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PREFACE 
 
 
Alzheimer’s disease (AD) is characterized by the deposition into the brain of amyloid 

peptide, which originates a cascade of inflammatory events leading eventually to neuronal 
death. These pathological events likely occur several years before the clinical manifestation 
of the disease, implying that potential therapeutical interventions are currently started too late 
to give beneficial results. Recently, growing attention has been paid to the Mild Cognitive 
Impairment (MCI), considered the prodromal phase of AD, as 80% of subjects with MCI 
have been shown to develop AD within 5 years. Several studies aimed to identify biological 
markers to differentiate between normal aging and incipient AD have been carried out, 
including cerebrospinal fluid (CSF) analysis and neuroimaging. In particular, the evaluation 
of CSF Amyloid beta (1-42) levels, together with tau and phospotau, are of help for 
recognizing early AD. Besides, a number of additional molecules are altered in CSF. Other 
early modifications have been observed in peripheral cells, such as fibroblasts and 
leukocytes, as well as in serum from patients. Biomarkers for AD represent important tools 
supporting the clinical diagnosis and the choice of potential therapeutic options. Moreover, 
they would be of great help for the selection of cohorts of homogeneous patients for clinical 
trials with new disease-modifying compounds.  

This book is aimed to give an update about MCI as prodromal Alzheimer’s disease (AD), 
to discuss the main known pathological mechanisms at the basis of AD and to describe the 
possible biomarkers to be used for an early diagnosis of the disease. 

 





In: BioMarkers for Early Diagnosis of Alzheimer's Disease ISBN: 978-1-60456-991-9 
Editors: D. Galimberti, E. Scarpini, pp. 1-9  © 2008 Nova Science Publishers, Inc. 

 
 
 
 
 
 
 

Chapter I 
 
 

MILD COGNITIVE IMPAIRMENT 
 
 

Ilaria Guidi and Daniela Galimberti∗ 
Dept. of Neurological Sciences, University of Milan, IRCCS Fondazione Ospedale 

Maggiore Policlinico, Milan, Italy. 
 
 

ABSTRACT 
 

Mild Cognitive Impairment (MCI) was proposed as a nosological entity referring to 
elderly people with mild cognitive deficit but no dementia. In the first criteria for MCI, 
which were proposed by Petersen et al in 1997, the emphasis was on the compulsory 
presence of memory problems and memory disorders, implying that cases of MCI 
represented a fairly uniform group of subjects. The criteria for MCI are the following: 
memory complaints of the subject, objective memory disorders considering age, absence 
of other cognitive disorders, intact basic activities of daily living, and absence of 
dementia. This concept of MCI made it possible to define a group of patients at high risk 
of developing dementia, particularly Alzheimer-type dementia, as 80% of MCI subjects 
converted to dementia within 5 years. Based on whether predominant memory 
impairment was present or not, two primary subtypes were delineated: amnestic and non-
amnestic MCI. Regarding MCI diagnosis, the most commonly used rating systems for the 
global stagings of cognitive impairment in older adults are the Global Deterioration Scale 
and the Clinical Dementia Rating (CDR) scale. According to CDR, MCI had been 
defined as score 0.5 of 3, representing the concept of questionable dementia. At present, 
no pharmacological treatment has been proven to be effective in MCI subjects. 
 
 
 
 
 

                                                        
∗  Correspondence concerning this article should be addressed to: Daniela Galimberti, phone +390255033847; Fax: 

+390250320430; e-mail: daniela.galimberti@unimi.it. 
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1. HISTORY OF MCI CONCEPT 
 
In 1907 Alois Alzheimer’s reported a case of a syndrome consisting of cognitive 

deterioration and behavioral disturbances in a middle-aged woman with an unusual 
neuropathologic picture [1], beginning the long road toward the understanding of 
Alzheimer’s disease (AD). Since AD was first described, it become clear that symptoms 
develop gradually over many years.  

A second landmark was Katzman’s notion of brain reserve, proposed in 1988. This 
concept was based on the apparent capacity of brain to protect itself against dementia despite 
the presence of neurodegeneration [2], providing a potential explanation for the delay in 
clinical onset of dementia associated with many putative protective factors. It was supported 
by several subsequent studies ranging from brain volume size [3] to neuropathologic studies 
[4]. These studies, demonstrating that substantial AD pathology may exist without producing 
clinical symptoms, led to important considerations regarding AD and other dementia 
preclinical stages, and to the characterization of certain mild impairments as high-risk 
conditions to develop dementia.  

 
 
2. CLINICAL DEFINITION: OVERLAP BETWEEN NORMAL 

AGING AND COGNITIVE IMPAIRMENT 
 
The real and still ongoing challenge is the clinical definition of these conditions of slight 

cognitive deficit, and their distinction from normal aging; this is partially due to the fact that 
a change in cognitive performance is commonly an expected consequence of normal aging. 
The ability to identify the subgroup of elderly people who will develop dementia has 
therefore very important practical importance: in the short term the identification of these 
individuals would provide reliable prognostic information to patients and their families, in 
the long term it is the first step toward effective prophylactic and social medical intervention.  

Many related and overlapping entities have been proposed during the last few years, and 
a profusion of terms and concepts currently exists in the field. Differences between the 
definitions of these conditions of minimal cognitive impairment reflect the controversial 
concept of “cognitive normality”in elderly persons.  

Some researchers affirm that the goal is maintenance of the same performance levels 
shown by a young person, and one definition, that of “age-associated memory impairment 
(AAMI)”, compares the performance of elderly subjects with that of younger persons [5]; up 
to 80% of individuals in their 80s will fall into the AAMI category by demonstrating memory 
performance at least 1 standard deviation (SD) below mean test values for younger subjects 
[6], but longitudinal follow-up shows this group to be heterogeneous, consisting of both 
individuals preserving their cognitive functions and subjects deteriorating towards dementia 
[7]. This underlines the point of view that normality must be determined with respect to a 
homogeneous age group, and that cognitive aging is a normal phenomenon to be defined as 
cognitive performance at the same level as others of the same age. 
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In 2000, the Canadian Study of Health and Aging (CSHA) defined the concept of 
“cognitive impairment no dementia” (CIND) on the basis of a consensus conference of 
physicians, nurses and neuropsychologists [8]. The CIND concept reflects essentially the 
presence of cognitive impairment in the absence of dementia, on the basis of clinical and 
neuropsychological examination, regardless of its causes (neurological, psychiatric or 
medical) and its degree [9]; “aging-associated cognitive decline (AACD)” was operatively 
defined as a history of cognitive decline during at least 6 months, with difficulties in several 
cognitive domains including, but not limited to, memory, and with low test scores in the 
relevant domains, in absence of dementia [10]; this concept reflect a somewhat different 
approach, focusing on patients’ and families’ complaints of memory and cognitive loss as 
starting point. It is well known that elderly subjects might complain of memory loss as a 
result of anxiety, mild depression or dementia in other family members or friends, but at the 
same time other studies show that memory complaints in elderly people deserve to be taken 
seriously, at least as early sign of actual decline, and investigated properly [11]. 

Other entities are based solely on test performance, and are called “age-consistent 
memory impairment” and “late-life forgetfulness” [12]; the stage called “questionable 
dementia” on the Clinical dementia Rating Scale (CDR) [13], rated as 0.5 on a scale of 0 to 3, 
represents the same concept of preclinical dementia, but based on history and clinical 
judgment, without considering neuropsychological test scores. 

The most widely accepted concept to date is termed Mild Cognitive Impairment (MCI), 
as defined by Petersen et al in 1999 [14]. Before the definition as an isolated memory deficit, 
the term had already been used to define an early stage on the Global deterioration Scale 
[15,16]. Having been broadened to include variants with impairments in other cognitive 
domains, MCI describes a cognitive state intermediate between normal aging and dementia; 
often with the implication that is a risk or prodromal state for AD or other dementias [17]. 
The clinical validity of MCI concept has been demonstrated both with cross-sectional studies 
examining cognitive function [18] and longitudinal studies examining rates of decline in MCI 
subjects [14]. However, some Authors argue that MCI cannot be a diagnostic entity, and that 
it seems to increase risk not because it creates a predisposition for AD but because 20% of 
those with MCI already have AD [19]. 

 
 

3. CLINICAL CONCEPT:  
HETEROGENEITY OF MILD COGNITIVE IMPAIRMENT 

 
MCI was proposed as a nosological entity referring to elderly people with mild cognitive 

deficit but no dementia. In the first criteria for MCI, which were proposed by Petersen et al in 
1997 [20] and 1999 [14], the emphasis was on the compulsory presence of memory problems 
and memory disorders, implying that cases of MCI represented a fairly uniform group of 
subjects. The criteria for MCI included as follows: memory complaints of the subject 
(corroborated by an informant), objective memory disorders considering age, absence of 
other cognitive disorders, intact basic activities of daily living, and absence of dementia. This 
concept of MCI made it possible to define a group of patients at high risk of developing 
dementia, particularly Alzheimer-type dementia. This definition of MCI, however, has been 
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criticized for being tautological: in fact when the concept of MCI is restricted to memory 
disorder only, defined on the basis of tests generally used for the early diagnosis of AD, it 
probably leads to the identification of people at a high risk of progression to AD.  

As studies of nondemented cognitively impaired individuals expanded, it also became 
clear that there were considerable numbers of subjects whose memory impairment was the 
predominant but not the only cognitive problem that could be seen. Many individuals with 
mild cognitive impairment that evolved to AD were slightly impaired also in domains such as 
language or executive functions in addition to memory. Likewise, individuals were found 
whose primary cognitive impairment was in domains other than memory (e.g. spatial skill or 
attention). 

The different clinical presentations of patients commonly observed in clinical contexts 
led Petersen et al to propose an extension of the concept in 2001 [21], and in 2004 [22], 
considering a syndrome-type classification, based on the clinical evaluation and associated to 
different outcomes. Based on whether predominant memory impairment was present or not, 
two primary subtypes were delineated: amnestic and non-amnestic MCI [22]. The revised 
criteria also acknowledged the possibility that more than one cognitive domain might be 
impaired within each of these subtypes (e.g. amnestic MCI, single or multiple domains 
impaired). These revised criteria are conceptually similar to CIND concept, as they include a 
broad range of cognitive deficits caused by multiple etiologies. In this context, the original 
clinical criteria for MCI were clearly focused on amnestic MCI, and it was demonstrated that 
amnestic MCI subjects (single or multiple domain impaired) are at increased risk of 
progressing to AD over time, whereas single-domain non-memory MCI, characterized by 
impairment of a cognitive domain other than memory, are thought to be the transitional phase 
between normal aging and other dementias such as vascular dementia, Frontotemporal Lobar 
Degeneration, Lewy body dementia and focal atrophy, or psychiatric disorders such as 
depression. 

Another important source of heterogeneity in MCI clinical concept, both in its severity 
and nature, is the setting in which subjects are studied: the broader is the inclusion in a study, 
the higher is the probability to include individuals with less severe underlying disease: 
studies emerging from memory clinics in tertiary care settings report the highest proportion of 
individuals who progress to AD over time [23], whereas studies that recruit broadly from 
community are likely to have much lover rates of conversion to AD on follow-up [24].  

 
 

4. EPIDEMIOLOGY OF MCI 
 

4.1. Incidence 
 
It is quite hard to estimate the incidence of healthy elderly patients who convert to MCI 

each year because this would need wide studies on community-based samples. Data from 
research clinic sample of cognitively normal elderly indicate a rate of conversion to MCI of 
approximately 5%per year [25], whereas other Authors, using a mathematical model, 
estimated the incidence of conversion to MCI for patients likely to develop AD to increase at 
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a rate of 8% per year with different rates according to age groups (0.5% at age 60 years, 2.3 
% at age 70 years, 2.3% at age 80 years) [26]. 

 
 

4.2. Prevalence 
 
At present, the prevalence of older individuals meeting the criteria for MCI has not been 

clearly estimated. It is obviously expected that their proportion outnumber actually diagnosed 
AD cases, because of the long time course of MCI and the great number of unknown cases.  

The prevalence of MCI and its subtypes varies greatly in different studies, ranging from 
3% to 17% of people over 65 years [27]; these data largely depend on the diagnostic criteria 
used and on the type of cohort studied (longitudinal follow-up of cohorts or memory clinic 
cohorts). First studies included only amnestic MCI, while more recent studies refer to the 
wider concept of MCI. Epidemiological studies also suggest that the progression of MCI is 
heterogeneous, and may be reversible, stable or progress to dementia [27-31], usually of the 
AD type [32,33]. 

 
 

5. DIAGNOSIS OF MCI 
 
The question as to how approach the diagnosis of MCI is very important. In 2001, the 

Quality Standard Subcommittee of the American Academy of Neurology recommended that, 
to make an effort to detect MCI early, screening instruments such as Mini Mental State 
Examination (MMSE) were found useful, as were neuropsychological batteries [34], but at 
present there is no agreement on the recommended way to diagnose or screen for MCI 
according to literature, and no clear consensus exists in the literature for a specific diagnostic 
approach. In fact, making MCI diagnosis using cut-off scores on established 
neuropsychological scales, ignores the possibility that some subjects may have always 
performed poorly and have no cognitive deterioration, while other patients might perform 
well even in presence of significant deterioration, due to a high pre-morbid performance 
level. As in Petersen criteria [14], it is clear that MCI diagnosis requires amnestic 
information, documenting a meaningful cognitive deterioration. Thus clinicians must rely on 
reports from family members or other informants to describe changes in cognitive 
performance. These considerations have led to the development of structured interview with 
the patient and with informants. The most commonly used rating systems for the global 
staging of cognitive impairment in older adults are the Global Deterioration Scale (GDS) [35] 
and the Clinical Dementia Rating scale (CDR) [13]. Many studies have used GDS stage 3 to 
define MCI: subtle, clinically manifest cognitive functional impairment that may be of 
sufficient magnitude to interfere with complex occupational or social tasks and that may be 
accompanied by anxiety; according to CDR MCI had been defined as score 0.5 of 3, 
representing the concept of questionable dementia. 
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5.1. Differential Diagnosis  
 
It is necessary to evaluate an MCI case with the same accuracy one would bring to the 

diagnosis of a patient with dementia. This means that all potential medical, psychiatric or 
neurological causes of cognitive impairment must be considered before making a diagnosis. 
In fact, although MCI concept was introduced intending the very early stage of AD 
pathology, in medical practice the exact etiology is rarely known with certainty. Before a 
neurodegenerative disorder such as AD can be considered as the underlying mechanism, it is 
essential to rule out cognitive dysfunction caused by systemic medical disorders, 
endocrinological abnormalities, nutritional deficiencies, alcohol abuse or other toxic or 
metabolic factors. The occurrence of cerebral infarcts, subdural haematoma or hydrocephalus 
must be excluded as well. The presence of these conditions can be assessed through an 
accurate anamnesis, a neurological examination, basic laboratory investigations, 
neuroimaging and a careful consideration of the medical context. 

 
 

6. TREATMENT APPROACHES FOR MCI 
 
Patients receiving a diagnosis of MCI fall in two groups: those who will develop sign and 

symptoms of dementia and those who will remain stable over time or even improve. It seems 
obvious that patients who are in the early stages of dementia will benefit from therapies that 
slow the progression of the disease or enhance residual cognitive functions. This assumption 
is the base of several clinical trials that in the last years investigated the potential role in MCI 
patients of the same treatment strategies already used or under investigation for the treatment 
of AD. At present, no pharmacological treatment has been proven to be effective in MCI 
subjects. Most of the clinical trials in MCI followed individuals for several years (e.g three) 
and used a change in the rate of conversion from MCI to AD as the primary outcome 
measure. The biggest problem experienced in MCI trials was the great variability in this rate 
of conversion in different studies. Another significant problem was the heterogeneity of MCI, 
both in clinical presentation and in severity of the underlying disease. The MCI trial of 
donepezil by the Alzheimer’s Disease Cooperative Study (ADCS) group had a conversion 
rate of 16% per year [36], while most of the other MCI trials have reported lower conversion 
rates, with some as low as 6% per year. All of the trials attempted to recruit amnestic MCI 
subjects, but different studies adopted different episodic memory tests with different cut-off 
scores, and it seems likely that the clinical severity of subjects varied with the specific cut-off 
employed with a consequent impact on the likelihood of conversion to AD over time. 
Another factor that likely affected the rate of conversion was the apolipoprotein E (ApoE) 
status of subjects. Clinical trials varied greatly in the proportion of individuals who were 
ApoE ε4 carriers, ranging from the highest percentage of carriers in the donepezil study 
(55%) [36] to the lowest (35%) in the rofecoxib trial [37]. Since the presence of the ApoE ε4 
lowers the age of onset of AD [38], it is likely that this variations also influenced the 
conversion rate of MCI cases in clinical trials. 
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ABSTRACT 
 

A marker is a specific sign for detecting indications of an illness and which allows 
the disease under investigation to be diagnosed. Various putative neurobiological, 
neuroradiological and neuropsychological markers have been designed to detect 
Alzheimer’s Disease (AD). Cognitive markers are distinctive signs of impairment 
identifiable through the patient’s performance in an array of psychometric tests.  

An ideal cognitive marker should be capable of attaining levels of sensitivity and 
specificity analogous to those of the overall diagnostic evaluation (anamnestic, 
neurological, neuroradiological and neuropsychological data in combination with 
laboratory findings) which, according to some authors, are around 85-90%. A marker 
should be simple to carry out and should be able to provide a confident early diagnosis of 
AD. Among the most well-known cognitive markers reported in literature the following 
are worth particular mention: the closing-in phenomenon, the presence of ‘globalistic’ 
and ‘odd’ answers on Raven Coloured Progressive Matrices, intrusion errors, false 
recognitions and serial position effects in verbal list-learning tasks, failure in the clock 
drawing test and errors in number transcoding. We assessed the accuracy of the main 
cognitive markers. Lastly, we present a potential new battery which comprises several 
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markers together serving as a global index of dementia, which seems to guarantee a 
higher degree of accuracy.  
 
 

1. INTRODUCTION 
 
The need for screening and diagnostic tests for dementia of the Alzheimer type (AD) is a 

growing concern in the scientific community and has given rise to an enormous increase in 
research in this field [1]. The diagnosis of AD is a complex procedure that requires, in 
addition to other examinations, an assessment of cognitive status. AD is characterised by an 
insidious onset of episodic memory impairment associated with a disruption of both 
semantic-lexical aspects of language and visual-spatial abilities, and by a progressive 
deterioration of the patient’s personality. It is differentiated from other dementing illnesses by 
excluding alternative causes for cognitive dysfunction. Morris et al. [2] estimated that the 
criteria put forward by McKhann et al. [3] have an accuracy of 85%, and elsewhere [4] it has 
been remarked that there is still a need for in vivo markers capable of better differentiating 
AD from other forms of dementia.  

The diagnostic framework for AD is complex and well structured, consisting of multiple 
levels of analysis: anamnestic, neurological, neuroradiological, and neuropsychological tests 
in combination with laboratory findings has allowed clinicians to formulate a hypothesis of 
diagnosing AD with a global accuracy of 85-90% [5]. However, due to the large numbers of 
clinical investigations, which are lengthy and expensive, researchers are trying to identify a 
number of qualitative indices (markers) for the early diagnosis and prognosis of AD. In 
general, a marker may be defined as a tool for the detection of specific indications of an 
illness,  allowing clinicians to identify the disease in question. Various biomarkers, 
neuroradiological and neuropsychological markers exist for the detection of AD; patients’ 
performances on several psychometric tests have revealed signs of AD and have led to these 
being considered as markers.  

An ideal cognitive marker should attain comparable levels of sensitivity and specificity 
to those of the overall diagnostic evaluation (anamnestic, neurological, neuroradiological and 
neuropsychometric data in combination with laboratory findings), around 85-90% according 
to some authors [2,5] as mentioned above. It should, furthermore, be simple, non-invasive 
and inexpensive.  

 
 
2. SENSITIVITY AND SPECIFICITY OF MAIN COGNITIVE 

MARKERS CURRENTLY IN USE 
 
It is well known that diagnostic tests are needed to show the presence of a pathology and 

that these must feature the following: 
 

1. a discrete unit in terms of physical measures (e.g. cardiac frequency) or  psycho-
physical thresholds (e.g. pain perception). 
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2. an optimal discriminative, or cut-off, point: a specific point in the measure that is 
used to discriminate between ‘normal’ and ‘impaired’ subjects. The scoring method 
should ideally distinguish the two groups, but it is invariably the case that a test 
which identifies one of these groups is less effective in identifying the other.  

 
Since diagnostic tests are needed to confirm presence of a disease the result of a test is 

conventionally defined positive when it is characteristic of an illness state; on the contrary it 
is labelled negative when it indicates a normal condition. 

The validity of a screening and diagnostic test is usually measured by preliminary 
calculation of sensitivity and specificity. To this aim, following definition of a discriminatory 
criterion, the test is administered to a large group of subjects previously diagnosed as 
suffering from the disease under investigation. A percentage of these subjects will show a 
positive response and are therefore defined as real positive because they are in fact impaired, 
while the rest will test negative and are defined as false negative because their results are 
characteristic of normal subjects even though they are in fact impaired.  

The percentage of patients classified as real positive represents the test sensitivity, that is, 
its accuracy in diagnosing patients. A test that successfully identifies all impaired subjects 
without exception is said to have 100% sensitivity while a test that fails to detect 40% of 
impaired subjects, for example, has a 60% sensitivity.  

Figure 1 shows the distribution of errors (fictitious data) with a possible marker (a settled 
cognitive task). If sensitivity is high (100%) some false positives (non-AD subjects testing 
positive) will show up, whereas if specificity is high (100%) there will be some false 
negatives (AD subjects testing negative). 

 

 

Figure 1. Sensitivity and Specificity of a cognitive marker. 
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In general, there is an inverse relationship between sensitivity and specificity. By 
modifying the cut-off score of a test in order to maximise sensitivity, specificity decreases, 
and vice versa. 

Although calculating the sensitivity and specificity provides useful information, 
clinicians would often rather know the proportion or likelihood that a patient with a positive 
or negative test result does or does not have the pathology [6,7]. 

Table 1 summarises the characteristics which a good cognitive marker should have. 
 

Table 1 
 

Characteristics of a ‘gold standard’ cognitive marker 
• Simple, non invasive, inexpensive 
• Specific (around 85-90%) and sensitive (around 85%) 
• Clearly discriminative (a clear cut-off point): AD vs normal controls vs other types of 

dementia 
• Applicable to early AD detection 

 
In clinical practice a test is usually administered to subjects both with and without the 

disease. As ‘normal’ subjects are generally also involved, it is important to have data 
concerning their performance in these tests.  

In the particular case of a cognitive marker of AD, sensitivity is the proportion of patients 
with AD who are diagnosed by it as having the disease: the lower the number of false 
negatives, the higher the sensitivity. Specificity refers to the proportion of patients without 
AD who are diagnosed as not having the disease: the lower the number of false positives, the 
higher the specificity. In summary, the diagnostic value of a cognitive marker is the 
percentage of correctly diagnosed subjects, with or without AD, out of the total (see Table 2). 

It should be noted that the sensitivity of a putative cognitive marker may vary 
significantly according to the criteria adopted to determine its cut-off. Fuld et al. [8] take 
intrusions to be an indication of AD and define them as the ‘inappropriate recurrence of a 
response (or type of response) from a preceding test item, test, or procedure’. On the other 
hand, Gainotti et al. [4] define intrusions as ‘more than three unrelated items reported in free 
recall intermingled with words of the list’ in Rey’s Auditory Verbal Learning Test (RAVLT). 
Kwack [9] calculated the sensitivity and specificity of three versions of the closing-in 
phenomenon for the differential diagnosis of AD and subcortical vascular dementia; in this 
study it the distances between the starting points of the original and copied shapes and 
between their end points were calculated and statistically analysed. In another study, Gainotti 
et al. [10] observed two expressions of the closing-in phenomenon and calculated the 
incidence of these two types as well as their sensitivity and specificity. Another important 
consideration is that different marker levels may reflect variations in the severity of the 
disease across the sample. In fact, a methodological issue raised by Gainotti et al. [12] in a 
study on the quantitative and qualitative neuropsycholgical differentiation of memory 
impairment features, was the role played by severity in different samples. Observed 
differences are often the product of an inadequate matching in overall severity of dementia so 
that the development of the disease (early, intermediary, advanced) contributes to 
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determining different values of specificity and sensitivity. These two parameters must be 
verified not only in pathological subjects and in normal controls, but also in different forms 
of pathology or dementia, such as Vascular Dementia (VAD), Lewy Body Dementia (LBD), 
Frontotemporal Dementia (FTD). 

 
Table 2 

 

  
 

A number of cognitive markers have been reported in the literature; Table 3 presents a 
list of potentially interesting “cogmarkers” for AD diagnosis and prognosis. 
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Table 3 
 

The most common cognitive markers 
• Word intrusion in verbal memory tasks 
• Primacy and Recency effects in Rey’s Auditory Verbal Learning Test (RAVLT)  
• Odd and Globalistic responses in Raven’s Coloured Progressive Matrices (RCPM) 
• Closing-In phenomenon in copy 
• Clock Drawing Test 
• Written numerical transcoding 

 
Many studies have focussed on investigating qualitative and quantitative aspects of 

memory impairment, given that memory disorder is a virtually universal feature of AD. 
Different memory markers have been considered, such as intrusion errors, false alarms on 
recognition memory tasks, rates of forgetting, discrepancies between the disruption of 
primacy effects and the relative sparing of recency effects [11-15].  

Word intrusions on verbal memory tasks have been recognised as a possible indicator of 
pathognomonic cognitive impairment in AD. Fuld et al. [8] found a statistically significant 
association between intrusions and the clinical diagnosis of AD (84%), cholinergic deficiency 
and the presence of senile plaques. It has been argued that intrusions occur in AD patients 
primarily as a consequence of aphasia, frontal lobe dysfunction or memory impairment, 
common cognitive dysfunctions also seen in other type of dementia. However, intrusions 
detected in a sub-group of AD patients relatively free of these cognitive impairments 
demonstrate that this may not be the case. The association between intrusion errors and the 
cholinergic system has been demonstrated by the presence of more errors in young adults 
after administration of an anticholinergic medication [16] and in AD patients treated with 
cholinomimetic [17].   

Several issues have been raised regarding intrusion phenomena. The first concerns the 
way in which intrusion errors are defined. For example, Fuld et al. [8] make a distinction 
between different kinds of recurrences. Immediate or delayed recurrences are perseverations 
usually associated with a more serious mental impairment; intrusions are instead defined as 
inappropriate recurrences of a response (or type of response) from a preceding test item, test 
or procedure, and are thus not considered as immediate perseverations or guessing. 
According to these authors, only the latter would be pathognomonical for AD. 

Another issue concerns the fact that intrusions may be detected in different testing 
situations. Patients may intrude material from prior tests into learning test recall,  or they may 
give their month of birth when asked for the current date or season having correctly given 
their date of birth previously. They may also intrude part of an early response to a vocabulary 
test into a later one. Fuld and co-workers [8] considered intrusion to be a sign of confusion 
rather than automatism. These authors suggest that, with an intrusion detection marker, 
attention should be paid to false negative errors: since overt intrusions may be relatively rare 
in patients, caution is needed in classifying a patient whose test results lack intrusions as free 
from AD. It is important to minimise such errors and to obtain further data from each subject, 
avoiding the use of tasks that do not minimise guessing in memory testing (e.g. using the 
Fuld Object-Memory test instead of purely verbal list-learning tasks).  
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A third issue raised in the literature concerns emotional distress, such as anxiety or 
depression, since intrusions are often present in severely depressed or highly anxious subjects 
who are not on medication. Current anticholinergic therapies must also be taken into 
consideration because of their possible association with intrusion errors. Further 
investigations have only in part confirmed Fuld and co-workers’ [8] observations [18,19].  

In conclusion, intrusion errors may be of interest as a marker. However, although 
sensitivity has been extensively confirmed, specificity has not, due to the fact that intrusion 
errors also occur in other forms of dementia and in depressive pseudodementia [20,21]. 

Several potential AD markers in verbal memory tests were studied by Gainotti et al. [4] 
who compared AD patients with patients suffering from Progressive Supranuclear Palsy 
(PSP), Parkinson’s Dementia Complex (PDC), Depressive Pseudodementia (DPD) and Multi-
infarct dementia (MID). In particular, the following were evaluated with RAVLT: serial 
position effects (i.e. primacy and recency) calculated with a recency/primacy ratio; rate of 
forgetting evaluated by computing the ratio between the number of words retrieved both in 
immediate and in delayed recall; intrusion errors in free recall evaluated by summing all the 
unrelated words reported by the patient in either immediate or delayed recall; false alarms in 
delayed recognition calculated by computing the number of distracters wrongly identified by 
the patient as belonging to the list. Two additional markers were counted: the closing-in 
phenomenon on copy drawing and the presence of odd and globalistic responses in Raven’s 
Coloured Progressive Matrices (RCPM) [22]. Of all six hypothesised markers, intrusions in 
free recall and false alarms in delayed recognition turned out to be the most sensitive 
markers, even though they had a lower specificity. On the other hand, other markers such as 
the absence of primary effects, absolute memory decay and the closing-in phenomenon had a 
higher specificity but a lower sensitivity. In a previous work, analysis of serial position 
effects in differentiating between AD and MID populations in the RAVLT, suggested that the 
lack of a consistent primacy effect should be considered as a typical cognitive marker of AD 
patients since it reflects disruption of the long-term memory system [12]. In fact, while the 
recency effect seems to be relatively spared, primacy is impaired.  

Fuld et al. [8] and subsequently Gainotti and co-workers [12] found false positive errors 
in delayed recognition, interpreted as an index of the degree of interference that previously 
learned material exerts upon the memorandum in the long-term memory system, to be a 
typical neuropsychological marker of AD.  

Bondi et al. [23] used Delis et al’s [24] California Verbal Learning Test (CVLT) to 
assess longitudinally the mnemonic performance of 56 non-demented elderly individuals, 
potential candidates for AD. They found that in addition to poor learning and retention 
following a delay interval, subjects with a positive family history of dementia also exhibited 
more intrusion errors and heightened recency effects, compared with a matched group of 
elderly patients with a negative family history of dementia. This is characteristic of memory 
decline in AD patients. However, no data concerning the sensitivity and sensibility of these 
markers was reported.  

Howieson et al. [25] applied a series of cognitive markers to evaluate the preclinical 
phase of AD in a prospective and longitudinal study. They found that the best single predictor 
of conversion to AD was performance in the story recall task in the Logical Memory II at the 
Wechsler Memory Scale-Revised (WMS-R) [26].  
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In summary, although memory indices seem to be the most promising cognitive markers 
of AD, there is still a need for studies that take into account satisfactory levels of both 
sensitivity and specificity.  

As reported above, researchers have focussed not only on verbal memory but also on 
visual-spatial functions in seeking possible neuropsychological markers of AD in domains 
other than memory. In particular, some authors have focussed their attention on certain 
behavioural patterns observed during the execution of visual-spatial tasks, such as the 
tendency to give particular answers to the RCPM [22], a phenomenon evident in performing 
copy drawing tasks, as well as impaired clock drawing.  

RCPM is a widely used non-verbal reasoning test based on visual-spatial ability, 
consisting of 36 incomplete coloured designs. The test contains three sections (A, Ab, and B) 
each of which comprises 12 items. Subjects are presented with an incomplete design and six 
alternatives from which the one which best completes the design must be chosen. The items 
increase in difficulty over a given section and across the three sections. Costa et al. [27] 
pointed out that the three sections (A, Ab, and B) are based on different processes: set A 
mainly checks visual-spatial ability, set Ab gestalt-like processing and set B analogical and 
abstract thinking. Each correctly solved item results in a score of 1 but qualitative errors are 
also observed; there are in fact three different categories of incorrect responses: spatially 
incorrect responses in which the correct form to complete the model is presented in an 
incorrect spatial orientation; globalistic responses which reproduce the whole shape of the 
model but on a reduced scale, and odd responses which differ completely to the missing part 
and to the form of the model. This test is an attractive instrument for measuring fluid 
intelligence in older populations because little verbal instruction is needed and because of its 
culture-neutrality.  

 

 

Figure 2. Examples of primitive answers (odd and globalistic errors) in RCPM. 
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In Raven’s [28] seminal work, it was noted that globalistic and odd responses, as 
primitive answers, are generally observed in children and in conditions of severe brain 
pathology. In 1992, Gainotti and colleagues [10] reported that in their clinical experience 
globalistic and odd responses were more frequent in demented patients or in subjects with 
widespread pathology than in patients affected by focal brain lesions (see Figure 2 for some 
examples). These authors studied a group of patients (41 affected by AD and 34 affected by 
vascular dementia-VAD) compared with 50 normal subjects carefully matched for age and 
education. They sought to determine whether odd and globalistic responses in the RCPM 
would be a good marker of dementia (both AD and VAD) and whether the incidence of these 
types of error is similar in the two dementia groups. The results showed that these primitive 
errors were extremely rare in normal controls and much more frequent in demented patients. 
Errors were not equally distributed in the two forms of dementia, but were significantly more 
frequent in AD than in VAD.  

Monti et al. [29] recently extended the research instigated in the previous study. Their 
sample was made up of 190 subjects (96 males and 94 females), 160 of whom had been 
submitted to a neuropsychological assessment and referred to an Alzheimer Evaluation Unit. 
Various cognitive domains were investigated: global cognitive functions, attention, executive 
functions, language, problem solving, memory, visual-spatial functions, praxis and visual 
recognition. Seventy-one of these subjects were diagnosed as AD according to the 
NINCDS/ADRDA criteria [3]; 43 as MID (Multi-Infarct Dementia), according to the 
NINDS-AIREN criteria [30]; 18 as SCD (Sub-Cortical Dementia), according to criteria 
suggested by Kalra et al. [31]; 28 as DPD (Depressive Pseudo-Dementia), according to 
criteria suggested by Reynolds et al. [32]. The control group consisted of thirty normal 
subjects (comparable to the groups of demented patients in terms of age and education),  
unaffected by focal or diffuse lesions and not demented. A qualitative analysis of the 
tendency to give primitive answers in RCPM showed differences between the demented and 
non-demented patients and also between the different etiological forms of dementia. The 
specificity of this marker was good (98%), although its sensitivity was only 4.2%.  In 
summary, the results of this investigation showed that this clinical index is capable of 
identifying AD patients at an acceptable level of specificity but is not sensitive enough to be 
considered a good diagnostic marker alone for early forms of cognitive impairment. The 
authors claim that when more than one cognitive marker is taken into account, a higher level 
of sensitivity and specificity is attained. 

Another visual-spatial task which has been considered as a marker is the closing-in 
phenomenon, described by Mayer Gross in 1935 as the tendency to close in on a model while 
performing a constructive task [33] (see Figure 3 for some examples). This phenomenon has 
been studied in various pathological conditions [34]. In an analytical study Kwack and 
colleagues [9] defined the closing-in phenomenon as the tendency of a subject to make a 
copy of a model shape as close as possible to, or even within, the original, compared to 
younger control subjects. In their work a subject was asked by an examiner to draw a copy of 
a model shape below the original on a piece of paper but was not provided with a suggested 
starting point. The authors analysed the distance between the original and copied shapes and 
distinguished three different types of closing-in phenomena: the overlap type, consisting in 
the tendency to overlap the lines of the model with the copy; the adherent type, consisting in 
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the tendency to make copies very close to, or adhering to, the model; and finally the near 
type, consisting in the tendency for the copy end point to be located close to the original 
model. 

Gainotti [35] described the tendency to copy as near as possible to the model, or even 
into it, in both children and brain damaged patients; he also showed that this trend is rarely 
observed in patients with focal brain lesion, whereas it is commonly observed in demented 
patients, its frequency increasing with the progression of the pathology. In 1992, Gainotti et 
al. [10] considered the closing-in phenomenon in a group of patients (41 AD and 34 VAD) 
compared with 50 normal subjects carefully matched for age and education. They studied 
subjects’ behaviour during the execution of two types of drawing tasks, which consisted 
firstly in a simple copy of a model (a square, a cube, a house) and secondly, in the copying of 
a model with the help of programmation elements (landmarks). The results showed that none 
of the normal controls tended to pass the pencil over the lines of the model or from the model 
to the surrounding space (a classic variant of closing-in), nor did they tend to make a series of 
independent drawings in close proximity to each landmark (variant of the closing-in). AD 
patients presented both varieties more frequently than VAD patients. The classical form was 
observed in 24% of AD patients and in only 6% of VAD patients, hence rather specific; the 
variant version was observed in a greater number of AD patients (61%) but it was less 
specific in VAD patients (30%). 

 

 

Figure 3. Examples of the closing-in phenomenon 

Flebus et al. [36] studied 52 patients (20 males and 32 females) following 
neuropsychological assessment in order to determine whether the closing-in phenomenon is a 
good marker of dementia and to evaluate the sensitivity and the specificity of this test as a 
diagnostic marker of AD. Different cognitive domains were investigated: global cognitive 
function, attention, executive functions, language, problem solving, memory, visual-spatial 
functions, praxis and visual recognition. Twenty-five of these subjects were diagnosed as 
AD; 14 as MID (Multi-Infarct Dementia); 13 as other forms of dementia. Fifty-four normal 
subjects, not demented nor affected by focal or diffuse lesions (matched with the groups of 
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demented patients for age and education) formed the control group. A statistically significant 
correlation between the presence of the closing-in phenomenon and low scores on the MMSE 
(Mini-Mental State Examination) was found, its absence correlating with high scores (rpb= -
0.424 p < 0.005). This marker is therefore capable of identifying AD patients at an acceptable 
level of specificity (85%), although the level of sensitivity (20%) is insufficient. The study 
thus showed that by itself this marker cannot be considered a good diagnostic tool in the 
initial stages of AD. Again, it seems that a higher level of sensitivity and specificity could be 
reached by taking more than one cognitive marker into consideration.  

Another promising tool, which provides a simple and reliable measure of visual-spatial 
ability, is the Clock Drawing Test. This is a simple test, which can be used as part of a 
neurological battery or as a screening tool for AD and other types of dementia. The person 
undergoing testing is asked to draw a clock on a white sheet of paper, put in all the numbers 
and set the hands at ten past eleven. The correct drawing of a clock seems to require the 
integrity of several cognitive functions in addition to constructional praxis. It has been 
proposed as a possible screening instrument for dementia in more than one study, although 
several different versions and scoring methods exist. Wolf-Klein et al. [37] pointed out that 
this task has a 65.2% sensitivity and 82% specificity in identifying AD patients. Tuokko et al. 
[38] found 86% sensitivity and 92% specificity when comparing AD patients with normal 
controls matched for age. Casartelli et al., [39] concluded that, with high sensitivity (92%) 
and specificity (82.6%) values in identifying demented subjects and with a predictive positive 
test value of 40%, this test could be useful as a basic screening tool for cognitive impairment 
in the elderly. However, sensitivity may vary according to the level of cognitive impairment 
and it could, furthermore, give rise to false positives in poorly educated people. It seems, 
therefore, that it would be preferable to use this test in conjunction with other markers (see 
Figure 4 for an example of clock drawing). 

 

 

Figure 4. Example of the clock drawing test with a pre-drawn circle, performed by an AD patient. 
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Another promising task involved transcoding from Arabic to verbal code, or vice versa, 
the errors being considered a particular early specific indication of disease. In an initial study, 
Tegnér and Nybäck [40] observed that AD patients often expressed numerical information in 
a mixture of verbal and digital codes (e.g. 24 twenty4our, 274 2hundred and seventy-
four). Eleven of the 13 patients assessed as AD exhibited these types of intrusion errors and 
the authors concluded that numerical transcoding ‘may be a simple bedside test for 
dementia’. Kessler and Kalbe [41] asked 12 AD patients and 22 normal subjects matched for 
age to transcode from verbal to digital codes and vice versa. They observed both intrusions 
and perseverations and found that intrusions were frequent in some AD patients but largely 
absent from the transcoding operations of healthy populations and patients with other kinds 
of brain damage, such as aphasia. Thioux, Seron, Turconi and Ivanoiu [42], reporting a single 
case study, suggested that occurrences of intrusion errors and perseveration transcoding 
errors may be particular early indications of AD. Della Sala et al. [43] expanded on this 
research by analysing the error patterns of 20 AD patients and a group of age-matched 
controls in six transcoding tasks (two with spoken and four with written input). The responses 
were classified into nine different types of trancoding and confirmed the extreme rarity of 
intrusions in the healthy population. However, their findings and those of other studies 
reported in the literature did not corroborate claims that these types of error are peculiar to 
AD nor that they appear at the earlier stages of the disease. Seven out of the 20 AD patients 
made no intrusion errors at all over the 260 transcoding trials, and the severity of the disease 
appeared to be a significant factor.  

As for other markers, future studies examining the specificity and sensitivity of 
numerical transcoding errors in different stages of AD and the presence of such errors in 
other types of dementia seem to be necessary. 

Gainotti et al. [4] studied six markers and stressed that none of the AD markers was 
sensitive and specific enough by itself to be considered a good diagnostic tool. With the aim 
of finding a more balanced relationship between sensitivity and specificity the authors 
proposed a ‘cumulative method’ in which two or more markers were computed by each 
patient. Most AD patients responded positively to two or more markers whereas non-AD 
patients responded to less then two. Taking the presence of two or more markers as a global 
index suggestive of AD dementia, Gainotti et al. [4] reported a sensitivity of 88% and a 
specificity of 87%.  

Taking up this idea, Zago and collaborators [44] developed a new battery labelled Cog-
Markers which combines the principal markers previously discussed in the literature, in order 
to increasing the diagnostic power of the cumulative method suggested by Gainotti et al. [4]. 

The battery consists of eight markers which are presented to the patient in this way: (1) 
personal, temporal and spatial orientation, (2) written numerical transcoding, (3) an adapted 
version of 15 Rey’s Words, (4) closing-in phenomenon on copy and the tendency to make the 
copy very near or adherent to the model, (5) Clock Drawing Test, (6) an adapted version of 
Buschke’s Free and Cued Selective Reminding Test (FCSR), (7) an adapted version of 
RCPM, (8) cognitive estimations and absurdities tests. A different procedure was used for 
calculating each sub-test score (marker) with a maximum global score of 164. 

The battery was administered to two groups of subjects (52 normal controls and 31 
patients diagnosed as probable AD using clinical criteria) matched for age (range 70-89 
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years), years of schooling (range 3-13 years) and sex. Using as a cut-off the subtraction of 
two standard deviations from the mean of elderly normal subjects (95/164) a clear distinction 
in cognitive performance between AD patients and the elderly normal control subjects was 
documented (see Figure 5). In particular, only one AD patient obtained higher ‘score values’. 

 

 

Figure 5. Graph showing the clear distinction in cognitive performance between AD patients and 
elderly normal control subjects. 

In addition, the Cog-Markers battery has administrative advantages such as usefulness, 
speed of execution (it takes about 30-45 minutes to administer) and the absence of floor and 
ceiling effects. The findings of the present study indicate that the use of more than one 
marker in AD diagnosis should be encouraged. At the moment the authors are still expanding 
the research by increasing the sample number of both normal controls and pathological 
subjects. 

 
 

3. CONCLUSIONS 
 
The studies presented in this chapter illustrate that several qualitative cognitive indices 

may serve as clinical markers for detecting AD. However, a measure of sensitivity and 
specificity is lacking in many investigations, and none of the cognitive markers individually 
considered seems to reach satisfactory values of specificity and sensitivity, especially in the 
early stages of the disease. Thus, at present, no single cognitive marker is sufficient alone. 
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Hypothesising that by combining various markers to obtain a sort of global index, higher 
levels of sensitivity and specificity could be attained; an attempt was made to apply the 
cumulative method suggested by Gainotti et al. [4]. Zago and co-workers [44] proposed a 
new battery in which a set of eight markers were combined, providing support for the use of 
multiple accepted AD markers in the identification of AD patients. This strategy provides a 
promising approach to the development of new tools for the early detection of AD. 
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ABSTRACT 
 

The demographics of aging suggest a great need for an early diagnosis of dementia 
and for the development of preventive strategies. 

Neurodegeneration in Alzheimer’s disease (AD) is estimated to start even 20–30 
years before clinical onset, and the identification of biological markers for pre-clinical 
and early diagnosis is the principal aim of research studies in the field. 

It is still difficult to make diagnosis in the early disease stages. At the beginning the 
patient might have a deficit limited to memory or to another single cognitive domain, 
without any disorder of instrumental and daily activities. The cognitive impairment then 
might proceed to a degree that allows the diagnosis of dementia. The transitional state 
between normal ageing and mild dementia has been recently indicated by the term Mild 
Cognitive Impairment (MCI).  

In the last few years, a wide range of studies addressed this topic. Clinically, within 
the group of MCI subjects, two separate subgroups have been described, those rapidly 
converting to AD (MCI converters), in whom MCI represents the early stage of an 
ongoing AD-related process, and those who remain stable (MCI non-converters), in 
whom the isolated cognitive deficits represent a different condition without an increased 
risk to develop dementia at short follow-up.  

In this line, reliable markers for early AD detection could be useful both for 
prognosis, and for identifying a potential target for therapeutic intervention, since 
treatments are emerging which rather than reversing structural damage are likely to slow 
or halt the disease process.  

                                                        
∗  Correspondence concerning this article should be addressed to: Valentina Garibotto, garibotto.valentina@hsr.it. 
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While currently no routine diagnostic test confirms AD presence, functional 
neuroimaging techniques represent an important tool in biological neurology. The 
challenge for neuroimaging methods is to achieve high specificity and sensitivity in early 
disease stages and at single subject level. Functional imaging, in particular, has the 
potential to detect very early brain dysfunction even before clear-cut neuropsychological 
deficits emerge. Predicting progression to AD in cases of MCI and supporting diagnosis 
and differential diagnosis of dementia are the outmost important goals. 

The implications are the identification of minimally symptomatic patients that could 
benefit from treatment strategies, as well as the monitoring of treatment response and the 
therapeutic deceleration of the disease.  

This chapter highlights recent cross-sectional and longitudinal neuroimaging studies 
in the attempt to put into perspective their value in diagnosing AD-like changes, 
particularly at an early stage, providing diagnostic and prognostic specificity.  

There is now considerable evidence supporting that early diagnosis is feasible 
through a multimodal approach, including also a combination of multiple imaging 
modalities. 
 
 

1. INTRODUCTION 
 
Age is a major risk factor for neurodegenerative diseases in general and particularly for 

dementia. Dementia represents a major burden for many countries where life expectancy and 
therefore proportion of aged people is growing: the incidence of dementia is expected to 
double during the next 20 years (Katzman and Fox, 1999). Alzheimer’s disease (AD) is the 
most common cause of dementia in all age groups, and account for the 50 to 75% of all cases 
(Kawas, 2003). 

This prospect has led to a considerable effort to unravel the pathophysiologic 
mechanisms of AD and for the development of effective treatments against this devastating 
disease. Over the last years, significant progress in the understanding of some of the 
pathophysiologic mechanisms involved in AD has been made (Dickson, 2003). 

The impairment of cognitive functions in dementia is the consequence of a severe loss of 
functioning synapses and neurons in the brain, in particular in limbic and neocortical 
association areas.  

Histopathologically, AD is characterized by the accumulation of senile plaques and 
neurofibrillary tangles. Whereas the senile plaques consist mainly of β-amyloid peptides, the 
fibrillary tangles consist of abnormal hyperphosphorylated insoluble forms of the τ-protein. 
Not much is known about how these two lesions influence each other, e.g., if the 
hyperphosphorylation of τ-proteins is triggered by the accumulation of β-amyloid oligomers 
(amyloid cascade hypothesis) or if a defect in the τ-protein leads to an accumulation of β-
amyloid (τ and tangle hypothesis) (Morris and Mucke, 2006). Both lesions can exert direct 
and indirect neurotoxic effects and promote neuronal death by inducing oxidative stress and 
inflammation (DeKosky, 2003; Praticò et al., 2002). 

The neurofibrillary pathology in AD develops at first in the transentorhinal and 
entorhinal regions, then spreads into the hippocampus, the limbic system, and finally to 
neocortical regions (Braak and Braak, 1991). 
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While the pathway of the neurofibrillary tangles is very precise, the amyloid deposition 
seems to be more heterogeneous and random, starting first in neocortical regions before it 
affects allocortical regions and diencephalic structures (Dickson, 2003; Götz et al., 2004; 
Mudher and Lovestone, 2002; Soto, 2003; Taylor et al., 2002). The analysis of the amino 
acid sequence of β-amyloid allowed for the identification of the gene encoding its precursor, 
the β-amyloid precursor protein (APP) on chromosome 21, and thus for the identification of 
the first series of mutations associated with increased amyloid production and AD. However, 
such mutations account only for a small percentage of AD cases. The majority of AD patients 
suffer from sporadic AD for which several risk factors in addition to age have been proposed 
and are currently being explored, e.g., apolipoprotein E4 (ApoE4), hyperhomocysteinemia, 
hyperlipidemia, and disturbances of the neuronal insulin signal transduction pathway 
(Bertram and Tanzi, 2004).  

Effective treatment is eagerly awaited. Some drugs that have a moderate symptomatic 
effect, such as the cholinesterase inhibitors, are already available and some studies indicate 
that they are able to postpone progression by several months (Winblad et al., 2006). Although 
the etiology of AD is still not completely clear, the increasing knowledge about some of the 
most important pathomechanisms in AD allows now for the first time to develop drugs aimed 
at modifying particular aspects of the AD disease process, e.g., anti-inflammatory drugs, 
statins, antioxidants, acetylcholinesterase inhibitors, γ and β secretase inhibitors, β sheet 
disruptors, immunotherapy, neuro-protective agents, or neuroregenerative treatments (see 
(Dickson, 2003; Irizarry and Hyman, 2001; Knopman, 2006; Mayeux and Sano, 1999; 
Mudher and Lovestone, 2002) for more detailed reviews). Some of these compounds showed 
promising results in animal models and are currently being tested in clinical treatment trials 
in AD patients. In any case, an efficient treatment needs to be installed before a large number 
of synapses and neurons have been damaged irreversibly, and therefore early markers of 
disease have a central role. 

 
 

2. MARKERS OF EARLY DIAGNOSIS OF AD 
 
The rapid scientific progresses on AD biology and the forthcoming clinical trials with 

disease modifying therapies have heightened the urgency to develop sensitive and reliable 
biological markers to diagnose and monitor AD activity during life. 

The definite diagnosis of AD requires not only the presence of severe cognitive deficits 
but also autopsy confirmation of the presence of the typical AD histopathologic changes in 
the brain (Dubois et al., 2007). 

In a living person, the diagnosis of possible or probable AD is based on the presence of 
cognitive deficits in two or more domains severe enough to interfere with normal daily 
functioning. Although the sensitivity of standardized clinical criteria like the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-IV), and the National Institute of Neurological, 
Communicative Disorders, and Stroke-AD and Related Disorders Association (NINCDS-
ADRDA) definitions is rather high, i.e., 81% for probable AD and 93% for possible AD, their 
specificity is lower, i.e., 70% for probable AD and 48% for possible AD (Knopman et al., 
2001). Overall, DSM-IV and NINCDS–ADRDA criteria, validated against neuropathological 
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gold standards, reach a diagnostic accuracy ranging from 65–96%, and a specificity against 
other dementias of only 23–88% (Dubois et al., 2007).  

This low specificity likely reflects the fact that AD shares many clinical features with 
other forms of dementia, and must be addressed through both revised AD and accurate non-
AD dementia diagnostic criteria. 

Although clinical criteria for the diagnosis of AD in the early to middle stages of the 
disease may not be perfect, its diagnosis in the very early or asymptomatic stage is an even 
greater challenge. There is now increasing evidence that the molecular pathomechanisms of 
AD become active several years before neurons start dying and cognitive deficits manifest 
(DeKosky and Marek, 2003). 

During this stage, an effective treatment of AD would have the greatest impact because 
the cognitive function could be preserved at the highest level possible. Consequently, there 
has been considerable interest in recent years to characterize the earliest clinical signs of the 
degenerative process that is likely to evolve to AD. This effort led to the development of the 
concept of Mild Cognitive Impairment (MCI), which represents the transitional zone between 
normal aging and AD. Subjects with MCI are not demented but have significant but very 
mild deficits in one or more cognitive domains and have an increased risk of dementia 
(Petersen et al., 2001; Winblad et al., 2004). Depending on which cognitive domains are 
impaired, different subtypes of MCI can be distinguished. The subtype most relevant for AD 
is amnestic MCI, which is defined by the presence of subjective memory problems and an 
objective memory impairment relative to the appropriate reference group, but otherwise 
normal general cognitive functions and largely preserved activities of daily living (Petersen, 
2004).  

The annual conversion rate of amnestic MCI to AD is about 15% (range, 6% to 25%) per 
year, which is considerably higher than the conversion rate of 1% to 2% per year observed 
for age-matched non-MCI subjects (Gauthier et al., 2006). Histopathologic studies have 
found that MCI subjects, as a group, usually have intermediate levels of AD pathology 
compared with healthy controls and subjects with probable or possible AD (Bennett et al., 
2005). However, whereas the concept of MCI is very useful to identify a group of subjects 
with a high risk of conversion to AD, it includes also a non-negligible number of subjects 
whose disease never converts to AD, or in whom a different form of dementia will develop 
and thus with different prognosis and perhaps no benefit from AD-specific treatment. 
Therefore, additional measures that might help to more reliably distinguish between these 
two MCI categories are needed. 

Because of the limitations of clinical and neuropsychological measures for diagnosis and 
monitoring of treatment effects, there has been considerable effort recently to identify 
additional biomarkers that might provide complementary information. Diagnostic markers 
will be also required to support treatment of patients at risk for AD. Of equal significance are 
markers with the capacity to monitor the underlying biological burden of disease in terms of 
extent and intensity. These markers will eventually prove to be important surrogate outcome 
measures in clinical trials supplementing existing clinical data.  

Potential biomarkers include blood and CSF measurements of protein concentrations, 
gene screening, and also, importantly, neuroimaging.  
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The characteristics of an ideal diagnostic biomarker for AD have been summarized as 
follows (The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association 
and, 1998): 

1. The biomarker should detect a fundamental feature of the pathophysiologic 
processes active in AD. 

2. The biomarker should be validated in neuropathologically confirmed AD cases. 
3. The biomarker has to be precise, i.e., able to detect AD early in its course and 

distinguish it from other dementias. 
4. The measurement of the biomarker has to be reliable, minimally invasive, simple to 

perform, and inexpensive. 
 
 

3. NEUROIMAGING AS BIOMARKER IN AD  
 
Traditionally, imaging, and in particular structural imaging, has been used to exclude 

potentially reversible brain processes mimicking the clinical symptoms of AD, e.g., brain 
tumours or epidural haematomas.  

Recently, however, the potential of neuroimaging, not only to improve the accuracy of 
the clinical diagnosis of AD, but also to monitor disease progression and treatment effects, 
has been increasingly recognized.  

Imaging might be particularly helpful in providing a marker for disease in early and 
preclinical phases of AD. Attributes of neuroimaging that make it even superior to 
neuropsychological tests in AD include increased diagnostic accuracy, freedom from 
ethnic/cultural bias for interpretation, independence from level or quality of education, and 
rater-independent objective measures of brain function (Zamrini et al., 2004). 

Power analyses showed that neuroimaging as outcome markers in treatment trials would 
allow for substantially smaller patient populations and shorter observation times than 
cognitive or clinical outcome measures currently do. Alexander and colleagues calculated 
that 36 patients in each group (placebo or drug group) would be needed to detect a 33% 
treatment response with 80% power in a 1-year PET study (Alexander et al., 2002). Jack and 
colleagues determined that 69 patients in each group would be necessary to detect a 25% 
treatment effect with 90% power in a 1-year MRI study (Jack et al., 2004). In comparison, at 
least 1277 patients in each arm would be necessary to detect a 25% treatment effect with 90% 
power with a cognitive outcome measure (Alexander et al., 2002; Fox et al., 2000; Jack et al., 
2004; Reiman et al., 2001). 

Recent reviews discuss in detail the increasingly important role played by neuroimaging 
in clinical trials (Cummings et al., 2007; Thal et al., 2006). 

There are two main categories of neuroimaging:  
1. structural imaging, which includes Computer-assisted Tomography (CT) and 

Magnetic Resonance Imaging (MRI)  
2. functional imaging, which includes emission tomography techniques, such as Single 

Photon Emission Computed Tomography (SPECT) and Positron Emission 
Tomography (PET), and functional Magnetic Resonance Imaging (fMRI).  
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Functional neuroimaging studies, in particular, are playing a growingly important role in 
neuropathological and neuropsychological research of dementia, including innovative 
aspects, such as cognitive activation and in vivo studies of neurotransmitter function.  

Functional brain imaging offers potential insights into all of the main pathological 
features of AD – neuronal loss, tangle deposition, cholinergic depletion and amyloid plaques, 
and also allows measuring the neurophysiological correlates of disease-related changes in the 
brain. We will briefly recapitulate the main findings obtained with structural neuroimaging, 
to then focus on functional neuroimaging, which has a greater potential, mainly in early 
disease phase.  

 
 

3.1. Structural MRI 
 
Both CT and MRI have been used for providing structural information on tissue atrophy 

in AD. However, MRI has several advantages compared with CT: higher resolution, optimal 
angulation of the imaging plane, excellent grey–white matter discrimination, and 
identification of additional vascular lesions, particular small lacunes and white matter lesions. 
All of these factors probably contribute to the higher sensitivity and specificity of MRI 
(sensitivity, 80% to 94%; specificity, 60% to 100%) for the diagnosis of AD compared with 
CT (sensitivity, 63% to 88%; specificity, 81%) (Frisoni, 2001).  

Several studies have found a good correlation between degree of atrophy on structural 
imaging and histopathologically confirmed neuron loss and AD pathology (Jack et al., 2002; 
Silbert et al., 2003; de Leon et al., 2007) and between progression of cognitive impairment 
and atrophy rate (Fox et al., 1999; Jack et al., 2004). 

Changes in structural images are assessed by either qualitative visual assessment or by 
quantitative volumetric measurements of the entire brain or a structure of interest, i.e., medial 
temporal lobe or hippocampus. Visual assessments use a qualitative score system, with the 
advantage of being fast, but the disadvantage of being very subjective and highly dependent 
on the rater experience. Quantitative volumetric measurements use either a single measure, 
e.g., radial width of the temporal horn (Chetelat and Baron, 2003), or manual outline the 
whole structure of interest, e.g., entorhinal cortex. However, particularly the latter method 
requires some expertise and is time consuming. Therefore, semiautomated and automated 
computer-based methods, e.g., tissue segmentation, voxel-based morphometry (VBM), or 
tensor-based morphometry, which in addition have the advantage to assess the entire brain 
and are not restricted to a single region of interest, are being used increasingly for volumetric 
studies.  

In particular, VBM is an extensively validated approach that allowed the identification of 
grey and white matter atrophy patterns specific for neurodegenerative processes not only in 
AD (Borroni et al., 2007; Borroni et al., 2008 ; Whitwell and Jack, 2005). 

Mirroring the progression of the tangle pathology, atrophic changes detected by 
structural imaging affect primarily the entorhinal cortex and hippocampus in the stage of 
MCI, progress to temporal and parietal lobes in AD, and finally involve also the frontal lobes 
in late stages of AD (Chetelat and Baron, 2003; Du et al., 2004; Jack et al., 2004; Karas et al., 
2004; de Leon et al., 2007; deToledo-Morrell et al., 2004).  
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Unfortunately, neuron loss and atrophy are not specific for AD but are also found in 
normal aging or other neurodegenerative diseases. 

However, large cross-sectional and longitudinal studies have shown that there are 
substantial qualitative and quantitative differences in pattern and rate of atrophy in aging and 
AD, which allow a differentiation of these two processes.  

For example, in normal aging, rates of global atrophy typically increase from 0.2% per 
year at age 30 to 50 to 0.3% to 0.5% per year at age 70 to 80 and affect frontal and parietal 
grey matter more than occipital and temporal grey matter, whereas changes in white matter 
are more diffuse (Resnick et al., 2003). In AD, brain atrophy rates are significantly higher, 
i.e., up to 2% to 3 % per year (Fox and Schott, 2004; Gunter et al., 2003) and so are atrophy 
rates of hippocampus (controls, 1.0% to 1.2% per year; AD, 3.0% to 5.9% per year) and in 
entorhinal cortex (controls, 1.4% to 2.9% per year; AD, 7.1% to 8.4% per year), all structures 
known to be affected early in AD (Du et al., 2004; Jack et al., 2004). 

MCI patients have significant hippocampal atrophy when compared to aged normal 
controls. When comparing patients with probable AD to MCI subjects, hippocampal region 
atrophy significantly extends to the neighboring temporal association neocortex (Chetelat and 
Baron, 2003). Comparing the initial MRI data of at-risk subjects who convert to AD at 
follow-up to those of non-converters suggests that a reduced association temporal neocortex 
volume combined with hippocampal or anterior cingulate cortex atrophy may be the best 
predictor of progression to AD (Dickerson et al., 2001; Visser et al., 1999). A recent 
longitudinal study has specifically addressed this issue, observing a significantly greater gray 
matter loss in converters relative to non-converters in the hippocampal area, inferior and 
middle temporal gyrus, posterior cingulate, and precuneus (Boxer et al., 2006). 

 

 

Figure 1. Results of a voxel based morphometry analysis of grey matter atrophy in patients with 
Frontotemporal Dementia (FTD), showing a different pattern of atrophy in the two major clinical 
variants of FTD: frontal variant (upper panel) and temporal variant (lower panel). See text for details.  
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Although there is some overlap between the brain regions with the most pronounced 
atrophy in AD and atrophied brain in other types of dementia, degree of atrophy and pattern 
of involved brain areas seem to be useful for supporting a differentiation between various 
forms of dementia, describing patterns specific for the various nosologic entities, e.g., Lewy 
Body Dementia (LBD), Parkinson’s disease with dementia (PDD), Fronto-Temporal Lobar 
Degeneration (FTLD) (Ballmaier et al., 2004; Borroni et al., 2007; Borroni et al., 2008; 
Burton et al., 2004; Chételat et al., 2005; Rabinovici et al., 2007; Tam et al., 2005). An 
example of the results provided by such an approach is shown in Figure 1, showing the 
pattern of grey matter atrophy in the two major variants of Frontotemporal Dementia (FTD), 
frontal and temporal variants, respectively. VBM comparison with healthy controls is able to 
reveal a selective atrophy, involving dorsolateral frontal cortex, anterior cingulate cortex, 
insula, superior temporal gyrus in patients with the frontal variant of FTD, and left middle 
and inferior temporal gyrus and superior frontal and orbitofrontal gyrus in patients with the 
temporal variant of FTD (Borroni et al., 2007). 

All the studies previously mentioned are based on the comparison of groups of subjects, 
but an ideal biomarker should be able to provide useful information investigating single 
subjects.  

In this direction, two analysis methods for volumetric MRI data are currently tested and 
used, with very promising results.  

Tensor-based morphometry (TBM) evaluates longitudinal changes in single subjects, to 
identify regions of faster progression of grey matter atrophy, as compared to controls (Kipps 
et al., 2005; Leow et al., 2007). A few recent papers have demonstrated its usefulness 
describing differential patterns of progression in dementias (Brambati et al., in press; 
Brambati et al., 2007; Thompson et al., 2007).  

A cortical thickness measurement, obtained with a specific surface reconstruction 
process, has been used to detect the characteristic patterns of cortical thinning in AD, MCI, 
and other types of dementia, and to test the relationship between cortical thickness and 
cognitive impairment (Du et al., 2007; Singh et al., 2006). The results obtained with cortical 
thickness analysis are in agreement with data obtained measuring grey matter volume, and 
shown a higher sensitivity to subtle changes, therefore ideal for the very early disease phase.  

Recently, a variety of other imaging techniques, in addition to the conventional structural 
techniques, have been evaluated regarding their usefulness as diagnostic or prognostic 
biomarkers in AD. Some of these new techniques have shown very promising results; further 
studies allowing for rigorous assessment of test–retest reliability, power calculations, and cost 
effectiveness, in comparison with the established techniques, are necessary. 

In particular, we will briefly summarize data obtained with the Diffusion Tensor Imaging 
(DTI) technique. DTI is sensitive to the degree of microscopic motion of water molecules. In 
tissues, this motion is hindered by the physical boundaries of the 3-dimensional tissue 
microstructure and thus occurs preferentially perpendicular to those boundaries. In highly 
structured tissues, e.g., white matter, the motion of the water molecules along the axonal 
direction becomes anisotropic, and allows identifying fibre tracts. Damage to the tissue 
microstructure results in a loss of anisotropy, which can be detected by DTI.  

DTI has been used to identify age-related brain changes (Salat et al., 2005) and white 
matter alterations in a number of neurodegenerative disorders including AD (Catani, 2006). 
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DTI abnormalities in AD were found in the corpus callosum, and in the white matter of the 
parietal, temporal, and occipital lobes, posterior cingulate, and hippocampus (Fellgiebel et 
al., 2004; Head et al., 2004; Kantarci et al., 2005; Taoka et al., 2006). 

Although it is most likely that reduced anisotropy within the white matter is secondary to 
cortical neuronal degeneration, comparative DTI and postmortem pathological studies are 
necessary to understand the contribution of a primary white matter pathology to these 
changes (Catani, 2006). 

DTI tractography has been used to localize fractional anisotropy changes within specific 
networks in ageing and AD. In AD, tract-specific measurements show fractional anisotropy 
changes within long range association tracts of the temporal lobe but no changes in the visual 
radiations (Taoka et al., 2006). Sullivan and colleagues used tract-specific measurements to 
show ageing-related reduction of fractional anisotropy within fibres of the corpus callosum 
(Sullivan et al., 2006). These changes correlated with performances in the Stroop task, and 
were more evident in the frontal portion of the corpus callosum (genu) compared to the 
posterior portions (e.g. splenium). 

Although loss of white matter is prominent in later stages of the neurodegenerative 
process, preliminary DTI studies in AD found fractional anisotropy reduction in vulnerable 
white matter regions even at preclinical stages. For example DTI of the corpus callosum and 
medial temporal lobe revealed that an increased genetic risk for developing AD (ApoE4 
carriers) is associated with reduced fractional anisotropy well before the onset of dementia 
(Persson et al., 2006). 

In subjects with amnesic MCI, DTI-derived measures from a left hippocampal region-of-
interest demonstrate higher sensitivity (around 80%) than volume measurements of 
hippocampal atrophy (50%) (Müller et al., 2007). These changes are probably related to the 
underlying pathology as suggested by significant correlations between neuropsychological 
assessment scores and regional DTI measures in MCI (Rose et al., 2006). 

An increased water diffusivity in the hippocampus was found to be useful not only for 
discrimination between AD and healthy controls but also for discrimination between MCI 
and healthy controls and prediction of cognitive decline in MCI (Kantarci et al., 2001; 
Kantarci et al., 2005). 

Patterns of fibre tracts reductions appear also to be specific for the ongoing 
neurodegenerative process, as shown in recent papers on dementias, such as LBD and FTLD 
(Borroni et al., 2007; Borroni et al., 2008; Bozzali et al., 2005; Padovani et al., 2006). 

 
3.2. Functional MRI 
 
3.2.1 functional Magnetic Resonance Imaging (fMRI)  
 

Functional magnetic resonance imaging (fMRI) is a tool that by exploiting the principles 
of traditional MRI, allows visualizing regional brain activity non-invasively. Although the 
exact mechanisms underlying the coupling between neural function and fMRI signal changes 
remain unclear, fMRI studies have been successful in confirming task-specific activation in a 
variety of brain regions, providing converging evidence for functional localization. In 
particular, fMRI methods based on blood oxygenation level dependent (BOLD) contrast and 
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arterial spin labelling (ASL) perfusion contrast have enabled imaging of changes in blood 
oxygenation and cerebral blood flow (CBF).  

While BOLD contrast has been widely used as the surrogate marker for neural activation 
and can provide reliable information on the neuroanatomy underlying transient sensorimotor 
and cognitive functions, DSW and ASL imaging are mostly used for resting state perfusion 
measurements (Detre and Wang, 2002). 

 
BOLD  

In response to neural activation, there is an increased rCBF to the relevant region, but for 
reasons that are still not well understood, the rCBF increases far more (by 30-50%) than the 
expected increase in oxygen demand (oxygen extraction increases by only 5%.) (Ogawa et 
al., 1990). This leads to both local increase of oxyhaemoglobin concentration, which has 
diamagnetic properties, and reduction of deoxyhaemoglobin, which has paramagnetic 
properties. The presence of paramagnetic substances in the blood could act as vascular 
markers, featuring as natural endogenous contrast agent. As such, the BOLD signal is an 
indirect marker of brain activity, as it evaluates only haemodynamic changes, and usually 
peaks with a delay of 6-9 seconds (Logothetis and Pfeuffer, 2004; Logothetis and Wandell, 
2004; Logothetis et al., 2001). 

fMRI has advantages in spatial and temporal resolution when compared to the PET 
technique, and, in addition, the fact that no radionuclides are used makes it feasible to repeat 
experiments several times on the same subject. However, fMRI imaging has some limits. The 
main limit is that MRI does not allow molecular imaging, as compared with Emission 
Tomography techniques. Also, there are interferences with the magnetic field in some 
structures of the brain, in particular the orbito-frontal, inferior temporal regions and the 
temporal pole, because of the air enclosed in adjacent structures (the middle ear and the 
mastoid bone), resulting in a loss of signal detection (Gorno-Tempini et al., 2002).  

Currently, fMRI activation studies are mostly used to gain a better understanding of the 
neuronal networks involved in specific tasks in the healthy human brain. Much of the recent 
neuroimaging research on ageing has focused on investigating the relationship between age-
related changes in brain structure/function and concomitant changes in cognitive/behavioural 
abilities. Memory impairment is one of the hallmarks of ageing, and the majority of 
neuroimaging studies in this area have focused on age-related changes during working 
memory (WM) and episodic memory (EM) task performance (Craik and Salthouse, 2000). 
Age-related deficits in WM and EM abilities are related to changes in prefrontal cortex (PFC) 
function (Cabeza and Nyberg, 2005; Gazzaley et al., 2005; Persson et al., 2006). Noteworthy, 
these age-related changes in PFC activity were associated either with poorer performance of 
older subjects or with an absence of behavioural differences between elderly and young 
subjects (Rypma and D'Esposito, 2000). 

Reviews of these neuroimaging studies have generally concluded that with age there is a 
reduction in the hemispheric specialization of cognitive function in the frontal lobes and 
viewed the PFC as a homogeneous region. For example, Cabeza (2002) proposed the 
hemispheric asymmetry reduction in old adults (HAROLD) model, which has been supported 
by subsequent experimental findings (Cabeza, 2002). However, this model does not address 
whether these laterality effects are specific to particular brain regions or common to all brain 
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regions and does not specify the underlying neural mechanisms for age-related reductions in 
lateralized activity. A comprehensive qualitative meta-analytic review of all the fMRI and 
PET ageing studies of WM and episodic memory that report PFC activation, indicates that in 
normal ageing distinct PFC regions exhibit different patterns of functional change, suggesting 
that age-related changes in PFC function are not homogeneous in nature (Rajah and 
D'Esposito, 2005). Specifically, the effects of ageing that are related to neural degeneration 
and changes in neurotransmitter systems, will result both in functional deficits and in 
dedifferentiation of cortical function. These changes in turn result in functional compensation 
within other PFC regions. 

Only a minority of studies addresses the question of how these networks are altered in 
subjects at risk for AD (MCI) or in subjects with very early AD. Studies conducted in 
patients with a clinical diagnosis of AD consistently show that medial temporal lobe 
activation is decreased in comparison to older controls (Machulda et al., 2003; Small et al., 
1999).  

Some fMRI studies concern subjects whose cognitive function falls between that of 
normal aging and mild AD, as in MCI, and the results so far have been inconsistent 
(Dickerson et al., 2004; Machulda et al., 2003; Small et al., 1999). MCI is a heterogeneous 
condition and this clinical heterogeneity may, in part, explain differences among previous 
fMRI studies of MCI. An fMRI study investigated whether hippocampal and entorhinal 
activation during learning is altered in the earliest phase of mild cognitive impairment. The 
subjects with MCI performed similarly to controls on the fMRI recognition memory task, 
whereas patients with AD had poorer performance. There were no differences in hippocampal 
or entorhinal volumes, but significantly greater hippocampal activation was present in the 
MCI group compared to controls. In contrast, the AD group showed hippocampal and 
entorhinal hypoactivation and atrophy in comparison to controls. The authors hypothesize 
that there is a phase of increased medial temporal lobe activation early in the course of 
prodromal AD followed by a subsequent decrease as the disease progresses (Dickerson et al., 
2005). 

The results of cognitive activation studies in aging and MCI are complex to interpret, 
however, an important contribution is already starting to become clear. The largely implicit 
logic, which tended to associate a larger activation with a better performance, is clearly 
questionable. The situation appears to be more complex, with evidence of rearrangements and 
recruitment of additional resources in order to support performance (D'Esposito et al., 2003). 
Whereas such studies unquestionably give interesting insights into functional deficits and 
compensatory mechanisms in AD, they might be less suited as diagnostic or prognostic 
biomarkers because they depend very much on the compliance of the subject. 

 
 ASL and DWI 

In the last few years, different MR techniques to measure brain perfusion have been 
developed. ASL and Dynamic susceptibility weighted (DSW) MRI are based on the principle 
that the passage of contrast material through the tissue microvasculature results in signal 
intensity changes in T2-weighted images. DSW uses an exogenous paramagnetic contrast, 
while ASL methods are based on the same principle but use an endogenous tracer, i.e., blood 
water molecules in arteries providing the blood flow to the brain are “magnetically tagged.” 
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These tagged water molecules then diffuse across the blood–brain barrier into the brain and 
alter the local magnetization state of the brain tissue in proportion to the inflow of saturated 
protons.  

Like emission tomography techniques, both ASL and DWI have shown regions of 
hypoperfusion in the temporo-parietal lobes and in the posterior cingulate in AD and MCI 
(Bozzao et al., 2001; Harris et al., 1996; Johnson et al., 2005). 

A recent work has investigated ASL MRI for detecting pattern of hypoperfusion in 
frontotemporal dementia (FTD) and AD vs. cognitively normal control subjects, and found 
specific hypoperfusion in right frontal regions in patients with FTD vs. control subjects, and a 
higher perfusion than AD in the parietal regions and posterior cingulate: with further 
development and evaluation, arterial spin labelling MRI could contribute to the differential 
diagnosis between frontotemporal dementia and AD (Du et al., 2006). 

However, further studies are still required to test the applicability of these methods also 
for quantification purposes and in studies of single subjects, as compared with the extensively 
validated emission tomography techniques. 

 
 

3.2.2. PET and SPECT  
 
The imaging methods of positron emission tomography (PET) and single photon 

emission computed tomography (SPECT) allow the in vivo measurement of several 
parameters of brain function. These methods are sensitive to modifications taking place at the 
cellular level, which are not necessarily reflected in morphological abnormalities. They are 
thus providing a different type of information, in comparison with structural and functional 
imaging such as provided by MRI. 

These include oxygenation levels, perfusion, metabolism, and also neurotransmission. 
Noteworthy, radiolabelled tracers for receptor occupancy or enzymatic activities represent a 
unique tool for the in vivo measurement of specific neurotransmission systems. Direct 
measures of therapeutic targets by PET may provide unique information on drug action in 
vivo, allowing studies of the effects in selected patient populations (Halldin et al., 2001). 

Differences between PET and SPECT depend on the properties of positron and gamma 
emissions. The emission, for each event, of two positrons with a relative angle of 180o, is the 
physical basis of the PET detection system, and allows greater resolution. The availability of 
positron emitting radioisotopes, such as carbon, oxygen and fluorine, which can fit into 
biologically relevant molecules without altering their biological properties, allows the 
synthesis of PET tracers or radiopharmaceuticals that closely share the properties of normally 
occurring brain substances. These two factors give PET substantial advantages. On the other 
hand, the main advantage of the SPECT technique consist in its lower costs and consequent 
wider availability. 

PET can provide steady-state measurements of brain functional parameters, such as 
oxygen consumption by inhaling 15O2, or glucose metabolism and blood flow by i.v. injection 
of 18F-2-fluoro-2-deoxy-D-glucose (FDG), and radioactive labelled water (H2

15O), 
respectively. H2

15O with PET is also used in functional activation studies to evaluate regional 
cerebral blood flow changes associated with cognitive performances. 
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PET radiolabelled tracers allow measuring receptors alterations, in particular 
dopaminergic and serotoninergic ones, as well as for enzymatic activity and receptors 
occupancy by drugs (i.e. neuroleptics). For example, dopadecarboxylase enzymatic activity 
can be measured by 18F-DOPA, acetylcholinesterase activity by 11C-MP4A, post-synaptic 
dopamine receptor density by 11C-raclopride, and presynaptic dopamine activity by 11C-
FECIT. 

SPECT results partially parallel those obtained with PET when related biochemical 
processes (i.e. regional cerebral blood flow, neurotransmission parameters) are examined. 
SPECT imaging, however, has a lower spatial resolution, a lower signal-to-noise ratio, and 
123Iodine or 99mTechnetium, the most commonly used isotopes, have a longer half-life and 
have a structure which is likely to change the ligand’s chemical properties.  

SPECT is especially used for “cerebral blood-flow” studies, for which two ligands are 
commercially available, hexamethyl-propylene amine oxime (HMPAO) and N'-1, 2-
ethylenediy (bis-L-cysteine) diethyl ester (ECD), and for measuring dopaminergic 
degeneration in PD and parkinsonisms with the presynaptic dopaminergic ligand FP-CIT 
(McKeith et al., 2007; Walker et al., 1999).  

 
Brain Perfusion and Brain Metabolism 

PET and SPECT are playing an increasing role in the investigation of AD and other 
degenerative conditions (Herholz et al., 1993; Herholz et al., 2002). The loss of synaptic 
activity occurring in AD is readily reflected in regional decreases of cerebral metabolic 
activity and blood flow that are not simply a consequence of tissue loss.  

The reduction of metabolism has a characteristic topographic distribution, involving the 
associative cortex in the temporo-parietal areas of both hemispheres, with the angular gyrus 
usually being the centre of the metabolic impairment (Herholz et al., 2002; Hoffman et al., 
2000). Frontolateral association cortex is also frequently involved to a variable degree 
(Haxby et al., 1988; Herholz et al., 2002). Primary motor, somatosensory and visual cortical 
areas are relatively spared. This pattern corresponds in general to the clinical symptoms, with 
impairment of memory and high-order cognition, including complex perceptual processing 
and planning of action, but with relative preservation of primary motor and sensory function. 
These changes differ from those of normal aging, which leads to predominantly medial 
frontal metabolic decline and may cause some apparent dorsal parietal and frontotemporal 
(perisylvian) metabolic reduction due to partial volume effects caused by atrophy (Moeller et 
al., 1996; Petit-Taboué et al., 1998; Zuendorf et al., 2003). The hypometabolism appears to 
be related to amyloid deposition, at least in areas which are still metabolically viable (Mega 
et al., 1999). The histochemical correlate of reduced FDG uptake is a pronounced decline in 
cytochrome oxidase activity in AD relative to controls, whereas adjacent motor cortex does 
not show such differences (Valla et al., 2001).  

Longitudinal studies have shown that the severity and extent of metabolic impairment in 
temporal and parietal cortex increases as dementia progresses, and frontal involvement 
becomes more prominent (Mielke et al., 1994). The decline of metabolism is in the order of 
16 to 19% over 3 years in association cortices, which contrasts with an absence of significant 
decline in normal control subjects (Smith et al., 1992). Metabolic rates in basal ganglia and 
thalamus remain stable and are unrelated to progression (Smith et al., 1992).  
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In particular, a prospective study of FDG PET has addressed the issue of progression rate 
of AD, and found that impairment of glucose metabolism in temporo-parietal or frontal 
association areas measured with PET is significantly associated with dementia severity, 
clinical classification as possible vs. probable AD, presence of multiple cognitive deficits, 
and history of progression, and a prognostic indicator of clinical deterioration during follow-
up (Herholz et al., 1999). The correlation between initial metabolic ratio and subsequent 
decline of MMSE score during follow-up is particularly evident in mildly affected patients. 
Thus, impairment of glucose metabolism in temporo-parietal and frontal association cortex is 
not only an indicator of dementia severity, but also predicts progression of clinical symptoms 
(Herholz et al., 1999).  

Methods for automatic detection of abnormal metabolism on individual PET scans, 
providing unbiased measurements, have also been developed. They require appropriate 
reference data sets, spatial normalization of scans, and statistical algorithms to compare the 
voxels in scan data with normal reference data, and suitable display of the results. Signorini 
and colleagues demonstrated that this can be achieved by adapting the Statistical Parametric 
Mapping (SPM) software package (Signorini et al., 1999). Some commercial software 
packages provide similar approaches, but users should take care to check the validity of 
normal reference data, statistics and normalization procedures. Studies that used voxel-based 
comparisons to normal reference data clearly showed that the posterior cingulate gyrus and 
the precuneus are also impaired early in AD (Minoshima et al., 1997). Thus, this potential 
diagnostic sign is easily detected by automated analysis of FDG PET scans. An example of 
SPM analysis in a single subject with early AD is provided in Figure 2. 

 

 

Figure 2. FDG-PET scan in a subject with early AD (upper panel), and Statistical Parametric Mapping 
comparison of the same PET scan with a group of healthy controls (lower panel). The images show the 
typical pattern of hypometabolism, involving temporoparietal association cortices, and precuneus. See 
text for details. 

Other approaches has been proposed for the detection of abnormal voxels, aiming at the 
automatic recognition of the typical metabolic abnormalities in AD. For example, 
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discriminant functions derived by multiple regression of regional data achieved 87% correct 
classification of AD patients versus controls (Azari et al., 1993), and a neural network 
classifier arrived at 90% accuracy (Kippenhan et al., 1994). The sum of abnormal t-values in 
regions that are typically hypometabolic in AD has been used as an indicator with 93% 
accuracy (Herholz et al., 2002). Patients with late-onset AD may show less difference 
between typically affected and non-affected brain regions than usually seen in early-onset 
AD, which could potentially lead to reduced diagnostic accuracy with FDG PET (Mosconi, 
2005).  

The main contribution of these methods is the ability to identify changes that occur in 
single subjects and to describe pattern that orient and confirm clinical diagnosis. 

According to neuropathological studies, the earliest pathological changes in AD develop 
in the transentorhinal and entorhinal regions, then spread to the hippocampus and finally 
towards the neocortex. Medial temporal reduction in metabolism can thus be expected to be 
the earliest markers of the disease process. Yamaguchi and colleagues (1997) have shown 
that the reduction in cortical metabolism is significantly correlated with hippocampal 
atrophy, as shown with structural MR (Yamaguchi et al., 1997). Atrophy of hippocampus and 
parahippocampal structures is a main finding of structural imaging in AD. Therefore, one 
would expect also major functional changes of glucose metabolism in this brain area, but this 
has not generally been the case (Ishii et al., 1998). It is difficult to identify hippocampal 
metabolic impairment on FDG PET scans, because this region has lower resting metabolism 
than neocortex, and pathological changes are not obvious by visual image analysis. However, 
by coregistration with MRI for accurate positioning of regions of interest onto the 
hippocampus in FDG PET scans a reduction especially of entorhinal metabolism has indeed 
been observed in MCI and AD (Mosconi et al., 2005). In addition, in normal controls, 
glucose metabolism in neocortex is correlated with entorhinal cortex across both 
hemispheres, whereas in AD patients these correlations are largely lost (Mosconi et al., 
2004).  

The observation that medial temporal lobe damage leads also to mnemonic dysfunction 
have been advanced greatly by the study of neurodegenerative disorders’ patients. In AD, the 
study of the correlations between memory test scores and metabolic values across a sample of 
subjects provided a map of those brain structures whose synaptic dysfunction underlies the 
particular neuropsychological alteration. The distribution of the sites of correlations with 
specific memory deficits shows striking differences according to which memory system is 
involved and to the severity of the impairment (Desgranges et al., 2002; Eustache et al., 
2000). In fact, significant correlations involved bilaterally not only several limbic structures 
(the hippocampal/entorhinal cortex regions, posterior cingulate gyrus and retrosplenial 
cortex), but also some temporo-occipital association areas. In the less severe subgroup, all 
significant correlations were restricted to the parahippocampal gyrus and retrosplenial cortex, 
in accordance with the known involvement of this network in normal and impaired memory 
function, while in the more severe subgroup they mainly involved the left temporal 
neocortex, which is known to be implicated in semantic memory. The authors suggest that, 
when episodic memory is mildly impaired, limbic functions are still sufficient to subserve the 
remaining performance, whereas with more severe memory deficit resulting from 
accumulated pathology, the neocortical areas become more functionally involved 
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(Desgranges et al., 2002). This approach opens the way for the unravelling of the 
neurobiological substrates of both cognitive impairment and compensatory mechanisms in 
neurological diseases. Such studies in brain-diseased subjects are particularly useful for 
establishing cognitive and neurobiological models of human memory, because they allow the 
highlighting of the neural networks that are essential for memory function.  

Furthermore, imaging with FDG and PET might also allow identifying the so-called 
brain reserve. The concept of cognitive or cerebral reserve (“brain reserve hypothesis”) is 
based on the clinical observation that highly intelligent or educated individuals appear to be 
able to cope better with the onset of dementia, maintaining a normal functional level for a 
longer time than less educated people (Christensen et al., 2007; Stern et al., 1992; Stern, 
2002). This observation is documented by neuropathological and epidemiological studies 
(Bennett et al., 2003; Goldman et al., 2001; Ince, 2001; McDowell et al., 2007; Ngandu et al., 
2007; Roe et al., 2007; Scarmeas et al., 2006; Snowdon et al., 1989) 

FDG PET data provide supporting evidences, demonstrating that there is a significant 
inverse relationship between educational/occupational level and regional glucose metabolism 
in the posterior temporo-parietal association cortex and the precuneus in AD (see Figure 3), 
showing that the level of education and occupation provides a functional reserve capacity 
probably contrasting the clinical onset and progression of dementia (Garibotto et al., in press; 
Perneczky et al., 2006). 

 

 

Figure 3. Brain reserve provided by education in a group of subjects with early AD. Upper panel shows 
the significant inverse correlation of education and brain glucose metabolism, located in the precuneus 
and left temporoparietal cortex, as shown in the lower panel. See text for details. 
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Even at an asymptomatic stage, impairment of cortical glucose metabolism has been 
observed in preclinical stage in subjects at high risk for AD due to family history of AD and 
ApoE4 homozygosis (Reiman et al., 2004; Small et al., 2000). In middle-aged and elderly 
asymptomatic ApoE4-positive subjects temporoparietal and posterior cingulate glucose 
metabolism declines by about 2% per year (Reiman et al., 1996).  

Data are accumulating that the presence of the AD metabolic pattern in MCI predicts 
conversion to clinical dementia of Alzheimer type, and therefore indicates "incipient AD”. 
Non-demented patients with mild cognitive impairment may indeed show metabolic 
impairment of association cortices, which is characteristic of AD. MCI patient groups when 
compared to normal controls typically show significantly impaired metabolism (Minoshima 
et al., 1997). Anchisi and colleagues have demonstrated that by neuropsychological testing 
alone one can identify subjects who are likely not to progress to dementia because their 
memory deficit is relatively mild, thus providing a high negative predictive value with regard 
to progression. However, prediction based on neuropsychological testing is less reliable for 
MCI patients with more severe memory impairment. In these patients FDG PET adds 
significant information by separating those who will progress within the next twelve months 
from those who will remain stable (Anchisi et al., 2005). Similar evidences have been 
obtained measuring brain perfusion with SPECT, and comparing patterns of hypoperfusion 
across groups (Borroni et al., 2006). The relative hypometabolism observed in MCI 
converters, as compared with MCI non-converters, is shown in Figure 4. 

 

 

Figure 4. Hypometabolism in posterior cingulate cortex/precuneus, in a group of MCI converters, as 
compared with healthy age matched controls. See text for details.  

Depending on subject selection, functional neuroimaging has thus a prognostic impact. A 
longitudinal study of cognitively normal subjects indicated that cognitive decline to MCI 
within 3-years follow-up is related to metabolic reductions in entorhinal cortex at entry, 
independent of ε4 status (Mosconi et al., 2005).  

Few studies so far compared FDG PET with other biomarkers. In a study, PET prediction 
accuracy was best (94%) within the ApoE4 group (Mosconi et al., 2004). In another report, 
MCI subjects were followed over 16 months, the positive and negative predictive values of 
FDG PET for progression to AD were 85% and 94%, respectively, whereas corresponding 
values for the ApoE4 genotype were 53% and 77% only (Drzezga et al., 2005). By 
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combination of the two indicators, predictive values increased to 100% in subgroups of 
patients with concurrent genetic and metabolic findings. When comparing phosphorylated tau 
protein in CSF with FDG PET in MCI, Fellgiebl and colleagues found similar findings with 
both tests (Fellgiebel et al., 2004). Some studies indicate that combining targeted 
neuropsychology testing, platelet amyloid precursor protein ratio with SPECT (Borroni et al., 
2005) may reach a prediction accuracy even close to 90%.  

Not only PET and SPECT represent a supportive tool for early dementia diagnosis, but 
also in differential diagnosis between AD and FTD. Many studies have indeed used these 
techniques to compare AD with other forms of dementia. Recent evidences support the 
validity of emission tomography techniques to differentiate AD patients and FTLD patients, 
and its superiority to clinical diagnosis alone (Foster et al., 2007; McNeill et al., 2007). 

PET and SPECT might be very useful in supporting differential diagnosis in LBD, which 
is recognized as the second most common form of neurodegenerative dementia, and has been 
found to have substantial pathologic and clinical overlap with AD (Hansen et al., 1993; 
McKeith et al., 1996). 

Neuroimaging findings indicate a relative preservation of glucose metabolism and rCBF 
in medial temporal lobe structures in LBD (Colloby et al., 2002). Several studies also indicate 
differences in perfusion patterns on SPECT or fluorodeoxyglucose PET with a selective 
occipital hypoperfusion or hypometabolism in LBD compared with AD (Ishii et al., 2007; 
Minoshima et al., 2001; Pasquier et al., 2002). Minoshima and colleagues presented high 
discrimination accuracy of 90% sensitivity and 80% specificity between AD and LBD 
considering hypometabolism in the occipital cortex (Minoshima et al., 2001). Reduced 
occipital activity has been recognized as a supportive feature in the diagnosis of LBD 
(McKeith et al., 2005).  

Finally, the diagnosis of Vascular Dementia (VD) is normally made by a combination of 
history, neurologic examination, and MRI. SPECT and PET are usually only needed for 
equivocal cases. However, 15%–20% of demented patients will have a mixed dementia, most 
often VD and AD (Gold et al., 2007). In such cases, SPECT or PET imaging is useful to 
distinguish between AD alone, VD alone, and a mixed dementia. Talbot and colleagues 
studied 363 patients with dementia (AD =132, VD =78, LBD =24, FTD =58, progressive 
aphasia =22) and calculated likelihood ratios for various pairwise disease group comparisons 
in order to determine the degree to which different patterns of rCBF found on initial SPECT 
imaging modify clinical diagnoses. Bilateral posterior temporoparietal defects significantly 
increased the odds of a patient having AD as opposed to VD or FTD. Bilateral anterior 
abnormalities significantly increased the odds of having FTD as opposed to AD or LBD. 
“Patchy” defects significantly increased the odds of having VD relative to AD. (Talbot et al., 
1998). Likelihood ratios reported by Talbot and colleagues are similar to those reported by 
Jagust and colleagues (Jagust et al., 2001). Kerrouche and colleagues recently validated a 
voxel-based multivariate technique to a large FDG PET data set, and showed that lower 
metabolism differentiating VD from AD mainly concerned the deep grey nuclei, cerebellum, 
primary cortices, middle temporal gyrus, and anterior cingulate gyrus, whereas lower 
metabolism in AD versus VD concerned mainly the hippocampal region and orbitofrontal, 
posterior cingulate, and posterior parietal cortices. (Kerrouche et al., 2006). 
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The impact of functional neuroimaging in the diagnostic and prognostic management of 
AD has been recognized also in many recently published guidelines of neurological societies 
(Dubois et al., 2007; Knopman et al., 2001; Waldemar et al., 2007). 

The paper by Knopman and colleagues reported an evidence-based review of the 
parameters for diagnosis of dementia: they state that both PET and SPECT imaging provided 
promising results, for diagnosis confirmation as well as differential diagnosis (Knopman et 
al., 2001). 

The last European Federation of Neurological Societies guidelines recommends the 
usage of SPECT and PET in those cases where diagnostic uncertainty remains after clinical 
and structural imaging work up (Waldemar et al., 2007). 

Most importantly, the revised NINCDS-ADRDA criteria definitely confirm and state the 
usefulness of biomarkers, including also neuroimaging: the diagnostic criteria are centred on 
a clinical core of early and significant episodic memory impairment, but there must also be at 
least one or more abnormal biomarkers among structural neuroimaging with MRI, molecular 
neuroimaging with PET, and cerebrospinal fluid analysis of amyloid β or tau proteins 
(Dubois et al., 2007).  

 
Brain Amyloid Deposition 

A recent and very interesting progress for neuroimaging in AD is represented by the 
development of new tracers that bind with high affinity to fibrillar amyloid plaques and thus 
allow for the first time an in vivo quantification of the amyloid burden (Cai et al., 2007; 
Nordberg, 2004). 

The first tested in humans is the 11C Pittsburgh Compound-B (11C-PIB) , binding 
selectively to amyloid plaques (Klunk et al., 2004). A recent report showed in AD a typical 
retention in areas of association cortex known to contain large amounts of amyloid deposits 
in AD, most prominently in frontal cortex (1.94-fold, p = 0.0001), and also in parietal (1.71-
fold, p = 0.0002), temporal (1.52-fold, p = 0.002), and occipital (1.54-fold, p = 0.002) cortex 
and the striatum (1.76-fold, p = 0.0001). 11C-PIB retention was equivalent in AD patients and 
controls in areas known to be relatively unaffected by amyloid deposition (such as subcortical 
white matter, pons, and cerebellum). In cortical areas, 11C-PIB retention correlated inversely 
with cerebral glucose metabolism determined with FDG (Klunk et al., 2004).  

The second attempt in patients with AD to detect in vivo abnormal amyloid deposition in 
the brain used instead is a radiofluorinated compound (18F-FDDNP) that binds to amyloid 
plaques but also to neurofibrillary tangles and to prion plaques in human autopsy brain tissue 
(Agdeppa et al., 2001; Agdeppa et al., 2003; Bresjanac et al., 2003). 

The studies by Shoghi-Jadid and co-workers found retention in the temporal, parietal, 
frontal, and occipital cortical regions of the AD patients, 10–15% higher than in the pons. 
The highest retention of 18F-FDDNP in the patients was observed in the hippocampus, 
amygdala, and entorhinal cortex where the retention was 30% higher than in the pons 
(Shoghi-Jadid et al., 2002). A negative correlation was observed between binding of 18F-
FDDNP and cognitive status of the patients with AD (Kepe et al., 2006). 

This new tracer class has not only the potential to improve the accuracy of the diagnosis 
of AD, but also allows to study the effects of various kinds of treatments on one of the 
histological hallmarks of the disease. Early detection of pathological changes such as amyloid 
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deposition in AD will be a prerequisite for early treatment, and in vivo imaging represents the 
ideal instrument to assess the effectiveness of antiamyloid therapy. 

A recent study assessed beta amyloid deposition in MCI, and found values intermediate 
between those obtained in healthy controls and in AD patients, and significantly different 
from both groups (Small et al., 2006). Therefore, amyloid imaging can differentiate persons 
with MCI from those with AD and those with no cognitive impairment. 

A prospective study in MCI has demonstrated that those MCI subjects that later at 
clinical follow-up converted to AD showed significant higher PIB retention compared to non-
converting MCI patients and HC, with a PIB retention comparable to AD patients (Forsberg 
et al., in press). Correlations were observed in the MCI patients between PIB retention and 
CSF Aß1-42, total Tau and episodic memory scores, respectively (Forsberg et al., in press). 

An interesting perspective is suggested by a recent work (Pike et al., 2007). Beta amyloid 
deposition may occur also in normal elderly people without apparent cognitive effect. The 
authors examined this relationship using 11C-PIB PET vivo in healthy ageing (HA), MCI and 
AD. Ninety-seven percent of AD, 61% of MCI and 22% of HA cases had increased cortical 
11C-PIB binding, indicating the presence of Abeta plaques. There was a strong relationship 
between impaired episodic memory performance and 11C-PIB binding, both in MCI and HA. 
This relationship was weaker in AD and less robust for non-memory cognitive domains. 
Therefore, Abeta deposition in the asymptomatic elderly is associated with episodic memory 
impairment. This finding, together with the strong relationship between 11C-PIB binding and 
the severity of memory impairment in MCI, suggests that individuals with increased cortical 
11C-PIB binding are on the path to AD. Early intervention trials for AD targeted to non-
demented individuals with cerebral Abeta deposition are warranted. 

Amyloid imaging has been recently tested also for its potential in the differential 
diagnosis of dementia. Preliminary data show that Semantic Dementia (Drzezga et al., 2008) 
and Parkinson’s Disease Dementia (Maetzler et al., 2007) have a significantly lower PIB 
retention, as compared with AD. 

 
Neurochemical Imaging in AD 

Neurochemical imaging is one of the most established “molecular” imaging techniques. 
There have been tremendous efforts expended to develop radioligands specific to various 
neurochemical system. Investigational applications of neurochemical imaging in dementing 
disorders are extensive. Cholinergic, dopaminergic, and serotoninergic systems, as well as 
benzodiazepine receptors, opioid receptors, and glutamatergic receptors have been imaged in 
AD and other dementing disorders. These investigations have provided important insights 
into disease processes in living human patients (see for a review Minoshima et al., 2004). 

We will focus mainly on the first two systems, cholinergic and dopaminergic, which have 
the stronger impact in the clinical management and differential diagnosis of dementias. 

 
Brain Acetylcholinesterase Activity 
The first group encompasses carbon 11–labelled acetylcholine analogues, which allow 

for an in vivo measurement of the activity of the acetylcholine degrading enzyme 
acetylcholinesterase (ACHE), such as 11C-MP4A. AD is associated with loss of cholinergic 
neurons in the basal fore-brain and, thus, with decreased levels of acetylcholine and the 
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enzymes responsible for its synthesis and degradation in this region and connected cortical 
regions. In accordance with this, several PET studies have found a reduction of the cortical 
ACHE activity in AD compared with controls, particularly in the hippocampus and parieto-
temporal regions (Herholz et al., 2004; Iyo et al., 1997; Shinotoh et al., 2000). 

The degree of the ACHE reduction was found to be well correlated with the degree of the 
cognitive impairment (Bohnen et al., 2005). Furthermore, treatment with ACHE inhibitors 
resulted in a measurable decrease of the remaining ACHE activity and was well correlated 
with improvements of the cognitive measures (Kuhl et al., 2000; Shinotoh et al., 2001). 
Therefore, this technique seems to be quite promising not only as a diagnostic biomarker but 
also as a prognostic biomarker. 

However, a validation of these data in larger cohort of subjects is required, to test the 
diagnostic and prognostic potential of ACHE evaluation, and for this goal multicentre 
european studies included in the DIMI network are ongoing (see the Research in progress 
section). 

With 11C-MP4A imaging of acetylcholinesterase activity and PET, Rinne and colleagues 
 found only a slight hippocampal acetylcholinesterase activity reduction in MCI and early AD 
subjects, concluding that the value of in vivo acetylcholinesterase measurements in detecting 
the early AD process is limited (Rinne et al., 2003). 

On the contrary, Herholz and colleagues found a significant reduction of 11C-MP4A in 3 
MCI, out of a 8 subjects’ group, and a significant association was found with progression to 
AD within 18 months, suggesting that low cortical acetylcholinesterase activity may be an 
indicator of impending dementia in patients with mild cognitive impairment (Herholz et al., 
2005).  

 
Brain Dopaminergic Transmission  
Neurochemical correlates of extrapyramidal symptoms frequently observed in AD are not 

understood fully. A postmortem investigation suggested a correlation between neurofibrillary 
tangle density in the substantia nigra and extrapyramidal signs in AD (Liu et al., 1997). 
Dopaminergic imaging of dementing disorders can thus increase our understanding of the 
neuronal correlates of cognitive as well as motor impairments in various dementing disorders. 

This issue became a focus of PET and SPECT investigations. A study using 18F-
fluorodopa PET indicated no significant reduction in 18F-fluorodopa uptake in the caudate or 
putamen of rigid or non-rigid patients with AD versus normal controls. In contrast, there were 
severe reductions in PD, indicating differential underlying mechanisms of extrapyramidal 
symptoms in AD and PD (Tyrrell et al., 1990). The 123I-IBZM SPECT showed modest striatal 
D2 receptor reductions of approximately 15% in AD without overt extrapyramidal signs, in 
comparison to controls. This result suggested a decline of postsynaptic striatal dopamine 
receptors as a part of AD pathophysiology that is different from prevalent presynaptic 
nigrostriatal degeneration (Pizzolato et al., 1996). In contrast, subsequent dopamine 
transporter imaging using a cocaine analogue, 2-ß-carbomethoxy-3-ß-(4-18F-fluorophenyl) 
tropane (ß-CFT), showed more severe reductions in the putamen or caudate in patients with 
AD with extrapyramidal symptoms (Rinne et al., 1998). 

A further PET investigation using a dopamine D1 receptor antagonist, 11C-NNC 756, and 
a D2 antagonist, 11C-raclopride, showed 14% reductions in D1 receptors in AD but no 
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significant reduction in D2 receptors (Kemppainen et al., 2000). However, D1 or D2 receptor 
changes did not correlate with Mini Mental State Examination scores or motor Unified PD 
Rating Scale scores. These imaging investigations indicate differential alterations of 
dopaminergic markers in AD and PD, but the exact neurochemical basis for extrapyramidal 
signs in AD requires further investigation. 

Dopamine imaging in dementia received much attention in the investigation of LBD. In 
vivo neurochemical imaging depicted dopaminergic abnormalities in living patients with 
LBD. Decreased striatal dopamine transporters in LBD was detected using 123I-2-ß-
carboxymethoxy-3-ß-[4-iodophenyl]tropane (123I-ß-CIT) SPECT (Donnemiller et al., 1997). 
The caudate/putamen ratio of postsynaptic dopamine D2 neuroreceptor density measured by 
IBZM SPECT was significantly lower in probable LBD as compared with probable AD and 
normal controls (Walker et al., 1997). Decreased binding of dopaminergic presynaptic marker 
¹²³I-2-ß-carbomethoxy-3-ß-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane (¹²³I-FP-CIT) was 
also shown by SPECT in a case of autopsy proven LBD (Walker et al., 1999).  

PET using 18F-fluorodopa also showed decreased uptake in the putamen in LBD that 
distinguished LBD from AD, with a sensitivity of 86% and specificity of 100% (Hu et al., 
2000). Decreased 18F-fluorodopa uptake in the putamen measured by PET was also 
confirmed in an autopsy proven case of pure LBD (Hisanaga et al., 2001). When compared 
with PD, a more symmetric and severe loss of dopamine transporters was found in LBD 
(Ransmayr et al., 2001). 

Imaging of presynaptic dopaminergic transporters (DAT), with FP-CIT SPECT and 11C-
FECIT PET, show significantly low dopamine transporter density in PD and LBD, both in the 
caudate and putamen, indicating a possible differential diagnosis of LBD from AD (Walker et 
al., 2002). An example of the ability of DAT imaging to differentiate single cases of AD and 
LBD is provided in Figure 5. 

 

 

Figure 5. Presynaptic dopamine transporters, as measured by 11C-FECIT and PET, in one subject with 
AD (upper panel) and one subject with LBD (lower panel). PET images clearly show a pattern of 
widespread reduction in the LBD patient. See text for details.  

In particular, a recent multicentre study has investigated the sensitivity and specificity, in 
the ante-mortem differentiation of probable LBD from other causes of dementia, of single 
photon emission computed tomography (SPECT) brain imaging with the ligand ¹²³I-FP-CIT 
(McKeith et al., 2007). Abnormal scans had a mean sensitivity of 77,7% for detecting clinical 



The Role of Neuroimaging in the early Diagnosis of Alzheimer’s Disease 51

probable LBD, with specificity of 90,4% for excluding non-LBD dementia, which was 
predominantly due to AD. A mean value of 85,7% was achieved for overall diagnostic 
accuracy, 82,4% for positive predictive value, and 87,5% for negative predictive value. Inter-
reader agreement for rating scans as normal or abnormal was high (Cohen’s κ=0·87). 
Therefore, there is a high correlation between abnormal (low binding) DAT activity 
measured with ¹²³I-FP-CIT SPECT and a clinical diagnosis of probable LBD. The diagnostic 
accuracy is sufficiently high for this technique to be clinically useful in distinguishing LBD 
from AD. Low dopamine transporter uptake in basal ganglia demonstrated by PET and 
SPECT imaging has been suggested as a supportive feature for LBD diagnosis (McKeith et 
al., 2005). 

 
 

4. RESEARCH IN PROGRESS 
 
Over the last years, a number of genetic, biochemical, and imaging measures have been 

explored regarding potential to improve the accuracy of the clinical diagnosis of AD or to 
monitor disease progression and treatment effects. Considering the complexity of the AD 
disease process, it seems also rather unlikely that such a single ideal diagnostic or prognostic 
AD biomarker even exists. However, as these markers assess slightly different aspects of the 
disease process, a combination of two or three of them might be much more powerful than 
each of them alone (Herholz, 2003). Therefore, one of the currently most important issues of 
clinical AD research is to identify the combination of the already-established biomarkers with 
the highest diagnostic and prognostic power. 

To address these questions, multicentre research projects are ongoing, both in Europe 
and in the US. 

In particular, two active networks are exploring neuroimaging biomarkers of AD and 
other neurodegenerative disorders: 

1. the Diagnostic and Molecular Imaging Network (DIMI), launched in June 2005, and 
connecting many european centres (www.dimi.eu). The DIMI network is funded 
only by the EU, and the workpackages included aim mainly at addressing 
translational research from basic science to clinical trials in the identification of 
novel markers of neurodegeneration and neuroinflammation.  

2. the Alzheimer’s Disease Neuroimaging Initiative (ADNI), launched in October 2004, 
and connecting many centres in United States and Canada. The ADNI is funded by 
the National Institute on Aging (NIA) and the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB) of the National Institutes of Health (NIH), and 
also by several pharmaceutical companies and foundations (Mueller et al., 2005) 

 
 

5. FINAL REMARKS 
 
The impact of neuroimaging in the diagnostic and prognostic management of AD has 

been recognized also in many recently published guidelines of neurological societies (Dubois 
et al., 2007; Knopman et al., 2001; Waldemar et al., 2007).  
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The paper by Knopman and colleagues reported an evidence-based review of the 
parameters for diagnosis of dementia: they concluded that structural neuroimaging with either 
a noncontrast CT or MR scan in the initial evaluation of patients with dementia is 
appropriate, at the time of the initial dementia assessment to identify pathology such as brain 
neoplasms or subdural haematomas, and normal pressure hydrocephalus. Because of 
insufficient data on validity, no other imaging procedure is recommended, although both PET 
and SPECT imaging provided promising results, for diagnosis confirmation as well as 
differential diagnosis (Knopman et al., 2001). 

The last European Federation of Neurological Societies guidelines recommends the 
usage of structural imaging in the evaluation of every patient suspected of dementia: non-
contrast CT could help identifying surgically treatable lesions and vascular disease, and, to 
increase specificity, MRI (with a protocol including T1, T2 and FLAIR sequences) should be 
used. SPECT and PET may be useful in those cases where diagnostic uncertainty remains 
after clinical and structural imaging work up, and should not be used as the only imaging 
measure (Waldemar et al., 2007). 

Most importantly, the revised NINCDS-ADRDA criteria definitely confirm and state the 
usefulness of biomarkers, including also neuroimaging: the diagnostic criteria are centred on 
a clinical core of early and significant episodic memory impairment, but there must also be at 
least one or more abnormal biomarkers among structural neuroimaging with MRI, molecular 
neuroimaging with PET, and cerebrospinal fluid analysis of amyloid β or tau proteins 
(Dubois et al., 2007).  

The timeliness of these criteria is highlighted by the many drugs in development that are 
directed at changing pathogenesis, particularly at the production and clearance of amyloid β 
as well as at the hyperphosphorylation state of tau. Validation studies in existing and 
prospective cohorts are needed to advance these criteria and optimise their sensitivity, 
specificity, and accuracy (Dubois et al., 2007). 

This is an important phase of research in AD in which large longitudinal clinical trials 
assessing disease modifying interventions are underway.  

When disease-modifying treatments become available, biomarkers may prove to be the 
most effective means of early or predictive diagnosis in the incipient stages of disease and 
also a mechanism to monitor treatment effects. Neuroimaging, in particular functional and 
molecular neuroimaging, is surely going to play a central role. 
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ABSTRACT 
 

Alzheimer’s disease (AD), Lewy-body disease (LBD) and Frontotemporal Dementia 
(FTD) are the major causes of memory impairment and dementia. As new therapeutic 
agents are under testing for the different diseases, there is an ultimate need for an early 
differential diagnosis. Biomarkers can serve as early diagnostic indicators or as markers 
of preclinical pathological changes. Therefore, diagnostic markers in the cerebrospinal 
fluid (CSF) have become a rapidly growing research field, since CSF is in direct contact 
with the central nervous system (CNS) and is supposed to reflect the brain environment. 

So far, three CSF biomarkers, the 42 amino acid form of β-amyloid (Aβ), total tau 
and phosphotau, have been validated in a number of studies. These CSF markers have 
high sensitivity to differentiate early and incipient AD from normal aging, depression, 
alcohol dementia and Parkinson’s disease, but lower specificity against other dementias, 
such as FTD and LBD. 

This chapter reviews CSF biomarkers for AD, with emphasis on their role in the 
clinical diagnosis.  
 
 

1. INTRODUCTION 
 
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, with a 

prevalence of 5% after 65 years of age, increasing to about 30% in people aged 85 years or 
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older. The diagnosis of AD is currently based on the identification of dementia according to 
DSMIV (American Psychiatric Association, 1994) and specific clinical symptoms suggesting 
AD together with the exclusion of other causes of dementia as evaluated by laboratory tests 
and computerized tomography (CT) (NINCDS-ADRDA criteria; McKhann et al., 1984). AD 
is clinically characterized by progressive cognitive impairment, including impaired 
judgement, decision-making and orientation, often accompanied, in later stages, by 
psychobehavioural disturbances as well as language impairment. AD is associated with brain 
atrophy (Figure 1), with smaller hippocampal and amygdalar volumes at MRI. 

 
 

 

Figure 1. AD versus normal brain. 

 
1.1. Pathogenesis of Alzheimer’s disease 
 

The two major neuropathologic hallmarks of AD are extracellular Amyloid beta (Aβ) 
plaques and intracellular neurofibrillary tangles (NFTs) (Figure 2). The production of Aβ, 
which represents a crucial step in AD pathogenesis, is the result of an aberrant cleavage of 
the Amyloiod peptide Precursor Protein (APP), that is overexpressed in AD (Griffin, 2006). 
Aβ forms highly insoluble and proteolysis resistant fibrils known as senile plaques (SP). In 
contrast to the low-fibrillar Aβ plaques (diffuse plaques), highly fibrillar (amyloidogenic) 
forms of Aβ plaques are associated with glial and neuritic changes of the surrounding tissue 
(neuritic-plaques) (Hoozemans et al., 2006). NFTs are composed of the tau protein. In 
healthy controls, tau is a component of microtubules, which represent the internal support 
structures for the transport of nutrients, vesicles, mitochondria and chromosomes within the 
cell. Microtubules also stabilize growing axons, which are necessary for the development and 
growth of neurites (Griffin, 2006). In AD, tau protein is abnormally hyperphosphorilated and 
forms insoluble fibrils, which originate deposits within the cell. 
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Figure 2. Schematic representation of the two major neuropathologic hallmarks of AD: extracellular 
Amyloid β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). 

 
1.2. Biomarkers 

 
In view of existing and emerging therapeutic compounds there is a great need for reliable 

biochemical diagnostic markers (biomarkers), allowing early and accurate diagnosis of 
dementia, particularly for AD. Cerebrospinal fluid (CSF) is in direct contact with the 
extracellular space of the brain, and thus biochemical changes in the brain are reflected in 
CSF. A diagnostic marker for AD should reflect a central pathogenic process of the disorder, 
such as the degeneration of neurons and their synapses and the defining lesions, naming, 
senile plaques, deriving from the aggregation of Aβ, and NFTs, resulting from 
hyperphosphorylation of tau protein. A clinically useful diagnostic marker should have a 
sensitivity exceeding 80% and a specificity above 80% according to the statement of the 
Consensus Group for Biomarkers (The Ronald and Nancy Regan Research Institute of the 
Alzheimer’s Association, 1998). The goals of this declaration were to define characteristics 
of an ideal biological marker, to outline the process whereby a biological marker gains 
acceptance in the medical and scientific community and to review the current status of all 
proposed biomarkers for AD. According to the guidelines proposed, a diagnostic marker for 
AD should reflect a central pathogenic process of the disorder. It must have the following 
characteristics: 

1. be able to detect a fundamental feature of Alzheimer’s neuropathology 
2. validated in neuropathologically confirmed AD cases 
3. precise (able to detect AD early in its course and distinguish it from other dementias) 
4. reliable 
5. non-invasive 
6. simple to perform 
7. inexpensive. 
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Results on biomarkers must be replicated in at least two independent studies published in 
peer-review journals before being accepted by the scientific community. 

In light of these considerations, at present suggested biomarkers for AD are total tau 
protein (T-tau), Aβ42, and phospho-tau (P-tau).  

 
 
1.3. Mild Cognitive Impairment 

 
Mild Cognitive Impairment (MCI) is an etiologically heterogeneous syndrome 

characterized by memory performances below normal levels (corrected for age). Despite this 
modest cognitive impairment, the global intellectual functioning is preserved as well as 
activities of daily living. A substantial proportion of patients with MCI later develop clinical 
AD (Petersen, 1995). During this preclinical period, there is a gradual loss of axons and 
neurons, and at a certain threshold the first symptoms, most often impaired episodic memory, 
appear (Hansson et al., 2006). At autopsy, subjects with MCI showed a broad spectrum of 
morphological brain changes, including typical AD pathological characteristics (Petersen et 
al., 1997). Therefore, MCI partly represents a predementia stage of AD. To maximise the 
benefits of therapeutic strategies that maintain cognitive and functional performances or 
delay the progression of the neurodegenerative process, it is essential to identify AD at the 
stage of MCI. Because the pattern of neuropsychological impairment in MCI is etiologically 
non-specific, biochemical and neuroimaging markers will be required to establish the 
diagnosis so early in the course of the disease. To date, CSF markers have been shown to 
have a high predictive power for identifying subjects with MCI who have the greatest risk of 
progressing to clinical AD (Riemenschneider et al., 2002). 

 
 

2. AMYLOID β (Aβ) 
 
One of the first major findings in AD research was that Amyloid β (Aβ) is the main 

protein constituent of senile plaques (Masters et al., 1985). Aβ is produced continuously as a 
soluble protein during normal cellular metabolism and is secreted into the extracellular space 
and, thus, into the cerebrospinal fluid (CSF) (Seubert et al, 1992; Haass al., 1992). Aβ is a 
proteolytic cleavage product derived from the APP (Kang et al., 1987). The APP gene is 
located on chromosome 21 (St George-Hyslop et al., 1987), has three major alternate splicing 
variants with 770, 751 or 695 amino acids and is metabolized along two pathways. For the 
generation of Aβ, APP is cleaved after position 671 by a protease referred to as β-secretase, 
resulting in the release of a large N-terminal derivate called β-secretase-cleaved soluble APP 
(β-sAPP), and in a second step by the γ-secretase complex releasing free Aβ. The amyloid 
peptides comprise a heterogeneous set of N- and C-terminally truncated peptides. The three 
best known C-terminally truncated Aβ peptides are Aβ38, Aβ40 and Aβ42 (Schoonenboom et 
al., 2005). Aβ38 has been found to be the second prominent soluble Aβ peptide species in 
CSF after Aβ40 (Wiltfang et al., 2002) (Figure 3).  
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Figure 3. APP Processing: α-secretase and γ-secretase produce non-plaque forming  p3, whereas β-
secretase and γ-secretase produce amyloid plaque-forming Aβ. The different regions of the APP protein 
are indicated. 

The role of APP in the central nervous system is not clear yet. A number of functional 
domains have been mapped to the extra- and intracellular region of APP, including metal 
(copper and zinc) binding motifs, extracellular matrix components (heparin, collagen and 
laminin), neurotrophic and adhesion domains. Thus far, a thropic role for APP has been 
suggested, as it stimulates neurite outgrowth in a variety of experimental settings. The N-
terminal heparin-binding domain of APP also stimulates neurite outgrowth and promotes 
synaptogenesis. In addition, an “RHDS” motif near the extralumenal portion of APP likely 
promotes cell adhesion, possibly acting in an integrin-like manner. Similarly, APP 
colocalizes with integrins on the surface of axons at sites of adhesion (Storey et al., 1996, 
Yamazaki et al., 1997). Despite APP was initially proposed to act as a cell surface receptor, 
the evidence supporting this hypothesis has been unconvincing.  

 
 

2.1. Aβ levels in CSF 
 
The discovery that the Aβ42 peptide precipitated in unsoluble aggregates forming senile 

plaques led to the development of ELISAs, specific for this peptide. At present, five different 
ELISA methods specific for Aβ42 exist. At least 20 studies have been conducted on a total of 
more than 2,000 patients and controls, showing a reduction of Aβ42 by about 50% in AD 
patients compared with non-demented controls of the same age (see Blennow and Hampel, 
2003 for review). The reduction in CSF of AD patients may be due to Aβ42 deposition in 
senile plaques as an autopsy study has shown strong correlation between high numbers of 
plaques in the neocortex and hippocampus and low Aβ42 levels in ventricular CSF (Strozyk 
et al., 2003). 
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Moderately low levels were also found in Lewy Body Dementia (LBD; Kanemaru et al., 
2000). A mild or moderate decrease in Aβ42 was found in a percentage of patients with 
Frontotemporal Dementia (FTD) and Vascular Dementia (VaD) (Sjögren et al., 2000), 
whereas normal Aβ42 were found in depression, Parkinson’s disease and Progressive 
Supranuclear Palsy (PSP) (Holmberg et al., 2003).  

CSF Aβ38 and Aβ40 levels were similar in patients with AD compared with control 
subjects. All three Aβ peptides were related to each other, with the strongest correlation 
between CSF Aβ38 and Aβ40 (Schoonenboom et al., 2005). The Aβ42/Aβ40 and Aβ42/Aβ38 
ratios are considered to give information about the disease progression, typically in the early 
stage of disease, because the cerebral deposition of Aβ42 probably starts already before the 
disease becomes clinically overt (Blennow and Hampel, 2003). This observation is in 
agreement with an earlier report showing an increased Aβ42/Aβ40 ratio before the clinical 
onset of AD (Kanai et al., 1998). CSF Aβ42 alone is considered to be a stage marker, 
reflecting the presence of the disease at certain stage. It would be of interest to investigate the 
ratio of Aβ42 to Aβ40 and Aβ38 in a group of patients with mild cognitive impairment, 
observed longitudinally, to be informed when Aβ42 starts to decrease in CSF, as compared 
with Aβ38 and Aβ40, in relation with clinical progression. 

 
 

3. TOTAL TAU PROTEIN (T-TAU) 
 
Tau is a normal brain phosphoprotein that promotes the assembly and stability of 

neuronal axons by binding to microtubules (Goedert, 1993). There are six different isoforms 
of tau in the human brain and numerous phosphorylation sites. In AD, hyperphosphorylated 
tau is the principal component of paired helical filaments (PHFs), which form neurofibrillary 
tangles, neurophil threads and senile plaque neuritis (Grundke-Iqbal et al., 1986). These 
formations result in the disintegration of microtubules. Tau pathology can also be observed in 
other neurodegenerative disease, but it differs from AD patients at the molecular level 
(Hasegawa, 2006). Tau protein was quantified in the CSF under the hypothesis that it is 
released extracellularly as a result of the neurodegenerative process. CSF levels of total tau 
probably reflect the intensity of neuronal damage and degeneration (Andreasen et al., 1998). 

 
 

3.1. Total Tau Levels in CSF 
 
Three different ELISAs based on monoclonal antibodies that detect all isoforms of tau 

independent of the phosphorilation state of the protein have been developed measuring T-tau 
in CSF (Blennow et al., 1995). Using these ELISAs, a moderate to marked increase in T-tau 
in AD has consistently been demonstrated in more than 50 studies (Andreasen et al., 2003). 
CSF levels of T-tau probably reflect the intensity of neuronal damage and degeneration 
(Andreasen et al., 1998). High CFS levels are expected in all disorders with neuronal 
degeneration or damage. This has been confirmed in conditions such as Creutzfeldt-Jacob 
disease (Otto et al., 1997) and acute stroke (Hesse et al., 2000). Mild elevation of T-tau was 
also found in a proportion of cases with other dementias, such as FTD, LBD and VaD. In 
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contrast, subjects with other neurological disorders, including Parkinson’s disease and PSP, 
or psychiatric disorders (e.g. depression) showed normal CSF-T-tau levels (Blennow et al., 
1995; Morikawa et al., 1999; Urakami et al., 1999). T-tau therefore has a diagnostic value to 
discriminate neurodegenerative disorders from pseudodementia due mainly to psychiatric 
disorders. 

 
 

4. T-TAU AND Aβ COMBINATION 
 
The combined evaluation of T-tau and Aβ levels satisfy the criteria for reliable 

biomarkers described above (The Ronald and Nancy Regan Research Institute of the 
Alzheimer’s Association, 1998). Discrimination of AD from other disorders not associated 
with pathologic conditions of the brain (CON), other neurologic disorders (ND) and non-AD 
types of dementia (NAD) was significantly improved by the combined assessment of Aβ42 
and tau (Hulstaert et al., 1999). At 85% sensitivity, specificity of the combined test was 86% 
(95%CI: 81% to 91%) to discriminate between presence or absence of dementia compared 
with 55% (95% CI: 47% to 62%) for Aβ42 alone and 65% (95% CI: 58% to 72%) for tau 
alone. The combined test at 85% sensitivity was 58% (95% CI: 47% to 69%) specific for 
NAD. Lastly, the combined measure of CSF Aβ42 and tau meets the requirement for clinical 
use in discriminating AD from normal aging and other neurological disorders (Hulstaert et 
al., 1999).  

 
 

5. HYPERPHOSPHORYLATED TAU PROTEIN (P-TAU) 
 
In AD, numerous phosphorylation sites in the tau protein have been identified. In its 

hyperphosphorylated state, tau protein looses its ability to stabilize microtubules, causing 
axonal instability, which contributes to the dysfunction in their transport ability (Ferreira et 
al., 1989; Iqbal et al., 1997). Moreover, hyperphosphorylated tau promotes tau aggregation 
and NFT formation (Goedert et al., 1993).  

 
 

5.1. Hyperphosphorylated T-Tau Levels in CSF 
 
Five different ELISAs have been developed for different phosphorylated epitopes of tau, 

including threonine 181 and 231 (P-Tau 181+231) (Blennow et al., 1995), threonine 231 and 
serine 235 (P-Tau 231+235) (Ishiguro et al., 1999), serine 199 (P-Tau 199) (Ishiguro et al., 1999), 
threonine 231 (P-Tau 231) (Kohnken et al., 2000) and serine 396 and 404 (P-Tau 396+404) (Hu 
et al., 2002). A marked increase of P-tau levels was found in AD patients using these 
different ELISA methods.  

Normal P-tau levels were found in psychiatric disorders such as depression (Buerger et 
al., 2003) and in chronic neurological disorders such as amyotrophic lateral sclerosis (ALS), 
Parkinson’s disease (Blennow et al., 1995; Sjögren et al., 2002) and other dementias, 
including VaD, FTD and LBD (Parnetti et al., 2001; Vanmechelen et al., 2000; Hampel et al., 
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2004). This implies that P-tau is considered to reflect the phosphorylation state of tau, being a 
more direct biomarker for discriminating AD from others dementias. 

Further, after acute stroke, there is a marked increase in CSF T-tau, while CSF P-tau 
levels do not change (Hesse et al., 2001). These findings suggest that P-tau is not simply a 
marker of neuronal damage (as T-tau is considered to be), but could specifically reflect the 
phosphorylation state of tau, and thus possibly the formation of NFTs. 

 
 
6. CSF BIOMARKERS IN MILD COGNITIVE IMPAIRMENT  
 
So far, there is no established method to predict progression to Alzheimer’s disease in 

individuals with MCI. Early studies indicated that CSF biomarkers could be useful for 
defining a subgroup of patients with MCI at especially high risk of developing AD (Blennow, 
Hampel, 2003; Hampel et al., 2004; Maruyama et al., 2004).  

In MCI cases that deteriorate to AD, high T-tau levels discriminate MCI patients that 
progress to AD from those that do not progress (Arai et al., 1997). In another study, low 
Aβ42 and high T-tau levels were found in 90% of the MCI that progressed to AD as 
compared with the 10% stable MCI (Riemenschneider et al., 2002). In a similar way, a 
marked increase in P-tau levels was found in MCI, who at follow-up had progressed to AD 
(Buerger et al., 2002). A combination of CSF T-tau and Aβ42 at baseline yielded a sensitivity 
of 95% and a specificity of 83% for detection of incipient AD in patients with MCI (Hansson 
et al., 2006).  

These findings suggest that CSF biomarkers may be of use in the clinical identification of 
AD in the very early phases of the disease and thus facilitate early intervention. 

 
 

7. ESTABLISHMENT OF REFERENCE VALUES 
 
For the introduction of these assays in clinical practice, adequate reference values are of 

importance. To date a big study was carried out on CSF T-tau and Aβ42 levels in a large 
sample (n=231) of individuals without neuronal or psychiatric dysfunctions, with a large age 
range (21-93 years). Because CSF T-tau levels correlate with age, separate reference intervals 
have been calculated for different age categories. The reference values for CSF-tau were 
<300 ng/L in the group having 21-50 years of age, < 450 ng/L in the group of 51-70 years of 
age and < 500 ng/L in the group of 71-93 years of age. Because there was no correlation 
between age and CSF-Aβ42 levels and no significant differences were found when the 
sample was divided into different age groups, only one reference value for CSF-Aβ42 was set 
(normal levels > 500 ng/L; Sjögren et al., 2001). 
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8. CONCLUSIONS 
 
Combining data from several studies (Knopman, 2001; Blennow and Hampel, 2003), the 

specificity for the three CSF biomarkers was 90% or more and the sensitivity was 86% for 
Aβ42, 81% for T-tau and 80% for P-tau. The combination of the three CSF biomarkers 
enhances the precision of the AD diagnosis. 

In summary, biological marker research is most advanced in the area of AD diagnosis. 
Attention has been focused on finding one single marker for AD. This seems possible only if 
the marker is related to a pathogenic step that is unique to AD. However, neural and synaptic 
degeneration is not only found in AD, but in most chronic degenerative disorders of the brain. 
Similarly, deposition of Aβ is not specific for AD, but also found in normal aging (Beach, 
2008) and LBD (Deramecourt et al., 2006), while formation of PHF into tangles may occur 
also in normal aging and FTD (Von Bergen et al., 2001). This reduces the likelihood of 
finding one single biochemical marker for AD. Today, the combined CSF biomarkers, when 
used as adjuncts to the clinical diagnosis, have the potential to help differentiating AD from 
normal aging (Castaño et al., 2006), progressive supranuclear palsy (Holmberg et al., 2003), 
FTD (Grossman et al., 2005), VaD (De Jong et al., 2006) and alcoholic dementia. 

Future studies on CSF Aβ42 and T-tau will assist in the characterization of risk 
indicators by which measure the risk of cognitive decline and dementia for the initiation of 
earlier intervention and possibly prevention strategies. 

Lastly, it is reasonable to assume that the examined CSF markers should not be used as 
isolated tests and the clinical diagnosis of AD should be based on cumulative information 
gained from clinical examination (memory disturbance), neuropsychological test batteries, 
brain-imaging (SPECT, MRI) and CSF biochemical assays. Biomarkers may have their most 
important value early in the course of the disease when the diagnosis is the most troublesome 
and may be an aid for clinicians in setting the diagnosis already at the first clinical 
evaluation. 
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ABSTRACT 
 
The development of validated biomarkers for Alzheimer’s disease is essential to 

improve diagnosis and accelerate the development of new therapies. This chapter 
provides a roadmap for AD biomarker development, illustrating the optimization, 
qualification, and clinical validation of a potential assay through the example of a new 
multiplex biomarker test (INNO-BIA AlzBio3) that quantifies key AD biomarkers in 
cerebrospinal fluid. Both the product and analytical qualification of this assay are 
presented in detail, followed by the clinical qualification of the test using autopsy-
confirmed samples from demented patients. Finally, the analytical performance of the test 
in a multicenter study carried out in the United States and Europe is discussed. It is clear 
that the process of biomarker development in general, and for Alzheimer’s disease 
biomarkers in particular, is fraught with particular challenges that must be addressed in 
order to bring potential AD biomarkers to clinical utility. 
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1. ALZHEIMER’S DISEASE: THE ROAD TO CLINICAL UTILITY 
 

1.1. Alzheimer’s Disease: The Search for Validated Biomarkers 
 
The rapid growth of diagnostic technologies and biomarker tests in recent years is 

exerting an ever more powerful influence on patient treatment and drug development. Not 
only is a new generation of diagnostic tests helping clinicians monitor treatment effects, 
optimize treatment regimens, and track disease progression, but an ever-expanding repertoire 
of biomarkers is increasingly being used by the pharmaceutical industry in all phases of drug 
development.  

However, when it comes to the dementing diseases, this dynamic scenario does not fully 
apply. Even some one hundred years after the discovery of Alzheimer’s disease (AD), the 
principal form of dementia, there are still no universally validated tests for early and accurate 
diagnosis of the disease or its progression, and there is no consensus on biomarkers that can 
objectively measure the effects of potential disease-modifying therapies. The development of 
such biomarkers has become a public health priority in those many parts of the world affected 
by the age-related surge in the number of people with dementia.  

Fortunately, an increasing number of biomarker candidates have emerged in recent years 
that can be evaluated for such uses (Frank et al. 2003; Shaw et al. 2007; Steinerman and 
Honig 2007). This chapter reviews the process and progress of biomarker development that 
can bring potential AD biomarkers to clinical utility. In addition to providing a general 
overview of the biomarker development process, Section 1 discusses data sharing initiatives 
that can accelerate biomarker development. Section 2 presents biomarker standardization as 
practically illustrated by the steps involved in the development and qualification of a 
multiplex biomarker test (INNO-BIA AlzBio3∗, Innogenetics, Gent, Belgium) using xMAP® 
technology (Luminex Corp., Austin, TX) to quantify key AD biomarkers in cerebrospinal 
fluid (CSF). 

Section 3 of this chapter then summarizes the product qualification of this assay, 
including selection of raw materials, and the steps needed to ensure their quality control. 
Following this, Section 4 describes the analytical qualification of the multiplex test in detail. 
Section 5 examines the clinical qualification of the test using autopsy-confirmed samples 
from demented patients. Finally, Section 6 discusses a multicenter study organized by the 
Biomarker Core of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) that was 
designed to evaluate the analytical performance of a quantitative multi-analyte immunoassay 
across 7 centers in the United States and Europe. This qualifying exercise ultimately led to 
the launch of formal studies of ADNI CSF samples using the same Luminex/xMAP platform 
and INNO-BIA AlzBio3 reagents. 

 
 
 
 

                                                        
∗ For Reseach Use Only. Not for use in diagnostic procedures. 



Alzheimer’s Disease Biomarkers: From Concept to Clinical Utility 83

1.2. What are Biomarkers? 
 
Biomarkers can be simply defined as measurable biological characteristics that can either 

serve as indicators of normal or pathogenic processes in the body, or as tools to track 
pharmacological responses to therapeutic drugs. Aside from biochemical or imaging 
biomarkers indicating the absence, presence, or progression of a particular disease (stage or 
state markers), various types of biomarkers can be used in drug development as surrogate 
endpoints, or as markers of efficacy, safety, mechanisms, pharmacodynamics, or toxicity. 
Irrespective of their use, all such biomarkers must undergo a phased qualification process 
ultimately leading to full analytical and clinical validation. This ensures that the biomarker 
assay will be reliable for its intended use (Biomarkers Definitions Working Group 2001).  

 
 

1.3. Biomarker Development: A Staged, Iterative Process 
 
Biomarker development is a long, complex, and dynamic process involving a succession 

of clinical studies that aim to arrive at estimates of diagnostic accuracy [De Meyer and 
Shapiro 2003]. This process can be divided conceptually into three interactive phases: 
biomarker selection, model building, and model validation (Figure 1). In the first phase, 
scientific discovery and hypotheses lead to the selection of potentially relevant biomarkers 
which are then used for assay development. These markers are then used in the next phase as 
building blocks to develop an algorithm that translates marker values observed in a patient 
into a clinical statement. Finally, in the last phase, the independent validation of such models 
in clinical trials helps to establish the true clinical value of the model. It is important to note 
that the entire process is dynamically evolving to improve these models. A similar, more 
detailed description of the biomarker development process is given by Pepe (2003). 

 

Marker selection Model building Model validation

Phase 1 Phase 2 Phase 3

Increasing confidence in clinical utility

Marker selection Model building Model validation

Phase 1 Phase 2 Phase 3

Increasing confidence in clinical utility

 

Figure 1. Biomarker clinical development scheme. Figure reproduced with permission from The 
Thomson Corporation and De Meyer G, Shapiro F: Drug Development: The road to clinical utility. 
Curr Drug Disc (May 2003):23-27. ©2007 The Thomson Corporation. 
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1.3.1. Phase I: Biomarker Selection 
Possible biomarkers are typically identified in an initial pilot study involving the 

measurement of biomarker levels in two distinct groups (e.g., AD and control subjects). A 
marked difference in biomarker levels is then suggestive for biomarker relevance. At this 
early stage, special attention must be paid to ensure that the included groups are clinically 
relevant, that the patients are representative, and that the patient groups are equivalent for 
other variables. Another common pitfall is to use the same early-phase data to build 
‘optimistic’ algorithms that deduce the outcome (e.g. AD diagnosis) from the data – and to 
estimate the performance of these models in terms of accuracy. This will often yield 
unreliable results in the longer term. Finally, if ‘rough-and-ready’ home-brew tests are 
initially used, these must be further standardized to ensure the accuracy of the results 
obtained. 

 
1.3.2. Phase II: Model Building 

The second phase of biomarker clinical development produces an operational model in 
the form of an algorithm (e.g., single marker cut-off, decision tree, discriminant line, logistic 
regression model, clustering model, neural network, etc.). For instance, when developing AD 
biomarkers, it has emerged that the use of single markers does not have sufficient accuracy 
for practical application i.e., results are good, but not better than a competent clinical 
diagnosis. Therefore, selecting and combining data from different biomarkers appears to 
improve biomarker performance [Clark et al. 2008; Hansson et al. 2006; Hulstaert et al. 1999; 
Sunderland et al. 2003; Wiltfang et al. 2005].  

Inherent to the model is a quality statement on its accuracy, often expressed as a 
combined clinical sensitivity-specificity result. However, particular care is needed in 
interpreting these statements. This is because accuracy statements can be overestimated since 
they are dependent on model selection. At the mid-stage of biomarker development, such 
claims should still be considered to be tentative estimates and not as final conclusions for a 
particular application. 

At this stage, an operational assessment of the quality of model building can be gauged 
by posing such questions as: are the groups relevant and patients truly representative? A 
multicenter clinical trial design in which patients are consecutively or randomly included is 
an excellent approach to resolve this issue. Furthermore, one can ask if the model has 
statistically sound foundations. A good statistical basis increases the probability of success in 
further phases of biomarker clinical development. 

 
1.3.3. Phase III: Model Validation 

The biomarker development process must now establish an estimate of the model’s 
accuracy that is independent of the information used to build the model. For this purpose, 
sources of bias must be ruled out. These can occur at the level of patient inclusion (e.g., 
special cases are not included) or at the level of diagnosis (e.g., diagnosis is influenced by 
biomarker results). Prospective recruitment within a strict clinical trial protocol is a way to 
reduce such bias.  

Results at this stage lead to decisions on the part of biomarker developers as to whether 
further development work will be pursued. Often, clinical development is ended and the 
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diagnostic test (including biomarkers and model) is presented to registration authorities for 
evaluation. In the area of the neurodegenerative diseases, however, this decision should 
consider the potential gap between the early clinical diagnosis used for model building and 
the gold standard of autopsy-confirmed diagnosis.  

 
1.3.4. Cyclic Improvement of Biomarkers 

The process of clinical development for biomarkers is more than just a finite set of 
milestones towards a goal, but also as an iterative tool for further improvement of biomarker 
performance. Indeed, going through a series of model validation and model building stages 
offers real perspectives for substantial improvements in performance. 

While cyclic model validation and model building are often the way ahead for some 
applications, in other cases, building the first model can pose a real challenge. The area of 
early AD diagnosis is a case in point. Here, much attention is being devoted to diagnosing 
AD at its earliest stages, when therapeutic interventions might be most effective. However, it 
is increasingly understood that AD begins insidiously, long before overt symptoms are 
observed. Biomarkers, reflecting subtle biochemical or structural changes, may therefore be 
particularly suitable for use in early diagnosis. 

Nevertheless, the difficulties in developing AD biomarkers, especially for detecting AD 
at its outset are manifold, given the poor understanding of early neuropathological events; the 
paucity of early-stage pathological fingerprints that can help distinguish normal aging from 
incipient disease; the challenge of knowing which of the dementias or whether mixed 
pathologies are present; the very slow, insidious progression of AD; the often limited number 
of well-defined clinical samples available at a particular location; and the resulting 
impediments to set up clear-cut testing groups. This has frequently led to contradictory 
results: what has been found to be statistically significant and promising in one study has 
subsequently been shown to fall short during further development. On the other hand, it 
should not be forgotten that negative or borderline results can prove invaluable irrespective 
of whether they confirm or invalidate previous findings. 

 
1.3.5. Accelerated Biomarker Development through Data Pooling 

How can biomarkers emerge from this ‘chicken and egg’ conundrum? Well-designed 
longitudinal studies are one element, so that clear disease phenotypes eventually emerge or 
not. Such studies take time. Another way over this hurdle is to join forces and combine 
biomarker results from different clinical centers. Although conceptually simple, the notion of 
data pooling (or data fusion) involves the sharing of information and samples. This means 
transforming current attitudes towards collective benefits: switching from a mentality of ‘own 
data analysis’ towards a ‘meta-analysis’ mode. The practical implementation of data pooling 
faces many challenges (e.g., standardization of sample collection, storage, and processing, 
assay format and data interpretation, as well as intellectual property rights). Care must be 
taken, however, to maximize the information extracted from the samples over the background 
noise generated by ‘between-center variations.’ This can be met by applying a strict clinical 
trial framework (design, efficacy criteria, statistical methodology, etc.). Alternatively, other 
approaches can be envisaged such as collecting data in routine laboratories, provided that 
data quality (including diagnosis) is sufficiently documented.  
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Given the emerging public health crisis caused by the age-related, exponential growth in 
the number of cases of dementia and their concomitant costs, an increasing number of 
worthwhile initiatives involving the cooperation of government, academia, foundations, and 
industry have arisen in recent years to maximize the availability of useful data for sharing. 
One well-known example is the National Institute of Aging’s Alzheimer Disease 
Neuroimaging Initiative (ADNI). Data from this initiative, involving some 800 individuals 
followed for 3 years, have already become available through the ADNI (www.adni-info.org/ ) 
and Laboratory of Neuroimaging, UCLA (LONI; www.loni.ucla.edu/ADNI/) websites as of 
March 2008. The project has not only developed standardized neuroimaging and biochemical 
marker methods to be used in AD trials, but seeks to validate AD neuroimaging and 
biomarker findings by correlating them with neuropsychological and behavioural test data. 
Another example of standardization is the PENN biomarker development program at the 
University of Pennsylvania School of Medicine. The program uses data collected in 
accordance with the ‘Uniform Data set’ assessment protocol established by the National 
Alzheimer’s Coordinating Center. This protocol is now used by all 32 Alzheimer’s Disease 
Centers to standardize and objectivize the collection and reporting of data. 

Examples of data sharing in Europe also are increasingly frequent. In Germany, the 
Kompetenznetz Demenzen (the Dementia Competence Network) has been receiving support 
from the Federal Ministry of Education and Research (BMBF) since 2002. One of its main 
priorities is the development and optimization of methods for early diagnosis and treatment 
of dementia. The collection of epidemiological data and the identification of risk factors will 
also serve to provide new insights into the origin and course of dementing diseases. Plans are 
also being drawn up to establish a central gene database for dementing diseases.  

In Sweden, the Swedish Brain Power program started in 2005 based on funding from the 
Invest in Sweden Agency (ISA) and five other foundations. The overall aim is to improve 
early diagnosis, treatment, and care for people with neurodegenerative diseases. The Svenska 
Demensregistret (the Swedish Dementia Register), is one useful by-product of this initiative. 
Established in 2007, its aim is to build a national quality register with data on, among other 
things, improved diagnostics, treatment, and follow-up for patients with dementia disorders. 
This will create new possibilities to improve the quality of Swedish dementia care. Some 15 
clinics and one health center have already begun to report their data to the register. 

Such combined efforts will help accelerate the development of biomarkers to improve 
early diagnosis and treatment of AD and other neurodegenerative conditions. 

 
 

2. SELECTION AND QUALIFICATION OF A MULTIPLEX 

TECHNOLOGY FOR AD BIOMARKERS IN CLINICAL ROUTINE 
 
Before being applicable for use in clinical trials, biomarker assays must be rigorously 

standardized: a process involving the development, optimization, qualification, and validation 
of the assay format, preferably done at multiple test sites (Ilyin et al. 2004; Rai 2007; Zolg 
and Langen 2004). This process is illustrated by describing the development and qualification 
of a multiplex biomarker test, INNO-BIA AlzBio3, for CSF analysis of three different 
proteins. 
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2.1. From Single-Analyte to Multi-Analyte Testing  
 
Diagnosis of AD is still based on probabilistic clinical exclusion criteria requiring a time-

consuming and expensive diagnostic work-up. Studies evaluating diagnostic accuracy rates 
are based on follow-up periods of several years and have been performed in specialized 
clinical centers. Low average specificity levels of 48% for clinical diagnosis of possible AD 
are considered as a reflection of the overlap of clinical profiles between AD and non-AD 
dementias (Knopman et al. 2001). Should diagnostic errors occur, they most likely involve 
one of the other primary dementias, mixed pathologies that include a vascular component, or 
uncertainties associated with early diagnosis. Patients are often unaware of symptoms in the 
early phases or they believe that their memory loss forms an integral part of normal aging, 
resulting in a barrier for (early) clinical detection of the disease (Solomon and Murphy 2005). 
  

 

 
 

   Figure 2. CSF biomarkers used for diagnosis of AD 
 
A promising alternative approach to the clinical work-up is the use of biochemical 

markers (biomarkers) present in the cerebrospinal fluid (CSF). As such, there is a growing 
need for laboratories to have access to rapid, automated, multiplexed, and cost-efficient 
measurement tools for key AD biomarkers. CSF is a continuum of the interstitial fluid from 
the brain and spinal cord (Figure 2). Neuropathological changes in the brain or modified 
biochemical processes affecting major functional pathways will be reflected in the CSF. The 
parallel involvement of several metabolic processes (e.g., inflammation, cholesterol 
homeostasis, hippocampal atrophy, neurofibrillary tangles in hippocampus and entorhinal 
cortex, senile plaques in the neocortex, synapse loss, oxidative stress) in the pathology of 
neurodegeneration precludes the use of one single biomarker for all applications areas. The 
selected biomarker panel will depend in part on the required clinical classification (“clinical 
question”). At present, it is not clear what level of complexity will be required to obtain the 
highest accuracy in the field of AD. Several publications have already described the 
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identification of potential protein biomarker candidates, including but not limited to TAR 
DNA-binding protein 43 (TDP-43), ß-amyloid oligomers or protofibrils, truncated Aβ 
isoforms, phosphorylated tau forms (P-tau199P, P-tau181P, P-tau231P), and homocysteine 
(Hampel et al. 2008; Shaw et al. 2007). 

The levels of beta-amyloid (Aß) peptides, which are derived from the larger amyloid 
precursor protein, are considered as a reflection of plaque formation, while levels of total 
tau/phosphorylated tau (P-tau181P) reflect tangle formation (Ballatore et al. 2007). The origin, 
structure, and function of these proteins are shown in Figure 3 for tau isoforms, and Figure 4 
for Aß. Until now, testing has been limited to single-analyte assays run in parallel. Well-
established ELISA-based testing methods are available for assessment of candidate CSF 
biomarkers such as CSF Aß42, tau, and P-tau181P or P-tau231P.  
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Figure 3. The tau protein. The domain structure of the tau isoforms (tau gene location: 17q21) that are 
expressed in the human brain are shown. The isoforms differ (1) in the number of tubulin-binding 
domains (three or four repeats located in the C-terminal half of the protein; referred to as 3R or 4R tau 
isoforms) and (2) in the presence or absence of either one or two 29-amino-acid-long, highly acidic 
inserts at the N-terminal portion of the protein (the projection domain). The flow towards neurotoxicity 
is shown. (MT = microtubule; NFT = neurofibrillary tangles; PHF = paired helical filaments). 

A multi-analyte test was therefore developed using the above-mentioned AD biomarker 
panel, containing Aß1-42 and tau/P-tau proteins. The movement from single-analyte testing to 
multiplex testing was carried out in different phases that included: 

 
• Platform selection. 
• Platform feasibility evaluation for its intended use. 
• Analytical qualification of the assay developed on the selected platform. 
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• Comparison of the clinical performance of the multiplex assay formats, with the 
currently available single-analyte enzyme-linked immunosorbent assay (ELISA) for 
the same analytes, widely accepted as the current “standard” (= clinical 
qualification). 

• An extensive equivalence study to verify whether the different techniques may yield 
different numerical results. Rapid acceptance by the market of a new multiplex 
technology for use in clinical research is largely dependent on achieving equivalent 
results to those obtained using ELISA techniques. 

 
A

B

KMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA . . V

Note: human sequence
Reference: Eckman EA and Eckman CB. Biochem Soc Trans. 2005; 33:1101-1105. 
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Figure 4. The ß-amyloid peptide. A. Direct and indirect events that can contribute to ß-amyloid 
pathogenesis. B. Amyloid precursor protein (APP) and Aß processing enzymes. (Aß = ß-amyloid; APP 
= amyloid precursor protein; CTF = carboxy terminus-modified fraction; ECE = endothelin converting 
enzyme; IDE = insulin-degrading enzyme; NEP = neprilysin). 

 
2.2. Platform Selection 

 
A variety of multi-analyte profiling methods are available. Examples of these are (i) 

proteomics (two-dimensional gel electrophoresis followed by identification by tandem mass 
spectrometry (Finehout et al. 2007)), (ii) time-of-flight mass spectrometry (matrix-laser 
desorption/ionization (MALDI)) (Oe et al. 2006), (iii) spot arrays printed onto the bottom of 
96-well plates (SearchLight (Thermo Fisher, Waltham, MA, USA) [(SearchLight 
Chemiluminescent and Infrared Protein Arrays are quantitative, plate-based antibody arrays 
based on traditional ELISA) technique and piezoelectric printing technology)], and (iv) 
MesoScale Discovery products (Gaithersburg, Maryland, US) (The meso scale systems are 
based on a MULTI-ARRAY® technology, a proprietary combination of electro-
chemiluminescence detection and patterned arrays).  
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Unfortunately, proteomics technologies use heterogeneous and complex samples. In 
addition, they have to use separation strategies or specialized software for data analysis. As 
such, they have not yet reached the level of validation and user-friendliness to be included in 
clinical routine testing. On the other hand, mass spectrometry-based bio-analytical procedures 
can and have been widely used to identify biomolecules. Consequently, immunoassay 
technologies will remain critically important during the next decades to support the 
diagnostics industry, especially in situations where accurate quantification of changes in 
analyte concentrations are required.  

Immunoassays measure concentrations of (a) substance(s) in biological liquids using a 
binding reaction between an antibody (or antibodies) to the target analyte. Assays have been 
developed using polyclonal or monoclonal Abs. 

To a large extent, the total assay performance is largely dependent on the antibodies 
used. The development of antibodies starts with antigen selection. Immunization of animals 
with purified antigen in the form of whole antigen (native or recombinant), antigenic 
domains, or synthetic peptides derived from the antigen, have all been shown to yield useful 
antibodies. These antibodies are directed toward antigenic sites or epitopes on the surface of 
the antigen, and need to bind with high affinity to the target protein. Possible differences in 
immunogenicity of the antibodies for the antigen can cause major problems when results 
obtained with immunoassays from different vendors are compared. In addition, mAbs 
generated towards synthetic peptides must have a good affinity towards the native protein in 
the sample of interest. 

Polyclonal antibodies are produced by immunization of a suitable animal (e.g., chicken, 
goat, guinea pig, hamster, horse, mouse, rabbit, rat, sheep). The polyclonal immunoglobulins 
are purified afterwards from the serum. Monoclonal antibodies (mAbs) are monospecific 
antibodies. They are produced by one type of immune cell that are clones from a parent cell. 
They are typically made by the fusion of the spleen cells from a mouse (or rabbit), 
immunized with the desired antigen, with the myeloma cells. mAbs are often used as they 
usually bind to only one site of a particular molecule, and therefore provide a more specific 
and accurate test, which is less easily confused by the presence of other molecules. The 
chosen antibodies must have a high affinity for the antigen. 

Only limited amounts of polyclonal antibodies can be derived from animal sources. They 
typically show lot variability. More robust production runs can be guaranteed using mAbs. 
The mAb selection criteria should include the evaluation of (i) potential losses of epitope(s) 
after addition to the solid phase or after conjugation, (ii) masking of epitopes in biological 
matrices, and (iii) in case a multiplexing technology is applied, the confirmation of equivalent 
performance of final multi-analyte format with single-mode ELISAs. Considerable extra 
development work will be required in case one of the above-mentioned items fails during the 
qualification and/or validation phase. 

A practical requirement is the need to design, develop, and commercialize diagnostic 
tests according to validated and standardized operating procedures on available platforms, 
acceptable to regulatory authorities, which can be integrated into centralized lab testing 
routine.  
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2.3. The Platform: xMAP Technology 
 
The use of multiplex bead array assays has been described in the literature for more than 

30 years. As opposed to ELISAs, which use enzyme amplification of a colorimetric substrate 
to quantify antigen-antibody reaction, bead-based assay formats use fluorescence as a 
reporter system. 

The xMAP technology is well-suited to a wide range of applications for drug discovery, 
diagnostic testing, and basic research. The microsphere-based technology is a flow 
cytometric method involving covalent coupling of antibodies or probes to spectrally specific 
fluorescent microspheres (Oliver et al. 1998; Gordon and McDade 1997). Each microsphere 
is dyed with a precise concentration ratio of red- and orange-emitting fluorochromes, giving 
it a unique spectral identity. Classification of each bead is made by excitation at 635 nm by a 
first laser. A doublet discriminator (gate setting) precludes the analysis of damaged or 
aggregated beads. Because different microsphere sets can be combined within one method, 
and each bead number is linked with only one mAb, signals from analytes in the mixture are 
identified unequivocally. A third fluorochrome, R-phycoerythrin (PE), coupled to 
streptavidin (SV), quantifies the molecular reaction occurring at the microsphere surface. The 
intensity of the green fluorescence, derived after excitation of PE by a second laser at 532 
nm, is reported as median fluorescence intensitity (MFI) values (Figure 5).  
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Figure 5. The xMAP® - technology. 

 
2.4. Platform and Throughput 

 
Once the assays have been fully validated for integration in clinical routine or for use in 

clinical trials, the impact of throughput and/or automation comes into play. Throughput 
requirements differ in function of the target area (e.g., research, diagnostics, clinical trials, 
service lab testing) or in function of the phase of the project (discovery, feasibility, 
development, qualification, validation).  
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The design of the xMAP technology, together with its flexibility, allows simultaneous 
measurement of more than 100 analytes. As the list of AD biomarkers is constantly growing, 
and assuming that no limiting cross-reactivity occurs, one could envision the establishment of 
panels to broadly address all clinical and research applications. An important pitfall of 
customized assays (often prepared by vendors on request of customers) is the absence of full 
qualification reports or a link of the assay accuracy in function of the protein combinations in 
the panel. Another key concern in the evaluation of multiplex bead array assays is the 
possibility that multiplexing, in itself, results in anomalies in quantification of some of the 
analytes (~matrix effects). Interfering substances can result in faulty measurements. During 
the development phase, the equivalent performance between single analyte measurements 
and multiplex formats needs to be documented. One may not assume that a reliable single-
analyte assay can be automatically modified and transformed into a multiplex array format.  

For a product targeting the in vitro diagnostic (IVD) market, the inclusion of an extra 
biomarker in the panel is feasible when (i) there is a proven link to one of the hallmarks of 
the disease, (ii) the clinical diagnostic performance, either on the level of diagnosis or 
individual patient management, is significantly improved, or (iii) there is a well-documented 
added value for the users of the test. Each new panel composition (or an extension of an 
existing set of biomarkers) should be re-evaluated (full or partial validation), when 
developing custom-made protein panel combinations. 

 
 

2.5. Economic Considerations 
 
Economic considerations by research and clinical laboratories for the choice of a 

bioassay will necessarily include such factors as cost of test (and/or reagents) and supporting 
equipment, amount of expected sample throughput, labor costs related to ease-of-use, need 
for training, handling steps, etc. For example, those labs performing fewer numbers of tests 
will tend to opt for single-analyte assays (e.g., ELISAs) rather than for multi-analyte tests 
requiring substantial investments in equipment/software. A lab interested in measuring only 
one analyte will obviously not be interested in investing in a multi-analyte product. By 
contrast, centralized labs with higher throughput requirements may lean towards the use of 
multi-analyte tests. 

With respect to multi-analyte testing, the simultaneous quantification of proteins, as 
compared to single-analyte testing, provides useful mechanistic and clinical information in a 
cost-effective manner, providing a strong impetus for the routine use of these assays in both 
research and clinical laboratories. The labor cost especially comes into play when a 
substantial number of manual steps are required to generate results or when there is no access 
to standard robotics to perform the tests (Figure 6).  

The cost reduction for the lab performing multi-analyte testing can be obtained in several 
ways, and includes:  

 
- Reduction in cost by a gain of “time-to-result” 

o It is less laborious to obtain results when analysis is done in parallel.  
o The fewer the handling steps, the less time needed. 
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- Reduction of cost related to “human error” 
o Human error can result in the need for repeat testing. 
o Multi-analyte testing requires only one test protocol in comparison with 

more steps and procedures associated with single-analyte test formats. 
o Reproducibility of assay results is increased by the inclusion of “ready-to-

use” calibrator series, affecting the quality of the data output.  
- Reduction of cost related to “cost of goods” 

o The amount and associated costs of reagents will be less with multi-analyte 
tests. 

- Other aspects of cost reduction 
o Lower sample volumes can make a difference, and are especially important 

when sample volume is critical.  
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Figure 6. The xMAP® technology and economics. 

 
3. INTEGRATION OF THE NEW PLATFORM INTO THE 

PRODUCTION FACILITIES  
 

3.1. Process Verification 
 
After the development phase, the process to manufacture an assay for an existing analyte 

on a new platform is validated against established quality control procedures and published 
guidelines for immunoassay development (Guidance for Industry 2001; Lee et al. 2006). The 
process to couple mAbs to the solid phase, purify mAbs, and add biotin conjugates to the 
mAbs is important and essential to obtain (a) robust production process(es), as well as 
standardized assays, especially with respect to lot-to-lot variability. The conjugation 
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chemistry is optimized for each component individually in order to achieve an optimal signal-
to-noise ratio (= high signal in the biological samples together with low background values in 
analyte-negative fluidics), an acceptable analytical sensitivity, a mAb that maintains its 
specificity, affinity, and immunological stability over time. 

The coupling of the mAbs to the solid phase, either by passive adsorption to plates 
(ELISA) or by chemical coupling to beads (xMAP technology) is a crucial step in the process 
of immunoassay development. For the covalent coupling of mAbs in the xMAP technology, 
carboxylated polystyrene beads from different microsphere region numbers are chemically 
coupled with the mAbs. The coupling procedure is optimized for each mAb individually by a 
‘design of experiments approach’ (Figure 7). A number of variables are included in the test 
protocol: the concentration of coupling reagents (e.g., 1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide (EDC), sulphosuccinimidyl-2-(biotinamido)ethyl-1,3-dithiopropionate (Sulpho-
NHS)) and mAbs; the instrumentation conditions (shaking protocol, centrifugation), and the 
process boundary conditions (time and temperature). In-process control of mAb-coupling 
homogeneity is obtained by the determination of (a) the amount of mAb coupled to the 
microspheres (“non-functional” test format), (b) the coefficient of variation (CV) for counting 
of 100 beads from the same region, and (c) the signal-to-noise ratio for a specific analyte 
concentration (“functional test” format). In general, selection of the best coupling protocol 
takes into account the combined results for analytical sensitivity, signals in biological 
samples, coupling variability, and test precision (Figure 7).  
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Figure 7. mAb coupling optimization. ‘Design of experiments’ was used to optimize the coupling with 
respect to signal intensity and signal variability. The numbering on the x-axis and y-axis refers to 
concentration settings around the midpoint (settings “0”). Areas in red (left) or green (right) represent 
the most optimal conditions for the output variables. Results for two of the variables in the process are 
depicted. 

 
3.2. Selection and Production of the Key Raw Materials  

 
In most cases, well-characterized raw materials for novel biomarker assays have to be 

generated in adequate amounts in order to support assay development, qualification, 
validation, and their subsequent use. Ideally, materials are already available in an early phase 
of the project.  
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After identification of the target biomarker, internal and external qualification of the 
suppliers for the “critical raw materials” (synthetic peptides, antibodies, detection conjugates) 
or “non-critical raw materials” (filter plates, immunoplates) is done using predefined quality 
control procedures. Product qualification requires documentation of lot-to-lot variability, in-
process control, and availability of long-term/freeze-thaw stability data. The latter aspect can 
result in the loss of immunoreactivity for the key assay reagents, while a number of other 
confounding factors (e.g., impurities, post-translation modifications, aggregation state, buffer 
additives) may also contribute to the performance of the total assay.  

 
 

4. ANALYTICAL QUALIFICATION OF AN ASSAY DEVELOPED 

ON THE XMAPTECHNOLOGY 
 

4.1. Assay Concept Considerations 
 

4.1.1. Test Principle 
The research immunoassay (INNO-BIA AlzBio3) was developed by Innogenetics using 

xMAP technology to quantify three different analytes in CSF: Aß1-42, total tau (T-tau), and P-
tau181P (Olsson et al. 2005; Vanderstichele et al. 2005). The assay, henceforth referred to as 
the xMAP assay, was developed using mAbs that were purified from hybridoma cell lines, 
cultured under serum-free conditions. The different analytes are captured selectively on beads 
of specific region number by a first mAb (AT270 for P-tau(181P), AT120 for tau, 4D7A3 for 
Aß1-42).  

The mAb-coated beads are added in a volume of 100 µL to the filter plates. CSF samples 
or calibrators are added to the filter plate, together with a mix of biotinylated mabs (HT7, 
3D6). Each biotinylated detector antibody detects one or several analytes (e.g., 3D6 for Aß1-

42, HT7 for detection of P-tau181P and T-tau). The antigen-antibody complex is then detected 
by a PE-labeled streptavidin (SV) conjugate. After a wash step, the solution is immediately 
measured in the Luminex Total System. The fluorescence intensity on a specific bead is 
related to the concentration of the analyte (antigen) for which it was designed. An overview 
of the most important differences between the single-analyte ELISA and multi-analyte xMAP 
assays are shown in Table 1. 

 
4.1.2. Sample Volume Requirements 

Sample volume size becomes especially important when sample volume(s) are 
particularly limited. In animal studies, pediatrics, and critically ill patients, target sample 
volume requirements often preclude the analysis of less well-characterized analytes. While 
more informative, the measurement of multiple proteins during clinical drug trials is 
laborious, time-consuming, costly, and places much more demand on the collection volumes. 
The sample volume required in the xMAP assay was optimized with respect to the intended 
use of the kit and its required analytical sensitivity. The multi-analyte approach reduces the 
volume of CSF needed to quantify the three biomarkers in parallel (75 µL for xMAP as 
compared to 125 µL for an equivalent ELISA test). Duplicate testing is advised for both 
technologies. 
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4.1.3. Incubation Times 
Using the presently available key raw materials and applied procedures, it was not 

possible to develop a xMAP assay for the selected analytes using a short sample incubation 
time. For each analyte, optimal performance was obtained using an overnight incubation step, 
notwithstanding the fact that the affinities of the mAbs used in the assay were high 
(Vanderstichele et al. 2000) (Results for Aß1-42 quantification are shown in Figure 8). 
 
4.1.4. The Calibrators 

Synthetic peptides were used to develop calibration curves for P-tau181P and Aß1-42, while 
a recombinant protein was used to quantify T-tau. More details on the selected calibrators 
have been described in detail elsewhere (Blennow et al. 1995; Vandermeeren et al. 1993; 
Vanderstichele et al. 2000; Vanderstichele et al. 2006; Vanmechelen et al. 2000).  
 
Table 1. Comparison of methodological differences in ELISA (INNOTEST®) and xMAP 

(INNO-BIA) assays for quantification in CSF of total tau, P-tau181P and Aß1-42 
 

 
(Aβ=β-amyloid; ON = overnight; RT = room temperature, defined as 18-30°C; SV = streptavidin). 

 
The xMAP assay is a “relative” quantitative immunoassay, since there are no 

internationally accepted “gold” references. Results are expressed in continuous numeric units 
of the relative standard. For relative quantitative assays, it is appropriate to place greater 
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emphasis on temporal changes in biomarker concentrations rather than on absolute 
concentrations. The structure and/or sequence of the tau calibrators are not fully comparable 
with the endogenous biomarker. Consequently, one might expect differences under certain 
experimental conditions with respect to the analytical performance, especially taking into 
account that the immunoreactivity of the native protein in a biological matrix can be different 
from the immunoreactivity of calibrators in buffer solution.  
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Figure 8. Incubation time requirements to develop an assay for Aß1-42 using xMAP technology. Aß1-42 
was incubated for various times using beads coupled with 21F12 and biotinylated 3D6-mAb. An 
acceptable analytical sensitivity was only obtained after an overnight (ON) incubation step. (h =hours 
of incubation). 

4.1.5. mAbs 
The mAb pairs were selected based on their intended use, their application range, and 

their compatibility with the technology. Each analyte in the assay was quantified using a 
combination of two different mAbs. Three mAbs [AT120 (IgG1), AT270 (IgG1), HT7 
(IgG1)] were included in the kit to develop a combined T-tau/P-tau assay, while two mAbs 
[4D7A3 (IgG1), 3D6 (IgG2b)] allow quantification of Aß1-42. The format of the ELISA and 
the xMAP assays for each analyte are not fully comparable (see also Table 1).  

For the tau assays, it was shown that the analytical sensitivity of the assay, verified using 
recombinant tau, is largely dependent on the mAb combination used (Figure 9). Two bead 
regions (region 2, region 69) were coupled individually with a phospho-specific mAb 
(AT270, epitope: P176PAPKTP182; numbering related to the longest tau isoforms 
(Vanmechelen et al. 2000)) or phosphorylation-independent mAb (AT120; epitope: 
P218PTREPK224), while the biotinylated detector antibody (HT7) was able to bind all forms of 
human tau (epitope: P159PGQK163). This resulted in combined quantification of levels of T-
tau and P-tau181P. In the case of P-tau181P, an assay format with HT7 as capturing mAb, 
instead of AT270, would have resulted in a better analytical sensitivity and an identical assay 
concept to that of the ELISA assay. It is also not uncommon in immunoassay development 
that the switch of the same antibody pair as capture and detector mAb can result in different 
absolute values in biological samples, an effect which cannot be compensated for by the 
calibrator curves.  
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Figure 9. Selection of mAbs to develop the T-tau immunoassay using xMAP technology. Different 
combinations of mAbs were used to develop a tau assay. The epitopes of each mAb are shown in the 
insert in the figure. A sandwich immunoassay was developed in which mAbs were used after coupling 
to microspheres or after biotinylation. Recombinant tau was used to generate the calibration curves. 
(MFI = median fluorescence intensity). 

For Aß quantification, mAb 4D7A3 was included, which binds to Aß at the carboxy-
terminus. Since each mAb generated against the same protein can have different properties, a 
comparison was performed on the different platforms (ELISA, xMAP) between the 
immunoreactivity of 21F12 (used in the ELISA assay) and 4D7A3 (used in the xMAP assay) 
using a set of 40 CSF samples. In both cases, biotinylated 3D6 was used as detector antibody. 
A good correlation was obtained for the comparison of 4D7A3-21F12 using xMAP 
technology (r2 = 0.937; slope: 1.122 ± 0.047) or ELISA (r2 = 0.897; slope: 0.983 ± 0.054). 
Method comparison approaches (Olsson et al. 2005) revealed no major differences in 
function of the technology platform between results obtained with 21F12 or 4D7A3, 
indicating that the behavior of the mAbs was identical using the different technologies.  

mAbs HT7 and 3D6 are human-specific. No immunoreactivity was observed with mouse 
or rat Aß (data not shown). 

 
 

4.2. Assay Characteristics 
 

4.2.1. Dynamic Range 
Assays on the xMAP platform were developed for a broad dynamic range of analyte 

concentrations. Figure 10 shows calibrator curves generated in function of the assay format 
and technology. The full measurement range for each analyte included in the xMAP assay 
extended over 3 to 4 logs, compared with 1 to 2 logs for equivalent ELISAs.  

The dynamic range for the final assay format will largely depend on the intended use of 
the product (the selection of a very broad calibrator concentration range, even outside the 
clinical range, can affect the reproducibility in a specific concentration range). 
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Concentrations are only reported for values within the concentration ranges of the calibrator 
series. For the xMAP assay, as well as for the single-analyte ELISAs, the concentration range 
for each analyte covers the concentration range distribution for healthy subjects and AD 
patients (Figure 11). The concentration range for T-tau, phosphorylated tau, and Aß1-42 in a 
set of CSF samples (n=200, obtained from autopsy-confirmed dementia subjects and healthy 
controls) are shown in Figure 11.  
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Figure 10. Analytical assay ranges for total tau, P-tau181P, and Aß1-42 using ELISA and xMAP 
technology. Closed symbol = xMAP (MFI); Open symbol = ELISA (OD). (bg= background value; 
MFI = median fluorescence intensity; OD = optical density). 

Using CSF as the target sample, there is no direct need to broaden the applied 
concentration range for the selected analytes in the currently available assay format, unless 
CSF becomes an indicator to determine efficiency of Aß-lowering drugs or if new treatments 
would result in increased levels of some of the analytes.  

 
4.2.2. Analytical Sensitivity  

In order to define the analytical sensitivity of the xMAP assay, 8 replicates of a 
multiplexed, ready-to-use solution of calibrator peptides were added to the filter plates, 
containing mAb-coupled microspheres from one production run. For each calibrator and 
analyte, the average median fluorescence intensity (MFI) values, standard deviation (SD), 
and % coefficient of variation (CV) were calculated. Concentrations in individual wells were 
recalculated using all replicates of the calibrator curve concentrations. Blank samples (bl), 
composed of sample diluent, were used to calculate the limit of detection (LOD; Meanbl + 3 
SDbl) and the lower limit of quantitation (LLOQ; Meanbl + 10 SDbl). Results for LOD and 
LLOQ are shown in Figure 12. 
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Figure 11. Concentration range in CSF for total tau, P-tau181P, and Aß1-42, as quantified using ELISA 
and xMAP technologies. The same samples were used to quantify each analyte using the different assay 
formats. Samples were tested on each platform at the same time. More details on the sample population 
are described in Engelborghs et al. (2008). The concentration ranges for the healthy controls and 
Alzheimer patients (AD) are shown as p(ercentile)25-p75 values. P5 values are shown using dashed 
lines.  
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Figure 12. Analytical sensitivity of the xMAP assay. Limit of Detection (LOD) and Lower Limit of 
Quantitation (LLOQ) were determined using four different production runs. Open symbols = LOD; 
Closed symbols = LLOQ.  
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4.2.3. Assay Precision  
Immunoassays are inherently less precise than chromatographic procedures. The current 

guidance recommendations (Guidance for Industry 2001) for the design of validation 
experiments to assess precision are not entirely appropriate for immunoassays. Due to their 
greater inter-assay imprecision, more evaluation of performance characteristics might be 
required (as compared to chromatographic methods) in order to obtain the same level of 
confidence for the output variables. An extensive evaluation in an early phase of the variation 
due to day, plate, operator, boundary conditions, and up-scaling approaches will subsequently 
affect the development strategies for the product.  

The precision of the test depends, in part, on the calibration series: number of calibrators, 
concentrations of calibrators, dilution series of calibrators, and availability of ready-to-use 
solutions. As an example, the impact on the dilution protocol for the calibrators and its 
impact on the assay variability were verified (Figure 13). Four different calibrator series were 
prepared. The output variable (% variation) was generated using a four-parametric logistic 
curve-fitting program. Results clearly showed that for each analyte, each curve type 
generated a specific precision profile. The choice on the most optimal curve model was 
related to concentration ranges expected to be present in the biological samples.  
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Figure 13. Effect of the analyte distribution concentration range over the range of measurement on 
assay precision. Four different series of calibration curves were generated. The curve fit parameters 
were calculated for each type using a four-parametric curve-fitting algorithm. The curve-fit parameters 
were used to estimate the variation (%CV) in function of the concentration. (MFI = median 
fluorescence intensity). 

Improved assay performance with respect to precision was obtained by providing a 
ready-to-use calibrator mixture, instead of a calibrator series having to be prepared for each 
experiment. This was verified using a set of run-validation samples (reference in buffer 
solution) in five independent experiments (Figure 14A). The use of a ready-to-use mixture of 
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calibrators resulted in a reduction of the %CV for each analyte and/or concentration when 
compared with assays performed with single-analyte curves, prepared from concentrated 
stock solutions. 

For the xMAP assay, precision profiling analysis was done in a set consisting of four 
independent experiments, each including replicates (n=8) of a calibrator curve. For each data 
point, the concentration was calculated based on the average calibration curve of the plate. 
Resulting concentrations of each analyte were used to calculate the total variability (intra-run 
precision plus inter-experiment precision) as a function of concentration. Precision profiles, 
based on results for one test run on four different bead productions, revealed a %CV lower 
than 10% in the CSF range for each analyte (Figure 14B). 
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Figure 14. Analytical precision of the xMAP assay. A. Intra-run precision, as quantified using four 
different production runs of microspheres. B. Precision as determined using six ready-to-use calibrator 
series for each analyte, as compared to a calibrators series, prepared for each individual experiment. 
Values (I) and (II), shown after each analyte (on the x-axis) represent the results obtained using the 
newly prepared series or ready-to-use calibrators, respectively. (Note: only four samples were analyzed 
for Aß1-42). 

The intra-assay precision for testing CSF samples, even at low analyte concentrations, 
was high. A comparison was done for the intra-assay variability for a number of CSF 
samples, using the single-analyte ELISA formats and for the same analyte and samples using 
the xMAP technology. The median (interquartile range) intra-assay variability (%CV) was 
lower for the xMAP assay than for the corresponding ELISAs: 2.6% (1.2% - 5.1%, n = 513) 
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compared with 3.5% (1.6% - 6.9%) for Aß1– 42 (Wilcoxon matched-pairs test, P < 0.0001), 
3.1% (1.4% - 5.8%, n = 462) compared with 4.3% (1.9% - 8.8) for T-tau (P<0.0001), and 
2.1% (1.0% - 4.3%, n = 509) compared with 2.3% (0.9% - 4.5%) for P-tau181P (P>0.05). 

 
4.2.4. Analytical Specificity  

The specificity of the CSF immunoassays needs to be high, since they are used to 
measure the analytes of interest without a prior sample extraction procedure. As already 
mentioned, the specificity and selectivity of the product is dependent on the characteristics of 
the selected mAbs. Different technology platforms and test concepts were applied during the 
development phase for the characterization of the mAbs (Figure 15 shows results using the 
xMAP technology). The consistency of mAb specificity was determined on cell culture 
medium obtained from the mAb producing hybridoma cell lines, on purified mAbs, or after 
coupling of the mAbs to the solid phase. An identical test procedure was applied throughout 
development in order to verify the in-process control methods for mAb identification, lot 
consistency, immunostability, or impurity evaluations. Besides SELDI-TOF, the specificity 
of mAb-coupled beads was further evaluated by (i) incubation of the solid phase with 
biotinylated synthetic peptides followed by detection with SV-PE. The detailed protocol for 
epitope mapping is described in Olsson et al. (2005).or (ii) by performing a sandwich assay 
with synthetic peptides covering the epitopes of both capturing and detector mAb (Figure 
16). 
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Figure 15. Analytical specificity of the xMAP assay. The mAb specificity for mAb 3D6 was 
determined using beads coupled with different synthetic Aß peptides. Aß-coupled beads were incubated 
with the biotinylated 3D6 mAb. Afterwards, the amount of bound mAbs was quantified using 
incubation with SV-PE. Peptide Aß1-16 is coupled with its amino-terminus at the coated beads, 
resulting in the absence of immunoreactivity for 3D6. 

The results show no obvious cross-reactivity between mAbs and peptides not containing 
the epitope of the analyte of interest. The specificity of AT270 for P-tau181P was confirmed by 
epitope mapping using synthetic peptides phosphorylated at Thr181, Thr175, and Thr181, or 
non-phosphorylated. The mAb 4D7A3 is C-terminal specific, recognizing peptides with the 
Aß42 sequence, and showing no reactivity with Aß40. The 4D7A3-3D6 mAb combination 
preferentially detected the full-length Aß1-42. Limited or no reactivity towards peptides 
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modified at the amino terminus was detected. AT120 recognized peptides containing the 
amino acid sequence PPTREPK.  

 
4.2.5. Analytical selectivity 

Assay analytical selectivity was determined (i) using samples containing only one of the 
three analytes and (ii) by replacement of beads and/or detector mAbs with a non-analyte-
binding mAb  

 
• Tests performed with a sample containing only one of the three calibrators showed 

no immunoreactivity towards the other calibrators.  
• No differences in CSF concentrations for each analyte were obtained when assays 

were performed with a mixture of biotinylated mAbs or only one of the two 
biotinylated detector mAbs (3D6, HT7), currently included in the assay format 
(Figure 16A).  

• No immunoreactivity was measured in a number of CSF samples when the 3D6/HT7 
mAb combination was replaced with a non-relevant biotinylated mAb (Figure 16B).  

• The replacement of mAb-coupled beads with control mAbs resulted in background 
values for CSF samples.  
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Figure 16. Analytical selectivity of the xMAP assay. A. Experiments were performed using biotinylated 
detector mAbs, containing HT7 or 3D6 (S), or a combination of HT7 and 3D6 (M). The effects of the 
different conjugates on analyte concentrations in CSF were determined. B. The concentration of the 
analytes in three CSF samples was determined using an assay format in which the biotinylated mAbs 
were replaced with a control mAb not recognizing tau,or Aß, or buffer. (Note: bio-Mabs = biotinylated 
mAbs).  

In the current multi-analyte assay format, interference caused by the presence of auto-
antibodies against Aß or tau cannot be ruled out. The presence of Aß auto-antibodies in 
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samples from healthy individuals or diseased persons has been documented (Henkel et al. 
2007). More investigation is required to determine whether it is necessary to verify their 
presence within each sample and their impact on the outcome of the tests. 

 
4.2.6. Analytical Accuracy 

The accuracy for detection of the AD biomarkers is difficult to investigate since no 
reference material (gold standard) is currently available. Proteins from different sources can 
vary in their immunoreactivity due to the production and/or purification processes. In 
addition, the reference material may not be truly representative of the native protein due to 
differences in post-translational modifications (e.g., phosphorylation, dimerization, 
glycosylation, deamidation, isomerization). To our knowledge, no standard has been 
deposited with any organization, such as the World Health Organization (WHO) or United 
States Pharmacopoeia (USP), thus hampering the comparison between commercially 
available assays. 

For Aß, data have been published indicating the possibility of defining absolute levels of 
Aß proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The 
accuracy and precision of the LC-MS assay means that it will be a useful complement to 
existing ELISA assays for monitoring therapeutic interventions designed to modulate CSF 
Aß1-42 concentrations in individual AD patients. Moreover, the introduction of stable isotope-
labeled internal standards offers the potential to achieve a more rigorous account of the 
influence of methodological effects related to sample collection and processing (Oe et al. 
2006). 
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Figure 17. Analytical linearity of the xMAP assay. Different sets of CSF samples, containing high and 
low concentrations of each analyte, were combined in different ratios. The concentrations in the 
unmixed samples were used to determine the predicted concentrations. Results for predicted, versus 
calculated concentrations for each analyte are shown. Values 1-4 represent the results of four different 
experiments. 
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4.2.7. Analytical Linearity  
In order to verify analytical linearity, several pairs of CSF samples, containing low and 

high concentrations of the analytes, were combined in different proportions (1/0, 0.75/0.25, 
0.5/0.5, 0.25/0.75, 0/1). A strong association was obtained between predicted (based on 
original quantification in single samples) and observed concentrations for each analyte when 
CSF samples with high and low concentrations of the parameters were combined (Figure 17). 
These data showed that, when CSF is used as matrix, it might be possible to detect small 
changes in concentrations of the analytes. Different results might be obtained if a non-CSF 
matrix is used to dilute the CSF. Defining an artificial medium that mimics the composition 
of CSF would be very complex. 

 
 

4.3. Sample Collection Requirements 
 

4.3.1. Sample Collection 
Several CSF collection methods and storage protocols were evaluated for their effect on 

the CSF values of each analyte. For each experimental condition, all samples were analyzed 
in one assay run.  

 
4.3.1.1. Collection Tubes 

It has already been documented that, in contrast to T-tau or P-tau181P, Aß peptides have 
the intrinsic propensity to bind non-specifically to non-polypropylene collection tubes, 
resulting in lower measured concentrations of Aß1-42. The degree of interference is probably 
related to time, temperature, sample, or recipient type. The use of tubes composed of glass or 
polystyrene results in lower Aß1-42 values (Andreasen et al. 1999; Lewczuk et al. 2006). The 
effect on T-tau or P-tau181P is much more limited. A standardized approach using 
polypropylene vials and/or tubing during collection will be a requirement for further 
integration of CSF testing into clinical routine. 

 
4.3.1.2. Sample Processing 

The effect of centrifugation on CSF samples was evaluated as follows: CSF lumbar 
puncture samples (n=15) were collected, immediately frozen at –80°C, or centrifuged and 
subsequently stored at –80°C. A Wilcoxon - matched pairs test on analyte concentrations was 
used to compare both methods. Centrifugation did not result in any significant change in the 
concentrations of T-tau, P-tau181P, or Aß1-42 (p>0.05) (Figure 18A).  
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Figure 18. Effect of CSF sample processing on analyte concentrations. A. Effect of centrifugation. B. 
Effect of the number of freeze-thaw cycles. C. Short-term stability. D. Long-term stability. More details 
on the experimental protocol are described in section 4.3. 

4.3.2. Sample Storage  
In principle, the stability of an analyte in a particular matrix and container system is only 

relevant to that matrix and container system. Stability procedures were evaluated for sample 
collection and handling, after long-term (frozen at the intended storage temperature) and 
short-term (bench top, room temperature) storage, and after undergoing freeze/thaw cycles. 
The conditions used in the stability experiments reflect situations likely to be encountered 
during actual sample handling and analysis. The procedures also included an evaluation of 
analyte stability in stock solutions. 

 
4.3.2.1. Influence of Freezing  

CSF samples (n=8), stored at –80°C, were thawed and refrozen several times. Once 
completely thawed, each CSF sample was stored at –80°C for at least one night. The effect of 
the additional freezing of the CSF was evaluated by repeated measures ANOVA. Additional 
freeze/thaw cycles resulted in decreased Aß1-42 concentrations [Median % decrease as 
compared to one freeze/thaw cycle (p25, p75) amounted to 15.1 (21.2-6.1) (p<0.01)], while 
there was no evidence for a statistical effect of the freezing process for T-tau and P-tau181P 
(Figure 18B). 

 
4.3.2.2. Short-term Temperature Stability  

CSF samples (n=10) were aliquoted, frozen, and then stored for 24 or 72 h at 4°C or 
25°C. Differences between the four groups were analyzed by repeated measures ANOVA. 
Storage of frozen samples for a period of up to 72 h at 25°C did not significantly affect in this 
experiment the concentration of any analyte (P>0.05, Figure 18C).  
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4.3.2.3. Long-term Stability 
During the development and follow-up of results obtained using ELISA single-analyte 

assays for T-tau or P-Tau181P, long-term stability data for CSF samples were obtained. It was 
found that T-tau concentrations were stable after storage at –20°C for at least two years, and 
P-tau181P levels remained the same for at least four years. Long-term stability data for Aß1-42 
are not yet available (Figure 18D). In addition, it has been shown (Zetterberg et al. 2007) that 
stable values are quantified after a period of two years for T-Tau, P-tau181P, and Aß1-42, 
indicating again stability for longer time periods when CSF samples are stored under the 
correct conditions. 

 
 

5. CLINICAL QUALIFICATION OF THE XMAP ASSAY USING 

AUTOPSY-CONFIRMED SAMPLES FROM DEMENTED PATIENTS 
 

5.1. Study Population 
 
A retrospective case-control study was set up consisting of healthy persons and subjects 

with a clinically determined dementia. All dementia patients were diagnosed according to 
strictly applied clinical diagnostic criteria. The inclusion criteria for the control group were: 
(1) no neurological or psychiatric antecedents and (2) no organic disease involving the 
central nervous system following extensive clinical examination. For demented patients, a 
post-mortem dementia diagnosis was established. CSF, obtained by lumbar puncture at the 
L3/L4 or L4/L5 interspace during clinical work-up of the patient, was collected from all 
patients. The study was approved by the local ethics committee. More details are described in 
Engelborghs et al. (2008), including the reference papers for diagnosis of the different 
dementia types. 

A total of 100 CSF samples from demented patients with autopsy-confirmed pathological 
diagnoses were included. The majority of these patients had an AD diagnosis (n=65) or an 
AD pathology combined with another type of dementia (n=8). Twenty-seven patients had 
another type of dementia, mostly dementia with Lewy bodies (DLB) (n=8) or vascular 
dementia (VAD) (n=12). The patients were grouped for analysis (Table 2). 

The control group (n=100) consisted of patients showing no signs of dementia at the time 
of CSF sampling. Subjects in this group were, on average, more than 25 years younger than 
patients from the AD or NON-AD dementia groups, thus decreasing the likelihood that the 
control group comprised early (preclinical) AD or NON-AD dementia patients. Nevertheless, 
the use of younger controls might not be fully representative for the diagnostic setting of 
interest. 

The three groups (Control, AD, NON-AD) included similar numbers of females and 
males (Table 3) and there was no evidence for differences in sex ratio between the groups. 
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Table 2. Categorization of observed autopsy-based diagnoses 
 

100Non-Dementia100

12VAD

1SCA

2PDD

2FTD

8DLB

1CJD(Heidenhain variant) 

NON-AD        271CJD

1MXD-DLB

5MXD

1AD,DLBvariant

1AD, DLB
73AD65AD

NDiseaseN
Autopsy-based diagnosis

 
(AD = Alzheimer’s disease; CJD = Creutzfeldt-Jakob disease; DLB = dementia with Lewy bodies; FTD 
= frontotemporal lobe dementia; MXD = mixed dementia; PDD = Parkinson’s disease with dementia; 
SCA = spinocerebellar ataxia; VAD = vascular dementia). 

 
Table 3. Number and percentage (in parentheses) of females and males per disease 

category 
 

52 (52)48 (48.0)C
17 (63.0)10 (37.0)NON-AD

36 (49.9)37 (50.1)AD
MALEFEMALE

GENDER

52 (52)48 (48.0)C
17 (63.0)10 (37.0)NON-AD

36 (49.9)37 (50.1)AD
MALEFEMALE

GENDER

 
Data are presented as number of subjects (Percentage) 

 
 

5.2. CSF Analysis 
 
CSF analysis was performed at Innogenetics (Gent, Belgium) following re-labelling of 

the CSF vials. The laboratory technician was blinded for the expected test outcome in terms 
of clinical and definitive pathological diagnoses when performing and interpreting the tests. 
CSF levels of Aß(1-42), T-tau, and P-tau181P were determined with the multi-analyte xMAP 
assay, in parallel with the single-analyte ELISA kits. Each assay was done according to the 
test instructions provided in the kit inserts. CSF samples of two subjects were suspected to 
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have been (accidentally) swapped during re-labeling and were excluded from the analysis. 
One sample contained serum instead of CSF. After quantification, at least one biomarker 
concentration was out of range for 14 subjects. These data were excluded from the analysis.  
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Figure 19. Comparison of quantification in CSF of total tau, P-tau181P, and Aß1-42 using ELISA and 
xMAP technology. More details on the procedure used to compare results are described in Olsson et al. 
2005. The patient population for the study is described in Engelborghs et al. (2008). (AD = Alzheimer’s 
disease; C = healthy controls; NON-AD = non-Alzheimer’s Disease). 

The concentrations for each analyte obtained with the xMAP assay correlated quite well 
with those obtained with the single ELISA tests (Spearman correlation coefficients (r) of 
0.83, 0.84, and 0.91 for T-tau, Aß1-42, and P-tau181P, respectively). This is in line with 
previously published findings (Lewczuk et al. 2008; Reijn et al 2007).  

Notwithstanding the good correlation, concentrations in CSF samples differed in absolute 
values between the two assay formats (Figure 19). This could be related to differences in the 
mAb combinations, assay format, assay test conditions (time, temperature), and to the fact 
that the calibrator series, provided in the assay, was not provided in a “CSF-like” matrix. 
Given the analytical differences for the concentrations measured, it is of key importance to 
investigate the clinical relevance of the xMAP measurements. 

 
 

5.3. Effect of Patient Covariates on Biomarkers 
 
In this study population, there was no evidence for differences between females and 

males in the concentration of any of the biomarkers analyzed (Figure 20). The correlation of 
each biomarker in function of age and diagnostic group was evaluated using Spearman’s 
correlation on log-transformed values. For all three biomarkers, the concentration depended 
on age at CSF sampling, either when all data were used or if only controls were implemented 
(Figure 21). P-tau181P and T-tau concentrations increased, whereas Aβ1-42 concentrations 
decreased with age. 
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Figure 20. Biomarker concentration in function of diagnostic group and gender. (AD = Alzheimer’s 
disease; C = healthy controls; F=female; M=male; NON-AD = non-Alzheimer’s disease). 
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Figure 21. Biomarker concentrations in function of age and diagnostic groups. The relation of each 
biomarker to age was not dependent on the disease category: the change in biomarker concentration per 
year of age was similar in AD, NON-AD, and healthy controls. (AD = Alzheimer’s disease; C = 
healthy controls; NON-AD = non-Alzheimer’s disease). 
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5.4. Biomarker Concentrations between Disease Groups 
 
The median concentrations of T-tau, Aß1-42, and P-tau181P were compared among the 

diagnostic groups (results from female and male subjects grouped) using a non-parametric 
Kruskal-Wallis ANOVA. Post hoc testing was performed with Dunn’s multiple comparison 
test. For T-tau, CSF concentrations were significantly higher in NON-AD and AD as 
compared to CONTROL (P<0.001). No significant differences were observed for T-tau 
between NON-AD and AD (P>0.05). For P-tau181P, levels were significantly higher in AD as 
compared to CONTROL (P<0.001) or NON-AD (P<0.001), while no differences were 
observed between the CONTROL and NON-AD group (P>0.05). Aß1-42 concentrations were 
significantly lower in NON-AD (P<0.01) and AD (P<0.001) as compared to CONTROL. The 
concentrations of Aβ1-42 were lower in AD as compared to NON-AD (P<0.05) (Figure 20). 

 
 

5.5. Diagnostic Biomarker Model Building 
 
Biomarker concentrations were tested to see if they could be used to predict the disease 

category to which a subject belonged. Logistic regression models were built to test which of 
the relevant predictor variables (e.g., biomarker concentrations) were significantly associated 
with disease. Logistic regression analysis can determine whether an increase in a predictor 
variable increases or decreases the probability of belonging to the disease category. Starting 
from a full model containing all predictors of interest, a final model is selected by 
subsequently eliminating non-significant predictor variables (backward elimination). In these 
analyses, biomarker concentrations are log-transformed to homogenize their variance over 
the range of nominal biomarker concentrations and to reduce the impact of extreme values on 
model fit. In addition, this has the advantage that results are compatible with models 
published in literature using ratios of biomarker concentrations, based on the facts (1) that a 
sum (difference) of log-transformed terms (in the logistic regression model) is equivalent to 
the log transform of the product (ratio) of the terms, and (2) that the logarithm is a monotonic 
transformation that does not affect classification in the common simple cut-off based 
approach. 

In such analyses, an important decision concerns the inclusion of age as a covariate, 
particularly when there is evidence for an effect of age on biomarker levels. One plausible 
interpretation of the age effect is that it reflects disease progression which can be preclinical 
in the control group. If this holds, the inclusion of age in the model would underestimate the 
biomarker effects. Alternatively the age effect might be unrelated to the disease. If age is not 
included in this scenario, the difference in age between the diagnostic groups could lead to a 
spurious relationship between biomarker and diagnostic group. Here, we opted not to include 
age in the model, meaning that a future validation of these findings in independent 
populations is essential to establish the value of the derived models.  
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Table 4. Logistic regression models selected after backward elimination of non-
significant predictor variables 

 

 
(AD = Alzheimer’s disease; Ln = natural log; NON-AD = non-Alzheimer’s disease; SE = standard 
error). 

 
Modelling results for different comparisons between diagnostic groups are shown in 

Table 4. Using the multi-analyte assay to determine the concentration of the three biomarkers 
in CSF, an optimal discrimination between control and demented patients could be obtained 
using an algorithm obtained with Aβ1-42 and T-tau, while for differential diagnosis between 
AD and NON-AD, best separation was obtained with a combination of P-tau181P and Aβ1-42. 
The performance of these models is quantified in terms of the area under the curve (AUC) in 
receiver operating characteristic (ROC) analysis. Independent of the clinical classification 
and platform, the logistic regression model using a combination of biomarkers showed better 
diagnostic performance than single-analyte analysis (Table 5).  

 
Table 5. Comparison of classification performance based on combined biomarker 

information versus classification using single biomarker information 

 
Classification is expressed in area under the curve with 95% confidence intervals.  
Upper table Healthy controls: n=98; Dementia: n=84. Lower table AD: n=64; NON-AD: n=20. 
(AD = Alzheimer’s disease; AUC = area under the curve; Ln = natural log; NON-AD  
= non-Alzheimer’s disease). 
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No significant differences in the AUC were observed for each individual biomarker when 
results of ELISA or multi-analyte assays were compared for different paradigms (e.g., AD 
versus NON-AD, healthy controls versus dementia) (Table 6). 

 
Table 6. Comparison of individual biomarker classification performance in terms of 

area under the curve between test results obtained with xMAP and ELISA 

 

 
Classification is expressed in area under the curve with 95% confidence intervals.  
Upper table Healthy control: n=98; Dementia: n=84. 
Lower table AD: n=64; NON-AD: n=20. 
(AD = Alzheimer’s disease, NON-AD = non-Alzheimer’s disease). 

 
Healthy controls (n=96) versus dementia (n=66)
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Figure 22. Comparison of model building using ELISA and xMAP technology in function of the 
clinical classification. Classification is expressed in area under the curve with 95% confidence intervals. 
The numbers of subjects in each group are shown at the top of each figure. (AD = Alzheimer’s disease; 
C = healthy controls; NON-AD = non-Alzheimer’s disease). 
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No differences in AUC were observed between regression models based on the platform, 
independent of the clinical classification (Figure 22). 

Notwithstanding the differences in measured concentrations for each analyte, the results 
clearly show that a comparable clinical performance can be obtained when T-tau, Aβ1-42, and 
P-tau181P are analyzed in CSF using a multiplexed format or single-analyte tests.  
 

 
6. INTEGRATION OF THE INNO-BIA ALZBIO3 IN THE  

US-ADNI PROGRAM 
 
The increase in the number of clinical trials studying potential disease-modifying 

therapies for AD is one of several driving forces behind the growing interest in AD 
biomarker development (Blennow et al. 2006; Shaw et al. 2007). Moreover, the focus of this 
interest is not only limited to patients with familial or sporadic AD, but extends also to those 
individuals at increased risk for AD such as subjects with mild cognitive impairment (MCI), 
or prodromal AD. Therefore, one might use AD biomarkers not only to establish a diagnosis 
of AD, but also to predict the onset of AD years before it becomes clinically manifest. Thus, 
it appears that amnestic MCI defines a group of individuals with cognitive impairment, but 
not overt dementia, who are at increased risk for developing AD. Subjects shown to meet 
criteria for amnestic MCI go on to show evidence of clinical AD at a rate of ~10-15% per 
year such that within 5 years, ~45% of individuals with MCI convert to AD. Indeed, there is 
growing evidence that the neurodegenerative pathways culminating in AD may be activated 
years before dementia becomes overt, additionally pointing to the importance of AD 
biomarkers. For example, such biomarkers could be used to identify individuals at greatest 
risk for developing AD or to establish the diagnosis of AD, as well as for epidemiological 
screening, predictive testing, monitoring progression and response to treatment, enriching 
clinical trials for specific subsets of patients or at-risk individuals, and for studies of brain-
behavior relationship (Shaw et al. 2007). Indeed, as initially proposed by the Working Group 
on Biological Markers of Alzheimer’s Disease (Consensus report, 1998), ideal AD 
biomarkers should be: 1) Linked to fundamental features of AD neuropathology; 2) Validated 
in neuropathologically confirmed AD cases; 3) Able to detect AD early in its course and 
distinguish it from other dementias; 4) Reliable, non-invasive, simple to perform, and 
inexpensive. However, all AD biomarkers require evaluation of their sensitivity, specificity, 
prior probability, positive predictive value, and negative predictive value (for definitions, see 
Table 7).  

Briefly, a sensitivity of 100% indicates that a diagnostic test identifies all patients with 
AD, while a test with 100% specificity identifies all individuals free of AD. For a biomarker 
to be useful in the diagnosis of AD, it should have a sensitivity and specificity of >85%. Prior 
probability is defined as the background prevalence of the disease in the population tested, 
and the positive predictive value of an AD biomarker refers to the percentage of people who 
are positive for the biomarker and have definite AD at autopsy. A positive predictive value of 
100% indicates that all patients with a positive test have the disease. For a biomarker to be 
useful clinically it should have a positive predictive value of >80%. Finally, negative 
predictive value is the percentage of people with a negative test who are not demented and 
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are cognitively normal. A negative predictive value of 100% indicates that the test 
completely rules out the possibility that the individual has the disease when the test is 
performed.  

 
Table 7. Diagnostic performance of laboratory tests for AD 

 

______True negative tests_____________True negative tests_______
True negative + false negative testsTrue negative + false negative tests

Percentage of people with a negative test who Percentage of people with a negative test who 
are not demented   are not demented   •• Negative predictive valueNegative predictive value

______True positive tests_____________True positive tests_______
True positive + false positive testsTrue positive + false positive tests

Proportion of patients with a positive test who Proportion of patients with a positive test who 
are correctly diagnosed as AD are correctly diagnosed as AD •• Positive predictive valuePositive predictive value

True positive + false negative testsTrue positive + false negative tests
Entire populationEntire population

Frequency of AD in a particular group of Frequency of AD in a particular group of 
patientspatients•• Prior probabilityPrior probability

_True negative tests____True negative tests___
Total patients without ADTotal patients without AD

Proportion of patients without AD who are Proportion of patients without AD who are 
correctly identified by the laboratory testcorrectly identified by the laboratory test•• SpecificitySpecificity

__True positive tests_____True positive tests___
Total patients with ADTotal patients with AD

Proportion of patients with AD who are Proportion of patients with AD who are 
correctly identified by the laboratory testcorrectly identified by the laboratory test•• SensitivitySensitivity

 
 

To address these and other compelling needs required for the timely development of AD 
biomarkers for diagnosis, clinical trials, and other uses, the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) was launched by the National Institutes of Health (NIH) in 
October, 2004 by a public/private consortium of stakeholders to define and validate 
informative neuroimaging and chemical biomarkers of AD and to identify the transition from 
MCI to early AD (Shaw et al. 2007). Briefly, the goals of ADNI are to: (1) Develop 
standardized neuroimaging and (bio-) chemical biomarker methods for AD clinical trials; (2) 
Determine optimum methods for acquiring and processing brain images; (3) Validate AD 
neuroimaging and (bio-)chemical biomarker findings by correlating them with 
neuropsychological and behavioral test data from the ADNI cohorts; (4) Provide a database 
for all ADNI findings that will be available to qualified scientific investigators for further 
data mining (Mueller et al. 2005). 

Thus, beginning in 2004, ADNI began enrolling a total of 200 cognitively normal elderly 
controls, 200 AD patients, and 400 subjects with MCI (for a 3-year observational study at 
~60 clinical sites throughout the United States and Canada). All subjects undergo periodic 
neuroimaging studies, blood and urine samples are collected from all subjects, while CSF is 
obtained from ~50% of individuals at baseline and one year thereafter, so that longitudinal 
studies of chemical AD biomarkers can be conducted over a 1- to 3-year observation period. 
Data from periodic clinical evaluations are correlated with neuroimaging and chemical 
biomarker findings as well as with neuropsychological and behavioral data. To accelerate 
achieving these goals, all data collected from ADNI subjects are publicly accessible.  

The ADNI Biomarker Core was established at the University of Pennsylvania and it is 
led by Drs. Leslie M. Shaw and John Q. Trojanowski. This Biomarker Core developed all of 
the standard operating procedures for sample collection and shipping, and the Core continues 



Alzheimer’s Disease Biomarkers: From Concept to Clinical Utility 117

to bank all biological samples (blood, urine, CSF) from all participating sites, and conducts 
studies of selected AD biomarkers including ApoE genotype, isoprostanes, tau (total tau, 
phosphorylated tau), Aβ, and homocysteine. While these analytes were selected for study in 
the Penn Biomarker Core based on a consensus of AD biomarker experts (Frank et al. 2003), 
this Core also will make banked ADNI biosamples available for studies of additional 
biomarkers by other investigators according to procedures outlined on the ADNI Web site 
(http://www.adni-info.org/index.php). Prior to the conduct of biomarker studies of CSF, the 
study methodologies are validated by ADNI. 

One such study was designed to evaluate the analytical performance of a quantitative 
multi-analyte immunoassay across 7 centers in the United States and Europe using the xMAP 
platform and INNO-BIA AlzBio3 reagents. The reproducibility of the results for the 
following sample specimens were incorporated into the study design: 1) calibration 
specimens, 2) quality control samples, 3) pools of CSF from routine clinical investigations. 
Notably, this is the platform and reagents that the ADNI Biomarker Core planned to use for 
these measurements in ADNI CSF samples, and it therefore was expected that this 
multicenter study would provide a study-based definition of the analytical criteria governing 
the analyses performed in the ADNI Biomarker Core. Based on experience with other method 
transfer studies, it was also deemed essential to conduct a qualification exercise that included 
full documentation of important platform and assay details as the first stage. Completion of 
this qualification exercise was a requirement for participation in the formal analyses of the 
CSF pools. Further, beyond the transferability of a multiplexed quantitative immunoassay 
among experienced laboratories, there were other important questions to be addressed 
including comparison of this platform and immunoassay method with expert laboratory 
ELISAs currently in use for measuring CSF tau and Aβ.  

The qualifying exercise was completed successfully by all 7 sites and this was rapidly 
followed by the implementation of the full validation study. While the data from these studies 
are currently being analyzed and prepared for publication, the results were promising enough 
to launch formal studies of ADNI CSF samples using the same xMAP platform and INNO-
BIA AlzBio3 reagents by early 2008.  

Thus, even at this early stage in the ADNI Biomarker Core studies, we are sufficiently 
encouraged by these initial studies to believe that the unique public/private commitment to 
implement ADNI will culminate in important public health benefits as a result of efforts to 
validate informative AD biomarkers and to translate these laboratory studies into widely 
accessible biomarker assays so they can be used to accelerate the pace of AD drug discovery.  
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ABSTRACT 
 

The diagnostic criteria for Alzheimer’s disease are currently under revision. The 
proposed new diagnostic criteria include cerebrospinal fluid (CSF) protein biomarkers as 
a core supportive diagnostic feature. This chapter reviews the role of the CSF analysis in 
dementia diagnosis. Firstly, the CSF composition, its physiological barriers, anatomical 
constraints and sampling are discussed. Secondly, there is an overview on biomarkers in 
general, followed by a detailed review of selected CSF biomarkers (tau, amyloid beta, 
neurofilaments, neuron–specific enolase). The chapter concludes by recapitulating the 
relevance of these new CSF protein biomarkers to the laboratory–supported differential 
diagnosis of dementia, the improvement of prognostic accuracy, the provision of a 
surrogate for cognitive decline and their value as a secondary outcome measure for future 
treatment trials. 
 
 

1. INTRODUCTION 
 
The early diagnosis of Alzheimer’s disease (AD) is important as new treatments are 

increasingly becoming available. These disease–modifying treatment strategies intervene in a 
neurobiological cascade ultimately leading to amyloid deposition, hyperphosphorylated tau 
and neurodegeneration. Thus early intervention, ideally in the prodromal phase of AD is 
likely to be most effective [1]. In a recently proposed revision of the diagnostic criteria the 
cerebrospinal fluid (CSF) analysis has moved from being an exclusion criterion for other 
forms of dementia to being one of the core supportive diagnostic features [2]. This is because 
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the development of the CSF analysis over the past thirty years focused on protein biomarkers 
which can help detecting early and subclinical forms of neurodegeneration [3,4]. 

Thus the reason for performing a CSF analysis in dementia is two–fold: firstly, to 
exclude any other non–dementing disease and secondly, to aid with the differential diagnosis 
within the spectrum of neurodegenerative dementias. In addition there are three more areas 
where the CSF analysis in dementia may help in the future: 

1. improving prognostic accuracy. This is of relevance for predicting which of those 
patients with minimal cognitive impairment will eventually develop AD [2] 

2. as a source for surrogate markers for cognitive deficit 
3. as a secondary outcome measure in treatment trials 
In order to discuss these points this chapter is structured in three parts. Firstly, the scene 

is set by reviewing the very basics of the CSF composition, the blood brain barrier, the 
anatomical constraints of the CSF spaces and the performance of the lumbar puncture. 

In the second part biomarkers are introduced. The core biomarkers for the CSF analysis 
in dementia are discussed in detail. For more in–depth discussion the interested reader is 
directed to the chapter on CSF markers in mild cognitive deficit by Venturelli et al; as well as 
the important methodological and analytical aspects of biomarker research discussed by 
Vanderstichele et al. 

 
 

2. CEREBROSPINAL FLUID 
 
The normal cerebrospinal fluid (CSF) is clear and colorless and 70% the CSF water 

content originates from the choroid plexus [5,6]. Water1 is filtered through the choroid plexus 
at a filtration rate of up to ≈ 40 mL per hour during night [7]. About 30% of the CSF water is 
derived from the meninges and the blood–nerve barrier at level of the nerve roots and 
importantly also from the ECF of the brain parenchyma. The CSF flow rate varies from the 
ventricles to the lumbar sac. The CSF flow rate is an important variable which modifies the 
CSF composition by influencing the diffusion rate of proteins from the plasma into the CSF 
[8]. Plasma proteins diffuse through the blood–nerve barrier along the length of the spinal 
cord. Therefore the lumbar CSF has the highest concentration plasma derived proteins. 

 
 

2.1. CSF Proteins 
 
The CSF consists of 99% of water and has a much lower protein concentration (≈ 350 

g/L) than the serum (70,000 g/L). About 80% of the CSF proteins originate from the plasma. 
CSF protein biomarkers account for the approximately 20% of CSF proteins which 

originate from the brain parenchyma. In most cases of cerebral pathology the proportion of 
CSF protein biomarkers originating from the brain parenchyma will far outweigh any similar 
proteins transferred from the blood. For very small proteins, however, the percentage transfer 
across the blood brain barrier is high and correction for blood levels may be necessary [9]. 

                                                        
1  Strictly speaking the CSF represents and ultrafiltrate rather then water. 
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Similarly a defective blood brain barrier allows serum proteins to leak into the CSF. In order 
to understand this relationship the blood brain barrier will be briefly discussed. 
2.2. Blood Brain Barrier 

 
The human blood brain barrier (BBB) is a filter which prevents unselective diffusion of 

substances into the brain parenchyma (Figure 1A). Because small changes in the 
protein/lipid/ion content or pH of the extracellular fluid (ECF) instantly interferes with 
neuronal function it is important to maintain brain homoestasis. Protection of the brain 
homoestasis is a crucial role of the BBB and helps in securing the reliable function of 
millions of neurons in the human brain. Strictly speaking one should distinguish the BBB 
from the blood–CSF barrier (BCB) which is a sieve (Figure 1A) that permits small substances 
to diffuse from the blood into the CSF [10]. 

 

             A                                                      B                                       C  

Figure 1. (A) A simplified diagram of the tight blood–brain barrier (BBB) which separates the blood 
from the extracellular fluid (ECF) of the brain parenchyma. The very tight cell membrane prevents 
proteins from the cytosol diffusing into the ECF. The less tight blood–CSF barrier (BCB) allows 
substances to diffuse from the blood into the CSF. (B) Breakdown of the blood–CSF barrier results in 
leakage of albumin from the blood into the CSF. (C) Cellular death following brain damage leads to 
disintegration of the cellular membrane. Biomarkers leak from the cytoplasm into the adjacent ECF. 
From the ECF these biomarkers then equilibrate with the CSF. (Figure adapted with permission from 
reference [11]). 

The gold standard for assessment of the BBB/BCB function is the measurement of 
albumin in the CSF and serum [12]. Albumin is produced by the liver and therefore all 
albumin measured in the CSF has diffused from the blood through the meninges into the CSF 
[13]. If the BBB/BCB is intact it will only allow a small amount of albumin into the CSF 
(normal range ≈ 144–336 mg/L). The normal CSF to serum albumin quotient is smaller than 
0.0074 [12]. If the BCB barrier breaks down, serum albumin leaks into the CSF (Figure 1B), 
the CSF albumin rises and the CSF to serum albumin quotient increases. 

In neurodegenerative dementias neuronal death results in disintegration of the cellular 
membrane of neurons (see video on the compact disc provided in the cover of this book). 
Subsequently protein biomarkers leak from the cytoplasm into the extracellular fluid (ECF, 
Figure 1C) from where they equilibrate with the CSF. 
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2.3. CSF Spaces 
 
The main CSF spaces are the lateral ventricles, the 3rd ventricle, the 4th ventricle and the 

lumbar sac. A schematic overview is shown in Figure 2. The lateral ventricles are connected 
through the Foramen Monro to the 3rd ventricle. The 3rd ventricle is surrounded by the 
thalamus, hypothalamus, the anterior and posterior commissure, the corpora mamillaria, the 
tuber cincereum the crux cerebri, the fornix and the corpus callosum. The 3rd ventricle is 
connected to the 4th ventricle by the aqueduct (Sylvii) which passes the tectum (synonymous 
lamina quadrigenia and lamina tecti colliculi superiores (craniales, rostrales). The 4th 
ventricle is the last of the inner CSF spaces and connected through 3 foramina (lateral 
through the foramina Luschkae and median through the foramen Magendii) with the outer 
CSF spaces. The CSF flows in the subarachnoid space, which is located between the 
arachnoid and pia. 

 

 

Figure 2. Schematic view of the CSF spaces (blue) and their main flow direction (red arrows) in relation 
to the brain (yellow) (A) shows the coronal plane and (B) the saggital plane; (c) a 3D MRI 
reconstruction overlaying the coronal view, showing the lateral ventricles in red and the fine mesh of 
the CSF through the brain parenchyma in blue (the 3D reconstruction is by courtesy of Nick Fox and 
Richard Boyes).  

The majority of the CSF flows from the choroid plexi2 through the lateral, 3rd and 4th 
ventricles down into the lumbar sac from where it can be sampled by a lumbar puncture as 
described below. Importantly, not all the CSF reaches the lumbar sac. This may be important 
for CSF analysis in dementia because most of the CSF passing the gyri of the hemispheres 
where degenerating neurons are located is absorbed by the arachnoid villi. In contrast the 
lumbar CSF reflects proteins released by the following brain structures:  

                                                        
2  The choroid plexi are located posterior in the lateral ventricles, the 3rd and 4th ventricles. 
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• the brain hemispheres approximately up to a depth of 30 mm from the ventricles  
• the basal ganglia  
• the subpontine region of the brain  
• the cerebellum  
• parts of the basilar brain  
Because pathology in these structures causes change in the lumbar CSF composition, an 

umbrella term was suggested: “CSF analytical brain” [10]. 
The CSF can be sampled from the lumbar CSF space by a lumbar puncture, from the 

suboccipital cisterne by an occipital tap or directly from the ventricles (typically through an 
extraventricular drain inserted for management reasons such as a hydrocephalus). 

 
 

2.4. Lumbar Puncture 
 
The first lumbar punctures (LP) were performed by Quincke [14]. Essex–Wynter was the 

first to publish the LP technique in the Lancet [15]. First the patient is positioned either 
sitting or lateral recumbent (fetal position)3. The lateral recumbent position is required for 
CSF pressure measurements. The patient has his back flexed as far as possible. Pulling with 
both arms around the flexed knees can help to achieve this. The head is flexed with the 
patient trying to put his chin to the chest. It is important that the spine is aligned horizontally. 
This is best achieved if the shoulders and hips are exactly aligned in a right angle to the floor. 
Repositioning until an optimal posture is achieved is worth the effort! The LP from the sitting 
position requires the patient to bend the neck and back. Again, folding the arms around the 
knees and pulling may be of help. Sometimes the patient can be further guided by putting a 
hand over the lumbar vertebrae and encouraging him to push his back against the pressure of 
the hand. He will also know what to expect when the needle is inserted and (hopefully) not 
withdraw. 

Next, the best space for insertion of the needle is determined. I do this by running my 
thumb with slight pressure down over the lumbar spinous processes. This gives an idea of the 
width of the spinous interspaces where the needle will be inserted. The L4/5 and L3/L4 
interspace can readily be located4 and the height can be marked with a pen on the patient’s 
skin5. These spaces are above the termination of the spinal cord at L1/L2 in the majority of 
cases [16]. 

The area will then be prepared using routine aseptic techniques. If one forgot to mark the 
site with a pen it is easy to palpate the spinous processes again with the gloves on and leave 
an imprint over the L4 or L5 spinous process using the fingernail through the glove. Some 
prefer to first anesthetize the area where the LP needle will be inserted using standard 
techniques. Whether or not one uses local anesthetic is very much patient-dependent. My 
experience is that the needle size for local anesthesia is larger than the LP needle and 

                                                        
3  Most right handed physicians prefer the left lateral recumbent position. 
4  If it is difficult to feel the spinal processes, e.g. in an adipose patient than a horizontal line between the posterior 

fossae iliacae helps approximately identifying the L5/L5 level. I do this by placing the tip of my index finger on 
the top of the ilium and reaching with the thumb to the midline. 

5  if it is not with water resistant ink then this is best done outside the area which will be cleaned for the procedure. 
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insertion sometimes more painful. Additionally the injection of local anesthetic initially 
stretches the skin where all the cutaneous pain receptors are located which again is painful 
until the anesthetic takes effect. And then there are of course the rare but potentially serious 
side effects of local anesthetics from wound infection to allergic reactions. If it looks like an 
easy procedure and the patient has no objections I will use the recommended atraumatic 22 
gauge Sprotte needle (this is a pencil–point needle) [17] straight away without local 
anesthesia. Being a right handed person I now place my left thumb firmly over the superior 
aspect of the L5 spinous process with the back of the thumb so that it is in continuation with 
the angle of the spinous process (dependent on the patient in the range of about 30°-60°). 

With the right hand I than take the Sprotte needle and place it exactly in midline over the 
skin, leaning against my left thumb. Because one generally looks from above to the insertion 
point there is a risk of diverging from the strict horizontal (saggital) plane, I therefore lower 
my head so that my eyes are at the same height as the needle. The needle is then quickly 
pushed through the stretched skin6 and firmly guided by the angle formed with the thumb 
towards the lumbar CSF space. Usually the needle advances quite smoothly7 until it reaches 
the tough structure of the ligamentum flavum8 and dura mater. This requires careful and slow 
stronger pushing forward and will shortly be followed by a “give” where the needle advances 
almost without resistance. 

Stop here; you are now in the subarachnoid space. Advance very slowly and remove the 
stylet approximately every 2 mm until the CSF flows freely through the now hollow needle. 
If the CSF only dribbles, the Sprotte needle may be advanced a bit further or the patient could 
be asked to give a cough or increase his abdominal pressure without otherwise moving. The 
CSF flow is usually good using a 22 gauge or larger needle and very slow if a smaller needle9 
is used. If required the opening pressure should be measured now. The normal range of the 
CSF opening pressure in the lateral recumbent position is 100-180 mm H2O which equals 8-
14 mm Hg. A H2O pressure greater than 200 mm is pathological. 

The CSF samples are collected into three consecutive polypropylene tubes. The last tube 
should used for analysis of protein biomarkers. They should be spun down at 2000 g, for 10 
minutes at room temperature. The CSF should then be aliquotted into several 1-2 mL 
polypropylene tubes and stored within 1–2 hours at -80°C until further analysis at a later time 
or to be sent to laboratories specialised in the analysis of dementia biomarkers. 

The main complications are:  
 
• Headache is the most frequent complication. Headache occurs in 32–36.5% of LPs 

[18,19]. The risk factors are young age, young slim or pregnant women, the use of a 

                                                        
6  In patients with very thick or hard skin which is difficult to pierce with the atraumatic Sprotte needle I tend to 

use a larger caliber needle used for venepuncture for piercing the skin and then advance the Sprotte needle 
through the other needle. 

7  The anatomical structures past by the needle are: the skin, subcutaneous tissue, supraspinous ligament, 
interspinous ligament, ligamentum flavum, epidural space where the internal vetrebral venous plexus that so 
often gives rise to a traumatic tap is located, the dura mater and finally the subarachnoid space. If the needle hits 
the periosteum of the bone, this hurts the patient and this cannot be prevented by local anesthetic. Move the 
needle back and change the angle at which you re-advance. 

8  The ligamentum flavum is a strong yellow elastic ligament which can be up to 1 cm thick in the lumbar region. 
9  For needles <22G it may take >6 minutes to collect 2 mL of CSF. 
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traumatic or large caliber needle, forgetting to reinsert the stylet before drawing the 
needle back and repeated attempts to perform the procedure. If the needle size is 
between 16 and 19 G the headache frequency is up to 70%, decreasing to 12% for a 
needle size between 20-22 G [19]. The typically bilateral headaches start between 1–
7 days following the LP and last between one day to two weeks. A common 
characteristic of the headaches is that they worsen within 15 minutes in the upright 
position and improve within 30 minutes after laying down. Recovery usually occurs 
on itself over a few days if the patients lie down. Only very rarely will an epidural 
blood patch be needed for treatment and surgical closure is the last resort [19]. A 
immediate onset headache is most unusual and a warning sign because it may be 
caused by an increase of the intracranial pressure. 

• A traumatic tap is a frequent and mostly unavoidable event. The first documented 
traumatic tap occurred on the 23rd of July 1891 whilst performing the fourth 
consecutive lumbar puncture (LP) in a 7 year old girl with hydrocephalus [14]. A 
traumatic tap is a minor complication, possibly by puncture of the venous plexus 
within the spinal sac or vessels adjacent to the cauda equina [20]. A traumatic tap 
can be expected in about 14–20% of all standard LPs [20-23]. There is no consensus 
about the precise definition of a traumatic tap. Most laboratories accept a cut–off 
around 400 x 106 erythrocytes/L [20,23]. If this limit is lowered to 100 cells (per μL, 
or x 106/L) in the sample then about 72% of all LPs would be classified as traumatic 
[21]. Following a traumatic tap the CSF sample is contaminated with erythrocytes. 

• No CSF or a dry tap is most frequently due to wrong placement of the needle, e.g. 
close on to bony structures. Only very rarely is there no CSF in the region either 
because of a previous injury, surgery or arachnoiditis. No CSF, but another fluid can 
be collected if there was a cyst in the lumbar region which had been accidentally 
punctured. Imaging of the lumbar spine will be informative. 

• Any herniation of any brain structure is a rare but serious complication with an 
associated high mortality. A LP is contraindicated in patients with clinical signs for 
pre–existing tentorial herniation. If in doubt brain imaging should be arranged prior 
to performing the LP. 

• An intraspinal epidermoid tumor is a rare complication following the accidental 
implantation of skin tissue into the subarachnoid space [24]. The risk is negligible if 
the needle is used with the stylet being inserted whilst advancing. 

• A retroperitoneal abscess is exceedingly rare if a proper aseptic technique is used 
and leakage of infected CSF into the retroperitoneal space is avoided. 

• Extension of a syrinx is to the best of my knowledge a possible but not reported 
compilation. I know of one case where presumably the pressure gradient between a 
large syrinx in the lumbar region and the subarachnoid space caused extension of the 
syrinx during the LP. The patient lost his ability to walk. 
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2.5. Occipital Tap 
 
This procedure is not recommended anymore and only performed under exceptional 

circumstances. Similar to the lumbar puncture the occipital tap is contra–indicated if there is 
a risk for coning (in these situations an extraventricular drain is required). 

Firstly the hair in the neck is shaved and the area cleaned. The procedure is strictly 
sterile. The patient can either lie down or sit, which makes the procedure easier to perform. 
An assistant holds the patients head in flexion. The needle is inserted in midline above the 1st 
spinous process. The needle is then directed towards the glabella. Some recommend directing 
the needle slightly higher towards the occipital bone which can easily be palpated. After 
touching the bone (which is painful) the needle is minimally retracted and the angle lowered 
by about 15° and again advanced. There is a small degree of resistance as the ligamentum 
nuchae is passed, but in contrast to the lumbar puncture this is less and much smoother. The 
depth at which this occurs varies greatly between patients and averages about 5 cm. 
Frequently it is necessary to aspirate the CSF. Figure 3 illustrated the location of the 
cerebellomedular cisterne in relation to the skull and cervical vertebrae. 

 

 

Figure 3. The position of the needle during the occipital tap is shown in this radiograph from 1960. The 
needle is locate in the cerebellomedullary cisterne which was filled with a contrast agent (highlighted in 
red). Modified from Figure 87 in reference [25].  

Complications after an occipital tap are considerably more serious than after LP, but 
headaches are rare.  

 
• Bleeding following puncture of the inferior cerebellar artery, of which there are 

many anatomical variants, is associated with a high mortality due to tamponade of 
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the cisterne. This is different from a venous puncture of the epidural plexus which is 
the same as a traumatic lumbar tap.  

• The medulla oblongata should not be reached under normal conditions. In patients 
with Arnold–Chiari malformation there is an increased risk of puncturing the 
medulla oblongata.  

• The posterior columns can be irritated either by a pressure wave through the CSF or 
by direct contact with the needle. The patient feels this similar to an electric shock. 
The needle should be retracted. If the needle is moved accidentally sideways there is 
a risk of performing a tractomy.  

• Headaches have been reported to be less frequent than after lumbar punctures. This 
is one reason why at the beginning of the 20th century the occipital tap was favored 
by some and even used as an outpatient procedure with the patient being allowed to 
return home straight after the tap.  

 
 

3. BIOMARKER OVERVIEW 
 
Loss of cortical neurons is a key pathological feature of the degenerative dementias. 

Following neuronal death and axonal degeneration, proteins present in the neuro–axonal 
compartment will be released into the interstitial fluid and diffuse into the cerebrospinal fluid 
(CSF). At present the most promising CSF biomarker thought to be related to axonal 
degeneration in dementia is tau protein. 

Clinicians like using surrogates because they are easier, earlier to obtain, cheaper and 
more ethical to obtain than clinical endpoints. A biomarker can be a surrogate. A CSF protein 
biomarker can be a surrogate for brain damage. Principally it is assumed that there is a 
clinical-biomarker relationship where the biomarker reflects on the disease process. 
Biomarkers should be superior (sensitivity/specificity) to clinical endpoints in monitoring the 
disease process to become attractive to the clinician. 

 
 

3.1. Substitution Game 
 
Historically, probably Sigmund Freud was among the first to discuss surrogate symptoms 

on a medical background in 1910 [26]. The first time the term “surrogate” was used to 
indicate that a biomarker was used to substitute for a clinical endpoint was in 1983 [27]. 
Three years later Bigger discussed the merit of using the ECG as a biomarker for sudden 
death [28]. Again three years later publication of the CAST trial challenged the use of the 
ECG as a surrogate. In this particular treatment trial, the use of the anti-arrhythmic drugs 
encainide and flecainide in combination with the ECG as a surrogate for ventricular 
arrythmia lead to an increased patient mortality (relative risk 2.5) [29]. CAST is one 
important example illustrating how the use of a surrogate endpoint can cause patient harm. A 
very recent example, again published in the New England Journal of Medicine, was the use 
of torcetrapib as a plasma lipid lowering drug in the ILLUMINATE trial. Despite successful 
treatment of the surrogate biomarkers (24.9% reduction of the “bad” low–density lipoprotein 
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cholesterol and 72.1% increase of the “good” high–density lipoprotein cholesterol) from 
baseline, there was an increased risk of cardiovascular events and death [30]. 

I mention the results of the CAST and ILLUMINATE trial at the beginning of this 
chapter because they show that the use of a surrogate outcome can cause a patient harm. They 
should remind us that we are in the words of Donald Mainland playing “a substitution game” 
[31]. All protein biomarkers discussed below are essentially surrogates in a substitution 
game. The hypotheses underlying this substitution game may well be wrong and on all levels 
patient safety should be our primary concern. 

In the choice of a biomarker there are also important analytical points that need careful 
consideration. These are discussed by Vanderstichele et al. in the chapter on “biomarker 
selection, qualification, and validation for use in early & differential diagnosis or therapy 
follow-up”. 

 
 

3.2. Biomarker Definitions 
 
Historically the term “biomarker” was probably first mentioned in a study investigating 

extraterrestrial samples in 1973 [32]. The first landmark paper in the field of 
neurodegenerative dementias is a consensus report of the working group on “molecular and 
biochemical markers of Alzheimer’s disease” [33]. This paper originated from a literature 
research which resulted in contacting investigators who then were invited to submit a 
position paper on the antemortem diagnosis of AD. The ideal biomarker for AD should be 
able to detect a fundamental feature of AD pathology, validated in neuropathologically 
confirmed AD cases, precise, reliable, non–invasive, simple to perform and inexpensive. 

Modifications to the original version continue to be made with oncology currently 
spearheading the attempt to obtain validated and reliable biomarkers [34]. In this chapter I 
have also included the definitions advised by a recent workshop on biomarkers at the 
National Institutes of Health (NIH) as well as one point on patient safety which I felt to be 
important: 

 
• Biomarker: “a characteristic that is objectively measured and evaluated as an 

indicator of normal biologic processes, pathogenic processes, or pharmacological 
responses to therapeutic intervention.” [35] Biomarkers may be sub–classified into:  
o Prognostic biomarkers: biomarkers which are associated with a clinical outcome, 

such as a time–to–event outcome [34].  
o Predictive biomarkers: biomarkers which can narrow the choices between 

treatment options [34].  
o Process biomarkers: biomarkers which allow monitoring of the dynamics and 

activity of pathological features.  
o Safety biomarkers: biomarkers which allow evaluation of the safety of 

treatments and give an early warning of unwanted side–effects.  
• Surrogate endpoint: “defines a biomarker that is intended to serve as a substitute of a 

clinically meaningful endpoint and is expected to predict the effect of a therapeutic 
intervention or the evolution of disease. [35]”  
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• Clinical endpoint: “defines a meaningful measure which captures how a patient feels, 
functions or survives. [35]” Clinical endpoints may be sub–classified into:  
o Intermediate endpoint: represents “a clinical endpoint that is not the ultimate 

outcome but is nonetheless of real clinical usefulness. [35] “ (e.g. the mini–
mental state examination, MMSE)  

o Ultimate clinical outcome: represents “a clinical endpoint reflective of 
accumulation of irreversible morbidity and survival. [35]”  

o Time–to–event outcome: The time until a predefined event occurs, e.g. the time 
to reaching a certain score on the Alzheimer’s Disease Assessment Scale-
cognitive scale.  

 
 

3.3. Hypothesis 
 
The biomarker hypothesis is that the cytoplasmatic content from injured cells leaks 

through the disintegrating membrane into the surrounding ECF. From the ECF these 
substances equilibrate with the CSF from where they can be easily sampled and measured. 
Some proteins are only expressed by certain cell types. The quantity in which these cell–
type–specific proteins are released is related to the amount of damaged cells. Thus the 
measurement of cell–type specific proteins indirectly allows us to estimate the degree of e.g. 
neuronal loss. For example tau and neurofilaments (Nf) are specifically expressed in neurons 
and their adjacent axons. Figure 4 illustrates how neurofilaments are released following 
injury to the neuron. Thus the measurement of CSF Nf levels provides a tool to estimate the 
amount of neuronal loss, a key pathological feature in neurodegenerative dementias. 

 

 

Figure 4. Axonal biomarkers such as tau or neurofilaments are released into the extracellular fluid 
(ECF) following neuronal death and axonal disintegration. From the ECF the biomarkers equilibrate 
with the cerebrospinal fluid (CSF). The degree of neuro–axonal degeneration is related to the amount of 
the biomarkers measured in the CSF.  

The video clip supplied with this book illustrates how the neuronal cytoplasmatic content 
is released as the lipid membrane disintegrates. All substances released into the surrounding 
fluid compartment are potentially biomarkers, but only those specific for the neuronal and 
axonal compartment can potentially be used as a cell–type specific biomarker allowing to 
indirectly estimating the amount of neuronal death and axonal damage. 
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4. PROTEIN BIOMARKER 
 

4.1. Tau 
 

The Protein 
Tau is a protein of the cytosol which is predominantly present in axons. Therefore tau is 

currently used as a biomarker for neuronal–axonal degeneration. The function of tau is to 
promote microtubule stability and tau is also involved in axonal transport. 

Tau was first isolated alongside the microtubule-associated proteins (MAP) with which it 
co-purifies. Tau is encoded on chromosome 17 and due to alternative splicing of the mRNA, 
six isoforms with a molecular weight of 48 to 68 kDa [36] exist in the human brain (Figure 
5). There are three 3-repeat and three 4-repeat isoforms. All six isoforms are expressed in the 
adult human brain, but only the 3–repeat isoform with no N-terminal inserts is expressed in 
the fetal brain. All tau isoforms can be phosphorylated at different sites. Tau 
hyperphosphorylation occurs in a number of conditions. Hyperphosphorylated tau is present 
in inclusion bodies. The inclusion bodies in AD are neurofibrillary tangles (NFTs), paired 
helical filament-tau (PHF-tau) and contain all six isoforms [37]. 

 

 

Figure 5. There are six brain tau isoforms which are generated by alternative splicing. The 3- or 4-
tandem repeat regions are marked by dark blue bars. The N-terminal inserts produced by the alternative 
splicing of exons 2 and 3 are shown in yellow (exon 2) and green (exon 3). The area marked in light 
blue is the region produced by alternative splicing of exon 10. The number of amino acids is shown. 
The arrows indicate the microtubule binding domains (MBD). Modified from reference [38].  

Phosphorylation of tau plays an important role in the pathophysiology of dementias and 
other neurodegenerative diseases (Table 1). The more extensively tau is phosphorylated the 
more likely it is to form aggregates. Phosphotau aggregates further promote self–assembly 
into filaments [39]. Tau filaments are likely to result from toxicity causing progressive 
neurodegeneration. Phosphorylation of the tau protein mainly occurs at the amino acids 
serine and threonine. In the longest CNS tau isoform (Figure 5) there are 79 phosphorylation 
sites. Some of these phosphorylation sites have attracted particular interest. For example the 
binding to microtubule is reduced after phosphorylation of Ser-262 (by ≈35%), Thr-231 
(≈25%) and Ser-235 (≈10%) [39]. Critical sites for converting “normal” to “toxic” tau are: 
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Ser-199/202/205, Thr-212, Thr231/Ser-235, Ser-262/356. Finally, self–assembly into 
filaments is promoted by phosphorylation of Thr-231, Ser-396, Ser-442 [39]. 

 
Table 1. Alzheimer’s disease is part of a large spectrum of diseases in which tau deposits 

are described (list extended from reference [38]) 
 

Alzheimer’s disease 
Amyotrophic lateral sclerosis/parkinson–dementia complex 
Autosomal dominant Parkinson’s disease 
Autosomal dominant parkinsonism 
Corticobasal degneration 
Dementia pugilistica 
Dementia with agyrophilic grains 
Down’s syndrome 
Familial British dementia 
Fronto–temporal dementia (sporadic and familial FTDP-17) 
Gerstmann–Sträussler–Scheinker syndrome with tangles 
Guadeloupean parkinsonism 
Guam parkinsonism dementia complex 
Hallervorden–Spatz disease 
Myotonic dystrophy 
Niemann–Pick disease type C 
Non–Guamanian motor neuron disease with neurofibrillary tangles 
Pallido–ponto–nigral degeneration 
Pick’s disease 
Postencephalitic parkinsonism 
Prion protein cerebral amyloid angiopathy 
Progressive subcortical gliosis 
Progressive supranuclear palsy 
Subacute sclerosing panencephalitis 
Tangle only dementia 

 
 

Clinical Studies 
At present the most promising CSF biomarker thought to be related to axonal 

degeneration in dementia is tau protein [3,40-44]. For quantification of total tau most 
laboratories now use the hTau ELISA from Innogenetics (Ghent, Belgium). 

A number of studies investigated sensitivity and specificity levels of CSF tau in the 
laboratory supported differential diagnosis of AD [45]. Typically CSF hTau is increased 
about 3–fold in AD compared to normal controls [45]. Sensitivity limits for the Innogenetics 
ELISA for hTau ranged from 30–100%. The measurement of tau phosphoforms may allow a 
further increase in the levels of specificity and sensitivity (Table 2). It is interesting that some 
of these phosphoforms are involved in promoting pathology (see above). There is emerging 
evidence that measuring CSF tau is of predictive value for identifying MCI patients at risk of 
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developing AD [46]. This exciting research will be discussed in more detail in the chapter by 
Venturelli et al. on “Predicting Alzheimer’s disease in mild cognitive impairment: the role of 
CSF markers”. 

A pooled sensitivity (36 studies) of 81% and specificity of 90% of distinguishing AD 
patients (n=2500) from controls (n=1400) has been estimated [45]. 

 
Table 2. Sensitivity and specificity levels of CSF tau phosphoforms in the laboratory 

supported differential diagnosis of AD. Because of its high specificity, the quantification 
of  CSF tau phosphorylated at Thr-231 is of particular interest [Adapted from [42]] 

 
Phosphoform Specificity Sensitivity  
Thr-181 Spec 80-

100% 
Sens 44-89%  

Ser-199 Spec 80-
82% 

Sens 85-94%  

Thr-231 Spec 91-
97% 

Sens 85-100%  

Thr-181 & Ser-
235 

Spec 97% Sens 88%  

Thr-231 & Ser-
235 

Spec 100% Sens 53%  

Ser-396 & Ser-
404 

Spec 91% Sens 94%  

 
4.2. Amyloid beta Peptides 

 
The Protein 

The observation that mutations of the amyloid precursor protein (APP) are one cause of 
familial AD was an important trigger for investigating ABP. 

The ≈ 700 amino acid large amyloid precursor protein (APP) is cleaved at the β and γ 
sites by secretases into amyloidβ sequences of 40/43 residues (ABP). The numbers behind the 
ABP refer to the cleavage site of the protein fragment (e.g. ABP 1-42 is cleaved at the 42nd 
amino acid residue). The amyloid beta peptide (ABP) is important in the pathogenesis of 
Alzheimer’s disease. ABP 1-42 has shown to aggregate more rapidly than ABP 1-40 and is 
the main AB peptide found in senile plaques [47]. Sequestration of ABP 1-42 into plaques is 
thought to be the reason for the decrease of CSF ABP 1-42 levels in AD. The central event in 
the amyloid cascade hypothesis is thought to be an imbalance between AB production 
(increased in familial cases) and clearance (decreased in sporadic cases) [4]. The formation of 
AB polymers may directly impair synaptic function. Aggregate formation then leads to the 
typical plaques which cause oxidative stress and local inflammation, further enhancing 
neurotransmitter deficits and cognitive symptoms. The jury is still out on the clinical 
relevance of the amyloid cascade hypothesis. 
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Clinical Studies 
The CSF levels of CSF-Aβ42 in AD are about half those in normal controls [45]. 

Typically the decrease of CSF ABP 1-42 levels is more marked than the accompanying 
decrease of CSF ABP 1-40 levels. Therefore decreased levels of CSF ABP 1-42 are 
particularly informative in the differential diagnosis of neurodegenerative dementias [4]. 
However, a decrease of CSF ABP 1-42 has also been observed in other neurodegenerative 
dementias such as Lewy body dementia (LBD) [48,49], vascular dementia [48] and CJD [50]. 
In longitudinal studies on patients with subarachnoid haemorrhage (SAH) and traumatic brain 
injury (TBI) a decrease of CSF ABP 1-40 and ABP 1-42 was also observed [51-53]. This 
raises interesting future research questions because of the histological observation by Nicoll 
et al. that there may be a link between ABP deposition in the brain of patients with head 
injury and presence of the APOE epsilon4 allele [54]. More information on APOE is given in 
the chapter by Mariani, Lovati and Fenoglio on “ApoE and genetic markers”. 

A pooled sensitivity (13 studies) of 76% and specificity of 90% of distinguishing AD 
patients (n=600) from controls (n=450) has been estimated [45]. 

 
 

4.3. 14-3-3 
 

The Protein 
Boston et al. first described the presence of 14-3-3 in the CSF [55]. Typically the 14-3-3γ 

isoform, a monomere of ≈ 30 kDa molecular weight, is measured from the CSF [56]. In total, 
there are seven human 14-3-3 isoforms (β, γ, ε, η, σ, τ, ζ) [57]. The five isoforms of the CNS 
are labeled α to η. The many roles of 14-3-3 proteins include the shaping of the cytoskeleton, 
regulation of the cell–cycle, intracellular trafficking and cell signaling [58-60]. The 14-3-3 
protein amounts to about 1% of the total soluble protein of the neuronal cytosol. 

 
Clinical Studies 

CSF 14-3-3γ is most frequently used as a biomarker in the differential diagnosis of 
sporadic Creuzfeld–Jakob disease [61,62] but, similarly to many of the other CSF protein 
biomarkers, 14-3-3γ is essentially released following cellular damage (Figure 4). CSF 14-3-
3γ has been reported in patients with GBS [63], Hashimoto’s encephalopathy [64,65], 
meningitis and encephalitis [66,67], stroke–like episodes [67] and transverse myelitis [68]. 

The analysis of CSF 14-3-3 has sensitivity between 90–97% and specificity between 87–
100% for the diagnosis of sporadic CJD (reviewed in [69]). In variant CJD the sensitivity is 
somewhat lower at about 50%.  

 
 

4.4. Neurofilaments 
 

The Protein 
Neurofilaments (Nf) are the key building blocks of the axonal cytoskeleton. The Nf 

protein is a heteropolymer composed of four subunits: a light (NfL), a medium (NfM), and a 
heavy (NfH) chain [70], and α–internexin [71-73]. Nf are almost exclusively expressed in 
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neurons and axons [74,75]. Following damage to the neuron and/or axon, the cytoplasmatic 
contents are released into the extracellular fluid (ECF) (Figure 4 and video). From the ECF 
Nf diffuse into other body fluid compartments including the cerebrospinal fluid (CSF) 
(Figure 1C). 

High–throughput analysis of Nfs is possible using enzyme–linked immune assays 
(ELISA). In-house ELISAs have been developed for NfL and NfH [74,76-78]. These assays 
are robust and have been cross–validated [79,80]. A commercial ELISA kit for quantification 
of the phosphorylated Nf heavy chain (pNfH) has recently become available (Millipore). 

Historically it is interesting to note that neurofilaments were originally thought to be a 
fundamental part of the paired helical filaments observed in AD [81,82]. The elegant studies 
by Michel Goedert and colleagues demonstrated that, in fact, tau was the core component 
[83]. It was not until Gerry Shaw developed a new anti–body directed against α–internexin of 
which Duda and colleagues made use [84] that neurofilaments re-entered the scenario [85] 
and a new proteinopathy [86] called neurofilament inclusion body disease (NIBD) [87] 
emerged. 

 
Clinical Studies 

We recently performed a systematic review and meta–analysis of the value of CSF NfL 
and NfH level for the differential diagnosis in AD based on 11 studies [88] (Table 3). Whilst 
CSF NfL and NfH levels were elevated in patients with AD and FTLD compared to control 
subjects the difference is probably too small to justify routine testing [88]. CSF NfL levels 
were slightly higher in patients with FTLD compared to AD [88,89]. Retrospective review of 
our cases with pathological CSF NfH levels (unpublished data) suggests the test may be 
helpful in selected cases with FTLD-MND, small vessel disease (SVD) and AD. CSF NfH 
levels were also found to be elevated in patients with diffuse Lewy body disease (DLB) [89]. 
It will also be interesting to see whether those FTLD patients with particular high CSF Nf 
levels will turn out on post–mortem examination to suffer from NIBD. It will interesting to 
see whether future quantification of the α–internexin protein can help in this situation. 

The degree of NfH phorphorylation has found to be highest in patients with FTLD. 
Further investigations on CSF NfH phosphoform levels in dementia are needed in order to 
examine whether the immunohistochemical findings in patients with AD of increased 
staining for phosphorylated NfH in intraneuronal tangles (NfHSMI310 ) [90,91], of pyramidal 
neurons with neurofibrillary tangles (NfHSMI35 ) [92], of dystrophic neurons (NfHSMI32 ) [93], 
and of neurons in the hippocampus [94] (NfHBF10 [95]) translates to relevant information for 
the CSF analysis in dementia. 

Whether or not high CSF NfH or NfL levels in dementia are of prognostic relevance is 
not yet known because outcome studies have not been performed. The importance of 
outcome studies for investigating the predictive value of CSF biomarkers in patients with a 
suspected diagnosis of minimal cognitive deficit is discussed in the chapter by Venturelli et 
al. 
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Table 3. CSF neurofilaments in the differential diagnosis of neurodegenerative diseases 
 

Disease Findings References 
AIDS 
dementia 
complex 

CSF NfL levels are elevated in patients with AIDS 
dementia complex and there is a suggestion that they 
decreased following treatment 

[96] 

AD CSF NfL and NfH levels are elevated in AD. The 
difference from controls was marginally for CSF NfH 
levels and more impressive for NfL levels, which also 
correlated with CSF tau levels. 

[76, 77, 97-
105] 

ALS CSF NfL and NfH levels are considerably increased in 
patients with ALS. Rapidly progressing ALS patients had 
the highest CSF NfH levels. 

[76, 106] 

CBD CSF NfL and NfH levels are elevated in patients with 
CBD. 

[107] 

FTLD CSF NfL is elevated and CSF NfH marginally elevated in 
patients with FLTD. The degree of NfH phosphorylation 
is increased in FTLD compared to AD and controls. 

[97, 98, 
101,103-105] 

DLB CSF NfH but not NfL levels are elevated in DLB 
compared to AD and controls. 

[89] 

MSA CSF NfL and NfH levels are markedly elevated in MSA 
compared to controls and patients with PD. This may be 
related to the greater degree and more rapid disease 
progression in MSA. The highest levels are found in 
patients with the cerebellar variant of MSA, which may 
be of help in the differential diagnosis of patients with 
cerebellar syndromes. 

[Bre2006\s\do5
(0)0, 108, 109] 

PD CSF NfH and NfL levels are increased in PD compared 
to controls. 

[107, 108] 

PSP CSF NfL and NfH levels are elevated in PSP compared 
to controls and patients with PD. As with MSA this may 
be related to the greater degree of axonal loss and more 
rapid disease progression in PSP patients, who are also 
very treatment resistant. 

[107, 108] 

AD = Alzheimer’s disease, ALS = amyotrophic lateral sclerosis, CBD = cortico–basal degeneration, 
DLB = Diffuse Lewy body disease, FTLD = fronto–temporal lobar degeneration, MSA = multiple 
system atrophy, PD = Parkinson’s disease, PSP = progressive supranuclear palsy. (Table modified from 
reference [73]). 

 
 

4.5. Neuron-specific Enolase 
 

The Protein 
Enolase is one of many glycolytic enzymes and consists of three subunits (α, β and γ) 

[110]. In the CNS the isoforms mainly localised within the neurons are αγ and γγ. The αγ and 
γγ isoforms are therefore called neuronspecific enolase (NSE) [111]. Generally, NSE levels 
are now mainly used as a tumor marker for lung cancer [112]. 
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Clinical Studies 
Most studies on CSF NSE levels were in patients with CJD [113]. Parnetti and 

colleagues found CSF NSE levels to be related to the degree of cognitive deficit, but the 
overlap between the control group and the AD patients (either early or late onset) was too 
large for CSF NSE levels to be useful as a routine test in the laboratory-supported differential 
diagnosis of AD [114]. Similarly Blennow and colleagues found CSF NSE levels to be rather 
a non–disease specific biomarker for neuronal degeneration in dementia disorders [115], as 
did Sulkava and colleagues [116]. 

 
4.6. Miscellaneous Biomarkers 

 
This chapter was focused on four established CSF protein biomarkers for neuronal death 

and axonal degeneration, tau, ABP 1-42, Nf, 14-3-3 and NSE. There are a number of other 
important CSF protein biomarkers for macro- and microglial pathology such as S100B, glial 
fibrillary acidic protein (GFAP), ferritin, clusterin, etc. New biomarkers are emerging with 
large–scale proteomic screening tools. Table 4 gives an overview of established and 
potentially interesting CSF biomarkers and their predominant cellular source. 

 
Table 4. The CSF analysis in patients with suspected dementia 

 
Disease Basic CSF analysis Extended CSF analysis 
AD Essentially normal High levels of hTau, pTau; low levels 

of ABP 1-42 
CJD High TP High levels of 14-3-3, NSE, hTau, 

pTau, S100B 
Demyelinating 
disease 

Normal  

FTLD Essentially normal moderately elevated levels of tau, 
NfL, NfH, increased phosphorylation 
of NfH and tau 

HIV dementia Mild elevation of TP PCR (p24), oligoclonal bands, 
impaired BBB, rise of IgA and IgM, 
high levels of NfL, tau, S100B, ABP 
1-42 and NSE. Need to search for 
opportunistic infections 

Hydrocephalus High CSF pressure10  
NIBD Normal Possibly high NF 
Paraneoplastic 
disease 

High total protein Oligoclonal bands, anti-neuronal 
antibodies11 

Spirochete 
disease 

High WCC, low glucose, high 
lactate 

Oligoclonal bands 

Vasculitis High TP +/- OCB 
Whipple’s Mildly elevated WCC, PAS 

positive macrophages 
PCR, rise of IgA 

                                                        
10 The existence of normal pressure hydrocephalus is debatable. 
11 Generally analysed from the serum. 
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4.7. Pitfalls 
 
There are numerous pre–analytical and analytical pitfalls which can influence CSF 

protein biomarker levels and thus compromise the interpretation of the result. Some important 
pitfalls are are:  

1. CSF sampling technique: (1) a traumatic tap leading to contamination of the CSF 
with blood artificially increases the amount blood derived substances (e.g. albumin); 
(2) the concentration of protein biomarker varies between different lumbar segments 
and between the first and last of 3 sequentially taken tubes [117]; (3) samples not 
collected in a polypropylene tube may lead to artificially low CSF protein biomarker 
levels caused by binding of negatively charged proteins to the positively charged 
surface of glass or polystyrene containers.  

2. CSF transport: long transport times, high ambient temperature and vigorous shaking 
of the sample all can cause lysis of cells and proteolytic degeneration of proteins thus 
seriously impairing cytology and levels of some CSF protein biomarkers.  

3. Sample handling and time to storage; ideally samples should be spun down and 
stored within 1 to 2 hours of receipt. Contamination of the CSF with substances 
released from lysed cells, proteolysis and in vivo post-translational modifications all 
impair CSF protein biomarker levels and proteomic analysis.  

4. Storage conditions: for CSF protein biomarker analysis samples should be stored at -
70°C to prevent enzymatic protein modification such as proteolysis, which is known 
to occur even at -20°C. Repeated freeze–thaw cycles can lead to protein-aggregate 
formation, proteolytic breakdown and post–translational modifications.  

5. The accuracy of the results depends on the intra–assay coefficient of variation (CV). 
The CV is a measure of the degree of variation in the results obtained by the same 
assay on the same sample at different time–points. The bench–mark is a CV of less 
than 10%. However, new assays do not always reach this target. It is worthwhile 
remembering that an assay with a CV of 20% cannot reliably be used to detect a 
group or sample difference of less than 20%.  

6. Another potential, but not yet studied error could be introduced by the presence of 
autoantibodies against the target biomarker (e.g. tau or neurofilament proteins). 
Theoretically the presence of autoantibodies, which have been reported, could impair 
the measurement of CSF biomarker levels by masking the binding–epitopes essential 
for the laboratory assay [75]. This could lead to artificially low protein biomarker 
levels in the presence of masking antibodies.  

 
 

5. CSF ANALYSIS IN DEMENTIA 
 
The four key roles the CSF analysis discussed in this section are:  
1. to aid with the differential diagnosis  
2. to improve the prognostic accuracy  
3. to provide a surrogate for cognitive deficit  
4. to provide a secondary outcome measure for treatment trials  
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5.1. Differential Diagnosis 
 
The differential diagnosis of dementia is broad (DSM-IV, ICD10) and the diagnostic 

criteria keep evolving in order to improve sensitivity and specificity [2,118,119,120]. 
Subcortical dementia with prominent changes to the CSF analytical brain (striatum and 

thalamus) is distinguished from cortical dementias with prominent changes in the cortical 
association areas12. The spectrum of primary degenerative dementia includes AD, Down’s 
syndrome, Pick’s disease, primary progressive dysphasia, frontal lobe degeneration and 
frontal lobe dementia, Lewy body dementia and a number of miscellaneous degenerative 
dementias including the tauopathies listed in Table 1. In particular the genetic, pathological 
and clinical spectrum of the fronto–temporal lobe dementias continues to widen. Dementia is 
also a recognised feature of other neurodegenerative diseases such as Parkinson’s disease, 
progressive supranuclear palsy, Huntington’s disease, thalamic dementia, Prion disease, 
amyotrophic lateral sclerosis, corticobasal degeneration, Lafora body disease, Hallervorden–
Spatz disease or cerebellar degeneration. The spectrum of vascular dementia includes multi–
infarct dementia and subcortical arteriosclerotic encephalopathy, as well as dementia with 
single brain lesions following a cerebrovascular accident (CVA). 

It is important to exclude any potentially treatable causes such as infections with HIV 
becoming increasingly important. Rarer examples are Whipple’s disease, chronic bacterial 
meningitis, Lyme disease, neurosyphilis and a number of viral encaphalitides (herpes 
simplex, subacute sclerosing panencephalitis (SSPE), progressive rubella panencephalitis, 
progressive multifocal leukoencephalopathy). Dementia is also a feature in patients with 
multiple sclerosis, brain tumor, paraneoplastic disease and metabolic disorders (deficit of 
vitamin B12 or nicotinic acid, hypothyroidism, chronic hypoglycemia, hypo- and 
hypercalcemia, Cushing’s syndrome, Addison’s disease, renal impairment leading to uremic 
encephalopathy and hepatic disturbances). Further, a number of inherited metabolic diseases 
are associated with cognitive problems (Wilson’s disease, metachromatic leukodystrophy, 
adrenoleukodystrophy, neuronal ceroid–lipofuscinosis, membranous lipodystrophy, 
Gaucher’s disease, Niemann–Pick disease, GM2 gangliosidosis, cerebrotendinous 
xanthomatosis, polysaccharidoses, polyglucosan body disease, mitochondrial 
encephalopathies). 

Other acquired dementias are the alcohol–related Korsakoff’s psychosis and the 
Wernicke–Korsakoff syndrome. There is a long list of centrally acting drugs which can 
impair cognition. Intoxication with lead, arsenic, manganese and mercury all can cause 
memory impairment. 

Traumatic brain injury (TBI) can cause wide–spread cognitive impairment and the term 
dementia pugilistica has been coined to describe the memory impairment following repeated 
TBI. There is ample evidence of cognitive deterioration following periods of critical illness 
and in analogy to the occurrence of critical illness neuropathy the term critical illness brain 
syndrome (CIBS) has been suggested [121]. 

In most patients the clinical picture and routine laboratory blood tests will guide the 
differential diagnosis and no CSF examination is required. In those conditions were a primary 
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degenerative dementia is suspected the CSF analysis may be helpful. Because the basic CSF 
analysis is normal in AD any change in the CSF opening pressure, cytology, glucose, lactate 
or total protein content is suspicious. The routine CSF analysis can thus guide the clinician to 
investigate further for conditions listed above. In selected cases an extended CSF analysis 
may be required. The presence of oligoclonal bands (OCB) is always a sign of pathology and 
suggests the presence of an autoimmune or infectious process. 

The combination of CSF tau and ABP 1-42 levels were found to be useful to distinguish 
AD from Parkinson’s and depression. They were less useful in separating AD from other 
neurodegenerative dementias such as FTLD or Lewy body dementia [45]. There was one 
report showing that the measurement of P-tau allowed one to distinguish AD from other 
dementias with a specificity of over 80% [122]. A profile of CSF biomarkers allowed early 
detection of AD in MCI cases with a sensitivity of 95% and a specificity of 83-87% [123]. 
The combined use of CSF tau and ABP 1-42 levels gives an estimated sensitivity of 85-94% 
and specificity of 83–100% of distinguishing AD patients from controls [45]. 

Iqbal and Grundke–Iqbal recently proposed the existence of 5 AD subtypes based on a 
profile of CSF protein biomarkers combined with the pattern of onset [124] (Table 5). The 
authors also speculate that more AD subtypes may emerge with the systematical 
quantification of CSF tau phosphoforms [125]. 

 
Table 5. The Iqbal classification of AD subtypes based on CSF biomarker profiling 

 
AD 
subtype 

Type of 
onset 

CSF protein biomarker profile Other 
features 

Frequency 

  ABP 1-42 hTau ubiquitin   
AELO late low — — APOE4 ≈50% 
ATEO early low high — — ≈22% 
ATURO recent low high high  ≈1% 
HARO recent high — —  ≈5% 
LEBALO late low — — Lewy bodies ≈19% 

 
Because of the wide spectrum of diseases causing impaired cognition and the many ways 

biomarker levels can be influenced in vivo and in vivo, my personal inclination is to be 
guided rather by clinical judgment than purely by biomarker levels, but it will be interesting 
to see whether such biomarker based classification schemes will have an impact on future 
research and patient management. 
 

 
5.2. Prognostic Accuracy 

 
A number of studies investigated whether CSF hTau or pTau could predict the 

development of AD. There is evidence that patients with minimal cognitive deficit (MCD) 

                                                                                                                                                       
12  A proof of principal study showing that the protein biomarker levels from the external CSF spaces adjacent to 

the cortex correlate with what is measured from the lumbar CSF has yet to be performed.  
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and elevated CSF hTau or pTau levels have an increased chance of developing AD. A more 
detailed discussion of these studies is given in the chapter by Scheltens and Schooneboom. 

In some patients with FTLD-MND high CSF Nf levels were found (Petzold, unpublished 
data). Based on prospective studies in MND one would expect high CSF Nf levels in FLTD-
MND to be a poor prognostic sign. 

There is yet no CSF data on postmortem-confirmed cases of NFIB dementia. The 
question to be answered is whether high CSF Nf levels in some patients presenting as FTLD 
may in fact indicate NFIB, which has a poor prognosis. 

 
 

5.3. A surrogate for Cognitive Deficit 
 
None of the currently available CSF biomarkers consistently correlated with clinical 

scales for cognitive deficits. For example a number of studies did not demonstrate a 
relationship of the MMSE score with CSF tau levels [126-132], whilst this was the case in the 
present and some other studies [133-137, 44]. The observation that correlations between 
clinical scales and body fluid biomarker levels may be an inconsistent finding is also true for 
other diseases [75]. 

One can speculate that this may be because tau protein is also present in some glial cells. 
If one considers that there are many more glial cells in the CNS compared to neurons, then a 
small amount of glial pathology may release tau protein in a quantity which could potentially 
mask what is released from dying neurons. It is intriguing to learn that CSF tau protein levels 
remained almost unchanged13 [138]. This may suggest that the source of CSF tau is not 
entirely from dying neurons, as levels should change over time with spread of brain atrophy 
observed for example on MRI. As an alternative to a glial source, could speculate that there is 
equilibrium between CSF tau levels and the plaque burden in the AD brain [139]. 

There is one study showing a correlation of CSF S100B levels with brain atrophy [140], 
but this has not yet been confirmed independently. 

 
 

5.4. Treatment Trials 
 
Many key molecular mechanisms leading to Alzheimer’s disease continue to be 

unravelled. The recognition of the pathological role of amyloid and tau has been translated 
into experimental therapeutic approaches and clinical trials. However, treatment trials may 
have been biased by the inclusion of non–AD subjects because of the low diagnostic 
sensitivity (46-88%) and specificity (37-90%) of the inclusion criteria for patients with 
prodromal AD [2,141]. CSF protein biomarkers may be used as inclusion criteria for such 
trials in order to increase specificity. They may also be used for monitoring of the treatment 
trial. Some of the hypotheses to be tested in future treatment trials are:  

• CSF hTau/pTau levels should decrease (normalise) if the treatment is effective.  

                                                        
13  The observed increase of 2 to 14% between basline and follow up (after 21±9 month) was less then the intra-

assay CV for tau, Ptau-181 and ABP 1-42. 



The CSF Analysis in Dementia 145

• CSF Nf levels should normalise. An increase of initially normal CSF Nf levels may 
indicate a neurotoxic effect. The role of CSF Nf levels as a safety biomarker should 
be investigated.  

• CSF NSE levels should normalise. In analogy to CSF Nf, CSF NSE levels may be 
used as a safety biomarker.  

• CSF ABP 1-42 levels should increase (normalise).  
• CSF cytology should remain normal. An increase of CSF WCC may indicate an 

inflammatory process, e.g. as observed the recent active anti-A beta vaccination 
(AN1792) trial in AD patients which was stopped because 6% of the inoculated 
patients developed aseptic meningoencephalitis [142]. Serial CSF cytology may be 
useful in future treatment trials.  

• CSF OCB should not occur as a result of a treatment trial. Occurrence of OCB may 
indicate that an immune-reaction within the CNS has been triggered. CSF OCB may 
be useful for future treatment trials using vaccination strategies or monoclonal 
antibodies.  

 

 

Figure 6. Sample size estimation based on the analytical accuracy for a biomarker detecting a 50% 
difference (closed lines) and for a biomarker detecting only a 25% difference (dotted lines) between 
equally weighted groups. If the analytical error (SD+CV) amounts to 10% (open circles), then a 
considerably smaller sample size is required compared to an error of 30% (crosses). This is illustrated 
by the red vertical arrows (an increase of the sample size from n=8 to n=48 is caused by the decreased 
analytical accuracy). The horizontal line indicates the commonly accepted power of 80% at alpha=0.05.  

Figure 6 illustrates the importance of the analytical accuracy of any biomarker (outlined 
in the section about pitfalls) for sample size calculations needed for treatment trials. 
Simplified, the higher the analytical accuracy (low CV and low standard deviation) and the 
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bigger the difference a biomarker detects between groups, the smaller will be the sample size 
required for a treatment trial. The commonly accepted target for planning a treatment trial is 
to reach a power of 80% at a level of significance of p = 0.05 (α = 0.05). Because of the 
implicated costs per patient recruited, a biomarker used as a secondary outcome measure (see 
section on substitution game) that will allow to show a treatment effect with n=8 per group 
because of its high accuracy will be much favored over a biomarker that could show the same 
effect but, because of its low accuracy, only with n=48 per group. For comparison for future 
trials in prodromal AD, sample sizes of 750 to 1000 with follow-up times for 3-4 years have 
been called for [2]. This has serious financial implications which may by the appropriate use 
of accurate CSF protein biomarkers reduced. 
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ABSTRACT 
 

In Alzheimer’s disease (AD) brain tissue, the accumulation of amyloid associated 
factors and clustering of activated microglia in amyloid-β (Aβ) plaques precede the tau-
related neurodegenerative changes. Amyloid associated factors are a heterogeneous 
group of proteins (including complement factors, acute-phase proteins, pro-inflammatory 
cytokines). A number of these, mostly inflammation related, factors co-localize with Aβ 
deposits, even in early stages of Aβ plaque development. Most amyloid associated 
factors normally are produced at low levels in the brain, but their synthesis rate increases 
in AD brain. Microarray studies also confirm that the local chronic inflammatory 
processes seen in post mortem brain specimens are early signs of the disease process, as 
local expression of inflammation related molecules significantly increases in 
mild/moderate dementia cases compared to controls.  

Some amyloid associated factors may bind to Aβ and promote its aggregation, 
whereas others prevent Aß aggregation and possibly are involved in Aß transport. Thus, 
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amyloid associated factors that influence the tendency of Aβ to form aggregates and 
fibrils, thereby influence the biological properties of Aβ, including its potential to 
activate microglia, which is aggregation and fibril density dependent. To obtain a kind of 
time perspective, in our immunohistochemical studies we especially focus on changes in 
post mortem brain specimens from controls and cases with mild AD. Stages 3 and 4 for 
neurofibrillary changes, as defined by the neuropathologic classification according to 
Braak and Braak that corelates with the clinical course of AD, are considered to represent 
the clinical stage of mild cognitive impairment (MCI).  

Changes in expression levels or localization of different amyloid associated factors 
and inflammation markers in immunohistochemical and array studies, combined with in 
vitro data on these factors, are taken as starting point to see if levels of certain amyloid 
associated factors and inflammation proteins in cerebrospinal fluid and serum samples of 
control, MCI and AD cases can be used as biomarker. Inflammation markers in the 
cerebrospinal fluid will also be related to the levels of established biomarkers for 
neurodegenerative diseases such as Aβ42, tau protein and phosphorylated tau. In the 
final part we will discuss the implications of the stage dependent occurrence of 
inflammatory markers for early diagnostics, and if levels of certain factors have 
predictive value for development of Alzheimer’s disease.  
 
 

1. INTRODUCTION  
 
Alzheimer’s disease (AD) is a chronic neurodegenerative disease neuropathologically 

characterized by extracellular accumulation of the amyloid β (Aβ) peptide in the form of 
amyloid deposition in brain tissue (plaques) and as vascular amyloid deposits (amyloid 
angiopathy), as well as by intraneuronal accumulation of paired helical filaments (PHF), 
consisting of the microtubulus associated tau protein. In addition, synaptic and dendritic loss, 
and premature neuronal death are seen. Deposition of the Aβ results from the propensity of 
Aβ to aggregate and form fibrils. Different types of Aß plaques can be distinguished 
morphologically and based on composition of the Aß plaques. Roughly a division between 
plaques consisting of non- (or low-) fibrillar Aß, comprising the “diffuse plaques”, and of 
fibrillar Aß can be made. The prominent neuritic plaques consist of highly fibrillar Aß, often 
have a dense amyloid core (“classical plaques”) and are associated with clusters of activated 
microglia as well as dystrophic neuronal processes. 

The cerebral Aβ deposits in the brain parenchyma and in vessel walls seen in AD are the 
consequence of impaired balance between the production and the removal of the Aβ peptide. 
Synthesis of Aβ is the result of the combined actions of β- and γ-secretases leading to 
proteolytic cleavage of the amyloid-β precursor protein (APP). Increases in Aβ production 
can explain the small percentage of early onset cases of familial AD bearing inherited 
mutations in APP or the presenilin 1 or 2 genes. However, despite the elevated levels of Aβ 
observed in the brain of late onset, sporadic AD, no clear increase in Aβ production was 
found. The accumulation of Aβ in the form of plaques in late onset or sporadic AD cases was 
therefore proposed to be caused by inefficient elimination of Aβ from the brain [316]. 
Breakdown of Aβ in the brain can occur through the actions of proteolytic enzymes that 
degrade Aβ, such as neprisylin, the insulin-degrading enzyme (IDE) and plasmin 
[127,179,217]. Removal of Aβ from the brain can also be through uptake and subsequent 
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intracellular degradation by glial cells, astrocytes and microglia, or through drainage of the 
Aβ from the brain by a carrier-mediated transport system into the cerebrospinal fluid and 
blood as well as by passive diffusion or transport of the interstitial fluid via the Virchow-
Robin space [21,315]. Like in other types of protein misfolding protein diseases, including 
Creutzfeldt Jakob’s disease, Parkinson’s disease, Huntington, the accumulation of misfolded 
Aß results in initiation of glial cell activation and local (neuro) inflammatory responses. This 
inflammatory response occurs relatively early in the disease process and may lead to removal 
of the initiating agent (Aβ in AD) by activated glial cells, but may eventually lead to 
neurodegeneration.  

A definite diagnosis AD can only be made upon /still requires post mortem examination 
of the brain. Nevertheless, AD can be clinically diagnosed with a relatively high sensitivity. 
However, in more advanced stages of AD only. For research purposes, the clinical diagnosis 
of AD is based on a two step diagnostic procedure, first identifying the dementia syndrome 
and subsequently clinical AD features, according to DSM-IV-TR and NINCDS-ADRDA 
criteria. Accuracy of AD diagnosis is 80 to 90% with diagnostic methods including brain 
imaging, the use of patient history, neuropsychological testing, EEG and laboratory tests (i.e. 
to exclude vitamin deficiencies) at expert academic research centers, and probably lower in a 
normal clinical setting. This accuracy can be reached when the disease has progressed to the 
dementia stage, and even then patients are classified as possible or probable AD [178].  

It still remains very difficult, to clinically diagnose AD in earlier stages of the disease, 
when patients are not demented and, especially in young patients, no atrophy can be detected 
with magnetic resonance imaging (MRI) [241].  

The number of Alzheimer’s disease patients is expected to rapidly increase as the 
population ages. Therefore, there is an urgent need for techniques that detect or see brain 
changes in the earliest stages of cognitive decline, so that people at risk can be identified and 
effects of drugs to stop or slow the progression of Alzheimer’s can be monitored. Difficulty is 
that most of the elderly people have brain pathology. In a large longitudinal community-
based study, at autopsy cerebral microinfarcts, AD and neocortical Lewy bodies were found 
to be predominant pathological correlates of dementia in an US suburban and urban elderly 
population [256]. Furthermore, elderly demented people most often have multiple brain 
pathologies [240]. Therefore, for specific treatment strategies, it is necessary to well 
characterize the patients, and assess the underlying pathologies. 

A number of techniques have been developed to recognize clinical phenotypic markers. 
These include MRI with which medial temporal lobe atrophy can be seen, positron emission 
tomography (PET) imaging to visualize molecular changes as a result from hypometabolism 
and /or hypoperfusion in temperoparietal areas, as well as measurements of changes in 
biomarker (levels) in cerebrospinal fluid (CSF). Studies are ongoing, to seek for imaging 
techniques and other biomarkers that, over time, can measure biological changes in the 
progression from mild cognitive impairment to Alzheimer’s disease. Candidates are PET, 
using the radiotracers [11C]- labelled Pittsburgh compound B (PIB)[139], or [18F]- 
radiofluorinated FDDNP [252] for the detection of Aβ deposits, or the [11C]-radiolabelled 
isoquinoline PK11195, [11C](R)- PK11195, that binds to peripheral benzodiazepine binding 
sites, that in the brain are specifically expressed by activated microglia [45]. 
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The search for biomarkers can be divided in two approaches 1) the array approach with 
which differences in expression patterns (DNA or protein level) between control and AD 
affected individuals are investigated, and possible candidate biomarkers selected, or 2) an 
hypothesis driven approach with which (protein) levels of factors known (from 
immunohistochemical data or model studies) to be part of certain pathways involved in AD 
pathogenesis, are tested for their discriminative power for use as biomarker. 

Activated microglia and various inflammation-related proteins, including cytokines, 
proteases and protease inhibitors, as well as enzymes involved in arachidonic acid 
metabolism (cyclooxygenases / lipoxygenases), can be observed in AD affected brain 
regions, which suggests the involvement of a local neuroinflammatory process in AD 
pathogenesis [8]. This neuroinflammatory process is an early stage in the progression of 
neuropathological changes of AD, since different inflammation-related proteins are not only 
present in fibrillar or neuritic Aß plaques, but also in low-fibrillar, diffuse Aß plaque types in 
which no microglia clustering and neuritic changes are apparent [278] (Figure 1). A large 
number of these inflammation related factors can be detected in CSF and in serum. Therefore, 
in this chapter the possibilities to use levels of inflammation related factors, or of 
splice/activation products of these in CSF or blood as biomarker will be discussed.  

 
 

2. NEUROINFLAMMATION IN AD 
 

2.1. Amyloid associated Factors and Microglia: Immunohistochemistry 
 
In virtually all Aβ plaque types, ranging from loosely organized, diffuse Aß plaques 

made up of non- to – low fibrillar Aß, to neuritic Aß plaques consisiting of highly fibrillar 
Aß, also proteins other than Aβ can be found [312]. These include a number of acute phase 
proteins as well as sulphated glycosaminoglycans and proteoglycans, and are collectively 
referred to as amyloid associated factors, that may determine the degree of Aβ fibril 
formation or protect the Aβ against proteolysis [278]. More than 20 years ago, senile plaques 
were found to contain complement activation products [66,68,176] and other inflammation 
related factors in immunohistochemical studies [8].  

The chronic inflammatory response in AD brains is seen in fibrillar Aβ plaques, but not 
in the diffuse plaque with the non-congophilic low-fibrillar Aβ deposits. Whereas in classical 
and neuritic plaques, consisting of congophilic fibrillar Aβ, activated microglia and altered 
neurites accumulate, the diffuse plaques are not associated with activated microglia and 
altered neuritis [125,231]. In addition, whereas strong immunostaining for complement 
activation products is seen in highly fibrillar, classical Aß plaques, no or weak 
immunoreactivity for early complement components was observed in diffuse plaques 
composed of non- or low-grade fibrillar Aβ peptide [70].  

Complement activation products and also other amyloid associated factors including 
clusterin, apolipoprotein E, serum amyloid P component (SAP) and heparan sulfate 
proteoglycans can also be found in congophilic angiopathy (CAA). However, a number of 
inflammatory proteins, known to be present in senile plaques, such as α1-antichymotrypsin 
(ACT), alpha2-macroglobulin (A2M) and ICAM-1, were absent or detectable only in small 
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amounts. Furthermore, the number of cells of the monocyte/macrophage lineage in CAA was 
not increased compared to unaffected vessels, which suggests that an incomplete 
inflammatory response occurs in CAA, as compared to senile plaques and that different 
pathogenesis mechanisms lead to CAA and senile plaques [283]. 

 
α1-Antichymotrypsin (ACT) 

In contrast to other amyloid associated factors, ACT specifically accumulates in Aβ 
containing amyloid, not in other types of amyloid deposits. Abraham and coworkers first 
described ACT as an Aβ-associated protein [6]. Using monoclonal antibodies specific for 
neo-epitopes exposed on ACT complexed to cathepsin G, we could demonstrate that ACT in 
Aβ plaques of AD patients expose neo-epitopes similar to those exposed on complexed ACT 
[229]. This suggests that ACT in Aß plaques may be complexed to a target protease that 
possibly is specific for AD or APP metabolism. 

 
Microglia 

Resting, ramified microglia can be found more or less evenly distributed throughout the 
gray matter of normal brain. In contrast to microglia in the white matter that seem 
continuously activated, these unreactive microglia lack expression of major 
histocompatibility complex (MHC) class II molecules. In AD brain gray matter, clusters of 
activated MHC class II positive cells of the monocyte-macrophage cell lineage, microglia, are 
seen associated with fibrillar Aß plaques [177,214,225,230,234,281]. These activated 
microglia in addition express complement receptors 3 and 4 (iC3b receptors), Fcγ receptors, 
chemokine receptors (CCR2, CCR3 and CCR5) and CD45 [8,124,260]. Clinicopathological 
[13,234] and neuroradiological [45] studies have indicated that this clustering of activated 
microglia is a relatively early event that precedes the process of neuropil destruction in AD. 

 
The Complement System  

In addition to the complement activation products C1q, C4b, C3b that co-localize with 
Aß plaques and may enhance Aß removal by microglia, the complement activation products 
include the lytic C5b-9 complex and the chemotactic C3a and C5a. Reactive astrocytes 
express C5a- [237] and C3a [123] specific receptors. Also C5L2 (complement 5a-like 
receptor), that in contrast to C5aR is not G-proten coupled and possibly acts as a decoy 
receptor for C5a, is expressed by astrocytes and neurons throughout brain [96]. Combined 
these findings suggest that complement activation products could play an important role in 
the local recruitment and activation of glial cells. 

The observation that accumulation of amyloid associated factors and clustering of 
activated, cytokine secreting microglia in Aβ deposits precedes the neurodegenerative 
changes in AD, together with the finding that especially polymorphisms of certain cytokines 
(IL-1, IL-6, TNF-α) and acute-phase proteins (α1-antichymotrypsin) are genetic risk factors 
for AD [135,175,191], has led to the concept that pro-inflammatory cytokines released by 
activated microglia are the driving force in AD pathology [8,101]. The subsequently evolved 
‘neuroinflammation’ hypothesis posits that initial Aβ deposits and damaged neurons or 
neurites may elicit a localized and chronic inflammatory reaction, which, in turn, may 
exacerbate the pathogenetic process [8]. 
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No immunoglobulins or T-cell subsets can be detected within or around plaques of AD 
cases, which indicates that humoral or classical cellular immune-mediated responses are not 
involved in cerebral β-amyloid plaque formation or Aβ plaque induced inflammatory events 
in AD [67], unlike in other brain disorders such as multiple sclerosis [46] and HIV-dementia 
[199]. No (increased) expression of the most relevant intercellular adhesion molecules 
(ICAM-1, VCAM-1, E-selectin) is seen on endothelial cells of capillaries in AD brains [70], 
whereas in MS and HIV dementia the expression of E-selectin and VCAM-1, necessary for 
adhesive interactions between leukocytes and endothelial cells of brain capillaries and for 
leukocyte recruitment to inflammatory foci in the neuropil, coincides with 
monocyte/macrophage infiltration. In addition, many of the large variety of inflammatory 
mediators, including acute phase proteins, protease inhibitors, complement factors, cytokines, 
and chemokines seen in AD brain within the vicinity of plaques, were found to be produced 
locally by microglia, astrocytes and neurons, and not blood-derived (for reviews, see 
[8,274,278] ).  

Taken together, these data support the view that the (fibrillar) Aβ plaques in AD brains 
are closely associated with a locally induced, non-immune mediated, chronic inflammatory 
type of response without any apparent influx of leukocytes from the blood. 

 
 

2.2. Amyloid associated Factors and Microglia: In Vitro  
 

In Vitro  
Most in vitro work on the biological effects of Aβ is performed by adding Aβ peptides to 

cell cultures. However, it is important to realize that in AD brains aggregated Aβ is 
predominantly found complexed with other proteins. Each of the Aβ-associated proteins 
possibly have different or opposite functions in Aβ aggregation and fibril formation, as well 
as in the processes of Aβ removal and deposition and in the neuroinflammatory process 
[278]. For instance, serum amyloid P component (SAP) may protect Aß fibril against 
proteolysis [75], and proteoglycans may influence protein folding and thereby facilitate the 
formation of β-pleated structures in amyloidosis [254,276]. 

On the other hand, other Aβ-associated proteins including α2-macroglobulin (A2M), 
apolipoprotein E (apoE), and clusterin (apolipoprotein J) are thought to be involved in the 
transport-mediated clearance of Aβ [316]. 

 
The Complement System  

The complement system may play a role at various stages of the cascade of events 
eventually leading to neurodegeneration in AD. In vitro, factor C1 of the complement system 
was found to bind to the Aβ peptide, which led to classical pathway activation of the 
complement system in serum, indicating that Aβ potentially could activate the classical 
complement pathway in an antibody-independent fashion [224]. Further in vitro studies 
indicated that a certain degree of Aβ aggregation is required for C1q binding and the 
initiation of the complement activation [38,227,255,262].  

All complement components can be locally produced in the brain [19,95,186] and 
synthesis is increased in AD brain [287,304]. Complement activation products co-localize 
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with most cerebral Aβ deposits in AD brain [7,8,66,70,312]. Soluble complement activation 
products (C3a, C5a and also C4a) have anaphylatoxic and chemotactic properties, C3 
activation products can opsonize the target (in this case extracellular Aβ) for phagocytosis 
and may be involved in dispersion of the Aβ aggregates (intercalation). Therefore, 
complement activation probably is involved in several key steps of amyloid plaque formation 
(e.g. Aβ aggregation, activation of microglia, Aβ phagocytosis) [8,38,70,280,295,296]. 
Disturbed protease – protease inhibitor balances may be involved at various steps in 
neurodegenerative and neuroregenerative processes, APP metabolism and maintenance of 
BBB integrity. In previous studies it was shown that the levels of complement inhibitors C1-
Inh and CD59 remained equal in AD. Therefore, the increased local synthesis of complement 
factors and the accumulation of Aβ that directly binds C1 and activates the complement 
cascade, may lead to extensive complement activation at sites of Aβ deposition or in AD 
[278,303].  

Fluid-phase complement inhibitor C4b-binding protein (C4BP) can 
immunohistochemically be detected in Aβ plaques [312] and on apoptotic cells in AD brain 
[271]. In vitro, C4BP binds apoptotic and necrotic, but not viable, astrocytes, neuronal cells 
and oligodendrocytes and partly prevents complement activation on apoptotic brain cells. 
C4BP binds to Aβ1-42 directly, via CCPs 7 and 8 of its α-chain, leaving CCP1 and 2 available 
for interaction with C4 which proved to limit the extent of Aβ-induced complement 
activation in vitro. This suggests that C4BP protects against excessive complement activation 
in AD brains. C4BP levels in CSF of dementia patients and controls are low compared to 
those in blood and correlated with CSF levels of other inflammation related factors ACT, 
AAT and sICAM. In contrast to the CSF levels in vascular dementia cases, CSF C4BP levels 
in AD do not differ between AD and controls [271].  

Complement proteins are involved in the recruitment and activation of microglia cells 
and opsonisation of fibrillar Aβ deposits [70]. Clusters of activated microglia are exclusively 
found in the plaques which are also immunolabeled for C1q and serum amyloid-P component 
(SAP). In vitro studies using human adult microglia show a much higher secretion level of 
IL-6 and TNFα levels after incubation with Aβ, together with SAP and C1q, than with Aβ 
peptide alone [281]. 

 
SAP  

Serum amyloid P component (SAP) is a member of pentraxin serum protein family, 
which also includes C-reactive protein (CRP), PTX-3, neuronal pentraxin 1 (NP1) and 
neuronal activity regulated pentraxin (Narp or NP2). SAP consists of five identical subunits 
noncovalently associated as pentameric discs. In the presence of calcium, SAP binds to 
glycosaminoglycans (GAG) and other matrix proteins including laminin, fibronectin and 
collagen type IV, and also to DNA, and phosphatidylethanolamine (PE) in a Ca2+-dependent 
manner [75,93]. In addition, SAP can bind to Aβ and thereby promotes plaque formation by 
binding to Aβ peptides in a Ca2+-dependent manner [106]. SAP is found in different Aβ 
plaque types, including Aβ plaques consisting of low to non-fibrillar Aβ [281]. Since SAP is 
highly protease-resistant, it stabilizes peripheral and cerebral amyloid fibrils and protects 
them from proteolysis. SAP stabilizes, but does not initiate Aβ fibril formation [227].  
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A dicarboxylic acid, pyrrolidone ring containing compound was shown to inhibit SAP 
binding to amyloid fibrils, but also to cross-link pairs of SAP pentamers that subsequently are 
cleared from the circulation. As a result, the compound was found to remove SAP from 
human amyloid deposits in tissues and may provide a new therapeutic approach to 
amyloidosis, and possibly to AD [210].  

In addition to its effects on amyloid, SAP binds to PE exposed on apoptotic cells, thereby 
opsonizing them for removal by the immune system [79] and can also directly induce 
neuronal apoptosis in primary cultures of rat cerebral cortex [272] and in vivo in rats 
intrahippocampally injected with SAP [273], which suggests that SAP may contribute to the 
development of neurodegenerative diseases through direct neurotoxic effects. SAP-induced 
neurotoxicity is independent from caspase and calpain activation. Interestingly, C1q protects 
neurons in culture from Aβ and SAP induced neurotoxicity, but has no effect on Aβ-activated 
caspase and calpain pathways [213]. Combined with the data on microglia activation by SAP 
complexed to Aβ, these data highlight the direct and indirect neurotoxic potential of SAP and 
a protective role for complement.  

Oligomeric Aβ is currently believed to be the major neurotoxic form of Aβ and not the 
highly aggregated, fibrillar form of Aβ [138]. Since binding of amyloid associated proteins 
such as complement factor C1q and SAP enhance the fibril formation of Aβ peptides 
[281,290], this may lead to sequestration and consequent reduction of levels of the soluble 
neurotoxic Aβ. On the other hand, the formation of large aggregates consisting of high 
fibrillar Aβ complexed with C1q and SAP leads to increased production of pro-inflammatory 
cytokines by micoglia [278].  

In addition, Aβ-associated proteins, such as complement protein C1q [291], or the 
combination of C1q and SAP [78] and also proteoglycans [244], can hamper Aβ 
phagocytosis by microglia.  

 
α2-Macroglobulin 

Alpha2-macroglobulin (A2M) is immunohistochemically detected in a subgroup of 
cortical and hippocampal Aβ plaques, as well as in large hippocampal neurons in AD 
[22,258], however, not in diffuse plaques in AD or in amyloid plaques in non-demented 
controls [275,312]. Human A2M, like the other α-macroglobulins complement factors C3 and 
C4, can bind various ligands. Although considered a protease inhibitor, A2M can entrap, but 
not inactivate, various proteases. Interaction between protease and bait region within A2M 
results in formation of covalent bonds with the protease. Inactivation of the protease occurs in 
the lysosome of cells after uptake of the A2M-protease complex. The major A2M receptor in 
the brain is the low density lipoprotein receptor-related protein, LRP-1 [142].  

Although A2M can complex with Aβ, and A2M is a ligand for LRP-1, A2M blocks 
rather than enhances the transport of Aβ from brain to blood. Aβ can also bind to LRP 
directly. In APP transgenic mice that are receptor-associated protein (RAP)-deficient, the 
expression level of LRP-1 is reduced and the extracellular Aβ deposition increased [277]. 
The LRP mediated transport of Aβ is responsible for the major part of Aβ clearance from 
brain to blood at brain capillaries [23,57].  

Transport across the BBB is approximately 2-fold faster for Aβ40 than for Aβ1-42 [23]. 
When complexed to A2M the elimination of Aβ -activated A2M complexes was reduced by 
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84.0% compared with that of Aβ1–40 alone [126]. Although conflicting reports have 
appeared, polymorphisms in the α2-macroglobulin gene A2M were found to be associated 
with increased Aβ deposition and suggested to constitute a risk factor for late onset AD 
[142,236]. Genetic variation in both A2M and its receptor LRP have been linked with 
Alzheimer's disease, although these associations could not be confirmed in a meta-analysis 
[26]. 

Expression of LRP-1 and also LDL-receptor on human brain pericytes (HBP) and 
smooth muscle cells (SMC) increases in the presence of Aβ in vitro [293]. Cultured HBP and 
SMC internalize Aβ and the uptake can be inhibited by RAP (receptor associated protein) 
indicating that Aβ uptake is LRP or LDLR mediated. Higher concentrations of Aβ result in 
degeneration of the perivascular cells, suggesting that accumulation at the cell surface as 
result from a saturated clearance system may lead to degeneration of the cells. Such a 
mechanism can explain the accumulaton of Aβ in vessel walls and the subsequent 
development of cerebral amyloid angiopathy (CAA) [293].  

 
Apolipoprotein E 

Apolipoprotein E (apoE), is a 34-kDa cholesterol transport glycoprotein. There are three 
human apoE isoforms, termed E2, E3, and E4. The epsilon4 allele of apolipoprotein E is the 
strongest genetic risk factor for sporadic AD and CAA [261]. Like A2M, apoE is a ligand for 
LRP-1. In the brain, apoE is associated with cholesterol-rich lipoproteins and is involved in 
the transport of cholesterol to neurons. ApoE is synthesized and secreted by astrocytes and 
microglia and possibly also by neurons. ApoE can immunohistochemically be detected in all 
types of Aβ deposits in AD, as well as non-demented control neocortex [311].  

 
Clusterin  

Clusterin (apoJ) is a multifunctional disulfide linked heterodimeric glycoprotein, which 
is widely distributed. In AD brain, clusterin is found associated with Aß plaques [311] and 
clusterin levels are increased in both cortex and hippocampus, but not cerebellum [159]. 
Astrocytes and hippocampal neurons express clusterin mRNA, and clusterin mRNA 
expression is increased in a variety of injury models, as well as in AD and CJD brain [207]. 
Increased clusterin expression has been found in some post-mortem Down’s syndrome (DS) 
cases less than 30 years of age, and all specimens from older DS [257], suggesting a disease 
stage dependent expression. 

Clusterin can alter the aggregation of Aβ1-42. Possibly, interaction of clusterin with 
oligomeric Aβ inhibits the nucleation stage of Aβ. This results in the formation of slowly 
sedimenting, non-fibrillar, diffusible and SDS-resistent complexes of Aβ that are toxic to 
mature neurons at nanomolar concentrations in vitro [202] and in vivo [61]. These Aβ-
derived diffusable ligands (ADDLs) inhibit hippocampal long-term potentiation in 
experiments on rat hippocampal slices, indicating an immediate impact on signal transduction 
[144]. Thus, clusterin may by keeping the Aβ non-fibrillar and diffusable, enhance Aβ-
induced neurotoxicity. However, clusterin may also exert beneficial effects on neurons, 
because clusterin is rapidly transported across the BBB via LRP2, and Aβ1-42 clearance 
from the brain is significantly enhanced when the Aβ1-42 is complexed with clusterin [23].  
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Thus, clusterin’s ability to efficiently transport Aβ1-42 from brain to blood across the 
BBB, suggests that the enhanced expression of clusterin in affected brain regions probably 
serves a protective role. 
 
Protease Inhibitors  

Several proteases and protease inhibitors have also been demonstrated in the amyloid 
lesions of AD. These include the serine protease inhibitor and acute-phase reactant α-1-
antichymotrypsin (ACT) and the cysteine proteinase inhibitor cystatin C.  

 
α1-Antichymotrypsin 

α1-antichymotrypsin (ACT) is a serine proteinase inhibitor (serpin) that forms complexes 
with and inactivates neutrophil-derived cathepsin G, thereby limiting tissue damage during 
inflammatory reactions. The complexed ACT found in Aβ plaques [229,278] probably 
originates from local production by astrocytes [3,208]. The ACT in plaques that expresses 
neoepitopes specific for complexed ACT, may be bound to a serine proteinase presumably 
involved in the APP metabolism. Indeed, a serine proteinase, involved in the degradation of 
the Aβ-peptide, was found complexed to ACT, but still remains to be identified [4,5,301].  
ACT can also directly interact with Aβ-peptides, and ACT dose dependently enhances Aβ 
fibril formation in vitro (Nielsen et al, in prep). Binding of ACT to Aβ can transform the 
ACT from an inhibitor into a substrate [128]. 

Involvement of ACT in APP metabolism was further indicated by studies in double 
transgenic mice expressing human APP and ACT, that develop amyloid depositions more 
rapidly than the single APP transgenic mice [188,195].  

 
Cystatin C 

Another protease inhibitor found associated with Aβ deposits, in plaques as well as 
CAA, in AD brain is cystatin C, a cysteine protease inhibitor [151]. In vitro cystatin C co-
localizes with βAPP intracellularly and on the cell surface and cystatin C was found to inhibit 
Aβ fibril formation [235]. A role for Cystatin C in amyloid deposition was implicated when a 
mutated form was found to be linked with hereditary cerebral haemorrhage with amyloidosis, 
Icelandic type [99,150], and overexpression of cystatin C lead to reduced levels of Aβ 
deposition in APP transgenic mice [134]. Cystatin C gene polymorphisms resulting in 
reduced cystatin C secretion were found to increase the risk to develop AD in meta-analyses 
[25]. 

 
Chemokines 

Chemokines are a family of small molecular weight proteins that function in leukocyte 
recruitment and cellular activation and are subdivided into four classes, C, CC, CXC and 
CX3C. Members of the CXC family include SDF-1 (CXCL12), interleukin-8 (CXCL8), 
interferon-c-inducible protein-10 (IP-10, CXCL10) and macrophage inflammatory protein-2 
(MIP-2, CXCL2). The CC family includes monocyte chemoattractant protein-1 (MCP-1, 
CCL2), macrophage inflammatory protein-1 α and β (MIP-1 α and β, CCL3 and CCL4, 
respectively), and regulated upon activation normal T cell expressed and secreted (RANTES, 
CCL5) (for a review see: [17]). Studies in APP transgenic mice that are deficient for CCR2, 
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the receptor for MCP-1, indicate that CCR2 is important for microglial migration and 
accumulation at sites of Aβ deposits, as CCR2 deficiency impaired microglial accumulation, 
resulted in earlier Aβ deposition, and accelerated early disease progression in this transgenic 
mouse model for AD[74]. CCR1, the receptor for CCL3/MIP-1α, can be found in dystrophic, 
neurofilament-positive, synaptophysin-negative neurites that are associated with senile Aβ1-
42 plaques, not in diffuse deposits of Aβ1-42 in a small sample of AD cases. Astrocytes and 
microglia are negative for CCR1[105], whereas microglia express other chemokine receptors 
CCR3 and CCR5 [297].  

The number of CCR1-positive plaque-like structures in the hippocampus and entorhinal 
cortex highly correlated with the clinical dementia state. CCR1 is rarely seen in nondemented 
control brain, and not in other types of dementia, unless Aβ42-positive plaques are also 
present. Therefore, neuronal CCR1 seems to be part of the neuroimmune response to Aβ in 
Aβ42-positive neuritic plaques, and CCR1 may be a specific marker for this process instead 
of being a generalized marker of neurodegeneration. [105].  

 
Microglia  

Clusters of activated microglia are observed in fibrillar Aβ plaques that are associated 
with neuritic changes [8,70,101,165,230]. In more recent studies in post mortem brain tissue 
of clinically well evaluated patients the increase in fibrillar amyloid deposits and associated 
micoglia in the neocortex was shown to be already prominent in cases with early stages of 
AD that have no extensive tau-related neurofibrillary pathology [13,282]. These findings are 
in agreement with a positron emission tomograpy study using the peripheral benzodiazepine 
ligand PK11195 as marker for activated microglia [45], in which activation of microglia was 
found to precede brain atrophy, as detected by MRI, in AD patients. Similarly, in scrapie-
affected mice the microglial activation occurs many weeks before neuronal loss and 
subsequent clinical signs become apparent [294]. 

The activated microglia seen clustered in fibrilar Aß plaques have an amoeboid 
phenotype and express MHC class II, and express receptors specific for C4 and C3 activation 
products (complement receptors CR3 and CR4) [230], specific for C1q [291], as well as 
chemokine receptors CCR3 and CCR5 [297]. Besides, activated microglia express the pro-
inflammatory cytokine interleukin-1 [101] and the chemokine monocyte chemoattractant 
protein-1 (MCP-1, CCL2) [124]. 

A wealth of data indicates now the extracellular deposition of Aβ in AD brains as one of 
the triggers of inflammation. In vitro Aβ was found to stimulate chemokine production by 
cultured microglia [260]. Aβ can activate microglia by binding to the receptor for advanced 
glycation end products (RAGE) [166,302] and to other scavenger receptors [73,204]. 
Furthermore, the LPS receptor, CD14, interacts with fibrillar Aβ [80] and microglia kill Aβ1-
42 damaged neurons by a CD14 dependent process [20]. Also the Toll-like-receptor 4 
(TLR4), that is expressed on microglia, may be relevant in chronic neuroinflammation in AD. 
A functional tri-molecular receptor complex consisting of CD14, TLR4 and MD-2 appears to 
be needed for microglial activation by Aβ, and the subsequent release of neurotoxic 
mediators [288]. The involvement of CD14 and TLR4 in Aβ induced microglia activation 
strongly suggests that innate immunity is linked with AD pathology. 
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2.3. Amyloid associated Factors and Microglia: Mouse Model Studies 
 
Studies in transgenic mice expressing human APP (hAPP) crossed with transgenic mice 

overexpressing or genetically depleted for amyloid associated factors such as complement, 
apolipoprotein E, clusterin and α1-antichymotrypsin have shown the crucial role of these 
factors in the process in cerebral amyloid plaque formation. In a mouse model for systemic 
amyloidosis, the casein induced peripheral amyloid deposition is delayed in SAP knockout 
mice suggesting the importance of SAP in the mechanism of amyloid deposit formation. [33]. 

On the other hand, in studies comparing C1q knock-out and C1q expressing human APP 
transgenic mice (C1q -/- crossed with Tg2576, as well as double transgenic APP/PS1 mice), 
C1q was found to be important for microglial activation and for (microglia-induced?) 
neuronal changes (decreased MAP-2 and synaptophysin immunoreactivity in the 
hippocampus) related with AD pathology. No differences between APP C1q -/- and APP 
transgenic mice were seen at young age. At old age (at 12 and 16 months) similar levels of 
Aβ, but less activated microglia around plaques were observed [84]. Double transgenic mice 
for hAPP and sCrry (an inhibitor of C3 activation) have 2 to 3 times more Aβ than the hAPP 
littermates [296], indicating that complement factor C3 activation is important for prevention 
of Aβ accumulation, possibly through promotion of Aβ removal.  

 
α1-Antichymotrypsin (ACT) 

The involvement of ACT in the APP metabolism was substantiated in studies with 
transgenic mouse models for AD. When α1-antichymotrypsin (ACT) transgenic mice are 
crossed to transgenic hAPP mice, the ACT/APP mice have twice the amyloid load and plaque 
density compared with the mice carrying mutant hAPP alone, which suggests that ACT acts 
as an amyloidogenic co-factor in vivo [197]. APP transgenic mice deficient in ACT and 
ApoE have little amyloid deposits and little learning disability. Overexpression of either 
mouse ApoE or human ACT, or both, in APP transgenic mice indicated that ApoE and ACT 
synergistically enhance fibrillar Aβ deposition and cognitive impairment in aged APP 
transgenic mice [196].  

 
Cystatin C 

Individuals carrying the Thr25 variant of the allele encoding cystatin C, have an 
increased risk of AD. The Thr25 variant of cystatin C leads to reduced cystatin C secretion 
and extracellular cystatin C levels. Overexpression of human cystatin C in brains of APP-
transgenic mice was shown to reduce cerebral amyloid-beta deposition. Cystatin C was found 
to bind soluble Aβ and inhibited Aβ fibril formation. These data suggest that cystatin C 
modulates the risk for cerebral amyloidosis and has a protective role in Alzheimer's disease 
pathogenesis [134,183].  

 
Apolipoprotein E 

Because the clearance of Aβ1–40 from the mouse brain is attenuated in apoE knockout 
mice [245], both apoE and LRP-1 were suggested to be involved in clearence of Aβ from 
brain to blood. However, similar to the results obtained with A2M, transport over the BBB is 
reduced 5.7 fold when Aβ1-40 is complexed with apoE3 [23], indicating that apoE and A2M 
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do not act as a carrier proteins for Aβ1–40 elimination from the brain. In recent rat studies all 
three isoforms of apoE were found to reduce the elimination rate of radiolabelled Aβ1–40 
from the brain [126], suggesting that apo E is not involved in the efflux of Aβ from the brain 
but acts as a promotor of cerebral Aβ accumulation. These findings are in line with the 
conclusion from an earlier study with transgenic mice expressing human APP that were 
crossed with either apoE expressing or apoE knock-out mice. APPV717F+/- apoE+/- and 
apoE+/+ mice had abundant amyloid deposits, whereas APPV717F+/- apoE-/- mice had no 
amyloid deposits up to 22 months of age [18]. In hAPP transgenic mice without apoE(-/-) and 
clusterin(-/-), apoE and clusterin had additive effects on Aβ deposition and apoE was found 
to play an important role in regulating extracellular CNS Aβ metabolism independent of Aβ 
synthesis [60]. These mouse studies indicate that certain amyloid associated factors are 
involved in regulation of the Aβ amyloidogenic process through effects on Aβ aggregation or 
Aβ transport.  

 
Clusterin  

In transgenic hAPP mice crossed with clusterin (-/-) mice the levels of Aβ deposits are 
similar to these in hAPP mice expressing clusterin, but there are significantly fewer fibrillar 
Aβ deposits. In the absence of clusterin, neuritic dystrophy associated with the deposits 
amyloid is markedly reduced. This suggests that clusterin binding to Aβ may, in addition to 
its solubilizing effects and role in Aβ transport from brain to blood, enhance the Aβ mediated 
neuritic dystrophy [61].  

Clusterin was found to play a more prominent role in Aβ transport than ApoE, when the 
effect of both on Aβ accumulation in the brains of APP transgenic mice either knockout for 
apoE or clusterin, or for both was studied. Less Aβ fibrils and Aβ plaques were seen when 
clusterin was present, compared to apoE [60,113]. These observations in transgenic mouse 
models support the idea that Aβ-associated proteins play an important role in the dynamic 
balance between Aβ deposition and removal and may determine the neurotoxic potential of 
Aβ. 

 
 
3. NEUROINFLAMMATION AS WELL AS REGENERATION; 

EARLY EVENTS 
 
The neuroinflammatory response in AD brain has two sides. Similar to extracerebral 

inflammatory reactions, a regenerative stage leading to scar formation or restoration of 
function is part of the inflammatory response, as was already recognized by early 
investigators who noted that AD brains are not only undergoing degeneration but also show 
signs of a regenerative process [34,83,97]. Regulation of tissue degradation and remodeling 
involves a complex network including proteases and protease inhibitors, cytokines, integrins 
and adhesion molecules. Dystrophic neurites associated with fibrillar Aβ deposits, but not the 
tau positive neuropil threads outside plaques in AD brain, are decorated with growth-
associated protein GAP-43 and βAPP. These neurites are also associated with adhesion 
molecules laminin and collagen IV, and by different β1-integrins including the laminin 
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receptor VLA-6 [72]. In the cerebral cortex of non-demented cases, neurites associated with 
congophilic amyloid plaques immunostain for the growth-associated proteins, but are 
negative for tau [311]. 

The major players involved in the inflammatory process in AD are thought to be the 
microglia and the astrocytes. The process of the activation of glia is characteristized by 
upregulation or de novo expression of a variety of molecules involved in the inflammatory 
response including cytokines, various components of the complement cascade, acute phase 
reactants, proteases and protease inhibitors, and neurotoxic products including reactive 
oxygen species. The importance of inflammation in the pathogenesis of AD was indirectly 
confirmed by epidemiological investigations that revealed a decreased incidence of AD in 
subjects using anti-inflammatory drugs, especially the non-steroidal anti-inflammatory drugs 
(NSAIDs). However clinical trials designed to inhibit inflammation have failed in the 
treatment of AD patients suggesting that anti-inflammatory agents have more protective than 
therapeutic effects. 

Astrocytes can produce the neurite growth promoting cytokine S100B, which during 
normal aging may serve a protective role, as it promotes neuronal survival and neuritic 
growth [187]. However, in AD the fibrillar Aβ plaques are also characterized by activated 
complement factors and clustering of microglia [70] that express IL-1, which in turn induces 
astrocytes to produce S100B. Astrocytic overexpression of S100B in neuritic plaques 
correlates with the degree of neuritic pathology, which suggests that S100B acts as a 
promoter in the evolution of benign, non-neuritic to neuritic Aβ plaques in AD [187]. 

A role for protease nexin 1 (PN-1) as regulator of neurite initiation and continued 
outgrowth has been proposed. Trombin-PN-1 complexes accumulate in AD brain and a shift 
in balance between proteases and protease inhibitors has been impicated in AD. PN-1 is a 
potent physiologic inhibitor of thrombin and urokinase (uPA) in the basement membrane, 
when bound to collagen type IV and other matrixcomponents. Complexation of thrombin 
with PN1 enables the binding to cell-surface heparins, and subsequent internalization by 
astrocytes. Internalisation is via LRP, and can be inhibited by RAP (receptor associated 
protein) in vitro [180]. When bound to collagen type IV PN1 may play a key regulatory role 
in the uPA receptor-mediated activation of signaling pathways that control cell migration 
during tissue repair/remodeling [53]. Taken together, these findings indicate that the fibrillar 
Aβ deposition is associated with both an aberrant regenerative response of sprouting neurons 
[14,52] and a microglia mediated neuroinflammatory response.  

Using postmortem brain specimens, characterized according to the Braak score for 
pathological staging of AD [36], we have studied the sequence of different pathogenic 
mechanisms in the isocortex, including neuronal cell cycle changes, activation of the 
unfolded protein response, oxidative stress and inflammation (Figure 2). Although the Braak 
score does not represent a temporal scale, the Braak score for neurofibrillary changes 
correlates well with the clinical course of AD determined by the cognitive status [222], which 
suggests that the pathological changes indeed reflect the temporal sequence of events in the 
pathogenic cascade. Increased neuronal cyclo-oxygenase-2 (COX-2) and cell cycle protein 
expression and activation of the unfolded response were seen in a relatively early stage of 
pathology (Braak stage III -IV), associated with diffuse (low-fibrillar) Aβ plaques. The 
maximal expression of COX-2 and cell cycle proteins, including phosphorylated 
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retinoblastoma protein, is seen in midtemporal neurons, prior to the maximal activation of 
astrocytes and microglia [116], that occurs in the next stage (Braak stage IV) when clusters of 
microglia are found closely associated with fibrillar Aβ deposits. Neuronal COX-2 and cell 
cycle protein expression is downregulated in Braak stage V and VI [114,117], when profound 
tau-related neurofibrillary changes are observed. In summary, the neuronal responses are 
likely to be associated with the increased occurrence of oligomeric or low-fibrillar Aβ in the 
early Braak stages, whereas later stages are associated with increased Aβ fibril formation and 
a coinciding neuroinflammatory response [115]. 

The conclusions from the immunohistochemical studies, that inflammatory and 
regenerative pathways are involved in early stages of AD pathogenesis, are supported by data 
from gene expression microarray studies, in which the main categories of genes that were 
found upregulated in brains of incipient AD cases included genes encoding for regulators of 
cell proliferation and differentiation, cell adhesion molecules, complement factors and 
enzymes involved in prostaglandin synthesis [27,50].  

The present view is that the neuroinflammatory response in AD exerts both beneficial 
and deleterious effects [259,295]. This is not surprising because both elimination of 
pathogenic stimuli, such as the removal of fibrillar Aβ deposits, and tissue repair are essential 
characteristics of the inflammatory process. The close relationship between the inflammatory 
response and the aberrant neuroregenerative response with dystrophic neurites around the 
fibrillar Aβ is further illustrated by the results from immunization studies with either the Aβ 
peptide (active immunization) or anti-Aβ antibodies (passive immunization). Upon treatment 
of APP transgenic mice with anti-Aβ, Aβ plaques disappear and after three days a significant 
reduction is seen in the number and size of amyloid associated dystrophic neurites [39]. Post 
mortem examination of brain tissue of an AD patient who had been immunized with Aβ 
showed only very few Aβ plaques and plaque associated dystrophic neurites in extensive 
areas of the neocortex. On the other hand, densities of tangles, neuropil threads and amyloid 
angiopathy were similar to those in AD patients that were not treated [192]. Whereas 
inflammatory and neuroregenerative pathways are found to be closely related in Aβ plaque 
formation, it still remains elusive whether these processes are directly involved in widespread 
tau-neurodegeneration in AD brains [118].  

The process of amyloid formation is the final result of an imbalance between Aβ 
production and Aβ removal. In the autosomal dominant genetic forms of AD the initial 
pathogenetic event is increased Aβ1-42 production followed by the generation of different 
conformational Aβ species and the deposition of fibrillar Aβ deposits that elicit the 
neuroinflammatory response. However, in sporadic late-onset AD (LOAD) the increased 
brain levels of Aβ probably are the result of a disturbance in the Aβ removal systems. The 
role of inflammatory mediators on these Aβ removal systems are yet not fully understood, but 
as discussed earlier, there is increasing evidence that acute-phase proteins play an important 
role in the Aβ transport from the brain to blood and CSF. The levels of acute-phase proteins 
are strongly regulated by inflammatory mediators. If disturbances in the Aβ removal systems 
are indeed an initial and major pathogenic factor in the sporadic late-onset forms of AD, than 
the involvement of inflammation-related proteins, such as acute-phase proteins and its 
regulators, in Aβ transport and drainage implicates the view that inflammatory mechanisms 
can contribute to the etiology of this very common form of AD [69]. Epidemiological 
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findings from four different prospective case-cohort studies show that non-demented subjects 
with increased serum levels of certain acute-phase proteins are at risk of developing AD 
[63,77,239,298,299]. These epidemiological data support the idea that inflammation-related 
mechanisms could contribute to the multifactorial etiology of the sporadic late-onset form of 
AD. 

 
 

4. EARLY DIAGNOSIS OF AD 
 
The diagnosis AD is made by exclusion and based on clinical criteria, combined 

neuropsychological testing, the use of patient history, brain imaging and extended follow up. 
Techniques that are now used to recognize clinical phenotypic markers include magnetic 
resonance imaging (MRI) with which hippocampal and medial temporal lobe atrophy (MTA) 
can be seen, positron emission tomography (PET) imaging to visualize molecular changes as 
a result from hypometabolism and /or hypoperfusion in temperoparietal areas and to visualize 
amyloid deposits and activated microglia, as well as measurements of biomarker levels in 
cerebrospinal fluid (CSF).  

Although AD can be diagnosed with a relatively high sensitivity at expert academic 
research centers, a definite diagnosis can only be made upon post mortem examination of the 
brain.  

One of the problems encountered is, that pure AD is relatively uncommon, as was 
concluded from community based as well as clinico-neuropathological studies in which the 
diagnostic accuracy was neuropathologically confirmed [129,131,141,211]. In a retrospective 
clinico/pathological study including 1050 elderly demented, 62.9% of the cases was 
clinically diagnosed as probable-possible AD, whereas at autopsy, 86% of the cases had AD 
related pathology, of which 42.8 % were pure AD, 22.6 % AD and vascular lesions and 10.8 
% AD with Lewy body pathology [129]. In a large longitudinal community-based study, at 
autopsy cerebral microinfarcts, followed by AD and neocortical Lewy bodies were found to 
be predominant pathological correlates of dementia in an US suburban and urban elderly 
population [256]. 

Similar findings were obtained in a community based study in which 34 amnestic MCI 
cases, that progressed to clinical dementia were followed up prospectively. At autopsy the 
majority appeared to have progressed both clinically and pathologically to AD. However, 28 
of the 34 cases had complex neuropathologic findings including 2 or more distinct pathologic 
entities contributing to dementia. Argyrophilic grain disease was present in 53% of 34 
amnestic MCI cases, microvascular disease in 35%, and Lewy body disease in 26% of the 
cases [132]. However, the majority of community-dwelling older persons have brain 
pathology, and argyrophilic grain disease also occurs in 30% of aged controls. Therefore, it 
can be expected that also most AD and MCI cases at advanced age have secondary 
contributing pathologic abnormalities [132]. 

In contrast to advanced stages of the disease, that can be diagnosed with high certainty, 
reliable techniques that detect brain changes in the earliest stages of cognitive decline, so that 
people at risk can be identified and effects of drugs to stop or slow the progression of 
Alzheimer’s can be monitored, are still not available. The challenge is to distinguish 
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preclinical AD from changes of normal ageing or established AD. Mild cognitive impairment 
(MCI) is a clinical entity, describing patients with subjective and/or objective cognitive 
complaints and mild functional disabilities, but no dementia. MCI is considered to be a 
transitional state between normal ageing and dementia, but it is an aetiologically 
heterogeneous syndrome. Therefore, a correct prediction of MCI conversion to Alzheimer's 
disease (AD) represents a primary goal in the diagnosis of dementia.  

 
MRI 

 
The degree of hippocampal and medial temporal lobe atrophy (MTA) as seen on MRI is 

an early and sensitive marker for AD that presumably reflects neuronal loss in hippocampus 
and the temporal lobe and correlates with disease progression [232,285].  
 
Positron Emission Tomography (PET) 

 
Decreased glucose metabolism as detected with 2-fluoro-2-deoxy-d-glucose ([18F]-FDG) 

PET was shown to be sensitive and specific in detecting early stages of AD [247].  
PET, using radiotracers with high affinity for Aβ in plaques, such as the positron emitter 

C-11 labelled Pittsburgh compound B (PIB) [139], or the [F18]- radiofluorinated FDDNP 
[252], seem promising. In addition, the 11C-radiolabeled isoquinoline PK11195, that binds to 
peripheral benzodiazepine binding sites, is used to visualize microglial activation and 
clustering. Follow-up investigations of AD patients after one year demonstrated that the 
regional increase in PK11195 binding in the temporal lobe and hippocampus seen on PET 
scans preceded atrophy, as determined by MRI, in AD [45], which is in line with what can be 
observed immunohistochemically in post mortem brain slices [13,234,279,281].  
 
CSF 

 
Diagnostic markers for AD can be divided into two groups: state markers, reflecting the 

disease process, and stage markers, reflecting the severity of disease [29]. The biomarkers 
Aβ42, t-tau and p-tau are state markers, their levels are expected to be altered well in advance 
with respect to clinical symptoms and change little over time [35]. The imaging techniques 
can be used for differential diagnosis as well as for stageing disease progression.  

In summary, brain atrophy as determined by MRI and decreased glucose metabolism as 
seen with PET are not specific for AD (for review see [65]), neither are Aβ accumulation and 
microglial activation seen with PET and the CSF biomarkers Aβ and tau. For stage markers it 
is not problematic if they are not specific for the disease as long as their values correlate with 
disease advancement, and as long as the clinical diagnosis is firm. This implies that a 
combination of neuropsychological testing, imaging techniques, as well as selected 
biomarker profiles may improve early and specific diagnosis of AD and can be used for 
monitoring the course of AD and thus may be relevant to evaluating clinical trials. 
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5. CSF BIOMARKERS FOR AD  
 
In the NINCDS-ADRDA criteria which specify inclusion and exclusion criteria and three 

levels of confidence (possible, probable and, upon histopathological confirmation, definite) 
for diagnosis of AD, CSF examination was recommended to exclude vasculitis, other 
inflammatory diseases and demyelination as cause of dementia [178]. Because there is a 
considerable clinical and radiological overlap between early onset AD and FTLD, biomarkers 
may be useful for the differential diagnosis of early onset dementias, and of late onset 
dementias in an early stage. Midtemporal atrophy as seen on MRI and biomarkers are 
independently associated with the diagnosis AD, especially in young AD cases that have no 
signs of MTA [241]. Next to aid in the differential diagnosis, CSF analysis may also allow 
accurate, early diagnostics that enables the start of specific treatment or preventive measures 
before clinical signs become overt and irreversible damage is done. 

Alzheimer’s Disease is a multistage process (see Figure 2), and the design of treatment 
strategies will be aimed at specifically targetting certain stages. Therefore, there is a search 
for (bio)markers to more accurately than with clinical testing, determine the extent and stage 
of the disease process. This will allow prognosing the disease, and these markers can 
subsequently be used to monitor response to treatment, interfering with the specific processes 
assessed. In addition, a set of biomarkers, each specific for certain AD stages, can be 
compiled to monitor progression of AD. 

In the Consensus report on “Molecular and Biochemical Markers of Alzheimer’s 
Disease” published by a working group of the Ronald and Nancy Reagan research institute of 
the Alzheimer’s Association and the National Institute on Aging [1] a number of clinical 
properties that biomarkers for AD ideally should have, are summarised: 

 
1) Detect a fundamental feature of neuropathology  
2) High clinical sensitivity (>85%) and specificity (75-85 or more) to discriminate AD 

from other dementias  
3) Validated against neuropathologically confirmed cases 
4) Marker level reflects extent of disease 
5) Short half life to facilitate use as disease monitor 
6) Biomarker changes preceed other changes, e.g. imaging or symptoms  
7) Biomarker level sufficiently different from control to detect early, asymptomatic, 

disease 
Although these properties are required for a marker for (early) diagnostic purposes, and 

as a disease state marker as defined by Blennow and Hampel [29], stage markers or 
biomarkers to monitor response to treatment specifically targetting certain processes in AD 
pathogenesis, do not necessarily have to be AD specific. 
 
 
5.1. Existing Biomarkers Aβ, t-tau and p-tau 

 
Since Aβ plaques and hyperphosphorylation of the microtubule-assocated protein tau are 

pathological hallmarks of AD, the possibility to use CSF levels of these proteins as biomarker 
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was first investigated and specific tests detecting Aβ1-42, total tau (t-tau) and 
hyperphosphorylated tau (p-tau) in CSF were developed. CSF levels of Aβ and p-tau were 
shown to reflect the central pathogenic process of Aβ accumulation in plaques and of tau 
related neurodegenerative changes. However, the use of such determinations suffers from a 
lack of specificity. Whereas Aβ1-42 concentration in CSF of AD cases is low compared to 
controls, also decreased levels of Aβ1-42 are seen in DLB, FTLD and vascular dementia 
cases. Raised t-tau levels are also not specific for AD. Tau levels can also be increased in 
DLB and FTLD, and are very high in CJD.  

When Aβ1-42 and p-tau measurements are combined, AD can be discriminated from 
non-demented [120,241]. Moreover, MCI cases that will develop AD can be distinguished 
from those that will not progress with high sensitivity (>90%) and specificity (>85%) in 
follow-up studies [108,205], indicating the usefulness of CSF markers as diagnostic tool. 
Nevertheless, an optimal biomarker for AD, that has sufficient specificity and sensitivity as 
biomarker for individual subjects, still does not exist. This may partly be due to co-morbidity 
that cannot accurately be assessed upon clinical investigation, as was shown in combined 
clinicopathological (post mortem verification with immunohistochemistry) studies [129]. 

The biomarkers Aβ42, h-tau and p-tau are state markers that reflect the disease process. 
Therefore there is a search for new biomarkers, next to Aβ, tau and p-tau, not only for the 

diagnosis at the individual level, but especially for markers that reflect the disease stage and 
can be used for monitoring effects of therapeutics. 
 
5.2. Search for new Biomarkers for AD 

 
1. At DNA /RNA Level  

Mutations in the APP gene and in the presenilin 1 and 2 genes (APP, PSEN1, PSEN2), 
that are directly associated with the amyloid cascade, explain major part of the early onset 
AD families. Rare autosomal dominant mutations that are causative for early onset AD, are 
present in less than 5% of the Alzheimer's disease population.  

Late onset AD (LOAD) has a multifactor etiology, with more than 200 genes that are 
potentially associated with AD pathogenesis and neurodegeneration. 

Genotype-phenotype correlation studies and functional genomics studies have revealed 
the association of specific mutations in primary loci and/or APOE-related polymorphic 
variants with the age of onset, brain atrophy, cerebrovascular haemodynamics, brain 
bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism 
dyshomeostasis, and amyloid deposition in AD [42]. 

Polymorphism in Apolipoprotein E encoding gene (APOE) is up to now the only 
polymorphism that is highly replicably associated with the risk to develop LOAD. The 
epsilon4 allele of APOE represents a major risk factor for more than 40% of patients with 
dementia. 

Approaches to find new genes or polymorphisms in genes associated with AD are 
linkage studies and the search for polymorphisms in factors already known to be associated in 
various processes in the pathogenesis. Polymorphisms in IL1A, IL1B, IDE (insulin-degrading 
enzyme), SORL1 (a member of the LDL receptor family) and ACT genes, for example, have 
been reported to influence risk for AD, age of onset and modification of disease progression.  
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Another approach is the genome wide analysis to find factors that increase the hazard of 
developing AD, or to perfom DNA microarrays to identify changes in the brain of MCI cases, 
compared to controls and AD at the RNA level [206]. Gene expression profiling in AD 
hippocampus by DNA microarray showed overexpression of genes associated with 
inflammation (NF-κB, IL-1α, CCL20,complement factors C4A and C4B) as well as of ßAPP 
and COX-2, whereas a number of neurotrophic and transcription factors were downregulated 
[50].  

Because the human genome comprises only a limited number of genes, and those 
associated with the disease can only to some extent explain the susceptability for AD, 
modifications at the transcriptional, translational and post translational level probably are the 
major determinants. Therefore, comparison of gene and protein expression profiles may be 
the approach of choice.  

 
2. At Protein Level  

Protein biomarkers and patterns of protein biomarkers may provide potential for 
diagnostics, intelligent drug design and intervention monitoring. 

One approach is to identify disease biomarkers upon quantification of a global pattern of 
proteins and peptides in serum or CSF of AD and controls. The most used techniques for 
protein profiling and identification of potential markers are 2-D gel electrophoresis and the 
protein chip arrays on which bound proteins are detected by a mass spectrometer and 
identified (surface enhanced laser desorption ionization (SELDI)- time of flight (TOF) mass 
spectrometry (MS) system). SELDI-TOF MS allows rapid protein profiling as well as 
identification and characterization of novel protein biomarkers [206].  

Although these techniques are powerful protein profiling tools, they do not allow 
profiling of the whole proteome for potential biomarkers, and thus a combination of 
(complementary) techniques is necessary. However, when a specific question is if a specific 
isoform pattern is involved, there is no need to cover the whole proteome, and “focussed or 
targetted proteomics” may be used. 

Difficulties encountered with the identification of protein biomarkers for a disease in 
biological fluids are, that newly translated proteins are extensively modified (glycosylation, 
phosphorylation, proteolytic processing) which determines their functional activity, and that 
detection of many low abundant proteins in CSF and serum is hampered by the presence of 
highly anbundant proteins (albumin, immnoglobulins, beta-trace protein etc). Especially 
searching for plasma biomarkers for AD is hampered, because levels of proteins of interest 
are much lower in plasma than in CSF (blood brain barier), whereas the levels of high 
abundant proteins are much higher in plasma than CSF. 

To improve the detection of low-abundant proteins, methods (organic solvent 
precipitation, affinity dye based depletion, ultrafiltration, size-exclusion chromatography) are 
used to remove these proteins or only the high molecular weight proteins from the sample. 
Another approach is to enrich for the low-abundance proteins / peptides of interest in CSF or 
serum by immunoprecipitation (IP) or affinity chromatography. The selective capturing of a 
specific protein/peptide with antibodies in combination with mass spectrometry (IP-MS) is 
most used, however also a class of proteins, such as phospho-proteins can be captured. An 
advantage of this technique over depletion of high abundant proteins is, that with depletion, 
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the peptides/proteins of interest may be lost, when these are associated with the high 
abundant carrier proteins. Even, in a recent study the binding of various factors to albumin 
was used to analyze the albumin enriched low molecular weight proteome in serum, which 
resulted in the identification of three peptides/proteins as potential biomarkers [98]. 

Most proteomic studies to identify biomarkers for AD have used an unbiased approach 
using 2D- gels and MALDI TOF (matrix-assisted laser desorption/ionisation- time of flight), 
or searched for specific markers with SELDI-TOF MS. Stable isotope labeling is now also 
applied to detect and identify proteins that are expressed differently in AD and controls 
[2,313]. 

By now (see the elegant and comprehensive overview on biomarker discovery in 
neurodegenerative diseases by Zetterberg et al [309]) in a large number of studies, a number 
of factors that are either up- or downregulated or of which certain isoforms or splice products 
are detectable, have been reported. These include different N-truncated Aβ forms, as well as 
different isoforms of apoE and apoA and complement factors (see Tabel 1).  

Of interest is that with use of a combination of techniques (separation of serum proteins 
with LC and 2D-gels and identification with MALDI TOF and ion-trap MS) several 
inflammation related proteins, including protein factors C4 and C3 and factor H, a cofactor 
for inactivation of activated C3, are found upregulated in serum of AD compared to controls 
[121,314]. Polymorphism (Y402H) in Factor H has been associated with age-related macular 
degeneration, and recently also with AD [310], the pathologies of which are both associated 
with Aβ deposition [133] and APOE polymorphism [16].  

Using the SELDI TOF approach 15 biomarkers could be selected from CSF that could 
distinguish between patients with stable MCI and patients with MCI who progressed to AD. 
Regression analysis was used to determine the best combination of markers for distinguishing 
AD from CTL. The resulting multi marker model consisted of Cystatin C, N-terminally 
truncated cystatin C, Aβ1-40, C3a anaphylatoxin des-Arg) and an unidentified 4,0 kD peak, 
combined with ELISA data for Aβ1-42 and Tau [248]. Interestingly, this set contains some 
factors (cystatin C and complement activation products) already known from 
immunohistochemical and animal model studies to be of interest. 

The approach chosen, at least in part, seems to determine the kind of biomarkers 
evolving from the search. For example, the combination of 2-D gels and MS in one study 
yielded five proteins differentially-expressed in AD and controls. Apo A-1, cathepsin D and 
transthyretin (TTR), were significantly reduced in AD, whereas hemopexin (HPX) and two 
pigment epithelium-derived factor (PEDF) isoforms were increased in AD CSF [47]. 

In another study, 2-D difference gel electrophoresis (2-D DIGE) was used to identify 
candidate markers differentially-expressed in individual CSF samples from subjects with very 
mild dementia (believed to be clinically due to AD) and controls after depletion of high-
abundant proteins, yielded 11 spots. Upon identification by MS/MS Cystatin C, 
Prostaglandin D2 synthase, β2-microglobulin, GP-39 cartilage protein and thioredoxin were 
found to be increased, and 1β-glycoprotein decreased in the very mild demented group [119]. 
Differences between the latter studies may be due to the different stage of the disease process 
(mild demented versus advanced AD stage), or to the technical approach. Removal of 
abundant proteins may also lead to loss of factors of interest that may co-precipitate or co-
purify with these proteins.  
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Limitations of 2-D gels are, that only a limited number of spots can be matched across a 
large number of gels / images, due to inconsistency of the 2-D gel methods resulting in image 
artifacts, such as inadequate resolution, vertical and horizontal streaking, and particularly, 
local geometric distortions. Intrinsic to the 2-DE-based methodology is the separation of 
multiple isoforms for each protein, which implies that changes in abundance for a protein 
spot do not necessarily correlate with the change in total abundance of the corresponding 
protein [119]. The application of orthogonal methodologies, such as ICAT and the newly 
developed ITRAQ (i.e. an amine-reactive isobaric tagging reagent-based protein 
quantification method) [2,313] may prove to be the most powerful discovery approach for 
AD biomarkers [119].  

 
 

6. WHICH NEUROINFLAMMATION RELATED FACTORS CAN BE 

DETECTED IN CSF? 
 
Most inflammation related and also amyloid associated factors can be detected in CSF. 

However, often conflicting results are reported as to whether certain factors are upregulated, 
identical or downregulated compared to their levels in CSF samples of controls. An overview 
of neuroinflammation related factors in CSF is presented in Table 1.  
 
6.1. Cytokines 

 
Although many conflicting reports have appeared, the majority of studies report no 

differences in CSF cytokine levels between AD and controls (Table 1). A reason for this may 
be that in many studies the AD group was compared with other neurological disease groups, 
because of the lack of proper controls [268]. In a more recent study, CSF levels of IL-6 were 
reported to be higher in AD than controls, but not to differ between AD and vascular 
dementia (VD). On the other hand, IL-2 in CSF was not statistically different among the three 
groups [130] and CSF IL-1β has repeatedly been reported to be below detection limits 
[130,266]. Whereas CSF IL-12 was found reduced in AD as well as in patients with AD as 
well as vascular pathology in one study [220], in another study CSF levels of IL-12 (p70 
heterodimer and total IL-12 p40 chain), interferon (IFN)-gamma and IL-10 did not differ 
between probable AD, controls and cases with VD or Parkinson's disease (PD) [228], 
illustrating the difficulties encountered when using cytokines as biomarker. However, 
whereas CSF levels of most cytokines cannot be used to differentiate dementias, they may be 
of use for monitoring therapeutic effects of, especially anti-inflammatory, drugs.  

An exception may be TNFα. CSF levels of TNFα were higher in AD than in controls, 
and lower than in VD [130]. Furthermore, a TNFα 308 A/G polymorphism is associated with 
an earlier age of onset of AD [162]. CSF TNFα was also found to be higher in MCI cases, 
especially in those that at follow up had progressed to AD [264]. This suggests that TNFα, 
that has been implicated as a modulator of synaptic activity and long term potentation, is 
associated with the progression from MCI to AD. Interestingly, in a recent study perispinal 
administration of etanercept to probable AD patients improved their cognitive function 
[269,270]. Etanercept is a fusion protein composed of domains of the TNF receptor fused to 
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the Fc part of IgG1, that is used as TNFα inhibitor for treatment of rheumatoid arthritis. 
Although the study in AD patients was an open-label study, and the findings need to be 
replicated in randomized, placebo-controlled clinical studies, these findings suggest that 
lowering CSF TNFα levels may reverse the cognitive decline to some extent and at least 
temporarily.  

 
Table 1. Possible markers for AD: inflammation related and/or amyloid associated 

proteins 
CSF Serum 
Detection method Detection method 

FAMILY / 
PROTEIN 

REGULATION 

AD VS 
CTL Immuno- 

assay 
Proteo-
mics 

Other Immuno-
assay 

Proteo-
mics 

Other 

Complement        
C1q - [253]      
 = [189]    [37]  
C3 (b/c) +      [100] 
 =  [82]    [147,209] 
C3a des Arg +  [248]*     
 = [163]      
C4(b/c) +  [82]    [100] 
 =      [147,209] 
C4a des Arg +  [248]     
C4bp = [271]   [271]   
Factor H =  [82]     
 +     [121]  
Pentraxins        
Serum 
amyloid P 

+ [110]      

 -    [198]   
 = [136,189, 

284] 
     

C-reactive 
protein 

+    [64,103,157
,307] 

  

 =    [55,154]   
Protease 
inhibitors 

       

ACT 
 

+ [58,109,156
, 193] 
 

 [152,1
74] 

[58,87,112, 
154,156,15
7,193,289] 
 

 [9,12,40, 
173,174, 
203] 
 

 = [59,146,212
] 

  [146,212]  [143,143] 

AAT + [193] [216]  [168] [306] [100,292] 
 -  [246]     
 = [59] [140]  [155,156, 

193] 
 [12,173] 

Neuroserpin + [193]      
Cytokines/ 
Chemokine
s 

       

TNF-α 
 

+ [265]   [10,32,81, 
317] 

  

 - [221]    [218] [11,43] 
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Table 1. (Continued)  
 

CSF Serum 
Detection method Detection method 

FAMILY / 
PROTEIN 

REGULATION 

AD VS 
CTL Immuno- 

assay 
Proteo-
mics 

Other Immuno-
assay 

Proteo-
mics 

Other 

 = [28,76,94, 
146] 

  [56,146,305]   

IL-1β + [31]  [44] [157,317]  [11,219] 
 -      [233] 
 = [146,265] 

[76,171,212] 
  [56,146,212,

265,305] 
 [24,44, 

164] 
Cytokines/ 
Chemokine
s 

       

IL-6 + [31,130,171]   [167,249]   
 - [300]   [221]   
 = [15,76,94, 

107,146,172,
221] 

  [15,31,32,14
6,317] 

  

TGF-β +    [170]  [48] 
 -     [184]  
 =    [223]   
MCP-1 + [89-91]      
 -      [122] 
 = [28]   [88]**[89, 

91] 
  

IP-10 + [89,91]      
 = [90]**   [89,91,92]   
Apo 
lipoprotein
s 

       

ApoE + [86,161, 
181,267] 

[246]   [263]  

 - [111,149] [54,216] [30,14
5,251] 

   

 = [62,148,182, 
185,226,286] 

[104] [190] [85,226,238]   

ApoJ + [194] [246]     
 -  [216]     
 = [160]      

Listed are references describing the detection of various inflammation related factors in either CSF or 
serum / plasma of AD cases and non-demented controls. Indicated is, if the levels of respective factors 
are increased (+), decreased (-) or equal (=) in AD CSF or serum / plasma compared to that of controls, 
in either conventional immunoassays (i.e. ELISA, RIA), proteomics (i.e. 2-DGE; SELDI-TOF-MS), or 
other techniques.  
* in MCI patients who progressed to AD; ** in severe AD patients, however elevated in patients with 
mildly impaired AD. 

 
CSF levels of the anti-inflammatory cytokine transforming growth factor (TGF)- β1, a 

regulator of brain responses to inflammation and injury, are consistently found to be 
increased in AD cases compared to controls [228,308]. Interestingly, in a follow up study 
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with MCI cases, those that progressed to AD had lower levels of TGF-β1 at baseline than 
controls or non-progressors, suggesting a propensity to a pro-inflammatory state at the time 
of progression from MCI to AD [264] that in later stages is restored by upregulation of TGF-
β1 levels. This would fit with the ideas emerging from the immunohistochemical studies in 
post mortem brain, where the inflammatory state associated with microglial activation seems 
to subside beyond the Braak IV stage of moderate AD (Figure 2).  

 
6.2. Chemokines 

 
Chemokines and chemokine receptors comprise a large number of molecules implicated 

in a wide range of physiological and pathological functions. Because of its induction or 
upregulation during CNS pathologies, members of the chemokine system might be useful as 
biomarkers. Especially IP-10 (interferon--inducible protein 10), may be a candidate, since 
CSF IP-10 is significantly increased in patients with MCI and mild AD, compared to 
controls, but not in patients with severe AD (Mini-Mental State Examination score <15). In 
contrast, MCP-1 and IL-8 CSF levels are increased in MCI as well as in different stages of 
AD, and correlate with age, whereas IP-10 levels do not [90]. CSF levels of MCP-1 increase 
with age in all groups, but do not distinguish AD patients from healthy controls in other 
studies [28,91]. Combined, these findings indicate that IP-10 may be used as a stage marker 
for AD progression [90]. MCP-1 and IL-8 may be of limited use as CSF biomarker. 

 
 

6.3. Amyloid Associated Factors  
 
A number of amyloid associated factors can be detected in CSF, amongst others 

complement factors and acute phase proteins. In a recent study both CSF (median 3.2 and 2.3 
μg/L) and serum (median 1.6 and 0.9 mg/L) C-reactive protein (CRP) levels were 
significantly higher in MCI compared to AD patients (p < 0.01), especially in those MCI 
cases with a low risk AD profile (Aβ42 >495 pg/ml and T-tau < 356 pg/ml or P-tau < 54 
pg/ml). Neither ACT nor IL-6, CSF and serum levels differed significantly between MCI and 
AD patients. MCI patients with a low-risk CSF profile also had higher CSF IL-6 levels, 
which suggests that in stages before CSF Aβ42 and tau profiles change, inflammatory 
processes are already ongoing and detectable in CSF [243]. Our current studies now focuss 
on the early changes in MCI cases with CSF Aβ and tau levels within the normal range. 

Another study reported higher ACT levels in CSF of AD cases compared to controls, 
although also higher levels were seen in Lewy body dementia (DLB). Higher CSF levels of 
ACT, but not of α1-Antitrypsin (AAT) or neuroserpin, correlated with lower scores upon 
mini mental state examination (MMSE) in AD [193]. Neuroserpin is a tPA inhibitor found 
co-localized with neurites in Aβ plaques in AD [137]. Neuroserpin CSF levels are higher in 
AD compared to controls and DLB cases [193]. Whereas higher CSF levels of ACT 
correlated with lower MMSE scores in the AD, higher levels of CSF AAT correlate with 
lower MMSE scores in the DLB group, which suggests that different members of the serpin 
(serine protease inhibitor) family may have different association with cognitive function 
depending on the type of dementia. Despite these differences, CSF serpin levels do not 
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improve the diagnostic classification of AD versus dementia with Lewy bodies. A logistic 
regression model based on CSF ACT, neuroserpin, and Aβ1-42 discriminates AD patients 
from controls with a sensitivity of 94.7% and a specificity of 77.8% [193], which is 
comparable in sensitivity and specificity to the standard markers Aβ42 and tau. 
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Figure 1. Immunohistochemical distribution of various inflammation related factors, the chemokine 
receptor CCR1, as well as of activated microglia and hyperphosphorylated tau in morphologically 
distiguished cerebral Aß plaque types. Complement activation products C3d and C4d, the 
apolipoproteins J and E and the serine protease inhibitot ACT are found in all types of Aß deposits, 
including very diffuse types, consisting of non- to low-fibrillar Aß, where no glial activation or neuritic 
changes are apparent. Another serine protease inhibitor, neuroserpin, [137] and the chemokine receptor 
CCR1 [105] co-localize with dystrophic neurites in fibrillar Aß plaques. Combined these 
immunohistochemical data suggest that accumulation of different inflammation related, amyoid 
associated factors relates to the degree of fibril density of the Aß deposits and seems to precede the 
appearance of clusters of activated microglia and neuronal, tau- related changes. (Adapted from 
Veerhuis et al., Current Drug Targets (2005)). 
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CSF levels of the amyloid associated factors C1q and SAP have also been investigated 
for use as biomarker for AD, because these factors are associated with early stages of Aβ 
plaque development (Figure 1) and enhance the Aβ mediated activation of microglia in vitro 
[281]. C1q levels in CSF were reported to be reduced in AD patients (N=45), as compared to 
a heterogeneous group of controls (N=10) (p=0.02). Moreover there was a strong correlation 
between MMSE score and CSF C1q levels in AD patients [253]. 
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Figure 2. Pathological cascade in AD isocortex. In the early stage of pathology (Braak score I-II) high 
levels cell cycle proteins in neurons are observed in the temporal cortex of post mortem human brain 
tissue. Involvement of extracellular or intracellular oligomeric Aβ in these changes seen in Braak stages 
I and II still remains elusive. The increased activation of the UPR in neuronal cells in the next stage 
(Braak score III-IV) is likely due to the presence of oligomeric or low fibrillar forms of Aβ. Diffuse Aβ 
deposits that are decorated with various factors (amyloid associated factors) are also observed.in this 
stage. The next stage (Braak IV-V) is characterized by the increased presence of neuroinflammation and 
activated microglial cells associated with fibrillar Aβ deposits. The last stage (Braak V-VI) is 
characterised by the presence of neurofibrillary tangles. (adapted from Hoozemans et al., 2006 and 
Eikelenboom et al., 2006 [71,118]). 

In a previous study we [189] found no significant differences in CSF levels of C1q, as 
well as for SAP, between well characterized AD patient and non-demented control groups 
(N=20 each). Furthermore, we could not demonstrate a correlation between C1q and SAP 
CSF levels and the severity of the disease, expressed in MMSE scores. It was therefore 
concluded that C1q and SAP are not suitable as biomarker for AD diagnosis and progression 
[189]. 
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Recently, we again investigated the potential of SAP as biomarker in a cross-sectional 
study with 30 controls, 144 AD patients and 67 MCI cases. No differences between the three 
groups were observed, confirming our earlier study, However, at follow up (2-3 years) the 
MCI patient group could be devided in those that had progressed to AD (progressors), and 
those that had remained stable (non-progressors). In this longitudinal part of the study, MCI 
patients who did not progress to AD had significant higher CSF SAP levels in comparison to 
progressors (median 20 and 13 mg/L; p< 0.05). After correction for sex, age and MMSE, low 
SAP levels were associated with a two-fold increased risk of progression to AD (Hazard ratio 
(HR)=2.2, 95% CI (0.9 ; 4.6)), which suggests that SAP may serve as CSF biomarker to 
distinguish progressors from non-progressors [284].  

As outlined in paragraph 3 the overall neurodegerative process in AD is also marked by 
neuroregenerative processes. Thus, even in more progressed stages of the disease it may be 
advantageous to have markers that indicate synaptic loss and axonal damage, and those that 
are a measure for regenerative processes, especially if approaches to enhance regeneration 
become available and will have to be monitored [250]. As such GAP-43 may be a candidate, 
since in AD the rise in GAP-43 and sAPP CSF levels were modest compared to that of tau. 
Nevertheless, CSF levels of GAP-43, tau and sAPP were highly correlated in AD, indicative 
for involvement in a common process despite their different location. GAP-43, tau and sAPP 
are found in axons, whereas GAP-43 and sAPP are also present in synapses.  

This could indicate that, whereas during neurodegenation all three factors are released 
during axonal damage, GAP-43 and sAPP are utilized in neuritic outgrowth and synaptic 
remodelling, resulting in modestly increased or normal GAP-43 and sAPP CSF levels in 
contrast to increased CSF tau levels [250].  

Another example of using biomarkers for staging of AD is the measurement of 
prostaglandins, especially prostaglandin E2 (PGE2). As described in paragraph 3, COX-2 
expression is seen in early stages of AD in neuronal cells, and declines with further 
progression [114,117]. In a longitudinal study with probable AD cases (N=33; 26 autopsy 
confirmed) and controls (N=35), PGE2 was found to vary with disease stage. PGE2 levels 
were high in patients, when patient’s short term memory scores were just below those of 
controls, but were low in later stages of AD [51]. Patients with early symptoms but with 
initial learning scores still in the normal range (before subsequent progression to dementia), 
had significant higher PGE2 levels than controls. Patients with higher initial PGE2 levels 
survived longer, which could implicate that either early inflammatory processes are 
beneficial, or that greater survival of COX-2 positive neurons is reflected by higher levels of 
PGE2 in CSF [51]. Although the contribution of microglia and neuronal cells cannot be 
dissected in this study, and specificity has to be determined, PGE2 CSF levels seem to have 
predictive value for AD. 

 
 

6.4. Isoprostanes 
 
Unlike prostaglandines, which derive from enzymatic processing of arachidonic acid, 

isoprostanes result from non-enzymatic, free radical mediated peroxidation of arachidonic 
acid in membrane phospholipids. Although isoprostanes derived from arachidonic acid 
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(C20:4) are the best characterized, many other polyunsaturated fatty acids can form 
isoprostanes. Peroxidation of docosahexaenoic acid (C22:6), which is abundant in brain, can 
lead to formation of F4-isoprostanes or neuroprostanes, and of D4- and E4-isoprostanes. 
Although other markers of oxidative stress have been studied in AD, most studies have 
focused on the the F2-isoprostanes [268].  

Isoprostanes are markers of oxidative stress and involved as mediators of oxidant injury 
in a number of neurodegenerative disorders including AD. Isoprostanes can be detected in 
plasma, CSF and urine, and the CSF levels are increased in MCI and AD [215]. The 
combined determination of t-tau, Aβ1-42 and F2α-isoprostane CSF levels significantly added 
to the correct diagnosis of AD [102]. As diagnostic marker isoprostanes lack specificity. 
However, they may be useful as marker for progression to dementia, as was shown in a 
longitudinal study. CSF Aß and (P)-tau levels remained more or less constant, whereas 
isoprostane levels (8,12-iso-iPF2α-VI) increased in MCI cases that progressed to AD during 
the 2-year follow-up [41]. 

 
 

7. WHICH NEUROINFLAMMATION RELATED FACTORS CAN BE 

DETECTED IN SERUM AND PLASMA? 
 
Clinical studies on inflammatory markers in serum of AD report conflicting results.  
In general, cytokine levels are either below detection levels or yield conflicting results 

(see Table 2; reviews [130,268]). Especially serum IL-10, and IL-1β levels are below 
detection limits of currently used tests. 

Similar drawbacks apply to chemokines. CSF levels of IP-10 are higher in MCI cases 
compared to controls and decline upon progression to AD, which suggests its usefulness as a 
stage marker [90]. However, in plasma no differences in serum levels of IP-10, and also IL-8 
and MCP-1, between AD, MCI and controls can be detected [89]. 

Only a few studies on CRP in serum have been published [154], whereas several studies 
regarding IL-6 and ACT have been performed, most of which demonstrate increased IL-6 or 
ACT levels in serum [9,112,153,157,158,249]. Recently, a few longitudinal population-based 
studies showed an association between the inflammatory markers CRP, IL-6 and ACT and 
cognitive decline, many years before onset of dementia [63,239,299].  

Lower serum SAP levels were found in AD compared to controls [198], but this finding 
could not be repeated by others. Cognitively impared centenerians, were found (rocket 
immuno-electrophoresis) to have higher levels of SAP in serum than gender-matched controls 
[201]. Interestingly, levels of precursor form of SAP was found to be increased in plasma 
from AD cases in a proteomics study [121]. In a recent study [284] serum levels of SAP 
could, however, not discriminate AD from MCI and control cases. 

Recent studies have indicated that possibly other serum markers can also be used for AD 
diagnostics and stageing. Cystatin C levels were found to be reduced in AD patients 
compared to controls [49] and complement factor H as well as A2M serum levels are raised 
in AD compared to controls [121]. Also, surfactant protein-D (SP-D) levels were found to 
correlate with development of dementia in a follow-up study [200]. 
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Whether systemic markers of inflammation can be used to predict the risk for cognitive 
decline in old age was studied in a combined study in two independent population-based 
cohort studies with a follow up of approximately 5 years. In the Rotterdam part of the study 
with individuals of mean age 72 (N=3874), higher levels of CRP and IL-6 were cross-
sectionally associated with worse global cognition and executive function. ACT in plasma 
was not associated with cognitive function. In the Leiden part of the study with individuals 
over 85 years (N= 491), a similar association for CRP was found, and higher IL-6 levels were 
related to a steeper annual decline in memory function in the longitudinal analysis. 

Combined data from the two studies indicated that plasma levels of CRP, IL-6, and ACT 
were only moderately associated with cognitive function and decline and tended to be 
stronger in carriers of the APOE epsilon4 allele. It was concluded that systemic markers of 
inflammation are not suitable for risk stratification [242]. 

Remarkably, several groups have found that plasma ACT levels are elevated in AD 
patients compared with controls, and correlate with cognitive performances as assessed by 
the mini mental state examination in AD patients. Our own prospective studies in elderly 
indicate that plasma ACT levels constitute a risk marker for cognitive decline [63]. These 
studies not only emphasize the importance of ACT in the pathogenesis of AD, but also 
suggest that intracerebral levels correlate with plasma levels of ACT.  

 
 

8. FUTURE OF BIOMARKERS FOR AD 
 
The existing CSF biomarkers Aβ42, tau and p-tau are related to AD pathofysiology, and 

are currently being used in a clinical setting to aid the diagnosis of AD. Limitations are, that 
variations in CSF biomarker levels are multifactorial, and rely on adequate sampling, storage 
and can vary with different tests used and between different centers. Standardization of the 
sampling, storage, handling conditions (of case as well as control groups) and of (pre-
analytical) laboratory methods between research centers, as well as the use of external 
controls, may render combinations of the CSF biomarkers Aβ42, tau and p-tau useful for 
(early) diagnosis of AD, in combination with clinical examnation and imaging techniques. 

 
 

8.1. New Techniques to Identify Markers 
 
Most proteomic studies to identify new biomarkers for AD have used an unbiased 

approach using 2D- gels and MALDI TOF (matrix-assisted laser desorption/ionisation- time 
of flight), or searched for specific markers with SELDI-TOF MS. Stable isotope labeling is 
now also applied to detect and identify proteins that are expressed differently in AD and 
controls. 

Data from different proteomics studies are often hard to compare, because of differences 
in experimental set-ups and analytical platforms used. Therefore guidance documents to 
facilitate data comparison, exchange and verification within proteomics will be developed by 
the human Proteome Organization (HUPO). Special attention within the Proteomics Standard 
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Initiative will be paid to how to validate the protein identifications from a proteomic 
experiment. Possibly this will reduce the number of valse positive reports [309].  

 
 
8.2. Development of new Tests in Urine and Blood 

 
Although the urine is more remote from the brain, the urine may be better suited for 

metabolomics than plasma because of low levels or the absence of disturbing high-abundant 
proteins.  

For plasma tests more sensitive markers need to be identified. Markers for diagnostics, 
but especially for tracking progression of disease (esp MCI stage) and for monitoring 
therapeutic efficacy.  

Sampling and handling conditions will depend on the type of assay. Aß and tau 
measurements, or determination of inflammatory markers in immunoassays, or the use of 
proteomics approach will probably require different protocollized conditions.  

Serum IL-6, IL-10, IL-1β are around or below detection limits of current tests. An 
alternative to this may be to culture peripheral blood mononuclear cells (PBMCs), stimulate 
these with LPS or Aβ and measure cytokine levels. PBMCs isolated from subjects with mild 
cognitive impairment (MCI) and mild AD subjects who have progressed from MCI can be 
compared. Care should be taken when choosing the type of stimulus, since the type of 
stimulation, phytohemagglutinin (PHA) or lipopolysaccharide (LPS), influences the outcome.  

A significant increase in the levels of IL-6, IL-8, and IL-10 produced by PBMCs 
stimulated for 24 h with PHA in MCI subjects was found, compared to healthy elderly 
controls. However, in PBMCs stimulated for 48 h with LPS, lower TNF-α/IL-10, IL-6/IL-10, 
and IL-8/IL-10 ratios were seen in MCI subjects using flow cytometry. 

Nevertheless, these data suggest that changes in cytokine production by PBMCs may be 
detected early in MCI, and an alteration of the immune response may precede clinical AD 
[169].  

Up to now no single marker has proven to be sufficient .Comparative proteomics has 
revealed that patterns of change of a set of proteins may yield a better test for AD [47].  

Multiple isoforms of proteins can be detected in CSF and plasma. The different isoforms 
probably result from post-translational modifications. Different isoforms of the complement 
proteins C3b, C4b, factor B and factor H can be detected in CSF on 2D-gels and were 
confirmed with MS [82]. Despite the relatively small groups tested, patients with AD, 
multiple scleroses and Parkinson disease all showed more than one complement isoform with 
a significant change (p<0.05) compared to controls.  

However, the patterns in expression levels differed. In Parkinson disease CSF samples a 
large number of changed isoforms are present at low expression levels, whereas in AD only 
two isoforms of C4b were changed compared to controls. Therefore, when searching for 
disease biomarkers, measuring the expression level of individual protein isoforms in addition 
to the total protein expression level may improve the diagnostic utility of the protein [82].  

Recently an array like assay was described with which in a high throughput system 120 
known neuroinflammation-related, signalling proteins were measured in 259 plasma 
specimens of all stages of AD. Using predictive analysis of microarrays 18 proteins were 
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identified in pattern analysis. These included the cytokines (IL-1α, IL-3, IL-11, TNF-α), 
chemokines (CXCL-8, CCL5, CCL7, CCL15, CCL18), adhesion factors (ICAM-1), growth 
factors (ANG-2, IGF-BP6, PDGF-BB, EGF, GDNF, M-CSF, G-CSF), as well apoptosis 
related factors (TRAIL-R4). With this set 89% agreement with clinical diagnosis could be 
obtained from plasma samples [218]. Since future biomarker tests preferably would be 
performed with easily accessable body fluids, these results obtained in plasma may pave the 
way for multi-marker tests to be used in future. 

 
 

9. CONCLUSIONS 
 
The biomarkers that currently are being used in a clinical setting for diagnosis of AD, are 

the CSF biomarkers Aβ42, tau and p-tau, that are related to AD pathofysiology. 
Limitations are, that variations in CSF biomarker levels are multifactorial, and the data 

obtained with different tests and in different centers vary. Because of the overlap between 
AD and other dementias, and the high percentage of concomitant pathologies, the accuracy of 
the diagnostic markers will remain suboptimal. Despite inter- and intra- individual as well as 
inter- and intra-assay variations of these CSF biomarkers, combinations of CSF biomarkers 
Aβ42, tau and p-tau, especially when standardized with external controls, are useful for the 
clinical diagnosis of AD, in combination with clinical examination and imaging techniques. 

Plasma markers are not necessarily related to the pathofysiology. However, measurement 
requires extra technology because levels of brain derived proteins are low compared to blood 
borne or liver derived proteins.  

Gene arrays have yielded over 1600 differentially expressed genes, that may be candidate 
markers. Future approaches that may be fruitful, may include comparing genetic profiles with 
transcriptomics / proteomics. 

Inflammation is involved in various, especially early steps of AD pathogenesis. Since 
there is a need for early diagnostic markers for AD and certain amyloid associated factors are 
very early expressed and associated with glial activation in early stages of plaque 
development, some may be biomarkers for AD, especially to distinguish individuals with 
age-related memory deficits from individuals (patients) at the earliest AD stage, that 
clinically and with imaging techniques do not yet differ. The majority of inflammation related 
factors is not specific for AD pathogenesis. Nevertheless some of these may be suited as 
stagemarker to judge the progression of the disease and to evaluate the effect of treatment.  

The development of stagemarkers is becoming increasingly important as diagnostic 
approaches aimed at different steps in the pathogenic cascade leading to full-blown AD may 
become available. These can then also be used for monitoring of therapeutic effects. In 
addition to this, it now also becomes apparent that a combination of inflammation related 
markers can be used for (early) diagnostics. 

This is illustrated by the results of a study by Nielsen et al [193] in which combination of 
measuring ACT, neuroserpin and Aβ in CSF was equally sensitive as Aβ and tau 
measurement in discriminating AD from control. Moreover, even in plasma measurement of a 
combination of 18 inflammation related markers was found to diagnose AD with high 
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sensitivity [218]. This indicates that, especially when tested in combinations, inflammatory 
markers reflect early stages AD, and that these changes are even detectable in plasma. 
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ABSTRACT 
 

In the last years, leukocytes have been used under different methodological 
approaches to increase diagnostic accuracy of Alzheimer’s disease (AD) and to identify 
subjects with a clinical diagnosis of mild cognitive impairment (MCI) who will progress 
to clinical AD. 

CD36, a scavenger receptor of class B (SR-B), is expressed on microglia and binds 
to βA fibrils in vitro, playing a key role in the proinflammatory events associated with 
AD.  

Recently, we have shown that leukocyte expression of CD36 was significantly 
reduced vs controls in both AD and MCI patients, while in young and old controls there 
were no CD36-age-related changes. 

Reportedly, incidence and prevalence of AD are higher in postmenopausal women 
than in aged matched men. Since at menopause the endocrine system and other biological 
paradigms undergo substantial changes we have evaluated whether (and how) the 
balance between some hormonal parameters allegedly neuroprotective (e.g. related to 
estrogen and dehydroepiandrosterone) and others considered pro-neurotoxic (e.g. related 
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to glucocorticoids and interleukin-6) vary during lifespan in either normalcy or 
neurodegenerative disorders. 

Along with this aim, we have investigated the gene expression of estrogen receptors 
(ERs), glucocorticoid receptors (HGRs), interleukin-6 (IL-6) and CD36 in a wide 
population of healthy subjects (20-91 yr-old) and AD patients (65-89 yr-old) of either 
sex. 

In women, at menopausal transition, some changes occurred that may predispose to 
neurodegeneration: in particular: 1) an up-regulation of ERs, and a concomitant increase 
of IL-6 gene expression, events likely due to the loss of the inhibitory control exerted by 
estradiol; 2) an increase of HGRα:HGRβ ratio, indicative of an augmented cortisol 
activity on HGRα not sufficiently counteracted by the inhibitory HGRβ function; 3) a 
reduced CD36 expression, directly related to the increased cortisol activity and, 4) an 
augmented plasma cortisol:DHEAS ratio, unanimously recognized as an unfavorable 
prognostic index for the risk of neurodegeneration. 

Although preliminary, these data would indicate that assessment of leukocyte CD36 
expression represents a useful tool to support the diagnosis of AD and to screen MCI 
patients candidates for the disease. Moreover, CD36 could be an important biomarker of 
the unfavorable biological milieu that predisposes women to an increased risk of 
neurodegeneration at menopausal transition. The higher prevalence of AD in the female 
population would rest, at least in part, on the presence of favoring biological risk factors, 
whose contribution to the development of the disease occurs only in the presence of 
possible age-dependent triggers, such as βA deposition. 
 
 

1. ALZHEIMER’S DISEASE: NOT SIMPLY A BRAIN DISEASE 
 
Considerable evidence suggests that in patients with Alzheimer’s disease (AD) changes 

occur not only in the brain, but in peripheral tissues as well. AD is generally considered a 
central nervous system (CNS) disorder, but numerous biological alterations in tissues outside 
the CNS have been reportedly associated with the disease. These peripheral abnormalities 
occur in platelets (Cattabeni et al., 2004), red blood cells (Gibson and Huang, 2002), 
leukocytes (Leuner et al., 2007), skin fibroblasts (Lanni et al., 2007) and peripheral vessels 
(Khalil et al., 2007), just to name a few, representing for researchers readily accessible tissues 
where to study potential markers of AD. Changes in peripheral tissues mimicking those 
occurring in the CNS would imply that biochemical alterations in the brain are not secondary 
to neurodegeneration, but rather reflect intrinsic cell abnormalities triggering, in turn, the 
neurodegenerative process (Borroni et al., 2007). 

Limitations on the use of post-mortem brain for the study of cellular mechanisms 
underscore the need to develop human tissue models representative of the pathophysiological 
processes that characterize AD. The use of peripheral tissues derived from AD patients, could 
complement studies of autopsy samples and provide a useful tool with which to investigate 
such dynamic processes as cell transduction, ionic homeostasis, oxidative metabolism, and 
processing of amyloid precursor protein (APP) (Gasparini et al., 1998).  

Moreover, peripheral cells as well as body fluids (plasma, CSF) as tools. to predict or at 
least to confirm a diagnosis, may be of great importance, since drugs endowed with disease-
arresting effects have their best efficacy in the early (or even preclinical) phase of the disease, 
when synaptic and neuronal losses have yet to become too widespread (Ward, 2007). For 
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example, there is ongoing research in the development of new disease-modifying or disease-
arresting drugs for Alzheimer’s disease (i.e., β-sheet breakers or β- and γ-secretase inhibitors) 
(Giacobini and Becker, 2007). Were these drugs effective, evaluation of biomarkers would be 
useful for prompting an early therapeutic intervention. 

Finally, presence of replicable AD-specific changes in extra-CNS tissues would also be 
important for the development of new therapeutic strategies and, ultimately, for determining 
the prognosis in a single patient (Schott et al., 2007). 

 
 
2. BIOCHEMICAL MARKERS AS RISK INDICATORS FOR 

ALZHEIMER’S DISEASE 
 
Currently, the diagnosis of Alzheimer's disease (AD) is a clinical diagnosis, focusing on 

the exclusion of other causes of senile dementia (McKhann et al., 1984; American Psychiatric 
Association, 2000). Diagnosis by exclusion, however, is frustrating for both physicians and 
patients, and there has been considerable research interest in identifying an inclusive 
laboratory test for AD (Dubois et al., 2007). Abnormal levels in CSF of the tau protein and of 
an amyloid beta (βA) peptide, such as βA-42, have been found in patients with AD, and thus 
these two proteins have been investigated for their diagnostic utility (Arai et al., 1995; 
Sunderland et al., 2003; Steinerman, 2007). Subsequently, other biochemical markers (such 
as measures of oxidative stress and metabolism or expression of specific genes) have been 
characterized in the peripheral cells of AD patients (Behl, 2005; Leuner et al., 2007). More 
recently, experimental studies have suggested that inflammation plays a major role in the 
pathogenesis of AD and inflammatory biomarkers such as interleukin 1 (IL-1) and tumour 
necrosis factor α (TNF-α) have also been proposed as risk markers of AD in older individuals 
(Rosenberg, 2005). Despite a great deal of research work, however, until now none of these 
indices has proven to be of diagnostic value, and few have been replicated in different 
laboratories. 

Nevertheless, search of biomarkers continues unabated to distinguish early AD from 
other causes of cognitive impairment such as normal aging, vascular dementia or alcohol-
related cognitive disorders. In particular, these studies in patients with incoming AD are 
challenging because of the long delay before clinical expression of the disease, and the 
possibility that patients with unrecognised early disease may escape the diagnosis. 

Experimental studies have suggested that biomarkers could also be useful for connoting a 
subgroup of patients with mild cognitive impairment (MCI), but at high risk of developing 
AD (see below). It is important to identify MCI patients as early as possible, since in the 
earlier phases of AD the interventional therapy would have the greatest potential to delay 
disease progression. At present, however, only few factors have proven to be related to a 
more rapid progression from MCI to AD (Chong et al., 2006; Modrego, 2006). 
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3. CD36: A POSSIBLE BIOMARKER OF ALZHEIMER’S 

DISEASE 
 

3.1. Structure and Function of CD36.  
 
As already mentioned, in the last decade, search for biological and hormonal markers of 

dementia expressed in easily accessible tissues has been intensified. This has led to identify 
several molecules, whose diagnostic potential is now under investigation. Among them, it 
seems particularly promising CD36, a multifunction protein belonging to the family of the 
class B scavenger receptors (Abumrad et al., 1993; Acton et al., 1996; Febbraio et al., 2001). 
CD36 is an integral membrane protein found on the surface of many cells in vertebrates and 
is also known as FAT, SCARB3, GP88, glycoprotein IV (gpIV) and glycoprotein IIIb 
(gpIIIb). CD36 binds many ligands including collagen (Frieda et al., 1995; Kashiwagi et al., 
1995; Tandon et al., 1989; Yamamoto et al., 1994), thrombospondin (Ren et al., 1995; Savill 
et al., 1992; Silverstein et al., 1989), erythrocytes parasitized by Plasmodium falciparum 
(Oquendo et al., 1989), native and oxidized lipoproteins (Matsumoto et al., 2000; Endemann 
et al., 1998; Nozaki et al., 1995; Puente-Navazo et al., 1996), oxidized phospholipids and 
long-chain fatty acids (Baillie et al., 1996). In many tissues, CD36 also binds growth 
hormone-secretagogues (GHS), a class of synthetic compounds endowed with endocrine and 
extraendocrine activities (Muccioli et al., 2007). 

Recent studies performed in genetically modified rodents have identified a clear role for 
CD36 in fatty acid and glucose metabolism, heart disease, sense of taste, and dietary fat 
processing in the intestine (Glazier et al., 2002; Trigatti et al., 2004; Laugerette et al., 2005; 
Sclafani et al., 2007). 

The nucleotide sequence of the human cDNA predicts a protein of 471 amino acids and a 
molecular weight of 53 kDa (Armesilla and Vega, 1994). The protein is heavily N-linked 
glycosylated, a modification that may provide proteins of this family some protection from 
degradation in proteinase-rich environments, such as the lysosome and areas of inflammation 
or tissue damage (Oquendo et al., 1989). In the carboxy-terminal segment of CD36 there is a 
region of 27 hydrophobic amino acids corresponding to a transmembrane domain (Armesilla 
and Vega, 1994). The amino-terminal has an uncleaved signal peptide, which is probably a 
second membrane-spanning domain (Armesilla et al,, 1996). The predicted structure orients 
most of the protein extra-cellularly, except for two short (9-13 amino acids) cytoplasmic tails 
which can be palmitoylated. CD36 has been proposed to have “horseshoe-like” membrane 
topologies with short N - and C - terminal cytoplasmic domains, adjacent to N- and C-
terminal transmembrane domains, and the bulk of the protein in a heavily N-glycosylated, 
disulfide-containing extracellular loop (Krieger, 2001) (Figure 1). This topology is supported 
by transfection experiments in cultured cells using deletion mutants of CD36. Unlike the 
topology and the proposed structure of transmembrane α-helices, scarce information is 
available on the secondary structure of the extracellular loop. 

Besides glycosylation, additional posttranslational modifications have been reported for 
CD36. Disulfide linkages between 4 of the 6 cysteine residues in the extracellular loop are 
required for efficient intracellular processing and transport of CD36 to the plasma membrane 
(Rasmussen et al., 1998). CD36 is also posttranslationally modified with 4 palmitoyl chains, 
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two of which are located on the intracellular domains (Greenwalt et al., 1992). The function 
of these lipid modifications is currently unknown but they likely promote the association of 
CD36 with the membrane and possibly lipid rafts, which appear to be important for some 
CD36 functions. 

 

 

Figure 1. Structure of CD36, which has been proposed to have “horseshoe-like” membrane topologies 
with short N - and C - terminal cytoplasmic domains, adjacent to N- and C-terminal transmembrane 
domains, and the bulk of the protein in a heavily N-glycosylated, disulfide-containing extracellular 
loop. Modified from Krieger, 2001. 

CD36 is found on platelets, erythrocytes, leukocytes (monocytes), differentiated 
adipocytes, mammary epithelial cells, spleen cells and some skin microdermal endothelial 
cells (Rac et al., 2007). 

The CD36 gene is located on the long arm of chromosome 7 at band 11.2 (7q11.2) and is 
encoded by 15 exons that extend over more than 32 kilo bases (Fernandez-Ruiz et al., 1993). 
Both the 5' and the 3' untranslated regions contain introns: two on the 5' and one on the 3'. 
The predicted cytoplasmic and transmembrane regions, found at the terminal ends of the 
polypeptide chain, are encoded by single exons and the extracellular domain is encoded by 
11 exons. Alternative splicing of the untranslated regions gives rise to at least two mRNA 
species (Rac et al., 2007). 

The transcription initiation site of the CD36 gene has been mapped to 289 nucleotides 
upstream from the translational start codon and a TATA box and several putative cis 
regulatory regions lie further 5' (Tang et al., 1994). A binding site for PEBP2/CBF factors has 
been identified between -158 and - 90 and disruption of this site reduces expression 
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(Armesilla et al., 1996). The gene is under the transcriptional control of the nuclear receptor 
PPARγ-RXR (peroxisome proliferator-activated receptor γ - retinoic-X-receptor) and gene 
expression can be up regulated using synthetic and natural ligands for PPARγ-RXR, 
including the thiazolidinediones (a class of anti-diabetic drugs) and the vitamin A metabolite 
9-cis-retinoic acid (Matsumoto et al., 2000; Nicholson and Hajjar, 2004; Nicholson, 2004; 
Sato et al., 2002). 

CD36 is involved in adherence of platelets, but it also participates in the adherence of 
infected erythrocytes to the vascular endothelium. It is well known, in fact, that erythrocytes 
containing the mature form of the malaria parasite Plasmodium Falciparum are sequestered 
by microvascular endothelial cells and that CD36 plays a major role on this phenomenon. 
Several lines of evidence suggest that mutations in CD36 may be protective against malaria: 
mutations involving the promoter regions, introns and exon 5, reduce the risk of severe 
malaria. Genetic studies have suggested that there has been a positive selection on this gene, 
likely due to the malarial selection pressure (Serghides et al., 2003; Sherman et al., 2003). 

Besides CD36, the class B scavenger receptor superfamily also includes receptors for 
selective cholesteryl ester uptake, scavenger receptor class B type I (SR-BI), and lysosomal 
integral membrane protein II (LIMP-II) (Crombie and Silverstein, 1998). On the macrophage 
surface CD36 is part of a non opsonic receptor (the scavenger receptor CD36/alphaV beta3 
complex) and is involved in phagocytosis. CD36 also participates to the phenomena of 
hemostasis and thrombosis, inflammation, lipid metabolism and atherogenesis (Febbraio et 
al., 2001) (Table 1). 

 
Table 1. Ligands of the CD36 receptor and the related type of cells in which the binding 

has been (directly or indirectly) tested 
 

Ligand  Type of cells 
Thrombospondin Monocytes, platelets, some cancer cells  
Erythrocytes infected with Plasmodium 
Falciparum 

Monocytes, endothelial cells, some 
cancer cells  

Collagen  Platelets  
Apoptotic cells  Macrophages  
Oxidized LDL (oxLDL)  Macrophages, monocytes  
Long-chain fatty acid Endothelial cells, adipocytes, platelets  
β-amyloid Macrophages, monocytes, microglia 
Growth hormone secretagogues (GHS) Myocardial tissue 

The list of cell types is not exhaustive and mentions only the most studied ones. 
 
 

3.2. Role of CD36 in Alzheimer’s Disease 
 
Experimental studies suggest that inflammation plays a fundamental role in the 

pathogenesis of AD. Post-mortem studies of the brain in AD patients demonstrate the 
presence of acute-phase reactants, including C-reactive protein (CRP), proinflammatory 
cytokines, and activated complement cascade proteins, in the senile plaques and 
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neurofibrillary tangles. Proinflammatory cytokines alter the expression and processing of 
APP, and fibrillar βA in turn promotes the production of proinflammatory cytokines by 
microglial and monocytic cell lines (Heneka and O'Banion, 2007). IL-1 also increases 
neuronal tau phosphorylation and activates astrocytes (Tanji et al., 2003). Among the more 
noteworthy observations, polymorphism of some inflammatory genes, including IL-1, IL-6 
and TNF-α, has been associated with an increased risk of developing AD, thus indirectly 
involving inflammatory responses in the pathogenesis of the disease (Serretti et al., 2007). 

Central to the hypothesis that a chronic inflammatory response to βA underlies the 
neurodegenerative pathology is the observation that accumulation of inflammatory microglia 
in AD senile plaques is a hallmark of the innate response to βA fibrils and can initiate and 
propagate neurodegeneration characteristics of AD (Frautschy et al., 1998). 

Microglial cells are the resident tissue macrophages of the central nervous system. They 
express various receptors known to bind fibrillar βA under normal and pathological 
circumstances. These receptors include scavenger receptor type A (SR-A), type B (SR-BI), 
CD36, and others (Alarcòn et al., 2005). The molecular mechanism whereby fibrillar βA 
activates the inflammatory response has not been fully elucidated, but it seems likely that 
CD36 plays a key role in this phenomenon. In fact, it has been demonstrated that CD36 
mediates the binding of βA to plasma membranes, thus participating to the direct toxicity of 
βA on neurons, and the activation of a local inflammation phase involving microglia 
(Husemann et al., 2001; Verdier and Penke, 2004). On the contrary, microglia and 
macrophages, isolated from CD36 null mice, had marked reductions in fibrillar βA-induced 
secretion of cytokines, chemokines, and reactive oxygen species. Moreover, stereotaxic 
intracerebral injection of fibrillar βA in CD36 null mice induced significantly less 
macrophage and microglial recruitment into the brain than in wild-type mice (El Khoury et 
al., 2003). Finally, antagonists of CD36 inhibited the adhesion of monocytes (Bamberger et 
al., 2003) and the production of oxygen reactive species in response to βA fibrils (Coraci et 
al., 2002). 

CD36 is involved in microglial activation trough βA binding, with the subsequent 
recruitment of Src family tyrosine kinases (Fyn, Lyn and Syk kinases) (Ho et al., 2005). ERK 
and MAPK pathways are then activated, which induces proinflammatory gene expression and 
leads to the production of cytokines and chemokines. These molecules may then contribute to 
synaptic damage and loss, while TNF-α can induce neuronal apoptosis and injury. The 
production of interleukins and other cytokines and chemokines also may lead to microglial 
activation, astrogliosis, and further secretion of proinflammatory molecules and βA, thus 
perpetuating the cascade (Zhu et al., 2002). Simultaneously, direct neuronal injury from 
amyloid-induced signalling also contributes to neurodegeneration (Ho et al., 2005). 
Interruption of this signalling cascade, through targeted disruption of Src kinases downstream 
of CD36, inhibits macrophage inflammatory responses to βA, including reactive oxygen and 
chemokine production, and results in decreased recruitment of microglia to sites of amyloid 
deposition in vivo (Moore et al., 2002). 

CD36 is present in the parietal cortex as well as in the cerebellum of the control and AD 
brains, and it has been shown that scavenger receptors are involved in the uptake of 
oxidatively modified lipoproteins and βA protein complexed with apoE (Strittmatter, 2001; 
Coraci et al., 2002; Srivastava and Jain, 2002). 
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Microglia reportedly expresses CD36 (Husemann et al., 2001; Bamberger et al., 2003). 
In neonatal microglia CD36 promotes endocytosis of βA in suspension, and adhesion of 
microglia to fibrillar βA-containing surfaces (Alarcón et al., 2005). Microglial CD36 
expression is enhanced in AD patients compared to age-matched control individuals (Coraci 
et al., 2002) and similar findings are present in the brains of transgenic mice expressing a 
mutated form of the human APP (APP23), which develop an AD-like pathology (unpublished 
data). 

 
 

4. PERIPHERAL LEUKOCYTES: READILY ACCESSIBLE “SPY 

CELLS” OF BRAIN CHANGES OCCURRING IN ALZHEIMER’S 

DISEASE 
 
Recently, criteria for an “ideal biomarker” of AD have been proposed. Among them, is 

fundamental the capacity to discriminate AD from controls, and to distinguish AD from non-
AD dementia. 

Peripheral leukocytes express many molecules and multiple receptors, which undergo the 
same regulatory mechanisms as those operative in the brain (Hori et al., 1991; Kim and 
Vellis, 2005). Thus, these easily accessible cells may be used as a tool to investigate changes 
occurring in inaccessible brain areas. Moreover, peripheral leukocytes are useful also for 
discovering mechanisms that underlie the multiple changes in cell signalling pathways that 
accompany AD. 

Different lines of evidence support the use of leukocytes as peripheral indicators of AD. 
Cumulative damages to DNA probably contribute to progressive neuronal loss in AD, since 
unrepaired DNA damage can trigger the programmed cell death (Praticò, 2005). Recently, 
investigations looking at the pathogenetic role of oxidative DNA damage in AD have been 
performed in non-neuronal tissues, such as circulating cells (leukocytes and lymphocytes), 
and increased levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA 
damage, have been observed in leukocytes of AD and MCI patients (Mecocci et al., 1997). 

Other authors reported that AD lymphocytes primed with IL-2 accumulated significantly 
higher numbers of apoptotic cells, compared to control lymphocytes or lymphocytes obtained 
from patients with vascular dementia (Eckert et al., 2001a). In addition, lymphocytes derived 
from presenilin-1 (PS1) transgenic mice (a valid experimental model of AD) showed an 
increased sensitivity to apoptotic stimuli (Eckert et al., 2001b). Thus, peripheral lymphocytes 
could represent a reliable indicator of neuronal changes occurring in AD patients, although 
with the caveat that lymphocytes derived from healthy elderly subjects also would show an 
increased susceptibility to apoptotic stimuli (Schindowski et al., 2000). 

Telomeres, the repeated sequences that cap chromosome ends, undergo shortening with 
each cell division and therefore serve as markers of the cell's division history (Allsopp et al., 
1992). Significant differences in telomeres length have been observed in T cells from AD 
patients vs. healthy controls and it has been demonstrated that this pattern correlates with 
disease status (Panossian et al., 2003). 
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Various studies suggest that alterations of the immune profile are associated with AD 
progression. In this context, cytokine release from LPS-stimulated leukocytes has been 
investigated in AD patients. Reportedly, a significant decrease of IL-1β, IL-6, and TNF-α 
secretion was observed in severely demented patients, but not in patients with mild or 
moderate cognitive impairment. Thus, secretion of IL-1β, IL-6 and TNF-α seems to be 
negatively correlated with the severity of dementia (Sala et al., 2003). In accordance with the 
inflammatory hypothesis of AD, the activity of nitric oxide synthase (NOS) appears increased 
in leukocytes from demented patients (De Servi et al., 2002). Spontaneous production of 
cytokines by peripheral blood mononuclear cells was found associated with the risk of 
incoming AD also in the cohort population of the Framingham Study (Tan et al., 2007). 

Cell-cycle dysregulation might be critically involved in the process of brain 
neurodegeneration. In accordance with this hypothesis, peripheral blood lymphocytes from 
AD patients stimulated with mitogenic compounds were less able to express CD69 (an early 
proliferation marker) than cells obtained from age-matched healthy controls. More 
interestingly, the expression of CD69 inversely correlated with the MMSE score, i.e. with the 
severity of AD (Stieler et al., 2001). These results suggest that systemic failure of the control 
mechanisms of cellular proliferation might be of critical importance for the pathogenesis of 
AD and that peripheral leukocytes may represent a useful tool to study this phenomenon. 

 
 

5. CD36, A POSSIBLE TOOL TO PREDICT THE PROGRESSION 

OF MCI TO AD 
 
An increasing number of studies indicates that AD is typically preceded by a prodromal 

phase known as mild cognitive impairment (MCI) (Flicker et al., 1991; Petersen, 1995). MCI 
is a multifactorial clinical entity, whose amnestic form, within a 4-year period, is associated 
with up to a 50% probability of progression to symptomatic AD (Dawe et al., 1992; Shah et 
al., 2000; Morris et al., 2001). 

Based on the aforementioned premises and the biological functions of CD36, we 
investigated the expression of CD36 in leukocytes from AD and MCI patients, comparing the 
results to those of young and older age-matched healthy subjects (Giunta et al., 2007b). 

Leukocyte expression of CD36 was significantly reduced versus controls in both AD and 
MCI patients, while in young and old controls there were no age-related changes. Hence, 
these data indicate that the reduction of CD36 expression in leukocytes is a disease-related 
phenomenon, occurring since the early stages of AD. This very interesting finding has the 
potential for developing a clinical screen for individuals prone to develop AD. 

No correlations were found in AD patients between leukocyte expression of CD36 and 
duration of the disease or MMSE score, which is not surprising on recalling, for analogy that 
also senile plaques do not correlate with the progression and the severity of the cognitive 
impairment (Arriagada et al., 1992). It cannot be ruled out, however, that a more lengthy 
duration of AD might have unravel such correlation. 

As reported above, CD36, besides being expressed in different cerebral areas of AD 
patients, also participates to the inflammatory response induced by βA. Thus, its involvement 
in the neuropathological progression of AD may be suggested. Along this line, CD36 



Antonello E. Rigamonti, Sara M. Bonomo, Marialuisa Giunta et al. 220 

expression in the brain of AD patients might reflect a “reactive” response aimed at removing 
βA deposits, delaying the formation of senile plaques, the neurodegenerative process and, 
ultimately, development of AD. However, irrespective of the mechanisms underlying the 
reduction of leukocyte CD36 expression in AD and MCI patients – which would be 
propaedeutic to ensuing entrance of monocyte/macrophage CD36 positive cells into the brain 
parenchyma (Schlageter et al., 1987) – this earlier event may represent an useful, non-
invasive biochemical marker for identifying MCI patients prone to develop AD. Obviously, 
these preliminary results should be broadened by recruiting a wider cohort of MCI patients in 
whom to also measure prospectively CD36 protein levels, and then follow MCI progression 
toward AD (Figure 2). 
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Figure 2. Leukocyte expression of CD36 in AD and MCI patients and in old and young control 
subjects. Vertical bars indicate mean + SEM. *P < 0,05 vs. YOUNG and OLD. 

 
6. EVALUATION OF LEUKOCYTE BIOMARKERS WOULD 

INDICATE THAT MENOPAUSAL TRANSITION IS A POSSIBLE 

RISK FACTOR FOR NEURODEGENERATIVE EVENTS 
 
As the age distribution of the population shifts toward an increase, the dementing 

disorders, especially AD, are emerging as a major worldwide health problem. To ameliorate 
the comprehension of the pathogenetic events underlying neurodegeneration, many 
prevalence studies on dementia and AD have been conducted in various population 
subgroups. In particular, the effects of gender have been investigated. Although conflicting 
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data have been reported (Nilsson, 1984; Brayne et al., 1995), most of the studies support a 
higher prevalence and incidence of AD in women, even after adjusting for their different 
survival (Bachman et al., 1992; 1993; Gao et al., 1998). This has obviously focused the 
attention on the role of female hormones, e.g. estrogens (and progestins) whose production 
dramatically decreases at menopause. 

The role of estrogens in AD has been investigated in a variety of in vivo and in vitro 
models. These studies have shown estrogens to be potent neuroprotective agents. In fact, they 
(a) augment the cerebral blood flow in the hippocampus and temporal lobe, two brain areas 
involved in the early pathological changes of AD (Maki and Resnick, 2000; 2001); (b) exert 
neurotrophic actions on different neuronal populations (Gibbs and Aggarwal, 1998; Leranth 
et al, 2000; Granholm et al, 2002; 2003; McEwen, 2002); (c) decrease cholesterol levels and 
modulate the expression of the gene encoding apolipoprotein E (ApoE) (Brinton et al, 2000; 
Lambert et al, 2004); (d) prevent the formation of βA fibrils and protect the cells against their 
cytotoxic effects (Thomas and Rhodin, 2000; Granholm et al, 2003); (e) inhibit the chronic 
inflammatory reaction that has a pathogenetic role in AD (Thomas and Rhodin, 2000), and (f) 
induce the synthesis of thioredoxin, a multifunctional protein endowed with antioxidant and 
neuroprotective actions (Chiueh et al, 2003). Inferential support to the protective role of 
estrogens in AD rests on the observation that cognitive function is improved by hormone 
replacement therapy (HRT) in postmenopausal women (Phillips and Sherwin, 1992; Jacobs et 
al., 1998). 

Despite this large body of evidence, other studies have denied the alleged protective role 
of estrogens, leaving the problem unsettled (den Heijer et al, 2003; Shumaker et al, 2003; 
2004; Espeland et al, 2004). In this context, the Women’s Health Initiative Memory Study 
(WHIMS), a wide randomized placebo-controlled clinical trial for HRT in postmenopausal 
women, has recently shown that in women with an average age of 63 yr at entry, HRT 
increases the risk of probable dementia (Shumaker et al, 2003; 2004), and hypothesized that 
the negative effect may be related to the HRT-induced increased risk of stroke, standing the 
strong relationship existing between microinfarcts in the brain and susceptibility to AD 
(Shumaker et al, 2003; 2004). For a thorough discussion, see Turgeon et al., 2006. 

With these disparate findings in mind, different authors have hypothesized the existence 
of a “critical temporal window”, likely coincident with the menopausal transition, within 
which the estrogens manifest their positive effects and over which, instead, they become 
detrimental (Kesslak, 2002; Zandi et al, 2002; Smith and Levin-Allerhand, 2003). Along this 
line, it is noteworthy that in postmenopausal women the reduction of the risk of dementia is 
related to the previous and not the current use of estrogens (Zandi et al, 2002). 

Among elderly, and particularly in AD patients, a disrupted hypothalamo-pituitary-
adrenal function may also play a role in neurodegeneration (Murialdo et al., 2001). Higher 
glucocorticoid levels, in fact, may alter the function of hippocampal neurons and glial cells, 
rendering these elements more vulnerable to metabolic insults, such as hypoglycaemia and 
hypoxia. They also cause synaptic disruption and are involved in neuronal cell death 
(Sapolsky et al., 1991; Müller, 2001). 

These premises, dictated the study of the leukocyte expression of some biological 
parameters in a large group (n=209) of normal non-dementing subjects (aged 19-92 yrs) and 
AD patients of either sex (n=85),(aged 65-96 yrs), the aim being that of evaluating how the 
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balance between potential neuroprotective/neurotoxic influences varies across life-span 
(Bonomo et al., 2008). Our attention focused at first on the expression of estrogen (ERα, 
ERβ) and glucocorticoid (HGRα, HGRβ) receptors and the production of IL-6, a 
proinflammatory molecule likely involved in the pathogenesis of AD (Papassotiropoulos et 
al. 2001). Results were compared to the leukocyte expression of CD36 and related to the 
circulating levels of estrogens, cortisol, and dehydroepiandrosterone sulfate (DHEAS).  

 
Table 2. Correlation among the biological parameters investigated in women (panel A) 

and men (panel B) 
 

A. Women 
 Age ERα ERβ HGRα HGRβ CD36 IL-6 E2 Cortisol DHEAS 
Age --- No No No No No No R2=0.56 

P<0.05 
No R2=0.52 

P<0.05 
ERα No --- R2=0.39 

P<0.05 
No No No R2=0.36 

P<0.05 
No No No 

ERβ No R2=0.39 
P<0.05 

--- No No No R2=0.50 
P<0.05 

No No No 

HGRα No No No --- R2=0.40 
P<0.05 

R2=0.84 
P<0.01 

No No No No 

HGRα No No No R2=0.40 
P<0.05 

--- R2=0.52 
P<0.05 

No No No No 

CD36 No No No R2=0.84 
P<0.01 

R2=0.52 
P<0.05 

--- No No No No 

IL-6 No R2=0.36 
P<0.05 

R2=0.50 
P<0.05 

No No No --- No No No 

E2 R2=0.57 
P<0.05 

No No No No No No --- No No 

Cortisol No No No No No No No No --- No 
DHEAS R2=0.52 

P<0.05 
No No No No No No No No --- 

B. Men 
 Age ERα ERβ HGRα HGRβ CD36 IL-6 E2 Cortisol DHEAS 
Age --- No No No No No No No No R2=0.48 

P<0.05 
ERα No --- R2=0.54 

P<0.05 
No No No R2=0.54 

P<0.05 
No No No 

ERβ No R2=0.54 
P<0.05 

--- No No No R2=0.59 
P<0.05 

No No No 

HGRα No No No --- R2=0.36 
P<0.05 

R2=0.76 
P<0.01 

No No No No 

HGRβ No No No R2=0.36 
P<0.05 

--- R2=0.49 
P<0.05 

No No No No 

CD36 No No No R2=0.76 
P<0.01 

R2=0.49 
P<0.05 

--- No No No No 

IL-6 No R2=0.54 
P<0.05 

R2=0.59 
P<0.05 

No No No --- No No No 

E2 No No No No No No No --- No No 
Cortisol No No No No No No No No --- No 
DHEAS R2=0.48 

P<0.05 
No No No No No No No No --- 
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In this study, none of the biological parameters investigated was related to age, except 
for the plasma levels of estrogens in women and DHEAS in either sex (negative correlation) 
(Table 2). In addition, most of the potentially neurotoxic alterations found in the 
perimenopausal period were absent in the very old healthy individuals. This, inferentially, 
would confirm the view that the higher prevalence of AD in the older population (Gao et al., 
1998) is not a direct effect of age per se. More likely, it depends, instead, from the presence 
of favoring risk factors whose contribution to the development of the disease occurs only in 
the presence of possible age-dependent triggers. This view also is supported by the 
recognition that among very old individuals the prevalence of AD seems to level off or even 
decline (Ritchie and Kildea, 1995). Possible triggers encompass well-characterized mutations 
in either the βA precursor protein or presenilins 1 and 2 (Hoenicka, 2006), oxidative stress 
(Onyango and Khan, 2006), metal ion dysregulation (Bush, 2003) and inflammation (Wyss-
Coray, 2006). However, the simple perturbation of these elements in cell or animal models 
does not result per se in the multiplicity of biochemical and cellular changes found in the 
disease. For instance, there is little to no neuronal loss in transgenic rodent models that 
overexpress mutant βA precursor protein, despite large depositions of βA protein 
(Sankaranarayanan, 2006). 

 
 

6.1. Estrogen Receptors  
 
The higher prevalence of AD reportedly present in postmenopausal women (Bachman et 

al. 1992; 1993) led us to consider estrogen deprivation as a putative favoring risk factor in the 
female population. Consistent with this view, in our study menopausal transition, which 
resulted in a sudden failure of the hypothalamic-pituitary-gonadal axis, up-regulated the 
leukocyte expression of the ERs, likely due to the loss of the estrogen ligand. Similar 
phenomena have already been described: estrogen down-regulated ERs in a rat pituitary cell 
line (Schreihofer et al., 2000) and, conversely, estrogen deficiency up-regulated ERs in the 
brain of hypogonadal mice (Chakraborty et al, 2005). Surprisingly, in the older age groups 
the leukocyte expression of both ERα and ERβ was similar to those of younger subjects, 
despite the persistent reduction of plasma estrogen levels. Though information on the 
regulation of ERs at menopause is scarce, it can be argued that several factors may account 
for this phenomenon. First, many tissues synthesize estrogens from androgens and use them 
in a paracrine or autocrine fashion (Nelson and Bulun, 2001; Simpson, 2003). This was 
clearly documented in breast tumors from postmenopausal women, in which intra-tumor 
estradiol levels are similar to those in premenopausal women, despite much lower plasma 
estrogens at menopause (Metha et al., 1987; Santner et al., 1993). It has also been shown that 
the decreased ER at postmenopause is associated with the reduced DHEAS production 
(Meza-Munoz et al., 2006). Finally, during menopause a significant decrease in the 
percentage of ER positive monocytes occurs (Ben-Hur et al., 1995, and see also below), 
which also may contribute to the reduced ER expression in the late postmenopausal period. 

In men the expression of both ERα and ERβ was rather uniform and also circulating 
levels of estradiol were rather stable. This is likely due to the preserved pool of testosterone 
in men, which undergoes aromatisation to estrogens also in advanced age (Vermeulen et al., 
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2002). That leukocyte ER expression in AD patients was similar to that found in age- and 
sex-matched control subjects would deny a direct relationship between this parameter and the 
disease (Figure 3). 
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Figure 3. Leukocyte expression of ERα (white bars) and ERβ (stripped bars) in male (panel A) and 
female (panel B) healthy subjects and AD patients. Healthy subjects were divided according to age 
(decades) and gender, whereas AD patients were not separated in age groups. Representative blots for 
ERα and ERβ are shown. ERα: α-estrogen receptor; ERβ: β-estrogen receptor; AD: Alzheimer’s 
Disease; GAPDH: glyceraldehyde-3-phosphate dehydrogenase. 
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Figure 4. Plasma concentrations of estradiol (white bars) and estrone (stripped bars) in male (panel A) 
and female (panel B) healthy subjects and AD patients. See legend of Figure 3 for further details. 

 
6.2. Interleukin 6 

 
The widespread presence of ERs in multiple cell types of the immune system and their 

participation to the inflammatory response is remarkable. ERα and, in some cases, ERβ are 
present in front line immune and cytokine-producing cells, such as macrophages and 
microglia, and activated ERs have been shown in vitro to affect release of proinflammatory 
cytokines from these cells and to interfere with the action of cytokines (Mor et al., 1999; 
Pfeilschifter et al., 2002; Salem, 2004). For instance, estrogens inhibit the production of IL-6 
(Gordon et al., 2001), a multifunctional cytokine involved in flogistic processes in the CNS, 
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which also plays a pathogenetic role in AD (Papassotiropoulos et al., 2001). In our study, 
leukocyte IL-6 expression peaked in 51-60 yr-old women, whereas in men it remained 
constant over time. In this context, an interesting feature is the direct correlation found in 
either sex between ERs and IL-6 gene expression. These findings would confirm that 
estrogens are important to maintain under inhibitory control IL-6 production and so to 
prevent tissue damage. Hence, during menopausal transition, the abrupt fall of estrogens may 
predispose to an excessive CNS inflammatory response induced by triggers, such as βA 
deposition (Figure 4). 

In AD patients, instead, IL-6 expression was lower than in age-matched non-dementing 
subjects. It is tempting to speculate that this occurred for the progressive loss of cytokine-
producing cells induced by cortisol (see below) and/or by other factors, such as the reduced 
expression of CD36, which is essential for the release of many proinflammatory agents, 
including cytokines and reactive oxygen species (Coraci et al. 2002). 

 
6.3. Glucocorticoid Receptors 

 
The neuropathological hallmarks of AD are very prominent in the hippocampus, a brain 

area pivotal to the regulation of the hypothalamic-pituitary-adrenal (HPA) system. An age-
related dysregulation of the HPA axis is well recognised in animals, in which steroid 
detrimental effects on cognition may occur via the hippocampus, a major site of 
corticosteroid action, and an important structure involved in learning and memory (Muller, 
2001; Miller and O'Callaghan, 2005). 
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Figure 5. Ratio of leukocyte expressions of HGRα:HGRβ in male (white bars) and female (stripped 
bars) healthy subjects and AD patients. Representative blots for HGRα and HGRβ are shown. 
HGRα:HGRβ: ratio between α- and β-glucorticoid receptors. See legend of Figure 3 for further details. 
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HGRs are member of the nuclear hormone receptor superfamily of ligand-activated 
transcription factors. Among the many variants of HGRs, the HGRα isoform was recognized 
as the classical HGR and the primary mediator of glucocorticoid actions (Yudt and 
Cidlowski, 2002). The HGRβ isoform – generated through alternative splicing and 
transcriptionally inactive – is unable to bind agonists or antagonists and has a dominant 
negative effect on HGRα-mediated transactivation. HGRβ is physiologically important, since 
it attenuates the HGRα response and would dampen an excessive increase of the 
glucocorticoid actions (Bamberger et al., 1995). Hence, it is impossible to correctly appraise 
the activity of glucocorticoids disregarding interactions between the two receptor isoforms. 
Accordingly, in our study calculating the ratio HGRα:HGRβ expression, as a dynamic index 
of global glucocorticoid activity, it emerged that in women the ratio increased during the 
menopausal transition, likely, to signify that this critical phase of the female life also is driven 
by an hyper-activity of cortisol and, likely, by an exacerbation of its pro-neurotoxic effects. 
Such changes would not be dependent on changes in the production of adrenal steroids, at 
least based only on the morning plasma cortisol levels, which were constant through life in 
either sex. More likely, the alterations present in women at menopausal transition were due to 
a prevalent reduction of HGRβ-positive leukocytes, as described in cultured HGR-positive 
hippocampal neurons, whose absolute number decreased following exposure to elevated 
cortisol concentrations (Packan and Sapolsky, 1990) (Figure 5). 

 
 

6.4. CD36 
 
The most interesting data was the observation that in women, starting from the 

menopausal transition, the expression of CD36 fell and became similar to that present in AD 
patients. Recalling that a direct correlation occurred in either sex between CD36 and HGRs 
expression, it is conceivable that an excessive cortisol activity caused a loss of CD36-positive 
cells. Were this also occurring in the brain, the most likely consequence would be the 
progressive inability of microglial elements to remove the βA protein, thus favoring its 
accumulation (Figure 6). Interestingly, CD36 was reported to be decreased before evidence of 
Aβ accumulation in the cortex of triple transgenic (3×TgAD) mice, which recapitulate the 
hallmarks of βA deposition and tau hyperphosphorylation (Giunta et al., 2007a).  

 
 

6.5. Dehydroepiandrosterone Sulfate 
 
Dehydroepiandrosterone (DHEA) is an androgenic precursor endowed with positive 

effects on many brain functions (Vallee et al., 2001), particularly, inhibition of the neuronal 
loss (Yen et al., 1995) and promotion of the mnestic processes (Baulieu, 1997). In blood, 
most DHEA is found as sulfate (DHEAS), which represents a buffer and reservoir of free 
DHEA. From a practical viewpoint, measurement of DHEAS is preferable to that of DHEA, 
its levels being more stable. An elevated cortisol: DHEA ratio is unanimously recognized as 
an unfavorable prognostic index for the risk of neurodegeneration, since it means that the 
neurotoxic actions of glucocorticoids are not well balanced by the neuroprotective effects of 
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DHEA (Herbert, 1998). Our data indicate that cortisol : DHEA ratio increased with 
advancing age both in men and women, but this augmentation occurred earlier in the female 
population, being yet present in the decade corresponding to menopausal transition (i.e. 51-
60 yr), whereas in men it took place about 10 yr later (Figure 7). 
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Figure 6. Leukocyte expression of CD36 (panel A) and IL-6 (panel B) in male (white bars) and female 
(stripped bars) healthy subjects and AD patients. Representative blots for CD36 and IL-6 are shown. 
IL-6: interleukin 6. See legend of Figure 3 for further details. 

Collectively, evaluation of leucocyte expression of some biological parameters in a large 
group of control non-dementig subjects and in AD patients of either gender, aimed to a better 
understanding of their respective positive or negative influences during life span, evidenced, 
in general, their unrelatedness to ageing, and rather a better correlation with hormonal events. 
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This was particularly evident in women, where the estrogen deprivation occurring in the 
transitional period (51-60 yr) towards a more advanced menopause, induced clearcut, specific 
changes in some hormonal/biological paradigms (e.g. peak HGRα:HGRβ ratio; peak IL-6 
expression). Concerning the leucocyte expression of CD36, AD women, as previously 
observed in men, presented lower values than in non-dementing subjects within a wide 
interval of their life span (51-80 yr); here, the most interesting finding was the correlation 
present in AD patients of either sex between CD36 and HGRs expression, which would 
imply a pathogenetic role for the HPA function in AD. 

In all, it can be hypothesized that during menopausal transition the occurrence of an 
unfavorable biological milieu would predispose to an increased risk of neurodegeneration. 
Collectively, the higher prevalence of AD in the female population would depend, at least in 
part, from the presence of a cohort of biological risk factors, whose contribution to the 
development of the disease occurs only in the presence of possible age-dependent triggers, 
such as βA deposition. 
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Figure 7. Cortisol and DHEA plasma level ratio in male (white bars) and female (stripped bars) healthy 
subjects and AD patients. DHEA: dehydroepiandrosterone. See legend of Figure 3 for further details. 

 
7. CONCLUSIONS 

 
Unanimously considered a CNS disease, AD is also characterized by a host of biological 

tissue alterations in extra-neuronal areas. This has opened avenues allowing to switch from a 
clinical diagnosis of the disease for the inaccessibility of the brain structures to a more 
feasible etiologic-pathophysiologic diagnosis on the basis of peripheral markers. In the last 
decade search of biochemical and hormonal markers in the tissues of AD patients is 
progressively increased, leading to identify potential biological markers. Based on the notion 
that inflammation is thought to play a significant role in the pathogenesis of many 
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neurodegenerative disorders, including AD, and that receptors for cytokines, growth factors, 
hormones are widely expressed in microglia and monocytic cell lines, the use of these 
biologic paradigms has been initially exploited. Interestingly, microglia, e.g. the resident 
macrophages, express receptors which bind fibrillar βA, among which CD36, a member of 
the B family of scavenger receptors, would play a key role since the activation it induces of 
βA would produce cytokines and chemokines.  

In both AD patients and patients with MCI, a form which has the 50% probability to turn 
later into AD, there was a similar, age unrelated, decrease in the leukocyte expression of 
CD36, which prohibited differentiation of the two forms, but disclosed the potential value of 
early recognition of the pathology. 

Gender studies have disclosed the higher prevalence and incidence of AD in females than 
males, a fact that standing the consistent neuroprotective effects of estrogens calls for 
changes occurring abruptly at menopause. In a study dealing with numerous groups of AD 
patients and controls of either sex evaluated at different intervals of the reproductive cycle, 
dramatic increases in most hormonal/biological parameters investigated (ERα, ERβ, 
HGRα:HGRβ ratio, cortisol:DHEA ratio), occurred just at the female menopausal transitional 
interval (50-60 yr), while there were no changes in these parameters at the other different 
intervals of the reproductive cycle in females, and at no interval in males. Thus, menopausal 
transition appears to be a critical phase of women’s life where the occurrence of an 
unfavorable milieu would predispose to an increased risk of neurodegeneration. 
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Alzheimer’s disease (AD) and cerebrovascular accidents (CVAs) are two leading 
causes of age-related dementia. Increasing evidence supports the idea that chronic 
hypoperfusion is primarily responsible for the pathogenesis that underlies both disease 
processes. In this regard, hypoperfusion appears to induce oxidative stress, which is 
largely due to reactive oxygen species (ROS). Oxidative imbalance is also associated 
with other age-related degenerative disorders such as atherosclerosis, 
ischemia/reperfusion, and rheumatic disorders. This chapter attempts to outline recent 
evidence which indicates that a chronic injury stimulus induces the hypoperfusion seen in 
the microcirculation of vulnerable brain regions. The hypoperfusion then leads to energy 
failure that is manifested by damaged mitochondrial ultrastructure, evident by the 
formation of a large number of electron-dense, “hypoxic” mitochondria, and also by the 
overproduction of mitochondrial DNA (mtDNA) deletions. Additionally, these 
mitochondrial abnormalities coexist with increased redox metal activity, lipid 
peroxidation, and RNA oxidation. In AD, oxidative stress occurs within various cellular 
compartments and within certain cell types more than others, most notably the vascular 
endothelium, which is associated with atherosclerotic damage. Moreover, neuronal and 
glial damage coexist and are known to be important in the development of AD 
pathology. Vulnerable neurons and glial cells show mtDNA deletions and oxidative 
stress markers only in the regions that are closely associated with damaged vessels. This 
evidence strongly indicates that chronic hypoperfusion induces the accumulation of the 
oxidative stress products. Furthermore, brain vascular wall lesions linearly correlate with 
the degree of neuronal and glial cell damage. Mitochondrial lesions in all of these 
cellular compartments show the same pattern, namely DNA deletions and oxidative stress 
overexpression. Therefore, chronic hypoperfusion is a key initiator of oxidative stress in 
various brain parenchymal cells, and their mitochondria especially appear to be primary 
targets for brain damage in AD. Perhaps the continuous accumulation of oxidative stress 
products, such as an abundance of nitric oxide (NO) products (via the overexpression of 
inducible and/or neuronal NO synthase [iNOS and nNOS respectively]) and peroxynitrite 
accumulation, are secondary but accelerating factors for damage as they compromise the 
blood brain barrier (BBB). If this turns out to be the case, pharmacological interventions 
that target chronic hypoperfusion might ameliorate the key features of dementing 
neurodegeneration.  
 

Keywords: Metabolism, neurodegeneration, lipid peroxidation, amyloid β, congophilic 
angiopathy, amyloidosis.  
 
 

1. INTRODUCTION 
 
The finding of amyloid β (Aβ) deposition in Alzheimer’s disease (AD) brains after death 

led to the so-called “amyloid hypothesis”. For over a decade, the amyloid hypothesis has so 
influenced and guided research in the field of Alzheimer’s dementia that many workers 
regard it as the gold standard of scientific investigation. Indeed, most of the literature claims 
that AD is caused by Aβ deposition within structures called senile plaques. The formation of 
these plaques are purported to lead to further abnormalities within the surrounding nerve 
cells, eventually killing them. However, there is little evidence to support this claim and 
ample evidence to question it. For example, the amyloid hypothesis has been criticized 
because research findings up to now have not generated any benefits in the clinical 
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management and treatment of AD patients nor have they advanced an understanding of how 
the elderly are preferentially affected. The three main flaws of the hypothesis appear to be 
that: (1) Aβ deposition has not been found to be toxic or to cause the damage and death of 
cerebrally located nerve cells in humans or animals; (2) the brains of many aged, but 
cognitively normal individuals show abundant Aβ-containing senile plaques but no clinical 
signs of Alzheimer’s disease; and (3) since there is general agreement that Aβ-containing 
senile plaques are the products of degenerating neurons, they can not be the cause, since it is 
axiomatic that a product is the result, not the cause of some activity. 

By contrast, and as presented throughout this chapter, there is now considerable evidence 
indicating that non-genetic AD is a vascular disorder whose underlying cause is impaired 
blood flow to the brain during advanced aging. This evidence can be summarized as follows: 
(1) numerous epidemiological studies link AD risk factors such as stroke, heart disease, 
hypertension, and atherosclerosis to reduced cerebral blood flow; (2) evidence that AD and 
vascular dementia (VaD), an acknowledged vascular disorder, share practically all the same 
risk factors and may benefit from the same treatments; (3) drug therapies reported to improve 
AD symptoms (including prescriptive drugs now available for AD) all increase blood flow to 
the brain; (4) people who are likely to develop AD but do not yet show dementia symptoms 
can be identified by using brain blood flow measurements and brain PET scans; (5) the 
clinical symptoms are very similar in most AD and VaD patients; (6) parallel abnormalities 
such as Aβ-laden plaques found in AD and VaD patients occur in both brain vessels and 
brain tissue; (7) low levels of brain blood flow in aged humans and animal models can lead to 
abnormal cell metabolism, tissue damage, and memory problems independent of Aβ; (8) mild 
cognitive impairment (a term used to describe a preliminary stage leading to AD) can convert 
equally to AD or VaD; and (9) small vessel damage is present in the majority of AD brains 
after death. 

For these reasons, it is suggested that AD be reclassified as a vascular disorder and 
described as a “vasocognopathy”. The term aptly describes the origin of the disease (vaso: 
vessel blood flow), its primary effect on a system (-cogno: relating to mental ability), and its 
clinical course (-pathy: disorder). Reclassification of AD from a neurodegenerative to a 
vascular disorder would speed the development of truly beneficial treatments or a cure, 
improve patient management, provide earlier diagnoses, and reduce the number of AD cases 
in the future by aggressively treating the risk factors that can promote this dementia.  

In conclusion, a bare-bones examination of the literature reveals no compelling evidence 
that Aβ deposition causes AD or that it results in significant damage to brain cells. By 
contrast, the findings that support AD as a primary vascular disorder are substantially more 
compelling. Determining the mechanisms behind these imbalances in experimental animals 
will provide crucial information in the development of new, more effective therapies for the 
treatment of atherosclerosis, including cerebrovascular athero- and arteriosclerosis. Because 
the cerebrovascular pathology found in mild cognitive impairment (MCI) and AD leads to 
mental deterioration and progressive neurodegeneration, the mechanism of its formation 
deserves special attention. Therefore, pharmacological intervention aimed at correcting 
chronic brain hypoperfusion will also be useful for treating and preventing dementing 
neurodegeneration (see scheme below). 
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Scheme: Possible Pathogenetic Mechanisms of the Effect of Vascular Hypoperfusion During Aging and 
During the Development of Stroke and AD (Copyright permission from Aliev G. et al., Neurotox 
Res. 2003; 5(7):491-504). 

 
2. RELATIONSHIPS BETWEEN AD AND THE 

CARDIOVASCULAR AND CEREBROVASCULAR DISEASES 
 
Reactive oxygen species (ROS) are generated at sites of injury and/or inflammation. The 

vascular endothelium, which regulates the passage of macromolecules and circulating cells 
from blood to tissue, is a major target of oxidant stress and plays a critical role in the 
pathophysiology of several vascular diseases. In addition, the vascular endothelium, neurons, 
and glia are all able to synthesize, store, and release ROS and vasoactive substances in 
response to certain stimuli, especially chronic hypoxia/hypoperfusion. The contribution of 
ROS to the pathophysiology of stroke, cerebrovascular disease, and AD is extremely 
important. Moreover, hypoperfusion, as an underlying cause of oxidative-stress producing 
vascular lesions, is accepted as a promising avenue for determining the etiopathogenesis of 
AD [1,2]. This idea is based on a positive correlation between AD and cardiovascular 
diseases. Specifically, accumulated oxidative stress increases vascular endothelial 
permeability and promotes leukocyte adhesions that are coupled to alterations in endothelial 
cell signal transduction and redox-regulated transcription factors. It therefore seems highly 
probable that the cellular and molecular mechanisms by which hypoperfusion-induced ROS 
accumulation impairs endothelial barrier function and promotes leukocyte adhesion will 
eventually result in the development of AD. The sustained hypoperfusion and oxidative stress 
of brain tissues could also stimulate the secondary overexpression of inducible and neuronal-
specific nitric oxide synthase (NOS: iNOS and nNOS, respectively) and endothelin-1 (ET-1) 
in brain cells. Also, the increased accumulation of oxidative stress products probably 
contributes to both the decompensation of the BBB and damage to brain parenchymal cells. 
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Therefore, determining the mechanisms behind these imbalances in experimental animals 
may provide crucial information in the development of new, more effective therapies for the 
treatment of cerebrovascular as well as neurodegenerative diseases, including AD. 

Many common underlying risk factors play key roles in the development of 
cardiovascular, cerebrovascular, and neurodegenerative diseases [1-3]. For example, tobacco 
smoking is accepted as a risk factor for the development of cancer as well as cardiovascular, 
cerebrovascular, and pulmonary diseases. In addition, cigarette smoking indirectly leads to 
the formation of free oxygen radicals (which appear to be a key factor in the development of 
AD) by inducing chronic hypoxic conditions. In support of this concept, new evidence 
indicates that continuous formation of free oxygen radicals induces cellular damage and leads 
to a reduction in cytoprotective mechanisms [4-7]. Several recent studies show that cigarette 
smoking is a cofactor in the initiation of AD via its effect on the vasculature (more discussion 
later). Vascular insufficiency/hypoperfusion is a pathogenetic factor in the development of 
AD and its positive relationship with cerebrovascular diseases, such as stroke and especially 
cerebrovascular atherosclerosis, indicates the latter may also be linked to the pathogenesis of 
AD. However, the role of tobacco smoking in the pathogenesis of AD is still unclear and 
controversial. 

 
 

3. THE EFFECT OF OXIDATIVE STRESS ON BRAIN 

MICROVESSEL FUNCTION IN AD  
 
ROS are generated at sites of inflammation and injury. At low levels, they can function 

as signaling intermediates in the regulation of fundamental cell activities such as growth and 
adaptation responses. At higher concentrations, ROS can cause cell injury and death. The 
vascular endothelium, which regulates the passage of macromolecules and circulating cells 
from blood to tissue, is a major target of oxidant stress and therefore plays a critical role in 
the pathophysiology of vascular diseases [8]. Specifically, oxidative stress increases vascular 
endothelial permeability and promotes leukocyte adhesions that are coupled to alterations in 
endothelial signal transduction and redox-regulated transcription factors [8]. Based on these 
recent findings, it is hypothesized that ROS impair endothelial barrier function and indirectly 
induce alterations in normal vascular endothelial cell function by promoting leukocyte 
adhesion, which then results in the development and maturation of cerebrovascular disease 
and AD.  

Compared to other organs or tissues, the brain is more vulnerable to ROS-induced 
damage due to its high rate of oxygen consumption, its high polyunsaturated lipid content, 
and its relative paucity of classic antioxidant enzymes [9]. Increased levels of oxidative stress 
in certain brain regions characterize AD [10-14]. Studies have demonstrated a decline in 
polyunsaturated fatty acids (PUFAs) [15-17], as well as an increase in levels of lipid 
peroxidation [10,16], protein oxidation [10,18,19], DNA oxidation [20-23], and RNA 
oxidation [23-26] during AD. Additionally, the presence of oxidative stress markers such as 
advanced glycation end products (AGEs) and glycoxidative end products (e.g. N-ε-carboxy-
methyl-lysine and lipid peroxidation adducts) are present in both neurofibrillary tangles 
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(NFTs) and senile plaques (SPs) in AD [10,14,18,19,28-30]  and in post-ischemic tissues [31-
35].  

Vascular aging is associated with both structural and functional changes that can take 
place at the level of the endothelium, the vascular smooth muscle cells (vSMCs), and the 
extracellular matrix of blood vessels. In the endothelium, reduced vasodilatation in response 
to agonists occurs in large conduit arteries and in resistance arteries as a result of aging [36]. 
Furthermore, enhanced oxidative stress by hypoperfusion contributes significantly to the 
deleterious effects of aging on the endothelium by means of NO breakdown due to ROS. The 
relative contribution of the above phenomenon to age-related endothelial dysfunction is 
highly dependent on the species and the type of vascular bed involved [3,36-38]. 

Aβ deposits, one of the hallmark features of AD, are present in cortical and subcortical 
gray matter and in meningeal and gray matter blood vessels (congophilic angiopathy) [39,40]. 
In vitro experimental evidence indicates that these Aβ deposits induce cerebrovascular 
dysfunction in the rat brain [41] and that the Aβ peptide produces endothelial dysfunction in 
cerebral microvessels via ROS. The ROS prevent endothelium-dependent vasodilation by 
interacting with NO to form products that are no longer able to trigger vessel smooth muscle 
relaxation; ROS-scavenging enzymes should prevent this inhibition [41]. Accumulating 
evidence also supports the idea that the Aβ peptide is responsible for the cerebrovascular 
effects of amyloid β protein precursor (AβPP) overexpression [42,43]. A study by Iadecola 
and coworkers demonstrated that transgenic mice overexpressing AβPP have a profound and 
selective impairment in endothelium-dependent regulation of the neocortical 
microcirculation. This indicates that peptides derived from AβPP processing may contribute 
to alterations in cerebral blood flow (CBF) and neuronal dysfunction during AD [42]. 
Although amyloid β 1-40 (Aβ1-40) did not influence the increasing CBF produced by 
endothelium-independent vasodilators and hypercapnia, it did contribute to the attenuation of 
the resting CBF as well as the increasing CBF produced by endothelium-dependent 
vasodilators. In contrast, Aβ1-42 had the exact opposite effect; although it did not lessen the 
resting CBF or the increasing CBF produced by endothelium-dependent vasodilators, it could 
influence the increasing CBF produced by endothelium-independent vasodilators and 
hypercapnia. The superoxide scavengers SOD and MnTBAP (superoxide dismutase and 
Manganese (III) tetrakis (4-benzoic acid) porphyrin) reversed the cerebrovascular effects of 
Aβ1-40. This data strongly suggests that Aβ1-40, but not Aβ1-42, produces the 
cerebrovascular alterations seen in AβPP transgenic mice, and that Aβ1-40 could therefore 
play a role in the cerebrovascular alterations observed in Alzheimer's dementia [40,43]. 
Moreover, this study supports the recent evidence demonstrating that brain microvessels 
isolated from cases of AD have the ability to kill neurons in vitro [44]. However, despite all 
of the research focused on Aβ (which, in the later stages of AD progression eventually 
becomes a source of ROS in vivo [4]), the relationship of its effects to hypoperfusion is still 
not completely understood.  
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4. NEUROPATHOLOGICAL FEATURES OF 

CEREBROVASCULAR LESIONS AND AD 
 
Several morphometric features of BBB dysfunction in patients with pathologically 

confirmed AD have been reported [45]. Accumulation of Aβ deposits around vessels in AD 
brain biopsy samples may be an indication of a breach in the BBB during AD progression 
[45-47]. Recent findings [47] strongly support the hypothesis that structural or physiological 
abnormalities of the BBB itself may represent a seminal pathogenic event during the 
development of AD, thereby leading to vascular amyloid deposition in the brain [15,45,48]. 
The heterogeneous pathology of AD is due to variability in the nature and severity of 
vascular lesions as well as to its co-existence with cerebrovascular diseases such as 
cerebrovascular arteriosclerosis (CVA) [49]. For example, significantly higher densities of 
Aβ immunoreactive plaques are present in AD with CVA as compared to AD alone [49]. The 
Aβ deposits in SPs and cerebrovascular angiopathy are derived from AβPP expressed in 
neurons and in a variety of non-neuronal cells (some outside of the central nervous system) 
[50-54]. Perivascular Aβ deposition may be a risk factor for reduced regional CBF (rCBF) 
[55]. The age-related losses of mechanisms/cells that are capable of removing Aβ deposits 
involve subtle molecular alterations in components of the basement membrane that allow it to 
then bind Aβ and protect it from cellular degradation [56]. These alterations, along with the 
activation of non-neuronal cells such as microglia, further contribute to neuronal damage 
[57].  

Several factors that may ameliorate AD have either been associated with improved CBF 
or have prevented CBF decline [55]. The direct relationship between vascular changes in the 
brain and the pathology of AD is based on ultrastructural studies that reveal widespread 
penetration of Aβ deposits by degenerating microvessels [39,40]. However, numerous 
morphometric studies have demonstrated that endothelial cell (EC) contact with the vast 
majority of SPs are by chance, and while it is not unusual to show a close proximity in the 
highly vascular brain [58], there is an actual exclusion of vessels from most SPs. It is also 
clear that a certain subpopulation of SPs shows a real and intimate relationship with the 
vasculature [58,59]. It is likely that SPs have more than one origin [60,61], and that vessels 
are probably integrally involved in the formation of one or more subpopulations. In over 90% 
of AD cases, Aβ can be detected in at least some vessels [62], and the sources of this Aβ are 
likely vascular ECs and SMCs rather than neurons, since ECs and SMCs show an abundant 
AβPP immunoreactivity [47,58,63,64]. Ultrastructural studies on blood vessels containing Aβ 
deposits have shown their intermittent associations with membrane abnormalities of SMCs 
[60,61]. Indeed, in AD cases with a clinical history of cerebral bleeding, the muscle layer is 
sometimes completely replaced by Aβ deposits [58,63,64]. This finding suggests that 
vascular wall cell alterations such as EC damage and muscle cell atrophy may occur in AD, 
even in the absence of visible Aβ depositions, and implies that the vascular system is a 
primary target for the development of this disease. 
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5. HYPOPERFUSION AS A KEY FACTOR FOR THE 

DEVELOPMENT OF AD 
 
The role of hypoperfusion-induced oxidative stress in vascular abnormalities has been 

demonstrated in the pathogenesis of AD. Several studies have shown chronic cerebral 
hypoperfusion in AD and concluded that it is secondary to a reduction in the need for oxygen 
[2,65-68]. However, a greater fraction of oxygen is removed from the vasculature in AD 
patients as compared to non-AD controls [69]. This suggests that low vascular blood flow is a 
prominent feature of the brain during chronic hypoxia/hypoperfusion and may be a main 
initiating factor during the development of AD [70,71].  

It is well recognized that AD is characterized by the impairment of brain energy 
metabolism [72]. Positron emission tomography (PET) has revealed a decline in the cerebral 
metabolic rate of the parietal and temporal lobes during AD [19,73]. These metabolic defects 
are present before AD symptoms develop in apolipoprotein E (ApoE) ε4 homozygote patients 
[19]. De la Torre [71] proposes that advanced aging in conjunction with a comorbid 
condition, such as a vascular risk factor that further decreases cerebral perfusion, promotes a 
critically attained threshold of cerebral hypoperfusion (CATCH). With time, CATCH induces 
brain capillary degeneration and suboptimal delivery of energy substrates to neuronal tissue 
[71]. Since glucose is the main fuel of brain cells, its impaired delivery, together with a 
deficient delivery of oxygen, compromises neuronal stability because the supplies for aerobic 
glycolysis fail to meet brain tissue demand. The outcome of CATCH is a metabolic cascade 
that involves, among other things, mitochondrial dysfunction, oxidative stress, decreased 
adenosine triphosphate (ATP) production, increased calcium entry, abnormal protein 
synthesis, cell ionic pump deficiency, signal transduction defects, and neurotransmission 
failure. These events contribute to the progressive cognitive decline characteristic of patients 
with AD, as well as to regional anatomic pathology, consisting of synaptic loss, SPs, 
neurofibrillary tangles (NFTs), tissue atrophy, and neurodegeneration. CATCH identifies the 
clinical heterogenic pattern that characterizes AD because it provides compelling evidence 
that any of a multitude of different etiopathophysiologic vascular risk factors, in the presence 
of advanced aging, can lead to AD [71,74].  

 
 

6. RELATIONSHIPS BETWEEN APOE GENOTYPE, 
HYPERCHOLESTEROLEMIA, AND VASCULAR CHANGES IN 

AD 
 
The association of Aβ with cerebral vessels is an intriguing feature of AD. While some 

degree of cerebral Aβ angiopathy involving the leptomeninges and intraparenchymal vessels 
occurs in almost all cases of AD, the proportion of microvessels within a neocortical region 
containing deposits of the Aβ peptide is not known [75]. In addition, the mechanisms behind 
the effects of several vascular factors and peripheral vascular pathophysiology might promote 
the late-onset of AD [75-78]. Apolipoprotein E (ApoE), a major risk factor for atherosclerosis 
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[3,38,79] as well as AD [80], may be linked to AD via its effects on the vasculature 
[1,2,49,81].  

Thomas and coworkers determined the percentage of cerebral microvessels in the 
temporal cortex and parahippocampal gyrus that were associated with the predominant Aβ1-
42 form of the Aβ peptide in clinically and pathologically confirmed cases of AD [75]. 
Surprisingly, double immunostaining methods found that at least 40% of the microvessels in 
the two brain regions contained Aβ1-42 deposits [75]. However, there was no correlation of 
such localization with the ApoE genotype, although E4 homozygotes revealed a greater Aβ1-
40 burden. Observations suggest that a high proportion of cortical microvessels are associated 
with Aβ1-42, which may affect microvascular function [75]. Moreover, higher levels of low 
density lipoproteins (LDL) and ApoB in total serum are associated with increased deposition 
of Aβ in demented individuals with neuropathologically confirmed AD [82]. These findings 
indicate a key role for vascular abnormalities in the pathogenesis of AD. Since chronic 
hypoxia/hypoperfusion, Aβ depositions, and AD are all maladies with similarities to 
atherosclerosis, one would expect them to share risk factors [1,2,47]. Likewise, one would 
also expect that the same preventive interventions would alleviate their symptoms [47,82].  

Hyperlipoproteinemia is associated with the impairment of NO-mediated, endothelium-
dependent dilation [70]. Galle and coworkers [70] demonstrated that oxidized lipoprotein(a) 
impairs endothelium-dependent dilation and is more potent than oxidized LDL in this effect. 
Comparisons between ventricular fluid (VF) lipoproteins isolated from AD patients and non-
demented age-matched patients show that cerebrospinal fluid (CSF) lipoprotein metabolism 
is altered in AD [83]. These data support the hypothesis that there is a direct relationship 
between vascular and lipoprotein abnormalities in AD. The positive linear relationship 
between AD and fat intake is additionally relevant [11,84]. A recent study [85] showed direct 
evidence linking cholesterol metabolism and the development of AD in a transgenic mouse 
model. This work also indicated that diet-induced hypercholesterolemia results in 
significantly increased levels of formic acid-extractable Aβ peptides in the central nervous 
system (CNS) of AD mice. The total level of Aβ was strongly correlated with the level of 
cholesterol in both the plasma and CNS. The Aβ level also correlated with the number and 
size of amyloid deposits [85]. These data demonstrate that dietary cholesterol increases Aβ 
accumulation and accelerates AD-related pathology in animals. In addition, these findings 
demonstrate that the ultrastructural features of vascular lesions and mitochondria in brain 
vascular wall cells from biopsy, human short postmortem brain tissues, and transgenic mice 
overexpressing AβPP [yeast artificial chromosome (YAC R140) and C57B6/SJL transgenic 
positive (Tg+) mice] all have the same pattern [47]. In situ hybridization using probes for 
human normal, a 5kb-deleted fragment, and mouse mitochondrial DNA (mtDNA) as well as 
immunocytochemistry using antibodies against AβPP, 8-hydroxy-2’-guanosine (8OHG), 
cytochrome c oxidase subunit 1 (COX), and lipoic acid revealed similar patterns of 
ultrastructural localization [47,86]. There was a higher degree of amyloid deposition in the 
vascular walls of human AD and YAC and C57B6/SJL Tg+ mice compared to aged-matched 
controls [47]. In addition, vessels with more severe lesions showed immunopositive staining 
for AβPP and possessed large, lipid-laden vacuoles in the cytoplasm of ECs. Significantly 
more mitochondrial abnormalities were seen in human AD microvessels as well as YAC and 
C57B6/SJL Tg+ mouse microvessels where lesions occurred [47]. In situ hybridization using 
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normal and chimera (5 kb) mtDNA probes revealed positive signals in severely damaged 
mitochondria located in the vascular endothelium and in perivascular cells of lesioned 
microvessels close to regions of Aβ deposition. These features were absent in undamaged 
regions of human AD tissues, YAC and C57B6/SJL Tg+ mouse tissues, and in age-matched 
control subjects. In addition, vessels with atherosclerotic lesions revealed endothelium and 
perivascular cells possessing clusters of normal and deleted mtDNA [47]. These mtDNA 
deletions were accompanied by increased amounts of immunoreactive AβPP, 8OHG, and 
COX in the same cellular compartment [47]. The above correlative observations demonstrate 
that vascular wall cells, especially their mitochondria, appear to be central targets for 
oxidative stress-induced damage before the development of AD pathology [47]. On the other 
hand, the positive correlation between AD and cholesterol levels suggests that antioxidant 
therapy and cholesterol lowering drugs could delay the occurrence of AD [87,88]. However, 
despite their frequencies, the pathophysiological and morphological changes in brain 
microcirculation that accompany AD remain poorly understood, and the specific factor 
controlling vascular tone in AD is unknown.  

 
 
7. THE ROLE OF MITOCHONDRIAL ABNORMALITIES IN THE 

PATHOGENESIS OF OXIDATIVE STRESS-INDUCED 

BRAIN LESIONS DURING THE DEVELOPMENT OF AD  
 
In aerobic cells, 90-95% of the total amount of ATP production comes from aerobic 

metabolism. The synthesis of ATP via the mitochondrial respiratory chain is the result of 
electron transport coupled to oxidative phosphorylation (for review and ref. see [89]). 
Excitotoxicity, mitochondrial dysfunction, and free radical-induced oxidative damage have 
all been implicated in the pathogenesis of several different neurodegenerative diseases in 
addition to AD, and include PD, amyotrophic lateral sclerosis (ALS), and Huntington’s 
disease (HD). The main radical produced by mitochondria is the superoxide anion. 
Intramitochondrial antioxidant systems scavenge this radical to avoid oxidative damage, 
which can lead to impaired ATP production [90-92]. Both processes, i.e., defective ATP 
production and increased oxygen radicals, may induce mitochondrial-dependent cell death 
(for more information see the review by Schulz and colleagues [90]). During aging and some 
neurodegenerative diseases, including AD, damaged mitochondria are unable to maintain the 
energy demands of the cell [93]. This can lead to an increased production of free radicals, 
which induces the interruption of oxidative phosphorylation and results in decreased levels of 
ATP [90]. 

Much of the interest in the association of neurodegeneration with mitochondrial 
dysfunction and oxidative damage emerged from animal studies using mitochondrial toxins 
[90]. These consequences have been strongly implicated in the pathogenesis of human as 
well as animal models of neurodegenerative diseases [94-97], particularly AD [46,47,72,91-
93,98]. 

The effect of acute ischemia and chronic neurodegenerative diseases on neuronal 
mitochondrial ultrastructure has been reviewed recently [91]. After long-term 
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ischemia/reperfusion the mitochondrial ultrastructure disintegrates in vivo and in vitro 
[3,34,35]. Apoptosis of degenerating neurons occurs in association with the accumulation of 
perikaryal mitochondria and oxidative damage to the nucleus [99]. This same pattern of 
mitochondrial lesions is observed in brain biopsy samples of human AD cases [46,93]. The 
reduced expression of both mitochondrial and nuclear DNA-encoded genes is consistent with 
a physiological down-regulation of the mitochondrial respiratory chain in response to 
declining neuronal activity [91,92,97,98,100]. However, the role of somatic cells and 
mitochondrial DNA mutations in the pathogenesis of mitochondria failure during AD is still 
controversial [91,97,98]. Our recent findings indicate that mitochondrial abnormalities appear 
to be key features in the development of AD-like pathology in YAC AβPP transgenic mice 
[47,101-103]. In humans, deleted mtDNA is increased at least 3-fold in AD cases as 
compared to controls [93]. Moreover, it has been reported that mitochondrial DNA isolated 
from the brains of AD patients shows oxidative modifications containing 8-hydroxy-2’-
deoxyguanosine (8OHdG) [21-22]. Additionally, studies using in situ markers for 8OHdG 
and 8-hydroxy-guanosine (8OHG) showed that RNA oxidation is a prominent feature of 
damaged neurons in AD [23-25]. Quantitative analysis revealed a strong positive correlation 
between mtDNA deletions and cytoplasmic RNA oxidation among age-matched controls (r = 
0.934) and AD neurons in the early stages of nonreversible damage (that is, in neurons which 
still contained relatively intact cytoplasmic organelles). However, no correlation existed for 
AD neurons in the end stages of nonreversible cellular damage [93]. This result is due to the 
fact that end-stage neurons contain only remnants of cytoplasmic organelles, and thus, they 
very in their amount of mtDNA.  

 

 

Figures 1-11. 
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Recent observations by Cormier and coworkers have shown the effect of nicotine on rat 
brain mitochondria [104]. The polarographic studies determined the effects on the respiratory 
chain, whereas enzymatic assays and [3H]-nicotine binding allowed them to precisely 
identify its target and site of action. Measurement of oxygen consumption showed a 
significant concentration-dependent inhibition by nicotine. Nicotine bound to complex I of 
the respiratory chain and inhibited the NADH-Ubiquinone reductase activity [104]. This 
study also showed that nicotine and NADH compete for complex I [104]. Effects of cotinine, 
the main nicotine metabolite, and nornicotine were also studied. Nornicotine inhibited 
mitochondrial respiration whereas cotinine did not. Complex I generates superoxide anion, 
and nicotine was able to inhibit ROS generation [104]. This may explain, in part, the 
beneficial and protective effects of nicotine in a few neurodegenerative diseases, as suggested 
by many epidemiological studies (see the review by Cormier and colleagues for more detail 
[104]). However, more studies need to be done to determine the effect of nicotine on 
mitochondrial functions as well as on DNA overexpression and/or deletion during the 
development of AD and other neurodegenerative disorders. The exact cellular mechanisms 
behind vascular lesions and their relation to oxidative stress markers identified by RNA 
oxidation, lipid peroxidation, or mtDNA deletion remain unknown. Future studies comparing 
AD damage with the spectrum of oxidative stress-induced damage during reperfusion injury 
or, more importantly, during hypoxia/hypoperfusion are warranted.  

 
 

8. SUBCELLULAR MECHANISMS FOR THE DEVELOPMENT OF 

HUMAN AD 
 
Our research group has been able to demonstrate specific immunocytochemical and 

molecular biological assays of human AD and transgenic (Tg+) mice overexpressing AβPP 
and ApoE4 as a model for Alzheimer’s disease [47,26,105-111].  

Adjacent sections of brain were either stained with 4G8, a monoclonal antibody to Aβ, or 
with basic fibroblast growth factor (bFGF) binding followed by 48.1, a monoclonal antibody 
against bFGF (Figure 1). The bFGF bound specifically to Aβ neuritic plaques and the basal 
membrane (BM) of cerebral microvessels (Figures 1 and 2). However, no SAP 
immunoreactivity was found in the Tg+ mouse brain, suggesting that the pathogenesis of 
BBB impairment in this mouse model differs from that of AD (Figure 2). Abnormal 
mitochondria and lipofuscin were characteristic features of damaged hippocampal neurons in 
aged Tg+ mice, which suggests a direct relationship between vascular abnormalities, BBB 
breakdown, neuronal loss, and amyloid depositions (Figures 13-16). Electron microscopy 
(EM) and cytochemistry revealed different sizes and types of Aβ deposits in brain tissues of 
YAC AβPP mice (Figures 3-10). The cortical neuronal cell bodies in YAC AβPP and 
C57B6/SJL mice were characterized by different degrees of ultrastructural alterations in their 
mitochondrial structures, as is seen in AD (Figure 11). In situ hybridization analysis with 
mouse and human mtDNA probes found a large amount of 5kb-deleted mtDNA in human AD 
and YAC AβPP mice hippocampal cellular compartments compared to aged controls 
[47,26,106,112] (Figures 19-20). The majority of these mtDNA deletions were found in 
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mitochondrial-derived lysosomes of neurons, vascular wall cells (Figures 22-23), and glia in 
regions closely associated with lipofuscin. 

 

Figures 12-21. 

This evidence suggests that, at least within AβPP YAC mice, proliferation, deletion, and 
duplication of mtDNA occurs most numerously in mitochondria that have been fused with 
lysosomes [26,47,106] (Figures 22-23). Biopsy samples from human AD brains were 
dominated by abnormal mitochondria in comparison to a control group (Figures 11 and 21). 
In situ hybridization with a chimeric cDNA probe for the 5kb common deletion indicated that 
the 5kb-mtDNA is increased at least threefold in AD neurons as compared to control cases 
(Figure 21). In quantitative analysis of the mtDNA deletion and 8OHG in the same cases, we 
found a strong positive correlation (r=0.934; Figure 17). Ultrastructural localization of 
mtDNA in situ hybridization with colloidal gold showed that deleted mtDNA is mainly found 
in abnormal mitochondria (see Figures 20 and 21). Only hippocampal and cortical vulnerable 
neurons showed immunopositive staining for 8OHG in AD [47,26,106,113-115] (Figure 21). 
In addition, capillary ECs and perivascular pericytes showed a high level of 8OHG 
immunostaining [47,26,106,112]. This data strongly indicates that the oxidative stress 
markers seen in the AD brain selectively affect the population of vulnerable neurons, 
vascular ECs, and perivascular cells, further implying that oxidative stress-induced 
hypoperfusion plays a key role in the pathogenesis of AD. Moreover, our recent study of 
ApoE4 overexpression on cerebral blood flow (CBF) as a possible initiator of brain 
hypoperfusion using ApoE 4 transgenic mice compared to age-matched WT mice 



Gjumrakch Aliev, Celia J. Cobb, Gerardo Pacheco et al. 254 

demonstrated that any neuronal, glial, and microvascular pathology is associated with 
significantly increased cristae and mitochondria-derived lysosomes (Figures 22-23). 

 

 

Figure 22. Ultrastructural changes of cortical microvessels from young (A-B) and aged (C-D) ApoE4 
Tg mice. Microvessels from young ApoE4 mice show the stress reaction of vascular endothelium. 
Destruction was also seen in the matrix of perivascular nerve terminals (arrow) and perivascular cells 
(indicated by double asterisk). Magnification: A) 25,000; B) 5,000; C) 10,000; D) 20,000 (Copyright 
permission from Shenk J.C. et al., J. Neurological Sciences, 2008, in press). 

We theorize that vascular abnormalities, especially mitochondrial lesions and increased 
oxidative stress markers in the cellular and subcellular compartment, are responsible for 
altering the regional blood flow, which can lead to BBB damage and breakage during the 
development of AD. Therefore, future studies examining the significance of mitochondrial 
pathophysiology in different cellular compartments may provide important insight into 
neurodegenerative disease pathobiology and provide targets for treating these conditions 
[107,110,111].  
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Figure 23. Ultrastructural feature of age-associated neuronal mitochondrial change in ApoE4 Tg(+) 
mice. Mitochondria-derived lysosome association with lipofuscin appears to be the main feature of 
mitochondrial damage. Arrowhead: Mitochondria-derived lysosomes. Asterisk: Normal mitochondria. 
Double Arrowhead: Hypoxic (electron-dense) mitochondria. Magnification: A and B) 20,000; C) 
25,000; D) 15,000 (Copyright permission from Shenk J.C. et al., J. Neurological Sciences, 2008, in 
press). 

 
9. CONCLUSIONS 

 
Certainly we are only just beginning to dissect the relationship between 

neurodegenerative diseases like Alzheimer’s and other age-related disorders such as 
atherosclerosis and stroke. However, it is already apparent that chronic vascular 
hypoperfusion is a seminal characteristic common to each of their etiologies. Chronic 
hypoperfusion appears to be a central initiating factor for vascular abnormality, 
mitochondrial damage, and an imbalance in the activity of NOS isoforms, ET-1, oxidative 
stress markers, mtDNA and mitochondrial enzymes in the vascular wall and in brain 
parenchymal cells predominantly in CVA and AD. This imbalance augments chronic 
hypoperfusion and follows oxidative stress. Therefore, determining the mechanisms behind 
these imbalances may provide crucial information in the development of new, more effective 
therapies for stroke and AD patients in the near future. 
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Future studies must seek to answer the following questions: (1) What are the major 
factors altering and/or controlling cerebral blood flow during accumulation of chronic 
hypoperfusion and/or the development of atherosclerotic changes in brain microvessels? (2) 
What are the roles of vasoactive substances (namely NO and ET-1) during the development 
of these changes? (3) Does chronic hypoperfusion with concomitant oxidative stress 
accelerate vascular and neuronal lesions (including mtDNA deletions) during normal aging 
and/or when the brain is exposed to chronic hypoxia? 

Resolving these issues will allow for novel therapeutic approaches that will modify the 
natural history of these chronic disorders associated with aging. 
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ABSTRACT 
 

Apolipoprotein E (ApoE) is a polymorphic protein involved in many biological 
functions, as lipid levels control. It is implicated in a number of cardiovascular and 
cerebral pathologies. ApoE gene maps on 19q13.2 and it exists in three allelic variants, 
ε2, ε3 and ε4. ApoE ε4 variant promotes atherosclerosis and is significantly less frequent 
in centenarians than in controls, whereas the ε2 allele frequency is increased.  

ApoE has several functions within the central nervous system, where it is 
synthesized by both astrocytes and neurons. ApoE takes up lipids generated after 
neuronal degeneration and redistributes them to cells requiring lipids for proliferation or 
membrane repair. Enhanced synthesis of ApoE3, but not ApoE4, stimulates repair of 
hippocampal damage and neuronal sprouting, and ApoE3, but not ApoE4, showed a 
neuronal protective effect even against excitotoxin-induced neuronal damage.  

ApoE has been detected in senile plaques, congophilic angiopathy, and 
neurofibrillary tangles in Alzheimer’s disease (AD). ApoE ε4 is a risk factor for 
developing AD and has a negative effect on cognitive functions. Its frequency is 
increased among subjects with memory disturbances and in patients with AD. The 
possible protective role of ApoE ε2 against AD is less defined.  

Even though ε4 homozygosity is virtually sufficient to cause AD, the observation of 
the existence of ε4 homozygotes free from any neurological disorder underlines that the 
inheritance of ε4 does not necessarily result in the development of dementia. This is 
fundamental concerning the use of ApoE genotype as a biomarker in the diagnostic and 
prognostic evaluation of a patient: the presence of the ε4 allele may increase the 
probability to be correct in the diagnosis of AD, which of course remains at present 
mainly clinical.  

                                                        
∗  Correspondence concerning this article should be addressed to: Carlo Lovati, E-mail: carlo.lovati@tiscalinet.it. 



Carlo Lovati 266 

Additionally, the role of ApoE genotype as marker of AD is different in relation to a 
number of factors, including age at onset, family history, ethnicity, gender, 
environmental and genetic interactions, which modify ApoE effect toward dementia.  

To date, the role of the ApoE genotype on the development of other types of 
dementia is still controversial.  

Recently, the possible role of ApoE genotype as predictive factor for MCI subjects 
was investigated. The MCI syndrome may be divided into two broad subtypes, amnestic 
and non-amnestic MCI (aMCI and naMCI), that are suspected to be respectively the 
initial phase of AD and other forms of dementia. It was observed that only aMCI differs 
from controls for ApoE distribution with an increased frequency of the ε4 allele. 
 
 

1. APOLIPOPROTEIN E  
 
Apolipoprotein E (ApoE) is a polymorphic protein composed by 299 amino acids. ApoE 

is involved in a large number of biological functions in different anatomical systems. It is 
essential for lipid levels control and lipid metabolisms, with a number of implications for 
cardiovascular and cerebral pathology.  

ApoE gene maps on 19q13.2 locus and it exists in three main allelic variants, ε2, ε3 and 
ε4, which respectively encode for the three ApoE isoforms ApoE2, E3, and E4. The E2, E3, 
and E4 isoforms differ in amino acid sequence at 2 sites, site A (residue 112) and site B 
(residue 158). At sites A/B, ApoE2, -E3, and -E4 contain cysteine/cysteine, cysteine/arginine, 
and arginine/arginine, respectively [1,2]. E3 is the most frequent isoform, the wildtype one. 
E4 differs from E3 by a cys-to-arg change at position 112. Four different variations giving a 
band at the E2 position with isoelectric focusing have been described: E2(arg158-to-cys), 
E2(lys146-to-gln), E2(arg145-to-cys) and E2-Christchurch(arg136-to-ser). E2(arg158-to-cys) 
is the most common of the four [3].  

 
 

1.1. Isoform Distribution  
 
In almost all populations, the ε3 allele accounts for the vast majority of the ApoE gene 

pool (typically 70% to 80%). The ε4 allele accounts for 10% to 15% and the ε2 allele for 5% 
to 10% [4].  

 
 

1.2. Physiologic Roles of ApoE 
 
The most important effects of ApoE are on the cardiovascular system. ApoE plays 

important roles in the control of blood lipid levels and it is known to be involved in a number 
of cardiovascular diseases. In normal individuals, chylomicron remnants and very low 
density lipoprotein (VLDL) remnants are rapidly removed from the circulation by receptor-
mediated endocytosis in the liver. The defect in apolipoprotein E and the consequent 
impaired clearance of chylomicron and VLDL, are the causes of increased plasma cholesterol 
and triglycerides in familial dysbetalipoproteinemia.  
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The importance of the wild type ApoE and the negative effect of the E4 variant were 
underlined by the observation that the ε4 allele of the ApoE, which promotes premature 
atherosclerosis, was significantly less frequent in centenarians than in controls, whereas the 
frequency of the ε2 allele was significantly increased [5]. Besides these effects on lipid levels 
and their deposition in arterial walls, a direct implication of ApoE on cardiac-valves 
pathology such as aortic valve stenosis was observed.  

ApoE is also involved in the immunologic response to lipid antigens. In fact, exogenous 
lipid antigens need apolipoprotein to achieve T-cell activation [6]. Apolipoprotein E mediates 
the presentation of serum-borne lipid antigens and can be secreted by antigen-presenting cells 
as a mechanism to survey the local environment to capture antigens or to transfer microbial 
lipids from infected cells to antigen-presenting cells. 

In addition, ApoE influences retina and optic nerve trophism. The inheritance of specific 
ApoE alleles is linked to the incidence of age-related macular degeneration of the retina and a 
polymorphism in the ApoE gene (-219G) is associated with increased optic nerve damage. 

 
 

1.3. Physiologic Roles of ApoE in Neurobiology  
 
Even though its prevalent physiological role is on circulatory system, Apolipoprotein-E 

is known to be involved in a wide number of functions within the central and peripheral 
nervous system. The brain is second only to the liver in the abundance of ApoE mRNA [7].  

Initially, ApoE was thought to be synthesized primarily by astrocytes but not by neurons 
in the brain. However, subsequent studies demonstrated that ApoE is expressed by central 
nervous system neurons under different physiological and pathological conditions [8], [1,2]. 
For example it was demonstrated that, in some neurons, brain injury induces ApoE 
expression. 

Physiologically, ApoE also appears to take up lipids generated after neuronal 
degeneration and redistributes them to cells requiring lipids for proliferation, membrane 
repair, or remyelination of new axons [9,10]. 

Enhanced synthesis of ApoE3, but not ApoE4, was demonstrated to stimulate repair of 
local hippocampal damage [11]. Moreover, in vitro studies demonstrated that ApoE3 
stimulates, whereas ApoE4 inhibits, neuronal sprouting in murine hippocampal cultures [12] 
derived from transgenic mice expressing ApoE3 or ApoE4. ApoE3, but not ApoE4, showed a 
neuronal protective effect even against excitotoxin-induced neuronal damage in mice [13]. In 
addition, ApoE has been shown to bind Amyloid (A)β, and can therefore be important in its 
clearance [12]. 

With regard to the peripheral nervous system, it was observed that ApoE levels increase 
250- to 350-fold in response to peripheral nerve injury in a rat model [14,15] and that ApoE 
has isoform-specific effects on neurite remodeling, with ApoE3 stimulating neurite 
outgrowth and ApoE4 inhibiting it [16].  
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2. APOE AND DEMENTIA: EPIDEMIOLOGICAL EVIDENCES 

AND POTENTIAL MECHANISMS RESPONSIBLE FOR THE 

ASSOCIATION OF APOε4 WITH ALZHEIMER’S DISEASE (AD) 
 
The relationship between ApoE and dementia/cognitive functions is the most 

investigated characteristic of this molecule.  
As concerns Alzheimer’s disease (AD), the most common degenerative dementia, the 

known predisposing role of a particular genotype for apolipoprotein E makes the presence of 
Apolipoprotein E (ApoE) E4 allele a candidate marker for the disease [17].  

ApoE is in effect the best defined risk factor for developing late onset Alzheimer’s 
disease and its role on cognitive function has been largely investigated. 

Since 1993 an increased frequency of the ApoE ε4 allele has been observed among 
subjects with memory disturbances [18] and patients with late onset familial Alzheimer 
disease [17]. In the same year it was found [19] that the risk for AD increased from 20 to 
90% and mean age of onset decreased from 84 to 68 years with increasing number of ApoE 
ε4 alleles and homozygosity for ApoE ε4 was virtually sufficient to cause AD by age 80.  

Apolipoprotein E can be found in senile plaques, congophilic angiopathy, and 
neurofibrillary tangles of AD. ApoE4 and ApoE3, the most common isoforms, in their 
oxidized form, are able, to bind the Aβ peptide, but with different rates: ApoE4 needs just 
some minutes, whereas ApoE3 takes hours. As a consequence, the interaction of Aβ peptide 
with ApoE may determine its sequestration during the pathogenesis of AD lesions [20]. This 
is one of the reasons that explains why ApoE4 is involved in AD pathogenesis rather than 
ApoE3. In addition ApoE3 and apoE4 differ in their susceptibility to proteolysis, leading to 
accumulation of apoE4 fragments in brains of AD patients and in ApoE4 transgenic mice. 
Moreover, ApoE3 and ApoE4 interact differently with tau protein in vitro and in vivo and 
have different effects on the cytoskeleton. 

The possible protective role of ApoE2 against AD is less defined. First data suggesting 
that the ε2 allele may confer protection against AD and that its effect is not simply the 
absence of an ε4 allele, were presented by Talbot in 1994 [21]. In the same year, Corder et al. 
demonstrated a protective effect of the ε2 allele, in addition to the dosage effect of the ε4 
allele in sporadic AD. They observed that about 65% of AD is attributable to the presence of 
ε4 alleles and an additional 23% to the absence of an ε2 allele.  

 
 

3. IS APOE A BIOMARKER? 
 
The observation of the existence of healthy subjects with ε4 homozygosity, free from any 

neurological disorder and free from neurofibrillary tangles and senile plaques at autopsy, 
pointed out that the inheritance of ApoE ε4 does not necessarily result in the development of 
dementia or AD. 

This concept is fundamental concerning the use of ApoE genotype as a biomarker in the 
diagnostic and prognostic evaluation of a patient: the presence of the ε4 allele may increase 
the probability to be correct in the diagnosis of AD, which of course remains at present 
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mainly clinical. Otherwise, its lack does not exclude the diagnosis and it does not reduce the 
suspect of AD, if clinical manifestations fulfil diagnostic criteria.  

In 1996, a confirmatory study further demonstrated an increased risk for AD and other 
dementias in patients who were homozygous or heterozygous for the ε4 [22]. Nevertheless, in 
the same study, Authors highlighted that most ApoE ε4 carriers do not develop dementia and 
about 50% of patients with AD were negative for the ε4 allele. Data on an elderly population 
suggested that regardless of ApoE genotype, more than half of the population will not 
develop AD by age 100 [22].  

Therefore, the ApoE ε4 allele is neither necessary nor sufficient for the expression of 
AD. This concept underlines the importance of other environmental or genetic factors that 
may increase the risk of AD, either independently or together with ApoE ε4. 

 
 

4. FACTORS INTERACTING WITH APOE  
 

4.1. Age at onset and Family History  
 
The role of ApoE genotype as marker of AD is different in relation to age at onset and 

family history. With regard to sporadic forms of dementia, the ApoE ε4 allele seems to be 
specifically related to sporadic late onset AD (LOAD). In fact, it was observed that there was 
no increased frequency of ε4 among patients with early-onset sporadic AD (EOAD) [23,24]. 
Thus, EOAD likely is not influenced by the ApoE system [25]. 

In the case of sporadic and familial LOAD, ApoE ε4 gene dose has an effect on the risk 
of developing AD, age of onset, accumulation of senile plaques in the brain, and reduction of 
choline acetyltransferase in the hippocampus of AD patients. 

In addition, Huang et al. [26] reported that 203 out of 907 Swedish patients over 75 
developed AD over a period of 6 years. Analysis of the ApoE allele genotype showed that 
individuals with at least 2 affected first-degree relatives or sibs had a significantly increased 
risk of disease development only in the presence of the ε4 allele. 

 
 

4.2. Ethnicity  
 
Even though in almost all populations, the distribution of ApoE alleles is quite similar 

(ε3 allele 70-80%, ε4 allele 10-15% and ε2 allele 5-10%), their frequencies among AD 
patients vary in different ethnic groups. So the effect of ApoE genotype on the clinical 
(diagnostic and prognostic) evaluation of a patient needs to be also adapted to ethnicity, that 
seems to modify ApoE effects.  

Most of the reports concerning the role of ApoE in AD confirmed the association 
between ApoE ε4 allele and both sporadic and familial LOAD, with some ethnic differences. 
For example, Tang et al. [27] compared relative risks conferred by ApoE genotypes in a 
population of cases and controls from 3 ethnic groups in a New York community. The 
relative risk for AD associated with ApoE ε4 homozygosity was increased in all ethnic 
groups but with different relative risk: African American RR=3.0; Caucasian RR=7.3; 



Carlo Lovati 270 

Hispanic RR= 2.5 (compared with the RR with ApoE ε3 homozygosity). The risk was also 
increased for ApoE ε4 heterozygous Caucasians and Hispanics, but not for African 
Americans.  

Additionally, among over 6000 Caucasian middle-aged individuals (47 to 68 years), it 
was found that ε4 carriers had greater cognitive decline over a 6-year period compared to 
those not carrying an ε4 allele. On the contrary, results from a study on 1,693 African 
American patients were inconclusive [28]. 

 
 

4.3. Gender  
 
Also gender seems to modify the effect of ApoE: in sporadic LOAD, women have a 

significantly higher risk of developing AD than men. In this case, a significant gender 
difference for the ApoE ε4 heterozygous genotype was found. ApoE ε4 heterozygous females 
had higher risk than those without ε4 and no significant difference emerged between ApoE4 
heterozygous and homozygous.  

In males, only ApoE ε4 homozygous had a higher risk to develop AD, whereas there 
were no significant differences between ApoE4 heterozygous and subjects not carrying the ε4 
allele [29]. A direct comparison of ApoE ε4 heterozygous men and women revealed a 
significant 2-fold increased risk in women. 

 
 

5. ENVIRONMENTAL AND GENETIC INTERACTIONS 
 
Emerging data strongly suggest that ApoE4, with its multiple cellular origins and 

multiple structural and biophysical characteristics, contributes to the development of AD by 
interacting with different factors through various pathways.  

 
 

5.1. Environmental Interactions 
 

5.1.1. ApoE-head Injury 
In 1995, the observation that severe head injury causes Aβ deposition in the brain, 

particularly among ε4 carriers, and that head injury is an independent risk factor for AD, 
suggested that environmental and genetic risk factors for Alzheimer disease may act 
additively [30]. Among 89 patients with head injury, it was found that ε4 carriers more likely 
had an unfavourable outcome than non-carriers [31].  

Following researches confirmed that the effect of brain trauma in inducing AD-type 
dementia was different in relation to the ApoE genotype. In 2002, Crawford tested memory 
and other cognitive variables in 110 patients with traumatic brain injury (TBI) and found that 
ApoE ε4 carriers had more difficulty with memory than matched patients without the ε4 allele 
[32]. Additionally, among 60 patients with TBI with a mean follow-up of 31 years, Koponen 
et al. [33] found that the presence of the ε4 allele increased the risk for dementia. Conversely, 
there was no association between the ε4 allele and the development of other psychiatric 
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illnesses, including depression, anxiety, psychosis, or personality disorders. Post-traumatic 
memory impairment in ApoE ε4 carriers is then specific and not one of several other possible 
consequences.  

 
5.1.2. ApoE-blood Pressure 

Systolic hypertension and diastolic hypotension seem to be associated with an increased 
risk of AD. Even their role in AD pathogenesis resulted modified by the ApoE genotype. In a 
survey conducted in a population of 966 Swedish patients of 75 years of age or older, 204 
were diagnosed as having AD during a 6-year period. Presence of the ApoE ε4 allele, high 
systolic blood pressure (140 mm Hg or greater), and low diastolic blood pressure (less than 
70 mm Hg) were each associated with an increased risk of AD. ApoE ε4 allele combined with 
low diastolic pressure greatly increased the risk of AD independent of antihypertensive drug 
use. Similarly, high systolic blood pressure combined with ApoE ε4 increased the risk of AD, 
but in this case, antihypertensive medication significantly reduced the risk [34].  

 
5.1.3. ApoE-hypoxia  

The probability of moderate to severe sleep-disordered breathing (apnea/hypopnea) was 
found to be significantly higher in persons carrying the ApoE ε4 [35], with an age-dependent 
association between the ε4 allele and obstructive sleep apnea [36].  

Memory performances among adult patients with obstructive sleep apnea were lower 
than controls in ε4 carriers but not in non-carriers [37]. This suggests that hypoxia may have 
a role in neuronal vulnerability to oxidative stress observed in AD pathogenesis. 

 
 

5.2. Genetic Interactions 
 
ApoE ε4 can also act as a risk factor for AD in conjunction with other genes: in this case 

the risk increases if both the ε4 and the risk variant of the other gene are present.  
One out of these genes encoding for alpha-1-antichymotrypsin (α1-ACT) [38], which 

binds to Aβ peptide with high affinity as ApoE. The combination of the AA genotype of α1-
ACT gene and the ApoE ε4/ε4 genotype was found in 1 out of 17 AD patients but in just 1 
out of 313 controls. This combination is thought to act as a very powerful susceptibility 
factor of AD. As previously assessed for the ApoE ε4 allele, also this gene combination is 
neither necessary nor sufficient for the expression of AD. 

It was observed [39] that also the K variant of butiyrrylcholinesterase (BCHE-K) has a 
higher frequency among LOAD patients than controls (respectively 17% versus 9%). BCHE-
K was then proposed as susceptibility factor for LOAD, but only in association with the 
ApoE ε4 allele. In fact, the association of BCHE-K with late-onset AD was limited to carriers 
of the ε4, among whom the presence of BCHE-K gave an odds ratio of confirmed LOAD of 
6.9 with a 95% confidence interval of 1.65 to 29 in subjects older than 65 years and of 12.8 
(1.9 to 86) in subjects older than 75. Wiebusch et al in 1999 confirmed that the BCHE-K 
polymorphism is a susceptibility factor for AD and concluded that BCHE-K enhances the 
risk for AD interacting with the ApoE ε4 in an age-dependent manner [40]. Conversely, other 
studies [41] found that the presence of the BCHE K variant was associated with an increased 
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risk of AD above all in 75 year-old or older subjects, but without evidence of synergy with 
ApoE ε4, at least among the population of Northern Ireland.  

Another gene combination that increases the negative effect of ApoE ε4 as risk factor for 
AD involves Myeloperoxidase (MPO), a potent oxidant found in immune cells and detected 
also in activated microglia/macrophages and within Aβ plaques. It was found that the 
presence of the MPO A allele in conjunction with ApoE ε4 significantly increased the risk of 
AD, but only in men [43]. 

These are just few of the potential genes interacting with ApoE and modulating its effect 
as risk factor for AD. Their presence and other likely interactions that may modify ApoE 
effects in synergy or in antagonism should be considered.  

 
 

6. APOE PROGNOSTIC VALUE 
 

6.1. ApoE and Clinical Rate of Decline 
 
Most association studies on ApoE in Alzheimer disease suggest that the ε4 allele 

accelerates the neurodegenerative process in AD. However, in 2 independent studies, 
Growdon et al. [44], and Asada et al. [45] found no differences in the clinical rate of decline 
of newly diagnosed AD patients with or without the ε4 allele. 

 
 

6.2. ApoE and BPSD (Behavioral, Psychiatric and Social Disorders)  
 
In a study of ApoE genotype in schizophrenic patients coming to autopsy, it was found 

that schizophrenia is associated with an increased ε4 allele frequency [46]. This observation 
induced to suppose that psychiatric symptoms in AD patients may be partially predicted by 
ApoE genotype. Results are inconclusive and this possible prognostic role of ApoE doesn’t 
seem to be useful. Scarmeas et al. [47] followed 87 patients with early-stage AD for up to 10 
years to determine whether ApoE genotype was related to the incidence of psychiatric 
symptomatology. They found that the presence of one ε4 allele conferred a 2.5-fold risk and 
the presence of two ε4 alleles conferred a 5.6-fold risk for the development of delusions. This 
association was significant even after correcting for variables. No association was found for 
depressive symptoms or behavioural disturbances. 

 
 

7. APOE ROLE IN OTHER DEMENTIAS 
 
One of the most difficult steps of the diagnostic process of demented patient is how to 

distinguish a form of dementia from the others. Even in this phase, the use of ApoE genotype 
as biological marker may just give a small contribution to clinical and neuroradiological 
elements. 



Role of Apolipoprotein E in Neurodegeneration 273

The following data are reported to underline that ApoE genotype can not be used to 
modify the diagnosis or to shift toward one of the possible alternative diagnosis when clinical 
doubts are still present.  

In fact, to date, the role of the ApoE genotype on the development of other types of 
dementia is still controversial. Whereas both ε2 and ε4 alleles have been repeatedly 
demonstrated to play an opposite role in the development of AD, to date controversial results 
on such role for other types of dementia have been obtained. 

 
 

7.1. Frontotemporal Lobar Degeneration 
 
A number of studies suggested an association between Frontotemporal Lobar 

Degeneration (FTLD) and ApoE ε4 allele [48,49]. Other Authors [50,51] however, did not 
replicate these data, possibly due to the small sample size analysed in their study.  

Recent findings demonstrated an association between the ε4 allele and FTLD in males, 
but not in females [52], possibly explaining the discrepancies previously reported. 
Concerning the ε2 allele in the development of FTLD, heterogeneous data have been 
obtained in different populations. Bernardi et al. [48] showed a protective effect of this allele 
towards FTLD, whereas other Authors failed to do so [51-53]. Despite these results, a recent 
meta-analysis including a total of 364 patients with Frontotemporal Dementia (FTD) and 
2671 controls demonstrated an increased susceptibility to FTD in ε2 carriers, but this effect 
was mainly observed in patients with familial forms of the disease [54]. 

 
 

7.2. Vascular Dementia 
 
The role of ApoE ε4 in Vascular dementia (VaD) is doubtful as well, with some 

evidences of an association [55] and others failing to demonstrate a role in the susceptibility 
to the disease [56]. Interestingly, Engelborghs et al. [53] demonstrated an effect of the ε4 
allele on the risk of mixed dementia. The concomitant occurrence of microvascular brain 
disease in AD is a matter of a large debate and represents an unsolved question in the 
pathogenesis of AD [57,58]. 

Additional studies demonstrated an increased ε4 frequency in VaD, similar to the one 
found in AD [59,60], whereas other findings did not replicate such association [57,61]. 

By direct comparison between AD and VaD, Frisoni et al. [62] did not find any 
differences in the proportion of ε2, ε3, and ε4 frequency in the two groups of patients. In 
contrast, Mahieux et al. [63] found an increase of ε4 in AD, but not in VaD. 

 
 

7.3. Lewy Bodies Dementia 
 
Frequency of ApoE isoforms among patients with clinical characteristics of dementia 

with Lewy bodies (LBD) is extremely imprecise. The most important element of confusion in 
this case is the wide overlapping between different clinical forms of dementia.  
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In 1994, Betard et al. [64] found an increased frequency of ApoE ε4 among patients with 
LBD (0.472). Much lower frequency of the ε4 allele (0.22), was found when a careful 
exclusion of LBD patients that had concurrent AD was applied [65] The observation of an 
association between an increased frequency of the ε4 allele in patients having coexisting 
clinical and pathological features of AD and LBD, (i.e. amyloid plaques and Lewy bodies) 
but not in patients with a pure neuropathological form of LBD [66] reinforced the hypothesis 
of a specific link between AD and ApoE, not present in LBD and other forms of dementia. 
On the contrary, Tsuang et al. [67] found a higher frequency of the ε4 allele among patients 
with the Lewy body variant of AD compared to patients with AD without Lewy bodies 
(47.3% vs 35.1%, respectively): the finding suggested an association between the ε4 allele 
and the development of Lewy bodies. 

 
 

7.4. Direct Comparisons of ApoE Alleles Distribution in different Forms of 
Dementia 

 
In 1996, in about 1000 elderly individuals in the Framingham Study cohort, an increased 

risk for AD as well as other dementias was found in ApoE ε4 homozygous or heterozygous 
individuals. No difference between AD and the other dementias emerged concerning the 
ApoE ε4 effect. In addition, Authors pointed out that most ε4 carriers did not develop 
dementia, and about one-half of AD cases were not associated with ApoE ε4 allele [22]. 
Conversely, in the same year, Slooter et al. compared ε4 allele frequency between patients 
with AD and those with other types of dementia. The authors found little predictive value in 
distinguishing AD patients from those with other forms of dementia using ApoE genotyping 
[68]. Recently, in a simultaneous comparison among different degenerative dementias, it was 
observed that the effect exerted by ApoE alleles is specific for the development of AD, 
whereas ε2 and ε4 alleles seem not to influence the susceptibility to FTLD, VaD or LBD 
[69]. The presence of the ε2 allele is a protective factor towards the development of AD; 
conversely, the ε4 allele is associated with an increased risk for AD and the ε4 homozygous 
status is associated with an almost 10-fold risk to develop AD.  

 
 

7.5. ApoE in Mild Cognitive Impairment 
 
Mild Cognitive Impairment (MCI) is a nosological entity proposed as an intermediate 

state between normal aging and dementia. The syndrome can be divided into two broad 
subtypes: amnestic MCI (aMCI) characterized by reduced memory, and non-amnestic MCI 
(naMCI) in which other cognitive functions rather than memory are mostly impaired. aMCI 
seems to represent an early stage of AD, while the outcomes of the naMCI subtypes appear 
more heterogeneous, including VaD, FTD or LBD, but this aspect is still debated [70]. 

Recent researches evaluated the possible role of ApoE genotype as predictive factor for 
MCI subjects.  

Some of these studies analysed ApoE frequencies among AD patients grouping them 
according to the symptom of onset (memory or non memory). In 2006, they found an 
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association between the presence of the ε4 allele and the typical amnestic phenotype, 
characterized by initial presentation of forgetfulness and difficulties with memory, as in 
aMCI. Those with the memory phenotype were 3 times more likely to carry an ε4 allele 
compared to AD patients who displayed a non-memory phenotype, with initial complaints 
including problems with calculation, agnosia, and apraxia. The memory phenotype was 
almost exclusively observed in homozygous ε4 carriers. 

An age dependent effect of the ApoE ε4 allele on conversion from MCI to AD was 
observed: only in over 70-year MCI patients ApoE ε4 was associated with the development 
of AD. No association between ApoE ε4 and transformation to AD was found in younger 
subjects [71]. These data reinforce the evidence that ApoE is particularly involved in late 
onset AD and that the presence of ApoE ε4 in a patient with MCI increases the probability of 
evolution toward AD, even if it always remains only a possibility.  

Recently (Lovati C, personal observation) it was observed that aMCI is the only type of 
MCI differing from controls for ApoE distribution and that this difference is sustained by the 
increased frequency of ε4 allele (as in AD). No differences were found in ApoE alleles 
distribution between non amnestic and vascular MCI. These data reinforce the hypothesis that 
aMCI is the initial clinical step of AD and that ApoE genotype may be used as an adjunctive 
element in the differential diagnosis and prognosis of MCI patients. Even in this condition it 
is strongly necessary to remember that ApoE ε4 allele is neither necessary nor sufficient for 
the expression of AD and that to date the diagnostic process in demented people is mainly 
clinic. 
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