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Preface 
This monograph evolved over the past five years. It had its origin as a 

set of lecture notes prepared for the Ninth Summer School of Mathematical 
Physics held at Ravello, Italy, in 1984 and was further refined in seminars 
and lectures given primarily at the University of Colorado. 

The material presented is the product of a single mathematical question 
raised by Dave Kassoy over ten years ago. This question and its partial 
resolution led to a successful, exciting, almost unique interdisciplinary col
laborative scientific effort. 

The mathematical models described are often times deceptively simple 
in appearance. But they exhibit a mathematical richness and beauty that 
belies that simplicity and affirms their physical significance. The mathe
matical tools required to resolve the various problems raised are diverse, 
and no systematic attempt is made to give the necessary mathematical 
background. The unifying theme of the monograph is the set of models 
themselves. 

This monograph would never have come to fruition without the enthu
siasm and drive of Dave Eberly-a former student, now collaborator and 
coauthor-and without several significant breakthroughs in our understand
ing of the phenomena of blowup or thermal runaway which certain models 
discussed possess. 

A collaborator and former student who has made significant contribu
tions throughout is Alberto Bressan. There are many other collaborators
William Troy, Watson Fulks, Andrew Lacey, Klaus Schmitt-and former 
students-Paul Talaga and Richard Ely-who must be acknowledged and 
thanked. 

Finally, I would like to acknowledge the continued support of the Army 
Research Office and its director, Jagdish Chandra. 

October 1988 Jerrold Bebernes 
University of Colorado 
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1 

Introduction 

1.1 Basic Fluid Dynamics and Chemical Kinetics 

Extremely rapid exothermic chemical reactions can develop in combustible 
materials. For multicomponent reacting mixtures of N chemical species, 
the complete system of conservation equations can be expressed as 

~~ = v • ( !( w) • v w) + g ( w, v w) (1.1) 

where w(x, t) = (p, i1, T, if) denotes the state of the system and where gt = 
gt + i1• V is the material derivative. The state w includes the density p, 

the temperature T, the mass fractions y = (y1, ... , YN) with I:[:,1 Yi = 1, 
and the mass-average velocity i1 = I:~ 1 YiUi where i1i is the velocity of 
species i. We also consider the pressure p, which is proportional to density 
and to temperature. The interaction of the chemistry of the species with 
the basic fluid flow is described by a highly nonlinear, extremely complex, 
degenerate, quasilinear parabolic system of partial differential equations. 
The problem of well-posedness for (1.1) has not been completely resolved 
[KZH2],[MAT]. 

Combustible systems composed of gases, liquids, or solids can experience 
reaction processes which are sustained primarily by a thermal mechanism. 
This process is typically initiated by boundary heat addition, by localized 
volumetric heating, by the passage of a dynamic wave, or by very fast 
compression. 

The ignition period process is characterized usually by the appearance 
of a localized warm region in which the heat production rate accelerates 
as the reactants are consumed. If conditions are appropriate, the warm 
region evolves into a region of relatively high temperatures with extremely 
rapid reaction rates. Subsequent ignition and combustion of the remaining 
combustible material leads to a significant level of power deposition which 
is associated with an explosive event. 

As a first step in analyzing the combustion process, we will derive the 
mathematical model from basic conservation principles. The following 
derivation is essentially that of Williams [WILl] and Buckmaster and Lud
ford [BUCl] with a few modifications. 

Conservation of Mass. The conservation of mass for each species i is given 
by 

(1.2) 
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where r; is the rate of production (or consumption) for each species i. In a 
closed system, it is necessary that 2:;:,1 r; = 0. The equation for the total 
conservation of mass is obtained by summing the equations in (1.2): 

fJp ~ 
fJt + V'. (pi1) = 0. (1.3) 

Conservation of Species. The equations in (1.2) can be rewritten using 
(1.3) and the diffusion velocities v; = i1; - i1. The resulting equations will 
be referred to as the conservation of species equations: 

P ( ~i +a. Vy;) = r;- v. (py;v;). 

We make the assumption that Fick's law applies here: py;v; = -pDVyi, 
where D is the coefficient of diffusion, and is assumed to be the same for 
all species. Thus, the conservation of species equations are: 

(1.4) 

The usual model for the rate of production r; is as follows. For each 
species i, let N; be the number of molecules per unit volume and let m; be 
the mass of a single molecule. The production rate for a one-step chemical 
reaction is r; =maY;. The mass balance is E;:,1v;m; = 2:;:,1 Aim;, where 
the nonnegative integer values v; and >.; are the stoichiometric coefficients 
for the reaction. The value v; counts the number of molecules of the reactant 
species i (and is 0 if species i is not a reactant). The value >.; counts the 
number of molecules of the product species i (and is 0 if species i is not a 
product). Consequently, 

(1.5) 

where w > 0 measures the rate of reaction. One assumes that w is propor
tional to the concentration of each reactant, where species i is counted v; 

times as a reactant. Thus, 

w =A fl (::r (1.6) 

where the proportionality constant A is assumed to be dependent only on 
temperature. We use the Arrhenius law here and choose 

A= BoTOI.e-EfRT 

where Bo and o: are constants, E is the activation energy, and 

N 

R=~L.J!j_ 
i=l m; 

(1.7) 
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where Ro is the universal gas constant. Since Ta reflects a weak tempera
ture dependence, we choose a = 0. Therefore, combining (1.5), (1.6), and 
( 1. 7) yields 

. - E N ( . )Vj Ti = mi(Ai- vi)Boe 1t'1' Tij=l ~ · (1.8) 

The conservation of species equations (1.4) become 

( !bJ.i ~ t'7 ) P at + u • vyi 

E N ( . )Vj + m·(>.·- v·)Boe-R'!' TI· l!1l.i. t t t J=l ffij 

(1.9) 

for i = 1, ... , N. 

Conservation of Momentum. Assuming no momentum is created by the 
chemical reactions, the conservation of momentum for the total system 
(treated as a single fluid) is 

(1.10) 

where S is the sum of the stresses in the individual species and the stresses 
due to the diffusion of species. The interaction of the species produces 
external forces on each individual species, but the net result is a zero force. 
We also assume that the gravitational effects are negligible compared to 
viscous forces. 

The stresses for each species are assumed to be of the form 

(1.11) 

where Di = ![V®ui+(V®ui)TJ is the deformation tensor, I is the identity 
tensor, Pi is pressure, and f.i.i is the coefficient of viscosity. Assuming that 
the intrinsic viscosities of the species are equal, we have f.i.i = f.i.Yi for all i. 
Summing these stresses (and neglecting higher order terms) yields 

(1.12) 

where D = ! [V ® u + (V ® u) TJ. The conservation of momentum equation 
becomes 

(1.13) 

Conservation of Energy. Assuming no energy is created by the chemical re
actions and the work due to interaction forces is negligible, the conservation 
of energy for the total system is 

(1.14) 
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where S is the stress tensor, ij is the sum of the separate energy fluxes and 
fluxes due to diffusion, and e is the sum of the separate internal energies. 
The symbol ":" indicates the dot product of two matrices. Kinetic energies 
of diffusion are considered to be negligible. 

The temperature T is assumed to be the same for all species. The partial 
pressures are Pi = pfloTydmi and so the combined-fluids pressure is 

N 
Yi p = """'pfloT- = pRT. 

L.J m· 
i=l ' 

(1.15) 

The separate internal energies are Ci = Ci(T) = hi - -J:; where the en
thalpies hi are given by 

The value h? is the heat of formation for species i at standard temperature 
To and the values Cp, are specific heats at constant pressure. Thus, 

(1.16) 

We assume that the energy flux for each species is due only to heat 
conduction and the diffusion of species, so the flux for species i is 

(1.17) 

where ki is the coefficient of thermal conductivity. Using Fick's law (PYi'Vi = 
- pDVyi) and summing the equations in ( 1.17) yields 

N 

if= kVT- LPDhiVYi (1.18) 
i=l 

where k = L:~ 1 ki. 
We wish to convert the energy conservation equation (1.14) into one 

involving the temperature T. Define 

N N 

Cv = L YiCp, (T) and Cv = L YiCv, (T) 
i=l i=l 

where Cv, is specific heat at constant volume. Since Cp, - Cv, = Ro/mi, 
we have 

(1.19) 
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We assume that Cp = Cp(T) and Cv = Cv(T). As a consequence, 

N N 
L: Vy;. Vh; = L: Cp, Vy;. VT = VCp. VT = 0 
i=l i=l 

and 
.... .... .... N .... .... 
Y' • if = Y' • (kY'T) + l::i=l Y' • (pDh;V'y;) 

.... .... N .... .... 
= Y' • (kY'T) + l::i=l hiY' • (pDV'y;). 

The left-hand side of the energy conservation equation is 

P ( ~; +a • v c) = 2::!1 h;p (~+a • Vy;) 

+ 2::!1 PYi ( ~ + a • v h;) - pR ( ~~ + a • vr) 
N ~ ~ · (aT ~ ~ ) = l::i=l hi[Y' • (pDV'y;) + ri] + pCp Tt + u • Y'T 

- pR ( ~~ + a. vr) 
N ~ ~ · (aT ~ ~ ) = l::i=l h;[Y' • (pDY'yi) + r;] + pCv 8t + u • Y'T 

where we have used the species conservation equation (1.4) and the identity 
(1.19). The right-hand side of the energy equation is 

s: v (l) a+ v. if = -(p +~~-tV. a)(V. a)+ 2~-t(D: v (l) a) 
.... .... N ..... .... 

+ Y' • (kY'T) + l::i=l hiY' • (pDV'y;). 

Equating the two sides yields 

pCv (~~ +a.vr) = 

v • (kVT)- p(V • a)+ 2~-t[-!(V. a)2 + D: v@ it] (1.20) 

- 2::!1 h;m;(>-.i- v;)Boe--IT Tif=l ( ~) v1
. 

The complete system of conservation laws for combustion can be summa
rized from (1.3), (1.9), (1.13), and (1.20) as 

~ + v. (pa) = o 
p (~~+a. va) = -Vp+ ~-t(~a + !V(V .a)) 

pCv ( ~~ + a. VT) = 
v • (kVT)- p(V • a)+ 2~-t[-!(V • a) 2 + D : v@ it] 
- 2::!1 himi(>-.;- v;)Boe--IT Tif=l (~)vi 

P ( ~ + a • Vyi) = 

V • (pDVy;) + m;(>-.;- v;)Boe--IT Tif=1 (~)vi 
p = pRT. 

(1.21) 
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1.2 Simplification of the System 

The single one-step irreversible reaction that we will consider is of the form: 

where F represents fuel, 0 represents oxidant, P represents the product, 
and where VF, vo, and >.p are stoichiometric constants. This reaction in
volves three mass fractions: YF, yo, and yp. If both fuel and oxidant are 
present in the correct proportions, then both are entirely consumed in the 
process. In this case the initial values YFo and YOo are of the same order of 
magnitude, so the reaction rate is strongly dependent on both mass frac
tions. However, if YFo » Yo0 , then the reaction rate is weakly dependent 
on YF since YF does not change much. Since YF is approximately constant, 
we ignore its species equation and consider only the single species equation 
for YO· 

Note that the stoichiometric mixture of fuel and oxidant satisfies 'JJ.Qyo = 
V F 

~-Choose m = VF + vo, >.o = 0, h = ho, y =yo, and 

then (1.21) becomes 

Pt + V • (pa) = 0 

p(at +a. va) = -Vp + Jl[~a + ~ v(v • a)] 

pCv(Tt +a. VT) = 

v • (kVT)- p(V • a) 

+ 2Jl[D : v ®a- ~(V. a)2] + Bhpmyme--IT 

P(Yt + ae Vy) = V • (pDVy)- Bpmyme--IT 

p= pRT. 

(1.22) 

The combustion model (1.22) can be nondimensionalized in a rational 
manner in order to elucidate the significant parameters. Assume initially 
that a reactive, viscous, heat conducting, compressible gas is in an equilib
rium state defined by the dimensional quantities p0 = p(x, 0), p0 = p(x, 0), 
To = T(x, 0), Yo = y(x, 0), and ao = a(x, 0). 

At time t = 0, a small initial disturbance is created on a length scale L. 
Define i = xj Las the new position vector. Let tR be a reference time (to be 
determined later). Define l = tftR as the new time scale. Nondimensionalize 
the system variables: p = pfpo, p = pf po, T = T /To, y = yfyo, and 
f1 = aj(L/tR). Also nondimensionalize the quantities: Ji = Jl/ Jlo, D = 
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DIDo, Cp = CpiC'Po• Cv = CviCv0 , k = klko, and K = KIKo, where 
K = kl(pCp) is thermal diffusivity. 

In the scaling of the system we will use the following quantities: 1 = 
Cp0 I Cv0 , the gas parameter; e = RT0 IE, the nondimensional inverse of 
the activation energy; Pr = Cpo/1-olko, the Prandtl number; Le = D0 1Ko, 
the Lewis number; Co = J1RTo, the initial sound speed; tA = LICo, 
the acoustic time scale; tc = £ 2 I K 0 , the conduction time scale; and h = 
hyoi(Cv0 To), the nondimensional heat of reaction. 

Substituting these into (1.22) and dropping the bar notation gives us the 
nondimensional model 

Pt + V • (pit) = 0 

p(itt +it • Vit) = -; ( ~) 2 Vp + Pr ( ~) 11-[~it + kV(V • it)] 
pCv(Tt +it • VT) = 

I ( ~) v. (kVT)- (1- 1)p(V. it) 
t 2 .... 1 .... 2 + 211-1(1-1)Pr(~ )[D: V ®it- 3 (V • it) ] 

+ tRBhpmyme--.lr 

P(Yt +it • Vy) = Le ( ~) V • (pDVy)- tRBpmyme--.lr 

p=pT. 

(1.23) 

In addition to the simplifying single-species chemistry assumption, we 
will use the method of activation energy asymptotics to obtain simpler 
models of the combustion process. In (1.23c,d), the reaction terms contain 
a term of the form exp(- e~). Activation energy asymptotics is concerned 
with the asymptotic expansion of solutions as e -+ o+. Usually different 
scalings of independent variables are involved. We will always work with 
the scaling x ~---+ xl L, but the reference time tR and scaling t ~---+ tltR will 
be chosen to select those aspects of the model that we are interested in. 

In the following sections we will develop various models based on acti
vation energy asymptotics, which we refer to as the ignition or induction 
period models. 

1.3 Solid Fuel Models 

The traditional theory of thermal reaction processes is formulated for non
deformable materials of constant density. Conceptually, this system is much 
simpler than for compressible gases. If the single chemical species is a solid 
in a bounded container 0 C 1R3 , then it= 0, p = 1, 1 = 1, and the ratio 
tRite= 0(1). Thus, (1.23) reduces to the reaction-diffusion system which 
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can be written as 

Tt- !:iT= e8ym exp(~"T1 ) 

Yt- (J!:l.y = -c8fym exp(~"T1 ) 

with initial-boundary conditions 

, (x,t) E 11 X (O,oo) 

T(x,O) = 1, y(x,O) = 1, x E 11 

T(x, t) = 1, 88~fxil = o, (x, t) E 811 x (0, oo) 

where (3 ~ 0, f > 0, and 8 > 0 is the Frank-Kamenetski parameter. 

(1.24) 

(1.25) 

Until relatively recently, even this system was considered intractable and 
was approximated by simpler models. One method of simplification is to 
identify and restrict the range of certain parameters and then use an asymp
totic analysis. For all fuels of interest, the parameter c is assumed small. By 
using the method of activation energy asymptotics, and letting T = 1 + cO 
and y = 1 - cc be the first order approximations, IBVP (1.24)-(1.25) can 
be written as 

Ot- !::,.(} = 8(1- ec)mexp( 1$ee) 

Ct- (J!:l.c = 8f(1- ec)m exp( 1$ee) 

with initial-boundary conditions 

, (x,t) E 11 X (O,oo) 

O(x, 0) = 0, c(x, 0) = 0, x E 11 

O(x, t) = 0, a;J(;jl = 0, (x, t) E 811 x (0, oo ). 

(1.26) 

(1.27) 

For c «: 1, the activation energy method has essentially decoupled (1.26) 
and we need only consider the solid fuel ignition model 

Ot- !::,.(} = 8e8, (x,t) E 11 x (O,oo) 

with initial-boundary conditions 

O(x,O) = 0, x E 11 

O(x,t) = 0, (x,t) E 811 x (O,oo) 

and the associated steady-state model 

-!::,.1/J = 8e.P, X E 11 

1/J(x) = 0, X E 80. 

We also will consider the small fuel loss steady-state model 

- !:l.¢ = 8 exp C : c¢) , x E 11 

</J(x) = 0, X E 80. 

(1.28) 

(1.29) 

(1.30) 

( 1.31) 

(1.32) 

(1.33) 
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The thermal reaction process in a rigid material during the ignition pe
riod is modeled by the solid fuel ignition model (1.28)-(1.29). Its solu
tion should predict the time-history of the spatially-varying reaction pro
cess. This process depends only on a pointwise balance between chemically 
generated heat addition and heat transfer by conduction. If the heat loss 
is sufficiently large compared with the energy release associated with the 
strongly temperature dependent reaction rate, then energy equilibrium is 
established. In this case the chemical reaction time is commensurate with 
the container time scale for conduction. The maximum system tempera
ture is never much different from the initial value because so much energy 
is lost to the relatively cold boundary. In this type of reaction, the reactant 
species is eventually consumed. 

In contrast, when the heat loss is sufficiently small, a localized tempera
ture rise occuring at first on the conduction time scale will cause the reac
tion rate to accelerate dramatically. As a result, the characteristic chemical 
time becomes much shorter than the conduction time during the induction 
period. When that occurs, a sharply focused temperature region appears in 
which the fuel is rapidly depleted. The explosive burst of power generation 
provides an essential distinction between a benign subcritical event and 
this more dynamic supercritical process. 

For a solid reactive fuel in a bounded container, the associated thermal 
event can be either violent or mild in the sense described above. If the 
thermal event is violent, then it is said to be supercritical or explosive. If it 
is not, then the event is said to be subcritical or a fizzle. 

Of these solid fuel models, we will be primarily concerned with IBVP 
(1.28)- (1.29) and BVP (1.30)-(1.31), and generalizations thereof. Detailed 
information on these models can be found in Chapters 2 and 3. Qualitative 
properties for the complete solid fuel model (1.26)-(1.27) can be found in 
Chapter 4. 

1.4 Gaseous Fuel Models 

If the chemical species is a warm reactive compressible ideal gas embedded 
in an infinite field of a cooler reactive or inert gas, or contained in a bounded 
container 0, then the complete model (1.23) does not immediately simplify 
as for a solid fuel and the problem ofwell-posedness for (1.23) is unresolved. 

We thus develop an induction period theory for a system with a high 
activation energy reaction. The character of the induction period models 
depends intimately on the ratios formed from the characteristic chemical 
time, the acoustic time, and the conduction time of the embedded warm 
region. A systematic investigation of the different ratios permits one to 
predict the type of thermal explostion to be expected for a given physico
chemical system. 
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Assume a high activation energy reaction ( c « 1) and set 

p = 1 +eM, p = 1 + cP, T = 1 +cO, i1 = cv, y = 1- cc, (1.34) 

assuming that the initial temperature disturbance remains small. If O(c) 
terms are ignored, we obtain the induction model for a gaseous system 
using (1.34): 

Mt +V•v= o 
iit = - ~ ( ~) 2 V P + Pr ( ~) jj[~v + i V(V • v)] 

Bt = tRBhc1e-ie6 + 1 (~)~(}-(I- 1)V • v 
t 2 1 ... + 2')'(1- 1)t-*1cjjcPr[- 3(V • v) 2 

+ {V ® v + (V ® v)T} : \'7 ® V] 

Ct = tRBc- 1e-f e9 + Le ( ~) ~c 

P = M +0. 

(1.35) 

The induction model (1.35) contains three time scales: tR, tA, and tc, 
which depend on the given thermochemical system with the reference time 
tR yet to be specified. If we assume that the perturbation temperature 
(} and the concentration c variations are caused by the chemical reaction 
process, then for c small these should be a balance of the accumulation 
terms Bt and Ct in (1.35) with the reaction terms involving e6 . We therefore 
define the reference time 

(1.36) 

which represents the chemical time multiplied by c. The reduced ignition 
models depend directly on the ratios of these time scales. 

If the chemical and conduction times are of the same duration so that 

tR 
a:=-= 0(1), 

tA 

then the induction momentum, energy, and species equations of (1.35) can 
be written as 

{f~ f iit = -~VP +a(~ f jjPr[~v+ !V(V • v)] 

Bt = he9 + a1~(}- (I- 1)V • v 
Ct = e9 + a Le~c. 

(1.37) 

For spatially macroscopic initial disturbances, we may assume that tA/tc 
« 1. From the inductive momentum equation in ( 1.37), we see that to a 
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first approximation P = P(t). Thus, from the mass equation in (1.35) and 
the energy equation in (1.37) we have 

h 9 1-1, 
Ot = -e + a!:l.O + --P (t). 

I I 

For a bounded container 0, since the total mass must be conserved, 

In p(x, t) dx = vol(O), 

which implies f0 M(x, t) dx = 0. Thus, 

In P(t) dx =In O(x, t) dx 

from P = M + () and hence 

P(t) = vol~O) In O(x, t) dx. 

We can thus rewrite (1.38) as 

() ~-1 1 r 
Ot- a!:l.O = 8e + - 1- vol(O) Jn Ot(x, t) dx 

and impose initial-boundary conditions of the type 

O(x,O) = 00 (x), x E 0 

O(x, t) = 0, (x, t) E 80 x (0, oo ). 

(1.38) 

(1.39) 

(1.40) 

This particular model will be referred to as the gaseous reactive-diffusive 
ignition model. Note that for 1 = 1 this model reduces to the classical solid 
fuel ignition model. The model (1.39)-(1.40) is analyzed in Chapter 5. 

If the ratio a= tR/tc «: 0(1), so that the chemical time is much shorter 
than the conduction time in the domain 0, then three subcases arise, all 
of which exhibit nondiffusive phenomena. 

If tA «: tR «: tc, then again P = P(t) is spatially independent and the 
energy equation becomes 

() ~ ~ 

Ot =he - (1- 1)V' • v 

which can be rewritten as 

ho ~-1 1 r 
Ot = -;ye + - 1- vol(O) Jn Ot(x, t) dx. (1.41) 

With initial condition (1.40a), this is a nondiffusive version of (1.39)-(1.40) 
and will be treated briefly in Chapter 5. 
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If O(tR) = tA « tc, then (1.35) reduces to 

(1.42) 

where P = P(x, t). This reactive-Euler model will be discussed in Chapter 
6. 

In case tR « tA « tc, the velocity perturbation v = v(x) is independent 
of time which implies dominant inertial confinement of the heated fluid. 

An induction period theory for a reactive perfect gas is modeled for the 
various time ratios by (1.39), (1.41), and (1.42). The evolution of these 
systems depends on the relative effects of the chemical power deposition, 
conductive heat transfer, energy convection, and compressive heating. Once 
again the associated thermal event can be either violent or mild in the sense 
desribed earlier. 

Finally, in Chapter 6 we analyze the full gaseous model given by (1.23). 
Gradient systems and conservation laws are discussed first. We then pro
ceed to analyze (1.23) in the special case of a heat-conductive viscous reac
tive compressible gas bounded by two parallel plates. In Euler coordinates 
the model is given by 

Pt+(vp)y=O 

p[Vt + VVyj = >.1 Vyy - k(pO)y 

p[Ot + vOy] = >.20yy + >.1v~- kpOvy + 8pf(p,O, z) 

p[Zt + VZyj = >.3(pzy)y- pf(p, (), z) 

(1.43) 

where k, 8, and >.i (i = 1,2,3) are positive constants, where t ~ 0 is the 
time, and where y E [0, 1] c ffi is the one -dimensional space variable. 
The variables p, v, (), and z represent the density, velocity, temperature, 
and concentration of unburned fuel, respectively. Let 0 = (0, 1) and 80 = 
{0, 1}. The initial conditions for (1.43) will be 

p(y,O) = Po(y), v(y,O) = vo(Y) 

O(y,O) = Oo(y), z(y,O) = zo(Y) 
, yEO. 

For a thermally insulated boundary, the boundary conditions are 

v(y, t) = 0, Oy (y, t) = 0 

Zy(y, t) = 0 
, (y, t) E 80 X (0, oo). 

(1.44) 

(1.45) 
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For a noninsulated boundary, the boundary conditions are 

v(y, t) = 0, zy(y, t) = 0 

a[O(y,t)- T]- bOy(y,t) = 0 
, (y, t) E 80 X (0, oo), (1.46) 

where a~ 0, b ~ 0, a+ b > 0, and T > 0. Under the appropriate assump
tions, global existence and uniqueness are proved for this model. 

1.5 Overview and Comments 

The spatially-varying transient process describing a thermal event should 
be entirely predictable for a given set of physical properties, system geome
try, and initial-boundary conditions. For the various initial-boundary value 
problems which model a reactive thermal event, the following questions 
naturally arise: 

1. Do these models give a reasonable time-history description of the 
state of the system? 

2. Do the various models distinguish between explosive and nonexplosive 
events? 

3. If the thermal event is explosive, can one predict precisely when the 
thermal explosions will occur, determine where the hotspots will de
velop, and finally predict how the hotspot or blowup singularities 
evolve as the blowup time is approached? 

4. How do the various models compare? 

In the next five chapters we will address these questions. Since we are 
primarily interested in explosive thermal events, we will extensively answer 
question number three, and refer to the three aspects of this problem as: 
Blowup - When, Where, and How. 

The brief derivation of the governing conservation equations (1.22) of 
combustion presented in this chapter follows the treatment given in the 
books by Williams [WILl], Buckmaster and Ludford [BUCl], and Strehlow 
[STR). The nondimensionalization of (1.22) for a single species to system 
(1.23) is based on the work of Kassoy, Kapila, and Stewart [KAP2]. 

The classical complete model (1.24)-(1.25) for a solid fuel has a theory 
which is now relatively complete. The basic existence-uniqueness results 
were proved independently by Bebernes, Chueh, and Fulks [BEB3] and by 
Amann [AMA4] using invariance techniques. 

The idea of using activation energy asymptotics to derive the ignition 
models from the complete system (1.24) can be traced back to the pioneer
ing work of Frank-Kamenetski [FRA]. The idea was put on firmer ground 
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by Williams [WIL2] in 1971 and has been systematically carried forward 
by a number of combustion theorists such as Buckmaster, Ludford, Kapila, 
Kassoy, Liiian, and their co-workers. 

Much remains to be done to get a reasonable mathematical theory devel
oped for (1.23) in higher space dimensions, although quite a bit is known 
for the one-dimensional model (1.43). This will be discussed in Chapter 
6. The ignition model (1.35) has reduced forms depending on the ratio of 
time scales which are amenable to a rigorous mathematical treatment. 

The gaseous reactive-diffusive ignition model (1.39)-(1.40) was first de
rived by Kassoy and Poland [KAS5] in 1983 and was further considered by 
Bebernes and Bressan [BEB5]. The reactive-Euler ignition model (1.41) is 
relatively easily analyzed and was done so in [BEB13]. Model (1.42) has 
been considered by Kapila, Jackson, and Stewart [JAC1], [JAC2], and by 
Majda [MAJ6]. 



2 
Steady-State Models 

The first section of this chapter deals with existence for the Dirichlet prob
lem where the nonlinearity F(x, u) is a nonnegative function. The key re
sult used is an existence theorem based on a priori knowledge of upper 
and lower solutions. We also analyze the spectrum of nonlinear eigenvalue 
problems and determine bounds on the critical eigenvalues. As applications 
we consider the Gelfand problem where f(u) = exp(u), and we consider 
the perturbed Gelfand problem where f(u) = exp( 1.;'eu)· 

The second section deals with a powerful result by Gidas, Ni, and Niren
berg. For a nonlinearity f E C1 in the Dirichlet problem on a ball in rn,n, 
any positive solution is radially symmetric and radially decreasing. The 
proof uses maximum principles and the method of moving parallel planes. 
We also discuss the overdetermined Dirichlet problem where u = 0 and 
~~ = c on the boundary of a set n. We prove that n is necessarily a ball 
in IRn. 

In the third section we give the proof of multiplicity for the Gelfand 
problem [f(u) = exp(u)] on a ball in IRn. The theorem is due to Joseph 
and Lundgren. Similar multiplicity results were developed by Dancer for 
the perturbed Gelfand problem [f(u) = exp( 1.;'eu)], but the approach is 
significantly different. We state the theorem without proof and illustrate it 
with bifurcation diagrams. 

Finally, the fourth section deals with the qualitative shape of solutions to 
both the Gelfand and the perturbed Gelfand problem. The proofs involve a 
detailed analysis of the bifurcation diagrams that accompany the problems. 
These results are due to Bebernes, Eberly, and Fulks. 

2.1 Existence on General Domains 

Consider the boundary value problem 

-~u = f(x,u), x En 
u(x) = O(x), X E an 

(2.1) 

where n c rn,n is a bounded domain whose boundary an is an (n- !)
dimensional manifold of class C 2+a for some o: E (0, 1). That is, for every 
X= (xb ... 'Xn) E an there exists aneighborhood N of X such that annN 
may be represented as Xi = h(xb ... , Xi-1, Xi+l, ... , Xn) for some i where 
hE C2+a(1Rn- 1 ,ffi). Assume f E ca(o x IR,ffi) and 8 E C(aO,ffi). A 
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solution ofBVP (2.1) is a function u E C(O,IR)nC2 (n,IR) which satisfies 
both equations in (2.1). 

Definition 2.1 A function o: E C(O,IR) nC2 (n,IR) is a lower solution of 
BVP{2.1} if 

-Ao:(x) ~ f(x, o:(x)), x En 
o:(x) ~ 8(x), X E an. 

An upper solution f3(x) is defined similarly where the inequalities above are 
reversed. 

Theorem 2.1 If BVP {2.1} has a lower solution o:(x) and an upper solu
tion /3(x) with o:(x) ~ /3(x) on 0, then BVP {2.1} has a solution u(x) with 
o:(x) ~ u(x) ~ /3(x) on 0. 

The proof of Theorem 2.1 can be found in Schmitt [SCH] and uses degree 
theoretic methods. 

Consider the nonlinear eigenvalue problem 

-Au= AF(x,u), x En 
u(x)=O, xEan 

assuming F E ca (0 x IR, [0, oo)) and A E IR. 

(2.2) 

Lemma 2.2 For A~ 0, o:(x) = 0 is a lower solution for BVP (2.2}. 

Proof Observe that o:(x) satisfies -Ao:(x) = 0 ~ AF(x,O) = AF(x,o:(x)) 
for A~ 0 since F(x, u) ~ 0. D 

Definition 2.2 The spectrum E of BVP {2.2} is the set of all A E IR such 
that (2.2} has a nonnegative solution. 

Lemma 2.3 If At E En (0, oo), then [0, At] c E. 

Proof By Lemma 2.2, o:(x) = 0 is a lower solution for (2.2). Let /3(x) be a 
nonnegative solution of (2.2) with A = At; then 

-A/3(x) = AtF(x,/3(x)) ~ AF(x,/3(x)) 

with /3(x) = 0 on an. Thus, /3(x) is an upper solution of (2.2) for any 
A E [0, At) with /3(x) ~ o:(x) on 0. By Theorem 2.1, (2.2) has a nonnegative 
solution for any A E [0, At]· D 
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Lemma 2.4 Assume there exist functions fo, r E ca(o, {0, oo)) such that 

F(x, u) ~ fo(x) + r(x)u, (x, u) E 0 X [0, oo); 

then BVP {2.2} has no nonnegative solutions for>.~ >.o(r) where >.o(r) is 
the first eigenvalue of 

-D.u = >.r(x)u, x En 
u(x) = 0, X E an. 

Proof. Let {3 ~ 0 be a solution of (2.2) where >. ~ >.o(r); then 

-D./3 = >.F(x, /3) ~ >.fo(x) + >.r(x)/3 

{2.3) 

for X E n with f3(x) = 0 on an. Also, a(x) = 0 satisfies {2.3) and, since 
fo(x) > 0 and>.~ >.o(r) > 0, 

-D.a(x) = 0 ~ >.fo(x) = >.[!o(x) + r(x)a(x)]. 

Thus, {3(x) is an upper solution and a(x) is a lower solution of 

-D.u = >.[fo(x) + r(x)u], x En 
u(x)=O, xEan 

with f3(x) ~ a(x). By Theorem 2.1 there exists a solution u where 0 ~ 
u(x) ~ {3(x). Since -D.u > >.r(x)u ~ 0 and u(x) "¢ 0 with u(x) = 0 on an, 
by the maximum principle, u(x) > 0 on n. 

Let w(x) be a nonnegative eigenfunction corresponding to >.o(r). Inte
grating uD.w - wD.u over n, we have 

0 =In (uD.w- wD.u) dx =In {w[>.fo(x) + >.r(x)u(x)]- u[>.0r(x)w(x)]} dx 

which implies 

(>.o- >.)In r(x)u(x)w(x) dx = >-fn w(x)fo(x)dx > 0, 

and hence, >. < >.0 (r) which is a contradiction since we had assumed >. ~ 
>.o(r). D 

For example, the Gelfand problem: -D.u = >.eu for x En and u(x) = 0 
for X E an, has no solution for >. ~ >.o where Ao is the first eigenvalue of 
the problem: -D.u = >.u for X En and u(x) = 0 for x E an. This follows 
since eu ~ u + 1 for u ~ 0, and Lemma 2.4 applies. 

Note that if F(x,O) > 0, Fu(x,u) > 0, and Fuu(x,u) ~ 0 for (x,u) E 
0 x [0, oo), then F(x, u) ~ F(x, 0) + Fu(x, O)u and Lemma 2.4 applies. If 
>. ~ >.o(Fu(·,O)), then>.¢ E of BVP {2.2). 

The next lemma is due to Bandle [BAN2] and uses symmetrization and 
isoperimetric inequalities. 
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Lemma 2.5 The solution w(x) of 

-~w = 1, X E 0 

w(x) = 0, X E 80 

is bounded above by (¥:-)2fn(2n)- 1 where Vn and Snare then-dimensional 
volumes of 0 and the unit ball, respectively. 

As a consequence of this lemma, we can prove 

Theorem 2.6 Assume there exists a nonnegative nondecreasing function 
foE ca such that F(x,u):::; fo(u) for (x,u) E 0 x [O,oo). Suppose that the 
function ]~), m ~ 0, assumes its maximum at mo. If 

>.1 = 2nmo(Sn/Vn)21n[!o(mo)Vnt1 , 

then [0, >.!] ~ E for BVP {2.2}. 

Proof. Clearly a(x) = 0 is a lower solution for (2.2). Select >. E [0, >.1] 
and consider f3(x) = >.f0 (m0 )w(x). The function {3(x) is a solution of the 
boundary value problem 

-~{3 = >.fo(mo), x E 0 

{3(x) = 0, X E 80. 

In addition, {3( x) ~ 0 on 0 and 

f3(x) = >.fo(mo)w(x):::; >.Ifo(mo)(¥:-)2fn(2n)- 1 :::; mo 

for x E 0, where we have used our hypothesis on >. 1 . Since 

>.F(x, {3(x)):::; >.fo(f3(x)):::; >.fo(mo) = -~{3, 

{3(x) is an upper solution for (2.2); By Theorem 2.1, (2.2) has a solution 
u(x) ~ 0. Consequently, >. E E and [0, >.!] c E. 0 

We can apply Theorem 2.6 to the Gelfand problem for 0 = B1 c 
m,n, n = 1,2,3. Since~= me-m has a maximum of e-1 at m = 1, 
>.1 = 2nfe. Let >.o be t~e"first eigenvalue for: -~u = >.u for x E B1 and 
u = 0 for X E a B 1; then 

2 

1. For n = 1, [0, 2/e] c E and no solution exists for >. ~ >.o = ~ . 

2. For n = 2, [0, 4/e] C E and no solution exists for >. ~ >.o = 5.784. 

3. For n = 3, [0, 6/e] c E and no solution exists for >. ~ >.o = 9.872. 
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The next result is due to Kazdan and Warner [KAZ]. 

Theorem 2.7 If F(x,u) > 0 for (x,u) E 0 x [O,oo), then there is a -Xo E 
(0, oo] such that a positive solution of BVP {2.2} exists for .X E (0, Ao). No 
solution exists for .X ~ .X0 or .X ~ 0. In addition: 

1. If lim infs-+oo F(:,s) > 0 uniformly in x, then -Xo < oo. 

2. Iflims-+oo F{:,s) = 0 uniformly in x, then -Xo = oo. 

Proof. Assume u is a positive solution of BVP (2.2) for .X~ 0; then -~u = 
.XF(x, u) ~ 0 for X E 0 and u(x) = 0 for X E 80, which imply by the 
maximum principle that u ~ 0 on 0. This contradiction leads us to conclude 
that A > 0 is necessary for existence of positive solutions to (2.2). 

By Lemma 2.3, if there is a positive solution of (2.2) for some -X1 > 0, 
then there is a solution for all .X E (0, .XI). Define 

P :={A: BVP (2.2) has a positive solution}. 

To show that P =I 0, we show that (2.2) has a positive solution for some 
-X1 > 0. 

The function :!£ = 0 is a lower solution to BVP (2.2). Let u be the solution 
to 

-~U= 1, X E 0, 

u(x) = o, x E ao. 
By the maximum principle, u(x) > 0 on 0. For .X 1 > 0 sufficiently small, 
-~u(x) ~ .X1F(x, u(x)) for all x E 0 (where the continuity ofF implies 
F(x, u(x)) is bounded on 0), and so u is an upper solution of (2.2) for 
A = .X 1 . By Theorem 2.1, there is a solution u ~ 0 to BVP (2.2). By the 
maximum principle, u(x) > 0 on 0, so .X 1 E P. This proves the first part 
of the theorem. Define .X 0 =sup P. 

Proof of part {1). If lim infs-+oo F{:,s) > 0, then we claim that -Xo < oo. 
The inequality for the lim inf implies the existence of a ~ 0 and f3 > 0 such 
that F(x, s) >a+ f3s. Thus, if u is a positive solution of (2.2) and if 1/J > 0 
is the eigenfunction associated with the first eigenvalue J.L of 

normalized so that 

-~1/J = J.L'l/J, X E 0, 

1/J(x) = o, x E ao, 
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then 

0 ('1/J, -D.u- J.I.U}£2(0) 

= ('ljJ,>.F(x,u)-JJ.u}p(o) 

> ('1/J, AO: + ().,8- J.l)U}£2(0) 

which is impossible if >.,8 ~ J.l. Thus, >. < ~ and >.0 :::; ~ < oo. 

Proof of part (2). If lim8 _.00 F(:,s) = 0, then, since F(x, s) < s for s 
sufficiently large and uniformly in x, one can construct an upper solution u 
for any >. > 0. The function y_ = 0 is always a lower solution. By Theorem 
2.1, there is a solution u ~ 0, so >.0 = supP = oo. 0 

This theorem gives us additional information for the Gelfand problem 
and for the perturbed Gelfand problem. 

Corollary 2.8 Given any bounded domain 0 c m_n, there exists 8FK E 

( 0, oo) such that 

1. forO< 8 < 8FK, BVP (1.90}-(1.91) has at least one positive solution, 
and 

2. for 8 > 8 F K, no solution exists. 

Moreover, if 0 is the unit ball in m_n, then 

2n J.l 
-:::; 8FK:::; -. 
e e 

where J.l is the first eigenvalue of: -!:l.'ljJ = J.l'I/J for x E 0 and '1/J(x) = 0 for 
X E 80. 

Proof. The existence of 8FK follows from Theorem 2.7. The lower bound 
on 8FK follows from Theorem 2.6. Since eu ~ eu for all u ~ 0, the value 
,8 in Theorem 2.7 can be chosen to be the number e; the upper bound on 
8 F K follows. 0 

The value 8FK is the critical value for the Frank-Kamenetski parameter 
8. Frank-Kamenetski [FRA] used this critical value to differentiate between 
explosive and nonexplosive thermal events. For 8 > 8 F K, the nonexistence 
of a solution for (1.30)-(1.31) was interpreted to mean that an explosion 
would occur. 

Corollary 2.9 Given any bounded domain 0 c m_n, BVP (1.92}-(1.99) 
has a solution for any 8 > 0. 

Proof. Since for any e: > 0, 

1 u 
- exp(--) --+ 0 as u--+ oo, 
u 1 +e:u 
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the result follows. D 

For rather general domains 0 which are open and bounded in IRn and 
whose boundaries are of class C2+a, there are many existential results for a 
wide variety ofnonlinearities [LIN]. For example, Schuchman [SCU] proved 

Theorem 2.10 Consider boundary value problem (2.2) where F(x, u) is 
continuously differentiable in u E JR+ and where F(x, 0) > 0 for all x E 0. 
If there are constants a > 0 and K > 0 such that 

Fu(x, u) :5 K(l + u)-(1+a) for all (x, u) E 0 x IR+, 

then there exists >.o > 0 such that boundary value problem (2.2) has a 
unique solution for every >. > >.o. 

Some partial multiplicity results are also known [DEF]. 

Definition 2.3 A solution Umin(x) of (2.2} is said to be a minimal solution 
of (2.2) if given any other solution u(x) of (2.2}, Umin(x) :5 u(x) for all 
x E 0. Similarly one can define a maximal solution Umax(x) of (2.2). 

We will use these definitions in later sections in this chapter. 

2. 2 Radial Symmetry 

Symmetrization techniques can be used to simplify a partial differential 
equation defined on a domain 0 possessing certain symmetry properties. 
If 0 is a ball in IRn centered at 0, then one could seek radially symmetric 
solutions. Although this approach may not produce all solutions to a given 
problem associated with a given partial differential equation, Gidas, Ni, 
and Nirenberg [GIDl] proved that for a large class of problems, positive 
solutions are necessarily radially symmetric. 

More precisely, for 0 = {x E IRn: lxl < R} = BR, let u E C2 (0,IR) be 
a positive solution of 

-~u = f(u), x E 0 

u = o, x E ao 
(2.4) 

where f E C1 (IR, IR); then u is radially symmetric and radially decreasing. 
That is, if r := lxl, then u = u(r) and u'(r) < 0 for r E (0, R). 

This implies that any positive solution of (2.4) is a solution of 

u"+n; 1 u'+f(u)=O, O<r<R 

u'(O) = 0, u(R) = 0. 
(2.5) 

Thus, we need only determine the existence of positive solutions of (2.5). 
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The assumption that u > 0 is necessary. For example, u(x) = sin(1rx) is 
a solution to: -u" = 1r2u for x E ( -1, 1) and u(±1) = 0. We have u(x) > 0 
for x E (0, 1), but u(x) < 0 for x E ( -1, 0). The solution u(x) is not radially 
symmetric. Even if u(x) ~ 0 the full result may not be true. For example, 
u(x) = 1- cos(27rx) is a solution to: -u" = 47r2(u -1) for x E ( -1, 1) and 
u(±1) = 0. We have u(x) ~ 0 (where u(O) = 0) and u( -x) = u(x), but 
u(x) is not radially decreasing. Note that the condition f(u) ~ 0 for all u 
implies that any nontrivial solution is positive (by the maximum principle). 

Although the result is stated for f E C1, this hypothesis can be weak
ened. The result also holds for any function f = h + h where h E C1 
and h is monotone increasing. In particular, the result holds if f is locally 
Lipschitz continuous. 

The proof utilizes maximum principles and the method of moving parallel 
planes. We first prove a maximum principle which is more delicate to prove 
than the standard ones. It is a generalization of the Hopf lemma. 

Lemma 2.11 Let 0* be a bounded domain whose boundary 80* is of class 
C2 • Let T be a hyperplane containing the normal to 80* at some point q. 
Let 0 be that portion of 0* which lies on one side ofT. 

Let wE C2 (0, [O,oo)) satisfy ~w ~ 0 for x E 0 with w(q) = 0. If sis 
any direction vector at q entering 0 nontangentially, then 

ow 
a;(q) > 0 

82 w 
or os2 (q) > 0 

unless w = 0. 

Proof Without loss of generality, we can orient 0* so that the plane T has 
normal vector 1 = (1, 0, ... , 0). Let 0 be on the side ofT which 1 points 
to. Let K 1 be a ball internally tangent to o· at q with radius rl. Again 
without loss of generality, translate 0* so that the origin 0 E rn,n becomes 
the center of K1. Let K2 be the ball of radius ~r1 centered at q. Define 
K = K1 n K2 n 0. Figure 2.1 illustrates these sets. 

Define z(x) = x1 ( e-<>r2 -e-ar~) for a> 0; then 

~z = 2ax1e-ar2 [2ar2 - (n + 2)], x E K, 

z(x) > 0, x E K and 

z(x) = 0, x E TU 8K1. 

Choose a= (n + 2)/rr Since r ~ ~r1 , we have ~z > 0 on K. 
If w ¢ 0 on 0, then w > 0 on 0 by the maximum principle. By the Hopf 

Lemma, g~ > 0 for any point in oK n 8K2. Thus, w > cx1 on oK n 8K2 
for some c > 0. Clearly w ~ 0 on (oK n oKI) u (oK n T). On the other 
hand, z ~ Xl on oK n 8K2. 
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T 

Figure 2.1. 

Define¢= w- ez; then¢ satisfies: ¢(x) ~ 0 for x E aK, ¢(q) = 0, and 
6.¢ < 0 for x E K. By the maximum principle,¢> 0 on K. At q we have 
either ¢s > 0 or if>ss ~ 0. But Z8 (q) = 0 and Z88 (q) > 0, so either Ws(q) > 0 
or W 88 (q) > 0. 0 

The Method of Moving Parallel Planes. Let n C 1Rn be a bounded domain 
with smooth boundary an. Let ). E 1R and let 1 E 1Rn be a unit vector. 
Define T>.. = {x E 1Rn : 1• x =>.}to be the hyperplane with normal/ and 
whose distance from the origin 0 is 1>-1. There is a >.o sufficiently large such 
that T>..o n 0 ¥- 0 and T>.. n 0 = 0 for ). > Ao. For any X E 1Rn' let X).. be its 
reflection through T>... 

Define E(>.) = n n {x : 1 • x > >.}; then E(>.) = 0 for ). ~ >.o and 
E(>.) ¥- 0 for ). < >.0 . The set E(>.) is called an open cap. Define E'(>.) to 
be the reflection of E(>.) through the planeT>... An example of these sets is 
illustrated in Figure 2.2. 

For ). < >.o with 1>. - >-ol sufficiently small, we see that E'(>.) C n. 
Decreasing ). further, we have E' ~ n until either 

1. E' ( >.) becomes internally tangent to an at some p ¢ T>.., or 

2. T>.. is orthogonal to an at some q E T>.. nan. 
Examples of these conditions are illustrated in Figure 2.3. 
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>.1 =sup{>.< >.o: condition (1) or (2) occurs}. 

The cap E(>.t) is called the maximal cap associated with "Y· Note that 
E'(>.) ~ n. 

If we decrease >. below >.1 , it may be that E' ( >.) ~ n. Define 

>.2 = inf{>. < >.o: E'(~) ~ n for >: E (>., >.o)}. 

The cap E(>.2) is called the optimal cap associated with "Y· Note that at >.2 
either (1) or (2) occurs and E'(>.2) ~ n. Figure 2.4 illustrates maximal and 
optimal caps. 

For the ensuing arguments we can assume without loss of generality that 
"Y = (1, 0, ... , 0) E IRn and >.o = max{x1 : x E 0} where x = (x1, ... , Xn)· 
Let >.1 and >.2 be defined as above. Define E1 to be the maximal cap 
associated with "Y and denote its reflection through T>. 1 by E~. Define E2 
to be the optimal cap associated with "Y and denote its reflection through 
T>. 2 byE~. 

For Xo E an and e > 0, define a neighborhood of Xo in n by n~ = 
n n B~(xo) where B~(x0 ) is the ball of radius e centered at xo. Define 
S~ =ann B~(xo). These sets are illustrated in Figure 2.5. 

Let v(x) = (v1 (x), ... ,vn(x)) be the unit outward normal to an at x. 
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Figure 2.5. 

Lemma 2.12 Let xo E 80 be such that v(xo) • 1 > 0. Choose c > 0 
sufficiently small so that v( x) •1 > 0 for all x E Se. If u E C2 (Oe) satisfies 
Uxl (xo) = 0, u(x) = 0 for X ESE, and u(x) > 0 for X E oe, then 

Y'u(xo) = 0 and D2u(xo) = [~u(xo)] v(xo)vt(xo) 

where D2u = [ux,xJ is then x n matrix of second derivatives of u. 

Proof On SE we know that u(x) = 0 and so Y'u(x) is normal to SE at each 
x. Since Se is a smooth (n- I)-dimensional manifold, the tangent space 
T(x) to x E Se is (n- I)-dimensional, say 

T(x) =span (w 1 (x), ... , wn- 1 (x)), 

where the wk(x) form an orthonormal set for each x. Consequently, Y'u(x)• 
wk(x) = 0 fork= I, ... ,n- 1. Since v(x) •1 > 0 on SE it must be 
that 1¢ T(x) and so {w1 (x), ... ,wn-1(x),l} is a basis for m,n for each 
x. The basis coefficients for Y'u(x0 ) are given by Y'u(x0 ) • wk(xo) = 0, 
k = I, ... , n- I, and Y'u(xo) •1 = Ux 1 (xo) = 0. Thus, Y'u(xo) = 0. 

Let x(s) be any smooth curve on SE such that x(O) = x0. Since u = 0 on 
SE, we have 
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for any smooth function y(8) E T(x(8)). Differentiating wit~ respect to 8 
gives us 

y(8f D 2u(x(8))x1(8) + y'(8fV'u(x(8)) = 0. 

One can choose n - 1 curves x( 8) so that at 8 = 0, 

wi(xof D 2u(xo)wi (xo) = 0, i,j = 1, ... , n- 1. (2.6) 

The hypotheses on u guarantee that a~(x) ~ 0 for x E BE. Moreover, 
since Y'u(x) and v(x) are parallel, we have 

v(x(8)fV'u(x(8)) = -IY'u(x(8))1 =: -p(8) 

for any smooth curve x(8) on BE with x(O) = xo. The function p(8) is 
nonnegative and differentiable. Thus, at a point where p = 0, we must 
have p' = 0. In particular, p'(O) = 0 since we had proved Y'u(xo) = 0. 
Differentiating with respect to 8 gives us 

[:8 v(x(8))] T Y'u(x(8)) + v(x(8)f D2u(x(8))x1(8) = -p'(8). 

At 8 = 0 we have v(x0 )T D2 (u(x0 ))x'(O) = 0. The curves x(8) can be chosen 
to obtain 

v(xo)TD2 (u(xo))wi(x0 )=0, j=1, ... ,n-l. (2.7) 

The set { w1 (x0 ), ... , wn-l (x0 ), v(x0 )} is orthonormal, so the block ma
trix 

Q(xo) = [w 1 (xo) I·· ·I wn- 1 (xo) I v(xo)] 

is orthogonal, Q(x0 )ek = wk(x0 ) fork= 1, ... , n-1, and Q(xo)en = v(xo), 
where the ek are the standard Euclidean basis vectors in rn.n. 

Combining equations (2.6) and (2.7), we obtain 

mij = (eifQ(xof D2u(xo)Q(xo)ei = 0 

for i = 1, ... , n and j = 1, ... , n- 1. Since D 2u(x0) is symmetric, from 
elementary linear algebra we see that 

Similar matrices have the same trace, so 

trace(Q(xof D2u(xo)Q(xo)) = trace(D2u(xo)). 

That is, mnn(xo) = trace(D2u(x0 )) = .D.u(xo). We now have 

D2u(xo) = Q(xo)diag{O, ... , 0, .D.u(xo) }QT (xo) = v(xo).D.u(xo)vT (xo) 

which completes the proof. D 
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u(x1 , •) 

Figure 2.6. 

Lemma 2.13 Let Xo E an be such that v(xo). I > 0. Choose c > 0 
sufficiently small so that v(x) • 1 > 0 for all x E Be:. Assume that u E 
C2 (fie:) satisfies 

1. u(x) > 0 for x En, 

2. ~u + f(u) = 0 for x E nc:, and 

9. u(x) = 0 for x E Be:; 

then there is a 8 E (0, c) such that Ux 1 < 0 on no. 
Proof. Since u > 0 on nand u = 0 on Sc;, it is necessary that \i'u•w:::; 0 on 
Be: for any vector w such that v • w > 0. In particular, since v(x) •1 > 0, 
we must have Ux 1 (x) = \i'u(x) •1:::; 0 on Be:. 

If the conclusion is false, then there is a sequence {xi}~ 1 ~ nc: such 
that xi-+ xo as j-+ oo and Ux 1 (xi) ~ 0. For j large, the interval Ii C IRn 
in the Xl-direction from xi to an intersects Be: at ai with Uxl (ai) :::; 0. 
Thus, there exists a sequence {xi}~ 1 ~ nc: such that x/ -+ xo as j-+ oo 
and Ux1 (xi) = 0. Figure 2.6 illustrates these values. 

By continuity we have 

(2.8) 

By the Mean Value Theorem, there is a sequence {xi}~1 ~ Ii such that 
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so by continuity we have 

Ux 1x1 (xo) = lim Ux 1x1 (xi) = 0. (2.9) 
J-+00 

If /(0) ~ 0, then ~u + c(x)u = ~u + f(u)- f(O) ~ 0 on OE where 
c(x) is constructed by the Mean Value Theorem. By the Hopf Lemma, 
Vu(xo) • w < 0 for any vector w such that v(x0) • w > 0. In particular, 
Ux 1 (xo) = Vu(xo •1 < 0, a contradiction to equation (2.8). 

If f(O) < 0, then by Lemma 2.12 we have Ux;x1 = [~u(xo)]viVj = 
- f(O)vwi for all i and i· Consequently, Ux 1x1 (xo) = - f(O)v~ f. 0, a 
contradiction to equation (2.9). As a result, our original assumption (that 
there is no 8 E (0, c) such that Ux 1 < 0 on 0 0) is incorrect and the lemma 
is proved. 0 

Lemma 2.14 Suppose there is a >. E [>. 1 , >.o) such that for x E E(>.) we 
have Ux 1 (x) ~ 0 and u(x) ~ u(x).) with u(x) ¢. u(x).); then u(x) < u(x).) 
for X E E(>.) and Ux 1 (x) < 0 for X E 0 n T).. 

Proof For 1 = (1,0, ... ,0) and x E E(>.) note that x). E E'(>.) is given by 
X). = (2).- XI> X2, ... , Xn)· 

Define h( x) := u( x).) for x E E' ( >.) [x). E E( >.)]; then h satisfies ~h + 
f(h) = 0 for x E E'(>.). Define w(x) := h(x) - u(x) for x E E'(>.); then 
~w+c(x)w = ~w+ f(h)- f(u) = 0 for x E E'(>.) where c(x) is constructed 
using the Mean Value Theorem. Since w(x) ~ 0 for x E E'(>.) and w(x) = 0 
for x E T). n 0, by the maximum principle we have w(x) < 0 for x E E'(>.), 
and by Lemma 2.11 we have aaw > 0 for X E T). n 0. 

X1 

Thus, u(x).) = h(x) < u(x) for x E E'(>.) and 0 < Wx 1 = hx1 - Ux 1 = 
-2Ux1 for X E T). n 0. This implies that Uxl < 0 for X E T). n 0 and 
u(x).) < u(x) for x E E'(>.) [which implies u(x) < u(x).) for x E E(>.)]. 0 

Lemma 2.15 Let H(>.) = {x E IRn : x1 > >.}. Let u(x) > 0 on 0, 
u E C2 (0 n H(>. 1)), and u(x) = 0 on oO n H(>.I). For any>. E (>.~> >.o) we 
have Ux 1 (x) < 0 and u(x) < u(x).) for x E E(>.). 

Proof By Lemma 2.13, for >. close to >.o with >. < >.o we have 

Ux 1 (x) < 0 and u(x) < u(x).), x E E(>.). (2.10) 

Decrease >. until a critical value 

J.t = inf{X E [>. 1 , >.o): (2.10) holds for>. E (X, >.o)} 

is reached. Equation (2.10) then holds for J.t < >. < >.o and, for>. = J.t (using 
continuity), 

Ux 1 (x) ~ 0 and u(x) ~ u(x).), x E E(J.t). (2.11) 
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We claim that J.L = A1 . Assume not; then J.L > A1. For any x0 E 8E(J.L) \ Tl' 
we have x!; E 0. Since 0 = u(x0) < u(x!;) we see that u(x~') "¥ u(x) in E(J.L) 
and so Lemma 2.14 applies. Thus, u(x) < u(x~') for x E E(J.L) and Uxt < 0 
for x E 0 n Tl' and equation (2.10) holds for A = J.l· 

Since Uxt < 0 on 0 n Tl', by Lemma 2.13 there is an e > 0 such that 
Uxt < 0 on OnH(J.L-e). By the definition of J.L, there are sequences {Ai}~ 1 
and {xi }~ 1 with Ai E (J.L - e, J.l) and xi E E(Ai) satisfying 

(2.12) 

By compactness of E(AI) there is a subsequence {xik}f= 1 such that xik ~ 
x E E(J.L). Thus, 

(2.13) 

But x E 8E(J.L) since (2.10) holds for A = J.l· If x ~ Tl', then x~' E 0 and 
by (2.13), 0 = u(x) ~ u(x~') which is a contradiction to u > 0 on 0. Thus, 
x E T~' and x = x~'. 

Fork sufficiently large, the line segment joining xik and x::k is in 0. From 
(2.12) and the Mean Value Theorem, there is a Yik such that Uxt (Yik) ~ 0. 
Letting k ~ oo we obtain Uxt (x) ~ 0 where x E Tl', a contradiction since 
(2.10) holds for A = J.L. Thus, our assumption that J.l > A1 is incorrect. In 
fact, p, = A1 and (2.10) is valid for all A E (AI, A0 ). D 

Corollary 2.16 If Uxt (x) = 0 for some x E 0 n T>'l, then u is symmetric 
in TAt and 

Proof. If Uxt (x) = 0 for some x E 0 n TAt, then by Lemma 2.14 we have 
u(x) = u(xAt) for x E E(A!). This implies that u is symmetric relative 
to TAt' Since u(x) > 0 in E(Al) and u = 0 on 80, we conclude that 
0 = E(Al) U E'(Al) U [TAt n OJ. D 

We now give the proof of the main result on radial symmetry stated in 
the introduction to this section. 

Theorem 2.17 For 0 = {x E IRn : JxJ < R}, let u E C2(0) be a positive 
solution of BVP {2.4} where f E C 1 ; then u = u(r) where r = JxJ and 
u'(r) < 0 for r E (O,R). 

Proof. By Lemma 2.15 and Corollary 2.16, ttxt < 0 for all x with x1 > 0. 
This implies that Uxt (x) > 0 for x1 < 0. Consequently, ttx, (x) = 0 for 
x1 = 0. By Corollary 2.16, u is symmetric in x1. Since the direction vector 
1 is arbitrary, the argument above works for any direction. It follows that 
u is radially symmetric and Ur < 0 for 0 < r < R. D 
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We now turn our attention to a related symmetry result for an overde
termined boundary value problem. The motivation comes from a problem 
solved by Serrin [SER] (where f(u) = 1). 

Theorem 2.18 Let n c IRn be a bounded domain whose boundary an is 
of class C2 • Let u be a positive solution of 

~u+f(u)=O, xEn 

u(x)=O, g~ =c, xEan, 

where f E C 1, then n = {x E IRn : lxl < R}. Moreover, u is radially 
symmetric and radially decreasing. 

Proof. As in the proof of Theorem 2.17, without loss of generality let 1 = 
(1, 0, ... , 0). Using the notation of that theorem, we will show that n is 
symmetric about the hyperplane T>.. In this case, since the direction 1 is 
arbitrary and since n is simply connected, it must be that n is a ball. 
Consequently, Theorem 2.17 applies and so the solution u must be radially 
symmetric and radially decreasing. 

Define (as in Lemma 2.14) the function h(x) = u(x>.,) for x E E'(.Xl); 
then h satisfies 

~h + f(h) = 0, x E E'(.Xl), 

h = u, x E T>., n aE'(.Xl), and 

h = 0, x E aE'(.Xl) \ T>.,· 

Set w = h- u for x E E'(.Xl). The maximum principle implies that either 
w > 0 or w = 0 on E'. 

If w = 0 onE', then n is symmetric about T>., and the proof is complete. 
If w > 0 onE', then h(x) > u(x) for all x E E'. Recall that E'(.Xl) is either 

1. internally tangent to an at pET>.,, or, 

2. T>., is orthogonal to an at some q E T>., nan. 

If (1) holds, then w(p) = 0 and wv(P) < 0 for an outward unit normal 
vector v. But Wv(P) = hv(P)- uv(P) = c- c = 0, a contradiction. It must 
be that condition (2) holds. We will show that w has a zero of second order 
at q. Lemma 2.11 will then provide us with a contradiction so that in fact 
w=:O. 

Since an is of class C2 , consider a rectangular coordinate system with 
Origin at Q for which an Can be represented locally by Xn = c/J(Xb ... , Xn-1) 

where ¢ is a C2 function, and where the Xn-axis is in the direction of the 
normal vector v(q). 

Since u E C2 (0), u :::: 0 on an can be expressed as 

(2.14) 
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Let <P(xb ... , Xn) = Xn -¢(x1, ... , Xn- 1); then 80 is represented by 4> = 0, 
so Y'<P is normal to 80. Consequently, 

where en = (0, ... , 0, 1). Moreover, v(q) =en, so Y'¢(q) = 0. The quantity 
c = ~~f~l = v(x) • Y'u(x) on 80 can be expressed as 

(2.15) 

where Xn is to be replaced by ¢(xi. ... , Xn-d· Differentiating (2.14) with 
respect to Xi yields 

for i = 1, ... , n- 1. Evaluating these equations at q produces Ux; (q) = 0 
fori= 1, ... , n-1. These conditions and equation (2.15) imply Ux,. (q) =c. 
Differentiating (2.14) with respect to Xi followed by Xj yields 

for i,j = 1, ... , n- 1. Evaluating these equations at q produces Ux;xi (q) = 
-c¢x;xi(q) for i,j = 1, ... ,n- 1. Differentiating (2.15) with respect to Xi 

yields 

n-1 n-1 

Ux .. x; = L [uxkf/Jxkx; + (uxkx; + Ux .. ¢x;) f/Jxk] + 2c L ¢xk¢xkx; 
k=1 k=1 

for i = 1, ... , n -1. Evaluating at q produces ux .. x; ( q) = 0 for 1 :::; i :::; n -1. 
Finally, 

n-1 

UxnXn = ~u- L Ux;x; =- f(u) + c~¢ 
i=1 

for all x E 80 near q, in particular at q. Therefore, we have determined all 
first and second derivatives of u at q. 

Since E' ~ 0, we have ¢u(q) = 0 fore= 2, ... , n- 1. Also, 

so first and second derivatives of u and h agree at q. Applying Lemma 2.11 
tow= h-uon E'(>11 ) gives us w8 (q) > 0 or W 88 (q) > 0. This contradicts 
u and h having the same first and second partials at q. D 
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2.3 Multiplicity in Special Domains 

For 0 = B1 c m,n, we can get very precise results for the Gelfand problem 

-~u=8eu, xEB1 
(2.16) 

u(x) = 0, x E 8B1. 

To find solutions u(x) E C2 (0), because of the maximum principle all 
solutions are positive, and hence by Theorem 2.17, all solutions are radially 
symmetric. One can equivalently look for positive solutions u(r) E C2 [0, 1] 
of 

n-1 
u" + --u' + 8eu = 0, 0 < r < 1 

r 
(2.17) 

with boundary conditions 

u'(O) = 0, u(1) = 0 or u(O) =a, u(1) = 0 (2.18) 

with u'(1) = -(3 < 0. 
The often quoted multiplicity result due to Joseph and Lundgren [JOS] 

is 

Theorem 2.19 Consider BVP {2.17)-{2.18). The following existence re
sults hold: 

1. n = 1: There exists 8FK > 0 such that 

(a) for each fJ E (O,fJFK), there are two solutions, 
{b) for 6 = 6 F K, there is a unique solution, and 
{c) for 6 > 6FK, there are no solutions. 

2. n = 2: Let DFK = 2; then 
{a) for each fJ E (0, 6FK), there are two solutions, 
(b) for fJ = fJ F K, there is a unique solution, and 
(c) for 6 > 6 F K, there are no solutions. 

9. 3 $ n $ 9: Let 6 = 2(n- 2); then there exists 6FK > 6 such that 

(a) for 6 = 6 F K, there is a unique solution, 
(b) for 6 > 6 F K, there are no solutions, 

{c) for 6 = 6, there is a countable infinity of solutions, and 

{d) for 6 E (0,6FK) \ {6}, there is a finite number of solutions. 

4. n ~ 10: Let 6FK = 2(n- 2); then 

{a) for 6 ~ 6 F K, there are no solutions, and 
{b) for each 6 E (0, 8 F K), there is a unique solution. 
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Proof Recall that o: = u(O) and j3 = -u'(1). For n = 1, (2.17) can be 
solved by integration to obtain 

u(r) = o:- 2lncosh (~rv'26e"') 

where o:, /3, and 6 are related by 

j3 = Jf32 + 26 tanh (~Jf32 + 26) 

and 

6 = ~e-<> [In ( 1 + v'1 - e-"')] 2 

2 1- v'1- e-<> 

For n = 2, (2.17) can also be solved by making the change of variables 
r = e-t and w(t) = u(r)- 2t to obtain w + 6ew = 0. We obtain 

u(r) = o:- 2ln ( 1 + ~6e"'r2 ) 

where the parameters are related by 

For n;?: 3, let t 1 = ~In [2<;e-;:2l], r = e-(t-tt), and u(r) = o: + 2t + z(t); 
then (2.17) becomes 

- 1-z - z + 2ez - 2 = 0 t1 < t < oo 
n-2 ' (2.19) 
z(oo) = -oo, z(oo) = -2 

with compatibility condition z( tl) = -o: - 2t 1 . We analyze this problem 
in the phase plane. Let y(t) = z + 2 and x(t) = 2(n- 2)exp(z(t)); then 
problem (2.19) is equivalent to 

x = x(y- 2), iJ = (n- 2)y- x, h < t < oo, 

x(oo) = y(oo) = 0 
(2.20) 

with compatibility condition t1 = ~In [ ~f~;};l]; also 6 = x(tl) and /3 = 

y(h). 
The two-dimensional system (2.20) has critical points at (0, 0) and (2(n-

2), 2). We now prove that there exists a unique heteroclinic orbit joining 
these two critical points. 
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Existence. Choose xo E (0, 2(n- 2)). Consider the following sets: 

L+ = {(x,y): y = n:_ 2 , 0 < x ~ xo}, 

L_ = {(x,y): y = 0, 0 < x ~ xo}, 

L = {(x,y): x = Xo, 0 ~ y ~ nx!2 }, and 

T = { (x, y) : 0 < x < xo, 0 < Y < n:_2 }. 

The triangular domain T is open and contains no critical points of (2.20). 
Define the subsets of L, 

E+ = { (xo, y) E L : <I>t(Y) exits T through L+} 

and 
E_ = {(xo,y) E L: <I>t(Y) exitsTthrough £_}, 

where <I>t(Y) indicates the flow of (2.20) in the xy-plane with initial data 
<I> to (y) = (xo, Y ). 

The vector field for (2.20) points strictly outward from T on both L+ 
and L_. In particular, (x0 , x0 j(n- 2)) E E+ and (x0 , 0) E E_, so these sets 
are nonempty. By continuous dependence, the sets E+ and E_ are open 
sets (relative to L). Moreover, E+ n E_ = 0 and E+ n E_ = 0. Since Lis 
a connected set, L -:f. E+ U E_. That is, there must be at least one point 
(xo, Yo) whose flow <I>t(Yo) meets (0, 0) at t = oo. 

Uniqueness. In the region T, any solution to (2.20) has the property x(t) < 
0, so by the Inverse Function Theorem, one can think oft = t(x) and 
y = y(x). In T, system (2.20) can be written as 

dy = (n- 2)y- x y(O) = O 
dx x(y - 2) ' 

(2.21) 

for 0 < x < xo. Suppose that (2.21) has two solutions, Yl(x) and Y2(x). 
Define D(x) = Yl(x) -y2(x). Equation (2.21) has a unique solution for any 
initial data where x > 0, so D -:f. 0 in T. Without loss of generality, say 
D > 0 for x > 0. It can be shown that 

1 dD x-2(n-2) 
D dx x(y1 - 2)(y2 - 2) 

(2.22) 

As X--+ o+, Yl(x)--+ 0 and Y2(x)--+ 0. Consequently, the right-hand side 
of (2.22) approaches -oo. For x > 0 and sufficiently small, we have 

d 1 dD 
dx 1nD(x) = D dx ~ -€ < 0. 

An integration yields D(x) ~ D(xl) exp(e(x1 -x)) for 0 < x ~ x1 . However, 
this implies that D(O) > 0, a contradiction since D(O) = 0. 
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We have proved that there is a unique solution to (2.20) for t 1 < t < oo. 
We now want to determine the behavior of this solution as t--+ -oo. One 
can show that there is a rectangle R = (0, x) x (0, Y) such that the solution 
(x(t),y(t)) E R for all t E (-oo,tl), and so this solution must converge 
either to a limit cycle or a critical point as t --+ -oo. The vector field for 
the system rules out the critical point (0, 0). 

At the critical point (2(n- 2), 2), the linearization of (2.20) is 

! [ x- 2(n- 2) l = [ 0 2(n- 2) l [ x- 2(n- 2) ]· 
y-2 -1 n-2 y-2 

The eigenvalues for the linearization are 

A=~ [(n- 2) ± J(n- 2)(n- 10)]. 

If 2 < n < 10, then the eigenvalues are complex-valued with positive real 
parts; the critical point is a spiral node. If n = 10, then the eigenvalue is 
unique and positive; the critical point is an unstable node. For n > 10, 
the eigenvalues are distinct positive real numbers, so the critical point is 
an unstable node (and one eigenspace is dominant). In any case, the same 
behavior holds locally for (2.20) at the critical point as in the linear case. 

One can see from the vector field for (2.20) that either (x(t),y(t)) --+ 

(2(n- 2), 2) as t --+ -oo or (x(t), y(t)) spirals about (2(n- 2), 2). In this 
last case, the orbit cannot spiral to a non-constant periodic orbit. If there 
were such a periodic orbit 80 enclosing a region 0, then on this orbit the 
solution (x(t), y(t)) would satisfy 

-fldx + xdy = 0 or - ~dx + ~dy = 0. 
X X 

If F(x,y) = ~ = y- 2 and G(x,y) = ~ = (n:2)11 - 1, then by Green's 
Theorem, 

0= j (-Gdx+Fdy)= f (Fx+G 11 )dA= f n- 2 dA>O, lao lo lo x 
a contradiction. Thus, there are no limit cycles for (2.19). Moreover, there 
is a unique heteroclinic orbit connecting the two critical points (0,0) and 
(2(n- 2), 2). 

We summarize our observations in terms of the following (8, {3) bifur
cation diagrams shown in Figure 2.7. Each point (x(tl),y(tl)) on the bi
furcation curve is equal to a point (8, [3) via the change of variables (2.19) 
and (2.20), and via the compatability condition t 1 =~In [ 2 (;e~2)]. That is, 

z(t1) = -a-2t1 implies x(tl) = 2(n-2) exp(z(tl)) = 8, and z(tl) = -2+{3 
implies y(t1 ) = {3. This pair (8, [3) provides us with a solution 

u(r) =a+ 2t +In ( x(t) ) , r = e-(t-tt) 
2(n- 2) 
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Figure 2.7. 
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n = 1, 2 

Figure 2.8. 

such that u(O) = a, u'(O) = 0, u(l) = 0, and u'(l) = -(3. One can de
termine the multiplicity of solutions for a given 8 by observing how many 
times the vertical line 6 = 8 intersects the heteroclinic orbit. D 

For the perturbed Gelfand problem 

-Llu = 6 exp( 1_;'eu), x E 0 

u(x)=O, xE80 

where 0 = BR = {x E m,n: lxl < R}, Dancer [DANl] proved: 

(2.23) 

Theorem 2.20 For any c > 0 and 6 > 0, there exists at least one and at 
most finitely many solutions to BVP {2.29}. 

The proof uses perturbation arguments and is quite involved and tech
nical. We only illustrate the results in Figure 2.8. The value e is positive 
and chosen sufficiently close to 0. 

Using the terminology of Dancer, the solutions represented by the solid 
line (-) in Figure 2.8 are called small-small solutions. Those solutions 
represented by the broken line (- -) are called large-small solutions. Those 
solutions represented by dotted line (- · -) are called large solutions. The 
shape of the bifurcation curves indicated in Figure 2.8 may not be exactly 
correct. The branch representing large-small solutions is arbitrarily close 
to the small-small solution branch for c > 0 but small. We use this fact in 
Section 2.4 on solution profiles. 
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2.4 Solution Profiles 

We first consider the Gelfand problem 

-~u = 8eu, X E Bl 

u = 0, X E 8B1 

which by Theorem 2.17 is equivalent to 

u" + n;-1 u' + 8eu = 0, 0 < r < 1 

u'(O) = 0, u(1) = 0. 
(2.24) 

We will define a solution u(r) of (2.24) to be bell-shaped if it has a unique 
point of inflection for r E (0, 1). We can then prove the following result. 

Theorem 2.21 Consider BVP {2.24). 

1. For n = 1, all solutions are concave on [0, 1]. 

2. For n = 2: 

(a) If 8 E (0, 8FK ), then the minimal solution is concave on [0, 1] 
and the maximal solution is bell-shaped. 

(b) If 8 = 8FK = 2, then the solution is concave on [0, 1) with 
u"(1) = 0. 

9. For n ~ 3, there exists 8 < 8FK such that: 

(a) If 8 = 8, then the minimal solution is concave on [0, 1) with 
u"(1) = 0. 

(b) If 8 < 8 ~ 8 F K, then all solutions are bell-shaped. 

(c) If 0 < 8 < 8, then the minimal solution is concave on [0, 1] and 
all other solutions are bell-shaped. 

Proof For n = 1 we see that u"(r) < 0 on [0, 1] and the concavity is obvious. 
For n ~ 2, note that u"(O) = -~e0 < 0 and that u"(1) = (n- 1),8- 8, 

so sgn[u"(1)] = sgn[(n- 1),8- 8]. 
If the points of inflection are unique (if they exist) and if the bifurcation 

curve intersects .8 = L(8) = n~l uniquely on the minimal branch, then our 
assertions (2) and (3) hold. For if ( 8, ,8) E D, where D is the bifurcation 
curve, satisfies .8 > L(8), then u"(1) > 0 and u"(O) < 0 imply there exists 
R E (0, 1) such that u"(R) = 0 and (R, u(R)) is a point of inflection. By the 
uniqueness of inflection points, the solution u(r) corresponding to (8, .8) is 
bell-shaped. If (8, .8) ED satisfies .8 < L(8), then u"(1) < 0 and u"(O) < 0 
imply no inflection points or more than one. Uniqueness would rule out the 
latter case. 

To complete the proof, we must prove that 
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(i) D intersects (3 = L(8) uniquely, and 

(ii) there is at most one inflection point for the solution u. 

We will prove (i) first. For n = 2, (i) is immediate since D = {(8, (3) : 
(32 - 4(3 + 28 = 0}. For n ~ 3, (i) is a consequence of a sequence of lemmas. 

Lemma 2.22 Let u(x) be a solution of (2.24}; then 

{ [(2- n)u + 2n]8eudx = ((32 + 28)wn 
}Bt 

where Wn is the surface area of the unit sphere B1 C IRn. 

Proof Note that 

Ll (r :~) = r a~u) + 2Llu = -8eu (r :~ + 2) . (2.25) 

Define v = 8(u-2)eu; then v = -28 for x E 8B1 and rg~ = 8(u -l)eurg~. 
Since 

fB 1 r~~ dx = fB 1 x • Vvdx 

= faBi v ,f11 [V( ~r2 )] ds- fBi vil( ~r2 ) dx 

= -28 faB 1 rg~ ds- fB 1 nvdx 

= -28wn- fBi nvdx, 

we have fB 1 (r~~ + nv) dx = -28wn where Wn is the surface area of B1. 
Define I:= fB1 [-uil(r~~) +r~~Llu]dx. Then by (2.25), 

I f [8ueu(r 8 u + 2)- 8eurau] dx Bt 8r 8r 

= fB, [8(u- l)eur~~ + 28ueu] dx 

= fB 1 [rg~ + 2v + 48eu] dx 

fB 1 [rg~ + nv + (2- n)v + 48eu] dx 

= -28wn +fBi [(2- n)u + 2n]8eu dx. 

But by Green's identity, 

I= f [-u.!.....(r 8u)+rauau] ds= f r(8u) 2 ds 
} aB1 OrJ OTJ 8r OTJ } aB1 OTJ 

since u = 0 on 8B1, r = 1, and .f11 = gr on 8B1; so I= (32wn. Thus, 

f [(2- n)u + 2n]8eu dx = ([32 + 28)wn (2.26) 
}Bt 

which completes the proof. D 
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Lemma 2.23 For n ~ 3, if (8, /3) ED, then (32 - 2n/3 + 28 < 0. 

Proof. By Green's identity, f81 8eu dx = f3wn. Thus, (2.26) gives us 

f f: u d (32 - 2n/3 + 28 vue X= Wn· 
B 1 2- n 

Since the integral is positive and since n ~ 3, we necessarily have /32 -

2n/3 + 28 < 0. 0 

Lemma 2.24 The bifurcation curve D intersects the graph of /3 = L(8) = 
n~ 1 in at least one point where n- 1 < 8 < 2(n- 1). 

Proof. Let /3(8) be the arc of D which originates at (0,0) and terminates at 
(8FK, 2). From (2.22) we obtain 

/3'(8) = (n- 2)/3- 8 (2.27) 
8(/3- 2) 

By Lemma 2.23, for /3 = 2, we have 8 < 2(n- 1) and so /3(8) reaches 
/3 = 2 at 8 < 2(n- 1). Observe that /3'(0) = ~ < n~ 1 = L'(O). Since 
L(2(n- 1)) = 2, (3(8) intersects L(8) at a value 8 < 2(n- 1). 

If /3(8o) = L(8o) = /3o for /3o E (0, 1], that is, for 8o E (0, n- 1], then 
/3'(80 ) = [(n- 1)(2- /3o)t 1 < (n- 1)-1 = L'(80 ). Thus, if there are any 
points of intersection for f3o E (0, 1], then there is only one. This implies 
(3'(0) ~ (n -1)-1. But {31(0) = n-1 < (n -1)-1, so there are no points of 
intersection for /3 ~ 1. 

Since (3'(8) = [(n -1)(2- /3)]- 1 > (n -1)-1 for any (8, (3) with /3 = L(8) 
and n- 1 < 8 < 2(n- 1), the intersection is unique on that arc. 0 

For n ~ 10, the shape of the bifurcation curve D guarantees that D and 
the line /3 = L(8) intersect at a unique point. 

Lemma 2.25 For 3 ~ n ~ 9, D intersects L = {(8, /3) : 8 > 0,/3 = n~ 1 } 
uniquely. 

Proof. By Lemma 2.24, D n L :f:. 0. We claim that there are no other 
intersections as D spirals towards (2(n- 2), 2). 

Let R be the region bounded by 

£1 = {(8,/3): 8 = 2(n -1), 2 ~ /3 ~ 2~::::~}, 

L2 = {(8,/3): /3 = 2~::::~, n ~ 8 ~ 2(n -1)}, 

£3 {(8, (3) : (3 = -~82 + ~8 + ~' 1 ~ 8 ~ 3} for n = 3, 

= {(8, /3) : /3 = n~ 1 + 1, n- 2 ~ 8 ~ n} for n ~ 4, 

L4 = {(8,/3): 8 = n- 2, 1 ~ /3 ~ 2}, 

Ls = {(8, /3) : /3 = 1, n- 2 ~ 8 ~ n- 1}, and 

L6 {(8,/3): /3 = n~ 1 , n -1 ~ 8 ~ 2(n-1)}. 
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Figure 2.9. 

Figure 2.9 illustrates the region R. 
Observe that {3'(8) < 0 on 

S = {(8,{3): 8 > 2(n- 2),2 < f3 < n~2 } 

u{(8,{3): 0 < 8 < 2(n -1), n~2 < {3 < 2} 

and {3'(8) > 0 on {(8, {3) : {3 > 0, 8 > 0} \ S. Thus, D cannot leave R 
through L1 or L2. The orbit cannot leave through L3, L4, L5, or L6 since 
the slope at such a crossing would not agree with {3' ( 8) evaluated on these 
sets. Thus, the first point of intersection of D with L6 is the only point of 
intersection. 0 

This completes the proof of (i) for n ~ 2. We now show that points of 
inflection for the graph of u(r) are unique, using the fact that D intersects 
L(8) uniquely. 

Lemma 2.26 Consider (2.17}-(2.18} with (n-1){3-8 = Oforn ~ 2. There 
exists one and only one solution u(r) with 8 = (n -1){3. This guarantees a 
unique solution such that u"(1) = 0. 

Proof. For n ~ 3, D intersects L at the unique point (8, {3). This gives the 
unique solution u(r). For n = 2, D is given by {32 - 4{3 + 28 = 0 which 
intersects {3- 8 = 0 uniquely at (8, {3) = (2, 2). 0 

The proof of Theorem 2.21 will be complete if we can show any solution 
u(r) of (2.17) has at most one inflection point for n ~ 2. 
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Lemma 2.27 Let u(r) E C2 ([0, 1],lll) be a solution of (2.17} for n ~ 2; 
then u has at most one inflection point. In fact, if u" ( 1) > 0, then u" = 0 
for a unique r E (0, 1). If u"(1) < 0, then u is concave on [0, 1]. 

Proof. Let R E (0, 1) be the first value of r such that u"(r) = 0. Define 

m := u'(R); then u(R) =In [ -mg~- 1 )]. In (2.17), let r = sR and v(s) = 

u(r)- u(R). ForsE [0, 1], we have 

v" + n~ 1 v' + 8ev = 0, 0 < s < 1 

v'(O) = 0, v(1) = 0, v'(1) = -73 
(n-1)/3-8=0 

where 8 = -(n- 1)mR > 0 and /3 = -mR > 0. 

(2.28) 

By Lemma 2.26, there is a unique pair (8, /3) satisfying (n- 1)/3- 8 = 0 
and a corresponding unique solution v(s). Thus, v"(1) = 0. Since u"(r) < 0 
on 0 ~ r < R, v"(s) < 0 for 0 ~ s < 1. 

Suppose there as a value P E (R, 1] such that u"(R) = u"(P) = 0. Set 

f = u'(P); then u(P) = In [ -t~~- 1 )]. Make a change of variables r = sP 
and v(s) = u(r)- u(P). Restricting 8 E [0, 1] we have that v(8) satisfies 
(2.28) with 8 = -(n- 1)£P and /3 = -fP > 0. By uniqueness, v"(s) < 0 
for 8 E [0, 1]. But 

v"(R) = P 2u"(R) = 0 p 

with 0 < ~ < 1 is a contradiction. 0 

These last lemmas prove (ii), so the proof of Theorem 2.21 is complete. 0 

We now turn our attention to the perturbed Gelfand problem: 

-~u = 8 exp( 1_;' .. J, x E B1 

u(x)=O, xE8B1 
(2.29) 

where 8 > 0 and c > 0. By the maximum principle, all solutions to (2.29) 
are positive on B1 . By Theorem 2.17, all solutions must be radially sym
metric. BVP (2.29) is equivalent to 

u"+n- 1 u'+8exp(-u-)=0 0<r<1 
r 1+eu ' 

u'(O) = 0, u(1) = 0. 
(2.30) 

We use the same notation as before: a = u(O) and (3 = -u'(1). For c 
sufficiently close to 0, we can obtain limited information about solution 
profiles for (2.30). This information is not as precise as that for the Gelfand 
problem, but it appears that such precision is attainable with more detailed 
work. (See Figure 2.8 and the comments following it.) 



44 2. Steady-State Models 

Theorem 2.28 Consider BVP {2.90). 

1. For n = 1, c > 0, and 6 > 0, every solution is concave. 

2. For n = 2, all solutions are bell-shaped or concave on [0, 1). The 
solutions corresponding to (6, {3) E De {the bifurcation curve) with 
{3 < 6 are concave. 

9. For n ~ 3 and c > 0 sufficiently small, there are values 61 (e) and 
62(c) such that the minimal solution is concave down for 0 < 6 < 61 
and not concave for 62 < 6 < 6FK(c). 

The results are proved by the following set of lemmas. 

Lemma 2.29 For c > 0 and sufficiently close to zero, any large solution 
of {2.90) must satisfy u"(1) > 0. 

Proof. We point out that, as in the results for the Gelfand problem, 
sgn[u"(1)] = sgn[(n- 1){3- 6]. Let u(r) be a large solution to (2.30). Let 
J.1. E (0, 1). There exists a constant k such that u(r) ~ ke1/e for r E [0, J.L]. 
Let f(u) = exp(H~'w)· Integration of the differential equation in (2.30) 
yields 

{3 = 6 J; rn-l f(u(r))dr ~ 6 Jri' rn- 1 f(u(r))dr 

~ 6 Jri' rn-1 f(ke1/E)dr = 6~ f(ke1/E) > n~1 

for c sufficiently close to 0. Thus, u"(1) = (n -1){3- 6 > 0 for c sufficiently 
close to 0. D 

Lemma 2.30 Let n = 2. Points of inflection to solutions of {2.90} are 
unique. Consequently, all solutions are either bell-shaped or concave down. 

Proof. Differentiating in (2.30) gives us 

u111 + ( ru" r- u') + 6/'(u)u' = 0. 

Suppose (R, u(R)) is a point of inflection. Then 

111 (R) = u'(R) ( 1 Ru'(R) ) 
u R2 + [1 + cu(R)] 2 

(2.31) 

where use has been made of u"(R) = 0. The function ru'(r) is decreasing 
and the function [1 + cu(r)]- 2 is increasing. Suppose (P, u(P)) is another 
point of inflection where R < P < 1, u"(r) < 0 for r E [0, R), and u"(r) > 0 
for R < r < P; then 

Pu'(P) Ru'(R) 
1 + [1 + e-u(P)]2 :5 1 + [1 + w(R)J2 < 0 
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where the last inequality is valid since u111 ( R) > 0. This set of inequalities 
forces u"'(P) > 0 which cannot happen, so (R,u(R)) is the only point of 
inflection. As a consequence, a solution to (2.30) is either concave down or 
bell-shaped on [0, 1). D 

Lemma 2.31 Let n 2: 3. For e > 0 sufficiently close to 0, the graphs of 
the bifurcation curve and the line (n -1)P- 6 = 0 intersect in at least two 
points with the large-small branch and in a unique point with the small
small branch at the point (8(e), fi(e)). 

Proof From the results on the Gelfand problem, we had a unique point 
of intersection (6, P) = (8(0), fi(O)) where the function notation indicates 
e = 0. At this point of intersection, the angle of intersection is positive so 
that a small perturbation of the bifurcation curve still yields a unique point 
of intersection (8(e), fi(e)). By our earlier remark on the closeness of the 
large-small branch to the small-small branch, the large-small branch and 
the straight line must intersect in at least two more points. For e sufficiently 
close to zero, one of these points of intersection must occur near (8(e), "fi(e)), 
the other near (0, 0). Figure 2.10 illustrates this. 

At these points of intersection, u"(1) = 0. From (2.31), u111 (1) = -P(1-
p). Thus, at (61, PI) near (0, 0), u"'(1) < 0 and at (62, P2), (8(e), fi(e)) near 
(6(0), fi(O)), u111 (1) > 0 for solutions u(r) corresponding to these pairs of 
(6, p). 

The solution corresponding to the pair ( 61 , P1) consequently must have 
at least two points of inflection so that the graph of u(r) may reach the 
u-axis. D 
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2.5 Comments 

In this chapter we have given a detailed discussion of the steady-state mod
els and their natural generalizations. We have referred to the steady-state 
model (1.30)-(1.31) as the Gelfand problem and considered the radially 
symmetric case (2.16). The small fuel loss model (2.23) was referred to as 
the perturbed Gelfand problem. Gelfand [GEL] appears to have been the 
first to make an indepth study of (1.30)-(1.31) although the problem has a 
long history in the radially symmetric case in low dimensions. 

For dimension n = 1, Liouville [LIU] first studied and found an explicit 
solution in 1853. For n = 2, Bratu [BRA] found an explicit solution in 1914. 
Frank-Kamenetski [FRA] rediscovered these results in his development of 
thermal explosion theory. Joseph and Lundgren [JOS] gave an elementary 
proof via a phase plane analysis of the multiple existence of solutions for 
dimensions n ~ 3. These results are summarized as Theorem 2.19. 

The idea of using upper and lower solutions to establish existential re
sults for :nonlinear boundary value problems goes back to Nagumo [NAGl], 
[NAG3], [NAG5]. There are several excellent papers [SCH],[LIN], [SATl] 
which survey boundary value problems of the type (2.1) and (2.2). Although 
very general existential results are known, the problem of multiplicity of 
solutions remains open for arbitrary domains, even for the Gelfand problem. 

The radial symmetry results of Section 2.2 are due to Gidas, Ni, and 
Nirenberg [GIDl]. It is remarkable that such a result was not rigorously 
proved until the late 1970's. Troy [TROl] generalized these results to sys
tems where the nonlinearity is quasimonotone. 

The results in Section 2.4 on the shape of solutions for the Gelfand 
problem and the perturbed Gelfand problem are due to the authors [BEB8]. 
These results show that (2.24) and (2.29) exhibit a "hot spot" development. 
The results for the perturbed Gelfand problem are not as precise as those 
for the Gelfand problem. The problem of determining the exact qualitative 
shapes of solutions to the perturbed Gelfand problem is an open question. 



3 
The Rigid Ignition Model 

We wish to analyze indepth the solid fuel ignition model (1.28)-(1.29) 

Ot-6.fJ=8e8 , (x,t)Enx(O,T) 

O(x, 0) = 0, x En 
O(x, t) = 0, (x, t) E an x (0, T) 

and its relationship to the steady-state model (1.30)-(1.31) 

-f:l.'ljJ = 8e1/J, X En 
'1/J(x) = o, x E an. 

Existence-uniqueness for (1.28)-(1.29) is established for a more general 
initial-boundary value problem with nonlinearity f(x, u) and with initial 
data ¢(x) not necessarily 0. The results use the ideas of upper and lower so
lutions, invariance, and comparison. Other properties of solutions to (1.28)
(1.29) are also determined by application of these ideas. 

For nonlinearities of the type f(u) = eu (or f(u) = uP), the solutions 
to (1.28)-(1.29) do not exist for all t E (0, oo ), and the solutions become 
unbounded at a first time T < oo, called the blowup time for the problem. 
In Section 3.2, we determine if blowup occurs, and if so, then when does 
it occur; that is, we determine upper bounds on the blowup time. If the 
solutions do exist for all time, then for appropriate initial data the solutions 
to (1.28)-(1.29) converge to a solution of (1.30)- (1.31). The critical value 
8 F K seems to provide a separation between blowup of solutions ( 8 > 8 F K) 

and glo hal existence ( {j < 8 F K). 
We also consider the question of where blowup occurs. The main result 

of Section 3.3 is Theorem 3.16 which guarantees under certain restrictions 
on the nonlinearity that blowup occurs only at a single point (for radial 
domains). Other information obtained in the proofs lead to bounds on the 
solutions for spatial values near the blowup point. 

The majority of the chapter is contained in Section 3.4. We consider radi
ally symmetric solutions u(r, t) on a ball and transform the problem (1.28)
(1.29), for f(u) = eu or f(u) =uP, using the idea of self- similarity. We an
alyze the solutions u for which blowup occurs and determine their profiles 
near a blowup singularity in an asymptotic sense in space-time parabolas 
containing the blowup point. One major difficulty is that of establishing 
a priori bounds on the solution u and its derivatives which allow us to 
choose the correct steady-state solution (in the self-similar sense) which u 
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converges to. Another difficulty is in showing that u does converge to a 
steady-state solution which is independent of the self-similar time variable. 
Energy integral estimates are used in proving this convergence. 

Consequences of the analysis in Section 3.4 are the following: For f(u) = 
e", the solution u satisfies u(O, t) '"" -ln(T- t) as t ---+ r- (for blowup time 
T). For f(u) = uP(p > 1), the solution u satisfies u(O, t) '"" [,B(T- t)]P as 
t - r- where ,8 = p~l. 

3.1 Existence-Uniqueness 

Let 0 c IRn be a bounded domain whose boundary 80 is ann -1 dimen
sional manifold of class C2+o for some 0 < a < 1. Let IIT = 0 x (0, T) and 
rT = [80 X (0, T)] u [0 X {0}]. Assume that f : 0 X [0, T] X IR - IR is a 
locally Holder continuous function with Holder exponents o:, !o:, and a in 
the respective variables x, t, and u. Assume that '1/J : rT -IRis continuous. 
Consider the partial differential equation 

Ut - D.u = f(x, t, u), (x, t) E IIT (3.1) 

with initial-boundary condition 

u(x, t) = '1/J(x, t), (x, t) EfT. (3.2) 

Definition 3.1 A function v E C(ITT, IR) n C 2•1 (IIT, IR) iB lower solution 
of {9.1}-{9.2) if 

Vt- D.v ~ f(x, t, v), (x, t) E IIT 

v(x, t) ~ '1/J(x, t), (x, t) EfT. 

If the inequalite8 above are rever8ed, then v iB called an upper solution of 
{9.1}-{9.2). 

The following theorem is a consequence of invariance and will be proved 
in Chapter 4. 

Theorem 3.1 Let a be a lower Bolution and let ,8 be an upper Bolution 
of IBVP {9.1}-{9.2} with a(x, t) ~ ,B(x, t) on Th; then {9.1}-{9.2) ha8 a 
Bolution u E C2•1 (IIT) with a(x, t) ~ u(x, t) ~ ,B(x, t) on ITT. 

The next theorem will also only be stated at this time. Its proof will follow 
immediately from our comparison theorems (Theorem 4.1), Corollary 4.2) 
given in Chapter 4. 

Theorem 3.2 Letu,vEC(ITT,IR)nC2•1(IIT,IR) with 

1. Ut- D.u- f(x, t, u) < Vt- D.v- f(x, t, v) for (x, t) E IIT, and 
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2. u(x, t) < v(x, t) for (x, t) E fr; 

then u(x,t) < v(x,t) for (x,t) E llr. In addition, iff is locally Lipschitz 
continuous in u, then the result is true with weak inequalities. 

We now consider a special case of initial-boundary value problem (3.1)
(3.2) where the function f is independent oft and is Lipschitz continuous 
in u: 

Ut - ~u = f(x, u), (x, t) E IIr 

with initial-boundary conditions 

u(x,O) = ¢(x), x En 

u(x, t) = 0, (x, t) E an X (0, oo ). 

(3.3) 

(3.4) 

Theorem 3.3 Let u(x, t) be a solution of IBVP (9.9}-(3.4}. If 4>(x) is a 
lower solution of {9.9}, then u(x, t) is nondecreasing in t for each fixed x. 

Proof By Theorem 3.2, u(x,t) ~ ¢(x). For 8 > 0, define u6 (x,t) = u(x,t+ 
8); then u6 is a solution of (3.3) and so is an upper solution with u6 (x, 0) = 
u(x, 8) ~ ¢(x) = u(x, 0). Thus, u6 (x, t) ~ u(x, t) for all (x, t) E llr and so 
u(x, t) is nondecreasing in t. D 

Theorem 3.4 Let a(x) be a bounded lower solution and let {3(x) be a 
bounded upper solution to IBVP (9.9}-(9.4} with a(x) < f3(x) on n; then 
(9.9}-(9.4} has a unique solution u(x, t) with 

a(x) ~ u(x, t) ~ {3(x) and lim u(x, t) = uo(x) t-+oo 

where the limit is uniform in x and where uo(x) is the minimal solution of 

-~uo = f(x, uo), x En 

uo(x) = 0, X E an. 
Proof By Theorems 3.1 and 3.2, (3.3)-(3.4) has a unique solution u(x, t) 
with a(x) ~ u(x,t) ~ {3(x). By Theorem 3.3, u(x,t) is nondecreasing in t 
for each fixed x. In addition, u(x, t) is bounded above, so limt-+oo u(x, t) = 
uo(x) pointwise for each x E n. By Dini's Theorem, the convergence is 
uniform on compact subsets of n. 

Set un(x, t) = u(x, t + n) for t E [0, 1] and n E 1N; then un(x, t) is the 
solution of 

Wt- ~w = f(x, Un(x, t)), (x, t) En X (0, oo) 

w(x, 0) = Un(X, 0), X E 0 
w(x, t) = 0, (x, t) E an X (0, oo). 
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For the appropriate Green's function G(x, t) we have 

Un(x, t) =In G(x- y, t)un(y,O) dy +lot dr In G(x- y, t- r)f(y, Un) dy 

for 0 ::::; t ::::; 1. By the Lebesgue Dominated Convergence Theorem, letting 
n--+ oo, we have 

uo(x) = fo G(x- y, t)uo(Y) dy 

+ f~ dr fo G(x- y, t- r)f(y, uo(y)) dy 

-. h(x,t)+l2(x,t) 

with uo(x) continuous. 
Since lt(x, t) and l2(x, t) are differentiable with respect to x, uo(x) is 

differentiable. Since f is locally Holder in x and u, we have u0 (x) is twice
differentiable in x, and: -Auo = f(x, u0 ) for x E 0 and u0 (x) = 0 for 
x E an. o 

Theorem 3.5 For any 8 > 0, there exists T > 1/8 such that IBVP {1.28}
(1.29} has a unique solution B(x, t) on n X [0, T) with 

0 ::::; B(x, t) ::::; -ln(1 - 8t) 

for (x, t) E 0 X [0, 1/8). 

Proof. Set a(x, t) = 0. Set (J(t) = -ln(1- 8t), which is the solution of 

(3' = 8ef3, (3(0) = 0. 

Since a is a lower solution and (3 is an upper solution of IBVP (1.28)-(1.29) 
with a < (3, we conclude by Theorems 3.1 and 3.2 that IBVP (1.28)-(1.29) 
has a unique solution B(x, t) on n X [0, t*), t* ~ 1/8, with 

0 ::::; B(x, t) ::::; -ln(1 - 8t) 

for (x, t) E 0 X [0, 1/8). 0 

The inequality for B(x, t) in Theorem 3.5 is illustrated in Figure 3.1. 

Theorem 3.6 For 8 < 8FK, IBVP (1.28}-(1.29} has a unique solution 
B(x, t) on n X [0, oo) with 0 ::::; B(x, t) ::::; r!J(x) where r!J(x) is the minimal 
solution of BVP (1.30}-(1.31}. 

Proof. Set a(x, t) = 0. Set (J(x, t) = ¢J(x) where ¢J is the minimal solution 
ofBVP (1.30)-(1.31) (which exists for 8 < 8FK)· By Theorems 3.1 and 3.2, 
IBVP (1.28)- (1.29) has a unique solution B(x, t) on 0 x [0, oo) with 

0::::; B(x,t)::::; qy(x) 
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Figure 3.1. 

for (x, t) E 0 x [0, oo), and by Theorems 3.3 and 3.4, 

lim O(x, t) = ¢(x) 
t-+oo 

uniformly in x. D 

For BVP {1.30)-{1.31) we know there is a 8FK > 0 such that no solution 
exists for 8 > 8FK· We now ask what happens to IBVP (1.28)-(1.29) for 
8 > 8FK· 

Theorem 3.7 For each 8 > 8FK, there is aTE [1/8, oo) such that IBVP 
(1.28}-(1.29} has a unique solution O(x, t) on 0 x [0, T). Moreover, 

lim max{O{x, t) : x E 0} = oo. 
t-+T-

Proof For each n E IN, define fn(Y) = min{8eY,8en} and consider 

Yt- D.y = fn(Y), (x, t) E TI = 0 X (0, oo) (3.5) 

y(x, t) = 0, (x, t) E f = [oO X {0, 00 )j U [0 X {0}]. (3.6) 

By constructing a sequence of solutions to an associated sequence of 
nonhomogeneous linear initial-boundary value problems, we shall prove 
that IBVP (3.5)-(3.6) has a unique solution un(x,t) on 0 x [O,oo). 

Set u0 (x, t) = 0 on IT and let u1 (x, t) be the unique solution of the 
nonhomogeneous linear problem: 

u:- D.u1 = fn(u0 (x,t)), (x,t) E TI 

u1(x, t) = 0, (x, t) E f. 
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Since 
u}- ~u1 = 8e0 = 8 > 0 = u~- ~u0 , (x, t) E II, 

u1(x,t)=u0 (x,t), (x,t)Er, 

Theorem 3.2 implies that u1 ~ u0 on II. 
Let u2 (x, t) be the unique solution of: 

Since 

u~- ~u2 = fn(u 1 (x,t)), (x,t) E II, 

u2 (x, t) = 0, (x, t) E r. 

u~- ~u2 = fn(u 1 ) ~ fn(u0 ) = u} - ~ul, (x, t) E II, 

u2 (x,t) =u1 (x,t), (x,t) Er, 

we have u2 ~ u1 on II. 
Continuing in this way, we construct a sequence { uk} such that for each 

k ~ 1, uk is the unique solution of: 

Also, 

uf- ~uk = fn(uk- 1 ), (x, t) E II, 

uk(x, t) = 0, (x, t) E r. 

0 :::; u0 :::; u 1 :::; · · · :::; uk :::; · · · 

for IT, and by Theorem 3.2, 

uk:::; -ln(1- 8t) 

for (x, t) E 0 x [0, (1 - e-n)/8) for all k ~ 0. 
Since Un(uk- 1)} is uniformly bounded, {uk} is bounded above. Hence, 

uk(x, t) ~ un(x, t) pointwise on IT. By standard bootstrapping arguments 
we have that un(x, t) is the solution of: Ut- ~u = fn(u) for (x, t) E II and 
u(x, t) = 0 for (x, t) E r. 

On fl X [0, (1- e-n)/8), un(x, t) = O(x, t) where(} is the unique solution 
of IBVP (1.28)-(1.29). If un(x, t) :::; n for all (x, t) E 0 X [0, oo), then 
un(x, t) ~ ¢(x) uniformly in x as t ~ oo where¢ is the minimal solution 
of BVP (1.30)-(1.31). But 8 > 8FK, so no such solution exists. There must 
exist (xn, tn) E II such that un(Xn, tn) =nand un(x, t) = O(x, t) where (} 
is the unique solution to BVP (1.30)-(1.31) on 0 x [0, tn) for each n E lN. 
By compactness of 0, there exists a subsequence { ( Xnk , tnk)} of { ( Xn ,tn)} 
such that 
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with Unk(x,t) = O(x,t) on n X [O,tnk). Thus, 

lim m~O(x, t) = oo, 
t-+T- xEO 

and the proof is complete. D 

For the equation 

Ut- ~u = 8f(u), (x,t) E 0 X [O,oo) 

with initial-boundary conditions 

u(x, 0) = uo(x), X E fl 

g~ + (Ju = 0, (x,t) E 80 x (O,oo), 0 < (J(x) ~ oo 

(3.7) 

(3.8) 

where f(u) ~ 0, f'(u) ~ 0, and f"(u) ~ 0 for u ~ 0, similar results hold. 
For the boundary value problem 

-~u=8f(u), xEO 

au 
OTf + (Ju = 0, x E 80 

(3.9) 

(3.10) 

there is a 8FK > 0 such that solutions exist for 0 < 8 < 8FK and no 
solutions exist for 8 > 8FK· 

Thus, if 8 < 8FK and if Wm is the minimal solution of (3.9)-(3.10) and if 
uo ~ Wm, then taking a lower solution a~ uo ~ Wm, we have u(x, t)-+ Wm 

as t -+ oo and u(x, t) exists globally. If 8 > 8FK, the solution u(x, t) 
becomes unbounded in the L00-sense as t-+ r-. 

3.2 Blowup: When? 

In the last section we discussed existence of solutions to certain initial
boundary value problems. This section deals with the determination of the 
maximum time interval for which solutions exist. 

Definition 3.2 The solution u(x, t) of IBVP (9. 7}-(9.8} for 8 > 8FK be
comes unbounded as t -+ T _ . We say that thermal runaway or blowup 
occurs at T. 

For IBVP (1.28)-(1.29), this says that the thermal event is explosive 
( supercri tical). 

By the analogue of Theorem 3.7 for IBVP (3.7)-(3.8), we cannot deter
mine if blowup occurs in finite or infinite time. A necessary condition for 
blowup in finite time is the following. 



54 3. The Rigid Ignition Model 

Theorem 3.8 If the unique solution u(x, t) of IBVP {9. 7}-{9.8} blows up 
in finite time T, then 

loo [f(s)r 1 ds < oo for b 2:: o. (3.11) 

Proof Assume that I 00 [/(s)]- 1 ds = oo. Let f3(t) be the solution of u' = 
6f(u) with u(O) = sup{uo(x) : x E 0}; then f3(t) is an upper solution of 
(3.7)-(3.8) and so f3(t) 2:: u(x, t) 2::0 where f3(t) is given implicitly by 

!.{3(t) 
[f(s)r 1 ds = 6t. 

u(O) 

But I 00 [/(s)]- 1 ds = oo implies that f3(t) exists for all t 2:: 0. Thus, 
u(x, t) exists for all t 2:: 0, a contradiction. 0 

Condition (3.11) is satisfied by f(u) = eu and any positive f(u) which 
grows at least as fast as ul+a, a > 0, as u-+ oo. An important question is 
the following: Can one find a sufficient condition for blowup in finite time? 
Returning to IBVP (1.28)- (1.29), we can get a sufficient condition for a 
finite blowup time by the following comparison theorem. 

Theorem 3.9 Let u(t) be the solution of the initial value problem 

u' = 6eu- .X 1u, t E (0, T) and u(O) = 0 

where A1 is the first eigenvalue of -6.¢ =.X¢, x E fl and ¢(x) = 0, x E 80. 
Let O(x, t) be the solution of IBVP {1.28}-{1.29} on 0 x [0, T); then 

u(t) ~ sup{O(x, t) : x E 0} 

fortE [0, T). 

Proof Let ¢ be an eigenfunction associated with .X 1 where ¢(x) 2:: 0 on 
fl and In ¢(x) dx = 1. Define a(t) = In O(x, t)¢(x) dx; then a(t) ~ 
sup{O(x, t) : x E 0}. Multiplying (1.28) by ¢(x) and integrating over fl, we 
have 

a'(t) = fn0t(x,t)¢(x) dx 

fn[6e 11¢ + ¢6.0] dx 

2:: 6 exp(Jn 0¢ dx) + fn 06.¢ dx 

= 6ea(t)- >.1a(t) 

where Jensen's inequality and Green's identity have been used. Since 
a'(t) 2:: 6ea(t)- >. 1a(t) and a(O) = 0, by a standard comparison theorem we 
have u(t) ~ a(t) ~ sup{O(x, t) : x E 0}. 0 
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T 

Figure 3.2. 

Because of the elementary nature of the initial value problem in Theorem 
3.9, we know that a unique solution u(t) of these equations exists on [0, To) 
with u(t)--+ oo as t--+ T0 where 

To= r:JO dz 0 

lo 8eZ- A1Z 

Thus, To < oo if 8 > 8* := At/e and we have the following implication. 

Corollary 3.10 If 8 > 8* = At/e, then To < oo and 

lim sup{O(x, t) : x E 0} = oo 
t-+T-

where T < To. That is, blowup occurs in finite time. 

The above corollary and inequalities are illustrated in Figure 3.2. 
Table 3.1 gives the comparison between the critical value 8FK and the value 
8*. 

For a sphere B1 C IR3 , the blowup time can be computed numerically by 
using the method of lines to solve IBVP (1.28)-(1.29) by approximating the 
spatial derivatives. The resulting system of first-order ordinary differential 
equations was integrated using a Runge-Kutta package RKF45. Table 3.2 
uses 0 = Bt. 8FK = 3.32, and 8* = 3.63: 

Table 3.1. 
0 0FK >'1 o· 

S, slab 0.878 2.467 0.908 

C, cylinder 2.000 5.784 2.128 

B, sphere 3.320 9.872 3.631 
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Table 3.2. 
6 t To T 

3.32 0.301 00 

3.63 0.275 00 

3.70 0.270 2.913 0.876 

4.00 0.250 1.118 0.601 

6.67 0.150 0.252 0.187 

20.00 0.050 0.057 0.0503 

50.00 0.020 0.021 0.0200 

Of all solids of equal volume, the sphere has minimal surface area. An 
obvious conjecture is that for all solids 0 the sphere should explode first. 
The following comparison supports this conjecture. For the three solids of 
equal volume 1r: a sphere B, a parallelepiped P with edge length 1r1/ 3 , and 
a right circular cylinder C of radius 1 and height 1; the first eigenvalue 
>.1 with 0 = B,P, and C, respectively, is 11.656, 13.799, and 15.653. The 
values for 6* are 4.288, 5.076, and 5.758, respectively. Numerical results are 
given in Table 3.3. This conjecture was proved by Bandle [BAN2] as 

Theorem 3.11 If IBVP {1.28}-{1.29) has a solution O(x, t) on 0 x [0, T] 
where 0 = {x: lxl < R} = BR, then 

1. IBVP {1.28}-{1.29) has a solution u(x, t) on 0 x [0, T] for any other 
domain 0 of the same volume, and 

2. max{ u(x, t) : x E 0} ~ max{O(x, t) : x E BR} for all t E [0, T]. 

For the more general initial-boundary value problem (3.7)-(3.8), we have 
the following result. 

Theorem 3.12 Consider IBVP {9. 7)-{9.8) with f(u) > 0, f'(u) ~ 0, and 
f"(u) ~ 0 for u ~ 0, and f 00 [f(u)]-1 du < oo. If 6 > 6* := >.1 sup{ u/ f(u) : 
u ~ 0}, then the unique solution O(x, t) of {9. 7}-{3.8} blows up in finite time 
T where 

Table 3.3. 
6 t TB TP Tc 

4.288 0.233 ()() ()() 00 

5.076 0.197 1.893 00 00 

5.758 0.174 0.848 4.260 00 

20.000 0.050 0.095 0.098 0.101 
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Proof The proof is the same as that for IBVP (1.28)-(1.29). Define a(t) = 
~ <P(x)O(x, t) dx where 4> is the nonnegative eigenfunction for >.1 with 
Jn <P(x) dx = 1. From (3.7) we have 

a'(t) = 61n 4>/(0) dx - >.1a(t) 

for t > 0. Also, a(O) = ao := In </>uo dx. 
By Jensen's inequality, a' ~ 6f(a) - >.1a for t > 0. If 6 > 6* = 

>.1 sup{ a/ /(a) :a~ 0}, then a(t)---+ oo as t---+ T0- where 

To= fooo [6/(z)- >.1zt1 dz < oo. 

Thus, sup{O(x, t) : x E 0}---+ oo as t---+ T- with T < T0 • D 

The last result shows that the blowup time is finite if 6 > 6*. What 
happens for 8 E (8FK,8*]? The following is due to Lacey [LAC1]. 

Theorem 3.13 If 8FK is in the spectrum of (1.90}-(1.91} and if 8 > 8FK, 
then the unique solution O(x, t) of IBVP (1.28}- (1.29} blows up in finite 
timeT where 

T< 
8FK(8- 8FK)' 

Proof Let w*(x) be the solution of BVP (1.30)-(1.31) for 8 = 8FK· Then 
the first variational problem 

-tl.</> = [DFK ew"(x)] </>, X E 0 

<P(x)=O, xEoO 
(3.12) 

has a positive solution <P(x) on 0 such that In </>dx = 1 (Amann, [AMA1]). 
Define v(x, t) = O(x, t)- w*(x); then 

Vt = Ot 

= 8e9 - tl.O 

= (8- 8FK )e9 + DFKew"+v + tl.w* + tl.v 
(3.13) 

= (8- 8FK )e9 + 8FK(ev- v- 1)ew" + DFK vew". 

Set a(t) =In </>(x)v(x, t) dx; then a(t) ~ sup{O(x, t): x E 0} and a(O) ~ 
- sup{w*(x): x E 0}. Multiply (3.13) by 4> and integrate over 0 to obtain 

a'(t) = (8-8FK)In<Pe9dx+8FKin<P(ev-v-1)ew"dx 

+6FKin <Pvew*dx +In <Ptl.vdx. 
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By Green's identity and the fact that ¢ is a solution of (3.12), we have 

L ¢fl.v dx = L vfl.¢ dx = -8FK L vew· ¢ dx, 

and thus, 

Since (ev- v- l)ew· ~ ~v2 , and by Jensen's inequality, we have that 

8FK L ¢(ev- v -l)ew· dx ~ ~8FK L ¢v2 dx ~ ~8FKa2 

and clearly J0 ¢e8 dx ~ 1. Thus, a(t) satisfies the differential inequality 

with 
a(O) ~-sup{ w*(x) : x E 0} =: -w~. 

The solution of z' = (8- 8FK) + ~8FKZ2 , z(O) = -w~ is 

z(t) = --i- tan(!- tan- 1 (cw~)) 
CVFK C 

where 
2 

c= 8FK(8- 8FK). 

The function z(t) blows up before tA = c1r. Thus, sup{O(x, t) : x E 0} ~ 
a(t) ~ z(t) and T ~ tA. 0 

This result has been extended by Lacey [LACl] to IVBP (3.7)-(3.8) as 
follows. 

Theorem 3.14 Consider IBVP (9.7}-(9.8} with f(u) > 0, f'(u) ~ 0, and 
f"(u) ~ 0 for u ~ 0. Assume that J00 [f(s)]- 1 ds < oo. If 8FK is in the 
spectrum of (9.9}-(9.10}, then the unique solution u(x, t) of IBVP (9. 7}
(9.8} for 8 > 8FK blows up in finite time (in the L00 -sense) at 

T <A+ B(8- 8FK)- 112 

where the constants A and B are independent of 8. 
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Proof Let w be the solution of: 

-~W = 8FK[(w), X E 0 

~~ + Pw = 0, x E 80. 

Let ¢ be the solution of the first variational problem 

-~¢ = 8FKf'(w)¢, X E 0 

~ + P¢ = 0, X E 80. 

Set v = u - w where u is a solution of (3.7)-(3.8). Define the function 
a(t) = fn ¢(x)v(x, t) dx; then 

a'(t) ~ (8- 8FK )I+ 8FK In ¢(x)[f(w + v)- f(w)- vf'(w)] dx (3.14) 

where I= f(ua) and ua =min {O,inf{uo(x): x E 0} }. 
Let g(s) = Kt[f(s)- f(O)- s/'(0)] for K1 > 0 sufficiently small; then 

g(O) = g'(O) = 0, g(s) is convex, g(s) ::::; f(w + s)- f(w)- sf'(w) for X E 0 
and for min{v(x): x E 0}::::; s::::; max{v(x): x E 0}, and f 00 fPsy < oo. 

Equation (3.14) implies 

a'(t) ~ (8- 8FK )I+ 8FK In f/Jg(v) dx ~ (8- 8FK )I+ 8FK g(a) 

where the last inequality follows from Jensen's inequality (J0 ¢g(v) dx ~ 
g(J0 ¢v dx)). For 

ao =In ¢(uo- w) dx and a 1 < min{O, ao}, 

choose a2 such that 0 < a 2 < -a1 . Let h(s) = [(8- 8FK)I + 8FKg(s)]-1 ; 

then 

t ::::; K2 + J:,(t) h(s) ds 

< fa~a2 h(s) ds + J~~2 h(s) ds +faa;: h(s) ds + K2. 
(3.15) 

The sum of the first and third integrals on the right-hand side of (3.15) is 
bounded by the quantity 

The second integral is bounded by 

/_: [(8- 8FK)I + K4s2t 1 ds = [(8- 8FK)IK4t 1; 2 1r 
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where K4 = !6FK inf{g"(s): lsi< a2}. 
We can deduce that u(x, t) blows up at T < A+ B(6- 6FK )- 112 where 

A= K2 + K4 and B = 1r(IK4 )-1I 2 . o 

The requirement that the critical value 6FK be in the spectrum of prob
lem (3.7)-(3.8) may not be necessary. The following result due to Bellout 
[BEL] does not make such an assumption. However, a concavity assumption 
replaces the spectral condition. 

Theorem 3.15 Consider IBVP {9. 7)-(9.8} where the mixed boundary con
dition is modified to 

8u 
a 8TJ + ,Bu = 0, (x, t) E 80 x (0, oo) 

where a and ,8 are nonnegative constants such that a+ ,8 > 0. Suppose that 
the function f E C3 ([0, oo)) satisfies the conditions 

/
oo d ( 1 )" f(O) > 0, /'(s) > 0 for s > 0, /(:) ds < oo, and !' ~ 0. 

In addition, if a,B "# 0, assume that 

~ [sf'(s)] > O. 
ds f(s) -

If 6' := 6- 6FK > 0, then the solution to {9. 7)- {9.8} blows up in finite 
time T ~ ~ where K is a positive constant dependent on 6, 6 F K, and 
M := fooo[f(s)t1 ds. 

Proof. Consider the problem 

Vt- ~v = 6a2t2 f(v), (x, t) E 0 x (0, Tl) (3.16) 

with initial-boundary conditions 

v(x, 0) = 0, x E 0 

a~+ ,Bv = 0, (x, t) E 80 x (0, Tl) 
(3.17) 

where 

- 6' 46FK+6' [ ( 46FK+6' ) 1/ 2] {j' 
T1 1 = M 4(26FK + c5') 1 - 2(26FK + 6') =: K =:a. 

There is a unique solution v(x, t) to this problem such that v ceases to exist 
only by becoming infinite. We wish to prove that v blows up in a finite time 
To ~ T1 • Without loss of generality, assume that v is finite in 0 x [0, To). 
Also assume that v E C6•3 (0 x [O,T0 )) and vtff(v) E C2•1 (0 x [O,To)). 
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Define w(x,t) = J;lf(s)t 1 ds and z(x,t) = Wtt(x,t). We wish to show 
that z(x, t) ~ 0. From equation (3.16) we see that w satisfies the equation 

(3.18) 

Define 
L(z) = Zt - ~z- 2/''V z • 'Vw- !" !' z'Vw • 'Vw. 

Differentiating equation (3.18) twice with respect to t yields 

L(z) = 28a2 + 2/'I'Vwtl2 + (wt) 2 (!"' 12 + !" !'!) + 4wtf" I'Vw • 'Vwt. 

Using 

lwt 'Vw • 'Vwtl ::::; ~ [1Vwl 2wilcl + I~II'Vwtl 2] 
we obtain for c = !"I I!' the inequality 

L(z) ~ 28a2 - 1(!')2 ({)"(wt) 2 i'Vwl 2 • 

Applying the assumption that I If' is concave, we have that L(z) ~ 28a2 > 
0. 

From equation (3.17) we have that z(x, 0) = 0. If a = 0 (respectively 
(3 = 0), then z(x, t) = 0 (respectively gz = 0) on ao X (0, To). Since the 
coefficients of L remain bounded as long as v is bounded, the maximum 
principle implies that z(x, t) ~ 0 for t E [0, T0). 

In the case a(3 "# 0, let b = f31a; then gv = -bv on ao X (0, To). 
Differentiating with respect to t and dividing b~ I we obtain 

(3.19) 

Also, 
0 Vt _ VTJt VtVTJf' _ VTJt b vvtf' a11!_T_f2_T+ r· 

Substituting into equation (3.19) yields 

Since Wt = vtf I, we obtain 

Differentiating with respect to t and using z = Wtt we obtain 

Zeta= bz[v(!' I!)- 1] + b(wt) 2v/'[ln(vf' I!)]'~ bz[v(!' I!)- 1] (3.20) 
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where the condition [sf'(s)/ f(s)]' ~ 0 was used. 
Since v(x, 0) = 0, there exists an c > 0 such that the right-hand side of 

the inequality in (3.20) has a negative coefficient for z on the set 0 x (0, c). 
We also had L(z) > 0 on 0 x (0, c) and z(x, 0) = 0 on 0. Combining this 
with equation (3.20), the strong maximum principle implies that z(x, t) > 0 
on 0 x (O,c). 

If z becomes negative somewhere in 0 x (0, T0 ), then lett* be the small
est positive time where z becomes zero. Since L(z) > 0, it must be that 
z(x, t*) > 0 on 0. This forces z to have a zero at the point x* E oO. By 
the maximum principle, z" ( x*, t*) < 0; but equation ( 3. 20) implies that 
z"(x*, t*) ~ 0, a contradiction. Thus, z(x, t) ~ 0 on 0 x (0, To). 

Using this information we can show that v(x0 , t) --+ oo as t --+ To for 
some xo E 0 and for some T0 E (0, Tl]. Define 

1 (6 + 16') 1/2 t - FK 4 . 
0-- 6 + 16' ' a FK 2 

then a2t5(6FK+~6') = 6FK+~6'. At t = t0 equation (3.16) can be written 
as 

1 1 
Vt = ~v + (6FK + 46')/(v) + 26'a2 t5f(v). (3.21) 

The steady-state problem (3.9)-(3.10) has no solution for 6' > 0, in 
particular, no solution for 6 = 8FK + ~6'. In fact, the steady-state problem 
has no upper solution (Amann, [AMA1]), so there exists an xo such that 
at (xo,to), ~v+(6FK+~6')f(v) > 0. Consequently, using the result z ~ 0 
in (3.21) we have 

Vt 1 I 2 2 
f(v) ~ 26 a to 

at (xo, t) for t ~ to. Integrating with respect to t yields 

r(xo,To) 1 
lo [f(s)t 1 ds ~ 26'a2 t5(To- to). (3.22} 

Either v becomes infinite at To < T1, or, v(x0 , t) is finite for all t E [0, Tt). 
In the latter case, the right-hand side of the inequality in (3.22} as To --+ T1 
becomes the value M = f0

00 [/(s)J- 1 ds. This forces v(xo, Tt) = oo. 
Finally, to prove that the solution u(x, t) to (3.7}-(3.8} becomes infinite 

in finite time, consider the following. Since a2t2 S 1 for t :5 To, v satisfies 

Vt :5 ~v + 8f(v), (x, t) E 0 x (0, To). 

The function w = u - v satisfies: 

Wt ~ ~W+"fW, (x,t) E 0 X (O,To) 

o:w'l + (Jw = 0, (x, t) E oO X (0, To), 
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where 1 = f' (Ou + (1- O)v) is a bounded function as long as u and v are 
both bounded. By the maximum principle, we see that w ~ 0. Thus, u ~ v, 
and u must become infinite at some timeT~ T0 . D 

Theorem 3.15 shows that blowup in finite time occurs for IBVP (3.7)
(3.8) for arbitrary 0 for any 8 > 8FK· An open question is: Can the 
concavity assumption on f / f' be dropped? 

Blowup can occur in finite time even for 8 < 8FK if the initial data 
function u0 (x) ~ 0 is sufficiently large [LAC1]. To illustrate this, assume 
f(u) = eu in IBVP (1.28)-(1.29). Assume w(x) is a nonminimal solution of 
(1.30)-(1.31), the associated steady-state model. (For 8 < 8FK sufficiently 
close to 8 F K, this is often possible [DEF].) Let Wm be the minimal solution. 
By a result of Amann [AMA2], the principle eigenvalue A1 of 

~</> + (A + 8ew)</> = 0, x E 0 

</>(X) = 0, X E ofl 

is nonpositive. Let €(x) be the associated eigenfunction with €(x) > 0 and 
f0 €(x) dx = 1. Set v(x, t) = u(x, t) - w(x) and a(t) = J0 v€ dx; then 

a(O) = f [uo(x)- w(x)]€(x) dx and a(t) ~ supu(x, t), lo o 

with 

Vt = ~u + 8ew+v - ~w - 8ew 

= ~v + 8[ew+v- ew- vew] + 8ewv- A1V + A1V. 

This implies 

a'(t) = J0 €~vdx+8J0[ew+v_ew-vew]€dx 

+ f0 (Al + 8ew)v€ dx- A1 J0 v€ dx 

= -A1a+8f0 ew€[ev-v-1]dx 

> -Ala+~ fo ew€v 2 dx. 

By Jensen's inequality, a'(t) ~ -A1a + Ka2 where K > 0. If a(O) > 0, 
then a(t) satisfies a(t) ~ a(t) where a(t) is the solution of 

a'= K a2 - A1o:, t > 0, o:(O) = a(O). 

Since -Al ~ 0, ro Kz.f:>qz < 00 and a(t) blows up in finite time. Hence, 
the solution u(x, t) of (1.28)-(1.29) blows up in finite time provided 

In €(x)uo(x) dx >In €(x)w(x) dx. 
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3.3 Blowup: Where? 

In this section we deal with the topic of where blowup occurs for solutions 
to the solid fuel model. We consider the partial differential equation 

Ut- Au= f(u), (x,t) E 0 x (O,T) (3.23) 

with initial-boundary conditions 

u(x,O)=¢(x), xEO 
(3.24) 

u(x, t) = 0, (x, t) E 80 x (0, T) 

where 0 = {x Em." : lxl < R}. 
We assume that¢ E C2 (0) is a radially symmetric function, say¢= ¢(r) 

where r = I xi- In addition, we assume that ¢' ( r) ~ 0 for r E [0, R] and 
¢(R) = 0. Consequently, ¢'(0) = 0, ¢"(0) ~ 0, and ¢(r) 2:: 0. 

We also assume that f E C2 (R), f(u) > 0 for u > 0, f'(u) 2:: 0, f"(u) 2:: 
0, and J00 df < oo. For example, the functions exp(u) and (u + >.)P, (>. 2:: 
0, p > 1), satisfy these conditions. 

By uniqueness and since ¢ is radially symmetric, for each t ;=:: 0 the solu
tion u(·, t) of (3.23)-(3.24) is radially symmetric. By the maximum principle 
and since¢ is radially decreasing, the solution u(·, t) is radially decreasing. 
Therefore, we consider the equivalent formulation 

with initial-boundary conditions 

u(r,O) = ¢(r), r E (O,R) 

u(R, t) = 0, ur(O, t) = 0, t E (0, T) 

A unique solution of (3.23)-(3.24) exists fort E [0, a) for a > 0 sufficiently 
small. By the maximum principle, U(t) := suprE(O,R) u(r, t) is an increasing 
function. Define the value 

T =sup{ a> 0: (3.23)-(3.24) has a solution u(·, t) fortE [0, a)}. 

If T < oo, then U(T-) = oo. Otherwise, if U(T-) < oo, then the solution 
to (3.23)-(3.24) could be extended to a time interval [0, a+ c) with c > 0 
by using standard parabolic estimates, a contradiction to the maximality 
ofT. 

We will assume that the necessary conditions are met for (3.23)-(3.24) 
to have a blowup time T < oo. 
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Definition 3.3 A point x E 0 is a blowup point for (9.29}-(9.24) if 
there exists a sequence { ( Xm, tm)} ~=O such that tm ~ r-, Xm ~ x, and 
u(xm, tm) ~ oo as m ~ oo. 

The first theorem we prove shows that if the nonlinearity /( u) satisfies 
a certain condition, then blowup occurs at a single point (x = 0). 

Theorem 3.16 Suppose there is a function F(u) such that F ~ 0, F' ~ 0, 
F" > 0 J00 ds < 00 and _, F\s) ' 

/' F- F' J ~ 2eF F' (3.25) 

fore> 0 sufficiently small; then the only blowup point for (9.29}-(9.24} is 
the point x = 0. 

Proof. We wish to get a lower bound on ur(r, t). We already know that 
Ur(r, t) ~ 0 for r E (0, R). 

Define the function J(r, t) = ,n-lur +ern F(u). We will show that 
J(r, t) ~ 0 for (r, t) E 0 x (0, T). It can be shown that J is a solution 
to 

Jt + n;t Jr- Jrr + cJ 

= ern-t (F' f- F f' + 2eF F') - e2rn+ 2 F2 F"- :~~ J 2 

where c = 2eF' - 2e2 F F" - f'. As long as F satisfies the condition in 
(3.25), we have 

n-1 
Jt + --Jr- Jrr +cJ ~ 0. r 

Note that J(O, t) = 0 fort~ 0. If ¢/(r) < 0 for r E (0, R], and IP"(O) < 0, 
then for e > 0 sufficiently small, 

J(r, 0) = ,n-liP'(r) + ernF(IP(r)) < 0 (3.26) 

for r E (O,R]. [If IP'(r) = 0 for some r > 0 or if IP"(O) = 0, then equation 
(3.26) is no longer valid. See the note at the end of the theorem for the 
necessary modification to include these cases.] Finally, for e > 0 sufficiently 
small, 

Jr(R, t) = Rn-t [ut(R, t) - /(0)] + eRn-tur(R, t)F'(O) + enRn-t F(O) 

~ Rn- 1 [enF(O)- /(0)] ~ 0 

where we have used Ut(R, t) = 0 and ur(R, t) ~ 0. By the maximum 
principle, J(r, t) ~ 0 for (r, t) E (0, R) x (0, T). As a result we have the 
inequality 

ur(r,t) ~ -erF(u(r,t)) 

for (r, t) E (0, R) x (0, T). 

(3.27) 
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Define the function roo 1 
G(u) = lu F(s) ds 

for u > 0. The condition (3.27) yields [G(u)]r ~cr. An integration yields 

G(u(r,t)) ~ G(u(O,t)) + ~r2 ~ ~r2 . (3.28) 

If there is a blowup point at some r > 0, then u(r, t) --+ oo as t --+ r- so 
that G(u(r, t)) --+ 0 as t --+ r-. This is a contradiction to (3.28), so the 
only blowup point is at r = 0. 

In the event that ¢'(r) = 0 for some r > 0 or 4>"(0) = 0, we can make the 
following modification to the proof. By the maximum principle, Ux 1 (x, t) < 
0 on the set [0 n {x: x >xi}] x (0, T). Also, Ux 1 (0, t) = 0 and Ux 1 x 1 (0, t) < 
0. Define 4>'7(r) = u(r,TJ) for any T} E (O,T); then 4>~(r) < 0 for r E (O,R] 
and 4>~(r) < 0. Consequently, equation (3.26) can be replaced by 

J(r, T}) = rn-l4>~ (r) +ern F( 4>'1 (r )) < 0. 

The remainder of the proof of Theorem 3.16 is the same except that we 
conclude by the maximum principle that J(r,t) ~ 0 on (O,R) x (TJ,T) for 
all TJ E (0, T). Thus, J(r, t) ~ 0 on the entire set (0, R) x (0, T). D 

Corollary 3.17 Under the assumptions of Theorem 3.16, {3.23}-(3.24} 
has only the blowup point r = 0 for the special cases f(u) = eu and f(u) = 
(u +.X)", {.X~ 0, p > 1}. Moreover: 

If f(u) = eu, then for any a E (0, 1), 

1 (acr2 ) u(r,t)~-~ln - 2-

or 
u(r,t) ~ -2ln(r)+ln(lnr- 1)+C 

for (r, t) E (0, R) X (0, T) and for some constant C. 
If f(u) = (u + .X) 17 for p > 1 and .X~ 0, then for any 1 E (1,p), 

1 

( (1- 1 ).sr2 ) r::-;:; u(r, t) ~ 2 

for (r, t) E (0, R) x (0, T). 

(3.29) 

(3.30) 

(3.31) 

Proof. For f(u) = eu, choose F(u) = e0 u. The condition (3.25) appears as: 

(1- a)e(l+a:)u ~ 2ace20u 

which is valid for a E (0, 1) and for c ~ (1- a)/2a. The condition that 
cnF(O) ~ f(O) requires that .s < 1/n. From (3.28) we conclude that 

1 c 2 -e-au > -r 
a -2 
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from which the bound (3.29) on u follows. One could also choose F(u) = 
ue_;l. Condition (3.25) will be valid as long as c ~ 1/2 and wF(O) ~ f(O) 
requires c < 1/n. Inequality (3.28) becomes 

- c 2 (u + 2)e u ~ 2r . 

For r > 0 sufficiently small and for t < T sufficiently close to T, we have 
u + 2 ~ 2u, so 

2ue-u > (u + 2)e-u > :_r2 • - -2 
Taking the logarithm and using the previous estimate and (3.29) on u(r, t) 
gives us the estimate 

u(r,t) < ln(u)-21n(r)+Cl 

< ln(~ln(:)+Ko) -2ln(r)+C1 

< -2ln(r)+ln(lnr-1)+C 

for some constant C and where r is sufficiently small and t is sufficiently 
close toT. 

For f(u) = (u + A)P where p > 1 and A > 0, choose F(u) = (u + A)'Y. 
The condition (3.25) appears as: 

(p -1)(u + A)p+-y-l ~ 2q(u + A)2-y-l 

which is valid for 1 E (O,p) and for c ~ (P-I)Av--y /21. The condition that 
wF(O) ~ f(O) requires that c < Ap--y fn. From (3.28) we conclude that 

_1_(u + A)l-p > :_r2 
p-1 - 2 

from which the bound (3.31) on u follows. For A = 0, the proof of Theorem 
3.16 can be modified by choosing J = rn-lur + crn+6 F(u) for 8 > 0 and 
small. The bound on u(r, t) for this case is constructed just as in the case 
A> 0. o 

The next results are on "in-time" growth rates. We need not assume that 
0 is a ball nor that 4>(x) is radially symmetric for these results. 

Theorem 3.18 For any bounded domain 0, the function 

U(t) =sup{ u(x, t) : x E 0} 

is Lipschitz continuous and U'(t) ~ f(U(t)) a.e. 

Proof. Lett, t0 E [0, T). There are points x, x0 E 0 such that U(t) = u(x, t) 
and U(to) = u(xo, to). It follows that 

U(t) - U(to) ~ u(xo, t) - u(xo, to) = (t- to)ut(Xo, to)+ o(t- to) 
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and 

U(t) - U(to) ~ u(x, t)- u(x, t0 ) = (t- t0 )ut(x, t) + o(t- t0 ) 

which imply that U(t) is Lipschitz continuous and hence differentiable al
most everywhere. 

Fort> to, we have 

U(t)- U(to) ~ ut(x, t) + o(1) = Au(x, t) + f(u(x, t)) + o(1). 
t- to 

But at (x, t) we have a maximum for u, so Au(x, t) ~ 0. Letting t0 --+ t 
gives us U'(t) ~ f(U(t)) a.e. 0 

Corollary 3.19 Let u(x, t) be a solution to {3.23}-{3.24). If f(u) = eu, 
then 

U(t) ~ -ln(T- t) for t E (0, T). 

If f(u) = (u + >.)P for p > 1 and>.~ 0, then 

U(t) + >. ~ (r~ t)[j fortE (O,T) 

where f3 = P_: 1 . 

Proof Integration of U'(t) ~ f(U(t)) yields 

l oo 1 
f( ) ds ~ T- t. 

U(t) S 

The inequalities easily follow by an integration. 0 

We now have a lower bound on U(t) for solutions to (3.23)-(3.24). To ob
tain an upper bound for solutions u(x, t) requires a few more assumptions. 

Theorem 3.20 Let 0 be any bounded domain. Let the initial data ¢(x) 
satisfy A¢+ f(¢) ~ 0. Assume that the set of blowup points of {3.23}
{9.24} is compact. For any 17 > 0 there exists a e > 0 such that 

Ut ~ €f(u) for (x, t) E 0 17 x (17, T) 

where 0'1 = {x E 0: dist(x, 80) > 17}. 

Proof Consider the function J(x, t) = Ut - ef(u) on 0'7 x (17, T) where 
e > 0 is to be determined. We know that Ut > 0 on 0'7 X (1J, T) by the 
maximum principle. Also, J satisfies 

Jt- AJ- f'(u)J = e!"(u)IV'ul 2 ~ 0. 
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Since the set of blowup points is compact, if 'Y/ is sufficiently small, 

f(u) ~ C1 < oo for (x, t) E 80" X (0, T). 

Also, Ut ~ 02 > 0 on the parabolic boundary of 0" X ('Y/, T). For e > 0 
sufficiently small, J ~ C2 - ec1 > 0 on the parabolic boundary. By the 
maximum principle, 

J ~ 0 on 0" x ( 'Y/, T) 

and so Ut ~ ef(u) on this set. 0 

Corollary 3.21 Let u(x, t) be a solution to {9.29}-{3.24}. If f(u) = eu, 
then 

u(x, t) ~ -ln(T- t) -lne for (x,t) E 0 x (O,T). 

fore> 0 sufficiently small. If f(u) = (u + A)P for p > 1 and A~ 0, then 

u(x, t) +A ~ ( e(!- t)) f3 for (x, t) E 0 X (0, T) 

for e > 0 sufficiently small where f3 = p~l. 

3.4 Blowup: How? 

We again work with the initial-boundary value problem (3.23)-(3.24) on a 
ball 0 = { e E m_n : lei < R}: 

Ut- (urr + n; 1ur) = f(u), (r,t) E (O,R) X (O,T) 

u(r, 0) = ¢>(r), r E (0, R) 

u(R, t) = 0, ur(O, t) = 0, t E (0, T). 

The assumptions on the initial data ¢(r) remain the same. That is,¢> E 
0 2 ([0, R]), rf>'(r) ~ 0 for r E [0, R], and ¢>(R) = 0. In addition, assume that 
D.¢>+/(¢) ~ 0 for r E (0, R). This will guarantee that Ut(r, t) ~ 0 (see 
Theorem 3.3). The function f(u) will be either eu or uP for p > 1. 

We assume that (3.23)-(3.24) has finite blowup time T. In Section 3.3 
we proved that blowup can only occur at r = 0. We want to analyze the 
asymptotic behavior of u(r, t) near r = 0 as t ___. r-. 

For n = 1 and f(u) = eu, Kassoy and Poland [KAS3],[KAS4] and Kapila 
[KAP1] argued the following formal final time analysis. Since u(r, t) blows 
up only at r = 0, u(r,t)---. UF(r) for r E (O,R] and UF should be describ
able. 
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Let T = T- t, x = rT- 112 , and O(x, T) = u(r, t). A formal power series 
expansion in T, 

00 

O(x, T) =-In T + y(x) + I>kYk(x), (3.32) 
k=l 

was postulated. As T --+ o+ we have the asymptotic condition 

O(x, T),....., -In T + y(x). 

We wish to describe the function y(x). 
Substituting (3.32) into (3.23) and letting T --+ o+ yields the differential 

equation 

II (n-1 X) 1 y + -X- - 2 y + eY - 1 = 0, X > 0. 

By Corollary 3.19, u(O, t) = maxrE[O,R] u(r, t) = U(t) ~ -ln(T- t) and as 
a result, 

00 

0 ~ u(O, t) + ln(T- t) = 0(0, T) + ln T = y(O) + L TkYk(O) 
k=l 

so that as T--+ o+ we have y(O) ~ 0. Also, we have ur(r, t) = T- 1120x(x, T). 
Since 

00 

Ur(r, t) ~ 0 and Ox(x, T) = y'(x) + LTkyUx), 
k=l 

as T--+ o+ we have y'(x) ~ 0. At r = 0 we have 0 = ur(O, t) which implies 

00 

0 = Ox(O,T) = y'(O) + LTky~(O). 
k=l 

As T--+ o+ we have y'(O) = 0. 
In addition, one can show that 

TOr= -[1 + xy~(x)] + t Tk[kyk(x)- xy;(x)] 
k=l 

so that -TOr--+ 1 + ~xy'(x) as T--+ o+. The formal (physical) argument is 
that the large temporal gradient in the singular region will be suppressed 
as the outer region is approached if 

1 
2xy'(x)+1-+0 as x-+oo. (3.33) 

Thus, y'(x) --+ -~ or y(x) ,....., -2lnx + K as x--+ oo and we expect the 
behavior 

O(x,T),....., -lnT-2lnx+K 
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as T -+ Q+ SO that for T > 0, the final time solution U F( T) behaves like 
- 2ln r + K for some constant K. 

In summary, the asymptotic behavior of u(r, t) in a neighborhood of 
(0, T) [or of UF(r) in a neighborhood of OJ is determined by the behavior 
of a solution y( x) to 

II (n- 1 X) 1 '( ) Y + -x- - 2 y + eY - 1 = 0 and y x ~ 0 for x > 0 

with boundary conditions 

y(O) ~ 0, y'(O) = 0, and lim [1 + -21 xy'(x)] = 0. 
X-+00 

We will prove this boundary value problem has no solution for dimensions 
n = 1 or n = 2. This in turn implies that the formal final time analysis is 
incomplete. 

In this section we will prove that the solution u(r, t) of (3.23)-(3.24) 
satisfies the asymptotic condition 

u(r, t) + ln(T- t) -+ 0 as t-+ r-
uniformly on sets of the type { (r, t) : r ~ C(T- t) 112 } for any constant 
C ~ 0. We also obtain a lower bound on u(r, t) near r = 0 fort near the 
blow-up time T: 

UF(r) ~In c(nr~ 2)) 

for r > 0 sufficiently small. 
We will need to use an estimate on ur(r, t) to determine certain bounds 

later on. For the radially symmetric case, these are easy to obtain; however, 
such bounds can be obtained even in the non-radially symmetric case by 
using the maximum principle. Since Ut(r, t) ~ 0 and ur(r, t) ~ 0, equation 
(3.23) gives us 

n-1 
0 ~ Ut = Urr + --Ur + f(u) ~ Urr + f(u). 

r 

Multiplying by Ur and integrating with respect to r (with lower limit of 
integration 0), we obtain 

[ur(r, tW ~ [ur(r, tW + 2/(u(r, t)) ~ 2/(u(O, t)) (3.34) 

where I(u) = f0u f(s) ds. 
Although the problem considered by Kassoy, Poland, and Kapila involves 

the nonlinear term f ( u) = eu, the results about to be developed are adapt
able to the nonlinearity /( u) = uP which we discussed in Section 3.3. Thus, 
we will give a parallel development using these two nonlinearities. 
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The Self-Similar Problem. To analyze the asymptotic behavior of u(r, t), 
we make the following change of variables: 

a= In (r~ t) and x = r(T- t)- 112 ; 

then the rectangle (0, R) x (0, T) transforms into the set 

n = {(x,a): a> 0, 0 <X< RT- 112e<Tf 2 }. 

If /( u) = e'-', then define 

w(x,a)=u(r,t)+ln(T-t) and F(w)=ew-1; 

if /( u) = uP, then define 

w(x,a)=(T-t)i3u(r,t) and F(w)=wP-(3w 

where (3 = p~l. The initial-boundary value problem (3.23)- (3.24) is trans
formed into 

Wu=Wxx+(n: 1 -~)wx+F(w), (x,a)ED 

where the initial-boundary conditions for the case /( u) = e'"' are 

w(x,O) = 4>(xT112 ) +lnT, x E (O,RT- 112 ) 

wx(O,a) =0, w(RT- 112euf2 ,a) = -a+lnT, aE (O,oo) 

and the initial-boundary conditions for the case f(u) =uP are 

w(x,O) = Ti3¢(xT 112 ), x E (O,RT- 112 ) 

wx(O,a) = 0, w(RT- 112euf2 ,a) = 0, a E (O,oo). 

(3.35) 

(3.36) 

(3.37) 

From Corollary 3.19 and Corollary 3.21, we have the following a priori 
bounds where e > 0 is sufficiently small: 

0:5w(O,a):5-Ine, a~O, for f(u)=e'"' (3.38) 

and 
(3!3 :5 w(O,a) :5 (f3/e)i3, a~ 0, for f(u) =uP. (3.39) 

Equation (3.34) implies the existence of a positive constant 1 = l(e,!) 
such that 

-1:5 Wx(x,a) :50 (3.40) 

for all (x, a) E IT. Combining this with (3.38) and (3.39) yields the estimate 

-IX :5 w(x,a) :5 J.l (3.41) 
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for some positive constant J.L = J.L(€, f) and for all (x,a) E IT. In fact, for 
f(u) =uP, since u ~ 0, we have w(x,a) = (T- t)f3u(r,t) ~ 0. 

If there is a steady-state solution to (3.35)-(3.36) or (3.35)- (3.37), say 
y(x) = lim.,._, 00 w(x, a), then y(x) must be a solution to equation (3.35), 
so 

( n- 1 x) y" + -X-- 2 y1 +F(y) = 0, x E (O,oo). (3.42) 

For the case f(u) = eu, equations (3.36), (3.38), and (3.40) imply the 
conditions: 

y(O) =:a~ 0, y1(0) = 0, and - oo < -1 ~ y1(x) ~ 0 for x E (O,oo). 
(3.43) 

For the case f(u) =uP, equations (3.37), (3.39), (3.40), and w ~ 0 imply 
the conditions: 

y(O) =: a ~ f3!3, y1 (O) = 0, and 
(3.44) 

-oo < -1 ~ y1(x) ~ 0 and y(x) ~ 0 for x E (0, oo). 

For f(u) = eu with 1 ~ n ~ 2, the information above is enough to allow 
us to conclude that (3.42)-(3.43) has the unique solution y(x) = 0. For 
f(u) =uP with 1 ~ n ~ 2 or with n > 2 and p ~ n/(n- 2), the problem 
(3.42)-(3.44) has the unique solution y(x) = f3!3. This will be apparent in 
the proofs which are given later. 

For f(u) = eu with n > 2, Eberly and Troy [EBE1] show that (3.42)
(3.43) has an infinite number of solutions (which in fact have the asymptotic 
property (3.33) which was conjectured by Kassoy, Poland, and Kapila). For 
f(u) = uP with n > 2 and p > (n + 2)/(n- 2), Troy [TR02] shows that 
(3.42)-(3.44) has an infinite number of solutions. By comparison of w(x,a) 
to a certain singular solution of equation (3.35), we will find that out of 
the infinite number of solutions to (3.42)-(3.43) or (3.42)-(3.44), the only 
steady-state solutions are y(x) = 0 and y(x) = f3!3, respectively. 

Behavior near Singular Solutions. For f(u) = eu, the partial differential 
equation (3.35) has the singular solution 

Se(x) =In c(:; 2)) 

for the cases n > 2. For f(u) =uP, (3.35) has the singular solution 

S (x) = (-4/3 (/3 + ¥) )/3 
P x2 

for the cases n > 2 and p > n~2 . Note that 

1 I II n- 1 I 8 
1 + S 0 S + --S + e • = 0 2X e = , e X e (3.45) 
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and 
{38 + 1 S' 0 S" + n - l S' + (S )P = 0 P 2x P = ' P x P P (3.46) 

for 0 < x < oo. 
We show that the singular solution must intersect the initial data w(x, 0). 

Consider first the singular solution Se ( x); then 

and 

Se(RT- 112 ) =In ( 2(n ; 2
2)T) < lnT = w(RT-112 ,0) 

since 2(n- 2) < R 2 for blowup in finite time (see Theorem 2.19). This 
proves that w( x, 0) intersects Se ( x) at least once for 0 < x < RT- 112 • 

For the singular solution Sp(x), we can make the following observations: 

Sp(o+) = oo > w(O, 0) and Sp(RT- 112 ) > 0 = w(RT- 112 , 0). 

Ifw(x,O) ~ Sp(x) on the interval [O,RT- 112], then by the maximum prin
ciple it must be that w(x, a) ~ Sp(x) on IT. By the result of Troy [TR02], 
any solution of (3.42)-(3.44) must intersect Sp(x) transversally at least 
once. Thus, y(x) = lim.,.-+oo w(x, a) < Sp(x) for all x > 0. As we will see, 
the only solution of (3.42)-(3.44) which has this property is y(x) = 0. Thus, 
w(O, a) ~ 0 as a~ oo, a contradiction to (3.39). 

In either case, we conclude that there is a first x1 E (0, RT- 112 ) such 
that w(x1,0) = S.(xl) and w(x,O) < S.(x) on (O,xl) for*= e or p. 

Lemma 3.22 There is a continuously differentiable function x1 (a) with 
domain [O,oo) such that x1(0) = x1 and w(x1(a),a) = S.(xl(a)) for all 
a~ 0. 

Proof Define D(x, a)= w(x, a)- S.(x). We claim that V D =f. 0 whenever 
D = 0. By the maximum principle, Ut(r, t) > 0 on (0, R) x (0, T). Using 
the self-similar change of variables, we have 

Ut = (T- t)- 1 (w.,. + 1 + !xwx) for f(u) = eu, and 

Ut = (T- t)-{j-l (w.,. + {3w + !xwx) for f(u) =uP. 

If V D = 0 at a point in II where D = 0, then D.,. = 0 implies that 
w.,. = 0. The condition Dx = 0 implies 

1 + !xwx = 0 for f(u) = eu, and 

{3w + !xwx = 0 for f(u) =uP. 

In either case, Ut = 0 is forced at some point in (0, R) x (0, T), a contra
diction. 
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Secondly, we claim that Dx f. 0 at any value (x, u) E 11 where D(x, 0') = 
0 and D(x, 0') < 0 in a left neighborhood of x. 

If D(x, u) = 0 and Dx(x, 0') = 0, then equations (3.35), (3.45), and 
(3.46) imply that Dxx(x, 0') = Du(x, 0'). In addition, since Ut > 0 we have 
Du(x, u) > 0. Thus, Dxx(x, 0') > 0, which implies that (x, 0') is a local 
minimum point for D, a contradiction to D < 0 on a left neighborhood of 
x. It must be that Dx(x, 0') > 0. 

Recall that the initial data u(r, 0) = <P(r) satisfies the inequality 6.¢ + 
/(¢) ~ 0. This implies that 

n-1 
Dxx(x, 0) + -Dx(x, 0) + F(w(x, 0))- F(S.(x)) ~ 0. 

X 

On a left neighborhood of x1 , this in tum yields 

An integration yields Dx(x11 0) > 0. By the implicit function theorem, 
there is a continuously differentiable function x1 (a) such that x1 (0) = x1 
and Dx(xl (a), a) = 0 for some maximal interval [0, ao). If ao < oo, then 
by continuity, D(x1 (ao), ao) = 0. But Dx(xl (ao), ao) > 0, so the implicit 
function theorem allows an extension of the domain past ao, a contradiction 
to the maximality of [O,ao). Thus, a0 = oo. D 

For f(u) = u", since w(O,O) < S,(o+), w(RT-112 ,0) < S,(RT-112 ), 

and w(x1,0) = S,(xl) transversally, there must be a last point of inter
section between w(x, 0) and S,(x), say XL E (x 11 RT-112 ). A construc
tion similar to Lemma 3.22 leads to the existence of a continuously dif
ferentiable function xL(a) with domain [O,oo) such that xL(O) =XL and 
w(xL(a),a) = s,(xL(a)) for a~ 0. 

Let 111 = {(x,a) :a> 0, 0 < x < x1(a)}. We can prove the following 
comparison result on this set. 

Lemma 3.23 The function D(x,a) = w(x,a)-S.(x) satisfies D(x,a) < 0 
for (x,a) E l11. 

Proof By Lemma 3.22, we have shown that D ~ 0 on the parabolic bound
ary of 111 . Since F( w) is a locally one-sided Lipschitz continuous function, 
we can apply the maximum principle to obtain D ~ 0 on II1 . 

If D(xo,ao) = 0 for some (xo,ao) E l11, then VD(xo,ao) = 0 since 
D ~ 0 on 111. But we had shown in Lemma 3.22 that V D f. 0 whenever 
D = 0. Thus, it must be that D(x,a) < 0 for (x,a) E l11. D 

Define the value 
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Since D(x1,0) = 0 and Dx(x1,0) > 0, the supremum exists. For f(u) = eu 
we have x2 :5 RT-112 and for f(u) = uP we have x2 :5 XL < RT-112. 
Define x2(u) = x2eul2 and define the set 

ll2 = {(x,u): CT > 0, X1(u) <X< X2(u)}. 

Lemma 3.24 ThefunctionD(x,u) = w(x,u)-S.(x) satisfiesD(x,u) > 0 
for (x,u) E ll2. 

Proof. Let E(u) = D(x2(u),u). By definition of x2, E(O) = D(x2,0) 2: 0. 
Also, 

E'(u) = Du(x2(u),u) + ~x2(u)Dx(x2(u),u). 
As in Lemma 3.22, using ut(r, t) 2: 0, we have 

E'(u) 2: 0 for f(u) = eu, and 

e-f3u fu [ef3u E(u)] = E'(u) + {3E(u) 2: 0 for f(u) = u'P. 

In either case, an integration yields E(u) 2: 0 for u 2: 0. 
On the parabolic boundary of TI2 we now have D 2: 0. By the maximum 

principle, D 2: 0 on IT2 • An argument similar to the one used in Lemma 
3.23 shows that D(x,u) > 0 for (x,u) E TI2 • 0 

Corollary 3.25 For each N > 0 there is a CTN > 0 such that for each 
(1 > CTN, w(x,u) intersects s.(x) at most once for X E [O,N]. 

Proof. For each N > 0 let CTN be the solution toN= x2 exp( ~UN). Lemma 
3.23 guarantees that D(x, u) < 0 for x E [0, x1 (u)) and Lemma 3.24 guar
antees that D(x,u) > 0 for x E (x 1(u),x2(u)]. For u > CTN we have 
[0, N] ~ [0, x2(u)] by definition of CTN, so D(·, u) = 0 at most once on 
this interval. D 

In a later subsection on the convergence results, we will see that x1 (u) --+ 

Las u--+ oo where Se(L) = 0 or Sv(L) = {3f3. 

Analysis of the Steady-State Problem. In this subsection we will analyze 
the behavior of the boundary value problems (3.42)-(3.43) and (3.42)-(3.44) 
which we restate here: 

y"+ (n:l-~)y'+F(y)=O, xE(O,oo). 

The boundary conditions for f(u) = eu are 

y(O) =a 2: 0, y'(O) = 0, and -1 :5 y'(x) :50 for x E (0, oo), 

and the boundary conditions for f(u) = u'P are 

y(O) =a 2: {3f3, y'(O) = 0, and -1 :5 y'(x) :50, y(x) 2: 0 for x E (0, oo). 
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Lemma 3.26 Consider the initial-value problem associated with {9.42). 

1. Any solution to {9.42}-{9.49} must satisfy y( ffn) ~ 0. 

2. Any solution to {9.42}-(9.44) must satisfy y( ffn) ~ flf3. 

Proof. To prove part (1), F(y) = eY -1 ~ y, so equation (3.42) implies that 

( n- 1 x) y" + -X- - 2 y' + y ~ O 

• 2 
for any solutwn y(x) of (3.42). Let u(x) = a(1- ~n); then 

u" + ( n: 1 - ~) u' + u = 0, u(O) = y(O), and u'(O) = y'(O). 

Define W(x) = u(x)y'(x)- u'(x)y(x). While u(x) > 0, 

( n -1 x) W' + -x- - 2 W ~ 0 and W(O) = 0, 

so an integration yields W ( x) ~ 0. But 

(Y)' W(x) u (x) = [u(x)]2 ~ O, 

so integrating from 0 to ffn yields y( ffn) ~ u( ffn) = 0. 
Note that for a> 0, if y(z) = 0, then y'(z) < 0 by uniqueness to initial 

value problems, so y(x) < 0 for x > z. 
To prove part (2), F(y) = yP -fly is convex, so F(y) ~ y- flf3 and 

equation (3.42) implies that 

( n -1 x) v" + -x- - 2 v' + v ~ 0 

where v(x) = y(x)- flf3 and y(x) is a solution of (3.42). A similar argument 
as for part (1) shows that v(../2ri) ~ 0 and so y(../2ri) ~ flf3. 

Note that for a > flf3, if y(z) = flf3, then y'(z) < 0 by uniqueness to 
initial value problems, so y(x) < flf3 for x > z. D 

Define the function h(x) by 

n-1 
h(x) = y"(x) + --y'(x). 

X 

Define the function g( x) by 

g(x) = 1 + !xy'(x) for F(y) = eY- 1, and 

g(x) = fly(x) + !xy'(x) for F(y) = yP- fly. 
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It can be shown that h and g satisfy the following equations: 

g" + (n;l - ~) g' + [F'(y)- 1]g = 0, 

g(O) > 0, g'(O) = 0, 

h" + (n; 1 - ~) h' + [F'(y) -1]h = -F"(y)[y'j2, 

h(O) ~ 0, h'(O) = 0, 

1 1 2- n 
g'- 2xg = -2xe11 + - 2-y' for F(y) = eY- 1, and 

g'- !xg = _!xyP + [{3 + 2 - n] y' for F(y) = yP- {3y. 
2 2 2 

In addition, define W(x) = g(x)h'(x)- g'(x)h(x); then 

W' + (n: 1 - ~) W = -F"(y)[y'] 2 g, and W(O) = 0. 

An integration yields 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

W(x) = -x1-nex2 14 J; sn-le-82 14 F" (y(x)) [y'(x)]2 g(x) ds 

-. -xl-nex2/4J(x) 

where I(x) :=:: 0 while g(x) > 0. Note that (hfg)'(x) = W(x)j[g(x)j2, so 
while g(x) > 0 we have 

h(x) = -g(x)- g(x) t1-net 14-- dt. h(O) 1x 2 I(t) 
g(O) o [g( t)J2 

(3.51) 

Lemma 3.27 Consider the initial value problem for (9.42). 

1. lfy(x) is a solution to (9.42}-(9.49) with a> 0, then g(x) must have 
a zero. 

2. If y(x) is a solution to {9.42}-{9.44) with a > [3f3, then g(x) must 
have a zero. 

Proof Suppose that g(x) :=:: e > 0 for all x :=:: 0. Equation (3.51) implies 
that 

h(x) ~ ~i~>(x) ~ -8 < 0 

since h(O)fg(O) < 0 and since I(x) :=:: 0. Multiplying by xn-l and integrat
ing yields 

8 
y'(x) ~ --x for x :=:: 0 

n 
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which contradicts the boundedness of y'(x) assumed in (3.43) and (3.44). 
Thus, g(x) cannot be bounded away from zero. 

Suppose that g( x) > 0 for x ~ 0 and that g is not bounded away from 
zero. Suppose there is an increasing unbounded sequence {xk}r=l such that 
g'(xk) = 0. Equation (3.47) implies that 

g"(xk) = [1- F' (y(xk))] g(xk)· 

But Lemma 3.26 implies that 

1- F' (y(xk)) > 0 

fork sufficiently large, which forces g"(xk) > 0 fork large. This is a contra
diction since g would have two local minimums without a local maximum 
between. It must be that g'(x) < 0 for x sufficiently large and g(x) ....... 0 as 
X--+ 00. 

Suppose there is an increasing unbounded sequence {xk}f::1 such that 
g"(xk) = 0 and g'(xk) ~ -L < 0. Equation (3.47) implies that 

( nx~ 1 - x;) g'(xk) + [F'(y(xk)) -1]g(xk) = 0 

where g'(xk) ~ -L, F' (y(xk))- 1 is bounded, and g(xk) --+ 0. The left
hand side of the last equality must become infinite, a contradiction. Thus, 
g'(x) < 0 for x large and g'(x)--+ 0. 

In (3.48), take the limit as x--+ oo to obtain 

-oo 

where we have used L'Hospital's rule. This implies that h(x) ~ -8 < 0 for 
x sufficiently large. Multiplying by xn-l and integrating yields 

y'(x) ~ K- ~x 
n 

for some constant K and for x large. As before, this contradicts the bound
edness of y'(x) assumed in (3.43) and (3.44). 

In all of the above cases we arrived at contradictions, so there must be 
a value xo such that g(x0 ) = 0 and g(x) > 0 for x E [O,xo). D 

Lemma 3.28 Consider the problem {9.42}-{9.49}. 

1. If 1 ~ n ~ 2, then the only solution is y(x) = 0. 

2. If n > 2, then the only solution which intersects Se ( x) exactly once 
is y(x) = 0. 
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Proof. Let 1 :::; n :::; 2; then 2;n ~ 0. Suppose there is an a > 0 for which 
(3.42)-(3.43) has a solution. Let x0 be the first zero for g(x). Suppose there 
is an x1 > xo such that g'(xl) = 0 and g(x) < 0 on (xo, x1]. Equation 
(3.49) implies that 

0 < -%x1g(xt) = g'(xt)- !x1g(xt) 

= -!xley(xt) + 2;ny'(xt) 

< 0 

which is a contradiction. Thus, g'(x) < 0 for x ~ x0 and so g(x) :::; -€ < 0 
for x ~ x > x0 • But 

h(x) = g(x)- ey(x) :::; g(x):::; -€. 

Multiplying by xn-l and integrating yields 

y'(x):::; K- .:.x, 
n 

contradicting the boundedness of y'(x). As a result, the only solution of 
(3.42)-(3.43) for 1 :::; n:::; 2 is y(x) = 0. 

Let n > 2. Define D(x) = y(x)- Se(x); then 

D" + (n;l- ~) D' + 2 (~2 2 ) (eD -1) = 0, x E (O,oo), 

D(o+) = -oo, D'(o+) = oo. 
(3.52) 

Note that D'(x) > 0 while D(x) < 0 for x in a right neighborhood of 0. 
Suppose that D(x) < 0 for all x ~ 0; then 

D 
(
n-1 x) e - 1 < 0 and D" + -x- - 2" D' ~ 0. 

Integrating yields 

xn-le-x2 14 D'(x) ~ xn-le-x214 D'(x) =: p > 0, for X~ X. 

Consequently, 

D(x) ~ D(x) + p lx t 1-net2 14dt. 

But the right-hand side of this inequality must be positive for x large, 
contradicting our assumption that D < 0. Thus, D(x) must have a first 
zero Xt and D'(x) > 0 on (O,xt]. 

By Lemma 3.27, g(x) must have a first zero x0 . But then 

D'(xo) = ~g(xo) = 0 and xo > x1. 
xo 
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If D(x0 ) < 0, then there must have been a second zero x2 for D. Otherwise, 
D(x) > 0 on (xt. x0]. Suppose that D > 0 for all x ~ x0 ; then there is an 
x sufficiently large such that 

n-1 x 
D(x) > 0, D'(x) < 0, D"(x) > 0, and ~- 2 < 0. 

Evaluating equation (3.52) at x yields 

0 < D"(x) + ( n; 1 - ~) D'(x) + 2(nx; 2) (eD(x) - 1) = 0, 

a contradiction. Thus, D must have a second zero x2 . 

We have shown that there are at least two points of intersection between 
the graphs of y(x) and Se(x) for a> 0. Thus, the only solution to (3.42)
(3.43) which intersects Se(x) exactly once is y(x) = 0. 0 

Lemma 3.29 Consider the problem {3.42}-{3.44). 

1. If 1 ~ n ~ 2, or, if n > 2 and /3 + 22n ~ 0, then the only solution is 
y(x) = j3f1. 

2. If n > 2 and /3 + 22n < 0, then the only solution which intersects 
Sp(x) exactly once is y(x) = j3f1. 

Proof. To prove part (1), suppose there is an a> j3f1 such that (3.42)-(3.44) 
has a solution. Let x0 be the first zero for g(x). Suppose there is an x1 > xo 
such that g'(xl) = 0 and g(x) < 0 on (x0 , x1]. Equation (3.49) implies that 

0 < -!xlg(xl) 

= g'(xl)- !x1g(xl) 

= -!xl[y(xl)]P+ [/3+ 2-;n]y'(xl) 

< 0 

which is a contradiction. Thus, g'(x0 ) < 0 for x ~ x0 and so by an argument 
similar to that in Lemma 3.28, we obtain y'(x) ~ K- ~x, a contradiction 
to the boundedness of y'. That is, the only solution to (3.42)-(3.44) for part 
(1) is y(x) = 0. 

To prove part (2), assume a> j3f3 and let y(x) be the solution to (3.42)
(3.44). Define W(x) = y(x)S;(x)- y'(x)Sp(x) and Q(u) = F(u)ju; then 

(n- 1 x) W' + -x-- 2' W = ySp[Q(y)- Q(Sp)]. 

Note that Q(u) is an increasing function. Also note that 

W(x) = -2Kx-2f3- 1g(x) 

(3.53) 

(3.54) 
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where Sp(x) = Kx- 2!3. Since n- 2- 2(3 > 0, we have xn- 1W(x) --. 0 as 
X --. o+. Integrating {3.53) we obtain 

If 0 < y < Sp for all x ~ 0, then since Q(u) is increasing, W(x) < 0 for 
all x. But then {3.54) implies g(x) > 0 for all x, a contradiction to Lemma 
3.27. Consequently, there must be a value z such that y(z) = Sp(z). 

Also, W(x) < 0 for x E [0, xo) where xo is the first zero of g(x). At 
xo, 0 < W'(xo) which implies that y(x0 ) > Sp(xo), where we have used 
(3.53) and the fact that Q is increasing. Note that W'(z) # 0 since y(x) 
and Sp(x) are two linearly independent solutions to the same differential 
equation. Thus, z < x0 is necessary. 

Let x1 > xo be small enough so that W(xl) > 0. Suppose that y > Sp 
for all x > z, then Q(y) > Q(Sp) and an integration of (3.53) yields 

But (Spjy)'(x) = W(x)j[y(x)j2, so 

For x sufficiently large, the right-hand side must become larger than 1, in 
which case (Spfy)(x) ~ 1, a contradiction to our assumption that y > Sp 
for x > z. Therefore, there is another value q where y(q) = Sp(q). 

We have shown that there are at least two points of intersection between 
the graphs of y(x) and Sp(x) foro: > (3f3. Thus, the only solution of (3.42)
(3.44) which intersects Sp(x) exactly once is y(x) = (3!3. 0 

The Convergence Results. We are now able to precisely describe how the 
blowup asymptotically evolves for (3.23)-(3.24) by looking at the self-similar 
problems (3.35)-(3.36) or (3.35)-(3.37). 

Theorem 3.30 Consider the partial differential equation {9.95}. 

1. The solution w(x,a) to {9.95}-{9.96} converges to 0 as a--. oo uni
formly in x on compact subsets of [0, oo). 

2. The solution w(x, a) of {9.95}-{9.97} converges to (3f3 as a --. oo 
uniformly in x on compact subsets of [0, oo). 

Proof. Define wm(x,a) := w(x,a + m) form ~ 0. We will show that as 
m--. oo, wm(x,a) converges to the solution y(x) of (3.42)-(3.43) or (3.42)
(3.44) uniformly on compact subsets of :rn,+ x ffi. As long as the limiting 
function is unique, it is equivalent to prove that given any unbounded 
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increasing sequence { ni}, there exists a subsequence [renamed] { ni} such 
that wni converges to y(x) uniformly on compact subsets of m,+ x ffi. 

Let N E 1N. For i sufficiently large, the rectangle given by 

Q2N = {(x,a): 0 ~ x ~ 2N, lal ~ 2N} 

lies in the domain of wn;. The radially symmetric function w(~,a) = 
wn; (kl, a) solves the parabolic equation 

wu = ~w- ~(~, V'w) + F(w) 

on the cylinder given by 

f2N ={(~,a): m,n X ffi: ~~~ ~ 2N, lal ~ 2N} 

with -2N"f ~ w(~,a) ~ p, using (3.41). 
By Schauder's interior estimates, all partial derivatives of w can be uni

formly bounded on the subcylinder rN c r2N· Consequently, wn;, w;;i, 
and w;~ are uniformly Lipschitz continuous on QN C Q2N and their Lips
chitz constants depend on N but not on i. By the Arzela-Ascoli Theorem, 
there is a subsequence {n3·} and a function w such that wni, w;ii, and w;& 
converge tow, W17 , and Wxx, respectively, uniformly on QN. 

Repeating the construction for all N and taking a diagonal subsequence, 
we can conclude that 

uniformly on every compact subset in m,+ x ffi. Clearly w satisfies (3.35)
(3.36)-(3.38)-(3.40) or (3.35)- (3.37)-(3.39)-(3.40). For n > 2 and F(w) = 
ew - 1, or, for n > 2 with f3 + (2- n)/2 < 0 and F(w) = wP- {3w, the 
function w intersects Se(x) at most once since, by Corollary 3.25, wni (x, a) 
intersects Se ( x) at most once on [0, N] for each a > aN. 

We now prove that w is independent of a. For the solution w(x, a) of 
(3.35)-(3.36) or (3.35)-(3.37), define the energy functional 

E(a) = fov p(x) [~w;- G(w)] dx (3.55) 

where v = RT- 112e1712 , p(x) = xn-le-x214, and where 

G(w) = ew- w for F(w) = ew- 1, and 

G(w) = p!l wP+l- ~f3w2 for F(w) = wP- f3w. 

Multiplying equation (3.35) by pw17 and integrating from 0 to v yields 
the equation 

J; pw~ dx = J; W17 (pwx)x dx + J;[pG(w)]u dx 

= J; [pG(w)- ~pw;]u dx + pwuwxl;~o· 
(3.56) 
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Moreover, 

E'(a) = I; fu [!pw;- pG(w)] dx 

+!vp(v) [!w;(v,a)- G(w(v,a))]. 
(3.57) 

Let a and b be chosen so that 0 :::; a < b. Integrate equation (3.56) with 
respect to a from a to b and use (3.57) to obtain 

I: I; pw~ da = -I: E'(a) da +I: p(v)wu(v, a)wx(v, a) da 

+!I: vp(v) [!w;(v,a)- G(w(v,a))] da (3.58) 

-. E(a)- E(b) + 1/J(a, b). 

Recall that lwxl :::; 1 and observe that 

Wu(v,a)=-1-Rur(R,T(l-e-u)) for f(u)=eu, and, 

wu(v,a) = -Rur(R, T(l- e-u)) for f(u) =uP. 

We see that in either case Wu is uniformly bounded as a -+ oo. We conclude 
that 

lim (sup'¢( a, b)) = 0. 
a-+oo b>a 

(3.59) 

For any fixed N we will prove that 

!'{ pw;dxda= lim j'f p(w;i)2 dxda =0. JQN nj-+00 JQN 
It is not a restriction to assume that limj-+oo(nj+t- nj) = oo. For all j 
sufficiently large, 

N:::; RT- 112 exp ( ~(nj- N)) and ni+t - ni ~ 2N. 

Consequently, 

I~N IoN p (w~')2 dxda 

< J-N+ni+i-ni rRT- 112 exp("'+ti) ( n·)2 d d 
- -N Jo p Wu 1 x a 

= E(nj- N)- E(ni+t - N) + 1/J(nj- N, ni+t - N) 

where we have used (3.58). Applying equation (3.59) gives us 

!'{ pW;dxda ::;limsup[E(nj-N)-E(nj+t-N)]. (3.60) JQN J-+00 
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Choose any K arbitrarily large. For j sufficiently large we have 

E(ni- N)- E(ni+1- N) = 

f0K !P [(w~i(x,-N)) 2 - (w~i+ 1 (x,-N)) 2 ] dx 

- J0K p [G (wni (x, -N))- G (wni+ 1 (x, -N))] dx 
...lLe ";:;N 

+ J~ e "i±~~l! (w~i (x, -N))2 
- G (wn1 (x, -N))] dx 

- J} p [! (w~J+t (x, -N))2 - G (wni+t (x, -N))] dx. 

(3.61) 

The first two integrals in (3.61) converge to zero as j ~ oo. The bounded
ness of w~1 and wni imply that the absolute value of the last two integrals 
in (3.61) is bounded by 

M /Koo xn-1 exp ( -~x2) dx 

where M is a positive constant. This integral can be made arbitrarily small 
by choosing K sufficiently large. 

Thus, we have proved that J!:N pw; dxdu = 0 for all N, which in turn 
implies Wu = 0. We have 

w(x,u) = w(x,O) = y(x) 

where y(x) is a nonincreasing globally Lipschitz continuous solution of 
(3.42)-((3.43) or (3.44)]. For the cases where there is a singular solution 
S. ( x), the function y( x) intersects s. ( x) exactly once on (0, oo) since w 
does. By Lemma 3.28, the only possibility for y(x) is y(x) = 0 in the case 
f(u) = eu. By Lemma 3.29, the only possibility for y(x) is y(x) = (3!3 in 
the case f(u) =uP. D 

Corollary 3.31 Let u(r, t) be the solution to {9.29}-(9.24). In the case 
f(u)=eu, 

u(r, t) + ln(T- t) ~ 0 as t ~ r-
uniformly for r :5 C(T- t) 112 for arbitrary C ~ 0. In particular, 

lim [u(O, t) + ln(T- t)] = 0. 
t--+T-

In the case f(u) =uP, 

(T- t)f3u(r, t) ~ (3/3 as t ~ r-
uniformly for r :5 C(T- t)- 112 for arbitrary C ~ 0. In particular, 

lim (T- t)f3u(O, t) = (3/3. 
t--+T-
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Corollary 3.32 Consider IBVP {9.29}-(9.24} for the cases where the sin
gular solution S.(r) exists. There is a value r 1 E (0, R) such that the fol
lowing properties are valid: 

1. u(r1,0) = S.(r!), 

2. u(r,O) < S.(r) for 0 < r < r1, and 

9. for each r E (0, r 1) there is a l = l(r) E (0, T) such that u(r, t) > s. (r) 
fortE (t, T). 

Proof. Theorem 3.30 guarantees that the first branch of zeros x1 (a) of 
D(x,a) = w(x,a)- S.(x) is bounded and converges to the number£ where 
Se(i) = 0 or Sp(£) = [Jf3. 

Define rl = X!T112 ; then D(xbO) = 0 implies that u(rbO) = s.(rt)· In 
addition, u(r,O) < S.(r) for r E (O,r!). 

Since x1 (a) is bounded and since :fuD(rT- 112euf2 , a) ~ 0 for each r E 
(0, r!), there is a value 7f > 0 such that 

rT- 112i'12 = xt(u), D(x1(u),u) = 0, and, D(rr- 112eul2 ,a) > 0 

for all a > u. Changing back to the variables {r, t) with 7f = ln[T f(T -l)] 
gives us u(r, t) > S.(r) fortE (t, T). 0 

3.5 Comments 

The basic fundamental theory for parabolic problems can be found in 
[FRil], [LAD], and [HEN]. The existence results for parabolic initial bound
ary value problems assuming the existence of upper and lower solutions are 
an outgrowth of similar results for elliptic problems. These in turn can be 
traced back to the Perron method for solving the Dirichlet problem (see 
[GIL]). Sattinger [SAT1] used a monotone iteration scheme to prove The
orem 3.1 assuming that f(x,t,u) is C 1 with respect to u. A "Perron-type" 
proof of Theorem 3.1 is given in [BEB2] assuming only Holder continu
ity, but the existence should be viewed as a consequence of invariance as 
discussed in Chapter 4. 

The problem of nonexistence for parabolic problems waas driven by the 
need to understand supercritical thermal events. The first systematic de
velopment of the supercritical case for the ignition problem is due to Kas
soy, Liiian, and co-workers [KAS1],[KAS2],[KAS3],[KAS4] but either for 
extremely simplified models or the results were numerical in nature. 

An important paper by Ball [BAL] discussed the ideas of nonexistence 
and blowup. The earliest blowup results are due to Kaplan [KPL] and Fujita 
[FUJ1], but the first to study blowup for the ignition model is the paper by 
Bebernes and Kassoy [BEB4]. In that paper, upper and lower bounds for 
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the blowup time are rigorously proved. The best results on when blowup 
occurs are due to Lacey [LAC1] and Bellout [BEL]. 

In Section 3.3, the results presented are essentially due to Friedman and 
McLeod [FRI2]. Numerical experimentation [KAS3],[KAP1] clearly pre
dicted that, for radially symmetric domains, as the blowup time was ap
proached a single hot spot developed. For f(u) =uP, p sufficiently large, 
and for sufficiently large initial data, Weissler [WES3] was the first to prove 
single point blowup. Friedman and McLeod [FRI2] extended these results 
significantly using a clever maximum principle argument. 

The question of where blowup occurs can be answered by giving a char
acterization of the asymptotic behavior of the solution near blowup. Kassoy 
and Poland [KAS3] and Kapila [KAP1] independently had predicted that 
the final time solution profile would be of the form -2ln r at the blowup 
point. Dold [DOL] challenged their prediction and suggested a different 
variable grouping to describe the thermal runaway process. The Kassoy
Kapila prediction in part based on numerics has since been proved incorrect 
[BEB9], [EBE1j,[EBE2j,[FRI4],[TR02]. One can describe the asymptotics 
of the solution in a backward space-time parabola. This was first done by 
Giga and Kohn [GIG5] for f(u) = uP with p < 1 + 2/n and has been 
extended to more general nonlinearities in [GIG6],[BEB10], [BEBll]. The 
ideas of using backward similarity variables can be traced back to Leray 
[LER] in 1934. 

Determining the final time solution profile at time t = T remains a dif
ficult and unsolved problem. Using the Dold [DOL] similarity grouping, 
several numerical studies have been conducted [BER],[GAL1] which sup
port the conjectures of Dold and of Galaktionov and Posashkov [GAL2]. 



4 

The Complete Model for Solid 
Fuel 
In this chapter we discuss comparison techniques, invariant sets, and ex
istence results related to invariance. Our main application is the complete 
solid fuel model (1.24)-(1.25): 

Tt- !.lT = c8ym exp (~;:.1 ) 

Yt - (3/.ly = -£8fym exp ( ~;:.1 ) 
, (x,t) E 0 X (O,oo) 

with initial-boundary conditions 

T(x,O) = 1, y(x,O) = 1, x E 0 

T(x, t) = 1, 8J'JMl = o, (x, t) E ao x (0, oo ). 

where (3 ~ 0, r > 0, and 8 > 0. We prove there is a solution (T, y) for all 
(x, t) E 0 x (0, oo) such that y(x, t) -+ 0 as t -+ oo. 

Section 4.1 covers comparison techniques. These methods are general
izations of maximum principles. The comparisons for systems of equations 
require the concept of a quasimonotone function. 

In Section 4.2 we discuss invariance results. The main idea is that of 
an invariant set E which contains the range of solutions to a given initial
boundary value problem. The results rely on a geometric concept of outer 
normals to 8E which in some sense prevent solutions from exiting E. 

The existence results of Section 4.3 are closely related to the invariance 
results. The main tool used in proving existence of solutions is the Leray
Schauder degree theory. 

4.1 Comparison Techniques 

We begin with the scalar inequalities which we used in Chapter 3. The 
following result is a generalization of the maximum principle. 

Theorem 4.1 Let ITr = 0 x (0, T) and fr = (0 x {0}) U (80 x (0, T]). 
Suppose u, v E C(ITt, ffi) n 0 2,1 (ITr, ffi) are two functions such that 

Ut- !.lu- f(x, t, u) < Vt- !.lv- f(x, t, v), (x, t) E I1r 

u(x, t) < v(x, t), (x, t) E fr; 
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then u(x, t) < v(x, t) for all (x, t) E Ifr. 

Proof. Let d = v - u. Assume that the conclusion is false; then there 
is a first t > 0 such that d(x, t) = 0 for some x E 0, d(x, t) > 0 for 
(x, t) E 0 x [0, t), and dt(x, t) ~ 0. Moreover, d(x,l) attains its minimum 
at x = x, so Vd(x, t) = 0 and ~d(x, t) ~ 0. However, 

dt(x, t) = Vt- Ut > ~v- ~u- f(x, t, v) + f(x, t, u) ~ 0, 

a contradiction. Thus, u(x, t) < v(x, t) for all (x, t) E llr. 0 

Corollary 4.2 If f(x, t, u + z) - f(x, t, u) ~ Lz for 0 < z < 8 and if 
u, v E C(llr, R) n C2•1 (IIr, R) have the properties 

Ut- ~u- f(x, t, u) ~ Vt- ~v- f(x, t, v), (x, t) E IIr 

u(x, t) ~ v(x, t), (x, t) E fr, 

then u(x, t) ~ v(x, t) for all (x, t) E llr. 

Proof. Set ve = v + ee2Lt for e > 0; then 

Vt + 2Lee2Lt- ~v- f(x, t, v + ee2Lt) 

> Vt + 2Lee2Lt- ~v- f(x, t, v)- Lee2Lt 

= Vt- ~v- f(x, t, v) + Lee2Lt 

> Vt- ~v- f(x, t, v) 

> Ut- ~u- f(x,t,u) 

for (x, t) E IIr, and where we have used the one-sided Lipschitz condition 
for f(x, t, u). Moreover, 

ve(x, t) = v(x, t) + ee2Lt > v(x, t) ~ u(x, t) 

for (x, t) E fr. The hypotheses of Theorem 4.1 are satisfied for the nmc
tions ve and u. Consequently, ve (x, t) > u(x, t) for all (x, t) E llr. This 
inequality and v(x, t) = lime-o+ ve(x, t) imply v(x, t) ~ u(x, t) for all 
(x, t) E IIr. 0 

Theorem 3.2 is a restatement of Theorem 4.1 and Corollary 4.2. These 
results do not extend to systems unless we impose an extra condition. For 
a, bE m,n, define the orderings "<" and "~" by 



90 4. The Complete Model for Solid Fuel 

Definition 4.1 A function f : D c IR" ---. IR" is quasimonotone nonde
creasing if /i is nondecreasing in Xj for j -:f:. i. That is, if x ~ y and Xi = Yi 
for x, y ED, then fi(x) ~ /i(Y) for all i = 1, ... , n. Similar definitions can 
be given for quasimonotone nonincreasing, quasimonotone decreasing, and 
quasimonotone increasing. 

Consider the parabolic system 

OUk Tt - akfluk = !k(x, t, u), k = 1, ... , n, 

where u = (u1, ... ,un)· For a= (ab···,etn) and f = (fi, ... ,fn), the 
system of equations may be written in the form 

Ut-a • flu= f(x, t, u, 'Vu). 

Theorem 4.3 Let u,v E C(ITr,IR") n C 2 •1 (IIr,IR") be functions which 
satisfy the conditions 

Ut-a • flu- f(x, t, u) < Vt- a • flv- f(x, t, v), (x, t) E IIr 

u(x, t) < v(x, t), (x, t) E fr. 

Iff is quasimonotone nondecreasing, then u(x, t) < v(x, t) for all (x, t) E 
ITr. 

The proof of Theorem 4.3 goes essentially as in the !-dimensional case. 
Initial-boundary value problem (1.24)-(1.25) is not quasimonotone, so 

Theorem 4.3 is not applicable. There is a very useful comparison theorem, 
however. 

For z : IIr ---. IRm, define LiZi = W - EiZi where Ei is a uniformly 
elliptic operator with uniformly bounded coefficients on ITr and is of the 
form 

In the following development, we consider functions F, F : ITr x IR" ---. 
IR" such that F(x, t, u) ;::: E(x, t, u), E is Lipschitz continuous in u uni
formly in (x, t), and E is quasimonotone increasing in u. 

For u, v E lR n, define the replacement vector ui ( v) by 

ui(v) = (ul, ... ,Uj-I.Vj,Uj+l•···•Un)· 

The next result is due to Fife [FIF]. 

Theorem 4.4 Let u,y E C(llr,IRn) n C 2•1 (IIr,IRn) satisfy 

Lu- F(x, t, u);::: 0;::: Ly- E(x, t,y), (x, t) E IIr 

u(x, 0) ;::: y(x, 0), x E 0, 
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and either 

au au 
u(x, t) 2:: :g(x, t) or OrJ (x, t);::: 0~(x, t), (x, t) E 80 x (0, T); 

then u(x, t) 2:: :g(x, t) for all (x, t) E llr. 

Proof For c > 0, define v = !! - -jn (1 +2ft)( 1, ... , 1) where i is the Lipschitz 
constant for E.; then 

Livi Li!!i - 2ci 

< E.i(x, t,:g)- 2ci 

< E.i(x, t, v) + c£(1 +2ft)- 2ci 

E.i(x, t, v) + ci(2ft- 1) 

where the Lipschitz continuity of E. was used. Thus, for t E [0, ! ] we have 
Livi ~ E.i(x, t, v). 

Set w = u- v. For each j we have 

LjWj = LjUj- LjVj 

> Fj(x, t, u)- E.1(x, t, v) ( 4.1) 

> F1(x, t, u)- E.1(x, t, v) 

for (x,t) E 0 x (O,!J. Since w(x,O);::: }n-(1, ... ,1), there is arE (O,!J 
such that w 2::0 on [O,r). 

Since F 1 is nondecreasing in Ui for i # j, we have 

for t E [0, r]. 

E.j(x, t, u) = E.j (x, t, u/ ( u)) 

> E.j(x, t, vi(u)) 

> E.1(x, t, v)- i(uj- v1 ) 

( 4.2) 

Combining the inequalities ( 4.1) and ( 4.2) yields L1wi + iwj 2:: 0 for 
~\t( .~ 0 x (0, r) with Wj(x, 0) > 0 for x E 0 and either Wj(x, t) 2:: 0 or 

w a.:: t ;::: 0 for (x, t) E 80 X (0, r). By the maximum principle, Wj(X, t) > 0 

on 0 X [0, r] for each j = 1, ... , n. Thus, w(x, t) > 0 on 0 x [0, !J. 
Let c --+ o+; then u(x, t) ;::: :g(x, t) on 0 x [0, !l· The arguments above 

may be repeated on intervals of the type [ ~£, (k~l)£] for k ;::: 1 to eventually 
obtain the result on llr .. D 

Similar results hold for functions F and F where F is Lipschitz continu
ous in u uniformly in (x, t) and where F is quasimonotone nonincreasing. 
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We need only require that for u, u E C(Ilr, :rn.n) n C2•1 (IIr, :rn.n): 

and either 

Lu- F(x, t, u) ;::: 0;::: Lu- F(x, t, u), (x, t) E Ilr 

u(x, 0) 2: u(x, 0), X E 0 

au au 
u(x, t) 2: u(x, t) or aT/ (x, t) 2: OT/ (x, t), (x, t) E 80 X (0, T); 

to guarantee that u(x, t) 2: u(x, t) for all (x, t) E Ilr. 
The application of these comparison results to the solid fuel model is 

as follows. Let T = 1 +cO in equations (1.24)-(1.25). The system may be 
written as 

Ot - l:l.O = 8ym exp ( l:e9 ) 

Yt - {3/:l.y = -"tYm exp L:e9) 
O(x,O) = 0, y(x,O) = 1, x E 0 

, (x, t) E Ilr 

O(x, t) = 0, ay~~,t) = 0, (x, t) E aO x (0, T) 

where "t = c8f. Since 0 2:0, 1 ~ exp( 1:e9 ) ~ exp U) for c > 0. Moreover, 
since 0 ~ y ~ 1, we have 

and 

m (1) m ( 0 ) m -"tY exp "€ ~ -"tY exp 1 + cO ~ -"tY · 

Consider the comparison systems 

Bt - l:l.B = 8ym exp ( ~) 
, (x, t) E IIr 

Yt - f3l:l.y = -"tym 

O(x,O) = 0, y(x,O) = 1, x E 0 
(4.3) 

- ay(x,t) O(x, t) = 0, a, = 0, (x, t) E aO x (0, T) 

and 

fl.t -l:l.fl. = 8'f!_m 
, (x, t) E IIr 

'f!_t - {3/:l.'f!_ = -"t'f!_m exp U) 
!l.(x,O) = 0, ]!_(x,O) = 1, x E 0 

( 4.4) 

ay(x,t) 
fl.(x, t) = 0, ~ = 0, (x, t) E 80 X (0, T). 
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Both system ( 4.3) and system ( 4.4) are quasimonotone nondecreasing. 
By Theorem 4.4 we have the comparisons 

(fl,O) :5 (fl, Y) :5 (0, Y) :5 (0, Y) :5 (0, 1). 

where (0, Y) is a solution to ( 4.3) and (fl, '!!_) is a solution to ( 4.4). Note that 

) m:_l 
1)t ' 

m=1} 
m> 1 

and 

{ 
e-"Yexp{1/E:)t 

' y = y(t) = 1 
- - 1 m=T 

( l+"Y(m-1) exp(1/e)t) ' 

m= 1}' 
m > 1 

so '!!.. -+ 0 and y -+ 0 as t -+ oo. Since '!!.. :5 y :5 y, we have y(x, t) -+ 0 as 
t-+ oo. 

To construct useful majorant and minorant reaction functions F and F, 
define 

Fj(x,t,u) = inf{Fj(x,t,vi(u)): v;::: u} 

and 
Fi(x,t,u) = sup{Fi(x,t,vi(u)): v :5 u}. 

When u is increased, the infimum is taken over a smaller set and the supre
mum is taken over a larger set. Consequently, Fj and Fi are nondecreasing. 
If F is Lipschitz continuous, then so are E and F. 

Corollary 4.5 Let y_, u E rn.n where !f < u. Suppose that F satisfies 

Fi(x,t,ui(y_));::: o;::: Fi(x,t,ui(u)) 

for !fk :5 Uk :5 uk (k 'I i) and for (x, t) E ITT. 
Let u be a solution of 

Ut-Eu=F(x,t,u), (x,t)Enx(O,T) 

!f :5 u(x, 0) :5 u, x E 0 

where E is a uniformly elliptic operator, and with either 

!f :5 u(x, t) :5 u, (x, t) E an X (0, T) 

or 
au 
a'f/ (x, t) = 0, (x, t) E an x (0, T); 

then !f :5 u(x, t) :5 u for (x, t) E ITT. 

( 4.5) 

(4.6) 

(4.7) 
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Proof. Construct F and F by defining 

E.1 = inf{F1(x,t,vi(u)): u ~ v ~ u} 

and 
F1 = sup{F1(x,t,v1(u)): :!f ~ v ~ u}. 

Theorem 4.4 can be applied using these values for E. and F. D 

Corollary 4.6 Let u(x, t) be a solution to (4.5)-(4.6) or -(4. 7). Suppose 
that F and F are independent of x. Let a(t) be a solution to 

a'=E.(t,a), a(O)=:!f 

and let (3 be a solution to 

(3' = F( t, (3), (3(0) = u 

with a~ :!f < u ~ b for some a,b E IRn; then a(t) ~ u(x,t) ~ (3(t) for all 
(x, t) E Tir. 

4.2 Invariance 

Let 0 c m,n be a bounded domain with boundary 80 of class C2+"' for 
some a E (0, 1). For T > 0, define the cylinder Tir = 0 x (0, T) with 
lateral boundary Sr = 80 x (O,T). For u E C2 •1 (Tir,IRm), define Eu = 
(Eut, ... , Eum) by 

where aii E C"'·"'I2 (ITr,ffi.). We assume that the matrix A= [aiJ] is sym
metric and positive definite with uniformly bounded coefficients, so E is a 
uniformly elliptic operator. 

Let M(x, t, u) = [Mij(x, t, u)] be an m x m matrix where 

Mii E C"'·"'/2,<>(ffr x m_m, lRm). 

We can choose M so that the operators 

are uniformly parabolic. 
Let f(x,t,u,p) E C"'·0 12•"'•0 (llr x lRm x lRnm,m_m) where p = [PiJ] is 

an n x m matrix. 
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In this section we will consider the quasilinear parabolic initial value 
problem 

Ut = M(x, t, u)E(x, t)u + f(x, t, u, Du), (x, t) E Tir (4.8) 

u(x, 0) = <f>(x), x E 0 (4.9) 

where </> E C2+0 (0,Rm) and Du = [auijaxi]nxm, with either of the 
boundary conditions 

(4.10) 

or 

au(x, t) = h(x t u(x t)) E Cl+o,l+o/2,1+o(S X rn_m rn_m) (4.11) a17 (X) ' ' ' T ' 

where 17(x) is an outward normal vector to an at x. Assume that for the 
Dirichlet boundary condition, 4> and '1/J satisfy the compatability conditions 

'1/J(x,O) = <f>(x) 

and 
'1/Jt(x,O) = M(x,O,'I/J(x))E(x,O)</>(x) + f(x,O,</>(x),D<f>(x)) 

for X E an. Assume that for the Neumann-type boundary conditions, 4> 
and h satisfy the compatability condition 

a¢(x) 
aTJ(x) = h(x,O,</>(x)) 

for X E an. 

Definition 4.2 The set E C rn_m is positively invariant relative to 

1. IBVP (4.8}-(4.9}-(4.10} if any solution u satisfies u(ITr) C E pro
vided</> E C2+0 (0, E) and '1/J E C2+ 0 (Sr, E), or 

2. IBVP (4.8}-(4.9}-(4.11} if any solution u satisfies u(ITr) c E pro
vided</> E C2+0 (0, E). 

Definition 4.3 The matrix M(x, t, u) satisfies the eigenvalue condition on 
E if for each (x, t) E Tir and u E aE there exists an outer normal vector 
N(x,t,u) to aE at u, and a >.(x,t,u) > 0, such that 

N(x, t, uf[M(x, t, u)- >.(x, t, u)IJ = 0. ( 4.12) 

This conditions says that N is a left eigenvector of M corresponding to the 
eigenvalue >.. 
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Figure 4.1. 

Definition 4.4 Consider IBVP (4.8}-(4.9}-(4.10). The junction f satis
fies the strong flux condition on L: if for each u E oL: there is an outer 
normal vector N(x, t, u) tooL: at u such that 

N(x, t, u) • f(x, t, u, P) < 0 ( 4.13) 

for those matrices P such that PN(x,t,u) = 0 for (x,t) E IIr. 

Definition 4.5 Consider IBVP (4.8)-{4-9)-(4.11). The junction f satis
fies the strong flux condition on L: if for each u E oL: there is an outer 
normal vector N(x, t, u) tooL: at u such that 

and 

N(x,t,u) • j(x,t,u,P) < 0 for those matrices P such that 

PN(x, t, u) = 0 for (x, t) E Ilr, and 

pT rJ(x) = h(x, t, u) for (x, t) E Sr, 

N(x, t, u) • h(x, t, u) :::; 0 for (x, t) E Sr. 

(4.14) 

(4.15) 

In either definition, if instead N • f :::; 0, then f is said to satisfy the weak 
flux condition. 

These last definitions are a geometric concept which is illustrated in 
Figure 4.1. 

We will show in the next two theorems that the strong flux condition will 
force solutions u to (4.8) to remain in L: whenever the initial and boundary 
data are in L:. 
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Theorem 4.7 Let~ C m,m be an open bounded convex set which contains 
0. Let the matrix M satisfy the eigenvalue condition (4.12}, and let f satisfy 
the strong flux condition (4.13}, with the same outer normal vector N. 
If¢ E C2+0 (0, ~) and 1/J E C2+a(ST, ~), then ~ is positively invariant 
relative to IBVP {4.8}-(4.9}-(4.10}. 

Proof We prove the theorem by contradiction. Suppose that u E C(TIT) n 
C2•1 (TIT) is a solution to ( 4.8)-( 4.9)-( 4.10) whose values do not remain 
in ~. There must be a first time t0 E (0, T] and some xo E fl such that 
Uo = u(xo, to) E a~ and u(x, t) E ~ for all (x, t) E 0 X [0, to). 

Since f satisfies the strong flux condition, there is a normal vector No = 
N(xo, to, uo) such that No • f(x 0 , t0 , u0 , P) < 0 for matrices P such that 
PNo = 0. Define w(x, t) = [u(x, t) - u0 ] • N0 . By the construction of 
to, w(xo, to) = 0, w(x, t) ~ 0 for (x, t) E 0 x [0, to], and Wt(xo, to) ~ 0. 
Therefore, w(-, to) attains its maximum at xo, so 'Vw(xo, to) = 0 and the 
matrix [wx,x,] is negative semidefinite. Consequently, E(xo, to)w(xo, to) = 
I:i,j aij(Xo, to)wx,x, (xo, to) ~ 0. 

The condition 'Vw(xo, to) = 0 implies Du(x0 , to)No = 0, so Duo .
Du(xo, to) is a matrix such that N0 • f(xo, t0 , u0 , Duo) < 0. Also, 

NJ' M(xo, to, uo) = >.(xo, to, uo)NJ' 

by the eigenvalue condition. Thus, 

Wt(xo, to) = ut(xo, to) • No 

= Nl[M(xo, to, uo)E(xo, to)u(xo, to)+ f(xo, to, uo, Duo)] 

= >.(xo, to, uo)NJ' E(xo, to)u(xo, to)+ No • f(xo, to, uo, Duo) 

= >.(xo, to, uo)E(xo, to)w(xo, to)+ No •f(xo, to, uo, Duo) 

< 0 

since E(xo, to)w(xo, to) ~ 0 and N0 • f(x0 , to, uo, Duo) < 0. This is a 
contradiction to Wt(x0 , t0 ) ~ 0. Thus, ~ is positively invariant. D 

Theorem 4.8 Let ~ C m,m be an open bounded convex set which contains 
0. Let the matrix M satisfy the eigenvalue condition (4.12}, and let f satisfy 
the strong flux condition (4.14}-(4.15}, with the same outer normal vector 
N. If¢ E C2+a(O, ~), then ~ is positively invariant relative to IBVP 
(4.8}-(4.9}- (4.11}. 

Proof This theorem is also proved by contradiction. Let u E C(i'h) n 
C2•1 (TIT) be a solution to (4.8)-(4.9)-(4.11) whose values do not remain 
in ~. There must be a first time to E (0, T] and some xo E 0 such that 
uo = u(xo, to) E a~ and u(x, t) E ~ for all (x, t) E 0 x [0, to). 
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Since f satisfies the strong flux condition, there is a normal vector No = 
N(xo, to, uo) such that No • f(x0 , t0 , uo, P) < 0 for matrices P such that 
PNo = 0. Define w(x, t) = [u(x, t)- uo]• No. 

If x0 E n, then as in Theorem 4.7, w(·, t0 ) has a maximum of 0 at xo, 
Vw(xo, to)= 0, Wt(Xo, to) ~ 0, and E(xo, to)w(xo, to) ~ 0. Since DuoNo = 
Vw(xo, to) = 0, where Duo = Du(xo, to), we have No • f(xo, to, uo, Duo) < 
0 by (4.14). Moreover, Wt(x0 ,t0 ) < 0 follows in a similar fashion as in 
Theorem 4.7, a contradiction to Wt(Xo, to) ~ 0. 

Suppose Xo E an. The matrix p = Duo satisfies the conditions p No = 0 
and pr 71(x0 ) = h(xo, to, uo) since 

au(xo, to) r 
h(xo, to, uo) = aTl(xo) = (Duo) Tl(xo) 

by definition of the normal derivative. By ( 4.14), No•f(xo, to, uo, Duo) < 0. 
By continuity off and Wt, and by the piecewise smoothness of aL:, there 
is an open ball B with center (x0 , t0 ) such that 

E(x, to)w(x, to) = 

on Bn(nx {to}). Also, w(x0 , to)= 0, w(x, to)< 0 on Bn(nx{to} ), and an 
satisfies the interior sphere condition. By the Hopf Lemma, 0~11x~~to > 0. 
However, by (4.15), 

aw(xo, to) - au(xo, to) N, - h( t ) N, < 0 
a71(Xo) - a71(Xo) e 0 - Xo, o, Uo e 0 - ' 

a contradiction. It must be that :E is positively invariant. D 

If the strong flux condition is replaced by the weak flux condition, then 
the last theorem is no longer true. For example, consider 

Ut = ~u + (u -1)213, (x,t) E Ilr, T > 1 

u(x,O) = 0, x E 0 

~ = 0, (x, t) E Sr. 

Let :E = ( -1, 1); then N(x, t, ±1) = ±1 for any (x, t) E fir and f(x, t, u) = 
(u -1)213 • At u = 1 E a:E, N(x,t, 1)/(x,t, 1) = 0, and at u = -1 E a:E, 
N(x, t, -1)/(x, t, -1) = -22/ 3 < 0, so the weak flux condition is satisfied. 
However, a solution to the IBVP is u(x,t) = 1 + (t -1)3 . At t = 1, u = 1, 
but for t E (1, T], u(x, t) > 1 and :E is not invariant. 

4.3 Existence 

The theorems in this section rely on compact operators associated with 
the initial-boundary value problems. We will construct these operators and 
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then use Leray-Schauder degree theory to obtain solutions which lie in an 
invariant set. 

For a function v : llr --+ rn,m, define Fv : ITr --+ rn,m by Fv(x, t) = 
f(x, t, v(x, t)). Let F denote the nonlinear operator which maps v to FV. 
Since f is Holder continuous, F: ca(ITr)--+ caa(ITr) is a bounded map
ping for any a E [0, 1]. In addition, F : C(ITr) --+ C(ITr) is continuous. 
By the boundedness ofF we have IFvlca<>(Tir) ~ livlca(ilr) for a generic 
constant I· 

Also, for the matrix M(x, t, u), define Mv by Mv(x, t) = M(x, t, v(x, t)). 
Let M denote the nonlinear operator which maps v to Mv. The matrix 
M(x, t, u) is also Holder continuous, so the operator M : ca(fir) --+ 

caa(Tir) is a bounded mapping for any a E [0, 1] and is continuous for 
a= 0. Moreover, IMvlca<>(Tir) ~ llvlca(ITr) for a generic constant I· 

Define Ba = {v E ca(fir): v(x,O) = ¢(x) for x E 0} where ¢(x) is the 
initial function in (4.9). For v E Ba, consider the system 

Ut = Mv(x, t)Eu(x, t) + Fv(x, t), (x, t) E Tir (4.16) 

u(x,O)=¢(x), xEO (4.17) 

u(x,t) = '1/J(x,t), (x,t) E Sr (4.18) 

where we now assume that M(x,t,u) = diag{Me(x,t,u): l = 1, ... ,m} 
whose diagonal entries are positive. Consequently, we have an uncoupled 
system of linear equations with coefficients in caa(ITr) where each equation 
is uniformly parabolic. The standard linear theory implies that each equa
tion in (4.16)-(4.17)-(4.18) has a solution ue E C2+aa(ITr), l = 1, ... ,m, 
which satisfies 

luelc2+a<>(Tir) ~ c(IFvlca<>(Tir) + l¢1c2+a<>(O) + l'l/Jic2+a<>(Sr)) (4.19) 

where cis some constant [LAD, Thm.5.2, pg.320]. 
Define the mapping K : Ba --+ C2+aa(fir) by Kv = u; then K is a 

bounded operator for each a E (0, 1] and 

for some constant c. 

Lemma 4.9 The operator K can be extended to K : C(ITr) --+ C(ITr) and 
is continuous and compact. 

Proof. The operator K can be extended to K: C(llr) --+ Wi· 1(Tir) for 
q > 1 sufficiently large, and is continuous. The extension follows from 
[LAD, Thm.9.1, pg.341]: For v E C(llr ), (4.16)-(4.17)-(4.18) has a unique 
solution u = K v E Wi· 1 (Tir) which satisfies the condition 

IK vlw~.~ (IIr) ~ c(IFviLq (IIr) + I<Piw;-2/q (O) +l'l/Jiw;-1/q,l-1/(2q) (Sr )) ( 4.20) 
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for some constant c. Using the estimates for F and M, and analyzing the 
proofs in [LAD, Ch.IV, Sec.9], one can replace the right-hand side of (4.20) 
by another bound: 

1Kvlw_;.1 (IIT) S: c(llvlc(ih) + l4>1c2+Q(n) + lt/Jic2+Q(sT). (4.21) 

Let VI, V2 E c(ITr) with I vi - v21c(ITT) < 1. The functions K VI and K V2 
are solutions to (4.16)- (4.17)-(4.18), so 

(Kvi- Kv2)t = MviE(Kvi- Kv2) + Fvi- Fv2 

+(Mvi- Mv2)EKv2, 
( 4.22) 

and K vi - K v2 is a solution to ( 4.22) with zero initial and boundary 
conditions. Therefore, 

IKvi- Kv2lw;.1(IIT) 

S: ciFvi- Fv2 + (Mvi - Mv2)EKv2ILq(IIT) (4.23) 

S: c(IFvi- Fv2lc(Ih) + 1IMvi- Mv21c(lh)IKv2lw;·t(rrT)) 

just as in the construction of (4.20) and (4.21). Since Kv2 is a solu
tion to (4.16), inequality (4.21) is valid with v replaced by v2. Note that 
lv2lc(fh) S: lviic(lh) + 1, so 1Kv2IW.?·l(IIT) S: 1 for a generic constant 
depending on lv1lc(ih). Therefore ( 4.23) implies 

IKvi- Kv21Wi·l(IIT) S: c(IFv1- Fv21c(ITT) + IMv1- Mv2lc(ITT)) 

for some constant c, so K : C(i'fr) --+ W,?• 1 (llr) is continuous. 
From standard functional analysis [ADA], W,?· 1(llr) is compactly em

bedded in C1+b(ffr) for 0 < b < 1 - n$2 , and C1+b(fir) is compactly 
embedded in C(llr ), so extend K to K: C(llr) --+ C(llr ), which is com
pact and continuous. 0 

Theorem 4.10 Let E C 1Rm be an open bounded convex set which contains 
0. Let the diagonal matrix M satisfy the eigenvalue condition (4.12}, and 
let f satisfy the strong flux condition (4.19}, with the same outer normal 
vector N. If¢ E C2+a(o, E) andt/1 E C2+0 (Sr,E), then IBVP (4.8}-(4.9}
(4.10} has a solution u E c2+a(ITr,E). 

Proof Let K : C(llr) --+ C(ITr) be the completely continuous operator 
constructed in Lemma 4.9. If u = >..Ku for some >. E (0, 1], then u E 
c2+a (ITT) is a solution of 

Ut = MuEu + >.Fu, (x, t) E llr 
u(x,O) = >.¢(x), x E 0 
u(x, t) = >.'!jJ(x, t), (x, t) E Sr. 

(4.24) 

(4.25) 

(4.26) 
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The hypotheses of Theorem 4. 7 are satisfied, so the solution u has the 
property u(ffr) C E. 

We need only show existence to u = >.Ku for some >. E (0, 1]. Define 
m(E) = max{ lxl : x E ~} and U = { u E C(fir) : lulc(ffr) < m(E) + 1} =1-
0. Consider the completely continuous operator I- >.K. For>. E [0, 1], the 
Leray-Schauder degree, deg(I- >.K, U, 0), is defined. To see this, suppose 
there is some u E au such that (I - >.K)u = 0 for some >.. If>. = 0, then 
u = 0 ft au. If>. =1- 0, then u = >.Ku is a solution to (4.24)- (4.25)-(4.26), 
so u(IIr) c E and luiC(ffr) ~ m(E); that is, u ft au. Thus, (I- >.K)u =f. 0 
for all u E au and deg(I- >.K, U, 0) is defined. 

By homotopy invariance, deg( I - >.K, U, 0) = deg( I, U, 0) = 1 for >. E 
[0, 1]. Since deg(I- K, U,O) =1- 0, u = Ku has at least one solution u E U. 
Thus, u E C2+a:(fir) is a solution to (4.24)-(4.25)-(4.26) with>.= 1. D 

The same result is true with the strong flux condition N • f < 0 replaced 
by the weak flux condition N • f ~ 0. 

Theorem 4.11 Let E C IRm be an open bounded convex set which contains 
0. Let the diagonal matrix M satisfy the eigenvalue condition (4.12}, and 
let f satisfy the weak flux condition, with the same outer normal vector N. 
If¢ E C2+a(O, E) and 1/J E C2+a(Sr, E), then IBVP {4.8}-(4.9}-(4.10} 
has a solution u E C2+a(Ilr, E). 

Proof. For c E (0, ~) consider 

Ut = (1- c:)(MuEu + Fu)- c:(u- ¢), (x, t) E Ilr 

u(x,O)=¢(x), xEO (4.27) 

u(x, t) = (1- c:)'!jJ(x, t) + c:¢(x), (x, t) E Sr. 

Since ¢(x) E E and E is open, (u(x,t)- ¢(x)) • N(x,t,u) > 0 for u E aE 
and (x, t) E Ilr. Consequently, 

N(x, t,u) • [(1- c:)f(x, t, u)- c:(u- ¢(x))] < 0 

and 
NT(x,t,u)(1-c:)M(x,t,u) = (1-c:)>.(x,t,u)NT(x,t,u) 

where (1-c:)>.(x, t, u) > 0. IBVP (4.27) satisfies the hypotheses of Theorems 
4.7 and 4.10, so there is a solution ue: E C2+a:(Jfr,E) for each c: E (0, ~). 

As a solution in Wi· 1 (IIr), Ue: satisfies inequality ( 4.21). Since E is invari
ant, and since M and Fare bounded continuous operators, (4.21) implies 
lue:lw~,l(IIr) is bounded independently of c:. Since Wi· 1 (IIr) is compactly 
embedded in C1 +b (ITT) for some b E ( 0, 1), { Ue: : 0 < c: < H is uniformly 
bounded in C 1+b(Jlr ). 

As a solution in c2+a:(fir), Ue: satisfies inequality (4.19). The bound
edness of {lue:lc 1H(ffr) : 0 < c: < H and the boundedness of M and 
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F imply that { luc 10 2+"' (ITT) : 0 < c < ! } is uniformly bounded. Since 

C2+a (ITr) is compactly embedded in C2•1 (Ilr ), there is a subsequence 
{ uEk }f:0 converging in norm to u E C2•1 (ITr) such that €k --+ 0 ask--+ oo. 
The quantities M(x, t, uEk (x, t)) and f(x, t, uEk (x, t)) converge uniformly to 
M(x,t,u(x,t)) and f(x,t,u(x,t)), respectively, since M and fare contin
uous. Taking the limit as k --+ oo in ( 4.27), with u replaced by €k, we see 
that u E C 2•1(fh, E) is a solution to (4.8)-(4.9)-(4.10). 

Since the coefficients M and Fu are in ca(fir ), the standard linear 
theory shows that u E C2+a(fir ). 0 

Theorem 4.12 Let E C :rn.m be a compact convex set containing 0 (with 
possibly empty interior relative to :rn.m ). Let the diagonal matrix M satisfy 
the eigenvalue condition (4.12} with eigenvalue .>., and let f satisfy the 
weak flux condition, with the same outer normal vector N = N(u). If <P E 
C2+a(o, E) and 1/J E C2+a(Sr, E), then IBVP {4.8}-(4.9}-(4.10} has a 
solution u E C2+a(fir, E). 

Proof. Let P be the projection operator which maps each point u E :rn.m to 
the nearest point Pu E E; then IPu- ul = inf{ls- ul : s E E} and P is 
uniformly Lipschitz continuous. 

For each q E (0, 1], define Eq = { u E :rn.m : dist(u, E) < q} :J E, where 
Eq is open, bounded, and convex. If u E 8Eq, then Pu E 8E and u- Pu 
is an outer normal to 8Eq at u and to 8E at Pu. For q E (0, 1) consider 

Ut=MPuEu+FPu, (x,t)EIIr 

u(x, 0) = </J(x) E C2+a (0, Eq) 

u(x, t) = 1/J(x, t) E C2+a(Sr, Eq)· 

( 4.28) 

For u E 8Eq, we have N(u) = u- Pu and .>.(x, t, Pu) > 0. The hypotheses 
of Theorem 4.11 are satisfied, so (4.28) has a solution uq E C2+a(fir, Eq)· 

Since the sets Eq are nested, the set { uq : 0 < q < 1} is uniformly 
bounded in C(llr) by luqiC(nT) ~ sup{lul: u E E1 }. Similar to the proof 

of Theorem 4.11' { Uq : 0 < q < 1} is uniformly bounded in c2+a (ITT), 
and there is a subsequence uqk which converges to a function u E C 2•1 (fir) 
with Qk --+ 0 as k --+ oo. This function u is a solution to ( 4.8)-( 4.9)-( 4.10) 
and satisfies u E C2+a(fir, E). 0 

The following existence results for IBVP ( 4.8)-( 4.9)-(4.11) are given with
out proofs. The proofs are similar to those for IBVP (4.8)- (4.9)-(4.10) in 
that they use Leray-Schauder degree theory arguments applied to certain 
compact operators. However, the boundary condition ( 4.11) creates more 
technical difficulties. The proofs can be found in [TALl]. 

Theorem 4.13 Let E C :rn.m be an open bounded convex set which con
tains 0. Let M be a diagonal matrix satisfying the eigenvalue condition 
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(4.12}. Let f satisfy the weak flux condition for IBVP (4.8}-(4.9}-(4.11} 
with the same outer normal vector N, and where h(x, t, u) = b(x)u and 
b E Cl+o ( 80, ( -oo, 0]). 

Iff satisfies the growth condition 

lf(x,t,u,p)l ~ c(1 + IPI 2-e) 

for (x, t, u) E fir x E, c constant, and e E (0, 1), and if</> E C2+0 (0, E) 
with ~~~~~ = b(x)<J>(x) for x E 80, then IBVP (4.8}-(4.9}-(4.11} has a 
solution u E C2+0 (llr, E). 

Theorem 4.14 Let E C IRm be a compact convex set which contains 0. 
Let M be a diagonal matrix satisfying the eigenvalue condition (4.12}. Let 
f satisfy the weak flux condition for IBVP (4.8}-(4.9}- (4.11} with the same 
outer normal vector N, and where h(x, t, u) = 0. 

Iff satisfies the growth condition 

lf(x,t,u,p)l ~ c(1 + IPI2-e) 

for (x, t, u) E IIr x E, c constant, and e E (0, 1), and if</> E C2+0 (0, E) 
with ~~~~~ = 0 for x E 80, then IBVP (4.8}-(4.9}-(4.11} has a solution 
u E C2+0 (IIr, E). 

4.4 Applications 

The invariance and existence results developed in Sections 4.2 and 4.3 can 
be extended to problems with mixed boundary conditions. We give a brief 
outline of how this extension can be carried out. 

For v : ITr ~ IR, define the differential operator Lk by 

where akij,bki,Ck E Co,of2 (llr,IR) for some a E (0,1), and where ck ~ 0. 
Assume that each Lk is uniformly parabolic. Define the operator L by 
Lu = (L1u1, ... , Lmum) for u: ITr ~ IRm. 

As in the previous sections, let f(x,t,u,p) E co,of2•0 •0 (Ilr X IRm X 

IRnm, IRm) where pis an n x m matrix. We consider the system of mixed 
initial-boundary value problems of the form 

Lu = f(x, t, u, Du), (x, t) E IIr 

Bu = 0, (x,t) E fr 

( 4.29) 

(4.30) 
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where Du = [ouJfoxi]nxm and fr = (0 x {O})USr. The initial-boundary 
value operator B is defined by Bu = ( B 1 u1, ... , Bm Um) with 

B . ( t) _ { v(x,O)- </Ji(x), ,v x, -
8;'J(;jl - bi(x, t)v(x, t), 

xEO } 

(x, t) E Sr 

or 
Biv(x, t) = v(x, t) -1/Ji(x, t), (x, t) E fr, 

where 

and 
ry(x) E Cl+a(aO,ffim) 

is an OUter unit normal vector to ofl at X. 

Let a, /3 E C2,1 (llr, :rn.m) satisfy a(x, t) < f3(x, t) for (x, t) E llr. Define 
(a,/3) = {u Effim: a(x,t) < u < f3(x,t) for (x,t) Ellr}. Similarly define 
(a, /3], [a, /3), and [a, /3]. 

Let v, wE :rn,m. Recall the definition for the replacement vector 

VJ(w) = (vb···,VJ-1 1 WJ,VJ+l 1 ••• 1 Vm)· 

The next two results can be found in [BEB3] and are used for two appli
cations given later in this section. 

Theorem 4.15 Assume that 

for all (x,t) E IIr and OJ~ UJ ~ f3J, i =I= k, k = 1, ... , m; then E = (a,/3) 
is positively invariant relative to (4.29)-(4.30). 

Proof. The proof is essentially that of Theorems 4. 7 and 4.8 with a few 
modifications. If the solution u to (4.29)-(4.30) satisfies u(Tir) <t E, then 
there is an index k, a first time to, and a value xo E 0 such that uk(Xo, to) = 
f3k(xo, to) or uk(xo, to) = ak(xo, to). Without loss of generality assume that 
the latter case happens. Define w = uk -ak. If the boundary condition Bk is 
Dirichlet, then the proof is similar to that of Theorem 4. 7. If the boundary 
condition Bk is Robin, then the proof is similar to that of Theorem 4.8. D 

Theorem 4.16 Let a,/3 E C2,1 (llr,ffim) with a(x,t) < f3(x,t) for all 
(x, t) E llr. Assume that 

Lkak- !k(x,t,uk(a),Dii(a)) ~ 0 ~ Lkf3k- fk(x,t,uk(/3),Duk(f3)) 

for all (x, t) E IIr and OJ ~ UJ ~ f3J, i =I= k, k = 1, ... , m. If there is a con
tinuous non decreasing function <I> : [0, oo) -+ (0, oo) such that s2 /<I>( s) -+ oo 
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ass-+ oo, and iff satisfies the growth condition lf(x,t,u,p)l ~ <I>(Ipl) for 
(x, t, u) E ITT x [a, ,8], and if all initial data have ranges in [a, ,8], then 
IBVP (4.29)-(4.90} has a solution u E C2•1 (IIT, [a,,B]). 

As an immediate consequnce, we have Theorem 3.1 for the scalar problem. 
The first application we wish to consider is to a system which models 

certain chemical processes in which a gas is absorbed by a liquid which 
contains a substance that reacts with the dissolved gas [KAH]: 

Ut = a~u - cuv, Vt = b~v - duv, (x, t) E liT 

u(x,O) = tPt(x), v(x,O) = ¢2(x), x E 0 

u(x, t) = '1/Jt (x, t), v(x, t) = 'I/J2(x, t), (x, t) EST 

where a, b, c, and d are positive, and ¢1 , ¢2 , 'ljJ1 , and 'I/J2 are nonnegative 
functions. 

This system is a special case of a system 

Ltu = ft(x,t,u,v), L2v = h(x,t,u,v), 

where 
ft(x,t,O,v) ~0, h(x,t,u,O) ~0, 

and where 
ft(x,t,Mbv) ~ 0, !2(x,t,u,M2) ~ 0 

for some positive constants M1 and M 2 . By Theorem 4.16 there is a solution 
(u, v) E [0, M] where 0 = (0, 0) and M = (M1 , M2). For the special case 
above, choose 

Mi =max{ sup tPi(x), sup '1/Ji(x, t)}. 
xEO (x,t)EST 

The second application is to the complete model for solid fuel (1.24)
(1.25): 

Tt- ~T = e8ym exp (~7-1 ) 
, (x,t)EIIT 

Yt - ,B~y = -ec5rym exp ( ~7-1 ) 

T(x, 0) = 1, y(x,O) = 1, x E 0 

T(x, t) = 1, 8J'J(xjl = o, (x, t) E ST 

where e, 8, ,8, and r are positive constants. 
Let '1/J(x) be the solution to -~'1/J = 1 for X E 0 and '1/J(x) = 1 for x E 80. 

By the maximum principle, '1/J(x) > 0 on 0. Choose N such that N > ee1le8 
and N'ljJ(x) ~e. Define e(x, t) = (0, 0) and p(x, t) = (N'I/J(x), 1), and define 
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h(x,t,T,y) = c8ymexp(~"T1 ) and f2(x,t,T,u) = -€8fymexp(~"T1 ). We 
have 

~- 66- h(x,t,6,y) = 0 

~- 66- h(x,t,T,€2) = 0 

~- 6p1- h(x,t,pby) 

= -N 6'1/J- ce1le8ym exp(- e!,) ~ N- ce1/e8 > 0 

~ - 6p2 - h (x, t, T, P2) = c8fym exp( ~r1 ) > 0. 

By Theorem 4.16, there exists a solution (T, y) E [e, p] for all (x, t) E 
fiX [O,oo). 

4.5 Comments 

The comparison techniques in Theorem 4.1 and Corollary 4.2 can be traced 
back to Nagumo [NAG2],[NAG4]. The ideas were rediscovered by Westphal 
[WST]. The extension to parabolic systems with quasimonotone nonlinear
ities (Theorem 4.3) is due to Mlak [MLA1]. The use of upper and lower 
quasimonotone bounds on the nonlinearity to provide the comparison the
orem 4.4 can be found in Chandra and Davis [CHA] and Fife [FIF]. 

Weinberger [WEI] proved that a closed convex set is invariant for the 
Dirichlet problem if the nonlinearity f satisfies the weak tangent condition. 
Chueh, Conley, and Smoller [CHU] extended the result to include sets which 
are Cartesian products of convex sets and the components of the operator L 
are the same for any set in the product. Moreover, the convexity condition 
is optimal. Bebemes and Schmitt [BEB1] generalized the invariance results 
to include nonlinearities which have gradient dependence. 

Redheffer and Walter [RED] consider problems with more general do
mains and various boundary conditions, but f must satisfy a dissipative 
condition near the boundary of the set. 

Amann [AMA3] considered gradient dependent nonlineariti,es and dis
cussed invariance for systems as evolution equations in a Banach space. 
The methods used include semigroup theory. In this paper, the existence 
of a unique solution is obtained. The existence theorems in this chapter 
allow for nonuniqueness. 

Generalizations of the results in this chapter appear in [YAN]. Ap
parently-for the nonlinear boundary conditions, the condition of almost 
quadratic growth in the gradient component of f is the best that the ideas 
of the proof can handle. 



5 
Gaseous Ignition Models 

We discuss in this chapter initial-boundary value problems of the form 

Ut- aAu = f(u) + g(t), a~ 0, (x, t) En x (0, T) 

with u(x,O) = ¢(x) for x En and u(x,t) = 0 for (x,t) E an X (O,T). The 
reactive-diffusive gaseous model (1.39)- (1.40) and the nondiffusive model 
(1.41)-(1.40) are special cases. 

In Section 5.1, we begin by considering the case when a > 0 and g 
has a special functional dependence of the form K J0 Ut(x, t) dx. Such a 
dependency complicates the required analysis as it can be considered in an 
equivalent formulation (5.4) as a perturbation of both the diffusion and the 
reaction terms. The problem is cast in an abstract setting in Sections 5.2 
and 5.3. Using a semigroup analysis, existence of a unique nonextendable 
solution is proved. 

For n = B 1 C IRn, additional comparison results are obtained in Section 
5.4. For zero initial data and 8 > 8FK, blowup occurs for (1.39)-(1.40) at 
a time u < T where Tis the blowup time for the solid fuel ignition model. 

In Section 5.5, the location of the blowup in n = BR is discussed. De
pending on the nonlinearity /, blowup can occur everywhere or at a single 
point. 

In Section 5.6, the nondiffusive model (a= 0) is discussed. A very precise 
description of when and where blowup occurs is given. 

5.1 The Reactive-Diffusive Ignition Model 

Consider the partial differential equation 

j-1 1 { 
Ot- AO = f(O) + - 1-vol(n) Jn Ot(Y, t) dy, (x, t) En x (0, oo) (5.1) 

with initial-boundary conditions 

O(x,O) = Oo(x), x E 0 
(5.2) 

O(x, t) = 0, (x, t) E an x (0, oo) 

where n is a bounded domain in IRn, 00 (x) will be specified as needed, 
8 > 0, 1 > 1, and f satisfies f(u) > 0, f'(u) ~ 0, and f"(u) ~ 0. 
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If O(x, t) is a solution of (5.1)-(5.2), then integrating (5.1) over 0 gives 

~ { Bt(Y, t) dy = { (A.O(y, t) + f(O(y, t)) dy. 
1 ln ln 

Consequently, (5.1) is equivalent to 

1-1 r 
Bt- 6.8 = /(8) + vol(O) Jn (A.O(y, t) + f(O(y, t)) dy. (5.3) 

By applying Green's identity to In 6.(} dy in (5.3), we see that (5.1) is also 
equivalent to 

( 1 - 1 r f)(} ) 1 - 1 r 
Bt - 6,(} + vol(O) ln fJv da = f(O) + vol(O) ln f(O(y, t) dy (5.4) 

where v(x) is the outer unit normal to 80 at x, and da is the element of 
surface area on 80. 

5.2 The Abstract Linear Problem 

Consider the associated linear problem to (5.3)-(5.2) given by 

Bt = 6.8+ ~ InA.(}dy, (x,t) E 0 x (O,oo) 

O(x,O) = Oo(x), x E 0 (5.5) 

O(x, t) = 0, (x, t) E 80 x (0, oo) 

where c = vo~~) > 0. We will prove that the right- hand side of (5.5a) is 
the infinitesiiual generator of an analytic equicontinuous semigroup T. 

Let F = L2 (0) and E = FEEl m.. For (!, TJ), (g, ~) E E, define an inner 
product (-, ·) on E by 

((!,TJ),(g,~)) = fofgdx+cTJ~· 

Thus, Eisa Hilbert space with norm II(!, TJ)II = J((!, TJ), (!, TJ). We first 
consider a related problem 

!t = A.f, (x, t) E 0 x (0, oo) 

Tit=-~ Ian~ da, t E (0, oo) 

f(x, t) = TJ(t), (x, t) E 80 x (0, oo ). 

This can be expressed as 

d . 
dt (!, TJ) = A(!, TJ) 

(5.6) 

(5.7) 
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where A(!, 17) = (tlf, -~ fao U du) and where condition (5.6c) is assumed 
to hold. 

Theorem 5.1 The function A generates an analytic contraction semigroup 
S := {S(t) : t ~ 0} on E. 

Proof It is apparent that A is linear, closed, and densely defined on E. We 
also claim that A is self-adjoint and dissipative. 

For (!, 17), (g, ~) E Dom(A), we have the following computation. 

(A(!, 17), (g, ~)} = fo gtlf dx + c( -~ fao !v du)~ 

= - fo "Vf•"Vgdx+ faofvgdu- faofv~du 

= - fo "Vf• "Vgdx 

= ((f,'f1),A(g,~)} 

where Green's identity and the fact that g(x, t) = e(t) on ao X (0, 00) have 
been used. This proves self-adjointness. 

In particular, from the above we have that 

By the Lumer-Phillips Theorem [YOS, pp.250-251], we conclude that A 
generates a contraction semigroup S with IIS(t)il ~ 1 for all t ~ 0. But 
the self-adjointness of A implies that its complex extension A is Hermitian. 
Hence, its numerical range {(A(!, "7), (!, "7))} lies on the negative real axis. 
By [MAR, Prop.3.2, pg.293], this implies that Sis analytic. 0 

We now relate the generator A and its semigroup S to the original 
problem (5.5). Consider the canonical injection z : F ~ E defined by 
z(J) = (!,0). Define the projection 1r: E ~ F by 1r(/,"7) = f- ij where 
ij(x) = "7 for all x E 0. Clearly 1r is a continuous projection of E onto F. 
Fort~ 0, define the operator T(t) : F ~ F by 

T(t)f = 1r o S(t) o z(f). (5.8) 

Theorem 5.2 The set T = {T(t) : t ~ 0} is an analytic semigroup on F 
with generator A given by 

Af = tlf + ~ f tlf dx. c lo (5.9) 

Proof The linearity and continuity of each T(t) are obvious. The mapping 
t ~ T(t) is a composition of two linear and continuous mappings with an 
analytic mapping. Therefore, it is analytic (and hence uniformly continu
ous). 
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To show T is a semigroup, consider the following. For any 0 E F we have 
T(O)O = 1r o S(O) o t(O). If t, s ~ 0, then 

T(t) o T(s)O = 1r o S(t) o to 1r o S(s) o t(O) 

= 1r o S(t) o S(s) o t(O) 

+ 1r o S(t) o [to 1r o S(s) o t(O)- S(s) o t(O)]. 

Since ker(1r) = {(!, Tf) : f(x) = Tf, x E 0, Tf E IR}, we have for(!, Tf) E E 

(!, Tf)- t 0 7r(/, Tf) (!, Tf)- t(f- ij) 

= (/,Tf)- (!- ij,O) 

= (ij, Tf) 

E ker(1r). 

But the kernel is invariant under S(t), so 

and thus, 

1r o S(t) o [to 1r o S(s) o t(O)- S(s) o t(O)] = 0, 

T(t) o T(s)O = 1r o S(t) o S(s) o t(O) 

= 1roS(t+s)ot(O) 

T(t + s)O. 

That is, Tis a semigroup on F. 
We now prove that A is the generator ofT. Assume that 0 E C2 (0) and 

O(x) = 0 for x E 80; then t(O) = (0, 0) E Dom(A) and 1r o t(O) = 0. Thus, 

1. T(h)0-9 }" 7roS(h)ot(9)-9 
lffih-+0 h lffih-+0 h 

= 1. 7ro[S(h)ot(9)-t(9)] 
lffih-+0 h 

= (l" S(h)ot(O)-t(O)) 7r 0 lffih-+0 h 

7r 0 A 0 t(O) 

7r 0 A(O, 0) 

= 1r (LlO, -~Ian Ov da) 

= Ll.O +~In Ll.Odx 

A(O) 

where we again have used Green's identity. D 
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We now show that certain subsets of F (respectively E) are invariant 
relative to the semigroup T(s) (respectively S) generated by A (respec
tively A). We define a set D C E (respectively F) to be invariant for S 
(respectively T) if S(t) (respectively T(t)) maps D into itself for all t ~ 0. 

Lemma 5.3 For any b E ffi, the set 

Ab := {(/,'f/) E E: f(x) ~ b for x E 0, 'f/ ~ b} 

is invariant under S. 

Proof. The set Ab is clearly a closed convex subset of E. By the result 
[MAR, Prop.5.3, pg.304], it suffices to show that if>.> 0 and (!, 'fl) E Ab, 
then (g, €) = (I - >.A.)- 1 (!, 'f/) E Ab. 

Assume that (g, €) E Dom(A) solves f(x) = g(x)- >.~g(x) for x E 0 and 
, = €+~ Ian Yv da with g(x) = Uor X E ao. Let g(x) = sup{g(x) :X E 0}. 
Two cases must be considered. First, if x E 0, then ~g(x) ~ 0 and so 
g(x) ~ g(x) - >.~g(x) = f(x) ~ b. Second, if x E 80, then g(x) = € 
and Ian Yv da ~ 0 since g assumes its maximum on 80. This yields the 
condition g(x) = € ~ € +~Ian Yn da = 'f/ ~b. 0 

Corollary 5.4 For any a, b E ffi such that a < b, the set 

Aa,b := {(/,'f/) E E: a~ f(x) ~ b for x E 0, a~ 'f/ ~ b} 

is invariant under S. 

We can now prove an invariance result for the semigroup T. Let II ·lloo 
denote the essential sup norm on £ 00 (0) and let f+ and f- be the positive 
and negative parts off E £ 00 (0). 

Theorem 5.5 For p > 0, the set 

Dp := {! E F: llf+lloo + 11/-lloo ~ P} 

is invariant under T. 

Proof. Let a= 11/-lloo and b = llf+lloo where a+b ~ p; then (!,0) E A-a,b 
and by Corollary 5.4, for all t ~ 0 we have (g, €) = S(t)(f, 0) E A-a,b· So 

II[T(t)fl+lloo = ll(g- e)+lloo ~ b- € 

and 
II[T(t)/l-lloo = ll(g- e)-lloo ~a+ € 

where e(x) = € for all x E 0. Thus, T(t)f E Dp for all t ~ 0. 0 

Corollary 5.6 If J, g E F = £ 2 (0) and sup{lf(x)- g(x)l : x E 0} < e, 
then sup{IT(t)[f(x)- g(x)]l: x E 0} ~ 2e for all t ~ 0. 
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We now consider the case where 0 = B1 C rn,n. Let F8 = { v E F : 
vis radially symmetric}. For each v E Dom(A) n F8 , we have 

Av(x) = v"(r) + n- 1 v'(r), v'(O) = v(1) = 0, and f v., da = Wnv'(1) 
r lao 

where r = lxl and Wn is the surface area of the unit ball in rn,n. Let 

f := {v E F8 : v(rl);::: v(r2) for 0 ~ r1 ~ r2 ~ 1, v(1) = 0} 

be the set of nonnegative, nondecreasing, radially symmetric functions with 
domain [0, 1]. 

Theorem 5. 7 The set r is invariant under T. 

Proof The set r is a closed convex cone in F. By [MAR, Prop.5.3, pg.304], 
it suffices to show that v =(I- >.A)-10 E f if>.> 0 and 0 E f. 

Assume for some 0 ~ r 1 < r 2 ~ 1 that v(r1) < v(r2); then v attains a 
local minimum v(r) at some point r E [0, r 2). Two cases are possible. 

If v is increasing on [r, 1], then v(r) < 0 since v(1) = 0, v'(r) = 0, 
v"(r) ;::: 0, and v'(1) ;::: 0. Hence, 

B(r) = v(r) - >.[v" (r) + Wn v' (1)] < 0 
c 

which contradicts 0 E f. 
If v is not increasing on [r, 1], then v has a local maximum v(r) > v(r) 

at some point i E (r, 1). This implies that v'(i) = v'(r) = 0, v"(r) ;::: 0, and 
v"(r) ~ 0. Hence, 

B(i)- O(r) = v(i)- v(r)- >.[v"(i)- v"(r)] > 0 

which again contradicts 0 E r. We conclude that v(r1) ;::: v(r2) for 0 ~ 
r1 < r2 ~ 1, so v E f and f is invariant under T. 0 

Corollary 5.8 If/, g E Fs have the properties I ;::: g and I - g E r' then 
T(t)f ;::: T(t)g for all t ;::: 0. 

Proof Since f is invariant under T by Theorem 5. 7, T( t) (!-g) ( x) E f and 
so T(t)(!- g) ;::: 0. o 

Let Aa = A be the n-dimensional Laplacian operator with the same 
domain as A. Let T a be the semigroup generated by A a. 

Corollary 5.9 Let Bo E f; then Ta(t)B0 ;::: T(t)Bo for all t;::: 0. 

Proof By Theorem 5.7, T(t)Bo ;::: 0 for all t;::: 0. Hence, 

~ { ABo dx = ~ f 800 da ~ 0 
c lo c lo 8v 

and T(t)Bo is a lower solution to ~~ = AaB. 0 
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5.3 The Abstract Perturbed Problem 

Let us now consider the perturbed problem 

dO 
dt = AO + B(O), 0(0) = 00 

where 

B(O) = f(O) + v:l(~) In f(O(y)) dy 

(5.10) 

with f ( u) > 0, f' ( u) ~ 0, and !" ( u) ~ 0. We first prove existence locally 
of a classical solution. To do this we use the following lemma. 

Lemma 5.10 Consider the system of differential inequalities 

u' ~ .;:rv f(u + -jcv), u(O) ~ M../V 

v' ~ lf(u + Jcv), v(O) ~ M 
(5.11) 

where 1 ~ 1, V = vol(O), c = 1v1 , M > 0, and f(O) is a nondecreasing 
function. Define N = max{ M JV, M} + c for some c > 0. There is a a > 0 
such that u(t) ~ N and v(t) ~ N for all t E [O,a). 

Proof Let u(t) and v(t) be the solutions to 

u' = .;::;v f(u + Jcv), u(O) = M../V 

v' = 1/(u + -jcv), v(O) = M 

for t ~ 0. The right-hand side components of (5.11) are quasimonotone 
nondecreasing since f is nondecreasing. By standard comparison results 
for systems of ordinary differential equations, u(t) ~ u(t) and v(t) ~ v(t). 
Since max{u(O), v(O(} < N, there is a a > 0 such that u(t) ~ N and 
v(t) ~ N fortE [0, a). Consequently, u(t) ~ Nand v(t) ~ N fortE [0, a). 
D 

Theorem 5.11 If Oo E L2 (0) and sup{Oo(x) : x E 0} < oo, then (5.10} 
has a unique solution O(t) E £ 2 (0), t E [O,a), for some a> 0. 

Proof Choose M > 0 such that IIOoll£2(0) < M and sup{Oo(x) : x E 0} ~ 
M. Set N = max{M../V,M} + c for some c > 0 where V = vol(O). For 
each t ~ 0, define ON(x, t) = min{O(x, t), N} and T/N(t) = min{TJ(t), N}. 
Consider the following auxiliary IBVP on the set E: 

d A A 

ilt(O, TJ) = A(O, TJ) + BN(O, TJ), (x, t) E 0 x (0, oo) 

(O(x, 0), TJ(O)) = (00 (x), 0), x E 0 (5.12) 

O(x, t) = TJ(t), (x, t) E 80 X (0, oo) 
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where A is defined as in Section 5.2 and where 

The operator iJN is globally Lipschitz continuous on E. Hence, (5.12) has 
a unique strong solution (o(x, t), ~(t)) defined fortE [0, oo) (by the result 

[MAR, Thm.5.1, pg.355]). 
We now prove that sup{B(x, t) : x E 0} and "l(t) are bounded by N for 

t E [O,a). This in turn implies that (0,~) is a solution of 

d A A 

ilt(B,"l) = A(B,"l) + B(B,"l), (x,t) E 0 x (O,oo) 

(B(x, 0), "1(0)) = (00 (x), 0), x E 0 (5.13) 

B(x, t) = "l(t), (x, t) E 80 x (0, oo) 

where B(B, "1) = (f(B- ij), y J0 f(B- ij) dy). By Theorem 5.5 and the 
dissipativity of A, the following inequalities are true: 

v+II(B, "1)11 ~ IIBN(B, "1)11 

~ v'fV f(sup{BN(X, t) :X E 0} + l"lNI), 

v+ sup{BN(x, t) :X E 0} < IIBN(B, "l)lloo 

~ if(sup{ON(x, t) :X E 0} + l"lNI) 
(5.14) 

where ll(g, e)lloo = llulloo +lei. Moreover, it is easily seen that 

I"'NI ~ 1"11 ~ ~II(B, "1)11· c 
(5.15) 

Set u(t) = 11(0,"1)11 and v(t) = sup{B(x,t): x E 0}. Using BN(x,t) ~ 
B(x, t), and combining (5.14) and (5.15), we see that u and v are functions 
which satisfy (5.11). By Lemma 5.10, u(t) ~ Nand v(t) ~ N fortE [0, a), 
so 1"11, II(B,"l)ll, and sup{B(x, t): x E 0} are all bounded by N fortE [O,a). 
This proves that (O,r)) is a strong solution of (5.13) on [O,a). An easy 
computation shows that B(x, t) = 1r(O, m = B(x, t) -~(t) is a strong solution 
of (5.10). o 

Corollary 5.12 If 00 E L2 (0) and sup{B0 (x) : x E 0} < oo, then IBVP 
{5.1}-{5.2) has a unique solution B(x, t) on 0 x [0, a) for some a> 0. 

Proof By Theorem 5.11, 1r(O,~) is a strong solution of (4.10). Thus, it is a 
classical solution of (5.3)-(5.2) and a classical solution of (5.4)-(5.2). 0 
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Theorem 5.13 If Oo E £ 2 (0) and sup{00 (x) : x E 0} < oo, then IBVP 
(5.1}-(5.2} has a unique nonextendable classical solution 8(x, t) defined on 
a maximal interval [0, a) where 

a=oo, or, a<oo and lim sup{8(x,t):xE0}=oo. 
t->u-

Proof Assume that a< oo and O(x, t) $ N for all (x, t) E 0 x [0, a). Let ()N 
be the classical solution associated with (5.12) which exists on 0 x [0, oo ). 
Our assumptions imply that 8N = 8 on 0 x [O,a) and limt_.u- 8(·,t) = 
8N(·,a). By Theorem 5.11 we can extend() to a solution of (5.1)-(5.2) on 
0 x [0, a+ c) for some c > 0. This contradicts the maximality of [0, a). 0 

5.4 The Radially Symmetric Case 

When 0 = B1 C IRn we can obtain additional information concerning 
initial-boundary value problem (5.1 )-(5.2). 

Theorem 5.14 If O(x, t) is the solution of IBVP (5.1}-(5.2} on B1 x [0, ro) 
with Oo E f, then 0(·, t) E f for all t E [0, ro). 

Proof By Theorem 5.7, the set r of nonnegative, nonincreasing, radi
ally symmetric functions in L2 (Bt) is invariant under the semigroup T. 
If 8(·, t) E f, then 

B[8(·, t)] = f(O(·, t)) +I~ 1 { f(O(y, t)) dyEr. 
jBt 

In particular, 8(-, t) + hB(8(·, t)) E r for all h > 0 because r is a convex 
cone. 

For any T E (O,ro), 8(·,t) is a classical solution on [O,r], so sup{8(x,t): 
(x, t) E B1 x [0, r]} $ N < oo. This implies that 8(-, t) is a solution of (5.1) 
lying in 

FN = {g E L2 (Bt): sup{g(x): x E Bt} $ N} 
and the restriction of B to FN is Lipschitz continuous. The result follows 
as a consequence of [MAR, Thm.2.1, pg.335]. 0 

Corollary 5.15 Let 80 E r and let¢ be the solution to 

~-1 r 
</Jt- D.¢= f(¢) + vol(Bt) }

81 
f(</J)dy, (x,t) E B1 x (O,oo) (5.16) 

with initial-boundary conditions 

</J(x, 0) = 8o(x), x E B1 
(5.17) 

</J(x,t) = 0, (x,t) E 8B1 x (O,oo); 
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then ¢(x, t) ~ O(x, t) on their common interval of existence [0, To) where 
O(x, t) is the solution of IBVP {5.1}-(5.2). 

Proof By Theorem 5.14, 0(·, t) ~ 0. Thus, 

1 - 1 { D.O dy = 1 - 1 { ao da < o 
vol(B1) }B1 vol(BI) laB1 fJv -

for all t E [0, To). Consequently, 

4>t- D.¢-/(¢)- v0l(~ 1 ) fBt /(¢) dy 

~ Ot- 6.0- f(O)- vOl(~t) fBt f(O) dy. 

Using f'(u) ~ 0 and a maximum principle argument (cf. Theorem 4.1 and 
Corollary 4.2), one can prove that ¢(x, t) ~ O(x, t) on their common interval 
of existence [0, To). D 

Theorem 5.16 Let Oo = 0; then the solution O(x, t) of IBVP {5.1}- {5.2} 
is nondecreasing in t on its maximal interval of existence [0, a) for each 
X E Bl. 

Proof. Choose any a0 E (0, a). Since O(x, t) can be thought of as a strong 
solution of (5.10), O(·,t) :5 N for some N > 0 and for all t E [O,ao]. Also, 
0(·, t) E ron [0, a). Thus, 0(·, t) is also a solution to the associated problem 
(5.12) on [0, To] and can be expressed by the Picard scheme { un}~=O where 

uo(t) = 0, Un+I(t) =lot T(t- s)B(un(s)) ds for n ~ 0, 

and 
lim Un(t) = O(t), 

n-+oo 

since A is contractive and B is Lipschitz continuous. 
Let 01. 02,0 E f with 01 :5 02. Note that B : f --+ f satisfies the following 

conditions: 
B(OI) :5 B(02) (monotonicity) 

and 
B(O + OI)- B(01) :5 B(O + 02)- B(02) (convexity) 

with both sides of the above inequality elements of r. 
Define 

D.nu(t) = Un(t)- Un-l(t) 

= J~ T(t- s) [B(un-l(s))- B(un-2(s))] ds 
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for n ~ 2 and 
~nB(t) = B(un(t))- B(un-1(t)) 

for n ~ 1; then ~n+lu(t) = J; T(t- s)~nB(s) ds and we claim that for 
any n ~ 1 the functions un(t), ~n(t), and ~nB(t) are increasing in t with 
values in r. We prove this claim by induction. 

For n = 1, clearly u1 E rand ~1U = U1 E r. Since f is nondecreasing 
and since u1 ~ u0 = 0, ~1B = B(ui)- B(u0 ) E r. One can also verify 
that ul> Dqu, and ~1B are increasing in t. 

Assume that the claim is true for n = 1, ... , k - 1; then ~ku(t) = J; T(t-s)~k-1B(s) ds E f because ~k- 1 B(s) E r, f is invariant under T, 
and r is a closed convex cone. If t 1 ~ t2 , then since ~k- 1B is nondecreasing 
we have 

~ku(ti) = J;1 T(t1- s)~k-1B(s) ds 

< J;' T(h - s)~k-1B(s + t2- h) ds 

f/2
2_t 1 T(t2- s)~k-1B(s) ds 

< J; 2 T(t2- s)~k-1B(s) ds 

~ku(t2). 

Thus, Uk(t) = Uk-1 (t) + ~ku(t) E r and is increasing since the same is 
true for ~ku(t) and uk-1(t). Finally, we have 

B(uk(t))- B(uk-1(t)) 

B(uk-1(t) + ~ku(t))- B(uk-1(t)) 

E r 

by the convexity of B. Furthermore, if t 1 < t 2 , then the monotonicity of 
Uk-1 and ~ku yields 

~kB(ti) = B(uk-1(tl) + ~ku(h))- B(uk-1(tl)) 

< B(uk-1(t2) + ~ku(ti))- B(uk-1(t2)) 

< B(uk-1(t2) + ~ku(t2))- B(uk-1(t2)) 

= ~kB(t2) 

where the convexity of B was used at the first inequality and the mono
tonicity of B was used at the second inequality. 

This shows that O(t) is a limit of an increasing sequence {un}~=O of 
t-increasing functions. Thus, O(t) is itself an increasing function. D 

Corollary 5.17 If8o(x) = 0, then the solution8(x,t) of IBVP {5.1)- (5.2) 
is an upper solution for the solution '1/J(x, t) of IBVP {1.28)-{1.29). 
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1/J(., t) 

T 

Figure 5.1. 

Proof By Theorem 5.16, the solution B(x, t) of (5.1)-(5.2) satisfies Bt(X, t) ~ 
0. Thus, 

f(B) + v:l(B:) ~~ f(B(y, t)) dy ~ f(B) 

and the result is immediate from standard comparison results. D 

Corollary 5.17 tells us that the temperature for an ideal gas is always 
greater than that for a solid fuel. Hence, a gas explodes sooner than a solid 
in the same container. Physically, this can be explained by the additional 
generation of heat due to the compression of the gas. 

For 0 = B1 C lRn and 8 > 8FK, the solution '1/J of IBVP (1.28)-(1.29) 
blows up in finite time T. Figure 5.1 illustrates the comparisons where 
¢J is the solution of IBVP (5.16)- (5.17) and '1/J is the solution of IBVP 
( 1.28)-( 1.29). 

Table 5.1 gives a comparison of blowup times for the three problems: 
IBVP (5.16)-(5.17), IBVP (1.28)-(1.29), and IBVP (1.39)-(1.40) (for a= 1). 
The table uses 0 = (-1, 1) and 1 = 1.4. 

Table 5.1. 

8 ro (1 T 

0.91 1.755 6.123 7.940 

1.00 1.401 2.732 3.537 

2.00 0.454 0.528 0.680 

2.47 0.347 0.390 0.502 

20.00 0.037 0.038 0.050 

50.00 0.0147 0.0148 0.020 
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Table 5.2. 

(1 

6 T 1 = 1.1 1 = 1.4 1= 2.0 

3.7 0.876 0.854 0.802 0.736 

4.0 0.601 0.580 0.532 0.473 

6.7 0.187 0.179 0.160 0.138 

20.0 0.0503 0.0478 0.0418 0.0336 

50.0 0.0200 0.0188 0.0158 0.0120 

As the gas constant 1 varies, we can numerically compute a. Table 5.2 uses 
O=B1 ciR3 . 

Note that Theorem 5.16 and Corollary 5.17 are proved for Oo = 0. An 
open problem is the following: Is the result true for any 00 E r? The key 
idea is to prove that 01 ~ Oo so that the case n = 1 is true in the induction 
proof. 

Theorem 5.18 Assume that 01,02 E f satisfy 02 - 01 E f and suppose 
that 0 < 61 :5 62. Let Oi(x, t) be a solution to IBVP (5.1}-(5.2} with Oo and 
6 replaced by oi and 6i fori= 1, 2; then (}1 (x, t) :::; (}2(x, t) for all (x, t) in 
their common domain of existence. 

Proof Define the set 4> = { (81, 82) E f X f : 82 - 81 E f}. This set is a 
closed convex cone in F x F. We claim that 4> is invariant under the flow 
generated by (A+ B 1) x (A+ B2) where Bi (i = 1, 2) are defined as in 
(5.10) replacing 6 by 6i. Theorem 5.7 implies that 4> is invariant under the 
flow induced by Ax A. If (81. 82) E 4>, then (B101, B202) E 4>. Thus, 4> is 
invariant and by Corollary 5.8, 02(x, t) ~ 01(x, t). D 

If Oo E f, then the solutions of initial-boundary value problem (5.1)-(5.2) 
depend monotonically on the parameter 6. As a consequence, we have for 
the subcritical case 6 < 6 F K: 

Corollary 5.19 Assume that BVP (1.30}-(1.31} has a solution '1/J(x) on 
the unit ball B1; then the solution O(x, t) of IBVP (1.28}-(1.29} exists on 
B1 x [O,oo) with O(x,t):::; '1/J(x). 

5.5 Blowup: Where? 

We consider the partial differential equation 

Ut- ~u = f(u) + g(t), (x, t) E 0 X (0, T) (5.18) 
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with initial-boundary conditions 

u(x,O) = ¢(x), x E 0 

u(x, t) = 0, (x, t) E an X (0, T) 
(5.19) 

where n = {x E IRn : lxl < R}. We assume that ¢ E C2 (0, [0, oo)), 
f:l.¢+ f(¢);::: 0 for X En, ¢(x) = 0 for X E an,¢ is radially symmetric and 
radially decreasing. 

We also assume that f E C2 (1R, [0, oo)), f(u) > 0 for u > 0, f'(u) ;::: 0, 
f"(u) ;::: 0, and Ioo 11~) < oo. We choose g(t) such that either g E C1 , 

g;::: 0, and g';::: 0, or, g(t) = ~In Ut dy with K E (0, 1) and ¢(x) = 0. 
By the results of Section 5.4 there is a unique solution u(x, t) for (x, t) E 

n X [0, a) such that u(x, t) ;::: 0 and Ut(X, t) ;::: 0. Moreover, u(·, t) is radially 
symmetric and radially decreasing. The function U(t) = sup{u(x,t): x E 

n} = u(O, t) is a nondecreasing function. 
Let [0, T] be the maximal interval of existence for the solution u(x, t) 

to (5.18)-(5.19). If T < oo, then U(T-) = oo by Theorem 5.13. We will 
assume that T < oo so that u(x, t) blows up in finite time. As in Section 3.3, 
we define a point x E n to be a blowup point for (5.18)-(5.19) if there is a 
sequence {(xm, tm)}~=O SUCh that tm---+ r-, Xm---+ X, and u(xm, tm)---+ 00 
as m---+ oo. 

Theorem 5.20 If I: g(t) dt = oo, then the solution u(x, t) of {5.18}
{5.19} satisfies limt-+T- u(x, t) = oo for all x E n. Thus, blowup occurs 
everywhere in n. 

Proof Choose x E n and define p = R- lxl. On the ball Bp(x) c 0, the 
solution u(x, t) is an upper solution for 

Vt = !:l.v + g(t), (x, t) E Bp(x) x (0, T) 

v(x, 0) = 0, x E Bp(x) 

v(x, t) = 0, x E aBp(x) X (0, T). 

The solution v(x, t) at (x, t) can be expressed as 

v(x,t) = I~IBp(x)G(x,y,t-s)g(s)dyds 

> I~ g(s) IBp(x) G(x, y, T- 0) dyds 

> K(p) I~ g(s) ds 

where K(p) = IBp(x) G(x, y, T) dy. As t ---+ r-, v(x, t) ---+ oo by our hy
pothesis on the integral of g(s). Since v(x, t) ~ u(x, t) on Bp(x), we have 
u(x, t) ---+ oo. Since x was arbitrary, the solution u(x, t) blows up for all 
xEn. D 
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Theorem 5.21 Let g(t) = vo~o) J0 Ut(x, t) dx for 0 ~ K < 1. If {5.18}
{5.19} has a blowup point x # 0, then the solution u(x, t) blows up every
where in 0. 

Proof. Observe that 

lot g(s)ds = vo~O) lot In Ut(x,s)dxds = vo~O) In u(x,t)dx 

since u(x,O) = ¢(x) = 0. By radial monotonicity of u, 

f u(x,t)dx~ f u(x,t)dx~vol(Bixi(O))u(x,t) lo Jlxl~lxl 

so that if limt-+T- u(x, t) = oo for some x # 0, then J: g(s) ds = oo. By 
Theorem 5.20 blowup must occur everywhere in 0. 0 

Theorem 5.22 If f(u) = eu and g(t) = vo~o) fo Ut dx for K E (0, 1), 
then the solution u(x, t) of (5.18}-{5.19} blows up only at x = 0. 

Proof. The proof is similar to that of Theorem 3.16. Define the function 

J(r, t) = rn- 1ur(r, t) +ern F(u(r, t), t) 

where F(u, t) = exp(a(u- G(t))) and G(t) = J; g(s) ds for a E (0, 1). It 
can be shown that J satisfies 

If 
f' F - Fuf ~ 2e:F Fu and Fug + Ft ~ 0, (5.20) 

then 
n-1 

Jt + --Jr - Jrr - (!' - 2eFu)J ~ 0 r 
for (r, 0) E (0, R) x (0, T). The second inequality in (5.20) is immediate 
from our definition of F(u, t). The first inequality in (5.20) is valid for 
e ~ (1- a)f2a. 

Note that J(O, t) = 0. Next observe that 

Jr(R, t) = -Rn-1 [f(O) + g(t)- ene-aG(t)J 

< Rn- 1 [en- 1 - g(t)J 

< 0 
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if c < 1/n. Finally, J(r,TJ) < 0 for TJ sufficiently close to 0, just as in 
the proof of Theorem 3.16. By the maximum principle, J(r, t) ~ 0 for 
(r, t) E [0, R] x [0, T) and so 

rn-lUr ~ -€rnea(u-G(t)). 

By integration we obtain 

2 1 1 o:c 
u(r,t) ~~In(;:-)- ~ln(2) +G(t). (5.21) 

Integrating over fl and recalling from Theorem 5.21 that 

G(t) ~ vo~fl) fo u(x, t) dx 

we obtain 

fo u(x,t)dx ~ fo [~InC!,) -~ln(~c)] dx+K fo u(x,t)dx 

or 

(1- K) fo u(x,t)dx ~ fo [~InC!,)- ~In (~c)] dx < oo 

and by Theorem 5.21 blowup can occur only at a single point provided 
KE(0,1).D 

Corollary 5.23 If f(u) = eu and {J' g(s) ds < oo, then blowup occurs 
only at x = 0. 

Proof Note that in the proof of Theorem 5.22, the construction leading 
up to (5.21) is valid for an arbitrary g(t). As long as G(T) is finite, (5.21) 
implies that u(r, t) is finite for r f. 0. 0 

The following theorem is a technical result which allows us to obtain 
lower bounds on the solution u(x, t). The proof is based on ideas from 
[FRI2, Thm. 3.1]. 

Theorem 5.24 Assume that J0
00 f(u) du = oo. Let u(x, t) be a solution to 

{5.18}-{5.19} which blows up only at x = 0; then there exists a t* E (0, T) 
such that 

!Vu(x, tW :S 2 [-F(u(x, t)) + F(U(t)) + Lf(U(t))] (5.22) 

fortE (t*, T) where 

F(w) =low f(u) du, L =loT g(s) ds < oo, 

and 
U(t) = u(O,t) = m~u(x,t). 

xEO 
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Proof Note that L < oo by the assumptions of single-point blowup and 
Theorem 5.20. Since u blows up only at the origin, both u and V'u are 
uniformly bounded on the parabolic boundary of the cylinder 

Q = {(x, t): lxl ~ R/2, 0 ~ t < T}. 

Consequently, 

max [-2
11V'u(x, t)l 2 + F(u(x, t))] =: M < oo. 

(x,t)E8Q 

Since U ( t) j oo as t ---t oo and since F ( w) ---t oo as w ---t oo, there is a 
t* < T such that F(U(t)) > M for all t E [t*, T). 

For any I E [t*, T) define the function 

J(x, t) = ~IV'u(x, t)1 2 + F(u(x, t))- F(U(I))- f(U(I)) lot g(s) ds. 

We will show by a maximum principle that J(x, t) ~ 0 on the cylinder 
{(x, t) : lxl < R/2, 0 ~ t ~ I}. This condition on J implies the bound 
(5.22). 

On the set aQ, we have 

J(x, t) ~ M- F(U(I))- f(U(I)) lot g(s) ds < 0. 

Moreover, for x = 0 and t E [0, I) we get 

J(O, t) ~ F(u(x, t))- F(U(I)) ~ 0. 

It can be shown that 

Jt = 

V'u •V'(6u) + f'(u)IV'ul 2 + f(u)6u + f 2 (u) + f(u)g(t)- f(U(I))g(t), 

V' J =(Au+ f(u))V'u, and 

AJ = (Au)2 + V'u • V'(Au) + /'(u)IY'ul 2 + f(u)Au. 

Combining this with the identity 

IY'J- (Au)V'ul2 = IY'ui 2 (Au) 2 + V' J • [V' J- 2(Au)V'u] = / 2 (u)IY'ul 2 , 

we obtain 

Jt- AJ- V' J • [V' 1v~~(Au)V'u] = [f(u(x, t))- f(U(I))]g(t) ~ 0. 

Since V'u = 0 only at x = 0, the maximum principle implies that J(x, t) ~ 0 
on { (x, t) : lxl < R/2, 0 ~ t ~I}. In particular, J(x, I) ~ 0 and the theorem 
is proved. D 
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Theorem 5.25 Let f(u) = (u + .X)P for .X ~ 0 and 1 < p < 1 + 2/n. 
Let g(t) = vo~n) fn Ut(X, t)dx with K E (0, 1); then the solution u(x, t) to 
IBVP (5.18}-(5.19} blows up everywhere in fl. 

Proof. If the conclusion were false, then single-point blowup occurs only at 
x = 0. From the fact that u is radially symmetric, we have by Theorem 
5.24 

lur(r, t)l 2 ~ 2/(U(t))[U(t)- u(r, t) + L]. 

Thus, we have 

r -ur(r, t) r 1/2 
Jo [U(t)- u(r, t) + Ljl/2 dr ~ lo [2/(U(t))] dr 

which implies 
u(r, t) ~ U(t)- L- f(U(t))r 2 • 

For 

we have u(r, t) ~ u~t) for r ~ r 1 . Define Wn to be the surface area of the 
unit n-dimensional ball; then 

fn u(x, t) dx = Wn foR rn-lu(r, t) dr 

> Wn J;• ~rn- 1 U(t) dr 

= ~ [ -ru(-{)] n/2 
2n f U t 

Since f(s) = o(sl+21n) ass--+ oo, fn u(x, t) dx = oo as t--+ r- and hence 

lim ( g(s) ds = lim [ Kl(~"'~) { u(x, t) dx] = oo 
t-+T- lo t-+T- VO H ln 

which is a contradiction to Theorem 5.20. Thus, the solution u(x, t) must 
blow up everywhere in the set fl. D 

Theorem 5.26 If f(u) = (u + .X)P with p > 1 + 2/n and 

g(t) = vo~fl) In Ut(x, t) dx, 

then the solution of (5.18}-(5.19} blows up only at x = 0 as long asK ~ 0 
is sufficiently small. 
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Proof The idea of the proof is exactly the same as that of Theorem 5.22. 
Define the function 

J(r, t) = rn-lur(r, t) +ern F(t.f(r, t), t) 

where F(u, t) = (u + JL)q exp( -aG(t)), c > 0, 1 + ~ < q < p, JL;::: A, JL > 0, 
and a > 0. As in Theorem 5.22, we can show via a maximum principle that 
J(r,t) ~ 0 on (O,R) x (O,T) so that 

rn-lur(r, t) ~ -crn(u(r, t) + JL)qe-aG(t). 

An integration gives us 

1 

[ 
2eaG(t) ] q-1 

u(r, t) ~ c(q- 1)r2 

Integrating (5.23) over 0 gives us an inequality of the form 

G(t) ~ KAeBG(t) 

(5.23) 

where A > 0, B > 0, and K E (0, 1). Choose K sufficiently small so 
that KA < Je; then G(O) = 0, G(t)exp(-BG(t)) ~ KA < Je, and the 
continuity of G(t) imply G(t) is bounded for all t ;::: 0. Consequently, the 
only blowup point is at x = 0. 0 

Corollary 5.27 If f(u) = (u + A)P for p > 1 and if J: g(s) ds < oo, then 
the solution u(x, t) of (5.18}-(5.19} blows up only at x = 0. 

Proof In Theorem 5.26 we had derived equation (5.22) independently of 
the choice of g(s). From this inequality, u(x, t) is bounded as long as G(t) 
is bounded and x ::f 0. 0 

5.6 A Nondiffusive Reactive Model 

For an arbitrary container 0 C rn.n, the nondiffusive reactive Euler model 
(1.41)-(1.40a) can be written as 

- rP j-1 1 [ 
¢t- 8e + - 1 -vol(O) Jo ¢t(x,t)dx, (x,t) E 0 x (O,oo) (5.24) 

with initial data 
¢(x,O) = ¢o(x), x E 0 (5.25) 

assuming ¢o(x) is continuous and bounded on 0. By integrating over 0, 
we see that (5.24) is equivalent to 

(5.26) 
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where {3 = VoltJ~. The IBVP (5.26)- (5.24) has a unique nonextendable so

lution cp(x, t) on 0 x [0, a) with a= oo, or, a< oo and limt-+u- sup{ ¢J(x, t) : 
X E 11} = 00. 

The initial value problem 

has the explicit solution 

at= 8ea, (x,t) E 1l x (O,T) 

a(x,O) = c/Jo(x), x E 0 

a(x, t) = -ln [e-c/>o(x) - 8t] 

(5.27) 

(5.28) 

(5.29) 

which blows up in finite timeT= i exp( -c/Jo(xm)) where Xm is any point 
in 1l at which 4>o(x) attains its absolute maximum. Since a(x, t) is a lower 
solution for (5.25)-(5.24), the solution <f>(x, t) of (5.25)-(5.24) satisfies 

1/>(x, t) ~ -ln [e-c/>o(x) - 8t] 

and hence <f>(x, t) blows up in finite time a with a ~ T. 
To get more information about <f>(x, t), we consider the implicit repre

sentation 
1/>(x, t) = a(x, r(t)) + B(r(t)) (5.30) 

where a(x, r) is a solution of (5.27)-(5.28) and r(t), B(r) are scalar functions 
to be determined. As given in (5.30), 1/>(x, t) is a solution of (5.26) if and 
only if 

r' = eB(r), r(O) = 0 (5.31) 

and 

B' = {3 In ea(x,r) dx = {3 In [e-c/>o(x) - 8rr1 dx, B(O) = 0. (5.32) 

The system (5.31)-(5.32) is weakly coupled, so by integrating (5.32) from 
0 tor, we have 

B(r) =~In [a(x,r)- 1/>o(x)] dx =~In ln C-:~(:~(~ Dr) dx. (5.33) 

Thus, r satisfies 

r' = exp [~In ln ( e-:~(:~(~ Dr) dx] , r(O) = 0 (5.34) 

which can be solved by quadrature. Thus, <f>(x, t) = a(x, r(t)) + B(r(t)) is 
the solution of (5.26)-(5.25) where r(t) solves (5.34), a(x, r) is the solution 
of (5.27)-(5.28), and B(r) is given by (5.32). 

From (5.30) we have 
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'heorem 5.28 The value (J is the blowup time for the solution ¢(x, t) of 
'i.24}- (5.25} if and only if r((J) = T is the blowup time for the solution 
[x, r) of {5.27}-{5.28}. 

If 1 > 1, then r'(t) > 1 from (5.34) fort> 0, and hence, r(t) is strictly 
tcreasing with r(t) > t fort > 0. Thus, 

~orollary 5.29 The blowup time (J is given by 

(J=T-1 (~e-<Po(xm)) 

here Xm is any point of fl at which 4Jo has an absolute maximum. 

From (5.30) and (5.33), observe that ¢(x, t) blows up at those points Xm 

; which ¢0(x) has its absolute maximum, provided B(r((J)) < oo. This 
true if and only if fn a(x, r((J)) dx < oo which in turn is true provided 

1 ln(exp( -¢o(x))- exp( -¢o(xm))) dx > -oo. Thus, 

'heorem 5.30 The solution ¢(x, t) of {5.24}-{5.25} blows up only at those 
Jints Xm of fl at which ¢o ( x) has its absolute maximum if and only if 

foln [e-<Po(x) - e-<Po(xm)] dx > -oo. (5.35) 

Similarly, we observe that ¢(x, t) blows up everywhere in fl at (J if and 
1ly if B(r((J)) = oo. Thus, 

'heorem 5.31 The solution ¢(x, t) blows up everywhere in fl at (J if and 
Illy if 

foln [e-<Po(x) - e-<Po(xm)] dx = -oo. (5.36) 

The integral of (5.35) is finite if there is at most a finite number of critical 
:>ints Xm E fl at which 4Jo has an absolute maximum and if at each Xm, 

)(x) is strictly concave down and analytic in a neighborhood of Xm. In 
lis case, blowup occurs only at those Xm at which ¢0 has an absolute 
1aximum. 
On the other hand, if ¢0 is too fiat in a neighborhood of a point Xm, 

ten blowup occurs everywhere . 

. 7 Comments 

he first gaseous ignition model was developed by Kassoy and Poland 
~AS5J. This model (1.39)-(1.40) was initially analyzed by Bebernes and 
ressan (BEB5J. Several problems remain open. For example, can one com
ue the gaseous ignition model with the solid fuel model for nonzero initial 
:tta? 
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The semigroup theory used to prove existence and the invariance of cer
tain sets is standard and can be found in such monographs as Martin [MAR] 
and Yosida [YOS]. 

The discussion of where blowup occurs is based on the paper [BEB12] 
which in tum draws from the seminal ideas of Friedman and McLeod 
[FRI2]. There are many open problems for arbitrary domains 0 and nonzero 
initial data. 

Theorem 5.26 is proved only for K > 0 sufficiently small and f( u) = 
(u + >.)", p > 1 + 2/n. We conjecture that it is also true for any K E (0, 1). 

The nondiffusive model (5.24)-(5.25) was first considered in [BEB13]. A 
formal asymptotic description of how the blowup hot spot develops is also 
given there, but a rigorous analysis has not been carried out. This should 
not be difficult to do. It is interesting to note that for this model without 
diffusion that the blowup singularity is strongly dependent on the shape of 
the initial temperature profile. 



6 
Conservation Systems for 
Reactive Gases 

In one space dimension, the conservation laws for reactive gases can be 
expressed as 

Ut + F(u)x = Buxx + G(u, Ux), (x, t) E 0 X (0, T) C IR X IR (6.1) 

where the solutions u are vector-valued functions of (x, t), and where B 
is a positive semidefinite matrix which will be referred to as the viscosity 
matrix. 

In Section 6.1 we will consider a special case of (6.1) where there is 
no reactive tenn (G = 0) and where F(u) = Y'\P(u) for some function 
\P E C 2 (IRn, IR) with \P(O) = 0. The boundary conditions are assumed to 
be Dirichlet. If (v, Bv) ~ c > 0 for some c > 0 and for all v =f. 0, and 
if the Hessian matrix of \P(u) essentially grows slower than lul 2 , we prove 
that there is a solution u which exists globally such that u --+ 0 as t --+ oo 
uniformly on 0. 

A nondiffusive-reactive Euler model is analyzed in Section 6.2. This 
model is a special case of (6.1) where B = 0 and where G = G(u) con
tains exponential nonlinearities. The function F(u) is a linear function. It 
is shown that solutions to the (hyperbolic) initial value problem blow up in 
finite time. At a blowup point, the shape of solutions as the blowup time 
is reached is determined when F = 0. 

The remainder of the chapter is devoted to the analysis of the full 
one- dimensional gas model. The model is a special case of (6.1) where 
u = (p, v, 0, z) is the state of the system. The components of u represent 
density p, velocity v, temperature 0, and concentration z. The nonlineari
ties G = G(u, ux) and F = F(u) are complicated functions. The viscosity 
matrix B = diag{O, ~, ~, Aa} and is positive semidefinite. For bound
ary conditions repres/ntirig a thermally insulated container 0, and under 
appropriate smoothness conditions, there is a unique classical solution u 
which exists for all time t ~ 0. 

6.1 A Nonreactive Model 

Let 0 be any bounded open interval of IR. Without loss of generality in 
the following development, we will choose 0 = (0, 1). Let Ilr = 0 x (O,T). 
We will consider here the particular gradient system 

Ut + [V'\P(u)]x = Buxx, (x, t) E Ilr (6.2) 



130 6. Conservation Systems for Reactive Gases 

where ~ : IRn --+ IR is C 2-smooth and where ~(0) 
boundary conditions for (6.2) will be 

0. The initial-

u(x,O) = uo(x), x E 0 
(6.3) 

u(x, t) = 0, (x, t) E 80 X [0, T) 

where uo E L2 (1l). Let(·,·) be the usual inner product on IRn. We assume 
that (v, Bv) ~ e > 0 for some e > 0 and for all v -::J 0. 

Local existence for (6.2)-(6.3) is immediate. For global existence, one 
needs some kind of growth estimate on the nonlinearity ~(u). Let ~"(u) 
be the Hessian matrix of ~( u) with II · II any convenient norm. Define 
(3(M) = max{ll~"(u)ll: u ~ m}. Assume 

l. M2 
Jill = oo. 

M-+oo 1 + (3(M) 
(6.4) 

This condition implies that IW'(u)ll grows slower than lul2 and that l~(u)l 
grows slower than lul4 ; see [KAN]. 

Lemma 6.1 Let u(x, t) be a solution to initial-boundary value problem 
(6.2}-(6.9); then 

iiu(·, T)lli2(0) ~ 2Co and lluxlli2(Tir) ~ Co 
e 

for aliT~ 0 where Co= ~lluolli2(0)· 

Proof. We use energy estimates for the norm of u. Taking the inner product 
of u with (6.2), we have 

1 olul 2 a 
(u,Buxx) = (u,ut) + (u, Y'~(u)x) = 2.----ai + ox[(u, Y'~(u))- ~(u)]. 

Integrating this equation over Ilr, we obtain 

ffnr (u, Buxx) dx dt 

= ffnr ~a~r dxdt+ ffnr %xl(u, Y'~(u))- ~(u)]dxdt 
1 1 T 11 

= ~ f0 lu(x, T)l 2dx-! f0 luo(x)l 2dx + f0 [(u, Y'~(u))- ~(u)] 0 dt 

= ! J; lu(x, T)l 2dx-! f0
1 luo(x)l 2dx 

where we have used the boundary conditions in (6.3) and ~(0) = 0. Inte
grating the left-hand side by parts, we have 
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Consequently, we have the inequality 

The inequalities in the statement of the lemma follow immediately. D 

Lemma 6.2 Let u(x, t) be a solution to initial-boundary value problem 
{6.2}-(6.3}; then 

2 ((3(M)) 2 
ilux(·, T)IIP(n) :::; C1 +Co -c-

where Co is the constant constructed in Lemma 6.1, C1 = llux(·,O)IIi2(n)' 
M=sup{lu(x,t)l: (x,t) ETIT}, and(3(M) =sup{II<I>"(u)ll :u::;M}. 

Proof. Differentiate (6.2) with respect to x and set v = ux; then Vt + 
V'<I>(u)xx = Bvxx· Take the inner product of this equation with v to obtain 

(v, Bvxx) = {v, Vt) + (v, V'<I>( u)xx)· 

It follows from this equation (and v = Ux) that 

Integrating over Tir, we have 

! rllu 12IT dx + J'f B(u,,ut) + (u Bu ) dxdt 
2 Jo X 0 JilT 8x XXl XX (6.5) 

= ffrrr (vx, V'<I>(u)x) dxdt. 

Note that (ux, Ut) = -(u, Uxt)+ gt (u, Ux)· Using the boundary conditions 
in (6.3), we obtain (ux,Ut)l6 = ft(u,ux)l6· As a consequence we have 

where we again have used the boundary conditions in (6.3). 
Equation (6.5) implies 

~ f0
1 lux ( x, T) 12 dx + c J frrr luxx 12 dx dt 

:::; ~ J~ lux(x, 0)12dx + ffrrr (vx, V'<I>( u)x) dx dt 

= !llux(·,O)IIi2(0) + ffrrr (uxx, V'<I>(u)x) dxdt. 
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Using the identity (a, b)~ !(clal2 + ilbl2 ) with a= Uxx and b = V4>(u)x, 
we obtain 

J; iux(x, T)i 2dx + c ffnr iuxxi2dx dt 

~ llux(·,O)IIi2(0) + i ffnr IV4>(u)xi 2dxdt 

and consequently 

iiux(·, T)lli2(0) = J; iux(x, T)j2dx 

< cl + i IfnT(iV4>(u)xi 2 )dxdt 

< cl + i IfnT ll4>"(u)ii 2 iuxi 2dxdt 

< C1 + ~a(M) ffnr iuxi 2dxdt 

< C1 + ~a(M) 

where a(M) = sup{ll4>"(u)ll 2 : u ~ M}. From the standard inequality for 
the norm of a product of operators, we have o:(M) ~ (32 (M). Thus, 

2 ((3(M)) 2 
iiux(·, T)li£2(n) ~ C1 +Co -c-

which completes the lemma. D 

Theorem 6.3 Assuming the growth condition (6.1,}, the initial-boundary 
value problem (6.2}-{6.9} has a global solution which tends uniformly to 
zero on 0 as t -+ oo. 

Proof We can write 

iu(x, t)i 2 = (u, u) 

= J; tx (u, u) dx 

= 2J;(ux,u)dx 

~ 2ilux(·,t)IIL2(o) iiu(·,t)iiL2(n)· 

By the bounds constructed in Lemmas 6.1 and 6.2, we have 

iu(x, t)i 2 ~ 2JW0 C1 +Co ((3(7)) 
2 ~ K1 + ~0 (J(M) (6.6) 

for some positive constants K 0 and K 1 . 

The condition (6.4) implies that for each 6 > 0, there is an M0 sufficiently 
large so that [1+(3(M)]/M2 ~ 6 forM~ M0 . Choose 6 so that 6Ko/c < 1; 
then taking the supremum of (6.6) over IIT, we have 

M2 ~ Kl + 6Ko M2 
c 
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which, for our choice of 6, implies 

2 2 K1 
iu(x, t)i ~ M ~ 1 _ §Ko.. 

e 

This gives a global a priori bound, ju(x, t)i ~ Mo, where Mo is independent 
oft. Thus, the solution u(x, t) exists globally. 

We now obtain the asymptotic behavior of the solution u(x, t) as t--+ oo. 
By Lemma 6.1 we have lluxlli2(nT) ~ Co/e. This bound implies that for 

N(t) = llux(·, t)II1,2(0)' f0
00 N(t) dx < oo. Using the identity 

N'(t) = 2 J; {ux, Uxt) dx 

= -2 J; {uxx, Ut) dx 

and using the dissipativity of B, one can show that 

so that 

N'(t) < -€ f0
1 luxxl 2dx + t f0

1 II<I>"(u)llluxl 2dx 

< tii<I>"(Mo)ll 2 f0
1 luxl 2dx 

roo IN'(t)i dx ~ !II<I>"(Mo)ll 2 roo N(t) dt < 00. lo e lo 
Thus, N(t) has finite total variation which implies N(oo) exists. Since 
J0

00 N(t) dt < oo, it must be that N(oo) = 0. We have established 

llux(·, t)lli2(0)--+ 0 as t--+ oo. 

By Lemma 6.1 we have llu(·, t)lli2(0) ~ 2Co. As a result, 

iu(x,tW ~ 2jlux(·,t)ll£2(0) llu(·,t)IIL2(0) ~ 2J2Coiiux(·,t)IIL2(0), 

so iu(x, t)i-+ 0 as t--+ oo uniformly in x. 0 

The proof is valid for the boundary conditions u(O, t) = u(1, t) = c where 
c is a nonzero constant since u = u- c is also a solution to (6.2). 

6.2 Induction Model for a Reactive-Euler System 

In Section 1.4, we developed the reactive-Euler model (1.42) when O(tR) = 
t A ¢: tc. In one spatial dimension, this can be written as 

(6.7) 
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for (x, t) E ffi. x (0, oo) and where 1 ~ 1 is the gas constant, h is the heat 
release, and {J = hh is the Frank- Kamenetski parameter. Initial data is 
given by 

¢(x,O) = ¢o(x), p(x,O) = Po(x), v(x,O) = vo(x), x E ffi., (6.8) 

with all functions continuous and bounded. 
Set 

a= 1 - 1, b=fJ, c=.!_(tca) 2
, andd=.!..; 

I I tA I 

then with w = ¢- ap, (6.7)-(6.8) can be written as 

Vt + CPx = 0 (6.9) 

P- + !v- _ E.ew+aii t d X- d 

with 

w(x,O) = ¢o(x)- apo(x), v(x,O) = vo(x), p(x,O) = .Po(x). (6.10) 

Using the change of coordinates 

(6.9)-(6.10) is equivalent to 

Wt = bew+!l(Ji-v) 

'ih - AVx = - bt' ew+!l(li-v) 

Pt + >.px = bt' ew+!l(li-v) 

with J.L = a(cd)- 112 , >. = (cfd) 112 , and initial conditions 

w(x,O) = <Po(x)- a.Po(x) 

(6.11) 

v(x,O) = (cn 112 [~vo(x)- .Po(x)] (6.12) 

p(x,O) = (ct) 112 [~vo(x) + .Po(x)]. 

Setting 

and B -- b>.J.L -- (1- 1)fJ' u = J.Lp, v = -J.Lv, A = b = fJ, 
2 2 
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(6oll)-(6o12) is equivalent to 

with initial conditions 

Wt = Aew+u+v 

Ut + >.ux = Bew+u+v 

Vt - >.vx = Bew+u+v 

w(x,O) = ¢>o(x)- apo(x) =: w(x) 

(6013) 

u(x, 0) = ~[(cd)- 112 v0 (x) + p0 (x)] =: u(x) (6o14) 

v(x,O) = -~[(cd)- 1 12 v0 (x)- po(x)] =: v(x)o 

We assume henceforth that A + 2B = 1. 
Let c+ = max{A,B}, c- = min{A,B}, m+ = max{w(x),u(x),v(x) : 

x E 0}, and m- = min{w(x), u(x), v(x): x E 0}, and consider 

By comparison with (6o13)-(6o14), 

{ 
w(x, t) 

ln(e-3m- - 3c_t)_1/ 3 ~ u(x, t) 

v(x, t) 

and hence every solution (w, u, v) of (6013)-(6014) blows up in finite timeT 
with 

1 1 
----,---,..,----:-:- < T < o 

3c+ exp(3m+) - - 3c- exp(3m-) 

Note that ¢>(x, t) = w(x, t) + u(x, t) + v(x, t)o Assume that ¢(x, t) blows 
up at Xm at time To We would like to describe how the blowup singularity 
evolves at ( Xm, T) 0 Make the backward similarity change of variables 

with 

X- Xo 
r = -ln(T- r), fJ = (T _ t)l/2 

W = w +A ln(T- t), 

U=u+Bln(T-t), 

V = v + B ln(T- t), 

<I>=¢+ ln(T- t) = W + U + V; 
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then (6.13) becomes 

Wr + ~w, = A(e<~> - 1) 

Ur + ~u, + >-.e-ri2 U, = B(e<~> -1) 

Vr + ~V,- >-.e-ri2V, = B(e<~>- 1) 

~r + ~~'1 + >-.e-rf2(U,- V,) = e<l>- 1. 

(6.15) 

To describe how the blowup evolves would require us to analyze the be
havior of solutions of (6.15) as r becomes infinite. To get an idea of what 
to expect or hope for, let us consider the much easier problem when there 
is no drift; that is, ).. = 0. The temperature ¢ blows up at 

T¢ = e-<l>o(xm) 

where Xm is an absolute maximum point for ¢o. Then we know when and 
where blowup occurs. We can also describe precisely how the blowup sin
gularity evolves at Xm. 

Let z = ¢ + ln(T- t); then z is the solution of 

Zr + ~ Z'l = ez - 1 

z(q, -lnT) = zo('fl) = ¢o(qT112 + Xm) + lnT 

which can be explicity solved to give 

z(q, r) =-In [ 1- er ( 1- e-zo(fle-'12 ))] . 

Thus, 

r~~ z(q, r) =-In ( 1- z~(O)e-zo(O) ~2 ) =-In (1- Kt) =: z(q). 

From this, we conclude that when ).. = 0, 

¢(x, t) + ln[(T- t) - K(x- Xm) 2] --+ 0 

uniformly for (x- xm) 2 ~ q(T- t) as t--+ r- which gives us a description 
of how the blowup singularity evolves. We would expect a similar type of 
behavior for (6.13)-(6.14). 

6.3 The Full One-Dimensional Gas Model 

In this section we consider a system of equations modeling the behavior of a 
heat-conductive viscous reactive compressible gas bounded by two parallel 
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plates. Assume that its describing parameters vary spatially only in the 
direction perpendicular to the plates. In Euler coordinates, we have: 

Pt+(vp)y=O 

p[vt + vvy] = >.1 Vyy - k(pO)y 

p[Ot + vOy] = >.20yy + >.1 v; - kpOvy + 8pf(p, 0, z) 

p[Zt + VZy] = A3(PZy)y - pf(p, (}, z) 

(6.16) 

where k, 8, and >.i (i = 1, 2, 3) are positive constants, where t ~ 0 is the 
time, and where y E [0, 1] c R is the one -dimensional space variable. 
The variables p, v, 0, and z represent the density, velocity, temperature, 
and concentration of unburned fuel, respectively. Let 0 = (0, 1) and 80 = 
{0, 1}. The initial conditions for (6.16) will be 

p(y,O) = Po(y), v(y,O) = vo(Y) 

O(y,O) = Oo(y), z(y,O) = zo(Y) 
, yEO. 

The results proved in this section involve the boundary conditions 

v(y, t) = 0, Oy (y, t) = 0 

Zy(y, t) = 0 
, (y, t) E 80 X (0, oo). 

(6.17) 

(6.18) 

and represent a thermally insulated boundary. Similar results can be proved 
for the noninsulated boundary conditions 

v(y, t) = 0, zy(y, t) = 0 

a[O(y, t) - T] - bOy(y, t) = 0 
, (y,t) E 80 X (O,oo), 

where a > 0, b > 0, a + b > 0, and T > 0. 

(6.19) 

In establishing global a priori bounds for global existence, we rewrite sys
tem (6.16) in terms of the Lagrange variable x(y, t) = J~ p(r, t) dr. Treating 
the functions involved as functions of (x, t), system (6.16) is transformed 
into 

Pt = -p2Vx 

Vt = .>.1 (pvx)x - k(pO)x 

Ot = >.2(P0x)x + >.1pv~- kpOvx + 8f(p, 0, z) 

Zt = A3(P2Zx)x- f(p,O, z) 

with initial conditions 

p(x,O) = po(x), v(x,O) = vo(x) 

O(x,O) = Oo(x), z(x,O) = zo(x) 
, xEO. 

(6.20) 

(6.21) 
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and boundary conditions 

or 

v(x, t) = 0, Ox(x, t) = 0 

Zx(x, t) = 0 

v(x, t) = 0, Zx(x, t) = 0 

a[O(x, t) - T] - bOx (x, t) = 0 

, (x,t) E oO X (O,oo). 

, (x,t) E oO X (O,oo), 

(6.22) 

(6.23) 

In the remaining discussion we will use the following notation. For any 
function g : 0 -+ R, define the constants 

m9 = inf g(x) and M 9 =sup g(x). 
xEO xEO 

For any function h : 0 x [0, T] -+ R, define the functions 

mh(t) = inf h(x, t) and Mh(t) =sup h(x, t). 
xEO xEO 

In addition for the initial-boundary value problem (6.20)-(6.21)-(6.22), we 
make the assumptions: 

0 < fflp 0 ~ Po(x) ~ Mp0 < oo, 

-oo < mv0 ~ vo(x) ~ Mv0 < oo, 

0 < mo0 ~ Oo(x) ~ Mo0 < oo, 

0 ~ fflz0 ~ zo(x) ~ Mz0 < oo, 

11 1 
-(-) dx = 1, 

o Pox 

(6.24) 

(6.25) 

and f : [0, oo )3 -+ [0, oo) is continuous and globally Lipschitz on [0, p] x 
[0, oo) x [0, z] for all p > 0 and for all z > 0. 

Definition 6.1 Consider the set of functions (p,v,O,z) satisfying 

p E L00 ([0, T], WJ"(O)), PtE L00 ([0, T], L2 (0)), and 

(v, 0, z) E L00 ([0, T], WJ"(O)) n L2 ([0, T], Wi(O)) n WJ" ([0, T], L2 (0)). 

A generalized solution (p, v, (}, z) is a function satisfying equations ( 6. 20) 
almost everywhere and assumes the initial-boundary conditions in the sense 
of traces. For 1 ~ p ~ oo we denote by w; the Sobolev space of all functions 
whose derivatives up to order k are in LP. 
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Local existence for initial-boundary value problem (6.20)-(6.21)-(6.22) 
can be found in [KZH2]. The key theorem for global existence is the fol
lowing theorem which establishes global a priori bounds for the solution. 

Theorem 6.4 If (p0 (x),v0 (x),00 (x),z0 (x)) E W:i(O) and if (p,v,O,z) is 
any generalized solution of (6.20}-(6.21}-(6.22}, then for any T > 0 there 
exists a constant C > 0 such that 

lv(x, t)i ~ c, c- 1 ~ p(x, t) ~ c, 
c- 1 ~ O(x,t) ~ C, and 0 ~ z(x,t) ~ C 

for all (x, t) E 0 x [0, T] =: Rr. 

The proof of Theorem 6.4 will consist of a sequence of lemmas which 
establish the bounds on the functions. As a consequence of the estimates, 
we can prove 

Theorem 6.5 If (Po(x),vo(x),00 (x),zo(x)) E W:f(O), then IBVP (6.20}
(6.21}-(6.22} has a unique generalized solution for (x,t) EOx [O,oo). 

By imposing additional smoothness on the initial data, we can prove the 
next theorem using the results in [KZH1],[NAS]. 

Theorem 6.6 If (vo,Oo,zo) E C2+0 (0) and PoE C1+0 (0) for 0 <a< 
1, then initial-boundary value problem (6.20}-(6.21}-(6.22} has a unique 
classical solution (p,v,O,z)(x,t) on n X [O,oo) with 

(v,O,z) E c2+o,l+o/2(0 X [O,oo)) 

and 
p E Cl+o,1+o/2(fi X [0, oo)). 

The next result is not proved here; these results can be found in [BRE] 
and are similar to those used in this chapter. 

Theorem 6.7 Let Po E C1+0 (0) and (vo,Oo,zo) E C2+0 (0) for a E 
(0, 1). Suppose that 

vo(x) = zb(x), >.1vo(x)- k[po(x)Oo(x)]' = 0, 

and 
a[Oo(x)- T]- bOb(x) = 0 

for x E 80. In the event that b = 0, also assume that 

PovoOb - >.28~ - >.1 ( vb)2 + kOovo - 8 Pof(po, Oo, zo) = 0 

for x E 80; then initial-boundary value problem (6.20}- (6.21}-(6.23} has 
a unique classical solution on 0 X [0, 00). 

These results show that even when heat is added at the boundary and 
the gas is reactive, for arbitrarily large Lipschitz continuous initial data, 
no shocks develop. 
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6.4 Energy Estimates and Density Bounds 

From (6.20a) we obtain gt (*) = Vx· Integrating with respect tot gives us 

t -1 

p(x,t)= [Po~x) + fo Vx(x,r)dr] 

which is positive fort sufficiently small since p01(x) > 0 on 0. In addition, 
integrating the same equation with respect to x and using the boundary 
conditions for v gives us (J; p- 1 dx)t = 0. Thus, 

fo1 P-1 dx = fol Pol dx = 1. 

Although p > 0 for small time, we will eventually obtain an upper bound 
for p and bounds on lvx I· By bootstrapping, we find that p > 0 for larger 
times. Using p > 0, we can use standard comparison results on the equa
tions in (6.20) to obtain the following bounds on the temperature and 
concentration functions. 

Lemma 6.8 The functions O(x, t) and z(x, t) satisfy the conditions 

O(x, t) ~ 0 and 0 ~ z(x, t) ~ Mz0 

for all (x,t) ERr. 

Proof From (6.20c) we have 

Ot = A2(PBx)x + A1pv;- kpvxO + 8/(p, 0, z) ~ A2(PBx)x- (kpvx)O 

on Rr since p > 0, ).1 > 0, 8 > 0, and f(p, 0, z) ~ 0. On the parabolic 
boundary of Rr we have 00 (x) > 0 on 0 and Bx(ofl, t) = 0, so by the 
maximum principle, O(x, t) ~ 0 on Rr. 

From (6.20d) we have 

Zt = A3(P2 Zx)x - f(p, 0, z) ~ A3(P2 Zx)x 

on Rr since f(p, (), z) ~ 0. On the parabolic boundary of Rr we have 
zo(x) ~ Mzo on 0 and zx(ofl, t) = 0, so by the maximum principle, 
z(x, t) ~ Mzo on Rr. 

Using the full equation for z and using Lipschitz continuity off in the z
component, since zo 2::: 0 on 0 and zx(ofl, t) = 0 we have by the maximum 
principle z(x, t) ~ 0 on Rr. D 

We now consider the energy densities 

1 
w(x, t) = B(x, t) + 2v2 (x, t) 
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and 
1 

e(x, t) = O(x, t) + 2v2(x, t) + 8z(x, t). 

The total energy J0
1 w(x, t) dx may increase in time due to the heat gen

erated by the chemical reaction. However, using e(x, t) we can prove the 
following result. 

Lemma 6.9 The function e(x, t) satisfies the condition 

fo 1 e(x, t) dx = A1 

where A1 is a positive constant. As a result we have the bounds 

fo 1 O(x, t) dx ~ A1 and fo 1 v2(x, t) dx ~ 2A1. 

Proof Using the equations in (6.20) we have 

ft J~ e(x, t) dx = ft f~[O+ ~v2 +8z]dx 

= f0
1 [Ot + VVt + 8zt] dx 

= j0
1 { [>.2(P0x)x + A1pv; - kpOvx + 8 f(p, 0, z)] 

+[A1v(pvx)x- kv(pO)x] 

+[8A3(p2zx)x- 8f(p,O,z)]}dx 

= A1 J~ [pv; + v(pvx)x] dx + A2 f0
1 (pOx)x dx 

+8A3 J~ (p2 Zx)x dx- k J~ [pOvx + v(pO)x] dx 

= A1 J~ (pvvx)x dx + A2 J~ (pOx)x dx 

+8A3 f0
1(p2zx)x dx- k J~(pvO)x dx 

= [A1PVVx + A2POx + 8A3P2Zx- kpv0]1;~6 

= 0 

where the boundary conditions (6.22) have been used. Thus, 

J~ e(x,O) dx 

f~[Oo(x) + ~v6(x) + 8zo(x)] dx 

-. A1. 

By Lemma 6.8 we had z(x, t) ~ 0. Thus, 

{1 1 {1 
lo O(x, t) dx + 2 Jo v2(x, t) dx 
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which gives the stated bounds. 0 

For each t E [0, T], there is a value a(t) such that p(a(t), t) = 1. The 
existence of this value is assured by I; p-1 dx = 1 and the fact that p(·, t) 
has a point of continuity xo E 0. 

From (6.20a) we have Pt = -p2 vx which implies pvx = -(lnp)t· Using 
this in (6.20b) we obtain 

Vt = -A1(lnp)tx- k(p8)x = -A1(lnp)tx- Px 

where the pressure p(x, t) = kp(x, t)8(x, t). Integrating with respect to t 
(with lower limit 0) we get 

:x [ A1ln p(x, t) - A1lnPo(x) +lot p(x, r) dr] = vo(x) - v(x, t). 

Integrating with respect to x (with lower limit a(t)) we get 

I:(t)[vo(€)- v(€,t)]d€ 

= A1 ln [ p(x,~:cH(t))) +I; p(x, r) dr -I; p(a(t), r) dr 

where we have used p(a(t), t) = 1. Exponentiating gives us 

p(x, t)ett I: p(x,T)d.,. 

= Po(x)pi)1(a(t))ett I: p(a(t),T) dT ett f(t)[vo(e)-v{{,t)] d{ 

and multiplying both sides by k(} (and using p = kp8), we obtain 

ft [A1exp(f1 I;p(x,r)dr)] = p(x,t)exp(f1 I;p(x,r)dr) 

= k8(x, t)po(x)Y(t)B(x, t) 

where 

and 

Y(t) := p01(a(t)) exp (;1 lot p(a(t), r) dr) 

B(x,t):=exp(; fx [vo(€)-v(€,t)]d€)· 
1 J a(t) 

Lemma 6.10 There are positive constants A2 and A3 such that 

1 1 
A2 :5 B(x, t) :5 A2 and A3 :5 Y(t) :5 A3 

for all (x,t) E RT· 

(6.26) 
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Proof. Note that 

II:(t)v(e,t)del < J;lv(e,t)lde 

< (I; v2 (e, t) de f 12 

where the last inequality comes from Holder's inequality. From Lemma 6.9 

we had fo1 v2 (e, t) de ::::; 2At, so II:(t) v(e, t) del ::::; y'2Al. Thus, 

11 I:(t) [vo( e) - v( e, t)] de < >.\ II:(t) [vo( e) - v( e, t)] del 

< >.\ (I; lvo(e)l de + V,-fo.,..--1 v-'-2-(e-, t-) d-e) 

= >.\ (llvoiiLt(o) + v'2A1). 

Since exp(-IQI)::::; exp(Q)::::; exp(IQI), we have 

or 

A2 1 = exp ( -A11 (llvoll + v'2A1)) 
< B(x, t) 

< exp (A11 (llvoll + v'2A1)) = A2. 

Integrate equation (6.26) with respect to t to obtain 

At [exp (;
1 

lot p(x,r)dr) -1] = kp0 (x) lot O(x,r)Y(r)B(x,r)dr 

exp (;
1 

lot p(x,r)dr) = 1 + kp~~x) lot O(x,r)Y(r)B(x,r)dr. 

Multiplying by p(x, t) and using (6.26) gives us 

p(x,t) [1 + kp~~x) lot O(x,r)Y(r)B(x,r)dr] = kpo(x)O(x,t)Y(t)B(x,t) 

or, using p = kpO, 

( ) Po(x)Y(t)B(x, t) (6.27) 
p x,t = 1 + ke~fxl f~Y(r)B(x,r)O(x,r)dr' 

Equation (6.27) implies 

p- 1(x,t)Y(t) = B-1 (x,t) [p0 1 (x) + :
1 

lot Y(r)B(x,r)O(x,r)dr]. 
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Integrating both sides with respect to x and using J0
1 p- 1 dx = 1, we have 

Using B(x,t):::; A2 and n-1(x,t):::; A2 1 gives us the inequality 

By Gronwall's inequality, 

Y(t) < A2exp(kA>.\A~t) 
< A (kAtA~r) 2 exp >.t 

-. A3 

fortE [0, T]. Since Po ~ mp0 > 0 and p ~ 0, Y(t) is bounded away from 
0. Choose A3 large so that i :::; Y(t) :::; A3. 0 

Corollary 6.11 There is a positive constant A4 such that 

p(x, t) :::; A4 

for all (x, t) E RT. 

Proof In equation (6.27), 1 + (kpof >.I) J~ Y BB dr ~ 1, Po(x) :::; Mp0 , 

B(x, t) :::; A2, and Y(t) :::; A3 imply p(x, t) :::; Mp0 A2A3 =: A4. o 

In the next result we obtain an inequality for the temperature function 
B(x, t). Using (6.27) and Lemma 6.10, we have 

[ 
t ] -1 

mp(t) ~ A2~3 m;o1 + k~21A3 fo B(x, r) dr > 0. (6.28) 

Lemma 6.12 For any TJ > 0, there are positive constants A5 = A5(TJ) and 
A6 = A6(TJ) such that 

B2(x, t):::; TJJ1 (t) + A5J2(t) + A6 

for (x,t) E RT where J1(t) = f0
1 p(x,t)Bi(x,t)dx and h = J~ J1(r)dr. 
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Proof. Set tf;(x, t) = O(x, t)- J; 0(~, t) d~; then J; tj;(x, t) dx = 0. For each 
t E [0, T], there must be an x1 (t) E [0, 1] such that '¢(x1 (t), t) = 0 since 
J; '¢ dx = 0 and since'¢(·, t) has a point of continuity x0 E 0. Consequently, 

lt/J(x,t)l3/2 = ~ J:1 (t) lt/J(x,t)ill2sgn('¢(~,t))'¢e(~,t)d~ 

= ~ J:i(t) (p-1/21'¢11/2) (p1/2[sgn('¢)]'¢e) d~ 

< ~ J; (p-1/21'¢11/2) (p1/2[sgn('¢)]'¢~) d~. 

Using Holder's inequality, we have 

lt/J(x,t)l3/2 :5 ~ fo1 p- 1 1'1/Jid~ J fo1 rl'id~. (6.29) 

Since t/Jx =Ox, p-1 (x, t) $ m;1 (t), and 

f; 1'1/J(x, t)l dx = f0
1 IO(x, t)- J; 0(~, t) d~ I dx 

< 2 J; IO(x, t)l dx 

< 2At. 

inequality (6.29) can be modified to 

lt/J(x,t)l 3/ 2 :5 ~m{; 112 (t)(2A1) 112 J~ 12 (t) 
= (~ )1/2 m;1/2(t)J~/2(t). 

Raising both sides to the ~ power and using (6.28), we have 

tj;2(x, t) < (~ )2/3 m;2/3(t)J;2/3(t) 

< (~)2/3 (A2A3)2/3 [m;o1 + kA11Aa J~O(x,r)drr/3 J;/3(t) 

so that 

(6.30) 

where 
_ (9AtA2A3) 213 d (3 _ kA2A3 01- an 1- --. 

2mp0 mp0 A1 

Since O(x, t) = tf;(x, t) + J0
1 0(~, t) d~ :5 tj;(x, t) + A1, we have 02 ~ 

('¢ + At) 2 :5 2('¢2 +A~) where the last inequality follows from Cauchy's 
inequality (2ab :5 a2 + b2). Using this in equation (6.30) yields 

02(x, t) $ 2A~ + 2o1 [ 1 + (31 lot O(x, r) dr r/3 
J;13(t). (6.31) 



146 6. Conservation Systems for Reactive Gases 

For any "' > 0, choose p = 3, q = 3/2, 

[ 1 ]2/3 (3 )-2/3 
a=2al 1+,Bllo B(x,r)dr ; , 

and 

b= (32"'r/3 J;/3(t), 

and apply Young's inequality (ab :::; ~ + ~ for ~ + t = 1) to inequality 
(6.31) to obtain 

B2(x, t) :::; 2A~ + ~;~1 [1 + ,B J~ B(x, T) dr r + 'f/Jl (t) 

:::; 2A~ + ~~~~ l1 + ,B~ (J~ B(x, r) dr f] + 'f/J1 (t) 

= a2+.82(J~B(x,r)drf +"1J1(t) 

where we have used the identity: (1+a)2 :::; 2(1+a2). By Holder's inequality 

( t )2 t we have f0 (} dr :::; t f0 82 dr so 

B2(x, t):::; a2 + ,82t lot B2(x, r) dr + 11J1(t). (6.32) 

Set I(t) := J~ B2(x, r) dr and ,83 = ,B2T; then /(0) = 0 and (6.32) can be 
rewritten as 

I'(t):::; a2 + ,83/(t) + 'flh(t) or [e-.83 t I(t)]':::; [a2 + "lh(t)]e-.B3 t. 

Thus, for t E [0, T], 

I(t) :::; e.B3t lot e-.B38 (a2 + 'f/Jl (s)) ds. 

Replacing this in equation (6.32) yields 

B2(x,t) :::; a2+'f/J1(t)+,B3e.B3 t J~e-.B38 (a2+'f/Jl(s))ds 

a2(1 + ,83e.B3 t J~ e-.B28ds) + 11J1 (t) + ,83 J~ e.B3 (t-s) Jt ( s) ds 

< A6('fl,T)+"'J1(t)+A5('f/,T)f~Jl(s)ds 

= 'f/J1(t)+A5J2(t)+A6 

for t E [0, T] and where the constants are given by A5 = fhe.B 3 T and 
A6 = a2(1 + ,83Te.B3 T). D 

In order to get a positive lower bound on the density p, we consider the 
energy density w(x, t) = B(x, t) + ~v2 (x, t). 
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Lemma 6.13 There is a positive constant A7 such that 

fo1 
w2(x, t) dx + fo1 v4 (x, t) dx + J2(t) ~ A7 

for all t E [0, T]. As a result we have the bounds 

h(t) ~ A7 and fo 1 
w2 dx ~ A7. 

Proof Using (6.20a,b), the time derivative of the energy density is 

Wt = ( () + ~v2 )t 

= Ot + VVt 

= [A2(P0x)x + A1pv;- kpOvx + bf(p, 0, z)] 

+v[Al (pvx)x - k(pO)x] 

= (A2P()x + A1pvvx- kpOv)x + 8f(p, 0, z). 

Therefore, 

1 d I/ 2d 2dt 0 W X = f~ WWtdX 

= f0
1(0 + ~v2 )(A2P()x + AIPVVx- kpOv)x dx 

+b J~ wf(p, (), z) dx 

= - J~(() + ~v2 )x(A2P()x + A!pvVx- kpOv) dx 

+b J~ wf(p, (), z) dx 

(6.33) 

where we have used integration by parts and the boundary conditions 
(6.22). 

The global Lipschitz continuity of f and the bounds on z and p imply 
that 

f(p, 0, z) ~ K10 + f(p, 0, z) ~ K10 + K2 ~ K3(0 + 1) 

where K 1 is the Lipschitz constant for/, K 2 is the bound on f(p, 0, z) for 
(p, z) E [0, A4] x [0, Mz0 ], and where K3 = max{K1, K2}. Also, w(O + 1) = 
w(w + 1- ~v2 ) ~ w(w + 1) = w2 + w, so we have 

b f0
1 wf(p, (), z) dx < 8K3 J~(w2 + w) dx 

= bK3 [f01w2dx + f0
1(0+ ~v2 )dx J 

~ 8K3 (J~ w2dx + A1) 

< K4(1+J~w2dx) 
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where we have used Lemma 6.9 {llw(·, t)IIL•(n) ~ lie(·, t)IIL•(n) = AI). 
Replacing this in (6.33) gives us 

J;wwtdx ~ -J;(O+~v2)xP·2PBx+Alpvvx-kpOv)dx 

+K4 ( 1 + J; w2dx) 

= -A2 J; pO;dx - A1 J; pv2v;dx 

-(Al + A2) J; pvvxBx dx 

-k (I; pvOOx dx + /0
1 p0v2vx dx) 

+K4 ( 1 + J; w2dx) . 

Let a > 0, /3 > 0, and 1 > 0. By Cauchy's inequality, 

0'2 1 /32 1 
-vOO < -v202 + -02 -Ov2v < -v202 + -v2v2 

X - 2 20'2 Xl X - 2 2/32 Xl 

and 
(} 12 2 2 1 (}2 

-VVx x ~ 2V Vx + 212 x· 

Using these in {6.34) yields 

J; WWt dx ~ Ks f0
1 pO;dx + K6 J; pv2v;dx 

+K1 f0
1 pv202dx + K4 ( 1 + J; w2dx) 

where 

Ks = ·\;tf2 - A2 + ~' 
K6 - 72 (> .. +>.a) - A + k and 

- 2 1 2iJ'I' 

K7 = ~(a2 + /32). 

{6.34) 

The parameters a, /3, and 1 can be chosen so that K5 = -A2 /2 and K6 > 0. 
Thus, 

J; WWt dx + ~ J; pO;dx 

~ K6 J; pv2v;dx + K1 J; pv202dx + K4 ( 1 + J; w2dx). 
{6.35) 

Now consider the time derivative of J; v4dx. Using {6.20b), we have 

1 d rl v4dx = 
4ilt Jo J; V3Vt dx 

= J; v3 (AlPVx - kpO)x dx 

= - J;(v3 )x(AlPVx- kpO)dx 

= -3Al / 0
1 pv2v;dx + 3 J; kp0v2vx dx 
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By Cauchy's inequality we have kvx(} :::; ~v; + 2k;1 82 so that 

{1 3.\ {1 3k2 {1 
3 Jo kp8v2vx dx :::; T Jo pv2v;dx + 2.\1 Jo pv282dx. 

As a result, 

K611 3 d < 3K611 2 2d 3k2 K611 2(}2d 
\ V Vt X _ --2- pv Vx X + - 2, 2 pv X. 
-"1 0 0 -"1 0 

Combining this with (6.35) yields 

f0
1 WWt dx + ~ f0

1 v3vt dx + ¥ J; p(};dx 

:::; ( K7 + 3~:fs) fo1 pv2()2dx 

+K4 ( 1 + J; w2dx) - ~ J; pv2v;dx 

< Ks J; pv282dx + K4 ( 1 + f0
1 w2dx) . 

where Ks = K1 + (3k2 K6)/(2.\~). 

(6.36) 

Using Lemma 6.9 (f01 v2dx :::; 2At), Corollary 6.11 (p:::; A4), and Lemma 
6.12 (82 :::; 17J1 + A5J2 + A6), we have 

la1 pv282dx :::; 2A1A4[17J1 + A5h + A6], (6.37) 

so (6.36) becomes 

J; WWt dx + ~ J; v3vt dx + ¥J1 

:::; Kg+ K1011J1 + KuJ2 + K4 f0
1 w2dx 

where Kg= K4 + 2A1A4A6, K 10 = 2A1A4, and Ku = 2A1A4A5. Since 
11 > 0 is arbitrary, choose 11 = .X2/(4K10); then 

ft [! J; w2dx + ~ J0
1 v4dx + ~J2(t)] 

:::; Kg+ KuJ2(t) + K4 f0
1 w2dx (6.38) 

:::; Kg+ K12 [! J; w2dx + ~ J; v4dx + ~J2(t)] 

where K12 =max{ 4Ku/ .\2, 2K4}· Define 

1 t K ( 1 .\2 
Q(t) = 2 Jo w2dx + 4.\: lo v4dx + 4J2(t); 

then (6.38) is of the form 

Q'(t):::; Kg+ K12Q(t), for t E [0, T]. 
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Thus, [exp(-K12t)Q]':::; Kgexp(-K12t) which implies 

Q(t) :::; eK12t[Q(O) + K 9 lot e-K128ds] :::; eK12T[Q(O) + KgT] =: Kt3· 

For K14 = min{l/2,K6/(4.>.t),.>.2/4}, we have 

fortE [0, T]. Clearly J2(t) :S A7 D 

Corollary 6.14 There are positive constants A1 and As such that 

lo1 02dx :::; A1 and lot lo1 pv2v;dx dr :::; As 

for all t E [0, T]. 

Proof Note that 0 :::; 0 = w - !v2 :::; w, so 02 :::; w2 and so I~ 02dx < 
I~ w2dx :::; A7 • To prove the other bound, we had in equation (6.36) 

Q'(t) = ft [!I~ w2dx +~I~ v4dx + ~h(t)] 
< Ks I~ pv202dx + K4 ( 1 +I~ w2dx) - ~ I~ pv2v;dx. 

Using (6.37) we have 

~I~ pv2v;dx + Q'(t) < Ks [2AtA4 (77J1 (t) + A5J2(t) + A6)] 

+K4(l + A1) 

< o:Jl (t) + {3 

where o: = 2AtA4Ks7J and {3 = KsA5A1 + 2KsAtA4A6 + K4(l + A7). 
Integrate with respect to t to obtain 

~I~ I~ pv2v;dxdr < ~I~ I~ pv2v;dxdr + Q(t) 

< Q(O) + o:h(t) + {3t 

< Q(O) + o:A1 + {3T 

-. "f· 
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Corollary 6.15 There is a positive constant A9 such that 

p(x, t) ~ A9 

for all (x, t) E RT. 

Proof From Lemma 6.12 we had fJ2(x,t) :::; 17J1(t) + A5h(t) + A6 for 
(x, t) E 0 x [0, T]. Thus, by Corollary 6.14, 

B2(x,t):::; 17J1(t) +A5A1 +A6 

and 

lot B2dr :::; 17J2(t) + (A5A1 + A6)t:::; 17A7 + (A5A1 + A6)T. 

Using Cauchy's inequality, we have B:::; ~(1 + 02), so 

lot Bdr :::; ~ (t +lot B2dr) :::; ~ [T + 17A1 + T(A5A1 + A6)] =: a. 

From equation (6.28) we have 

-. Ag > 0 

for all t E [0, T]. 0 

Corollary 6.16 There are positive constants A10 and Au such that 

lot lo1 o;dx dr :::; A 10 and lot lo1 v2v;dx dr :::; Au 

for all t E [0, T]. 

Proof From Corollary 6.14 and Corollary 6.15 we have 

Ag lot lo1 o;dxdr :::; lot lo1 pB;dxdr = h(t):::; A1 

and 

Ag lot lo1 v2v;dx :::; lot lo1 pv2v;dx dr :::; A8 . 

The result follows where A10 = A7/A9 and Au = A8 /A9 . 0 

We have established the bounds: Ag :::; p(x, t) :::; A4, B(x, t) ~ 0, and 
0 :::; z(x, t) :::; Mzo for (x, t) E 0 x [0, T]. We will now establish global a 
priori bounds on the velocity function v(x, t). 
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6.5 Velocity Bounds 

Lemma 6.17 Let g(x, t) = >.1 Vx - k8; then 

IIP112giiL2(0) +lot ll(pg)xiiL2(0) dt :5 A12 

for some positive constant A12. 

Proof Note that from (6.20b) we have Vt = (pg)x· Consider 

1 d r1 2d 2'dt Jo pg x 

I~ pggt dx + ~I~ Ptg2dx (6.39) 

= -k I~ pg8t dx + >.1 I0
1 pgvxt dx + ~ I0

1 Ptg2dx. 

Note that 

fo 1 (pg)Vxt dx = (pg)vtl;~6- fo 1 (pg)xVt dx =- fo 1 
[(pg)x]2 dx 

where Vt(BO,t) = 0 since v(BO,t) = 0. Replacing this in (6.39) yields 

~ ~ fo 1 
pg2dx + >.1 fo 1 

[(pg)x]2 dx = -k fo 1 
pg8t dx + ~ fo1 

g2 Pt dx. 

Using (6.20a,c), we get 

~ft Io1 pg2dx + >.1 Io1 [(pg)x]2 dx 

= -(k + ~)I~ p2g2vx dx- k>.2 I~ pg(p8x)x dx 

-k8 I~ pgf(p, 8, z) dx 

-. h+h+h 

We now analyze each integral in (6.40). 

(6.40) 

Integral h. Integrate h by parts and use the boundary conditions on v in 
(6.22) to obtain 

/1 = -(k+!)I~(pg)2vxdx 

= -(k + ! ) [ (pg) 2 vli~A - I0
1 2(pg)(pg)xv dx] 

= (2k+l)I~(pgv)(pg)xdx. 

Using Cauchy's inequality we have 
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Also, g2 = (>.1vx-k8) 2 ~ 2(>.~v;+k202 ) since (a-b) 2 ~ 2(a2+b2). Thus, 

2A2(2k + 1)2 >.1 2 
(2k + 1)(pgv)(pg)x ~ 4 ).1 p(>.~v; + k202)v2 + 4 [(pg)x] 

where we have used the bound p ~ A4 . Integrate to obtain 

It~ K1 fo1 v2v;dx + K2 fo1 v202dx + ~1 fo 1 
[(pg)x] 2 dx 

where K 1 = 2>. 1 A~(2k + 1)2 and K2 = 2A~k2 (2k + 1)2 / >.1. Using equation 
(6.37) and the bound on J2, we have 

fo1 v202dx ~ aJ1 (t) + {3 ~ aA4 fo 1 o;dx + /3 

for constants a= 2A11] and /3 = 2A1(A5A7 + A6) so the inequality for It 
becomes 

It ~ K1 fo 1 v2v;dx + K3 fo1 o;dx + K4 + >.41 fo 1 [(pg)x] 2 dx 

where K3 = aA4K2 and K4 = {3. 

Integral I2. Integrate h by parts and use the boundary conditions on Ox 
in (6.22) to obtain 

I2 = -k>.2J;(pg)(p0x)xdx 

= -k>.2 [(pg)(pOx)I;~A- J;(pg)x(POx) dx) 

= k>.2 J;(pg)x(POx) dx. 

Using Cauchy's inequality we have 

k2 ).~ 2 ).1 ]2 
k>.2(pg)x(P0x) ~>:;"(pOx) + 4 [(pg)x · 

Using the upper bound on p and integrating, we get 

I2 ~ K5 fo1 o;dx + >.41 11 [(pg)x] 2 dx 

where K5 = k2 >.~AV>.1. 

Integral I3. Since f is globally Lipschitz continuous and since p and z are 
bounded, we have 
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where K6 is the Lipschitz constant for /, K7 is the bound on f(p, 0, z) for 
(p,z) E [O,A4] X [O,Mz0 ], and Ks = max{K5,K7}. Consequently, 

J2(p, B, z) :$ K~(B + 1)2 :$ 2Kg(B2 + 1) 

since (a+ b) 2 :::; 2(a2 + b2 ). Using Cauchy's inequality and this last fact, 
we have -kogf:::; !k2o2g2 + !P so that an integration yields 

13 < !k2o2 f; pg2dx + ! J; pJ2dx 

< Kg J; pg2dx + K~A4 J;(o2 + 1) dx 

< Kg J; pg2dx + K10 

where Kg = !k2o2 and K 10 = K~A4 (A 1 + 1) (and where we have used 

J; B2dx :::; A1 from Lemma 6.9). 
Combining these results in (6.40), we obtain 

!ft J; pg2dx + ~ J; [(pg)x] 2 dx 

:$ Ku + K12 f0
1 Bidx + K1 f0

1 v2vidx +Kg f0
1 pg2dx 

where Ku = K4 + K10 and K12 = Ka + K5. Integrate with respect tot to 
obtain 

J; pg2dx :::; fo1 pg2dx + >.1 J~ fo1 [(pg)x]2 dxdr 

< f 0
1 pog5dx + 2Kut + 2K12 f~ f0

1 Bidx dr 

+2K1 J~ J; v2vidxdr + 2Kg J~ f 0
1 pg2dxdr 

< f 0
1 pog5dx + 2KuT + 2K12Au + 2K1A12 

+2Kg J~ J; pg2dx dr 

= K13 + 2Kg f~ f0
1 pg2dxdr 

(6.41) 

where we have used the bounds A10 and A11 constructed in Corollary 6.16. 
Equation (6.41) is a Gronwall's inequality, so we have 

fo1 pg2dx :$ K1a exp(2Kgt) :$ K13 exp(2KgT) =: K14· 

Replacing this in (6.41) gives us 

IIP112glli2(0) + A1 lot ll(pg)xlli2(0) dx :$ A12 

where A12 = K1a + 2KgK14T. D 
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Corollary 6.18 There is a positive constant A13 such that 

lv(x, ti :5 A13 

for all (x, t) E RT. 

Proof From Lemma 6.17 we have 

fl ( )2 1 fl ( )2 At2 
Jo >.1 Vx - k(} dx :5 Ag Jo p >.1 Vx - k(} dx :5 Ag 

where 0 < Ag :5 p (from Corollary 6.15). Using Cauchy's inequality, we 
have 

>.~v; :5 2(>.1 Vx - kB) 2 + 2k2 (}2 • 

Dividing by >.~ and integrating yields 

where we have used Lemma 6.9 (/01 B2dx :5 A1). Consequently, 

(6.42) 

lv(x, t)i = I lox vx(e, t) de I :5 fo 1 
lvxl dx :5 [fo1 

v;dx] 
112 

:5 A 13 

where we have used Holder's inequality. 0 

Corollary 6.19 There are positive constants A14 and A15 such that 

IIPt(·, t)lli2(0) :5 A14 and IIPx(·, t)lli2(0) :5 A15 

fort E [0, T]. Thus, the function p(x, t) is Holder continuous on the set 
RT. 

Proof In Corollary 6.18 we had the estimate (6.42): llvx(-, t)ll£2(0) :5 At3· 
From (6.20a), we have 

IIPt(·, t)lli2(0) = IIP2 (·, t)vx(-, t)lli2(0) :5 A!A~3 =: A14 (6.43) 

where we have used the upper bound on p. 
If one differentiates (6.27) with respect to x, then 

Px = p(vo- v)- p2Y- 1 B-1 [:x (p01) + : 1 lot Y B(Bx + (vo- v)B) dr] . 

Using the bounds on p, J;vdx, J;o;dx, J;v 202 dx, Y, and B, one can 
eventually obtain the bound 

11Px(·,t)lli2(0) = fo 1 p~dx :5 A15 (6.44) 
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for some constant A15 . It follows from (6.43) and (6.44) that p is Holder 
continuous on RT. D 

Lemma 6.20 There is a positive constant A16 such that 

llvx(·, t)lli2(0) +lot llvxx(·, t)ili2(0)dt +lot llvt(·, t)lli2(0)dt ~ A16 

fortE [0, T]. 

Proof. Since Vt = (pg)x, Lemma 6.17 gives us llvt(·, t)1ii2(o) ~ A12· In 
Corollary 6.18, equation (6.42), we have llvx(·, t)lli2(0) ~ A~3 . We only 

need to find a bound for J~ llvxx(·, t)ll 2dt. 
Using the identity: a2 ~ 2(a- b)2 + b2, we have .>.~vix ~ 2(.>.1vxx

k8x) 2 + k20i. Integrating, we have 

lot lo1 v;xdx dr ~ K1 lot lo1 g;dx dr + K2 lot lo1 o;dx dr (6.45) 

where K1 = 2/.>.~ and K2 = k2 /.>.~.Using the identity: a2 ~ 2(a + b)2 +b2, 
we have 

Integrating, we have 

where we have used the lower bound on the density function. Combining 
this with equation (6.45) gives us 

f~ f~ vixdx dr ~ K3 f~ f~ [(pg)x] 2 dx dr + K2 f~ f~ o;dx dr 

+ K4 J~ f0
1(pxg) 2dxdr 

where K3 = 2Kt/A~ and K4 = Kt/A~. Using Lemma 6.17 and Corollary 
6.16, we have 

lot lol v;xdx dr ~ K5 + K4 lot lo1 (pxg) 2dx dr (6.46) 

where K5 = K3A12 + K2A10. 
Finally, 

J~ J~(pxg) 2dxdr < max(o,T) 11Px(·,t)lli2(0) J~ fo1 g2dx 

< A15~ =: K6 
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where we have used (6.44) and Lemma 6.17. Combining this with (6.46) 
gives the bound 

lot llvxxC t)lli2(0) dr ~ A16 

where A16 = Ks + K4K5. D 

6.6 Temperature Bounds 

We have constructed bounds on the density p(x, t), the velocity v(x, t), and 
the fuel concentration z(x, t). We now finish with the a priori bounds on 
the temperature (J(x, t). The upper bound on temperature is derived from 
the lower bound on density and a comparison theorem. 

Lemma 6.21 There is a positive constant A11 such that 

(J(x,t) ~ A11 

for all (x, t) E RT. 

Proof From (6.20c) we have 

(Jt = ).2(P(Jx)x + ).1pv; - kp(Jvx + 8 f(p, (}, z) 

> ).2(P(Jx)x + p().1v;- k(Jvx) 

= [ k(J 2 k 2 92 ] ).2(P(Jx)x + P ).1(Vx- 2.>q) - 4,\ 1 

~ ((}) E]£2 ).2 P X X - 4.\t (} 

~ ) k2 A 2 ).2 (p(Jx x - ~(} by Corollary 6.11. 

Let ¢(t) be the solution to: 

d¢ k2 A4 2 
dt =- 4).1 ¢ , t > 0, ¢(0) = m90 ; 

then ¢(t) = (4).1m90 )/(4).1 + k2 A4t), 

k 2 A4 2 k 2 A4 2 
(Jt- ).2(P(Jx)x + 4). 1 () ~ rPt- A2(P¢x)x + 4). 1 ¢ = 0 

for (x,t) E 0 x (O,T), and on the parabolic boundary, O(x,O) = Oo(x) ~ 
m90 = ¢(0) for x E 0 and (Jx(80, t) = 0 = ¢x(O) fort~ 0. By the maximum 
principle, (J(x, t) ~ ¢(t) for all (x, t) E 0 x [0, T). Since ¢(t) ~ ¢(T) =: A17, 
we have (J(x, t) ~ A17 > 0 for (x, t) E RT· D 
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Lemma 6.22 There is a positive constant A18 such that 

IIOx(·, t)lli2(0) +lot IIOxx(·, t)lli2(0) dt +lot IIOt(·, t)lli2(0) dt ::; A1s 

fortE [0, T]. 

Proof. Using (6.20c) and the boundary conditions (6.22), we have 

~ ft J; o; dx = f0
1 OxOxt dx 

= BxOt l;~fi - J; OtOxx dx 

= - J; Bxx [.\2(P0x)x + p(AIVx- kO)vx + 8f(p, O,z)] dx (6.47) 

= -.\2 J; po;x dx- .\2 J; PxBxBxx dx 

- J; p(.\1 Vx- kO)vxOxx dx -8 J; Bxxf(p, 0, z) dx. 

Using Holder's inequality and Young's inequality, we now observe that 

r ( rl ) 1/2 ( rl ) 1/2 
Ox(x, t) = Jo 20xBxx dx ::; 2 Jo o; dx Jo o;x dx 

so that 

and 

(6.48) 
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where K 1 = J2A15A~/4 and K2 = 54Kf >.2. Note that we have used (6.44) 
and the bounds on p. We also have 

- f0
1 p(>.1vx- kO)vxBxxdx 

< iJ; p(>.1 Vx - kO)vxBxx dxi 

~ A;! max0 !vx(x, t)!x 
1 1 

x (I; p(>.1vx- kB) 2 dxf (I; po;xdxf 
1 

~ {f (I; v;dxr X 

X (I; v;xdX) t (I; p().1vx- k()tdx)! (!0
1 p();xdx)! 

< K3 (!01 v;x dx) 4 (Io1 pB;x dx) ~ 

~ K4 ( J; v;x dx ) ~ + ~ J; po;x dx 

(6.49) 

where K3 = (2A12/Ag)1/2 A~~4 and K4 = 2K§j >.2. Note that we have used 
Lemma 6.17 and Lemma 6.20. Finally, 

-8 f0
1 Bxxf(p, 0, z) dx 

~ K5 J; !Bxx(1 +B) I dx 

( 1 2 )1/2 ( 1 (1+9)2)1/2 
~ K5 fo p()xx dx fo p 

~ ~ J; po;x dx + 19 >.2 J; (1 + 0) 2dx 

~ ~ J; po;xdx+K6 

(6.50) 

where f(p,O,z) ~ f(p,O,z) + L() ~ K5 (1 +B) and K6 = 2(1 + 2A1 + 
A1 )/(Ag>.2)· Note that we have used the bounds on J; () dx and J; 02 dx. 

Replacing equations (6.48) through (6.49) into (6.50) gives us 

~ 1t J; o; dx + ~ J; po;x dx 
1 ( 1 ) 1/2 ~ K2 f0 o; dx + K4 f0 v;x dx + K6· 

Integrating with respect to t gives us 

1 r1 ()2 d h rt r1 ()2 d 
2 JQ X X + 2 JQ JQ p XX X 

from which the result 

~ ~ J; B5,x dx + K2 f~ f0
1 o; dx dr 

+ K4 J~ llvxx(·, t)ll£2 dr + K6t 

fo1 o;dx+ lot fo1 o;xdxdr ~ K1 
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immediately follows. From the other previously derived bounds, we have 

lot lo1 Ol dr ~ Ks 

and the lemma is proved (where A1s = K1 + Ks). D 

The upper bound on temperature is immediate from the bounds obtained 
on the L2 norm of Ox (c.f. Corollary 6.18). 

Corollary 6.23 There is a positive constant A 19 such that 

O(x, t) ~ A19 

for all (x, t) E RT· 

These a priori bounds establish the proof of Theorem 6.4. To prove 
Theorem 6.5, we need one final estimate involving the concentration z(x, t). 

Lemma 6.24 There is a positive constant A2o such that 

llzx(-, t)lll2(0) +lot llzxx(·, t)lll2(0) dr +lot llzt(-, t)lll2(0) dr ~ A2o 

for t E (0, T]. 

Proof. From (6.20d), it follows that 

1 d r1 2d , r1 2 2 d 
2 dt Jo Zx X + "3 Jo P Zxx X 

= -2A3 I~ PPxZxZxxdx +I~ Zxxf(p, 0, z) dx. 

Since p, (}, and z are bounded, we have f(p, (}, z) bounded. The term 
I~ PxZxZxx dx can be bounded in exactly the same way as I~ PxOxOxx dx in 
Lemma 6.22. D 

6. 7 Comments 

Existence for gas dynamic systems (6.1) with various initial and bound
ary conditions is surveyed in Kazhikov and Solonnikov (KZH2] and Mat
sumara and Nishida (MAT]. Local existence is reasonably well understood, 
but global existence in higher spatial dimensions remains an important 
unsolved problem. 

lnvariance techniques as discussed in Chapter 4 fail in most cases because 
invariant regions, if they exist, are unbounded. The a priori boundedness 
of solutions is obtained instead by use of energy estimates. This method is 
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illustrated for the nonreactive model (6.2)-(6.3) in Section 6.1. The global 
existence theorem proved is due to Kanal [KAN]. 

The induction model (6.7)-(6.8) in Section 6.2 with viscosity matrix 
B = 0 has only solutions which blow up in finite time because of the 
reaction term present. Our discussion is incomplete as we do not address 
the question of where blowup will occur. Jackson, Kapila, and Stewart 
[JAC1],[JAC2] have given a formal asymptotic discussion of this model. 
Majda and Rosales [MAJl] consider a related problem. The generation of 
these hot spots as detected in this ignition model is believed to be crucial in 
the understanding of the deftagration-to-detonation transition phenomena. 

In Sections 6.3 through 6.6, initial-boundary value problems correspond
ing to the behavior of a confined, heat-conductive, viscous, and chemically 
reactive gas are considered in one spatial dimension. Using estimates on the 
total free energy of the system, a priori bounds are found for the solutions 
which gives global existence. From a physical point of view, this shows that 
the heat conductivity and viscosity of the gas prevent shocks from devel
oping for arbitrarily large Lipschitz continuous initial data. These sections 
are from Bebernes and Bressan [BEB6] and Bressan [BRE]. 
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