stiffness matrix, and can
estimate, at least roughly, the maximum or mean half-bandwidth, when skyline
techniques are used.

Table 8-2 makes it possible to come up with a first estimate of the possible
difficulty of the problem that has to be solved. If the computer being used has a
certain number of megabytes of RAM, then it is possible to compare the amount
of space required by the stiffness matrix to available RAM and understand what
solving strategies are possible.

We can say right away that for a computer with one or two gigabytes of RAM,
today widely available, problems of up to 50,000 to 100,000 degrees of freedom
do not usually constitute a problem, as long as the computer is set up to work
correctly.

For problems of a greater magnitude, the requirements in terms of RAM have to
be evaluated and compated to the available memory so that it is possible to
foresee — should it be necessary — how the computer has to be set up. If the
stiffness matrix comes to take up 80 — 90% of the system’s available RAM, then
unnecessary multitasking should be avoided during solving, at least if optimal
solving times are desired.

A good rule of thumb for determining @ priori the size of the stiffness matrix is
Mb= 0.4 kdof?

where Mb are the megabytes required for the stiffness matrix, kdof the
thousands of degrees of freedom, and where a mean band (for the skyline
method) or a maximum band (for the ordinary method) has been implicitly
presumed to be equal to 5% of the order of the problem. For example, for a
problem with 100,000 degrees of freedom, a rule of thumb estimate of the space
required for the stiffness matrix would be 0.4x100’=4000Mb. If our computer
has, for instance, 2Gb of RAM, we can be certain that the system will be
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subdivided into blocks. Presuming that 1.5Gb of the available 2Gb of RAM are
destined for the solver (that is, about three-quarters), we can expect that the
stiffness matrix will be subdivided into two block. Of course, with a computer
that has 4Gb of RAM the same problem could be solved a// in core without any
problem. It should be kept in mind that 4 Gb is the physical limit for addressing
memory in 32bit systems, thus it is highly probable that 32bit systems will give
way to 64bit systems in just a few years.

Can we use a computer with 500Mb of RAM to work on a problem that has
100,000 degrees of freedom? If we apply the formula given above,
0.4x100°=4000Mb, and allowing the use of almost all of the available RAM, of
the order of 400 of the 500 total megabytes (which probably means that the run
has to be launched at night), we can expect the stiffness matrix to be subdivided
into ten blocks. Of course if a preliminary run guarantees us that the mean band
is equal to 2% rather than 5% of the order of the problem, then the required
amount of memory becomes 2/5 of that first estimated, that is,
2x4000/5=1600Mb, which would make only 4 blocks necessaty. But this still
constitutes a “big” problem for the machine we have at our disposal.

8.1.4.2 CORRECTLY SETTING UP THE COMPUTER

On the computers most widely used, that is, those based on the 32bit Windows
platform, it is necessary take into account a series of factors that can significantly
influence how solvers perform. Here we will list the most important of these.

8.1.4.2.1 MULTITASKING

Multitasking is the ability of an operating system to execute more than one
program at the same time. This important capacity was achieved by mass-
produced Microsoft operating systems for the first time with Windows 95.
Running other programs at the same time as a solver is of course completely
normal, as long as the solver does not require a percentage of the available RAM
that is close to 100%. In such a case, multitasking can become impossible. If the
user has decided to sacrifice some of the speed of solving in order to continue to
perform other tasks at the same time, then it is helpful — in the programs where
this is possible — to allocate less RAM for the functions related to the solver, so
that it occupies less than 60% of available RAM.

On a practical level, if the problem is “big” for the computer being used, then it
makes sense to close the applications that are not strictly necessary.

8.1.4.2.2 VIRTUAL MEMORY

In simple terms, virtual memory is memory on the hard drive that is usually used
by the operating system to transfer part of the data contained in RAM that is
temporarily unnecessary. Given the enormous capacity of present-day hard
drives, the increase of virtual memory would appear to be a valid system for
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getting around the limitations of available RAM. In reality this is not the case,
since the availability of this kind of memory does not do away with the need for
frequently swapping data* on the disk. In fact, since swaps are generated by the
operating system in a way that is unpredictable, and not in ways that concord
with the solver that partitions the stiffness matrix into blocks, it is possible that,
by increasing the available virtual memory and the “RAM” requested of the
operating system, solving will take even longer than it would have had less RAM
been requested and an “honest” partitioning into blocks been performed. It thus
makes sense to use virtual memory in the way it is normally used, without trying
to “fool” the system.

8.1.4.2.3 AUTOMATIC EXECUTION

Some software programs allocate the memory that the operating system says is
available at the moment that the procedure of solving is executed as a memory
pool for the solution. It is as though the solver knocks at the door of the
operating system and asks, “How much memory is free?” At this point very
surprising things can occur.

sy T
| Fle Edit View Favorits Took Help |$

| Qack - - ¥ | Psearch [Folders | [ 3 X 9| -
J Address I@ C:\Documents and Settings'All Users\Start Menu'\Programs\Startup j Go

Name |__size [ Type | Date Madified |
E'AVG Tray Icon 2KB Shortcut 420/2008 9:19 AM
ﬂDesktop Manager 2KB Shortcut 5/1/2008 8:06 PM
(@ 1ntel PROset 1KB Shortout 5/13/2008 7:51 AM
[P outioak 2003 View » |2008 11:41 AM
EF 5creen Calendar 2008 11:04 AM
& snagit 8 SR B * boos 10:52 am
7] Timer = 00 9:34 AM
S Trillian Customize This Folder. .. /2006 9:20 AM
[filvzaccess Manager 2003 6:39 AM

Paste

Baste Sharbout

Undo Rename Cirl+2

e s @ Shortout

Creates a new, empty folder, % ?zafvwhai+ 4

Figure 8-6: Finding the contents of the “Start Menu” folder in Windows.

With Windows 9x operating systems, it can happen that in a computer with
500Mb of RAM and no programs running except the solver, there are only 20Kb
of memory available, according to the operating system. It is clear that if the
solver attempts to solve even a very banal problem with 500 or fewer degrees of

4 By “swapping” we mean the moving of information between RAM and the hard drive; “swapping in” occurs
when data is moved onto the hard disk; “swapping out” occurs when data is moved into RAM.
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freedom, there is not even enough memory available to allocate the initial
vectors, causing the solution procedure to lock up.

A search for the possible causes leads to the conclusion that ample amounts of
RAM are reserved by some applications that are typically inserted in “automatic
execution” even when they are not running. In order to overcome this problem,
we need only eliminate all the applications that are not necessary (such as the
Office toolbar) from the “automatic execution” menu. In this author’s opinion,
the only thing that needs to remain in automatic execution is the antivirus
programs.

To find where programs in automatic execution are listed and eliminate them

from the startup menu, follow the instructions that come with the computer’s

operating system (of which Microsoft alone has many in circulation today, such
T™M ™ . ™

as NT ', XP ', Vista , etc.).

8.1.4.2.4 THREAD PRIORITY

One method that can be used to increase the speed with which an analysis is
performed is that of increasing the priority of the process (#hread) connected to
the solver. This method should be used carefully because increasing the priority
of a thread can damage how other threads work. A plausible exception might be
to increase the priority of a thread if the computer is to be dedicated entirely to
that particular thread.

8.1.4.2.5 THREAD FREQUENCY

The amount of available memory that can be assigned to a process can vary as a
function of the frequency with which that process is performed. When a
program is run more than once you will notice that the situation in terms of
memory can change. This is because the operating system “makes room” for
applications according to how important these prove to be for the user.

8.1.4.2.6 DEFRAGMENTATION OF THE HARD DISK

In order to speed up the execution of solving (especially if it is necessary to do a
run that requires writing a large amount of data to disk or the partitioning of the
stiffness matrix into blocks), then it is absolutely worthwhile to make sure that
the hard disk does not need to be defragmented. Defragmentation (or more
commonly, defrag) of the disk usually leads to a noticeable improvement in
performing reading and writing.

8.1.4.3 MAKING SOLVING FASTER

To summarise, in order to make solving faster the user can follow these steps as
a guide:
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® Free up RAM by eliminating the unnecessary automatic execution of
unused programs;

® Free up RAM by reducing multitasking;
® Increase the thread priority connected to the solver;
® Defragment the hard disk.

® For exceptionally large problems it might be helpful to attempt
renumbering based on the order of the nodes, and to seck the
renumbering that results in the optimal bandwidth for the problem
at hand;

¢ Eliminate from the beginning any inactive degrees of freedom,
without asking that they be eliminated automatically;

® Make use of symmetries or antisymmetries to reduce the number of
nodes;

® C(Create 2 mesh that is not homogeneous, that is, increase the mesh
density only where significant variations in stress are expected;

® Reduce the load cases to those that are strictly indispensable, and use
load combinations.

8.2 STRESS RECOVERY

8.2.1 HOW STRESS RECOVERY WORKS

Stress recovery is the phase in the FEM in which, the displacements of the nodes
of the structure having been found, the stresses inside the eclements are
calculated. From a formal point of view, stress recovery is performed by the
following steps:

1. The nodal displacement vectors u,, of each element are created in
the global reference system, by disassembling the vector of overall
nodal displacements u. Formally we can write u,=D.u, but in
practice the vector u,, is obtained simply by reading the relevant

displacements and filling in vector u,, in a suitable way;

2. The nodal displacements of the global system are transformed to
the local system: u, =T u,, (cfr. chapter 4). This phase involves
calculating a matrix-vector product (or better, a series of matrix-
vector products made in blocks; see §9-14);

3. The astrological principle is applied to determine the displacements
within the elements (U=® u,), and from these displacements the
congtruence relation is applied: E=CU=(C ®)u, =B u, (cfr. chapter
4). This phase involves another matrix-vector product;
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4. Finally, the relationship between the strains and the stresses is
applied: 6=DE, that is, once the strains in a given point have been
determined, the stresses are determined by means of another
matrix-vector product.

During the third step it is necessary to understand that strain € is evaluated for
cach pertinent point P by evaluating matrix B at that point; if we want to know
the stresses in point P, we can write:

6(P)=DB(P)u,.

8.2.2 INTERPOLATION, EXTRAPOLATION (LOCAL SMOOTHING)

Although in principle it is possible to apply the rules we have described to
calculate the stresses in each point P, a different procedure is usually followed for
reconstructing the set of stresses on an element; this is because the most rigorous
and consistent approach is relatively costly in terms of the amount of time
required for calculation. Rather than calculate the stresses in all the relevant
points, normally the stresses are calculated in a few significant points, and then
the trend for the entire element is reconstructed by means of techniques of
interpolation or extrapolation (including the method of least squares). It should
be noted that the interpolating field is not always consistent with the
presumptions made about the displacement field, and thus the stresses predicted
for a generic point P of the interpolation are usually different from those
predicted in the previous section.

The relevant points that are usually used are the Gauss points (which were
mentioned when the numerical calculation of the integrals was discussed) and
the nodes of the element.

One possible technique consists in determining the stresses in the nodes and
then interpolating them for the rest of the element. For example, on an element
with three nodes, for the generic stress s in the local reference system of element
(x, 9) we can assume an interpolating function of the type
5= ax+byte

which, since the stresses of the three nodes are known (by means of the most
rigorous techniques), this makes it possible to determine (4, 4, ¢) and thus
provides us with a closed formula aimed at predicting the stresses in the other
points. It is worthwhile to note once again that this kind of linear presumption
might not be consistent with the presumed linearity of the displacements, since
strictly speaking the stresses are proportional fo the strains, which depend on the
derivatives of the displacements. Thus we can expect stresses that are constant,
not linear.

A second possible technique consists in determining the stresses in the Gauss
points and then extrapolating the values of the stresses in the rest of the element
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with an estimate using the method of least squares. This is the technique used in
the author’s own FEM software program, SARGON. As Bathe says,

..when using the direct stress evaluation..., the stresses are frequently
more accurate at the numerical integration points used to evaluate the
element matrices [ie., the Gauss points] than at the nodal points.
Hence, for a least squares fit, it can be of value to use functions of
order higher than that of the stress variations obtained from the
assumed displacement functions because in this way improved values
can be expected [Bathe 1996: 257].

What should be made clear here is that when the stress fields are reconstructed,
new simplifying hypotheses are introduced, and these give rise to reliable results
only if the mesh is sufficiently dense; if it is not, then the approximation is too
rough. In order to generate the long awaited coloured map, the software
program has to assume simplified laws of stress variations, which might not be
justified, especially when there are marked variations between the stresses in the
sample points.

8.2.3 INTERELEMENT JUMPS

Up to now we have discussed the reconstruction of the stresses in a single finite
element, but what happens when we want to compare the stresses of two
adjacent elements? Strictly speaking, if there are no material or geometrical
discontinuities, then the stresses in a continuum are continuous. In practice,
however, we find that along the common edges of two adjacent finite elements
the predicted stress values are different. We find also that when we have nodes
common to two finite elements, or we have several elements, the predicted
stresses in each element differ from those predicted by the others. Thus it
happens that the stress field calculated by a finite element software program is
not continuous but “jumps” as we go from one element to another. These so-
called znterelement jumps can assume significant values, especially if the mesh is not
sufficiently dense.

Even though the equilibrium equations take all of the elements into account, the
stress field predicted by the FEM for a given element uses the nodes of zhat
particular element, and only indirectly in correlation with the stress field predicted
for another, adjacent element that has different nodes. The stress field of an
element depends on a// of its nodes, not only on those in common with the
other elements adjacent to it.
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Von Mises Stress - - Visible Face - Totals

339001 178924000 264404000 349964000 4 354e+000 5.2090+000 6.0B4e+000 6919e+000 7.774e+000 862904000 9.484e+00)

Figure 8-7: Von Mises stress map in a plane stress problem (without
smoothing): note that the stress in each triangular element with three
nodes is constant (map generated with SARGON).

Quantifying interelement jumps and representing them graphically is one
fundamental way to obtain information about the reliability of the analysis
performed. Jumps that are too high, that is, high enough to make recognition of
the isolines of the stress field difficult, are a sure sign that the analysis is
unreliable; it should be redone with a more refined mesh. It should be noted that
the convention of measuring the precision by taking the ratio of the maximum
value predicted by the model and the maximum jump is absolutely unreliable,
because due to the concentration of stresses, the maximum value predicted by
the model is not at all realistic. Instead, it is necessaty to take the ratio between
the jump at a node and the value predicted for that node, not between the
maximum jump and the maximum value, which are registered in different points,
not in a single point.

An especially interesting graphic representation is the one that directly shows the
amount of the interelement jumps, since this allows us to understand where the
mesh has to be made more dense, and to quantify in real terms the error that we
risk making.
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Von Mises Stress -- Nodal jumps -- vigible face -- totals
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Figure 8-8: Graphic representation for the problem shown in fig. 8-7. The
maximum jump is equal to 0.74N/mm” at the upper corners (map
generated with SARGON).

The interelement jumps can be defined as max{s,} — min{s;}, where 7 vaties
between 1 and #, with 7 the number of elements that conjoin in the node. It can
also be defined by other formulas, for example, as the average quadratic
remainder of all {s;} in the node in question; this is the technique used in the
author’s own FEM program, SARGON. In this case, if 7 is the average value of
all {s;}, then remainder ¢ will be

For example, figure 8-8 shows that the maximum jump, equal to 0.74N/mm?” is
found in the areas where a stress value of about 2 was predicted, and thus the
error made there is large (30-40%). However, if in that area the stress is not
determinant for our purposes, we might decide that that amount of jump is
acceptable. At the extrados and intrados we find jumps of around 0.3 N/mm?,
but in that area the Von Mises stress is of the order of 9.4N/mm?, with an error
equal to “only” 8%. Obviously, this kind of analysis does not have the quality of
a precise analysis; it could be refined so as to reduce the error to less than 1%, at
least in the areas of greatest stress.
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This discussion makes it clear that a finite element analysis with its pretty
coloured maps is inherently a myth. It is up to the analyst to prove that his or
her analysis is reliable by providing a measurement of the error committed by the
model. As Bathe says authoritatively, “We emphasize that the calculation of an
error measure and its display is a most important aspect of a finite element
solution. The quality of the finite element stress solution ... should be known”
[Bathe 1996: 258].

8.2.4 GLOBAL SMOOTHING: THE RISKS OF COSMETICS

The problem of interelement jumps is normally solved by means of techniques
of smoothing (regularisation, elimination of jumps). If # elements of the same kind
conjoin at a generic node, and given a certain stress measure J, then the finite
element analysis will lead to # different values of s to be dealt with. The simplest
technique for eliminating the problems related to jumps is that of substituting
the # values of s predicted by the # elements with a single value s obtained by
taking the simple average of the values of the individual elements:
Si
i=1 .

S=——"

n

Von Mises stress -- Jumps eliminated -- Visible Face-- Totals

000e+100 S.182e-001 1.836e+000 2755e+100 3.673e+000 4.591e+000 5609e+100 B.427e+000 7.345e+000 8264e+000 9.182e-+00I

Figure 8-9: Graphic representation of the stresses with jumps eliminated
(smoothed). Compare with the unsmoothed representation shown in
figure 8-7 (map generated with SARGON).

If this is done, then the stress values become continuous between elements, and
the interelement jumps disappear. By adopting identical interpolating functions
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for the various elements (often the same ones used for the displacement field)
and starting from the unequivocal nodal values, the field has to turn out
continuous.

There are two advantages to this kind of smoothing, called global smoothing
because it takes place among the elements rather than within an individual
element. First, the nodal values obtained by taking the average are more reliable
than the values obtained from individual elements. Second, averaging the nodes
eliminates the interelement jumps and regulatises the stress field estimated by the
calculations. It should be noted, however, that while the average is more reliable
than individual values, absolute reliability still cannot be taken for granted: this
depends on the interelement jumps.

It is so tempting to make any possible trace of discontinuity in the stress field
disappear that we very rarely see any representations that are not smoothed. The
analyst can show beautiful coloured maps, the software program proves its
worth, and everyone is happy.

Figure 8-10: Comparison between unsmoothed (left) and smoothed (right).

In reality this disappeating act is extremely risky, because if it is applied to a
problem where there are significant interelement jumps, the result is an image
that is in fact beautiful and regular, but also completely unreliable. An setious
and professional analysis has to include maps of interelement jumps as well,
including maps without any global smoothing at all, in order to make it possible
to determine at any moment how reliable the calculation is.
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9 ERROR ASSESSMENT
9.1 THE ANALYST AND ERROR

This chapter is dedicated to error. Error is so common in finite element analyses
that we might say that at least half of the task of a good analyst consists in
searching for possible errors.

There is no doubt that an experienced analyst makes errors far less frequently
than a beginner does, but even the most expert analyst has to accept the real
possibility that errors will be found. In the best case, the analyst is a kind of
detective and begins by assuming that his model is sure to contain errors unless
proven otherwise: only after the model and its results have been submitted to an
appropriate number of checks will he begin to believe that the results obtained
are reliable. No finite elements software program — not even the most costly —
can be seen as a kind of enormous machine capable of producing faultless results
at the click of a key. Because no such program exists, the analyst has to be able
to discern between reliable and unreliable results, and locate probable errors in
the model and in the software.

After having produced any kind of analysis, the expert analyst will thus perform
a series of checks in order to diminish the probability of there being any
problems in the model.

There are essentially three main possible sources of problems: an insufficient
density of the mesh and consequently the insufficient precision with which the
solution was calculated; errors arising during the course of modelling; and errors
in the software program.

In today’s practice, all three of these sources are important. Even the last, which
might seem to be academic, is actually quite significant, given the kind of
technology currently used in the development of software and testing, even in the
cases of well-known and certified programs.

9.2 DETERMINATION OF NUMERICAL ERRORS

9.2.1 CHARACTERISTICS OF CONVERGENCE IN THE FINITE
ELEMENT METHOD

A first possible source of errors lies in the insufficient precision with which the
differential equations used to represent the problem have been solved. There are
many causes for a lack of precision, but the leading and most frequent one is
related to the insufficient density of the mesh. We have seen that the FEM
introduces various simplifying presumptions, in some of which the
simplifications are quite significant indeed, and we noted that the propensity of
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these hypotheses to generate errors tends to decrease as the dimensions of the
finite elements used to model the problem decrease.

The speed and the type of convergence of course depend on the type of
problem (the differential equations that have to be solved), on the type of finite
elements used (for example, the higher order elements generally converge more
rapidly), on the problem’s particular geometry and on the particular loads (abrupt
gradients of stress are usually caused by an insufficient discretisation, at least
locally). Although the range of variation is rather broad, there are still general
rules that regard convergence in the FEM that should be known in order to
model structures correctly.

In concise terms, we can say that the convergence of the numerical solution
towards the “exact” solution is monotonic (that is, always increasing) if the finite
elements are compatible, if the formulation is complete, and if successive meshes
constitute a regular succession.

The requisite of compatibility requires that there be no areas in the model where
gaps or overlaps are present. This imposes certain requirements on how the
mesh is made and on how the finite elements are formulated. It should be noted
that there ate certain elements (such as Bernoulli beams or shell elements) in
which not only the displacement but also its derivatives must be continuous,
given that part of the displacements depend on the derivatives of other
displacements (for example, #=-z»" in Bernoulli beams: »” as well as » must be
continuous).

The requisite of completeness means that the finite elements have to be capable
of simulating both rigid displacements and constant strains. The formulation of
the elements has to be made in such a way that to a displacement field consistent
with a rigid translation or a rotation there are no corresponding strains.

The requisite that the various meshes form a regular succession means that all
the nodes contained in the previous mesh must also be present in the successive
ones, and that the same kinds of finite elements are used (albeit smaller) in
accordance with the same rules for numerical integration.

When these conditions are respected, it is possible to prove that the convergence
is monotonic, that is, that each successive, denser mesh more closely approaches
the final solution than the preceding one did. However, although the
monotonicity of the convergence is useful, it is not absolute and indispensable:
clements that are incompatible can still lead to excellent results as long as the
meshes used are sufficiently dense.

The rapidity of convergence is fostered when the elements are regular, that is,
when the ratios between the dimensions of their various sides atre close to 1 and
their angles are close to 90° (or close to 60° for triangular elements). The
isotropy of the shape functions (which should not privilege one direction over
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another) is also very important, but the analyst does not have access to this since
he is using finite elements that have been formulated by someone else.

One check that it is always a good idea to make when analysing continua (plane
stress or plane strain, plates, etc.) is a seties of at least two or three analyses with
regular meshes of increasing density in order to estimate how much the stress
fields involved vary as the discretisation of the mesh changes. Such meshes can
often be obtained by simply subdividing, for example, a one-dimensional
element into two, or a plane element into four parts, and so forth.

Recalling that the solution corresponds to a minimum of total potential energy,
and in a few ecasily understood steps, we can see that the approximate solution
given by the FEM is always stiffer than the real solution, and thus that the
displacements calculated are always smaller than the exact ones. For total
potential energy we can write

[1=0.5u"Ku - p'u.

Since the “real” displacement field is such that for Ku=p, we can write

I1,=0.5u"p - p'u=-0.5p"u.
Since I1 is minimum, in approximate conditions we will have

I1, = -0.5p"u, > I1,.=-0.5p"u
and thus

pu,<pu

If the convergence is monotonic (and thus if all the corresponding hypotheses

are true) then the approximate displacements must be smaller than the real ones,
and thus the structure appears to be stiffer than it actually is.

To clarify this with an example, let’s take the problem of plane stress shown in
fig. 9-1.

Here we begin with a rather coarse mesh (6x6 elements, and only 252 degrees of
freedom) and then we proceed to increase the density of the mesh, leading to
increasing accuracy. As sample data we take one displacement and the smoothed
value of the Von Mises stress on the middle point of the upper horizontal side
(node 13). Note that the stresses and the displacements of the node when loaded
are significantly influenced by the presence of what is, strictly speaking, a
singularity, and thus they cannot be taken as reliable indicators of the validity of
the analysis (the peak values continue to grow and while the peak area becomes
increasingly smaller as the analysis proceeds).

An examination of the tables and the figures allows us to confirm that while the
displacements converge rather well almost from the very beginning, in order for
the stresses to converge a rather dense mesh is necessary, and the rate of
convergence is in any case slower. This is related to the fact that the stresses
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depend on the derivatives of the interpolating functions, derivatives that are
evidently predicted less accurately than the displacements themselves.

‘13 -

AEEEEE

Figure 9-1: The starting mesh (6x6 grid).

Displacements for node 13
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Figure 9-2: The tendency of a displacement towards convergence.

Today it is quite easy to produce this kind of data obtained from a series of
successively denser meshes, because a model with 3,600 degrees of freedom
requires very little time to “run” on low- to medium-capacity computers. Further,
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the subdivision of elements is accomplished by a simple command, and the
modifications that have to be made to the model are often minimal: in this
example the new nodes on the lower horizontal border have had to be
constrained as they occurred.

Von Mises Stress for node 13
0.5500

0.5400
0.5300
0.5200
0.5100
0.5000
0.4900
0.4800
0.4700
0.4600
0.4500

N/mmq

1 2 3 4

[—e—series 1] 0.5399 | 0.5006 | 0.4887 | 0.4854

Mesh accuracy

Figure 9-3: The tendency of a Von Mises stress towards convergence.

Mesh accuracy | Elements grid | No. % error % error stress
DOF displacement
1 0x6 (1) 252 2.76 11.21
2 12x12 (2) 936 0.82 3.13
3 24x24 (3) 3600 0.18 0.67
4 48x48 (4) 14112 = =

Table 9-1: Percentages of error assuming that a 48 x 48 mesh is “exact”.

It is extremely useful to examine the contour lines as discretisation proceeds,
because they provide a visual indicator of the progressively increasing precision
of the stress field of the model (fig. 9-4).
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Figure 9-4: Increasing precise contour lines of stress (maximum value pre-
determined as 5 N/mmgq): the upper right-hand quadrant of the model.
Note that the dimensions of the elements are successively halved.

9.2.2 MEASUREMENT OF ERROR: RESIDUALS AND CONSTRAINT
REACTIONS

Once the system of equations that gives the nodal displacements has been
solved, it is a good idea to ask ourselves if any significant errors were made
during the course of solving. Rounding errors, pootly conditioned matrices
(generally related to quasi-mechanisms), and particular imbalances between
stiffnesses all can make a solver give an answer that is less than satisfactory
numerically, even though it has worked perfectly well on other occasions.

From a strictly numerical point of view the consequence of this is that the
calculated solution u* does not rigorously satisfy the initial system of equations,
and thus

Ku* # p
The difference between vector Ku* and the vector of equivalent nodal forces p

is called the vector of residuals r, which, as we shall see, has an important
physical interpretation. The vector of residuals is calculated by the definition
r=Ku* - p.

From a physical point of view the vector of residuals has the same dimensions as
the vector of equivalent nodal forces, and it can effectively be interpreted as the
set of unbalanced residual forces in the structure’s various nodes, and according
to their various degrees of freedom. It is interesting to observe that the
calculation of the constraint reactions is performed with a very similar system in
those nodes in which the displacements are known a priori, while the forces
exerted by the constraints are unknown. Therefore, calculating the “constraint
reactions” on free components leads, practically speaking, to calculating the
residuals.

We thus see that by applying the formula for residuals in all the nodes of the
structure it is possible to calculate with a fair degree of precision the size of the
imbalanced forces, and it is thus also indirectly possible to evaluate the reliability
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of the numerical solution of the initial problem. The reliability of the problem’s
numerical solution should not be confused with the accuracy of the model. For
example, fig. 9-5 shows the size of the residuals on node 13.

O .
EEEEER
EEEEERN

Constraint reactions \ X

F Fy [0000E+00  Fz [S261E03
il BEEE R 2 T
M« [OD00E+D0  My[OODDES0 Mz [0.0D0E+00

mpEEEE

Figure 9-5: Size of the residuals on node 13 of the model in plane stress
shown in fig. 9-1 (6x6 mesh, to be considered rather coarse). Note that the
program, in this instance SARGON, evaluates these residuals with the
same system used to evaluate the constraint reactions.

There are imbalanced forces of the order of, respectively, 3e-2N in direction x
and 5e3-3N in direction g The applied force is equal to 20,000N and thus the
residuals can be considered extremely small, even if the solution is not at all
refined as far as the model is concerned.

9.2.3 UNSMOOTHED STRESS MAPS

An extremely fruitful method for evaluating the degree of refinement of an
analysis, at least in cases dealing with continua, is the analysis of the interelement
jumps, both by direct means (with maps of the jumps), and by indirect means
(unsmoothed maps). We have seen that the presence of significant interelement
jumps where we instead expect the stresses to be continuous is a direct measure
of how imprecise an analysis is. Although it is not possible to establish a direct
relationship between the error and the interelement jumps, certainly the order of
magnitude is an important indicator.

Let’s look again at the example shown in fig. 9-1, and make a table of the
maximum interelement jumps at node 13 for the various meshes used (in
reference to the Von Mises stress of node 13).
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Accuracy of the | Maximum Smoothed value | % Difference
mesh jump
1 0.1475 0.5399 27.3%
2 0.0821 0.5006 16.4%
3 0.0430 0.4887 8.8%
4 0.0219 0.4854 4.5%

Table 9-2: Examination of the interelement jumps.

An examination of table 9-2 reveals that in this case the jumps tend to be
halved with each successive refinement of the mesh. The estimate of the error
committed when we evaluate the percentage amount of the jump with respect to
the (smoothed) value predicted by the corresponding mesh is also about halved.
This kind of estimate is important because it can be made without requiring
ulterior calculations or meshes that are further refined: it is an “internal” estimate
of the reliability of the analysis. The final analysis has jumps equal to 4.5% of the
predicted value: it is up to the analyst to determine whether or not this kind of
approximation is sufficient, in part as a function of the actual final amount of
the stresses with respect to the limits of reference.

For further evidence of this, consider what is shown in figs. 9-6 and 9-7. These
represent the unsmoothed maps of Von Mises stresses (the jumps have not been
eliminated) for, respectively, 6x6 and 48x48 meshes, that is, the two extremes on
the mesh’s refinement scale.

In both of these cases a2 maximum value of 5N/mm? was arbitrarily set in order
to avoid contour lines that were too diverse being generated by the singularity at
the point where the loads were applied. Hence, since the scale is fixed, the
contour lines refer to identical values. An examination of the maps makes the
coarseness of the 6x6 solution immediately clear, which, if not smoothed, makes
it almost completely impossible to recognise how the contour lines go (which
can instead be easily seen in the smoothed version shown in fig. 9-4). In
contrast, in spite of the jaggedness that is still evident, the 48x48 solution shows
a good level of regularity (in these examples a "basic" finite element with 4 nodes
was used, which was not found to converge particularly quickly; much better
results in terms of speed of convergence would have been obtained with
isoparametric elements with 8 nodes, or with non-compatible elements QMO).
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Von Mises stress -- visible face -- totals
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Figure 9-6: Unsmoothed map of the Van Mises stresses in a 6x6 mesh.
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Figure 9-7: Unsmoothed map of the Van Mises stresses in a 48x48 mesh.
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9.2.4 SIGNIFICANT DIGITS: TRUTH AND MYTH

In the search for precise solutions and reliable results we shouldn’t lose sight of
the way in which those solutions and results were obtained. Hypotheses that are
simplified, sometimes to quite a great extent, have been applied at every single
step leading from the physical reality to the eagerly desired colour map.

If we retrace the logical sequence that we followed, we will see that we have
imagined the materials to be linearly elastic when in reality this is only vaguely
true: think of reinforced concrete, masonry, and soils. We have imagined that we
know the data regarding the materials being used — the modulus of elasticity,
Poisson’s ratio — while limiting ourselves to isotropic materials. Then we have
imagined that the structure can be likened to parts that follow the various
simplified theories; we simplified the constraints (often far from ideal); we have
imagined that we can know the actions that take place there, including those that
are random. Finally, on the basis of all that we have imagined, we have created a
numerical model.

We cannot and should not forget that all of the approximations made have just
as much influence on the results as the rounding errors do; in fact, they usually
have a greater influence. It is thus illusory and academic to try to obtain stresses
to the fifth or sixth decimal place in N/mm?, displacements to the micron (Um),
and so forth. The software programs give answers with such degrees of precision
because they are furnished with all the available information, but the analyst
should be thoroughly aware that this kind of precision has nothing to do
whatsoever with rea/ precision.

The fact that apparently precise instruments are available should not lead us to
forget that all of the initial data are affects by errors and omissions, and thus that
the results have to be taken as reliable only within certain reasonable limits,
beyond which it is useless to go.

9.3 LOOKING FOR MODELLING ERRORS

9.3.1 OVERVIEW

In addition to numerical or modelling errors tied to insufficient discretisation of
the mesh, a frequent cause of problems are modelling errors, that is, evident and
not so evident oversights leading to erroneous results which are generally
camoutflaged by results that are more or less “correct”. There is no set logical
path to follow in order to flush out modelling errors, due as they are to
oversight, conceptual errors and errors in entering the data; in short, this set of
possible causes doesn’t lend itself to a single rational course in searching for
possible errors. Given that a finite elements software program cannot validate its
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initial data,' it is clear that the program will 7z any case arrive at a solution, and
that it is only the skill of the analyst and his diligence in checking that prevent an
erroneous solution from being adopted.

Errors must be looked for: not only when we have results that are obviously,
glaringly wrong, but also when we have results that are apparently correct, since
only a model that has been verified by all possible checks can be considered truly
reliable. In practice today it is not uncommon that a model is accepted at face
value, without any particular checks, and it is even more common that the
person who uses the software program is not able to perform any checks
because he or she is without the basic knowledge. Obviously this increases the
burden of responsibility on the software house or producer, which must then try
to keep its programs from being so deceptively seductive, and consider as its
target group only those professionals who are sufficiently competent. It ought to
be illegal to advertise programs as capable of covering the role of the engineer
(in Italy a few years ago an advertisement with the slogan “Relax. Auto-engineer
running” showed a complacent gentleman with his feet propped up on his desk
admiring a wire frame model of a building on his computer monitor).

In the following sections we will provide a list of possible checks, or at least a
minimum of checks, for the most frequent kinds of errors, in order to facilitate
both the modelling process and the search for errors. The topic is so vast and
complex that it really requires a volume in itself, which is in preparation.

9.3.2 FORMULATION

One typical source of errors in results is an error in formulation. This occurs
when a more general problem is related back to a theoretical framework in which
important parts are lost. Obviously this a/wvays happens, strictly speaking: there
are no Kirchhoff or Mindlin plates in nature; there are only generic solids. The
fact is that only in certain circumstances is it possible to relate the dominant part
of the stress of a given problem back to what is obtained by means of a
calculation performed according to one of the simplifying theories. In the great
majority of cases, this cannot be done.

Let’s review some rules that might be useful:
8
¢ in Kirchhoff or Mindlin plates there are no normal stresses acting

perpendicular to the median plane; if such forces are fundamental,
then solid modelling is necessary;

® the Kirchhoff plate does not take into consideration the strain
energy associated with shear but does not imply that the shears are null;

1 Nor do current attempts to check the data, which try to trace the part of the initial input data back to
predetermined categories, appear to be sufficient.
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these shear forces have to be determined if the objective is to
study the plate;

¢ the FEuler-Bernoulli beam and the Timoshenko beam exclude all
of the normal stresses acting in a direction perpendicular to the
axis of the element; if the beam is excessively chunky (say L/H <
8), then the Timoshenko theory may not be adequate cither;

® the use of plane stress in structures whose thickness is significant
must be adopted with care;

® models wusing homogeneous and isotropic materials for
heterogeneous, anisotropic or orthotropic structures might give
rise to significant errors;

® the use of membrane schemes is useful when we don’t want to
take bending stiffnesses into consideration, but we have to be sure
that bending stresses induced in the “membrane” will not provoke
failure;

It is worthwhile to emphasise once again that no matter how much the
discretisation of the mesh in the model is increased, if the formulation is not
suitable then the result will always be incomplete or incorrect.

9.3.3 THE MESH

The most typical and frequent causes of errors in a model are related to
problems with the mesh. It is always good practice to check the mesh carefully in
otder to avoid problems of disconnection or violations of congruity that might
compromise the wvalidity of the entite analysis. The use of shrunken
representations can facilitate checking the mesh to a considerable degree, since
this makes it easier to identify elements that are facing or unconnected.

As we make the mesh we should also be wary of operations that lead to the
creation of many new nodes near or on top of existing ones, unless the software
program is equipped with dependable instruments for checking whether or not
there are double nodes or double elements at the moment the operation is
performed and not after the fact.

The instruments for automatic intersections among elements, although certainly
quite convenient in specific contexts, should not be used indiscriminately,
because they can generate elements which are collapsed or distorted, and which
are not always correctly evidenced by the programs that make the mesh. These
commands are more properly used for clearly defined parts of the model, for
which we already have a final mesh scheme in mind.

Errors during the meshing phase can be made evident during the post-
processing phase by studying the deformed configurations or the stress fields
(both smoothed and unsmoothed: unexpected discontinuities in the smoothed
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stress fields indicate that there are disconnections, as do the detachments of
congruent parts). Many a time these errors are manifested even earlier during the
solving phase, since they are responsible for mechanisms or pseudo-mechanisms
that cause the solving to block. A typical case is that of nodes that are not
referenced, that is, nodes in the structure that have not been attached to an
element.

Also typical is the quite frequent case of structures which contain elements that
are facing or unconnected, so that entire parts of the structure turn out to be
completely free to move, since there is no structural continuity in the model. An
example of such a case (which has actually occurred more than once and is thus
of some significance) is shown in fig. 9-8, where the vertical elements are only
facing the longitudinal members rather than being connected: the longitudinal
members thus turn out to be made of only two finite elements. This is possible
to see, for example, when the element numbering is shown in the middle of each
element: a single element per longitudinal member is not enough.

Figure 9-8: Erroneous mesh of a truss (element numbering).

Practically speaking, meshes such as this one are not meshes at all, but rather
drawings. This is in fact one of the classic reasons why the beginner is unable to
make proper models: because he or she hasn’t understood that #he mesh is not a
drawing.

For use in specific circumstances, and with the aim of producing software
programs that are simple to use, it is possible to conceive tools for meshing that
systematically intersect all the one-dimensional elements: I myself successtully
performed an experiment of this kind with the software C.E.S.CO, which in
effect did drastically reduce the kind of problems that are linked to
disconnections discerned by the user. The other side of the coin was that the
programs like this do not make it possible to create certain kinds of modelling
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which, for instance, require elements that pass near each other but are not
connected (for example, St. Andrew’s cross-bracing with independent diagonals).

9.3.4 DOUBLE ELEMENTS AND DOUBLE NODES

Double elements and double nodes warrant a separate discussion. These rather
quite common errors are rather deceptive because they are not glaringly evident.

Double nodes can lead to disconnections that are not immediately discernible
and thus, as a consequence, to mechanisms. In general the meshing programs are
equipped with specific tools for checking that are intended to prevent the
generation of double nodes, which tend to be generated almost at every turn
(think of the simple duplication of a block placed after another one: if there were
no checks, then double nodes would be generated and the two blocks would not
be attached to each other). Sometimes the software program is equipped with an
appropriate command that makes it possible to look for double nodes in the
mesh; having established a minimum distance under which two nodes are
considered to be coincident, such a tool investigates to see if there are double
nodes and if so “repairs” the mesh (cf. Sargon).

line of
discontinuity]| l

N>

Von Mises stress -- Jumps eliminated -- Visible Face-- Totals
D 000e+000 9.2156+000 1843e+001 2764e+001 3686e+001 4 B07e+001 5529e+001 6 450e+001 7.372e+001 8.293s+001 92158400

Figure 9-9: Study of facing glass sheets: construction discontinuities.

Sometimes, however, the analyst wants there to be double nodes, as when he or
she has to model construction joints or actual gaps, and thus needs nodes that
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occupy the same position but are kinematically independent. This is shown, for
example, in fig. 9-9, where it was necessary to study glass sheets that are facing
but independent, held in place by single hangers at specific points. This situation
was modelled by means of two independent rod elements which had a common
node at one end, while at the other end they were attached at two nodes —
double — of the glass: one that appertained to the glass sheet on the right, the
other to that on the left.

9.3.5 CROSS SECTION ORIENTATION AND END RELEASES

In cases of structures where there are beam elements, it is necessary to check the
orientation of the elements carefully, because an incorrect orientation is certain
to lead to incorrect results. The representation of the local axes or the solid
representation of the elements is helpful in checking that all of the elements of
the model are correctly oriented. Except for this particular function, this kind of
"solid" representation is of no use to the analyst, who will find it to be
contradictory and misleading in beam and truss models which are “wire frame”
by definition. Those who rely on such images for their scenographic effects will
have a different point of view; in these cases solid representations are desirable,
but mainly for giving an idea of what the structure will look like once it is
complete. It is not by chance that such images are pervasive, for example, in
advertising.

Figure 9-10: “Solid” representation of a beam and truss model.

It should be kept in mind that the orientation is determined by the choice of the
local axes of the element with respect to the global axes. An analogous
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consideration is made when the end releases are applied to the ends of beam
elements, releases that have to be set up on the basis of the local axes of the
element and not with reference to the global axes of the structure.

9.3.6 SYMMETRIES AND ANTISYMMETRIES

If there are symmetries or antisymmetries that are not taken advantage of during
the modelling phase, these must be used in order to validate the structural
solution. The presence of unjustified asymmetries in the solution will naturally
lead us to consider the model unreliable, and look for the causes of the
asymmetry.

It should be recalled that in order to call an answer symmetrical (or
antisymmettical) there has to be symmetry in:

1. the formulation of the elements;

2. the geometry;
3. the mesh;

4. the loads;

5.

the constraints and end releases;
6. the applied actions.

If even one of the factors listed is not present, or has been violated by mistake,
then the answer will not be symmetrical. Further, even when we have a
“symmetrical” model, it is possible that in reality there are small asymmetries
related to calculation. In certain cases the model’s collocation in space (for
example, the fact that a symmetry plane does not pass through the origin) can
give rise to (small) asymmetries in calculation.

9.3.7 GLOBAL AND PARTIAL RESULTANTS

Before performing any analysis it is always a good idea to check the distribution
and the magnitude of the applied loads carefully. In order to do this, if the
software program is equipped for it, it is very convenient to be able to determine
the resultant of the loads before solving, in terms of both the global resultant
and the partial resultant on parts of the structure. If, for example, a load
equivalent to 4kN/m’ has been applied to a floor slab modelled non-uniformly
with primary and secondary elements, then it was probably necessary to make a
series of approximations and roundings of the magnitude of the loads, given that
the distances between two axes will turn out not to be constant and expressed in
“clean” numbers.
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Figure 9-11: Loads applied on beams of a floor slab: the resultant?

In the end, the situation might be that shown in fig. 9-11: a series of loads that
are all different. Checking that the global resultant of the loads o# #hat floor of the
building are as expected (surface per unit load) provides strong evidence of the
fact that the loads were correctly modelled, and is independent of the check that
follows of the constraint reactions, which is performed after solving.

9.3.8 DEFORMED CONFIGURATIONS

The analysis of deformed configurations is one of the key tools for recognising
errors in the model. The analyst has to try to establish if the expected congruity
has been everywhere respected, in order to identify disconnections or etrors in
the mesh that could compromise the analysis.

The displacements of the main structural elements also provide important
information about the reliability of a first order approach, since if there are
significant added effects on the stresses related to the configuration (for
example, the P-A effect), this must be taken into account.

The precision obtained for the displacement field is usually much greater than
that, given equal meshes, obtained for the stresses, which generally depend on
the derivatives of the displacements: thus we mustn’t be misled by the
convergence of the displacements if what we are (also) interested in are the
stresses.

243

Copyright © ICE Publishing, all rights reserved.



Structural analysis with finite elements

9.3.9 THE FUNDAMENTAL ROLE OF ENGINEERING ESTIMATES

The most important check of all is the engineering check. Here the analyst has to
ascertain if the calculated structural response meets all of the requisite conditions
for being considered reliable. It is impossible to provide a complete list of the
factors to be checked, but it is in any case worthwhile to provide a partial one.

Factors to be checked include:

® The relationship of the applied loads and those expected from the
design;

® The correspondence between loads and constraint reactions;

® The correspondence between the magnitude of the internal actions
and the applied loads (for example, in the axial actions of the

columns, in the bending moments of the beams, in the normal and
shear stresses);

® The magnitude of the displacements, which have to be likely;
® The shape of the displacements and of the disconnections;

® The stress field, by means of schemes (including those that are
extremely simplified and independent of the calculation model)
aimed at verifying the results obtained (the role of the fundamental
analogies, in a critical sense as well, is essential);

® Respect for the symmetries or regularities predicted by the theory,
when pertinent;

® Respect for the morphology of the theoretical stress bending
moments at the nodes, torque, the shape of the shear and moment
diagrams with respect to the applied distributed loads, that is, with
respect to the indefinite equilibrium equations;

® The residuals;
® Interelement jumps;

® Congruities between the deformed configuration of the model and
the structurally kinematic constraints of the design;

® Consistency between the schemes adopted in the model and those
adopted in the design, with particular attention to constraints and
end releases;

® The correctness of the dimensions of the resisting elements,
calculated spans of members, thicknesses, moments of inertia and
areas, shear factors;
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® The correctness of the values adopted for the material constants in
terms of Young’s modulus, Poisson’s ratio, limits for yield and
ultimate stresses;

® Correctness and thoroughness of the calculation combinations;

® Consistency between stresses and solicitations, with checks
petrformed at significant sample points.

There is no such thing as a self-verifying model. It is up to the analyst to verify it,
by submitting the model to all possible checks that appertain to the case at hand.
Numbers and colonred maps without such checks having been performed are worse than
useless.

For some years now we have been aware of the risks connected to an over-
confident and inappropriate use of computer software, and many have
denounced the dangers inherent in using computer programs without
performing the necessary checks. A professional who is an expert in structures is
irreplaceable in the role of verifying every possible numerical analysis produced
by the FEM or any other kind of method.

It is worthwhile to quote a particularly strict point of view with regard to this
point, that of Leroy Z. Emkin, who is a harsh critic of the widespread use of
computers for structural analysis, even though he is co-director of one of the
largest centres for research and development in computer software for structural
analysis, GTSTRUDL. According to Emkin, it is urgently necessary:

1. To recognize the extreme dangers of computers.

2. To understand the basic principles of mathematics, science,
mechanics, material behavior, system behavior, modeling techniques,
analysis methods, design procedures and codes, error assessment,
risk analysis, codes of ethics, and ethical engineering practice.

3. To understand the absolute requirement for engineers to be able to
engineer without computers.

4. To always be skeptical of computers, to never ever use computer
results without extensive validation, and to always assume computer
displayed results are wrong until proven cotrect by the engineer.

5. To “know” the answer and merely use the computer to fine tune the
solution.

6. To deglorify the computer, and to glorify knowledge and experience
and the need to be thoroughly familiar with all the details of
engineering system behavior, modeling, theory, and practice.

7. To avoid taking educational courses from engineering faculties that
only provide opportunities to learn through computer use rather
than by intensive instruction in the principles of engineering by
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highly knowledgeable engineering educators who have extensive real
wortld practice experience.

8. To avoid working for employers whose only available opportunities
to learn are through computer use rather than through intensive
training by experienced and knowledgeable engineers.

9. To recognize that less experienced engineers must develop strong
engineering skills without the aid of computers before using
computers as powerful engineering modeling, analysis, and design
tools.

10. To recognize that only the most experienced and knowledgeable
engineers are qualified to use computers as a tool for engineering
modeling, analysis, and design.

1. To recognize that on/y engineers engineer, and that computers do #ot
[Emkin 1998].

We have quoted these recommendations in their entirety because they are
characteristic of an important mentality regarding the current problem of what
constitutes the correct use of a computer. My own point of view is largely in
agreement with that of Emkin, though I differ on some points.

There are cases in which the use of the computer is an irreplaceable tool for
understanding because it makes it possible to determine effects that would
otherwise be impossible to determine: unfortunately the simplified schemes are
not always able to explain behaviours that are intrinsically complex. It is not
always possible to “know” the solution beforehand. If used in an appropriate
way, a software program can prove to be the means to know things that cannot
be learned in any other way.

Although formal training is certainly indispensable, and time spent in performing
calculations manually is irreplaceable, I don’t believe it is necessary to forbid the
use of the computer until complete knowledge of its functions is achieved. It
would perhaps be better to flank “hand” calculations (or those made with other
systems) with those performed by software in order to promote familiarity with
the correct and supervised use of the computer. Thus I cannot share in the
proposal to limit the use of computer programs to only those who are
thoroughly expert.

It should also be said that time spent in performing calculations by hand needn’t
be overly romanticised, because even manual calculations were and atre still
plagued by errors due to oversight, fatigue, and numerical confusion.

However, having said this, the moral of the story is that every method of
calculation, without exceptions, must always be carefully overseen and verified
by competent professionals.
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9.4 SOFTWARE ERRORS

Software errors are perhaps the most deceptive of all errors that the analyst has
to deal with. Even though the software programs have been tested and certified,
let’s make it clear at the very beginning that software programs, all of them, are
sure to contain errors. Those producers of software programs who claim that
their products are free of bugs are merely talking spin because it is zpossible to
prove definitively and with absolute certainty that any computer program is error-free.
Experience has proven that bugs are found in even the largest and most
expensive programs, created with sophisticated systems of quality controls.
Naturally, this does not mean that the testing and certification procedures are
useless: to the contrary, even if they should be thought of in a probabilistic
sense, as instruments for confining the possibility of errors within decreasing
limits of probability, they are indispensable.
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Figure 9-12: C ++ source codes

The impossibility of proving that a program is error-free is due to the fact that
every program contains thousands of “ifs” and thus there is such an enormously
large number of possible execution paths that it is literally impossible to test
them all. Further, since at present there are no automatic tools for performing
these checks, software tests are still largely performed manually (which is time-
consuming and in any case involves another possibility of error).

Performing sets of standard tests before each new release helps limit the
probability of errors but certainly does not protect us from them altogether.
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The practical impossibility of creating programs that are free of defects is
intimately related to the way software itself is structured, composed as it is of
tens and tens of thousands of interdependent instructions written by hand (albeit
by the hand of programmers).

To this discomforting conclusion is added the authoritative voice of The
Economist, which in June 2003 reported on a study that calculated the damage
caused annually in the United States by errors in software to amount to sixty
billion dollars, and concluded that “People who write it are human first and
programmers only second” [Economist 2003]. The fact that a magazine such as
The Economist dedicates space to the economic consequences of bugs and the
systems aimed at controlling them says much about the state of the art: with
varying probability and frequency, bugs exist in all software programs large and
small, and software users have to be aware of this in order to be able to
manoeuvre when they encounter one.

In effect, much work has been done over the last twenty years to make available
programming techniques that are increasingly secure. At the forefront of
computer languages, the object-oriented approach has definitely supplanted the
procedural approach (and C++ has in fact sounded the death knell for
FORTRAN in the most important and widespread applications). Once programs
were composed of vast numbers of “functions” or “routines” organised by
programmers in ways that were substantially arbitrary, often making use of ad
hoc assumptions that were valid in limited circumstances and then perhaps
totally forgotten, but this is no longer the case. Today’s programs are created
with a series of “objects” (which can be either data or instructions), with very
precise tasks, procedures and information, organised according to a logic that
protects them from undesired manipulation. The increasing logical clarity that
has grown out of this has improved data security enormously and made it
possible to keep programs up-to-date.

As far as the user is concerned, the availability and widespread use of graphic
interfaces has made it much easier than before to check the models as well as the
results produced by the software, so that violations or software errors are often
made glaringly evident.

However, there are still cases in which errors in a program are not obvious and
casily verified. This occurs when the results are only quantitatively or locally
damaged by the error, and it is thus particularly difficult to perceive them, even
for analysts with the most experience in structures and calculation. If the results
are wrong quantitatively, the engineering checks are often able to recognise that
an error has occurred, although there are cases where the quantitative difference
is not large enough to lead to the unquestionable conclusion that the error lies in
the software program in use.
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If the model does not represent a structure already described or studied in the
literature, the only way that we can determine the reliability of the calculation
indirectly is to compare the results obtained by one or more different programs
(analogue proof). “While it is in fact possible that the results obtained by program
A are wrong, it is highly improbable that program B, which gives results that are
practically identical, also etrs 7n the same way. 1t can thus be seen that only by an
analogy between two or more potentially erroneous systems that we can reach
the (probabilistic) certainty that there is no error” [Rugarli 2003].

This technique has been adopted in chapter 10 of the Italian code NTC2008 as
the main tool for assessing the effectiveness of model computation.

It 1s thanks to precisely this technique that I personally have been able to prove
that an application used for testing my own software produced different results
because 7 was itself erroneons.

This consideration might lead to the conclusion that programs should be
compatible with each other in order to favour systematic reciprocal testing aimed
at providing a probabilistic proof of the correctness of the results achieved. With
regard to this, it is my opinion that we should encourage compatibility between
programs that serve the same purposes rather than the creation of computational
barriers intended to limit commercial competition but thwart such comparisons.

2 This was an analysis of frequency response. The application used as a benchmark (known throughout the
world) had been subjected to a process of quality control that was intended to prove its reliability. The
correction atrived many months later, with the obligation that I sign a paper that imposed its use in non-
professional situations only because the correction had not been subjected to quality controls (}).
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10 STRUCTURAL PROBLEMS
10.1 PLANE STRESS

Problems of plane stress are used to study thin membranes subject to forces that
are equal throughout the thickness and lie in the plane of the plate. In these
conditions the stresses do not vary along the thickness of the plate, and are
reduced to two normal stresses and one shear stress.

The plane stress model is also often used to determine the situation of walls or
shear walls, with or without openings, subject to vertical and horizontal forces,
even if the model isn’t completely correct (in part because of the difficulty of
determining the elastic characteristics of the masonry or concrete, in part because
the thickness of a wall isn’t all that negligible with respect to its dimensions).

It is also possible that a part of a more complex structure is modelled with
membrane elements (that is, in plane stress) which, even without imposing plane
stress on the structure as a whole, makes it possible to model efficiently elements
such as the shear walls just mentioned, or a bracing core, where modest effects
of bending can be expected (in the case of a bracing core, the bending of the
overall core mustn’t be confused with the local bending of the walls that make it
up; only the local bending is neglected when the core is modelled with
membrane elements).

The plane stress model is also useful in the study of the effect of the distribution
of stress in a plate in tension or compression. In the case of the web of a beam,
this might contain holes, and the plane stress model can make the
corresponding concentration of stresses evident.

Generally speaking, if there are holes or notches, or a marked variation in
geometry, these can lead to concentrations of stresses which, in order to be
correctly grasped, require an adequate local increase in density of the mesh and a
careful evaluation of the interelement jumps.

In plane stress problems there are usually only two translations in the plane in
question. Some types of finite elements also use the rotation of the nodes about
an axis that is perpendicular to the plane of the structure (cfr. § 11.5.3).

10.2 PLANE STRAIN

Problems of plane strain are used in the study of structures that are elongated in
a direction normal to the plane of the model, and subject to forces lying in the
plane of the model and equal at all sections of the structure. Although in
principle the structure should be eclongated indefinitely, in practice even a
structure that shows a marked elongation in one direction (for example, a
retaining wall or a dam) can be studied in this way. Typical problems of plane
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strain are those connected to underground sewer conduits, pressurised tubes, and
tunnels. In examining the situation of underground structures below roadways it
must be borne in mind that only some of the load situations can be likened to
those of plane strain, since the presence of loads that are not repeated equally on
all sections of the structure automatically renders the basic presumption invalid.

The study of a structure in plane strain cannot be made by mixing plane strain
elements with other, different types of elements (for example, plate, beam, truss).

In a plane strain problem the only unknowns are the two translations in the
plane in question (with the exception of elements with drilling DOF; cfr. §
11.5.3).

10.3 AXISYMMETRIC PROBLEMS

Axisymmetric problems are found when the structure can be likened to a solid of
revolution subjected to forces that show axial symmetry, that is, those that are
essentially independent of the angle 0. Examples of typical axisymmetric
structures are pressurised tanks (including the pressure vessels in power stations)
or tanks full of liquids or gas. Due to the increase of the available degrees of
freedom, axisymmetric modelling is less frequently used today than it was twenty
years ago, although it should be noted that, given an equal number of degrees of
freedom, the axisymmetric schemetisation can easily lead to much more precise
results. In general, the bending part of the response of the tank or shell can be
grasped with axisymmetric bending elements or through modelling with an
adequate number of elements in the thickness (certainly more than one or two).

Problems of point impact on tank structures are not standard axisymmetric
problems, because there is no axial symmetry in the loads.

As for structures in plane strain, structures studied using axial symmetry cannot
contain any elements other than those of the axisymmetric formulation.

10.4 PLATE PROBLEMS

Plate problems occur quite frequently. The plate models behaviour in bending of
a wide variety of two-dimensional continuums: slabs, walls, flanges or webs of
beams subject to loads normal to their planes, foundation beds, cylinders or
pressure tanks studied when axial symmetry is not taken advantage of, plane
roofs subject to concentrated or distributed loads, etc.

As a rule the model used most often is the thin plate, rather than the thick plate.

This is due to the fact that the strain energy related to shear can often be
neglected, since the plates are of relatively modest thicknesses. As for beams, the

1 It is also possible to take advantage of the axial symmetry of the structure even when the loads are not
axisymmetric. These applications are, however, less frequent.
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relationship between the deformed configuration due to shear and that due
purely to bending is on the order of (E/G)*(t/L)? and thus for reasonable
thicknesses it becomes quite small. As a rule of thumb, we can say that with a
ratio L/t = 10 the plate can be considered thick; with a ratio of L/t=100 it can
be considered thin. In the intermediate zone there is a brief interval in which the
effects of shear tend to increase as L/t decreases.

The sandwich plate is a different story. This is obtained by superimposing
various layers, especially when the material of the central layer has a high level of
deformability under shear. The use of thin plate theory can sometimes lead to
neglecting the shears normal to the plane of the plate (generally missing in the
formulation of the elements); this is not correct, since these shears can assume
significant values, very much like what occurs in the case of thin beams. If the
finite element does not make it possible to determine the value of these shears,
then these must be estimated at least approximately by taking equilibrium into
account.

However, in general the predominant stress factor is tied to the presence of plate
moments, and thus the study concentrates on the effects that these components
of stress provoke in the various points of the structure.

Normally plate elements incorporate membranal behaviour as well, and so once
a plate element has been placed, it is not necessary to add a corresponding
membrane element.

Plate problems generally require a rather pronounced discretisation, since the
clements most commonly used by the low- to medium-range solvers do not
converge very rapidly. “Plate” problems can easily appear in parts of larger
structures, such as buildings. It thus happens quite often that we find plate
elements in the most general and complex models.

The bending component of plate elements is governed by the translation of the
nodes in a direction normal to the plane of the plate, and by the rotations of the
nodes about two orthogonal axes lying on the plane of the plate. The
membranal component is governed by the two remaining translations and, in the
case of elements with drilling DOF, by rotation about an axis normal to the
plane of the plate. If the membranal part does not use drilling DOF, this degree
of freedom remains inactive.

10.5 SHELLS

Shells are two-dimensional continua that are cutved in at least one direction. In
contrast to what takes place for plates, in shells the membrane problem is
generally not disconnected from that of bending, and thus elements that have
bending stiffness are necessarily used for modelling shells.
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In order to model the geometry of shells adequately, curved elements are needed.
These generally have a number of nodes equal to at least 6 for triangular
elements and 8 for quadrilateral elements.

Although the modelling of shells with plate elements is not precise, because it
introduces cusps that do not appear in the original continuum and because it
uses elements that are planar rather than curved, the practice of modelling shells
with plane elements is nevertheless widespread. This is due in part to the fact
that the management of curves usually requires modelling to be done with
complex primitives, such as cubic splines, which are more difficult to use. In
these case it is clearly of the greatest importance to use a very dense
discretisation, so that the parasite effects related to the cusps just mentioned are
reduced to a minimum.

An example that sheds much light on how to calculate a shell with planar plate
shell elements with a limited number of nodes can be found in chapter 12,
showing a tank without reinforcing rings subject to hydrostatic loads.

10.6 SOLID PROBLEMS

Recourse to solid modelling is limited to those cases in which none of the
available simplified formulations is applicable to the problem at hand. The
generation of solid models is intrinsically more complex, both because it is more
difficult to create the mesh, and because in general a very large number of
degrees of freedom is necessary. The examination of the results is also more
difficult, since the analyst cannot limit himself to a superficial examination but
has to study what takes place inside the solid: it is therefore necessary to “slice”
the solid with an adequate number of planes in order to understand thoroughly
what takes place in terms of stresses and strains.

Typical solid problems are those structural problems relative to very thick
mechanical pieces loaded generically. Examples of these ate cogwheels, gears,
transmissions, engine blocks, etc.

Solid modelling requires software programs of the medium to high range, since,
with the exception of the banal case in which the mesh can be obtained by
means of the extrusion of a plane mesh, the correct modelling of the geometry
requires that curved elements be available, and thus modelling software must
offer complex primitives such as, for example, splines. In any case, solid
modelling is usually performed only by those who have the most expertise, in
CAD if in nothing else.

In solid problems the unknowns are the three translations about each node,
while the rotations are usually inactive.
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10.7 RETICULAR STRUCTURES

Plane and space grid structures are very widespread and thus this kind of
modelling — at least in the context of civil engineering— is very frequently
encountered. The basic presumption behind this kind of model is that the bars
that make up the structure are like rods, that is, they show the presence of only
axial actions. In theory this would call for constraints like hinges at the ends. In
reality, the presence of constraints other than hinges leads to the creation of a
stress in addition to the nominally axial stress; in some circumstances this
additional stress can be quite significant. In practice, it is often sufficient that the
bending stiffness of the elements be very low, or that the joint not be able to
transfer bending and twisting moments adequately, without resulting in very
large displacements. Since the structure usually finds an equilibrium configuration
in correspondence to very small displacements, the parasite stresses that are
created remain quite low.

When we are dealing with structures made of elastic-plastic materials (steel), then
the theorem of plastic limit analysis applies; this states that the true limit
multiplier of the applied loads is always greater than that corresponding to a
fictitious stress distribution in conformance with the plastic crtiterion adopted.
Therefore modifying the constraints leads to safe solutions if all is kept
consistent with the change adopted.

In order for a structure to be modelled with only rod elements (or #russ
elements), there must not be any loads perpendicular to the axis line of the
elements applied at points other than the nodes of the structure.

The orientation of the rod elements has no influence whatsoever on the results
of the analysis, but it can be useful in any case to orient these elements suitably
for design purposes or where it might be desirable to transform the rod elements
into beam elements (in the software programs that allow this).

The axis line of the rod elements corresponds to the location of the centroid of
the sections of the structural element. If there are eccentricities with respect to
this location, the element is no longer strictly speaking a rod but must be
modelled with a beam.

In trusses modelled with rod elements (and only with rod elements), all the
rotations of the nodes must be eliminated, either by explicit constraints, or by a
suitable formulation in the software programs that allow for this (cfr. chapter 7).
If the structure is flat, then translations in a direction normal to the plane of the
structure have to be eliminated as well, while of course no forces normal to the
plane of the structure are to be applied.

Trusses can be used to schematise structures such as pipe racks, towers and
masts, beams with parallel chords variously connected to side struts, cranes, and
so forth.
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10.8 FRAMES

In plane frames as well as space frames, the elements are modelled with beams,
usually with reference to the Euler-Bernoulli theory for slender beams. The
stresses are thus general enough to include the two bending moments about the
main axes, the two shears, the torsion, and the axial force.

Although modelling with beam elements is quite intuitive, it is necessary to be
aware of some possible pitfalls.

A first problem is related to the significance of the energy of shear deformation,
which is anything but negligible when the beam tends to be short but thick. In
this case there is a simplified method for keeping track of the shear, either in the
context of the usual beam element, or making use of Timoshenko finite
elements (in the software programs where they are available). This helps avoid
missing effects that are significant.

A second important point regards the effective existing constraints between one
element and another, constraints that are often, strictly speaking, neither
petfectly fixed nor perfectly hinged. The beam elements are clamped to each
other from the very beginning, and it is only by means of suitable releases
applied to the ends of one or another that they can simulate hinges. The most
typical formulations do not provide for the use of either semi-continuous nodes
or of rotational springs at the end of the elements, and so it is necessary to
determine carefully the effective constraints between one element and another,
in order to arrive at the most correct modelling. The whole set of releases at each
of the two ends of each element with respect to the corresponding node,
including the torsional component, has to be carefully determined.

A third point that can become quite important regards the possible eccentricity
between the axes of the elements, including the presence of nodes whose
dimensions are significant. This problem can be solved by providing rigid links,
or in the absense of these, fictitious beam elements with a high degree of
stiffness that will be exempted from successive checks. There also exists the
possibility of defining beam elements that have a rigid eccentricity in them,
which actually incorporate the rigid links just mentioned.

A fourth, fundamental aspect whose details needs to be looked after is that of
the elements’ orientation. The orientation is fundamental for the calculations. It
is always necessary to check — if possible, with a graphic tool which gives an
immediate picture — that the elements are correctly oriented (generally, as will be
explained later, the "third node" is checked, but there are software programs that
use other systems to orient the elements).

If it has been decided to use the energy of shear deformation, then the shear
areas have to be determined quite accurately, keeping in mind that setting them
equal to 0 does not usually mean that there are singular equations, but rather
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implies a return to the theory of bending without the contributions of shear: for
this reason, the use of extremely small areas of shear to simulate a null value are
to be avoided.

These schemes are laid out with regard to the axes of the element, and not their
external edges.

In designing structures using the beam formulation, it should be borne in mind
that the model can never take into account the normal stresses acting
perpendicular to the element’s axis, and thus if significant normal stresses of this
kind are expected, they must be kept track of in a separate way.

A beam that is hinged at its ends is not modelled with a rod element but with a
beam element with double end releases.

Whether a beam element or a rod element is used depends on whether there are
moments of bending, torsion and shear. If there are moments of bending (even
a single one), torsion or shear, then a beam element has to be used. If there is
only axial force, then it is possible to use a rod element.

10.9 MIXED PROBLEMS
Without a doubt “mixed” problems are those that occur most frequently in
engineering,.

Mixed problems are those requiring the inclusion in a single model of finite
clements that use different simplifying theories. Normally this is due to the fact
that various structural elements can be indentified in the structure, and these can
be modelled by means of different theories. Examples are the columns in a
building and its bracing core in reinforced concrete, its floor slabs, and its
foundation bed.

However, there are also cases in which the use of one or another type of element
depends on the presumptions made about the kind of model that the analyst
wishes to make.

For example, in an ordinary truss structure with parallel chords, we might want
to model the two stringers with beam elements and the vertical struts with rod
elements, so that the parasite bending related to the continuous construction of
the stringers is not unaccounted for. Another example might be when we want
to make a model entirely of rod elements, including the stringers, in order to
create a situation where the calculation is immediately more clean, perhaps to
facilitate pre-dimensioning.

Still another example might occur when, in the modelling of a shear wall, we
must decide whether or not we want to take into account the bending inertia of
the walls in a direction normal to its plane, because this determines whether plate
elements or membrane elements are used.
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In addition to these problems are added others related to the connection of
radically different finite elements at the same node (plate-rod, membrane-beam,
beam-rod, and so forth): what do such choices lead to?

The answer needs to be looked for case by case, bearing clearly in mind the
formulation of each individual element and the “sensitive” degrees of freedom of
each node. Taking each of the six degrees of freedom of the common node, we
have to ask ourselves what this degree of freedom means for each element that is
attached to the node, so that if there are components of the stress that “don’t
pass”, these can be propetly taken into account.

We will see better in chapter 12 how to deal with mixed problems. First it is
necessary to understand the basics of how the most commonly used finite
elements work.
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11 THE MOST COMMON FINITE
ELEMENTS

11.1 INTRODUCTION

This chapter will provide fundamental information relative to some of the finite
clements used most widely in modelling by mid-range software programs today.
It cannot, however, cover the entire range of the field, which is immense.

The majority of studies in the FEM are aimed at looking for formulations
for finite elements that are reliable and efficient, and thus by now for any given
problem there exists a vast amount of literature. Although there are numerous
finite elements available, only some of them are frequently used: many finite
clements have been found to entail difficulties of varying degrees, and others,
while precise and reliable, are used in contexts that are so specialised that they
are beyond the limits of this present work.

Here we shall briefly discuss the finite elements that have been so successfully
applied that they are implemented in almost every solver available today. In what
follows we will always be referring to the local tern of the element, without
dealing with the element’s collocation in space, unless explicitly stated otherwise.
To indicate the variables of the local reference system we will use lower case
letters (x, y, z) or numbers (1, 2, 3), while upper case letters will be used to refer
to the global reference system (X, Y, Z). Greek letters will be used to indicate the

local reference system of the master element (€, M, §).

11.2 TRUSS ELEMENTS

The truss element is used to model the axial behaviour of prisms, that is, onme-
dimensional elements that are only subject to tension or compression, and not to bending,
torsion or shear. The tension or compression is assumed to be centred. The axis
line of the truss element coincides with the location of the centroid of the
structural element.

The truss element is by its nature incapable of stiffness in bending or shear, and
thus the only stiffness that it can provide is that which opposes any shortening
or lengthening of the element. Consequently, the node to which a truss is
attached is not prevented from translation in a direction normal to the axis of
the truss nor from any kind of rotation.

We can define the behaviour of a truss element once we have its area A, the
elasticity modulus of the material E, the coefficient of thermal dilatation of the

material O, and the specific weight of the material g. The behaviour of the truss
doesn't depend on element’s orientation with respect to its axis (hence no third
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node is necessary, except for purposes of interfacing with CAD software
programs for drawing).

11.2.1 2-NODE TRUSS ELEMENTS

& a

Figure 11-1: Truss element with two nodes

The element with two nodes is by far the most common kind. The element is
rectilinear and has two nodes at the ends of the axis (node 1 and node 2'). There
are no end releases, nor are end releases possible. The only unknown
displacement function is u(x), which defines the displacements of the points on
the element’s axis in the direction of the axis itself (lengthening/shortening).

The essential character of the element lies in the polynomial approximation of
the displacement function:

u(x) = u+ x(u,u)/L= (1x/L) u+ x/L u,= u, ®,+ u, &,=Pu,
Thus the two shape functions ®, and P, are:
o, =(1x/L)
d,= x/I.

This approximation assumes that #he displacement varies linearly along the element, and
thus that #he strain and the axial force are constant along the points on the axis:

ex)=€= (uyu)/L

N=EA(u,~u,)/L.
From this we can see that if we have to look for a variation of axial force (such
as that occurring, for example, when there are axially distributed loads), a single
finite element is certainly not sufficient, but instead a series is needed, so that the

various elements, with their constant axial forces, follow the variation of the
axial force with a “stepped” diagram.

The axial stiffness of a truss has the well-known value

k=EA/L,
so the stiffness matrix K and the vector of nodal displacements u, can be written
as:
EA | _EA
L L

! The nodes can just as easily be designated node I and node J: what is important is that the concept is clear.
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u =fu, w)"
When there are no distributed axial loads (non-axial loads are not relevant to this
element) the modelled response of the truss element is “exact”, in the sense that
it is identical to that obtained from the exact solution of the differential
equations (always assuming linearly elastic material in first-order theory).

The truss element can be used in exactly the same way as a translational spring
of stiffness k given by EA/L. When there ate no springs it is thus possible to use
this element as a spring; we need only regulate E, A and L suitably to obtain the
desired stiffness.

The weight of the two-node truss element itself is usually transformed into
merely translationally equivalent nodal forces parallel to the direction of the force
of gravity and of an intensity equal to — at each node — half the overall weight of
the truss.

11.2.2 3-NODE TRUSS ELEMENTS

Figure 11-2: Truss element with three nodes

Programs with a richer library of finite elements offer truss elements with
three nodes (1, 2, 3), in case the approximation of displacement u(x) is not linear
but parabolic, where we can write

u(x) = @u+ Pou,t Py
D = (x, —x)(x; —x)
(xy =x)(x; = x,)
_ O =2 —x)
’ (% =2x,)(x5 = x;)

(= 0)(x —x)

o (2, —x3)(x; —x3) .

Note that the dependence on x in each shape function is parabolic and that

D,(P)=0, ®,(P)=1. The 3-node element has a field of linear axial action in x,
since linear functions are obtained when the shape functions are derived with
respect to X.
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11.3 BEAM ELEMENTS

11.3.1 OVERVIEW

Beam elements (and especially those with two nodes with a Euler-Bernoulli
formulation) are widely used in technical practice for modelling the many kinds
of frame structures. Since these kind of structures are found in civil, mechanical,
naval and aeronautical engineering, we can see that beam eclements are
particularly important. They are undoubtedly the most commonly used elements
by professionals who are not experts in the FEM, given that structures modelled
with beams are practically ubiquitous.

Beam elements are used to model one-dimensional elements subject to forces
including bending, shear and torsion. The axial behaviour (that is, the bebaviour of a
truss element) is antomatically included in the beam element, which thus also serves to model
elements in tension or compression. It is also possible to use beam elements to model
elements that are only in tension or compression and are not subject to bending
or torsion, but this is not especially efficient (except in very particular cases)
because it makes calculations and meshing more difficult without adding any
benefits.

It is possible to define beam elements that are curved (in which torsion and
shear-bending are coupled) but here we will only discuss linear elements.

From the point of view of geometry, the beam element has an axis that
corresponds to the location of the centroid of the element’s cross-section. In
some formulations it is possible to establish an eccentricity (or offset) between
the axis line of the elements and its end nodes. This makes it possible to take
into account the eccentricity of the elements and the carrying moments without
explicitly modelling them (rigid elements).

The most widely-used finite elements are Saint Venant prisms, and do not model
clements whose height, and thus whose inertia, is variable. Modelling elements
with variable inertia requires the suitable subdivision of the structural element
into blocks (which will then become the finite elements) of constant height and
inertia. The formulation of finite elements with variable inertia generally assumes
that the moments of inertia and the area of the sections vary along the axis in a
simple way (for example, according to laws of linear or parabolic variation), a
circumstance not found, however, in the majority of real elements with variable
inertia.

In order for a beam element to be defined, it is necessary to know the Young’s
modulus for the material it is made of, presuming that we are considering the
strains acting along the element’s axis. In the case of corrections related to the
shear strain, it is also necessary to define, for the given material, the shear
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modulus of elasticity G. As for the case of truss elements, the coefficient of
thermal dilatation O and specific weight g are also required.
However, it is not sufficient to define only the material properties, because the

axial and bending behaviours depend on the geometric characteristics of the
section as well.

Figure 11-3: The local tern of a beam element represented in 3-D.

In defining the element we assume that the local tern of reference possesses
these properties: local axis 1 corresponds to the axis of the element; local axis 2
corresponds to the first of the two principal axes of the section; local axis 3
corresponds to the second principal axis of the section (fig. 11-3). Due to these
conditions and to the linearity of the element, we have the following
fundamental properties:

1. The axial behaviour is decoupled from that of bending or torsion;

2. Behaviour in torsion is decoupled from axial and bending behaviours;

3. Bending about local axis 2 is decoupled with respect to that about local
axis 3 and from axial and torsional behaviours;

4. Bending about local axis 3 is decoupled with respect to that of local axis 2
and from axial and torsional behaviours;

5. The shear acting in local direction 3 (V) is coupled to the bending
moment action along local axis 2 (M,);

6. The shear acting in local direction 2 (V,) is coupled to the bending
moment acting along local axis 3 (M,).

It is necessary to know the following characteristics of the section: area A,
moment of torsional inertia I, moments of bending inertia about the main axes
I, and I;. If shear strain energy is present, then it is also necessary to know the
two shear factors ¥, and ), or, equivalently (and more frequently), the two shear
areas A, and A, that derive from these:

A=A/,
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A= A/Ys

Given these characteristics, and on the basis of the hypotheses made, we
need only model the following three behaviours separately and independently:

® axial behaviout;
® torsional behaviour;

® bending behaviour (and an analogous model for bending about axis
2 and bending about axis 3).

All three of these behaviours are found in beam elements and are modelled
differently according to the element’s formulation and number of nodes.

[ 0

Figure 11-4: Beam elements are created connected to one another

A beam element is usually created completely connected at its end nodes. Thus if
two beam elements have a common node and there are no end releases, they
turn out to be connected to each other. In fact, the movement of the node gives
rise to some quantity of strain in all the elements connected at that node.

B, : 3

Figure 11-5: Beam elements. Element 2 is end released, and because of
this the rotation of node 8 is not transmitted to element 2. This is
equivalent to there being a hinge between elements 1 and 2.
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If we want two elements to be hinged, we have consider the following (cf. also
chap. 12): one of the two elements remains attached to its node without
disconnections; the other element is disconnected with respect to the end node
such that the rotation of the node is not transmitted by congruence to the end of
the element. In order to do this, end releases are applied to the disconnected
element.

If there are no end releases, a beam element allows stiffnesses to pass to its
nodes and they are capable of limiting any possible degrees of freedom, that is,
any translation and rotation. Thus if a beam element is attached to a node and is
not released, then that node cannot give rise to any pseudo-mechanism.
Naturally, the situation is different where releases have been applied or if the
characteristics of the material or the section are special (as long as the software
program being used permits this).

11.3.2 2-NODE EULER-BERNOULLI ELEMENTS

Elements with two nodes based on the Euler-Bernoulli formulation for slender
beams are by far the most widely used. The element comprises axial behaviour
(in exactly the same way as for truss elements already discussed) as well as
torsional and bending components. In this section we will discuss the various
aspects.

11.3.2.1 THE TORSIONAL COMPONENT, SHAPE FUNCTIONS

For the torsional component the function 8(x) is unknown. This function gives
the rotation of a face on abscissa x with respect to the undeformed
configuration, and is a rotation of the section about the element’s axis. Since it is
possible to consider the two rotations at the ends of the elements as unknown
nodal displacements, not necessarily oriented according to the global axis, the
interpolation formula for the rotation field is:

0x) =0 ,+x0,6)/IL=(1%x/1)6 +x/LLO,=0, P+ 6,D,
Thus the two shape functions @, and P, are:
®,=(1-x/L)
d,= x/I.

This approximation assumes that the rotation varies linearly along the element and thus
that the torsional moment is constant along the points of the axis line:

'=(0,-8,)/L
M=GL 0 ,-0 )/L.
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11.3.2.2 THE BENDING COMPONENT, SHAPE FUNCTIONS

The bending component is modelled by considering the bending in the two main

planes individually.
¥ (2)

v

L 4

x (1)
2(3)
yQ2)
1(3)
x(1)
P W

Figure 11-6: Coupling of the variables of displacement in bending.

In the local reference system this means (assuming that u is the translation in the
direction of axis x (or 1), v in that of the local axis y (or 2, as the case may be), w
in the direction of z (or 3) modelling the two unknown displacement functions:
v(x) for the bending about axis 3; and w(x), for the bending about axis 2.

The displacement function has to be continuous with its first derivative (or as we
say technically, it has to belong to C') so that it respects congruence: cusps in the
axis lines are not permitted. Thus it is necessary to consider as nodal
displacements not only the two translations, but also the rotations of the end
nodes.

This furnishes us with four nodal displacements for interpolating each of the
unknown functions v(x) and w(x), according to the following correspondence

(recalling that @ is the rotation of the node about axis 2, and Y is the rotation
about axis 3):

Bending about axis 3 v(x) dependson v, v, Y, V,

Bending about axis 2 w(x) dependson w,, w,, @, Q,.

Since four parameters define a cubic, the interpolation function for bending
displacement is a cubic, as are the shape functions. If for example we
concentrate on the interpolation of v(x) associated to moment M,, we can write
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V)= v,®,+y, D,+v, D;+y, O,

where the shape functions are expressed as follows:

2 3
@ =1—3L2 2"—3
L2
2 3
<I>2—x—2x—+x—2
L
2 3
¢>3:3x—2—2x—3
> r
2 3
X X
¢>4——T+L—2

The shapes are shown in fig. 11-7.

2
o

Figure 11-7: Shape functions for a beam element (they refer to v translation

and VY rotation: shape functions 2 and 4 associated to @ rotation should
have sign changed, due to right hand rule).

Recalling that M=-EIv"”, V=M'(x) and taking, for example, the first of the shape
functions for the deformed configuration of the beam, we obtain:
M(x) = -BI(-6/1°+12x/L.%)v,
V() = -12(El/L)v,.
Thus the couples C and forces F to be applied to the nodes in order to obtain
the unit distortion with respect to the first of the shape functions (v,=1 and

v,=,=,=0) are the following:
at the first end: C=G6E1/1? F=12EI/L}
at the second end: C=6EI/L? F=-12E1/1}

Note that these forces balance each other out.

If we want to see what happens with the second shape function (Y ;=1 and
v,=v,=,=0), we obtain
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M(x) = -EI(-4/L+6x/LY) v,
V() = 6E/L) i,
and so
at the first end: C=4EI/1? F=GEI/L?
at the second end: C=2FEI/12 F=-6EI/I2

The forces and the couples that we have found are the direct and indirect
stiffnesses with which the beam opposes the movement of the nodes. In the
next section we will find these terms and others when we discuss how to write
the complete stiffness matrix.

11.3.2.3 THE COMPLETE MODEL

By combining all the various formulations (axial, torsional, bending about axis 2
and bending about axis 3) it is possible to arrive at a single representation of the
beam element in matrix form which follows the process discussed in chapter 4.
In what follows we give the various vectors and matrices (see also the review
already presented in chapter 3).

U={u,v,w, 0}"

U=Pu,
. 0 0 0 0 0 P 0 0 0 0 0
_x i
A [ e ]
3
0 2 3 0 0 0 2 3 0 2 3 0 0 0 2 3
173)“2 2% P L R L S L
| r r I L, ¢ - L ]
= |
0 0 2 0 3 0 ) 0 280 23 0
|73iz+2x—, B P S ! 3L 2% S
2oL L | rr L' r
L [ N 20 b L LB E)
I
0 0 0 Lx 0 0 1o 0 0 ix 0 0
_x ‘ X
L ; ‘L

_ T
u={u;, v, w;, 0, 0, W}, u,, v, Wy, 0, 9, W, } .

Now, recalling what was found in chapter 3, we can write the law relating strains
to displacements:

— ' ' " mT_—
e={u, 0, -w", ~v"} ' =Bu,

B=Cc®
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d
— 0 0 0
ox 3
0 0 0 —
C_ a.x
= 5
0 5.2
ox
82
0 -—— 0 0
ox
10 0 10 0 0 1 0 0o 0 0 0
L L :
I U O B
|
0 0 0o 1 0 0 10 0 0 10 0
L 1 )

B=| 4; 77777777777777777777777777777777777777777
0 0 6 12x: 0 [4 6xj 0 10 0 6 12x: 0 [2 6x) 0
I S S N ¢ L.r2) R i S N ¢ L) |
|
|
0 6 12x 0 0 0 4 6x10 6 I2x 0 0 0 2 6x

L : L U L I

At this point we recall the relationship between strains and stresses:
6={N, M,, M,, M,} "=Dg

EA 0 0 0
0 GI, 0 0
0 0 EI, 0
0 0 0 EIL

We have written the matrices in their extended form in order to make clear the
relationship that was explained in chapter 4: we are following the same process
already outlined. The stiffness matrix is obtained by determining:

K=/B™DBdL.

Practically speaking, by taking into account the decoupling of the axial, torsional
and bending behaviours and the constancy of D, it can be seen that the
calculation is reduced to just a few integrals, which can be obtained substantially
by the following expressions:

Axial stiffness (as for the truss element): EA/L
Torsional stiffness: GI,/L

Bending in terms of direct stiffness:
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L 2
translation of the node: EI J.(%_gj dr = 12135]
A\ L L
4 ex) 4EI
rotation of the node: EI j(— ——f) dx =——
AL L L
L 2
rotation of the node: EI J.(g —6—;() dx = AEL
AL L L

Bending in terms of indirect stiffness:

L
moment due to translation: EI J.(E _Qj[i —@jdx = 6E1
0

r ANl D o
L
force due to rotation: EI j (3, - 12—3)[2 - if)dx = 61:;1
A\ L L L
L
moment due to rotation: EI j (i - 6—?}(% - if]dx _2E .
AL AL L L

It is clear that we have once again found the terms that we had already calculated
on the basis of the considerations regarding equilibrium in the previous section.

Hence, the final stiffness matrix (12x12) is as follows (using the right hand rule
for positive rotations):

H I
A 0 0 0 0 o |-EA 0 0 0 0 0
L | o 6
T I T R R 0 0 £,
J5 ‘ ro r Iz
12E1, OEL 12E1, 6B,
,,,,,,,, Lo L I
Gl 01 0 0 o YLy 0
L ! L
H I
AEL o h 0 6L, o 2EL 0
L ; ) 2 Lo
4EI3 } 0 _ Ef} 0 0 0 &
Kl Lo\ S S L__|
TEA
i 0 0 0 0 0
- 12E1 6EI
symmetrical 1 = 0 0 0 -
! L L
; R2EL o 6EL 0
,,,,,,,,,,,,,,,,,, i L ;,GI,,,,L?,,,,,,,
! - oL 0 0
; )
; 4FI, 0
! L
; 4EI,
| L
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If we want to interpret these terms physically, we can say that each row
represents in an ordered way the forces to be applied to the element’s nodes
(first and second) when they are assigned a distortion in which the degree of
freedom corresponding to the row in question is set equal to 1, and all the others
are null.

For example, let’s look at the first row (fig. 11-8). We move the first node in
direction u (axis 1) by a unitary quantity. To the first node we have to apply a
direct force like axis 1 equal to EA/L, to the second node a force that is equal
and opposite equal, ~-EA /L.

EA/L FA/L

Figure 11-8: Unit distortion and associated stiffness.

Let’s now look at the third row (fig. 11-9). We move the first node in direction w
(axis 3) by a unitary quantity. To that node we have to apply: a force equal to
12EL,/ I} in the direction of axis 3; and a couple equal to 6 EI,/ 12ina negative
direction about axis 2. Meanwhile, to the second node we have to apply: a
negative force equal to -12EL/L” in the direction of axis 3; and a couple equal to
6 E1,/1.% in a negative direction about axis 2.

3
12EL'L

|
6EVL’ C \J ) 6EVL’

3
12EI'L

Figure 11-9: Unit distortion and associated stiffness.

Now let’s look at the twelfth row (fig. 11-10). Here we rotate the second node

about local axis 3 (rotation Y=I). To the second node we have to apply: a
positive couple equal to 4EI,/L in the direction of axis 3; and a negative force in
the direction of axis 2 equal to -6 EL,/L”. To the first node we have to apply: a
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positive couple equal to 2EIL,/L in the direction of axis 3; and a positive force in
the direction of axis 2 equal to 6 EL,/L.%

6EUL2

ZEUL( T VJD 4ELL

6EUL2

Figure 11-10: Unit distortion and the associated stiffness.

11.3.2.4 THE PROBLEM OF THE ORIENTATION IN SPACE

In contrast to the truss element, the beam element needs to be oriented in space,
because the direction of the axis line is not sufficient to define the element’s
bending behaviour.

Various different methods have been proposed and adopted to orient the
element in space, and each has its pros and cons. The most widely used method
is probably that of the third node. Practically speaking, the finite element is
oriented by providing, in addition to the first node N1 (or node I) and second
node N2 (or node J) a third node N3 (or node K) which together make it
possible to define a plane. Obviously the three nodes N1, N2 and N3 cannot lie
on the same line, because this would make it impossible to define the plane
unequivocally. By convention, axis 2 of the local tern lies in the plane defined by
nodes N1, N2 and N3, and it is “on N3’s side”, that is, that the scalar product
axis 2 — (N3-N1) is positive. In practice, it is necessary to bear in mind that the
two vectors (N3-N1) and (N2-N1) do not necessarily have to be orthogonal,
while local axis 2 must be perpendicular to local axis 1, defined by the versor of
N2-N1.

Figure 11-11 gives a diagrammatic representation of the third node method of
orientation. We can see that:

® The direction of vector (N2-N1) is the same as that of axis 1 of
the local tern;

® Local axis 2 lies in the plane defined by N1, N2 and N3;

® Axis 3 makes a right tern with axes 1 and 2, at right angles to
them;

® The scalar product of axis 2 and (N3-N1) is positive, that is, the
two vectors form a angle equal to less than 180°.
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3@

N3 (NK)

Figure 11-11: Orientation in space using the third node.

Any node can be used to orient the other elements, and if there is no suitable
structural node, then it is possible to create an ad hoc node, bearing in mind that
if this node only serves to orient one or more beam elements, then it has to be
completely constrained.

Some software programs define certain nodes in suitable positions in order to
establish standard orientations. The nodes involved are the first six nodes of
cach model, and their position is at infinity in the three directions as shown in

table 11-1.
Node At infinity in
number direction:
1 +Y
2 +Z
3 +X
4 Y
5 -Z
6 X

Table 11-1: Predefined nodes.

When we say “infinity” we are obviously talking about a numerical infinity.
These are predefined, pre-constrained nodes set at great distances from the
origin in directions Y, Z and X in both positive and negative directions. A
sample distance might be of the order of 10"mm. Using the six predefined
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nodes means that only in rare cases is it necessary to define additional nodes. In
order to explain this method clearly, table 11-2 shows which third node should
be used for the most commonly used elements and positions:

Structural element Third node number
Column axis 2 parallel to axis X 3
Column axis 2 parallel to axis Y 1
Beam parallel to X, axis 2 parallel 1
to Y
Beam parallel to Y, axis 2 parallel 3
to X
Beam parallel to X, axis 2 parallel 2
to Z
Beam parallel to Y, axis 2 parallel 2
to Z

Table 11-2: Third node to be used for typical structural elements.

LN )

Z
X)\Y
(73)
2 3 4 5 ¢
+Y +74 +X -Y -7 -X

Figure 11-12: Examples of column orientations using the six predefined
nodes (from the SARGON program).

It should be noted that an incorrect orientation in space can lead to results that
are completely erroneous, since switching the moments of inertia or incorrectly
orienting the tern gives rise to errors that can sometimes be quite significant.
Making sure that the elements are correctly oriented is one of the fundamental
checks that must always be performed on any model containing beam elements.
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The system of using the third node is not the only method available. Some FEM
software programs, such as SAPZOO()@, make use of a typical orientation and
then, in special cases, make it possible to define an angle of deviation from that
otientation. In the case of SAP2000® the typical otientation is defined so that:

® Plane 1-2 is always vertical;

® Axis 2 points in direction +7Z except when the element is vertical, in
which case axis 2 is assumed to point in direction +X;

® Local axis 3 is always horizontal, that is, it lies in plane XY.

Still other programs, such as ANSYS®, use the convention of the third node, but
for defining plane 1-3 instead of 1-2, and make it possible to use more than one
method for orienting the element.

A thorough study of the system adopted by the software program being used is
essential for avoiding banal errors that might invalidate the analysis. The
question of how orientation is established is one of the first things to understand
about any software program, and information regarding this can be found in the
program’s instruction manual.

11.3.2.5 END RELEASES

As we noted earlier, a beam element is created rigidly attached at its end nodes,
which are connected to it in such a way that a rotation or translation of those
nodes will be communicated unaltered to the end point of the axis line that
corresponds to the node that moved. Naturally it might be necessary for the
node to be able to rotate or translate without communicating an analogous
movement to the axis line, which will thus turn out to be released with respect to
it. In this case the behaviour of the beam will be equivalent to that of a hinge or
a sliding block, depending on the kind of release adopted.

In applying the releases it must be kept in mind that in any case each degree of
freedom of every node has to be associated with a stiffness, because if not, a
pseudo-mechanism is introduced. Let’s consider the examples shown in fig. 11-
13, which is doubly hinged at the ends of the cross-member. A first way of
modelling this hinge is shown in A: the ends of the cross-member are released
with respect to the end nodes, which is a correct solution; B is also correct, and
shows that the end of the column is released but the end of the beam is not; in
contrast, C is correct only if the rotations of the two end nodes are constrained.
If both of the elements attached at the right or left nodes are released, then these
nodes are left without any stiffness associated to the rotation of the node itself,
which thus has to be constrained.
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G O i F—

Figure 11-13: Examples of applications of releases, and the pseudo-
mechanism that can arise from them: A correct, B correct, C node pseudo-
mechanism if not constrained for rotation.

When applying releases, care must be taken to avoid situations such as that
shown in figure 11-14, because they give rise to local mechanism. Table 11-3 lists
the specific release templates to avoid.

From an analytical point of view, the stiffness matrix of the released element can
be obtained by a procedure known as condensation, for which we will now discuss
the fundamental guidelines.

When there are no distributed or nodal loads, for each element it is possible to
write the following matrix equation:

Ku=r
[{P2]

where r is the vector of the nodal reactions. Using “c” to indicate the connected

degrees of freedom, and “u” the disconnected degrees of freedom, and after
having reordered the equations and the unknowns, the preceding equation can

be rewritten in the following way:
K. K

cc cu

K, K

uc uu

u

c

u

u

c

T

u
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Now we should observe that the reactive forces r, on the disconnected degrees
of freedom have to be null, hence the system becomes
KCC KCU

K, K

uc uu

u, |

0

ul.l

Solving the second matrix equation with respect to u, and substituting the
resulting value in the first equation, we obtain the following matrix relationship:

1 —

(ch-KcuKuu Kuc)uc_rc
which gives in parentheses the expression of the new stiffness matrix reduced to
the order of K.

Figure 11-14: Releases that are not permitted.

This matrix can then be expanded to the original dimension by setting as null all
the values corresponding to the disconnected (and condensed) degrees of
freedom. It should be noted that in order for the procedure to work, the square
matrix K, has to be invertible, and thus the releases — as we have already said —
must not give rise to any situations where there are mechanisms.
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Description First end | Second end
Double sleeve T1 T1
Double sliding T2 T2

block
Double sliding T3 T3
block
Double torsional R1 R1
release
1ll-disposed roller R2 T3, R2
Ill-disposed roller R2, T3 R2
1ll-disposed roller R3 T2, R3
Ill-disposed roller R3, T2 R3

Table 11-3: Combinations of releases that should not be applied
(T=translation, R=rotation).

11.3.2.6 CORRECTIONS RELATED TO THE SHEAR FACTOR

In chapter 3 we saw that completely modelling a Timoshenko beam would
require holding two displacement functions as unknowns rather than only one.
Thus the element that we described is not suitable for modelling the effects of
shear in the general case. However, when there are no distributed loads, the exact
solution for the deflection w coincides with a cubic, and the shape function
adopted for this element is also cubic. In this case the shear is constant (as is the
correction O(x)) and it is relatively easy to calculate the exact solution for the
stiffnesses. In the Timoshenko theory the displacement does not coincide with
that of the shape functions (although these are also cubics), because the rotation
of the node does not coincide with w' (in fact, w’ cannot be null where @=0).

Even though the rotation of the node does not coincide with the first derivative
of w, and this precisely because of the contribution of the shear factor, it is
possible to exploit the same kind of shape function to determine the stiffness
matrix with the Timoshenko theory, providing that the terms of stiffness have
been corrected in a suitable way.

Practically speaking, the stiffnesses already found for the slender element are
multiplied by a series of dimensionless corrective factors that tend to 1 as the
contribution of shear to the strain energy tends to 0. This means that we can
define six corrective factors, three for bending about axis 2 and three
(homologous) for bending about axis 3.

A, < Kol
12K, +1
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1
12K, +1
_1-6K,

12K, +1

2

2
_ 3K, +1
12K, +1
-
12K, +1
_ 1-6K,
12K, +1°

3
3

3

having set K, for bending about axis 2 as:
_X:El,  EI,

" GAL* GAL’

and K, for bending about axis 3 as:
_X,EI, EI

"~ GAL>  GA,I?

3

where A, and A; are the two shear areas associated with shear V, and shear V,,
respectively.

When these corrective factors are introduced, the stiffness matrix K for the
element becomes:

I
% 0 0 0 0 0 | 7% 0 0 0 0 0
12E1 6L, | 12E1 6EI
L33 , 0 0 0 LZ»‘BJi 0 - LJJB; 0 0 0 LZ} )
. I
REL g 6E{2 ' o | o 0 B 12€12 o _ 6L, . 0
R N 7 R L R
: GLI 0 0 1o 0 0 - GLIf 0 0
; i
|
ﬁ/‘\z 0o 10 0 65212 B, o 2L c, 0
t s, | 6El g t 2E1
—2A 0 -—FB 0 0 0 ic,
K=l - L ,,,,‘L,EA ,,,,,, - L ]
s 0 0 0 0 0
! L
symmetrical | 125;[3 ) 0 0 0 65113 ;
! 5 r
I
} 125}12 B o Sh 5, 0
! L i L
! G, 0 0
| k 4EI
| 24, 0
| L
} 4EI, A
‘ L
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This corrected stiffness matrix is widely used in practice. It has to be borne in
mind that the results obtained with this kind of stiffness matrix are not the same
as those obtained with the original stiffness matrix: it contains a correction that
can be quite significant where the beams are thick and short.

The corrected terms of stiffness descend directly from the Timoshenko beam
theory, and can be calculated using it. For example, if we want to calculate the
stiffness terms relative to a unit displacement of the second end (shape function

®,), we perform the following calculations:

Deflection v solution to the differential equation (a, b, ¢, d, to be determined):

v= ax +bx’+cx+d.

Boundary conditions

v(0)=0

V(0)=0

v(L)=1

Y()=0
Note that a condition has been imposed on rotation | which does not coincide
with v'. Recalling that

y=v-p
we obtain the following solutions for a, b, c, d:
a=2(BL-1)/1.
b=-3(BL-1)/1.
=P
d=0.
Now if we recall (cf. chapter 3) that —EIv"=M(x) and that —EIv""=V(x) (given
that M'=V), and that V=GAP/y, we find that
BL=12K/(12K+1)
since
_ XEI
GAL '
The moment at the first and second end is thus:

M=$6L§I( 1 ]2161:;13
L \12K +1 L

while the shear is
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12E1 1 12E1

= 3 = 3 B .
L \12K +1 L

Except for the sign, which is different by convention, the terms that we have
found coincide with the stiffness terms that can be found in the matrix, in
correspondence to the unitary translation of one of the nodes (in the direction of
either axis 2 or axis 3). For example, for the translation of the second node in
the direction of 2, v (row 8), the term Kgg and the term Ky, coincide with those
found.

Analogous calculations allow us to determine all the other stiffness terms.

If we examine the exact function v(x) for the case that we have just discussed,
we will find that (substituting a, b, ¢, d), it has to be

_2(pL-1 5 3(AL-D) ,
)_ L3 X LZ X +ﬂ‘x9

v(x [11-1]
while, in contrast, when the shape function of the element is not corrected for
shear we have

3

X2 X
V)= 355275 [11-2]

and the two functions coincide if BL tends to zero, as expected. Thus, in terms
of displacement, the 2-node element with corrections for shear is not “exact” even when there
are no distributed loads. However, the error concerns only the displacement field,
and only the points within the element, and not the ends (where the shape
functions are equal to 1), because the terms of stiffness are correctly determined.

It should be noted that climinating the effects of shear corresponds to a null
shear factor, and thus to an infinite shear area. Since it is usually precisely the
shear area that has to be provided as input data, we want to bear in mind that
normally it makes sense to assume that the effect related to shear is null if the
shear area is null, even if rigorously speaking this could have a K factor that
tends to infinity (and thus A tending to 0.25, B tending to 0, and C tending to —
0.5). In other words, if we want to eliminate the effect of shear, we have to set
the shear area as null in the input data, since it is usually a good idea to associate
the elimination of shear effects to a null shear area.

11.3.2.7 BEAM ELEMENT PRECISION

11.3.2.7.1  THIN BEAMS (NO CORRECTION FOR THE EFFECTS OF SHEAR)

From what has been discussed, we can establish that the 2-node beam element is
precise when there are no distributed loads. Thus we can be sure that all
clements that are not directly loaded with concentrated or distributed forces can
be modelled with a single finite element. In the case where there are
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concentrated loads, to arrive at the exact solution we need only divide the
element so that we have a node under each load. In the case of a uniformly
distributed load, we should subdivide the elements into a certain number of
parts, so that we can arrive at a suitable approximation of the strains and
stresses. With regard to this, it should be kept in mind that with a 2-node
element we expect to find a linear bending moment and a constant shear, and
thus as the moment diagram becomes more complex, the number of elements
that the beam has to be divided into increases.

This line of reasoning is valid if the software program treats the beam element
the same way it treats other finite elements, that is, the local contribution of
stress, that related to distributed loads, is neglected. In actual fact, the programs
most equipped to deal with frame structures, or programs that are simply more
complete, take into account the fact that in the case of beam elements, it is easy
to add the stress due to distributed loads at fixed nodes to the stress due to the
movement of the nodes, thus arriving at the exact solution. The overall stress is
in fact the sum of the stress due to distributed loads when the nodes are fixed
and the stress due to distortions imposed by the nodes of the element. We have
seen that this second part is modelled in an exact way, because the shape
function of the beam element is a cubic, just like the exact solution of the elastic
line when there are no distributed loads or effects due to shear; the first part can
be arrived at simply by taking into consideration point by point the effects of the
distributed load (whether it is concentrated or not).

A similar reasoning is also valid for the displacement, which can be considered
the sum of those obtained with the shape function and those obtained from the
element in conditions of fixed ends. Each individual user should make sure to
understand the approach adopted by the software program in use, taking the
simple example of a single element subject to a distributed load and then
comparing the values found with those expected in theory. Sargon pre-release
9.0, for example, re-added the effects of distributed loads in terms of stresses but
did not re-add them in terms of displacements.

The displacement of points within the finite element was predicted only
by the shape function. Note that this leads to a null error in the displacements a#
the ends of the element (where in any case by congruence the correction has to be
null). For example, figure 11-15 shows an HE300B cantilever with 3m of clear
span, and a uniformly distributed load equal to 5kN/m, with a 1.063mm
displacement at the ends (exact value 1.063mm), while in the centre we have
0.3685mm against an exact value of 0.3888mm (an error equal to 5.2%). After
release 9.0 Sargon re-adds local displacements as well as local stresses to beam
elements for the most common distributed loads.
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Figure 11-15: Cantilever under a load that is uniformly partitioned
(represented by the arrow with the dot) modelled with a single finite
element in SARGON: the moment diagram is parabolic, the deflection is
cubic (shape function only). The maximum displacement is in one of the
nodes and thus the predicted value is exact, even with a “normal” shape
function).

11.3.2.7.2  THICK BEAM (CORRECTION FOR THE EFFECTS OF SHEAR)

What has already been discussed regarding beams with no cotrection is also valid
for stresses: if the local effects are added, then the result is exact.

As far as displacements are concerned, the “normal” shape function is not exact
even when there are no distributed loads, since, for example, for ®; it takes the
form of eq. 11-2 rather than eq. 11-1. However, the displacements at the ends of
the element are exact since at the ends the translations of the two shape
functions are identical. Instead, the values within the element change, and so it is
necessary to bear in mind that the predicted cubic displacement of the “normal”
shape function is not exact except at the element’s ends (for a comparison, see
for example § 12.2.4).

11.3.3 2-NODE TIMOSHENKO ELEMENTS

We have seen that the “slender” 2-node element can be corrected in order to
partially simulate the behaviour of a thick beam. There is a 2-node finite element
that is expressly intended for this purpose, one that has two unknown
displacement functions instead of only one for each bending about each of the
main axes.
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The two functions are the deflection v and the rotation W, modelled
independently of each other. Given that we have two available nodes, the shape
function is linear, that is, with reference to bending in one of the two planes, and
more precisely, bending about axis 3, we set

v=v,®+v,P,
Y= =y, + y, b,
where
®,=(1x/L)
d,= x/I.
Given that the rotation is explicitly modelled, the displacement function w has to

be continuous, but its derivative does not have any continuities (that is, it
belongs to C,).

The bending moment is
M;=-EL y'=EL/L)( y, - ).
It is thus assumed to be constant along the element. In contrast, the shear is

V™V

V,=GAP/X,=GAL-Y)= GAz[ ~y @, () +y, P, (x):|

and it thus varies linearly along the element (note the incongruence with the
indefinite equilibrium equations that call for V=M). At the element’s centre, the
shear is

V,= GAZ[VZ_V‘—V/‘ “”2} :
L 2
The stiffness matrix is obtained by the usual procedure, that is, by writing the
elastic strain energy in function of the derivatives of the shape functions, of
bending and shear stiffnesses and of nodal displacements. Here we will limit
ourselves to expressing only the part of bending relative to local axis 3
(displacement vector u={v,, ¥ |, vy, W,}"):

GA, | GA, | _GA, | GA,
L2 Ll 2 |
GA, | EI, GAL | GA, | EI, GAL
K=l_-2__1 _L____ 3 .2 1 L ___6 |
_GA G L GA L _GA,
Lo N N A S 2 |
GA, *: _EI +GA2L_E _GA, :r EL,  GAL
2 1L 6 | 2 ! L 3
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The remaining part of the overall stiffness matrix can be obtained by “blowing
up” what is described here to the dimension 12x12, bearing in mind that
analogous terms are associated to bending about local axis 3, while the axial and
torsional components remain unchanged.

The element described here in brief tends to behave absolutely rigidly when the
beams are slender (that is, as L increases, the terms of stiffness associated to
shear tend to grow excessively with respect to those of bending). This
phenomenon, called /ocking, is common to other finite elements in other contexts
as well: it can lead to significant errors when this element is used to solve
problems of slender beams. Hence the use of this kind of completely integrated
element is not advisable when there are slender beams.

We mentioned that there are techniques for integrating the stiffness matrix called
selective (whetre the parts of the matrix in bending and in shear are integrated
numerically in different ways, with shear being integrated in a reduced way, while
bending is integrated exactly) and reduced (where integration is done using fewer
Gauss points than what is necessary to integrate exactly), aimed at reducing or
annulling the effect of locking that was discussed above. Even though such
techniques can lead to an improvement in the elements’ response, they must be
used with extreme care, because they can give rise to problems that are difficult
to quantify, such as the onset of strains associated with a null strain energy
(spurious modes).

In the particular case of the beam element, the use of these techniques does not
lead to the onset of spurious modes and thus the 2-node Timoshenko element is
usually calculated with their help (a single Gauss point of integration for the
shear component of the matrix, two Gauss points for the bending component).
The correct stiffness matrix that results is the following:

GA, | GA, | GA, | GA,
— | - || —_—
Lo 2 4 L2
GA, ' EI, GAL \ GA, | EI, GAL
| + | — | —
K=l_2 . L __- 4 42 1 L __4 |
"GA, U GA, U GA I GA,
Lo 2 L i 2____|
GA, 7: _EL | GAzL—i _GA, :T EL,  GAL
2 L 4 1 2 1 L 4

The 2-node Timoshenko-Mindlin element is only seldom used in practice, at
least for linear problems: the 2-node element with the corrections described
earlier is preferred.
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11.3.4 ELEMENTS WITH THREE OR MORE NODES

In addition to elements with two nodes, elements with three or more nodes have
also been theorised and formulated for beam elements, including formulation for
both negligible shear strain and for Timoshenko beams. These elements lead to
results that are more reliable and precise, especially with regards to Timoshenko
elements (by permitting such elements to have linear or parabolic moments). As
far as elements that are purely in bending are concerned, the availability of fourth
order or higher shape functions makes it possible to have elements that are
intrinsically capable of modelling parabolic or cubic bending moments, with an
increased advantage in terms of precision and speed of convergence, at least
regarding elements whose stresses and displacements are not corrected as
discussed earlier.

However, in technical contexts, by far the most widely used element is that with
two nodes whose shear strain energy is corrected as described in § 11.3.2.

11.4 SPRINGS

The spring element is used to connect a degree of freedom to a reference
(“ground”) by means of an elastic constraint of a predetermined stiffness. It
should be noted that the spring element does not usually connect two degrees of
freedom, but rather, it connects a degree of freedom to the reference, such that a
generalised elastic recall force is developed that is equal to ku.

The desired effect is obtained by adding the term relative to the desired stiffness
to the term of direct stiffness relative to the degree of freedom in question. For
example, if before the application of the spring the equilibrium on the degree of
freedom (i) is
ZKijuj‘Pi:Oa
then after the spring with stiffness k is applied we will have
ku+ ZKﬁuj—pi:O
such that the original stiffness K becomes
K, +k.
Not all software is programmed for the use of springs that can connect two
generic degrees of freedom (that is, structural springs that are not “grounded”).
The stiffness matrix of this element is analogous to that of the truss element,
provided that the stiffness k of the spring is substituted in place of EA/L, and

provided that we consider the row and the column that correspond to the two
connected degrees of freedom u, and u;. The result is
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ko —k
=F-——t--=
K=l ek

u, :{ui, u;}T-
Even when the spring element is not available, it is often possible to simulate it
by means of a truss element (for translational stiffnesses) and an suitably released
beam element (for rotational stiffnesses). In the case of translational stiffnesses,
we need only connect two nodes with a truss element arranged like the desired
spring, and set

k=EA/L.
a [ additional node]
m b o m £
—l
- a+b @ c

Figure 11-16: Modelling of a rotational spring.

The case of rotational stiffnesses is more complex. For example, in order to
connect a beam element “c” to a node with a rotational spring, it is necessary to
interpose two small superimposed elements (“a” and “b”) with the same
connectivity between an added node (at the left end in fig. 11-16) and the end of
the element. Element “a” is rigid and serves to guarantee that the shear is
continuous: it is released for rotation. Element “b” serves to introduce the
desired spring and is released for shear. To this end, element “b”, whose length
L is, for example, equal to 1/1000 of the original length of the element, will have
a moment of inertia I such that

K=EI/L

where K is the rotational stiffness to be matched.

11.5 PLANE STRESS AND PLANE STRAIN

In problems of plane stress or plane strain, only two displacement functions are
unknown. Given plane XY where the structure is defined, the unknown
functions are u(X, Y) and v(X, Y). Thus, at every node “1” the two translations u
and v, are generally used as unknown nodal displacements (although there are
situations when this is not the case, as we shall see later). If we look at the
formulation of the individual element, we see that it is defined in a local system
x, y) or (1, 2) and that the nodal displacements in direction x and y are
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unknown. Because none of the other components of displacement exert any
influence, they must be (either automatically or explicitly) eliminated or
constrained.

In some finite elements, rotations about the axis normal to the plane 0, of the
element are also used, and thus this degree of freedom is not constrained (see,
for example, [Taylor and Simo 1985]). In this case this degree of freedom should not be
constrained, because if it is the results obtained are incorrect.

For a complete definition of the element it is necessary to provide the
characteristics of the material and — in plane stress — its thickness.

11.5.1 3-NODE TRIANGULAR ELEMENT (CONSTANT STRAIN
TRIANGLE, CST)

Figure 11-17: Constant strain triangle (CST) element.

The CST element, or constant strain triangle, is the most simple but also the
least precise. Each of the two unknown functions u(x, y) and v(x, y) is modelled
by means of the following polynomial approximations:

u(x) = ax+by+c
v(x)= dx+ey+f,
that is, by means of a linear displacement function. Setting boundary conditions

on the nodal displacements u; and v; (i=1, 2, 3)? leads to obtaining the shape
functions, such that u(x) and v(x) can be written in the following canonical way:

u®)=u, P+ u,®,+ u,P,
v(x)=v, P+ v,P,+ v, P,

where

2 See chap. 4, equation 4-3: here a, b, ¢, d, ... are the aj, ay, a3, a4, etc. of eq. 4-3.
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1

Flzq)l:a[(xzh —x3y2)+(y2 _y3)x+(x3 _xz))’]
1

rzzq)zza[(xﬁﬁ _X1y3)+(Y3 - )x+(x1 —x3)y]

1
F3Eq)3:a[(x1y2 —x2y1)+(y1 _yz)x+(x2 -X )y]3

Since the strains are obtained by deriving the displacement field, it is easy to see
that in correspondence to the approximation introduced there is a strain field
that is constant (hence the element’s name, constant strain triangle or CST).

In matrix terms we can write
U=du
having set U ={u, viT, u={u,, v, Uy v,, u;, v;} " and
(Dsz, 0i®, 0o, 0{

=
o
<
&

The strain vector € can be determined in the following way (see also chap. 3):

9
ox
, A|[® 0@, 0@ 0
_ATT— S | E [ S 4o u
e=CuU= 0 ®T0 @' 0 @
9 9
dy OJx
that is,
Yy 0 :y31 0 :)’12 0
1 Eeehee {3 S
g=Bu=5, 0 ¥ |0 %10 x fu
Xy Yoz 0 X3 Vi Xy Yo

The stiffness matrix Kis obtained by the following integral
K= [B"DBdA.
A

where D is the matrix that relates the stresses and the strains (different for plane
stress and plane strain, see chap. 3). Since the terms concerned are constant, the
previous expression becomes

K=AB'DB.
The CST element converges rather slowly: the stress within it is constant and
thus it is necessary to use a high number of elements in order to obtain a

3 The symbols Iy, Iz, T's were introduced because they will be useful in what follows.
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sufficient approximation. However, the element is compatible and complete,
since it is capable of correctly representing both rigid motions and constant
strains.

11.5.2 THE 6-NODE TRIANGULAR ELEMENT (LINEAR STRAIN
TRIANGLE)

Figure 11-18: Linear strain triangle (LST) element.

In this element, which, like the CST element, is triangular with straight line sides,
there are six nodes instead of three. These additional nodes are placed at the
mid-points of the three sides, and are numbered starting from 4 for side 1-2 up
to 6 for side 3-1. The basis expressions for the interpolation field are:

u(x) = ax’+by*+cxy+dx+ey+f

v(x)= gx’+hy*+Ixy+mx+ny+p.
By making the displacements in the nodes congruent with the nodal
displacements, we obtain the following matrix equation for the displacements:

U=Pu,

: — T — T
haVIHg setU = {u: V} >, U= {u1> Vi, Uy, Vi, Us, Vi, Uy, Vy, Us, Vi, Ug, Vé} and

The shape functions are expressed as:
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®,=T,(2'-1)
®,=T,(2I',-1)
®,=T,(2I',-1)
®,=4T, T,
®.=4T, T,
=4I, T,

with the I} as defined in the previous section (practically speaking, these are the
shape functions of the CST element).

The next step towards obtaining the stiffness matrix follows the general rules
already discussed for the CST element, with the difference that the integral is not
immediate. However, the integration can in any case be made in closed form by
using the following formula (where “m!” is m factorial):

k!'l'm!
2+k+1+m)!

[h'n'r"da=24
A

This element has a quadratic displacement function and linear stress and strain
functions (hence its name, linear strain triangle, LST). From the point of view of
convergence, its behaviour is clearly better than the CST, as can be seen from
the analysis of the data in table 11-4, adapted from [Cook, Malkus, Plesha 2001]
and checked again using SARGON for cases B and C shown in fig. 11-20. The
problem is the classic case of a cantilever with a concentrated load at its free end.

An examination of table 11-4 leads us to conclude that, for almost equally
precise results, the CST elements require a number of degrees of freedom that is
not simply double, but 3.5 times higher than that of LST elements.

In general we can say that the CST element behaves rather poorly in situations
where it is necessary to simulate bending, unless a high number of elements is
used in the thickness.

It is certainly helpful to consider the unsmoothed maps of strain G, shown in
fig. 11-21 for cases B and C, that is, in the two cases where CST elements were
used. As we can see, smoothing leads to significant improvement, even if — as we
have said — it can be used only when the interelement jumps are modest.
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Figure 11-19: Test problem of plane stress: E=200kN/mm?, t=10mm,
P=40kN, h=12cm. [Carr 1967] cited in [Brebbia and Connor 1978] and in
[Cook, Malkus, Plesha 1989] in a dimensionless form. “Exact” v, =
5.3374mm, “exact” 0 = 600 N/mm’. The problem provides for a
parabolic shear distribution at the end; here for brevity’s sake the force is
concentrated in a node (which leads to a limit value for the ratio between
the calculated solution and the “exact” one equal to 1.008 instead of 1.000
for displacement).

Figure 11-20: Study cases A, B and C of the problem shown in fig. 11-19.
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Mesh

Elements

DOF

Va O.p
A 32LST 160 0.998 0.986
B 128CST 160 0.859 0.854
C 512CST 576 0.961 0.956

Table 11-4: Ratios of calculated to exact solutions for cases A, B and C
shown in fig. 11-20, with comparisons of the number of elements and
degrees of freedom. Strain G, is calculated using the average of the

elementary values.

Figure 11-21: Unsmoothed maps of strain 6, for CST elements in cases B
and C (same scale —800-800 N/mm?). The strain is constant on each
element.
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Figure 11-22: Smoothed maps of strain G, for CST elements in cases B and
C (same scale —800-800 N/mm?). The strain now varies linearly on each
element due to the interpolation assumed beginning with the average
strains at the nodes.

11.5.3 4-NODE ELEMENTS

11.5.3.1 BILINEAR ISOPARAMETRIC ELEMENT

4

Figure 11-23: Planar bilinear element.

This element is the first of a family of very important and widely used elements:
plane isoparametric elements with # nodes, with # variable from 4 to 9. The
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isoparametric formulation makes it possible to have irregular forms such as
quadrilaterals with non-right angles or curved sides (where there are at least three
nodes to a side). The four-node isoparametric element uses an interpolating
function of the kind:

u(x, y)= axy+bx+cy+d

v(x, y)= exy+fx+gy+h
in which, as we can see, an incomplete second-order polynomial is used. Usually
this element and those related to it are formulated by making use of the master

element discussed in §4.6, such that the integration takes place in a system of
normalised dimensionless coordinates.

Observing the interpolating polynomials we can see that the strains — and thus
the stresses — depend on the variables in this way:

€ —aytb
g€ — extg
Y —> axtctey+f,

and thus we see that the normal strains depend linearly but incompletely on (x,
y). In particular, we can see that, given a certain direction, x ot y, the dependence
of the stress acting in this direction is only constant in that direction, while the
dependence in the orthogonal direction is linear.

The shape functions (in the reference system using & and M with & and M
variable between —1 and 1) are the following:

=1 §)(1-1)

®,=A(1+ E)(1-1)
=" (1+ &) (1+ 1)
®,=V(1-§(1+1)

and are equivalent to the following interpolating expressions for x and y (the
element’s geometry)

x(&, N)=x,P,+ x,®,+ x,P,+ x,P,
y& M=y, P+ P, + v:P5+ v, 2,
and those that follow for the unknown displacements
u@ M=u, @+ u,d,+ u, P+ ud,
V@& M=v, @+ v, @+ vi®,+ v, D,

The points of the element, whose shape can even be distorted as long as it is
planar, correspond to the set of points that lie in the square comprised between

(-1, 1) for both &§ and M. However, the distortion should not be taken as a licence
to make degenerate elements. The angles have to remain close to 90° and the
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sides should all be more or less the same length. If this is not the case then the
precision is diminished.
We can see that if F(x, y) is a function of x and y, and x and y depend on two
other variables (€, 1), then we can write

oF _orag o on

dx d&dx JIn ox

9F _9F 3¢ OF I

dy 95 dy 7 dy
as well as the inverse of these

OF _OF dx OF 3y

o dx d& 9y 9¢

OF _OF 3x OF 3y

an  ox don dy an’
which are more convenient because we know the functions x(&, 1) and y(&, M)
and not the inverses.
The last two equations can be rewritten in matrix form in the following way,
which serves to define the Jacobian matrix J:
F F
F F

F
F

£ _ )C,§ y’§ ox ox

-x’,] y’,i

J
’)- ,,V

’n
The previous relationships can be inverted, giving rise to the following:
F F 1 F G, G,|F

F,, F., | 7 Fo, | |Gy Gy |F,

yw] _y,g
- X

x| gt 'E 123 °&

n x,;

where the determinant of the Jacobian, ], is expressed as

J = g ym - ve X
When these laws of transformation are known, then it is easy to calculate the
strains starting from the displacement field. For example:

4 1 4
E, =u, = Z¢i,xui = 72())’” q)i,f — Ve qniﬂ)ui 5
where
4
x,§=z<1>,..§x,
1
4
x,,,zzd)mxi
1
4
y’fzzq)i,:fyi
1
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Yo = Zq)i,qyi .
D =-"4(1M) D, 4=-Y4(1-E)
D,:="4(1-m) D, =-"4(1 -I—&)
D, ="a(1+M) D, ="4(1+E)
D, e=-"4(1+M) D, n="4(1-E)

In a few steps we obtain (see, for example [Cook, Malkus, Plesha 1989])
€=Bu.
Having sect€={ €, € , v} u={u, v, ..., u, v,}" and
G, G, O o|%, 0 o, 0 &. 0 &. 0

1 000
B=(0 0 0 1 Gy Gn 0 0 | Py, 0 @y 0 @, o 9, 0
) 0110 0 0 G, G, o ¢, 0 &, 0 @, 0 P,
0 0 G, Gy 6o &, 0 ¢, 0 @, 6 0 &,

the stiffness matrix is obtained from

K=[B"DBJtd&dn
where t is the thickness (=1 in plane strain) and ] the determinant of the
Jacobian of transformation (it can be proven that dA is transformed into Jd&dn).

In the bilinear isoparametric element, the strain and thus the stress have an
expression that varies linearly (although in an incomplete way: it is missing one
term to complete the linear form). It is very important to determine the
appropriate order of integration for the element, in order to determine the
stiffness matrix numerically (it is not generally possible to integrate the
expression of stiffness matrix K in closed form). Usually a scheme of integration
is adopted that provides for 2x2 Gauss points, with the exceptions discussed
below.

In order to improve the performance of this element, which proves to be visibly stiffer
than necessary for discretizations that are not dense (see also chapter 12), first of all
techniques of reduced integration, then techniques of selective integration, were
proposed in the attempt to reduce the phenomenon of locking related to
excessive stiffness (see, for example, [MacNeal 1994]). While the techniques of
reduced integration (one Gauss point instead of four) have been found to lead to
significant problems related to the onset of spurious modes (that is, the
possibility that the underintegrated element will deform when the strain energy is
null, such as, for example, the well-known “hourglass” spurious mode),
techniques of selective integration, that is, those aimed at underintegrating only
the shear part of the strain, while conserving the 2x2 integration for the bending
part, have been found to not lead to spurious modes and to improve the
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solution considerably, although they do involve other problems, such as those
sometimes related to the formal proof of their convergence.

The use of techniques for selective or reduced integration when there are no
formal proofs of convergence (constituting what have been called “variational
crimes”) has been criticised by various authorities on the subject, and in
particular by Bathe, who wrote:

The reason for recommending the [full] numerical integration orders ... is that the

reliability of the finite element procedures is of utmost concern® ... and if an integration order
lower than the “full” order is used (for a displacement-based or a mixed formulation)
the analysis is in general unreliable [1996: 469-470].

For these reasons any element with a sputious zero energy mode should not be used

in engineering practice, in linear or in nonlinear analysis, and we therefore do not
discuss such elements in this book. However, we should mention that to prevent the
deleterious effects of spurious modes, significant research efforts have been
conducted to control their behaviour [1996: 473].

The key question as to whether a reduced and/or selectively integrated element can

be recommended for practical use is: Has the element formulation (using the specific

integration procedure) been sufficiently tested and analyzed for its stability and

convergence? If tractable, a mathematical stability and convergence analysis is of

course most desirable [1996: 476].

It is interesting to note that the opinions of various authors differ greatly

on this point. We have just seen Bathe’s concerns about the use of elements
whose convergence has not been formally demonstrated. Others, such as
MacNeal [1994], for example, propose basing their use on the results effectively
obtained by various elements rather than on the formal proof of their
convergence, maintaining that the patch test is more important and that some
elements which were expected to perform well in theory (proof of convergence,
conformance to variational principles, etc.) have instead been found to perform
pootly in practice.
It is difficult to say with certainty that one approach is better than another.
However, it is worthwhile noting that elements for which we have no proof of
convergence, and which do not conform to any known principle of variation,
appear to be like a kind of time bomb, since only in some cases, and not in all,
their convergence has been or can be proven.

Personally, we prefer Bathe’s approach to that of MacNeal. Bathe recommends
the full 2x2 integration for four-node isoparametric elements, and thus this was
the element implemented in SARGON. It can be easily seen that the effects of
locking disappear if the discretization is significantly increased, that is, if finite
clements that are regular in shape and sufficiently small are made (see, for
example, table 11-6). Further, it doesn’t seem really necessary to be able to

4 The italics are by Prof. Bathe
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obtain results that are close to exact ones with meshes that are extremely coarse,
if this leads to even a minimum of unpredictability regarding the element used.

Because of this, and also in light of the simplicity with which the four-node
elements can be implemented with selective integration, and the opportunity of
having initial estimates that are generally closer to the final results even with
meshes that ate rather coarse, it was decided that SARGON would also permit
the use of four-node elements with selective integration.

In defining the element, it is very important to avoid angles that are too far from
right, or even tend to be flat, in order to avoid that the determinant of the
Jacobian is null. In the case of rectangular elements as well, it is a good idea to
avoid having sides that are excessively different in length, keeping the elements
as close as possible to square.

Figure 11-24: Test cases D and E of bilinear elements.

As far as precision is concerned, table 11-5 shows the results obtained for the
problem shown in fig. 11-19 with the meshes shown in fig. 11-24, comparing
results obtained with full integration QUAD4 and with selective integration
QUADA4SRI for test cases D and E.

As we can see, the results are rather good even when a relatively coarse mesh
(only 160 degrees of freedom) is used. Note however that in the problem in
question there are no gaps, discontinuities or other factors that can generate
concentrated stresses.

As in the case of CST elements, the smoothed and unsmoothed stress maps for
O, allow us to compare the results obtained with various kinds of mesh.
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Mesh Elements DOF N G
D 16QUAD4 48 0.890 0.928
E 64QUAD4 160 0.970 0.987
D 16QUADA4SRI 48 0.974 1.022
E 64QUADA4SRI 160 0.995 1.013

Table 11-5: Results for bilinear elements (QUAD4 and QUADA4SRI), ratios
of the calculated to the “exact” solutions (SARGON).

Figure 11-25: Unsmoothed stress maps for O, for test cases D and E for
QUAD4 elements (same scale —800-800 N/mm?). The stress varies lineatly
over each element.
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Figure 11-26: Smoothed stress maps for O, in test cases B and C for
QUADM4 elements (same scale —800-800 N /mm?).

11.5.3.2 TAYLOR-SIMO ELEMENTS (TAYLA4)

There are other four-node elements that are used to study problems of plane
stress and plane strain. One such element is that of Taylor-Simo [1985] which is
implemented in the well-known software programs Sap80®, Sap90® and
Sap2000®, and which is special in that, in addition to two translations per node,
it also makes use of #he rotation abont an axis normal to the plane of the element (drilling
DOEF).5 Thus for this particular element normal rotation is not free, and thus it must not be
constrained. Adopting the same mesh used for test cases D and E, we have
respectively cases IF and G, the results for which are shown in table 11-6.

Mesh Elements DOF Vu O
D 16TAYLA 72 0.984 1.034
E 32TAYLA 240 0.997 1.016

Table 11-6: Results for the Taylor-Simo elements (TAYL4, [Taylor & Simo
1985]), and ratios of the calculated to the “exact” solutions.

5 There are also triangular elements that use drilling DOF.
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As we can see, the performance of this element is already excellent with a mesh
that is not very dense (but note that the elements are still not distorted).

11.5.3.3 NON-COMPATIBLE ELEMENTS QM6WI

Similar excellent results are achieved with the use of higher-order elements (with
a larger number of parameters) which are then reduced to only four nodes by
means of a condensation mechanism (see {11.3.2.5). The resulting element is not
compatible (because the displacements on the boundaries also depend on
parameters that have been eliminated, which are different for the two contiguous
elements) and thus it loses the characteristics of convergence that are proper to
compatible elements. However, it has been found to perform very well for
meshes that are rather coarse.

Practically speaking, to the four parameters that are associated to the nodal
displacements are added two “nodeless” parameters, that is, parameters that are
not associated to nodes, so as to complete the terms associated with a complete
second-order polynomial (as happens for the LST element). For example, for
displacement u we set:

u:i¢iui +(1—§2)a] +(1_772)az-

As a consequence, the four new parameters introduced (two for u, two for v, a,,
a,, a;, a,) are climinated by condensation, and thus the matrix remains (8x8)
instead of becoming (12x12). The four-node element formulated in this way,
called QO6, can pose significant problems if it is not a rectangle or a
parallelogram. In this case it will not pass a patch test.

Various methods have been proposed to overcome this problem, first using
techniques of modified integration (element QMSG6), and then with different
techniques by Wilson and Ibrahimbegovic [1990]. In essence, to the part of the
stiffness matrix associated with shear strain energy is added a correction matrix,
so that the effect of the incompatible modes is rendered null when a constant
strain is set (which is precisely what takes place with the patch test).

The QMOWI element is considered one of the best four-node elements available,
since it is also extremely precise regarding the stress field, thanks to a technique
described by Wilson and Ibrahimbegovic (and which can also be extended to
other contexts as well). Practically speaking, the stresses are not calculated with
the standard procedure of stress recovery, but by means of techniques based on
setting the internal equilibrium of the element.

This element was implemented in SARGON and, in the standard case used for our
comparison, led to the results shown in table 11-7.
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Mesh Elements DOF Va G
D 16QMO6WI 48 0.990 1.001
E 32 QMo6WI 160 0.999 1.000

Table 11-7: Results for the non-compatible four-node Wilson-
Ibrahimbegovic elements (QM6WI), and ratios of the calculated to the
“exact” solutions (SARGON).

11.54 FOUR-SIDED ISOPARAMETRIC ELEMENTS WITH 8
NODES (QUADS) AND 9 NODES (QUADY)

1 > 2

Figure 11-27: Plane isoparametric element with 8 or 9 nodes.

With respect to the previous element, the plane isoparametric element with eight
nodes adds one node per side (at the midpoint of the side in the projected plane

E-M). The interpolating formula for the displacements are

u®)= ax’y+bxy*+cx’+dy*+exy+fx+gy+h

v(x)= ix’y+xy +mx’+ny*+oxy+px+qy+r
that is, incomplete third-degree polynomials. The shape functions that make it
possible to write the usual formulas

u€, N)=u,®,+ u,®,+ u,P,+ u,®, +ud+ u D+ u, P+ uP,
V(a’ M=v,®,+ v,@,+ v;®,+ v,®, +v, P+ v P+ v, D, + v Dy

are the following:

D, =Vi(1- §)(1- M)-/2P5- /2Py D.=Yx(1- E)(1-m)
®,=Vi(1+ E)(1- )-12D,- 12D, O =121+ E1-1?)
D =Va(1+ E)(1+ 1)- 12D 1D, & =1%(1- E)(1+ 1)
D,=Va(1- §(1+M)-12D,- /oD, D=1s(1- §(1- ).
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This formulation allows a strain €_ to vary parabolically in y and linearly in x, a
strain € to vary parabolically in x and linearly in y, and a shear Y, to vatry
according to a complete second-order polynomial in x and y.

Thanks to there being three nodes per side, this element can have curved
(parabolic) sides while respecting the compatibility of the displacements as well
as the congruence of the continuum. Of course the element can be used with
straight sides as well. If an ulterior node is added to this element in a position

that corresponds to the origin of the dimensionless plane (€, 1), the resulting
element performs even better than the previous one, since the approximating
polynomials become

u(x)= aX2y2+bX2y+cxy2+dX2+ey2+ny+gx+hy+i

v(x)= Ky +mx’y+nxy +Hox +py +HaxyFrx+sy -+,
making it possible to achieve an especially improved behaviour when the
element is distorted, with curved sides or with nodes that are not at the
midpoints of the sides. It should be noted that the more distorted and irregular
the elements are, the less accurate they become, a circumstance that should
remind us to make the meshes as regular as possible. The additional shape
function is called a bubble function, because it recalls the shape of a bubble blown
on the element’s four sides. The ninth shape function is

P,=(1-8)(1-N)
and the other shape functions (those of the eight-node element) have to be
cotrected by adding to each @, with i=1,2,3,4, the quantity
4D,
and to each @, with i=5,6,7,8, the quantity
- 2P,

The eight- and nine-node isoparametric elements perform quite well and are the
elements of choice for the analysis of bidimensional continua.

In what follows we will cite the integration order suggested by Bathe [1996] for
this kind of element (sometimes the integration order can be decided on by the
user):

8-node rectangular or distorted element 3x3 Gauss points

9-node rectangular or distorted element 3x3 Gauss points

Table 11-8 shows the results obtained with these higher-order elements for the
same problem already examined with QUAD4 and CST elements.
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Mesh Elements DOF Va G
D 16QUADS 128 0.999 0.999
E 64QUADS 304 1.003 1.000
D 16QUADY 256 1.001 1.001
E 64QUAD9 432 1.004 1.000

Table 11-8: Results QUADS and QUAD9Y elements, and ratios of the
calculated to the “exact” solutions (courtesy of engineer Fulvio Trudi;
calculations performed with ABAQUS, version 6.2-7). The fact that the

ratios of the displacement of the QUADS elements, which are compatible,
are greater than 1is because the load was concentrated in a single node
rather than distributed along a parabolic arc.

11.5.5 TRANSITION ELEMENTS

1 > 2

Figure 11-28: Isoparametric element with 6 nodes.

The family of isoparametric elements is also very important because it is possible
to generate an entire series of finite elements that have a number of nodes
ranging from 4 to 9, simply by suitably modifying the shape functions.

For example, figure 11-28 shows an element that has two parabolic sides and
two straight sides, with a total of 6 nodes. Thanks to this kind of element — also
called a transition element — it is possible to connect areas of the mesh where
there are lower-order elements to areas where there are higher-order elements,
without sacrificing the compatibility of the interelement displacements.

The shape functions are generated starting from those of the nine-node element,
by simply eliminating from all the expressions the shape functions relative to
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nodes that are not present. In the example shown in fig. 11-28, we would
eliminate all the terms that contain ®,, @4 and P,:

@, =V4(1- §(1- )- VoD, @, =V4(1- E)(1+7)
D, =Va(1+ E)(1-M)-Va, VoD, @=1a(1- E)(1- M)
D =Ya(1+ E)(1+ M)-VaD, D =Va(1+ E)(1- Y.

11.6 MEMBRANES

The membrane element is simply an element of plane stress that is placed in a
three-dimensional context. The element maintains its characteristics of stiffness,
which are “blown up” to fill all the pertinent areas of the stiffness matrix in the
three-dimensional context into which the element has been introduced.

When considering an element of this type, it is necessary to bear two things in
mind.

First, this element does not present any stiffnesses that limit the translation of its
nodes in the direction normal to the plane of the element; thus, if there are no
other elements attached to a given node of a membrane element, the translation
normal to the plane of the element is free. If the plane of the element is parallel
to one of the global planes (xy, yz, zx) then the node is the site of a pseudo-
mechanism. Second, this element does not in any way limit the rotation of its
nodes, which are free of stiffnesses due to the element itself (although there can
be other stiffnesses due to other elements connected to the node).

“Membrane elements” therefore range from the three-node triangular element
up to the nine-node four-sided isoparametric element. These elements are
generally used in cases of buildings to model shear walls or wind bracing.

11.7 PLATE-SHELL

11.7.1 OVERVIEW

Plate-shell elements are used to model the behaviour of thick or thin plate and
shells. Here we will briefly describe some of the flat elements that are suitable for
modelling problems involving plates or shells. The membrane behaviour is
decoupled from bending behaviour: plate elements generally comprise the
behaviour typical of space membranes, so that a plate-shell element is actually
always a membrane element (if this were not the case, it would be necessary to
superimpose two elements, one purely membrane and the other purely bending).
In what follows we will refer only to the elements’ behaviour in bending, since
the membrane part has already been discussed (cf. § 11.5).

From a practical point of view, a plate element is defined when the material it is
made of and its thickness are defined (the thickness can be constant or variable,
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depending on the element’s formulation; it is usually constant). Bearing in mind
that the bending behaviour is decoupled from the membrane behaviour, it is also
possible to determine the thickness independent of the unit moment of inertia
(which is equal to t/12), so that the two behaviours are optimally calibrated (in
the manner of ribbed plates, for instance).

Research and study of finite elements in problems of plates has been ongoing for
forty years and shows no sign of having reached a conclusion. Numerous
authors have grappled with the problem and this has led to a large number of
formulations which, for various reasons, have been subjected to criticism that led
to their demise.

The first problem to be addressed was that of thin plates, in the attempt to
devise elements with three degrees of freedom per node (the translation normal
to the plane of the element w, and the two rotations, @ and Y, respectively about
axes x and y) whose formulation required only a prediction about the
displacement field. Unfortunately this approach proved to be untenable because
the elements violated the properties of compatibility or completeness, or they
tended to be unreliable when distorted. Recall that the function w(x, y) has to
belong to C!, that is, it has to be continuous with its first derivatives between
element and element (the elastic surface cannot have any cusps).

In a second phase, research was aimed at devising elements that used derivatives
of w of a higher order than the first, in order to have more parameters and thus
complete polynomials, but this kind of element was never used very much, in
part because it was difficult to set boundary conditions on the higher order
derivatives, and in part because this kind of nodal unknown was more artificial.

In use at present are some finite elements that have proven to be
thoroughly reliable for problems of either thick or thin plates, and others that can
be used for both thick and thin plates. For thin plates we have the Discrete
Kirchhoff Triangle (DKT) elements (set out in [Stricklin et al 1969] and
reformulated and discussed in [Batoz et al. 1980]) and Discrete Kirchhoff
Quadrangle (DKQ) elements (set out in [Batoz and Ben Tahar 1982]). For both
thick and thin plates there is the Hughes element [Hughes and Tezduyar 1981]
and the Dvorkin-Bathe element [Dvorkin and Bathe 1984]. All of these elements
have a “complex” formulation that requires an expertise beyond the simple
application of the formulas that we have discussed.

Because an in-depth discussion of the techniques used to develop these
clements is beyond the scope of this book, we will limit ourselves to giving only
basic information and refer the reader to the works cited in the bibliography for
further study. For example, [MacNeal 1994] contains an interesting survey of the
available elements and a history of their development.
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11.7.2 DKT AND DKQ ELEMENTS (THIN PLATES)

DKT elements have three nodes, while DKQ elements have four [Stricklin et al.
1969; Batoz et al. 1980; Batoz and Ben Tahar 1982]. In both cases, there are
three degrees of freedom per node: the translations outside of plane w and the
rotations @ and Y. The hypotheses used for Kirchhoff plates are set on a
discrete number of points starting from an interpolation that treats w, @ and
independently. These added conditions lead to the elimination of the parameters
that are in excess of those available. DKT and DKQ elements do not show a
monotone convergence and are not compatible.

At present, DKT and DKQ elements are the preferred elements for the study of
thin plates. [Batoz et al. 1980] proved that these elements possess a good
capacity for (monotone) convergence (especially with regard to the triangular
elements) and are preferable to others based on, for example, selective reduced
integration (SRI).

900cm
E=2100000Kg/cm?
A v=0.3
* T t=1cm
P=1000Kg

| |

clamp

Figure 11-29: Problem of a square thin plate clamped on all four sides with
concentrated load P at the centre.

For example, for the DKT and other elements, we will show the process
towards convergence for the case of a square plate clamped on all four edges and
subject to a concentrated load. This is a problem in which the elements are put
to the test, given that in this case they are usually less precise than in other classic
cases. This particular example was studied with CLEVER, the SARGON solver
(which uses DKT elements for triangular plates, and an assembly of four DKT
elements for plates with four nodes), as well as with other solvers for the other
elements.
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The “exact” results were not obtained simply by taking those listed in the classic
text of Timoshenko and Woinowsky-Krieger [1959] for the following reasons.
Timoshenko and Woinowsky-Krieger adopted a solving procedure based on a
development in a series. Within the limits of the possibilities of calculating that
existed fifty years ago, they used a certain number (four) of harmonics to
determine the “exact” solution, but it is clear that by increasing the number of
harmonics the solution can be made even more precise. In my opinion, it does
not make much sense to compare the results of programs that may use
thousands of equations with tables produced painstakingly fifty years ago with
methods that were themselves approximate. For this reason, the results given
here were obtained by significantly increasing the number of harmonics so as to
stabilise the results, at least as regards the number of significant digits used here
for the comparison (for example, Timoshenko obtains 23.5872 for the
displacement instead of 23.638 and between the two numbers there is a
difference of 0.2% that can’t be attributed to the solvers). Thus, the results given
here are taken from [Timoshenko and Woinowsky-Krieger 1959], in the sense
that the method described there was used, but bearing in mind that fifty years
have passed, and that it is possible to produce numbers that are much more
accurate.

Figure 11-30: Meshes adopted for comparative study.
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As we can see, the convergence of displacements is not monotone, because
(surprisingly) the 2x2 mesh achieves a better result than the 4x4 or 8x8 meshes.
Similar results have been reported in the literature. Table 11-10, for example, is
taken from [Cook, Malthus and Plesha 1989], and was cited earlier in [Stricklin et

al. 1969).
Mesh | Displacement at W/ Weaet Moment m_at | mg/m g, ..
centre w, point B
(Error %)
A 2x2 23.88 (1.01%) 1.01 136.1 1.080
B 4x4 24.66 (4.31%) 1.043 132.9 1.055
C 8x8 24.04 (1.69%) 1.017 129.0 1.024
D 23.76 (0.5%) 1.005 127.5 1.012
(16x16)
Exact 23.64 1 126 1

Table 11-9: Results of convergence for DKT elements (SARGON).

Mesh Simply Clamped Simply Clamped
supported | Uniform load supported Concentrated
Uniform load CL-U Concentrated load
SS-U load CL-C
SS-C

2x2 1.025 1.500 1.076 1.012
4x4 0.999 1.228 1.008 1.046
8x8 1.001 1.069 1.003 1.019
16x16 1.001 1.021 1.001 1.007

Table 11-10: DKT elements. Ratios of the calculated to the exact values,

deflection of the central point of the square plate with v=0.3. The exact
value was calculated according to the theory of thin plates [Stricklin et al.
1969].

We also show the results obtained for the same problem shown in fig. 11-29
with the four-node DKQ elements [Batoz and Ben Tahar 1982], which is the

clement used by the family of SAP programs (SAP80®, SAP90® and SAP2000®),
and with a 4DKT element obtained by placing four DKT elements on the

quadrilateral (this element was proposed by ANSYS® and is also used by
SARGON).
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Mesh | Displacement at W,/ W, Moment m_at | m z/m g, ..
centre w, point B
(Error %) (Error %)

A2x2 | 26.325(11.4%) 1.114 150.00(19.0%) 1.190

B 4x4 27.001(14.2%) 1.142 117.10(7.1%) 0.929

C 8x8 24.831(5.0%) 1.050 123.97(1.6%) 0.984

D 24.010(1.6%) 1.016 125.21(0.6%) 0.994
(16x16)
Exact 23.64 1 126 1

Table 11-11: Results o

f convergence for DKQ elements (SAP90®)

Mesh | Displacements W,/ W et Moment m_at | mg/mg ..
at centre w, point B
(Error %) (Error %)

A 2x2 24.98 (5.7%) 1.057 94.90(24.7%) 0.753

B 4x4 25.19 (6.5%) 1.065 117.84(6.5%) 0.935

C 8x8 24.20(2.4%) 1.024 124.61(1.1%) 0.989

D 23.81(0.7%) 1.007 125.22(0.6%) 0.994

(16x16)

exact 23.64 1 126 1

Table 11-12: Results of convergence for 4DKT elements (SARGON).

11.7.3

DE VEUBEKE ELEMENTS (THIN PLATE )

Among the first elements proposed for thin plates were the De Veubeke
elements [De Veubeke 1968]. What makes this element special is that it uses
various interpolating functions in triangular subdomains of the original
quadrilateral domain. The element is compatible: an analysis of table 11-13
makes its convergence toward the exact solution evident.

Mesh |Displacement at| w,/w,__. Moment m_at |m,z/m g, ..
centre w, point B
(Error %) (Error %)

A 2x2 21.935(7.2%) 0.928 29.169(76.1%) 0.239

B 4x4 21.228(10.2%) 0.898 96.575(23.4%) 0.766

C 8x8 22.782(3.6%) 0.964 112.794(10.5%) 0.895

D (16x16) 23.386(1.1%) 0.989 118.477(6.0%) 0.940
exact 23.64 1 126 1

Table 11-13: Results of convergence for De Veubeke elements (ALGOR).
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The De Veubeke elements (used, for example, by ALGOR) converge rather slowly
and — it seems to us — do not compare favourably with DKT.¢

11.7.4 HUGHES ELEMENTS (THIN OR THICK PLATES)

The modelling of elements suitable for plate theory, often following approaches
based on the direct interpolation of the three components of unknown
displacement w, @, and , can give rise to significant locking effects, especially if
the element tends to be thin. These can be overcome by means of techniques of
reduced or selective integration which, however, can give rise to spurious modes,
and thus to elements whose behaviour is unpredictable or unreliable.

Instead, the 4-node Hughes element performs as well as elements with reduced
integration without however leading to the onset of any spurious modes of
strain. There is also a triangular 3-node version of this element. The Hughes
clement performs well in modelling both thin plates (that is, relatively well, but
not as well as the DKT element) and thick plates. The study in which it is
presented [Hughes and Tezduyar 1981] provides a seties of very detailed test
cases, but unfortunately they are in the form of graphics rather than tables. The
data that we give here is taken from those graphics and thus ate liable to
inevitable errors in measurement. They do, however, give an idea of how this
element behaves.

Problem |Mesh Mesh

8x8 32x32

(Mesh
)

SS-U 0.977 0.995
CL-U 0.966 0.990
SS-C 0.995 =1
CL-C 0.875 0.965

Table 11-14: Ratios of the calculated to the “exact” deflection at the centre
of the plate according to thin plate theory. SS: simply supported; CL:
clamped; U: uniform load; C: concentrated load. From [Hughes and

Tezduyar 1981], data extracted from the graphics.

6 We are obliged to point out that, for unknown reasons, the results reported in the literature for the
constrained square plate under uniform load modelled with De Veubeke elements differ rather significantly
from those obtained with ALGOR. The percentage errors for the displacement reported in [Zienkiewicz and
Taylor 1989] are as follows: 4x4 -2.5% (instead of -10.2%); 8x8 +2% (instead of —3.6%). It is possible that
Algor (which does not provide exact reference values for its own finite elements) used a version of the element
that was different from that used by Zienkiewicz and Taylor.
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Problem Mesh 8x8 |Mesh
32x32

SS-U 0.855 0.965

CL-U 0.822 0.955

Table 11-15: Relationships between calculated and “exact” moment at the
centre of the plate according to thin plate theory. SS: simply supported;
CL: clamped; U: uniform load; C: concentrated load. From [Hughes and
Tezduyar 1981], data extracted from the graphics.

As we can see, the convergence for the displacement for our problem, that is, a
square plate clamped on four sides with a concentrated load, is, given equal
meshes, decidedly less satisfactory than that of the DKT element (0.875
compared to 1.019). However, in other cases, the convergence is more rapid,
although it is never as rapid as DKT elements.

11.7.5 DVORKIN-BATHE ELEMENTS (THIN OR THICK
PLATES, MITC4)

The so-called Dvorkin-Bathe elements [Dvorkin and Bathe 1984; Bathe 1996,
which are valid for thin as well as thick plates, are formulated starting with the
equations that appertain to solids. At present the corresponding 4-node element,
or MITC4, Mixed Interpolation of Tensorial Components, is considered to be
one of the best finite plate elements available, because it can contemporaneously
deal with thin and thick plates, it allows the thickness to be variable, and it does
not contain spurious modes.

Mesh | Displacementat| w,/w,__. Moment m_at | mz/mg ..
centre w, point B
(Error %) (Error %)

A 2x2 | 5.5714e-4(99.9%) 2.35¢-5 125(0.8%) 0.992

B 4x4 20.408 (13.7%) 0.863 94.96(24.6%) 0.754

C 8x8 22.761 (3.7%) 0.963 115.57(8.3%) 0.917

D 23.397 (1.0%) 0.990 123.109(2.3%) 0.977
(16x106)
Exact 23.64 1 126 1

Table 11-16: Results for the Dvorkin-Bathe element for the problem shown
in fig. 11-29. (XFINEST: by courteous concession of Engineer Paolo
Sattamino of Harpaceas stl).
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Table 11-16 shows the results obtained for the problem shown in fig. 11-29
using a number of elements per side equal to 2, 4, 8, and 16, as in the case of
DKT elements (although two DKT elements correspond to one MITC4
element).

Table 11-17 presents a comparison of MITC4 and DKT elements, and is taken
from the study in which the MITC4 element was proposed [Dvorkin-Bathe
1984]. The problem concerned is shown in fig. 11-31.

A 4=0.26066
E=10500000
t=0.125
v=0.3

/
clamp

Figure 11-31: Plate problem: a rhombus-shaped plate under uniform

pressure.
Element Mesh CPU time Deflection at A
DKT 4x4 1 0.293
MITC4 4x4 2 0.272
Exact - - 0.297

Table 11-17: Analysis of a rhombus-shaped plate (distorted elements)
subject to constant pressure. Comparative results taken from [Dvorkin-
Bathe 1984].

In addition to the 4-node element, there are also elements with eight nodes
(MITCS) or nine nodes (MITC9) and even higher [Bathe 1996].

11.7.6 THE “DRILLING DOF” PROBLEM

In examining the behaviour of membrane elements and bending elements, we
have seen that while some formulations (for example, we have cited [Taylor and
Simo 1985]) make use of the degree of freedom relative to the rotation about an
axis perpendicular to the plane of the element, most do not. If that degree of
treedom (called drilling DOF) is not used for cither the membrane part or the
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bending part (and in effect none of the most widely-used elements use it), then
this degree of freedom remains free.

For this reason, a simple model of a plate would show as many conditions of
pseudo-mechanism as there are nodes, unless all of these conditions of pseudo-
transience are not eliminated by explicitly constraining the rotations of these
nodes.

If the model is “mixed”, in the sense that there might be other elements that are
attached to this plate that are capable of limiting the pseudo-mechanism thanks
to their contribution of their stiffness to the node, then deciding which nodes to
constrain and which not, can be so slow and troublesome that effectively the
pseudo-mechanism on the drilling mode becomes a problem.

In order to overcome this difficulty, the usual praxis is to perturb the stiffness
matrix of the plate element, adding a fictitious term of stiffness on the null
diagonal term of the matrix itself. Thanks to this addition, the drilling DOF of
the plate is no longer free, but is rather attached to a modest stiffness that
climinates the pseudo-mechanism.

The amount of stiffness to add to the null diagonal term is usually set equal to
the maximum diagonal term of stiffness in the matrix multiplied by a suitably
small reductive coefficient (called a “drilling factor”), which is usually between
1.e-8 and 1.e-3 (although in special cases there is nothing to prevent values
smaller or larger than this from being used, except for considerations we will
mention below).” The amount of the correction is decided taking into account
the following considerations.

The corrective term cannot be too small, because it will generate numerical
instabilities due to the presence of terms on the main diagonal of the matrix that
are too different from each other.

If there are never any other stiffnesses from other elements connected to the
drilling DOF, then it is uncoupled from the other degrees of freedom and the
value of the correction can be large without perturbing the solution in any way.
This is, for example, the case of a flat plate subject to any kind of a load.

If instead there are other elements connected to the drilling DOF (as, for
example, happens in a slab modelled with plate elements to which beam
elements or plate elements normal to it are connected, to simulate columns or
dividing walls),then the addition of the corrective terms to the stiffness is
superfluous and might interfere with the “true” stiffness, modifying the solution.
Note that the corrective term is added when the matrix of the element is created,
and thus during assembly, when we don’t know — nor can we know — if in the
end there will be other, non-fictitious stiffnesses on that degree of freedom. In

7 In SARGON the default value is le-5.
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these cases, the corrective term should be as small as possible (except for
numeric problems), in order to reduce to a minimum any perturbing effects.

If it is undertaken to constrain all of the pure drilling DOFs (that is, those
without any contribution of real stiffness), leaving all the others free, then the
drilling factor can be set equal to zero and the matrix won’t be perturbed in any
way.

11.8 SOLID ELEMENTS (BRIEF REMARKS)

11.8.1 OVERVIEW

Solid elements are used when no other kind of modelling is suitable for
schematising the problem at hand. In solid problems the unknown displacement
functions are the three translations u(x, v, z), v(x, y, z) and w(x, y, z). The nodal
displacements normally used are the translations of the nodes in directions x, y
and z, while the rotations of the nodes do not enter into the formulation and
have to be blocked.

The development of solid elements follows rather closely along the lines already
discussed for elements of plane stress. Here too simple (tetrahedral) elements of
constant strain can be defined, followed eventually by elements of a higher
order. In this case as well it is possible to have isoparametric elements with a
variable number of nodes, which make the treatment of the problem uniform
and efficient.

11.8.2 4-NODE TETRAHEDRAL ELEMENT (TETRA4)

4

1

Figure 11-32: Solid 4-node tetrahedral element.

As its name implies, the tetra4 element has four nodes and thus interpolates the
displacement functions by means of a complete linear polynomial (note that here
there are three variables, rather than two in the case of plane stress and plane
strain):

316

Copyright © ICE Publishing, all rights reserved.



The most common finite elements

u(x, v, z)= ax+by+tcz+d
v(x, v, 2)= ex+fy+gz+h
w(X, y, 2)= ix+ly+mz+n.

The shape functions make it possible to write the interpolations in the standard
way:

u(x, v, 2)=u, P, + u,®,+ u; P+ u,P,
v(x, v, 2)=v; P+ v,®,+ v;®,+ v, P,
w(x,y, 2)=w,P,+ w,P,+ w, P+ w,P,.

where the values for @ can be obtained by inverting the following matrix

relationships:
1)1 1 1 1@,
x|l X oxox (|0,
y - Vi Yo ¥s Va| Py
z 2, 2, Z3 %, || Py

The strain predicted by the element is constant, and is thus easy to understand
that the convergence that can be obtained with an element of this kind is quite
slow, comparable to that for a CST element seen previously for plane problems.

11.8.3 10-NODE TETRAHEDRAL ELEMENT (TETRA10)

Figure 11-33: Solid 10-node tetrahedral element (tetral0).

In the case of the tetrahedral element with ten nodes, the shape functions
provide the following approximations u, v and w:

u(x, v, z) = ax’+by*+cz’+dxy+eyz+fxz+gx+hy+lz+m,

with analogous polynomials used for v and w.
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This is a second-order complete polynomial. An examination of the strain allows
us to see how strain depends on coordinates (taking €, for example, since all the
other dependencies of the other components of strain are the same):

€ —2ax+dyt+iz+g

that is, a first-order complete polynomial: the dependence of the stress is
therefore linear.

11.8.4 8-NODE ISOPARAMETRIC ELEMENT (HEXAS)
7 6
5
8
4 3
1 2

Figure 11-34: Solid 8-node isoparametric element.

For the isoparametric element with eight nodes, the interpolating function for u,
v and w contain eight terms, and are third-order incomplete polynomials:

u@ m, H=alnC+bin+enl+dli+el+m+gl+h
with analogous polynomials used for v and w.

The shape functions can be expressed in the following way

G (N )i+ ) 1,8

where we always have

M(éﬂ,g) = zcbiui
V(f’ﬂ’{) = Z(I)ivi

w(§,n.) = zq)iwi .
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11.8.5 20-NODE ISOPARAMETRIC ELEMENT (HEXA20)
8
19

20 5
5 5
13 3

10

1
9 2

Figure 11-35: Solid 20-node isoparametric element.

In the solid isoparametric element with twenty nodes the interpolating functions
for u, v and w contain twenty terms, and are fourth-order incomplete
polynomials:

u@ M, =a&ME+ bENT+ cENC>+ dEM+ eEXC+EN™+ gn’C+ hEC+ MG+
ENC+ mE+ am*+ ol +pEN+qnE+LE+sE+m+ul+v
with analogous polynomials used for v and w. These correspond to the
following choices for the shape functions:

D= (488 N+ i+ S )G, +m,+ L, =2) =18

D=—(1-&)1+np N1+L2) i=9, 11, 17,19

Bl

q;i:i(l_w)(1+§§,.)(1+;;,.) i=10, 12, 18, 20

S=L-c e )iem)  =15,14,1510

where

20
w(&,n.)=Y du,
20
V(f’ 77,§) = zcbivi

W(évﬂ’g) = zq)iwi .
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12PROBLEMS IN MODELLING
12.1 RENDERING AND MODELLING

In the course of this discussion, we have mentioned more than once that a finite
element model is not a drawing. Unless this concept is thoroughly understood,
no completely valid finite element model can be constructed.

Figure 12-1: A mesh that appears well made at first glance ...

The object of a finite element model is #of to depict the actual structure to be
modelled. The tendency to make models that physically resemble the structure in
question, so that the analyst and the client can look at the model and forget that
it is just that — a model — is absolutely unproductive and even reprebensible. This painter’s
approach only leads us astray, because finite element models are made of finite elements
that model simplified theories, not direct physical reality.

What counts is not that the model looks like the physical reality, but that it is
capable of grasping some fundamental aspects of the structure’s displacements,
strains and stresses that can be measured quantitatively as they are progressively
transformed by the analyst into a coherent system of patterns and components.
Finite element models are like poetry translated from one language to another:
we can have either beantiful untruthfulness or ugly truthfulness: there is no guarantee
that a model that is almost photographic in its resemblance is a truthful
depiction of behaviour. It is one thing to photograph, but another thing to
create a truthful finite element model.

Structural analysis with finite elements © Thomas Telford 2010
978-0-7277-4093-9 All rights reserved
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Often these considerations lead to parts that are modelled with scant regard for
problems of discretization, so that, for example, slabs (which are nice to see
because “they’re there”) are modelled with one or two plate-shell elements, with
the resulting low degree of reliability that we might expect. In other cases it is the
basic concepts that are lacking. Take, for example, the structure shown in fig. 12-
1, which seems at first glance to be adequately modelled.

Figure 12-2. ...turns out to be ill disposed.

If we zoom in on it, we can see that the model (which was actually made by a
draftsman who decided to improvise as a structural analyst and then sent it to us
for checking) is full of errors, and makes the incompetence of its creator evident.
In fig. 12-2 we can observe the following errors:

® Area A shows that the web and the flange are not connected, but only
facing: the entire flange is modelled with a single finite element without
regard for the intersection with the web, to which it is not connected.
The drawing is correct; the mode/ is completely in error. Note also —
among other things — the (revealing) attempt to model the bending of a
T element with a single finite element for the web;

® Arca B shows that this vertical T element — itself erroneously modelled,
as we have just pointed out — comes down to a deck to which it appears
to be connected, but is actually only facing, because the elements below
don’t have nodes that correspond to the nodes of the vertical element.
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Thus the already erroneously modelled element, not connected to the
plane as it should be, is thus doubly erroneous. Note that once again the
drawing 1s cotrect, but the model is completely incorrect. Our designer
simply did what he is trained to do: he drew.

® Area C shows a wall arriving at an angle, bounded by reinforcing beams:
it shoots in like a meteor without any connection to the part above it.
The structural elements are individually modelled and thrown into the
three-dimensional world of the model without being connected in any
way;
® Area D shows the connecting beam element going past three elements
without connecting to them, thus violating all possible laws of
congtruency;
An examination of the remaining parts of the structure confirmed that the entire
model was made like this. When faced with models such as this one, the only
thing to do is discard them, because any attempt to patch or repair them is more
time-consuming than simply starting over. This is because any adjustment made,
whether manual or automatic (if this is even possible) has to be in any case
verified in a capillary manner. It’s just better to start from scratch.

A final example, this too taken from an actual case in practice, is shown in fig.
12-3.

Here the numbering of the elements shows that a single finite element was used
to model two of the columns, that in the centre and that on the left (element 1
and element 3), rather than using the minimum four elements required. The
result is the deformed configuration shown on the right, which is clearly
incorrect. The inexperienced user has mistakenly modelled the frame, violating
the congruence between beams and diagonals on one side and columns on the
other. Note that in spite of this, the model is not hypostatic and can be solved,
and thus if the user does not check and uses the stresses directly rather than
asking himself “Is the model correct?”, then the result will be that the numbers
used in the design are trash.

Other examples of structures with disconnections are shown in figs. 2-8, 2-9, 4-
9,4-13, 4-14, 4-15, 4-16, 9-8 (this last a classic error regarding trusses).

A further example (although I have encountered innumerable similar examples in
practice) of the “painter’s approach” is this one: take shelf structures in steel
made by joining vertical and horizontal components. The verticals are cold rolled
sections with holes; the hotizontals have teeth at the ends,which are intended to
go into the holes of the verticals to create the joint. The idea of modelling the
teeth with small beam elements is bizarre: it is obvious that modelling the
horizontal at the scale of the beam element makes it impossible to model details
such as the joint system (which if anything has to be accounted for by means of
semi-rigid nodes). If we want to model the tooth, then the entire horizontal has
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to be modelled with plate-shell elements (as well as the vertical, obviously), and
modelling a single horizontal would require tens of thousands of degrees of
freedom. The inexpert but zealous analyst thinks that adding the teeth (which are
actually physically present) with tiny beam elements helps improve the model,
but in reality the teeth shouldn’t be there. When making the model it is always
necessary to take into account the scale adopted to model the structure: if it was decided to
adopt a model that disregards local effects, it is not possible to then add smaller,
more or less refined areas in the hope that they will restore the lost details.

2 _ 5 2 5
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— - ;
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Figure 12-3: Example of a model with etroneous connections and its deformed
configuration: note that even though the model is completely incorrect, it is not
hypostatic, and thus it is solvable.

Finite element models do not have to include everything. They need only include
what makes it possible to describe the structural behaviour completely and in
keeping with other parts at a given scale of analysis.

324

Copyright © ICE Publishing, all rights reserved.



Problems in modelling

12.2 TYPICAL STRUCTURES

12.2.1 CONTINUOUS BEAMS

Beam elements are used to model continuous beams, using at least one element
per bay. Given that the beam is continuous, there are no constraints to be
applied. The three translations of nodes that correspond to the ground hinges
that do not break member continuity have to be constrained but they must be
left unconstrained for rotation. Table 12-1 shows a possible pattern of
constraints for use in the various cases shown in fig. 12-4 (presuming that the
loads are directed along axis Z: case A is axially isostatic; cases B and C are
axially hyperstatic). We presume that the behaviour is planar, and thus that the
translations perpendicular to the plane of the drawing are null).

= = R & A

33 = = = OG'B

33 TS T TS OG'C

Figure 12-4: Various possible models for continuous beams.

In the case where the beam shows some discontinuities, careful consideration
must be given to the end releases to be introduced on the beam elements.

Fig. 12-5 shows various possible cases of discontinuity: the axis line of beam D is
discontinuous at its centre point. Beam E shows a discontinuity but is also
supported. Beam F has no discontinuities, but does have unsupported ends.

Table 12-2 shows how these situations can be modelled, that is, what constraints
and end releases to apply (the numbering of nodes and elements is given; the
element numbers appear at the mid-point of the axis line, the node numbers
appear above the nodes).
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Direction of | Type | Typical nodes Starting Final nodes Possible
the axis of simply nodes intermediate
the element supported bay nodes
X A Ty, Tz Tx, Ty, Tz, Ty, Tz Ty
Rx
X B Ty, Tz Tx, Ty, Tz, Tx, Ty, Tz Ty
Rx
X C Tx, Ty, Tz Tx, Ty, Tz, Tx, Ty, Tz Ty
Rx
Y A Tx, Tz Tx, Ty, Tz, Tx, Tz Tx
Ry
Y B Tx, Tz Tx, Ty, Tz, Tx, Ty, Tz Tx
Ry
Y C Tx, Ty, Tz Tx, Ty, Tz, Tx, Ty, Tz Tx
Ry

Table 12-1: Constraints for the various nodes on a continuous beams, with
the Z-axis vertical, and axis X or Y horizontal.
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Figure 12-5: Continuous beams with interruptions and unsupported ends
(graphic representations made with C.E.S.CO; the small squares indicate

nodes).

For simplicity’s sake we suppose that the direction of the axis line coincides with
that of global axis X, that axis Z is vertical, and that the three local axes of the
elements are all otiented such that

Axis 1 = Axis X
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Axis 2 = Axis Y
Axis 3 = Axis Z.

This results in the constraints and end releases given in Table 12-2:

Node Out of plane In plane

constraint constraint
Solution A

1 Ty, Rx Tx, Tz,

2 Ty Tz

3 Ty

4 Ty Tz

5 Ty Tz

6 Ty, Rx Tx, Tz

7 Ty Tz

8 Ty Tz

9 Ty Tz

10 Ty Tz

11 Rx

12 Ty Tx, Tz

13 Ty

14 Ty Tz

15 Ty

Table 12-2: Constraints on the nodes shown in fig. 12-5.

There are various aspects of the problem to be discussed:

Translation Ty is constrained. Thanks to this precaution, all of the out-of-plane
translations and the global rotation about the z-axis are constrained. It would
also have been possible to constrain translation Ty and rotation Rz at only one
(the first or any other) node in order to eliminate rigid motions (see Table 12-4,
solution C). In this last case, however, the out-of-plane behaviour of the
structure would have been like a cantilever. If there are no forces at all acting to
create this displacement, then these two methods are equivalent.

Rotation Rx is constrained. If this rotation is constrained at a single element,
then all rotations Rx are constrained thanks to the torsional stiffness of the beam
(solutions A and C). If it is not constrained, then all of the rotations ate
unconstrained because globally the beam is free to rotate about the x-axis, giving
rise to a condition of hypostaticity, and therefore a mechanism. It is also possible
to constrain rotations Rx at all nodes (solution B). Practically speaking, it is
possible to apply the constraint template TyRxRz to all nodes in order to make
the problem planar (solution B).
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Element| Left Right
release | release
1 None None
2 None R2
3 None None
4 None None
5 None None
6 None R2
7 None None
8 None None
9 None None
10 None None
11 None None
12 None None
Table 12-3: Releases on the elements shown in fig. 12-5.
Node Out of plane Out of
constraint plane
Solution B constraint
Solution ¢
1 Ty, Rx, Rz Ty, Rx, Rz
2 Ty, Rx, Rz
3 Ty, Rx, Rz
4 Ty, Rx, Rz
5 Ty, Rx, Rz
6 Ty, Rx, Rz Ty, Rx, Rz
7 Ty, Rx, Rz
8 Ty, Rx, Rz
9 Ty, Rx, Rz
10 Ty, Rx, Rz
11 Ty, Rx, Rz Ty, Rx, Rz
12 Ty, Rx, Rz
13 Ty, Rx, Rz
14 Ty, Rx, Rz
15 Ty, Rx, Rz

Table 12-4: Alternate formulations for out-of-plane constraints for beams
shown in fig. 12-5.

Hinge at the centre (where present: D, E). Here it has been decided to apply an
end release to the beam to the left of the node and not to apply one to the beam
on the right (the solution shown on the top of fig. 12-6). We could also do the

328

Copyright © ICE Publishing, all rights reserved.



Problems in modelling

inverse: apply an end release to the beam to the right of the node and not to
apply one to the beam on the left (the solution shown in the middle of fig. 12-6).
If both of the rotations of the node had been released, and it was no longer
associated to any stiffness, it would have been free, giving rise to a pseudo-
mechanism. Thus in that node rotation Ry should have been constrained. Usually
determining the correct measures of constraints and end releases to apply is
problematic for the beginner who has not yet completely grasped exactly how
one differs from the other.

release

O

onstraint

{ release ) release

Figure 12-6: Three ways of simulating a hinge between elements (graphic
conventions used by SARGON): a dot for the releases (next to the node), a
dot for the constraints (on the node).

Terminal ground hinges or simple supports. In this case the continuity of the
beam is guaranteed by the absence of end releases. On the other hand, the
freedom of the node to rotate but not to translate is guaranteed by the
constraints on the ground that leave the node free to rotate.

Mid-span simple supports. In this case the interruption of the axis line is
guaranteed by a suitable release. That node (8) has ground constraints that are
different from the homologous node not on the ground (3) only implies that the
hinge cannot move down, that is, that Tz is fixed (and thus implying a simple
support). The simple support is modelled by the constraint on the node. The
mid-span hinge is modelled by the release on an element (two in the case where
the rotation is constrained).

Naturally, models that generate situations of varying degrees of hypostaticity
such as those shown in fig. 12-7 are not permitted. Note that though it is clear
that the structures shown have some degree of hypostaticity, i is not ahvays clear

that placing the constraints or releases in a certain way in fact implies that the resulting
structure will be like those shown.
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In the case where it is axis 3 rather than axis 2 that coincides with axis Y, then
the release should not be placed on R2, that is, on the rotation about local axis 2,
but on R3. The case in which some beams are oriented so that axis 2 is parallel
to axis Y and others are oriented so that axis 3 is parallel to axis Y is particularly
subtle. Here it is necessary to make sure exactly which component of internal
action needs to be released.

_%1%\2@3%\4
5 5§ 3
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Figure 12-7: Structures that present conditions of hypostaticity.
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We should mention again the fact that if the displacements are what interest us,
then it is usually appropriate to “put a node” under the concentrated loads
within the elements (which thus come to be considered as subdivided), while if
only the internal actions are of interest to us — and if the software program adds
the local effects, as it should — then a single finite element per bay is sufficient. It
is obviously totally incorrect to model the entire continuous beam with a single
element.

12.2.2 TRUSSES

In the case of trusses, the first thing to decide is if we want to model only the
axial actions, ot if we want to model the shears and moments as well, and if so,
on which elements we want to model them. If there are only axial actions, then
the necessary condition is that all of the forces with components normal to the
axis line of the elements are applied at the nodes, and that all the elements are
hinged at their ends (each vertical and diagonal element and each individual sub-
span element).

If we want only axial actions, then the model can be made (for the sake of
brevity of analysis) entirely with rod elements. In this case it is necessary to
constrain all of the components of displacement to which no stiffness is
associated. No hinges should be placed becanse rod elements are hinged by definition. Thus
all of the rotations of the nodes should be constrained, as should be all of the
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translations normal to the plane of the truss (assumed parallel to one of the
coordinate planes). The nodes that correspond to ground hinges should be
turther constrained for both of the remaining components of translation; the
nodes that correspond to simple supports should be constrained only for
translation in the direction normal to the support. Table 12-5 shows the pattern
of constraints for trusses modelled with rod elements in plane XZ or in plane

YZ.

Figure 12-8: Diagram of a truss modelled with rod elements: there are only
axial actions if the forces are applied only at the nodes (otherwise it is
necessary to use beam elements).

Truss in plane On all nodes On ground hinges On simple
supports
(direction of
free move)
XZ TyRxRyRz TxTyTzRxRyRz TyTzRxRyRz

X)
YZ TxRxRyRz TxTyTzRxRyRz TxTzRxRyRz

)

Table 12-5: Constraints to be placed on the nodes in trusses modelled with
rod elements.

The fact that all six of the possible constraints have to be put on the hinges (as if
this was a rigid joint) is always confusing for the beginner, who might ask, “If
this is a hinge, then why do I have to make it fixed?”. The fact is that rod
clements are “hinged by definition” and thus cannot carry any moment. The
nodes to which they are attached are then always free to rotate: 7 is this “spurions”
rotation, that component of the node’s movement to which no stiffness is attached, which has to
be constrained, not the possibility of the element’s translation, so that their ends
rotate with respect to the original position.

This is demonstrated by fig. 12-9, which shows the deformed configuration of a
model of a truss made entirely with rod elements, with all nodes constrained as
described above (in particular, Ry is null everywhere, and we are in plane XZ)).
As we can see, the fact that the rotation is null does not mean that the axis line
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remains horizontal; in fact, the rod element is not connected rotationally in any
ways at its end nodes, and it is thus free to rotate at will (in accordance with the
translation of its end nodes).

node in the node in the
ariginal pesition deformed position

Figure 12-9: Truss modelled with rod elements: rotation Ry of the node is
null, but the chords have deformed, and in particular, when deformed the
axis line is not horizontal.

-

A second scheme typically used for trusses calls for a mixed model, with beam
elements used for the chords, and truss elements for the struts on the sides
(verticals and diagonals). This scheme has two advantages with respect to the
one examined above. The first advantage is that it makes it possible to model
situations in which the loads are not directly transmitted to the nodes, but are
rather transmitted in ways that can even include distribution along the chords,
that is, loads that are concentrated but at points other than the nodes. The
second advantage is that we can study the parasite bending moments (with
respect to the pure grid scheme) arising from the fact that the chords are
generally made of just a few continuous pieces.

Fig. 12-10 shows two possible schemes for modelling trusses, each with beam
elements used for the chords and truss elements used for the verticals and
diagonals. The two schemes are different because the second one uses beam
elements for the two end verticals as well. The figure also shows the constraints
to place on the nodes, and the releases (R2) to place on the beam elements: we
presume that the plane is XZ, and that axis 2 of the beam element is axis Y,
perpendicular to the plane of the structure. If axis 3 were perpendicular, then in
place of R2 we would have to consider R3.
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4 L
@ TxTyTzRxRz Verticals at the ends are rods

|

[ 4
® o (R2)
TxTyTaRxR Verticals at the ends are beams TyTzRxRz

Figure 12-10: Possible schemes for modelling trusses with beam elements.

We can make the following observations:

® With respect to the previous case in which the structure was modelled
entirely with rod elements, the number of Ty constraints is much lower,
because, since the chords are modelled with unreleased beam elements,
we need only fix translation y of one of its points and the rotation RZ of
that point in order to prevent (all of) the points of the chord from
translating freely in a direction perpendicular to the plane of the truss
(see the model shown on the top in fig. 12-10).

® To this can be added the constraint on rotation Rx that impedes the
rotation of the node about the X axis. Once again a single point is
sufficient because the chord has a torsional stiffness, since it has been
modelled with beam elements.

® The second model uses beam elements for the verticals on the ends, and
thus those verticals — if not released — would be rigidly joined to the
chords, generating undesirable parasite moments. Thus the two ends of
both end verticals have to be released for R2 so that the rotation of the
nodes, joined to the chords but not with the verticals, does not provoke
any bending moments in them.

® The behaviour of the end verticals for out-of-plane bending is instead
not released with respect to the chords, so that, out of plane, there is a
kind of elastic frame that thus makes it possible to specify the out-of-
plane constraints definitively, on only the bottom chord.
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Figure 12-11: Diagram of axial actions and bending moments (there are
bending moments only on the chords).
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Fig. 12-11 shows the diagrams of axial actions and bending moments. The most
patt of the bending moment acting on the truss as a whole is generally carried by
the axial action. For example, in the case shown in fig. 12-11 we have:

NH=33610 * 1200=4.033¢6
Ms+Mi=82070+94040=1.76¢5
NH/Ms+Mi)=22.9

where N is the maximum axial action of the chords; H the maximum height of
the truss; Ms and Mi are the moments at the centres of the top and bottom
chords.

If we chose sections with a low moment of inertia (as is usually the case with
trusses), then the values of the moment can be further reduced. For example, if
instead of HEB100 we use double angles 75 x 7, we have:

NH=33720 * 1200=4.046¢6
Ms+Mi=23640+27810=5.14c4
NH/(Ms+Mi)=78.7.

Thus, the effect of parasite moments increases as the moment of inertia of the
chord increases, so that it makes sense to keep them rather slender in terms of
bending.

If we want to take into account that the chords may be divided into two, for
example, because in the central part there is a bolt, then we want to release the
chotd for bending, as shown in fig. 12-12, for example.

In this case we should release only one of the two beam elements on either side
of the node (it doesn’t matter which one), because if both are released then we
must also — in order to avoid conditions of hypostaticity — add a constraint on
rotation Ry of the node.
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Single release Double release + constraint

Figure 12-12: Releasing the centre point of the chords.

L)

A third way of modelling trusses, although actually only rarely used, is that of
using beam elements that are not released, and thus taking into account all of the
“parasite” forces on all of the elements. In this case there are no releases to be
placed, and the application of constraints concerns only two nodes, those at the
ends of the bottom chord (or, for specific kinds of trusses, the top chord).
Finally, we should mention one typical (serious) error that is unfortunately made
rather often. If the truss has been modelled with unreleased beam elements and
instead we want to have only axial actions, then it is absolutely incorrect to
constrain all of the rotations “so that the elements won’t bend”. If this is done,
then the bending elements will remain and constraints will be introduced that do
not actually exist, thus irreparably perturbing all of the stress. Fig. 12-13 shows a
detail of the deformed configuration of a model incorrectly made in this way.
The incorrect model derives from that shown in fig. 12-10, modified by
imposing a null rotation on all of the nodes of the chords. The overall deformed
configuration recalls morphologically that of fig. 12-9 (although the deflection is
clearly less than the exact one; see fig. 12-14), but locally we can see that all of
the elements of the chords are deflected with the point of deflection located
almost exactly at the centre. The resulting moment diagram is shown in fig. 12-
14, where the maximum incorrect moment arrived at 8e5, against an expected
maximum of 2.7e4. Errors such as this one are often made when no checks are
performed, and even by those who are professionals in the analysis of finite
elements!.

T In my own practice I once had to check a very important model in a nautical application that was made with
plate-shell elements by a firm that was supposed to specialise in finite element analysis, in which, in order to
climinate the bending part of the stress in the shell, all of the nodes had been constrained for rotation. This was
followed by a modal analysis and a frequency response analysis to estimate the vibrations. The model turned out
to be totally incorrect, because the shells continued to deflect, discharging “to the ground” reactive couples that
were completely non-existent at all nodes that were incorrectly constrained. The actual frequencies of vibration
were all incorrect (much higher than in reality), even though qualitatively the modal deformations appeared
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2N

Figure 12-13: Incorrect constraints: the deformed configuration of a truss
modelled using unreleased beam elements for the chords and rod
elements for the verticals and diagonals with the nodes constrained for
rotation.

NN A

hall i i

Figure 12-14: (Incorrect) global deformed configuration and (incorrect)
moments due to the constraining of the nodes.

12.2.3 TOWERS AND MASTS

Towers and masts are space frame structures in which the regime of axial actions
is dominant. However, it is not advisable to build these structures using only
truss elements, since the staggering of the diagonal wind braces can lead to
aligned hinged elements, in which the central nodes are free to translate, if all the
components of unconstrained displacement are not subjected to suitable and

plausible. The person who made the model believed that in that way all of the bending strain energy in the
shells was eliminated. The incorrect analysis was given to the clients, who accepted and paid for it, not being
able to see the etror committed. It was only after the fact that the analyses were found (and numerically proven)
to be completely incorrect.
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carefully studied schemes of constraint. It is thus preferable to use beam
elements for the corner struts and the main frames, to which elements are then
attached diagonal trusses, which can also be staggered.

node braced in one
plane, free in another

Figure 12-15: Staggered diagonals in a pylon structure.

The ribs made with beam elements receive the diagonal trusses and are not
released. Their bending stiffness impedes the rigid motions of the nodes, which
would instead be permitted with truss elements.

One of the most important design problems is related to the need to arrange
enough elements in space to impede rigid motions or conditions of hypostaticity
(e. mechanisms). In order to investigate whether or not conditions of
hypostaticity exist (that is, if there are modes of deformation connected to
insufficient strain energy, and thus “weak points” in the structure), it is useful to
perform a modal analysis, which will bring to light areas where there might not
be sufficient stiffness.

As we would expect, among the first modes of vibration are the local
deformations of the corner struts, in which the nodes oscillate like pendulums
restrained by the beam elements.

A typical case is that of torsion or the loss of the form of the pylon’s section,
which in order to be inactive requires a suitable arrangement of a set of
diagonals.

Separate mention should be made of the discussion regarding elements that just
brace the others. These can lead to meshes that are quite dense, without there
being a real need for such density, because the elements that interrupt the span
serve only to impede the displacement of the elements that they subdivide.
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modal
deformation at
corner {(heam)

Figure 12-16: Local deforming modes revealed by a modal analysis.

12.2.4 PLANE FRAMES

Plane frames are widely used, and constitute perhaps the most frequently
encountered kind of modelling problem. For clarity’s sake, we should specify
right away that if the frame is flat, and loaded in the plane, then there are
prescribed degrees of freedom that can be constrained on all nodes; these
constraint templates are shown in table 12-6.

In what follows, when we speak of “unconstrained rotation” in the node, we will
be referring to the rotation about an axis perpendicular to the plane of the
structure (in the three cases shown in table 12-6, respectively rotation Rz, Ry and
Rx).

Because in general the releases needed are those for rotations (hinges), here by
release we mean the release on a beam element of the rotation which, in the
three local axes of the element, corresponds to the direction normal to the plane
of the structure.

Plane of the Constraint
structure template

XY Tz, Rx, Ry

X7 Ty, Rx, Rz

YZ Tx, Ry, Rz

Table 12-6: Constraint templates for plane frames according to the plane of
the structure.
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»

Figure 12-17: Partial axonometric view of plane frame (XY) showing the
three local axes used to model the beams and columns.

For example, fig. 12-17 shows that the beam elements that model the beams
have two axes normal to the plane of the frame, and thus — if necessary — we
have to release R2 (the rotation about axis 2), while the beam elements used to
model the column have axis 3 normal to the plane of the frame and thus — if
necessary — we need to release R3 (the rotation about axis 3).

This said, fig. 12-18 shows six typical cases of connections between beams and
columns, with the related finite element schemes shown to the right of them.
These use the conventions of a dot next to the node to indicate a release, and a
larger dot on the node to indicate a constraint on the node (not used in this
particular figure, but which we will see in figures below). To make these easier to
read graphically, the nodes have been shown as solid squares, and the thinner
lines used to distinguish the axis line of truss elements from those of beam
elements.

We can see that:

® Case A shows a rigid node between beam and column. All beam
elements; no releases.

® (Case B shows a continuous column and a discontinuous beam. Two end
releases are needed on each horizontal element.

® Case C is the dual of case B; here the releases are placed on the vertical
elements.
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T

Figure 12-18: Typical beam-column connection schemes and their related
finite element schemes. The dot represents a release; the thinner lines
represent truss elements.

® Case D shows an end release applied to only one of the horizontal
elements, the only one that is hinged.

® (Case E shows a continuous hinge, but releases are placed on only three
elements instead of four in order to avoid having to place a constraint on
the rotation of the node. If a fourth release is placed, then the node has
to be constrained for rotation.

® (Case F is similar to case B, but another element is added which — since it
is a diagonal wind brace — has been modelled with a truss element and
thus does not need to be hinged, because a truss is hinged by definition.

Fig. 12-19 shows more examples of connection schemes that differ from those
shown in fig. 12-18 only by the addition of diagonals, all modelled with truss
elements. Of particular note are cases L (where the four diagonals are hinged
because they are truss elements); M (where, appropriately, some elements do not
have releases); and N (a variation of M).
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NN N

Figure 12-19: More typical cases of connection schemes and the related
finite element schemes. Dots represent releases; squares, nodes; the
thinner lines, truss elements.

Case G is a case of a completely continuous hinge. As we can see, only three of
the four beam elements are released, while the fourth is not, in order to avoid
having to place a constraint on the rotation of the node. If the fourth release is
placed, then the rotation of the node has to be constrained.

Fig. 12-20 shows cases where a column with diagonal wind bracing arrives to the
ground:

In case O the nodes is completely fixed, but there is a hinge because the diagonal
is modelled with a truss element.

Case P shows an analogous situation, but there are two (truss) elements.

Fig. 12-21 shows cases in which, rather than being fixed, the column is hinged at
the ground. In this case there are two possible ways to model it. In the first
(shown in the middle column of schemes), the rotation of the node is left
unconstrained and the beam element used to model the column does not have
any releases. In the second (shown in the column on the right), the element is
released for rotation, but in this case the rotation of the node (which is no longer associated
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to any stiffness and is thus completely fictitious) has to be constrained. Case Q shows the
case of a single diagonal; case R a double diagonal.

O

tiss

\

completely
constrained

P node

f1uss.

Figure 12-20: Possible models of a fixed column with diagonal wind
braces.

When working with models of plane frames, where we normally find beam
elements as well as truss elements, it is also possible to encounter nodes to which
only truss elements are attached (typically in the wind braces). In this case these
nodes have to be constrained for the three rotations and the translation in the
direction normal to the plane of the frame. Note that this constraint corresponds
to that of the constraint mask, with the addition of the rotation of the node with
respect to the axis normal to the plane of the frame. The constraint mask can in
any case be omitted when the stiffness of the beam eclements constitutes a
restraint on the act of motion of the nodes in the direction corresponding to the
constraint template. However, in such cases the nodes where there are only truss

342

Copyright © ICE Publishing, all rights reserved.



Problems in modelling

elements attached must be constrained for all of the rotations and the out-of-
plane translation.

Q

node with
free
rotation

completely
constrained
node

Figure 12-21: Possible models of a hinged column with diagonal wind
braces.

For example, fig. 12-22 shows a simple plane frame with wind braces, defined in
plane XZ. If node 7 and node 10 are constrained with the constraint template
TyRxRz, then it is not necessary to apply the constraint template to nodes 8§, 11
and 9, because the bending and torsional stiffnesses of the beam elements are
such that translation Ty and rotations Rx and Rz of these nodes are not
unconstrained (they are associated to a stiffness).

Now let’s look at nodes 12 and 13. There are only truss elements attached to
these, and thus translation Ty and the three rotations Rx, Ry and Rz are
inevitably unconstrained and have to be constrained in any case, because if they
are not, this will lead to a mechanism. Translations Ty are unconstrained because
the trusses have no bending stiffness and thus, because of the out-of-plane
translation of nodes 12 and 13, they behave like a mechanism.
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Figure 12-22: Elementary plane frame with wind bracing trusses.

L))

Now that we have discussed the problems relative to constraining the nodes and
releasing the elements, we should mention the problem of how to model the
loads. Doubts often arise about how many finite elements to place, and whether
ot not to add a node under a concentrated load.

The correct procedure to adopt generally depends on the software program
used. If the local effects of the loads are re-added to the beam elements, then in
terms of stress it is absolutely possible to avoid having to put a node under a
concentrated load. The particular characteristics of the beam element make it
possible to arrive at precise results even without increasing the discretization too
much, as long as the local effects are re-added. If instead, in keeping with the
formal orthodoxy of the FEM, the effects of local loads are not re-added, then it
is absolutely necessary to subdivide the structural element sufficiently by means
of an appropriate number of finite elements.

For example, fig. 12-23 shows two portals modelled using either one or two
elements for the horizontal. Since the software program used (in this case,
SARGON) re-adds the local effects of the stresses on the beam elements, the
results are exact in both cases. Each user should verify what his or her own
software program does: if it does not re-add the effects of the stresses, then the
discretization has to be sufficiently dense.

As far as displacements are concerned, the situation is more subtle and more
complex.
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Figure 12-23: Moment diagrams of two frames modelled in different ways:
the results are equal (modelling performed with SARGON).

. - - .

Figure 12-24: Deformed configurations of two frames modelled in different
ways. Here the results are different: on the left there is a single cubic (the
shape function of the single finite element); on the right there are two
cubics (those of the two finite elements) and the solution is rigorously
exact (modelling performed with SARGON).

Most programs limit themselves to giving the displacements of the nodes, and
thus if we want to know the deflection at the centre point it is necessary to
subdivide the elements. In addition to giving the displacements of the nodes,
SARGON also gives the displacements within the beam elements, where there are
no nodes. In drawing the deformed configuration, it is very much preferable to
use a cubic for the deformed configuration rather than to linearise it between the
nodes as some programs do.

Is the displacement within the elements exact or not?

If “normal” cubic shape functions are used, if there are no effects of shear, then
the displacement is exact as long as there are no distributed loads. If there are
distributed loads (that is, in the terminology used in the FEM, internal loads) then
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the displacement, even when there aren’t any effects of shear, is not exact, unless
the software program re-adds the local effects of displacement on the elements
due to the internal loads, determined keeping the nodes fixed.

Fig. 12-24 shows that the deformed configurations are noticeably different for
the two cases discussed, since in order to render the deformed configuration,
SARGON pre-release 9.0 limited itself to using the shape function of the element
without re-adding the deforming local effects on the element itself2 Thus the
case on the right is exact (two cubics), while the case on the left is only
approximate (a single cubic for the displacement). Note that, instead, the
displacements of the columns (where there are no distributed loads) are identical
in both cases.

Up to this point we have discussed what happens when there are no effects due
to shear. When such effects are present, then the displacement is no longer
“exact” except at the ends of the elements (cf. chap. 11), unless the software
program used adopts modified shape functions (because the rotation of the node
is not entirely due to w' but also to 0 see chap. 11, §11.3.2.6). Practically
speaking, if we create a scheme for the portal shown in fig. 12-24 taking into
account the effects of shear, and compare the two models (fig. 12-25), one made
with two finite elements for the horizontal and one made using forty finite
elements for that same horizontal, we can see that in correspondence to the
common nodes, the displacements are identical (at the centre and at the ends, in
particular), while they are different at the intermediate points (although the differences
are small, and in any case in a measure that is inversely proportional to the
slenderness of the element).

It seems therefore reasonable to make the following remarks (when using
SARGON or a similar software program):

e If we are only interested in the diagrams of internal actions, it is not
necessary to increase the discretization of the structural elements like
beams.

® If we are interested in the displacement of the elements where there are
no distributed loads, it is possible to use the commands that determine
internal displacements, because we are certain that there is one “exact”
displacement when there are no effects of shear, or one very close to the
“exact” one with slender beams even when there are effects of shear.

® If we are interested in the displacements and there are internal loads in
the elements (whether concentrated or not), then it is useful to increase
the discretization in proportion to the kind of actions present. In general,

2 From version 9.0 onwards Sargon also re-adds the effects of local displacements.
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one node is added under a concentrated load, or a few elements (for
example, four) are added for a distributed load.

Figure 12-25: Effects related to shear: the difference in the deformed
configurations when 2 finite elements or 40 finite elements are used to
model the horizontal. When there are no effects of shear, the two deformed
configurations coincide, since two cubics already give the exact
displacement.

12.2.5 SPACE FRAMES

The problems of space frames are essentially related to the three-dimensionality
of the mesh and the possible movements. The constraint of the nodes or the
release of the elements can no longer be considered in the context of a plane,
and there are no longer “constraint masks” that can make the job easier.

However, it is also true that once an understanding is reached of how the FEM
works and what the basic characteristics are of each kind of finite element, then
what has to be done in a three-dimensional context becomes clear rather
spontaneously.

As far as the constraints of the nodes are concerned, we must remember that
these are subject to three translations and three rotations with regards to the
global coordinate axes, and thus it is necessary to determine which stiffnesses
limit these movements in order to understand whether or not there are any
conditions of pseudo-mechanism.

If the model shows deformed configurations that are different from what was
expected, then it is absolutely incorrect to add constraints indiscriminately in
order to bring the deformed configuration back into a qualitatively acceptable
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form (an error that is actually committed with some frequency): adding
constraints in this way can lead to the distortion of the stresses and the
assighment of significant constraint reactions at inexistent points “on the
ground”.

As far as the releases of the beam elements are concerned, it is of the utmost
importance that the orientation of the three local axes be taken sufficiently into
account, because the release is defined with regards to the local axes, not the
global axes. We have already mentioned this question in connection to planar
problems, where there is an analogous problem.

In the study of space frames it is often possible to visualise how the structure
behaves as the meeting of two complementary behaviours: that of plane XZ and
that of plane YZ. In other cases, the complexity of the scheme prevents this
from being possible, and despite checks performed on the model, the response is
more difficult to interpret.

52
o,
0"4 ;;,

&
),

Figure 12-26: Example of the 3D model of a structure in steel with bracing
arranged in an H-shape in plan.

In 3D modelling it can happen that we encounter local situations that require
fictitious constraints that act to impede pseudo-mechanism. Fig. 12-26 shows a
three-dimensional model of a steel structure with bracing arranged in an H-shape
in plan, and fig. 12-27 shows details of this structure, with constraints and
releases.
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Figure 12-27: Details of the model shown in fig. 12-26 showing constraints
and releases.

For example, detail A in fig. 12-27 shows nodes of the bracing to which only
truss elements are connected. In order to avoid conditions of pseudo-
mechanism, all three of the rotations and the translations normal to the plane of
the braces (for some these are translations Y; for other, translations X) have
been constrained. Here the non-expert might object that placing constraints on
the translation constitutes an unacceptable restraint on the structure. In reality,
however, the structure is completely free to move, because it is not held back by
these constraints. In fact, the trusses that are attached to those nodes constitute
a mechanism that leaves the node totally free to translate.

Restraining it with a constraint does not imply any constraint on the remaining
parts of the structure, which is free to translate with respect to these nodes.
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Detail D in fig. 12-27 shows nodes where this constraint is unnecessary, since
the chords of the reticular girders have been modelled with beam elements rather
than with truss elements.

Other interesting details that appear in fig. 12-27 are:

® The addition of hinges (releases) at the ends of the chords when these
meet the columns (detail B);

® The cantilever elements that project beyond the columns (detail C: no
end release is applied to these projecting elements);

The full constraint of the column at the base that receives all of the braces
located either in space (detail E) or in the plane (detail F). The nodes have to be
constrained without mixing the rules that we have introduced.

incorrect constraint of
the nodes to rotation

Figure 12-28: 3D model showing incorrect constraint of the nodes. The
trusses are modelled with truss elements; the reticular girders with parallel
chords are modelled with a combination of beam elements for the chords
and truss elements for the sides.

For example, tig. 12-28 shows a three-dimensional model in which all of the
nodes of the trusses that are modelled with truss elements are — correctly —
constrained for translation Y and all three of the rotations. But the nodes of the

350

Copyright © ICE Publishing, all rights reserved.



Problems in modelling

reticular girders with parallel chords are incorrectly constrained. By constraining
these nodes (attached to the beam elements) for rotation, a non-existent
constraint is introduced on the bending of the chord (see instead detail D of fig.
12-27). Inexistent reactive couples are transferred to the “ground”, and the
model is incorrect.

Fig. 12-29 shows the out-of-plane moment diagrams for the chords.

In this case (which was actually encountered in practice), even if the analyst did
not thoroughly understand how to constrain the nodes, he should have been
aware of the significant reactive couples on the nodes constrained for rotation;
their very existence should have made him wonder as to the cause.

Thus, as we can see, when we are working in a three-dimensional context
different problems arise than those we have described and discussed in situations
of two dimensions.

In a three-dimensional context the position of the three local axes of the beam
elements is obviously of much greater importance, and the orientation of all of
these should be systematically verified before the analysis is performed. If the
beam elements are incorrectly oriented, this can lead to a non-planar response
where a planar one is expected instead. For example, fig. 12-30 shows what
happens to a simple portal if the horizontal is incorrectly oriented.

INCORRECT CORRECT

Figure 12-29: The effects of incorrect constraint: out-of-plane moment
diagrams of the chords with and without the incorrect added constraints.
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Seen from ) [Deformed configuration of the]

horizontal (seen from x)

vertica
displacement (sz)
and out-of-plane

displacement (sy)

Orientation

Figure 12-30: Non-planar deformed configuration of an incorrectly
oriented portal.

12.2.6 MASONRY STRUCTURES

Masonry structures are often modelled with membrane elements, and thus have
no out of plane stiffness. Typical problems concern how to make the correct
adjustments for material values (normal and shear moduli of elasticity, Poisson’s
ratio) bearing in mind that masonry is anything but elastic, homogeneous and
isotropic. Orthotropic modelling, which takes into account the different
behaviour of masonry in two directions, should also be considered. Models made
by representing each masonry component as a membrane in plane stress can give
the expected order of magnitude of stresses and their qualitative tendencies,
making evident the areas that require special reinforcement.

For example, fig. 12-31 shows a model of a stone wall 40 cm thick. The example
is taken from an actual structure in Italy’s Friuli region, and the analysis was
undertaken to help solve problems that arose after an opening was made under the
ridge beams of the roof inserting then a short beam in reinforced concrete which was
not designed by calculation but was “eyeballed” and which was intended to transfer the
reactions of the ridge beam of the roof to the load bearing wall. The state of
affairs is shown in the photograph in fig. 12-32; the column that appears there is
not a true column, but a false column in hollow brick?).

3 This is just one unfortunate example of how inadequate actual construction is today: the entire load of the
roof depended on that beam, and this was in a severe seismic area. It was not possible to know exactly what
reinforcing was used in the beam built by “eyeballing”, nor were any relative calculations found. The building’s
owners finally decided to leave the beam as it was without inserting any column and without filling the opening,

352

Copyright © ICE Publishing, all rights reserved.



Problems in modelling

Plate-shell elements were adopted for the model only because these made it
possible to avoid constraining the inactive components of the movements of the
nodes (rotations and out-of-plane translations). In fact, given the kind of loads,
only membrane behaviour was brought into play. The possible new column was
modelled with a beam element that was released at its ends (and is thus hinged),
to avoid a connection with a fictitious stiffness being added to the plate elements
at the drilling DOF. Had this not been the case, the drilling factor would have to
have been made null, and no releases placed, but the rotations of all of the nodes
would have had to have been constrained about an axis perpendicular to the
plane of the wall.

The problem here was to study the effects that the possible addition of a (real)
column would have had on the walls, bearing in mind that the column had to
take the loads coming from the ridge beam of the roof and distribute them to
the load bearing wall. Given that openings in the wall had already been made in
several places, the problem was to come up with an estimate of the values for
the stress following the intervention.

danger zones

Figure 12-31: Model of a masonry wall: 4-node isoparametric elements and
CST.

trusting the solution built by the construction firm and the report of a design-builder who, when queried,
asserted that the beam was amply capable of sustaining the load and was fine as it was.
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false column in
hollow brick

beam in reinforced
concrete that was
"eyeballed"

Figure 12-32: The problem that led to the analysis shown in fig. 12-31.

The first model was made to provide a preliminary set of data to be used as a
starting point. This was followed by a second, more refined model aimed at
capturing in greater detail the aspects relative to the areas in which it was feared
that significant primary tensile stresses would arise (for masonry “significant” can
indicate a tensile stress equal to 0.2N/mm?).

An examination of the model shows that a first significant simplification regards
the column, which is modelled as transmitting its axial action at a point rather
than across a given width. This gave rise to local effects that were quite evident
in both models. Had the model been more refined, it would probably have
modelled that column as having a certain bulk, in order to distribute the forces
over a wider area.

The model shows concentrations of forces at the corners that cannot be realistic,
given the certain redistribution as a consequence of microfractures in the area of
the corners.

The masonry reacts to tension also when there are significant values of principal
stress, and this is not exact, except when only negligible final values of tension,
compatible with the limits of the masonry, are the result of the combination of
the effects related to the various load cases.

A qualitative examination of this case showed that the column would have
created problems in the architrave of the floor below: the order of magnitude (no
greater precision could be hoped for) of the principal tensile tresses were found
to be equal to 0.15N/mm? just about equal to the masonry’s expected tensile
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resistance. The lack of sufficient margins of safety (given the amount of
uncertainty in the calculations) would absolutely have made it advisable to insert
a tension rod at the floor below (above the doors of the lower floor), in order to
help carry the tensile stresses that the masonry alone could not carry.

/

possible cracks

Figure 12-33: Examination of a detail of a somewhat refined model.
Maximum principal stress.

12.2.7 PLATES

We have seen that in the modelling of plates (cf. chap. 11, § 7) the discretization
plays a fundamental role, given the intrinsic difficulties of these elements in
modelling the solving equations, which — we recall — are fourth-order partial
differential equations. It therefore makes no sense to think that it is possible to
model plates with just a few elements per side, especially when there are
openings or other discontinuities. In modelling plates it appears to be
indispensable to go through at least two cycles with successively finer meshes,
because this makes it possible to determine what differences a finer mesh makes
from one run to the next. Without this kind of painstaking study, the validity of
the results of an analysis cannot be taken for granted unless a very, very dense
discretization has been put into place from the very beginning.

If the plate is parallel to a coordinate plane it might be opportune to constrain
the degrees of freedom corresponding to the rotations with respect to an axis
normal to the plane of the plate, once it has been established that the finite
clement adopted does not use that degree of freedom. This makes it possible to
save one out of the six degrees of freedom, thus creating, all other conditions
being equal, a more refined model.
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When there are concentrated loads, it must be borne in mind that there is usually
a singularity, and thus the stresses should be read at a sufficient distance from
the exact point where the forces are applied (as the discretization is increased the
stress in the point that is directly loaded will tend to increase indefinitely).

Where the formulation does not make it possible to determine the out-of-plane
shears, these should be determined with other systems (including engineering
systems) in order to make sure that they do not constitute a hazard.

If the ratio (Et)/(GL? is greater by a certain percentage point, then the
possibility of studying the plate using Mindlin’s theory should be considered: in
this case solvers equipped with finite elements that are suited to that purpose
must be used.

12.2.8 FLOOR SLABS

12.2.8.1FLOOR SLABS MODELLED EXCLUSIVELY USING MULTI POINT
CONSTRAINT (MPC)

When modelling slabs the kind of behaviour that we want to model must be
kept firmly in mind, whether purely membranal or including bending. A first way
to model floor slabs takes into account the effect they have of fixing the plane
structure, such that the plane tends to maintain its shape during deformation.
Practically speaking, slabs modelled in this way are comparable to a multipoint
constraint (MPC): we are not so much interested in precisely modelling the
details of the slab as we are in giving the plane a shape that remains the same
during the course of deformation.

If this is our objective, then the best way of modelling the slab in question is to
use membrane elements, without worrying too much about the density of the
mesh (see, for example, the model shown in fig. 12-34) and thus possible
locking. An overestimate of the membrane stiffness of the plane does not have
any significant consequences, given that a considerable amount of stiffness is
already present normally, nor is there usually any reason to study the stress field
within the slab itself.

Note that the use of the membrane elements to model the floor slab means that
the slab itself does not contribute in any way to resisting bending, which falls
solely on the beams and, by continuity (if this exists), on the columns.

This kind of modelling is by far the most frequently used, because the bending
effects of the floor slab (which might include small ribs, or an uncoupled
corrugated sheet) are usually determined separately with local schemes (isostatic,
or at best with continuous beams).
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Figure 12-34: Building with slabs modelled using membrane elements.
The mesh is not fine.

12.2.8.2 SOLID SLABS

When it is desirable to take into account the bending stiffness of the floor slab,
because for example it is desirable to keep track of its contribution to the beams
and to the building as a whole, then plate-shell elements should be used instead
of membrane elements.

In the case of solid slabs, homogeneous and isotropic, this involves adding plate-
shell elements with the desired thickness. Here the discretization used to model
the slab has to be quite dense (similar to that of plates), because this prevents the
onset of unwanted effects of locking, and also makes it possible to evaluate the
stresses.

If the slab is solid but is built with a binary system (for example, using a
corrugated sheet with poured fill), then the equivalent thickness is generally
determined by considering the concrete and the steel to be uniform. If
“equivalent” models are used, then the level of calculated stress is not significant,
but should be corrected to take into account the equivalence that was
introduced.
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12.2.8.3 RIBBED SLABS

In the case of ribbed slabs, actually quite frequently used, the problem lies in
determining the stiffness of the beams to be used in conjunction with the plate-
shell elements. The precise problem is often how to evaluate the effective width
of the plate that works with the web and flange of the beam in order to arrive at
the equivalent beam to use in the calculations.

Alternately (although models of this kind are generally used only for a floor slab
and not for an entire building), the ribs are also modelled with plate-shell
elements, because this makes it possible to keep track of the actual effects of
how the various parts of the structure work together.

12.2.9 BUILDINGS WITH A BRACING CORE OR SHEAR WALLS
IN REINFORCED CONCRETE

In buildings that have a bracing core or shear walls in reinforced concrete to
resist horizontal forces, the problem is what kind of elements and discretization
to use in modelling them.

Generally speaking the stresses in these cores are not directly studied, because
cores are designed without the help of a finite element model. This might lead to
thinking that it is possible to do without an extremely fine discretization, but this
is not generally the case. In fact, insufficient discretization can lead to an
overestimation of the core’s stiffness (due to the locking of the elements; see
chap. 11 for a discussion of this), underestimating the horizontal displacements
and thus leading to an analysis that is unreliable with regards to the safety of
both the internal forces of the columns, and of the horizontal displacements.

The correct discretization would therefore seem to be the one that provides a
relatively fine mesh for the cores and the shear walls, with at least four to five
elements for each story. Thus a reasonable dimension for the elements could be
about 0.5 x 0.5 m* (except in specific cases, or cases with particular elements). It
is in any case of the utmost importance to perform an analysis after having
doubled the size of the mesh at least for these elements (saving right
connectivities) to see what differences this makes in the results obtained, in order
to keep the locking effects under control.

For example, fig. 12-35 shows the map of the horizontal displacement for a
building with its core modelled with only a few (insufficient) plate elements (type
QUAD4 bilinear isoparametric for the membrane part, 4DKT for the bending
part). The displacement is equal to 8.74 mm. Fig. 12-36 shows what happens if
the elements are made smaller. The displacement grows to 11.7 mm, an increase
of 33%. The behaviour of the QUAD4 membrane elements (isoparametric with
bilinear displacement) are to blame for this excessive stiffness.
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Figure 12-35. False colour map of the deformed configuration due to
earthquake Y. Translation Y. Discretization with one element per storey,
4-node bilinear isoparametric elements (QUADA4), full 2x2 Gaussian
integration for the membrane part, 4DKT elements for the bending part.

If different finite elements are used (especially for the membrane part, which
here plays a role in overall bending because of how the bracing core is made)
better results are obtained, but not so good as to permit modelling like that
shown in fig. 12-35. For example, using incompatible elements for the
membrane part (and 4DKT elements for the bending part), results in a
displacement that is equal to 10.44 mm for the case shown in fig. 12-35 and
12.51 mm for that shown in fig. 12-30.

Note that a model made in the hypothesis that the membrane elements do not
have any stiffness associated with drilling DOF generally cannot be converted
automatically, identically transferring constraints and releases, to a solver that
uses elements that offer the possibility of this stiffness (for example, Sap90® and
Sap2000®). In fact, these added stiffnesses can unintentionally stiffen the model
unless suitable release codes are provided for the beam elements that are
connected to the two-dimensional elements. For example, when the “simple”

model is converted automatically for Sap90® without any further modifications,
the resulting displacement is only 7.043 mm, which can surely be attributed to
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the additional stiffness just mentioned and not to the way the elements are
formulated: the model has to be modified to torsionally release, for example, all
beam elements perpendicular to plate or membrane elements. Moreover, it
appears that the addition of this kind of release when elements with drilling
DOF are used is necessary in order to avoid having connections which often do
not exist in the physical reality.

The core can be modelled entirely with membrane elements, disregarding the
bending stiffness appertaining to the walls and thus with an added margin of
safety. A model made in this way can, however, possibly require some
adjustments regarding the connections of the beams and cores (presuming that
the elements do not have any stiffness associated with drilling DOF).

earthquake

Figure 12-36: False colour map of the deformed configuration due to
earthquake Y. Translation Y. Improved modelling for the bracing core (4
elements per storey, 4-node bilinear isoparametric elements (QUAD4), full
2x2 Gaussian integration for the membrane part, 4DKT elements for the
bending part.

If the beams are hinged we will see the effects on the nodes of the membrane. If
these have all been constrained for rotation (in order to prevent there being any
pseudo-mechanism on the nodes of the membrane), then releases must be
introduced. If instead the connecting nodes are all free, then both the releases
and the constraints are supetfluous: the releases because the beam is already
hinged with respect to the membrane, which does not have any bending
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stiffness; the constraints because, since there is also a beam element attached to
the node, there cannot be any pseudo-mechanism.

The case of a rigid connection is more subtle. In fact, it isn’t possible to “fix” a
beam on a membrane element normal to it, because the membrane has no
bending stiffness. Thus, we either have to use “tricks”, or we have to go to plate-
shell elements for modelling the cores.

constraint . »

release

Figure 12-37: Hinged beams on walls modelled with membrane elements.

12.2.10 PLINTHS

In finite element modelling, plinths are not modelled per se, but according to the
kind of restraint that they provide for the column above. If we disregard the
interaction between the soil and the structure, these plinths can be considered as
rigid joints, or even, when there are particular kinds of connections, as hinges. If
instead we wish to investigate the interaction between the soil and the structure,
then to the node that corresponds to the point where the column meets the
plinth, translational and rotational springs are applied, whose characteristics of
stiffness are determined as a function of the shape of the plinth and the kind of
terrain.

12.2.11 REVERSE BEAMS

Even though beam elements with corrections and the additions of the local
effects of distributed loads are quite precise, when the beam is on an elastic soil
it must always be appropriately subdivided, in order to make correct modelling
possible (this is true both when concentrated springs are used, as well as when
beam elements are used on elastic soil).
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In this case a preliminary study regarding the behaviour of the beam apart from
its structural context is a good idea, because it is helpful for determining the
correct discretization to use. In totally preliminary terms we can consider a dozen
or so elements in each bay as the theoretical model of reference (cf. the test case
performed in § 7.2.3.2). Where there is no foundation slab, it is relatively simple
to increase the discretization and see — even after a first run — how much the
solutions differ according to the discretization used.

Given that the Winkler foundation is a monolateral constraint, it is a good idea
to make sure that there are no springs in tensile stress, because if there are, the
analysis is no longer reliable.

12.2.12 FOUNDATION SLABS

Foundation slabs sum up all of the careful handling required to deal with plates
using the typical treatments used for elastic continuum analyses of soil. The
discretization of the foundation slab must therefore be very dense, in order to
guarantee a reliable model.

By way of example, let’s consider the model shown in fig. 12-38 of an
underground tank on an elastic Winkler foundation, in which the base slab
measures 15 x 9.5 m® and in which the elements have a typical dimension of
about 30 cm per side.

Another example is shown in fig. 12-39, a foundation slab on a bed of Winkler
springs (modelled using springs with adequate stiffness), loaded with vertical
forces coming from the columns. The column grid is 5 x 5 m, the slab measures
10 x 30 m* The middle columns carry 105t, those on the sides 75t, those at the
corners 37.5t. The object of study was how the response varied as the
discretization was changed. We used 4-node elements obtained by assembling
four triangular DKT eclements (ANSYS finite elements implemented in
SARGON).

All of the nodes are unconstrained, with the exception of those at the two
opposite corners of the foundation’s diagonal (see fig. 12-39); these two nodes
were constrained as follows:

Tx Ty constrained on one node

Tx  constrained on another node.

These constraints were sufficient to impede the translation in direction X or Y as
well as the rotation of the entire slab about axis Z. The translation along axis Z
and the rotation about axes X and Y are impeded by the bed of springs that
model the Winkler foundation. Six models (A-F, figs. 12-39 and 12-40) were
made, each of which had four times the number of elements of the preceding
one: practically speaking, each element was subdivided into 2x2 elements at each
step of increased density. Table 12-7 shows the values obtained for maximum
displacement, the Von Mises stress under the middle column, slab moment m_at
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the midpoint between the middle column and the next one placed at the centre
of the slab (this information is missing in model A because there is no node
there in that model).

Figure 12-38: Example of a tank on elastic soil. The model has 22,900
degrees of freedom.

S
s

Figure 12-39: Model A, each grid module is 1x1 element. Column bays
measure 5x5 m2. concrete R, 300, t=25cm, F_, =150t (middle columns),

k,=2Kg,/cm’.
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Figure 12-40: Models with increasing discretization of the original model
of the foundation slab shown in fig. 12-39.

Our study allows us to make the following remarks:

® The convergence when using these kinds of elements and the springs
below is very slow. Discretization with only 8x8 elements on a typical
bay (model D) leads to errors that are still rather significant (11% for
moment mg, about 5% for maximum displacement, with respect to
model F);

® The stresses under the columns grow indefinitely as the discretization is
increased, because of the singularities in the problem. However, the peak
area becomes increasingly smaller;

® The less refined models (A, B) severely distort the response and should
not even be taken into consideration;

® A very high discretization requited before we begin to find a
convergence with an acceptable percentage of error.

® Another question is how do we correctly model a foundation slab with
tibs? If the model allow us to do so, it may be useful to model the ribs
as well with plate-shell elements in order to study the stress distribution
correctly (in this case, the number of elements at the level of the ribs
should be sufficiently high; it should be borne in mind that the bending
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of the ribs is evidenced by the membrane behaviour of the finite
elements, which is subject to the effects of locking mentioned eatlier). If
instead the foundation is part of a larger model (usually of the entire
building) and it is necessary to keep the number of degrees of freedom to
a minimum, then the ribs should be modelled using beam elements
(typically, with a reverse-T section) of suitable stiffness, determined using
the method of effective width.

Model| Grid | DOF | Displacement o Von m_
Mises

A 2x6 123 -0.3 5.92¢-3 --
B 4x12 | 387 -0.3 125.1 842.14
C 8x24 | 1347 -1.227 262.3 1475.5
D 16x48 | 4995 -1.437 369.4 2523.6
E 32x96 19203 -1.501 467.4 2780.4
F | 64x192|75267 -1.517 563.3 2838.3

Table 12-7: Results of the comparative study of a Winkler foundation.

Figure 12-41: The increasing precision of contour lines of m, under the
central column in models B, D and F, Nmm/mm.
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Figure 12-42: False colour map of vertical displacements, model F.

12.2.13 CYLINDRICAL TANKS, SHELLS

Mention is made here of how to model shell structures, which always require a
very high degree of discretization for correct study. The discretization must be
particularly dense in the case when low-order and planar plate-shell elements are
used, where the geometry is actually similar to a given number of plane faces. In
order to give an idea of what this problem entails, let’s consider a cylindrical tank
under an internal pressure, and see what happens as the discretization is varied.

Our example examines a steel cylinder 5m in height and 5m in radius, with a
thickness of 10 mm, rigidly fixed at its base (fig. 12-43).

The cylinder is subject to a hydrostatic pressure that varies linearly between 0 (at
the top) and 0.05 N/mm” at the bottom. The forces are modelled using a
lumped approach. Triangular DKT elements are used.

The runs used atre described in table 12-8, with five vatiations of the mesh (A-E).
The last mesh (the densest) took advantage of symmetry and only %4 of the
cylinder was modelled.

366

Copyright © ICE Publishing, all rights reserved.



Problems in modelling

oy
erian
)
1
b
2

BrRGalt
e
aasg sl
aaman:
et

Figure 12-43: Meshes used for 5 case studies of the same cylinder with
increasing discretization. Cylinder height 5m, radius 5m, thickness 10mm,
E=206000N/mmgq, v=0.3. Head of hydrostatic pressure varying from 0 at

the top to 0.05N/mm? at the base.

As can be seen, the results are less than impressive. The convergence is very
slow, and for the value of the stress at the fixed joint the convergence is still not
sufficient even with the most refined model (which is still 6.6% away from the
values of the model immediately preceding it). In effect the problem has the (not
rare) peculiar characteristic that the shell is subject to significant bending stress in
the area of the fixed joint, as can be seen quite clearly in the deformed
configuration shown in fig. 12-44.4

Therefore, in order to produce an analysis of the stress field that has any
reliability at all, a high degree of discretization in the vertical direction is required.
Meshes such as those of models A or B cannot possibly allow us to understand
local effects of bending, which involve an area 600-700 mm high starting from
the joint. It is very clear that finite elements with dimensions equal to 1000 mm
or 500 mm cannot possibly show us these effects. What is needed is a mesh that
is very dense in the vertical direction, while we might be able to accept a lower
degree of discretization about the circumference (but without, however, losing
sight of the problem of the shape of the elements, which should not be
excessively distorted). Naturally, it is also possible to vary the pattern of the

4 It is precisely in order to eliminate these effects that ribbed cylinders are made, so that the bending
component is contained and the membrane component is increased.
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mesh, increasing the dimensions of the elements gradually as they go up towards
the area where deflection tends to disappear.

Circumferential | Subdivisions 6 Von Mises
subdivisions of height Maximum |6 Von Mises | at 1m from
Model (angle in (heigh% in DOF displacement | fixed joint the fixed
degrees) mm) joint
A 24 (15°) 5 (1000) 720 0.3968 10.89 14.72
B 72 (5°) 10 (500) 4320 0.4843 13.58 19.59
C 144 (2.5°) 20 (250) 17280 0.5506 24.84 20.08
D 144 (2.5°) 40 (125) 34560 0.5540 36.19 20.06
E 288 (1.25°) 50 (100) 21600 0.5645 38.61 20.03
(=x4)

Table 12-8: Results for models A-E. DKT elements with smoothing.

Figure 12-44: Deformed configuration of model E, near the fixed joint.

If we want to state the problem in a nutshell, we can say that in modelling shells,
the utmost care must be taken when using plane plate-shell elements with three
or four nodes, because they are very slow to converge. In all of these problems,
what is called for is an analysis of how sensitive the solution is to variations in
the discretization, in order to avoid using results that might actually be
completely unreliable.

12.3 CONNECTIONS

Here we shall give some brief but useful notes in order to review the vatrious
possible kinds of connections between elements that are the same
(homogeneous connections) or different (heterogeneous connections). Bear in
mind that numerous examples have been introduced and discussed in other parts
of this book, which shed more light on what will be only briefly reviewed here.
To facilitate reference, the information will be treated point by point.
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We presume that the elements have two nodes per side. Other presumptions
have already been described elsewhere for elements that have more than two
nodes per side.

12.3.1 HOMOGENEOUS CONNECTIONS

12.3.1.1 TRUSS ELEMENTS (RODS)

1. Each node to which only truss elements are connected has to be constrained
for the three rotations unless the inactive degrees of freedom are automatically
eliminated by the solver. If the trusses are coplanar, then the out-of-plane
translation must also be constrained. If the trusses are aligned, the two
translations normal to the alignment must be constrained.

2. A truss is “born” hinged at the node that it is attached to, and thus there is no
reason to leave the rotations of the nodes of the trusses free.

12.3.1.2 BEAM ELEMENTS

1. Every beam element connected to another beam element is fixed with respect
to it unless an end release has been applied. Every translation and rotation of the
shared node is transmitted unaltered to the corresponding point on the axis
line of the element.

2. Every node connected to a beam element that is not released in relation to it
has a stiffness associated to all six of its possible motions. However, this does
not mean that there cannot be singularities in the stiffness matrix.

3. In applying end releases to beam elements, internal and external conditions of
hypostaticity should be guarded against.

4. If two beam elements meet at a node and are hinged with respect to each
other, it is sufficient to apply an end release to only one of them rather than
both; otherwise a condition of pseudo-mechanism is generated at the node.

5. Whether the analyst so desires or not, in the final analysis the bending
behaviour of the beam elements depends on the orientation of the three local
axes of reference, and therefore it is of the utmost importance to check their
positions.

12.3.1.3 MEMBRANE ELEMENTS

In this section we presume that the formulation of the element does not include
drilling DOF (cf. §11.7.5 and §11.5.3). If it does include drilling DOF, then it
must be borne in mind that the rotation associated with drilling DOF is not
unconstrained, and thus does not require constraint.

369

Copyright © ICE Publishing, all rights reserved.



Structural analysis with finite elements

succession of
shared sides

Figure 12-45: Succession of shared sides between two incident strips.

1. If only membrane elements are attached to a node, then the three rotations of
the node are unconstrained and have to be constrained. If the membrane lies
entirely in a plane parallel to the global coordinate planes, then the translation
normal to that plane has to be constrained (because it is free).

2. A membrane has no bending stiffness, and thus it can never offer any
resistance to the rotation of its nodes, regardless of the number and position
of the membrane elements in question (the rotation about an axis normal to
the plane of the element is thus associated with a stiffness if the element
includes those degrees of freedom; cf. §11.5.3).

3. If two incident planes modelled with bidimensional elements meet, then along
the shared side there is a series of nodes that form a succession of sides, and
these sides must be shared by the elements of both planes.

12.3.1.4 PLATE-SHELL ELEMENTS

1. A plate element also models the membrane component, and should thus be
considered as a bending element plus a membrane element.

2. All of the motions of each node in a plate element are associated with a
stiffness, with the exception of the rotation about an axis normal to the plane
of the plate. This rotation, in the most part of the formulations (see the type
of element employed by the software program being used) is limited by a
fictitious stiffness that is expressly added for this purpose. If several non-
coplanar plate elements share a node, that node is then associated with
stiffnesses for all of its possible motions.

3. See point 3 regarding membrane elements.
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12.3.2 HETEROGENEOUS CONNECTIONS

12.3.2.1 TRUSS-BEAM

1. When a truss is connected to a beam, the truss is always hinged, and there is
no need for end releases on the beam.

2. The mutual constraints of the beam elements have to be considered
independently of the fact that truss elements are also connected to the node.

12.3.2.2TRUSS-MEMBRANE

Figure 12-46: Incorrect connections and correct connections between
beams elements and two-dimensional elements.

1. The connection of truss elements to membrane elements makes it possible to
model membranes that are ribbed or orthotropic. In this case, as a rule each
truss has to correspond to a side of the membrane element, without “skipping
over” nodes or sides and without crossing the elements’ diagonals (fig. 12-46).

2. If only truss elements or only membrane elements are connected to a node,
then all of the rotations of the node have to be constrained.’ If the membrane
elements and the truss elements are coplanar, then the translation normal to
the plane (presumed parallel to one of the global coordinate planes) has to be
constrained.

5 See the premise for §12.3.1.3: this is true if the formulation of the membrane elements does not include
drilling DOF.
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3. A truss element that meets in a normal direction a plane modelled with
membrane elements will not encounter a restraint on the translations normal
to the plane itself, but may offer a restraint if its second node (not lying in the
plane) is suitably anchored.

12.3.2.3 TRUSS-PLATE

1. The connection of truss elements coplanar to plate elements makes it possible
to model plates that are ribbed or orthotropic. The trusses modify the
membrane behaviour without perturbing that of bending. In this kind of
model as a rule each truss element has to correspond to the side of a plate
element, without “skipping over” nodes or sides and without crossing the
elements’ diagonals (see fig. 12-46 above).

2. A truss element can meet normal to a plate, finding in it a support, thanks to
the bending stiffness of the plate itself.

3. A truss element is naturally hinged with respect to the plate to which it is
attached, without requiring any modifications.

12.3.2.4BEAM-MEMBRANE

1. The connection of unconstrained, coplanar beam elements to membrane
elements provides the membrane elements with a bending stiffness. However,
the conditions mentioned in §12.3.1.3 apply to the nodes to which no beam
elements are attached.

2. As a rule, each beam element (coplanar with the membrane elements) has to
correspond to the side of a membrane element, without “skipping over”
nodes or sides and without crossing the elements’ diagonals (see fig. 12-46
above).

3. See point 3 of §12.3.2.2: the beam that is connected normal to a plane
membrane does not encounter any restraint on movements normal to the
membrane itself.

4. A beam element attached normal to ot incident with a membrane element is
hinged with respect to it without any end releases being applied (fig. 12-47). If
end releases are placed on the rotation, then the node has to be constrained
for rotation. If the end releases are omitted, the node does not have to be
constrained. A beam element made in this way cannot be fixed with respect to
the membrane element, unless special modelling tricks are used.
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Figure 12-47: Attachment of a beam element to a membrane normal to its
axis.

12.3.2.5BEAM-PLATE

1. The connection of beam elements coplanar to a plate element makes it
possible to model ribbed plates. To the plate element are added membrane
stiffness (through the area of the beam element) and bending stiffness.

2. As a rule, each beam element (coplanar to plate elements) has to correspond
to the side of a plate element, without “skipping over” nodes or sides and
without crossing the elements’ diagonals (see fig. 12-46 above).

3. The beams that connect normal to a plate are constrained for the movements
normal to the plate, thanks to the bending stiffness of the plate itself.

4. The beam element incident with or normal to a plane of plate elements is
fixed relative to it, unless end releases are applied to the beam.

Figure 12-48: Attachment of a beam element to a plate normal to its axis.

373

Copyright © ICE Publishing, all rights reserved.



Structural analysis with finite elements

12.3.2.6 MEMBRANE-PLATE

1. Membrane elements that are coplanar and contiguous with plate elements are
continuous with them only as far as the membrane component of the stress is
concerned, while the bending component terminates with the plate elements.

2. Plate elements are naturally hinged with respect to membrane elements
without requiring any modifications.

3. A plane of plate elements that is connected normal to a plane of a membrane
element is not supported for the movement in the direction normal to the
plane of the membrane element. The plane of the plate element is hinged with
respect to the plane of the membrane element.

4. If a plate element and a membrane element meet perpendicular to each other,
then the rotation of the nodes about an axis perpendicular to the plane of the
plate element is unconstrained. The other rotations are associated with the
bending stiffnesses of the plate elements.
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13THE PROBLEM OF CHECKING
13.1 CHECKERS AND SOLVERS

In this final chapter we want to give a succinct outline of the set of general
problems regarding the checking of structural elements, that is, to that set of
analyses that are performed after the internal actions have been calculated, in
conformity with a given set of standards (for steel, reinforced concrete, etc.).

In today’s technical jargon, a clear distinction is made between so/vers, which are
the software programs for finite elements that we have discussed at length, and
checkers, which are software programs which use the output of the solvers as the
starting point to calculate a “coefficient of exploitation”, that is, a dimensionless
number related to the load bearing capacity of a structural element prescribed by
a given set of standards.

Exactly how the “coefficient of exploitation” is defined varies from standard to
standard and checker to checker. Generally speaking, the standards for allowable
stresses involve the ratio between the calculated stress on the element and the
allowable stress. Standards for limit states usually involve interaction formulas of

this kind
a b c
km H( “, ] ool e ] a1,
Npl M2pl M3pl

which already lead to a dimensionless coefficient of exploitation.

The data required by a finite element software program and that required by a
checker are only distantly related. Usually much less data is required by a solver
than by a checker. For example, for a checker, information regarding the
element’s shape, its length-to-thickness ratios, the number, kind and arrangement
of the reinforcing bars, and whether or not there are restraints on lateral sway,
are all valuable. Instead, to describe a section a solver only requires a vector of
the same six values: the area, the two shear areas, and the three second-order
moments of inertia. With only this information, the checker couldn’t even get
started, and even adding the modulus of resistance W is not enough.

Checkers were created in order to keep the designer from having to do an
enormous amount of calculating by hand, but also to perform a level of checking
that would have been simply impossible to do manually: just think what it would
mean to have to check dozens and dozens of different combinations, or to
systematically perform thorough checks on all the elements, or to follow the
structure through its nonlinear course.

In a trend that is by now consolidated, the calculations imposed on the designer
by law are increasingly difficult to carry out manually. Thus in recent years there

Structural analysis with finite elements © Thomas Telford 2010
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has been a growing proliferation of tools for automatic checking aimed at
lightening of at least a part of the burden imposed on the designer by legislation.

None of this, however, has translated into an improvement in absolute terms as
far as the safety of structures is concerned, because designers have often
abandoned the old design criteria which, although they were no longer in current
use, still however provided significant protection against etror.

The actual state of the art is that while calculations are no longer entirely
petformed manually, they are not yet completely performed by the computer.
They are no longer manually performed because those calculations required by
law are beyond the capacity of hand calculators (at least this is my opinion, but it
is shared by many of my colleagues). But they are not entirely performed by the
computer, because the laws are hardly ever written so that they can be
programmed (more about this in the following section); because checkers can
commit errors and omissions, and because the laws themselves can be
incomplete and contradictory. These factors may become evident only at the
moment the attempt is made to translate a law into a program.

The task of those using automatic checkers today is to aim for reasonable
objectives and set inviolable limits. Here are some of the rules that should always
be followed when using automatic checkers:

1. Be thoroughly aware of the norms implemented by the automatic
checker;

2. Know the exact set of formulas and rules implemented by the
checker, as well as all of the additional presumptions made by the
developer of the checker;

3. Always pre-dimension a structure on the basis of simplified
calculations that can be entirely controlled, independent of the
checker;

4. Never pre-dimension a structure merely on the basis of calculations
directly performed by the computer;

5. Always check the basic structural elements using the simplified rules,
including those that are independent of the particular standards of
reference;

6. Avoid accepting automatic designs of reinforcing or connections,
unless their reliability has been systematically verified;

7. Perform crosschecks where possible, either by performing the
checks on a single norm with more than one automatic checker, or
using different automatic checkers to check against different norms;

8. Perform either by hand or with other systems all checks not carried
out by the automatic checker;
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9. Systematically perform sample checks on the results produced by the
automatic checker.

Eatlier, in chapter 9, we saw just how wrong it is to think that everything that
comes out of a computer is correct. In the case of automatic checkers, we come
up against the final step before the design goes into the phase of execution, and
thus these must be given especially careful consideration.

13.2 DESIGNERS OF PROGRAMS AND DESIGNERS OF
STANDARDS

13.2.1 HOW PROGRAMABLE IS A STANDARD?

One of the main obstacles in the preparation of computer software for checking
consists in the fact that the prescribed standards cannot always be programmed.
The real problems emerge when the standard cannot be readily complied with by
means of manual techniques, but at the same time, is written in such a way that it
cannot be programmed. Many standards have parts that cannot be programmed,
and this is not necessarily a problem: programs are not required for generale
principles, norms concerning execution, or standards for good design. But when
a standard imposes certain calculations without defining unequivocally which
data is to be used as a starting point, then suspicion and perplexity are naturally
aroused.

The fact is that often those who write the standards have certain results in mind
which may perhaps take into account a broad class of examples, but are, even so,
still not general enough. The legitimate objective of a standards writer to
prescribe general norms conflicts with the fact that in reality, he has to work
from specific case histories.

One example of this is Italian standard CNR-10022, dealing with cold-rolled
steel sections, which cannot in fact be programmed, except for the most basic
cases. Here the norms regarding stiffened or unstiffened edges are extremely
vague and impossible to apply generally because the definition of certain
concepts, like that of “web”, is taken for granted, while generally such concepts
cannot be taken for granted at all.

Another example is found in Eurocode 3 (ENV 1993-1-1), where checks on
stability make use of coefficients given in tables for particular cases, but which
are unknown in general cases. This is specifically true with regards to Appendix
F relative to the coefficients to be used to check lateral sway, where tables of
coefficients are given for the classic cases of simple beams but no general
formulas are given.

There are numerous other examples: things that appear “obvious” cannot always
be programmed. For example, if a standard were to include the instruction “dead
leaves are to be eliminated”, but does not specify what a “dead leaf” is in a way
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that can be quantitatively programmed, then that instruction cannot be programmed.
In reality, nothing is ever obvious in programming, and everything — or almost
everything — must be defined.

There are cases in which the need to “program” a standard sheds light on
problems of how the standard should be interpreted, or on possible errors
contained in it. A recent example regarded the 2003 technical standards for
structures in areas at risk for earthquakes [Italian ordinance 3274 of 20 March
2003]. Section 4.5.3 of the part regarding buildings described the way to combine
the stresses of the structure’s various dynamic modes, which was substantially by
means of Wilson-Der Kiureghian’s complete quadratic combination, or CQC
[Wilson-Der Kiureghian 1981]. However, nowhere is it stated that the method
used is Wilson’s, nor is Wilson’s paper cited, since the writer of the standard
seemed to consider this unnecessary. In describing the defining formula of the

method,
E= ,/ZZPI-,-EI-E,- >
T

the correlation coefficient p;; is defined as follows:
312
8>+ 8,)8,")
2|2 2 2)
(-5, +4c,04.5,)
where, and we quote, “§ is the coefficient of equivalent viscous damping, B; is

the ratio of the frequencies of each couple i-j of modes (B;=w/®)”. This

definition leaves us somewhat perplexed. In fact, coefficient f; is greater or lesser
than 1 depending on the cycle of i and j, and it is legitimate to ask ourselves if we
should take the value <1, > 1, or whether it matters which is used. Let’s look at
an example: imagine five modes with frequencies shown in the following table:

Mode | 1 2 3 4 5
o |1,5]135]145] 155 15,0

i =

When i=1 and j=5 in the double summation f; will be equal to
Bis =(1,5/15,0)=0,1.

Going forward with the double summation we arrive at i=5, j=1. In this case the
formula gives the result:

B =(15,0/1,5)=10

Is it then correct to use this number, or should we use the previous result? The
norm says nothing about this, just as it said nothing about Wilson’s original
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paper. But a doubt remains. Reading Wilson’s paper' only adds to our
discomfiture, because with regards to this he says:

The cross-modal coefficients, g, , for the CQC method with constant damping are

8+
Pam = 122y 4 4014 1)

(15.10)

where ¥ =@, / @, and must be equal to or less than 1.0. It is important to note

that the cross-modal coefficient array is symmetric and all terms are positive.

It thus appears that our § must be <1. In actual fact, more in-depth analyses and
checks show that the formula that gives the cross-correlation coefficient is

invatiant depending on whether we use () or (1/f). Here is the proof:

Séz(HLJ L 8¢°(1+ 8) 85°(1+ )
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Formally, the standard is correct in not saying anything, but in our opinion the
clarity that a norm has to have cannot be compared to that of a scientific paper.
It would have thus been appropriate to specify in some way that it doesn’t
matter for the formula whether we set ; < 1 or > 1 (but was this evident to
whoever wrote the standard?). Note that even Wilson’s paper is misleading,
because he should have said “and they must be equal to or less than 1.0” rather
than simply “and must be equal to or less than 1.0” because what we understand
is “and it must be equal to or less than 1.0”.

Again, in the same norm, this time in the part regarding bridges, we find another
example. The same CQC problem is addressed with a formula in which the
viscous damping appears to disappear formally: in reality it is incorporated in the
formula with the value of 0.05 (5%). In §7.1.2 of Wilson's paper the formula
relative to the correlation coefficient is given like this:

(0.02(1+ p)p*")
(1= p2) +0.01p(1+ p2))"

ry =

1 Available on the Internet at: http:/ /www.csiberkeley.com/Tech_Info/15.pdf.
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where the letter 7 now assumes the role played by 0 in the section regarding

buildings, and p now assumes the role played by S (if we wanted to we could
also criticise the way these symbols change meanings from section to section).

The formula gives every appearance of being incorrectly written: the (3/2) has
become (2/3) and (1+p)” in the denominator has become (l+p2). In this way,
when the frequencies are equal (p=1) the coefficient is equal to 2, while it should
be equal to 1.

The point of view of the person who has to program a standard is often
different from the person who has to write one. Everything must be carefully
and unequivocally defined because it has to be transmuted into an instruction for
the computer. If, as often happens, reference is made to a result found in the
literature, the standard should state this explicitly (perhaps even providing a
reference) in order to make further investigation possible (although at times we
would hope to find further clarification within the standard itself). This may not
be the case if the standards are not intended for specialists and if their
applications are to remain obscure, but in this case why write standards?

In my opinion, standards should be comprehensible even to those who
have no time to read the mass of literature behind them; neither should they
presume that everyone will become a professional researcher. It is up to those
who write them to translate the results of research into the standards in a way
that is  comprebensible and wuneguivocal. This includes citing the sources, not
concealing them as though the standard had been written on tablets of stone,
received directly from the word of God. And, if possible, the research results and
formulas should even be written correctly.

Only rarely does the writer of standards offer the reader the luxury of everything
being defined precisely and unequivocally, so that the programmer is forced to
incorporate a set of assumptions that in fact imply “a standard” and not “the
standard” (even though, objectively speaking, there is no such thing as “the
standard”). For this reason every automatic checker is heavily influenced by a set
of assumptions on the part of the programmer that are embedded in the checker
and effectively constitute a possible interpretation of the standard but not “the”
interpretation. Obviously, the closer that the programmer is to the discipline
involved, then the more reliable the checker will be (all else remaining the same).

13.2.2 HOW FAR CAN A STANDARD BE EXTENDED?

Because of the considerations discussed above, checkers usually extend, more or
less deliberately and more ot less obligatorily, the prescribed standard in order to
make it possible to address situations not strictly expressed in the standard.

It is very much to be hoped that the standard writer himself went to the effort to
write the formulas so that safety is assured, or of making certain choices of what
to simplify in the most complex cases rather than leaving this up to the
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programmer. But while the standard writer is reluctant to extend the prescribed
standards beyond the experimental results, he is at the same time, however,
reluctant to declare their limits explicitly.

Thus it can happen that prescribed standards that are valid in restricted
contexts and under certain conditions can be, unwittingly and dangerously,
extended to other situations without the risks and hazards being clearly apparent.

13.2.3 THE CONSISTENCY OF STANDARDS

A further problem in the interpretation of a standard, from the point of view of
the programmer, is the search for consistency. It is quite possible to encounter
standards that contain passages that are contradictory and inconsistent.

Let’s take the case of the classifications of sections according to
Eurocode 3. The standards state that classification should be made on the basis
of the stresses present in each section of each element. Thus, strictly speaking, it
is possible to have sections that are in one class for a certain load combination,
and in a different class for other combinations. Along an element the class can
vary from section to section, because in general the stress regime varies. In
certain cases the sample being analysed is broken down in to parts in order to be
able to take only effective parts into account (class 4), which leads to there being
different sections at different points of an element and the vatious combinations
being checked. The resulting partial sections are, however, calculated with their
stress determined using gross data, since otherwise a double iteration would be
necessary (one for solving, and one for the individual section). When the checks
for stability are then performed, the gross characteristics are used. Frankly, all of
this reeks of compromise, because it is quite evident that the standards are
inconsistent and prescribe a lame method of calculating.

This is not a lone case. In calculating the sections in reinforced concrete,
ample use is made of non-linear laws and rectangular parabolas starting from
calculations that are almost always lineatly elastic. Does it really make sense to try
to jump through hoops after having already gone to all this trouble? I don’t think
so.

13.2.4 ERRORS AND TESTS

To the problems related to implementing standards — a process already fraught
with difficulties — are added the problems related to errors in the software. We
have already mentioned the significant problem of bugs in the software, but
there is another problem as well that plagues checkers. While it is in fact possible
in solvers to perform a comparative analysis of the results of solving, and
theoretically there is an “exact” answer within the limits of the assumptions
made in the model, in the context of checkers, because of all the problems of
interpretation just discussed, z# isn’t always possible to compare the results of two checkers
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directly, because they don’t necessarily have to be the same. In fact, if differences are
found, what are they to be attributed to? To an error that only shows up in a
latent way, or to the different ways in which the standards were implemented
and interpreted?

This doesn’t mean that comparing the results of different checkers is not
advisable; to the contrary. The point is that mere comparison reveals little. It is
necessary to retrace all the various steps in order to understand the reasons
behind the differences, since, strange as it may seem, in general the “exact”
solution is not a unique one.

We can thus see that it is up to the user, with the help of checkers, to validate
the assumptions and results every time, using the checkers as auxiliaries rather
than relying on them completely. The user has to subject the models to careful
checks and compare his simplifying hypotheses, his own interpretation of the
standards, with those of the software program.

13.3 THE RETURN OF ARBITRARINESS

From what has been sketched out here we can see that mala tempora
currunt, these are difficult times. At the moment we are in a situation of transition
that unfortunately leaves ample room for significant risks: the standards are not
yet written in such a way to be clear and programmable; the users tend not to
take responsibility for their results, convinced that the automatic checker is a
kind of Superman; the software houses try to meet market demands by turning
out products and checkers, not always advertising them in a way that is
consonant with the actual state of the art.

This has all led to a state of unadulterated arbitrariness, a situation in which
assumptions with no basis in truth can be directly applied to a structural project,
almost uncontrolled by those who instead should be aware of every single detail
of the design. We can even find the use of project designs created completely
automatically by software as though the level achieved by today’s computer
made it possible to substitute the structural designer. It is essential to remember
that although today we might be tempted to eliminate the designer and let a
computer program produce reams of paper, there is no substitute for the expert
designer.

382

Copyright © ICE Publishing, all rights reserved.



14 APPENDIX I: NOTATION AND REVIEW
OF CALCULUS

For the sake of simplicity, in keeping with the nature of this present work,
tensor notation is excluded, while use is made of matrix notation.

In the text frequent use is made of the following conventions:
k,W non-bold, lower- or upper-case letters represent numbers
u, p lower-case letters in bold represent vectors
K, M upper-case letters in bold represent matrices
I is the unitary square matrix (the diagonal contains all 1s, with Os
elsewhere)
Column vectors are usually indicated by a lower-case letter in bold: g.
Another way for describing a column vector is: {g;, &, ..., g,} -
Row vectors are indicated as transposed column vectors: g". Another way
of describing row vectors is: {g;, g, ..., Z.}-
The product ¢ of a rectangular matrix A and a column vector b is written:
c=Ab
In order for the operation to make sense, it is necessary that
pP=q
where p is the number of columns in A and q is the number of rows in b. The

resultant column vector ¢ has the same number of rows 7 as A. This fact is
written in symbols as:

(0, p)(p, D=(n,1)
The scalar product of a row vector t' by a column vector ¢ is a mumber k:
k=1"c

If Q is a square matrix of # order, and b is a column vector of # order, the

product
k= b'Qb

is a number. This product is also said to be the guadratic form in b associated with
Q.

A system of linear equations of order x, where x is the vector of
unknowns, b is the vector of known terms, and Q the matrix of coefficients, is

written

Qx=b
Structural analysis with finite elements © Thomas Telford 2010
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and has as its solution the vector

x=Q'b.
Matrix Q' is called the nverse of matrix Q. The following rule holds:
QQ'=Q' Q=L

If R is a rectangular matrix, then a matrix obtained by exchanging the
rows and columns (the first row becomes the first column, the second row
becomes the second column, and so forth) is defined as a transpose of R, and is
indicated by the symbol R".

Given AB, the product of two rectangular matrices A and B:

(AB)"=B"A".
A square matrix O is said to be orthogonal if its inverse coincides with its
transpose
0'=0".
For an orthogonal matrix the following rule holds:
QQ'=Q'Q=I
L)

For simplicity’s sake, it is often useful to consider a matrix or a vector as if
partitioned into elementary blocks made up of submatrices or subvectors of a
lower order. When a matrix or vector is imagined to be partitioned into blocks,
the individual terms can be written in the concise form “u;” and in this case the
contemporary presence of boldface and of subscripts make it understood that
this indicates a subblock (in contrast to u)); the extended version is

In this case as well it can be seen that the individual terms are in bold and are
thus matrices (in this case, vectors). For example, a square 12x12 matrix can be
seen as a matrix made up of four 6x6 blocks; a (12, 1) vector as two (6, 1)

vectors; a (12, 1) vector as four (3, 1) vectors, and a (144, 144) matrix as a matrix
of (12, 12) blocks of (12, 12).
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When a function depends on several variables, the derivative of the
function with respect to one of the variables is called a partial derivative. The

symbol for a partial derivative is “0”, as for example “0f/dx”. For the sake of
brevity, we will indicate the partial derivative with respect to variable x thus: f,..

When a function depends on only one variable, we will write its derivatives
with superscripts: f, £, £, £V, etc.

L3
The notation
(1.0e - 13)
is equivalent to
1.0x10"
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15APPENDIX II: REVIEW OF THE
THEORY OF ELASTICITY

In this appendix we will briefly summarise some of the important results in
the theory of elasticity. Numerous textbooks are available for study in greater
detail. Significant among these for its clarity, in spite of its being inevitably dated
in terms of approach, notation and contents, is the classic text of Timoshenko
and Goodier [1970]. A concise treatment from the point of view of physics more
than of engineering is found in Landau and Lifshitz [1979]; this also includes the
references to all the significant works comprising the history of the theory of
elasticity. Corradi dell’Acqua [1992] is a complete, modern treatment suitable for
in-depth study, and also includes broader topics such as the theory of plasticity,
the Finite Elements Method, and instability.

Given a body or a system of bodies, constrained or free and subject to a set
of actions and reactions, the following unknown quantities, functions of point P
of coordinates (x, , 3) are thus defined:

u(P) translation of the point in direction x;
v(P) translation of the point in direction y;
w(P) translation of the point in direction z.

Given displacements U= {u, v, w}" we can define the deformations in the
following manner:

ou
£ =—
toox
ov
£, =—
dy
.o
2z az
[15-1]
Vo =V = o + &
Yot 9y ox
Ve =7y = & + ow
0T 9z 9y
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y =y =W, 08
x Xz ax aZ
. . _ T . .
B.rleﬂy, the vector of deformation €=1{€, €, €, Y,;» ¥,,» Y} 1S Written as the
function of the displacements

€=CU
having set
5 -
— 0 0
ox
0 i 0
dy
0
0 0 —
= dz |,
ERE I
dy dx
d 9
o 2 <2
dz dy
4, 0
| 0z ox |

There are nine deformations, but only six are independent. The first three
are called elongations; the last three shears. There are various ways to define
deformations when they are large, and these different ways lead to values
identical to those for the deformation when the displacements are sufficiently
small.! In general the measurement of the deformation begins with the difference
between the square of the distance of two points that are infinitely close before
and after displacements caused by applied loads. If before the points were at
distance dL apart, and affer they are at distance dl apart, then measurement of the
deformation begins with the difference between dl? and dL?, that is, dI*- AL

In ordinary structures the displacements are usually so small that it is
possible to measure the deformations using the formulas given. When the
displacements become significant, the definitions indicated are no longer valid,
and must be replaced with formulas which also include higher-order derivatives
(Green-Lagrange strain or Euler-Almansi strain).

The deformations measure the unit quantities of displacement at a certain
point. To this unit displacement is associated, in the material, a certain level of

! Deformation is defined in various ways. For a treatment of all the various possible tensors of deformation, see
for example [Dell'Acqua 1992, vol. 1], [Mase 1970], and [Bathe 1996].
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strain. In a solid there are six independent components of stress at each point,
just as there are six independent components of deformation at each point.

The stresses are divided into normal stresses (indicated by the letter 6) and
shear stresses (indicated by the letter T).

Let us consider a plane passing through a generic point P and having as
normal a vector parallel to the x-axis; this plane will “slice” the solid into two
parts, which exchange internal forces. These forces tend to become increasingly
small as the suface of the sampling surface around point P decreases, but the
relationship between the force £ = {f, f, f,}" and the surface about point S
tends, as surface S decreases, to a constant value (inasmuch as the force
diminishes, but so does the surface being analysed)

The components of this vector ¢, are by definition the components of stress in
P on the face having as normal a vector parallel to the x-axis:

¢x E{Gx’ Txy’ TXZ}T'

If now the solid is sliced in P by a plane having as normal the y-axis, and the
same limit is made by S tending to zero, the forces on a face having as normal a
vector parallel to the y-axis are obtained:

q)y E{’ny, Gy; T}*z} T'

If the solid is sliced in P by a plane having as normal the z-axis, then the
stresses on a face having as normal a vector parallel to the z-axis are obtained:

¢z E{sz’ sz’ GZ}T'

The state of stress in point P is described by the set of three vectors @, @,
0,, and thus by the nine components of the stresses. However, a reading of what
occurs in a face passing through point P is not sufficient, and three faces
orthogonal to each other are necessary.

If we write the equilibrium conditions for an infinitely small volume of the
solid (the “little cube” with faces parallel to the axes of reference), we find that in
actual fact only six of the nine components are independent, inasmuch as they
are the result of the following six indefinite equilibrium equations:

o, ,+7,,+7,. . +b. =0

XX Xy,y X2,2
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[15-2]
Ty =Ty
TXZ TZ.¥
7,.=7T

in which b={b_, b, b,, }T are volume forces (such as, for example, gravity). The
tirst three equilibrium equations are equilibrium equations of the translations of
the small cube; the last three are the equilibrium equations of rotation.

The last three indefinite equilibrium equations tell us that there are three, not
six, unknown stresses. Thus we can consider as an unknown the stress vector
_ T
6_ {Gx’ Gys Gz’ Txys Tyz’ sz} *
In linear elastic materials there is a linear relationships with constant
coefficients between deformations and stresses. With the introduction of the
square matrix D (6x0) known as the waterial stiffness matrix, it is possible to write

0=De,

which expresses Hooke’s law in generalised form. Of the 36 unknown
coefficients only 21 must actually be determined, because it can be proven that
matrix D is necessarily symmetrical (and thus the unknowns are (36-6)/2+6=
21).

Matrix D must be symmetrical because the specific energy of elastic
deformation stored in the small cube of material of unit volume, z, can be
written in the following two ways (each component of deformation is multiplied
by its component of stress, all of these products are added up, the sum multiplied

by 0.5):
z=050"¢
z =0.5¢'0,
and thus
D=D".

The deformation energy Z stored in volume V is
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7=0.5)c"edV [15-3]

In the important case of homogeneous and isotropic materials, the unknown
constants are reduced to 2 and matrix D can be written:

A+2G| A A |o]o]o
A |[A+2G6| 4 |o]o]o
) A |a+2G6|0l0]0
D=| 0 0 0 |G|lo]|o
0 0 0 |0|G|o
0 0 o |o|o]|G

Where we set

vE

A=———— (tirst Lamé parameter)
A+v)(1-2v)

G= 2(5_ 3 (second Lamé parameter, shear modulus of elasticity)
and define

E Young’s modulus of elasticity

v Poisson’s ratio

Poisson’s ratio measures the transversal contraction of a sample of a
material stretched in a longitudinal direction. Inverting the relationships of stress
to deformations makes it possible to find the relationships of deformations to
stresses, which take the form

e=D'c

where the matrix D™ is known as the material compliance matrix
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Poisson’s ratio has to have a value between 0 and 0.5; in general, for the
materials most frequently used, this assumes a value between 0.18 and 0.35.
Poisson’s ratio is a pure number.

Young’s modulus has the physical dimensions of a stress (force per unit of
surface) and provides the measure of resistance of the material to elongation.

The following table summarises the values of E and Vv of various materials
(at normal temperature).

Material Modulus E Ratio v
(N/mm?)
CNR Steel Standard 206000 0.287
EC3 Steel Standard 210000 0.3
Stainless steel 215000 0.283
Aluminum 70300 0.345
Concrete Rck 20 25490 0.2
[D.M. 14-2-1992]
Concrete Rck 25 28500 0.2
[D.M. 14-2-1992]
Concrete Rck 30 31220 0.2
[D.M. 14-2-1992]
Concrete Rck 35 33720 0.2
[D.M. 14-2-1992]
Iron 212000 0.293
Brass 101000 0.350
Copper 130000 0.343
Titanium 120000 0.361
Siliceous glass 70000 0.18
[Dowling 1993]
Glass 73000 0.22
[Saint-Gobain 1997]

In addition to homogeneous and isotropic materials, there are also
orthotropic materials. These are characterised by different mechanical behaviour
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in three orthogonal directions. Naturally, neither isotropic nor orthotropic
materials actually exist: these are simplifications that can be more or less
approximated by experimental behaviour.

The deformations-displacements laws for orthotropic materials make use of
the following material compliance matrix:

L2 2| g | o | o
Ex Ey 4
— —
w | L% g o | o
E, | E, | E
—_ —V_”
= ol Lbg oo
bi=| E. | E | E
0 o |40 lo
G,
xy
o | o] o |ol|]o0
G

Of the 12 constants introduced only 9 are independent, inasmuch as the
matrix must be symmetrical, thus:

vyx/ E, = vxy/ E,
VZX/EZ\' = VXZ/EZ
v, /B, =V, /B,

The model of orthotropic material can be useful in the case of particular
materials for construction such as wood, which effectively does exhibit different
behaviours depending on the direction of stress, or because of an orthotropy due
to construction, as for example occurs in slabs with directional ribs or in
masonty.

It is possible to arrive at the solution set of equations by combining the
congruency equations that relate displacements and deformations to each other,
the constitutive relations that related deformations to stresses, and the indefinite
equilibrium conditions that the stresses have to satisfy.

1f the displacements are held as the main unknowns, we arrive at the Navier-
Stokes equations, which are complicated partial differential equations in which
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the three unknown translations u(P), v(P), w(P) appear as unknowns. Recalling
that

V? = &*()/9x*+0°()) /oy’ +0°() /977,

the Navier-Stokes equations are:

A+G)| 28 Ou v W), ooy =g
ax? axay 0xdz !
0’v  d'u  Iw

A+G - +GVv+b, =0

( )(ay 0xdy dyoz T
2 2 2

(/1+G)(a aaa +aag +GViw+b, =0

yoz  0xdz

These equations tell us how to calculate the displacements and, in formal
terms, resolve the problem, because they make it possible to calculate the
displacements. When the displacements are known, the deformations are known,
and from them, the stresses.

In substance, however, except for some particular problems where it is
possible to introduce suitable simplifications, the Navier-Stokes equations are
not useful because they are too complicated. These equations can be simplified
by assuming a certain number of simplifying hypotheses about either the form of
the structure (planes, cylinders, half-planes, spheres, etc.) or the complexity of
the solution (plane stress or plane strain, axial symmetry, etc.). Thus we arrive at
a certain number of simplified formulations that are widely used in practice and
summarised in chap. 3.
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Latin letters

A area
a side of a rectangle, semi-major axis of an ellipse
A rectangular matrix that makes it possible to go from interpolation parameters to nodal displacements
b side of a rectangle, semi-minor axis of an ellipse
b vector of volume forces
matrix of functions that, when multiplied by nodal displacements, give the deformations in a point
C kinetic energy, curvature
C matrix of operators that, applied to U, give the vector of generalised deformations
D bending stiffness of plates
D stiffness matrix of the material in the formulation in question
f vector of equivalent of nodal forces
F force
k stiffness
K stiffness matrix of the overall structure
K. stiffness matrix of element “e” in the local reference system
Keg stiffness matrix of element “e” in the global reference system
E Young’s modulus (of elasticity)
G shear elastic modulus; centre of gravity
I moment of inertia
1 length of an elongated rectangle
L length
m mass; otder of matrix K., moment for the unit of length; plate moment
M bending moment
N number of nodes in an element
p load per unit of length
P generic point in a domain
P vector of surface forces; vector of equivalent nodal forces
Structural analysis with finite elements © Thomas Telford 2010
978-0-7277-4093-9 All rights reserved
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q load per unit of length; load per unit of surface
T shear; translation
T transfer matrix
f vector of equivalent nodal reactions
r radial direction
R rotation, reaction
s thickness of hollow profiles
t plate thickness; size per unit of length (with subscript); plate size (with subscript)
u translation in direction x
u vector of the nodal displacements of the overall structure
U column vector that comprises the unknown displacement functions for a given formulation
Ue vector of nodal displacements of element “e” in the local reference system
Ucg vector of nodal displacements of element “e” in the global reference system
v translation in direction y; velocity
v volume, shear force (with subscripts)
z generic unknown displacement function; specific strain energy
Z elastic deformation strain energy (Z=zdV)
w translation in direction g
W work performed by applied loads
Greek letters
o angle
B angle

shear factor
r perimeter, border or boundary

€ deformation

Airy or Love stress function

[ shape function
A dimensionless abscissa; slenderness; Lamé parameter
\% Poisson’s ratio
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I1 total potential energy; elementary interpolation functions

0 circumferential direction

c normal stress

c vector of generalised stresses

T shear stress

Q area enclosed by the mean line of a hollow profile
Subscripts

e element ‘¢’

g global

i generic element of a set; row of a matrix

j generic element of a set; column of a matrix
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ALL IN CORE

ALPHANUMERIC FILE

ANISOTROPIC

ANTISYMMETRY

ASSEMBLY

AXIAL SYMMETRY

BACK SOLVING

BAND

BANDWIDTH
OPTIMISATION
BEAM (ELEMENT)
BLOCK

BRICK (ELEMENT)
BUCKLING

BUG

BUG FIXING

BUG LIST

C,ct+

CHECKER

CHOLESKY METHOD

COMPATIBILITY

Structural analysis with finite elements
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Situation in which it is possible to resolve a mathematical system
keeping all the data in computer RAM, without writing to disk
text file that can be edited

not homogeneous in all directions; model of behaviour of material
that allows for substantial differences according to the direction in
which it is stressed

a particular load situation in symmetric structures that makes it
possible to predict a response in terms of displacement, which is
also antisymmetric

procedure used to construct the global stiffness matrix of the
structure adding the contributions of all the finite elements of
which the structure is composed

a particular condition of structural symmetry where the structure
with its loads possesses infinite planes of symmetry all passing
through a single axis

inverse solution. A numeric procedure which, beginning with the
last equation of a triangular system and one unknown, calculates all
of the other unknowns in increasing numeric order. It is usually
the final phase of solving (see so/ving)

1 + the difference between the position of the last non-null term
and the position of the diagonal end on the row of the matrix
being considered

method that attempts to reduce bandwidth to a minimum by
means of appropriate renumbering

finite beam element

a part into which the stiffness matrix has been divided to make the
solution of a system of equations possible. Each block usually has
some pre-determined dimension

solid finite element with 8 or 20 nodes

instability

program error

elimination of a program error

list of program errors

the dominant programming language in modern software,
equipped with a graphic interface

program used to check that the stresses and deformations
resulting from calculation comply with the laws of a given norm or
standard

a system of solving systems suitable for positive definite matrices
the capacity of an element or a formulation to show displacements
along the edge equal to those of the adjacent element

© Thomas Telford 2010
All rights reserved
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COMPLETENESS

CONDENSATION
CONDITIONING

NUMBER
CONGRUENCE

CONSISTENT APPROACH

CONSTANT STRAIN
TRIANGLE (CST)
CONSTITUTION

CONVERGENCE

CROSS CHECK

DEFAULT
DISCONNECTION

DISCRETISATION

DISPLACEMENT
METHOD

DISPLACEMENTS, SMALL

DISTRIBUTED LOAD
DKT

DOF
DOUBLE NODES
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absence of asymmetries and deficiencies in the number and type
of the elementary functions used by an interpolating function; the
ability to group rigid displacements and constant states of
deformation

a computational trick with which an #-order problem of finite
elements is transformed into a problem of lower order #

index number intended to predict the numeric difficulty of solving
a problem of linear algebra

when a set of displacements respects internal and external
constraints; identity between predicted displacements of two
separate elements with a shared edge

the opposite of lumped approach; the technique that evaluates
nodal force and mass in keeping with the hypotheses formed
about the displacement field within the element. It leads to more
complex contributions and to denser nodal force vectors than the
lumped approach

the simplest element for static planes of stress or deformation; it is
triangular and has 3 nodes

typical relationships between stresses and strains in a given
material

the tendency shown by successive steps of a procedure to reach a
particular unique solution

a method of checking that compares one or more results in
different models or programs, in order to demonstrate the
correctness of the results themselves

value or choice assumed by a program in the absence of a specific
indication to the contrary; standard procedure

the lack of relationship between one node and another, between a
node and an element, or between two elements

the method by which a continuum is transformed into the sum of
a (large) number of distinct elementary parts. Transformation of
differential equations into systems of linear equations

method of solving elastic problems that considers displacements
to be primary unknowns

basic assumptions of continuum mechanics that make it possible
to write the deformations in a simplified way, ignoring higher-
order terms (geometrically small displacements). Basic
assumptions that make it possible to write the equilibrium
conditions with respect to the undeformed configuration
(physically small displacements)

a load that concentrates on internal points of a finite element and
that thus requires estimation of the equivalent nodal forces
discrete Kirchhoff triangle; widespread and frequently used
triangular Kirchhoff plate element

degree of freedom

nodes numbered separately but occupying the same position in
space
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DUMMY

END RELEASE

EQUIVALENCE
EULERIAN DESCRIPTION
FEM

FORCE METHOD
FORMATTED FILE
FORTRAN

FORWARD SOLVING

GAUSSIAN ELIMINATION

GAUSS POINT

GENERALISED (STRESS
OR DEFORMATION)

GEOMETRIC
NONLINEARITY

GROUP

REDUCED INTEGRATION

INDEFINITE
EQUILIBRIUM

INTERELEMENT JUMPS

INVARIANTS

ISOPARAMETRIC

ISOTROPE

Appendix IV: Essential glossary

a term introduced with no other aim than to exist and have some
value (for example, unnecessary parameters)

disconnection of one or more motions of a node from the
displacements within an element. The motion in question is not
hindered in any way by the released element

adjustment of a finite element aimed at reproducing the behaviour
of complex parts

description of the deformation that maintains a fixed position in
space, taking into consideration the various particles that occupy
that position over time

finite element method

method of solving elastic problems that considers forces or
stresses to be primary unknowns

text file in which numbers are arranged in strict accordance to a
predefined format

formula translation. Programming language once frequently used
in the scientific world, by now quite dated

numeric procedure that starts with the first equation in an
unknown in a triangular system and calculates all of the other
unknowns in increasing numeric order. Usually the intermediate
phase between reduction and back solving

technique for solving systems of linear equations consisting in the
progressive elimination of unknowns using elementary row
operations followed by back substitution

precise point in a domain where a function to be integrated is
evaluated in order to numerically calculate the integral itself.
Chosen point where stresses are evaluated.

quantity obtained by the appropriate integral summation of the
point values of stress or deformation, these being organised in
keeping with predictions made according to a given structural
theory

nonlinearity related to the impossibility of writing the equilibrium
conditions regarding the undeformed configuration

set of finite elements

numeric technique of integration using fewer Gauss points than
required in order to correct the overestimation of stiffness
condition of equilibrium imposed on a generic infinite portion of a
continuum in the framework of a given structural theory

the difference between the stress values of a node predicted from
the various elements that connect in it

quantities appertaining to the stress tensors that do not vary
according to the system of reference used to describe the state of
stress

a type of finite element formulation in which the shape functions
are identical to the functions used to simulate the boundary
model of material behaviour that assumes identical behaviour of
the material independent of the direction in which the force is
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JACOBIAN

KEYWORD
KIRCHHOFF PLATE

LAGRANGIAN
DESCRIPTION

LAME PARAMETER

LOAD CASE
LOAD COMBINATION

LOCAL COORDINATE
SYSTEM

LOCKING

LUMPED APPROACH

MACRO

MASTER-SLAVE

MATERIAL
NONLINEARITY

MECHANISM
MEMBRANE

MEMBRANE SYSTEM
MESH

MINDLIN PLATE
MIRRORING
(REFLECTION)
MULTIPOINT
CONSTRAINT (MPC)

NAMING
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applied

determinant of an appropriate matrix obtained with the derivative
of the functions that relate the real to the transformed
coordinates. Index of regularity and admissibility of an element
word or marking required in order to recognise and decipher
correlated information

theory in which the effects of shear deformation are disregarded
(thin plate)

description of the deformation that keeps a particle fixed and
takes into account the positions it occupies over time

particular way of expressing the elastic constants of a
homogeneous, isotropic body

condition that groups actions having a common physical cause

a load situation obtained by combining linearly the effects of
individual cases of loads appropriately weighted

coordinate system of an element suitably oriented for describing in
a simple way what takes place within the element

numeric phenomenon by which some finite elements lead to
abnormal overestimation of stiffness in certain conditions
technique that consists in attributing to the nodes an element of
force or mass related to distributed loads or mass densities,
evaluated by means of simplified, elementary schemes that are not
in keeping with the assumptions made about the displacement
field

a set of instructions followed automatically beginning with a few
initial parameters (or even with no parameters at all)

relationship between two nodes (master and slave) such that when
the displacements of the master are known, the displacements of
the slave are wholly determined

nonlinearity related to the constitutive law of non-elastic material

condition where a degree of freedom can assume non-null values
without there being any deformation energy

continuous two-dimensional plane in which the stresses all lie in
the plane itself and are constant within the thickness

system of typical stresses in a membrane

set of nodes in a FEM model with all the connectivity tables of
various elements that make up the structure

plate modelling the effects of shear deformations (thick plate)
procedure with which a certain set of objects is copied
symmetrically with respect to a plane, called the plane of reflection
constraining link between degrees of freedom and various nodes
of the structure

procedure in which the nodes and elements of a model are given
an alphanumeric symbol in order to distinguish them from others
independent of the progressive number assigned to them
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NAVIER-STOKES
EQUATIONS
NODAL LOAD
NODE

OBJECT ORIENTED
PROGRAMMING

ORTHOTROPE

OUT OF CORE

PATCH TEST

PLANE STRAIN

PLANE STRESS

PLATE ELEMENT

POISSON'S RATIO

PRINCIPAL STRESSES

PROCEDURAL
PROGRAMMING

PSEUDOMECHANISM

REDUCED INTEGRATION

REDUCTION
RENUMBERING

RESIDUALS

RIGID BODY MOTION

RIGID LINK

SELECTIVE
INTEGRATION

Appendix IV: Essential glossary

Partial differential equations that formally solve elastic problems
formulated with unknowns in the displacements

load applied directly to a node

a point in a model identified by three coordinates and having a
given number of degrees of freedom (usually three translations
and three rotations)

programming technique that considers the execution of a program
as the interaction between a given large number of abstract objects
model of the behaviour of a material admitting three distinct
principal directions to which various values of elastic constants are
related

circumstance where part of the information required for a
calculation has to be written onto the hard disk because the
complete set will not fit within avaible RAM

test aimed at guaranteeing that a certain kind of finite element is
capable of modelling constant states of deformation and rigid
body motions

simplified theory of the problem of elasticity that assumes to be
null longitudinal deformation normal to a plane that is repeatedly
equal indefinitely for geometry and loads

simplified theory of the problem of elasticity that assumes to be
null the normal stresses perpendicular to a thin planar lamina
finite plate element (thin or thick). Also called plate-shell because
it can be used to model shell structures

numeric coefficient between 0 and 0.5 that quantifies the
transverse contraction of a body in tensile stress

maximum and minimum values of stresses normal to a point
obtained by varying the angle of the plane being analysed
technique of programming that considers the execution of a
program as the ordered performance of a series of specific
instructions

circumstance such that a non-necessary degree of freedom is
included in the model without being constrained

numeric technique of integration using fewer Gauss points than
required in order to correct the overestimation of stiffness

see triangulation

procedure in which the numbering assigned to the nodes of a
structure is completely redone in order to minimise bandwidth
small, unbalanced forces acting on nodes as a consequence of
inevitable etrors in the numeric solution to the problem

motion of a structure or one of its parts that does not necessitate
any internal work (and consequently free motion)

constraint that imposes the invariability of mutual distances
between two or more points

numeric technique that integrates to a different degree of
precision vatious components of a stiffness matrix, in order to
reduce locking without the introduction of too many spurious
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SELF-BALANCED

SHAPE FUNCTION
SHEAR FACTOR
SHELL

SHELL ELEMENT
SINGULARITY

SINGULAR VALUE
DECOMPOSITION (SVD)
SKYLINE

SMOOTHING

SOLVER

SOLVING

SPLINE

SPRING ELEMENT
SPURIOUS MODES

SRI

STATIONARITY

STIFFNESS, DIRECT
STIFFNESS, GEOMETRIC

STIFFNESS, INDIRECT
STIFFNESS, MATRIX OF
STRAIN ENERGY
STRESS RECOVERY

SUBSTRUCTURE
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modes

systems in which the set of applied forces is such that it is already
balanced without requiring the addition of any constraining
reaction

function intended to predict the unknown displacement field
within a finite element

number used to correct the energy of shear deformation such that
when a constant distribution of shear stress is assumed an “exact”
value of strain energy is obtained

continuous two-dimensional surface of moderate thickness
finite shell element, usually available in advanced programs
circumstance where a stiffness matrix has a null determinant.

Area of the structure where the stresses or the deformation
assume values that are theoretically unlimited

technique used to extract solutions corresponding to the
singularity of a non-invertible matrix

profile of band length variability of various rows (or columns) of a
stiffness matrix

numeric technique used to regularise or homogenise the area of
stresses calculated through an analysis of the finite elements

program used for solving systems of equations associated with a
finite element problem and the calculus of stresses

numeric procedure used for calculating the solution of a system of
solution equations

kind of interpolation using polynomials at intervals having
requisites of continuity between one interval and the next

finite spring element

abnormal states of deformation with null deformation energy,
made possible by certain finite elements with reduced or selective
integration (for example, hourglass mode)

Selective reduced integration

circumstance where a numeric quantity dependent on a function
does not vary when a small variation is made in the function
stiffness demonstrated by a node when it is moved

added (positive or negative) stiffness related to the motion of a
body subject to a state of initial stress (stressed rods, cables)
stiffness demonstrated by a node held still when it is moved by
another node

a square matrix that summarises the elastic behaviour of the finite
element model

the quantity of energy stored in a solid due to a variation in its
configuration

procedure used to calculate the stresses beginning with the set of
nodal displacements

part of a structure that is modelled separately and then assimilated
through the use of appropriate techniques, to a kind of great
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TIMOSHENKO BEAM
TOTAL POTENTIAL
ENERGY
TRANSFORMATION
TRIANGULARIZATION
TRUSS (ELEMENT)
UNIFORM TORSION

VECTOR 1D

WINKLER FOUNDATION

Appendix IV: Essential glossary

“finite element” described by means of a number of nodes that is
distinctly inferior to that actually used

beam theory that takes account of the energy of shear
deformation (thick beams)

sum of the deformation energy and the load potentials

technique used to place a domain referring to one coordinate
system in correspondence with another domain referring to a
different coordinate system

procedure with which a square matrix is decomposed into the
product of two triangular matrices

finite truss element (models only the axial behaviour of a beam),
hinged by definition at the extreme nodes

kind of torsion that leads to identical warping in all sections, that
is, free displacements in the direction of the axis of the prism

a vector that places the number of a degree of freedom in
correspondence with the node number to which it appertains
schematisation in which the foundation is likened to a bed of
independent, elastic springs whose stiffness depends on the
characteristics of the terrain and on the surfaces in contact with it
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