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Preface

This monograph evolved over the past five years. It had its origin as a
set of lecture notes prepared for the Ninth Summer School of Mathematical
Physics held at Ravello, Italy, in 1984 and was further refined in seminars
and lectures given primarily at the University of Colorado.

The material presented is the product of a single mathematical question
raised by Dave Kassoy over ten years ago. This question and its partial
resolution led to a successful, exciting, almost unique interdisciplinary col-
laborative scientific effort.

The mathematical models described are often times deceptively simple
in appearance. But they exhibit a mathematical richness and beauty that
belies that simplicity and affirms their physical significance. The mathe-
matical tools required to resolve the various problems raised are diverse,
and no systematic attempt is made to give the necessary mathematical
background. The unifying theme of the monograph is the set of models
themselves.

This monograph would never have come to fruition without the enthu-
siasm and drive of Dave Eberly-a former student, now collaborator and
coauthor-and without several significant breakthroughs in our understand-
ing of the phenomena of blowup or thermal runaway which certain models
discussed possess.

A collaborator and former student who has made significant contribu-
tions throughout is Alberto Bressan. There are many other collaborators—
William Troy, Watson Fulks, Andrew Lacey, Klaus Schmitt-and former
students-Paul Talaga and Richard Ely-who must be acknowledged and
thanked.

Finally, I would like to acknowledge the continued support of the Army
Research Office and its director, Jagdish Chandra.

October 1988 Jerrold Bebernes
University of Colorado
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1
Introduction

1.1 Basic Fluid Dynamics and Chemical Kinetics

Extremely rapid exothermic chemical reactions can develop in combustible
materials. For multicomponent reacting mixtures of N chemical species,
the complete system of conservation equations can be expressed as

D’u-]. - - - = _,

5=V (f(m).vw) +_(']'(u7,V'w) (1.1)

where W(Z,t) = (p, @, T, §) denotes the state of the system and where % =
% + @ e V is the material derivative. The state @ includes the density p,
the temperature T, the mass fractions 7 = (y1,...,y~n) With va:l yi =1,
and the mass-average velocity 4 = Efv:l yii; where 4; is the velocity of
species 7. We also consider the pressure p, which is proportional to density
and to temperature. The interaction of the chemistry of the species with
the basic fluid flow is described by a highly nonlinear, extremely complex,
degenerate, quasilinear parabolic system of partial differential equations.
The problem of well-posedness for (1.1) has not been completely resolved
[KZH2],[MAT].

Combustible systems composed of gases, liquids, or solids can experience
reaction processes which are sustained primarily by a thermal mechanism.
This process is typically initiated by boundary heat addition, by localized
volumetric heating, by the passage of a dynamic wave, or by very fast
compression.

The ignition period process is characterized usually by the appearance
of a localized warm region in which the heat production rate accelerates
as the reactants are consumed. If conditions are appropriate, the warm
region evolves into a region of relatively high temperatures with extremely
rapid reaction rates. Subsequent ignition and combustion of the remaining
combustible material leads to a significant level of power deposition which
is associated with an explosive event.

As a first step in analyzing the combustion process, we will derive the
mathematical model from basic conservation principles. The following
derivation is essentially that of Williams [WIL1] and Buckmaster and Lud-
ford [BUC1] with a few modifications.

Conservation of Mass. The conservation of mass for each species ¢ is given
by

2 - - .
E(P’.‘/i) + Ve (pyiti;) = #; (1.2)
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where 7; is the rate of production (or consumption) for each species . In a

closed system, it is necessary that Ef’zl #; = 0. The equation for the total
conservation of mass is obtained by summing the equations in (1.2):

a = o d

6—’t’+v.(pu)=o. (1.3)
Conservation of Species. The equations in (1.2) can be rewritten using
(1.3) and the diffusion velocities ¥; = @; — @. The resulting equations will
be referred to as the conservation of species equations:

a 3 - - . = -
p (% +U°Vyi) =7; — V o (py; ;).

We make the assumption that Fick’s law applies here: py;v; = —pDﬁyi,
where D is the coefficient of diffusion, and is assumed to be the same for
all species. Thus, the conservation of species equations are:
O o ceFu. ) =i+ S
p (B_t +roy,-> =7;+ Ve (pDVy;). (1.4)
The usual model for the rate of production #; is as follows. For each
species 7, let N; be the number of molecules per unit volume and let m; be
the mass of a single molecule. The production rate for a one-step chemical
reaction is 7; = m;N;. The mass balance is Z:V___l vim; = Ef’zl Aim;, where
the nonnegative integer values v; and \; are the stoichiometric coefficients
for the reaction. The value v; counts the number of molecules of the reactant
species 7 (and is 0 if species 7 is not a reactant). The value A; counts the
number of molecules of the product species 7 (and is 0 if species ¢ is not a
product). Consequently,

fi = mi(Ai — viw (1.5)

where w > 0 measures the rate of reaction. One assumes that w is propor-
tional to the concentration of each reactant, where species 7 is counted v;
times as a reactant. Thus,

w= Ajl]jl (fnl:)yj (1.6)

where the proportionality constant A is assumed to be dependent only on
temperature. We use the Arrhenius law here and choose

A= BoT%e F/RT (1.7)

where By and o are constants, E is the activation energy, and

N .
R=RY &

me
=1 "
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where Ry is the universal gas constant. Since T reflects a weak tempera-
ture dependence, we choose a = 0. Therefore, combining (1.5), (1.6), and
(1.7) yields

#i = mi(\; — vi)Boe™ Fr Hf':l (w)"f . (1.8)

m;

The conservation of species equations (1.4) become
P (%’%‘ +de 6%’) = Ve (pDVy)

b, (19)
+ mi()«,' - V,')Bge_"ﬁ' H;\;l (gny;’-)

fori=1,...,N.

Conservation of Momentum. Assuming no momentum is created by the
chemical reactions, the conservation of momentum for the total system
(treated as a single fluid) is

p(a—" +a.6ﬁ)=6os (1.10)
ot

where § is the sum of the stresses in the individual species and the stresses
due to the diffusion of species. The interaction of the species produces
external forces on each individual species, but the net result is a zero force.
We also assume that the gravitational effects are negligible compared to
viscous forces.

The stresses for each species are assumed to be of the form

2 =
S‘i = —(p1 + gu,V .ﬁ)1+ 2uiDi (1'11)

where D; = %[6®ﬁ,~+ (V®i;)T] is the deformation tensor, I is the identity
tensor, p; is pressure, and y; is the coefficient of viscosity. Assuming that
the intrinsic viscosities of the species are equal, we have u; = uy; for all 1.
Summing these stresses (and neglecting higher order terms) yields

S=-(p+ guﬁoa‘)1+2y0 (1.12)

where D = [V ® @+ (V ® @)T]. The conservation of momentum equation
becomes

ou = = 1o =
p<a—1tt +de Vﬁ‘) =-Vp+u(Ad + §V(v.a)). (1.13)
Conservation of Energy. Assuming no energy is created by the chemical re-
actions and the work due to interaction forces is negligible, the conservation
of energy for the total system is

p(%+ﬁo§£)=8:6®ﬁ+6oq‘ (1.14)
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where S is the stress tensor, ¢ is the sum of the separate energy fluxes and
fluxes due to diffusion, and £ is the sum of the separate internal energies.
The symbol “” indicates the dot product of two matrices. Kinetic energies
of diffusion are considered to be negligible.

The temperature T is assumed to be the same for all species. The partial
pressures are p; = pRoTy;/m; and so the combined-fluids pressure is

N
p= ZpROT%_- = pRT. (1.15)
=1 t

The separate internal energies are & = &(T) = h; — Z- where the en-
thalpies h; are given by

T
hi=h?+ [ Cp,(s)ds.
To

The value h? is the heat of formation for species 7 at standard temperature
To and the values Cp, are specific heats at constant pressure. Thus,

N N
£=Y hyi- % =Y hiyi - RT. (1.16)
i=1 =1

We assume that the energy flux for each species is due only to heat
conduction and the diffusion of species, so the flux for species 7 is

(f;‘ = k,ﬁT - py,'hi’l-)‘i (1.17)

where k; is the coefficient of thermal conductivity. Using Fick’s law (py;¥; =
—pDVy;) and summing the equations in (1.17) yields

N
§=kVT - pDh;Vy; (1.18)
i=1
where k = vazl k;.

We wish to convert the energy conservation equation (1.14) into one
involving the temperature T. Define

N N
Cp = Z ¥%iCp,(T) and Cy = Z ¥%Cy, (T)
i=1

1=1

where C,, is specific heat at constant volume. Since Cp, — Cy, = Ro/mi;,
we have
Cp—Cy=R. (1.19)
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We assume that C, = Cp(T) and C, = C,(T). As a consequence,
N — — N - - —
Y VyieVhi=)> CpVyie VT =VC,eVT =0
i=1 =1

and
Ve (kVT)+ N, Ve (pDh;Vy;)

Ve (kVT) + XN, hiV o (pDVy;).
The left-hand side of the energy conservation equation is

p(%+ae¥e) = DX hip (% +ae V)
+ 30 i (%ﬁt +ao6h-) oR (B—T .6T)
Sy (¥ o (DY) +7:) + pCy (5 + 20 9T)
— PR ( +de VT)

= T, bV o (pDVy) + 1] + pCy (% + T 97T)

) and the identity

Vegd

o~

Il

where we have used the species conservation equation (1.4
(1.19). The right-hand side of the energy equation is

S:Vei+Veqd = —(p+3uVed)(Veid)+2u(D: 6@ i)
+ Ve (kVT) + X%, hiV o (pDVy;).
Equating the two sides yields
pCu(%%-‘+ﬁo§T) =
Ve (kVT) — (6.a)+2u[-1(w7.a)2+0:\7®a] (1.20)
— BN himg(h — 1) Boe=#r TTIL, (22) .

The complete system of conservation laws for combustion can be summa-
rized from (1.3), (1.9), (1.13), and (1.20) as

t
pCy (% + @0 ¥T) =

o (kVT) —p(Ved) +2u[-3(Ved)?+D: Ve
- Ei:l himi(A; — vi) Boe™ ﬁnj 1( ) ’

<
<

(1.21)

V o (pDVy;) + my(Ai — v;)Boe™ 'E'I‘l_[ ( )Uj
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1.2 Simplification of the System

The single one-step irreversible reaction that we will consider is of the form:
vprF +vp0 — ApP,

where F represents fuel, O represents oxidant, P represents the product,
and where v, vp, and Ap are stoichiometric constants. This reaction in-
volves three mass fractions: yr, yo, and yp. If both fuel and oxidant are
present in the correct proportions, then both are entirely consumed in the
process. In this case the initial values yr, and yo, are of the same order of
magnitude, so the reaction rate is strongly dependent on both mass frac-
tions. However, if yr, > yo,, then the reaction rate is weakly dependent
on yr since yr does not change much. Since yr is approximately constant,
we ignore its species equation and consider only the single species equation
for yo.

Note that the stoichiometric mixture of fuel and oxidant satisfies g% =
£2. Choose m = vr +vo, Ao =0, h = ho, y = yo, and

VF
VF —vo . —
B=2RB VO, —VF.
ovYomo (Uo) Mo "Mp ~;
then (1.21) becomes

pe+Ve(pi)=0
p(its + @ o V@) = —Vp+ p[AT+ LV(V o )]
pcv(Tt+ﬂ‘ 6T) =

Ve (kVT) — p(V o @) (1.22)
+2uD:V@a-3(Ved)? +Bhpmy e *r
p(ys + @ o Vy) = V o (pDVy) — Bp™y™e %t

p = pRT.

The combustion model (1.22) can be nondimensionalized in a rational
manner in order to elucidate the significant parameters. Assume initially
that a reactive, viscous, heat conducting, compressible gas is in an equilib-
rium state defined by the dimensional quantities po = p(Z,0), po = p(Z,0),
TO = T(5)0)$ Yo = y(fvo)a and aO = ﬁ(f) 0)

At time ¢t = 0, a small initial disturbance is created on a length scale L.
Define Z = #/L as the new position vector. Let tg be a reference time (to be
determined later). Define f = t/tg as the new time scale. Nondimensionalize
the system variables: = p/po, = p/po, T = T/To, ¥ = y/¥o, and
@ = @/(L/tg). Also nondimensionalize the quantities: # = u/po, D =
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D/Dg, Cp = Cp/Cpy, Cy = Cy/Cyy, k = k/ko, and K = K/Ko, where
K = k/(pCyp) is thermal diffusivity.

In the scaling of the system we will use the following quantities: v =
Cpo/Cu,, the gas parameter; ¢ = RTp/E, the nondimensional inverse of
the activation energy; Pr = Cp, po/ko, the Prandtl number; Le = Do /Ko,
the Lewis number; Cy = /7RTp, the initial sound speed; t4 = L/Cy,
the acoustic time scale; tc = L?/Kj, the conduction time scale; and h =
hyo/(Cy,To), the nondimensional heat of reaction.

Substituting these into (1.22) and dropping the bar notation gives us the
nondimensional model

pt+6o(p11‘)=0
= 1 (i) t = 19(C o i7
+@eVd) = -1 (&) Vp+ Pr(i&) ylai+19(T e )]

(1.23)

p=pT.

In addition to the simplifying single-species chemistry assumption, we
will use the method of activation energy asymptotics to obtain simpler
models of the combustion process. In (1.23c,d), the reaction terms contain
a term of the form exp(—#). Activation energy asymptotics is concerned
with the asymptotic expansion of solutions as ¢ — 0%. Usually different
scalings of independent variables are involved. We will always work with
the scaling Z — Z/L, but the reference time tg and scaling t — t/tp will
be chosen to select those aspects of the model that we are interested in.

In the following sections we will develop various models based on acti-
vation energy asymptotics, which we refer to as the ignition or induction
period models.

1.3 Solid Fuel Models

The traditional theory of thermal reaction processes is formulated for non-
deformable materials of constant density. Conceptually, this system is much
simpler than for compressible gases. If the single chemical species is a solid
in a bounded container @ ¢ R, then @ =0, p = 1, v = 1, and the ratio
tr/tc = O(1). Thus, (1.23) reduces to the reaction-diffusion system which
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can be written as

T, — AT = eby™ exp( L=,
' y™ exp(r) , (z,t) € x (0, 00) (1.24)
y: — BAy = —e6Ty™ exp(EF)
with initial-boundary conditions

T(z,0) =1, y(z,0)=1, z€Q

T(z,t) =1, aanzzt =0, (z,t) €90 x (0,00)

(1.25)

where > 0,T > 0, and 6§ > 0 is the Frank-Kamenetski parameter.

Until relatively recently, even this system was considered intractable and
was approximated by simpler models. One method of simplification is to
identify and restrict the range of certain parameters and then use an asymp-
totic analysis. For all fuels of interest, the parameter ¢ is assumed small. By
using the method of activation energy asymptotics, and letting T = 1+ €6
and y = 1 — ¢c be the first order approximations, IBVP (1.24)-(1.25) can
be written as

6, — A0 = 6(1 — ec)™ exp(ep)

¢t — BAc =6T(1 —ec)™ exp(l_feo)

, (z,t) € Q x (0,00) (1.26)

with initial-boundary conditions

0(z,0) =0, ¢(z,0) =0, z€0

6(z,t) =0, 28 =0, (=,1) € 90 x (0,00).

(1.27)

For € < 1, the activation energy method has essentially decoupled (1.26)
and we need only consider the solid fuel ignition model

0, — A0 = 6€°, (z,t) € Q x (0,00) (1.28)

with initial-boundary conditions

0(z,0) =0, z€Q

(1.29)
0(z,t) =0, (z,t)€ N x(0,00)
and the associated steady-state model
Ay =6e¥, €0 (1.30)
Y(z) =0, €N (1.31)
We also will consider the small fuel loss steady-state model
¢
—Ad = 0 1.32
A¢ 6exp(l+€¢),z€ (1.32)

é(z) =0, z €N (1.33)
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The thermal reaction process in a rigid material during the ignition pe-
riod is modeled by the solid fuel ignition model (1.28)-(1.29). Its solu-
tion should predict the time-history of the spatially-varying reaction pro-
cess. This process depends only on a pointwise balance between chemically
generated heat addition and heat transfer by conduction. If the heat loss
is sufficiently large compared with the energy release associated with the
strongly temperature dependent reaction rate, then energy equilibrium is
established. In this case the chemical reaction time is commensurate with
the container time scale for conduction. The maximum system tempera-
ture is never much different from the initial value because so much energy
is lost to the relatively cold boundary. In this type of reaction, the reactant
species is eventually consumed.

In contrast, when the heat loss is sufficiently small, a localized tempera-
ture rise occuring at first on the conduction time scale will cause the reac-
tion rate to accelerate dramatically. As a result, the characteristic chemical
time becomes much shorter than the conduction time during the induction
period. When that occurs, a sharply focused temperature region appears in
which the fuel is rapidly depleted. The explosive burst of power generation
provides an essential distinction between a benign subcritical event and
this more dynamic supercritical process.

For a solid reactive fuel in a bounded container, the associated thermal
event can be either violent or mild in the sense described above. If the
thermal event is violent, then it is said to be supercritical or ezplosive. If it
is not, then the event is said to be subcritical or a fizzle.

Of these solid fuel models, we will be primarily concerned with IBVP
(1.28)- (1.29) and BVP (1.30)-(1.31), and generalizations thereof. Detailed
information on these models can be found in Chapters 2 and 3. Qualitative
properties for the complete solid fuel model (1.26)-(1.27) can be found in
Chapter 4.

1.4 Gaseous Fuel Models

If the chemical species is a warm reactive compressible ideal gas embedded
in an infinite field of a cooler reactive or inert gas, or contained in a bounded
container (2, then the complete model (1.23) does not immediately simplify
as for a solid fuel and the problem of well-posedness for (1.23) is unresolved.

We thus develop an induction period theory for a system with a high
activation energy reaction. The character of the induction period models
depends intimately on the ratios formed from the characteristic chemical
time, the acoustic time, and the conduction time of the embedded warm
region. A systematic investigation of the different ratios permits one to
predict the type of thermal explostion to be expected for a given physico-
chemical system.
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Assume a high activation energy reaction (¢ < 1) and set
p=1+eM, p=1+¢eP, T=1+¢€l, i=¢v, y=1—ec, (1.34)

assuming that the initial temperature disturbance remains small. If O(¢)
terms are ignored, we obtain the induction model for a gaseous system
using (1.34):

=-1 (ga) 6P+Pr(;43)u[m+§ﬁ(6 )

0t=tRBhe-1e-%e9+q(;g Ab—(y—1)V o7
+29(y — 1) 4 tc,uePr[ 1(Ve0)? (1.35)
+{Vei+(Ved)T}: Ve

¢t =tpBe le te? + Le (Ui) Ac

tc
P=M+6.

o~

The induction model (1.35) contains three time scales: tg, t4, and tc,
which depend on the given thermochemical system with the reference time
tr yet to be specified. If we assume that the perturbation temperature
0 and the concentration ¢ variations are caused by the chemical reaction
process, then for € small these should be a balance of the accumulation
terms 6; and c; in (1.35) with the reaction terms involving /. We therefore

define the reference time
Eel/e

=2 (1.36)

which represents the chemical time multiplied by €. The reduced ignition
models depend directly on the ratios of these time scales.
If the chemical and conduction times are of the same duration so that

_tp _
= 0(1),

then the induction momentum, energy, and species equations of (1.35) can

be written as

(%)25=_ﬁﬁp+a(§g) pPr|AT + 1V(V o )]

0; = he® + ayAl— (- 1)V o7 (1.37)
c; =€ +aLelAc.

For spatially macroscopic initial disturbances, we may assume that ¢4 /tc
< 1. From the inductive momentum equation in (1.37), we see that to a
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first approximation P = P(t). Thus, from the mass equation in (1.35) and
the energy equation in (1.37) we have

6, = %e" + a0 + 7—;—1—P’(t). (1.38)

For a bounded container (2, since the total mass must be conserved,

/ p(z,t) dz = vol(Q),
Q

which implies [, M(z,t)dz = 0. Thus,

/P dz—/Ozt

from P = M + 0 and hence

P(t) = ;(—)ll(T)/nﬂ(x, t)dz.

We can thus rewrite (1.38) as
0, — aAf = 6¢° + p vol(Q / O¢(z,t)d (1.39)

and impose initial-boundary conditions of the type

0(z,0) = bp(z), z€N

(1.40)
0(z,t) =0, (z,t) €N x (0,00).

This particular model will be referred to as the gaseous reactive-diffusive
ignition model. Note that for 4 = 1 this model reduces to the classical solid
fuel ignition model. The model (1.39)-(1.40) is analyzed in Chapter 5.

If the ratio a = tp/tc < O(1), so that the chemical time is much shorter
than the conduction time in the domain (, then three subcases arise, all
of which exhibit nondiffusive phenomena.

If t4 € tr < tc, then again P = P(t) is spatially independent and the
energy equation becomes

0, =he® —(y—1)V e

which can be rewritten as

1 1

h N -
0 =—eo+——-———/ 0:(z,t) dz. 141
t ~ ’7 VOI(Q) 0 t( ) ( )

With initial condition (1.40a), this is a nondiffusive version of (1.39)-(1.40)
and will be treated briefly in Chapter 5.
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If O(tr) = ta < tc, then (1.35) reduces to
2 5
T+ L (Ea) VP =0 (1.42)

where P = P(z,t). This reactive-Euler model will be discussed in Chapter
6.

In case tp K t4 < tc, the velocity perturbation ¥ = ¥(z) is independent
of time which implies dominant inertial confinement of the heated fluid.

An induction period theory for a reactive perfect gas is modeled for the
various time ratios by (1.39), (1.41), and (1.42). The evolution of these
systems depends on the relative effects of the chemical power deposition,
conductive heat transfer, energy convection, and compressive heating. Once
again the associated thermal event can be either violent or mild in the sense
desribed earlier.

Finally, in Chapter 6 we analyze the full gaseous model given by (1.23).
Gradient systems and conservation laws are discussed first. We then pro-
ceed to analyze (1.23) in the special case of a heat-conductive viscous reac-
tive compressible gas bounded by two parallel plates. In Euler coordinates
the model is given by

pt + (vp)y =0
plve + voy] = Ayvyy — k(pf), (1.43)
p[0: + vhy] = Aobyy + 1\1’03 — kpfvy + 6pf(p,0, 2)

p[zt + 'UZy] )\3 sz) - Pf(Pa 03 Z)

where k, 6, and A; (¢ = 1,2,3) are positive constants, where ¢ > 0 is the
time, and where y € [0,1] C IR is the one -dimensional space variable.
The variables p, v, 8, and 2 represent the density, velocity, temperature,
and concentration of unburned fuel, respectively. Let 2 = (0,1) and 90 =
{0,1}. The initial conditions for (1.43) will be

p(y,0) = po(y), v(y,0) = vo(y)

, yE. (1.44)
0(y,0) = 8o(y), 2(y,0) = 20(y)

For a thermally insulated boundary, the boundary conditions are

v(y,t) =0, Oy(y,t)=0

, (y,t) € 90 x (0, 00). (1.45)
Z!I(y’t) =0
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For a noninsulated boundary, the boundary conditions are

v(y,t) =0, 24(y,t)=0

» (y,t) € 092 x (0,00), (1.46)
alf(y,t) — T] — bby(y,t) = 0

where a 20,0 >0,a+b> 0, and T > 0. Under the appropriate assump-

tions, global existence and uniqueness are proved for this model.

1.5 Overview and Comments

The spatially-varying transient process describing a thermal event should
be entirely predictable for a given set of physical properties, system geome-
try, and initial-boundary conditions. For the various initial-boundary value
problems which model a reactive thermal event, the following questions
naturally arise:

1. Do these models give a reasonable time-history description of the
state of the system?

2. Do the various models distinguish between explosive and nonexplosive
events?

3. If the thermal event is explosive, can one predict precisely when the
thermal explosions will occur, determine where the hotspots will de-
velop, and finally predict how the hotspot or blowup singularities
evolve as the blowup time is approached?

4. How do the various models compare?

In the next five chapters we will address these questions. Since we are
primarily interested in explosive thermal events, we will extensively answer
question number three, and refer to the three aspects of this problem as:
Blowup - When, Where, and How.

The brief derivation of the governing conservation equations (1.22) of
combustion presented in this chapter follows the treatment given in the
books by Williams [WIL1], Buckmaster and Ludford [BUC1], and Strehlow
[STR]. The nondimensionalization of (1.22) for a single species to system
(1.23) is based on the work of Kassoy, Kapila, and Stewart [KAP2].

The classical complete model (1.24)-(1.25) for a solid fuel has a theory
which is now relatively complete. The basic existence-uniqueness results
were proved independently by Bebernes, Chueh, and Fulks [BEB3] and by
Amann [AMA4] using invariance techniques.

The idea of using activation energy asymptotics to derive the ignition
models from the complete system (1.24) can be traced back to the pioneer-
ing work of Frank-Kamenetski [FRA]. The idea was put on firmer ground
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by Williams [WIL2] in 1971 and has been systematically carried forward
by a number of combustion theorists such as Buckmaster, Ludford, Kapila,
Kassoy, Lifian, and their co-workers.

Much remains to be done to get a reasonable mathematical theory devel-
oped for (1.23) in higher space dimensions, although quite a bit is known
for the one-dimensional model (1.43). This will be discussed in Chapter
6. The ignition model (1.35) has reduced forms depending on the ratio of
time scales which are amenable to a rigorous mathematical treatment.

The gaseous reactive-diffusive ignition model (1.39)-(1.40) was first de-
rived by Kassoy and Poland [KAS5] in 1983 and was further considered by
Bebernes and Bressan [BEB5]. The reactive-Euler ignition model (1.41) is
relatively easily analyzed and was done so in [BEB13]. Model (1.42) has
been considered by Kapila, Jackson, and Stewart [JAC1], [JAC2], and by
Majda [MAJ6).



2
Steady-State Models

The first section of this chapter deals with existence for the Dirichlet prob-
lem where the nonlinearity F(z,u) is a nonnegative function. The key re-
sult used is an existence theorem based on a prior: knowledge of upper
and lower solutions. We also analyze the spectrum of nonlinear eigenvalue
problems and determine bounds on the critical eigenvalues. As applications
we consider the Gelfand problem where f(u) = exp(u), and we consider
the perturbed Gelfand problem where f(u) = exp(7s;)-

The second section deals with a powerful result by Gidas, Ni, and Niren-
berg. For a nonlinearity f € C! in the Dirichlet problem on a ball in R",
any positive solution is radially symmetric and radially decreasing. The
proof uses maximum principles and the method of moving parallel planes.
We also discuss the overdetermined Dirichlet problem where v = 0 and
‘?# = ¢ on the boundary of a set (). We prove that (2 is necessarily a ball
in R".

In the third section we give the proof of multiplicity for the Gelfand
problem [f(u) = exp(u)] on a ball in R". The theorem is due to Joseph
and Lundgren. Similar multiplicity results were developed by Dancer for
the perturbed Gelfand problem [f(u) = exp(iﬁ)], but the approach is
significantly different. We state the theorem without proof and illustrate it
with bifurcation diagrams.

Finally, the fourth section deals with the qualitative shape of solutions to
both the Gelfand and the perturbed Gelfand problem. The proofs involve a
detailed analysis of the bifurcation diagrams that accompany the problems.
These results are due to Bebernes, Eberly, and Fulks.

2.1 Existence on General Domains

Consider the boundary value problem

—Au = f(z,u), €

(2.1)

u(z) =0(z), z €N
where 0 C IR" is a bounded domain whose boundary 9 is an (n — 1)-
dimensional manifold of class C2** for some a € (0,1). That is, for every
z = (z1,...,Zn) € 00 there exists aneighborhood N of z such that 90NN
may be represented as z; = h(zy,...,%i—1,Zi+1,...,2Zn) for some ¢ where
h € C***(R" !, R). Assume f € C*(1 x R,R) and 0 € C(8Q,R). A
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solution of BVP (2.1) is a function u € C(©7, R) N C?(Q, R) which satisfies
both equations in (2.1).

Definition 2.1 A function « € C(Q,R)NC?(N, R) is a lower solution of
BVP(2.1) +f

-Aa(z) < f(z,0(z)), z€Q
a(z) < 0(z), z€IN.

An upper solution S(z) i3 defined similarly where the inequalities above are
reversed.

Theorem 2.1 If BVP (2.1) has a lower solution o(z) and an upper solu-
tion B(z) with a(z) < B(z) on Q, then BVP (2.1) has a solution u(z) with
a(z) <u(z) < B(z) on Q.

The proof of Theorem 2.1 can be found in Schmitt [SCH] and uses degree
theoretic methods.
Consider the nonlinear eigenvalue problem
—Au = AF(z,u), €0

(2.2)
u(z) =0, z€ 0N

assuming F € C*(01 x R, [0, 00)) and A € R.

Lemma 2.2 For A >0, a(z) =0 i3 a lower solution for BVP (2.2).
Proof. Observe that a(z) satisfies —Aa(z) = 0 < AF(z,0) = AF(z,a(z))
for A > 0 since F(z,u) > 0. O

Definition 2.2 The spectrum ¥ of BVP (2.2) i3 the set of all A € R such
that (2.2) has a nonnegative solution.

Lemma 2.3 If \; € 2N (0,00), then [0,] C X.

Proof. By Lemma 2.2, a(z) =0 is a lower solution for (2.2). Let 3(z) be a
nonnegative solution of (2.2) with A = A;; then

—ApB(z) = M F(z, B(z)) 2 AF(z,8(z))

with B(z) = 0 on 0. Thus, §(z) is an upper solution of (2.2) for any
A € [0,A1) with B(z) > a(z) on Q. By Theorem 2.1, (2.2) has a nonnegative
solution for any A € [0,),]. O
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Lemma 2.4 Assume there exist functions fo,r € C*(f, (0,00)) such that
F(z,u) > fo(z) + r(z)u, (z,u)€Q x [0,00);
then BVP (2.2) has no nonnegative solutions for A > Ao(r) where Ao(r) is
the first eigenvalue of
—Au=Ir(z)u, z€0 (2.3)
u(z) =0, z €.

Proof. Let 8 > 0 be a solution of (2.2) where A > Ao(r); then
—AB = AF(z,B) > Ao(z) + Ar(z)B

for z € Q with 8(z) = 0 on 90. Also, a(z) = 0 satisfies (2.3) and, since
fo(z) >0and A > A(r) >0,

—Aa(z) =0 < Ao(z) = A fo(z) + r(z)a(z)].

Thus, ((z) is an upper solution and a(z) is a lower solution of

—Au = A[fo(z) + r(z)u), z€Q
u(z) =0, z€N

with 8(z) > a(z). By Theorem 2.1 there exists a solution u where 0 <
u(z) < B(z). Since —Au > Ar(z)u > 0 and u(z) # 0 with u(z) =0 on 91},
by the maximum principle, u(z) > 0 on (1.

Let w(z) be a nonnegative eigenfunction corresponding to Ao(r). Inte-
grating uAw — wAu over (1, we have

0= / (vAw — wAu)dz = / {w[A fo(z) + Ar(z)u(z)] — u[Aor(z)w(z)]} dz
o Q

which implies

(Ao —=A) /n r(z)u(z)w(z) dz = /\/;)w(x)fo(z)dz >0,

and hence, A < Ao(r) which is a contradiction since we had assumed A >
Ao(r). ]

For example, the Gelfand problem: —Au = Ae* for z € ( and u(z) =0
for z € 30, has no solution for A > Ay where )q is the first eigenvalue of
the problem: —Au = \u for z € Q and u(z) = 0 for z € Q. This follows
since e* > u+ 1 for u > 0, and Lemma 2.4 applies.

Note that if F(z,0) > 0, Fy(z,u) > 0, and Fy,(z,u) > 0 for (z,u) €
1 x [0,00), then F(z,u) > F(z,0) + Fu(z,0)u and Lemma 2.4 applies. If
A > Ao(Fu(+,0)), then A & T of BVP (2.2).

The next lemma is due to Bandle [BAN2] and uses symmetrization and
isoperimetric inequalities.
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Lemma 2.5 The solution w(z) of

-Aw=1, z€0
w(z) =0, z€ N

i3 bounded above by (%:)2/ "(2n)~! where V,, and Sy, are the n-dimensional
volumes of () and the unit ball, respectively.

As a consequence of this lemma, we can prove

Theorem 2.8 Assume there exists a nonnegative nondecreasing function
fo € C* such that F(z,u) < fo(u) for (z,u) € 1 [0,00). Suppose that the
function 7{%5, m > 0, assumes its maztmum at mg. If

A= 2nm0(Sn/vn)2/n[f0(m0)vn]—la
then [0,A1] C X for BVP (2.2).

Proof. Clearly a(z) = 0 is a lower solution for (2.2). Select A € [0, 4]
and consider 8(z) = Afo(mo)w(z). The function 3(z) is a solution of the
boundary value problem

—AB = Afo(mo), z€Q

B(z) =0, z€N.

In addition, ﬂ(z) >0on Q and
B(z) = Mo(mo)u(z) < Asfo(mo)(§)%/(2n) 1 < mo

for z € (O, where we have used our hypothesis on A;. Since

AF(z, B(z)) < Afo(B(z)) < Afo(mo) = —AB,

B(z) is an upper solution for (2.2); By Theorem 2.1, (2.2) has a solution
u(z) > 0. Consequently, A € £ and [0,A;] C Z. O

We can apply Theorem 2.6 to the Gelfand problem for ? = B; C
R", n = 1,2,3. Since 2+ = me™™ has a maximum of e~! at m = 1,
A1 = 2n/e. Let Ao be tmrst eigenvalue for: —Au = \u for z € B; and
u = 0 for z € dBy; then

1. For n =1, [0,2/e] C £ and no solution exists for A > Ao = ’—:;.
2. For n =2, [0,4/€e] C £ and no solution exists for A > Ag = 5.784.

3. For n =3, [0,6/¢] C T and no solution exists for A > Ao = 9.872.



2.1. Existence on General Domains 19

The next result is due to Kazdan and Warner [KAZ).

Theorem 2.7 If F(z,u) > 0 for (z,u) € 1 x [0,00), then there is a Ao €
(0,00] such that a positive solution of BVP (2.2) exists for X € (0, X). No
solution exists for A > A\g or A < 0. In addition:

1. Ifliminf,_, o ﬂ:_s) > 0 uniformly in z, then Ay < oo.
2. If limg_, o 5%31 = 0 uniformly in z, then A\g = oo.

Proof. Assume u is a positive solution of BVP (2.2) for A < 0; then —Au =
AF(z,u) <0 for z € Q and u(z) = 0 for z € AN, which imply by the
maximum principle that u < 0 on Q. This contradiction leads us to conclude
that A > 0 is necessary for existence of positive solutions to (2.2).

By Lemma 2.3, if there is a positive solution of (2.2) for some A; > 0,
then there is a solution for all A € (0, A;). Define

P := {):BVP (2.2) has a positive solution}.

To show that P # @, we show that (2.2) has a positive solution for some
/\1 > 0.

The function u = 0 is a lower solution to BVP (2.2). Let @ be the solution
to

-Au=1, z€(,
u(z) =0, z€dN.

By the maximum principle, %(z) > 0 on Q. For A; > 0 sufficiently small,
—Au(z) > M F(z,u(z)) for all z € (0 (where the continuity of F implies
F(z,u(z)) is bounded on {2), and so @ is an upper solution of (2.2) for
A = A1. By Theorem 2.1, there is a solution u > 0 to BVP (2.2). By the
maximum principle, u(z) > 0 on {, so A\; € P. This proves the first part
of the theorem. Define g = sup P.

Proof of part (1). If liminf,_, o ﬂz—sl > 0, then we claim that Ag < oo.
The inequality for the lim inf implies the existence of @ > 0 and 8 > 0 such
that F'(z,s) > a+ fs. Thus, if u is a positive solution of (2.2) and if ¢» > 0
is the eigenfunction associated with the first eigenvalue p of

_A¢ = /-“[)) TE Q,
Y(z) =0, z€9Q,

Wllzacay = /n ¥ (z)dz =1,

normalized so that
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then
0 = (¥,—Au—pu)r2(q)
= (Y, A\F(z,u) — pu)r2(q)
> (Y, Ao+ (A8 — p)u) L2 (q)
which is impossible if A§ > u. Thus, A < ’é and )\g < ‘5 < 00.

Proof of part (2). If limy_,e0 & 22l = 0, then, since F(z,s) < s for s
sufficiently large and uniformly in z, one can construct an upper solution %
for any A > 0. The function u = 0 is always a lower solution. By Theorem
2.1, there is a solution u > 0, so A\g = sup P = 00. O

This theorem gives us additional information for the Gelfand problem
and for the perturbed Gelfand problem.

Corollary 2.8 Given any bounded domain Q0 C IR™, there exists brx €
(0,00) such that

1. for0 < é < 6pk, BVP (1.80)-(1.81) has at least one positive solution,
and

2. for 6 > 6pk, no solution ezists.

Moreover, if Q0 is the unit ball in R™, then

2n <érk < £
e e

where p 13 the first eigenvalue of: —Av = uy for z € Q and Y(z) =0 for
z € 0N.

Proof. The existence of érx follows from Theorem 2.7. The lower bound
on Sk follows from Theorem 2.6. Since e* > eu for all u > 0, the value
B in Theorem 2.7 can be chosen to be the number e; the upper bound on
6rk follows. O

The value érk is the critical value for the Frank-Kamenetski parameter
6. Frank-Kamenetski [FRA] used this critical value to differentiate between
explosive and nonexplosive thermal events. For § > érk, the nonexistence
of a solution for (1.30)-(1.31) was interpreted to mean that an explosion
would occur.

Corollary 2.9 Given any bounded domain 0 C R", BVP (1.82)-(1.33)
has a solution for any § > 0.

Proof. Since for any € > 0,

le ( u
uxP1+eu

) —0 as u — oo,
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the result follows. O

For rather general domains (2 which are open and bounded in R™ and
whose boundaries are of class C2*®, there are many existential results for a
wide variety of nonlinearities [LIN]. For example, Schuchman [SCU] proved

Theorem 2.10 Consider boundary value problem (2.2) where F(z,u) s
continuously differentiable in u € R* and where F(z,0) > 0 for all z € (1.
If there are constants a > 0 and K > 0 such that

Fu(z,u) < K(1+u)~ %) for all (z,u) €@ x R,

then there exists Ao > 0 such that boundary value problem (2.2) has a
unique solution for every A > Ap.

Some partial multiplicity results are also known [DEF].

Definition 2.3 A solution umin(z) of (2.2) is said to be a minimal solution
of (2.2) if given any other solution u(z) of (2.2), Umin(z) < u(z) for all

z € Q. Similarly one can define a maximal solution umax(z) of (2.2).

We will use these definitions in later sections in this chapter.

2.2 Radial Symmetry

Symmetrization techniques can be used to simplify a partial differential
equation defined on a domain () possessing certain symmetry properties.
If Q is a ball in IR™ centered at 0, then one could seek radially symmetric
solutions. Although this approach may not produce all solutions to a given
problem associated with a given partial differential equation, Gidas, Ni,
and Nirenberg [GID1] proved that for a large class of problems, positive
solutions are necessarily radially symmetric.

More precisely, for Q = {z € R" : |z| < R} = Bg, let u € C?(Q},R) be
a positive solution of

—Au=f(u), z€Q
u=0, z €

(2.4)

where f € C'(IR,IR); then u is radially symmetric and radially decreasing.
That is, if 7 := |z|, then u = u(r) and ¥/(r) < 0 for r € (0, R).
This implies that any positive solution of (2.4) is a solution of
w4+ 221y 4+ f(u) =0, 0<r<R

2.5
w'(0) =0, u(R)=0. 23

Thus, we need only determine the existence of positive solutions of (2.5).
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The assumption that u > 0 is necessary. For example, u(z) = sin(7z) is
a solution to: —u” = 72y for z € (—1,1) and u(x1) = 0. We have u(z) > 0
for z € (0, 1), but u(z) < 0 for z € (—1,0). The solution u(z) is not radially
symmetric. Even if u(z) > 0 the full result may not be true. For example,
u(z) = 1 — cos(2nz) is a solution to: —u” = 4w2(u — 1) for z € (—1,1) and
u(+1) = 0. We have u(z) > 0 (where u(0) = 0) and u(—z) = u(z), but
u(z) is not radially decreasing. Note that the condition f(u) > 0 for all u
implies that any nontrivial solution is positive (by the maximum principle).

Although the result is stated for f € C?, this hypothesis can be weak-
ened. The result also holds for any function f = f; + fo where f; € C!
and f, is monotone increasing. In particular, the result holds if f is locally
Lipschitz continuous.

The proof utilizes maximum principles and the method of moving parallel
planes. We first prove a maximum principle which is more delicate to prove
than the standard ones. It is a generalization of the Hopf lemma.

Lemma 2.11 Let Q* be a bounded domain whose boundary dQY* 13 of class
C?. Let T be a hyperplane containing the normal to 0Q* at some point q.
Let ) be that portion of Q* which lies on one side of T.

Let w € C%(1),[0,00)) satisfy Aw < 0 for z € Q with w(q) = 0. If s is
any direction vector at q entering () nontangentially, then

ow 0w
%(Q) >0 or _87(‘1) >0

unless w = 0.

Proof. Without loss of generality, we can orient 0* so that the plane T has
normal vector v = (1,0,...,0). Let {2 be on the side of T which ~ points
to. Let K; be a ball internally tangent to Q* at ¢ with radius r;. Again
without loss of generality, translate 2* so that the origin 0 € R" becomes
the center of K;. Let K5 be the ball of radius %rl centered at ¢. Define
K = K; N K3 NAQ. Figure 2.1 illustrates these sets.

Define 2(z) = z; (e—072 - e—""f) for a > 0; then

Az =2az,e [20r2 — (n+2)], z € K,
2(z) >0, z€ K and
2(z) =0, z € TUJK;.

Choose a = (n +2)/r}. Since r > 371, we have Az >0 on K.

If w# 0 on Q, then w > 0 on 2 by the maximum principle. By the Hopf
Lemma, §% > 0 for any point in K NK3. Thus, w > ez1 on IK NIK,
for some ¢ > 0. Clearly w > 0 on (0K N3K;)U (0K NT). On the other
hand, 2 < z; on dK NOK,.
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Figure 2.1.

Define ¢ = w — €2; then ¢ satisfies: ¢(z) > 0 for z € K, ¢(¢q) =0, and
A¢ < 0 for z € K. By the maximum principle, ¢ > 0 on K. At g we have
either @5 > 0 or ¢ss > 0. But 2z,(¢) = 0 and 2z55(q) > 0, so either w,(g) > 0
or wes(g) > 0.0

The Method of Moving Parallel Planes. Let ) C R™ be a bounded domain
with smooth boundary 8Q. Let A € R and let v € R" be a unit vector.
Define T\ = {z € R" : Yoz = A} to be the hyperplane with normal v and
whose distance from the origin 0 is |A|. There is a Ao sufficiently large such
that Th, N0 # @ and T\ NQ = 0 for A > Ag. For any z € R", let z* be its
reflection through 7).

Define ©(A) = QN {z : yez > A}; then £(A) = @ for A > Ao and
$(A) # 0 for A < Ao. The set £()) is called an open cap. Define ¥'(X) to
be the reflection of £()) through the plane T). An example of these sets is
illustrated in Figure 2.2.

For A < Ao with |XA — Xg| sufficiently small, we see that ¥'(A) C Q.
Decreasing A further, we have ¥’ C 2 until either

1. ¥’()) becomes internally tangent to 9 at some p & T}, or

2. T is orthogonal to 91} at some q € T N 9.

Examples of these conditions are illustrated in Figure 2.3.
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Define
A1 = sup{A < )¢ : condition (1) or (2) occurs}.

The cap X()\;) is called the mazimal cap associated with ~. Note that
() ca.
If we decrease A below ), it may be that X’()) C . Define

A2 =inf{A < Ao :Z'(X) € Q for X € (X))}

The cap X(A2) is called the optimal cap associated with . Note that at g
either (1) or (2) occurs and ¥'(\2) C . Figure 2.4 illustrates maximal and
optimal caps.

For the ensuing arguments we can assume without loss of generality that
v=(1,0,...,0) € R" and Ao = max{z; : € (1} where z = (21,...,Zp).
Let A\; and Ay be defined as above. Define ¥; to be the maximal cap
associated with v and denote its reflection through Ty, by L}. Define £,
to be the optimal cap associated with 4 and denote its reflection through
T,\2 by 2'2

For zo € 002 and € > 0, define a neighborhood of o tn 2 by Q. =
Q0 N Be(zo) where Be(zo) is the ball of radius € centered at zo. Define
Se = 00 N Be(zo). These sets are illustrated in Figure 2.5.

Let v(z) = (v1(z),...,vn(z)) be the unit outward normal to 91 at z.
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Figure 2.5.

Lemma 2.12 Let 7o € 00 be such that v(zo) @ v > 0. Choose € > 0
sufficiently small so that v(z)e~ > 0 for all z € Se. If u € C?(Q¢) satisfies
Uz, (o) =0, u(z) =0 for z € S¢, and u(z) > 0 for z € ()¢, then

Vu(zo) =0 and D%u(zo) = [Au(zo)] v(z0)v*(20)

where D*u = [ug,z,] 18 the n X n matriz of second derivatives of u.

Proof. On S, we know that u(z) = 0 and so Vu(z) is normal to S at each
z. Since S¢ is a smooth (n — 1)-dimensional manifold, the tangent space
T(z) to z € S, is (n — 1)-dimensional, say

T(z) = span (w' (), ..., "~ (2)),

where the w*(z) form an orthonormal set for each z. Consequently, Vu(z)e
w¥(z) = 0 for k = 1,...,n — 1. Since v(z) ey > 0 on S; it must be
that v € T(z) and so {w'(z),...,w""1(z),~} is a basis for R" for each
z. The basis coefficients for Vu(zg) are given by Vu(zo) ® w*(zo) = 0,
k=1,...,n—1, and Vu(zo) ® Yy = ug, (z0) = 0. Thus, Vu(zo) = 0.

Let z(s) be any smooth curve on S, such that z(0) = zo. Since u = 0 on
Se, we have

y(8)TVu(z(s)) =0
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for any smooth function y(s) € T'(z(s)). Differentiating with respect to s
gives us
y(s)" D?u(z(s))2'(s) + ¥/ (s)" Vu(a(s)) = 0.

One can choose n — 1 curves z(s) so that at s = 0,
w'(20)T D?*u(zo)w’ (z0) =0, 4,5 =1,...,n— 1. (2.6)

The hypotheses on u guarantee that a—f'(‘—; < 0 for z € Sc. Moreover,

T
since Vu(z) and v(z) are parallel, we have

v(z(s))" Vu(z(s)) = ~|Vu(a(s))| =: —p(s)

for any smooth curve z(s) on S, with z(0) = zo. The function p(s) is
nonnegative and differentiable. Thus, at a point where p = 0, we must
have p' = 0. In particular, p'(0) = 0 since we had proved Vu(zo) = 0.
Differentiating with respect to s gives us

d T
| 5#1)] Vulalo) + v(a(o)) " DPu(a(s)'(5) = ~5'5)

At s = 0 we have v(z0)T D?(u(z0))z'(0) = 0. The curves z(s) can be chosen
to obtain

v(z0)T D?(u(zo))w! (z0) =0, 7=1,...,n—1. (2.7
The set {w!(zp),...,w" 1(zo),v(z0)} is orthonormal, so the block ma-
trix
Q(z0) = [w'(20) |- -| w™~*(20) | ¥(z0)]

is orthogonal, Q(zo)e* = wk(zo) for k =1,...,n—1, and Q(zo)e"™ = v(zo),
where the e are the standard Euclidean basis vectors in IR".
Combining equations (2.6) and (2.7), we obtain

mij = (¢')TQ(20)T D*u(z0)Q(z0)e’ =0

fori=1,...,nand j = 1,...,n — 1. Since D?u(zo) is symmetric, from
elementary linear algebra we see that

Q7 (20) D*u(20)Q(20) = diag{0, ..., 0,Mun(20)}-
Similar matrices have the same trace, so
trace(Q(zo) " D*u(20)Q(2o)) = trace(D?u(zo)).
That is, Mun(zo) = trace(D?u(zg)) = Au(zp). We now have
D*u(z0) = Q(z0)diag{0, .. ., 0, Au(z0) }Q (z0) = v(z0)Au(zo)v” (20)

which completes the proof. O
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Lemma 2.13 Let zo € 90 be such that v(zo) @ v > 0. Choose € > 0
sufficiently small so that v(z) ey > 0 for all z € S;. Assume that u €
C?(Q).) satisfies

1. u(z) >0 forz € Q,
2. Au+ f(u) =0 for z € Q¢, and
3. u(z) =0 forz € S;;
then there is a 6 € (0,€) such that uz, <0 on Qs.

Proof. Since u > 0 on {2 and u = 0 on S, it is necessary that Vuew < 0 on
Se for any vector w such that v e w > 0. In particular, since v(z) ey > 0,
we must have ugz, (z) = Vu(z) ey < 0on S;.

If the conclusion is false, then there is a sequence {z’ 1321 € Qe such
that 7 — 7o as j — 0o and u, (27) > 0. For j large, the interval I; C R"
in the z;-direction from 27 to 9Q intersects S at a’ with u., (a?) < 0.
Thus, there exists a sequence {z’ };";1 C Q. such that 77 — zg as j — o0
and ug, (') = 0. Figure 2.6 illustrates these values.

By continuity we have

Uz, (20) = lim ug, (7) =0. (2:8)

J—oo

By the Mean Value Theorem, there is a sequence {2’ }$21 C I; such that

aiy Uzl(fj) - uxl(zo)
Hn ) = T o

=0,
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so by continuity we have

Uziz, (To) = lim ug, 4, (37) = 0. (2.9)
J—00

If f(0) > 0, then Au + ¢(z)u = Au+ f(u) — f(0) < 0 on (¢ where
¢(z) is constructed by the Mean Value Theorem. By the Hopf Lemma,
Vu(zo) e w < 0 for any vector w such that v(zo) e w > 0. In particular,
Uz, (z0) = Vu(zo @ ¥ < 0, a contradiction to equation (2.8).

If f(0) < 0, then by Lemma 2.12 we have us,;; = [Au(zo)lviv; =
—f(0)v;v; for all ¢ and j. Consequently, uz,z,(z0) = —f(0)vZ # 0, a
contradiction to equation (2.9). As a result, our original assumption (that
there is no § € (0,¢€) such that u;, <0 on () is incorrect and the lemma
is proved. O

Lemma 2.14 Suppose there is a A € [A\1, o) such that for z € L()\) we
have uz, (z) < 0 and u(z) < u(z*) with u(z) # u(z?); then u(z) < u(z*)
for z € £(A) and uz, (z) <0 for z € ANT).

Proof. For v = (1,0,...,0) and z € £()) note that z* € £'()) is given by
= (2A - 11,72,...,Zp).

Define h(z) := u(z*) for z € ¥'(\) [z* € £())]; then h satisfies Ah +
f(h) = 0 for z € £'()). Define w(z) := h(z) — u(z) for € '()); then
Aw+c(z)w = Aw+ f(h)— f(u) = 0 for z € £'(A) where ¢(z) is constructed
using the Mean Value Theorem. Since w(z) < 0 for z € £’()) and w(z) =0
for z € T\ N2, by the maximum principle we have w(z) < 0 for z € £'(}),
and by Lemma 2.11 we have gT'”l >0forz e TN

Thus, u(z*) = h(z) < u(z) for z € £'()) and 0 < wg, = hg, — ug, =
—2ug, for z € T) N Q. This implies that u;, < 0 for z € T) N and
u(z*) < u(z) for z € £'(A) [which implies u(z) < u(z*) for z € £(1)]. O

Lemma 2.15 Let H(A\) = {z € R" : 21 > A}. Let u(z) > 0 on (1,
u € C* (AN H(\)), and u(z) = 0 on QN H(A;). For any A € (A1, Ao) we
have uz, (z) < 0 and u(z) < u(z*) for z € ().

Proof. By Lemma 2.13, for X close to A\g with A < Ag we have
uz, (2) <0 and u(z) < u(z*), z€T(A). (2.10)
Decrease A until a critical value
p=inf{X € [A1,A0) : (2.10) holds for A € (X, Ao)}

is reached. Equation (2.10) then holds for u < A < Ag and, for A = u (using
continuity),

uz,(z) <0 and u(z) < u(z?), z € T(p). (2.11)
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We claim that 4 = ;. Assume not; then u > A;. For any zo € 0X(u) \ Ty
we have z£ € . Since 0 = u(z¢) < u(z}) we see that u(z*) # u(z) in X(u)
and so Lemma 2.14 applies. Thus, u(z) < u(z*) for z € () and uz, <0
for z € QN T, and equation (2.10) holds for A = u.

Since uz;, < 0 on 2N T,, by Lemma 2.13 there is an € > 0 such that
ug, < 0on QNH(u—e). By the definition of u, there are sequences {A;}52,
and {z;}2, with A; € (4 — €, ) and z; € T(4;) satisfying

AjTp as j— oo and u(z;) 2 u(zf") (2.12)

By compactness of £();) there is a subsequence {z;, }52, such that z;, —
z € X(p). Thus,

12"* — gzt € ¥'(u) and u(z) > u(z"). (2.13)
But z € 3%(u) since (2.10) holds for A = u. If z & T, then z# € Q2 and
by (2.13), 0 = u(z) > u(z*) which is a contradiction to u > 0 on 2. Thus,
z €T, and z = z#.

For k sufficiently large, the line segment joining z;, and z,/ Ak s in Q. From
(2.12) and the Mean Value Theorem, there is a y;, such that uz, (v5.) 2 0.
Letting k — oo we obtain uz, () > 0 where z € T, a contradiction since
(2.10) holds for A = u. Thus, our assumption that x4 > A; is incorrect. In
fact, u = A; and (2.10) is valid for all A € (A1,Ao). O

Corollary 2.16 If ug, (z) =0 for some z € QNT),, then u is symmetric
in Ty, and
Q=T(A)UZ'(M)U [T, NAQJ.

Proof. If uz, (z) = 0 for some z € QN T),, then by Lemma 2.14 we have
u(z) = u(z?*) for £ € £(X;). This implies that u is symmetric relative
to T,. Since u(z) > 0 in £()\;) and u = 0 on 912, we conclude that
Q=XMUZ'(M)U[TH,nQ.O

We now give the proof of the main result on radial symmetry stated in
the introduction to this section.

Theorem 2.17 For QO = {z € R" : |z| < R}, let u € C?(Q) be a positive
solution of BVP (2.4) where f € C'; then u = u(r) where r = |z| and
u'(r) <0 for r € (0,R).

Proof. By Lemma 2.15 and Corollary 2.16, u;, < 0 for all z with z; > 0.
This implies that uz,(z) > 0 for z; < 0. Consequently, uz, (z) = 0 for

= 0. By Corollary 2.16, u is symmetric in z;. Since the direction vector
~ is arbitrary, the argument above works for any direction. It follows that
u is radially symmetric and u, <0 for0<r < R. O
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We now turn our attention to a related symmetry result for an overde-
termined boundary value problem. The motivation comes from a problem
solved by Serrin [SER] (where f(u) =1).

Theorem 2.18 Let ) C R"™ be a bounded domain whose boundary Q) is
of class C?. Let u be a positive solution of

Au+ f(u)=0, z€)

u(z) =0, g—z=c, z € 01),

where f € C', then Q@ = {z € R" : |z| < R}. Moreover, u is radially
symmetric and radially decreasing.

Proof. As in the proof of Theorem 2.17, without loss of generality let v =
(1,0,...,0). Using the notation of that theorem, we will show that (2 is
symmetric about the hyperplane T). In this case, since the direction ~ is
arbitrary and since {2 is simply connected, it must be that {2 is a ball.
Consequently, Theorem 2.17 applies and so the solution u must be radially
symmetric and radially decreasing.

Define (as in Lemma 2.14) the function h(z) = u(z*!) for z € £'(A1);
then h satisfies

Ah+ f(R) =0, z€X'(\),
h=u, €Ty, NIZ'()1), and
h=0, xe&Z’(/\l)\T,\l.

Set w = h — u for z € £’();). The maximum principle implies that either
w>0orw=0o0nY.

If w =0on X', then (2 is symmetric about T, and the proof is complete.
If w > 0 on X', then h(z) > u(z) for all z € ¥'. Recall that X'();) is either

1. internally tangent to 9€) at p € T),, or,

2. T, is orthogonal to 92 at some g € Ty, N Q.

If (1) holds, then w(p) = 0 and w, (p) < 0 for an outward unit normal
vector v. But w, (p) = hy(p) — uu(P) = ¢ — ¢ = 0, a contradiction. It must
be that condition (2) holds. We will show that w has a zero of second order
at ¢. Lemma 2.11 will then provide us with a contradiction so that in fact
w=0.

Since A0 is of class C?, consider a rectangular coordinate system with
origin at ¢ for which 4() can be represented locally by z,, = ¢(z1,...,Zpn-1)
where ¢ is a C? function, and where the z,-axis is in the direction of the
normal vector v(q).

Since u € C%(12), u = 0 on AN can be expressed as

U(Il,...,Zn_1,¢(121,...,$n_1)) =0. (214)
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Let ®(z1,...,2,) = 2n—¢(21,...,Zpn—1); then 01 is represented by & = 0,
so V& is normal to 012. Consequently,

V)= Y2 _ n=VS _ en-V9
VO] len—Vel /1+]V4]?

where e, = (0,...,0,1). Moreover, v(q) = ey, so V¢(q) = 0. The quantity
du(z

¢ = g5t = V() @ Vu(z) on 9 can be expressed as

, TE€OIN

n—1 1/2
1+3 ¢§,¢] (2.15)
k=1

n—1
u:t" - § uzk¢zk =c
k=1

where z,, is to be replaced by ¢(zi,...,2n—_1). Differentiating (2.14) with
respect to z; yields
Ug, + Uz,.¢z; =0,

for © = 1,...,n — 1. Evaluating these equations at ¢ produces u;,(q) =0
fort=1,...,n—1. These conditions and equation (2.15) imply uz, (q) = c.
Differentiating (2.14) with respect to z; followed by z; yields

Ug,z; + u:r.,.d’xj + uz,.¢z:.~zj + (u:,.z_,- + uI"In¢IJ‘)¢Ii =0,

for 4,5 =1,...,n— 1. Evaluating these equations at ¢ produces uz,;;(q) =
—Chz,z;(q) for 4,5 = 1,...,n — 1. Differentiating (2.15) with respect to z;
yields

n—1

n—1
Uznz; = Z [Uzi Boiai + (Uzpa, + Uz, bz,) Bae] + 2¢ E Pz Py
k=1 k=1

for:=1,...,n—1. Evaluating at q produces u;,;,(qg) =0for1 <7 <n-1.
Finally,

n—1
Ug,z, = Au— E Uz,z; = —f(u) + cA¢
i=1
for all z € 9N near q, in particular at q. Therefore, we have determined all
first and second derivatives of u at q.
Since ¥’ C 1, we have ¢14(q) =0 for £ =2,...,n — 1. Also,

h(z1,2z2,...,2n) = u(—21,2Z2,...,Zn)

so first and second derivatives of u and h agree at q. Applying Lemma 2.11
tow =h —u on £'(\;) gives us ws(q) > 0 or wes(g) > 0. This contradicts
u and h having the same first and second partials at ¢. O
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2.3 Multiplicity in Special Domains
For 1 = B; ¢ R"™, we can get very precise results for the Gelfand problem

—Au =ée*, r € B,

(2.16)
u(z) =0, z € 0B;.

To find solutions u(z) € C%(11), because of the maximum principle all
solutions are positive, and hence by Theorem 2.17, all solutions are radially
symmetric. One can equivalently look for positive solutions u(r) € C2[0,1]
of

u"+n—:—lu'+6e" =0, 0<r<1 (2.17)

with boundary conditions
4 (0) =0, u(1) =0 or u(0) =a, u(1) =0 (2.18)

with ¥/(1) = -8 < 0.
The often quoted multiplicity result due to Joseph and Lundgren [JOS]
is

Theorem 2.19 Consider BVP (2.17)-(2.18). The following existence re-
sults hold:

1. n=1: There exists 6px > 0 such that
(a) for each § € (0,6rK), there are two solutions,
(b) for 6 = érk, there is a unique solution, and
(c) for 6 > érk, there are no solutions.
2. n=2: Let bpg = 2, then
(a) for each 6 € (0,6rKk), there are two solutions,
(b) for 6 = érk, there is a unique solution, and
(c) for § > érk, there are no solutions.
8. 3<n<9: Let 6= 2(n — 2); then there ezists 6px > 6 such that
(a) for 6 = 6pk, there is a unique solution,
(b) for 6 > érk, there are no solutions,
(c) for 6 = 6, there is a countable infinity of solutions, and
(d) for 6 € (0,6rk) \ {6}, there is a finite number of solutions.
4. n>10: Let bpg = 2(n — 2); then
(a) for 6 > brk, there are no solutions, and
(b) for each 6 € (0,6rk), there is a unique solution.
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Proof. Recall that o = u(0) and 8 = —u'(1). For n = 1, (2.17) can be
solved by integration to obtain

u(r) = a — 2Incosh (—;-r\/%ea )
where o, (3, and 6 are related by

B = /2 + 26 tanh (%\/,m + 25)

— \12
6= le_"‘ In 1+vi-e®
2 1-Vi—e<o)|
For n = 2, (2.17) can also be solved by making the change of variables
r=e¢~t and w(t) = u(r) — 2t to obtain W + fe* = 0. We obtain

u(r)=a—2In (1 + %660‘1‘2)
where the parameters are related by
f?2-4B8+26=0 and 6 = 8(6%0 —e 2,

Forn>3,lett; = 1In [2—(2%21], r=e (%) and u(r) = a+ 2t + z(t);
then (2.17) becomes

A5i-2427-2=0, t; <t<oo

2.19
2(00) = —00, #(00) = —2 (219)

with compatibility condition z(¢t;) = —a — 2t;. We analyze this problem
in the phase plane. Let y(t) = 2 + 2 and z(t) = 2(n — 2)exp(z(t)); then
problem (2.19) is equivalent to

t=2(y-2), y=(n-2)y—=g, t1 <t<oo, (2.20)
z(00) = y(o0) =0

with compatibility condition ¢; = %ln [%g‘ﬁ%}], also § = z(t;) and 8 =
y(t1).

The two-dimensional system (2.20) has critical points at (0,0) and (2(n—
2),2). We now prove that there exists a unique heteroclinic orbit joining
these two critical points.
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Ezistence. Choose zo € (0,2(n — 2)). Consider the following sets:

L+={(zay):y=ﬁao<zSIO}a
L_={(z,9):y=0,0<z < 20},
L={(z,y):z=10,0<y<;%} and

T={(z9):0<z<120,0<y< 5%}

The triangular domain T is open and contains no critical points of (2.20).
Define the subsets of L,

E; = {(z0,y) € L : ®4(y) exits T through L}

and
E_ = {(z0,y) € L : ®4(y) exits T through L_},

where ®;(y) indicates the flow of (2.20) in the ry-plane with initial data
P, (y) = (20,)-

The vector field for (2.20) points strictly outward from T on both L,
and L_. In particular, (zo,zo/(n—2)) € E; and (z0,0) € E_, so these sets
are nonempty. By continuous dependence, the sets E, and E_ are open
sets (relative to L). Moreover, E; NE_ =@ and E;, N E_ = 0. Since L is
a connected set, L # E; U E_. That is, there must be at least one point
(z0,y0) whose flow ®;(yo) meets (0,0) at ¢ = oo.

Uniqueness. In the region T, any solution to (2.20) has the property z(t) <
0, so by the Inverse Function Theorem, one can think of ¢ = t(z) and
y =y(z). In T, system (2.20) can be written as

dy _(n—-2)y-z

for 0 < z < zo. Suppose that (2.21) has two solutions, y;(z) and y2(z).
Define D(z) = y;(z) — y2(z). Equation (2.21) has a unique solution for any
initial data where z > 0, so D # 0 in T. Without loss of generality, say
D > 0 for z > 0. It can be shown that

1dD _ z-2(n-2)
Ddz  z(y1—2)(y2 - 2)

(2.22)

As z — 0%, y1(z) — 0 and yy(z) — 0. Consequently, the right-hand side
of (2.22) approaches —oo. For z > 0 and sufficiently small, we have

d 1dD

= =_—Z<_ .

dzlnD(z) Dz S e<0

An integration yields D(z) > D(z,) exp(e(z1—z)) for 0 < z < z,. However,
this implies that D(0) > 0, a contradiction since D(0) = 0.
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We have proved that there is a unique solution to (2.20) for ¢; < t < oo.
We now want to determine the behavior of this solution as ¢t — —oco. One
can show that there is a rectangle R = (0,%) x (0,%) such that the solution
(z(t),y(t)) € R for all t € (—oo,t1), and so this solution must converge
either to a limit cycle or a critical point as ¢ — —oo. The vector field for
the system rules out the critical point (0, 0).

At the critical point (2(n — 2),2), the linearization of (2.20) is

d|z-2n-2) | 0 2(rn-2) T—2(n-2)
dt y—2 B -1 n-2 y—2 .

The eigenvalues for the linearization are

A=%[(n—2)im].

If 2 < n < 10, then the eigenvalues are complex-valued with positive real
parts; the critical point is a spiral node. If n = 10, then the eigenvalue is
unique and positive; the critical point is an unstable node. For n > 10,
the eigenvalues are distinct positive real numbers, so the critical point is
an unstable node (and one eigenspace is dominant). In any case, the same
behavior holds locally for (2.20) at the critical point as in the linear case.

One can see from the vector field for (2.20) that either (z(t),y(t)) —
(2(n —2),2) as t — —o0 or (z(t),y(t)) spirals about (2(n — 2),2). In this
last case, the orbit cannot spiral to a non-constant periodic orbit. If there
were such a periodic orbit 912 enclosing a region {2, then on this orbit the
solution (z(t),y(t)) would satisfy

—jdz +3dy =0 or — %dm+ %dy =0.

If F(z,y) = f =y —2 and G(z,y) = g = L%l! — 1, then by Green’s
Theorem,

0=4 (~Gdz+Fdy) = / (Fo+G,)dA =/
an 0 0
a contradiction. Thus, there are no limit cycles for (2.19). Moreover, there
is a unique heteroclinic orbit connecting the two critical points (0,0) and
(2(n-2),2).
We summarize our observations in terms of the following (6, 8) bifur-
cation diagrams shown in Figure 2.7. Each point (z(¢1),y(t1)) on the bi-
furcation curve is equal to a point (8, 3) via the change of variables (2.19)

and (2.20), and via the compatability condition ¢; = 3 In [g;e;fl] That is,
2(t1) = —a—2t; implies z(t1) = 2(n—2) exp(2(t1)) = 6, and 2(t1) = —2+0
implies y(t1) = B. This pair (6, 8) provides us with a solution

u(r) =a+2t+In (f(z_i—)_ﬂ) , = e—(t—t1)

n—2
z

dA >0,
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such that 4(0) = e, 4/(0) = 0, u(1) = 0, and /(1) = —B. One can de-
termine the multiplicity of solutions for a given ¢ by observing how many
times the vertical line 6 = é intersects the heteroclinic orbit. O

For the perturbed Gelfand problem

—Au=8exp(13), z€Q

(2.23)
u(z) =0, €N

where (1 = Bg = {z € R" : |z| < R}, Dancer [DAN1] proved:

Theorem 2.20 For any € > 0 and § > 0, there ezists at least one and at
most finitely many solutions to BVP (2.23).

The proof uses perturbation arguments and is quite involved and tech-
nical. We only illustrate the results in Figure 2.8. The value ¢ is positive
and chosen sufficiently close to 0.

Using the terminology of Dancer, the solutions represented by the solid
line (—) in Figure 2.8 are called small-small solutions. Those solutions
represented by the broken line (— -) are called large-small solutions. Those
solutions represented by dotted line (— - —) are called large solutions. The
shape of the bifurcation curves indicated in Figure 2.8 may not be exactly
correct. The branch representing large-small solutions is arbitrarily close
to the small-small solution branch for € > 0 but small. We use this fact in
Section 2.4 on solution profiles.
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2.4 Solution Profiles
We first consider the Gelfand problem

—Au =ée*, z€ B
u=0, z€90B;

which by Theorem 2.17 is equivalent to

w + 2Ly +6e* =0, 0<r<1

(2.24)
u'(0) =0, u(l)=0.

We will define a solution u(r) of (2.24) to be bell-shaped if it has a unique

point of inflection for r € (0,1). We can then prove the following result.

Theorem 2.21 Consider BVP (2.24).
1. For n =1, all solutions are concave on [0,1].
2. Forn=2:

(a) If 6 € (0,6rK), then the minimal solution is concave on [0,1]
and the mazimal solution 1s bell-shaped.

(b) If 6§ = épx = 2, then the solution is concave on [0,1) with
u”’(1) =0.

8. For n > 3, there exists § < 6pk such that:

(a) If 6 = &, then the minimal solution is concave on [0,1) with
u’(1) =0.
(b) If 6§ < 6 < bpk, then all solutions are bell-shaped.

(c) If0 < § < &, then the minimal solution is concave on [0,1] and
all other solutions are bell-shaped.

Proof. For n = 1 we see that u”(r) < 0 on [0, 1] and the concavity is obvious.

For n > 2, note that u"(0) = —%e" < 0 and that v"’(1) = (n — 1) -6,
so sgn[u”(1)] = sgnl(n — 1)f — 6].

If the points of inflection are unique (if they exist) and if the bifurcation
curve intersects # = L(6) = % uniquely on the minimal branch, then our
assertions (2) and (3) hold. For if (6, 3) € D, where D is the bifurcation
curve, satisfies # > L(6), then (1) > 0 and u”(0) < 0 imply there exists
R € (0,1) such that u”(R) = 0 and (R, u(R)) is a point of inflection. By the
uniqueness of inflection points, the solution u(r) corresponding to (4, §) is
bell-shaped. If (6, 8) € D satisfies 8 < L(6), then u”(1) < 0 and »”(0) <0
imply no inflection points or more than one. Uniqueness would rule out the
latter case.

To complete the proof, we must prove that
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(i) D intersects 8 = L(6) uniquely, and

(ii) there is at most one inflection point for the solution u.

We will prove (i) first. For n = 2, (i) is immediate since D = {(6,0) :
B? — 48+ 26 = 0}. For n > 3, (i) is a consequence of a sequence of lemmas.

Lemma 2.22 Let u(z) be a solution of (2.24); then
[(2 = n)u + 2n)6e dz = (B° + 26)w,,
1

where wy, 13 the surface area of the unit sphere By C R™.

Proof. Note that

Ou) _ 9(Au) _ _cuf, Ou
A(ré-;> "5 u = —de (rar+2). (2.25)

Define v = §(u—2)e¥; then v = —26 for z € dB; and r$% = §(u—1)e* rg':.
Since

Jp, 3t de = [5 zeVudz
= faBlvan[Vl r?)]ds — [, vA(37%) dz
= —26faBl rﬂ ds — fo nvdz
= —26w, — fBl nvdz,
we have f B, 61' Y + nv)dz = —26w, where w,, is the surface area of B;.
Define I := [ [-uA(r%) + r3%Audz. Then by (2.25),
I = [g [6ue* (rde +2) — 6evr$2)dz
= [g,[6(u—1)e* ré + 26ue] dz
= Ja, [r2 + 2v + 46e] dz
= fo [rg-% +nv+ (2 — n)v + 46€%] dzx
= —26wn + [ [(2 - n)u + 2n]6e* dz.
But by Green’s identity,

d ( du du du >
I= u— +r J ds = / r (—) ds
8B, [ ( 377) ar an aB, \0n
since u =0 on By, r =1, and 2 o = £ on 8By; so I = f%w,. Thus,
[(2 = n)u + 2n)be* dz = (6% + 26)w, (2.26)

which completes the proof. O
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Lemma 2.23 Forn >3, if (6,8) € D, then 3% — 2nB + 26 < 0.
Proof. By Green'’s identity, | B, 6€* dz = Pw,. Thus, (2.26) gives us

2 _
Suet dg = B —2B+26

B, 2—-n "

Since the integral is positive and since n > 3, we necessarily have 8% —
2nf+26<0.0

Lemma 2.24 The bifurcation curve D intersects the graph of § = L(6) =

[

727 n at least one point wheren — 1< § < 2(n—1).

Proof. Let B(6) be the arc of D which originates at (0,0) and terminates at
(6rk,2). From (2.22) we obtain

,3’(6) = (n_2)ﬁ_6

6(6-2)

By Lemma 2.23, for # = 2, we have § < 2(n — 1) and so 3(6) reaches
B =2at§ <2(n—1). Observe that #'(0) = 1 < -1 = L'(0). Since
L(2(n — 1)) =2, B(6) intersects L(6) at a value 6 < 2(n — 1).

If B(60) = L(bo) = Bo for fo € (0,1], that is, for § € (0,n — 1], then
B'(0) = [(n = 1)(2 = Bo)]™! < (n—1)~1 = L'(). Thus, if there are any
points of intersection for Gy € (0,1], then there is only one. This implies
B'(0) > (n—1)~1. But #'(0) =n~! < (n—1)~1, so there are no points of
intersection for 8 < 1.

Since §'(6) = [(n—1)(2-B)]"! > (n—1)"! for any (6, B) with 3 = L(é)
and n — 1 < 6 < 2(n — 1), the intersection is unique on that arc. O

(2.27)

For n > 10, the shape of the bifurcation curve D guarantees that D and
the line § = L(6) intersect at a unique point.

Lemma 2.25 For 3 <n <9, D intersects L = {(6,8) : 6 > 0,8 = %}
uniquely.

Proof. By Lemma 2.24, D N L # 0. We claim that there are no other
intersections as D spirals towards (2(n — 2),2).
Let R be the region bounded by

Ly = {(6,8):6=2(n-1),2<p<22=1}

L, = {(6,8):8=22=L,n<6<2(n-1)},

Ly = {(6,8):8=-36+26+3,1<6<3} forn=3,
= {(6,8):8=755+1,n-2<6<n} forn>4,

Ly = {(6,8):6=n-2,1<B<2},

Ls = {(6,8):8=1,n-2<6§<n-1}, and

L = {(6,8):8=7:55,n-1<6<2(n-1)}
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Figure 2.9 illustrates the region R.
Observe that 4/(6) < 0 on

S = {(6,8):6>2(n-2),2<p< %5
U{(6,8):0<6<2(n—1),-%5 <B<2}

and #'(6) > 0 on {(6,8) : B > 0,6 > 0} \ S. Thus, D cannot leave R
through L; or L,. The orbit cannot leave through L3z, Ly, Ls, or Lg since
the slope at such a crossing would not agree with 3’(6) evaluated on these
sets. Thus, the first point of intersection of D with Lg is the only point of
intersection. O

This completes the proof of (i) for n > 2. We now show that points of
inflection for the graph of u(r) are unique, using the fact that D intersects
L(6) uniquely.

Lemma 2.26 Consider (2.17)-(2.18) with (n—1)3—6 = 0 forn > 2. There
ezists one and only one solution u(r) with § = (n —1)B. This guarantees a
unique solution such that v’ (1) = 0.

Proof. For n > 3, D intersects L at the unique point (8, 3). This gives the
unique solution u(r). For n = 2, D is given by B% — 48 + 26 = 0 which
intersects # — § = 0 uniquely at (,8) = (2,2). O

The proof of Theorem 2.21 will be complete if we can show any solution
u(r) of (2.17) has at most one inflection point for n > 2.



2.4. Solution Profiles 43

Lemma 2.27 Let u(r) € C?([0,1],R) be a solution of (2.17) for n > 2;
then u has at most one inflection point. In fact, if u”(1) > 0, then u” =0
for a unique r € (0,1). If u”(1) <0, then u i3 concave on [0,1].

Proof. Let R € (0,1) be the first value of r such that u”(r) = 0. Define
m := ¥/(R); then u(R) = In [:’—"3(%_—11]. In (2.17), let r = sR and v(s) =
u(r) — u(R). For s € [0, 1], we have

v+ 81y 4 6e? =0,0<s< 1
v'(0) =0, v(1) =0, v'(1) = -8 (2.28)
(n-1)B-6=0

where § = —(n — 1)mR > 0 and # = —mR > 0.

By Lemma 2.26, there is a unique pair (8, ) satisfying (n — 1) — 8 =0
and a corresponding unique solution v(s). Thus, v"(1) = 0. Since u"(r) < 0
on0<r<R,v(s)<0for0<s< 1.

Suppose there as a value P € (R, 1] such that u”(R) = u"(P) = 0. Set
¢ = u/(P); then u(P) = In [—_—e%%_ll]. Make a change of variables r = sP
and v(s) = u(r) — u(P). Restricting s € [0, 1] we have that v(s) satisfies
(2.28) with § = —(n — 1)¢P and B = —£P > 0. By uniqueness, v"(s) < 0
for s € [0,1]. But

vll(g) — P2u"(R) =0

with 0 < £ < 1 is a contradiction. O

These last lemmas prove (ii), so the proof of Theorem 2.21 is complete. O

We now turn our attention to the perturbed Gelfand problem:

—Au=éexp(7e), € B

(2.29)
u(z) =0, z€9By

where § > 0 and € > 0. By the maximum principle, all solutions to (2.29)
are positive on B;. By Theorem 2.17, all solutions must be radially sym-
metric. BVP (2.29) is equivalent to

1 =
u' + Ll_'_u’ + 6exp(1_,f‘5u) =0, 0<r<1 (2.30)
w'(0) =0, u(1) =0.

We use the same notation as before: « = u(0) and B = —u/(1). For ¢
sufficiently close to 0, we can obtain limited information about solution
profiles for (2.30). This information is not as precise as that for the Gelfand
problem, but it appears that such precision is attainable with more detailed
work. (See Figure 2.8 and the comments following it.)
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Theorem 2.28 Consider BVP (2.30).
1. Forn=1,¢ >0, and 6§ > 0, every solution i3 concave.

2. For n = 2, all solutions are bell-shaped or concave on (0,1). The
solutions corresponding to (6,8) € De (the bifurcation curve) with
B < 6 are concave.

3. For n > 3 and € > 0 sufficiently small, there are values 61(¢) and
62(€) such that the minimal solution is concave down for 0 < 6 < 6;
and not concave for 63 < 6 < brk(€).

The results are proved by the following set of lemmas.

Lemma 2.29 For € > 0 and sufficiently close to zero, any large solution
of (2.30) must satisfy u"(1) > 0.

Proof. We point out that, as in the results for the Gelfand problem,
sgn(u”’(1)] = sgn|(n — 1)8 — 8). Let u(r) be a large solution to (2.30). Let
u € (0,1). There exists a constant k such that u(r) > ke'/¢ for r € [0, u].
Let f(u) = exp(13%y)- Integration of the differential equation in (2.30)
yields

B = §[yrtf(u(r))dr 26 [ f(u(r))dr

8 [3 r1 f(keV/€)dr = 6= f(ke'/) > &

n-1

v

for € sufficiently close to 0. Thus, u”(1) = (n—1)8 -6 > 0 for ¢ sufficiently
close to 0. O

Lemma 2.30 Let n = 2. Points of inflection to solutions of (2.30) are
unique. Consequently, all solutions are either bell-shaped or concave down.

Proof. Differentiating in (2.30) gives us
"n__ il
" + <_7lr_u> +6f (wu' = 0.

Suppose (R, u(R)) is a point of inflection. Then

mipy _ U(R) Ru/(R)
u"(R) = 53 <1+[1+€u(R)]2) (2.31)

where use has been made of u”(R) = 0. The function ru/(r) is decreasing
and the function [1 + eu(r))~? is increasing. Suppose (P,u(P)) is another
point of inflection where R < P < 1,u"(r) < 0 for r € [0, R), and u”(r) > 0
for R < r < P; then

PJ/(P) <14 RY'(R)

Y i@ S iramp

<0
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where the last inequality is valid since u"/(R) > 0. This set of inequalities
forces u"’(P) > 0 which cannot happen, so (R, u(R)) is the only point of
inflection. As a consequence, a solution to (2.30) is either concave down or
bell-shaped on [0,1). O

Lemma 2.31 Let n > 3. For € > 0 sufficiently close to 0, the graphs of
the bifurcation curve and the line (n — 1)3 — 6 = 0 intersect in at least two
points with the large-small branch and in a unique point with the small-

small branch at the point (6(¢), B(g)).

Proof. From the results on the Gelfand problem, we had a unique point
of intersection (6, 3) = (6(0), 5(0)) where the function notation indicates
€ = 0. At this point of intersection, the angle of intersection is positive so
that a small perturbation of the bifurcation curve still yields a unique point
of intersection (6(¢), B(¢)). By our earlier remark on the closeness of the
large-small branch to the small-small branch, the large-small branch and
the straight line must intersect in at least two more points. For € sufficiently
close to zero, one of these points of intersection must occur near (8(¢), 8(€)),
the other near (0,0). Figure 2.10 illustrates this.

At these points of intersection, v”(1) = 0. From (2.31), v"'(1) = —p(1 -
B). Thus, at (6;, 41) near (0,0), u”(1) < 0 and at (82, B2), (8(¢), B(¢)) near
(6(0),3(0)), w" (1) > 0 for solutions u(r) corresponding to these pairs of
(6,8).

The solution corresponding to the pair (6;, ;) consequently must have
at least two points of inflection so that the graph of u(r) may reach the
u-axis. O
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2.5 Comments

In this chapter we have given a detailed discussion of the steady-state mod-
els and their natural generalizations. We have referred to the steady-state
model (1.30)-(1.31) as the Gelfand problem and considered the radially
symmetric case (2.16). The small fuel loss model (2.23) was referred to as
the perturbed Gelfand problem. Gelfand [GEL] appears to have been the
first to make an indepth study of (1.30)-(1.31) although the problem has a
long history in the radially symmetric case in low dimensions.

For dimension n = 1, Liouville [LIU] first studied and found an explicit
solution in 1853. For n = 2, Bratu [BRA| found an explicit solution in 1914.
Frank-Kamenetski [FRA] rediscovered these results in his development of
thermal explosion theory. Joseph and Lundgren [JOS] gave an elementary
proof via a phase plane analysis of the multiple existence of solutions for
dimensions n > 3. These results are summarized as Theorem 2.19.

The idea of using upper and lower solutions to establish existential re-
sults for nonlinear boundary value problems goes back to Nagumo [NAG1],
[NAG3], [NAGS5]. There are several excellent papers [SCH],[LIN], [SAT1]
which survey boundary value problems of the type (2.1) and (2.2). Although
very general existential results are known, the problem of multiplicity of
solutions remains open for arbitrary domains, even for the Gelfand problem.

The radial symmetry results of Section 2.2 are due to Gidas, Ni, and
Nirenberg [GID1]. It is remarkable that such a result was not rigorously
proved until the late 1970’s. Troy [TRO1] generalized these results to sys-
tems where the nonlinearity is quasimonotone.

The results in Section 2.4 on the shape of solutions for the Gelfand
problem and the perturbed Gelfand problem are due to the authors [BEBS].
These results show that (2.24) and (2.29) exhibit a “hot spot” development.
The results for the perturbed Gelfand problem are not as precise as those
for the Gelfand problem. The problem of determining the exact qualitative
shapes of solutions to the perturbed Gelfand problem is an open question.



3
The Rigid Ignition Model

We wish to analyze indepth the solid fuel ignition model (1.28)-(1.29)

0, — AG =6, (z,t) € x(0,T)
0(z,0) =0, z€Q
0(z,t) =0, (z,t) €N x (0,T)

and its relationship to the steady-state model (1.30)-(1.31)

~Ayp = ée¥, T€
Y(z) =0, z €.

Existence-uniqueness for (1.28)-(1.29) is established for a more general
initial-boundary value problem with nonlinearity f(z,u) and with initial
data ¢(z) not necessarily 0. The results use the ideas of upper and lower so-
lutions, invariance, and comparison. Other properties of solutions to (1.28)-
(1.29) are also determined by application of these ideas.

For nonlinearities of the type f(u) = €* (or f(u) = uP), the solutions
to (1.28)-(1.29) do not exist for all ¢t € (0,00), and the solutions become
unbounded at a first time T < 0o, called the blowup time for the problem.
In Section 3.2, we determine if blowup occurs, and if so, then when does
it occur; that is, we determine upper bounds on the blowup time. If the
solutions do exist for all time, then for appropriate initial data the solutions
to (1.28)-(1.29) converge to a solution of (1.30)- (1.31). The critical value
drk seems to provide a separation between blowup of solutions (6 > érk)
and global existence (6§ < érk)-

We also consider the question of where blowup occurs. The main result
of Section 3.3 is Theorem 3.16 which guarantees under certain restrictions
on the nonlinearity that blowup occurs only at a single point (for radial
domains). Other information obtained in the proofs lead to bounds on the
solutions for spatial values near the blowup point.

The majority of the chapter is contained in Section 3.4. We consider radi-
ally symmetric solutions u(r,t) on a ball and transform the problem (1.28)-
(1.29), for f(u) = €* or f(u) = uP, using the idea of self- similarity. We an-
alyze the solutions u for which blowup occurs and determine their profiles
near a blowup singularity in an asymptotic sense in space-time parabolas
containing the blowup point. One major difficulty is that of establishing
a prior: bounds on the solution u and its derivatives which allow us to
choose the correct steady-state solution (in the self-similar sense) which u



48 3. The Rigid Ignition Model

converges to. Another difficulty is in showing that u does converge to a
steady-state solution which is independent of the self-similar time variable.
Energy integral estimates are used in proving this convergence.

Consequences of the analysis in Section 3.4 are the following: For f(u) =
e*, the solution u satisfies u(0,t) ~ —In(T —t) as t — T~ (for blowup time
T). For f(u) = wP(p > 1), the solution u satisfies u(0,t) ~ [B(T —t)]? as
t — T~ where 8 = ﬁ.

3.1 Existence-Uniqueness

Let Q2 C R" be a bounded domain whose boundary 92 is an n — 1 dimen-
sional manifold of class C?** for some 0 < o < 1. Let I+ = Q2 x (0, T) and
Tr = [00 x (0,T)] U [ x {0}]. Assume that f: QO x [0,T] x R - R is a
locally Holder continuous function with Hélder exponents c, %a, and « in
the respective variables z, ¢, and u. Assume that v : 't — IR is continuous.
Consider the partial differential equation

- Au= f(z,t,u), (z,t)€llr (3.1)
with initial-boundary condition

u(z,t) =9¢(z,t), (z,t) €Tr. (3.2)
Definition 3.1 A function v € C(Il7,R) N C%!(IIT,IR) is lower solution
of (8.1)-(8.2) if
- Av S f(za t,'l)), (il?,t) € I-IT
v(z,t) < Y(z,t), (z,t) €Tlr.
If the inequalites above are reversed, then v is called an upper solution of
(3.1)-(3.2).

The following theorem is a consequence of invariance and will be proved
in Chapter 4.

Theorem 3.1 Let o be a lower solution and let B be an upper solution
of IBVP (8.1)-(3.2) with a(z,t) < B(z,t) on Iix; then (8.1)-(8.2) has a
solution u € C*(Ily) with a(z,t) < u(z,t) < B(z,t) on I7.

The next theorem will also only be stated at this time. Its proof will follow
immediately from our comparison theorems (Theorem 4.1), Corollary 4.2)
given in Chapter 4.

Theorem 3.2 Let u,v € C(Ilz,R) N C>! (I, R) with
1. u — Au — f(z,t,u) < vy — Av — f(z,t,v) for (z,t) €I, and
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2. u(z,t) < v(z,t) for (z,t) €T'r;
then u(z,t) < v(z,t) for (z,t) € Iiz. In addition, if f is locally Lipschitz
continuous in u, then the result 1s true with weak inequalities.

We now consider a special case of initial-boundary value problem (3.1)-
(3.2) where the function f is independent of ¢ and is Lipschitz continuous
in u:

u — Au = f(z,u), (z,t) €llr (3.3)

with initial-boundary conditions

u(z,0) = ¢(z), z€0

(3.4)
u(z,t) =0, (z,t) €90 x (0,00).

Theorem 3.3 Let u(z,t) be a solution of IBVP (3.3)-(3.4). If ¢(z) is a
lower solution of (3.8), then u(z,t) is nondecreasing in t for each fized .

Proof. By Theorem 3.2, u(z,t) > ¢(z). For § > 0, define u®(z,t) = u(z,t+
6); then u? is a solution of (3.3) and so is an upper solution with u®(z,0) =
u(z,6) > ¢(z) = u(z,0). Thus, u®(z,t) > u(z,t) for all (z,t) € Tt and so
u(z,t) is nondecreasing in t. O

Theorem 3.4 Let o(z) be a bounded lower solution and let f(z) be a
bounded upper solution to IBVP (8.3)-(8.4) with a(z) < B(z) on Q; then
(8.8)-(8.4) has a unique solution u(z,t) with

a(z) < u(z,t) < B(z) and tlir{.lo u(z,t) = uo(z)
where the limit i3 uniform in z and where ug(z) ts the minimal solution of

—Ayg = f(xa uO), T€
uo(z) =0, z€9N.

Proof. By Theorems 3.1 and 3.2, (3.3)-(3.4) has a unique solution u(z,t)
with a(z) < u(z,t) < B(z). By Theorem 3.3, u(z,t) is nondecreasing in ¢
for each fixed z. In addition, u(z,t) is bounded above, so lim;—, u(z,t) =
ug(z) pointwise for each z € ). By Dini’s Theorem, the convergence is
uniform on compact subsets of (2.

Set upn(z,t) = u(z,t + n) for t € [0,1] and n € IN; then un(z,t) is the
solution of

wy — Aw = f(z,un(z,t)), (z,t) € Qx (0,00)
w(z,0) = up(z,0), z€Q
w(z,t) =0, (z,t) € N x (0,00).
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For the appropriate Green’s function G(z,t) we have

u,.(z,t):/nG(a:—y,t)un(y,O) dy+/0 dr/ﬂG(z—y,t—T)f(y,Un) dy

for 0 <t < 1. By the Lebesgue Dominated Convergence Theorem, letting
n — 00, we have
uo(z) = [oG(z—y,t)uo(y) dy
+ [y dr [oG(@ —y,t — 1) f(y,u0(y)) dy
= Ii(z,t) + I(z,t)

with ug(z) continuous.

Since I;(z,t) and Iy(z,t) are differentiable with respect to z, ug(z) is
differentiable. Since f is locally Holder in z and u, we have ug(z) is twice-
differentiable in 2, and: —Aug = f(z,up) for z € Q and ug(z) = 0 for
z €011 O

Theorem 3.5 For any 6 > 0, there exists T > 1/6 such that IBVP (1.28)-
(1.29) has a unique solution 0(z,t) on Q1 x [0,T) with

0 <6(z,t) < —In(1 —ét)
for (z,t) € Q x [0,1/6).
Proof. Set a(z,t) = 0. Set B(t) = —In(1 — 6t), which is the solution of
B =6, B0)=0

Since a is a lower solution and 3 is an upper solution of IBVP (1.28)-(1.29)
with o < 3, we conclude by Theorems 3.1 and 3.2 that IBVP (1.28)-(1.29)
has a unique solution 6(z,t) on Q2 x [0,t*), t* > 1/6, with

0 < 6(z,t) < —In(1 —ét)
for (z,t) €M x [0,1/6). O
The inequality for (z,t) in Theorem 3.5 is illustrated in Figure 3.1.

Theorem 3.8 For 6 < 6pk, IBVP (1.28)-(1.29) has a unique solution
0(z,t) on Q x [0,00) with 0 < 0(z,t) < ¢(z) where ¢(z) is the minimal
solution of BVP (1.80)-(1.81).

Proof. Set a(z,t) = 0. Set 8(z,t) = ¢(z) where ¢ is the minimal solution
of BVP (1.30)-(1.31) (which exists for § < 6px). By Theorems 3.1 and 3.2,
IBVP (1.28)- (1.29) has a unique solution 6(z,t) on 1 x [0,00) with

0<0(z,t) < ¢()
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for (z,t) € Q x [0,00), and by Theorems 3.3 and 3.4,
i 0(,1) = 9(2)
uniformly in z. O

For BVP (1.30)-(1.31) we know there is a érx > 0 such that no solution
exists for § > px. We now ask what happens to IBVP (1.28)-(1.29) for
6> brk.

Theorem 3.7 For each § > érk, there is a T € [1/6,00) such that IBVP
(1.28)-(1.29) has a unique solution 6(z,t) on Q1 X [0,T). Moreover,

tlirqr}_ max{f(z,t) : z € O} = oo.
Proof. For each n € IN, define f,(y) = min{ée¥, fe"} and consider
yt“Ay=fn(y), (z,t)€H=QX(0,00) (35)
y(z,t) =0, (z,t) €T =[0Q x (0,00)] U [ x {0}]. (3.6)

By constructing a sequence of solutions to an associated sequence of
nonhomogeneous linear initial-boundary value problems, we shall prove
that IBVP (3.5)-(3.6) has a unique solution uy(z,t) on Q2 x [0, 00).

Set u®(z,t) = 0 on IT and let u!(z,t) be the unique solution of the
nonhomogeneous linear problem:

up — Aul = fr(u¥(z,t)), (z,t) €Tl
ul(z,t) =0, (z,t)€T.
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Since
uf —Aul =8 =6 >0=1uf — Au®, (z,t) €Il

ul(z,t) = u(z,t), (z,t) €T,

Theorem 3.2 implies that u! > u° on II.
Let u?(z,t) be the unique solution of:

u? - Au? = fn(ul(xa t))a (:L‘,t) ell,
u?(z,t) =0, (z,t)€T.

Since

u? — Au? = fp(ul) > fo(u®) = ul — Au!, (z,t) €11,
u?(z,t) = u'(z,t), (z,t) €T,

we have 42 > u! on II.
Continuing in this way, we construct a sequence {u¥} such that for each
k > 1, u* is the unique solution of:

uf — AuF = f(ukY), (z,t) €11,
uk(z,t) =0, (z,t)€T.

Also,
0<u0<ul<..-<uF<...

for IT, and by Theorem 3.2,
uf < —1In(1 - 6t)

for (z,t) € QA x [0,(1 — e~™)/6) for all k > 0.

Since {f(u*¥~1)} is uniformly bounded, {u*} is bounded above. Hence,
u¥(z,t) — un(z,t) pointwise on II. By standard bootstrapping arguments
we have that u,(z,t) is the solution of: u; — Au = f,(u) for (z,t) € Il and
u(z,t) =0 for (z,t) € T.

On Q2 x[0,(1—-e"")/6), un(z,t) = 0(z,t) where 0 is the unique solution
of IBVP (1.28)-(1.29). If un(z,t) < n for all (z,t) € Q x [0,00), then
un(z,t) = ¢(z) uniformly in z as t — oo where ¢ is the minimal solution
of BVP (1.30)-(1.31). But § > érk, so no such solution exists. There must
exist (zn,tn) € II such that u,(zn,tn) = n and up(z,t) = 0(z,t) where 8
is the unique solution to BVP (1.30)-(1.31) on Q X [0,t,) for each n € IN.
By compactness of {1, there exists a subsequence {(Zn,,tn,)} of {(Zn,tn)}
such that

Zp, — 2 €0 and t,, 1T <00 as k— oo
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with up, (z,t) = 0(z,t) on Q x [0,¢,, ). Thus,

lim max0(z,t) = oo,
t—=T~ ze

and the proof is complete. O
For the equation
u — Au=46f(u), (z,t) €N x[0,00) (3.7)

with initial-boundary conditions

u(z,0) = ug(z), z€Q

: (3.8)
%4 4 Bu=0, (z,t) €80 x(0,00), 0<f(z) < 00

where f(u) >0, f'(u) > 0, and f”(u) > 0 for u > 0, similar results hold.
For the boundary value problem

—Au=46f(u), z€0 (3.9)
Jdu
57—,+ﬂu—0, z € 00N (3.10)

there is a 6px > 0 such that solutions exist for 0 < § < érx and no
solutions exist for 6 > k.

Thus, if § < érk and if wy, is the minimal solution of (3.9)-(3.10) and if
ug < Wm, then taking a lower solution a < ug < wy,, we have u(z,t) — wm
as t — oo and u(z,t) exists globally. If § > érk, the solution u(z,t)
becomes unbounded in the L*°-sense as t — T .

3.2 Blowup: When?

In the last section we discussed existence of solutions to certain initial-
boundary value problems. This section deals with the determination of the
maximum time interval for which solutions exist.

Definition 3.2 The solution u(z,t) of IBVP (8.7)-(3.8) for 6 > 6rk be-
comes unbounded as t — T—. We say that thermal runaway or blowup
occurs at T.

For IBVP (1.28)-(1.29), this says that the thermal event is explosive
(supereritical).

By the analogue of Theorem 3.7 for IBVP (3.7)-(3.8), we cannot deter-
mine if blowup occurs in finite or infinite time. A necessary condition for
blowup in finite time is the following.
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Theorem 3.8 If the unique solution u(z,t) of IBVP (8.7)-(3.8) blows up
tn finite time T, then

/m[f(.s)]'l ds < oo for b>0. (3.11)
b

Proof. Assume that [*[f(s)]~! ds = co. Let ((t) be the solution of v’ =
6 f(u) with u(0) = sup{uo(z) : = € Q}; then B(t) is an upper solution of
(3.7)-(3.8) and so B(t) > u(z,t) > 0 where J(t) is given implicitly by

B(t)
/ [f(s)]! ds = 6t.
u(0)

But [®[f(s)]"! ds = oo implies that S(t) exists for all ¢ > 0. Thus,
u(z,t) exists for all ¢ > 0, a contradiction. O

Condition (3.11) is satisfied by f(u) = e* and any positive f(u) which
grows at least as fast as u!*t* o > 0, as u — 0o0. An important question is
the following: Can one find a sufficient condition for blowup in finite time?
Returning to IBVP (1.28)- (1.29), we can get a sufficient condition for a
finite blowup time by the following comparison theorem.

Theorem 3.9 Let u(t) be the solution of the initial value problem
u =6e* — A\u, t€(0,T) and u(0) =0

where Ay 138 the first eigenvalue of —Ad = A\@, z € 1 and ¢(z) =0, z € IN.
Let 6(z,t) be the solution of IBVP (1.28)-(1.29) on Q1 x [0,T); then

u(t) < sup{f(z,t) : z €}
fort€(0,T).

Proof. Let d) be an eigenfunction assoclated with A; where ¢(z) > 0 on
Q and [, ¢(z) dz = 1. Define a(t) = [,0(z,t)¢(z) dz; then a(t) <
sup{f(z,t): z e 1}. Multiplying (1. 28) by ¢(z) and integrating over (2, we
have

a'(t) Jq 0:(z,t)o(z) dz
[ol6€?d + ¢A0) dx
s exp(f 09 dz) + [, 0A¢ dz

= 6e3t) — \a(t)

I\

where Jensen’s inequality and Green’s identity have been used. Since
a'(t) > 6e®) — \;a(t) and a(0) = 0, by a standard comparison theorem we
have u(t) < a(t) < sup{f(z,t): 2 € Q}. O
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Because of the elementary nature of the initial value problem in Theorem
3.9, we know that a unique solution u(t) of these equations exists on [0, Tp)
with u(t) — oo as t — Ty where

o dz
To __/0 be* — Az’

Thus, To < 0o if § > §* := A1 /e and we have the following implication.
Corollary 3.10 If 6 > 6* = A1 /e, then Tp < 0o and

tlirjr}_ sup{f(z,t) : z € Q} = 00

where T < Ty. That s, blowup occurs in finite time.

The above corollary and inequalities are illustrated in Figure 3.2.

Table 3.1 gives the comparison between the critical value §rx and the value

6*.

For a sphere B; C IR3, the blowup time can be computed numerically by
using the method of lines to solve IBVP (1.28)-(1.29) by approximating the
spatial derivatives. The resulting system of first-order ordinary differential
equations was integrated using a Runge-Kutta package RKF45. Table 3.2
uses () = By, épx = 3.32, and 6* = 3.63:

Table 3.1.
9} 6Frk A1 5
S, slab 0.878 | 2.467 | 0.908
C, cylinder | 2.000 | 5.784 | 2.128
B, sphere 3.320 | 9.872 | 3.631
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Table 3.2.

5 % To T
3.32 | 0.301 o
3.63 | 0.275 1)
3.70 | 0.270 | 2.913 | 0.876
4.00 | 0.250 | 1.118 | 0.601
6.67 | 0.150 | 0.252 | 0.187
20.00 | 0.050 | 0.057 | 0.0503
50.00 | 0.020 | 0.021 | 0.0200

Of all solids of equal volume, the sphere has minimal surface area. An
obvious conjecture is that for all solids {2 the sphere should explode first.
The following comparison supports this conjecture. For the three solids of
equal volume 7: a sphere B, a parallelepiped P with edge length 7!/3, and
a right circular cylinder C of radius 1 and height 1; the first eigenvalue
A1 with Q = B,P, and C, respectively, is 11.656, 13.799, and 15.653. The
values for 6* are 4.288, 5.076, and 5.758, respectively. Numerical results are
given in Table 3.3. This conjecture was proved by Bandle [BAN2] as

Theorem 3.11 If IBVP (1.28)-(1.29) has a solution 6(z,t) on Q x [0, T)
where () = {z : |z| < R} = Bp, then
1. IBVP (1.28)-(1.29) has a solution u(z,t) on Q x [0,T] for any other
domain Q) of the same volume, and
2. max{u(z,t) : z € O} < max{f(z,t) : z € Br} for all t € [0,T).

For the more general initial-boundary value problem (3.7)-(3.8), we have
the following result.

Theorem 3.12 Consider IBVP (3.7)-(3.8) with f(u) >0, f'(u) > 0, and
f"(u) 20 foru >0, and [*[f(u)]"!du < co. If§ > 6* := A sup{u/f(u):
u > 0}, then the unigue solution 0(z,t) of (3.7)-(3.8) blows up in finite time
T where

/oo[éf(z)]"ldz <T< /oo[éf(z) — A2z = Ty
0 0

Table 3.3.
) } T8 T" TC
4.288 0.233 <) 0o oo
5.076 0.197 | 1.893 00 0o

5.758 0.174 | 0.848 | 4.260 0o
20.000 | 0.050 | 0.095 | 0.098 | 0.101
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Proof. The proof is the same as that for IBVP (1.28)-(1.29). Define a(t) =
J, ¢(z)0(z,t) dz where ¢ is the nonnegative eigenfunction for A; with
jﬂ #(z)dz = 1. From (3.7) we have

@) =5[ 6/(8)dz — Mal(t)

for t > 0. Also, a(0) = ag := fn dug dz.
By Jensen’s inequality, a’ > éf(a) — Ma for t > 0. If 6 > 6* =
A1sup{a/f(a) : a > 0}, then a(t) — oo as t — T where

To = /(;Oo[(Sf(Z) - )\12]_1 dz < oo.

Thus, sup{f(z,t): 2 €0} >0 ast —» T~ with T < Tp. O

The last result shows that the blowup time is finite if 6 > 6*. What
happens for § € (6rk,6*]? The following is due to Lacey [LAC1].

Theorem 3.13 If 6px 1s in the spectrum of (1.80)-(1.81) and if 6 > éFk,
then the unique solution 0(z,t) of IBVP (1.28)- (1.29) blows up in finite
time T where

272

6rk(6 — brk)

Proof. Let w*(z) be the solution of BVP (1.30)-(1.31) for 6 = érk. Then
the first variational problem

T <

-A¢ = [brx e D] ¢, z€Q

(3.12)
o(z) =0, z€ 9N

has a positive solution ¢(z) on Q such that [, ¢dz =1 (Amann, [AMA1]).
Define v(z,t) = 0(z,t) — w*(z); then

V¢ = 0t
= def — Af
¢ ) (3.13)
= (6 -6rk)e’ +6rke” T + Aw* + Av
= (6 —6rk)e® +bpk(e’ —v— l)e“" + 6pk ve¥”
Set a(t) = [, ¢(z)v(z, t) dz; then a(t) < sup{6(z,t) : £ € (1} and a(0) >

—sup{w*(z): z € Q} Multlply (3.13) by ¢ and integrate over {2 to obtain

a'(t) = (6-0rk)Jq ¢eldz + brk [ dle*—v — 1)e* dz
+0rk [ dvev*dz + [, pAvdz.
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By Green’s identity and the fact that ¢ is a solution of (3.12), we have

/¢Av d:cz/ vA¢ dz = —6”(/ ve? ¢ dz,
o] Q Q

and thus,

a'(t)=(6 - 6FK)/ peb dz + 6FK/ #(e’ — v —1)e* da.

Q Q
Since (e —v — 1)e¥” > 2v%, and by Jensen’s inequality, we have that
v w* 1 2 1 2
5FK ¢(e -V — l)e dz Z _6FK ¢'U dz Z —6pKa
a 2°FK | 2

and clearly fn #€? dz > 1. Thus, a(t) satisfies the differential inequality

a'(t) > (6 —érk) + %5FKG2(t)

with _
a(0) > —sup{w*(z) : z € Q} =: —wy,.
The solution of 2/ = (6 — 6pk) + 26rk 2%, 2(0) = —w}, is
2 t -1 *
2(0) = g tan (£~ tan~eui))
where

2
=\ 5k - brx)’

The function z(t) blows up before ¢4 = cx. Thus, sup{f(z,t) : z € 0} >
a(t) 2 z(t)and T <t4. O

This result has been extended by Lacey [LAC1] to IVBP (3.7)-(3.8) as
follows.

Theorem 3.14 Consider IBVP (3.7)-(3.8) with f(u) >0, f'(u) >0, and
f"(u) >0 for u > 0. Assume that [*[f(s)]"'ds < co. If 6pk 13 in the
spectrum of (8.9)-(3.10), then the unique solution u(z,t) of IBVP (8.7)-
(8.8) for § > bpk blows up in finite time (in the L°°-sense) at

T <A+ B(6 —6rk)"'/?

where the constants A and B are independent of 6.
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Proof. Let w be the solution of:
—-Aw =épkf(w), z€
%+ Bw =0, z€aN.
Let ¢ be the solution of the first variational problem
-A¢ = 6FKf’('w)¢, z €
% +84=0, z€a0.
Set v = u — w where u is a solution of (3.7)-(3.8). Define the function
a(t) = [ #(z)v(z,t) dz; then
(1) 2 (6 = 8er)] +rxc | @S (w-+1) = f(w) o (W) d= (319

where I = f(up) and up = min {0, inf{uo(z) : z € (}}.

Let g(s) = Ki[f(s) — f(0) — sf'(0)] for K; > 0 sufficiently small; then
9(0) = ¢'(0) = 0, g(s) is convex, g(s) < f(w+s3) = f(w) = sf'(w) for €N
and for min{v(z) : z € 1} < s < max{v(z) : z € (0}, and [ 74(35 < 00.

Equation (3.14) implies

a'(t) > (6 — 6rk ) + 6rk /n ¢g9(v)dz > (6 — 6rx )] + brk 9(a)

where the last inequality follows from Jensen’s inequality ([ #g(v)dz >
9(Jq v dz)). For

ag = / #(up —w)dz and a; < min{0,ao},
Q

choose ay such that 0 < a3 < —ay. Let h(s) = [(§ — 6rx)I + 6rkg(s)] ™
then

t < Ko+ [2P h(s)ds o15)
< fa,_la2 h(s) ds+ ff;z h(s) ds + f:: h(S) ds + K. '

The sum of the first and third integrals on the right-hand side of (3.15) is
bounded by the quantity

Ks = 6px ( / o)) ds + / :o[g(s)]_l ds) .

1

The second integral is bounded by

/‘°° [(6 —b6rK)I + K432]‘1 ds=[(6 - 6FK)IK4]_1/27r

—00
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where K4 = 16k inf{g"(s) : |3| < a2}.
We can deduce that u(z,t) blows up at T < A+ B(6 — 6pk)~/? where
A=K;+ K4 and B = W(IK4)-1/2. a

The requirement that the critical value rx be in the spectrum of prob-
lem (3.7)-(3.8) may not be necessary. The following result due to Bellout
[BEL)] does not make such an assumption. However, a concavity assumption
replaces the spectral condition.

Theorem 3.15 Consider IBVP (3.7)-(8.8) where the mized boundary con-
dition 13 modified to

Ou

aa?7

+Bu=0, (z,t) €N x(0,00)

where a and (3 are nonnegative constants such that o+ > 0. Suppose that
the function f € C3([0,00)) satisfies the conditions

© s f "
0) >0, f'(s) >0 for s>0, / ——ds < 00, and <—) <0.
£0)>0, f/(s) >0 ] e .
In addition, if aff # 0, assume that
d [sf'(s)
— >0.
) 20
If§' :==6 —b6pk > 0, then the solution to (3.7)- (3.8) blows up in finite

time T < % where K 1s a positive constant dependent on 6, érk, and
M = f0°°[_['(.s;)]'1 ds.

Proof. Consider the problem

vy — Av = 6a%t? f(v), (z,t) € Q x (0,T}) (3.16)

with initial-boundary conditions

v(2,0) =0, z€Q

o (3.17)
asy +pfv =0, (z,t) €90 x (0,T)
where
roio 8 ek 8 [ dbpcw s \VP)_ 8
17 M 4(26pk +6) 2(26rk + 6') K

There is a unique solution v(z,t) to this problem such that v ceases to exist
only by becoming infinite. We wish to prove that v blows up in a finite time
To < T;. Without loss of generality, assume that v is finite in Q X [0, Tp).
Also assume that v € C%3(Q x [0, Tp)) and v;/f(v) € C*1(Q x [0, Tp)).
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Define w(z,t) = [;[f(s)]~! ds and 2(z,t) = we(z,t). We wish to show
that 2(z,t) > 0 From equation (3.16) we see that w satisfies the equation

wy = Aw + |Vw|2 f'(v) + 8a®t2. (3.18)

Define
L(z)=2-Az-2f'VzeVw— f"f'2Vwe Vuw.

Differentiating equation (3.18) twice with respect to t yields
L(2) = 26a® + 2f'|Vwy|* + (we)2(f" f2 + £ f' ) + 4w, f" fVw @ V.
Using

1
|w:Vw e V| < < |Vw|?w?|e| + —||th|2

le

we obtain for e = f” f/f' the inequahty
L(z) 2 26a* = (1) (5)" (V.

Applying the assumption that f/f’ is concave, we have that L(z) > 26a? >
0.

From equation (3.17) we have that 2(z,0) = 0. If o = 0 (respectively

= 0), then 2(z,t) = 0 (respectively § a’ = 0) on 99 x (0,Tp). Since the
coeﬁiclents of L remain bounded as long as v is bounded, the maximum
principle implies that z(z,t) > 0 for t € [0, Tp).

In the case af # 0, let b = B/c; then —bv on 30 x (0,Tp).

v _
an
by f we obtain

Differentiating with respect to ¢t and dividing
Unt Ut
—+ =-b—. 3.19
Also,
0 Ve _ Upt Ve f' o vu, f’

mr-7 T - trEe

Substituting into equation (3.19) yields
w7 = (5 (7)1
=b{—<)|v|=])—-1].
onf f f
Since w; = v;/ f, we obtain

weermo(5)-1

Differentiating with respect to ¢ and using z = wy; we obtain

Zeta = bz[v(f'/ f) — 1] + b(wy)2vf'In(vf'/ )] > bz[v(f'/f) —1] (3.20)
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where the condition [sf’(s)/f(s)]’ > 0 was used.

Since v(z,0) = 0, there exists an € > 0 such that the right-hand side of
the inequality in (3.20) has a negative coefficient for z on the set {2 x (0,€).
We also had L(z) > 0 on Q2 x (0,¢) and 2(z,0) = 0 on 2. Combining this
with equation (3.20), the strong maximum principle implies that z(z,t) > 0
on {1 x (0,¢).

If 2 becomes negative somewhere in €2 x (0,Tp), then let t* be the small-
est positive time where z becomes zero. Since L(z) > 0, it must be that
z(z,t*) > 0 on . This forces z to have a zero at the point z* € dQ2. By
the maximum principle, z,(z*,t*) < 0; but equation (3.20) implies that
zq(z*,t*) > 0, a contradiction. Thus, 2(z,t) > 0 on Q x (0, Tp).

Using this information we can show that v(zg,t) — oo as t — T for
some zo € (2 and for some Tp € (0, T;]. Define

b = 1 (6rk + %5')1/2_

0~ a \bpx + %5' k
then a?t3(6rk +36') = 6rk +56'. At t = to equation (3.16) can be written
as

ve = Av+ (px + %5') flo) + %6’a2t3 f(v). (3.21)

The steady-state problem (3.9)-(3.10) has no solution for §' > 0, in
particular, no solution for § = épx + %6'. In fact, the steady-state problem
has no upper solution (Amann, [AMA1]), so there exists an zg such that
at (zo,t0), Av+ (6rk + %6’) f(v) > 0. Consequently, using the result z > 0
in (3.21) we have

! 2 2
R

at (zo,t) for t > to. Integrating with respect to t yields

v(Io,To) 1
/ [f(s)]"" ds > 56’a2t3(T0 —to). (3.22)
0

Either v becomes infinite at Ty < T, or, v(zo, t) is finite for all ¢ € [0, T}).
In the latter case, the right-hand side of the inequality in (3.22) as Ty — T
becomes the value M = [;°[f(s)]~! ds. This forces v(zo,T1) = 00
Finally, to prove that the solution u(z,t) to (3.7)-(3.8) becomes infinite
in finite time, consider the following. Since a?t? < 1 for t < Ty, v satisfies

vy < Av+6f(v), (z,t) € Qx(0,Tp).
The function w = u — v satisfies:

wy > Aw +yw, (z,t) € Q x (0,Tp)
aw, + pw =0, (z,t) €N x (0,Tp),
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where v = f’ (fu + (1 — 0)v) is a bounded function as long as u and v are
both bounded. By the maximum principle, we see that w > 0. Thus, u > v,
and u must become infinite at some time T' < Tp. O

Theorem 3.15 shows that blowup in finite time occurs for IBVP (3.7)-
(3.8) for arbitrary € for any § > k. An open question is: Can the
concavity assumption on f/f’ be dropped?

Blowup can occur in finite time even for § < drg if the initial data
function ug(z) > 0 is sufficiently large [LAC1]. To illustrate this, assume
f(u) =e* in IBVP (1.28)-(1.29). Assume w(z) is a nonminimal solution of
(1.30)-(1.31), the associated steady-state model. (For § < érk sufficiently
close to 6F K, this is often possible [DEF].) Let wy, be the minimal solution.
By a result of Amann [AMAZ2)], the principle eigenvalue A; of

Ap+ (A+6e¥)p=0, €0

é(z) =0, z€0N
is nonpositive. Let £(z) be the associated eigenfunction with £(z) > 0 and
Jo é(z)dz = 1. Set v(z,t) = u(z,t) — w(z) and a(t) = [, v€ dz; then

/[uo w(z))é(z)dz and a(t) < supu(z,t),
Q
with
vy = Au+6eVTY — Aw — be?

= Av+6[e?t? —e¥ — ve¥] + fe¥v — A\1v + Aqv.

This implies
ad(t) = [ EAvdr+6 [ [evt? —e¥ —ve¥]édz

+ [o(A1 + be®)v€dz — Ay [vEdz
-Ma+6 [e €’ —v—1]dz
> -Ma+ [ evévda.

By Jensen’s inequality, a/(t) > —A;a + Ka? where K > 0. If a(0) > 0,
then a(t) satisfies a(t) > a(t) where a(t) is the solution of

o = Ko? =\, t >0, 0)=a(0).

Since —); >0, f —-,-A—‘z < oo and «(t) blows up in finite time. Hence,
the solution u(z,t) of (1.28)-(1.29) blows up in finite time provided

/ £(@)uo(z) dz > / £()u(z) dz
9] (9]
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3.3 Blowup: Where?

In this section we deal with the topic of where blowup occurs for solutions
to the solid fuel model. We consider the partial differential equation

us — Au = f(u), (z,t) €N x(0,T) (3.23)
with initial-boundary conditions

u(z,0) = ¢(z), z€0

(3.24)
0, (z,t) €30 x (0,T)

(3
—
B

o~~~
~—

I

where @ = {z € R" : |z| < R}.

We assume that ¢ € C2(10) is a radially symmetric function, say ¢ = ¢(r)
where r = |z|. In addition, we assume that ¢'(r) < 0 for r € [0, R] and
#(R) = 0. Consequently, ¢'(0) =0, ¢”(0) <0, and ¢(r) > 0.

We also assume that f € C?(R), f(u) > 0 for u > 0, f'(u) >0, f"(u) >
0, and [*° dT“ < 0. For example, the functions exp(u) and (u + A)?, (A >
0, p > 1), satisfy these conditions.

By uniqueness and since ¢ is radially symmetric, for each ¢t > 0 the solu-
tion u(-, t) of (3.23)-(3.24) is radially symmetric. By the maximum principle
and since ¢ is radially decreasing, the solution u(-,t) is radially decreasing.
Therefore, we consider the equivalent formulation

n-1

U — (urr + ur) = f(u)a (T, t) € (Ov R) X (0’ T)

with initial-boundary conditions

u(r,0) = ¢(r), r€ (0,R)
u(R,t) =0, u,(0,¢) =0, te(0,T)

A unique solution of (3.23)-(3.24) exists for ¢t € [0, 0) for ¢ > 0 sufficiently
small. By the maximum principle, U(t) := sup,¢ (g, g) 4(r,¢) is an increasing
function. Define the value

T = sup{o > 0: (3.23)-(3.24) has a solution u(-,t) for t € [0,0)}.

If T < oo, then U(T ™) = 0o. Otherwise, if U(T~) < oo, then the solution
to (3.23)-(3.24) could be extended to a time interval [0,0 + ¢) with € > 0
by using standard parabolic estimates, a contradiction to the maximality
of T.

We will assume that the necessary conditions are met for (3.23)-(3.24)
to have a blowup time T < oo.
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Definition 3.3 A point z € Q is a blowup point for (8.23)-(3.24) if
there exists a sequence {(Tm,tm)}S0—y such that ty, = T, 2y — 2z, and
U(Zm,tm) — 00 a8 m — 0o.

The first theorem we prove shows that if the nonlinearity f(u) satisfies
a certain condition, then blowup occurs at a single point (z = 0).

Theorem 3.16 Suppose there is a function F(u) such that F >0, F' >0,
F" >0, fwﬂd% < 00, and

f'F—F'f>2%FF' (3.25)

for € > 0 sufficiently small; then the only blowup point for (3.23)-(3.24) is
the point z = 0.

Proof. We wish to get a lower bound on u,(r,t). We already know that
ur(r,t) <0 for r € (0, R).

Define the function J(r,t) = " lu, + er®F(u). We will show that
J(r,t) < 0 for (r,t) € 2 x (0,T). It can be shown that J is a solution
to

Jo+2=1J, —Jr +eJ

T

=er""}(F'f — Ff' + 2¢FF') — 2" t2F2F" — £, 2

where ¢ = 2¢F' — 2¢2FF" — f'. As long as F satisfies the condition in
(3.25), we have
n—1
r
Note that J(0,¢) =0 for t > 0. If ¢’(r) < 0 for r € (0, R], and ¢"(0) < 0,
then for € > 0 sufficiently small,

Jt+ Jr—Jrr+CJSO.

J(r,0) =" 1¢'(r) + er®F(¢4(r)) < 0 (3.26)

for r € (0, R]. [If ¢'(r) = O for some r > 0 or if ¢”(0) = 0, then equation
(3.26) is no longer valid. See the note at the end of the theorem for the
necessary modification to include these cases.] Finally, for € > 0 sufficiently
small,

Jo(R,t) = R [us(R,t) — f(0)] + eR" 'u,(R,t)F'(0) + enR"1F(0)
< R [enF(0) - f(0)] <0

0 and u,(R,t) < 0. By the maximum

where we have used u:(R,t) =
r (r,t) € (0,R) x (0,T). As a result we have the

principle, J(r,t) < 0 fo
inequality

t)
,t

ur(r,t) < —erF(u(r,t)) (3.27)
for (r,t) € (0, R) x (0, 7).
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Define the function

® 1
G(u) =/u 20) ds
for u > 0. The condition (3.27) yields [G(u)], > er. An integration yields

Glulr, 1) 2 G(u(0,8)) + 51 2 =12, (3:28)
If there is a blowup point at some r > 0, then u(r,t) — co ast — T~ so
that G(u(r,t)) — 0 as t — T~. This is a contradiction to (3.28), so the
only blowup point is at r = 0.

In the event that ¢'(r) = 0 for some r > 0 or ¢"(0) = 0, we can make the
following modification to the proof. By the maximum principle, uz, (z,t) <
Oontheset [RN{z:z > z;}]x(0,T). Also, uz, (0,t) = 0 and uz,4,(0,t) <
0. Define ®,(r) = u(r,n) for any € (0,T); then ®;(r) <0 for r € (0, R]
and ®;(r) < 0. Consequently, equation (3.26) can be replaced by

J(r,n) =719 (r) + er™ F(®y(r)) <0.

The remainder of the proof of Theorem 3.16 is the same except that we
conclude by the maximum principle that J(r,t) <0 on (0,R) x (n,T) for
all n € (0,T). Thus, J(r,t) <0 on the entire set (0,R) x (0,T). O

Corollary 3.17 Under the assumptions of Theorem 3.16, (8.23)-(8.24)
has only the blowup point r = 0 for the special cases f(u) = e* and f(u) =
(u+ AP, (A >0, p>1). Moreover:

If f(u) = €%, then for any a € (0,1),

u(r,t) < —é In (a—;ﬁ) (3.29)
v u(r,t) < =2In(r) + In(lnr") + C (3.30)

for (r,t) € (0,R) X (0,T) and for some constant C.
If f(u) = (u+ A)? for p>1 and X > 0, then for any v € (1,p),

_ 2\ =5

u(r,t) < (——(7 21 Jer ) ’ (3.31)

for (r,t) € (0,R) x (0,T).

Proof. For f(u) = e*, choose F(u) = e**. The condition (3.25) appears as:
(1 _ Ol)e(1+az)u > 2a€e2au

which is valid for a € (0,1) and for € < (1 — a)/2a. The condition that
enF(0) < f(0) requires that € < 1/n. From (3.28) we conclude that
1

—€
«a

€
—au 2 "'7'2
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from which the bound (3.29) on u follows. One could also choose F(u) =

;‘%. Condition (3.25) will be valid as long as € < 1/2 and enF(0) < f(0)

requires € < 1/n. Inequality (3.28) becomes
(u+2)e™ > grz.

For r > 0 sufficiently small and for ¢t < T sufficiently close to T, we have
u+ 2 < 2u, so .
2ue™ > (u+2)e™™ 2> 51'2.

Taking the logarithm and using the previous estimate and (3.29) on u(r,t)
gives us the estimate

u(r,t)

IN

In(u) — 2In(r) + C;
In (21n(2) + K,) — 2In(r) + G
—2In(r) +In(lnr~1)+C

IA

IA

for some constant C and where r is sufficiently small and ¢ is sufficiently
close to T

For f(u) = (u+ A)? where p > 1 and A > 0, choose F(u) = (u + A)".
The condition (3.25) appears as:

(p—)(u+ /\)”J'”"l > 2ey(u+ )\)2'7"1

which is valid for v € (0,p) and for € < (p—~)AP~7/2~. The condition that
enF(0) < f(0) requires that € < A»~7/n. From (3.28) we conclude that

1
p—1
from which the bound (3.31) on u follows. For A = 0, the proof of Theorem
3.16 can be modified by choosing J = "~ lu, + er"+t®F(u) for § > 0 and

small. The bound on u(r,t) for this case is constructed just as in the case
A>0.0

(u+1)1?P> grz

The next results are on “in-time” growth rates. We need not assume that
(1 is a ball nor that ¢(z) is radially symmetric for these results.

Theorem 3.18 For any bounded domain 1, the function
U(t) = sup{u(z,t) : z € O}
18 Lipschitz continuous and U'(t) < f(U(t)) a.e.

Proof. Let t,ty € [0,T). There are points T, 7o € () such that U(t) = u(Z, )
and U(to) = u(zo,to). It follows that

U(t) - U(to) > U(Ig,t) - U(ZO,to) = (t - to)ut(.’to,to) + O(t - to)
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and
U(t) — U(to) < u(Z,t) — u(ZT,to) = (t — to)us(Z,t) + o(t — to)

which imply that U(t) is Lipschitz continuous and hence differentiable al-
most everywhere.
For t > ty, we have

U(t) — U(to)

o Sw® D) +o(l) = Au,) + f(u(z1) + o).

But at (Z,t) we have a maximum for u, so Au(Z,t) < 0. Letting tog — ¢t
gives us U'(t) < f(U(t)) a.e. O

Corollary 3.19 Let u(z,t) be a solution to (8.23)-(3.24). If f(u) = €,
then

U() > —In(T -t) for t€(0,T).
If fuy=(u+ AP forp>1and X >0, then
B B
Ut)+x> (—) for t€(0,T)

T-t
where B = p+1'
Proof. Integration of U'(t) < f(U(t)) yields

* 1
——ds <T-t.
/U(t) f(s)

The inequalities easily follow by an integration. O

We now have a lower bound on U (t) for solutions to (3.23)-(3.24). To ob-
tain an upper bound for solutions u(z,t) requires a few more assumptions.

Theorem 3.20 Let ) be any bounded domain. Let the initial data ¢(z)
satisfy A¢ + f(¢) > 0. Assume that the set of blowup points of (3.23)-
(8.24) is compact. For any n > 0 there exists a £ > 0 such that

ur 2 £f(u) for (z,t) € Q" x (n,T)
where Q" = {z € 1 : dist(z, 9N) > n}.

Proof. Consider the function J(z,t) = us — £f(u) on Q" x (n,T) where
€ > 0 is to be determined. We know that u; > 0 on Q7 x (n,T) by the
maximum principle. Also, J satisfies

Jo— AT - f'(u)J = £f"(w)|Vul? 2 0.
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Since the set of blowup points is compact, if # is sufficiently small,
f(u) £Cy < for (z,t) € 90" x (0,T).

Also, uy > Cy > 0 on the parabolic boundary of Q7 x (n,T). For £ > 0
sufficiently small, J > Cs — £C; > 0 on the parabolic boundary. By the
maximum principle,

J>0 on Q"x (n,T)

and so u; > £f(u) on this set. O

Corollary 3.21 Let u(z,t) be a solution to (3.28)-(3.24). If f(u) = €,
then

u(z,t) < —In(T —t) —In& for (z,t) € x (0,T).
for £ > 0 sufficiently small. If f(u) = (u+ A)P forp> 1 and A > 0, then

B
u(z,t) + A < (E(_Tﬁ—-—t)> for (z,t) € Q2 x (0,T)

for € > 0 sufficiently small where 8 = 5—{—1.

3.4 Blowup: How?

We again work with the initial-boundary value problem (3.23)-(3.24) on a
ball @ = {{ e R" : €| < R}:

ug — (urr + n:lur) = f(u), (r,t) € (0,R)x (0,T)

u(r,0) = ¢(r), r € (0,R)
u(R,t) =0, u.(0,t)=0, te (0,T).

The assumptions on the initial data ¢(r) remain the same. That is, ¢ €
C%([0,R]), ¢'(r) < 0 for r € [0, R], and ¢(R) = 0. In addition, assume that
A¢ + f(#) > 0 for r € (0,R). This will guarantee that u.(r,t) > 0 (see
Theorem 3.3). The function f(u) will be either e* or u? for p > 1.

We assume that (3.23)-(3.24) has finite blowup time 7. In Section 3.3
we proved that blowup can only occur at » = 0. We want to analyze the
asymptotic behavior of u(r,t) near r=0ast — T.

For n =1 and f(u) = %, Kassoy and Poland [KAS3],(KAS4] and Kapila
[KAP1] argued the following formal final time analysis. Since u(r,t) blows
up only at r = 0, u(r,t) — Up(r) for r € (0, R] and Ur should be describ-
able.
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Let 7 =T —t, z = rr~/2, and 0(z,7) = u(r,t). A formal power series
expansion in 7,

(o <]
0(z,7) = —Int + y(z) + Z ™*yk(z), (3.32)
k=1
was postulated. As 7 — 0% we have the asymptotic condition
0(z,7) ~ —In7 + y(z).

We wish to describe the function y(z).
Substituting (3.32) into (3.23) and letting r — 0% yields the differential
equation

By Corollary 3.19, u(0,t) = max,¢[o,g) u(r,t) = U(t) > —In(T —t) and as
a result,

0 <u(0,t) +In(T —t) =60(0,7) + InT = y(0) + i ()
k=1

so that as 7 — 0% we have y(0) > 0. Also, we have u,(r,t) = =129, (z, 7).
Since

oo
ur(r,t) <0 and Oz(z,7) =y'(x) + »_ T 4i(2),
k=1
as 7 — 0% we have y'(z) < 0. At r = 0 we have 0 = u,(0,¢t) which implies
(o]
0=10:(0,7) =4'(0) + Y_ %} (0).
k=1

As 7 — 0% we have y'(0) = 0.
In addition, one can show that

[e <]
10, = {1+ D) | 5k {ky (z) - 2D
2 2
k=1
so that —78, — 1+ zy/(z) as 7 — 0%. The formal (physical) argument is
that the large temporal gradient in the singular region will be suppressed
as the outer region is approached if

%zy’(z) +1—0 as  — oo. (3.33)
Thus, y'(z) = —2 or y(z) ~ —2Inz + K as z — oo and we expect the
behavior

0(z,7) ~—Int—2Inz+ K
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as 7 — 0% so that for r > 0, the final time solution Ur(r) behaves like
—2Inr + K for some constant K.

In summary, the asymptotic behavior of u(r,t) in a neighborhood of
(0,T) [or of Ur(r) in a neighborhood of 0] is determined by the behavior
of a solution y(z) to

-1
v+ (nz -—g)y’+e”—l=0 and y'(z) <0 for 2 >0
with boundary conditions
y(0) >0, ¥'(0)=0, and lim [1+ l:z:y’(:z)] =0.
z—00 2

We will prove this boundary value problem has no solution for dimensions
n =1 or n = 2. This in turn implies that the formal final time analysis is
incomplete.

In this section we will prove that the solution u(r,t) of (3.23)-(3.24)
satisfies the asymptotic condition

u(r,t)+In(T—-¢t) -0 as t - T~

uniformly on sets of the type {(r,t) : r < C(T —t)!/2} for any constant
C > 0. We also obtain a lower bound on u(r,t) near r = 0 for ¢ near the

blow-up time T
2(n—2)
UF(T) Z In ( 2 )

for r > 0 sufficiently small.

We will need to use an estimate on u,(r,t) to determine certain bounds
later on. For the radially symmetric case, these are easy to obtain; however,
such bounds can be obtained even in the non-radially symmetric case by
using the maximum principle. Since u;(r,t) > 0 and u,(r,t) < 0, equation
(3.23) gives us

n-—1

0<wu=1up+ ur+f(u)surr+f(u)-
Multiplying by u, and integrating with respect to r (with lower limit of
integration 0), we obtain

[ur (r, £)]? < [ur(r,8)]? + 21 (u(r,t)) < 21(u(0,t)) (3.34)

where I(u) = [;' f(s) ds.

Although the problem considered by Kassoy, Poland, and Kapila involves
the nonlinear term f(u) = e*, the results about to be developed are adapt-
able to the nonlinearity f(u) = u? which we discussed in Section 3.3. Thus,
we will give a parallel development using these two nonlinearities.
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The Self-Stmilar Problem. To analyze the asymptotic behavior of u(r,t),
we make the following change of variables:

- T = (T — )-1/2.
a—ln(T_t> and z=1r(T —t)" /%

then the rectangle (0, R) x (0,T) transforms into the set
Il = {(z,0): 0 > 0,0 < z < RT"/2¢7/2},
If f(u) = €%, then define
w(z,0) = u(r,t) +In(T — t) and F(w)=¢€" —1;
if f(u) = uP, then define
w(z,0) = (T — t)Pu(r,t) and F(w)=w? — fw

where § = 17 The initial-boundary value problem (3.23)- (3.24) is trans-
formed into

n-1l_ f) we + Fw), (m,0)€ll  (3.35)

wa=wzz+( 2

where the initial-boundary conditions for the case f(u) = e* are

w(z,0) = ¢(zTY?) + InT, z € (0, RT-1/2)

(3.36)
wg(0,0) =0, w(RT/2¢?/26) = =g +InT, o€ (0,00)
and the initial-boundary conditions for the case f(u) = uP are
,0) = TA¢(zT'/?), z € (0,RT'/?
w(z,0) = TP$(T), z€ ) a7

wz(0,0) =0, w(RT~2e°/26) =0, o € (0,00).

From Corollary 3.19 and Corollary 3.21, we have the following a prior:
bounds where £ > 0 is sufficiently small:

0<w(0,0) < —In¢, 02>0, for f(u)=¢" (3.38)

and
8% <w(0,0) < (B/€)P, 020, for f(u)=uP. (3.39)

Equation (3.34) implies the existence of a positive constant v = (¢, f)
such that
— 7 S wg(z,0) <0 (3.40)

for all (z,0) € I1. Combining this with (3.38) and (3.39) yields the estimate

2 < w(z,0) < p (3.41)
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for some positive constant u = u(¢, f) and for all (z,0) € II. In fact, for
f(u) = uP, since u > 0, we have w(z,0) = (T — t)Pu(r,t) > 0.

If there is a steady-state solution to (3.35)-(3.36) or (3.35)- (3.37), say
y(z) = limy— 00 w(z,0), then y(z) must be a solution to equation (3.35),
s0

T 2

For the case f(u) = e*, equations (3.36), (3.38), and (3.40) imply the
conditions:

v + ("‘1 - E) y' + F(y) =0, z€(0,00). (3.42)

y(0)=:a >0, y'(0)=0, and — o0 < —y<y'(z) <0 for z € (0,00).
(3.43)
For the case f(u) = u?, equations (3.37), (3.39), (3.40), and w > 0 imply
the conditions:

y(0)=:a> B, y'(0)=0, and

(3.44)
-0 < -y <y (z) <0 and y(z) 20 for z € (0,00).

For f(u) = e* with 1 < n < 2, the information above is enough to allow
us to conclude that (3.42)-(3.43) has the unique solution y(z) = 0. For
f(u) = uP with 1 <n <2 or with n > 2 and p < n/(n — 2), the problem
(3.42)-(3.44) has the unique solution y(z) = #°. This will be apparent in
the proofs which are given later.

For f(u) = e* with n > 2, Eberly and Troy [EBE1] show that (3.42)-
(3.43) has an infinite number of solutions (which in fact have the asymptotic
property (3.33) which was conjectured by Kassoy, Poland, and Kapila). For
f(u) = uP withn > 2 and p > (n + 2)/(n — 2), Troy [TRO2] shows that
(3.42)-(3.44) has an infinite number of solutions. By comparison of w(z, o)
to a certain singular solution of equation (3.35), we will find that out of
the infinite number of solutions to (3.42)-(3.43) or (3.42)-(3.44), the only
steady-state solutions are y(z) = 0 and y(z) = #?, respectively.

Behavior near Singular Solutions. For f(u) = e*, the partial differential
equation (3.35) has the singular solution

tn-2)

z2

Se(z) =In (

for the cases n > 2. For f(u) = uP, (3.35) has the singular solution

—n\\7?
Sp(z) = (_————4ﬂ Ch, 2_2—))

12
for the cases n > 2 and p > -%5. Note that

1+ %zSé =0, S+ "T_lsg +eS =0 (3.45)
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and
n

B8y + 525, =0, Sy + 25,4 (5,7 =0 (3.46)

for 0 < z < o0.
We show that the singular solution must intersect the initial data w(z, 0).
Consider first the singular solution S,(z); then

S.(0%) = 00 > w(0,0)

and 2(n —2)T
Se(RT™'/?) =1n (‘%)_) <InT =w(RT~/2,0)

since 2(n — 2) < R? for blowup in finite time (see Theorem 2.19). This
proves that w(z,0) intersects Se(z) at least once for 0 < z < RT~1/2,
For the singular solution S,(z), we can make the following observations:

Sp(0%) = 00 > w(0,0) and S,(RT~/?)> 0= w(RT~/2,0).

If w(z,0) < Sp(z) on the interval [0, RT—!/2], then by the maximum prin-
ciple it must be that w(z,0) < Sp(z) on II. By the result of Troy [TRO2],
any solution of (3.42)-(3.44) must intersect S,(z) transversally at least
once. Thus, y(z) = lim,—,e w(z,0) < Sp(z) for all z > 0. As we will see,
the only solution of (3.42)-(3.44) which has this property is y(z) = 0. Thus,
w(0,0) — 0 as 0 — o0, a contradiction to (3.39).

In either case, we conclude that there is a first z; € (0, RT-Y %) such
that w(z1,0) = S.(z1) and w(z,0) < S.(z) on (0,z;) for * =€ or p.

Lemma 3.22 There i3 a continuously differentiable function z,(c) with
domain [0,00) such that z,(0) = z; and w(z1(0),0) = S.(z1(0)) for all
c>0.

Proof. Define D(z,0) = w(z,0) — S.(z). We claim that VD # 0 whenever
D = 0. By the maximum principle, u¢(r,t) > 0 on (0,R) x (0,T). Using
the self-similar change of variables, we have
ur = (T =) (wo + 1+ 3zw;) for f(u) =e*, and
ur = (T —t) P! (wy + Bw + Jzw,) for f(u)=uP.
If VD = 0 at a point in IT where D = 0, then D, = 0 implies that
w, = 0. The condition D, = 0 implies
1+ %zw, =0 for f(u)=e*, and
Bw + Lzwy =0 for f(u) = uP.

In either case, uy = 0 is forced at some point in (0, R) x (0,7T), a contra-
diction.
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Secondly, we claim that D, # 0 at any value (Z,5) € II where D(Z,7) =
0 and D(z,7) < 0 in a left neighborhood of Z.

If D(Z,5) = 0 and D,(Z,5) = 0, then equations (3.35), (3.45), and
(3.46) imply that D;;(Z,7) = Dy (Z,5). In addition, since u; > 0 we have
D,(z,5) > 0. Thus, D,,(Z,5) > 0, which implies that (Z,&) is a local
minimum point for D, a contradiction to D < 0 on a left neighborhood of
Z. It must be that D,(Z,5) > 0.

Recall that the initial data u(r,0) = ¢(r) satisfies the inequality A¢ +
f(¢) > 0. This implies that

-1
Diya(z,0) + =

D, (z,0) + F(w(z,0)) — F(S«(z)) > 0.
On a left neighborhood of z;, this in turn yields
(2" Dy(2,0)), 2 0.

An integration yields D;(z;,0) > 0. By the implicit function theorem,
there is a continuously differentiable function z;(c) such that z;(0) = z,
and D;(z,(0),0) = 0 for some maximal interval [0,00). If 09 < 00, then
by continuity, D(z1(00),00) = 0. But D;(z1(00),00) > 0, so the implicit
function theorem allows an extension of the domain past o, a contradiction
to the maximality of [0, 0¢). Thus, 09 = co. O

For f(u) = u?, since w(0,0) < S,(0%), w(RT~1/2,0) < S,(RT~/?),
and w(z1,0) = Sp(z;) transversally, there must be a last point of inter-
section between w(z,0) and S,(z), say z € (z1, RT~'/2). A construc-
tion similar to Lemma 3.22 leads to the existence of a continuously dif-
ferentiable function z,(¢) with domain [0, 00) such that z1(0) = z1 and
w(zr(0),0) = Sp(zL(0)) for o > 0.

Let II; = {(z,0) : 0 > 0,0 < z < z,(0)}. We can prove the following
comparison result on this set.

Lemma 3.23 The function D(z,0) = w(z,0)—S.(z) satisfies D(z,0) <0
for (z,0) €11;.

Proof. By Lemma 3.22, we have shown that D < 0 on the parabolic bound-
ary of II;. Since F(w) is a locally one-sided Lipschitz continuous function,
we can apply the maximum principle to obtain D < 0 on IT;.

If D(z9,00) = 0 for some (zo,00) € II;, then VD(zg,00) = 0 since
D <0 on II;. But we had shown in Lemma 3.22 that VD # 0 whenever
D = 0. Thus, it must be that D(z,0) <0 for (z,0) €II;. O

Define the value

2 = sup{z € (z;,RT~/?]: D(s,0) > 0 for s € [z1,7]}.
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Since D(z,,0) =0 and D,(z;,0) > 0, the supremum exists. For f(u) = e*
we have 22 < RT~'/2? and for f(u) = u® we have z, < z;, < RT~'/2.
Define z5(0) = z2¢°/2 and define the set

II; = {(z,0) : 0 >0, 71(0) < z < z2(0)}.

Lemma 3.24 The function D(z,0) = w(z,0)—S.(z) satisfies D(z,0) > 0
for (z,0) € II,.

Proof. Let E(0) = D(z2(0),0). By definition of z9, E(0) = D(z2,0) > 0.
Also,

E'(0) = Dy(22(0),0) + %zg(a)Dz(zz(a), o).

As in Lemma 3.22, using u;(r,t) > 0, we have

E'(6) >0 for f(u)=¢€*, and
e P4 [eP°E(0)] = E'(0) + BE(0) 2 0 for f(u) =uP.

In either case, an integration yields E(o) > 0 for o > 0.

On the parabolic boundary of II; we now have D > 0. By the maximum
principle, D > 0 on TI;. An argument similar to the one used in Lemma
3.23 shows that D(z,0) > 0 for (z,0) € II;. O

Corollary 3.25 For each N > 0 there is a on > 0 such that for each
o > on, w(z,0) intersects S.«(z) at most once for z € [0, N].

Proof. For each N > 0 let on be the solution to N = z, exp(%aN). Lemma
3.23 guarantees that D(z,0) < 0 for z € [0,z,(0)) and Lemma 3.24 guar-
antees that D(z,0) > 0 for z € (z1(0),z2(0)]. For 0 > on we have
[0,N] C [0,z2(0)] by definition of ox, so D(-,0) = 0 at most once on
this interval. O

In a later subsection on the convergence results, we will see that z, () —
L as 0 — oo where S.(L) = 0 or S,(L) = f°.

Analysis of the Steady-State Problem. In this subsection we will analyze
the behavior of the boundary value problems (3.42)-(3.43) and (3.42)-(3.44)
which we restate here:

v+ (B2 - 1) v +Fw) =0, z€ 0,0)
The boundary conditions for f(u) = e* are

y(0)=a >0, y'(0)=0, and —~y<y'(z) <0 for z € (0,00),
and the boundary conditions for f(u) = uP are

y(0)=a>p°, y'(0)=0, and —y <y'(z) <0,y(z) >0 for z € (0,00).
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Lemma 3.26 Consider the initial-value problem associated with (3.42).
1. Any solution to (8.42)-(3.48) must satisfy y(v2n) < 0.
2. Any solution to (3.42)-(3.44) must satisfy y(v/2n) < BP.

Proof. To prove part (1), F(y) = e¥ —1 > y, so equation (3.42) implies that

y"+<n—1—£)y’+ys0
z 2

for any solution y(z) of (3.42). Let u(z) = (1 — ‘2%); then

u" + (n;I _ ;) v +u=0, u(0)=y(0), and u'(0) = ¥'(0).

Define W (z) = u(z)y'(z) — u'(z)y(z). While u(z) > 0,

W’+(";1—;)wso and W(0) = 0,

so an integration yields W(z) < 0. But

(L) @)= [%V((—’)‘]’; <o,

so integrating from 0 to v/2n yields y(v2n ) < u(v2n) = 0.

Note that for @ > 0, if y(2) = 0, then y’(z) < 0 by uniqueness to initial
value problems, so y(z) < 0 for z > 2.

To prove part (2), F(y) = y? — By is convex, so F(y) > y — 5° and
equation (3.42) implies that

v"+(n_1—;)v'+v$0

z

where v(z) = y(z) — 4% and y(z) is a solution of (3.42). A similar argument
as for part (1) shows that v(v/2n ) < 0 and so y(v2n) < B°.

Note that for a > 8P, if y(z) = BP, then y’(2) < 0 by uniqueness to
initial value problems, so y(z) < B? for z > 2. O

Define the function h(z) by

Define the function g(z) by

g9(z) =1+ zy'(z) for F(y)=¢¥ -1, and
By(z) + 32y (z) for F(y) =y - By.

<Q

—
8

~
I
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It can be shown that h and g satisfy the following equations:

g"+ (352 - L) g +[F'(y) - 1g =0,

(3.47)
g9(0) >0, ¢'(0) =0,
h” _—__ z h[ F/ _1h= _FII 12,
+ (2 -5 R+ ] W] (3.48)
h(O) Sov hl( )= )
g - %zg = "%w + 2—;—"1/ for F(y) =€’ -1, and (349)

2
In addition, define W (z) = g(z)h'(z) — ¢'(z)h(z); then

1 1 2-
g —-zg= —Ezy” + [ﬂ+ Tn] y' for F(y) =y? — By. (3.50)

Wit (n A - %) W =-F"(y)ly')g, and W(0) =

An integration yields

W) = -—zi=mes’/4 [7 " le="/AF" (y(z)) [y (2))” 9(=) ds
_Il—nezz/41(z)

where I(z) > 0 while g(z) > 0. Note that (h/g)'(z) = W(z)/[g(2)]?, so
while g(z) > 0 we have

h(a:)= 9(z) / pnett/a 1 ‘)]2 dt. (3.51)

Lemma 3.27 Consider the initial value problem for (8.42).

1. Ify(z) i3 a solution to (3.42)-(8.43) with o > 0, then g(z) must have
a zero.

2. If y(z) is a solution to (8.42)-(3.44) with a > BP, then g(z) must
have a zero.

Proof. Suppose that g(z) > € > 0 for all z > 0. Equation (3.51) implies

that h(O)
h2) < 50)°

since h(0)/¢(0) < 0 and since I(z) > 0. Multiplying by z"~! and integrat-
ing yields

g(z) < -6<0

y'(z) < —%x for >0
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which contradicts the boundedness of y’(z) assumed in (3.43) and (3.44).
Thus, g(z) cannot be bounded away from zero.

Suppose that g(z) > 0 for z > 0 and that g is not bounded away from
zero. Suppose there is an increasing unbounded sequence {zx}% , such that
¢'(zx) = 0. Equation (3.47) implies that

g"(zx) = 1 - F' (y(z«))] 9(zx)-
But Lemma 3.26 implies that
1-F'(y(zx)) >0

for k sufficiently large, which forces g”’(zx) > 0 for k large. This is a contra-
diction since g would have two local minimums without a local maximum
between. It must be that ¢’(z) < 0 for z sufficiently large and g(z) — 0 as
z — oo.

Suppose there is an increasing unbounded sequence {zx}$>, such that
g"(zx) =0 and ¢’(zx) < —L < 0. Equation (3.47) implies that

(nz_kl - %) g'(zx) + [F'(y(zx)) — g(zx) = 0

where ¢'(zx) < =L, F' (y(zx)) — 1 is bounded, and g(zx) — 0. The left-
hand side of the last equality must become infinite, a contradiction. Thus,
¢'(z) < 0 for z large and ¢'(z) — 0.

In (3.48), take the limit as £ — oo to obtain

lim h(z) = - lim_g(z) f(;‘tl"‘etg/4 ;: dt

T — OO
— : 1-n,z2/4 I(z
= zll'mooz (4 —%—)”, -
—00

where we have used L’Hospital’s rule. This implies that h(z) < —6 < 0 for
z sufficiently large. Multiplying by z"~! and integrating yields

0

!
<K--—
y'(z) < nt

for some constant K and for z large. As before, this contradicts the bound-
edness of y’(z) assumed in (3.43) and (3.44).

In all of the above cases we arrived at contradictions, so there must be
a value 7 such that g(zo) = 0 and g(z) > 0 for z € [0,20). O

Lemma 3.28 Consider the problem (3.42)-(3.43).

1. If 1 < n <2, then the only solution is y(z) = 0.

2. If n > 2, then the only solution which intersects Se(z) ezactly once
i3 y(z) =0.
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Proof. Let 1 < n < 2; then ""T" > 0. Suppose there is an a > 0 for which
(3.42)-(3.43) has a solution. Let z be the first zero for g(z). Suppose there
is an z; > 7o such that ¢’(z;) = 0 and g(z) < 0 on (z¢, ;). Equation
(3.49) implies that

0 < —3zi9(z1) =¢'(21) — 2z19(21)
= —1z1ev(®) 4 220y (g))
< 0

which is a contradiction. Thus, ¢'(z) < 0 for z > zo and so g(z) < —e < 0
for £ > T > z¢. But

h(z) = g(z) — ) < g(z) < —e.
Multiplying by z"~! and integrating yields
ey < K- &
y(z) <K -~z

contradicting the boundedness of y’(z). As a result, the only solution of
(3.42)-(3.43) for 1 <n < 2is y(z) = 0.
Let n > 2. Define D(z) = y(z) — Se(z); then

D"+ (222 —2) D' + 2222 (D — 1) =0, z € (0,00),

T

(3.52)
D(0%) = =00, D'(0%) = co.

Note that D’(z) > 0 while D(z) < 0 for z in a right neighborhood of 0.
Suppose that D(z) < 0 for all z > 0; then

e —1<0 and D"—}-(n;l—;)D'ZO.

Integrating yields
"= /4D (z) > 7" 1e"Z'/4D'(z) =:p > 0, for z > 7.
Consequently,

T
D(z) > D(z) +p/ ti=net’ /gy,
z
But the right-hand side of this inequality must be positive for z large,
contradicting our assumption that D < 0. Thus, D(z) must have a first
zero x; and D'(z) > 0 on (0, z,].

By Lemma 3.27, g(z) must have a first zero zo. But then

D' (z0) = —x%g(xo) =0 and z¢ > 7;.
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If D(zg) < 0, then there must have been a second zero z4 for D. Otherwise,
D(z) > 0 on (z1, o). Suppose that D > 0 for all z > z¢; then there is an
7 sufficiently large such that

-1 =
D(z) >0, D'(z)<0, D"(Z)>0, and ~ — - ;- <0.
Evaluating equation (3.52) at T yields
0< D"(z) + ("; L ;) D7) + 2022 (o=@ 1) =,

a contradiction. Thus, D must have a second zero z,.

We have shown that there are at least two points of intersection between
the graphs of y(z) and S,(z) for a > 0. Thus, the only solution to (3.42)-
(3.43) which intersects S, (z) exactly once is y(z) = 0. O

Lemma 3.29 Consider the problem (3.42)-(3.44).

1. If1<n<2 0r,ifn>2and B+ ""T" > 0, then the only solution 13
y(z) = 6°.

2. Ifn>2and B+ ""T" < 0, then the only solution which intersects
S,(z) ezactly once is y(z) = °.

Proof. To prove part (1), suppose there is an a > 4 such that (3.42)-(3.44)
has a solution. Let zo be the first zero for g(z). Suppose there is an z; > z¢
such that ¢’(z;) = 0 and g(z) < 0 on (zo, z1). Equation (3.49) implies that

0 < —3z19(z1)

g'(z1) — 3219(z1)
—%Il[y(Il)]p + [ﬂ+ ")_T"] y'(21)
<0

which is a contradiction. Thus, ¢’(z¢) < 0 for z > z¢ and so by an argument
similar to that in Lemma 3.28, we obtain y'(z) < K — £z, a contradiction
to the boundedness of y'. That is, the only solution to (3.42)-(3.44) for part
(1) is y(z) = 0.

To prove part (2), assume a > (3° and let y(z) be the solution to (3.42)-
(3.44). Define W (z) = y(z)S,(z) — v'(2)Sp(z) and Q(u) = F(u)/u; then

Wit (n - ;) W =y5[Qy) — Q(Sp)]- (3.53)

z

Note that Q(u) is an increasing function. Also note that

W(z) = —2Kz~2"1g(z) (3.54)
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where S,(z) = Kz~?P. Since n — 2 — 23 > 0, we have 2" 'W(z) — 0 as
z — 0%. Integrating (3.53) we obtain

T

2"l AW () = / "1™ My (1), (1) [Q (u(1)) — Q (Sp(t))] dt.
0

If0<y< S, for all z > 0, then since Q(u) is increasing, W (z) < 0 for

all z. But then (3.54) implies g(z) > 0 for all z, a contradiction to Lemma

3.27. Consequently, there must be a value z such that y(z) = Sp(2).

Also, W(z) < 0 for z € [0,z9) where zg is the first zero of g(z). At
To, 0 < W'(zo) which implies that y(z¢) > Sp(zo), where we have used
(3.53) and the fact that @ is increasing. Note that W’(z) # 0 since y(z)
and Sp(z) are two linearly independent solutions to the same differential
equation. Thus, z < z¢ is necessary.

Let z; > z¢ be small enough so that W(z;) > 0. Suppose that y > S,
for all z > 2, then Q(y) > Q(S,) and an integration of (3.53) yields

x"_le_’2/4W(z) > x?_le_f‘%/“W(:cl) =:p>0.

But (S,/y)'(z) = W(2)/[y(2)]?, so

S

_yg(z) 2 %(zl) +p / z t1-met /4y (t)) 2 dt.

1

For z sufficiently large, the right-hand side must become larger than 1, in
which case (S;/y)(z) > 1, a contradiction to our assumption that y > S,
for £ > z. Therefore, there is another value ¢ where y(q) = S;(g).

We have shown that there are at least two points of intersection between
the graphs of y(z) and Sp(z) for & > #P. Thus, the only solution of (3.42)-
(3.44) which intersects Sp(z) exactly once is y(z) = 8. O

The Convergence Results. We are now able to precisely describe how the
blowup asymptotically evolves for (3.23)-(3.24) by looking at the self-similar
problems (3.35)-(3.36) or (3.35)-(3.37).

Theorem 3.30 Consider the partial differential equation (3.35).

1. The solution w(z,0) to (8.85)-(3.36) converges to 0 as 0 — oo uni-
formly in = on compact subsets of [0, 00).

2. The solution w(z,0) of (3.85)-(8.87) converges to BP as 0 — oo
uniformly in x on compact subsets of [0, 0).

Proof. Define w™(z,0) := w(z,0 + m) for m > 0. We will show that as
m — 0o, w™(z,0) converges to the solution y(z) of (3.42)-(3.43) or (3.42)-
(3.44) uniformly on compact subsets of Rt x IR. As long as the limiting
function is unique, it is equivalent to prove that given any unbounded
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increasing sequence {n,}, there exists a subsequence [renamed] {n;} such
that w™ converges to y(z) uniformly on compact subsets of R* x IR.
Let N € IN. For ¢ sufficiently large, the rectangle given by

Qv = {(2,0): 0 <z < 2N, Jo| S 2N}

lies in the domain of w™. The radially symmetric function w(¢,0) =
w™(|¢|,o) solves the parabolic equation

Wy = At — %(c,vw) + F(w)
on the cylinder given by
Fany ={(5;0) : R" xR : [¢| < 2N, |o| < 2N}

with —2N~ < (¢,0) < p using (3.41).

By Schauder’s interior estimates, all partial derivatives of @ can be uni-
formly bounded on the subcylinder I'y C I'sn. Consequently, w™, w@,
and w?i are uniformly Lipschitz continuous on @n C @Q2n and their Lips-
chitz constants depend on N but not on 7. By the Arzela-Ascoli Theorem,
there is a subsequence {n;} and a function @ such that w™/, w2/, and wp;
converge to W, Wy, and Wy, respectively, uniformly on Qn.

Repeating the construction for all N and taking a diagonal subsequence,
we can conclude that

n; —_ n; —_ nj P
wr =W, wy! — W,, and Wl — Wze

uniformly on every compact subset in Rt x IR. Clearly w satisfies (3.35)-
(3.36)-(3.38)-(3.40) or (3.35)- (3.37)-(3.39)-(3.40). For n > 2 and F(w) =
e¥ — 1, or, for n > 2 with 8+ (2 —n)/2 < 0 and F(w) = wP — fw, the
function w intersects S.(z) at most once since, by Corollary 3.25, w™ (z,0)
intersects S(z) at most once on [0, N] for each ¢ > on.

We now prove that @ is independent of o. For the solution w(z,0) of
(3.35)-(3.36) or (3.35)-(3.37), define the energy functional

E(o) = /0 o) [%uﬂ —G(w)] da (3.55)
where v = RT~1/2¢°/2 p(z) = z"~1¢=%"/4 and where
Gw)=eY—-w for F(w)=e¥ —1, and
G(w) = FzwPt! — jBw? for F(w) = wP - fu.

Multiplying equation (3.35) by pw, and integrating from 0 to v yields
the equation

fopwkdz = [J we(pws)zdz + [ [pG(w)]s dz

) (3.56)
Jo [pG(w) = 3pwl]  dz + pwow,|3=8.
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Moreover,

E'0) = [i3 [%)pwg—pG( w)] dz (3.57)

[w2(v,0) - G(w(v,0))].

Let a and b be chosen so that 0 < a < b. Integrate equation (3.56) with
respect to o from a to b and use (3.57) to obtain

+%vp

L wtde = —[PE'(0)do + [ p(v)w,(v,0)w,(v,0)do
+1 2 op(v) [fwl(v,0) — G(w(v,0))] do (3.58)
=i E(a) — E(b) +¥(a,b).

Recall that |w;| < 4 and observe that
We(v,0) = =1 — Ru,(R,T(1 —€7?)) for f(u)=e*, and,
We(v,0) = ~Ru, (R, T(1 - €77)) for f(u)=wuP.

We see that in either case w, is uniformly bounded as 0 — co. We conclude
that

lim (sup:ﬁ(a,b)) =0. (3.59)
=00 \b>a

For any fixed N we will prove that

// pW2 dzdo = lim // p(w?)? dzdo =0.
N =) JQN

It is not a restriction to assume that lim;_.oo (741 — n;) = oo. For all 5
sufficiently large,

N< RT-1/2 exp (%(n, - N)) and njy1 —n; > 2N.
Consequently,

f_N fo ? dzdo
o+n,
< f.fvv s TR () dodo

=E(nj — N) - E(njt+1 - N)+4(n; — N,nj41 — N)

where we have used (3.58). Applying equation (3.59) gives us

// pw2 dzdo < limsup[E(n; — N) — E(nj4+1 — N)]. (3.60)

Jj—oo
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Choose any K arbitrarily large. For j sufficiently large we have
E(n; - N) - E(nj+1 -N)=

K zp[ —N))z—(w:fﬂ(z,—zv))?] dz
- p[G (w"i(z,~N)) - G (w™+!(z,~N))] dz

-N

e
+ IR pl%( 2 (@,~N)) = G (w" (z,~N))] da

B p[§ i1 (@,-N))? = G (s (z, - N))| d.

(3.61)

The first two integrals in (3.61) converge to zero as j — 0o. The bounded-
ness of wy7 and w™/ imply that the absolute value of the last two integrals
in (3.61) is bounded by

o0 1
M/ " lexp (——xz) dr
K 4

where M is a positive constant. This integral can be made arbitrarily small
by choosing K sufficiently large

Thus, we have proved that f N pw2 dzdo = 0 for all N, which in turn
implies W, = 0. We have

w(z,0) =w(z,0) = y(z)

where y(z) is a nonincreasing globally Lipschitz continuous solution of
(3.42)-[(3.43) or (3.44)]. For the cases where there is a singular solution
S«(z), the function y(z) intersects S.(z) exactly once on [0,00) since @
does. By Lemma 3.28, the only possibility for y(z) is y(z) = 0 in the case
f(u) = €*. By Lemma 3.29, the only possibility for y(z) is y(z) = 8% in
the case f(u) =uP. O

Corollary 3.31 Let u(r,t) be the solution to (9.23)-(8.24). In the case
f(u) =e,
u(r,t) +In(T'—t) -0 as t > T~

uniformly for r < C(T —t)*/? for arbitrary C > 0. In particular,
,li.l?— [u(0,t) + In(T — t)] = 0.
In the case f(u) = u?,
(T - t)Pu(r,t) - B° as t > T~
uniformly for r < C(T — t)=Y/2 for arbitrary C > 0. In particular,

Jim (T - t)Pu(0,t) = 8°.
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Corollary 3.32 Consider IBVP (38.23)-(3.24) for the cases where the sin-
gular solution S.(r) exists. There is a value r1 € (0,R) such that the fol-
lowing properties are valid:

1. u(r1,0) = S.(r1),
2. u(r,0) < Si(r) for0<r <7y, and

3. for eachr € (0,71) there isat =1t(r) € (0,T) such that u(r,t) > Si(r)
forte (I,T).

Proof. Theorem 3.30 guarantees that the first branch of zeros z;(o) of
D(z,0) = w(z,0) — S.(z) is bounded and converges to the number £ where
Se(£) =0 or S,(¢) = B°.

Define r; = z,;T'/2; then D(z,,0) = 0 implies that u(ry,0) = S«(r1). In
addition, u(r,0) < S.(r) for r € (0,7;).

Since z;(0) is bounded and since = D(rT~/2¢?/2,0) > 0 for each r €
(0,71), there is a value @ > 0 such that

rT~/2¢%/2 = 1,(5), D(21(5),5) =0, and, D(rT~Y/2¢°/2,6) >0

for all o > . Changing back to the variables (r,t) with & = In[T'/(T — 7))
gives us u(r,t) > S.(r) for t € (¢,T). O

3.5 Comments

The basic fundamental theory for parabolic problems can be found in
[FRI1], [LAD], and [HEN]. The existence results for parabolic initial bound-
ary value problems assuming the existence of upper and lower solutions are
an outgrowth of similar results for elliptic problems. These in turn can be
traced back to the Perron method for solving the Dirichlet problem (see
[GIL)]). Sattinger [SAT1] used a monotone iteration scheme to prove The-
orem 3.1 assuming that f(z,¢,u) is C! with respect to u. A “Perron-type”
proof of Theorem 3.1 is given in [BEB2] assuming only Holder continu-
ity, but the existence should be viewed as a consequence of invariance as
discussed in Chapter 4.

The problem of nonexistence for parabolic problems waas driven by the
need to understand supercritical thermal events. The first systematic de-
velopment of the supercritical case for the ignition problem is due to Kas-
soy, Lifian, and co-workers [KAS1],[KAS2],[KAS3],[KAS4] but either for
extremely simplified models or the results were numerical in nature.

An important paper by Ball [BAL] discussed the ideas of nonexistence
and blowup. The earliest blowup results are due to Kaplan [KPL] and Fujita
[FUJ1], but the first to study blowup for the ignition model is the paper by
Bebernes and Kassoy [BEB4]. In that paper, upper and lower bounds for



3.5. Comments 87

the blowup time are rigorously proved. The best results on when blowup
occurs are due to Lacey [LAC1] and Bellout [BEL].

In Section 3.3, the results presented are essentially due to Friedman and
McLeod [FRI2]. Numerical experimentation [KAS3],(KAP1] clearly pre-
dicted that, for radially symmetric domains, as the blowup time was ap-
proached a single hot spot developed. For f(u) = uP, p sufficiently large,
and for sufficiently large initial data, Weissler [WES3] was the first to prove
single point blowup. Friedman and McLeod [FRI2] extended these results
significantly using a clever maximum principle argument.

The question of where blowup occurs can be answered by giving a char-
acterization of the asymptotic behavior of the solution near blowup. Kassoy
and Poland [KAS3] and Kapila [KAP1] independently had predicted that
the final time solution profile would be of the form —2Inr at the blowup
point. Dold [DOL] challenged their prediction and suggested a different
variable grouping to describe the thermal runaway process. The Kassoy-
Kapila prediction in part based on numerics has since been proved incorrect
[BEBY)], [EBE1],[EBE2],[FRI4],[TRO2]. One can describe the asymptotics
of the solution in a backward space-time parabola. This was first done by
Giga and Kohn [GIG5] for f(u) = uP with p < 1+ 2/n and has been
extended to more general nonlinearities in [GIG6],[BEB10], [BEB11]. The
ideas of using backward similarity variables can be traced back to Leray
[LER] in 1934.

Determining the final time solution profile at time ¢ = T remains a dif-
ficult and unsolved problem. Using the Dold [DOL] similarity grouping,
several numerical studies have been conducted [BER],|GAL1] which sup-
port the conjectures of Dold and of Galaktionov and Posashkov [GALZ2].
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The Complete Model for Solid
Fuel

In this chapter we discuss comparison techniques, invariant sets, and ex-
istence results related to invariance. Our main application is the complete
solid fuel model (1.24)-(1.25):

T, — AT = eby™ exp (L

) @ enx (0,0
ye — BAy = —e6Ty™ exp (L)

with initial-boundary conditions

T(z,0) =1, y(z,0)=1, z€Q
T(z,t) = 1, B8 =0, (z,t) € 90 x (0,0).

where 8 > 0, > 0, and § > 0. We prove there is a solution (7', y) for all
(z,t) € 1 x (0,00) such that y(z,t) — 0 as t — oo.

Section 4.1 covers comparison techniques. These methods are general-
izations of maximum principles. The comparisons for systems of equations
require the concept of a quasimonotone function.

In Section 4.2 we discuss invariance results. The main idea is that of
an invariant set £ which contains the range of solutions to a given initial-
boundary value problem. The results rely on a geometric concept of outer
normals to ¥ which in some sense prevent solutions from exiting 3.

The existence results of Section 4.3 are closely related to the invariance
results. The main tool used in proving existence of solutions is the Leray-
Schauder degree theory.

4.1 Comparison Techniques

We begin with the scalar inequalities which we used in Chapter 3. The
following result is a generalization of the maximum principle.

Theorem 4.1 Let IIr = Q x (0,T) and Tt = (Q x {0}) U (892 x (0, T)).
Suppose u,v € C(Il;, R) N C?(Il7,R) are two functions such that

us — Au — f(z,t,u) < vy — Av — f(z,t,v), (z,t) €lr

u(z,t) < v(z,t), (z,t) €T'r;
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then u(z,t) < v(z,t) for all (z,t) € 7.

Proof. Let d = v — u. Assume that the conclusion is false; then there
is a first £ > 0 such that d(Z,f) = 0 for some Z € (, d(z,t) > 0 for
(z,t) € Q x [0,7), and dy(Z,%) < 0. Moreover, d(z,?) attains its minimum
at z =%, so Vd(Z,t) = 0 and Ad(z,%) > 0. However,

de(Z,t) = ve — ue > Av — Au— f(Z,,v) + f(T,t,u) >0,
a contradiction. Thus, u(z,t) < v(z,t) for all (z,t) € Iz. O
Corollary 4.2 If f(z,t,u + z) — f(z,t,u) < Lz for 0 < z < 6 and if
u,v € C(Il7,R) N C%(Il7,R) have the properties

ue — Au = f(z,t,u) < vy — Av — f(z,t,v), (z,t) €llr

u(z,t) < v(z,t), (z,t) €Tlr,

then u(z,t) < v(z,t) for all (z,t) € 7.

Proof. Set v¢ = v + ee?Lt for € > 0; then

vf — AvE — f(z,t,0%) = v, +2Lee?tt — Av — f(z,t,v + ee?Lt)
> v+ 2Lee?lt — Ay — f(z,t,v) — Lee?Lt

ve — Av — f(z,t,v) + Lee?Lt

> v — Av— f(z,t,v)

> u— Au-— f(z,t,u)

for (z,t) € I, and where we have used the one-sided Lipschitz condition
for f(z,t,u). Moreover,

vé(z,t) = v(z,t) + ee?Lt > v(z,t) > u(z,t)

for (z,t) € I'r. The hypotheses of Theorem 4.1 are satisfied for the func-
tions v® and u. Consequently, v¢(z,t) > u(z,t) for all (z,t) € IIr. This
inequality and v(z,t) = lim._ o+ v®(z,t) imply v(z,t) > u(z,t) for all
(z,t) € ﬁT. a

Theorem 3.2 is a restatement of Theorem 4.1 and Corollary 4.2. These
results do not extend to systems unless we impose an extra condition. For
a,b € R", define the orderings “<” and “<” by

a<b & a;<b; Vi, and, a<b & a; <b; Vi.
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Definition 4.1 A function f : D ¢ R™ — IR" is quasimonotone nonde-
creasing if f; is nondecreasing in z; for j #¢. Thatis, ifz <y and z; = y;
for z,y € D, then fi(z) < fi(y) for alli =1,...,n. Similar definitions can
be given for quasimonotone nonincreasing, quasimonotone decreasing, and
quasimonotone increasing.

Consider the parabolic system

% — agAug = fr(z,t,u), k=1,...,n,

where v = (uy,...,u,). For @ = (ay,...,a,) and f = (f1,..., fn), the
system of equations may be written in the form

us — oo Au = f(z,t,u, Vu).
Theorem 4.3 Let u,v € C(TII7,R™) N C?1 (I, R™) be functions which
satisfy the conditions
u —aeAu— f(z,t,u) < v, — ae Av — f(z,t,v), (z,t) €lr
u(z,t) < v(z,t), (z,t) €lr.

If f is quasimonotone nondecreasing, then u(z,t) < v(z,t) for all (z,t) €
Ir.

The proof of Theorem 4.3 goes essentially as in the 1-dimensional case.

Initial-boundary value problem (1.24)-(1.25) is not quasimonotone, so
Theorem 4.3 is not applicable. There is a very useful comparison theorem,
however.

For z : IIr — R™, define L;2; = %’ti — E;z; where E; is a uniformly

elliptic operator with uniformly bounded coefficients on IIt and is of the

form
Ei=Y ay 3—2+sz"i
1_jk RAFTI N ; ]sz'

In the following development, we consider functions F,F : Tz x R" —
IR"™ such that F(z,t,u) > F(z,t,u), F is Lipschitz continuous in u uni-
formly in (z,t), and F is quasimonotone increasing in u.

For u,v € R", define the replacement vector 47 (v) by

ﬂj(v) = (ul, ceey Uj—1,V5,Ujp1,y .- ,un).
The next result is due to Fife [FIF).
Theorem 4.4 Let u,u € C(TIr,R™) N C*!(IIt, R™) satisfy

Lu - F(z,t,u) > 0> Lu— F(z,t,u), (z,t)€llr
u(z,0) > u(z,0), z€Q,
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and either
u(z,t) > u(z,t) or (:1: t) > g (z,t), (z,t) €00 x(0,T);

then u(z,t) > u(z,t) for all (z,t) € .

Proof. For € > 0, define v = u—=(1+2£t)(1,. .., 1) where £ is the Lipschitz
constant for F; then
L,;’U,; = L,‘Qi — 2¢f
< Fi(z,t,u) - 2et
< Fi(z,t,v)+el(1+ 20t) — 2eL

F(z,t,v) +eL(2t — 1)

where the Lipschitz continuity of F was used. Thus, for ¢t € (0, -%] we have
Liv; < Fi(z,t,v).
Set w = u — v. For each j we have

Ljw; = Lju; — Ljv;
2 Fj(I,t,’u) —Ej(l',t,'l)) (41)
Z Ej(zatau) _Ej(z’tav)

for (z,t) € O x (0, %] Since w(z,0) > 4-(1,...,1), there is a 7 € (0, %]
such that w > 0 on [0, 7).
Since F; is nondecreasing in u; for ¢ # j, we have

Ej(za tu) = Ej(xa t, ’&J(’u))
F(z,t,97(u)) (4.2)
Ej(xa t,v) — e(uj - Uj)

v

v

for t € [0, 7].

Combining the inequalities (4.1) and (4.2) yields Ljw; + fw; > 0 for
gz t) € 0 x (0,7) with w;(z,0) > 0 for z € Q and either w;(z,t) > 0 or
-32—“ £ > 0 for (z,t) € 80% (0, 7). By the maximum principle, w;(z,t) > 0
on Q) x [0,7] for each j =1,...,n. Thus, w(z,t) >0 on Q x [0, £].

Let € — 0%; then u(z,t) > u(z,t) on QI x [0, £]. The arguments above
may be repeated on intervals of the type [’“‘ S&.ﬂL] for k£ > 1 to eventually
obtain the result on IIr.. O

Similar results hold for functions F and F where F is Lipschitz continu-
ous in u uniformly in (z,t) and where F is quasimonotone nonincreasing.
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We need only require that for u,%@ € C(TIr, R") N C*!(Ily, R™):

Lu - F(z,t,u) > 0> Lu— F(z,t,u), (z,t) €y
u(z,0) > u(z,0), z€

and either
u(z,t) > u(z,t) or —(z,t) > —(z,t), (z,t) €00 x(0,T);
) - ) 9 b — 9 ) b bl k) bl

to guarantee that %(z,t) > u(z,t) for all (z,t) € 7.

The application of these comparison results to the solid fuel model is
as follows. Let T = 1 + €6 in equations (1.24)-(1.25). The system may be
written as

0: — A = 6y™ exp (1+eo)
- BAy = —yy™ exp (17)
6(z,0) =0, y(z,0)=1, z€0]
0(z,t) =0, 228 =0, (z,t) €0 % (0,T)

, (I,t) ellr

where v = ¢6T. Since § >0, 1 < exp(ﬁ) < exp (1) for & > 0. Moreover,
since 0 < y < 1, we have

0 1
m < sy™ < Sy™ -
oy™ < by exp<l+€0) < by eXP(E)

and

1 0
— m ol < — m < — m'
Y exp (E) S exp(1+€0> ==

Consider the comparison systems

0 — AB =6y™exp (1)

_ Ag = s (ZL', t) € HT
_yt BAY = —g™ (4.3)
6(z,0) =0, (zO)—l €l
O(z,t) =0, 22 =0, (z,t) €90 x (0,T)
and
9, — A = 5y™
T ezEol . () €Ty
Y, — By = —vy™ exp (2) (4.4)

(
(

I I

z,0)=0, y(z,0)=1, z€Q
z,t) =0, %20 — 0, (z,1) € 80 x (0,T).
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Both system (4.3) and system (4.4) are quasimonotone nondecreasing.
By Theorem 4.4 we have the comparisons

(6,00 < (6,Y)<(8,Y)<(8,Y)<(8,1).

where (0,7) is a solution to (4.3) and (9, y) is a solution to (4.4). Note that

e, m=1
g=7(t) = =
1 1
(1+7im—lit) y m>

{ e~ vexp(1/e)t m=1

=y(t) = - ;

Y 1 =

(1+‘7(m—1)exp(1/e)t) , m>1
soy—0and 7 — 0 ast — oo. Since y < y < 7, we have y(z,t) — 0 as
t — oo.

To construct useful majorant and minorant reaction functions F and F,
define

<

F;(z,t,u) = inf{F;(z,t,’ (u)) : v > u}

and _ .
Fj(z,t,u) = sup{Fj(z,t,9’ (u)) : v < u}.

When u is increased, the infimum is taken over a smaller set and the supre-
mum is taken over a larger set. Consequently, F'; and F'; are nondecreasing.
If F is Lipschitz continuous, then so are F and F.

Corollary 4.5 Let u,u € R"™ where u < u. Suppose that F satisfies
Fy(z,t, @ (w)) > 0> Fy(z,t,4° (@)

for uy < uk ST (k # 5) and for (z,t) € TIr.
Let u be a solution of

uy — Eu = F(z,t,u), (z,t)€Qx(0,T)

(4.5)
u<u(z,0)0<7 z€0
where E 1s a uniformly elliptic operator, and with either
u<u(z,t) <u, (z,t)€dNx(0,T) (4.6)
or
ou
—(z,t) =0, (z,t) € 90 x (0,T); 4.7

on
then u < u(z,t) <7 for (z,t) € 7.
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Proof. Construct F and F by defining
F; = inf{Fj(z,t,%' (uv)) :u < v < W}

and _ '
F; = sup{Fj(z,t,?’ (u)) : u < v < u}.

Theorem 4.4 can be applied using these values for F and F. O

Corollary 4.6 Let u(z,t) be a solution to (4.5)-(4.6) or -(4.7). Suppose
that F and F are independent of z. Let a(t) be a solution to

a =F(ta), af0)=u

and let 8 be a solution to

ﬂl = F(t’ :B)a ﬂ(O) =

with a < u <T L b for some a,b € R"; then o(t) < u(z,t) < B(t) for all
(.’E, t) e llr.

el

4.2 Invariance

Let O C IR™ be a bounded domain with boundary 99 of class C2+% for
some a € (0,1). For T > 0, define the cylinder IIr = Q x (0,T) with
lateral boundary Sz = 9Q x (0,T). For u € C?!(Il7,IR™), define Fu =
(Euy,...,Eup) by

0%u(z, t)
E(z,t)uk(z,t) Ea,Jzt 69:,63:]
where a;; € C*%/2(TI7,R). We assume that the matrix A = [a;;] is sym-
metric and positive definite with uniformly bounded coefficients, so E is a
uniformly elliptic operator.
Let M(z,t,u) = [M;;(z,t,u)] be an m X m matrix where

M,'j c Ca,a/2,a(ﬁT X ]Rm,IRm).

We can choose M so that the operators

8 (9"’(),c
6t ZMgka,]a a 8_1,...,m,

are uniformly parabolic. _
Let f(z,t,u,p) € C**/2*%(T[; x R™ x R"™,IR™) where p = [p;;] is
an n X m matrix.
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In this section we will consider the quasilinear parabolic initial value
problem

uy = M(z,t,u)E(z,t)u + f(z,t,u, Du), (z,t) € lr (4.8)
u(z,0) = ¢(z), €N (4.9)

where ¢ € C?2**(Q),R™) and Du = [0u;/dZi|nxm, With either of the
boundary conditions

u(z,t) = ¥(z,t) € C***(Sr,R™) (4.10)
or

Ou(z,t)
In(z)

where 7(z) is an outward normal vector to ) at z. Assume that for the
Dirichlet boundary condition, ¢ and 1) satisfy the compatability conditions

¥(2,0) = ¢(z)

= h(z,t,u(z,t)) € Clral+a/21+a(T x R™ R™)  (4.11)

and
¥e(z,0) = M(z,0,9(z))E(z,0)4(z) + f(=,0,4(z), Dé(z))

for z € 9. Assume that for the Neumann-type boundary conditions, ¢
and h satisfy the compatability condition

04(z) _
an(x) - h(Z,O, ¢(I))
for z € 1.

Definition 4.2 The set ¥ C R™ is positively invariant relative to

1. IBVP (4.8)-(4.9)-(4.10) if any solution u satisfies u(llz) C £ pro-
vided ¢ € C**t*(Q), %) and ¢ € C*+*(Sr, %), or

2. IBVP (4.8)-(4.9)-(4-11) if any solution u satisfies u(Il7) C T pro-
vided ¢ € C*+* (0, T).

Definition 4.3 The matriz M (z,t,u) satisfies the eigenvalue condition on
¥ if for each (z,t) € Iz and u € L there exists an outer normal vector
N(z,t,u) to 9T at u, and a A(z,t,u) > 0, such that

N(z,t,u)T[M(z,t,u) — A(z,t,u)]] =0. (4.12)

This conditions says that N is a left eigenvector of M corresponding to the
eigenvalue A.
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N(x, t, u)
h(x, t, u)
0 ]
\L f(x, t, u)
Figure 4.1.

Definition 4.4 Consider IBVP (4.8)-(4.9)-(4.10). The function f satis-
fies the strong flux condition on X if for each u € OX there is an outer
normal vector N(z,t,u) to ¥ at u such that

N(z,t,u)e f(z,t,u,P) <0 (4.13)
for those matrices P such that PN(z,t,u) =0 for (z,t) € IIr.

Definition 4.5 Consider IBVP (4.8)-(4.9)-(4.11). The function f satis-
fies the strong flux condition on ¥ if for each u € 0¥ there is an outer
normal vector N(z,t,u) to 0¥ at u such that

N(z,t,u) e f(z,t,u, P) <0 for those matrices P such that
PN(z,t,u) =0 for (z,t) €z, and (4.14)
PT'I(-'E) = h(z,t,u) fOT ((II, t) € gT,

and
N(z,t,u) ® h(z,t,u) <O for (z,t) € St. (4.15)

In either definition, if instead N o f < 0, then f is said to satisfy the weak
fluz condition.

These last definitions are a geometric concept which is illustrated in
Figure 4.1.

We will show in the next two theorems that the strong flux condition will
force solutions u to (4.8) to remain in ¥ whenever the initial and boundary
data are in ¥.
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Theorem 4.7 Let ¥ C R™ be an open bounded convez set which contains
0. Let the matriz M satisfy the eigenvalue condition (4.12), and let f satisfy
the strong fluz condition (4.18), with the same outer normal vector N.
If $ € C**2(Q, %) and ¢ € C*t*(St,Z), then T i3 positively invariant
relative to IBVP (4.8)-(4.9)-(4.10).

Proof. We prove the theorem by contradiction. Suppose that u € C(IIz) N
C%*!(Ilr) is a solution to (4.8)-(4.9)-(4.10) whose values do not remain
in . There must be a first time ¢, € (0,T] and some zo € (1 such that
up = u(zo,to) € 0L and u(z,t) € L for all (z,t) € Q x [0, o).

Since f satisfies the strong flux condition, there is a normal vector Ny =
N(zo, to, up) such that Ny e f(zo,to,up, P) < 0 for matrices P such that
PNy = 0. Define w(z,t) = [u(z,t) — uo] ® No. By the construction of
to, w(zo,to) = 0, w(z,t) < 0 for (z,t) € Q x [0,%0], and wy(zo,t0) > O.
Therefore, w(-,tp) attains its maximum at zg, so Vw(zo,to) = 0 and the
matrix [wg, j] is negative semidefinite. Consequently, E(zo, to)w(zo,t0) =
Z,’,]‘ a:‘j(an tO)wz,-z,- (zo,t0) 0.

The condition Vw(zo,t9) = 0 implies Du(zo,t0)No = 0, so Dug :=
Du(z, to) is a matrix such that Ny e f(zo, to,uo, Dug) < 0. Also,

N{ M (zo,t0,u0) = A(%o, to, uo)Ng

by the eigenvalue condition. Thus,

we(zo,t0) = ut(z0,t0) ® No

N [M (2o, to, uo) E(zo, to)u(2o, to) + f(2o, to, to, Duo)]
A(zo, to, u0) N E(o,to)u(zo,t0) + No ® f(2o, to, 4o, Duo)
A(zo, to, uo) E(zo, to)w(zo, to) + No @ f(zo, to, uo, Duo)
<0

since E(zo,to)w(zo,t0) < 0 and Np e f(zo,t0,u0, Dup) < 0. This is a
contradiction to w¢(zg,tp) > 0. Thus, ¥ is positively invariant. O

Theorem 4.8 Let ¥ C R™ be an open bounded convez set which contains
0. Let the matriz M satisfy the eigenvalue condition (4.12), and let f satisfy
the strong flur condition (4.14)-(4.15), with the same outer normal vector
N. If ¢ € C***((),X), then T is positively invariant relative to IBVP

(4.8)-(4.9)- (4.11).

Proof. This theorem is also proved by contradiction. Let u € C(II7) N
C%!(Il7) be a solution to (4.8)-(4.9)-(4.11) whose values do not remain
in . There must be a first time to € (0,7] and some zo € {2 such that
ug = u(Zo, tp) € 0T and u(z,t) €  for all (z,t) € Q x [0,tp).
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Since f satisfies the strong flux condition, there is a normal vector Ny =
N(zo,to,up) such that Ny e f(zo,to,up, P) < 0 for matrices P such that
PNy = 0. Define w(z,t) = [u(z,t) — ug] ® No.

If 2o € , then as in Theorem 4.7, w(-,¢p) has a maximum of 0 at zo,
Vw(zo,t0) = 0, we(z0,t0) > 0, and E(z, to)w(zo,to) < 0. Since DugNy =
Vw(zg,t0) = 0, where Dug = Du(zo, o), we have Ny e f(zo, to, ug, Dug) <
0 by (4.14). Moreover, w;(zg,t9) < 0 follows in a similar fashion as in
Theorem 4.7, a contradiction to w;(zg, o) > 0.

Suppose zg € 9. The matrix P = Duyg satisfies the conditions PNy = 0
and PTn(zg) = h(zo,to,uo) since

du(zo, to) T
h(zo,t0, ug) = ———= = (Du z
(2o, to, uo) n(zo) (Duo)” n(zo)
by definition of the normal derivative. By (4.14), Nge f(zo, to, uo, Dug) < 0.
By continuity of f and w;, and by the piecewise smoothness of X, there

is an open ball B with center (zg,to) such that

E(ZE, to)w(x, to) =

we (z,t0) — N (z,t0,u(z,to))ef(z,t0,u(z,t0), Du(z,to))
Az, to,u(z,to))

on BN(Qx{to}). Also, w(zo,to) = 0, w(z,t0) < 0on BN(Qx{te}), and 90
satisfies the interior sphere condition. By the Hopf Lemma, ?%]—’(;—gfl > 0.
However, by (4.15),
Ow(Zo, o) _ Au(zo,to)
In(zo) In(zo)
a contradiction. It must be that ¥ is positively invariant. O

>0

® No = h(zo,to,up) ® No <0,

If the strong flux condition is replaced by the weak flux condition, then
the last theorem is no longer true. For example, consider

u=Au+ (u—-1)23 (z,t) ey, T>1
u(z,0)=0, z€Q

%‘é{;’? =0, (:c,t) EgT.

Let ¥ = (—~1,1); then N(z,t,+1) = +1 for any (z,t) € II1 and f(z,t,u) =
(u—1)%3. At u =1€ 9%, N(z,t,1)f(z,t,1) = 0, and at u = —1 € JL,
N(z,t,—1)f(z,t,—1) = —22/3 < 0, so the weak flux condition is satisfied.
However, a solution to the IBVP is u(z,t) =1+ (t—1)3. Att=1,u=1,
but for t € (1,T], u(z,t) > 1 and T is not invariant.

4.3 Existence

The theorems in this section rely on compact operators associated with
the initial-boundary value problems. We will construct these operators and
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then use Leray-Schauder degree theory to obtain solutions which lie in an
invariant set.

For a function v : Tz — IR™, define Fv : Il — R™ by Fu(z,t) =
f(z,t,v(z,t)). Let F denote the nonlinear operator which maps v to FV.
Since f is Holder continuous, F : C®(TIy) — C**(1Ir) is a bounded map-
ping for any a € [0,1]. In addition, F : C(TIt) — C(II7) is continuous.
By the boundedness of F' we have |Fv|gaa ) < Vvl ga i,y for a generic
constant +.

Also, for the matrix M(z,t,u), define Mv by Mv(z,t) = M(z,t,v(z,t)).
Let M denote the nonlinear operator which maps v to Mv. The matrix
M(z,t,u) is also Hélder continuous, so the operator M : C%(Ily) —
C%¢(Tr) is a bounded mapping for any a € [0,1] and is continuous for
a = 0. Moreover, |Mv|C,_° @) < Mlga iy, for a gene_ric constant .

Define B, = {v € C*(Il7) : v(z,0) = ¢(z) for z € 1} where ¢(z) is the
initial function in (4.9). For v € B,, consider the system

uy = Mv(z,t)Eu(z,t) + Fu(z,t), (z,t) €llr (4.16)
u(z,0) = ¢(z), z€ (4.17)
u(z,t) = ¢¥(z,t), (z,t) € Sr (4.18)

where we now assume that M(z,t,u) = diag{M,(z,t,u) : £ = 1,...,m}
whose diagonal entries are positive. Consequently, we have an uncoupled
system of linear equations with coefficients in C**(II1) where each equation
is uniformly parabolic. The standard linear theory implies that each equa-
tion in (4.16)-(4.17)-(4.18) has a solution u, € C?*%¢(Ml7), £ = 1,...,m,
which satisfies

|ullcz+aa(ﬁT) S c(lFU|Caa(ﬁT) + |¢|Cz+aa(ﬁ) + |¢’|Cz+aa(§T)) (4'19)

where c is some constant [LAD, Thm.5.2, pg.320].
Define the mapping K : B, — C?*t%¢(II1) by Kv = u; then K is a
bounded operator for each a € (0, 1] and

IKUl02+aa('ﬁT) < 6(7|U|C¢(ﬁr) + |¢lcz+a(ﬁ) + |¢|C2+a(§1~))
for some constant c.

Lemma 4.9 The operator K can be extended to K : C(TIt) — C(Ilt) and
18 continuous and compact.

Proof. The operator K can be extended to K : C(Il7) — W2!(Ilr) for
g > 1 sufficiently large, and is continuous. The extension follows from
[LAD, Thm.9.1, pg.341]: For v € C(IIt), (4.16)-(4.17)-(4.18) has a unique
solution u = Kv € W2!(Il7) which satisfies the condition

|Kvlwz(nr) < e(IFv]Lgmr) +Hblwz-20 () +blwz-1/a1-1/00 (5,)) (4:20)
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for some constant c¢. Using the estimates for F and M, and analyzing the
proofs in [LAD, Ch.IV, Sec.9], one can replace the right-hand side of (4.20)
by another bound:

|KU|W§"(H1) < c(”fl'”lc(ﬁ.,) + |¢|02+a(ﬁ) + |¢|cz+a(§T)- (4.21)

Let v1,v2 € C(IIT) with |v; —U2|C(ﬁ1~) < 1. The functions Kv; and Kv,
are solutions to (4.16)- (4.17)-(4.18), so

(Kvi — Kv2): = Muv,E(Kv; — Kvy) + Fvy — Fuog

(4.22)
+(M’Ul - M'U2)EK'U2,

and Kv; — Kv, is a solution to (4.22) with zero initial and boundary
conditions. Therefore,

IKUI - K’Uglqu,l(n.r)
< ClF’U1 — Fuy + (M’U1 - Mvz)Eszqu(nT) (423)
< c(|Fv1 - FU?lC(ﬁT) + ’7|le - M’l)zlc(ﬁT)lszlqu,l(nT))

just as in the construction of (4.20) and (4.21). Since Kv, is a solu-
tion to (4.16), inequality (4.21) is valid with v replaced by v,. Note that
|v2|C(ﬁ7~) < |“1|C(ﬁT) +1, so0 |Kv2|qu,1(nT) < ~ for a generic constant
depending on |v,| C(fiy)- Therefore (4.23) implies

|Kvy — K’l)2|wq2,1(n.,.) <c(|Fv; - Fv?lC(ﬁ-p) + |[Mv;, — Mv?lC(TI'-p))

for some constant ¢, so K : C(Ilt) — Wg'l(HT) is continuous.

From standard functional analysis [ADA], qu'l(HT) is compactly em-
bedded in C'**(TIy) for 0 < b < 1 — 242 and C'**(Il7) is compactly
embedded in C(II7), so extend K to K : C(IIz) — C(II), which is com-
pact and continuous. O

Theorem 4.10 Let ¥ C R™ be an open bounded convez set which contains
0. Let the diagonal matriz M satisfy the eigenvalue condition (4.12), and
let f satisfy the strong fluz condition (4.18), with the same outer normal
vector N. If ¢ € C?**(0), ) and ¢ € C?***(Sr,X), then IBVP (4.8)-(4.9)-
(4.10) has a solution u € C**t*(1I1, ¥).

Proof. Let K : C(IIr) — C(II7) be the completely continuous operator
constructed in Lemma 4.9. If u = AKu for some A € (0,1], then u €
C?*t2(TI7) is a solution of
ut = MuEu + AFu, (z,t) €Ilr (4.24)
u(z,0) = Md(z), €0 (4.25)
u(z,t) = M\p(z,t), (z,t) € St. (4.26)
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The hypotheses of Theorem 4.7 are satisfied, so the solution u has the
property u(Il7) C .

We need only show existence to u = AKu for some A € (0,1]. Define
m(Z) = max{|z| : € T} and U = {u € C(TI7) : [ulo,y <m(E)+1} #
0. Consider the completely continuous operator I — AK. For A € [0,1], the
Leray-Schauder degree, deg(I — AK,U,0), is defined. To see this, suppose
there is some u € QU such that (I — AK)u = 0 for some . If A = 0, then
u=0¢adU.If A #0, then u = AKwu is a solution to (4.24)- (4.25)-(4.26),
so u(ll7) C £ and |u|, fiy) < m(E); that is, u & OU. Thus, (I = AK)u #0
for all u € U and degél — MK, U,0) is defined.

By homotopy invariance, deg(I — AK,U,0) = deg(I,U,0) = 1 for A €
[0, 1]. Since deg(I — K,U,0) # 0, u = Ku has at least one solution u € U.
Thus, u € C?+*(TI7) is a solution to (4.24)-(4.25)-(4.26) with A = 1. D

The same result is true with the strong flux condition N e f < 0 replaced
by the weak flux condition N e f < 0.

Theorem 4.11 Let¥ C R™ be an open bounded conver set which contains
0. Let the diagonal matriz M satisfy the eigenvalue condition (4.12), and
let f satisfy the weak flux condition, with the same outer normal vector N.
If ¢ € C***((, %) and ¥ € C*t*(S1,X), then IBVP (4.8)-(4.9)-(4.10)
has a solution u € C*+*(IIy, X).

Proof. For € € (0, 1) consider

us = (1 —€)(MuEu + Fu) —e(u — ¢), (z,t) €y
u(z,0) = ¢(z), € (4.27)
u(z,t) = (1 —€)y(z,t) + e¢(z), (z,t) € Sr.

Since ¢(z) € ¥ and X is open, (u(z,t) — ¢(z)) ® N(z,t,u) > 0 for u € T
and (z,t) € II7. Consequently,

N(z,t,u)e[(1-¢)f(z,t,u) —e(u—¢(z))] <0

and
NT(z,t,u)(1 — e)M(z,t,u) = (1 — )A(z,t,u)NT (z,t,u)

where (1—¢)A(z,¢,u) > 0. IBVP (4.27) satisfies the hypotheses of Theorems
4.7 and 4.10, so there is a solution u, € C?**(IIr,X) for each € € (0, 1).

As a solution in W21 (Il7), u, satisfies inequality (4.21). Since E is invari-
ant, and since M and F are bounded continuous operators, (4.21) implies
|u5|qu.1(nT) is bounded independently of €. Since qu’l(HT) is compactly
embedded in C*+*(TI1) for some b € (0,1), {u : 0 < € < 1} is uniformly
bounded in C1*+°(1Ir).

As a solution in C?+%(TI1), u, satisfies inequality (4.19). The bound-
edness of {|ue|citsg,y 1 0 < € < 3} and the boundedness of M and
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F imply that {|u5|cg+a(ﬁr) : 0 < € < 1} is uniformly bounded. Since

C**ta (1) is compactly embedded in C?!(TIz), there is a subsequence
{ue, 132, converging in norm to u € C*!(Il7) such that e — 0 as k — oo.
The quantities M(z,t, ue, (z,t)) and f(z,t, ue, (z,t)) converge uniformly to
M(z,t,u(z,t)) and f(z,t,u(z,t)), respectively, since M and f are contin-
uous. Taking the limit as k — oo in (4.27), with u replaced by &k, we see
that u € C%!(TIz, £) is a solution to (4.8)-(4.9)-(4.10).

Since the coefficients M and Fu are in C*(Il7), the standard linear
theory shows that u € C?*(Il7). O

Theorem 4.12 Let ¥ C R™ be a compact convez set containing 0 (with
possibly empty interior relative to R™ ). Let the diagonal matriz M satisfy
the eigenvalue condition (4.12) with eigenvalue X, and let f satisfy the
weak flux condition, with the same outer normal vector N = N(u). If ¢ €
C***((),%) and ¢ € C**t*(Sy,X), then IBVP (4.8)-(4.9)-(4.10) has a
solution u € C***(Il7, ).

Proof. Let P be the projection operator which maps each point u € R™ to
the nearest point Pu € L; then |Pu — u| = inf{|s —u|: s € £} and P is
uniformly Lipschitz continuous.

For each ¢ € (0,1], define £, = {u € R™ : dist(u, X) < ¢} D X, where
Y4 is open, bounded, and convex. If u € 9%, then Pu € ¥ and u — Pu
is an outer normal to 9%, at u and to d¥ at Pu. For ¢ € (0,1) consider

ut = MPuEu+ FPu, (z,t) €l
u(z,0) = ¢(z) € C?**(Q, Z,) (4.28)
u(z,t) = ¢(z,t) € C*+*(St,5,).

For u € 0%, we have N(u) = u — Pu and A(z,t, Pu) > 0. The hypotheses
of Theorem 4.11 are satisfied, so (4.28) has a solution u, € C?**(TI, Z,).

Since the sets ¥, are nested, the set {uq : 0 < ¢ < 1} is uniformly
bounded in C(II) by luglomyy < sup{lul : u € £1}. Similar to the proof

of Theorem 4.11, {u, : 0 < ¢ < 1} is uniformly bounded in C?**(IIr),
and there is a subsequence u,, which converges to a function u € C%*(Ilt)
with gx — 0 as k — oo. This function u is a solution to (4.8)-(4.9)-(4.10)
and satisfies u € C?**(II1, X). O

The following existence results for IBVP (4.8)-(4.9)-(4.11) are given with-
out proofs. The proofs are similar to those for IBVP (4.8)- (4.9)-(4.10) in
that they use Leray-Schauder degree theory arguments applied to certain
compact operators. However, the boundary condition (4.11) creates more
technical difficulties. The proofs can be found in [TAL1].

Theorem 4.13 Let ¥ C R™ be an open bounded convex set which con-
tains 0. Let M be a diagonal matriz satisfying the eigenvalue condition
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(4.12). Let f satisfy the weak fluz condition for IBVP (4.8)-(4.9)-(4.11)
with the same outer normal vector N, and where h(z,t,u) = b(z)u and
b e C+%(0Q, (—00,0]).

If f satisfies the growth condition

|f(z,t,u,p)| < c(1+|pI>~)

for (z,t,u) € I x &, ¢ constant, and € € (0,1), and if ¢ € C*+*(Q, %)
with %ﬁ% = b(z)¢(z) for z € 3N, then IBVP (4.8)-(4.9)-(4.11) has a
solution u € C?**+*(Ir, X).

Theorem 4.14 Let ¥ C R™ be a compact convezr set which contains 0.
Let M be a diagonal matriz satisfying the eigenvalue condition (4.12). Let
f satisfy the weak fluz condition for IBVP (4.8)-(4.9)- (4.11) with the same
outer normal vector N, and where h(z,t,u) = 0.

If f satisfies the growth condition

|f(z,t,u,p)| < e(1 + |pI*~%)

for (z,t,u) € Iy x £, ¢ constant, and € € (0,1), and if ¢ € C*+*(Q, %)
with g—%&g— = 0 for z € 0N, then IBVP (4.8)-(4.9)-(4.11) has a solution

u € C2+a(ﬁ7‘, ).

4.4 Applications

The invariance and existence results developed in Sections 4.2 and 4.3 can
be extended to problems with mixed boundary conditions. We give a brief

outline of_}_low this extension can be carried out.
For v : IlT — IR, define the differential operator Ly by

v 32’0 o
Liv=2"_ ; _
kU 3t (tzj: akl] (Ia t) 32:,;:I:J~ + Z bkt(ﬂ:, t) ———azi + ck(z’ t)fv)

where ag;, bgi, ck € Cco/2 (T, R) for some a € (0,1), and where ¢ < 0.
Assume that each Ly is uniformly parabolic. Define the operator L by
Lu= (Lyuy,..., Lpuy,) for u: I - R™.

As in the previous sections, let f(z,t,u,p) € C®*/2**(Iy x R™ x
R™™,R™) where p is an n X m matrix. We consider the system of mixed
initial-boundary value problems of the form

Lu = f(z,t,u,Du), (z,t) €l (4.29)
Bu=0, (z,t)elr (4.30)
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where Du = [0u;/3%i]nxm and I'r = (1 x {0}) U S7. The initial-boundary
value operator B is defined by Bu = (Bjuy,..., Bmum) with

0) — 7 ) (S ﬁ
B;v(z,t) = Z(Z’ t) ¢i(2) z B
Bvr]z:; - b,-(z, t)’l)(.’l:, t), (Iy t) €Sr
or
Biv(z’ t) = 'U(Z‘, t) - ¢i(za t)a (I, t) € FT,
where _ _
¢ € C*(Q,R™), b e C'+*(TIr, (—o0,0]™),

and

n(z) € C1+* (80, R™)
is an outer unit noLmal vector to J( at z. .
Let o, 8 € C¥!(II7, R™) satisfy a(z,t) < B(z,t) for (z,t) € Il7. Define
(a,8) = {ue R™: a(z,t) < u < f(z,t) for (z,t) € Il7}. Similarly define
(e, B, [a,B), and [e, A].

Let v,w € R™. Recall the definition for the replacement vector
97 (W) = (V1y -+, Vj—1, Wy, Vj 41+ - -5 Um)-
The next two results can be found in [BEB3] and are used for two appli-

cations given later in this section.

Theorem 4.15 Assume that
Liak — fi(z,t, 4% (), Di*(a)) < 0 < LBk — fe(z,t,5*(8), Di*(B))

for all (z,t) €My and o; <u; < Bj, j#k, k=1,...,m; then ¥ = (o, B)
18 positively invariant relative to (4.29)-(4.30).

Proof. The proof is essentially that of Theorems 4.7 and 4.8 with a few
modifications. If the solution u to (4.29)-(4.30) satisfies u(Il7) ¢ £, then
there is an index k, a first time to, and a value zo € Q) such that u(zo,to) =
Bk (o, to) or uk(zo,to) = ak(Zo,to). Without loss of generality assume that
the latter case happens. Define w = ux—ax. If the boundary condition By is
Dirichlet, then the proof is similar to that of Theorem 4.7. If the boundary
condition By is Robin, then the proof is similar to that of Theorem 4.8. O

Theorem 4.16 Let o, € C*!(Ilx,R™) with o(z,t) < B(z,t) for all
(z,t) € IT. Assume that

Lkak‘ - fk(z7t1ﬁk(a)yDak(a)) S 0 S Lk,Bk - fk(zvtaﬁk(ﬂ)aDak(ﬂ))

for all (z,t) €t and o <u; < By, 5 #k, k=1,...,m. If there 1s a con-
tinuous nondecreasing function ® : [0,00) — (0,00) such that s2/®(s) — oo
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as 8 — 00, and if f satisfies the growth condition |f(z,t,u,p)| < ®(|p|) for
(z,t,u) € IIr X [, B], and if all initial data have ranges in [, 8], then
IBVP (4.29)-(4.80) has a solution u € C?(Ily, [a, B]).

As an immediate consequnce, we have Theorem 3.1 for the scalar problem.

The first application we wish to consider is to a system which models
certain chemical processes in which a gas is absorbed by a liquid which
contains a substance that reacts with the dissolved gas [KAH]:

us = alu — cuv, vy = bAv — duv, (z,t) €Il
u(z,0) = ¢1(z), v(z,0) = ¢2(z), T€Q
U(.’E,t) = ¢1 (23, t)v ’U(IE, t) = ¢2(l‘, t), (za t) € §T
where a, b, ¢, and d are positive, and ¢;, @2, ¥1, and 12 are nonnegative

functions.
This system is a special case of a system

Lyu = fi(z,t,u,v), Lov = fa(z,t,u,v),
where
f1(z,t,0,v) >0, fa(z,t,u,0) >0,

and where
fl(xatlesv) S Oa f2(zatauaM2) S 0

for some positive constants M; and M. By Theorem 4.16 there is a solution
(u,v) € [0, M] where 0 = (0,0) and M = (M;, M;). For the special case
above, choose

M; = ma.x{sup ¢i($)a sup 'pi(za t)}
zeN (z,t)€ST

The second application is to the complete model for solid fuel (1.24)-
(1.25):

T, — AT = eby™exp (L3)
ye — BAy = —ebTy™ exp (T7)
T(z,0)=1, y(z,0)=1, z€Q
-1 9 —
T(z,t) =1, n”zt =0, (z,t) €St

) (z7t) € HT

where €, 6, 3, and T are positive constants.

Let 9(z) be the solution to —Ay =1 for z € Q and 9(z) = 1 for z € 99.
By the maximum principle, ¥(z) > 0 on (1. Choose N such that N > gel/es
and Ny(z) > €. Define {(z,t) = (0,0) and p(z,t) = (N¢(z),1), and define
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}jl'l(:c,t,T, y) = eby™ exp(—"';'Tl) and fa(z,t,T,u) = —eéT'y™ exp(%). We
ave

% — A&y - fi(z,t,€1,9) =0
Qégtz - A€2 - fQ(xataT1€2) =0

%% —Apl _fl(zataplay)
= —NAY — gel/e6y™ exp(—g-) 2 N - ee'/€6 > 0

%2 — Apy — f1(=,, T, p2) = 6Ty™ exp(ZFH) > 0.

By Theorem 4.16, there exists a solution (T,y) € [¢,p] for all (z,t) €
2 x [0, 00).

4.5 Comments

The comparison techniques in Theorem 4.1 and Corollary 4.2 can be traced
back to Nagumo [NAG2],[NAG4]. The ideas were rediscovered by Westphal
[WST]. The extension to parabolic systems with quasimonotone nonlinear-
ities (Theorem 4.3) is due to Mlak [MLA1]. The use of upper and lower
quasimonotone bounds on the nonlinearity to provide the comparison the-
orem 4.4 can be found in Chandra and Davis [CHA] and Fife [FIF].

Weinberger [WEI] proved that a closed convex set is invariant for the
Dirichlet problem if the nonlinearity f satisfies the weak tangent condition.
Chueh, Conley, and Smoller [CHU] extended the result to include sets which
are Cartesian products of convex sets and the components of the operator L
are the same for any set in the product. Moreover, the convexity condition
is optimal. Bebernes and Schmitt [BEB1] generalized the invariance results
to include nonlinearities which have gradient dependence.

Redheffer and Walter [RED] consider problems with more general do-
mains and various boundary conditions, but f must satisfy a dissipative
condition near the boundary of the set.

Amann [AMA3] considered gradient dependent nonlinearities and dis-
cussed invariance for systems as evolution equations in a Banach space.
The methods used include semigroup theory. In this paper, the existence
of a unique solution is obtained. The existence theorems in this chapter
allow for nonuniqueness.

Generalizations of the results in this chapter appear in [YAN]. Ap-
parently-for the nonlinear boundary conditions, the condition of almost
quadratic growth in the gradient component of f is the best that the ideas
of the proof can handle.



5
Gaseous Ignition Models

We discuss in this chapter initial-boundary value problems of the form
ug — alAu = f(u) + g(t)v a Z 0, (I,t) €1 x (07T)

with u(z,0) = ¢(z) for z € Q and u(z,t) = 0 for (z,t) € 9N x (0,T). The
reactive-diffusive gaseous model (1.39)- (1.40) and the nondiffusive model
(1.41)-(1.40) are special cases.

In Section 5.1, we begin by considering the case when a > 0 and ¢
has a special functional dependence of the form K fn ut(z,t) dz. Such a
dependency complicates the required analysis as it can be considered in an
equivalent formulation (5.4) as a perturbation of both the diffusion and the
reaction terms. The problem is cast in an abstract setting in Sections 5.2
and 5.3. Using a semigroup analysis, existence of a unique nonextendable
solution is proved.

For } = B; C IR", additional comparison results are obtained in Section
5.4. For zero initial data and § > érk, blowup occurs for (1.39)-(1.40) at
a time o < T where T is the blowup time for the solid fuel ignition model.

In Section 5.5, the location of the blowup in {} = Bp is discussed. De-
pending on the nonlinearity f, blowup can occur everywhere or at a single
point.

In Section 5.6, the nondiffusive model (a = 0) is discussed. A very precise
description of when and where blowup occurs is given.

5.1 The Reactive-Diffusive Ignition Model

Consider the partial differential equation

6 — A0 = f(0) + l;—llel(ﬁ)/Qot(y, f)dy, (z,8) € Qx (0,00) (5.1)

with initial-boundary conditions

8(z,0) = bo(z), z€0

(5.2)
0(z,t) =0, (z,t) €30 x (0,00)

where () is a bounded domain in IR™, fp(z) will be specified as needed,
6 >0,~>1,and f satisfies f(u) >0, f'(u) >0, and f"(u) > 0.
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If (z,t) is a solution of (5.1)-(5.2), then integrating (5.1) over Q gives

% /ﬂ 0u(y,t) dy = /n (86(y, 1) + £(6(y,)) dy.

Consequently, (5.1) is equivalent to

=80 = 10) + T [ (800 + SO0V (53

By applying Green’s identity to fn A8 dy in (5.3), we see that (5.1) is also
equivalent to

6, — (A0+m/gzd) vol /f dy  (5.4)

where v(z) is the outer unit normal to ) at z, and do is the element of
surface area on 9f).

5.2 The Abstract Linear Problem

Consider the associated linear problem to (5.3)-(5.2) given by

0, =A0+1 [, A0dy, (z,t) € Qx(0,00)
0(z,0) = p(z), z€0 (5.5)
0(z,t) =0, (z,t) €N x (0,00)
where ¢ = v_gl_g%z_l > 0. We will prove that the right- hand side of (5.5a) is
the infinitesimal generator of an analytic equicontinuous semigroup 7.

Let F = L?(Q) and E = F ® R. For (f,n),(g,&) € E, define an inner
product (-,-) on E by

(i, 0.€) = [ Fada+enc.
Thus, E is a Hilbert space with norm ||(f,7)|| = \/{(f,n), (f,n). We first

consider a related problem

ft = Afa (z7t) € x (0’00)
ne=—1[,n%Ldo, te(0,00) (5.6)
f(z,t) =n(t), (z,t) €N x (0,00).

This can be expressed as

d u
G = Afm) (57)



5.2. The Abstract Linear Problem 109

wheredfi(f, n=(Af,-% [ %5 do) and where condition (5.6¢) is assumed
to hold.

Theorem 5.1 The function A generates an analytic contraction semigroup
S:={S(t):t>0} on E.

Proof. 1t is appax:ent that A is linear, closed, and densely defined on E. We
also claim that A is self-adjoint and dissipative.
For (f,n), (g, €) € Dom(A), we have the following computation.

(A(f,n),(9,€))

Ja gAfd:l:+c(—%fan fodo)€
= —fn Vf.ngx+fan fugda_fan fu€do
= _fﬂ VfeVgdz

= ((f,n),A(g,))

where Green’s identity and the fact that g(z,t) = £(t) on 9 x (0, 00) have
been used. This proves self-adjointness.
In particular, from the above we have that

(A(fm), (fom / VfPdz <0,

By the Lumer-Phillips Theorem [YOS, pp.250-251], we conclude that A
generates a contraction semigroup S with ||S(¢)|| < 1 for all ¢ > 0. But
the self-adjointness of A implies that its complex extension A is Hermitian.
Hence, its numerical range {{(A(f,7), (f,n))} lies on the negative real axis.
By [MAR, Prop.3.2, pg.293], this implies that S is analytic. O

We now relate the generator A and its semigroup S to the original
problem (5.5). Consider the canonical injection ¢+ : F — E defined by
1(f) = (f,0). Define the projection = : E — F by n(f,n) = f — 7} where
7i(z) = n for all z € Q. Clearly 7 is a continuous projection of E onto F.
For t > 0, define the operator T'(t) : F — F by

T(t)f =moS(t)or(f). (5.8)

Theorem 5.2 The set T = {T(t) : t > 0} i3 an analytic semigroup on F
with generator A given by

Af=Af+%/nAfdz. (5.9)

Proof. The linearity and continuity of each T'(t) are obvious. The mapping
t — T(t) is a composition of two linear and continuous mappings with an
analytic mapping. Therefore, it is analytic (and hence uniformly continu-
ous).
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To show T is a semigroup, consider the following. For any 6 € F we have
T(0)0 =m0 S(0)o(). If t, s > 0, then

T(t)oT(s)d = moS(t)oromoS(s)or(h)
= moS(t)oS(s)o(0)
+moS(t)oromoS(s)or(f) — S(s) o2(6))].

Since ker(7) = {(f,n) : f(z) =0, z € Q, n € R}, we have for (f,n) € E

(fim) —rom(fin) = (fin)—of =)
= (fim)-(f-1,0)
= (7,m)
€ ker(m).

But the kernel is invariant under S(t), so
moS(t)oftomoS(s)or(d) —S(s)o(d)] =0,

and thus,
T(t)oT(s)d

mo S(t)oS(s)o1(h)
mo S(t+s)ou(h)
T(t + ).

That is, T is a semigroup on F.
We now prove that A is the generator of T. Assume that § € C?(2) and
6(z) = 0 for z € AN; then +(0) = (9,0) € Dom(A) and 7 01(#) = 6. Thus,

limh_.o T(h)6-6 _ limh_.o moS(h)o(6)—6

h - h

— limh_.o mo[S(h)o(6)—1(F)

h
= To (limh_.o S(h)or(0)=1(6) °’ho —+(6 )
= moAouh)
= mwoA(6,0)
= ”(Ao"% fanovd")
= A0+ [,A0ds
= A(0)

where we again have used Green’s identity. O
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We now show that certain subsets of F' (respectively E) are invariant
relative to the semigroup T'(s) (respectively S) generated by A (respec-
tively A). We define a set D C E (respectively F) to be invariant for S
(respectively T) if S(t) (respectively T'(t)) maps D into itself for all ¢ > 0.

Lemma 5.3 For any b€ R, the set
Ap:={(f,n) €E: f(z) <b for z€Q, n<b}
18 tnvariant under S.

Proof. The set Ay is clearly a closed convex subset of E. By the result
[MAR, Prop.5.3, pg.304], it suffices to show that if A > 0 and (f,7) € As,
then (g, §) = (I — AA)™!(f,n) € As.

Assume that (g, £) € Dom(A) solves f(z) = g(z) — AAg(z) for z € 2 and
n= €+% J30 9v do with g(z) = & for = € 9. Let g(z) = sup{g(z) : z € Q}.
Two cases must be considered. First, if Z € (2, then Ag(Z) < 0 and so
9(Z) < g(Z) — MAg(Z) = f(z) < b. Second, if Z € 1), then g(z) = ¢
and fan gy do > 0 since g assumes its maximum on A(. This yields the
condition ¢g(Z) = £ < €+ %fan gndo=n<b.0

Corollary 5.4 For anya,b€ R such that a < b, the set
Aap={(f,n)€E:a< f(z)<b for 1€N,a<n<b}
18 tnvariant under S.

We can now prove an invariance result for the semigroup 7'. Let || - ||oo
denote the essential sup norm on L*((2) and let f, and f_ be the positive
and negative parts of f € L®().

Theorem 5.5 For p > 0, the set

Dp:={f €F:|ftlloo + I/-lloo < p}

18 tnvariant under T.

Proof. Let a = || f-|lco and b = || f+||oco Where a+b < p; then (f,0) € A_q
and by Corollary 5.4, for all t > 0 we have (g, £) = S(t)(f,0) € A4 5- So
T 4lloo = (g = E)+lloo S b€

and 5
IT () f]-lloo = lI(g = &)-lloo < a+ €
where é(z) = ¢ for all z € (). Thus, T(t)f € D, for all ¢t > 0. O

Corollary 5.6 If f,g € F = L?(0) and sup{|f(z) — g(z)| : 2 € Q} < ¢,
then sup{|T(t)[f(z) — g9(z)]| : z € O} < 2¢ for all t > 0.
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We now consider the case where ) = B; C R". Let F; = {v € F :
v is radially symmetric}. For each v € Dom(A) N F,, we have

v'(r), ¥'(0)=v(1) =0, and /an vy do = wnpv'(1)

where r = |z| and w,, is the surface area of the unit ball in IR". Let
I':={ve€Fs:v(r;) 2v(rg) for 0<r; <ry <1, v(1) =0}

be the set of nonnegative, nondecreasing, radially symmetric functions with
domain [0, 1].

Theorem 5.7 The set T’ is invariant under T.

Proof. The set T is a closed convex cone in F. By [MAR, Prop.5.3, pg.304],
it suffices to show that v = (I —AA)"'¢ €T ifA>0and €T.

Assume for some 0 < r; < ry < 1 that v(r;) < v(r2); then v attains a
local minimum v(7) at some point 7 € [0,72). Two cases are possible.

If v is increasing on [F,1], then v(F) < 0 since v(1) = 0, v'(F) = 0,
v"(F) 2 0, and v'(1) > 0. Hence,

0(F) = () - A" (F) + =20/ (1)] < 0

which contradicts § € T'.

If v is not increasing on [F, 1], then v has a local maximum v(7) > v()
at some point 7 € (7, 1). This implies that v'(7) = v/(F) = 0, v"'(F) > 0
v"'(F) < 0. Hence,

0(F) — 0(F) = v(F) — v(F) — A" () ="' (F)] > 0
which again contradicts § € T'. We conclude that v(ry) > v(rg) for 0 <

r1 <ry <1,s0 v €T and I is invariant under T. O

Corollary 5.8 If f,g € Fs have the properties f > g and f — g €T, then
T(t)f > T(t)g for allt > 0.

Proof. Since T is invariant under T by Theorem 5.7, T'(t)(f —g)(z) € T and
so T(t)(f —¢)20.0

Let Ao = A be the n-dimensional Laplacian operator with the same
domain as A. Let Ta be the semigroup generated by Aa.

Corollary 5.9 Let 8y € I'; then Ta(t)0o > T(t)8p for all t > 0.
Proof. By Theorem 5.7, T'(t)8p > 0 for all ¢t > 0. Hence,

/Aood:c— /‘%d <0

and T'(t)fy is a lower solution to ¢ E? = Apb6. O
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5.3 The Abstract Perturbed Problem

Let us now consider the perturbed problem

D — 40+ ), 00)=bo (5.10)

where

B() = vol(ﬂ) / 16

with f(u) > 0, f'(u) > 0, and f”(u) > 0. We first prove existence locally
of a classical solution. To do this we use the following lemma.

Lemma 5.10 Consider the system of differential inequalities

u < \/_Vf(u+71=v) u(0) < MVV

(5.11)
v <f(ut Jgv), v(0) <M

where y > 1, V = vol(2), ¢ = 3;—, M > 0, and f(0) s a nondecreasing
function. Define N = max{M+/V, M} +¢ for somee > 0. There isac >0
such that u(t) < N and v(t) < N for allt € [0,0).

Proof. Let u(t) and v(t) be the solutions to

T = VAV f(@+ 5:0), 90)=MVV
v =f(@+ ), 9(0) =

for t > 0. The right-hand side components of (5.11) are quasimonotone

nondecreasing since f is nondecreasing. By standard comparison results

for systems of ordinary differential equations, u(t) < u(t) and v(t) < B(t).

Since max{u(0),7(0(} < N, there is a ¢ > 0 such that %(t) < N and

7(t) < N for t € [0,0). Consequently, u(t) < N and v(t) < N for t € [0,0).
m}

Theorem 5.11 If 6§y € L%(Q) and sup{fo(z) : = € U} < oo, then (5.10)
has a unique solution 0(t) € L%(Q), t € [0,0), for some o > 0.

Proof. Choose M > 0 such that ||6o||12(q) < M and sup{fp(z) : z € 0} <
M. Set N = max{MVV, M} + ¢ for some € > 0 where V = vol(f2). For

each t > 0, define 0y(z,t) = min{f(z,t), N} and nn(t) = min{n(t),N}.
Consider the following auxiliary IBVP on the set E:
%(6,m) = A(6,n) + Bn(8,m), (z,t) €% (0,00)
(6(z,0),7(0)) = (60(2),0), z€0 (5.12)
0(z,t) =n(t), (z,t) €90 x(0,00)
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where A is defined as in Section 5.2 and where
. 71 -
Bn(0,n) = | f(On —1iN), ~ /n f(On —1in)dy | .

The operator By is globally Lipschitz continuous on E. Hence, (5.12) has
a unique strong solution (9(:1:, t), ﬁ(t)) defined for t € [0, 00) (by the result
[MAR, Thm.5.1, pg.355]).

We now prove that sup{f(z,t) : z € Q} and n(t) are bounded by N for
t € [0,0). This in turn implies that (4,%) is a solution of

#(6,m) = A(6,n) + B(8,n), (a,t) € x (0,00)
(6(=,0),n(0)) = (80(2),0), z€ 0 (5.13)
0(z,t) =n(t), (z,t) €N x (0,00)

where B(6,n) = (f(0 — 7), 322 [, £(6 — ) dy). By Theorem 5.5 and the
dissipativity of A, the following inequalities are true:

D8, < [Bn(@,m)l
< VAV f(sup{fn(z,t) : € Q} + nn]),
Dt sup{fn(z,t) :2€Q} < [|Bn(6,7)lloo

< f(sup{fn(z,t) : z € Q} + |nn])
(5.14)
where ||(g, €)[loo = l|9]lco + |€]- Moreover, it is easily seen that

1
nn| < Inl < ~[1(6,m)]]- (5.15)

Set u(t) = ||(0,n)| and v(t) = sup{f(z,t) : = € Q}. Using On(z,t) <
0(z,t), and combining (5.14) and (5.15), we see that u and v are functions
which satisfy (5.11). By Lemma 5.10, u(t) < N and v(t) < N for t € [0,0),
s0 [n], [|(8,n)|, and sup{6(z,¢) : z € Q} are all bounded by N for ¢ € [0,0).
This proves that (,7) is a strong solution of (5.13) on [0,0). An easy
computatlon shows that 8(z,t) = 7(8,7) = 0(z,t)—7(t) is a strong solution
of (5.10). O

Corollary 5.12 If 6y € L?(Q) and sup{fy(z) : = € Q} < 00, then IBVP
(5.1)-(5.2) has a unique solution 0(z,t) on Q x [0,0) for some o > 0.

Proof. By Theorem 5.11, 7(, 7)) is a strong solution of (4.10). Thus, it is a
classical solution of (5. 3) (5.2) and a classical solution of (5.4)-(5.2). O
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Theorem 5.13 If 6y € L%(Q) and sup{fp(z) : = € O} < oo, then IBVP
(5.1)-(5.2) has a unique nonextendable classical solution 0(z,t) defined on
a mazimal interval [0,0) where

o0=00, or, 0 <00 and lim sup{f(z,t):z € N} = oo.
t—o~

Proof. Assume that o < oo and (z,t) < N for all (z,t) € 2% [0,0). Let On
be the classical solution associated with (5.12) which exists on Q x [0, 00).
Our assumptions imply that 6y = 6 on Q x [0,0) and lim,_,,- 0(-,t) =
On(-,0). By Theorem 5.11 we can extend 6 to a solution of (5.1)-(5.2) on
1 % [0,0 +¢€) for some € > 0. This contradicts the maximality of [0,0). O

5.4 The Radially Symmetric Case

When 2 = B; C IR we can obtain additional information concerning
initial-boundary value problem (5.1)-(5.2).

Theorem 5.14 If 0(z,t) is the solution of IBVP (5.1)-(5.2) on By X [0,70)
with 0p €T, then 0(-,t) €T for allt € [0,70).

Proof. By Theorem 5.7, the set I" of nonnegative, nonincreasing, radi-
ally symmetric functions in L2(B;) is invariant under the semigroup T
If §(-,t) €T, then

BOC, ) = 100, 0) + 1= [ f6@.)dyer.
B,

In particular, 6(-,t) + hB(8(-,t)) € T for all h > 0 because I' is a convex
cone.

For any 7 € (0,79), 0(-,t) is a classical solution on [0, 7], so sup{f(z,¢t) :
(z,t) € By X [0,7]} £ N < oo. This implies that (-, t) is a solution of (5.1)
lying in

Fy = {g € L*(B1) : sup{g(z) : 2 € B} < N}
and the restriction of B to Fi is Lipschitz continuous. The result follows
as a consequence of [MAR, Thm.2.1, pg.335]. O

Corollary 5.15 Let 6y € T and let ¢ be the solution to

¢ — Ad = f(d) + -1(;;7)/; f(®)dy, (z,t) € By x (0,00) (5.16)

vol
with initial-boundary conditions

(f)(.’E, 0) = 00(1:)’ TE F1

(5.17)
#(z,t) =0, (z,t) € dB; x (0,00);
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then ¢(z,t) > 0(z,t) on their common interval of ezistence [0,79) where
0(z,t) is the solution of IBVP (5.1)-(5.2).

Proof. By Theorem 5.14, 6(-,t) > 0. Thus,

~y—1 / ~r—1 00
I | Addy=2"— | Zds<o0
vol(By) Jg, = Y = Yol(By) Jop, v =

for all t € [0,70). Consequently,

¢ = 86— £(9) — 53y Jo, F(®) dy
2 0: = A0 - £(0) - 7z Jo, /(6) d-

Using f’(u) > 0 and a maximum principle argument (cf. Theorem 4.1 and
Corollary 4.2), one can prove that ¢(z,t) > 6(z,t) on their common interval
of existence [0,7p). O

Theorem 5.16 Let 6y = 0; then the solution 0(z,t) of IBVP (5.1)- (5.2)
i3 nondecreasing in t on its mazimal interval of existence [0,0) for each
z € B;.

Proof. Choose any og € (0,0). Since 6(z,t) can be thought of as a strong
solution of (5.10), 6(-,t) < N for some N > 0 and for all ¢t € [0,00]. Also,
0(-,t) €T on [0,0). Thus, (-, t) is also a solution to the associated problem
(5.12) on [0, 7] and can be expressed by the Picard scheme {un, }32, where

up(t) =0, upy1(t) = /Ot T(t — 8)B(uxn(s))ds for n > 0,

and
,.linéo un(t) = 6(¢),

since A is contractive and B is Lipschitz continuous.
Let 0,,02,0 € T with §; < 0. Note that B : T — T satisfies the following
conditions:
B(6,) < B(2) (monotonicity)

and
B(6 +6,) — B(6,) < B(8 + 02) — B(62) (convexity)

with both sides of the above inequality elements of T'.
Define

Anu(t) = un(t) — un-1(t)
JeT(t — $) [B(un1(8)) — B(un—2(s))] ds

I
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for n > 2 and
AnB(t) = B(un(t)) — B(un-1(t))

for n > 1; then Apyju(t) fot (t — 8)ApB(s)ds and we claim that for
any n > 1 the functions u,(t), A (t) and A, B(t) are increasing in ¢ with
values in I'. We prove this claim by induction.

For n =1, clearly u; € T and Aju = u; € T. Since f is nondecreasing
and since u; > up = 0, A;B = B(u;) — B(ug) € T. One can also verify
that u;, Aju, and A; B are increasing in ¢.

Assume that the claim is true for n = 1,...,k — 1; then Azu(t) =
fo (t—s)Ax_1B(s)ds € T because Ag_; B(s) e F T is invariant under T,
and T is a closed convex cone. If ¢; < ¢5, then since Ak_; B is nondecreasing
we have

AIcu(tl) = f;l t1 - S)Ak_lB(s) ds
< J3T(ty - 8)Ak—1B(s +tg — t1) ds
tt:_tl T(t2 - S)Ak_lB(s) ds
< [y T(ta — s)Ax—1B(s)ds
= Ak’u(tg).

Thus, uk(t) = uk—1(t) + Agu(t) € T and is increasing since the same is
true for Axu(t) and uk_;(t). Finally, we have

AkB(t) = B(uk(t)) — Bluk-1(t))
= B(uk-1(t) + Axu(t)) — B(uk-1(t))
e T

by the convexity of B. Furthermore, if ¢; < t;, then the monotonicity of
ug—1 and Agu yields

AkB(tl)

B(uk—1(t1) + Aku(t1)) — B(ux-1(t1))
B(uk—1(t2) + Au(ts)) — Blue—1(t2))
B(uk-1(t2) + Aku(t2)) — B(uk-1(t2))
ArB(ts)

IN IA

where the convexity of B was used at the first inequality and the mono-
tonicity of B was used at the second inequality.

This shows that 6(t) is a limit of an increasing sequence {u,}% , of
t-increasing functions. Thus, 6(t) is itself an increasing function. O

Corollary 5.17 If6y(x) =0, then the solution 6(z,t) of IBVP (5.1)- (5.2)
is an upper solution for the solution y(z,t) of IBVP (1.28)-(1.29).
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Figure 5.1.

Proof. By Theorem 5.16, the solution 8(z, t) of (5.1)-(5.2) satisfies 0;(z,t) >
0. Thus,

10+ oy [, S0 0 du2 10)

and the result is immediate from standard comparison results. O

Corollary 5.17 tells us that the temperature for an ideal gas is always
greater than that for a solid fuel. Hence, a gas explodes sooner than a solid
in the same container. Physically, this can be explained by the additional
generation of heat due to the compression of the gas.

For 1 = B; C R" and 6§ > érg, the solution 9 of IBVP (1.28)-(1.29)
blows up in finite time T'. Figure 5.1 illustrates the comparisons where
@ is the solution of IBVP (5.16)- (5.17) and % is the solution of IBVP
(1.28)-(1.29).

Table 5.1 gives a comparison of blowup times for the three problems:
IBVP (5.16)-(5.17), IBVP (1.28)-(1.29), and IBVP (1.39)-(1.40) (fora = 1).
The table uses = (—1,1) and v = 1.4.

Table 5.1.

0 T0 o T
091 | 1.755 | 6.123 | 7.940
1.00 | 1.401 | 2.732 | 3.537
2.00 | 0.454 | 0.528 | 0.680
2.47 | 0.347 | 0.390 | 0.502

20.00 | 0.037 | 0.038 | 0.050
50.00 | 0.0147 | 0.0148 | 0.020
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Table 5.2.

o

6 T y=11|~v=14|~y=20
3.7 | 0.876 | 0.854 0.802 0.736
4.0 | 0.601 | 0.580 0.532 0.473
6.7 | 0.187 | 0.179 0.160 0.138
20.0 | 0.0503 | 0.0478 | 0.0418 | 0.0336
50.0 | 0.0200 | 0.0188 | 0.0158 | 0.0120

As the gas constant v varies, we can numerically compute o. Table 5.2 uses
Q=B; C IR.S.

Note that Theorem 5.16 and Corollary 5.17 are proved for 6y = 0. An
open problem is the following: Is the result true for any 6y € I'? The key
idea is to prove that #; > g so that the case n = 1 is true in the induction
proof.

Theorem 5.18 Assume that 8,,0, € T satisfy 0, — 0; € T and suppose
that 0 < 6y < 62. Let 0;(z,t) be a solution to IBVP (5.1)-(5.2) with 6y and
6 replaced by 0; and 6; for i = 1,2; then 0;(z,t) < 02(z,t) for all (z,t) in
their common domain of existence.

Proof. Define the set ® = {(0;,02) € T x T : 6, — 6, € I'}. This set is a
closed convex cone in F x F. We claim that ® is invariant under the flow
generated by (A + B;1) x (A + Bz) where B; (i = 1,2) are defined as in
(5.10) replacing & by 6;. Theorem 5.7 implies that ® is invariant under the
flow induced by A x A. If (6;,0;) € ®, then (B16,, B262) € ®. Thus, ® is
invariant and by Corollary 5.8, 05(z,t) > 6;(z,t). O

If 6y € T, then the solutions of initial-boundary value problem (5.1)-(5.2)
depend monotonically on the parameter §. As a consequence, we have for
the subcritical case § < dpk:

Corollary 5.19 Assume that BVP (1.80)-(1.81) has a solution v(z) on
the unit ball By; then the solution 6(z,t) of IBVP (1.28)-(1.29) exists on
By x [0,00) with 0(z,t) < ¥(z).

5.5 Blowup: Where?

We consider the partial differential equation

us — Au = f(u) +g(t), (z,t) €Qx(0,T) (5.18)
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with initial-boundary conditions

u(z,0) = ¢(z), €0

(5.19)
u(z,t) =0, (z,t) €N x(0,T)
where Q@ = {z € R"™ : |z| < R}. We assume that ¢ € C?(7,[0,0)),
A¢+ f(¢) > 0for z € Q, ¢(z) = 0 for z € 3N, ¢ is radially symmetric and
radially decreasing.

We also assume that f € C?(IR, [0,00)), f(u) >0 for u >0, f'(u) >0
f"(w) >0, and [* 4 m < 00. We choose g(t) such that either g € C
g>0,and ¢’ >0, or, g(t anutdywnthKe(Ol)anqu()

By the results of Sectlon 5.4 there is a unique solution u(z,t) for (z t) €
(1% [0,0) such that u(z,t) > 0 and u;(z,t) > 0. Moreover, u(-, t) is radially
symmetric and radially decreasing. The function U(t) = sup{u(z,t) : ¢ €
Q} = u(0,t) is a nondecreasing function.

Let [0,T] be the maximal interval of existence for the solution u(z,t)
o (5.18)-(5.19). If T < oo, then U(T~) = oo by Theorem 5.13. We will
assume that T < oo so that u(z,t) blows up in finite time. As in Section 3.3,
we define a point z € 2 to be a blowup point for (5.18)-(5.19) if there is a
sequence {(Zm,tm)} -, such that t, = T, 2y, — z, and u(Tm, tm) — ©
as m — oo.

Theorem 5.20 If fo t)dt = oo, then the solution u(z,t) of (5.18)-
(5.19) satisfies llmt_’T u(z t) = oo for all z € Q. Thus, blowup occurs
everywhere in (.

Proof. Choose T € 2 and define p = R — |Z|. On the ball B,(Z) C (1, the
solution u(z,t) is an upper solution for

v =Av+g(t), (3,t) € B,(®) x (0,T)

v(z,0) =0, z € B,(%)

v(z,t) =0, =€ IB,(Z) x(0,T).

The solution v(z,t) at (Z,t) can be expressed as

v(T,t) = fot pr(E) G(T,y,t — 3)g(s) dyds
Jo 9(3) [5,z) G(Z,y, T - 0) dy ds
> K(p) Jy 9(s)ds
where K(p fB @ G(@y,T)dy. As t —» T~, v(Z,t) — oo by our hy-
pothesis on the mtegral of g(s). Since v(z,t) < u(z,t) on B,(Z), we have

u(Z,t) — oo. Since T was arbitrary, the solution u(z,t) blows up for all
z€N.0

v
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Theorem 5.21 Let g(t) = %ﬁ—j Jaue(z,t)dz for 0 < K < 1. If (5.18)-

(5.19) has a blowup point T # 0, then the solution u(z,t) blows up every-
where in ().

Proof. Observe that

t K [t K
/Og(s)ds =%TQ)/O /nut(a:,s)d:cds =vol(n)/nu(:c,t)dz

since u(z,0) = ¢(z) = 0. By radial monotonicity of u,

/nu(z, t)dz > / u(z,t) dz > vol (Bz(0)) u(z, t)

lz|<|z|

so that if lim,_,7- u(Z,t) = oo for some T # 0, then fOT g(s)ds = oo. By
Theorem 5.20 blowup must occur everywhere in (). O

Theorem 5.22 If f(u) = e* and g(t) = %Ilﬁfﬂ usdz for K € (0,1),

then the solution u(z,t) of (5.18)-(5.19) blows up only at z = 0.

Proof. The proof is similar to that of Theorem 3.16. Define the function
J(r,t) = r""lup(r,t) + er™F(u(r,t),t)

where F(u,t) = exp(a(u — G(t))) and G(t) = fot g(s)ds for a € (0,1). It
can be shown that J satisfies

-1
T+ 2 —J, = Jrp = (f'~26F,)J S —er"({'F~F, [ ~2FF,)+er"(Fug+F,).
If
f'F —Fy,f > 2FF, and F,g+F, <0, (5.20)
th
en n—1

Je + Jp = Jrr — (f' = 26F,)J <0

r
for (r,0) € (0,R) x (0,T). The second inequality in (5.20) is immediate
from our definition of F(u,t). The first inequality in (5.20) is valid for
€< (1-a)/2.

Note that J(0,t) = 0. Next observe that

Jr(R,t)

—R"1[(0) + g(t) ~ ene=aG)
< R len—1-g(t)]
0

A
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if € < 1/n. Finally, J(r,n) < 0 for 7 sufficiently close to 0, just as in
the proof of Theorem 3.16. By the maximum principle, J(r,t) < 0 for
(r,t) € [0,R] x [0,T) and so

n

r —lu, < —-67‘"6‘1(“—6(0).

By integration we obtain

2 1 1  oe
< —=In(=) - =In(— . 5.21
u(rt) < 2in(-) - —In(5) + G(0) (5.21)
Integrating over (2 and recalling from Theorem 5.21 that

we obtain

/nu(a:,t)dx S/ﬂ[%ln <|1?|> —éln(%e)] dz+ K Qu(:z:,t)d:::

(1—K)/nu(x,t)d15/n{§1n(ﬁ)—éln(%e)] dz < 0o

and by Theorem 5.21 blowup can occur only at a single point provided
Ke(0,1).0

or

Corollary 5.23 If f(u) = e* and fOT g(8)ds < oo, then blowup occurs
only at z = 0.

Proof. Note that in the proof of Theorem 5.22, the construction leading
up to (5.21) is valid for an arbitrary g(t). As long as G(T) is finite, (5.21)
implies that u(r,t) is finite for r # 0. O

The following theorem is a technical result which allows us to obtain

lower bounds on the solution u(z,t). The proof is based on ideas from
(FRI2, Thm. 3.1].

Theorem 5.24 Assume that f(;’o f(u)du = oco. Let u(z,t) be a solution to
(5.18)-(5.19) which blows up only at z = 0; then there exists a t* € (0,T)
such that

|Vu(z,t)|2 < 2[-F(u(z,t)) + F(U(t)) + LFU(t))] (5.22)
fort € (t*,T) where
w T
F(w) =/0 f(u)du, L =/0 g(8)ds < o0,

and

U(t) =u(0,t) = I;lea%( u(z, t).
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Proof. Note that L < oo by the assumptions of single-point blowup and
Theorem 5.20. Since u blows up only at the origin, both u and Vu are
uniformly bounded on the parabolic boundary of the cylinder

Q=A{(z,t):|s| <R/2,0< ¢t <T}.

Consequently,
1 2 B
(21€0Q [i'V"(z’ B + F(u(s, t))] = M < o

Since U(t) T o0 as t — oo and since F(w) — oo as w — oo, there is a
t* < T such that F(U(t)) > M for all ¢t € [t*,T).
For any £ € [t*,T) define the function

t

J(a,t) = 51 Vula, 0 + Flu(z, ) - FU®) - 0®) | a(6)ds.

We will show by a maximum principle that J(z,t) < 0 on the cylinder
{(z,t) : |z| < R/2,0 <t < t}. This condition on J implies the bound
(5.22).

On the set 9Q, we have

t

J(z,t) < M - FU®) - fU®) /0 o(s)ds < 0.

Moreover, for £ =0 and ¢ € [0,) we get
J(0,t) < F(u(z,t)) - F(U(?)) <0.
It can be shown that
Jy =
Vu oV (Au) + f'(u)|Vul® + f(u)Au+ f2(u) + f(u)g(t) — F(U®E)9(t),
VJ = (Au+ f(v))Vu, and
AJ = (Au)? + Vue V(Au) + f'(u)|Vu|? + f(u)Au.
Combining this with the identity
|VJ — (Au)Vu|? = |[Vu|2(Au)? + VJ ¢ [VJ — 2(Auw)Vy] = f2(u)|Vul?,

we obtain

PN ELA [V‘(Vjt‘i“’”)v“] = [f(u(z,1) - FUE)a(t) < 0.

Since Vu = 0 only at z = 0, the maximum principle implies that J(z,t) <0
on {(z,t) : |z| < R/2, 0 < t < t}. In particular, J(z,%) < 0 and the theorem
is proved. O
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Theorem 5.25 Let f( ) =(u+ AP for A >0and1 < p<1+2/n.
Let g(t) = %I_fﬂ us(z,t)dz with K € (0,1); then the solution u(z,t) to

IBVP (5.18)- ;5 19) blows up everywhere in ().

Proof. If the conclusion were false, then single-point blowup occurs only at
z = 0. From the fact that u is radially symmetric, we have by Theorem
5.24

lur(r,t)|> < 2f (U () [U(t) - u(r,t) + L].

Thus, we have

_ur (r,t) 1/2
[, o rame < [ proon® e

which implies

u(r,t) 2 U(t) - L - f(U(t))r?

ve _p,
" [f(U( ))]

we have u(r,t) > %ﬂ for r < r;. Define w, to be the surface area of the
unit n-dimensional ball; then

For

Jqu(z,t)dz = wnfORr"“lu(r,t)dr
> wo fy 3rU@)dr

2
wall(t) [ : ]’

I

2n fU(t

Since f(s) = o(s'*2/") as s — 0o, [, u(z,t)dz =00 as t » T~ and hence

¢ K
li = 1 —_— =
- 0 9(s) ds tllg‘l— [vol(ﬂ) /nu(a:, t) dz] *®

which is a contradiction to Theorem 5.20. Thus, the solution u(z,t) must
blow up everywhere in the set . O

Theorem 5.26 If f(u) = (u+ A)? withp > 1+ 2/n and

g(t) = ;(%/Qut(z’t) dz,

then the solution of (5.18)-(5.19) blows up only at z =0 as long as K > 0
18 sufficiently small.



5.5. Blowup: Where? 125

Proof. The idea of the proof is exactly the same as that of Theorem 5.22.
Define the function

J(r,t) =r"" u,.(r t) +er"F(u(r,t),t)

where F(u,t) = (u+ p)?exp(—aG(t)),e > 0,1+ -ﬁ <g<p,p2Apu>0,
and a > 0. As in Theorem 5.22, we can show via a maximum principle that
J(r,t) <0on (0,R) x (0,T) so that

™ lu,(r,t) < —er™(u(r, t) + u)%e~*C®.

An integration gives us

(5.23)

Integrating (5.23) over §) gives us an inequality of the form
G(t) < KAeBCW®

where A > 0, B > 0, and K € (0,1). Choose K sufficiently small so
that KA < 3-; then G(0) = 0, G(t)exp(—BG(t)) < KA < 3;, and the
continuity of G(t) imply G(t) is bounded for all ¢ > 0. Consequently, the
only blowup point is at z = 0. O

Corollary 5.27 If f(u) = (u+ AP for p > 1 and if fo s)ds < oo, then
the solution u(z,t) of (5.18)-(5.19) blows up only at z = 0

Proof. In Theorem 5.26 we had derived equation (5.22) independently of
the choice of g(s). From this inequality, u(z,t) is bounded as long as G(t)
is bounded and z # 0. O

5.6 A Nondiffusive Reactive Model

For an arbitrary container ! ¢ IR", the nondiffusive reactive Euler model
(1.41)-(1.40a) can be written as

ot —66 +_’7'—%1_/¢t z,t dI, (I t)EQX(O OO) (524)

with initial data
¢(z,0) = ¢o(z), z€Q (5.25)

assuming ¢o(z) is continuous and bounded on (2. By integrating over (2,
we see that (5.24) is equivalent to

by = 6e® + 8 / e*@ dg (5.26)
9]
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where § = vo ( n . The IBVP (5.26)- (5.24) has a unique nonextendable so-

lution ¢(z,t) on [0, 0) with o = 00, or, o < 0o and lim,_,,- sup{¢(z,¢) :
z €} = oo.
The initial value problem

a; = 6e?, (z,t) €N x(0,T) (5.27)
a(z,0) = ¢o(z), z€Q (5.28)

has the explicit solution
a(z,t) = —In [e~%(®) — 5t] (5.29)

which blows up in finite time T = } exp(—o(zm)) Where z,, is any point
in ) at which ¢o(z) attains its absolute maximum. Since a(z,t) is a lower
solution for (5.25)-(5.24), the solution ¢(z,t) of (5.25)-(5.24) satisfies

é(z,t) > ~1In [e_d"’(’) - 6t]

and hence ¢(z,t) blows up in finite time o with o < T.
To get more information about ¢(z,t), we consider the implicit repre-
sentation

#(z,t) = a(z,7(t)) + B(r(t)) (5.30)

where a(z, 7) is a solution of (5.27)-(5.28) and 7(t), B(r) are scalar functions
to be determined. As given in (5.30), ¢(z,t) is a solution of (5.26) if and
only if

" =eB) 1(0)=0 (5.31)

and
B'=p / =N dz =8 / [e#@® —67]7" de, B(0)=0. (5.32)
9] Q

The system (5.31)-(5.32) is weakly coupled, so by integrating (5.32) from
0 to 7, we have

—d’o(z)
ﬂ/[a“ — ¢o(z ]dx—6/1n< o5 )dm. (5.33)

Thus, 7 satisfies

, B e—%o(z)
T = exp I:g‘/‘;ln (m) d:c] y T(O) =0 (534)

which can be solved by quadrature. Thus, ¢(z,t) = a(z,7(t)) + B(r(t)) is
the solution of (5.26)-(5.25) where 7(t) solves (5.34), a(z,7) is the solution
of (5.27)-(5.28), and B(r) is given by (5.32).

From (5.30) we have
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'heorem 5.28 The value o i3 the blowup time for the solution ¢(z,t) of
5.24)- (5.25) if and only if 7(0) = T 1s the blowup time for the solution
(z,7) of (5.27)-(5.28).

If v > 1, then 7/(¢) > 1 from (5.34) for ¢ > 0, and hence, 7(t) is strictly
icreasing with 7(¢) > ¢ for ¢ > 0. Thus,

orollary 5.29 The blowup time o is given by

o=r1"1 (%e"‘”“(’"))

here T, 18 any point of U at which ¢o has an absolute mazimum.

From (5.30) and (5.33), observe that ¢(z,t) blows up at those points z,,
; which @o(z) has its absolute maximum, provided B(r(c)) < oco. This
true if and only if [, a(z,7(0)) dz < oo which in turn is true provided
1 In[exp(—¢o(z)) — exp(—¢o(zm))] dz > —oo. Thus,

‘heorem 5.30 The solution ¢(z,t) of (5.24)-(5.25) blows up only at those
nnts Ty, of (1 at which ¢o(z) has its absolute mazimum if and only if

/ In [e"”"(’) - e_¢°(’"‘)] dz > —o0. (5.35)
Q

Similarly, we observe that ¢(z,t) blows up everywhere in 1 at o if and
aly if B(r(0)) = co. Thus,

‘heorem 5.31 The solution ¢(z,t) blows up everywhere in ) at o if and
nly if
/ In [e""’“’”) - e‘¢°("'")] dz = —00. (5.36)
Q

The integral of (5.35) is finite if there is at most a finite number of critical
oints z,, € () at which ¢ has an absolute maximum and if at each z,,,
3() is strictly concave down and analytic in a neighborhood of z,,. In
\is case, blowup occurs only at those z,, at which ¢g has an absolute
aximum.

On the other hand,, if ¢¢ is too flat in a neighborhood of a point z,y,,
1en blowup occurs everywhere.

.7 Comments

he first gaseous ignition model was developed by Kassoy and Poland
{AS5]. This model (1.39)-(1.40) was initially analyzed by Bebernes and
ressan [BEBS5]. Several problems remain open. For example, can one com-
are the gaseous ignition model with the solid fuel model for nonzero initial
ata?
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The semigroup theory used to prove existence and the invariance of cer-
tain sets is standard and can be found in such monographs as Martin [MAR]
and Yosida [YOS].

The discussion of where blowup occurs is based on the paper [BEB12]
which in turn draws from the seminal ideas of Friedman and McLeod
[FRI2]. There are many open problems for arbitrary domains ) and nonzero
initial data.

Theorem 5.26 is proved only for K > 0 sufficiently small and f(u) =
(u+A)?, p > 1+2/n. We conjecture that it is also true for any K € (0,1).

The nondiffusive model (5.24)-(5.25) was first considered in [BEB13]. A
formal asymptotic description of how the blowup hot spot develops is also
given there, but a rigorous analysis has not been carried out. This should
not be difficult to do. It is interesting to note that for this model without
diffusion that the blowup singularity is strongly dependent on the shape of
the initial temperature profile.
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Conservation Systems for
Reactive Gases

In one space dimension, the conservation laws for reactive gases can be
expressed as

ut + F(u)z = Bugs + G(u,uz), (z,t)€Qx(0,T)CRxR  (6.1)

where the solutions u are vector-valued functions of (z,t), and where B
is a positive semidefinite matrix which will be referred to as the viscosity
matriz.

In Section 6.1 we will consider a special case of (6.1) where there is
no reactive term (G = 0) and where F(u) = V®(u) for some function
® € C?(R™, R) with ®(0) = 0. The boundary conditions are assumed to
be Dirichlet. If (v, Bv) > € > 0 for some € > 0 and for all v # 0, and
if the Hessian matrix of ®(u) essentially grows slower than |u|?, we prove
that there is a solution u which exists globally such that u — 0 as t — oo
uniformly on (2.

A nondiffusive-reactive Euler model is analyzed in Section 6.2. This
model is a special case of (6.1) where B = 0 and where G = G(u) con-
tains exponential nonlinearities. The function F(u) is a linear function. It
is shown that solutions to the (hyperbolic) initial value problem blow up in
finite time. At a blowup point, the shape of solutions as the blowup time
is reached is determined when F = 0.

The remainder of the chapter is devoted to the analysis of the full
one- dimensional gas model. The model is a special case of (6.1) where
u = (p,v,0,2) is the state of the system. The components of u represent
density p, velocity v, temperature #, and concentration z. The nonlineari-
ties G = G(u,uz) and F = F(u) are complicated functions. The viscosity
matrix B = diag{0, ﬁpl, 1,12,/\3} and is positive semidefinite. For bound-
ary conditions representing a thermally insulated container 2, and under
appropriate smoothness conditions, there is a unique classical solution u
which exists for all time ¢ > 0.

6.1 A Nonreactive Model

Let 2 be any bounded open interval of IR. Without loss of generality in
the following development, we will choose 2 = (0,1). Let IIr = 2 x (0,T).
We will consider here the particular gradient system

ur + [V®(u)]z = Bugg, (z,t) €Ilr (6.2)
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where ® : R" — R is C%-smooth and where ®(0) = 0. The initial-
boundary conditions for (6.2) will be

u(z,0) = up(z), T€Q

(6.3)
u(z,t) =0, (z,t) €N x[0,T)

where ug € L%(Q). Let (-,-) be the usual inner product on R". We assume
that (v, Bv) > € > 0 for some £ > 0 and for all v # 0.

Local existence for (6.2)-(6.3) is immediate. For global existence, one
needs some kind of growth estimate on the nonlinearity ®(u). Let ®"(u)
be the Hessian matrix of ®(u) with || - || any convenient norm. Define
B(M) = max{||®"(u)| : v < m}. Assume

M?2

A}Egnlit;7§(_—j = 0. (6%“

This condition implies that ||®"(u)|| grows slower than |u|? and that |®(u)|
grows slower than |u|%; see [KAN].

Lemma 6.1 Let u(z,t) be a solution to initial-boundary value problem
(6.2)-(6.3); then

C'o
llu(-, )220y < 2Co and ||uzl|iz(m,y <

for all T > 0 where Cy = %lluolliz(n).

Proof. We use energy estimates for the norm of u. Taking the inner product
of u with (6.2), we have

(u, Bugz) = (u,us) + (u, V®(u);) = ;ag‘tl + 8:1:[(

Integrating this equation over II1, we obtain

» VO(u)) — @(u)].

S, (u, BU:cz)dZEdt
= [Iu, 12l dzdt+ffn 2 [(u, VO(u)) — ®(u)] dzdt 1
= 1[5 lu(z, T)[?dz — L [} uo(z)?dz + [ [(u, V& (u)) — B(u)]  d
=3 Jo lu(z,T)Pdz — § 5 luo(=)|dz

where we have used the boundary conditions in (6.3) and ®(0) = 0. Inte-
grating the left-hand side by parts, we have

// (u, Bugz)dz dt = —// (ug, Bug)dzdt < —E// |ug|?dz dt.
Ir Ir Ir
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Consequently, we have the inequality

1 1
1/ |u(z,T)|2d:c+E// |ug|?dz dt < l/ |uo(z)|%dz =: Co.
2 0 It 2 0

The inequalities in the statement of the lemma follow immediately. O

Lemma 6.2 Let u(z,t) be a solution to initial-boundary value problem
(6.2)-(6.8); then

2
sl Dy < €1+ 6o (252)

where Co 1s the constant constructed in Lemma 6.1, Cy = ||uz(',0)||%z(m,
M = sup{lu(z,?)| : (z,t) € IIr}, and B(M) = sup{||®" (u)|| : u < M}.

Proof. Differentiate (6.2) with respect to z and set v = ug; then v, +
V®(u)zz = Bugy. Take the inner product of this equation with v to obtain

(v, Bugz) = (v,v) + (v, V®(u)zz).

It follows from this equation (and v = u;) that

19v)* 8
(vg, VO(u);) = 275t + a[(v,V@(u)z) — (v, Bug)] + (uzq, Buzz).
Integrating over II7, we have
T
L L fugl? o 42+ [f, fuese) 4 (u,,, Bugg)dzdt 65

= [, (vz, VO(u)s) dzdt.

Note that (uz,us) = —(u, uze)+ % (u,uz). Using the boundary conditions
in (6.3), we obtain (ug,us)|§ = 2 (u,us)|§. As a consequence we have

a T
/ -é—(uz,ut) dzdt = / (ux,ut)l(l) dt = (u, u,)|(1)|g =0
IIr T 0

where we again have used the boundary conditions in (6.3).
Equation (6.5) implies
1[5 luz(z, T)Pdz + € [ |ucs|?dz dt
< L[5 luz(z,0)Pdz + [fy, vz, V(u),) dz dt
= %||uz(-,0)||%2(n) + ffnT(u",V@(u)I) dz dt.
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Using the identity (a,b) < §(¢la|? + 1|b|?) with @ = uz; and b = V&(u),,
we obtain

Jo luz(z,T)dz + € [ |uce|?dz dt
< ||“z('a0)”%2(n) + % ffn, |V‘I’(U)z|2d-"3dt

and consequently

Jo Ita(2,T)*dz

C1+ ¢ [fu, (IV®(u)s|?) dz dt
C1+ ¢ [fu, 19" (w)?|uz|*dz dt
C1+ co(M) [[q, |uzl?dz dt
C1+ Sa(M)

where a(M) = sup{||®”(u)||? : v < M}. From the standard inequality for
the norm of a product of operators, we have a(M) < §%(M). Thus,

Il

llua(, T2 (q)

ININ IN DA

B(M)\*
”’Uz(',T)lliz(n) S Cl + C() <%
which completes the lemma. O

Theorem 6.3 Assuming the growth condition (6.4), the initial-boundary
value problem (6.2)-(6.3) has a global solution which tends uniformly to
zero on () ast — oo.

Proof. We can write
lu(z,t)? = (u,u)
= :;’z(u u) dz
2[5 (ug, u)dz

< 2ua(, )2 (@) N1l )2 (@)-

By the bounds constructed in Lemmas 6.1 and 6.2, we have

Popm) (66

lu(z,t)|? < 2v/2Co4[C1 + Co (ﬂ(M)) <K+
for some positive constants Ky and K.
The condition (6.4) implies that for each § > 0, there is an My sufficiently
large so that [1+8(M)]/M? < 6 for M > M. Choose § so that 6Ko/e < 1;
then taking the supremum of (6.6) over IIT, we have

M2< K, + 6K°M2
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which, for our choice of §, implies

K,
3Kg "
1=

lu(z,t)> < M? <

This gives a global a priori bound, |u(z,t)| < Mo, where Mp is independent
of ¢t. Thus, the solution u(z,t) exists globally.

We now obtain the asymptotic behavior of the solution u(z,t) as t — oo.
By Lemma 6.1 we have ||uz]|2 L2(n y < Co/e. This bound implies that for

N(t) = |luz(, )"LQ(O) Jo° N(t)dz < co. Using the identity

N'(t) = 2f01(uz,u,,t)dz
= ——2f01(um,ut)d:c

and using the dissipativity of B, one can show that

IN

N'(t) —efo |u1x|2dx+ fo |9 (u)|||uz |2dz
< 9" (Mo)||? fy luzl?dz
so that

[o <] oo
[Nz < Zie o)l [ V@) dt < o
0 0

Thus, N(t) has finite total variation which implies N(oo) exists. Since
f0°° N(t)dt < oo, it must be that N(oo) = 0. We have established

”Uz(',t)"%Z(n) —0 as t — o0.
By Lemma 6.1 we have ||u(:, )"LQ(Q) < 2Cp. As a result,

lu(z, t)? < 2ljug (-, t)l|L2(q) llu(- t)llL2(q) < 2v2C0llus(-,t)l|L2(a),

so |u(z,t)| — 0 as ¢ — oo uniformly in z. O

The proof is valid for the boundary conditions u(0,t) = u(1,t) = ¢ where
¢ is a nonzero constant since & = u — ¢ is also a solution to (6.2).

6.2 Induction Model for a Reactive-Euler System

In Section 1.4, we developed the reactive-Euler model (1.42) when O(tg) =
ta < tc. In one spatial dimension, this can be written as

¢t_j;_lﬁt=66¢
~ 1l [ica 2~
vw;(-&) Pz =0 (6.7)

’(~)z + ,-ly'ﬁt = (5€¢
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for (z,t) € R x (0,00) and where v > 1 is the gas constant, h is the heat
release, and § = h/~ is the Frank- Kamenetski parameter. Initial data is

given by
#(z,0) = ¢o(z), p(z,0) = po(z), ¥(z,0) =7p(z), z€ R,

with all functions continuous and bounded.

Set R
-1 1
a,:—’7 , b:é, c:l(tc—a) ’ and d = -
gl 7\ ta gl

then with w = ¢ — ap, (6.7)-(6.8) can be written as

bl

wy = bewtap
Uy +¢cp, =0
Dt + if)z = %ew-f-aﬁ
with
'LU(Z,O) = ¢0(Z) - aﬁO(x)) 5(:‘:10) = 50(1)5 ﬁ(Z,O) = p~0(Z)-

Using the change of coordinates

v\ 1 o\ (6
N\ () (cd) i 5l

(6.9)-(6.10) is equivalent to

=S|

wy = bew+H(P-7)

Vg — /\51 — __ew-H»‘(P v)

B, +/\pz bAew+;A(p 7)
with p = a(ed)~1/2, X = (¢/d)'/?, and initial conditions

w(z,0) = ¢o(z) — apo(z)

7(,0) = (§)"* [@io(a) - ho(a)]
p(,0) = (§)"* [@io(a) +fo(z)] .

Setting

bap _ (y—1)6

u=up, v=—-uv, A=b=4, andB=—2—— 7

b

(6.8)

(6.10)

(6.11)

(6.12)



6.2. Induction Model for a Reactive-Euler System 135
(6.11)-(6.12) is equivalent to

we = A6w+u+v
u; + Auy = Be?Tutv (6.13)

vy — A\vy = Bewtut?
with initial conditions

w(z,0) = ¢o(z) — apo(z) =: W(z)
u(z,0) = 8[(cd)~"/25o() + fo(2)] =: T(x) (6.14)
v(z,0) = ~4[(cd) /230 (z) - fo(z)] =: B(z).

We assume henceforth that A + 2B = 1.

Let ¢t = max{A, B}, ¢~ = min{A, B}, m* = max{®w(z),4(z),v(z) :
z € 1}, and m~ = min{w(z),u(z),(z) : = € N}, and consider

2 =cte®®, 2(0) = mt.

By comparison with (6.13)-(6.14),

w(z,t)
In(e™3™" —3ct)"1/3 < u(z,t) ¢ < ln(e“3’"+ —3ctt)~1/3

v(z,t)

and hence every solution (w, u, v) of (6.13)-(6.14) blows up in finite time T

with
1 1

— < T< —F—Fn—.
3ctexp(3mt) = ~ 3¢~ exp(3m~)

Note that ¢(z,t) = w(z,t) + u(z,t) + v(z,t). Assume that ¢(z,t) blows
up at z,, at time T. We would like to describe how the blowup singularity
evolves at (z,,,T). Make the backward similarity change of variables

T — 20

1'=—1n(T—1'), T]=(T'_—t)m

with
W=w+ Aln(T - t),
U=u+BIn(T - t),
V=v+BIn(T -t),
S=¢+In(T—-t)=W+U+V;
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then (6.13) becomes

W, + IW, = A(e® - 1)

U + 2Up + Xe™™/2U, = B(e® — 1
Ve + 3V, — Xe”/2V, = B(e® - 1)

®, + 1@, + e T/2(U, - V) =€® - 1.

) (6.15)

To describe how the blowup evolves would require us to analyze the be-
havior of solutions of (6.15) as 7 becomes infinite. To get an idea of what
to expect or hope for, let us consider the much easier problem when there
is no drift; that is, A = 0. The temperature ¢ blows up at

T = e‘¢0(1m)
where z,, is an absolute maximum point for ¢g. Then we know when and
where blowup occurs. We can also describe precisely how the blowup sin-

gularity evolves at z,,.
Let z = ¢ + In(T — t); then z is the solution of

Z+ 3z =€ -1
z(n,—InT) = zo(n) = ¢o(nT*/? + 2) + In T
which can be explicity solved to give
2n7) = —In[1-¢ (1= el

Thus,

Tll)nolo 2(n,7)=-In (1 - z{)’(O)e'“(o)n;) =-In ( - —2—) =:Z(n).
From this, we conclude that when A =0,
#(z,t) +In[(T - t) — K(z — 20)%] — 0
uniformly for (z — z,,)2 < n(T —t) as t — T~ which gives us a description

of how the blowup singularity evolves. We would expect a similar type of
behavior for (6.13)-(6.14).

6.3 The Full One-Dimensional Gas Model

In this section we consider a system of equations modeling the behavior of a
heat-conductive viscous reactive compressible gas bounded by two parallel
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plates. Assume that its describing parameters vary spatially only in the
direction perpendicular to the plates. In Euler coordinates, we have:

pt+ (vp)y =0

plve + vvy] = Ay — k(pf),
plO: + v8y] = A2byy + Ayv2 — kpbvy + 6pf(p,0, 2)
plze + vzy] = A3(pzy)y — pf(p, 0, 2)

where k, 6, and A; (¢ = 1,2,3) are positive constants, where ¢t > 0 is the
time, and where y € [0,1] C R is the one -dimensional space variable.
The variables p, v, 6, and z represent the density, velocity, temperature,
and concentration of unburned fuel, respectively. Let (2 = (0,1) and 9} =
{0,1}. The initial conditions for (6.16) will be

(6.16)

p(y,0) = po(y), v(y,0) =vo(y)
0(y,0) = 0o(y), 2(y,0) = z0(y)

The results proved in this section involve the boundary conditions

yeq. (6.17)

‘U(y, t) = 03 oy(y, t) = 0
zy(yat) =0

and represent a thermally insulated boundary. Similar results can be proved
for the noninsulated boundary conditions

, (y,t) € 99 x (0, 00). (6.18)

v(y,t) =0, z(y,t)=0

» (9,t) € 092 x (0, 00), 6.19
al8(y,t) — T] — by (y,t) =0 (v,t) € 32 x (0, 00) (6.19)

wherea >0,6>0,a+b>0,and T > 0.

In establishing global a prior: bounds for global exxstence, we rewrite sys-
tem (6.16) in terms of the Lagrange variable z(y, t) fo t) dr. Treating
the functions involved as functions of (z,t), system (6. 16) is transformed
into

pr = —p*vg
=A —k(pd);
Ut 1(pvz)z (pf) (6.20)
0 = A2(pbz)z + A1pv2 — kpbv, + 6 f(p,0,2)
z = A3(p%2) — f(p,0,2)
with initial conditions

’0 = ) ,0 =

p(z,0) = po(z), v(z,0)=vo(x) zen. (6.21)

0(2:’ 0) = 00(2:), Z(Z,O) = 20(.’23)
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and boundary conditions

v(2,0) =0, b(zt)=0 (2,1) € 80 x (0, 00). (6.22)
2z(z,t) =0

or

v(z,t) =0, zz(z,t)=0

T o0 »y00)y 2
a[f(z,t) — T] — bl (z,t) =0 (2,2) € 60 x (0, 00) (6.23)

In the remaining discussion we will use the following notation. For any
function g : 2 — IR, define the constants

mg = ;Iela g(z) and M, = 21618 9(z).
For any function h : Q x [0,T] — IR, define the functions

mp(t) = ;Ielg‘l h(z,t) and My(t) = :1618 h(z,t).

In addition for the initial-boundary value problem (6.20)-(6.21)-(6.22), we
make the assumptions:

0 < mp, < po(z) < My, < 00,
—00 < < <M,, < oo,

00 < My, < vo(z) £ My, <00 (6.24)
0 <my, < 0o(z) < My, < 00,

0 <mg, < 2(z) < M, <00,

|
/0 mdz =1, (6.25)

and f : [0,00)3 — [0,00) is continuous and globally Lipschitz on [0,7] X
[0,00) % [0, %] for all p > 0 and for all Z > 0.

Definition 6.1 Consider the set of functions (p,v,0,2) satisfying

p € L=([0, T}, W3 (), pr € L®([0,T], L*(12)), and
(v,6,2) € L>([0, T}, W3 () n L*([0, T, W (2)) N W3 ([0, T, L*(02)).

A generalized solution (p,v,0,2) i3 a function satisfying equations (6.20)
almost everywhere and assumes the initial-boundary conditions in the sense
of traces. For 1 < p < oo we denote by W;‘ the Sobolev space of all functions
whose derivatives up to order k are in LP.
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Local existence for initial-boundary value problem (6.20)-(6.21)-(6.22)
can be found in [KZH2]. The key theorem for global existence is the fol-
lowing theorem which establishes global a priori bounds for the solution.

Theorem 6.4 If (po(z),vo(2),00(z), 20(z)) € W3(Q) and if (p,v,0,2) is
any generalized solution of (6.20)-(6.21)-(6.22), then for any T > O there
ezists a constant C > 0 such that

lv(z,t)| < C, C~* < p(z,t) < C,

C~'<0(z,t) <C, and 0< 2(z,t) < C
for all (z,t) € x [0,T) =: Rr.

The proof of Theorem 6.4 will consist of a sequence of lemmas which
establish the bounds on the functions. As a consequence of the estimates,
we can prove

Theorem 6.5 If (po(z),vo(), bo(z),20(z)) € W3 (Q), then IBVP (6.20)-
(6.21)-(6.22) has a unique generalized solution for (z,t) € Q x [0, 00).

By imposing additional smoothness on the initial data, we can prove the
next theorem using the results in [KZH1],[NAS].

Theorem 6.6 If (vg,f9,20) € C?21*() and po € C**(Q) for 0 < a <
1, then initial-boundary value problem (6.20)-(6.21)-(6.22) has a unique
classical solution (p,v,0,z)(z,t) on Q x [0,00) with
(v,0,2) € C¥H*1+2/2(Q) x [0,00))
and .
p € C1He1+2/2(() x [0, 00)).

The next result is not proved here; these results can be found in [BRE]
and are similar to those used in this chapter.

Theorem 6.7 Let py € C't%(Q) and (vo,00,20) € C**(Q) for a €
(0,1). Suppose that
vo(2) = 25(2), A1vo(z) — k[oo(z)8o(2)] = 0,
and
alfo(z) — T) — b8,(z) =0
for z € 0N. In the event that b= 0, also assume that
povoby — A260g — A1 (vg)? + kfovo — 6po f (po, B0, 20) =0
for z € 99Q; then initial-boundary value problem (6.20)- (6.21)-(6.23) has
a unique classical solution on (1 x [0, 00).

These results show that even when heat is added at the boundary and
the gas is reactive, for arbitrarily large Lipschitz continuous initial data,
no shocks develop.
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6.4 Energy Estimates and Density Bounds

From (6.20a) we obtain % (%) = v;. Integrating with respect to ¢ gives us

p(z,t) = [p();(a:) +/0, ve(2,7) dr]_l

which is positive for ¢ sufficiently small since pg!(z) > 0 on Q. In addition,
integrating the same equation with respect to z and using the boundary
conditions for v gives us ( fol p~1dz), = 0. Thus,

1 1
/ p"ld:v=/ potdr=1.
0 0

Although p > 0 for small time, we will eventually obtain an upper bound
for p and bounds on |v;|. By bootstrapping, we find that p > 0 for larger
times. Using p > 0, we can use standard comparison results on the equa-
tions in (6.20) to obtain the following bounds on the temperature and
concentration functions.

Lemma 6.8 The functions 6(z,t) and z(z,t) satisfy the conditions
0(z,t) >0 and 0 < 2(z,t) < M,
for all (z,t) € Rr.
Proof. From (6.20c) we have
B: = A2 (p02)z + M1pv2 — kpu8 + 6 (p,0,2) > Aa(pBz)z — (kpvz)0

on Rr since p > 0, A\; > 0,6 > 0, and f(p,0,2z) > 0. On the parabolic
boundary of Ry we have 6p(z) > 0 on Q and 6,(0Q,t) = 0, so by the
maximum principle, 8(z,t) > 0 on Rr.

From (6.20d) we have

2t = )‘3(/’229:)9: - f(p,0,2) < )‘3(9231)1

on Rr since f(p,0,z) > 0. On the parabolic boundary of Ry we have
20(z) < M,, on Q and 2,(0Q,t) = 0, so by the maximum principle,
2(z,t) £ M;, on Ry.

Using the full equation for z and using Lipschitz continuity of f in the 2-
component, since zo > 0 on {1 and 2,;(0,t) = 0 we have by the maximum
principle z(z,t) >0 on Rr. O

We now consider the energy densities

w(z, 1) = 0(z,1) + 20°(z,1)
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and

e(z,t) = 0(z,t) + %v2(z, ) + 62(z, t).

The total energy fo (z,t) dz may increase in time due to the heat gen-
erated by the chemical reactlon However, using e(z,t) we can prove the
following result.

Lemma 6.9 The function e(z,t) satisfies the condition

1
/ e(z,t)dz = Ay
0
where A1 1s a positive constant. As a result we have the bounds
1 1
/ 0(z,t)dz < A; and / v3(z,t)dz < 24;.
0 0
Proof. Using the equations in (6.20) we have

& fol e(z,t)dz = & fol[() + 302 +62]ds

= fol [0 + vvy + 62¢) dz

= fol {[A2(pbz)z + A1pv2 — kpbuz + 61 (p,0,2)]
+[Mv(pvz)z — kv(p8)s]
+[623(p%22)z — 6 f(p,0,2)]} dz

= A1 fy [pv2 +v(pvs)z] dz + Az [ (pha)e dz
+6)s [ (0222)e dz — k [ |00 + v(pb);] dz

= A fy (pvvs)z dz + A [y (pba)z dz
+6)3 fol (p%2z)zdz — k fol(pvé?)z dz

= [M1pvvz + Aoplz + 6A3p% 2y — kpvb)|ZZ]

= 0

where the boundary conditions (6.22) have been used. Thus,

fol e(z,t)dz = fo z,0)dz
= fo [00(2) + 3v3(2) + 620(z)] dz
=: Al~

By Lemma 6.8 we had z(z,t) > 0. Thus,

1 1
/ 8(z,1) dz +1/ v¥(z,t)dz < A
0 2 Jo
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which gives the stated bounds. O

For each t € [0,T), there is a value a(t) such that p(a(t),t) = 1. The
existence of this value is assured by fol p~ldz =1 and the fact that p(-,t)
has a point of continuity z¢ € Q.

From (6.20a) we have p; = —p?v, which implies pv, = —(Inp);. Using
this in (6.20b) we obtain

ve = =A1(Inp)ez — k(pf)z = —A1(Inp)ez —

where the pressure p(z,t) = kp(z,t)0(z,t). Integrating with respect to ¢
(with lower limit 0) we get

t
% [/\1 Inp(z,t) — A1 In po(z) +/ p(z,7) dr] = vo(z) — v(z,1).
0
Integrating with respect to z (with lower limit a(t)) we get

Jainylo(€) = v(€, )] d€
= Alln[ ztpo (o t ] +f0tp(z,r)dr ——fotp(a(t),r)dT
where we have used p(a(t),t) = 1. Exponentiating gives us

o(z, t)e-xll- f(: p(z,7)dr
= po(m)pal(a(t))e{—l f(: p(a(t),f) dTe'XIT fa(t)[vo(f)-”(fyt)]df

and multiplying both sides by k6 (and using p = kpf), we obtain

z [Alexp( fo z,T dr)]

p(z,t) exp( fo
k9(f€,t)Po(x)Y(t)B(z,t)

) (6.26)

where

Y0 = a0 ew (5 [ 'pla(0)) )

B(z,t) := exp (;11- /I)[vo(ﬁ) - (¢, t)]dﬁ) :

Lemma 6.10 There are positive constants Ay and Az such that

1 1
— < < — < <
4 S B(z,t) < A; and P Y(t) < As

for all (z,t) € Rr.
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Proof. Note that

[ZovEtde] < [y lo(e b)lde
(R enae)™”

where the last inequality comes from Holder’s inequality. From Lemma 6.9
we had fol v2(€,t)dE < 244, s0 | :(t) v(f,t)d§| < 2A4;. Thus,

IN

:\lf f:(t) [vo(€) —v(,t)]dE < ')‘1—1 faz(t)[vo(g) —-v(§,t)] dfl
< & (fo‘ o)l de + /[ v2(&, 1 de)
ﬁ (Ilvollzr () + V2A1) .

Since exp(—|Q|) < exp(Q) < exp(|Q)), we have

exp (=27 (|lvoll + 2471 ))
< B(z,t)
exp (AT (|lvoll + V241 )) = Az

Integrate equation (6.26) with respect to ¢ to obtain

At

IA

M [exp ( ,\11 / o(z.1) dr) - 1] — kpo(x) /0 0z, 7)Y (r)B(z, 7) dr

or

exp ()\il /Ot p(z,7) d‘r) =1+ -@/Ot 0(z,7)Y (7)B(z,7)dr.

Multiplying by p(z,t) and using (6.26) gives us

p(z,t) [1 + 20T ”°(x / 0(z )dr] = kpo(2)0(z, t)Y (t)B(z, t)
or, using p = kp#,

Po(z)y(t)B(z t)
olz) = 1+ —&(ﬂfo B(z,7)0(z,7)dr

(6.27)
Equation (6.27) implies

p Y (z,t)Y (t) = B~(z,1) [pgl(x) + /\—kl/o Y (7)B(z,7)0(z,7)dr| .
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Integrating both sides with respect to z and using fol p~ldz =1, we have

t
/ B~(z,1) [ 1(g) + /\ﬁ / Y (r)B(z,7)0(z, 7) dr | dz.
1
Using B(z,t) < A; and B~!(z,t) < A;! gives us the inequality

Y(t) < A fo z)dz + E’“ fo fo 0(z,7)drdz
= A+ A o [fo 0(z, 7 dr] Y(r)dr (using (6.25))
< A+ k—{%‘ fo Y(r)dr (by Lemma 6.9).

By Gronwall’s inequality,

Y(t) < Agexp(f-’%%t)
< Agexp(&)“lﬁT)

=: A3

for ¢t € [0,T). Since pp > m,, > 0 and p > 0, Y (t) is bounded away from
0. Choose Aj3 large so that 4~ <Y (t) < A3. O

Corollary 6.11 There is a positive constant A4 such that
p(I, t) S A4

for all (z,t) € Rr.

Proof. In equation (6.27), 1 + (kpo/)\l)fg YBOdr > 1, po(z) < M,,,
B(z,t) < Ag, and Y (t) < Az imply p(z,t) < Mp,A2A3 =: A4. O

In the next result we obtain an inequality for the temperature function
6(z,t). Using (6.27) and Lemma 6.10, we have

1 1 kAyAs [t -
. 6.28
mp(t) > ToAs [m + X /0 0(z,7)dr| >0 (6.28)

Lemma 6.12 For anyn > 0, there are positive constants A5 = As(n) and
Ag = Ag(n) such that

02(21, t) <ndi (t) + A5J2(t) + Ag

for (z,t) € Ry where Jy(t) = [y p(z,t)82(z,t) dz and Jy = [; Jy(7)dr
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Proof. Set ¥(z,t) = 0(z,t) fo (&,t) d€; then f ¥(z,t)dz = 0. For each
t € [0,T], there must be an z,(t) € [0, 1] such that 1/1(11( ),t) = 0 since

fo ¥ dz = 0 and since 9(-, t) has a point of continuity z¢ € (2. Consequently,

[¥(z, )3/ 3 Loy [0(2 1) sgn(w (€, 8))we (€, t)d€
% :l(g) (P_1/2|¢|1/2) (p1/2[8gn(¢)]¢5) 13
< 3Ly (7V2w12) (02 [sen(w))ee) d€ -

Using Hoélder’s inequality, we have

(2, )/ < / -l|¢|de\/ / 2 d (6.29)

Since ¢, = 0, p~!(z,t) < m;1(t), and

Jo 1 (z,t)| de

lo |0(z,t) - J5 0(6,1) df‘ dz
2 [ 16(z,t)| dz
2A1a

IA

IN

inequality (6.29) can be modified to

[y (z,t)|3/2

3my 2(8)(240) 12012 (t)

Smj
(242) Y2 ;12 (1)J12 1),

IA

Raising both sides to the § power and using (6.28), we have

Wi (z,t) < (280 m %R 0)07(t)
< (241)23 (4, 42)2/3 [m=1 4 kA24s [tg(r 1) 4 2/3t
< (354)7 (A243)%/3 |my )t + k2. fo(x,T)T )
so that
1 2/3
Py <aien [ oena| G 6
where

o = (9A1A2A3)2/3 and By = kAyAs
! 2mPo ! mﬂo’\l.

Since 0(z t) = ¢(z,t) + fo 0(¢,t)dé < (z,t) + A1, we have 82 <
(¥ + A1)? <292 + A2) where the last 1nequahty follows from Cauchy 8
inequality (2ab < a? + b?). Using this in equation (6.30) yields

2/3
0%(z,t) < 24% + 20 [1 +BI/ 0(z,7) dr] J2/3( t). (6.31)
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For any n > 0, choose p =3, ¢ = 3/2,

1 2/3 3 -2/3
a =20 [1 + ,31/ 0(z,7) d‘r] (?77) ,
0

2/3
o= (2) " )

and apply Young’s inequality (ab < % + % for ;7 + % = 1) to inequality
(6.31) to obtain

and

62(z,t)

IA

2 , 3222 t 2
241+ 5% |1+ B[y 0(z,7) dr] + nJ1(t)
2
2A% + %%; 1+ (% (f(; 0(z,7) dT) ] + nJ1(2)

asz + P2 (fot 0(z,7) d1')2 +nJ1(t)

IA

where we have used2 the identity: (1+a)? < 2(1+a?). By Holder’s inequality
we have (fot 0dr) <t [y 6%dr so

t
0%(z,t) < o + ﬂzt/ 0%(z,7)dr + nJi(t). (6.32)
0

Set I(t) := [, 6%(z,7)dr and f3 = ,T; then I(0) = 0 and (6.32) can be
rewritten as

I'(t) < o9 + Bal(t) +nJi(t) or [e7tI(t)]" < [a2 +nJi(t)]e™P".
Thus, for t € [0, T,

t

I(t) < &t / €552 (g + 1 (5)) ds.
0

Replacing this in equation (6.32) yields

02(z,t) < ag+nJi(t) + Baet [f e7Ps%(ag +nJ1(s)) ds

ag(1 + Bzt [T e~P2%ds ) + nJy(t) + B3 [y et~ J1(s) ds
As(n,T) +nJ1(t) + As(n, T) [ J1(s) ds

nJ1(t) + AsJ2(t) + Ae

IN I

for t € [0,T] and where the constants are given by As = B3€P3T and
Ag = az(1+ ﬁ3TCB3T). a

In order to get a positive lower bound on the density p, we consider the
energy density w(z,t) = 0(z,t) + 3v*(z, ¢).
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Lemma 6.13 There is a positive constant A7 such that
1 1
/ w?(z,t) dz +/ vi(z,t)dz + Ja(t) < A7
0 0
for allt € [0,T). As a result we have the bounds
1
Jo(t) < A7 and / w?dz < A,
0

Proof. Using (6.20a,b), the time derivative of the energy density is

wy = (0+ 307,
= 0;+ vv;
= [A2(pbz)z + A1pv2 — kpbv, + 6f(p,0,2)]
+v[A1(pve)e — k(p)2]
= (A2pfz + A1pvvs — kpbv)z +6£(p, 0, 2).

Therefore,
14 vz = [juwde
= [0+ 30%)(Aapbs + M pvv, — kpbv), dz
+6 fy wf(p,0,2) dz (6.33)

= - fol(e + 39%)z(A2p0z + A1 pvvg — kpbv) dx
+6 f3 wf(p,0,2)dz

where we have used integration by parts and the boundary conditions
(6.22).

The global Lipschitz continuity of f and the bounds on z and p imply
that

f(p,0,2) < K10 + f(p,0,2) < K10 + K2 < K3(0 + 1)

where K is the Lipschitz constant for f, K5 is the bound on f(p,0, 2) for
(p,2) € [0, A4] % [0, M,,], and where K3 = max{K;, K2}. Also, w(§+1) =
w(w +1 - 3v?) < w(w + 1) = w? + w, so we have

6f01wf(p,0,z)d:c < 5K3f01(w2+w)dz
6K [fol widz + fol(ﬂ + %vz)da:]
5K3 (fol w2dz + Al)
Ky (1+ fy wide)

Al

IN
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where we have used Lemma 6.9 (||w(-,t)|lL1(q) < lle(t)llLr@) = A1)-
Replacing this in (6.33) gives us
-’-01 wwydz < — f01(0 + 39z (A2p0z + A1 pvvg — kpbv) dz
+Kq (1+ [, wPdz)
= =)y fy pb2dz -\, [ pvPvlds
—(A1+A2) fol pvvz0; dz
-k (fol pvl0, dz + fol poviv, d:c)
+Kq (14 [y wPdz ).

Let a > 0, 8 > 0, and 4 > 0. By Cauchy’s inequality,

(6.34)

2 2
—v60, < EY——1}202 02 —0v?v, < é—v202 + vavz
T = 2 2 2 ) T = 2 2ﬁ2 )

and

'y 1
—vvgfe < v +W02'

Using these in (6.34) yields
fol wwidz < Ks fol p0idz + Ke fol pv?vidz
+K7 [y p?02dz + K4 (1 +fy w2da:)
where
= 20t ok,
= :7—-(——)-2 A1tz —Al + ﬁy, and
K7 = k(a? + B?).
The parameters a, 3, and ~y can be chosen so that K5 = —)2/2 and Kg > 0.
Thus,
Jy ww, dz + 22 [ ph2dz

1 1 1 (635)
< Ko [y pv*vldz + Ky fy pv?0%dz + Ky (1+ [y w?ds ) .

Now consider the time derivative of fol vtdz. Using (6.20b), we have

Y fovtds = [otuds
= [y v} (Mpvz — kpb); dz
= —fo 3)z(A1pvg — kpf) dz
= =3\ fo pv?vidz +3f0 kpbv3v, dz
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By Cauchy’s inequality we have kv,0 < %ng + 5’%02 so that

K2 [l
3/ kpbviv, dz < ——/ 2v2dz + —/ pv20%dz.
A1 Jo

As a result,

1 1 2K 1
&/ vdvdz < —%/ pv?vidz + :—Sk—,‘,s/ pv20%dz.
A]_ 0 2 0 2A1 0

Combining this with (6.35) yields

Jy ww, dz + Ka fo v3vgde + 22 [ pb2dz
3k 292
(K7 + T?ﬁ) fO 0%dx
+K,4 (1 + [ w2da:) — Ks [ pu202dz
Kg [y pv*0%dz + Ky (1+ [y widz ).

IA

(6.36)

IA

where Kg = K7 + (3k2K5)/(2/\2)
Using Lemma 6.9 ( fo v2dz < 24,), Corollary 6.11 (p < Ay4), and Lemma
6.12 (02 < nJ; + AsJy + Ag), we have

1
/ pv20%dz < 2A1A4[nJ;y + AsJs + As), (6.37)
0
s0 (6.36) becomes
fol ww, dz + %ﬁ fol viv dz + 32 J;
< Ko + KionJy + K11J2 + K4 [ wdz

where Kg = K4 + 2A,A4A¢, K19 = 2A1A4, and K;; = 2A;1A4As. Since
n > 0 is arbitrary, choose n = Ay/(4K19); then
4[4 Jo wido + B2 [ vids + 205(0)]
sm+mm<+mﬁ2 (6.38)
< K9+K12[ Jy widz + &a [ vdz + 2 15(t)]

where K3 = max{4K11/A2,2K4}. Define

_1 e Ke [* o YN
then (6.38) is of the form

Q'(t) < Ko + K12Q(t), for t €[0,T).
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Thus, [exp(—K12t)Q]’ < Kg exp(—K;2t) which implies
t
Q(t) < ef12t[Q(0) + Kg/ e H123g5] < X12T(Q(0) + KoT) =: Ki3.
0

For K14 = min{1/2, Kﬁ/(4/\1),/\2/4}, we have

1 1 1 K
/ wldz +/ vide + Jo(t) < —Q(t) < B4,
0 0 Ky, K4

for t € [0, T). Clearly J(t) < A7 O

Corollary 6.14 There are positive constants A7 and Ag such that

1 t 1
/ 0%dz < A7 and / / pvividzdr < Ag
0 0 Jo

for allt € [0,T).
Proof. Note that 0 < § = w — 2v? < w, so 62 < w? and so fo 0%dz <
fo w?dz < A7. To prove the other bound, we had in equation (6.36)
Q) = [ Jo wdz + £ [1otdz + éfJg(t)]
< Kg [y p?0%dz + K, (l + [ w2dx) — Ka [} py?02da.

Using (6.37) we have

Ko [ pv202dz + Q' (t) < Ks[24144 (nJ1(t) + AsJa(t) + Ag)]
+K4(1 + A7)
< aJi(t)+ 8

where a = 2A1A4Kgn and B = KgAsA7 + 2Kg A1 AgAg + K4(1 + A7)
Integrate with respect to ¢ to obtain

%ﬁfot fol pvividz dr

IA

LEUN fol pvividzdr + Q(t)
Q(0) + aJa(t) + Bt

Q(0) + aA7 + 8T

7.

IN IA

Thus, [, [ pv?v2dzdr < 2y/Ke =: Ag. O
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Corollary 6.15 There is a positive constant Ag such that
p(z, t) 2 AQ
for all (z,t) € Rr.

Proof. From Lemma 6.12 we had 6%(z,t) < nJi(t) + AsJ2(t) + Ae for
(z,t) € Q x [0,T). Thus, by Corollary 6.14,

02(1, t) <ndi (t) + AsA7 + Ag
and
t
/ 0%dr < nJ2(t) + (AsA7 + Ae)t <nA7+ (A5A7 + AG)T
0

Using Cauchy’s inequality, we have 8 < (1 + 62), so
2

t t
/ fdr < % (t +/ 02(11') < % [T +nAr +T(AsA7 + Ag)] =: a.
0 0

From equation (6.28) we have

1 -1 kAzAg [t -1
mp(t) 2 ghg [mpt + ks [F6(a,7) dr |
1 —1  kAzA;
2 44 (mpo 55 a)

Ag >0

for allt € [0,T). O

Corollary 6.16 There are positive constants Ajg and A1 such that

t 1 t p1
/ / O:dz dr < Ao and / / vzvgdz dr < An
o Jo o Jo

for allt € [0,T).
Proof. From Corollary 6.14 and Corollary 6.15 we have

t 1 t 1
AQ/ / 02dzdr g/ / p02dzdr = Jo(t) < A7
0 Jo 0o Jo

t 1 t 1
Ag/ / v2vldx 5/ / pvividzdr < As.
o Jo o Jo

The result follows where A;o = A7/Ag and A;; = Ag/Ag. O

We have established the bounds: A9 < p(z,t) < Ay, 0(z,t) > 0, and
0 < 2(z,t) < M,, for (z,t) € Q x [0,T]. We will now establish global a
priori bounds on the velocity function v(z,t).
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6.5 Velocity Bounds

Lemma 6.17 Let g(z,t) = Ajvy — kf; then

t
10 2gl2a(qy + /0 (o)<l dt < Atz

for some positive constant A,,.

Proof. Note that from (6.20b) we have v; = (pg).. Consider

ok fo pg*d
= fo pggedz + 1 [ prg?da (6.39)
= —k fol pg0; dz + Ay fol pgVzs dT + %fol pegd
Note that

1 1 1
| orvaede = (oopulzz - [ (paeveda = [ (oa)al as
where v;(9(2,t) = 0 since v(91,t) = 0. Replacing this in (6.39) yields

——/ pg2dz+/\1/ [(pg)] dw=—k/ pgb: dz +—/ g9’ prdz.
2dt Jo 0 0 2Jo

Using (6.20a,c), we get

34 Jo padz+ 21 [ [(pg)a)” da
= —(k+3) fo pPgPvsdz — ks [ pg(00s)s da
—ké fol paf(p,0,2)dz
= L +1+ ;.

(6.40)

We now analyze each integral in (6.40).

Integral I;. Integrate I; by parts and use the boundary conditions on v in
(6.22) to obtain

I

—(k+1) [, (pg)%, dz
—(k+%)[ v|Z=8 — [y 2(p9)( pg)zvdx]
(2k +1) [y (pgv)(p9)s dz.

Il

Using Cauchy’s inequality we have

(2k + 1) (pgv) (pg)< < @L;r—)zﬁy"’vz + A4 [(pg)z)* -
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Also, g% = (M9, — k6)? < 2(A2v2 4 k262) since (a —b)? < 2(a? +b?%). Thus,

2A3(2k +1)2

(2k + 1)(pgv)(pg)z < 3
1

o2 + K607 + 2 ().

where we have used the bound p < A4. Integrate to obtain

1 1 1
IL, < Kl/ v2vidz +K2/ v20%dz + %/ [(Pg)z]2 dz
0 0 0

where K; = 21 A%(2k +1)? and K, = 24%k?(2k + 1)?/);. Using equation
(6.37) and the bound on J3, we have

1 1
/ v20%dz < aJi(t) +8 < aA4/ 02dz + 6
0 0

for constants a = 2A4;7n and 8 = 24,(AsA7 + As) so the inequality for I
becomes

1 1 1
L <K, / v2vldz + K / 02dz +K4+’\711- / [(pg)2)” dz
0 0 0

where K3 = aA4K2 and K4 = 5.

Integral I,. Integrate I, by parts and use the boundary conditions on 6,
in (6.22) to obtain

I = -k [, (pg)(pbs)s dz
= —kXa [(p0) (P82)13Z3 — Jo (00)o(p0s) dz
= kA fo P9)z(pbs) dz.

Using Cauchy’s inequality we have
EAa(pg)s(p0s) < & (pw + = [(09)2]”

Using the upper bound on p and integrating, we get

1 A 1
I < Ks/ 62dz + 71/ [(p9)a)” dz
0 0

where K5 = k2A2A2%/);.

Integral I3. Since f is globally Lipschitz continuous and since p and z are
bounded, we have

f(p,0,2) < f(p,0,2) + K < K7 + Kef < Kg(0 + 1)
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where Kg is the Lipschitz constant for f, K7 is the bound on f(p,0, 2) for
(p,2) €[0,A4] X [0, M,], and Kg = max{Ks, K7}. Consequently,

f2(p,0,2) < K2(0+1)% < 2KZ(0% +1)

since (a + b)? < 2(a? + b?). Using Cauchy’s inequality and this last fact,
we have —kégf < 1k262g% + 1 f? so that an integration yields

I3

IA

1k262 [} pg?dz + 3 [y pfdz
Ko [y pg?dz + K3 Ay [, (0> +1) dz
Ko J; pg*dz + Kio

IN A

where Ko = 1k262 and Kio = KZA4(A; + 1) (and where we have used

fol 6%dz < A, from Lemma 6.9).
Combining these results in (6.40), we obtain

1
b Jo pa?dz + % [y [(po)a]’ dz
<K+ Ky fol 02dz + K, fol v2v2dz + Ko fol pg*dz

where K;; = K4+ K0 and K;5 = K3 + K. Integrate with respect to ¢ to
obtain

Jy pgdz o pg?dz + A1 3 [ [(pg)a)” dzdr

Jo pogddz + 2Kt + 2Ky [y [, 62dzdr
+2K1 [y [o vPvldzdr + 2K, [, fol pgdz dr
I3 pogddz + 2K T + 2K12A11 + 2K 1 Ar
+2Kg fot fol pg9dzdr

= K3 +2Kyg fy [y pg*dzdr

IN A

(6.41)

IN

where we have used the bounds A;¢ and A;; constructed in Corollary 6.16.
Equation (6.41) is a Gronwall’s inequality, so we have

1
/ pgldz < Ki3exp(2Kot) < K13 exp(2KoT) =: K14.
0
Replacing this in (6.41) gives us

t
162l ) + M /0 (002l d2 < Arz

where A1 = K13 + 2KgK14T. O
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Corollary 6.18 There is a positive constant A1z such that
|v(z,t| < A3

for all (z,t) € Rr.

Proof. From Lemma 6.17 we have

1 1
/ (A1vg — k8)2dz < 1 / p(A1vg — k8)2dz < Az
0 Ag Jo Ag

where 0 < Ag < p (from Corollary 6.15). Using Cauchy’s inequality, we
have
A2 < 2(Av, — k6)? + 2k%62.
Dividing by A? and integrating yields
fol vidz < ;:‘1{ fol (A1v; — k8)%dz + % fol 0%dx

24 2k%A 2 (642)
< 34, T ,\’~""l =: Als

where we have used Lemma 6.9 ( fol 6%dz < A;). Consequently,

T 1 1 1/2
/”z(f’t)df s/ lvg| da 5[/ vgdz} < Ass
0 0 0

where we have used Holder’s inequality. O

|v(z,t)| =

Corollary 6.19 There are positive constants A4 and A5 such that

loe( )12y < A1a and ||pz(-,t)l|72(q) < Ats

for t € [0,T). Thus, the function p(z,t) is Holder continuous on the set
Rr.

Proof. In Corollary 6.18 we had the estimate (6.42): ||vz(-,t)|[z2(q) < A13-
From (6.20a), we have
ot )32y = 162, )2 (-, )12 () < ALATs =: A (6.43)

where we have used the upper bound on p.
If one differentiates (6.27) with respect to z, then

] k [t
pz = p(vo —v) —p’Y 1B} [g(pal) + XI[J Y B(0: + (vo — v)) dr| .

Using the bounds on p, fol vdz, fol 62 dz, fol v202dz, Y, and B, one can
eventually obtain the bound

1
oz (s ) |72(q) =/0 pldz < A;s (6.44)
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for some constant A;s. It follows from (6.43) and (6.44) that p is Holder
continuous on Rr. O

Lemma 6.20 There is a positive constant Ag such that

t t
mwwmmnfﬁmmuwaM+LnMnmhmMSAm

fort €[0,T).

Proof. Since v; = (pg)z, Lemma 6.17 gives us |lv(-, )"m(n) Ajz. In
Corollary 6.18, equation (6.42), we have ||v1(~,t)||ig(n) < A?;. We only

need to find a bound for fo lvzz (- t)||2dt.
Using the identity: a? < 2(a — b)? + b?, we have A\?v2, < 2(A1vg; —
k8;)? + k262. Integrating, we have

t 1 t 1 t 1
/0 /O v drdr < K, / / g2dzdr + K, / / 02dzdr  (6.45)

where K1 = 2/A% and K, = k?/)2. Using the identity: a2 < 2(a +b)% +b?,
we have

(pgz)? < 2(pgz + p29) + (p29)? = 2[(pg)s)” + (p29)*.

Integrating, we have

S fo g2dz dr

IA

1 o Jo (pgs)?dz dr
5 [ Jo loa)el? dzdr + [} Jo (020)?dzdr

where we have used the lower bound on the density function. Combining
this with equation (6.45) gives us

IA

s f3 vidzdr < Ks ff [} ((pg)o) dadr + Ky [ [} 02dzdr
+ Ky [ [0 (p2g)?dedr

where K3 = 2K /A3 and K4 = K;/A3. Using Lemma 6.17 and Corollary

6.16, we have
t 1
//v dz dr <K5+K4/ / (pzg)2dzdr (6.46)
o Jo

where K5 = K3A12 + K2 Ajp.
Finally,

t rl
fo fo (pz9)*dzdr < maxXo, ) lp= (- ||L2(n) fo fo g%dz
Alsj‘;" =: K¢

IN
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where we have used (6.44) and Lemma 6.17. Combining this with (6.46)
gives the bound

t
/0 loze (> )22 47 < Are

where Ajg = K5 + K4Kg. O

6.6 Temperature Bounds

We have constructed bounds on the density p(z, t), the velocity v(z,t), and
the fuel concentration z(z,t). We now finish with the a prior: bounds on
the temperature 6(z,t). The upper bound on temperature is derived from
the lower bound on density and a comparison theorem.

Lemma 6.21 There is a positive constant A17 such that
0(z,t) 2 A1z

for all (z,t) € Rr.

Proof. From (6.20c) we have

0: = Xa(p8z)z + A1pvE — kpbuz +6f(p,0,2)
> A2(pz)z +P(/\lv — kbv;)
292
= Ao(pbz)z +p [Al Vg — 2’101) - %]
2
> )‘2(P91)z 4%02
> Xo(pbs)s — 5446 by Corollary 6.11.

Let ¢(t) be the solution to:

ﬁ lc A4
dt

then ¢(t) = (4A1mg,)/(4A1 + k2A4t),

¢>2 t>0, #(0)=megy;

k%A,

k2A
82 > ¢ — Aa(pdz)s + ——
4\

4

for (z,t) € 1 x (0,T), and on the parabolic boundary, 8(z,0) = 6o(z) >
mg, = ¢(0) for z € O and 0,(80,t) = 0 = ¢,(0) for t > 0. By the maximum
principle, 8(z,t) > ¢(t) for all (z,t) € O x [0, T). Since ¢(t) > ¢(T) =: A17,
we have 0(z,t) > A;7 > 0 for (z,t) € Rr. O

0; — Aa2(pbz)z + ¢2 =0
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Lemma 6.22 There is a positive constant A;g such that

t t
162, )l1Z2(q) +/0 1622(:, )12 (c it +/0 186, t)l1Z2 () dt < Asg

fort €(0,T).
Proof. Using (6.20c) and the boundary conditions (6.22), we have

o fo 02dz = fo 020 dx
= 0.0,2=8 — [ 0,6,, dz
[ 0aa Dhalpa)e + pOrve — k)0, +87(5, 0,5 dz (647
= =) fol p02. dz — X, fol P00z dz
—fo (Avg — k0)v 0, dx — 6f01 0::f(p,0,2)dz

Using Holder’s inequality and Young’s inequality, we now observe that

z 1/2
01(z,t)=/ 20,0, dz $2</ 02dz) (/ 62 dx)
0

so that
1/4
m_gx|0,(1,t)|5\/§(/ 02d:1:) (/ 62 dz)
Q

=2 fy pz020z0 da
< Yol fy pabsbaz dz |
< /\2max5|0z|( olﬂpida:) (fo p02, dx)1/2
<xavZag () _pid ) (fo 62 d:z:) (f0‘ 002, dz )3/4
< XK (f, 02 d:r,) (fo p62, da:)3/4
S % Jo o2 dz+ K, [ 62dz

and
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where K; = \/§A15A8/4 and K2 = 54K{)2. Note that we have used (6.44)
and the bounds on p. We also have

- fo (A1vz — k6)v,0,, dx
o POz = KO)v.b.. da|
Ag * maxg |vg(z, t)| X
x (fo p(A1v2 — k0) 2dz) (Jo 002, dz)%
JE (i Zd:c)l (6.49)
x(fo vgxdz) g & p(Arve —ko)de) (Jo w02 dz)%
K ([ v2.dz )" (Jo of2, da:)%
<Ky (fyv2odz)’ +2% f) o032, dz

IA

IA

IA

IA

where K3 = (2A12/A9)1/2Aié4 and K4 = 2K2/)2. Note that we have used
Lemma 6.17 and Lemma 6.20. Finally,
—6 fo 8221 (p,6,2) dz
< Ks [ |022(1+6)| dz
1 1/2 1 2
<Ks (fy p82,d0) " (Jo 222
<% fy 02 dz+ 4 [y (14 0)%ds
< % [0 p82, dz + Ko

where f(p,0,2) < f(p,0,2) + L8 < Ks5(1 + ) and Ks = 2(1 + 24; +
A7)/(Ag)2). Note that we have used the bounds on fo 6dzx and fo 6% dz.
Replacing equations (6.48) through (6.49) into (6.50) gives us

12 (6.50)

% fo 67 dz + % fo P0z; dz 1/2
< K, [y 02dz + Ky (fo vud:c) + Ke.
Integrating with respect to ¢ gives us
2fo 02dz+—2f0f0 p02, dzx
<if) 03, dz+Ks [, [y 62dzdr
+ Kaq [§ 0sa (-, 0)llz2 dr + Ket

from which the result

1 t 1
/02dz+//0§zd:cdrsK7
0 0 JO
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immediately follows. From the other previously derived bounds, we have

t 1
/ / 92dr < Ks
0 Jo

and the lemma is proved (where A;3 = K7 + Kg). O

The upper bound on temperature is immediate from the bounds obtained
on the L2 norm of 8, (c.f. Corollary 6.18).

Corollary 6.23 There is a positive constant A9 such that
9(13, t) S A19
for all (z,t) € Rr.

These a priori bounds establish the proof of Theorem 6.4. To prove
Theorem 6.5, we need one final estimate involving the concentration 2(z,t).

Lemma 6.24 There is a positive constant Ayg such that

t t
llzz (s )17 2 () +/0 222 (s )32 (q) dr +/0 llze( )22 () dr < Ao

fort €[0,T].
Proof. From (6.20d), it follows that

1 1
13 [y 22z + X [ pP22dx
= —2)3 fol PPz2z2250T + fol 2z2f(p, 0,2) dz.

Since p, 6, and z are bounded, we have f(p,0,z) bounded. The term

fol Pz2z2zg dx can be bounded in exactly the same way as fol pz0z0z dz in
Lemma 6.22. O

6.7 Comments

Existence for gas dynamic systems (6.1) with various initial and bound-
ary conditions is surveyed in Kazhikov and Solonnikov [KZH2] and Mat-
sumara and Nishida [MAT)]. Local existence is reasonably well understood,
but global existence in higher spatial dimensions remains an important
unsolved problem.

Invariance techniques as discussed in Chapter 4 fail in most cases because
invariant regions, if they exist, are unbounded. The a priori boundedness
of solutions is obtained instead by use of energy estimates. This method is
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illustrated for the nonreactive model (6.2)-(6.3) in Section 6.1. The global
existence theorem proved is due to Kanal [KAN].

The induction model (6.7)-(6.8) in Section 6.2 with viscosity matrix
B = 0 has only solutions which blow up in finite time because of the
reaction term present. Our discussion is incomplete as we do not address
the question of where blowup will occur. Jackson, Kapila, and Stewart
[JAC1],[JAC2] have given a formal asymptotic discussion of this model.
Majda and Rosales [MAJ1] consider a related problem. The generation of
these hot spots as detected in this ignition model is believed to be crucial in
the understanding of the deflagration-to-detonation transition phenomena.

In Sections 6.3 through 6.6, initial-boundary value problems correspond-
ing to the behavior of a confined, heat-conductive, viscous, and chemically
reactive gas are considered in one spatial dimension. Using estimates on the
total free energy of the system, a priori bounds are found for the solutions
which gives global existence. From a physical point of view, this shows that
the heat conductivity and viscosity of the gas prevent shocks from devel-
oping for arbitrarily large Lipschitz continuous initial data. These sections
are from Bebernes and Bressan [BEB6] and Bressan [BRE].
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