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CHAPTER 1 

THE NECESSITY OF NEURAL NETWORKS 

John W. Donahoe 
Department of Psychology 
Neuroscience and Behavior Program 
University of Massachusetts, Amherst 

Introduction 
The goal of this volume is to provide a foundation for a natural science- 

based understanding of human behavior, including the complex phenomena of 
"mind"~perception, thought, memory, and language. Clearly, the attainment 
of this goal is very much a task for the future, and remains so at the conclusion 
of this volume. Nonetheless, knowledge has advanced to the point that genuine 
progress appears on the near horizon. This knowledge includes not only specif- 
ic scientific findings, as essential as they are, but also general conceptual 
insights into the origins of complex phenomena. The present chapter identifies 
some of the conceptual insights that motivate and inform the search for a 
natural-science approach to complex human behavior. 

The Darwinian contribution 
Arguably, the work of Charles Darwin provides us with the deepest and 

most general insights into how we may understand complex phenomena. How 
did Darwin go about his task of uncovering the origins of complex structure, 
and how does his example instruct us to proceed in our own task~uncovering 
the origins of complex human behavior? 

Two major conceptual contributions may be discerned. First, Darwin's 
example teaches us that structure and function are inseparably linked. For 
Darwin, complex structure--morphology~arose as the cumulative effect of 
natural selection, a functional concept: Whatever morphological characteristics 
an organism possessed, those characteristics endured into the next generation 
to the degree that they enhanced or, at a minimum, did not detract from repro- 
ductive fitness. In short, the function of structure determined the fate of struc- 
ture. Natural selection decreed that great minds well concealed could not be 
favored or, as Thomas Huxley put it, "The great end of life is not knowledge, 
but action." Darwin's second major contribution was the view that complex 
structure/function arose as the emergent product of lower-level processes 
acting over time. No appeal to higher-level principles was required to under- 
stand the origins of complex structure/function. Instead, complexity emerged 
as a byproduct of fundamental biological processes whose effects were largely 
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captured by the principle of natural selection. These emergent byproducts of 
selection were then subjected to still further selections with complexity as a 
possible outcome. (See Figure 1.) The notion that complexity arose through 
the accumulation of prior favored selections rather than through the playing out 
of some a priori plan or set of superordinate principles had a further, and 
disquieting, implication" Since selection could always be traced ultimately to 
the environment at the moment of selection, the products of selection reflected 
conditions that existed only in the past. That is, strictly speaking, selection 
"prepared" us to live in the past, not the future. Thus, those conventional at- 
tributes of mind--foresight, intelligence, reason, and the like--are, at best, 
comforting illusions except insofar as future conditions are similar to past 
conditions. The relative constancy of selecting conditions over the lifespan of 
an individual allows these illusions to endure, but they remain fictions never- 
theless. 

I 
differential 

reproduction Biobehavioral 

/~ Biological 
Research 

fitness 
function 

I 

Environmental.- 
input ~" 

function 

f•etl ing 
on 

ALGORITHMJ~-f~n;~ion~, ALGORITHM J 

differential 

~ ~ g ~ i n s  Behavioral 
Research 

FIGURE 1. A schematic representation of the process of selection. Some initial varia- 
tions are favored over others by selecting factors in the environment. These favored 
variations are retained and contribute to the variation available for subsequent selec- 
tion. Complexity is a possible but not a necessary consequence of the three-step pro- 
cess. 

The triumph of Darwinism 
As can be easily appreciated, Darwin's selectionlst proposals about the 

origins of complex structure were met with strong resistance from his contem- 
poraries. In 1859, when On the origin of species was published, most of his 
audience rejected the idea that the tremendous diversity and complexity of life 
could have arisen by natural selection from a few or, perhaps, a single progeni- 
tor. Even most scientists, although they agreed that some evolutionary process 
was responsible for the similarities among living creatures, did not accept 
natural selection as an adequate account of the origins of that similarity. Most 
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strikingly, Alfred Wallace, who independently proposed the principle of natu- 
ral selection, explicitly demurred in its application to our species, man. Indeed, 
approximately 70 years passed before most scientists, let alone most layper- 
sons, endorsed natural selection as the central insight into the evolution of 
species. (Today, surveys indicate that only about 50% of laypersons in the 
United States "believe in" natural selection~less than in any other educated 
society!) 

Requirements for acceptance. Acceptance of a natural-science account of 
human behavior lags far behind that of human morphology. To understand why 
this might be so, it is useful to examine the history of the acceptance of natural 
selection to isolate the reasons for its relative success. If the critical events can 
be identified and their counterparts achieved, then~perhaps~acceptance of a 
natural-science account of human behavior can be realized. What were the 
critical events that led most scientists and many laypersons to accept natural 
selection with, of course, the provisionality that accompanies all principles in 
science? 

Natural selection, as proposed by Darwin and Wallace, was largely based 
on naturalistic observations of the relation between the possession of certain 
morphological characteristics (e.g., sturdiness of beak in Darwin's finches) and 
reproductive fitness (e.g., the likelihood of leaving surviving offspring given 
the availability of seeds of certain size and hardness of shell). Thus, as initially 
formulated, the principle of natural selection stated a purely functional relation 
between morphological antecedents and their consequences for reproductive 
fitness. The biological mechanisms that underlay these observed relations were 
not known to Darwin. What was asserted was simply that, insofar as the 
characteristics were heritable, those that benefited reproductive fitness would 
become more numerous in subsequent generations because of competition for 
resources between different organisms located in common environments. 

The lack of general acceptance of natural selection by Darwin's scientific 
contemporaries indicates that a purely functional relation was not persuasive, 
even when buttressed by a large volume of naturalistic observations and quasi- 
experimental work with artificial breeding. Realizing this, Darwin proposed a 
hereditary mechanism based on inferences from his naturalistic observations 
rather than direct experimental work in genetics. Darwin's theory of gemmules 
was a so-called "blending" theory of heredity in which the characteristics of 
the offspring took intermediate forms; i.e., "blends" of the characteristics of 
their parents. However, the Scots engineer Fleeming Jenkin soon showed 
mathematically that such a theory of heredity was inconsistent with evolution 
through natural selection; the rare favorable characteristic would be "blended 
out" and never predominate in the manner prescribed by natural selection. 

What transpired between 1859 and the 1930s that led most scientists to 
accept Darwin's proposal that natural selection was the chief engine of evolu- 
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tion? Two achievements seem paramount. First, in the early 1900s, independ- 
ent experimental work established a science of genetics. In place of Darwin's 
blending theory of heredity, a "particulate" theory was devised beginning with 
the rediscovery of Mendel's experimental work with peas. (Mendel's decision 
to study certain characteristics of peas was a happy choice. Had he chosen 
other characteristics or species, he might have observed polygenic characteris- 
tics that did not have the simple dominant-recessive relations required to make 
the particulate nature of heredity apparent.) When Mendel's observations were 
coupled with other work, notably that revealing mutations, a powerful set of 
mechanisms became available to implement the functional relations Darwin had 
observed. The second achievement occurred in the 1920s and 30s when 
mathematical biologists---Fisher, Haldane, and Wright--devised formal tech- 
niques" population genetics. These techniques were capable of tracking the 
flow of genes over generations. Now the proposed cumulative effects of natu- 
ral selection could be rigorously traced over time. Together, Darwin's original 
functional proposal of natural selection, in conjunction with the genetic 
mechanisms to implement the principle and the mathematical techniques to 
trace its implications, constitute the synthetic theory of evolution. All three 
components~a functional principle, a biological mechanism, and a formal 
technique--were necessary preludes to the general acceptance of evolution 
through natural selection. (See the left column of Table 1.) 

Functional Principle 

Biological Mechanism 
Implementing the 
Functional Principle 

Formal Techniques for 
Tracing the Cumulative 
Effects of the 
Functional Principle 

Complex Morphology 

Natural Selection 

Genetics (Changes 
in Gene Frequency) 

Population Genetics 

Complex Behavior 

Behavioral Selection 

Neuroscience (Changes 
in Synaptic Efficacy) 

Neural Networks 

TABLE 1. Parallels between the evolution of complex morphology via natural selec- 
tion and complex behavior via behavioral selection. 

Toward a Natural-Science Account of Human Behavior 
If the Darwinian parallel holds, then a generally accepted, natural-science 

account of human behavior depends on the confluence of three events: (1) a 
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functional selectionist principle for modifying behavior within the lifetime of 
the individual, analogous to the principle of natural selection, (2) biological 
mechanisms for implementing the principle, analogous to genetic mechanisms, 
and (3) quantitative techniques for tracing the cumulative effects of the func- 
tional principle acting over time, analogous to population genetics. Are these 
requirements currently met, and~if so---what form do they take? 

A behaviorally based principle of selection 
In the early 1900s, at about the time that the mechanisms of heredity were 

being rediscovered, work began that was explicitly addressed toward uncover- 
ing a principle of behavioral selection. Even casual observations indicated that 
individual experience changed behavior: We recall the names of persons with 
whom we are acquainted and we remember incidents that occurred many years 
before. But precisely what conditions must be present for experience to change 
behavior? We recall some incidents clearly, some dimly, and others not at all. 
What characteristics distinguish those situations that change behavior from 
those that do not? 

Ivan Pavlov, the Russian physiologist, and Edward Thorndike, the Ameri- 
can psychologist, began the search for a principle of behavioral selection quite 
independently. However, each explicitly described his work as following the 
trail that Darwin had blazed. Unlike Darwin, each relied principally on exper- 
imental rather than naturalistic observation. The more well controlled condi- 
tions of the laboratory permitted fundamental relations to be more readily 
identified. Also, unlike natural selection, behavioral selection occurred over a 
time span short enough to be investigated in the laboratory within the lifetime 
of a single scientist. 

Beginning with these laboratory investigations, two fundamental factors 
have been identified that, together, allow experience to change behavior. First, 
the critical events affected by behavioral selection must occur very close in 
time to be effective---only a few seconds apart at most. For example, Pavlov 
found that the behavioral change of salivating to a tone was acquired only if 
the dog experienced the tone followed immediately by food, the stimulus that 
initially elicited salivation. Similarly, the behavioral change of increased lever- 
pressing occurred ol~ly if the rat experienced the eliciting stimulus of food 
immediately after the leverpress. Stimuli that already elicited behavior could 
change the way in which the environment guided behavior, but only if the elic- 
iting stimulus was separated from the affected events by no more than a few 
seconds. The elicitation of salivation by food could select salivation to a tone 
or leverpressing to the sight of a lever only if the food immediately followed 
these events. Otherwise, behavioral selection did not occur no matter how 
reliably or frequently these events were followed by the eliciting stimulus of 
food. Thus, the first factor promoting the selection of behavior was temporal 
contiguity~a close temporal relation between the affected environmental and 
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behavioral events and the eliciting stimulus. (For specialists in the field of 
learning, a caveat is noted here: Some events, such as gustatory/olfactory 
stimulation and the gastric effects of ingestion, may be separated by hours 
without preventing behavioral selection. In such cases, the stable relation 
between these events over evolutionary time has permitted the natural selection 
of specialized neural circuitry that bridges the long time interval between 
gustatory/olfactory stimuli and gastric consequences. The toleration of long 
intervals between events is the great exception not the rule, and in all other 
respects the findings demonstrate the same phenomena as behavioral selection 
operating over the normative shorter intervals; cf. Domjan, 1983.) 

In addition to temporal contiguity of the environmental and behavioral 
events with an eliciting stimulus, a second crucial factor was uncovered more 
recently. The discovery was prompted by the observation that, under some 
circumstances, an eliciting stimulus that occurred immediately after a stimulus 
or a behavior would not produce a change in the environmental guidance of 
behavior. For example, a tone might not acquire the ability to evoke salivation 
and a lever would not be pressed more frequently even though each had been 
followed immediately by food. What was responsible for the failure of an elic- 
iting stimulus to support behavioral selection even when the requirement of 
temporal contiguity was met? 

Beginning with the experimental work of Leon Kamin (1968), it became 
apparent that an eliciting stimulus would foster behavioral selection only if it 
evoked behavior that was not already occurring at that moment. For example, 
a tone that was immediately followed by food would not acquire the ability to 
evoke salivation if the tone was accompanied by a light that had previously 
been paired with food. Since the light already evoked salivation because of 
prior light-food pairings, the presentation of food~which also evoked sali- 
vation--did not produce a change in behavior. Without a change in behavior 
(in this case an increase in salivation), selection of a relation between the tone 
and salivation could not occur. The second fundamental factor~that an elicit- 
ing stimulus supports behavioral selection only if it evokes a change in ongoing 
behavior~is known as behavioral discrepancy. Under controlled experimental 
conditions, temporal contiguity and behavioral discrepancy have been shown to 
be necessary and sufficient for behavioral selection to occur; i.e., for experi- 
ence to change the way the environment guides behavior. (For the major 
theoretical treatment of these findings, see Rescorla & Wagner, 1972. For 
related theoretical treatments, see Donahoe, Crowley, Millard, & Stickney, 
1982, and for a selective review, see Donahoe & Palmer, 1994.) 

A principle of behavioral selection seeks to define the necessary and suffi- 
cient conditions whereby experience changes behavior. As such, it is a func- 
tional principle specifying the relation between certain conditions~contiguity 
and discrepancy~and their consequences~behavioral change. Consistent with 
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the Darwinian precedent, even most scientists do not accept the view that the 
cumulative effects of such a relatively simple functional principle can yield 
anything approaching the complexity and diversity of human behavior. And, of 
course, even the staunchest advocates of such a functional principle cannot yet 
claim such an accomplishment, only its promise. 

If the history of ontogeny recapitulates the history of phylogeny, a function- 
al principle of behavioral selection must be supplemented both by the biologi- 
cal mechanisms that implement the relations summarized by the principle---the 
mechanisms of synaptic plasticity~and by formal techniques that trace the 
cumulative effects of the principle--neural networks. (See Table 1.) Steps 
toward both of these goals are taken in this volume. 

The volume is divided into six major sections, each treating a core compon- 
ent of any natural-science based understanding of human behavior. A brief 
overview introduces each section and is followed by presentations of both 
experimental work that describes relevant biobehavioral processes and neural- 
network research related to those processes. The sections are: 

One: Neural development. Even a well formulated principle of behavioral 
selection whose biological mechanisms were completely known would be 
severely limited in its ability to generate complex behavior if it acted upon an 
embodied nervous system of inappropriate structure. Behavioral selection 
operates on a nervous system whose interconnected neural systems are the 
product of a long history of natural selection with a concurrently selected 
skeleto-muscular system. Mind and body co-evolved: No history of behavioral 
selection can lead a pigeon to speak or a person to fly. 

Two: Neural plasticity. When the requirements for behavioral selection are 
met~contiguity and discrepancy---cellular processes are initiated that alter 
synaptic efficacies between neurons. What are those processes, and what are 
their implications for the functioning of systems of neurons? 

Three" Perceiving. Complex behavior is the product of a prolonged 
history of selection~both natural and behavioral~by complex environ- 
ments. How do organisms extract from the varied combinations of stimuli 
with which they are incessantly bombarded just those combinations that 
validly guide behavior? Consider the complex combinations of stimuli that 
permit a young child to distinguish the faces of its parents from the faces 
of others. By what biological mechanisms are these stimuli integrated, and 
how might they be simulated by neural networks? 

Four: Behaving. The fluidity and coherence of behavior is so conspicu- 
ous as to be overlooked. Our fingers move rapidly and deftly as we write a 
letter; our speech involves the concerted activity of a number of response 
systems~the tongue, mouth, lips, and muscles of respiration. But what we 
usually think of as unitary responses, such as writing the letter "a" or 
uttering the speech sound (phoneme) /b/, are---in truth~the temporally 



8 J.W. Donahoe 

coordinated activity of thousands of muscle fibers. What are the neuro- 
muscular mechanisms that underlie this integrated activity, and can they 
be simulated in biologically faithful ways? 

Five: Reinforcement learning. The preceding comments on perceiving 
and behaving make clear that a central requirement of any adequate learn- 
ing principle is that it be able to integrate diverse sensory and behavioral 
activity and, in turn, to coordinate them with each other. By such means, 
complex combinations of stimuli may come to guide the complex combina- 
tions of muscular activity that constitute complex behavior. Both be- 
havioral and neuroscientific research point to one approach to 
learning~reinforcement learning--as the means whereby this is accom- 
plished. Normative cognitive science typically takes other approaches to 
learning, such as back-propagation (e.g., Rumelhart, Hinton, & Williams, 
1986) or production systems (e.g., Anderson, 1983). Although there are 
some points of contact between these approaches and reinforcement learn- 
ing (see the discussion of learning algorithms later in this chapter and at 
other points in the volume), reinforcement learning is most broadly con- 
sistent with experimental findings from biobehavioral research. Other 
approaches may be useful for purposes of artificial intelligence or engi- 
neering, but living organisms appear to exploit the iterative application of 
reinforcement learning as the means for achieving complex behavior. 

Six: Complex behavior. The sixth, and final, section of the volume ap- 
plies biobehavioral findings as interpreted by neural networks to aspects of 
that most complex of human behaviors~verbal behavior. 

Biological mechanisms of behavioral selection 
I shall now introduce some of the basic terminology and concepts used in a 

biobehavioral approach to cognition (i.e., complex behavior) and in its inter- 
pretation via neural networks. 

Synaptic processes. For the environment to change the way in which behavior 
is guided, appropriate physical energies must stimulate sensory receptors, the 
receptors must activate sets of neural pathways, synapses along these pathways 
must be modified by experience, and these modified pathways must, in turn, 
initiate effector activity. The modification of synapses changes the ability of 
neurons to communicate with one another, and neurons communicate chiefly 
by means of neurotransmitters. Neurotransmitters are liberated by "upstream" 
(presynaptic) neurons and migrate across the synapse to activate "downstream" 
(postsynaptic) neurons. Since, by definition, behavioral selection produces 
changes in the manner in which the environment guides behavior, the biologi- 
cal processes whereby neurons communicate with one another must be affect- 
ed. Jerrold Meyer's chapter on neurotransmitters indicates some of the 
major characteristics of communication via neurotransmitters and provides 
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constraints that must be honored by formal techniques that attempt to trace the 
effects of behavioral selection. 

A presynaptic neuron does not generally have a constant effect on a post- 
synaptic neuron. The changing effects of behavioral selection are mediated 
through changes in the release of neurotransmitter by the presynaptic neuron 
and/or the response of the postsynaptic neuron to the neurotransmitter. A 
change in the ability of presynaptic neurons to initiate activity in postsynaptic 
neurons is known as a change in synaptic efficacy. Uwe Frey's chapter de- 
scribes cellular processes underlying a type of change in synaptic efficacy 
known as long-term potentiation, or LTP. The changes occurring during LTP 
are thought to provide the most general model of the neural processes mediat- 
ing behavioral change throughout the nervous system. The dependence of 
behavioral change on temporal contiguity is, in part, a reflection of the time 
relations between events occurring at the synapse. 

Neural systems. Changes in synaptic efficacy necessarily occur because of 
events taking place locally at the synapse. However, these local events may be 
affected by prior events that have occurred at more remote sites in the nervous 
system and, ultimately, in the environment itself. Thus, in order to understand 
fully the changes in synaptic efficacies that mediate behavioral change, it is 
necessary to consider the sets of pathways, or neural systems, of which those 
synapses are members. Maria Luskin describes some of the techniques and 
processes whereby neural development occurs. Of particular importance for 
learning are those neural systems that project widely throughout the brain. 
These relatively nonspecific systems can modify synaptic efficacies in large 
areas of the brain in a coordinated fashion. Dopamine is a neurotransmitter that 
affects the functioning of many synapses and, for that reason, is often referred 
to as a neuromodulator rather than simply a neurotransmitter. Studies of the 
eleetrophysiology of dopaminergie neurons by Wolfram Sehultz indicate 
that their activity implements the discrepancy requirement of a functional 
principle of behavioral selection. 

Electrophysiology provides essential information about the activity of single 
neurons or small ensembles of neurons. However, guidance of even relatively 
simple behavior requires the coordinated activity of many hundreds of thou- 
sands of neurons. To provide more global information about the functioning of 
many neurons, techniques have been developed for imaging the activity of 
entire neural systems. Marcus Raiehle describes research on neural imaging 
during verbal processing. 

Sensory and motor processes. Synaptic processes within neural systems cannot 
be modified to implement a principle of behavioral selection unless the rich 
environmental input to the organism is sufficiently appreciated and the be- 
havioral output of the organism sufficiently integrated to produce an organized 
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response. As examples, recognition of faces requires an appreciation of the 
relations between visual stimuli that specify form, color, and perhaps motion 
and depth as well. And, a response such as reaching requires the coordinated 
contraction of thousands of muscle fibers reflecting the concerted activity of 
thousands of neurons. Wolf Singer describes mechanisms whereby the activity 
of neurons in the visual system are integrated to permit the visual processing 
of sensory inputs. Keiji Tanaka describes higher-level visual processing and 
Mark Gluek and Catherine Myers describe the likely role of hippoeampal 
function in bringing about the integration of sensory and motor processes to 
"represent" extremely complex combinations of events. Almstolos Georgopou- 
los describes the means by which the activity of neurons in the motor systems 
is integrated to specify the control of movement. Nonspecific neural systems 
also play a critical role in coordinating the modification of synaptic efficacies 
underlying sensory and motor integration. 

Behavioral constraints. The biological mechanisms that mediate behavioral 
selection can be known only through the experimental methods of neuro- 
science. They cannot be inferred solely from behavioral observations because, 
in general, an indefinitely large number of underlying mechanisms could 
mediate any given environment-behavior relation (Donahoe & Palmer, 1994; 
cf. Smolensky, 1986; Townsend, 1972). Although behavioral observations do 
not provide a sufficient basis from which to infer biological mechanisms, they 
do assist the search for such mechanisms: Biological mechanisms must yield 
outcomes that are consistent with functional relations discovered at the be- 
havioral level. For example, a person with brain damage that produces a cer- 
tain form of aphasia might not be able to name an object by looking at it, but 
could name it after picking it up. Neuroscience must accommodate this 
fact~that a vocal response that cannot be guided by a visual stimulus can 
nevertheless be guided by a tactile stimulus. There is also that most fundamen- 
tal contribution of behavioral processes to biological mechanisms: If there were 
no consequences of the biological mechanisms for the behavior of the organ- 
ism, then there would be no basis on which the environment could naturally 
select the biological mechanisms. Behavior and behavioral change are the 
pacemakers of evolution (Wilson, 1975). The chapter by David Palmer indi- 
cates some of the important behavioral constraints on whatever biological 
mechanisms mediate behavioral selection. 

Formal techniques for tracing behavioral selection 
Even if a functional principle of behavioral selection and the biological 

mechanisms that implement it were completely known, something else is re- 
quired before a natural-science account of complex behavior can gain general 
acceptance. As previously noted, a functional principle and its biological 
implementation must be supplemented by formal techniques that trace the 
selection process over time. 
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Formal techniques are required for two primary reasons. First, any truly 
complex behavior is the end product of a long and incompletely known history 
of natural and behavioral selection spanning many years. Consider the complex 
behavior of reading English prose. The visual patterns that distinguish different 
letters and words from one another must be appreciated, the articulatory 
movements accompanying those visual stimuli must be acquired and the sounds 
produced by those movements coordinated with the visual stimuli, the complex 
motor patterns that make up the "meanings" of the words must be established, 
and so on. The full history of such a prolonged and complex series of events 
cannot be studied under experimental conditions, and it is unlikely that it ever 
will be. Second, even if the selection history were fully known and the various 
biological mechanisms engaged by that history were fully characterized, the 
simultaneous occurrence of multiple selecting events and their simultaneous 
effects on multiple neural pathways in diverse portions of the brain over long 
periods of time is far too complex to be tracked without formal techniques for 
doing so. For both of these reasons, some formal means is required to follow 
the course of selection for the sequence of many simultaneously acting events 
that yields complex behavior. 

The chapters on neural-network simulations present a number of examples 
of formal techniques for tracing the effects of selection over time. All of these 
techniques are implemented in neural networks that simulate the actions of one 
or more of the neural systems found in the brains of living organisms. If, as 
we claim, formal techniques are necessary to keep track of simple processes 
acting over time, and if neural networks serve this purpose with respect to the 
effects of behavioral selection, then neural networks are an inescapable 
component of a natural science-based account of human behavior. In short, 
neural networks are necessary if the cumulative products of behavioral selec- 
tion are to be understood. 

Interpreting Complex Behavior Using Neural Networks 

Neural networks 

Network architecture. A neural network is an interconnected set of units, each 
unit simulating a single neuron or coherent ensemble of neurons and each 
connection simulating an axon or set of axons communicating activity from one 
unit to another. The entire set of units and connections constitutes the architec- 
ture of the network. (See Figure 2.) The units within a network are conven- 
tionally divided into three types based on their positions within the architec- 
ture. Input units sense events in the environment of the network, usually the 
external environment of the organism. But, if the network is intended to simu- 
late some "module" within a larger network, then the input units sense only 
those events that affect the particular module. After the input units are stimu- 
lated, connections from these units may then activate "hidden" or interior units 



12 J. W. Donahoe 

within the network. Connections from interior units may then activate either 
other interior units or, ultimately, output units of the network. Interior units 
that are activated by other interior units are said to be in different layers of the 
network. When a network has only input and output units (i.e., no interior 
units), the network is said to have a perceptron architecture (Rosenblatt, 1962). 
Most biologically plausible neural networks have a number of hidden layers. 
Output units simulate the behavior of the organism or, in the case of a module, 
the events that are passed to the input units of another module within a larger 
network. 

, Retention 
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FIGURE 2. A neural-network architecture showing input, hidden (or interior), and 
output units. Connections between units are also shown with arrows indicating recur- 
rent as opposed to feedforward connections. 

Connections are classified into two types. Those connections that go from 
units in one layer to units in "deeper" layers are called feedforward connec- 
tions. Connections that go from units in "deeper" layers to units in more 
"superficial" layers are called recurrent connections. A recurrent connection 
allows the activity of the unit from which it arises to affect its own activity at a 
later time in the operation of the network. This occurs either when the recur- 
rent connection directly reactivates the originating unit or when it activates a 
more superficial unit in the network that, in turn, reactivates the originating 
unit. Feedforward connections convey activations from input toward output 
units. Recurrent connections permit the activity of interior units to affect the 
functioning of the network at a later point in time. In the nervous system, 
feedforward and recurrent connections occur with approximately equal fre- 
z uency. For example, feedforward projections from thalamus to cortex are 
complemented by recurrent projections from cortex to thalamus. Similarly, 
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feedforward intracortical pathways extend from sensory-association to motor- 
association cortex and are complemented by recurrent connections in the other 
direction. 

Activation function. Given a network architecture with input, interior, and 
output units and associated connections, how does the network operate? Events 
in the environment of the network stimulate its input units and thereby initiate 
a pattern of activity that ripples through the network until, possibly, output 
units are activated. The process whereby presynaptic units affect the activity of 
postsynaptic units via the connection between them is described by an activa- 
tion function. In its simplest form, the level of activation of a postsynaptic unit 
is determined by three variables--whether the effect of the presynaptic unit is 
to increase (an excitatory effect) or decrease (an inhibitory effect) the activation 
of the postsynaptic units, the level of activation of the presynaptic unit, and the 
strengths of the connections, or connection weights between pre- and postsyn- 
aptic units. If a i symbolizes the activation of the ith presynaptic unit and w.. ,j 
symbolizes its connection weight to the jth postsynaptic unit, then the activa- 
tion level of unit j at time t is the product of a. and w.. at time t-1. When the 

t tJ. 
connection is from an excitatory unit, a. has a positive sign; when a. is from an 

l 1 

inhibitory unit, it has a negative sign. If there are a number, n, of connections 
from multiple presynaptic units, each with its own connection weight to the jth 
postsynaptic unit, then the total activation is the sum (with respect to sign) of 
the products of the presynaptic activations and their associated connection 
weights (i.e., the inner product in linear algebra). 

r l  

= ~2 ai(t-1)wij(t-1 ) (1) aJ(O i=1 

In neural networks, as in the nervous system, the effective activation of the 
I jth unit, a j, is a nonlinear function of the total activation. In the nervous sys- 

tem, there are a number of sources of nonlinearity; e.g., saturation of ionic 
flow across concentration gradients as described by the Goldman equation and 
the firing threshold of neurons. In neural-network research, the nonlinear 
function is referred to as a "squashing" function and commonly takes the form 
of the logistic function, A, which resembles a cumulative normal distribution. 
The effective activation (a ~ after "squashing" by the logistic function is 

t a j,, A(aj,) (2) 

If the activation function were linear, the addition of interior units to the 
network architecture would have no effect on the computational capability of 
the network: A computationally equivalent network could be constructed that 
lacked interior units altogether. However, it is known that nonlinearities are 
necessary to mediate some behaviorally observed input-output relations. For 
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example, in order for a learner to respond when either of two events is present 
but not when both are present or neither is present, nonlinearly activated 
hidden units are required. This task is called a patterning problem in the field 
of learning and an exclusive-or problem in artificial intelligence. It is the 
simplest nonlinearly separable pattern discrimination. (Nonlinear input-output 
relations can also be mediated by networks having what are called "higher- 
order" input units that are designed to respond to only the conjunction of 
events, and not to either event separately. However, such input units must be 
present for all possible conjunctions of events that might conceivably be useful 
to the operation of the network, an unrealistic strategy that has many of the 
same virtues with respect to nonlinear hidden units as theft with respect to 
honest toil. Accordingly, most biologically plausible neural networks have 
multiple layers and nonlinear activation functions.) 

Learning algorithm. In a neural network, learning is conceptualized as a 
change in the connection weights between units. As the values of the w..s 
change, the same events acting on the input units of the network produce di:~- 
ferent activations of the output units in an otherwise constant network architec- 
ture. Thus, as with living organisms, the behavior of the network changes as 
its learning history changes. The process whereby connection weights are 
modified is described by a learning algorithm. 

It is useful to distinguish between two general types of learning algo- 
rithms~unsupervised and supervised. In unsupervised learning, the learning 
algorithm is unaffected by feedback from the activations of other units or by 
any environmental consequences of that pattern of activation. That is, there are 
no means by which the performance of the network affects the learning pro- 
cess. On the neural level, unsupervised learning corresponds to changes in 
synaptic efficacy that result only from events that are local to the affected 
synapse with no direct or indirect influence of remote events. In the second 
type, supervised learning, the learning algorithm is affected not only by local 
events but also by more remote events taking place at output units or in the 
environment as a consequence of the activity of output units. On the neural 
level, if the occurrence of food following a response led to the release of a 
neuromodulator that affected synaptic efficacies in the network, then a super- 
vised-learning algorithm would be required to simulate the behavioral selection 
process. 

Two classes of supervised-learning algorithms are commonly distin- 
guished~reinforcement learning and instructed learning. In reinforcement 
learning, feedback takes the form of a single value that varies with some global 
measure of remote events. Consider a rat pressing a lever for food. If feedback 
took the form of a single value that varied directly with the amount and inver- 
sely with the delay in the receipt of food, then a reinforcement-learning algo- 
rithm would be appropriate. Technically, in reinforcement learning, feedback 
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is a scalar quantity. In instructed learning, feedback takes the form of multiple 
values that reflect different aspects of the remote event. Returning to the lever- 
pressing example, if the rat received separate feedback concerning the height 
to which the paw was raised prior to pressing, which paw pressed the lever, 
and the force with which the lever was pressed, then an instructed-learning 
algorithm would be required. Technically, in instructed learning, feedback 
takes the form of a vector quantity. 

Note that a supervised-learning algorithm for instructed learning requires 
the learner to be able to distinguish between different aspects of its perfor- 
mance prior to the beginning of learning. Without prior learning, the different 
feedback values that correspond to each aspect of performance could not be 
appreciated. As an illustration, consider the following advice to a novice tennis 
player after a poor backhand return. "Your return was poor because you failed 
to draw back your racket soon enough and you hit the ball off your rear foot 
instead of your front foot." The novice could not benefit from this feedback 
unless he had already learned to discriminate the words as well as the positions 
of the ball relative to various parts of his body. For such reasons, instructed- 
learning algorithms depend on a history of prior learning to be effective and, 
accordingly, are unlikely to describe the learning process in inexperienced 
organisms. In a genuine sense, supervised learning by means of instructed 
learning assumes the prior effects of reinforcement-learning algorithms. (The 
most common approach in cognitive psychology employs an instructed-learning 
algorithm, the generalized delta rule; Rumelhart et al, 1986; Werbos, 1974. 
The delta rule is conceptually related to discrepancy-based reinforcement learn- 
ing; Sutton & Barto, 1981; but its implementation is problematic in a biologi- 
cally plausible neural network.) 

Neural networks and neuroscience 
In normative psychology, underlying structures and processes~including 

neural networks and learning algorithms~are inferences from observations at 
the behavioral level constrained only by logical/mathematical arguments. The 
approach taken in this volume differs in that the structures and processes that 
underlie behavioral observations are the result of direct observations at the 
level of the neurosciences. Thus, network architectures and learning algorithms 
are based on independent experimental observations at the same levels as their 
counterparts in the nervous system (cf. Donahoe & Palmer, 1994). The choice 
of the neurosciences as the foundation for neural-network research, instead of 
inferences from behavior and logical/mathematical arguments alone, does not 
deny contributions from these other sources. Any neuroscience-based treatment 
of neural networks must yield results that are consistent with behavioral ob- 
servations, and must satisfy standard criteria of parsimony and logical consist- 
ency. In addition, the use of neural-network technology to solve engineering 
problems may benefit from relaxing constraints based on the characteristics of 
biological systems. 
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Levels of analysis. Given that the neural-network research in this volume is 
informed and constrained by findings from the neurosciences, other issues 
present themselves. The neurosciences include observations at levels that range 
from biophysics and molecular biology to neural systems and animal behavior. 
What is the "appropriate" observational level(s) for a biologically grounded 
approach to neural networks? 

No a priori answer to this question can be given, just as no answer can be 
given to a comparable question about the appropriate level of analysis for 
experimental work. What is the level at which questions about neuroanatomy 
should be answered~electron or light microscopy? What is the level at which 
questions about synaptic plasticity should be answered~patch-clamp or bio- 
chemical measurements? Aside from the nature of the question itself, the 
choice of a level of analysis in experimental science depends on whether order- 
ly relations are found between independent and dependent variables at that 
level. If orderly relations are found, then the level of analysis is, for the 
moment, appropriate. However, if the relations between manipulated and 
measured variables are not orderly, then either the wrong variables at that level 
are being studied or the analysis must move to a lower level, at which the 
effects of previously unconsidered variables are investigated. In general, sci- 
ence typically encounters unruly relations with continued study of an empirical 
phenomenon at a given level, and then the level of experimental analysis shifts 
downward. 

At the same time that a reductionist course is pursued experimentally, 
understanding the ordinary world of the unaided senses advances as formal 
techniques are developed that trace the complex effects of our ever-deepening 
understanding of fundamental processes. Neural-network research interprets 
the cumulative effects of the biobehavioral processes uncovered through exper- 
imental research and, like experimental research, exploits those levels of 
analysis that yield orderly relations. In the case of neural networks, the rela- 
tions are between the activations of input and output units, and their orderliness 
is evaluated by the degree to which they simulate the relations between inde- 
pendent and dependent variables observed in living organisms. 

In short, the appropriate levels of analysis for experimental science and 
neural-network research are governed by essentially similar considerations. 
For example, if the operation of a neural network accurately simulates the 
target phenomenon with activation functions that simply sum the excitatory and 
inhibitory inputs to a postsynaptic unit, then that is an appropriate level of 
analysis for the phenomenon. However, it is known experimentally that some 
inhibitory synapses (those on dendrites) produce graded responses in neurons, 
whereas other inhibitory synapses (those on the soma or axon hillock) com- 
pletely negate excitatory dendritic inputs. Therefore, it is likely that a phenom- 
enon will ultimately be encountered that cannot be adequately simulated with a 



the Necessity of Neural Networks 17 

neural network using simple summation for its activation function. At that 
point, the differential effects of dendritic and somatic inhibitory synapses may 
need to be incorporated into the simulation. Biologically plausible neural- 
network simulations must not contain features that are contrary to experimental 
findings, but they need include only those features that are necessary to accu- 
rately simulate the phenomena of interest. 

A Conceptual Scheme 
The various levels of analysis that contribute to neural-network research are 

schematically presented in Figure 3. 
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FIGURE 3. A conceptual framework for neural-network research. (See the text for a 
discussion.) 

Learning algorithm 
We begin the selection process with the network architecture shown in the 

oval in the middle of the upper portion of Figure 3. The input units for this 
architecture are stimulated by environmental events that activate interior and 
output units according to an activation function. A learning algorithm then 
modifies connection weights within the network. The learning algorithm oper- 
ates on the connection weights in a manner that is determined by the particular 
history of inputs and feedback experienced as a consequence of the environ- 
mental algorithm. 



18 J. W. Donahoe 

Environmental algorithm 
The environmental algorithm determines the input to the network by means 

of a fading function. The fading function defines the particular sequence of 
environmental events that stimulate the input units of the network, and this 
sequence may be affected by the output of the network. For example, if the 
network is performing poorly, training could be restricted to more easily dis- 
criminated input patterns. The shaping function defines the criteria that the 
output pattern must satisfy for the network to receive environmental feedback 
in supervised learning. For example, feedback might be given for partially 
correct output patterns early in training. Interactions between the learning and 
environmental algorithms also govern the reinforcement function. The rein- 
forcement function determines the form of the feedback given in supervised 
learning. Feedback might take the form of either a scalar or a vector signal that 
is some function of the output pattern occurring at that point in training. For 
example, the strength of the reinforcement signal might be greater for closer 
approximations to the target output pattern. In brief, the environmental algo- 
rithm implements the contingencies between environmental, behavioral, and 
reinforcing events that are present in the training environment~technically, a 
triplet of input, output, and reinforcement vectors. Contingencies of this sort 
are studied in the experimental analysis of behavior. 

Once the connections between units in the network have been differentially 
strengthened through the learning algorithm as governed by the environmental 
algorithm, the result is a trained network that mediates the target input-output 
relations to varying degrees. If a founding population of networks of different 
architectures is modified by a learning algorithm, the members of that popula- 
tion will, in general, vary in the adequacy with which they perform. These 
variations reflect to some degree the particular sequence of contingencies to 
which the networks were exposed by the environmental algorithm. But, they 
are also importantly influenced by any differences in the network architectures 
at the beginning of the simulation. Just as not all nervous systems acted upon 
by the same set of experiences will mediate the same behavior, so not all 
networks modified by the same learning algorithm will mediate the same input- 
output relations. Chimpanzees and deaf humans exposed to the same sign- 
language environment behave differently. And, different network architectures 
may also behave differently~even after identical histories of behavioral selec- 
tion. 

Genetic algorithm 
Since the architecture of a neural network is a crucial determinant of the 

input-output relations that it can mediate, a comprehensive program of simula- 
tion research includes some means for modifying the architecture as well as the 
connection weights of networks. The structure of the nervous system is a joint 
product of influences of two major sources~genetics and neurodevelopmental 
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processes. Accordingly, a biologically plausible genetic algorithm simulates 
mechanisms of these two origins to differentially reproduce network architec- 
tures in proportion to their fitness; i.e., their ability to mediate the target input- 
output relations. The product of the genetic algorithm is a new population of 
network architectures to be acted upon by the interaction of the learning and 
environmental algorithms. The culmination of the selection process is a popula- 
tion of neural networks in which connection weights are modified by the learn- 
ing algorithm and network architectures by the genetic algorithm to simulate 
complex performance by ~neans of biobehaviorally plausible mechanisms. 

The neural-network simulations in this volume illustrate major aspects of 
the conceptual scheme depicted in Figure 3. Andrew Barto and Richard 
Sutton provide a general conceptual framework that exposes fundamental 
issues in reinforcement learning. In separate contributions, John Donahoe, 
Read Montague, and John Moore and June-Seek Choi propose biologically 
plausible realizations of reinforcement learning algorithms. As already noted, 
the ability of any learning algorithm to modify connection weights so that the 
network can mediate input-output relations depends on the architecture of the 
network. In keeping with that view, the chapter by Stephen Senft describes 
simulations of neurodevelopmentai processes and the one by Jos~ Burgos 
employs a genetic-developmental algorithm to produce network architectures. 
Neil Berthier, Jeffery Ciouse, and Vijaykumar Gullapalli separately de- 
scribe simulation research that employs techniques such as shaping that permit 
networks to mediate complex, sequential output patterns (i.e., complex control 
problems). Dean Buonomano and Michael Merzenich, and John Hummel 
and Arnold Trehub in their individual contributions, indicate how neural 
networks may come to appreciate complex sequences of input patterns. 
Finally, chapters by Dermot Barnes and Peter Hampson, Vijaykumar 
Gullapalli and Jack Gelfand, Michael Jordan, and Guy Van Orden, Anna 
Bosman, Stephen Goldinger, and William Farrar indicate how neural 
networks may be used to simulate aspects of that most complex human be- 
havior, language. No one simulation exploits all aspects of the conceptual 
scheme, embodies all potentially relevant biological processes, or accounts for 
all aspects of the simulated phenomena. Nevertheless, these simulations collec- 
tively represent a promising beginning toward the achievement of the ultimate 
goal of understanding complex human behavior in terms of basic biobehavioral 
processes through the use of adaptive neural networks. 
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PART ONE: NETWORK ARCHITECTURE AND NEUROANATOMY 

This first part of the volume illustrates the use of simulations to explore the 
implications of neuroscience for the structure of the real nervous system and, 
reciprocally, the use of neuroscience to constrain the architectures of artificial 
neural networks. (Note: These introductions were prepared by the editors 
without consulting the authors of the chapters, and should be regarded as 
expressing the views of the editors alone.) 

As noted in the preceding chapter, the effect of the environment on be- 
havior depends, in part, on the structure of the organism on which the envi- 
ronment acts. Consider language. The cellular mechanisms involved in learn- 
ing (neural plasticity) appear to be identical throughout the class of mammals 
and, indeed, substantially the same across the entire animal kingdom. And yet, 
whereas almost all members of our species acquire vocal speech when exposed 
to a human social environment, chimpanzees do not (Hayes, 1951). The ab- 
sence of the effectors and neural structures necessary for vocal speech pre- 
cludes their acquisition of language. Generalizing from this example, even if 
we knew with perfection the cellular mechanisms of learning and the environ- 
mental history required for language acquisition and we were able to faithfully 
implement that knowledge in a simulation, we could not simulate language 
acquisition in an artificial neural network lacking the necessary architecture. 

Lusldn's chapter provides an overview of some of the modern methods 
available to study the architecture of the real nervous system and some major 
findings obtained with those methods. Several general conclusions may be 
drawn from this work. First, modern neuroanatomical methods allow the 
development of the nervous system to be traced with a precision and complete- 
ness that was inconceivable even a few years ago. Thus, the information re- 
quired for detailed simulations of neural development is becoming available. 
Second, evolution has devised multiple "strategies" whereby the genome 
guides neural development. For example, the basic structure of the neocortex 
appears to result from the migration of incipient neurons (neuroblasts) along 
glial strands arising from structures deep within the brain, whereas~in other 
regions of the brain~neurons find their paths through less structural, more 
purely chemical mechanisms. 

Senft's chapter makes the general point that the complexity of neurodevel- 
opmental processes is so great that simulation techniques are required if the 
competence of those processes to produce neural architectures is to be evaluat- 
ed. Furthermore, graphical presentations produced by the simulations permit 
the concerted effects of those processes to be appreciated. A functionally 
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comparable problem is confronted when tracing the development of galaxies 
and solar systems~although the temporal and spatial scales of such processes 
are much greater, of course. As with the nervous system, the complexity of the 
resulting structure requires simulation to determine if basic physical process- 
es~e.g. ,  gravity, adhesion, etc.---can mimic galactic evolution as their cumu- 
lative product (e.g., Rasio & Ford, 1996). To evaluate the adequacy of simula- 
tions of neural development, Senft proposes a kind of Turing test; namely, do 
experts mistake the graphical results of the simulations for microscopic views 
of the real nervous system? This test is analogous to evaluating the adequacy of 
cosmological simulations by judging their similarity to telescopic views of the 
universe. As indicated by the reactions of my colleagues to Senft's graphical 
representations, some simulations already pass muster for limited regions of 
the nervous system. Although we are clearly at the beginning of the enterprise 
that Senft has pioneered, the portents are auspicious. 

Burgos's chapter describes the selection of architectures for artificial neural 
networks using a genetic algorithm (see Chapter 1) that is inspired by experi- 
mental work on neurodevelopment. In normative cognitive science and artifi- 
cial intelligence (e.g., McClelland & Rumelhart, 1986), network architectures 
are designed (and redesigned) such that the input-output relation of interest can 
be mediated by the network when its connection weights are modified by learn- 
ing. That is, the network architectures are "handcrafted" rather than produced 
by a set of principles. The genetic algorithm devised by Burgos begins with a 
founder population of simulated chromosomes and then, by simulating neuro- 
development, produces a population of network architectures whose connec- 
tions are modified by the learning algorithm. The chromosomes that lead to 
these networks through neurodevelopment are then reproduced in proportion to 
the performance of the networks on the task. In this way, the genetic algorithm 
simulates the process of natural selection to determine network architecture. 
Burgos demonstrates that a single founder population of chromosomes can lead 
to subsequent populations of chromosomes that generate networks capable of 
performing a variety of tasks. For example, networks produced in this manner 
can learn to be sensitive to different temporal relations between events due to 
interactions between units in the network---i.e., timing occurs without a 
"timer" (see also Buonomano & Merzenich, this volume). Hybrid genetic- 
learning algorithms promise a principled approach to selecting neural-network 
architectures that permit the simulation of environment-behavior relations of 
indefinite complexity. 
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CHAPTER 2 

PROGENITOR CELLS OF THE MAMMALIAN FOREBRAIN: 
THEIR TYPES AND DISTRIBUTION 

Maria B. Luskin 
Department of Anatomy and Cell Biology 
Emory University School of Medicine 

ABSTRACT 

Important events underlying the proper functioning of the central nervous 
system include the production, assembly, and differentiation of appropriate 
types and numbers of cells. The mechanisms that control these phenomena 
have been difficult to unravel in the mammalian forebrain because of its di- 
verse cellular composition and because of the displacement of its cells from 
their site of origin to their permanent location during development. Nonethe- 
less, headway has been made in our understanding of how cells of the develop- 
ing forebrain "decide" where to go and what to become. The availability in the 
past few years of replication-defective recombinant retroviruses that encode 
heritable and easily detectable marker genes, as well as a class of fluorescent 
lipophilic markers (i.e., molecules that associate with lipids in membranes), 
has made it possible to tag progenitor cells and subsequently identify their 
progeny either morphologically or immunohistochemically. This approach has 
been used to determine the properties and location of the progenitor cells of the 
forebrain and to analyze the distribution and phenotype of lineally related cells 
in the developing and mature forebrain. The findings obtained by these studies 
support the notion that the progeny of individual telencephalic germinal-zone 
cells generally remain in relatively close proximity because they traverse simi- 
lar paths. Furthermore, progenitor cells of the prenatal and postnatal brain are 
a composite of specialized cell types, and the progeny of individual progenitors 
share a common phenotype. This chapter focuses on the similarities and differ- 
ences between how the cerebral cortex and the olfactory bulb develop, as a 
way of deducing the range of mechanisms responsible for generating the di- 
versity of cell types character:.stic of each structure. 

Generation of Cells Destined for the Cerebral Cortex 
The development of the mammalian cerebral cortex proceeds by an orderly 

sequence of events that has been elucidated by numerous studies utilizing 
several experimental approaches (for review see McConnell, 1988; Rakic, 
1988b). During prenatal development, cells that form the cerebral cortex arise 
from a layer of neuroepithelial cells surrounding the cerebral ventricles. Post- 
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mitotic neurons separate from this ventricular (germinal) zone and form the 
cortical plate (future cellular layers of the cerebral cortex) by migrating 
through the intermediate zone toward the outer pial surface (Figure 1). This 
migration of immature neurons takes place predominantly in association with a 
specialized population of glial cells whose processes extend the full width of 
the developing cerebral cortex (for review see Rakic, 1990). These radial glial 
fibers may serve as a road map to help guide migrating cortical neurons to 
their final destinations. The postmitotic neurons complete their differentiation 
in the cortical plate and organize into layers; the earliest-born permanent 
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FIGURE 1. Sequential stages in the development of the cerebral cortex, and hypothet- 
ical formation of a cortical clone. A. Schematic appearance of the cerebral mantle 
before the generation of postmitotic neurons. The ventricular zone (VZ) consists of a 
densely-packed layer of proliferating cells, and the marginal zone (MZ) contains rela- 
tively few cell somata. B. Schematic drawing of the cerebral mantle midway through 
cortical neurogenesis. The ventricular zone and subventricular zone (SWZ), another 
layer of dividing cells, generate neurons and glia destined for the cerebral cortex. Most 
postmitotic neurons migrate radially away from the ventricular zone. The postmitotic 
neurons migrate through the overlying intermediate zone (/Z) and subplate (SP), a 
transient layer of early-born neurons, to the cortical plate (CP), where they differen- 
tiate. C. Schematic drawing showing the layers of the mature cerebral cortex and the 
position of postmitotic, postmigratory cortical neurons in layers 2-6. The dark gray 
cells in each drawing represent the hypothetical arrangement of clonally related cells in 
the developing cerebral cortex. The presumed sequence of events is for a progenitor 
cell in the ventricular zone to divide a number of times (A), casting out postmitotic 
neurons, which migrate to the cortical plate (B) and differentiate in relative proximity 
to each other (C). WM is white matter containing axons projecting to and from the 
cortex. 
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neurons are situated deepest in the cerebral cortex and the latest born are the 
most superficial (e.g., Rakic, 1974; Luskin & Shatz, 1985a; Figure 1). After 
neurogenesis has occurred and the depletion of the ventricular zone has been 
completed, glial cells (astrocytes and oligodendrocytes) continue to be generat- 
ed postnatally in the subventricular zone, which subsequently surrounds the 
cerebral ventricles (Privat, 1975; LeVine & Goldman, 1988). 

Despite our basic understanding of the spatial and temporal patterns of 
proliferation and migration of cells destined for the cerebral cortex, our under- 
standing of how, when, and where a cortical cell's identity is established is 
limited. Given that the cells of the cerebral cortex can be phenotypically dis- 
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FIGURE 2. Possible types of progenitor cells in the germinal ventricular zone of the 
developing rat cerebral cortex. Our lineage studies suggest that by the onset of cortical 
neurogenesis most progenitor cells (cells a, c, e, and g) of the prenatal ventricular 
zone generate a homogeneous population of cells; an individual progenitor cell gener- 
ates either all astrocytes, all oligodendrocytes, all pyramidal neurons, or all nonpyra- 
midal neurons. Although we cannot rule out the presence of bipotential glial progenitor 
cells (cell b) in the ventricular zone (or subventricular zone) which give rise to astro- 
cytes and oligodendrocytes, they were not detected. Nor did we obtain compelling 
support for multipotential progenitor cells which give rise to neurons and glia (cell d) 
or to pyramidal and nonpyramidal neurons (cell.t). Collectively our results suggest that 
the lineages for the major subtypes of cells in the cerebral cortex have diverged by the 
onset of cortical neurogenesis. 
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tinguished by their morphology, connectivity, laminar position, and transmitter 
candidates, it is likely that a series of "decisions" progressively restricts the 
fate of a progenitor cell or its progeny. These decisions must be coordinated 
but need not occur at the same time or place. Moreover, it is important to 
distinguish which phenotypic features are imposed by inherited factors and are 
therefore irreversible, and which are sculpted by environmental factors, such 
as responses to extracellular matrix-bound cues or diffusible factors. 

The types of progenitor cells in the prenatal telencephalic germinal zone 
Recently, several investigators have investigated which, if any, of the 

phenotypic properties of a cell in the cerebral cortex are dictated by genetic 
factors (Luskin, Pearlman, & Sanes, 1988; Price & Thurlow, 1988; Walsh & 
Cepko, 1988, 1992; Luskin, Parnavelas, & Barfield, 1993; Temple, 1989; 
Grove, Williams, Li, Hajhosseini, Friedrich, & Price, 1993; Parnavelas, 
Barfield, Franke, & Luskin, 1991; Williams, Read, & Price, 1991; Mione, 
Danevic, Boardrnan, Harris, & Parnavelas, 1994). These studies have ad- 
dressed the question of whether there are separate progenitor cells for the 
major subtypes of cells in the cerebral cortex (l~gure 2). If separate progenitor 
cells exist for each major subtype, then all the cells derived from any given 
progenitor should have the same phenotype. This problem is more amenable to 
examination when the cells of the cerebral cortex are subdivided into the two 
main types of glia, astrocytes and oligodendrocytes, and into the two main 
types of neurons, pyramidal and nonpyramidal cells. Pyramidal or projection 
neurons have axons that project relatively long distances and act to excite the 
cells upon which they synapse, whereas virtually all nonpyramidal cells or 
interneurons have locally ramifying axons and are inhibitory neurons. 

The most direct approach currently available for revealing whether individ- 
ual progenitor cells of the ventricular zone generate a heterogeneous or a 
homogeneous population of cells with respect to the major cell classes is to use 
retroviral-mediated gene transfer to introduce a marker gene into the DNA of 
dividing progenitor cells. The integrated marker gene is subsequently inherited 
by all progeny of the infected cell (Sanes, 1989). The most commonly used 
retroviral lineage tracers contain the Escherichia coli lacZ (f~-galactosidase) 
gene, the expression of which can be detected histochemically and immunohis- 
tochemically in the offspring of infected cells by light and electron microscopy 
(Figures 3 and 4). In our studies, we have relied on well-established ultrastruc- 
tural features to distinguish between astrocytes, oligodendrocytes, pyramidal 
neurons, and nonpyramidal neurons (Peters, Palay, & Webster, 1991; Parnave- 
las, Luder, Pollard, Sullivan, & Lieberman, 1983). We have turned to the 
ultrastructural level because the identification of I~-galactosidase-positive 
[lacZ(+)] cells at the light-microscope level can be inconclusive. 

Because pyramidal and nonpyrarnidal cells of the cerebral cortex are gener- 
ated concurrently throughout the period of cortical neurogenesis (Luskin & 
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FIGURE 3. Representative example of a homogeneous clone of pyramidal neurons in 
the mature cerebral cortex from a rat brain injected at the onset of neurogenesis with a 
replication-defective recombinant retrovirus encoding the E. coli lacZ gene. A. The 
distribution in the cerebral cortex of the eight constituent pyramidal neurons, situated 
in layers 2-5, constituting the clone. The bracket, measuring 550 #m, delimits the 
clone's maximum dimension. B. Bright-field photomicrograph (200x) of two of the 
lacZ-positive histochemically stained neurons (b and d). C. and D. Electron micro- 
graphs (3,700x and 21,100x, respectively) of lacZ-positive cells. At the ultrastructural 
level, the g-galactosidase histochemical reaction product is electron dense, and is 
associated predominantly with the nuclear membrane (arrows in C) and granular 
endoplasmic reticulum (er in D). The presence of exclusively symmetrical axosomatic 
synapses (arrowheads in D) was used to conclusively identify pyramidal cells. El5, 
embryonic day 15; P64, postnatal day 64. (Modified with permission from Luskin, 
1993b.) 
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FIGURE 4. Representative example of a homogeneous clone of nonpyramidal neurons 
in the adult rat cerebral cortex resulting from the injection of a retroviral lineage tracer 
encoding the lacZ gene at El6. A. Camera lucida drawings illustrating the similarities 
at the light-microscopic level of the five clonally related cells constituting the clone. 
With the exception of cell a, the least well-stained member of the clone, the lacZ-posi- 
tive cells of the clone exhibit characteristics associated with multipolar nonpyramidal 
neurons. B. At the ultrastructural level cell a also displayed the features of a nonpyra- 
midal neuron, including an invaginated nucleus of irregular shape, as well as darkly 
stained nucleoplasm and nuclear membrane. C. An example of an asymmetrical 
axosomatic synapse on a lacZ-positive nonpyramidal cell soma. Note that the presynap- 
tic thickening is greater than the postsynaptic thickening. The presence of both sym- 
metrical and asymmetrical axosomatic synapses, one of the criteria used to classify a 
cell as a nonpyramidal neuron, were detected on cell a, as well as on cells b-e. B, 
x6,370; C, xll,000. (Modified with permission from Luskin et al, 1993.) 

Shatz, 1985a), retroviral lineage tracers can be administered at the onset of 
cortical neurogenesis to determine whether these two lineages are distinct from 
each other. Experiments employing lineage tracers in rats yielded clear-cut 
results, provided that the discrete clusters of lacZ(+) cells found in the cere- 
bral cortex were treated as groups of clonally related cells (Luskin et al, 1988, 
1993; Parnavelas et al, 1991). (The justification for this definition of clonality 
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is discussed below.) In the developing cerebral cortex, discrete collections of 
lacZ(+) cells were often observed to be radially arrayed (Luskin et al, 1988; 
Austin & Cepko, 1990; Price & Thurlow, 1988; Walsh & Cepko, 1992; Grove 
et al, 1993), and in the mature brain, well-isolated clusters of cells were also 
apparent although not always as tightly aligned. When the phenotypes of the 
cells within clusters, or clones, were established ultrastructurally, we found 
that they were composed wholly of astrocytes, oligodendrocytes, pyramidal 
neurons, or nonpyramidal neurons (Luskin et al, 1988, 1993; Parnavelas et al, 
1991). That is, by the onset of neurogenesis, virtually all the progeny of an 
individual progenitor cell in the ventricular zone were of the same type. Simi- 
lar conclusions were reported by Grove et al, 1993 and Mione et al, 1994. 
Collectively, these results provide strong evidence that the lineages for the 
major subtypes of cells have diverged by the onset of cortical neurogenesis. 
However, the possibility that a small proportion of the progenitor cells are 
bipotential or multipotential cannot be ruled out. 

Distribution of clonally related cells in the cerebral cortex. As indicated, the 
proposition that there are separate progenitor cells in the developing ventricular 
zone for the major cellular subtypes is based on the notion that a cluster of 
lacZ(+) cells constitutes a clone. Several observations support this contention. 
First, there is indirect evidence at the ultrastructural level: Cells of a putative 
clone have a similar pattern and intensity of ll-galactosidase histochemical 
staining (Luskin et al, 1993). From clone to clone, however, a wide range of 
expression exists. If the level of the expression of l~-galactosidase is a function 
of the insertion site of the viral DNA, consistent expression from cell to cell 
within a cluster implies that the relationship between the cells is lineal. Second, 
Austin and Cepko (1990) showed that the number of cerebral cortical clusters 
after introduction of the retrovirus at the onset of neurogenesis was dependent 
on the amount of virus injected, as would be expected if the progeny of each 
progenitor cell were restricted in their distribution. Furthermore, on average, 
the number of cells per cluster did not vary as a function of the amount of 
virus administered, although injections at later developmental times produced 
clusters of fewer cells (Luskin et al, 1988, 1993). Taken together, these results 
are consistent with the interpretation that cells within discrete lacZ(+) clusters 
are clonally related. 

On the other hand, Walsh and Cepko (1992) showed that the progeny of a 
contingent of progenitor cells in the ventricular zone become widely dispersed 
in the cerebral cortex, occasionally over the length of the entire anterior-poste- 
rior axis, and that some groups of closely spaced cells are the products of more 
than one progenitor cell. Walsh and Cepko injected a solution composed of a 
library of retroviruses~each engineered to contain the lacZ gene and one of 
100 genetically distinct viral inserts--into the embryonic brain of rats, with the 
aim of infecting a small number of ventricular-zone cells. After waiting several 
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days for proliferation and migration to ensue, Walsh and Cepko mapped the 
distribution of lacZ(+) cells in the brain and determined the specific viral 
construct present in each lacZ(+) cell by amplifying the sequence of inherited 
viral DNA with the polymerase chain reaction. They found that clustering of 
cells bearing the identical insert did occur. Furthermore, some cells possessing 
identical DNA inserts were separated by many millimeters or centimeters; this 
was presumed to be the consequence of widespread migration of cells derived 
from the same infected progenitor cell. For an indisputable argument to be 
made for such widespread dispersion, however, one must accept a statistical 
proof that the pool of retroviruses injected contained a maximum of only one 
copy of each construct and, therefore, that the occurrence of disparately placed 
cells in the cortex possessing the same insert is not the result of two identical 
viruses infecting two different cells that produced progeny residing in two 
different parts of the cortex. The statistical arguments used by Walsh and 
Cepko have been contested by other investigators (Kirkwood, Price, & Grove, 
1992), complicating the interpretation of their results. However, the results of 
Luskin et al (1993) are not necessarily contradictory to those of Walsh and 
Cepko (1992), since the majority of clonally related cells remain together in 
the cerebral cortex. Walsh has recently devised a model to reconcile the 
seemingly disparate results concerning the extent of dispersion of clonally 
related cells in the cortex (Reid, Liang, & Walsh, 1995), which can account 
for the findings of a primate-lineage study of the cells of the cerebral cortex 
(Kornack & Rakic, 1995). 

Another way to evaluate whether a cluster of labeled cells is truly a clone is 
to determine the probability that homogeneous clusters of neurons and glia 
arise by chance alone. We found that the probability was extremely low (p < 
0.0001; Luskin et al, 1993). Similar statistical considerations argue for the 
existence of separate progenitor cells for pyramidal and nonpyramidal neurons 
by the time cortical neurogenesis begins. Even though we cannot be certain 
that the clusters we analyzed constituted complete clones in every case, our 
general conclusion that clusters represent groups of lineally related cells 
remains valid. 
Radial and nonradial migration of immature cortical neurons. Because of the 
ongoing uncertainty about the extent to which clonal cohorts disperse, several 
studies have addressed the issue of whether the predominant form of cell 
migration in the developing cerebral cortex is radial or nonradial. The excur- 
sions of migrating cells into the intermediate zone (Figure 1) of the neonatal 
ferret cortex have been charted by time-lapse microscopy of cells labeled with 
a nontoxic, lipophilic fluorescent dye, DiI, by O'Rourke, Dailey, Smith, & 
McConnell (1992). The vast majority of cells traveled in a radial or near-radial 
direction during the observation period; migration in the nonradial direction, 
orthogonal to the pial surface, was recorded for a small proportion of the cells. 
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In addition, some migrating cells changed their orientation mid-course. Wheth- 
er the amount of nonradial migration observed is sufficient to account for the 
widespread clones reported by Walsh and Cepko (1992) remains an open ques- 
tion. However, using different techniques, other investigators have reported 
markedly less net horizontal migration in the intermediate zone (Tan & Breen, 
1993; Nakatsuji, Kadokawa, & Suemori, 1991) than in the cortical plate. 

As observed by Tan and Breen (1992), X-chromosome inactivation in 
transgenic mice carrying the lacZ gene on the X chromosome results in a 
mosaic lacZ expression pattern in the cerebral cortex. This has then been used 
as a means to evaluate the extent of nonradial migration that occurs during 
development of the cerebral cortex. Tan and Breen concluded, based on the 
pattern of f~-galactosidase histochemical staining exhibited by cells in the corti- 
cal plate, that clonally related cells seem to initially traverse predominantly the 
same radial route from the ventricular zone to their destination in the cortical 
plate. Alternating bands of lacZ(+) cells, referred to as developmental mod- 
ules, appeared first in the ventricular zone and then extended into the overlying 
cortical plate, remaining in register with the ventricular-zone labeling. These 
results were interpreted as providing support for the radial-unit hypothesis of 
Rakic (1988b). This hypothesis states that the ventricular zone is composed of 
proliferative units that constitute a "protomap," which presages the cytoarchi- 
tectonic layout of the mature cortex. The small amount of mixing of lacZ(+) 
and lacZ(-) cells in the developing mouse cortex is perhaps the most convinc- 
ing evidence to date for a limited degree of nonrandom, widespread dispersion 
of clonally related cortical cells. Tan and Breen (1992) found that bands or 
columns of lacZ(+) cells were also present in the adult cortex, although la- 
beled cells punctuated the adjacent unlabeled columns, suggesting that some 
cells had migrated secondarily in a horizontal direction. 

The results of Nakatsuji et al (1991) provide further evidence that the 
majority of clonally related cells do not undergo widespread dispersion during 
migration to the cortical plate. Radial bands of lacZ(+) cells extend across the 
developing cerebral cortex in lacZ(+) chimeric mice. Once again, at later 
stages in cortical development, less distinct columns of lacZ(+) cells were 
present in the cortex, presumably as a consequence of cell mixing within the 
cortical plate. 

Remaining uncertainties. We are left with a conundrum about the degree of 
dispersion that takes place among the progeny of individual progenitor cells of 
the telencephalic ventricular zone. Although it seems judicious to conclude that 
the overriding direction is radial, perhaps paralleling the organization of radial 
glial fibers, there appear to be notable exceptions (Fishell, Mason, & Hatten, 
1993). It would be intriguing if the horizontally migrating cells in the interme- 
diate zone and cortical plate constituted a unique class of neurons or glial cells, 
as has been shown for the cells that undergo a horizontal displacement in the 



Progenitor Cells of the Mammalian Forebrain: Their Types and Distribution 31 

optic tectum (Gray & Sanes, 1991). Along these lines, Menezes and Luskin 
(1994) have recently demonstrated a band of horizontally aligned neurons at 
the interface between the ventricular and subventricular telencephalic zones 
during embryogenesis in mice. Although the final destination and fate of these 
cells has not been determined, they have a number of features that distinguish 
them from most of the immature neurons bound for the cortical plate (Menezes 
& Luskin, 1994). 

A more direct way to potentially resolve the issue of dispersion by imma- 
ture cortical neurons is to visualize directly the dynamic aspects of the prolif- 
eration and migratory behavior of individual progenitor cells and their progeny 
in cultured slices of developing cerebral cortex; this has now been achieved for 
a single division (Chenn & McConnell, 1995). In this way, the extent to which 
the members of a clone migrate along the same path from the ventricular zone 
to the cortical plate and the amount of dispersion occurring among clonally 
related cells can be assessed. However, it still must be determined how closely 
proliferation and migration in situ in cultured slices approximates the same 
events occurring in vivo. 

In addition to questions about the undetermined extent of dispersion of 
clonally related cells, there are several outstanding questions about the range of 
progenitor cell types in the ventricular zone of the developing telencephalon. 
For example, how and when do separate progenitor cells for astrocytes, oligo- 
dendrocytes, pyramidal cells, and nonpyramidal cells arise? In particular, is 
there a common progenitor cell for pyramidal and nonpyramidal neurons that 
then gives rise to distinct progenitor cells, or are there bipotential or multipo- 
tential cells of other types? Injections of retrovirus at earlier times would 
address this question. It is technically quite difficult, however, to make intra- 
ventricular injections of retrovirus at earlier embryonic stages than has already 
been done. On the other hand, the possibility of lineages that are even more 
restricted is ripe for investigation. For example, do the rather unusual subplate 
cells, which form a transient layer underlying the cortical plate and appear 
before the cells of the cortical plate (Luskin & Shatz, 1985b), arise from a 
lineage distinct from that of cortical neurons destined for the overlying cellular 
layers? The ultimate answer to each of these questions requires an understand- 
ing at the molecular level of how differential gene expression is regulated and 
of how it governs lineage restrictions. 

Generation of Cells Destined for the Olfactory Bulb 
Unexpected insight into fundamental aspects of the proliferation and differ- 

entiation of neural progenitor cells has emerged from our recent studies con- 
cerning a zone of proliferating cells in the postnatal brain (Altman, 1969; 
Kishi, 1987; Luskin, 1993a). After the cessation of cortical neurogenesis, the 
subventricular zone of the forebrain continues to supply the postnatal brain 
with glial cells (Privat, 1975). We and others have shown that injections of a 
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FIGURE 5. Site of origin and path of migration of intemeurons destined for the granu- 
le-cell and glomerular layers of the olfactory bulb that arise in the postnatal subven- 
tricular zone. A. A schematic illustration of the site of generation, stereotypical path- 
way and final destination of cells originating in the anterior part of the subventricular 
zone (large black dot) or SVZa, containing essentially all neuronal progenitor cells. 
Initially the SVZa-derived cells follow an extended tangential (longitudinal) pathway 
(disconnected arrows) from the anterior edge of the lateral ventricle to the subependy- 
real zone in the middle of the olfactory bulb. Secondarily the SVZa-derived cells 
ascend in a radial direction to their final positions in either the granule-cell or glomeru- 
lar layers of the olfactory bulb, where they complete their differentiation. Unlike the 
migration of most cerebral cortical neurons, the migration of the SVZa-derived cells in 
the neonatal brain does not appear to involve radial glial fibers. Abbreviations: A, 
anterior; CC, corpus callosum, CTX, cerebral cortex; D, dorsal; epl, external plexi- 
form layer; gcl, granule-cell layer; gl, glomerular layer; mcl, mitral cell layer; onl, 
olfactory nerve layer; sez, subependymal zone; V, lateral ventricle. B. Bright-field 
photomicrograph corresponding to the bracketed area in A of a 100tim sagittal section 
of the postnatal day 7 (P7) forebrain embedded in plastic and counterstained with 
osmium tetroxide, and demonstrating the highly stereotyped pattern of migration 
followed by SVZa-derived cells. The labeled cells (black irregularly shaped spots) 
resulting from an injection into the SVZa at P2 of a retrovirus encoding the lacZ gene 
into in the SVZa (not shown) are confmed to the pathway (band of dark staining). 
Neither the cell body nor the leading process of lacZ-positive cells extends beyond the 
limits of the demarcated pathway. Scale bar = 200 #m. Dorsal is up, anterior is to the 
fight. (Modified from Luskin, 1993a with permission.) 
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retroviral lineage tracer into the subventricular zone normally resulted in 
homogeneous clones of astrocytes or oligodendrocytes (Levison & Goldman, 
1993; Luskin & McDermott, 1994). Thus, like cells arising from the prenatal 
ventricular and subventricular zones, cells arising from the postnatal subven- 
tricular zone maintain distinct lineages. Rather surprisingly, though, we also 
found that progenitor cells situated in the anterior part of the subventricular 
zone (SVZa) generate neurons rather than glia (Luskin, 1993a). The SVZa- 
derived cells are destined exclusively for the olfactory bulb (Figure 5A), an 
anterior extension of the forebrain (Luskin, 1993a; Zigova et al, 1996), and 
not the cerebral cortex. Furthermore, we showed that cells derived from the 
SVZa may possess positional information. They migrate a substantial distance 
toward the olfactory bulb along a highly restricted pathway (Luskin, 1993a; 
Figures 5A and 5B). Moreover, the migrating neurons travel in a direction 
perpendicular to the surrounding radial glial fibers (Kishi, Peng, Kakuta, 
Murakami, Kuruda, Yokota, Hayakawa, Kuge, & Asayama, 1990), which 
suggests that these cells advance to the olfactory bulb by a different mechanism 
from that used by cortical neurons in their ascent from the ventricular zone to 
the cortical plate. We have performed experiments to determine whether the 
progenitor cells of the prenatal telencephalon can decipher the cues read by the 
SVZa-derived cells in order to reach the bulb. We found that telencephalic 
ventricular-zone cells transplanted into the neonatal SVZa fail to undergo 
migration away from their site of implantation. This suggests that the trans- 
planted ventricular-zone cells lack the ability to migrate in the absence of radial 
glia (Zigova, Betarbet, Soteres, Brock, Bakay, & Luskin, 1996). 

The phenotype and proliferative capacity in situ of SVZa-derived cells en route 
to the olfactory bulb 

Earlier studies had concluded that cells en route to the postnatal olfactory 
bulb, which originate from the subventricular or subependymal zone, were 
postmitotic neurons (Altman, 1969; Kishi, 1987). This conclusion is consistent 
with the notion that migrating neurons do not undergo cell division (Purves & 
Lichtman, 1985). However, a number of studies have shown numerous mitoti- 
cally active cells distributed throughout the pathway (Hinds, 1968; Altman, 
1969; Bayer, 1983; Frazier-Cierpial & Brunjes, 1989; Menezes et al, 1995). 
Accordingly, we performed experiments to determine whether cells within the 
SVZa and SVZa-derived cells within the pathway are mitotically active. 
Neonatal rat pups were injected with the thymidine analog bromodeoxyuridine 
(BrdU) a few hours prior to perfusion, allowing us to detect the presence of 
dividing cells. We subsequently double-labeled sections obtained from these 
animals with an antibody to BrdU and with an antibody, TuJ 1, that recognizes 
neuron-specific class III fi-tubulin (Lee, Tuttle, Rebhun, Cleveland, & Frank- 
furter, 1990a; Lee, Rebhun, & Frankfurter, 1990b). Our observation of nu- 
merous double-labeled TuJ 1-positive/BrdU-positive cells distributed throughout 
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the SVZa and pathway (Menezes et al, 1995) demonstrated that cells express- 
ing a neuron-specific marker were capable of dividing. This contrasts with 
other regions of the CNS in which cells expressing neuron-specific markers are 
terminally postmitotic (Moody, Quigg, & Frankfurter, 1989; Lee et al, 
1990a,b; Easter, Ross, & Frankfurter, 1993; Menezes & Luskin, 1994). Using 
a retroviral lineage tracer encoding E. coli f~-galactosidase, we also identified 
SVZa-derived cells within the pathway that were mitotically active (i.e., incor- 
porate BrdU; see Color Plate 4, p. 187). Although dividing neuroblasts have 
been identified in the peripheral nervous system (LeDouarin, 1982; Memberg 
& Hall, 1995), the SVZa-derived cells are the only neurons in the central 
nervous system that have been demonstrated to possess the capacity for divi- 
sion. Our detection of triple-labeled (lacZ-positive, TuJl-positive and BrdU- 
positive) cells further substantiates our assertion that SVZa-derived cells can be 
considered neuroblasts; i.e., cells with a neuronal phenotype that undergo cell 
division. 

FIGURE 6. Morphological appearance of the two types of interneurons derived from 
SVZa progenitor cells of the neonatal forebrain. A. Photomicrograph of a representa- 
tive immunohistochemically stained lacZ-positive granule cell with a cell body situated 
in the granule-cell layer from a rat injected with retrovirus at P0 and perfused at P28. 
The long, unbranched process extending into the external plexiform layer is character- 
istic of granule cells. B. Photomicrograph of a representative immunohistochemically 
stained lacZ-positive periglomerular cell from the glomerular layer of a P20 rat that 
received an injection of retrovirus at P2. The location of its cell body, situated next to 
the olfactory-nerve layer (top) and the extension of processes into either a single or 
adjacent glomeruli are typical of periglomerular cells; the processes of the labeled cell 
ramifies in two glomeruli (asterisks). Scale bars: A and B, 20 #m. (Modified from 
Luskin, 1993a with permission.) 

The identity and neurotransmitter phenotype in vivo of SVZa-derived cells in 
the olfactory bulb 

To characterize the properties of differentiated SVZa-derived cells, we 
examined their distribution, morphology and neurotransmitter expression in the 
olfactory bulb after they completed their migration and were no longer prolif- 
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erative. The SVZa-derived cells were labeled by injections into the neonatal 
SVZa of the retroviral lineage tracer encoding lacZ or of PKH26. On the basis 
of morphology, SVZa-derived cells differentiated into granule cells or peri- 
glomerular cells, the types of olfactory-bulb interneurons situated in the granu- 
le cell and glomerular layer, respectively (Luskin, 1993a; Zigova et al, 1996). 
Most labeled granule cells had the typical bipolar morphology (Figure 6A), 
while the morphology of the periglomerular cells matched previous descrip- 
tions of their dendritic arborizations (Figure 6B; Price, 1970; Pinching & 
Powell, 1971). None of the labeled cells in the bulb resembled astrocytes (or 
stained with anti-glial fibrillary acidic protein (anti-GFAP) or oligodendro- 
cytes, supporting the conclusion that the SVZa exclusively generates neurons. 

Most of the olfactory-bulb interneurons contain the neurotransmitter 
GABA, but a subpopulation is known to contain dopamine, based on their 
expression of the enzyme tyrosine hydroxylase (TH; Halasz & Shepherd, 
1983; Halasz, Ljungdahl, & Htikfelt, 1979; Gall, Hendry, Seroogy, Jones, & 
Haycock, 1987; McLean & Shipley, 1988). To determine the neurotransmitter 
phenotype of SVZa-derived cells, we injected BrdU into the neonatal SVZa 
and subsequently examined the neurotransmitters expressed by the BrdU-posi- 
tive cells in the olfactory bulb. We observed many double-labeled BrdU-posi- 
tive/GABA-positive granule and periglomerular cells, as well as double-labeled 
BrdU-positive/TH-positive periglomerular cells (Betarbet, Zigova, Bakay, & 
Luskin, 1995; in press). Our results demonstrate that the SVZa is a source of 
both GABAergic and dopaminergic interneurons of the olfactory bulb. 

Conclusions and Future Directions 
In summary, the interneurons of the olfactory bulb are generated postnatally 

from a specialized germinal zone surrounding the anterior part of the lateral 
ventricles, the SVZa, and its extension to the middle of the olfactory bulb. We 
currently have a limited understanding of the mechanisms that establish the 
SVZa as a distinct region. It is not known if the SVZa arises as a specialization 
of the underlying ventricular zone, which is the source of all the neurons of the 
cerebral cortex, or whether~prenatally or postnatally~the SVZa differentiates 
directly from the subventricular zone, which is predominantly a source of 
glia. The future identification of the factors and signals, both cellular and 
molecular, that influence the differentiation of the neuronal progenitor cells of 
the SVZa will provide insight into what determines cell fate as well as cell 
numbers in the central nervous system. By studying the migration of SVZa- 
derived cells to the olfactory bulb, we also hope to elucidate the mechanisms 
controlling neuronal migration, as well as neuronal differentiation. Ongoing 
studies comparing the ontogeny of the cerebral cortex to that of the olfactory 
bulb seek to identify the differential role(s) of cell-cell interactions and neuro- 
trophic factors in the proliferation, migration and differentiation of components 
of each of these structures. 
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CHAPTER 3 

A STATISTICAL FRAMEWORK 
FOR PRF_SENTING DEVELOPMENTAL NEUROANATOMY 

Stephen L. Senft 
Neuroengineering and Neuroscience Center (NNC) 
and Department of Psychology 
Yale University 

ABSTRACT 
Close analysis of the developing structure of mammalian brains can gener- 

ate understanding and amazement. It is worthwhile to communicate this to a 
larger audience and to pursue it in greater depth. To do so we need dramatical- 
ly more capable tools for coordinating and presenting the existing and incom- 
ing knowledge of neuroscience. 

Neuroscientists have created a wide variety of methods for analyzing brain 
organization. This has resulted in vast amounts of highly detailed information, 
gleaned from many studies and expressed in many formats. At the same time, 
collective scientific efforts are deducing a growing number of principles that 
govern brain structure and development. Increasingly, these guidelines are 
capable of interrelating the great profusion of published findings. 

These experimental and theoretical advances bring the opportunity and need 
for synthetic methods to systematically manage this consolidating knowledge, 
to make it more vivid and widely accessible. The technologies of simulation 
and computer graphics also are maturing, and are now at a level capable of 
animating and displaying biological principles and their anatomical conse- 
quences with high resolution and fidelity. 

With these trends in mind, I have been designing an interactive computer- 
based framework for depicting neural organization and ontogeny. It incorpo- 
rates a set of developmental rules, along with specific and statistical neuroana- 
tomical information, to visualize brain development with network and synaptic 
detail. This tool is intended ultimately to facilitate study of any brain region. 
Its current features are illustrated for some simple aspects of cerebral cortex 
development. 

Introduction 
Today the flood of new scientific details demands, as never before, more 

efficient ways to organize data derived from brains. 



38 S.L. Senft 

Perceived problem 
Nervous systems are touted as the most complex objects in the universe. 

They certainly are more complex than we can measure, more intricate than we 
can represent. Notwithstanding, scientists have created many analytic methods 
for probing brain organization, and are drawing out overwhelming numbers of 
details about neuroanatomy. These many partial insights are difficult to inte- 
grate, due in large part to their diversity and their diffuse distribution in a pre- 
electronic literature. There is an increasingly pressing need for additional 
synthesizing tools to coherently organize and present these burgeoning facts. 
This chapter outlines a strategy for portraying key aspects of developmental 
neuroanatomy that I have been creating to help address this problem. 

Available methods 
Tools for measuring the architecture of the brain range from those capable 

of detailing minute parts of single neurons to those capable of scanning entire 
brains. Many methods highlight the locations and branching structure of indi- 
vidual neurons or populations (e.g., Golgi impregnation, dye injection, anti- 
body staining, even genetically introduced fluorescence; Marshall, Molloy, 
Moss, Howe, & Hughes, 1995). Computer reconstructions of such well-la- 
beled objects in 3D, by manual or semiautomatic optical or electron microscop- 
ic methods, have evolved steadily for decades (Wann, Woolsey, Dierker, & 
Cowan, 1973; Villanueva & Le Bars, 1993), but remain limited in throughput. 
At another extreme are 3D imaging devices that visualize entire brains or brain 
regions and the tracts that connect them. Such devices provide comprehensive 
measures of global brain organization and mental processes (see Roland & 
Ziles, 1994), and can show even cellular organization (e.g., Jacobs & Fraser, 
1994), but they do not reveal connectivity or synaptic detail. 

Sampling problem 
All of these startlingly informative tools, as well as those of intermediate 

range, are overwhelmed by sampling limitations and can report over only a 
relatively small window of spatial, temporal, or spectral resolutions. Each 
analytic technique provides fragmentary direct views of an integrated process 
that, we reason, extends with rich subtlety beyond the bounds of 
detection~becoming at some point complex enough and coherent enough to 
manifest as our own awareness. This age-old chasm between what we experi- 
ence and imagine and what we can measure and depict continues to challenge 
us to create progressively more investigative and integrative methods. 

It is incidental to the brain itself that our tools for gathering data from it are 
so bounded in their range of application and so incommensurate in the informa- 
tion they transduce. It is a result of historical forces and constraints of physics 
that, for instance, resolvable magnetic resonance information vanishes into 
pixillated mist at 10 microns or so, and does not directly give way to volumet- 
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ric and time-lapse microscopy (which differ from whole-brain scanners both in 
depth of penetration and the physical entities they report); or that light micros- 
copy does not merge seamlessly with the techniques of electron microscopy. If 
the brain's operation likewise is balkanized by such limitations in physics or 
dialect it is not obvious, except in the periphery. 

Integration problem 
By contrast, within our minds we can shift attention more freely. To illus- 

trate, we can trace an easy path from rhodopsin's molecular role in transduc- 
tion, across photoreceptor synapses and along axons into the lateral geniculate 
nucleus; glance sideward at rhythmic modulations arising in the septum and 
hippocampus, follow a phalanx of thalamic afferents into cortex, visualize 
retinal scenes mapped phasically into separate cortical laminae, and imagine 
how these patterns change over development. We patch in a wide variety of 
appropriate information at differing spatial and temporal scales, as needed, to 
flesh out the representational needs of the moment. Even so, our short-term 
memory is limited compared to the enumerated biodiversity and richness of 
detail of known brain circuits. None of us can access enough facts to do justice 
to the mounting backlog of neuroscientific knowledge. 

Today, as never before, we need more efficient ways to organize data 
derived from brains. We need new ways to motivate and teach comparative 
and developmental neuroscience, to highlight overlaps and holes in our collec- 
tive knowledge, to generate and evaluate anatomical and behavioral hypotheses 
in greater detail, and to predict how parts of the nervous system will develop 
under normal, experimental and regenerative circumstances. 

Weight of numbers 
Historically, the primary obstacle hampering an integrative understanding 

of brains has been the Sampling Problem. Today, even the early success of our 
measuring devices has become immense enough to present us with an equally 
challenging difficulty: the Integration Problem. 

The impasse of large numbers is common to both challenges. Brains contain 
billions of cells, each of which has a complex branching pattern containing 
even more complex biochemical machinery. Cumulatively, we have quantita- 
tive structural information on perhaps several thousand specific neurons, and 
many fewer interacting circuits. But even if all of the cells and circuits had 
been measured, simply storing the data would take much more archival media 
than is available to the neuroscience community. In addition, and as with the 
information currently archived in the literature, it would take a numbingly long 
time to review all of the elements, and the final display would be impenetrably 
dense. We need a rational way to accurately and concretely represent brain 
structure and its interactions, without being inundated by huge numbers. 
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Perceived solution 
It seems plausible that a researcher or student should be able to use a 

computer workstation to obtain detailed representations of any biological 
neural network of interest, using published data and direct measurements, 
available on line or on CD. In practice, though, existing neuroscientific knowl- 
edge is severely vignetted. The gaps often are more personal than inherent in 
our collective knowledge base: Others do know in great detail about the optic 
tract, hypothalamus, red nucleus or substantia gelatinosa, even if I do not but 
instead know about development of somatosensory cortex. What seems to be 
lacking most is a flexible 3D language for communicating brain organization. 
We need a visual vocabulary and syntax that is satisfying to anatomists, that 
can grow to accommodate genetic, biochemical and physiological information 
and that, ultimately, can be made to operate, in the sense of simulating the 
biological process of information digestion. 

The metaphor of three-dimensional navigation through an abstract space has 
proven to be an effective tool for managing complex information. It has long 
been used as a mnemonic device: Each visited region is polled for its associat- 
ed information. But, for the intricate and peculiar structures in neuroscience, 
the most compact metaphor is provided by the anatomy itself. Fortunately, the 
nervous system appears redundantly organized; thus a simplified scaffolding 
may suffice whose nodes can be unpacked to access additional data. One useful 
abstraction might consist of a three-dimensional (or better, a developmental) 
depiction of the locations and interconnections of all the named "nuclei" and 
"tracts" in the brain. This is manageable: Such objects number only in the 
thousands. We could create this by combining the pictorial precision and flair 
of computer graphics with the insights and measurements of developmental 
neurobiology and cell biology. We should be able to make representations as 
beautiful and accurate as Ramon y Cajal's compelling drawings of brain circui- 
try, only now three-dimensional, dynamic, and interactive. 

A deeper aim is to present brain development as an expression of bioener- 
getic principles. Critical to this effort would be a formalization of growth rules 
for the cellular elements of the brain: the abstract control systems and con- 
straints governing how cells divide, migrate, regulate process outgrowth and 
communicate intercellularly. If we are able to embed in a simulator such prin- 
ciples of brain organization, experimenters and students could model tangible 
hypotheses about how a region of CNS is organized and how it operates. Such 
interactive environments should enable one to choose alternative developmental 
rules and starting points. By manipulating logical variables, users might steer 
the development of brain regions into many possible architectures. From this 
they could better understand the potential contributions of key variables, and 
could readily learn and improve comparative functional neuroanatomy. 

This is a remarkably stiff challenge: One needs to create a framework 
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general enough to encompass or apply to the entire brain, yet flexible enough 
to show the detailed workings of neuropil. It should include interactions as 
focal as gap junctions or synapses and as diffuse as extracellular ionic or 
metabolic exchanges. Events must occur over periods as extended as develop- 
mental time or as evanescent as an action potential. One would like, as a 
byproduct of simulating development, to be able to follow microscopically 
realistic paths of patterned stimuli traveling from receptor sheets to effector 
organs, by way of anatomically accurate, non-hidden, neuron intermediates. At 
present, one merely can imagine such waves of information" flickering over 
forests of intricate growing arbors, like displays of the Southern or Northern 
Lights. 

Related work 
A wide variety of pertinent theoretical tools are being developed world- 

wide, in response to the recognized difficulty in handling the many advances 
that inform the study of nervous systems. Most notable is the Human Brain 
Project, which has many component aims (Huerta, Koslow & Leshner, 1993). 
Numerous groups are growing neuronal and axonal shapes algorithmically 
(e.g., Burke, Marks & Ulfhake, 1992; Van Veen & Van Pelt, 1994). Other 
well-known efforts emulate cellular physiology and its experience-based modi- 
fications, when provided with structure: GENESIS simulates mature multicellular 
networks; NEtmON manipulates ionic channel parameters (see review by De- 
Shutter, 1992). There are attempts to build detailed volumetric models (Gaily, 
Montague, Reeke, & Edelman, 1990) or extensive silicon networks with cell- 
like components (Mahowald & Mead, 1991). Too, there are systems for logi- 
cal navigation through relational brain databases (Wertheim & Sidman, 1991; 
Willis & Koppe, 1991), or for multi-scale perusal of image and volume data 
(e.g., Roland & Ziles, 1994; Funka-Lea & Schwaber, 1994). A full list of the 
relevant studies would be very long: This is a broadly converging shared 
vision. Many important new works remain unpublished, but accessible over the 
Internet. An important set of tools from informatics will provide methods for 
searching and converting large bodies of knowledge per se into digestible 
form, and will create agent-based simulators of very large abstract systems. 

This approach 
The approach presented here arose from detailed experimental experience 

with the cellular anatomy of developing cerebral cortex (Senft & Woolsey, 
1991). It shares characteristics with some of these other research efforts in 
depicting network architecture as collections of neuronal automata and neurons 
as collections of multi-variable compartments. It combines other didactic ef- 
forts by elaborating the metaphor of browsing in an anatomically accurate 
three-dimensional data base to help explain and teach concepts in neuroscience. 

Emphasizing that function is often constrained by form, it attempts first to 
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establish flexible methods to replicate the peculiar cellular forms found in 
neuroscience. It views the anatomical processes of neuron arborization and 
connectivity as central, and treats them as intrinsically dynamic and develop- 
mental problems. It has deferred, thus far, the critical questions of which 
physiological patterns this simulated anatomy can engender and how ongoing 
activity might sculpt these networks, but an interchange with other efforts is 
underway to collectively achieve those goals. 

Its primary focus is on the question of how statistics can enable diffuse 
developmental concepts to generate discrete anatomical structures, even in the 
absence of exact specifications. The approach has been designed to incorporate 
general knowledge about the organization of nervous systems, so that a wide 
range of particular structures may be generated from different initial condi- 
tions. It uses high-performance computer graphics to visualize the resulting 
complex simulated circuitry. To date, the effort has intentionally focused on 
global applicability at the expense of immediate accuracy for any given brain 
region. 

Key Principles of Brain Organization 

Networks 
The most fundamental abstraction surviving critical study of the brain is the 

concept of neurons. The most important feature of these elemental components 
is their interconnectivity. Enormous numbers of wildly elaborate sets of 
branched neuronal processes weld together using several classes of adhesions 
to generate the logical circuitry of the brain. These three-dimensional networks 
form dense local tangles of neuropil as well as compact tracts that wed distant 
regions together. They are interlaced with irregular glial networks, are perfo- 
rated by blood vessels and capillary systems, and are immersed in a tortuous 
extracellular space. 

Development 
This intricate filigree is thought to be relatively static in its architecture, 

when assessed on time scales that encompass our everyday adult behavior and 
awareness. Hence researchers have focused on patterns of physiologic change 
that flicker over this framework~the "enchanted loom" envisioned by Sher- 
rington. At the same time it is clear that, throughout life, brain morphology 
changes continuously on a microscopic scale (Purves, Hadley, & Voyvodic, 
1986). While the linkage is not fully characterized, this variability appears to 
contribute to the ebb and flow of behavioral propensities (Merzenich, Kaas, 
Wall, Nelson, Sur, & Felleman, 1983). Therefore, accurate representations of 
neuroanatomy inherently should be dynamic. This conclusion becomes manda- 
tory when we consider nervous system development. Here we encounter the 
important additional concepts of stem-cell lineages regulated in germinal lay- 
ers, cellular mass migrations into target zones, outgrowth, arborization and 
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remodeling of neurites, and selective synapse formation and stabilization. 
Importantly, we also encounter simplified intermediate brain architectures that, 
as Ramon y Cajal (1911) so elegantly pointed out, allow us to understand 
better the otherwise bewildering adult configurations. 

A basic need 
Even introductory readings in the neuroscientific literature identify hun- 

dreds of additional factors that are known to influence brain development and 
function. Virtually all relate structurally to these simple anatomical founda- 
tions. Thus far, no interactive 3D representational system exists that can ar- 
range these basic concepts in a well-choreographed way. The following sec- 
tions outline a beginning strategy. 

Programming Brain Principles 

Systematic abstraction 
To assemble any given area of brain, synthetically, one might make genera- 

tive algorithms that know merely that neurons have a range of somatic shapes 
and sizes, that they divide and migrate, that they transform from spheroids to 
arbors whose particular branching structure often covaries with functional 
type, and that they can synapse selectively with large sets of target cells. 
External specifications might then fine-tune the system to specify the details of 
geometry and timing needed to produce particular cell types and circuits. The 
simulation engine itself need only incorporate general biological properties and 
a selection of plausible algorithms that can organize the structure of a nervous 
system, regardless of the underlying but partially known biochemical mechan- 
isms. 

This is a ubiquitous approach for dealing with complex systems in science 
and mathematics: Simplifying equations are identified that, with different 
boundary conditions, explain a wide variety of particular situations. For the 
case describing regional brain development, such equations may remain mostly 
procedural, and may never have closed form. Nevertheless, it is helpful to 
separate the problem of identifying the pertinent variables and their interrela- 
tionships from the problem of specifying values. Moreover, such a strategy 
does not preclude making menus of rules and elaborately detailed prototypes 
available to users, so that in practice it takes little effort to recapitulate subtlely 
complex networks. 

Primary assumptions 
An animal's genome may be viewed as the primary natural representational 

system that programs brain development. We do not yet understand gene 
regulation thoroughly enough to elaborate this analogy with detailed descrip- 
tions of DNA algorithms. But we are virtually certain that the genome specifies 
neither the detailed pattern of connectivity for each cell in the brain (Sutcliffe, 
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Milner, Gottesfeld, & Reynolds, 1984) nor the precise number of cells in all 
regions (Williams & Herrup, 1988). 

Given this constraint, elements of the brain might be described more natu- 
rally as a collection of groups, with sets of statistics that encompass all 
members of each group. Such "group" abstractions may or may not eventually 
map onto discrete genetic control systems. After all, statistics are not biochem- 
ical mechanisms. In a computer program, however, statistics can be re- 
sampled to produce the observed range of structures or behaviors for a group 
even in the absence of knowledge about underlying mechanisms. They also can 
be replaced by more detailed statistics when deeper knowledge is obtained. 
Thus, group statistics provide a compact and generalizable methodology for 
this synthetic enterprise: Small numbers of parameters suffice to determine the 
features of entire populations. As elaborated below, this permits one to con- 
struct complex virtual brain circuits of variable size and refinement. 

Cellular framework 
The statistical formalism entertains as distinct biological "groups" the large 

number of brain nuclei, subnuclei, and cell types that are generated at highly 
specific developmental locations and times, and that migrate, mature and inter- 
act with the rest of the nervous system as ensembles. (A variety of additional 
rationales for factoring the CNS into groups or cell assemblies can be found in 
the literature, e.g., Edelman, 1993; Palm, 1993). Thus, an underpinning for 
the brain framework can be made by placing representatives of each group as 
3D clouds of cells, located at known morphological sites, using adult or 
embryological coordinates (e.g., Altman & Bayer, 1995) obtained from atlases 
or segmented 3D scans. To specify such clouds, we measure the position 
(relative to some more global frame of reference) for a subset of cells, and 
derive a mean location and standard deviation (and other moments such as 
skew, for non-Gaussian distributions) for each axis, which we assign to the 
named group. 

We then invert this procedure, by randomly resampling these statistics, to 
derive a space-filling number of exemplar cells having the same distribution as 
the cells in the nucleus. We assume that only the (possibly highly) constrained 
statistical distribution of cells is relevant to the brain, not their exact location. 
The structural redundancy of brain allows us to use data derived from only a 
small percentage of the population to drive fuller representations. In this way 
we can fill in seams between sampled vignettes without having to measure and 
access voluminous data. 

As with galaxies, one recognizes obvious prototypic forms: spherical, 
globular, annular, sheet-like, banded. In general, such nuclear distributions 
may be quite complex, but many variants can be accommodated by an underly- 
ing statistical data. It is an open question what menu of statistical descriptors 
will be needed to describe the full taxonomy of plausibly identifiable cell 
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groups. Some cell clusters become so distorted by morphogenetic movements 
imposed by other developmental events that their distributions are difficult to 
describe analytically. It even may be that recapitulating their ontogeny is the 
most compact way of describing such adult configurations. 

Segmental primitives 
The envisioned model for brain architecture aims to produce views resem- 

bling ones visible through microscopes, at scales of networks to neurodil. Thus 
neurons need to be given more personality than dots. Brain cells in this model 
are constructed from sets of tubular segments, linked together to form branch- 
ing arbors. Tubules can taper and have rounded ends and their diameters can 
be irregular and asymmetric. This permits forms for somata, ragged neurites, 
even glia, to appear biologically plausible. 

Every segment is an element of a group and possesses a set of fundamental 
variables, always describing the element's location, length, diameter, orienta- 
tion, and parent and child connections. Each element also has accessory varia- 
bles for variously describing its appropriate subcellular anatomical features 
(e.g., density of axonal varicosities, numbers of neurofilaments)or capable of 
holding physiological variables (e.g., for steady-state or transient electrical 
signals). The specific value assigned to any variable is obtained by randomly 
sampling the group statistics corresponding to and constraining that variable. 

This design provides the advantage that the underlying data structures can 
be relatively uniform and implemented efficiently in computer code. Also 
because of uniformity, the strategy of resampling from measured statistics can 
be replicated easily for any number of attributes, such as soma diameter, 
nuclear size and eccentricity, number and orientation of primary neurites, their 
diameter, taper, density of dendritic spines, and so on. This strategy can be 
extended as needed, and can produce millions of resampled objects as detailed 
and tangible as if each were measured from life. Such extra variables could 
provide enough definition within each tubule to support ionic and metabolic 
engines, and to generate visuals akin to Golgi or Nissl preparations. 

Arborization 
The 3D locations of branch points are the essential characteristics that must 

be specified in order to represent any desired shape of neuron. Branching 
patterns are characteristic, even defining, for cell types: bipolar, stellate, 
chandelier, pyramidal, etc. (Ramon Molinar, 1962; Lindsay & Scheibel, 1974; 
Pearson, Norris & Phelps, 1985). Analyses of neuron morphology characteris- 
tically define their numerous measures as statistical variations about means, 
such as the number, length or diameter of primary neurites (e.g., Juraska & 
Fifkova, 1979). Since canonical shapes often are seen when neurons are grown 
in isolation, some aspects of neuron form appear programmed endogenously 
(e.g., Coates, Fermini, Strahlendorf, & Strahlendorf, 1992), although many 
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features obviously arise through environmental interactions. 
In the model, average measures are assigned for a wide variety of arbor 

descriptors that in principle are amenable to direct observation, including path 
tortuosity, length before branching, branch point locations, spacing and angles, 
probability of synapsing with other groups in the vicinity, and so on. Statistical 
descriptors for temporal sequencing also are used to recapitulate neurite devel- 
opment. Timing parameters are obtained from observations on immature 
neurons and from inferential analysis of adult arbors. (See also Carriquiry, 
Ireland, Kliemann, & Uemura, 1991, and Caserta, Eldred, Fernandez, 
Hausman, Stanford, Bulderev, Schwarzer, & Stanley, 1995, for other statisti- 
cal and fractal analyses of neurites; and see, for instance, Burke, Marks & 
Ulfhake, 1992; Nowakowski, Hayes & Egger, 1992; Van Veen & Van Pelt, 
1994; Li, Qin & Wang, 1995, for parallel efforts to recapitulate neuronal form 
algorithmically.) 

Growth hypothesis 
Some of the ways in which brain characteristics are represented using these 

primitives at first may appear stilted, from the point of view of cell biology. 
For instance, when attempting to replicate known structures using this ap- 
proach, it proved useful to construct sets of neuron prototypes from even more 
primitive groups whose statistics govern the cells' somata, linked to other 
groups whose statistics govern subsets of the cells' overall neurites. 

As a biological rationalization, though, it seems possible that there exists in 
the genome only a finite repertoire of potential neuritic forms (perhaps as 
coordinately expressible transcription regions), and that each cell group devel- 
opmentally expresses differing subsets from this morphogenetic roster. During 
development neurons may shift between growth states (either endogenously or 
as a response to exogenous stimuli), and different sets of statistics would de- 
scribe the type of neurite emitted locally during each "epoch." 

As examples, consider the differences in shape or timing between apical, 
basal and oblique dendrites of pyramidal cells (Ramon Molinar, 1962; Lindsay 
& Scheibel, 1974; Juraska & Fifkova, 1979), or the behavior of axons, which 
emit periodic offshoots as right angles into overlying tissue (Senft & Woolsey, 
1991) then change character again when entering a target zone, to arborize 
explosively. This simulation-inspired hypothesis could be evaluated by further 
experimental study, but it has proved efficient, even if only from a descriptive 
point of view, to treat these subcellular features as morphogenetic quanta 
shared across cell types. 

Connectivity 
The hallmark of brain complexity is represented by the connections between 

cells located in disparate regions of the CNS. In this framework, we specify 
connections at the group level. The program realizes such physical links as 
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elongated branched tubules that orient towards or away from an appropriate 
subset of targets. Simulated axonal tubules can sprout as if stimulated by diffu- 
sible substances released nearby or at a distance (Sato, Lopez-Mascaraque, 
Heffner, & O'Leary, 1994). Another primary characteristic of CNS is the 
range of local and specific connectivity that constitutes neuropil. There is no 
fundamental difference in this model between tract and neuropil representation, 
except that the cues used to orient to distant targets may be specified separately 
from those responsible for local arborization. 

Junctions 
Synapsis can be spatially both promiscuous and highly selective (Keller & 

White, 1987; Haydon & Drapeau, 1995). Synapses also vary in type from 
highly punctate sites between only two neuritic processes, to diffuse signals 
reaching many targets. In nature their temporal signaling characteristics, means 
of modulation, and downstream effects on anatomy and learned behavior are 
myriad. In this framework individual tubule segments maintain a long list of 
other arbitrary segments that they approach or touch, and keep track of the 
type and strength and precise location of "junctions" established between the 
segments. They are classified anatomically as pre- or post-, or even gap-junc- 
tional, and subclassified by functional type. 

3D blueprint 
The fundamental vertebrate plan involves formation and subsequent modifi- 

cation of a neural tube. Everywhere along this continuous and deformable 
surface there is an elaboration of a common ontogenetic theme: highly regulat- 
ed division of sets of stem cells in proliferative zones. Hence, to rationally 
position the developing cell groups for even a small region of brain, it will be 
appropriate to have a flexible method for surface generation and its deforma- 
tion by biological forces. Moreover, neurites generally grow along interfaces, 
in preference to isotropic growth in space. Such paired surfaces can provide 
the constraints to limit neurite outgrowth to biologically meaningful locations. 
Computer graphics excels at freeform surfaces (see especially Fujita, 1990, for 
an application to neural tube development), and this program has begun to 
implement surface descriptors, using non-uniform rational B-splines. 

Stem cells 
A detailed representation of brain development also needs to monitor cell 

cycling and cell division, and should be able to control the migration of neuro- 
blasts from germinal zones into the areas in which they mature. As a result, it 
should be able to depict lineage relationships among the resulting neurons and 
glia. To emulate these events effectively one needs to represent control by 
mitogenic and growth factors. These agents often are diffusible substances that 
establish broad waves of maturational gradients, and which may be emitted and 
metabolized by specific groups. 
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Thus the simulation environment should also be able to effectively handle 
simultaneous diffusion of multiple biochemical species. To this end the tubular 
elements are embedded in a voxel-based "extracellular" sea (of adaptively set 
voxel size). Tubule segments can emit diffusing messages that are attenuated 
from voxel to voxel and consumed by segments at distant locations. One could 
inspect the spatial state of this system dynamically using volume-rendering 
visualization techniques. Currently, message diffusion has only elementary 
effects on the simulated anatomy. 

Supporting elements 
Blood vessels may be represented, with more algorithmic complexity, using 

anastomosing tubules having non-tree topologies (e.g., Kiani & Hudetz, 1991). 
But the endothelial vascular components themselves are patch-like, not tubular 
(unless highly collapsed and involuted). This example shows that simple tube 
and voxel primitives will be an insufficient basis for emulating all brain 
components. The same conclusion is reached when considering, say, myelin 
sheaths or growth-cone lamellae. Moreover, numerous explanatory mechan- 
isms in neurobiology are subcellular, hence one would like to incorporate 
information derived from electron microscopy and biochemistry. Other data 
structures would be needed to gracefully depict subcellular organelles, such as 
Golgi bodies, mitochondria, or ribosomes. In the present implementation there 
is no systematic provision for defining membrane patches or ameboid shapes, 
but segmented tubules provide a convenient intermediate level of abstraction 
for erecting both supracellular and intracellular anatomical scaffoldings. 

Timing 
The birth dates, migration schedules, and maturational time tables are 

known in great detail for a large number of these brain groups (e.g., Altman & 
Bayer, 1990). Clouds of arborized cells constitute a unifying format for ani- 
mating this information. Consequently, each group has several temporal varia- 
bles, also statistically specified, for timing the onset and offset of behaviors 
such as cell division, translocation, and neurite extension. 

Restatement of Approach 

Overview 
I have presented in broad strokes the outline of a framework to nucleate 

information in neuroscience for teaching and research. It advocates beginning 
at a phenomenological level. A set of statistical constraints and ad hoc rules are 
made to interact with a set of well-established principles of neuron growth to 
mock up specific aspects of brain development as clouds of elements that 
arborize and link to one another using simple procedures, specifiable at a 
group level. 
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Generality 
To ensure generality, the program is designed to segregate the range of 

possible specific details from the range of plausible principles. Because not all 
users have the same assumptions, both the principles (e.g., "European" vs. 
"American" plans of cell determination) and the specifics (e.g., whether a 
projection exists between groups A and B) are to be assigned by user selection. 
Too, since one does not always logically factor biology into immutable catego- 
ries (e.g., pyramidal cells could be viewed as a special class or merely as 
stellate cells with elaborate apical dendrites), the system permits dynamic 
rebinning of elements into new groups (e.g., stem-cell progeny might become 
elements of many anatomical groups, or cells might be recruited into a variety 
of functional groups, depending on context). 

Advantages 
The foremost advantage of its statistical and segmental design is that it is 

generic and allows one to repeatedly finesse the sampling problem: Measure- 
ments are made on small samples, and the derived statistics are resampled to 
generate as large a population as is needed. The generated population can have 
as tangible a structure as if one had imported traced data. One also can mix 
specific camera lucida data with statistical descriptors to handle special cases, 
for example to represent "identified" neurons having inherently few instances. 
This framework is useful for teaching, and this will be greatly enhanced as, 
through experience and consensus, one increases the accuracy of the tissue 
surfaces, cell placements, neurite arborization and interconnections managed 
by this approach. Too, if features become generated by more coherent algo- 
rithms, users will be able to hone their experimental designs by fine-tuning 
fundamental growth parameters in the computer. As underlying controls for 
neurite extension, branching and retraction correspond more closely to biologi- 
cal entities (Kater & Mills, 1991; Van Veen & Van Pelt, 1994; Li, Qin & 
Wang, 1995) researchers may be better able to conceptualize pivotal develop- 
mental phenomena that are hard to observe, such as neuropil formation (see 
also Gaily et al, i990). 

Validation 
Scientists routinely reduce their data to statistics, and often derive conclu- 

sions from statistical summaries in preference to arguing from individual in- 
stances. As a result of that enduring discipline it should be possible to convert 
a great deal of existing information into a form digestible by this program. 

The strategies presented here do not guarantee that results can be accurately 
computable in practical terms. Given the inherent complexity of brain, we 
should expect models to grow complicated and cumbersome. For instance, it is 
clear that, in nature, most of the components in the framework are exquisitely 
sensitive to highly local effects of ions, growth factors, extracellular molec- 
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ules, and other influences that are difficult to measure comprehensively. The 
present model simply provides skeletal locations for siting a number of such 
agents and a communal milieu for their interaction. For this framework, par- 
ticularly in its early stages, it is not critical that a phenomenon be known in 
full detail. Instead, a major point of this work is that collectively we have a 
great deal of hitherto implicit knowledge to reap, by consolidating information, 
before we reach the limits of even current data or computer resources. 

On the other hand, it is important that the primary variables of a system be 
identified. With experience, the range specified for each abstract variable 
might be expected to shrink, eventually approximating that measurable (in 
principle) from nature. The foremost disadvantage of the present formalism is 
that the requisite sets of variables are not specified by an underlying theory. 
The framework neither generates the variables sufficient to characterize the 
ontogeny of a group of neurons, nor assures the logical independence of varia- 
bles that have been identified. 

Thus, the challenge remains to establish rigorously the combination of sta- 
tistical parameters required to describe all possible or merely all used forms of 
arborization, and to determine whether such parameters can be derived sys- 
tematically from the forms of raw data at our disposal. It is also an open ques- 
tion whether all of the important anatomical phenomenology of the brain can 
be cast in terms of an interaction of fundamental principles and statistical 
constraints. However, the fact that genetic machinery ultimately is driving the 
specification of many of these features gives us additional reason to expect that 
a complete set can be identified, eventually. 

For a while, a kind of Turing test may help to assess whether the approach 
is on track: Does its output appear plausible to trained anatomists? Too, are its 
algorithms becoming more compact and flexible, and do they converge in 
formal structure with underlying biochemical mechanisms? One interesting 
validating mechanism also is inherent in the design: The program can analyze 
raw morphometric data to derive a set of statistics that help it replicate the 
underlying arbor population. Because of the uniformity in data formats, simu- 
lated anatomy also can be analyzed as though it were imported data. Hence 
statistics produced by a simulation (based on data measured for one age) can be 
compared with independent statistics measured from nature (for the final age 
simulated). 

How It Operates 

Data specification 
General information about neuroscience is expressed in the program in the 

form of separate state transition rules for various classes of element (somata, 
axons, dendrites). For instance, if a segmental element is "somatic" then its 
options include to fatten, to divide, to migrate (if it has not emitted any neur- 
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ites other than perhaps its axon), to emit signals, or to autolyze. If the segment 
is "neuritic" then it may bud, resorb, elongate, shorten, branch, or orient with 
respect to a nearby object or tropic gradient (or as a computational expedience, 
with respect to the initial locations of objects emitting tropic compounds). 
Additional rules distinguish between axons and dendrites. 

Separate, externally specified sets of statistical probabilities constrain the 
range of variation for these actions, such as the positioning of somata, or the 
angles neurites express when emerging from cell bodies, when elongating, and 
when branching. This extrinsic information can be provided several ways: 
tailored by hand (based on educated intuition and direct observation of stained 
neurons), derived from analysis of 3D confocal scans, or inherited via files 
output from automatic analysis of structure generated by prior simulations. 

Group files 
Statistics files contain arbitrary numbers of records, one record per group. 

Each line in a record defines the range of values for a particular property of 
the group (such as average branch angle, segment tortuosity, density of 
spines). Six parameters are used, and are interpreted as a distribution "law" 
(e.g., Gaussian or uniform), "N" (number of observations generating the statis- 
tics), and "mean, .... standard deviation, .... low" and "high" constraining values. 

Global constraints for certain variables (such as branch angle, interbranch 
distance, segment diameters, branch probabilities) can be derived automatically 
from medial axis (skeleton) representations that are extractable analytically 
from appropriate 3D confocal data (Senft, 1995). A remaining challenge is to 
algorithmically detect epochal changes in arborization strategy, using adult and 
developing skeletonized neurites" The aim is to automatically generate tempo- 
ral descriptions of neuron sub-trees, cast in terms of group statistics, that in 
turn can be used to recapitulate the branching patterns of a wide range of 
neuron populations. 

Group descriptor records are concatenated by hand in quasi-temporal devel- 
opmental order to produce cohorts of cells that express structures reminiscent 
of a variety of known cell types (bipolar, pyramidal, stellate, etc.). For effi- 
ciency, data files containing these statistics can incorporate two kinds of inher- 
itance: (1) successive groups need specify only those variables that differ from 
groups specified previously; and (2) statistics files can be nested hierarchically. 
These features add greatly to the flexibility and reutilization of the statistical 
information. For instance, this permits one to site subtypes of cell groups in 
multiple locations, while easily respecifying only features like their range of 
somatic size or preferred branching angles. Ideally, of course, most such varia- 
tions would be generated as a consequence of antecedent developmental events. 

Matrix files 
In nature, neuron populations characteristically project to a variety of target 
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areas, within which they arborize preferentially. In this work (and possibly 
also in nature) such relationships are specified at the group level. They are 
represented to the computer through files containing sparse interaction matric- 
es, whose entries indicate attraction or repulsion between groups. Interactions 
can become active conditionally (e.g., at certain distances or developmental 
times) and hierarchically (e.g., attempt to project to target C only after target 
B is found). At present, simulated axonal connections between groups describe 
meandering paths through space and do not detect all collisions. More realistic 
paths would result if axonal growth were constrained additionally by sets of 
deformable limiting surfaces. 

Synapses 
Synapses are represented as separate pre- and postsynaptic components, 

located at specific locations on segments. Each segment may have any number 
of anatomical synapses of any type, and can identify which other segments to 
which it is pre- or postsynaptic. A synapse is allowed to form when an axon 
from one group grows sufficiently close to an element of a target group. The 
"type" of synapse can be a property of both groups. Synaptic triads or serial 
synapses may result from these primitives. Synapses play an extremely import- 
ant functional role in shaping real brains, but currently simulated synapses are 
almost purely anatomical, with few maturational and physiological conse- 
quences. 

Simulations 
Simulations progress by stepping an absolute clock (roughly corresponding 

to many minutes to hours of developmental time). Each group has internal 
timing mechanisms that are compared to the master clock, to govern when its 
elements mature and when they interact with other components. To manage 
these mechanisms for each group, the program currently provides a choice of 
two growth protocols. 

The simpler, ad hoc, method deals out segments to preexisting group 
elements at a modulatable rate from a common preset quota. This requires that 
the designer know how to initialize the circuit and how detailed the result will 
be (such as how many somata there are, how many primary neurites each has, 
and the approximate order in which neurites elongate and branch). It generally 
avoids the question of how to trigger and limit developmental processes. 

The more profound method provides growth on demand for each object. 
This concept is more comprehensible and familiar to biologists, and it admits a 
wide variety of causal mechanisms to regulate almost every aspect of growth: 
soma enlargement, emergence of primary neurites, rates of elongation, prob- 
abilities of branching or pruning, and so on. Using this more highly regulated 
method, stem-cell groups can spawn daughter groups whose elements express 
various migratory paths and fates. This represents a potential means for explor- 
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ing the architectonic consequences of a variety of possible methods of regulat- 
ing cell commitment, and ultimately it should require less voluminous specifi- 
cation of dependent measurements. But also it requires that much more pro- 
found cell-biological knowledge be encapsulated within the program, including 
a variety of signals that start and stop growth. Only a handful of these causa- 
tive relationships have been incorporated thus far. 

Clearly one will not always want to simulate the entire ontogeny of the 
nervous system merely to view a piece of adult brain. Therefore the program 
has been designed to permit a mixture of protocols. One can start a simulation 
at a given time point by substituting measurements and ad hoc settings pertain- 
ing to that age in place of fuller calculations based on deeper principles. One 
can save the results of a simulation during a given epoch, in the form of a set 
of statistics, to prime simulation of a subsequent epoch (since one has a statisti- 
cal representation each time, it does not matter much that the two simulations 
differ in detail). Additionally, one may read in precise information for a set of 
cells obtained at the second age, and mix these with the statistically constrained 
examples of other brain elements. 

In general, either mode may be invoked, as appropriate, since there are 
vastly differing depths of knowledge about mechanism for each region in the 
nervous system. For instance, if one has focal information about pyramidal-cell 
neurite outgrowth (e.g., Juraska & Fifkova, 1979), one could place such cells 
in post-migratory positions and run the system forward using those initial 
conditions. But if one also has information about lineage and cell determina- 
tion, one might initialize the system as a germinal zone to investigate the 
conditions needed to reflect stem-cell behavior and migration. 

The nervous system is too complex to simulate accurately in any but a few 
respects. This multi-mode design allows one to make wide didactic use of the 
program to represent phenomenology and to bridge temporal gaps where lack 
of knowledge produces obviously erroneous predictions~all the while refining 
the logic needed to generate systems at a deeper level. Although simulations 
inherently will be inexact for the foreseeable future, their design need not 
always accumulate error as simulated time progresses, because one can correct 
in mid-course using specific data derived from later developmental stages. 

User control 
At almost any point, even during data input or during circuit generation, 

users are free to select those groups which they would like to have actively 
participate in the definition and evolution of the simulated system. Selection is 
effected through lists, name matching, or 3D picks using the mouse. In addi- 
tion, subsets of these "active" groups can be highlighted for closer inspection 
by changing color assignments or by making all other groups invisible. Sets of 
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groups can be selected in concert, based on clonal or physical linkage or 
synaptic connectivity. Synapses can be viewed, by subtype, as decorations on 
neurites or as cloud clusters in the absence of neurites. Axes and scale bars 
may be toggled on or off interactively, and annotative information, in the form 
of group number and names, can be displayed in three dimensions next to the 
appropriate structures. 

Large groups of neurons may be viewed mutually entwined, in situ, or the 
anatomy can be reformatted into an exploded "gallery" of 3D and logical 
(Sholl or connectivity) diagrams, where arrays of individual cells can be isolat- 
ed and highlighted. Alternatively, all members of the gallery can be compo- 
sited in 3D, to produce a canonical depiction of the average directions and 
modes of arborization for a cell class. Individual cell architectures can be 
exported to NEtmON for detailed electrical analysis. To simulate surgical and 
chemical manipulations, target groups can be dragged to new locations, and 
augmented or depleted in number. The rest of the system can continue to 
develop, adapting to these changes. 

Statistical format data files can be imported into the program combinatorial- 
ly, and mixed freely with camera lucida data describing specific cells. Net- 
works created this way and modified by user interaction can be reduced to new 
sets of statistics and saved for re-entry. Alternatively, every variable of every 
segment of every (active) group in the simulation can be sent to disk and re- 
imported. The generative statistics for any active group may be inspected and 
edited on line, as can values for any variable of any element in the simulation. 

Example output 
There are two primary display modes: an interactive sketch that depicts cell 

processes using simple lines, and a more detailed presentation in which the 
segments are drawn as fractal paths decorated with varicosities, spines, and 
irregular edgings. Either mode may be rotated, panned, and zoomed, using the 
keyboard or mouse. Oblique cutting planes can be manipulated in 3D to 
emulate the truncation of components, as if the system were physically sec- 
tioned into brain slices (networks continue to develop, intact). A log may be 
made of the viewpoints used in rapid sketch mode, to be used to pace the frac- 
tal display for automated output in greater detail to film or video. 

The images shown here are a set of stills or frames from movie clips pro- 
duced over the two years by ~e  simulation program "ArborVitae." (Consider- 
ably more information can be conveyed using other media: either directly on 
the monitor as dynamic developmental views presented three-dimensionally 
and in stereo, under interactive control, or as movies sent to videotape.) 

Color Plate 2 (p. 186) shows a set of somatic groups arrayed as arching 
laminae, to represent a sector of cerebral cortex (neurites exist in this simula- 
tion, but have been rendered invisible). Color is used to differentiate the over- 
lapping cell groups assigned to the various "cortical layers." The arrangement 
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FIGURE 1. A set of immature "pyramidal" neurons, corresponding to the band of 
yellow cells in Plate 2. Each has an apical dendrite, early basal dendrites and a vari- 
cose axon. 

FIGURE 2. Stereo view of a field of highly varicose axonal processes, from a region 
like the thalamo-cortical projection path shown in Hate  3. 
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forms a laminated dome in three dimensions. It was generated by specifying 
that each group be distributed uniformly along two axes and normally along the 
third axis. The entire cloud was then warped morphologically in two axes to 
create the dome. (Ideally, each cell would be generated in a proliferative zone 
and made to migrate to its adult location.) 

Figure 1 shows a set of immature "pyramidal" neurons, corresponding to 
the band of yellow cells in Plate 2. Each has an apical dendrite, early basal 
dendrites and a varicose axon. Cell nuclei are visible in variously eccentric 
positions within the somata, which exhibit a range of diameters. 

Color Plate 3 (p. 187) shows a subset of elements from a larger simulation 
representing cell groups in the brainstem, thalamus and cortex. A set of fibers 
from the brainstem invade the thalamus from below. Groups of cells constitut- 
ing a row of "barreloids" in the thalamus send their axonal processes into an 
overlying cortex containing arborized "stellate" cells. A set of unbranched 
"pial" cells delimits the top margin of the cortex. 

Figure 2 shows a stereo view of a field of highly varicose axonal processes, 
from a region like the thalamo-cortical projection path shown above. The 
program created the varicosities by randomly sampling statistical specifications 
for average bead density, length and diameter. (Certain axonal processes 
remain visible in only the left or right image, having been clipped differently 
for each eye. This structural disparity requires more focused attention than 
usual to fuse the two fields.) 

The program runs interactively on the Indigo class of Silicon Graphics 
workstation and has been written in C and GL (it may be redesigned for C + + 
and OpenGL). All variables have been cast as double precision. There current- 
ly are about 50 variables per segment (many are dormant but slated for physi- 
ology). There can be any number (often thousands) of segments per group, and 
any number (often hundreds) of groups in a simulation. The full system in 
Plate 3 (of which about half is shown) has over 100 groups and over 130,000 
elements, and took 20 minutes to generate, filling 40 megabytes (MB) of 
space. The program should scale relatively well, even on current machines, to 
a hundred variables per segment, and a thousand groups. Workstations now 
often have several hundred MB of fast memory, and gigabytes (GB) of local 
disk space. It is reasonable to anticipate that by the time details are added to 
this framework adequate to begin to satisfy both cell and molecular biologists 
and comparative neuroanatomists, affordable machines will exist with several 
GB of local memory, and terabytes of disk space. With such processing power, 
dramatically more complex and accurate systems would be generated. The 
precision of those future results will come as much from improvements in 
capturing the logic of biology in algorithmic form and from incorporating 
existing morphometry, as from the sheer increase in numbers of simulated 
elements. 
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Conclusion: A Call to Action 
The purpose of this presentation is to encourage others to consider how to 

better achieve the overall goal of unifying neuroanatomical information. My 
hope is that this will enable more people to share the beauty and wonder that 
research in neuroscience engenders, that students can more facilely absorb an 
understanding of anatomy, and that researchers themselves will be able to 
frame more penetrating hypotheses. 

I have presented a basic organizational framework that currently is relative- 
ly undetailed with respect to the daunting task at hand. But the emphasis in its 
design has been to provide a broad underpinning, in anticipation of later detail. 
It may be well enough founded, now, to mature dramatically in range and 
subtlety when supplied with greater numbers of measurement-based statistics. 
Only a small fraction of the effort to create this framework was expended on 
handcrafting statistical data to specify neuron classes, and only a very small 
number of the many published statistical measures of neurons have been incor- 
porated. Imagine the richness of biological detail we might gather into usable 
form simply by entering precise numerical information for just the most 
prominent several dozens or hundreds of neuron types! 

To approach this potential, this work must motivate a variety of researchers 
to adopt or create similar methods and to help cast knowledge of their special- 
ties in exchangeable (statistical) formats. Some may be interested in extracting 
statistics of brain information from the literature and in establishing reposi- 
tories on the Internet, or in verifying the input data and its transforms for 
accuracy. Others may be able to refine the statistical format itself. It will be 
necessary to derive theoretically a minimal set of features that adequately dis- 
criminate one group of neurons from another. In practice it appears that ad hoc 
sets of features can be provided relatively easily that give a plausible depiction 
of cell types and neural circuits. With more use, perhaps the natural feature 
sets will be approximated. 

I believe that visual framing of even the phenomenology of developmental 
neuroscience will provide us with a dramatically clearer perspective on what 
has hitherto been accomplished collectively. Hopefully, though, a great deal 
more can be achieved by enriching this framework: The deeper developmental 
logic of both the program and its associated fields continue to evolve. The 
program has only preliminary internal representations for many central 
features: stem-cell regulation, constraint of cell migration, process outgrowth 
to spatial regions defined by deformable surfaces, electrical signaling and 
synaptic dynamics, message-passing by diffusion in voxellized intercellular 
space. The fields of cellular neurobiology and computer graphics have exten- 
sive information on each feature. It will be exciting to help tie these fields 
together to create a working user's menu of visible developmental principles 
for brain development. Here is one way to proceed. 
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ABSTRACT 
This chapter introduces a computational approach to evolutionary interpreta- 

tions of animal-learning phenomena, with an emphasis upon Pavlovian condi- 
tioning. The approach combines a neurocomputational algorithm (NCA) and a 
genetic algorithm (GA). The NCA determined the functioning of neural pro- 
cessing elements constituting artificial neural networks (ANNs). The GA 
consisted of a neurodevelopmentally informed genotype-to-phenotype trans- 
formation, and a scheme for simulating selection and reproduction. The inter- 
stimulus interval (ISI) function and the variation of optimal ISis across prepara- 
tions were chosen as motivating phenomena. On this basis, generations of 
ANNs were each trained in Pavlovian forward-delay procedures with different 
ISis (either 2, 4, 8, or 16 time steps) and conditional stimuli (either CS1 or 
CS2). Individual fitness of a network architecture was identified with perfor- 
mance under these procedures. A major finding was that mean population 
fitness increased as a negatively accelerated function of generations. Although 
ANNs in different populations had comparable fitnesses at the end of evolu- 
tion, larger ANNs emerged with selection for longer ISis. Also, the magnitude 
of the Baldwin Effect (high innate responding to CS-alone preexposure trials) 
decreased as the selected ISI increased. Finally, when ANNs were trained 
under ISis different from the ancestral ones, performances simulated ISI func- 
tions whose optimal values corresponded to the selected ISis. These results are 
consistent with a synthesis of general-process and biological-constraint ap- 
proaches to learning. Key words: Pavlovian conditioning, artificial neural 
networks, evolution, genetic algorithms, ISI functions. 

Introduction 
Recent applications of computers as research tools in empirical science 

involve simulations of biological phenomena. Such applications are collectively 
known as Artificial Life (ALife). ALife comprises all biological phenomena 
simulated through hardware or software (Langton, 1992). A premise of ALife 
research is that simulations of possible biological forms may provide useful 
research tools for achieving a more complete understanding of real biological 
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forms (Cliff, 1991; Dawkins, 1987; Dennett, 1994; Emmeche, 1991; Langton, 
1992, 1994). 

One ALife research field combines neurocomputational algorithms (models 
of the structure and functioning of nervous systems) with genetic algorithms 
(models of evolution by natural selection). A main purpose of such combina- 
tions is to simulate the relation between learning and evolution (e.g., Ackley & 
Littman, 1992; Belew, Mclnerney, & Schraudolph, 1992; French & Messing- 
er, 1994; Gruau & Whitley, 1993; Harp & Samad, 1991; Harvey, 1991; 
Hinton & Nowlan, 1987; Keesing & Stork, 1991; Miller, Todd, & Hegde, 
1989; Paredis, 1991, 1994; Schaffer, Caruana, & Eshelman, 1990; Todd & 
Miller, 1991; Whitley, Starkweather, & Bogart, 1990). 

In this chapter, I introduce a computational approach to the study of the 
relationships between learning and evolution. In contrast to other approaches, 
environment-behavior relationships are conceptualized in terms of the kinds of 
phenomena studied in that branch of experimental psychology known as animal 
learning, with an emphasis on Pavlovian conditioning. My main objective was 
to show how a computational approach can formulate and validate evolutionary 
interpretations of certain animal-learning phenomena. I also wished to show 
the relevance of such phenomena for formulating and validating computational 
approaches to the evolution of learning. Another distinguishing aspect of the 
present approach is that a neurodevelopmentally informed genetic algorithm 
was used. I wanted to show the implications of such a GA for the Baldwin 
Effect, a phenomenon that has received some attention from ALife researchers. 
In the first section, I describe two basic animal-learning phenomena (ISI func- 
tions and variations in the optimal ISI) from an evolutionary perspective. In the 
second section, I describe the approach in terms of the ontogeny-phylogeny 
dichotomy. In the third section, digital simulations are used to implement the 
approach. In the last section, I discuss some implications of the results for 
computational models of the biological bases of learning. 

Biological Constraints on Pavlovian Conditioning 
Pavlovian conditioning (Parlor, 1927) comprises a class of learning 

phenomena observed under a particular experimental arrangement. With re- 
spect to the environment, the basic arrangement involves presenting an animal 
with instances of two kinds of events, a conditional stimulus (CS) and an 
unconditional stimulus (US), in a certain temporal relation. This relation is 
defined primarily in terms of the interstimulus interval (ISI), the time between 
CS onset and US onset, which represents a measure of the temporal contiguity 
between the CS and US. With respect to the organism, a response system is 
chosen in which the US evokes or elicits responses reliably and strongly before 
exposure to the arrangement. 

The basic result is well known. Before training, the chosen response occurs 
only (or most strongly) in the presence of the US. This response is referred to 
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as the unconditional response (UR). After training, the CS comes to evoke 
responses similar to those that were initially evoked only by the US. Responses 
evoked by the CS are referred to as conditional responses (CRs). An important 
property of CRs is that they tend to occur before US onset, for which reason 
Pavlovian conditioning is often said to involve learning to anticipate the occur- 
rence of biologically critical stimuli. 

The basic Pavlovian arrangement has been extremely fruitful for discover- 
ing a number of learning phenomena. Among the most fundamental and well 
established are the ISI function and the variation of optimal ISis across prepa- 
rations. An ISI function is a relation between the ISI and some behavioral 
measure, typically CR percentage (the percentage of CS presentations that 
evoke a response after training). ISI functions have an inverted U shape whose 
peak corresponds to the ISI value considered optimal for excitatory condition- 
ing. As the ISI departs from the optimal value, the CR percentage decreases. 
This phenomenon has motivated a number of neurocomputational models of 
learning (e.g., Byrne, Gingrich, & Baxter, 1989; Grossberg, 1991; Hawkins, 
1989; Sutton & Barto, 1981). 

Optimal-ISI variation refers to the range of ISis that produce maximal 
excitatory conditioning for different experimental preparations~such as the 
nictitating membrane response in rabbits (e.g., Frey & Ross, 1968; Schnei- 
derman, 1966; Smith, Coleman, & Gormezano, 1969), autoshaping in pigeons 
(e.g., Gibbon, Baldock, Locurto, Gold, & Terrace, 1977), and conditioned 
suppression (Libby, 1951; Ross, 1961; Yeo, 1974) and taste aversion (e.g., 
Etscorn & Stephens, 1973; Garcia & Koelling, 1966) in rats. Optimal-ISI 
variation has not inspired any neurocomputational research. However, this 
phenomenon is intimately related to the ISI function when viewed from an 
evolutionary perspective. 

Evolutionary interpretations of animal-learning phenomena arise from the 
notion of biological constraints. According to this notion, biological structure 
imposes restrictions upon the kinds of behavioral change an organism may 
show under certain environmental conditions (e.g., Bitterman, 1965; Bolles, 
1970; Hinde, 1973; Seligman & Hager, 1972; Shettleworth, 1973). Certain 
biological structures are said to prepare organisms to learn under certain condi- 
tions and to contraprepare them to learn under others. In evolutionary biology, 
different structures permit organisms to satisfy the different adaptive demands 
posed by their specific environments. If an individual increases its reproductive 
success by changing its behavior in certain ways under certain environmental 
conditions, then the structure that mediates such a change, and whose blue- 
prints are heritable through genetic transmission, will tend to predominate in 
the individual's progeny. And, if the environments of parents and progeny are 
relatively similar, then such a structure will mediate the same kind of be- 
havioral change in the progeny, increase their reproductive success, and appear 
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in subsequent progeny. Behavioral change may thus affect the course of phylo- 
geny by providing a fitness advantage to organisms possessing the kind of 
structure that mediates such changes. 

When the above interpretation is applied to ISI functions, we may say that 
high responding within a certain ISI range in present organisms is mediated by 
a certain kind of structure. Such a structure is a product of evolution insofar as 
it conferred a fitness advantage on the ancestors of those organisms by mediat- 
ing learned responding within a similar ISI range. Because ISis outside the 
range were not characteristic of the ancestral environment, learning under such 
ISis was not selected for the ancestral organisms. The inability of present 
organisms to learn outside the ancestral ISI range, then, can be attributed to an 
absence of the necessary structure. Optimal-ISI variation arises from the fact 
that different organisms possess structures necessary to learn under different 
ISI ranges, insofar as those ranges were characteristic of their ancestral envi- 
ronments. 

Nervous systems obviously represent critical biological structures for learn- 
ing. Although all nervous systems are products of evolution by natural selec- 
tion (insofar as their basic architectures contain elements that are heritable 
through genetic transmission), different nervous systems may result from dif- 
ferent selection pressures. Thus, the kind of nervous system an organism 
possesses may mediate learning within a certain ISI range, but prevent learning 
outside that range, and thereby produce different ISI functions. 

The critical effect of the architecture of the nervous system on learning has 
led to much experimental work on the biological bases of Pavlovian condition- 
ing (e.g., Buonomano & Byrne, 1990; Kandel, 1985; Klopf, 1988; Klopf & 
Morgan, 1990; Moore, 1991; Moore, Berthier, & Blazis, 1990; Schmajuk & 
DiCarlo, 1991; Thompson, 1986; Thompson, Berger, & Madden, 1983). This 
work has served as a basis for constructing neurocomputational models that 
attempt to simulate certain properties of particular nervous systems. However, 
such research has not incorporated the s tructure  of the neural network as an 
essential component of these models, algorithms, and simulations. A funda- 
mental premise of the present paper is that an adequate computational account 
of the biological bases of Pavlovian conditioning (and of learning generally) 
must explicitly accommodate differences in network architecture within an 
evolutionary framework. In the next section, I introduce a computational 
approach motivated by this premise. 

A Computational Approach 
The present approach involves a combination of a neurocomputational 

algorithm (NCA) and a genetic algorithm (GA). The NCA and its neural- 
network implementation have been described elsewhere (Donahoe, this vo- 
lume; Donahoe, Burgos, & Palmer, 1993; Donahoe & Palmer, 1994). Here, I 
describe the main components of the GA in terms of the ontogeny-phylogeny 
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dichotomy, mentioning only those aspects of the NCA and its neural-network 
implementation that are pertinent to the simulations. I also describe how envi- 
ronment-behavior relations are conceptualized. 

Ontogeny 
I use the term ontogeny to refer to two processes that can be fully character- 

ized at the level of the individual organism, namely development and learning. 
An individual organism is conceptualized as constituted by a genotype, a struc- 
tural phenotype, and a functional or behavioral phenotype. Development invol- 
ves the transformation of genotypes into structural phenotypes representing 
artificial neural networks (ANNs). Learning is conceptualized as changes in 
the behavior of ANNs under certain environmental conditions (see later). 

Genotypes. Following canonical GAs, a genotype (an individual's genetic 
makeup) was conceptualized as a string of bits that represented genes. Each 
genotype was partitioned into fragments that encoded a neurodevelopmental 
parameter. All parameters were encoded by more than one gene (polygeny) 
and any given gene determined one and only one parameter (no pleiotropy). 
All genotypes within and across generations encoded for the same set of 
neurodevelopmental variables. (The Appendix shows the relation of genotype 
fragments to neurodevelopmental variables.) 

Development. The transformation of genotypes into ANNs was determined by 
a neurodevelopmental algorithm (NDA) consisting of routines that simulated 
general aspects of the stages of proliferation, migration, differentiation, synap- 
togenesis, and elimination. This division corresponds roughly to the one used 
by neuroscientists to describe the development of nervous systems (e.g., 
Brown, Hopkins, & Keynes, 1991; Purves & Lichtman, 1985; see Luskin, this 
volume). As in other models, ANNs consisted of three kinds of layers of 
elements~input, hidden, and output. 

The proliferation and migration routines determined the maximum number 
of hidden elements. These routines were based on a simplified version of the 
radial-unit model of neocortical histogenesis proposed by Rakic (1988a). In 
accordance with this model, developing nervous systems consist of three kinds 
of structures~proliferative units, glial fibers, and ontogenetic columns repre- 
senting what, in ANN terminology, are referred to as hidden layers. Prolifera- 
tive units and ontogenetic columns were related in a one-one manner through 
the glial fibers. Proliferative units thus constitute a kind of "protomap" of the 
future organization of hidden layers. The maximum number of proliferative 
units (and, hence, hidden layers) was encoded in the genotype. Proliferative 
units generated new elements in a manner functionally analogous to symmetric 
cell division. Elements were generated by two types of proliferative units. One 
type generated elements that eventually constituted the hidden layers of the 
sensory portion of an ANN, and the other type generated elements that eventu- 
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ally constituted the hidden layers of the motor portion. All proliferative units 
generated the same number of elements. Migration involved transferring 
elements from the proliferative units to ontogenetic columns. Elements from 
sensory and motor proliferative units could migrate at different rates, as deter- 
mined by probabilities encoded in separate genotype fragments. Therefore, 
differences in the maximum number of elements per sensory and motor hidden 
layer in an ANN depended partially upon migration. 

Element specification occurred during the differentiation routine, which 
simulated general functional aspects of neuronal differentiation in nervous 
systems (e.g., Austin & Cepko, 1989; Caviness & Sidman, 1973; McConnell, 
1988, 1989, 1991; Miller, 1988; Rakic, 1988b). This routine determined 
which elements were excitatory and which were inhibitory using a probabilistic 
rule that assigned to each element parameters used in the NCA. Parameters for 
different kinds of elements were encoded separately and, hence, could be dif- 
ferent within the same ANN. 

Elements were connected through a synaptogenesis routine, whose basic 
parameter was the probability of a connection being formed between two 
elements. Synaptogenesis probabilities were encoded separately for different 
kinds of connections. As a simplifying restriction, only feedforward connec- 
tions between adjacent layers were allowed (i.e., recurrent connections could 
not arise). Also, only lateral connections were allowed between excitatory and 
inhibitory neural-processing elements (NPEs) within a layer. This permitted 
simulation of a form of lateral inhibition. No lateral connections between in- 
hibitory NPEs were allowed. 

In contrast to other approaches, genotypes in the present approach did not 
directly encode the initial connection weights or the connections between spe- 
cific units. Rather, connections were formed by conducting a Bernoulli trial for 
each pair of elements consistent with the connectivity restrictions mentioned 
above. The presynaptic element was connected to the postsynaptic element if 
and only if the Bernoulli trial was passed, which depended on the synaptogene- 
sis probability encoded in the genotype. Once a new connection was formed, 
its initial strength was determined by the spontaneous activations of the pre- 
and postsynaptic elements. This strength represented the initial weight for that 
connection (i.e., the weight before any training). Spontaneous activations of 
NPEs were determined by genetically encoded parameters. The spontaneous 
activation parameters were encoded by separate genotype fragments for differ- 
ent kinds of NPEs. This strategy simulated a kind of activity-dependent synap- 
togenesis, which is known to occur extensively during cortical histogenesis 
(e.g., Cooper & Rakic, 1983; Corner & Ramakers, 1992; Eckenhoff & Rakic, 
1991; Rakic, Bourgeois, Eckenhoff, Zecevic, & Goldman-Rakic, 1986). 

After synaptogenesis, all input elements and hidden NPEs that did not send 
connections to other elements, as well as all hidden and output NPEs that did 
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not receive any connections, were eliminated. Hence, the elimination of NPEs 
and connections depended only upon the availability of elements and connec- 
tions (i.e., no parameters were encoded for this stage). Although different in 
detail, this routine is consistent with the idea of neuronal selection proposed by 
Edelman (1987). According to this idea, neurons in the developing brain (like 
organisms in a population) differ structurally and functionally from one anoth- 
er. Some neurons are more strongly activated by certain stimuli and, hence, 
more richly interconnected than others. Neurons that are not connected die out, 
leaving only neurons that have at least one presynaptic and one postsynaptic 
process. 

Because most of the neurodevelopmental parameters were probabilistic, any 
given genotype could generate a class of ANNs that were similar in certain 
general aspects, but different in their specifics. Hence, strictly speaking, the 
present NDA implemented a one-many transformation of genotypes into struc- 
tural phenotypes. In this manner, the present NDA permitted structural-pheno- 
typic variation even with a fixed-length genotype. 

Structural phenotypes.  An ANN was a set of interconnected NPEs whose 
functioning was determined by the NCA. ANNs were made up of two subnet- 
works, sensory and motor. The sensory subnetwork consisted of one layer of 
input elements whose activations represented the occurrence of different envi- 
ronmental events, and one or more sensory-association (sa) layers, each asso- 
ciated with a set of cal  NPEs. The motor subnetwork consisted of one or more 
motor-association (ma) layers, each associated with a set of vta NPEs, and one 
layer of output NPEs whose collective activation determined the behavior of 
the ANN. (The nature of the cal  and vta NPEs is defined below.) 

An input layer could consist of three kinds of elements, namely s~, s z, and 
us, whose activations were assigned according to a training protocol represent- 
ing the environment of the ANN. During the simulations, the activations of s~ 
and s z elements indicated the occurrence of different CSs, whereas the activa- 
tion of the us element represented the occurrence of the US. The maximum 
numbers of s 1 and s z elements that a given ANN could have before elimination 
were directly encoded by separate genotype fragments. ANNs could have from 
zero to seven s~ or s z elements, for a maximum total of 14 sensory input 
elements. All ANNs had only one us element. 

Sensory-input elements were connected to NPEs in the first sa layer 
through plastic feedforward connections. The us element sent nonplastic 
connections directly to the vta NPEs, which in turn sent nonplastic connections 
directly to output NPEs. Therefore, output NPEs could be unconditionally 
activated by the us element through the vta NPEs. The us-vta-output pathways 
were analogous to ones that mediate URs in Pavlovian conditioning. Output 
NPEs could also be indirectly activated by s~ or s z input elements by means of 
connections to sa and ma NPEs. The main difference between sa and ma NPEs 
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concerned how synaptic plasticity was modulated by the activity of the cal and 
vta NPEs (for a more detailed description, see Chapter 18, this volume, 
Donahoe et al, 1993, and Donahoe & Palmer, 1994). 

The maximum numbers of cal NPEs per sa layer and vta NPEs per ma 
layer were also genetically determined. This strategy was justified under the 
assumption that the corresponding parts of the mammalian brain (i.e., the CA1 
output neurons of the hippocampus, and the ventral tegmental area----or 
VTA~respectively) are genetically conserved and, hence, show more intra- 
specific similarities relative to sensory- and motor-association cortex (Allman, 
1990; Arbas, Meinertzhagen, & Shaw, 1991; Eccles, 1989). The number of 
output NPEs was genetically determined for similar reasons. 

Functional phenotypes. Behavior of an ANN was defined as the mean activa- 
tion of its output NPEs at a given time step (ts). The higher the mean activation 
of the output NPEs to a CS, the greater its chance was of being selected for 
reproduction. The present scheme thus simulated a form of directional selec- 
tion, in which performance toward the upper limit of responding was favored. 
(As with other ALife approaches, the present approach adopted the propensity 
interpretation of individual fitness; Mills & Beatty, 1979. Under this interpreta- 
tion, individual fitness does not refer to actual reproductive success but to an 
aspect of an individual's phenotype.) In the present case, the behavior after 
training was the phenotype of interest that affected and, hence, preceded 
reproduction. 

Unlike other approaches, the environment was conceptualized in terms of 
temporal relations between environmental events as described by standard 
Pavlovian procedures. This conceptualization assumes that the same kinds of 
temporal relations defined by Pavlovian procedures also occur in natural envi- 
ronments and affect reproductive success. This is not to say, of course, that the 
specific nature of the events being related is unimportant, or that temporal 
relations are sufficient to understand learning phenomena at all levels of analy- 
sis. Clearly, the specific nature of the events represents a critical feature of an 
ecologically valid approach. But, temporal relations are undeniably important 
determinants of conditioning (cf. Gamzu & Williams, 1973; Rescorla, 1966, 
1968). Focusing upon temporal relations among abstract events represents a 
momentary simplifying strategy rather than a theoretical proposition about the 
structure of natural environments. 

The idea that natural environments consist of the same kinds of relations 
studied with Pavlovian procedures in laboratory environments has motivated 
investigations of the relation between Pavlovian conditioning and reproductive 
behavior in territorial species such as Betta splendens and Trichogaster trichop- 
terus (e.g., Domjan & Hollis, 1988; Hollis, 1984, 1990; Hollis, Cadieux, & 
Colbert, 1989; Hollis, Dumas, Singh, & Fackelman, 1995; Hollis, Martin, 
Cadieux, & Colbert, 1984). These studies have shown that learning to antic- 
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ipate territorial situations through a Pavlovian training allows such situations to 
be resolved more effectively. If trained individuals tend to be reproductively 
more successful, then aspects of their nervous systems that mediate such learn- 
ing and are heritable would tend to appear in the individual's progeny (e.g., 
Hollis & Overmier, 1982). This kind of research demonstrates that Pavlovian 
conditioning may change reproductive success and, hence, the course of 
phylogeny. 

Phylogeny 
I use the term phylogeny to refer to lineages that result from implementing 

the selection and reproduction schemes of a GA, a kind of computational 
model of evolution by natural selection (Holland, 1975). In typical GAs, a 
performance measure is obtained for each individual in a population. Such a 
measure determines individual fitness. The fitness determines whether or not a 
given individual is selected for mating. In the present approach, the selection 
scheme was. applied to a performance measure computed for each individual 
within a generation after training. Mating occurred between pairs of genotypes 
taken from a mating pool. Mating pools were formed for each generation by 
applying a rule known as tournament selection (e.g., Goldberg & Deb, 1991), 
which is more efficient and biologically plausible than standard rules such as 
roulette-wheel selection. Genetic variation was affected by crossover from 
combining the genetic makeup of the mating pair to form a new chromosome. 
In addition, the values of some of the genes constituting the new chromosomes 
had a low probability of undergoing mutation. The resulting chromosomes 
constituted a new population of genotypes forming a new generation. 

The Baldwin Effect 
When we combine ontogenetic and phylogenetic processes, individual learn- 

ing (an nondevelopmental ontogenetic process) represents a guiding force in 
evolution (a phylogenetic process). This consideration would have a La- 
marckian flavor if it were interpreted as the inheritance of acquired characters. 
However, as argued by Baldwin (1896), the relationship between learning and 
evolution can be interpreted in non-Lamarckian terms. This idea has come to 
be known as the Baldwin Effect (Simpson, 1953), and has received some atten- 
tion from ALife researchers. 

The key idea underlying the Baldwin Effect is that certain nondevelopmen- 
tal ontogenetic changes, such as learning, increase individual reproductive 
success. Certain genetically transmissible traits (e.g., basic neural architecture) 
impose global constraints on how and under what circumstances learning 
occurs. The presence of these traits does not guarantee the occurrence of the 
changes in question but it does make it more probable, given the appropriate 
environmental conditions. If these conditions remain relatively constant over 
phylogenetic time, then the structures that permit the adaptive changes, as well 
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as the changes themselves, will become progressively more frequent across 
generations. 

In current ALife approaches, the Baldwin Effect has been observed as an 
increase in the mean population learning rate across generations to the point 
that, towards the end of evolution, individuals need virtually no training (e.g., 
Ackley & Littman, 1992; French & Messinger, 1994; Gruau & Whitley, 1993; 
Hinton & Nowlan, 1987; Keesing & Stork, 1991). This effect is largely due to 
the fact that, in these approaches, the initial connection weights are directly 
encoded in the genotype. Thus, evolution in these approaches involves search- 
ing for optimal initial weights. In these terms, the Baldwin Effect refers to the 
extent to which responding to a given stimulus is innate, that is, occurs after 
little or no training. In the present approach, however, initial connection 
weights were not directly encoded in the genotype. This strategy raises the 
question of whether the Baldwin Effect (defined here as the extent to which an 
ANN shows high responding to CSs without training) emerges in these simula- 
tions. 

Simulations 

Evolution simulations 
An evolution simulation consisted of a lineage of nonoverlapping genera- 

tions. A generation consisted of a sequence of development, training, and 
selection occurring for each member of a population of 100 individuals. The 
maximum possible number of generations produced by the GA was 100. Dif- 
ferent lineages evolved independently of one another, and corresponded to 
different environmental conditions. Development was simulated through the 
NDA. Here, I focus upon the procedural aspects of training and selection. 

Training consisted in the simulation of a number of CS-US pairings. Time 
was represented as a sequence of discrete time steps (ts). No assumptions were 
made about the specific real-time duration of a ts. At each ts, the activations 
and connection weights of all NPEs of an ANN were updated according to an 
asynchronous-random procedure, which is considered to be biologically more 
plausible than synchronous updating (e.g., Amit, 1989). Also, this update 
procedure has been found to induce stability in certain ALife models (e.g., 
Bersini & Detours, 1994). In the present simulations, a random sequence of all 
NPEs was generated at each ts, and then their activations and connection 
weights were updated in that order. 

After development but before training, the parameter that determined the 
magnitude of spontaneous activations of NPEs was set to 0.1 for all NPEs. 
This strategy eliminated ANNs with NPEs that had high spontaneous activa- 
tions as an outcome of evolution. Differences in the spontaneous-activation 
parameter played a role only during the synaptogenesis stage of the NDA by 
affecting the magnitude of the initial connection weights. 
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In the overall simulation experiment, eight environmental conditions were 
defined by a combination of four ISis (2, 4, 8, or 16 ts) and two CSs (CS 1 or 
CS2). A lineage of ANNs evolved independently for each condition. For 
ANNs in CS1 lineages, the CS was defined as the activation of all s~ input 
elements with a value of 1.0, and zero activation of any s 2 input element. For 
ANNs in the CS2 lineages, the activation levels for s~ and s 2 input elements 
were reversed. For all ANNs, the US was defined as the activation of the us 

element with a value of 1.0 at the last ts of a trial (i.e., CS and US were paired 
according to a forward-delay procedure). The ISI was defined as the number of 
ts from the first to the penultimate CS ts. 

All ANNs were given 125 CS-US paired trials, the last 25 of which served 
as trials to evaluate individual fitness. Fitness was measured by the proportion 
of evaluation trials that elicited a CR. A CR for a given individual was defined 
as a mean activation across its output NPEs of 0.5 or more at the penultimate 
ts. The intertrial interval (the time between successive pairings) was assumed 
to be sufficiently long to allow for activations of all NPEs to decay to sponta- 
neous levels. 

After all individuals within a generation had been evaluated, a mating pool 
was formed through a series of tournaments in which five individuals were 
randomly sampled from the population and their fitness values compared. The 
individual with the highest fitness value was declared the winner of the tour- 
nament and selected for the mating pool. Then, all individuals were returned to 
the population. Thus, a genotype with a high fitness value could be represented 
many times in the mating pool. If the highest fitness value was shared by two 
or more individuals, then the tournament was dismissed and another tourna- 
ment formed. Tournament selection ended after 100 winners had been selected. 
If tournament selection had not been completed after approximately one hour 
because almost all individuals had achieved the same high level of fitness, the 
evolution simulation was considered to have reached stability. 

After the completion of a mating pool, reproduction took place on 50 
mating trials. A mating trial involved randomly sampling two individuals from 
the mating pool, and recombining their respective genotypes with a probability 
of 0.8. Recombination consisted of selecting two loci randomly (the same in 
both parental genotypes) and translocating the middle segment of both parents. 
This strategy is known as two-point  crossover (Cavicchio, 1970; DeJong, 
1975; Holland, 1975; Schaffer, Eshelman, & Offutt, 1991). After mating, 
parents were returned to the mating pool, and alleles of the new genotypes 
were mutated with a probability of 0.001. The result of a mating trial was two 
genotypes consisting of genetic material (possibly mutated) from both parents. 
The end result of the reproduction process was a population of 100 genotypes 
constituting a new generation. Then, the development-training-selection se- 
quence was repeated for the individuals of the new generation, and so on. 
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Before starting the simulations, the founder genotype population, referred to 
as GO, was generated. GO was chosen from several randomly-generated popu- 
lations, on the basis of the mean population fitness in a forward-delay proce- 
dure in which 200 pairings were randomly distributed between CS1-US and 
CS2-US, with an ISI of 4 ts. After this training, 50 more pairings randomly 
distributed between the two kinds of pairings were given to determine individ- 
ual fitness. If the mean population fitness was greater than zero, then the 
genotype population was chosen as GO. This strategy was adopted after pre- 
liminary simulations showed that random founder populations in which few 
individuals had fitnesses greater than zero permitted very little or no evolution. 

Lineages were generated as follows. First, eight ANNs were developed 
from each GO to obtain 800 ANNs, which were randomly divided into groups 
of 100. Then, ANNs in each group were trained in a forward-delay Pavlovian 
procedure with one of the four ISis and one of the two CSs. After evaluation, a 
new genotype population was created through the selection scheme described 
earlier. This new population constituted G1 (the next generation). Once the 
new genotypes were generated, new ANNs were developed and exposed to the 
same conditions as their ancestors. The same operation was repeated genera- 
tion after generation, until the criterion for termination was satisfied. This 
strategy produced a total of eight lineages, labeled 2-CS1, 2-CS2, 4-CS1, 4- 
CS2, 8-CS1, 8-CS2, 16-CS1, 16-CS2, where the initial number denotes the 
ISI, and CS 1 or CS2 denotes the kind of CS. I shall focus on the results for 4- 
CS1 and 8-CS1, since they faithfully represent the major points of interest 
here. 

Effects on genotypes. The effects on genotypes were measured by changes in 
mean chromosomic overlap across generations, a measure of genotypic similar- 
ity. The overlap between any two genotypes could range from -1.0 (the two 
genotypes had no loci with the same genes) to 1.0 (the two genotypes had no 
differing loci). An overlap of 0.0 indicates that the two genotypes agreed (or 
differed) in 50% of their loci, which is the expected value for randomly gener- 
ated genotype populations. The mean overlap for a generation was computed 
for all the possible combinations of two genotypes in a population of 100. 

The left panel of Figure 1 shows that mean chromosomic overlaps in- 
creased as a negatively accelerated function of generations. The overlap for GO 
was close to 0.0, which is consistent with the expected value for a founder 
population. In general, individuals became genetically more similar as genera- 
tions advanced. Overlaps increased within a few generations, and then sta- 
bilized at different values for ISis of 4 and 8 ts. For 4-CS 1, the mean overlap 
of the last generation was less than 0.5, which signifies that a considerable 
amount of genetic variation remained at the end of evolution. In contrast, the 
mean overlap at the end of evolution for 8-CS 1 was substantially larger, indi- 
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FIGURE 1. Evolution of mean population chromosomic overlap (left panel) and fit- 
ness (fight panel) as a function of generations. 
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FIGURE 2. Frequency distributions of fitness values over generations for 4-CS1 (left 
panel) and 8-CS 1 lineages (fight panel). Shown are the number of individual networks 
having a fitness of a given value. Fitness was measured by the proportion of test trials 
with a C R .  

cating that the longer ISI more tightly constrained the genetic variation needed 
to produce individual networks of high fitness. 

Effects on fitness. The right panel of Figure 1 shows that mean population 
fitness also tended to increase as a negatively accelerated function of genera- 
tions. Lineages started with ANNs of low fitness (close to 0.0) and ended with 
high-fitness (close to 1.0) ANNs. ANNs in the last generation of both lineages 
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had similar fitness. Hence, comparably fit ANNs emerged from selection for 
increased responding under different environmental conditions. Both lineages 
satisfied the fitness-stability termination criterion well before 100 generations. 

Figure 2 shows 3D mesh plots depicting changes in the frequency distribu- 
tions of fitness values across generations, for the same two ISIs--4-CS1 (left 
panel) and 8-CS1 (right panel). These plots give an idea of fitness variability 
within and between generations. Both plots show the same overall tendency, 
that is, a high number of low-fitness individuals at GO followed by a sharp 
increase in the number of high-fitness individuals after several generations. 
Note that a few individuals showed low-fitness values even towards the end of 
evolution. 

Effects on learning. A high fitness indicates only that a high proportion of 
evaluation trials satisfied the CR criterion of a mean output-NPE activation > 
0.5. A second measure of the functional phenotypes was provided by the mean 
activation levels across trials for the first and last generation of each lineage. 
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FIGURE 3. Mean output-NPE activations across trials for the first (left panels) and 
last generations (fight panels) of 4-CS 1 and 8- CS 1. 
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Figure 3 shows average learning curves for the first (left panels) and last 
generation (right panels) with 4-CS1 (top panels) and 8-CS 1 (bottom panels). 
The 0.5 criterion for CR occurrence is indicated on the X axes for reference. 
In the first generation, most output-NPE activations remained at near-zero 
values across training trials. In the last generation, output-NPE activations 
increased as a negatively accelerated function of trials for both lineages. At the 
beginning of evolution, only a few ANNs learned a little (but just enough to 
guarantee an output-NPE activation larger than 0.5 on at least one probe trial). 
However, by the end of evolution, most ANNs showed the maximal output- 
NPE activation towards the end of training. 

Control simulations. The above results show that learning and behavior-de- 
pendent selection were sufficient for evolution to occur. However, it is unclear 
whether or not learning and behavior-dependent selection were necessary. To 
address this issue, two kinds of control simulations were run, No-Learning 
(NL) and Random-Fitness (RF). Both were run with the same ISis and CSs as 
before, and using GO as the founder population. In the NL simulation, selec- 
tion was behavior-dependent, but the learning function was disabled so that 
ANNs could not learn. Thus, any changes in network architecture and perfor- 
mance were attributable to simulated natural selection alone. In the RF simula- 
tion, ANNs could learn, but individual fitness was a random number between 0 

4-CS1 (Network 25) 

8-CS1 (Network 12) 

FIGURE 4. Representative ANNs from the last generation of 4-CS 1 (left panel) and 8- 
CS 1 (fight panel). 
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and 1. Thus, changes were attributable to learning alone. In both control 
simulations, fitness remained close to 0.0 throughout 100 generations for all 
conditions. Hence, both simulated learning and natural selection were neces- 
sary for the evolution of increased responding. 

Effects on structural phenotypes. The above results show that different selec- 
tion pressures generated ANNs that were functionally equivalent (i.e., compar- 
ably fit) under the environmental conditions in which ancestral selection oc- 
curred. Were such ANNs also structurally equivalent? Figure 4 shows a repre- 
sentative ANN from the last generation of 4-CS 1 and 8-CS 1. The open squares 
indicate s~ input elements, the open small circles indicate s 2 input elements, 
filled squares indicate cal NPEs, and the small filled circles indicate vta 
NPEs. Open large circles represent excitatory NPEs and, in the rightmost 
layer, output elements; filled large circles represent inhibitory NPEs. The 
empty spaces within layers represent elements that were eliminated at the end 
of development. For simplicity, inhibitory NPEs are shown without connec- 
tions. The presence of an inhibitory NPE, however, signifies that it received 
and sent at least one connection within the layer. The us input element was 
omitted for all ANNs. Although both ANNs had a fitness of 1.00, their archi- 
tectures were clearly different. 

The most salient difference is that selection under the longer ISI generated 
substantially larger ANNs than selection under the shorter ISI. Indeed, the 8- 
CS 1 ANN has substantially more sa layers (connected to cal NPEs) as well as 
substantially more NPEs per input, hidden, and output layer. Also, the 8-CS 1 
ANN contained more inhibitory NPEs and a much richer connectivity than the 
4-CS1 ANN. Note that these ANNs had few or no s 2 input elements, which 
was the case in practically all the members of the population. Similar results 
were observed for ANNs selected under other conditions. Overall, these results 
show that different selection pressures generated structurally different ANNs. 

Test simulations 
Different selection pressures generated ANNs that were functionally equiv- 

alent under the environmental conditions in which ancestral selection occurred. 
How would these ANNs behave under other environmental conditions? Vari- 
ous test simulations addressed this issue. 

Procedure. In one test simulation, ANNs were given a CS-preexposure proce- 
dure to determine the extent of the Baldwin Effect (i.e., high responding to 
novel nonreinforced CS trials). ANNs from the last generation of each lineage 
were given 125 presentations of CS-alone trials, the last 25 of which were used 
as evaluation trials to determine CR proportion. All ANNs were exposed to the 
same CS duration experienced by their ancestors. In the other test simulations, 
ANNs from the last generation of each lineage were exposed to each of the 
environmental conditions used in the evolution simulations. All ANNs were 
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given 125 trials of each condition, the last 25 of each were used as evaluation 
trials to compute CR proportion. The purpose of these simulations was to 
determine if the architecturally different ANNs from different populations were 
functionally different when exposed to environmental conditions that differed 
from the ancestral ones. The results of these simulations are expressed in terms 
of changes in the mean CR proportion for different ISis. 

CS preexposure: the Baldwin Effect. As the left panel of Figure 5 shows, the 
Baldwin Effect decreased rapidly as a function of the ISI. ISI-2 ANNs showed 
the strongest effect, which indicates that they tended to respond with very high 
output-NPE activations from the very beginning of training. In a sense, then, 
evolution under ISI 2 resulted in ANNs that innately responded to the CS. ISI- 
4 ANNs also showed some degree of the Baldwin Effect, although to a sub- 
stantially smaller extent. Finally, CR proportions for ISI-8 and ISI-16 ANNs 
remained at zero after 125 CS-alone preexposures. Hence, these ANNs did not 
show the Baldwin Effect. 

The fact that initial connection weights were not directly encoded in the 
genotype undoubtedly contributed to these results. Indeed, because initial 
connection weights were determined only indirectly by the genotype, evolution 
in the present simulations seems to have involved primarily a search in archi- 
tecture and parameter space, rather than in initial connection-weight space. 
One parameter used in the activation rule determined NPE spontaneous activa- 
tions, which in turn affected initial weights. On this basis, one might argue that 
the ISI-2 ANNs showed the Baldwin Effect because they had larger initial 
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FIGURE 6. Mean CR proportions during tests of ANNs at different ISI values of the 
last generation of 4-CS1 and 8-CS1. The ISI throughout evolution is shown at the top 
of each function. 

weights. As the right panel of Figure 5 shows, the ISI-2 ANNs did not have 
markedly higher initial weights than the other ANNs. However, note that the 
difference between values .of the connection weights before and after training 
for ISI-2 ANNs was substantially smaller than the difference for other popula- 
tions. Considering that selection under an ISI of 2 generated the smallest 
ANNs of the simulations, a strong interaction between initial connection 
weights and the size of the ANN may underlie the Baldwin Effect observed in 
the present simulations. 

1Slfunctions and optimal-ISl variation. Finally, Figure 6 shows the effects of 
the ISI tests of ANNs in the last generation of 4-CS 1 and 8-CS 1. The arrows 
indicate the conditions under which the ancestors learned and were actually 
selected. Responding in both populations changed as an inverted U-shaped 
function of ISis, with peaks that coincided with the ancestral ISI. Thus the ISI 
functions qualitatively resembled those observed experimentally. Optimal and 
ancestral ISI coincided for both populations of ANNs. 

The broken line toward the bottom of Figure 6 indicates the findings ob- 
tained with a test given to the 4-CS 1 ANNs in which CS2 was now the rein- 
forced stimulus. Responding to a CS different from the ancestral one was near 
zero. This finding is consistent with a Pavlovian-conditioning phenomenon 
known as CS nonequipotentiality: Different CSs are differentially effective in 
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evoking a response after being paired with a given US, thus representing 
another form of biological constraint on learning (e.g., Bolles, 1970; Garcia & 
Koelling, 1966). 

General Discussion 

Genetic Algorithms and Network Architectures 
This chapter illustrates how genetic algorithms (GAs) may be used to 

address the challenge of generating suitable architectures for neural networks. 
The input-output relations that networks are competent to mediate depend upon 
aspects of their structures, such as the number of neural-processing elements 
(NPEs). In normative neural-network research, the structure whereby the 
network represents the correlations between and among environmental and 
behavioral events is the product of handcrafting: The researcher designs (and 
redesigns) the architecture until it successfully mediates the input-output rela- 
tions required by the task (see Barto and Sutton, this volume). GAs permit 
neural-network researchers to address the problem of neural architecture in a 
principled manner. In the present instance, the guiding principles of the GA 
were those of developmental neurobiology. Thus, unlike other applications to 
neural-network research, the GA used here did not determine the particulars of 
the architecture (e.g., the connection weights between NPEs). Instead, like the 
relation between the genome and the structure of the brain of living organisms, 
the simulated genes acted through a neurodevelopmental algorithm (NDA). 
The NDA, together with the GA, constrained the architecture such that the 
input-output relations favored by selection could be mediated. In this way, a 
single founder population of simulated genes subjected to the GA produced a 
family of architectures. This approach parallels the strategy employed by 
evolution in the design of the brain: The number of genes expressed in the 
nervous system~as large as it is~is much too small to specify precisely the 
structure of the brain. What phylo- and ontogenic selection produce is a range 
of variation, not a single variant, with most variants capable of mediating the 
favored relations (cf. Palmer & Donahoe, 1993). 

The integration of a GA with an NDA permitted the founder population to 
respond not only to selection for one favored relation; e.g., Pavlovian condi- 
tioning with an ISI of 4 time steps (ts); but also to a number of other selection 
pressures; e.g., conditioning with other ISis. Thus a single founder population 
acted upon by successive cycles of the same GA-NDA and neurocomputation- 
al, or learning, algorithm (NCA) produced different neural architectures. But, 
each member of the different families of networks was typically competent to 
mediate the input-output relations favored by selection. The fruitfulness of the 
approach is further documented by other simulations, not described here, in 
which this same founder population~subjected to still other selection pres- 
sures~produced other families of quite different network architectures, all of 
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which responded suitably to the different demands (Burgos, 1996). The hybrid 
GA-NDA-NCA approach offers a promising general strategy for obtaining 
neural-network architectures approaching the competencies of living organisms 
and holding out the promise of significant engineering applications as well. 

Genetic Algorithms and Learning 
When an NDA is integrated with a GA, the same learning process~as 

defined by the NCA~is implemented in different neural architectures. That is, 
learning acts upon different simulated neural systems as occurs with organisms 
in the natural environment. The present findings may be used to make two 
broad points about the learning process. First, the same learning process is 
capable of yielding very different outcomes depending on the neural structures 
on which such processes act. The same NCA produced maximal responding at 
one ISI for one family of network architectures and at a different ISI for a 
different family. Thus, different outcomes of learning do not necessarily imply 
different learning processes. Such findings are consistent with general-process 
learning theory: A common learning process may have differing effects when 
acting upon different neural systems. Second, when a GA is expressed through 
an NDA, the appropriate functioning of the network continues to be dependent 
on the modification of connection weights by the NCA. Except for the very 
smallest networks produced in the present simulations (i.e., networks mediat- 
ing conditioning with very short ISis), appropriate responding required learn- 
ing. That is, the Baldwin Effect did not occur since networks were not "born" 
with "innate" knowledge of how to respond. As in the natural environment, 
where learning is regarded as the "pacemaker" of evolution (Wilson, 1975), 
proper performance requires the concerted selecting effects of both the ances- 
tral environment, as simulated by the GA, and the individual environment, as 
simulated by the NCA. 

One specific aspect of the general-process approach merits special mention. 
When the different neural architectures were acted upon by the common learn- 
ing process implemented by the NCA, different families of networks responded 
maximally to different ISis without the need to posit any explicit timing 
mechanism. When the NCA modified the connection weights, the network as 
a whole performed as if there were a timing mechanism, although~in 
truth~there was none. There was timing but no timer. Timing emerged from 
interactions among the NPEs (see Buonomano & Merzenich, this volume). 
Moreover, an ordered temporal gradient of responding also emerged (see 
Figure 6) without an explicit timing mechanism. 

Finally, the interdependences between GA, NDA, and NCA may be il- 
lustrated by the nature of the change in ANN size as the ISI changed. Note that 
performance with longer ISis tended to be mediated by ANNs having larger 
numbers of NPEs (see Figure 4). This finding was replicated in a simulation 
using two handcrafted ANNs that differed only in the number of sa hidden 
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layers (Burgos, 1996). Both ANNs were trained in a forward-delay procedure 
with either a short or a long ISI. As expected, the small ANN performed 
substantially better under the short ISI, whereas the large ANN performed 
substantially better under the long ISI. A value was computed for each ANN- 
ISI combination, representing the mean number of times an NPE was updated 
at a given updating position within a ts. The best performance yielded a mean 
number very close to 1.0, corresponding to the ANN-ISI combination in which 
the number of hidden NPEs was identical to the number of ts prior to rein- 
forcement. Performance, then, improved as the mean number of times an NPE 
was updated at a given position within a ts approached 1.0. This result sug- 
gests, as a conjecture, that optimal conditions in this particular simulation may 
be approximated by a Latin square whose columns represent the possible 
update positions (as determined by the number of hidden NPEs) and whose 
rows represent the number of ts prior to reinforcement (as determined by the 
ISI). Indeed, the key feature of a Latin square of C x R items (where C is the 
number of columns and R is the number of rows) is that each item appears 
once and only once in each column and row (D6nes & Keedwell, 1974). In the 
present case, the items represent NPE updates. The above conjecture cannot be 
extended without modification to the ANNs evolved through the GA, for the 
smallest number of hidden NPEs in the smallest of these ANNs was substan- 
tially larger than the longest ISI. Therefore, optimal conditions in those ANNs 
may be better approximated by Latin rectangles. Perhaps the NCA parameters 
in these ANNs interacted in important ways with the architecture, for, in 
contrast to the handcrafted ANNs, such parameters differed across different 
classes of NPEs in the evolved ANNs. The update procedure may be a critical 
aspect here. In the present simulations, the order in which NPEs were updated 
was randomly and independently determined within each ts (i.e., an asynchro- 
nous, random update procedure was used). Such an update procedure is biolog- 
ically plausible, as noted earlier, and may have determined the ways parame- 
ters and architectures interacted. In any case, a characterization of optimal 
conditions in terms of Latin squares (or rectangles) allows for a definition of 
optimal conditions that relates the temporal structure of the environment with 
the neural structure of organisms. The organism thus becomes a defining 
component of optimal conditions for learning. 
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APPENDIX. Relation of genotype fragments to developmental parameters. 
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PART TWO: NEURAL PLASTICITY 

The simulations described in Part One offer promising beginnings to the 
principled determination of the architectures of artificial neural networks. 
Instead of handcrafting the architecture, which is the normative practice in 
cognitive psychology and artificial intelligence, network structure was the 
product of simulations constrained by experimental observations of neuroana- 
tomy, developmental neurobiology, and evolutionary biology. The constraints 
employed were quite "gentle," however. That is, the simulations instantiated 
the outcome of basic neurobiological processes rather than the constituent 
processes themselves. For example, Senft's neuroanatomical simulations did 
not explicitly implement genetically determined processes, e.g., the molecular 
events governing cell-surface interactions, but the effects of those processes, 
e.g., the clustering of cells. Similarly, Burgos's genetic/developmental simula- 
tions did not implement basic neurodevelopmental processes, e.g., the role of 
NMDA receptors in the migration of neuroblasts along glial strands, but the 
consequences of those processes, e.g., the formation of columns of cortical 
neurons. The gentleness of these constraints prompts the question: What is the 
appropriate relation between simulation research and the biobehavioral science 
informing that research? 

Two rules of thumb, or heuristics, seem useful: First, no aspect of a simula- 
tion may be inconsistent with experimental research. Simulating the outcomes 
of basic biobehavioral processes--and not the constituent processes them- 
selves~is acceptable if those outcomes occur under the conditions being 
simulated. Thus, incomplete implementation of experiment-based knowledge is 
tolerable, but inconsistency is not. For example, the notion that a single unit 
gives rise to both excitatory and inhibitory efferents~which is often assumed 
within the parallel-distributed-processing approach of cognitive psychology--is 
not acceptable within a biobehavioral approach because the assumption is 
inconsistent with experimental observation: Axon terminals of a given neuron 
do not liberate both excitatory and inhibitory neurotransmitters. Second, 
biobehaviorally constrained simulations need to implement only those biobe- 
havioral processes that are minimally necessary to mimic the phenomenon 
being simulated. Not all constituent processes must be explicitly represented 
within the simulation. The principle of parsimony applied to simulations means 
that there is no single "correct" level for carrying out biobehaviorally faithful 
simulations. Instead, the processes that are explicitly implemented in the 
simulation vary with the phenomena being simulated. For example, when the 
temporal and quantitative properties of transmitter release by a presynaptic 
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neuron are simulated, at least some of the intracellular events leading to exocy- 
tosis must be implemented in the simulation. However, when the effects of 
transmitter release on the activation of a postsynaptic neuron are simulated, the 
intracellular events leading to release and activation may not need to be 
implemented. Of course, simulations carried out at different levels of analysis 
must be consistent with one another and, over time, phenomena will likely be 
encountered that require more global simulations to be replaced by those that 
implement additional processes. That level of analysis is appropriate at which 
orderly and valid functional relations are simulated between independent and 
dependent variables (cf. Skinner, 1950). 

Because biobehavioral simulations must be faithful to experimental findings 
from all levels, researchers must be familiar with findings that do not explicitly 
inform the simulations if inadvertent inconsistencies are to be avoided. For that 
reason, two chapters in this section describe in some detail the processes in- 
volved in neurotransmission and long-term potentiation. Neurotransmission 
concerns the processes whereby compounds liberated by one neuron affect the 
activity of other neurons. Long-term potentiation concerns the enduring effects 
of neurotransmission (changes in synaptic efficacy), and provides the best 
current model of how learning and memory are mediated at the neural level. 
Meyer's chapter on neurotransmission makes a number of points of general 
significance. Among these are that a substantial number of different neuro- 
transmitters have been identified and that transmitters differ among themselves 
in the scope of their effects (so-called volume effects). Volume effects of the 
neurotransmitter dopamine will prove important in understanding how envi- 
ronmental feedback affects behavior. Frey's chapter on long-term potentiation 
indicates the complexity of the cellular mechanisms by which long-lasting 
changes in synaptic efficacy occur. Of particular importance is the distinction 
between relatively short-duration effects (on the order of minutes or a few 
hours) and longer-duration effects (relatively permanent changes in synaptic 
efficacy that are dependent on the synthesis of new proteins; e.g., Frey & 
Morris, in press). Although most of the simulations in this volume are at the 
level of neural systems, all must honor what is known at the cellular and in- 
tracellular levels. Moreover, Buonomano and Merzenieh's simulations illus- 
trate that even global phenomena---e.g., temporal and phonemic discrimina- 
tions~can arise as emergent effects of interactions between cellular processes. 
Note especially that the characteristics of these processes are known from 
independent experimental findings, and are not mere inferences from the 
phenomena under investigation, a common strategy in psychological as con- 
trasted with biobehavioral research (cf. Donahoe & Palmer, 1994). 
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CHAPTER 5 

PRINCIPLES OF NEUROTRANSMISSION 
AND IMPLICATIONS FOR NETWORK MODELING 

Jerrold S. Meyer 
Department of Psychology 
Neuroscience and Behavior Program 
University of Massachusetts, Amherst 

A B S T R A C T  

Interneuronal communication in vertebrate nervous systems is carried out 
mainly by a process of chemical transmission using a variety of small mol- 
ecules and peptides. After being released at synaptic junctions, neurotransmit- 
ters are usually assumed to act locally. However, diffusion is sometimes suffi- 
cient to permit these substances to reach more distant sites of action. Synapses 
were once considered to be structurally immutable in adult nervous systems, 
but they are now thought to exhibit considerable remodeling in response to 
normal experiences (including learning). The time course of neurotransmitter 
action varies enormously, ranging from rapid opening or closing of membrane 
ion channels to slower but longer-lasting alterations in neuronal gene expres- 
sion. These slower processes, which are mediated by a cascade of second 
messengers and transcription factors, are likely to participate in the mechan- 
isms of neural plasticity and information storage. 

Introduction 
Chemical communication by nerve cells was first demonstrated over 70 

years ago by the physiologist Otto Loewi (1921). However, not until the 1950s 
and 1960s was chemical neurotransmission in the central nervous system 
(CNS) widely accepted. This was quickly followed by an explosion of research 
identifying new transmitters and peptides in the brain, visualizing the location 
of specific neurochemical pathways, and forging links between transmitter 
action and behavioral function. The current era is marked by yet another 
remarkable wave of activity aimed at understanding neurotransmission at the 
molecular biological level. As in other areas of science, progress over this long 
time span has been driven largely by technical innovations, which in turn have 
given rise to periodic reconceptualizations of the transmission process. 

This chapter presents some of the features of neurotransmission that may be 
of interest in the construction of neural networks. I begin with a summary of 
major neurotransmitter systems and some examples of transmitter co-localiza- 
tion and interaction. This is followed by a discussion of pre- and postsynaptic 
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aspects of the neurotransmission process. Topics covered in these sections 
include synaptic structure, transmitter disposition (synthesis, storage, release, 
and inactivation), mechanisms of signal transduction, novel messenger sys- 
tems, and neurotransmitter regulation of gene expression. For simplicity, the 
focus of the chapter is on neurotransmitter release from vesicles ("packets" of 
neurotransmitter) within nerve cells, although extravesicular release has been 
well documented both under normal physiological conditions (i.e., leakage 
from the cytoplasmic transmitter pool) and under pathological or artificially 
induced conditions (i.e., "reverse transport" due to reversal of membrane ionic 
gradients or treatment with transporter substrates such as amphetamine in the 
case of dopamine and norepinephrine; Levi & Raiteri, 1993). 

Neurotransmitter and Neuropeptide Systems 

Classical transmitters 
Here and in the sections to follow, it is useful to distinguish between the so- 

called "classical transmitters" and neuropeptides. The classical transmitters 
consist of a diverse group of small molecules that includes acetylcholine 
(ACh), the amino acids glutamate (Glu), gamma-aminobutyric acid (GABA), 
and glycine (Gly), the catecholamines dopamine (DA) and norepinephrine 
(NE), and the indoleamine serotonin (5-HT). Two additional classical transmit- 
ters are not treated in the present chapter, epinephrine (another catecholamine) 
and histamine. 

Although space limitations preclude an exhaustive description of the locali- 
zation and function of these transmitters, the main points may be offered. 
Readers interested in a more detailed coverage are referred to Meyer, Feld- 
man, and Quenzer (1996). (1) ACh" Major clusters of cholinergic neurons are 
located in the basal forebrain (including the nucleus basalis and septum) and 
pons (pedunculopontine and dorsolateral tegmental nuclei). Ascending projec- 
tions of these cells play significant roles in sensory processing, memory, and 
other aspects of cognitive functioning. Another important group of cholinergic 
neurons is found in the corpus striatum, where they participate in extrapyrami- 
dal motor control. (2) Glu and GABA: Glutamate-and GABA-containing cells 
are found throughout the brain. These amino-acid transmitters are the work- 
horses for fast excitatory and inhibitory transmission in the brain, respectively. 
From a functional perspective, Glu is of particular interest for its involvement 
in neural plasticity via the NMDA receptor (see below and Frey, this volume). 
(3) Gly: Although present in the brain, Gly is most heavily concentrated in the 
spinal cord where it functions as an important inhibitory transmitter. (4) DA: 
Dopaminergic neurons are clustered in just a few cell groups, with the most 
(behaviorally) significant clusters located in the substantia nigra and ventral 
tegmental area of the mesencephalon. These cells project rostrally to the stria- 
tum, limbic structures such as nucleus accumbens, amygdala, and septum, and 
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the neocortex. Despite its restricted cellular localization, DA has been impli- 
cated in a variety of normal and pathological processes, including reward 
mechanisms, motor control, and schizophrenia. (5) NE: Norepinephrine-con- 
taining neurons are located in several cell groups in the pons (particularly the 
locus coeruleus) and medulla. Ascending projections are sent to almost all 
regions of the forebrain, which suggests that NE may regulate very basic 
aspects of neural functioning. One general theory of NE action has proposed 
that this transmitter mediates sensory attention or "vigilance" in response to 
salient sensory stimuli (Aston-Jones, 1985). (6) 5-HT: Like NE, the serotoner- 
gic system originates in multiple cell groups within the pons and medulla 
(mostly the raphe nuclei). Also like NE, serotonergic forebrain projections are 
very widespread throughout the cortex, diencephalon, and limbic system. In 
this case, however, the major global theory of 5-HT action posits that the 
transmitter participates in sensorimotor integration and in the modulation of 
central pattern generators responsible for rhythmic motor behaviors (Jacobs & 
Fornal, 1993). 

Neuropeptides 
Neuropeptides constitute a larger group of substances that differ from the 

classical transmitters in that they consist of chains of three to approximately 40 
amino acids (see below for specific examples). The representative sampling of 
peptides presented here is organized into groupings based on function and/or 
localization. (1) Opioid peptides: This category, which includes some of the 
first peptides discovered in the brain, consists mainly of the enkephalins, ti- 
endorphin, and dynorphin. These substances are best known for their analgesic 
action, but they are also involved in reinforcement mechanisms and various 
vegetative functions. (2) Gut-brain peptides: These peptides are not only pres- 
ent in the brain, but also figure prominently in the gastrointestinal system. 
Examples are substance P, cholecystokinin (CCK), neuropeptide Y (NPY), 
neurotensin, and vasoactive intestinal peptide (VIP). (3) Neurohypophyseal 
peptides: There are two peptides in this group, namely vasopressin (also 
known as antidiuretic hormone) and oxytocin. These peptides were first dis- 
covered in the magnocellular neurons of the paraventricular and supraoptic 
nuclei, the axons of which project to the posterior lobe of the pituitary gland 
where both substances are released as hormones into the bloodstream. Howev- 
er, they have also been identified in other cell groups where they appear to 
serve a neurotransmitter function and exert significant behavioral actions (e.g., 
regulating various social behaviors). (4) Hypophysiotrophic peptides: The 
hypophysiotrophic peptides were first found in the hypothalamus and were first 
identified through their regulatory effects on the secretion of hormones from 
the anterior pituitary gland. However, like the neurohypophyseal peptides, 
these substances were later found in other brain areas where they serve addi- 
tional functions. This group includes corticotropin-releasing hormone (CRH), 
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gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone 
(TRH), and somatostatin. CRH has received particular attention as a peptide 
involved in stress and anxiety. 

Synaptic Structure and Sites of Neurotransmitter Action 
The axons of neurons that contain ACh or amino-acid transmitters generally 

form tree-like branched structures that end in the kind of bulbous terminals 
illustrated in standard introductory textbooks. However, cells that synthesize 
catecholamines, 5-HT, or peptides give rise to axons bearing intermittent 
swellings termed varicosities. Like the more traditional axonal endings, these 
varicosities contain large numbers of synaptic vesicles and are the likely areas 
of transmitter release for those cells. For the sake of simplicity, I will hence- 
forth use the terms "nerve terminal" or "nerve ending" to refer to all types of 
presynaptic structures, including varicosities. 

Many synapses exhibit membrane specializations that are seen postsynapti- 
tally as electron-dense thickenings and sometimes presynaptically as so-called 
dense projections. The presynaptic specializations, called active zones, are 
considered to be sites of vesicle docking and release, whereas the underlying 
areas of membrane thickening on the postsynaptic side (called postsynaptir 
densities) are thought to possess a high concentration of transmitter receptors. 
However, these assumptions do not hold in all cases. First, some varicosities 
do not show any synaptic specializations and therefore may permit vesicle 
release at varying sites on the membrane (Descarries, S~gu~la, & Watkins, 
1991). Second, a recent study by Smiley, Levey, Ciliax, and Goldman-Rakic 
(1994) indicates that immunoreactivity for DA D~ receptors on monkey cortical 
neuronal spines is usually not  found at postsynaptic densities, but rather is 
displaced to other regions of the spine. 

These and other findings (e.g., Garris, Ciolkowski, Pastore, & Wightman, 
1994; Mitchell, Oke, & Adams, 1994) suggest that neurotransmitter molecules 
may sometimes diffuse some distance before reaching their sites of action. 
Agnati, Zoli, Pich, Benfenati, and Fuxe (1990) have called this type of signal- 
ing "volume transmission," in contrast to point-to-point "wiring transmission" 
involving transmitter action near the site of release. One of the first demonstra- 
tions of volume transmission was made by Jan and Jan (1983), who showed 
that a GnRH-like peptide in bullfrog sympathetic ganglia influenced cells that 
were not directly innervated by this substance. An intermediate form of trans- 
mission also occurs in which transmitter action is local, but in which each 
presynaptic cell innervates large numbers of postsynaptic cells either in the 
same anatomical target area or in multiple areas (e.g., when axonal branches 
from the same cell project to different brain regions). Indeed, the major 
monoaminergic systems (DA, NE, and 5-HT) exhibit some features of both 
volume transmission and the intermediate form just described. 
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Another traditional notion that has been challenged in recent years is the 
idea of synaptic immutability. The earliest demonstration of synaptic plasticity 
came from developmental neurobiologists, who showed that synaptic junctions 
are overproduced and subsequently pruned during normal ontogeny of the 
nervous system (see Luskin, Singer, this volume). Nevertheless, for many 
years researchers assumed that synaptic architecture was stable during 
adulthood. According to this view, plasticity in the mature organism would 
involve only alterations in the efficacy of existing synapses, not the growth of 
new synapses or loss of old ones. 

Several lines of evidence argue against this view, however. For example, a 
number of studies suggest that increases occur in synaptic number or altera- 
tions in synaptic shape when animals learn new tasks (reviewed by Weiler, 
Hawrylak, & Greenough, 1995). Moreover, since the nervous system is con- 
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FIGURE 1. Influence of in vivo long-term potentiation (LTP) on synaptic subtypes in 
the hippocampal dentate gyrus. Male rats were subjected to four consecutive days of 
LTP in the dentate gyrus, after which the molecular layer of the dentate was studied by 
electron microscopy. LTP was associated with a significant increase in the number of 
segmented synapses (complete separation of postsynaptic densities [PSD]; see left 
panel) per neuron in the middle molecular layer. No change was found in horseshoe 
synapses (horseshoe-shaped PSD with a sectional partition) or atypical non-perforated 
synapses (synapses showing a morphology similar to perforated synapses but with a 
continuous PSD). Gray bars, unstimulated controls; hatched bars, Coulombic controls; 
black bars, potentiated subjects. From Weiler et al (1995). Original data from Geinis- 
man, deToledo-Morrell, Morrell, Heller, Rossi, and Parshall (1993). 
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stantly engaged in information processing, synaptic turnover may well be an 
ongoing process that does not require explicit experimental intervention 
(Wolff, Laskawi, Spatz, & Missler, 1995). Even peripheral neurons that are 
not usually considered to be involved in learning may undergo synaptic remo- 
deling over time. This has been documented in an elegant series of studies by 
Purves and his colleagues, who directly imaged changes in dendritic branching 
and synaptic connectivity of individual mouse autonomic ganglia cells (Purves 
& Hadley, 1985; Purves, Voyvodic, Magrassi, & Yawo, 1987). 

Some investigators have theorized that changes in synaptic structure may 
involve perforated (sometimes also called segmented) synapses, that is, syn- 
apses characterized by one or more gaps (perforations) in the postsynaptic 
density (see Calverley & Jones, 1990). One type of change might involve 
conversion of nonperforated to perforated synapses as a consequence of appro- 
priate afferent stimulation. Figure 1 illustrates a possible example of this type 
of plasticity in rats undergoing in vivo long-term potentiation (LTP; see Frey, 
this volume). Alternatively, synapse numbers could be increased by the split- 
ting of perforated synapses to create two "daughter" synapses in each case 
(Carlin & Siekevitz, 1983; Dyson & Jones, 1984). Whether this occurs in the 
brain remains to be proven. 

Transmitter Synthesis, Storage, Release, and Inactivation 

Classical transmitters 
The synthesis of classical transmitters occurs by enzymatic catalysis. 

Transmitter synthesis rate thus may be controlled by several processes, includ- 
ing availability of the dietary precursor for the transmitter and regulation of the 
rate-limiting enzyme in the biosynthetic pathway. Such regulation often invol- 
ves stimulation by neuronal activity and suppression by synthesis-inhibiting 
autoreceptors on the nerve terminal. The enzymes necessary for transmitter 
synthesis are made in the cell body of the neuron and then transported to the 
nerve terminals. Consequently, the enzymatic machinery for the synthesis of 
classical transmitters is concentrated near the sites of release, enabling relative- 
ly rapid replenishment of transmitter when demand is great. Transmitter 
molecules are usually synthesized in the cytoplasm of the nerve terminal and 
then transported into the vesicles for storage and eventual release (NE is a 
notable exception to this generalization; dopamine li-hydroxylase, the final 
enzyme in the NE biosynthetic pathway, is found inside the vesicles). In typi- 
cal electron micrographs, the vesicles used to store classical transmitters are 
relatively small and appear either clear (electron lucent) or with an electron- 
dense core. 

The actual release process involves action potential-mediated opening of 
voltage-gated calcium (Ca 2+) channels, thereby initiating a biochemical cas- 
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cade leading to fusion of the vesicle membrane with the plasma membrane of 
the nerve terminal (reviewed by Verhage, Ghijsen, & Da Silva, 1994). Large 
numbers of vesicles are present in each nerve ending. However, the release 
process is so rapid that only those vesicles that are already "docked" at special- 
ized membrane release sites have sufficient time to engage in exocytosis when 
an action potential invades the terminal. 

The relationship between nerve firing and transmitter release is more 
complicated than initially believed. For example, in some well-studied sys- 
tems, a nerve impulse seems to stimulate release of no more than one vesicle 
from a given active zone (Korn, Sur, Charpier, Legendre, & Faber, 1994). 
Furdaermore, even this seemingly meager result is not invariable; that is, vesi- 
cle fusion in such systems seems to be a stochastic process governed by vari- 
ous regulatory mechanisms that are just beginning to be understood (Figure 2). 
This feature of neuronal function is important for neural modelers to consider, 
as an increased probability of transmitter release has been reported to occur in 
hippocampal LTP (Bekkers & Stevens, 1990; Stevens & Wang, 1994). Anoth- 
er interesting feature of transmitter release is the absence of a linear relation- 
ship to firing rate. This has been documented in the DA system, where the 
amount of transmitter released per  impulse is much greater when the cells are 
in burst-firing mode than when they are in single-spike mode (Gonon, Suaud- 
Chagny, Mermet, & Buda, 1991). 
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FIGURE 2. Hypothesized properties of vesicular release. A nerve terminal is illustrat- 
ed with synaptic vesicles (s.v.) and a single active zone containing the typical presyn- 
aptic dense projections (PDP). Presynaptic activity is hypothesized to release the 
contents of either one vesicle (1 q: quantum) or none, with a probability p (hence the 
binary notation 000 or 001). P depends on the characteristics of the synapse and may 
be modifiable. From Kom et al (1994). 
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Regulation of transmitter release involves not only the firing rate of the 
cell, but also the action of terminal autoreceptors and heteroreceptors. Autore- 
ceptors are receptors for the same transmitter released by that terminal. They 
usually function to inhibit further transmitter release (negative feedback), 
although a few instances of release-enhancing autoreceptors have also been 
reported. Heteroreceptors are terminal receptors for other transmitters that may 
act either to stimulate or inhibit release at that terminal (e.g., a cholinergic 
receptor on a DA nerve terminal). Many examples of heteroreceptors have 
now been identified (see Kalsner & Westfall, 1990), suggesting that local 
modulation of transmitter release (i.e., at the synapse) may, in some cases, be 
as important as modulation via traditional axodendritic and axosomatic synaptic 
connections. 

The amino-acid and amine transmitters are removed from the synaptic cleft 
by a combination of cellular uptake and passive diffusion. Enzymatic metabolic 
processes lead to eventual degradation and clearance of transmitter molecules. 
On the other hand, ACh is inactivated directly by rapid enzymatic hydrolysis. 
Both methods permit efficient termination of synaptic signaling, although 
breakdown of ACh by acetylcholinesterase is particularly rapid. 
Neuropeptides 

In contrast to classical transmitters, a neuropeptide is formed as part of a 
larger propeptide, which is actually a protein that contains the active peptide 
within its linear structure. All proteins, including those associated with neuro- 
peptides, are synthesized by the translation of messenger RNA (mRNA) on 
ribosomes in the cell body. Following certain chemical modifications, the 
protein product is packaged into a storage vesicle. These vesicles are notice- 
ably larger than those used by classical transmitters, and they all possess an 
electron-dense core. The process of liberating the active peptide from the 
propeptide within the vesicle begins while the vesicle is en route to the nerve 
terminal. It should be clear from this description that every peptide molecule 
must originate in the cell body; no local synthesis can occur in the nerve 
terminals. This is an important difference from classical transmitter systems, 
because it means that peptidergic neurons take longer to replenish their trans- 
mitter stores when release rates are high. The exact amount of time needed for 
such replenishment ranges from many minutes to several hours or even days, 
depending on the rate of propeptide synthesis and packaging, and on the length 
of the axon (the velocity of fast axonal transport is approximately 100-200 mm 
per day). 

Neuropeptide release is exocytotic and is probably mediated by mechanisms 
similar to those involved in the release of classical transmitters. Release- 
modulating autoreceptors and heteroreceptors have likewise been found in at 
least some peptide systems. One difference, however, is that the large peptide- 
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containing vesicles do not seem to use the specialized release sites required by 
the smaller vesicles that contain classical transmitters. 

The processes that terminate peptide transmission are not well understood in 
many cases. Nevertheless, in the best-characterized systems (e.g., the enkepha- 
lins), signaling is terminated by enzymatic degradation rather than by uptake. 

Transmitter co-localization 
Following the discovery and characterization of various neuropeptides, it 

soon became clear that peptides are co-localized in many instances with classi- 
cal transmitters. Some well-known examples of this are the co-localization of 
DA with CCK or neurotensin in midbrain dopaminergic neurons, and the 
presence of GABA with substance P and with enkephalin or dynorphin in stria- 
tal output neurons. Storage of classical transmitters and peptides in different 
vesicular populations allows for the possibility of differential release of the two 
transmitters. Indeed, several model systems have indicated that higher rates of 
neuronal firing may be necessary for stimulation of peptide release than for the 
release of co-localized classical transmitter (H6kfelt, 1991; see Figure 3). 

Co-release of two or more transmitters from the same nerve terminals 
allows for several types of interactions, some of which are illustrated in Figure 
4. The situation shown in the second panel, which is commonly found in 
systems that co-release a peptide and a classical transmitter, may lead to either 
cooperative (i.e., additive or synergistic) or antagonistic effects postsynaptical- 
ly. In most cases, the receptor populations stimulated by the two substances 
presumably function independently, even though an interaction may occur 
downstream at the level of post-receptor signaling mechanisms (i.e., second 
messengers). However, Fuxe and Agnati (1985) have cited examples in which 
one type of receptor may modulate the affinity and/or density of another recep- 
tor type within the postsynaptic cell membrane. Another kind of interaction, 
not shown in the figure, occurs when receptors on the nerve terminal modulate 
the release of a co-transmitter. For example, NPY and NE are co-localized in 
sympathetic nerve endings where they inhibit each other's release via terminal 
autoreceptors. Yet the two substances act together postsynaptically to produce 
constriction of vascular smooth muscle (Lundberg & H6kfelt, 1986). 

Neurotransmitter Receptors and Signal Transduction Mechanisms 

The concept of receptor subtypes 
All transmitter systems that have been extensively studied have been found 

to possess more than one type of receptor. Often there are multiple levels of 
receptor diversity. For example, cholinergic receptors are broadly categorized 
as either nicotinic or muscarinic, however there are further subtypes within 
each of these general classes. It is highly likely that when closely related recep- 
tor subtypes are coded by distinct genes, the subtypes evolved from a common 
ancestral form through a process of gene duplication followed by mutation 
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and/or recombination. Additionally, multiple receptor subtypes can be created 
from a single gene product by alternative mRNA splicing. For many years, 
knowledge of receptor diversity was based entirely on pharmacological analy- 
sis; i.e., the ability of certain drugs to selectively activate or inhibit some but 
not all of the actions of a neurotransmitter. In recent years, however, gene- 
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FIGURE 3. Differences in release between classical transmitters and neuropeptides. 
Top: When a classical transmitter (T) and a peptide (P) are co-localized in the same 
cell, only the transmitter is released at low firing rates. Higher rates of continuous 
firing or burst firing release both transmitter and peptide. Bottom: Classical transmit- 
ters and peptides are differentially stored and released. Small synaptic vesicles contain 
only the transmitter (dots), whereas large dense-core vesicles contain both transmitter 
and peptide (triangles). Small vesicles undergo exocytosis at active zones that face the 
synaptic cleft, whereas large vesicles frequently release their contents in extrajunction- 
al areas. From H6kfelt (1991) and Lundberg and H6kfelt (1983). 
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FIGURE 4. Co-localized neurotransmitters and peptides may exert a variety of differ- 
ent effects on postsynaptic target cells. From O'Donohue, Millington, Handelmann, 
Contreras, and Chronwall (1985). 

cloning studies have verified the existence of many proposed receptor subtypes 
and have even demonstrated the presence of subtypes not previously detected 
by pharmacological investigation. We can only speculate as to the selection 
pressures underlying the evolution of receptor diversity; however, Schofield, 
Shivers, and Seeburg (1990) have proposed that one important advantage of 
such diversity is the increased information-handling capacity it confers on the 
nervous system. 

The existence of multiple receptor subtypes for a given transmitter has as 
least two important implications. First, as we shall see, a variety of signal- 
transduction mechanisms are available by which receptors can influence post- 
synaptic activity. If various receptors for a transmitter use distinct transduction 
mechanisms, then the transmitter can exert quite different excitatory or inhibi- 
tory effects on its postsynaptic targets, depending on which subtype is present 
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on each target cell. Second, although a neurotransmitter obviously recognizes 
and activates all of its receptor subtypes, the unique structure of each subtype 
allows for the development of synthetic compounds that exhibit selectivity for 
one (or some) subtype(s) vs. others. Selective agonists and antagonists are 
useful not only for identifying and characterizing different subtypes, but also 
for determining their involvement in behavioral and physiological functions. 

Receptor superfamilies 

The ligand-gated channel receptor superfamily. Transmitter receptors fall into 
two distinct superfamilies of membrane proteins: ligand-gated channels (LGCs) 
and G-protein-coupled receptors (GPCRs). LGCs are large proteins thought to 
be composed of five subunits that assemble in the membrane. Important LGCs 
include nicotinic cholinergic receptors (which are the prototype of this group); 
the three general subtypes of excitatory amino acid (i.e., glutamate) receptors, 
namely AMPA, kainate, and NMDA (each named for a relatively selective 
agonist); GABA A receptors; glycine receptors; and 5-HT 3 receptors. LGCs 
tend to exhibit considerable heterogeneity in their subunit composition, thereby 
leading to variability in function. 

As suggested by their name, LGCs contain a neurotransmitter binding site 
and an intrinsic ion channel that is gated by the transmitter. Whether receptor 
activation depolarizes or hyperpolarizes the postsynaptic membrane depends on 
the ionic permeability of the channel. Nicotinic, AMPA, kainate, and 5-HT 3 
receptors generally possess nonspecific univalent cation channels that cause 
depolarization due to sodium (Na § influx across the membrane. NMDA 
receptors are additionally permeable to Ca 2§ which confers second-messenger 
properties on this subtype (see below). Some AMPA/kainate receptors likewise 
show significant Ca 2§ current depending on their subunit composition (Holl- 
mann, Hartley, & Heinemann, 1991). In contrast, the channels associated with 
GABA A and glycine receptors are permeable to chloride (CI) ions, the passage 
of which leads to membrane hyperpolarization and inhibition of cell firing. 

Besides the recognition site for the neurotransmitter, some LGCs are known 
to possess additional binding sites capable of modulating receptor function. For 
example, GABA A receptor functioning is enhanced by benzodiazepine and 
barbiturate drugs acting at allosteric binding sites on the receptor complex 
(Macdonald & Olsen, 1994). NMDA receptors, on the other hand, are inhibit- 
ed by phencyclidine (PCP) and related drugs (Wood, Tadimeta, Iyengar, 
Lanthorn, Monahan, Cordi, Sun, Vazquez, Gray, & Contreras, 1990). These 
compounds are believed to bind to a site within the channel, effectively block- 
ing ion flow across the membrane. 

Because of the close linkage between receptor activation and ion-channel 
opening, LGCs operate with a very short latency, i.e., a few msec. Dissocia- 
tion of the transmitter from the receptor likewise causes rapid channel closing. 
Consequently, such receptors are well suited for fast signaling within the 
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nervous system. One other noteworthy feature of many LGCs is their rapid 
desensitization (loss of activity) when continuously exposed to the transmitter 
or an agonist drug (e.g., see Ochoa, Chattopadhyay, & McNamee, 1989). This 
process may limit the extent of postsynaptic responding under conditions when 
presynaptic elements are highly active for a period of time. 

Before leaving the topic of LGCs, it is important to discuss the unique 
voltage-sensing feature of the NMDA receptor. When the cell membrane is at 
the resting potential, the NMDA receptor channel is blocked by magnesium 
(Mg 2§ ions. Depolarization of the membrane removes this block, thereby 
permitting the channel to open in response to glutamate. The necessary depo- 
larization may require repeated stimulation of the same synaptic input or simul- 
taneous stimulation of multiple inputs, particularly if the inputs are individually 
weak. This mechanism underlies the ability of NMDA receptors to serve a 
critical role in activity-dependent plasticity (Malenka, 1995; also see Singer, 
Frey, this volume). 

The G-protein-coupled receptor superfamily. GPCRs differ from LGCs both 
structurally and functionally. These receptors consist of only a single subunit 
that, in all known cases, is predicted to contain seven membrane-spanning 
(i.e., transmembrane) regions. Important examples of GPCRs are the muscari- 
nic ACh receptors (five cloned subtypes thus far, designated m l-m5), all 
known DA receptors (five cloned subtypes, D~-Ds), all known adrenergic 
receptors including the entire t~- and ll-adrenoceptor families, all 5-HT recep- 
tors except for 5-HT 3 (this includes families of 5-HT~ and 5-HT 2 receptors, 
along with 5-HT4-5-HT7) , the so-called metabotropic Glu receptors (mGlul- 
mGlu7), GABA a receptors, and all known neuropeptide receptors. 

As implied by their name, GPCRs operate by coupling to members of a 
family of membrane proteins called G proteins. They are so-named because 
their functioning is regulated in part by the binding of guanine nucleotides. 
Each GPCR selectively interacts with some G proteins but not others, which 
partly accounts for the specificity of cellular actions produced by different 
members of the GPCR family. 

G proteins contain three subunits, designated t~, fi, and 3'. When the mol- 
ecule is activated by coupling to an agonist-stimulated receptor, the ct subunit 
dissociates from the remaining 1~ 7 dimer and then stimulates one or more types 
of membrane effectors that mediate the cellular response. In some cases, the 
effectors are ion channels such as for potassium (K+; Nicoll, 1988). Direct 
modulation of ion channels by G proteins occurs with a latency of approx- 
imately 50-100 msec, which is an order of magnitude slower than channel 
opening of LGCs. 

The second general group of membrane effectors are enzymes that partici- 
pate in second-messenger synthesis or degradation (Hille, 1992). For example, 
the G protein G was named for its ability to stimulate adenylyl cyclase, there- 
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by enhancing cyclic adenosine monophosphate (cAMP) formation. G i, on the 
other hand, inhibits adenylyl cyclase and cAMP synthesis (second messengers 
are discussed further in the next section). It should be noted that the same type 
of G protein may be capable of participating in both ion-channel and enzyme 
modulation. This dual aspect of G protein action is shown in Figure 5. Cellu- 
lar effects mediated by second-messenger changes have latencies measured in 
hundreds of milliseconds. However, these effects may also considerably outlast 
the initiating synaptic event. Second-messenger systems are thus well suited for 
slow but sustained signaling and for modulating the influence of fast neuro- 
transmitters. 
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FIGURE 5. Mechanisms of action of G-protein-coupled receptors. An activated G 
protein (shown here as a complex of three subunits----a, B, and ~,) may directly modu- 
late certain membrane ion channels or may stimulate effector enzymes that control 
intracellular second messengers. From Sternweis and Pang (1990). 

If a cell possesses two or more receptor systems that function via the same 
G proteins and effectors, then synaptic inputs may converge to produce addi- 
tive effects on cellular activity. This has been shown in hippocampal pyramidal 
neurons, where 5-HT~A and GABA B receptors activate the same G protein to 
open K § channels and hyperpolarize the membrane. On the other hand, the 
multiplicity of receptor subtypes, G proteins, and effector systems allows the 
same transmitter to produce quite divergent effects in different cell types. For 
example, ACh produces a slow hyperpolarization in some cells by muscarinic- 
receptor-mediated enhancement of K § channel opening, but a slow depolariza- 
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tion in other cells by muscarinic receptor stimulation of the phosphoinositide 
second-messenger system. Finally, some cells possess both multiple transmitter 
inputs and multiple effector mechanisms for some of these inputs, thus exhibit- 
ing both convergence and divergence of signaling mechanisms (e.g., see 
McCormick & Williamson, 1989). 

Second-messenger systems 
Second messengers are small intracellular molecules that mediate the effects 

of first messengers, i.e., neurotransmitters and hormones. Some of the import- 
ant second messengers in the nervous system are cAMP, cyclic guanosine 
monophosphate (cGMP), diacylglycerol (DAG), inositol trisphosphate (IP3), 
and Ca 2+ ions. Formation of cAMP and cGMP is catalyzed by the enzymes 
adenylyl cyclase and guanylyl cyclase, respectively. In retinal cells, cGMP 
levels are regulated by rhodopsin-induced stimulation of phosphodiesterase 
(PDE), the enzyme that degrades cGMP. DAG and IP 3 are second messengers 
that are jointly liberated from the membrane lipid phosphatidylinositol 
bisphosphate (PIP2) by a PIPz-specific phospholipase C. The final second 
messenger, Ca z+, can enter the neuronal cytoplasm from several different 
sources. Thus, cytoplasmic Ca 2§ concentrations can be elevated either by 
influx through NMDA receptor channels and/or voltage-gated Ca 2+ channels, 
or by release from intracellular storage compartments such as the smooth 
endoplasmic reticulum. 

Second messengers vary in their range of action within a cell. For example, 
Ca 2+ has a very short range of action due to factors such as cytoplasmic buf- 
fering and sequestration by internal storage sites. In contrast, IP 3 and particu- 
larly cAMP seem to diffuse considerably longer distances before being metab- 
olized. This is important in light of the fact that some mechanisms of plasticity 
may require the coordinated action of several second messengers. Therefore, if 
Ca z+ levels are locally elevated in a dendritic spine (perhaps due to the activa- 
tion of NMDA receptor channels) but adenylyl cyclase-coupled receptors are 
not present in that spine, cAMP generated at another location in the dendrite 
might be able to reach the spine and interact with the Ca 2+ to produce an 
appropriate postsynaptic response (Kasai & Petersen, 1994). 

Second messengers generally operate through activation of protein kinases. 
These are enzymes that modify the functioning of various target proteins 
through the addition of phosphate groups to specific amino-acid residues (i.e., 
through phosphorylation). The electrically charged phosphate groups alter the 
conformation of the affected proteins, thereby influencing their biological 
activity. In the case of an enzyme, for example, its catalytic activity might be 
either increased or reduced in the phosphorylated state. Phosphorylated pro- 
teins are returned to their original state by enzymes called phosphatases. This 
process terminates the cellular effects of second messengers by reversing the 
phosphorylation-induced changes in protein function. 
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Each second messenger is associated with a particular type of protein ki- 
nase. For example, cAMP activates cAMP-dependent protein kinase (also 
called protein kinase A; PKA), whereas cGMP similarly functions via cGMP- 
dependent kinase. Ca 2§ first binds to a receptor protein called calmodulin, and 
then this complex can activate Ca2+/calmodulin-dependent protein kinase. 
DAG, one of the second messengers produced from PIP 2 hydrolysis, remains 
in the membrane and activates protein kinase C (PKC). The other messenger, 
IP3, is liberated into the cytoplasm. It subsequently binds to a receptor on 
endoplasmic reticulum membranes and opens a channel for Ca z§ release from 
the endoplasmic reticulum into the cytoplasm (here we may consider Ca 2§ to 
be a third messenger in the biochemical cascade). The phospholipase C/PIP 2 
system (sometimes termed the phosphoinositide second-messenger system) can 
therefore activate a variety of Ca z+-dependent mechanisms. One of these actu- 
ally turns out to be protein kinase C, because this enzyme is activated by Ca 2 § 
as well as DAG. 

An interesting feature of the type II CaZ+/calmodulin-dependent protein 
kinase (CaMK II) enables it to act as a kind of "molecular switch." When 
activated, this enzyme can engage in autophosphorylation, i.e., phosphoryla- 
tion of itself. This "turns on the switch" by causing the kinase to become 
temporarily independent of Ca z§ Eventually, the switch is turned off when the 
kinase becomes dephosphorylated. Some investigators have hypothesized that 
conversion of CaMK II and possibly other kinases to a stimulation-independent 
state may play a role in long-term potentiation or other forms of neuronal plas- 
ticity (Bliss & Collingridge, 1993; also see Frey, this volume). 

Second-messenger-induced protein phosphorylation alters numerous func- 
tions related to synaptic transmission (Figure 6). Among the neuronal proteins 
subject to phosphorylation are the neurotransmitter-synthesizing enzymes tyro- 
sine hydroxylase and tryptophan hydroxylase, a number of different transmitter 
receptors, voltage-gated ion channels, synaptic-vesicle proteins, cytoskeletal 
proteins, and nuclear proteins involved in gene regulation. Second-messenger- 
induced phosphorylation thus plays a critical role in virtually all aspects of 
neuronal signaling. Different populations of neurons may exhibit distinctive 
patterns of phosphorylated proteins, depending on the transmitter inputs and 
receptor subtypes found in each population, the G proteins and second mes- 
sengers activated by those receptors, and the available substrates for the kinas- 
es that are stimulated. 

Novel inter- and intra-cellular messengers 

Gaseous messengers. An unusual development in the study of neurotransmitter 
mechanisms was the discovery of two gaseous messenger substances. The first 
and best characterized is nitric oxide (NO). NO is synthesized by the enzyme 
nitric oxide synthase (NOS), which has a widespread though heterogeneous 



98 J.S. Meyer 

First Messengers: 
Neurotransmitters and other Extracellular Messengers 

'~176 I Re o,s ! 
C~ Fa ~ ! 

G Proteins 

Postsynaptic 
Cell Body 

or Dendrite 

(9 

C 
G) 
r 
U) 

=_ 

_= 
t~  

D 

Second Messengers: 
Cyclic Cyclic 
AMP GMP Ca2* DAG 

I I I I 
Third Messengers: 

Protein Phosphorylation 
Protein Kinase 

Dephosphoprotein Phosphoprotein 

Protein Phosphatase 

Multiple Physiological Responses 

,P31 
I 

Rapid Short-Term Long-Term Modulatory 
Mediatory Modulatory Processes (Regulation 
~,rocesses Processes of Germ Expression) 

Activation or General Metabolism Synthesis of Channels, 
Inhibition of Neurotransmitter-- Receptors, Intracellular 

Ion Channels Synthesis and Release, Messengers, etc. 
Receptor Sensitivity., Synaptogenesis, 
Membrane Potential, Learning and Memory 
Short-Term Memory 

FIGURE 6. Role of second messengers and protein phosphorylation in nervous-system 
function. The figure illustrates the biochemical cascade triggered by neurotransmitter 
stimulation of G-protein-coupled receptors and culminating in rapid to long-term 
neuronal responses. Key roles in this process are played by second messengers and 
second messenger-activated protein kinases. From Hyman and Nestler (1993). 

distribution in the brain. In a number of areas, NOS can be detected in various 
interneurons but not in long-axon projection pathways. This pattern has been 
observed in (1) cerebellar cortex, where the basket and granule cells but not 
the Purkinje cells are NOS-positive, (2) cerebral cortex and hippocampus, in 
which NOS is absent from pyramidal cells but is present in scattered interneu- 
rons in various layers, and (3) striatum, where the medium spiny projection 
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neurons lack NOS but the enzyme is found in a population of aspiny interneu- 
rons (Vincent & Hope, 1992). The neuronal form of NOS is activated by 
increasing the intracellular Ca 2§ concentration. In cerebellum and hippocam- 
pus, Garthwaite (1991) demonstrated that Ca 2§ activation of NOS is likely 
mediated by excitatory amino-acid stimulation of NMDA receptors. 

NO does not act on a traditional membrane-bound receptor. Rather, it binds 
to the heme iron present in the soluble form of guanylyl cyclase and activates 
the enzyme, thus enhancing cGMP formation. A close relationship between 
NO and guanylyl cyclase is supported by the similar regional distribution of 
NOS staining and staining for cGMP following stimulation of NO synthesis 
(Southam & Garthwaite, 1993). On the other hand, staining is not usually in 
the same cells within a given area. In most cases, either NOS is found in 
postsynaptic cells and cGMP in presynaptic elements, or the localization may 
be reversed. These and other findings strongly suggest that NO diffuses from 
its site of origin to other cells where it activates guanylyl cyclase. 

Several features of transmission by NO are unique compared to other inter- 
cellular messengers. First, due to its high membrane permeability, it cannot be 
packaged or stored in any vesicular (or other) structure. It must instead be 
made and released upon demand. Second, rapid diffusion of NO along with the 
lack of any known uptake mechanism may permit the gas to diffuse for rela- 
tively (on a cellular scale) long distances and consequently to act on distant 
targets. Finally, as already mentioned, NO is able to directly stimulate second- 
messenger synthesis without the intervention of a membrane receptor. 

The second putative gaseous messenger is carbon monoxide (CO), which 
may also serve an important signaling function via activation of cGMP. CO is 
synthesized by the enzyme heme oxygenase (HO), which has a somewhat 
different regional and cellular distribution than NOS. Unlike NOS, for exam- 
ple, HO is strongly expressed in Purkinje cells and pyramidal neurons 
(Maines, 1993; Verma, Hirsch, Glatt, Ronnett, & Snyder, 1993). 

Figure 7 illustrates a proposed model of NO and CO function. According 
to this model, NO is mainly synthesized postsynaptically as a consequence of 
an NMDA receptor-mediated rise in intracellular Ca 2§ (note that other 
mechanisms for elevating Ca :+ levels may also be important in some systems). 
NO then diffuses in a retrograde direction to produce various effects (including 
increased cGMP formation) in axon terminals. A number of studies have 
suggested that NO may be a critical retrograde messenger involved in the 
enhancement of presynaptic glutamate release in hippocampal long-term poten- 
tiation (Bliss & Collingridge, 1993; also see Frey, this volume). In contrast, 
CO may be formed either pre- or postsynaptically and thus can serve as either 
a retrograde or an intracellular messenger. 

Lipid messengers. Certain lipids can also function as intracellular and/or inter- 
cellular messenger substances. One such compound is the unsaturated fatty 
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acid arachidonic acid (AA), which is liberated from membrane phospholipids 
by the enzyme phospholipase A 2. Once released, AA undergoes a complex 
series of metabolic reactions that results in the formation of many biologically 
active compounds that are collectively called eicosanoids (these include various 
prostaglandins, thromboxanes, etc.). Eicosanoids can act either as second 
messengers by influencing the cell in which they are formed, or they can 
subserve a first-messenger type of function by diffusing to neighboring cells 
like NO. Various findings suggest that some of these eicosanoids may partici- 
pate in both transmitter-release and signal-transduction mechanisms in some 
neuronal systems (reviewed by Shimizu & Wolfe, 1990). 

Even more interesting, perhaps, is a recently discovered AA derivative 
named anandamide (Devane, Hanu~, Breuer, Pertwee, Stevenson, Griffin, 
Gibson, Mandelbaum, Etinger, & Mechoulam, 1992). This substance is the 
first compound to be given serious consideration as an endogenous ligand for 
cannabinoid (i.e., marijuana) receptors. One of the structures containing a high 

Presynaptic neuron Postsynaptic neuron 

FIGURE 7. Proposed functioning of the gaseous messengers nitric oxide (NO) and 
carbon monoxide (CO). According to this model, NO is typically synthesized in post- 
synaptic cells, from which it diffuses into presynaptic terminals and activates the 
cGMP-forming enzyme guanylyl (guanylate) cyclase. CO, which also stimulates cGMP 
formation, may be synthesized either pre- or postsynaptically. One consequence of 
increasing presynaptic cGMP concentrations may be enhanced release of glutamate (�9 
from the terminal. From Maines (1993). 
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concentration of cannabinoid receptors is the hippocampus (Herkenham, Lynn, 
Little, Johnson, Melvin, de Costa, & Rice, 1990), which corresponds well to 
the established effects of marijuana smoking on cognitive functioning. Assum- 
ing that anandamide is confirmed as an actual neurotransmitter or neuromodu- 
lator, it might eventually be found to play a significant role in normal learning 
and memory processes. 

Neurotransmitters and Gene Regulation in the Nervous System 
The final topic to be covered in this summary of neurotransmission con- 

cerns the regulation of gene activity. Endocrinologists have known for many 
years that certain hormones, for example gonadal and adrenal steroids, affect 
their target cells primarily by altering the transcription of various genes in 
those cells. Changes in gene transcription then lead to alterations in the rates of 
synthesis or (less frequently) degradation of various cellular proteins. Growing 
evidence now indicates that neurotransmitters can similarly regulate gene 
expression, a process that may well be important in learning and memory, as 
well as in long-lasting adaptive responses to drugs and other external agents. 

There are two phases of gene activation triggered by synaptic input (Arm- 
strong & Montminy, 1993). The initial phase is characterized by induction of 
"immediate-early genes" (lEGs; sometimes also called "early-response 
genes"), lEGs are usually expressed only at low levels in the absence of cellu- 
lar excitation. When synaptic inputs are active, however, they are rapidly 
though transiently induced (e.g., mRNA levels may be significantly increased 
within 15 minutes but remain elevated for only another 15-30 minutes). Most 
lEGs code for nuclear proteins, several of which are discussed below. 

The second phase of synaptic gene activation is the induction of "late-onset 
genes." As we shall see, these genes are slower to respond to stimulation 
because their induction is dependent on the action of lEG proteins. Although 
many important neuronal genes are undoubtedly subject to late-onset synaptic 
regulation, only a few examples have been well characterized. Among these 
are the genes for tyrosine hydroxylase and for several neuropeptides such as 
substance P (Armstrong & Montminy, 1993). 

Transcription factors and gene regulation 
Transmitters alter gene expression by means of a complex mechanism 

involving second messengers together with a family of proteins known as 
transcription factors. Molecular biologists have known for some time that most 
genes contain several distinct regions with differing functions. One of these 
obviously is the coding region specifying the nucleotide sequence of the RNA 
transcribed from that gene. However, "upstream" from the coding region is the 
so-called promoter region, within which are DNA sequences that serve as 
binding sites for these transcription factors. Several broad families of transcrip- 
tion factors have been identified, with exotic names such as leucine-zipper, 
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FIGURE 8. Neurotransmitter regulation of neuronal gene expression. Neurotransmit- 
ters influence the expression of a variety of neuronal genes through a mechanism 
involving second messengers, protein kinases, and several types of transcription fac- 
tors. From Hyman and Nestler (1993). 

zinc-finger, and helix-loop-helix proteins. These names refer to structural 
features that help mediate the interaction of the transcription factor with its 
DNA binding site. (For further details, see a contemporary biochemistry or 
molecular biology text such as Watson, Gilman, Witkowski, & Zoller, 1992.) 
The important point here is that binding of a transcription factor to a gene 
regulatory site can either enhance or suppress transcription of that gene. 

As mentioned above, second messengers are linked with transcription fac- 
tors in the neurotransmitter control of gene expression. Let us consider the 
example of transcriptional activation by cAMP. In this case, the cAMP- 
dependent protein kinase phosphorylates a transcription factor called the 
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cAMP-response element binding protein (CREB). Once activated, CREB binds 
to a DNA regulatory site not surprisingly named the cAMP-response element 
(CRE). The interaction between CREB and CRE enhances transcription of the 
"downstream" gene (Vallejo, 1994). Interestingly, CREB can be phosphorylat- 
ed by other kinases besides the cAMP-dependent protein kinase, which allows 
multiple extracellular signaling pathways to converge on the same target 
gene(s) in a given cell. 

C-fos and other immediate-early genes 
Transcription factors often function in a cascade. Thus, CREB and various 

other transcription factors induce a group of immediate-early genes called c- 
fos, fos B, c-jun, jun B, zif-268, and so forth (Morgan & Curran, 1989; Sagar 
& Sharp, 1993). The products of these lEGs are themselves transcription fac- 
tors that play important roles in neuronal gene regulation. I will focus on the 
Fos and Jun families, which are among the best characterized lEGs. 

C-fos is a proto-oncogene, which means that it is the normal cellular coun- 
terpart of a related gene that is present in certain cancer-causing viruses. The 
transcription factor encoded by the c-fos gene is called Fos. As with lEGs 
generally, levels of Fos protein and mRNA are low in most neurons in the 
absence of stimulation. However, stimuli that increase the appropriate second 
messengers (e.g., cAMP or Ca :+) can rapidly induce Fos expression through 
the action of CREB and several other transcription factors known to participate 
in c-fos gene regulation. Depending on the neuronal population under investi- 
gation, such stimuli may be environmental or pharmacological. In this way, c- 
fos and other lEGs can be considered markers of neuronal activation (Morgan 
& Curran, 1989; Sagar & Sharp, 1993). Other research suggests that lEGs 
may play an important role in mechanisms of neural plasticity and learning 
(Abraham, Dragunow, & Tate, 1991). 

Figure 8 presents a simplified summary of the overall sequence of events 
beginning with receptor activation and culminating in the activation of target 
genes in the cell. As shown in the figure, as many as four different levels of 
messengers may participate in this process. Through such complex regulatory 
mechanisms, synaptic activity can produce long-term adaptive changes in 
neuronal functioning. 

Summary 
At its simplest, the process of neurotransmission consists of invasion of a 

nerve terminal by an action potential, fusion of one or more vesicles with the 
presynaptic membrane, release of a few thousand molecules of one chemical 
substance into a synaptic cleft, stimulation of a single population of postsynap- 
tic receptors located within that synapse, and the rapid elicitation of an excita- 
tory or inhibitory postsynaptic potential due to the opening of ion channels on 
the postsynaptic membrane. However enticing this simplified view may be, we 
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have seen that neurotransmission is often vastly more complicated. In particu- 
lar, three themes emerge that are of special significance for the modeling of 
neural networks. First, several mechanisms are available for coincidence detec- 
tion within a postsynaptic cell, including the voltage sensitivity of NMDA 
receptors and possibly also the long-range action of certain second messengers. 
Such mechanisms may underlie the type of synaptic strengthening envisioned 
by Donald Hebb almost 50 years ago (Hebb, 1949). Second, transmitters and 
other intercellular messengers sometimes act at sites distant from their synthe- 
sis and release. Incorporating this feature may lead to novel effects not seen in 
networks that use only point-to-point transmission. Finally, even in adult 
organisms, new synapses may form and (some) old ones disappear over time. 
Consequently, neural plasticity may involve not only strengthening and weak- 
ening of existing connections, but also changes in the "wiring diagram." 
Neurotransmitter-related alterations in gene expression play a pivotal role in 
both chemical and structural alterations in synaptic action. 
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CHAPTER 6 

CELLULAR MECHANISMS OF LONG-TERM POTENTIATION: 
LATE MAINTENANCE 

Uwe Frey 
Federal Institute for Neurobiology 
Gene Regulation & Plasticity 
Magdeburg, Germany 

ABSTRACT 
Hippocampal long-term potentiation (LTP) is the primary model for inves- 

tigating mechanisms and processes involved in the establishment of certain 
forms of explicit memory in the mammalian brain. During the last decade 
much progress has been made in elucidating the cellular mechanisms underly- 
ing the induction and early expression of LTE In contrast, little is known 
about the prolonged maintenance of this phenomenon. The sustained duration 
of LTP, however, is a prerequisite for its postulated role in information stor- 
age. In this chapter, I shall focus on results relevant to the prolonged main- 
tenance of LTP, and show that the cellular processes involved in LTP are 
consistent with those believed to underlie learning and memory formation. 

Introduction 
At the beginning of the 20th century Cajal (1911) proposed that neuronal 

networks are not cytoplasmatically continuous, but communicate with each 
other at distinct junctions, which Sherrington termed synapses. External events 
are represented in the brain as spatio-temporal patterns of activity within preex- 
isting neuronal circuits. Processes involved in learning and memory formation 
must therefore occur within these circuits, most likely at synaptic junctions. 
While Cajal favored the development of new connections during memory 
formation, Konorski (1948) and Hebb (1949) proposed that preexisting neu- 
rona! connections can be strengthened by simultaneous activation of pre- and 
postsynaptic sites. According to Konorski and Hebb, plastic changes must be 
located at synaptic junctions; consequently, research on modifications of 
neuronal plasticity has focused on the synapse rather than on other neuronal 
elements. 

A number of theories were developed (e.g., Eccles, 1964; Griffith, 1966; 
John, 1967; Marr, 1969; Matthies, 1974) based on the coincidence-detection 
rule of Hebb and Konorski. In these earlier formulations, possible cellular 
mechanisms for the long-lasting functional change required for long-term 
memory were unknown. However, in the early seventies, Lomo and Bliss 
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(Bliss & Gardner-Medwin, 1973; Bliss & Lomo, 1973) first described a pro- 
longed increase of synaptic efficacy after specific afferent stimulation in the 
dentate gyrus of the hippocampus, a structure required for the formation of 
certain forms of learning and memory (Penfield & Milner, 1958; Milner, 
1972; O'Keefe & Nadel, 1978; Teyler & DiScenna, 1986; Thompson, 1986; 
Alkon, Amaral, Bear, Black, Carew, Cohen, Disterhoft, Eichenbaum, Golski, 
Gorman, Lynch, McNaughton, Mishkin, Moyer, Olds, Olton, Otto, Squire, 
Staubli, Thompson, & Wible, 1991). Brief high-frequency stimulation of exci- 
tatory connections between fibers of the perforant path and granule cells 
caused a dramatic and sustained increase in the efficacy of synaptic transmis- 
sion. This phenomenon, which is called long-term potentiation (LTP), has been 
found with varying properties in all excitatory pathways of the hippocampus, 
as well as in several other regions of the brain (Racine, Milgram, & Hafner, 
1983; Patrylo, Schweitzer, & Dudek, 1994). At present, however, only hippo- 
campal LTP has been thoroughly investigated with respect to its duration and 
its association with certain forms of learning and memory formation. Hippo- 
campal LTP is thought to serve as an elementary mechanism for the establish- 
ment of certain forms of explicit memory in the mammalian brain. This sug- 
gests that hippocampal LTP might be characterized by cellular properties 
similar to those of processes occurring during learning and memory formation 
in vertebrates. 

Much progress has been made in elucidating the cellular mechanisms under- 
lying the induction and early expression of LTP (early-LTP or E-LTP, which 
lasts 3 to 4 hours; for a review see Bliss & Collingridge, 1993). However, 
little is known about the prolonged maintenance of LTP. Due to the sustained 
duration of hippocampal LTP, which can last for several weeks in the intact 
animal (Bliss & Gardner-Medwin, 1973), this phenomenon is considered to 
employ a mechanism involved in the storage of distinct information. Here, I 
review results indicating that prolonged, late-LTP (L-LTP) in the hippocampus 
has cellular properties of the type needed for learning and memory formation. 

The first published evidence that hippocampal LTP plays a role in memory 
was provided by Barnes (1979), who indicated that the speed of learning a 
spatial task was positively correlated with the persistence of LTP. It was 
hypothesized that persistent changes of synaptic efficacy in the hippocampus 
induced "naturally" during learning are responsible for the information storage 
involved in learning the task. Although other work supports these results 
(Skelton, Miller, & Phillips, 1985; Morris, Anderson, Lynch, & Baudry, 
1986; Matthies, Ruethrich, Ott, Matthies, & Matthies, 1986; McNaughton & 
Morris, 1987; Morris, 1989; Castro, Silbert, McNaughton, & Barnes, 1989; 
Alkon et al, 1991; Korol, Abel, Church, Barnes, & McNaughton, 1993; 
Doy~re, Burette, R&lini-Del Negro, & Laroche, 1993a; Doy~re, R&lini-Del 
Negro, & Laroche, 1993b; Moser, Moser, & Andersen, 1993), the correlation 
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of an increase in field potentials with processes underlying learning and infor- 
mation storage is very indirect. Field-potential recording in vivo has a number 
of disadvantages, such as the occurrence of temperature fluctuations (Moser et 
al, 1993) and the complexities associated with recording from a large neuronal 
population. Furthermore, little is known about the true function of the hippo- 
campus during learning and memory formation. Nevertheless, the empirically 
obtained results suggest a role for LTP as one mechanism underlying informa- 
tion storage. 

Mechanisms and phases of memory formation 
In 1974 Matthies (1974) developed a hypothesis concerning the neuronal 

mechanisms of memory formation. The assumed phases of short-term, inter- 
mediate, and long-term memory (LTM)---with their different time courses, 
decay times, biological correlates, and sensitivities to interventions~reflect 
properties corresponding to the cellular mechanisms of a synaptic, synapto- 
somal, and nuclear regulation of memory formation (see Figure 1). 

Hypothesis of cellular mechanisms responsible for changes of neuronal 
connectivity during information processing and memory formation 

(Matthies, 1974) 

Regulation at the cellular-molecular level with distinct time constants 
according to the formation of: 
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FIGURE 1. Mechanisms of permanent changes of neuronal connectivity. An illustra- 
tion of the hypothesis of Matthies (1974) concerning the cellular mechanisms responsi- 
ble for changes of neuronal connectivity during learning and memory formation. 
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FIGURE 2. Common characteristics of processes during learning and hippocampal 
LTP. Distinct forms of learning and LTP depend on protein synthesis. The upper 
graph illustrates the amnestic effect of the reversible protein-synthesis inhibitor ani- 
somycin (closed line) when it was administered during the training session. Experi- 
ments investigating protein synthesis during acquisition revealed a two-phase time 
course of leucine incorporation, which was blocked by anisomycin. The middle graph 
illustrates the action of anisomycin on the maintenance of hippocampal LTP, which 
was prevented after about 3-5 hours. The lower figure shows that repeated tetani are 
required for the induction of the protein-synthesis-dependent stage of LTP. Single 
tetanization (dotted line) only produces a short-term, protein-synthesis-independent 
phase. 
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It has been demonstrated that the formation of LTM requires the initiation 
of protein synthesis (Flexner, Flexner, & Stellar, 1963; Agranoff & Klinger, 
1964; Barondes & Cohen, 1967; Pohle & Matthies, 1974; Shashoua, 1976; 
Grecksch, Ott, & Matthies, 1980; Grecksch & Matthies, 1980; Duffy, Teyler, 
& Shashoua, 1981; Flood, Smith, & Jarvik, 1980; Mizumori, Rosenzweig, & 
Bennett, 1985; Shashoua, 1985) and the subsequent post-translational addition 
of a fucose group (i.e., fucosylation) to newly synthesized proteins (Popov, 
Riithrich, Pohle, Schulzeck, & Matthies, 1976; Popov, Schulzeck, Pohle, & 
Matthies, 1980; Shashoua, 1991). The synthesis and subsequent processing of 
the macromolecules seem to be controlled by the transsynaptic action of 
neuromodulators during learning-related convergence of neuronal signals on 
integrating neurons. 

Learning experiments revealed a biphasic occurrence of protein synthesis 
(Figure 2). The early stage, during and immediately after the learning proce- 
dure, was characterized by the synthesis of mainly cytoplasmatic, soluble 
proteins. The later stage, 4 to 8 hours after acquisition, revealed an increase of 
membrane-bound proteins. These changes in the synthesis of macromolecules 
were most obvious in hippocampal regions, but also occurred in some neocor- 
tical structures (for review see Matthies, 1989b; Matthies, 1989a). It was 
suggested that the early phase of protein synthesis represents the synthesis of 
regulatory proteins. The regulatory proteins then control the formation of 
target proteins that, finally, remodel neuronal connectivity during late stages of 
memory formation. These experiments were the first step toward verifying the 
hypothesis of a phasic model of cellular mechanisms underlying memory 
formation in vertebrates. 

The complexity of the learning process makes it very difficult to study these 
mechanisms in the intact animal. Therefore, LTP in hippocampal slices was 
used. This provided both an indirect tool to study processes occurring during 
learning and memory formation and a method to see whether the cellular 
mechanisms of learning and memory formation also underlie hippocampal 
LTP. Initially, LTP was regarded as a unitary phenomenon, so observations 
were mainly confined to the induction and maintenance of E-LTP. However, 
considering the findings with macromolecule synthesis during learning experi- 
ments, different stages and corresponding mechanisms might also occur with 
LTP, if it was directly involved in learning and memory formation. To verify 
this assumption, LTP must be investigated for at least 8 to 10 hours, the time 
required for the protein-synthesis-dependent formation of a permanent 
"memory trace" at the synaptic level. 

Induction mechanisms of LTP 
Hippocampal LTP in the CA1 region is commonly characterized by four 

basic properties: cooperativity, associativity, input-specificity and occlusion. 
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Cooperativity denotes that a distinct intensity threshold of afferent stimula- 
tion has to be achieved to obtain LTP. "Weak" high-frequency stimulation, 
which activates few afferent fibers, causes only a short-lasting post-tetanic 
potentiation, whereas higher intensities of tetanization can produce a longer- 
lasting potentiation (McNaughton, Douglas, & Goddard, 1978; Huang & 
Kandel, 1994). Our recent finer analyses demonstrate that even strong intensi- 
ties of tetanization may be insufficient to produce L-LTP. Even "strong" tetan- 
ization must be repeated to initiate mechanisms responsible for the prolonged 
maintenance of LTP (Figure 2). These results are in accordance with the 
findings by Reymann, Malisch, Schulzeck, Br6demann, Ott, and Matthies 
(1985), and Huang and Kandel (1994). 

Associativity means that, besides the activation of a certain number of affer- 
ent fibers, the postsynaptic cell needs to be active at the same time. Thus even 
a weak input can be potentiated if it occurs at the same time as a strong tetanus 
to a separate but convergent input (McNaughton et al, 1978; Levy & Steward, 
1979). LTP is input-specific, i.e., only those inputs develop LTP which were 
active at the time of LTP induction. Finally, it is a widespread view that 
asymptotic LTP (maximal amount of potentiation at a given stimulus intensity) 
prevents further potentiation during its maintenance, once it has been estab' 
lished. This property is known as occlusion (de Jonge & Racine, 1985). Since 
most of the experiments were performed in vitro and observed for only minutes 
or a few hours, it remains to be determined whether cooperativity, associativi- 
ty, input-specificity and occlusion are also characteristic of L-LTP. 

For the induction of associative forms of LTP in the hippocampus, the 
activation of a distinct ionotropic glutamate receptor seems to be critical. The 
excitatory neurotransmitter glutamate acts as the main transmitter in the CA1 
region and in the dentate gyms. During strong and/or repeated tetanization, 
depolarization of the postsynaptic cell can be achieved via activation of differ- 
ent non-N-methyl-D-aspartate (non-NMDA) receptors. However, it is quite 
possible that depolarization can be produced by other than glutamatergic inputs 
(see Bliss & Collingridge, 1993). Depolarization is required for the removal of 
a Mg 2+ block of NMDA receptor channels, which allows an influx of Ca 2§ 
(for review see Coan & Collingridge, 1987; Collingridge & Bliss, 1987; Bliss 
& Collingridge, 1993). Thus, loading of the postsynaptic site with Ca 2§ is one 
crucial step in LTP induction. 

Increase in intracellular Ca 2§ can be achieved through mechanisms other 
than activation of the NMDA receptor, i.e., by voltage-dependent calcium 
channels or the release of Ca 2 § from intracellular stores. The rise in intracellu- 
lar Ca 2+ may fulfill a role as an intracellular activator of further processes that 
may lead to the initiation and expression of E-LTP and--in connection with 
other coincident factors--to the induction of L-LTP. 

Experiments investigating postsynaptic Ca 2§ elevation have demonstrated 
that a rise in intracellular Ca 2+ appears insufficient to induce stable LTP 
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(Malenka, Kauer, Perkel, Mauk, Kelly, Nicoll, & Waxham, 1989a; Malenka, 
Kauer, Perkel, & Nicoll, 1989b; Harvey & Collingridge, 1992; Bliss & Col- 
lingridge, 1993). In addition, application of NMDA induces only a short-last- 
ing (<  1 hour) increase in synaptic efficacy (Kauer, Malenka, & Nicoll, 1988; 
Bliss & Collingridge, 1993). In experiments in which a prolonged potentiation 
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FIGURE 3. In vitro effects of dopamine and L-LTP in hippocampal CA1 neurons. 
This figure illustrates the requirement of mechanisms for L-LTP activated by dopami- 
nergic receptors during and/or immediately after repeated tetanization, a. Application 
of a D -receptor antagonist during LTP using conventional repeated tetanizations 

1 prevents the late maintenance of LTP (L-LTP). b. Threefold application of dopamine 
or of the D.-receptor agonist SKF 38393 reveals a late-onset potentiation. The dopami- 
nergic D 1 ~'eceptor activates the cAMP/PKA complex, cAMP levels are shown in c 
during control stimulation (open boxes) and high-frequency stimulation (shaded boxes). 
Repeated tetanization produced a transient enhancement of cAMP levels (Frey et al, 
1993a). Lines indicate the release of [14C]-dopamine after low- (dotted line) and high- 
frequency (closed line) stimulation. Tetanization enhanced the release of [14C]-dopa- 
mine in hippocampal slices, paralleling the increased cAMP levels after tetanization, d. 
The effect of transient application of the PKA activator Sp-cAMPS. The time course of 
Sp-cAMPS-induced potentiation resembles the time course of potentiation induced by 
dopamine or by the D -receptor agonist SKF 38393 in b. e. The potentiation induced 
by Sp-cAMPS can be ~prevented by the protein-synthesis inhibitor anisomycin, which 
parallels the blockade of L-LTP by anisomycin during conventionally induced LTP 
(see Figure 2). f. The action of the PKA inhibitor Rp-cAMPS on electrically induced 
LTP, illustrating the role of dopamine and the subsequent activation of the cAMP/PKA 
complex during hippocampal LTP in the CA1 region. 
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in the CA1 in vitro has been observed (Kamiya, Sawada, & Yamamoto, 1993), 
application of NMDA was paralleled by an elevated extracellular Ca 2+ concen- 
tration, which is sufficient to induce LTP by itself (Reymann, Matthies, Frey, 
Vorobyev, & Matthies, 1986; Melchers, Pennartz, & Lopes Da Silva, 1987). 

These results indicate the necessity of other coincident factors that are 
activated at the same time via monosynaptic or multisynaptic mechanisms. 
Broadly speaking, there is some evidence that a glutamatergic-metabotropic 
(mGlu) receptor must be active at the same time that intracellular Ca 2§ rises 
(Reymann & Matthies, 1989; Izumi, Clifford, & Zorumski, 1991; Bashir, 
Bortolotto, Davies, Berretta, Irving, Seal, Henley, Jane, Watkins, & Collin- 
gridge, 1993). Application of mGlu receptor agonists produces a delayed 
increase in synaptic efficacy (Bortolotto & Collingridge, 1993). These results 
are still under investigation, and it is not yet known whether mGlu receptor- 
activated potentiation lasts longer than 4 hours (Manahan-Vaughan & Rey- 
mann, 1995). We have evidence that, for the induction of L-LTP, a second 
neurotransmitter must be present during LTP induction (see Figure 3). 

Phases of LTP 
LTP in the hippocampal CA 1 region and the dentate gyrus consists of dif- 

ferent phases (Krug, L6ssner, & Ott, 1984; Frey, Krug, Reymann, & Mat- 
thies, 1988; Matthies, Reymann, Krug, Frey, Loessner, & Popov, 1989; 
Reymann, Frey, & Matthies, 1988b; Matthies, Frey, Reymann, Krug, Jork, & 
Schroeder, 1990; Frey, Huang, & Kandel, 1993a; Bliss & Collingridge, 1993). 
Long-term memory and L-LTP in the hippocampus~i.e., late maintenance of 
more than 4 hours~can be distinguished from short-term memory or E-LTP 
by inhibitors of protein and RNA synthesis (Krug et al, 1984; Stanton & 
Sarvey, 1984; Grecksch & Matthies, 1980; Frey et al, 1988; Otani, Marshall, 
Tate, Goddard, & Abraham, 1989; Frey, Seidenbacher, & Krug, 1993b; 
Nguyen, Abel, & Kandel, 1994; Frey, Frey, Schollmeier, & Krug, 1995a). 

E-LTP consists of a short-term potentiation (STP)--lasting from 30 minutes 
to 1 hour~that is mediated by activation of the NMDA receptor and calcium~ 
calmodulin-dependent kinase II, and an intermediate stage (LTP1)~lasting 
from 1 to 4 hours~that is dependent on activation of different protein kinases 
(for reviews see Reymann, 1993; Bliss & Collingridge, 1993). E-LTP is 
followed by the protein- and RNA-synthesis-dependent L-LTP (or LTP2); see 
Figure 4 (Krug et al, 1984; Otani & Abraham, 1989; Otani et al, 1989; Frey 
et al, 1988; Frey et al, 1993b; Nguyen et al, 1994; Frey et al, 1995a). Fur- 
thermore, as shown recently, L-LTP can be functionally distinguished from E- 
LTP by its ability to undergo further plastic changes (Frey, Schollmeier, 
Reymann, & Seidenbacher, 1995b). 

Early phase of LTP (E-LTP) 
As already noted, the establishment of E-LTP depends on the postsynaptic 

elevation of intracellular Ca 2+. Several different CaZ+-sensitive enzymes have 
been shown to participate in mechanisms responsible for modifications of 
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FIGURE 4. Hippocampal long-term potentiation occurs in phases. The upper graph 
illustrates the time course and underlying mechanisms of hippocampal LTP, which 
consists of two major stages: an early phase of LTP (E-LTP) lasting about 3-4 hours, 
followed by a late phase (L-LTP). In contrast to the early mainten/mce of potentiation, 
L-LTP depends on gene transcription and translation. The lower figure summarizes 
possible postsynaptic mechanisms required for the induction of L-LTP in the hippo- 
campal CA1 region. Repeated tetanization of afferent fibers initiates a cascade of cellu- 
lar events responsible for the induction of E-LTP and L-LTP. The prolonged main- 
tenance of LTP depends on the activation of both glutamatergic and dopaminergic 
receptors. The convergent action of both transmitter systems and the subsequent activa- 
tion and synergistic action of cellular second-messenger systems initiate gene transcrip- 
tion, translation, and post-translational processing of macromolecules required for the 
sustained duration of LTP. 
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neurin), proteases (e.g., calpain), as well as phospholipases and protein kinases 
synaptic efficacy. Recent results suggest a role of phosphatases (e.g., calci- 
(Baudry, 1986; Lovinger, Wong, Murakami, & Routtenberg, 1987; Malinow, 
Madison, & Tsien, 1988; Reymann, Br6demann, Kase, & Matthies, 1988a; 
Reymann, Frey, Jork, & Matthies, 1988c; O'Dell, Kandel, & Grant, 1991; 
Bliss & Collingridge, 1993; Qian, Gilbert, Colicos, Kandel, & Kuhl, 1993; 
Malinow, Schulman, & Tsien, 1989; Funauchi, Haruta, & Tsumoto, 1994; 
Shaw, Lanius, & Van den Doel, 1994; Wang & Stelzer, 1994; Fazeli, Breen, 
Errington, & Bliss, 1994; Muller, Molinari, Soldati, & Bianchi, 1995). 
Phosphorylation cascades have been most thoroughly investigated, particularly 
those involving protein kinases. Transient activations of different kinases 
appear at different stages of E-LTP. Thus, the activation of Ca2§ 
kinase II (Reymann et al, 1988a; Malinow et al, 1989; Ito, Hidaka, & Sugiya- 
ma, 1991; Silva, Stevens, Tonegawa, & Wang, 1992) and protein tyrosine 
kinase (O'Dell et al, 1991; Grant, O'Dell, Karl, Stein, Soriano, & Kandel, 
1992) are known to be critical for the induction of LTP. Protein kinase C 
(PKC) plays an important role in the maintenance of E-LTP, or LTP1 (see 
Bliss & Collingridge, 1993). Since most of the experiments investigating the 
role of these enzymes studied only E-LTP, little is known about their contribu- 
tion to L-LTP. 

Transient activation of kinases would not necessarily produce a sustained 
potentiation of a few hours' duration. However, CAM kinase II, which is 
present in postsynaptic densities demarcating the active zone of excitatory 
synapses, might undergo a Ca2+-dependent autophosphorylation, and then 
convert the enzyme into a constitutively active Ca2§ kinase. There 
is also evidence that proteolytic cleavage of PKC can create a constitutively 
active molecule (for review see Bliss & Collingridge, 1993). 

Whether the maintenance of E-LTP depends on the continued action of 
protein kinases is controversial. For example, the proteolytic cleavage of other 
proteins could also cause a persistent change in receptor and/or ion-channel 
function. Such mechanisms might be responsible for changes observed for the 
glutamatergic, ionotropic amino-3-hydroxy-5-methyl-4-isooxazole proprionic 
acid (AMPA) receptor. There is some evidence that the sensitivity of the 
postsynaptic AMPA receptor increases after tetanization. Stimuli may evoke an 
enhanced excitatory postsynaptic potential (i.e., EPSP), at least during E-LTP 
(Davies, Lester, Reymann, & Collingridge, 1989). This observation might be 
related to the recently described conversion of postsynaptically silent synapses 
into active synapses (Liao, Hessler, & Malinow, 1995; Isaac, Nicoll, & 
Malenka, 1995). These authors report that a high proportion of synapses in the 
hippocampus contain NMDA but not AMPA receptors. Such synapses are non- 
functional at normal resting potential, but acquire AMPA-type responses 
following LTP induction. A rearrangement of functional receptors might 
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provide a postsynaptic mechanism for the induction and early expression of 
LTP. Further investigation is needed to determine if these modifications also 
take place during L-LTP. 

Retrograde mechanisms in LTP 
The most controversial issue concerning possible mechanisms for the early 

expression of LTP arose from findings that an increased transmitter release 
might also contribute to LTP expression (Lynch, Errington, & Bliss, 1985; 
Lynch, Errington, Clements, Bliss, R6dini-Del Negro, & Laroche, 1990; 
Feasey, Lynch, & Bliss, 1986; Errington, Lynch, & Bliss, 1987; Canevari, 
Richter-Levin, & Bliss, 1994; Richter-Levin, Canevari, & Bliss, 1995). If this 
were the case, then a retrograde messenger must go from the postsynaptic 
spine to the presynaptic terminal, since the probable trigger for the induction 
of LTP is the entry of Ca z+ through postsynaptic NMDA-gated channels. 
Recently, a number of candidates such as arachidonic acid, nitric oxide, carbon 
monoxide, and others have been proposed to function as the retrograde mes- 
senger (for a review see Bliss & Collingridge, 1993). Results describing an 
inhibition of E-LTP after blockade of these candidates are problematic and 
may be due, in part, to methodological difficulties such as the use of nonphy- 
siological temperatures (Williams, Li, Nayak, Errington, Murphy, & Bliss, 
1993). The time courses of the inhibitors of retrograde messengers also appear 
inconsistent. Increased transmitter release after LTP induction is greatest with 
STP, i.e., from a few seconds to an hour after LTP induction. However, the 
inhibitors of the candidates for retrograde signals spare STP. 

A more realistic candidate to fulfill the function of a fast retrograde mes- 
senger could be K § K § is released from the postsynaptic cell during tetaniza- 
tion to a degree that partially reflects the level of NMDA-receptor activation 
(Collingridge, 1992). This signal could interact with presynaptic mGlu recep- 
tors activating phospholipase C. The activation of phospholipase C by these 
receptors is strongly potentiated by extracellular K § (Baskys & Malenka, 
1991). Such a mechanism could elevate presynaptic Ca 2+ and activate the B 
isoform of PKC, which might enhance transmitter release (Colley & Routten- 
berg, 1993). 

Late phase of LTP (L-LTP) 

Mechanisms initiating L-LTR. Learning experiments demonstrate that protein- 
synthesis inhibitors prevent hippocampus-related learning after about 4 hours. 
Further, the formation of LTM requires the fucosylation of proteins, and the 
neurotransmitter dopamine is involved in the control of this process. Dopa- 
mine-induced improvement of LTM correlates with increased incorporation of 
fucose into hippocampal proteins (Flood et al, 1980; Jork, Grecksch, & Mat- 
thies, 1986). Similar to the processes occurring during learning, inhibition of 
protein synthesis during the induction of hippocampal LTP also prevents the 
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prolonged maintenance of LTP (> 3-6 hours). The requirement of fucosylation 
of macromolecules also seems to be critical for the establishment of L-LTP in 
the dentate gyrus and in the CA1 region (Krug, Jork, Reymann, Wagner, & 
Matthies, 1991). 

Since activation of hippocampal glutamatergic receptors alone does not 
induce L-LTP, it has been suggested that another neurotransmitter, which is 
simultaneously present during tetanization, is involved in the establishment of 
L-LTP. The pattern and strength of stimulation used to induce LTP does not 
guarantee a clear monosynaptic glutamatergic activation of hippocampal target 
cells. In addition, inhibitory neurons and neurons releasing other transmitters 
are almost certainly activated as well. A number of transmitters, including 
norepinephrine, acetylcholine, and opiods, are known to modulate LTP (Bliss, 
Goddard, & Riives, 1983; Haas, Jefferys, Slater, & Carpenter, 1984; Stanton 
& Sarvey, 1987; Stanton & Sarvey, 1985b; Briggs & McAfee, 1988; Blitzer, 
Gil, & Landau, 1990; Stanton, Mody, & Heinemann, 1989; Bramham, Erring- 
ton, & Bliss, 1988; Burgard & Sarvey, 1990; Bramham, Milgram, & Srebro, 
1991; Bramham, 1992; Katsuki, Saito, & Satoh, 1992; Maeda, Kaneko, & 
Satoh, 1994; Sokolov & Kleschevnikov, 1995; Haas, Sergueeva, Vorobjev, & 
Sharonova, 1995). 

Given the effects of dopamine on learning (Flood et al, 1980), we investi- 
gated whether dopamine is simultaneously released during LTP induction in 
the CA 1 region of the hippocampus, and whether it is required for L-LTP. The 
hippocampus is innervated by dopaminergic fibers that course through the 
mesolimbic pathway (Baulac, Verney, & Berger, 1986; Grace, 1991), and 
there is evidence of the expression of the D 5 receptor in CA1 pyramidal cells. 
The D 5 receptor is related to the D 1 dopamine receptor that is coupled to 
adenylyl cyclase (Sunahara, Guan, O'Dowd, Seeman, Laurier, Ng, George, 
Torchia, Van Tol, & Niznik, 1991). We demonstrated that, in addition to 
glutamate and possibly other neurotransmitters, dopamine levels increase 
during conventional LTP induction (see Figure 3e; Frey, Schroeder, & Mat- 
thies, 1990). To determine whether dopamine might be the additional activator 
necessary for L-LTP, we showed that it plays a crucial role in the initiation of 
the mechanisms responsible for L-LTP in the hippocampal CA1 region (Frey, 
Hartmann, & Matthies, 1989a; Frey et al, 1990; Frey, Matthies, & Reymann, 
1991). When specific inhibitors of the dopaminergic D~ and D 2 receptors were 
administered during tetanization, L-LTP was prevented (Figure 3a). 

The involvement of aminergic modulation of LTP has been proposed re- 
peatedly (Dunwiddie, Roberson, & Worth, 1982; Stanton & Sarvey, 1985b; 
Gribkoff & Ashe, 1984; Bliss et al, 1983; Krug, Chepkova, Geyer, & Ott, 
1983; Hopkins & Johnston, 1984; Robinson & Racine, 1985; Stanton & 
Sarvey, 1985c; Buzsaki & Gage, 1989). However, it has been suggested that 
the influences of these transmitters are only modulatory. We have demonstrat- 
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ed that activation of dopaminergic inputs to hippocampal CA 1 neurons plays a 
critical role, perhaps acting as a cellular switch to establish the late phase of 
LTP. Furthermore, other observations have demonstrated that the transient 
application of dopamine alone initiates a delayed increase in both the popula- 
tion spike (Gribkoff & Ashe, 1984) and the synaptic response, i.e., the field- 
EPSP (Frey, unpublished data; see Figure 3b). These events may simulate the 
late phase of LTP. Similar results have been obtained by the application of 
norepinephrine in the dentate gyrus (Stanton & Sarvey, 1985b; Stanton & 
Sarvey, 1987). 

In searching for the physiological significance of the simultaneous activa- 
tion of two different inputs, it should be noted that dopaminergic neurons are 
assumed to mediate, in part, the effect of biologically significant reinforcing 
stimuli during learning (Stein, 1975; Bischoff, 1986; Donahoe, Burgos, & 
Palmer, 1993). Normal dopamine functioning also appears necessary for the 
establishment and maintenance of conditioned reinforcement, or incentive 
learning (Beninger, 1983). Thus prolonged enhancement of synaptic efficacy 
during the processing of specific sensory information becomes understandable. 
Dopaminergic facilitation of learning is consistent with observations from 
Packard and White (1989), who demonstrated a role of dopaminergic receptors 
in memory facilitation on learning tasks sensitive to both hippocampal and 
caudate lesions. 

Recently it has been shown that repeated application (see Figure 3b) or 
transient application (Huang & Kandel, 1995) of a D~ receptor agonist, SKF 
38393, in CA1 synapses induces delayed potentiation whose time course is 
similar to that found after administration of dopamine. Because the D~ receptor 
stimulates adenylyl cyclase and the D~-receptor blocker efficiently prevents L- 
LTP (Frey, Schweigert, Krug, & L6ssner, 1991), we explored whether the 
formation of cAMP is increased during LTP and whether L-LTP is dependent 
on cAMP-dependent protein kinase (PKA) or other cAMP-dependent process- 
es. We found that the formation of cAMP was indeed transiently increased 
after and only after a threefold (i.e., repeated) tetanization was used for LTP 
induction. This is the stimulation protocol required for reliable L-LTP (Frey et 
al, 1993a; Figure 3e). This short-term elevation of cAMP was blocked by a D~ 
antagonist, SCH 23330, and the NMDA-receptor blocker AP-5. 

Because a large proportion of the adenylyl cyclase in the rat brain is sensi- 
tive to calmodulin in the presence of Ca 2§ the Ca 2§ influx caused by activa- 
tion of the NMDA receptor could stimulate adenylyl cyclase directly (Eliot, 
Dudai, Kandel, & Abrams, 1989; Chetkovich, Gray, Johnston, & Sweatt, 
1991; Chetkovich & Sweatt, 1993). Since a transient increase in cAMP is 
required for the establishment of L-LTP, NMDA-receptor activation might be 
sufficient to induce a prolonged potentiation. However, this was not the case. 
Our experiments using the D 1-receptor blocker SCH 23330 suggest a synergis- 



118 U. Frey 

tic activation of adenylyl cyclase by glutamate and dopamine receptors in the 
CA1. A similar increase in intracellular concentration of cAMP occurs after 
tetanization and after application of norepinephrine in the dentate gyrus, sug- 
gesting similar cellular mechanisms appear during L-LTP generation in differ- 
ent brain structures (Stanton & Sarvey, 1985a). 

In contrast to the already discussed kinases, cAMP-dependent protein 
kinase appears not to play a role in E-LTP, although it is constitutively active 
in CA1 hippocampal neurons (Wang, Salter, & MacDonald, 1991; Greengard, 
Jen, Nairn, & Stevens, 1991). Recent observations reveal that application of 
specific PKA inhibitors are ineffective in blocking E-LTP but do block L-LTP 
(see Figure 3f; Frey et al, 1993a; Matthies & Reymann, 1993). Transient 
application of a membrane-permeable cAMP analog or of other PKA activators 
initiated a delayed potentiation that seemed to simulate L-LTP (see Figure 
3d,e; Slack & Pockett, 1991; Frey et al, 1993a; Pockett, Slack, & Peacock, 
1993). These results suggest that the cAMP-dependent activation of PKA is 
required for L-LTP. 

Protein synthesis and LTI~. In the early eighties it was demonstrated for the 
first time that hippocampal LTP is not a unitary phenomenon, but occurs in 
distinct phases. As already mentioned, intraventricular application of anisomy- 
cin, a reversible translational inhibitor, prevents the long-term maintenance of 
LTP in the dentate gyrus, an effect that parallels the block of LTM in several 
learning tasks (Krug et al, 1984). 

These experiments were later reconfirmed for the dentate gyrus (Otani & 
Abraham, 1989; Otani et al, 1989), and a similar protein-synthesis dependency 
of L-LTP was shown for the CA 1 region (Frey et al, 1988). The application of 
anisomycin before, during, or immediately after tetanization produced a gradu- 
al decrease of potentiation after 4-6 hours without affecting E-LTP. Applica- 
tion of anisomycin one hour after tetanization had no effect. A similar phe- 
nomenon was seen when LTP was induced in dendritic stumps of CA1 pyra- 
midal cells of hippocampal slices in vitro (Frey, Krug, Br6demann, Reymann, 
& Matthies, 1989b). In these experiments the cell-body layer, the major site of 
protein synthesis, was surgically removed from the apical dendrites. The iso- 
lated dendrites revealed a pronounced E-LTP in the field-EPSP, as found in 
intact slices. However, the potentiation gradually decreased after about 4 
hours, thus showing the same lack of L-LTP as observed in complete CA1 
neurons after inhibition of protein synthesis with anisomycin. These results 
indicate, first, that there is a particular phase of L-LTP that depends on intact 
protein synthesis during and immediately after tetanization and, second, that 
the mechanisms responsible for L-LTP are located, at least partially, postsyn- 
aptically. 

The foregoing results are consistent with the finding that the incorporation 
of radioactive-labeled amino acids into cytosomal proteins of hippocampal 
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neurons is elevated for an hour immediately after tetanization (Duffy et al, 
1981; Fazeli, Errington, Dolphin, & Bliss, 1988; Shashoua, 1988; Shashoua, 
1990: Bullock, L(issner, Krug, Frey, Rose, & Matthies, 1990; Frey et al, 
1991; Fazeli et al, 1993; Fazeli et al, 1994). This transient enhancement of 
protein synthesis coincides with the time window after tetanization during 
which the inhibition of protein synthesis prevents the initiation of L-LTP, the 
phase that depends on protein synthesis. 

Learning experiments have shown a second peak in the elevation of leucine 
incorporation 8 hours after training (L(issner, Jork, Krug, & Matthies, 1982; 
L(issner, Schweigert, Pchalek, Krug, Frey, & Matthies, 1987). Recent ex- 
periments confirmed these results for hippocampal LTP, revealing an increase 
in radioactive-labeled proteins in synaptosomal membranes and postsynaptic 
densities 8 hours after tetanization (Bullock et al, 1990; Frey et al, 1991). 

Parallel studies indicate that the formation of LTM exceeding 4 hours 
depends on fucosylation of proteins (Popov et al, 1980; Jork et al, 1986). 
Particular glycoproteins are completed by the post-translational formation of a 
fucose 1-2 galactose linkage, which can be prevented by pretreatment with 2- 
deoxy-galactose. The false sugar is incorporated into glycans instead of galac- 
tose. This incorporation of 2-deoxy-galactose cannot provide the fucose 1-2 
linkage, thereby preventing LTM. Dopamine is involved in the fucosylation of 
hippocampal proteins during the formation of LTM (Jork, Liissner, & Mat- 
thies, 1979; Jork, Grecksch, & Matthies, 1982), and a similar mechanism may 
operate with hippocampal CA 1 LTP. 

Indeed, a similar effect has been described for hippocampal L-LTP (Krug et 
al, 1991; Angenstein, Matthies, Staeck, Reymann, & Staak, 1992). Pretreat- 
ment of rats with 2-deoxy-galactose prevented the formation of L-LTP without 
influencing transmission at the glutamatergic synapses or the induction of E- 
LTP. These results point to a role of fucosyl-glycoproteins during L-LTP. 
Based on these observations, the first stage of protein synthesis takes place 
immediately after tetanization. However, a further post-translational processing 
of proteins during E-LTP is required for the induction of L-LTP. 

Which neurotransmitters and which intracellular messengers initiate the 
protein synthesis? For the hippocampal CA1 region, glutamate alone is not 
able to induce L-LTP. The repeated strong tetanization that induces L-LTP is 
characterized by the activation of cAMP/PKA cascade. Besides synergistically 
activating the glutamatergic NMDA receptor, dopamine may initiate processes 
required for the establishment of L-LTP. Indeed, recent experiments have 
found that the potentiation achieved by short-term activation of the D~ receptor 
can be blocked by anisomycin (Huang & Kandel, 1995). The D~ dopamine 
receptor activates adenylyl cyclase, and the consequent formation of cAMP 
may directly induce gene transcription (Montminy, Gonzalez, & Yamamoto, 
1990) or activate PKA. The cAMP/PKA complex is primarily involved in 
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mechanisms initiating L-LTP. Induction of potentiation by a membrane-perme- 
able cAMP analog simulates L-LTP in its time course and is prevented by the 
protein-synthesis inhibitor anisomycin (see Figure 3e; Frey et al, 1993a). This 
finding suggests that the activation of dopamine receptors and the subsequent 
stimulation of cAMP/PKA might serve as an intracellular switch for the induc- 
tion of L-LTP. 

Different enzymes may be required for the processing of newly synthesized 
proteins. During E-LTP constitutively active, multifunctional kinases, such as 
PKC, could affect the rearrangement of macromolecules into functional pro- 
teins. It is not yet known which proteins are synthesized, although several 
macromolecules have been separated on two-dimensional gels (Fazeli, Corbet, 
Dunn, Dolphin, & Bliss, 1993) with some links to proteins involved in forming 
postsynaptic densities (Bullock et al, 1990). 

RNA synthesis and LTI~. The synthesis of mRNA is a necessary step in the 
establishment of LTM (for reviews, see Matthies et al, 1990; Alkon et al, 
1991). This raises the question of whether mRNA synthesis is also involved in 
L-LTP. In contrast to experiments with protein-synthesis inhibitors, it has only 
very recently been demonstrated that synthesis of mRNA is probably required 
for L-LTP. Previous studies had shown no influence of the mRNA-synthesis 
inhibitor actinomycin D (Otani et al, 1989). It was therefore concluded that 
protein synthesis must be carried out by preexisting mRNA, suggesting an 
mRNA-independent (but protein-synthesis-dependent) phase of L-LTP. 

In the foregoing experiments the authors only investigated E-LTP. Since the 
application of protein-synthesis inhibitors has a dramatic effect on the time 
course of L-LTP alone, studies of mRNA synthesis must examine LTP for 
longer time periods. Furthermore, prior experiments were carried out with 
anesthetized animals, and anesthesia can prevent gene expression (Dragunow, 
Abraham, Goulding, Mason, Robertson, & Faull, 1989a; Jeffery, Abraham, 
Dragunow, & Mason, 1990). Finally, a single tetanization was used to induce 
LTP, a stimulation pattern that may have led to a protein-synthesis-independent 
E-LTP, which may explain the failure to block LTP during the first 3 hours 
(Worley, Bhat, Baraban, Erickson, McNaughton, & Barnes, 1993; Huang & 
Kandel, 1994). 

To overcome these possible shortcomings, two laboratories have reinvesti- 
gated the failure of mRNA-synthesis inhibitors to block LTP. Recent work 
from the laboratory of Kandel (Nguyen et al, 1994) has demonstrated that 
synaptic LTP in hippocampal slices in vitro was prevented after 1 to 3 hours 
when two structurally different RNA-synthesis inhibitors, ACD and 5,6- 
dichloro-l-l~-D-ribofuranosyl (DRB)were used. The drugs were only effective 
when administered during tetanization, i.e., during LTP generation. Thus a 
side effect of the drugs on mechanisms involved in LTP generation could not 
be excluded. A nonspecific action of these drugs on mechanisms required for 
E-LTP would also explain their early time point of action. 
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Since the question of whether mRNA synthesis takes place in LTP is crucial 
for understanding the mechanisms underlying L-LTP, we performed experi- 
ments not subject to the above-mentioned shortcomings (Frey et al, 1993b; 
Frey et al, 1995a). The effect of ACD was studied in two different systems, 
the CA1 in vitro and the dentate gyrus in vivo. First, we used hippocampal 
slices, thereby avoiding anesthesia, assuring a more controlled application of 
inhibitors, and allowing a better characterization of electrophysiological re- 
sponses, i.e., the field-EPSP and the population spike. Second, we confirmed 
the experiments in vivo using freely moving rats. We also investigated the 
action of the structurally different transcriptional inhibitor DRB. Finally, we 
investigated LTP for a time course of 8 hours after its induction. 

In contrast to the studies by Otani et al (1989) and Nguyen et al (1994), our 
experiments revealed that hippocampal L-LTP in the CA1 region and in the 
dentate gyrus can be partially prevented by ACD, when it is applied at an 
effective concentration and a sufficient time before LTP induction. The poten- 
tiation of the population spike amplitude decayed to baseline values after about 
4 to 6 hours. The field-EPSP also showed a definite decay during the same 
time interval, but remained slightly potentiated. We can exclude the possibility 
that the prevention of L-LTP for the population spike and the decreased late 
phase of potentiation of the field-EPSP were due to toxic side effects of ACD. 
The drug did not influence the time course after low-frequency stimulation 
during either the in vitro or in vivo control experiments, and had no effect on 
E-LTP or L-LTP when administered immediately after tetanization. A second, 
structurally different, RNA-synthesis inhibitor, DRB, also decreased L-LTP. 

It is still unclear whether the potentiated-EPSP component remains at a 
potentiated level compared to low-frequency controls, or if it is also fully 
inhibited by RNA-synthesis inhibition over time. Unfortunately, only the first 8 
hours after LTP induction have been followed to avoid late-occurring nonspe- 
cific effects caused by the overall inhibition of RNA synthesis. Interestingly, 
our previous experiments investigating the influence of protein-synthesis inhibi- 
tion on L-LTP showed a similar decay for both the population spike and the 
EPSP. (Frey et al, 1988). 

Dendritically distributed mRNA (Steward & Wallace, 1995) might be 
responsible for the difference in the time course of potentiation of the popula- 
tion spike and EPSP after inhibition of mRNA synthesis. Preexisting dendritic 
mRNA may be responsible for whatever protein synthesis was observed, as 
well as for the effect of the protein-synthesis inhibitor anisomycin on the EPSP 
and the failure to influence the spike during E-LTP described by Otani et al 
(1989). However, if dendritically distributed LTP-specific protein synthesis 
occurs, it remains unclear why LTP can only be maintained for 3 hours when 
dendrites are separated from their somata (Frey et al, 1989b). 

The assumed local synthesis of macromolecules in the dendrites may in- 
volve a yet-unknown soma-related factor, perhaps, activated by a second con- 
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vergent input to the activated neuron, such as provided by dopaminergic recep- 
tors. This input may have been cut off during the dissection procedure in 
dendritic-stump experiments (Jackson & Westlind-Danielsson, 1994). It is also 
possible that the vitality of dendritic stumps was diminished due to the micro- 
surgical intervention and that, as a result, the stumps could produce E-LTP, 
but not L-LTP. Furthermore, dendritically distributed mRNA might be the 
result of previous activity-related restricted transport from the soma to the 
activated synapse, or molecules synthesized in synapses might stand for distinct 
factors initiating gene expression. 

Finally, the time course of EPSP potentiation during L-LTP suggests that, 
besides mechanisms requiring RNA and protein synthesis, additional processes 
may be involved. These parallel processes include the prolonged activation of 
receptors or ion channels via phosphorylation, increases in receptor sensitivity, 
or even presynaptic mechanisms such as enhanced glutamate release. Further 
experiments must investigate such possible late-effector mechanisms. 

Given that RNA-synthesis inhibitors were only effective when applied 
during and/or immediately after LTP induction, a conditioning stimulus that 
induces L-LTP must activate gene expression during and/or immediately after 
its application. During the last few years, attention has been focused on the 
identification of genes that might play a role in activity-dependent plasticity. 
Thus, in the hippocampus a variety of conditions, including the stimulation 
paradigms used to induce L-LTP, cause a rapid and transient activation of 
immediate early genes (lEGs), e.g., c-fos, zif/268 (Sheng & Greenberg, 1990; 
Abraham, Mason, Demmer, Williams, Richardson, Tate, Lawlor, & Dragun- 
ow, 1993; Dragunow, Currie, Faull, Robertson, & Jansen, 1989b; Nikolaev, 
Tischmeyer, Krug, Matthies, & Kaczmarek, 1991; Demmer, Dragunow, 
Lawlor, Mason, Leah, Abraham, & Tate, 1993; Jeffery et al, 1990; Cole, 
Saffen, Baraban, & Worley, 1989; Wisden, Errington, Williams, Dunnett, 
Waters, Hitchcock, Evan, Bliss, & Hunt, 1990; Worley et al, 1993; Link, 
Konietzko, Kauselmann, Krug, Schwanke, Frey, & Kuhl, 1995; Qian et al, 
1993; Williams, Dragunow, Lawlor, Mason, Abraham, Leah, Bravo, Dem- 
mer, & Tate, 1995), and early-effector genes, such as tissue plasminogen 
activator (tPA), cyclooxygenase (Cox-2), and a ras-related gene, rheb (Qian et 
al, 1993; Yamagata, Andreasson, Kauafmann, Barnes, & Worley, 1993; 
Yamagata, Sanders, Kaufmann, Yee, Barnes, Nathans, & Worley, 1994). 

As previously noted, E-LTP does not appear to depend on gene transcrip- 
tion. This conclusion does not preclude genes from being normally transcribed 
immediately after LTP induction but exerting their effects later, during L-LTP. 
Many of the lEGs encode transcription factors that may control the expression 
of downstream effector genes (Goelet, Castellucci, Schacher, & Kandel, 1986; 
Berridge, 1986; Sonnenberg, Rauscher, Morgan, & Curran, 1989; Morgan & 
Curran, 1989). More recent studies have identified genes that may themselves 
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have effector function with the potential to quickly promote long-term altera- 
tions in neuronal phenotype during plastic processes, including LTP (Qian et 
al, 1993; Nedivi, Hevroni, Naot, Israeli, & Citri, 1993; Smirnova, Laroche, 
Errington, Hicks, Bliss, & Mallet, 1993; Yamagata et al, 1993; Yamagata et 
al, 1994). Further work is needed to characterize the role and function of 
newly synthesized gene products during LTP. Methodologically, the first step 
has been made in generating animals deficient in a particular gene; i.e., 
knockout animals. The known disadvantages, such as possible compensatory 
mechanisms during development, make it difficult to explain possible effects 
during LTP in these animals. Inducible gene knockouts would make a more 
specific characterization possible. 

However, when all findings are considered, gene expression does appear to 
be required during LTP, and not only to refill stores of "housekeeping" pro- 
teins. That more than simply housekeeping functions are involved is shown by 
experiments in which the application of the RNA inhibitor ACD immediately 
after tetanization had no effect on LTP. Application of ACD at this time dis- 
rupts housekeeping functions, and yet L-LTP occurred. 

Associativity, input-specificity, cooperativity, and occlusion during L-LTR. Are 
the four basic properties of LTP also valid for L-LTP? Most LTP studies have 
investigated only E-LTP. No experiments have been conducted to test whether 
associativity is required for the initiation of L-LTP. Further experiments are 
needed to determine whether L-LTP develops in a non-tetanized pathway with 
weak stimulation that occurs at the same time as a strong tetanus to a separate 
but convergent input or whether this pattern of stimulation causes only distinct 
phases of E-LTP. 

E-LTP is input-specific, but this appears to be only partially the case with 
synaptic enhancement during L-LTP. Preliminary results indicate that the 
excitability of the entire stimulated cell may be changed during L-LTP: A 
second non-tetanized input potentiates the population spike during L-LTP (Frey 
et al, 1988; Reymann et al, 1988c). Since the activated-synapse population 
retains its enhanced synaptic efficacy as well as spike potentiation, these 
observations suggest a functional, plastic transformation of the entire cell. 
Synaptic input-specificity is still conserved since, in contrast to the elevated 
population spike, the synaptic response (i.e., the EPSP) seems to be unchanged 
for the non-tetanized input. However, the input-specificity may be only rela- 
tively conserved during L-LTP. 

A potential central difficulty for the requirement of protein synthesis during 
L-LTP is raised by the assumption of synaptic input-specificity. How does the 
neuron achieve a restricted transport of newly synthesized proteins from the 
soma to the activated synapse? Preliminary results suggest a plausible account. 

Recent findings permit a possible resolution of the apparent inconsistency 
between the input-specificity of L-LTP and the more general effects of protein 
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synthesis. Commonly it is assumed that LTP is purely a local synaptic phe- 
nomenon, evidenced by its input-specificity. From this perspective, it was 
considered unlikely that a message is first sent to the nucleus of the cell, turn- 
ing on or up-regulating a gene or genes, and then new macromolecules, target- 
ed to modify a few stimulated spines, are sent to a distant dendritic compart- 
ment. Recently, an activity-regulated gene (arg3.1) was identified in response 
to synaptic plasticity (Link et al, 1995). Synaptic activity of the sort initiated 
by stimuli that induce L-LTP dramatically enriches mRNA levels of arg3.1 in 
the dendritic laminae. This enrichment, in conjunction with local protein 
synthesis at activated dendritic spines, provides a mechanism to modify stimu- 
lated synapses specifically. Other recent work demonstrates that protein syn- 
thesis also takes place within dendrites, where it is stimulated by NMDA- 
receptor-dependent synaptic activity (Feig & Lipton, 1993; Steward & Wal- 
lace, 1995). The differential localization of arg3.1 mRNA to dendrites 
provides the basis for local synthesis of the protein at activated postsynaptic 
sites. The restricted transport could elevate neuronal output, but in a manner 
that conserves synaptic input-specificity during L-LTP. In addition, the time 
course of potentials in a second non-tetanized pathway revealed a protein- 
synthesis-dependent elevation of neuronal excitability during L-LTP (Frey et 
al, 1988). 

The third basic property of LTP is synaptic cooperativity. To initiate the 
protein synthesis upon which L-LTP depends, several prerequisites must be 
met. First, the LTP-inducing stimulus must reach a distinct intensity and be 
applied repeatedly. The cAMP/PKA cascade necessary for L-LTP must be 
activated by stimulation patterns that induce LTP. The transient up-regulation 
of the cascade might be achieved, as previously noted, by synergistic activation 
of NMDA and dopamine receptors in the CA1 region (Eliot et al, 1989; 
Chetkovich et al, 1991; Chetkovich & Sweatt, 1993; Frey et al, 1993a; Huang 
& Kandel, 1995) or norepinephrine receptors in the dentate gyrus (Stanton & 
Sarvey, 1985a). If the strong tetanization needed for L-LTP activates multiple 
neurotransmitter systems, then prolonged LTP might be characterized as a 
"multisynaptic" rather than a homosynaptic phenomenon. In that case, L-LTP 
would require two different forms of cooperativity for its induction: cooper- 
ativity A, involving strong depolarization of the postsynaptic cell to produce 
Ca z+ influx through NMDA-receptor-gated channels; and cooperativity B, 
involving activation of a different heterosynaptic input. One candidate for the 
heterosynaptic input might be dopamine for the CA1, which could lead to the 
activation of an additional second messenger, such as PKA, that is specifically 
required for processes involved in L-LTP (~gure 4). The two different coop- 
erative properties of L-LTP might indicate a new principle of intercellular 
integration in the central nervous system. As is known from learning experi- 
ments, reinforcers are essential for the formation of prolonged memory traces. 



Cellular Mechanisms of Long-Term Potentiation." Late Maintenance 125 

Thus cooperativity B might implement the reinforcing action of aminergic 
systems at the cellular level. 

We turn now to the fourth property of LTP~occlusion. Very recently it has 
been demonstrated that occlusion may not occur with L-LTP (Frey et al, 
1995b). The widespread view was that asymptotic LTP, once established, 
prevented further potentiation, and that repeated tetanization did not prolong 
established L-LTP (de Jonge & Racine, 1985). The functional implication of 
this account was that potentiated neurons lose their capacity for further long- 
lasting facilitatory plastic changes in an activated input after the establishment 
of synaptic LTP. Thus synapses expressing LTP were not available for further 
processing of new incoming signals for a substantial period of time. 

We have shown that hippocampal LTP precludes the induction of subse- 
quent LTP only during E-LTP. Four hours after LTP induction, however, a 
newly delivered conditioning stimulus during maintained initial LTP produces 
a new potentiation of the earlier-activated synaptic input. Thus, established 
LTP is not a final state for the neuronal population, but preserves the capacity 
to react to incoming signals with further plastic changes. Since E-LTP is still 
maintained by the neuronal population, the neurons appear to reach a new level 
in responsiveness but are still available for further long-term processing of 
afferent signals. These findings suggest a new principle for signal processing 
during LTP. Although the cellular mechanisms responsible for occlusion 
during E-LTP and additional plastic changes during L-LTP are incompletely 
known, mechanisms specific to E-LTP could be responsible for the prevention 
of additional potentiation. 

Perhaps intracellular cascades, which are necessary for the initiation of 
LTP, must become available again to generate new LTP. During E-LTP, a 
short-term potentiation was described that could reflect a NMDA-receptor 
calmodulin-dependent stage. Since the intracellular targets for Ca 2+ and other 
agents may still be engaged with processes triggered by the initial potentiation, 
a second conditioned stimulus during this stage may fail to induce LTP. 
However, during L-LTP, when new macromolecules may be synthesized and 
processed, distinct mechanisms, such as transformed "silent" NMDA receptors 
that were activated during E-LTP, may return to pre-potentiation levels. These 
newly functional receptors would become available to new incoming signals, 
such as increased Ca 2§ levels enabled by NMDA-receptor activation during a 
second conditioned stimulus. 

Finally, very recent observations in my laboratory provide evidence for 
analog, long-lasting plastic events whose time course is similar to convention- 
al, glutamatergic L-LTP. An increase in protease activity has been detected in 
perfusates from the dentate gyrus following potentiation (Fazeli, Errington, 
Dolphin, & Bliss, 1990). Also, the expression of the gene for the extracellular 
serine protease, tPA, is induced during LTP (Qian et al, 1993). Proteases may 
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cleave the proteins required for the structural remodeling of dendrites observed 
during LTP (for reviews, see Baudry, 1986; Greenough, Armstrong, Comery, 
Hawrylak, Humphreys, Kleim, Swain, & Wang, 1994). 

We have now investigated the establishment and maintenance of hippocam- 
pal LTP in mice genetically engineered to be deficient for tPA (Carmeliet, 
Schoonjans, Kieckens, Ream, Degen, Bronson, De Vos, Van den Oord, 
Collen, & Mulligan, 1994). Our results indicate that tPA-deficient mice devel- 
op a potentiation whose time course resembles that of conventional L-LTP. 
However, this increase in synaptic efficacy is distinct from conventional L- 
LTP and represents a novel form of HEterosynaptic Long-lasting Potentiation 
(HELP; Frey, Miiller, & Kuhl, 1996). Application of the GABAA-receptor 
inhibitor bicuculline reveals a larger facilitation during normal synaptic trans- 
mission in mutant than in wild-type mice. LTP induction without GABA 
blockade and subsequent application of the GABAA-receptor inhibitor prevent- 
ed additional facilitation of synaptic transmission. This result indicates a re- 
duced inhibition during LTP in mutant animals. Furthermore, continuous 
blockade of the inhibitory system by picrotoxin before and after induction of 
LTP inhibited the maintenance of potentiation in the mutant animal, whereas 
conventional L-LTP remained unaffected in the wild-type animal. 

We therefore conclude that long-lasting potentiation in mutant mice in the 
absence of picrotoxin is maintained solely by GABAergic mechanisms. Our 
results indicate that tPA-deficient mice completely lack conventional L-LTP. 
HELP, however, does not require the expression of tPA and is mediated by 
NMDA-receptor-dependent modification of GABAergic transmission. This 
form of potentiation provides tPA-deficient mice with a CA1 output that is 
identical to that seen in wild-type mice during conventional L-LTP. Therefore, 
HELP might functionally compensate for L-LTP, and could explain why spa- 
tial-memory formation is unaffected in these mutant mice (Lipp, Wolfer, 
Bozizevic, Carmeliet, Collen, & Mulligan, 1993). This novel cellular plastic 
process might only occur in tPA-deficient mice. Alternatively, HELP may 
accompany conventional LTP and produce results that are indistinguishable 
from "normal" LTP. In this case, a neuronal population would employ two 
distinct mechanisms subserving a prolonged increase in synaptic efficacy. 
Heterosynaptic changes accompanying L-LTP but not E-LTP have also been 
detected in the dentate gyrus (Abraham, Bliss, & Goddard, 1985) and, as 
already noted, in a second non-tetanized pathway of the CA1 region (Frey et 
al, 1988; Reymann et al, 1988c). The use of tPA-deficient mice may provide a 
useful tool to further characterize the physiological consequences of, at least, 
HELP and conventional LTP. 

Conclusion and Interpretations 
LTP, at least in the hippocampus, is a non-unitary phenomenon in its time 

course and in its underlying cellular and intercellular processes. LTP is charac- 
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terized by phases similar to those thought to be involved in the formation of 
memory. The early phase (E-LTP) lasts up to 4 hours and does not depend on 
intact protein and, probably, RNA synthesis. A later phase (L-LTP) requires 
the cooperative activation of two different neurotransmitter systems during 
LTP generation and the subsequent synthesis of mRNA and macromolecules. 
The cellular mechanisms responsible for the maintenance of L-LTP are not yet 
fully known, but dopamine-mediated processes appear to be involved. These 
processes control the post-translational fucosylation of proteins that are neces- 
sary for the formation of LTM and L-LTP. Newly synthesized macromolecules 
are transformed and constitutively active kinases target proteins to activated 
synaptic sites. 

The induction of LTP requires a critical level of stimulation to activate the 
various mechanisms responsible for the determination of LTP duration. Thus, 
LTP requires an associative and cooperative induction, and--for the initiation 
of processes resulting in L-LTP--an additional, cellular induction signal. As 
shown, the induction signal may be the activation of cAMP/PKA through the 
dopaminergic D 1 receptor synergistically or cooperatively with the elevation of 
intracellular Ca 2~ via the NMDA receptor. 

New methods must be used to study cooperativity in L-LTP. Induction of 
L-LTP requires strong, repeated tetani but the electrical stimulation used in 
neurobiological experiments activates a relatively large number of afferent 
fibers. Therefore, fibers of different neurotransmitter systems, such as dopa- 
mine in the CA1, may be activated. It has not yet been verified if the coincid- 
ent activation of multiple transmitters also occurs naturally when L-LTP is 
produced. Dopamine has been shown to play the role of a biological reinforcer 
during learning (Beninger, 1983). Since two different neurotransmitter systems 
are required for L-LTP, it was suggested that hippocampal LTP should be 
described as a "multisynaptic" phenomenon, at least with respect to the devel- 
opment of its late phases. 

The observation that all of the processes required for the induction of L- 
LTP are initiated during or immediately after LTP generation indicates that E- 
LTP and L-LTP are not independent processes. They require similar, conver- 
gent intracellular mechanisms but the development of L-LTP involves the 
participation of additional processes. First, two different afferent-fiber systems 
must be active at the same time and, second, the activated postsynaptic neuron 
must be in an initial plastic state to react to incoming signals with prolonged 
plastic changes. The capacity of a neuron to react with further plastic changes 
returns only during L-LTP. 

The characteristics of LTP and its underlying mechanisms are consistent 
with the view that hippocampal LTP may provide a primary model for the 
investigation of the processes underlying learning and memory formation. 
Nevertheless, L-LTP is a very complex phenomenon requiring additional clar- 
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ification. The locus of plastic changes is, according to Konorski (1948) and 
Hebb (1949), the synaptic junction. However, recent results indicate that more 
than just the activation of a synaptic junction is involved in transforming and 
integrating incoming signals to a specific neuron into relatively permanent 
plastic changes at the synapse. Furthermore, as demonstrated in tPA-deficient 
mice, different interventions at the same neuron can produce the same neuronal 
outcome. Thus, the functional connectivity of neurons can be modulated not 
only by regulation of the synaptic efficacy of glutamatergic inputs, but also by 
a modification of inhibition. Therefore, conventional glutamatergic LTP may 
represent the cellular integration of input-specific afferent information. 
However, forms of potentiation such as HELP may provide a change in the 
output of the cell without a differentiated evaluation of the afferent signal. 
These processes may have very substantial implications for the functioning of a 
single neuron within a given neuronal network. 

From an evolutionary perspective, LTP may represent a general neuronal 
property whose full expression emerges only gradually. LTP-like phenomena 
have been described in invertebrates (for reviews, see Castellucci, Frost, 
Goelet, Montarolo, Schacher, Morgan, Blumenfeld, & Kandel, 1986; Goelet et 
al, 1986) and for structures in the spinal cord (Pockett & Figurov, 1993). The 
full significance of long-lasting neuronal changes can only be understood 
within the anatomical context (network architecture) and environmental 
demands in which they appear. Nevertheless, the investigation of plastic events 
occurring in single neurons will sharpen our understanding of their contribu- 
tion to the integrated action of the entire network. 
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CHAPTER 7 

TEMPORAL INFORMATION PROCESSING: 
A COMPUTATIONAL ROLE FOR PAIRED-PUlSE FACILITATION 
AND SLOW INHIBITION 

Dean V. Buonomano and Michael M. Merzenich 
Keck Center for Integrative Neuroscience 
University of California, San Francisco 

ABSTRACT 

The brain receives a continuous barrage of sensory input from the environ- 
ment. These inputs are dynamic and constantly changing in space and time. 
The brain must make decisions based on both the spatial and temporal structure 
of sensory stimuli. The neural basis of most forms of temporal information 
processing are poorly understood. This is particularly true for the processing of 
complex temporal patterns in the range of tens to hundreds of milliseconds. We 
have proposed that a series of well characterized neuronal properties permit 
circuits of neurons to transform temporal information into a spatial code. 
Neurons exhibit a wide range of properties in addition to postsynaptic potential 
(PSP) summation and spike generation. Neuronal properties such as paired- 
pulse facilitation (PPF) and slow PSPs are well characterized, but their role in 
information processing remains unclear. We have developed a continuous-time 
neural-network model whose elements incorporate PPF and slow inhibitory 
postsynaptic potentials (IPSPs), that examines whether such networks can 
discriminate time-varying stimuli. The time constants of the PPF and IPSPs 
were estimated from empirical data, and were identical and constant for all 
elements in the circuit. By incorporating these elements into a circuit inspired 
by neocortical connectivity, we demonstrate that the network is able to discrim- 
inate different temporal patterns. Generalization emerges spontaneously. Our 
results demonstrate that known time-dependent neuronal properties enable a 
network to transform temporal information into a spatial code in a self-organiz- 
ing manner, i.e., with no need to assume a spectrum of time delays or to 
custom design the circuit. 

Introduction 
The nervous system faces the challenging task of making sense of the 

"blooming, buzzing confusion" (James, 1890) of our sensory environment. The 
nervous system receives a continuous barrage of inputs and must make deci- 
sions in real time. Most real-world stimuli impinge on peripheral sensory 



130 D. V. Buonomano and M.M. Merzenich 

layers and produce spatio-temporal patterns of activity. Depending on the 
nature of the stimuli, the nervous system uses information contained in the 
spatial, temporal or spatio-temporal pattern of activity of the sensory afferents. 

Spatial information 
Spatial information refers to information encoded in the pattern of sensory 

afferents activated independently of the temporal structure of the activation. In 
the sensory modality, deciding whether a stimulus was applied to the forefinger 
or ring finger is a simple spatial task. Much more sophisticated examples of 
spatial tasks are character recognition and vowel perception. Different letters 
activate different patterns of photoreceptors, and the neocortex must make 
decisions based on these patterns to interpret them. Similarly, there is relative- 
ly little temporal structure in vowels, which can be discriminated on the basis 
of the frequency of their formants and, more specifically, the relationship 
between their frequencies. 

INTERVAL DISCRIMINATION 

Standard Tone ! i  " ~ ~  100 ms - ~ ~  
Interval 

Comparison ]'] ~ 100 + ..._ ~] 
Interval  A t m s  v 

FIGURE 1. Interval discrimination. In a typical interval-discrimination task a subject 
listens to two tones (pips) separated by a standard interval. A second comparison 
stimulus is identical to the standard stimulus except that the interval between the pips 
differs from the standard interval by At. The subject makes a forced choice as to 
whether the first or second interval was the longest." The value of At may be varied to 
determine the psychophysical threshold for interval discrimination. 

Temporal information 
In a temporal task, information is encoded in the temporal structure of the 

stimulus. Psychophysical studies typically use interval-or duration-discrimina- 
tion tasks to analyze temporal information processing. In an interval-discrimi- 
nation task a subject listens to two brief auditory tones (pips) separated by a 
standard interval, and a second pair of pips separated by a comparison interval 
(Figure 1). The subject is required to decide which was the longer interval. 
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The analysis of this task is complicated by the fact that each pip should activate 
the same primary auditory afferents. That is, at the level of the primary sen- 
sory sheath, the short and long stimulus are identical in terms of the spatial 
pattern of activation of the primary afferent. To discriminate the short and long 
intervals, the nervous system must transform temporal information into a spa- 
tial code. 

Most real-world stimuli are not purely spatial or temporal tasks, but spatio- 
temporal. The nervous system must use both spatial and temporal cues for 
complex sensory tasks such as speech perception, music perception, and 
motion orocessing (e.g., Gibbon & Allan, 1984; Tallal, Galaburda, Llinas, & 
von Euler, 1993). 

In trying to understand how the nervous system performs complex signal 
processing, we believe that it is useful to discriminate between spatial and 
temporal processing. Although many stimuli contain information in both the 
spatial and temporal domains, the neural mechanisms underlying both forms of 
processing may be distinct, although not necessarily segregated into different 
parts or circuits in the nervous system. If we consider a position-discrimination 
task, it is clear that there is a peripheral representation of the stimuli; i.e., 
distinct groups of neurons are activated at different locations on the sensory 
surface. In the interval-discrimination task, however, the stimuli that define 
both the short and long intervals can only be discriminated on the basis of the 
time between the two pips. In order to solve this task, the nervous system must 
convert temporal information into a spatial code; i.e., at some level of the 
nervous system different populations of neurons must be activated during the 
different intervals. The neural mechanisms underlying temporal information 
processing are unknown. 

Time-Dependent Neuronal Properties 
To date, our understanding of how neurons perform computations is based 

on theoretical models in which interconnected units take the weighted sum of 
their inputs and generate their outputs via an activation function (cf. Anderson 
& Rosenfeld, 1988). These elements are meant to represent the summation of 
fast excitatory and inhibitory PSPs (EPSPs and IPSPs, respectively) to produce 
spike generation. Indeed, these models have been effective in performing 
complex computations and have provided many insights into how the nervous 
system processes information. However, neurons exhibit many additional 
properties such as paired-pulse facilitation (Zucker, 1993; Clark, Randall, & 
Collingridge, 1994), paired-pulse depression (Deisz & Prince, 1989; Nathan & 
Lambert, 1991; Fukuda, Mody, & Prince, 1993), slow GABAB-mediated 
IPSPs (McCormick, 1989; Douglas & Martin, 1991), rebound facilitation 
(Landry, Wilson, & Kitai, 1984; Llinas & Muhlethaler, 1988; Buhl, Halasy, & 
Somogyi, 1994), spike accommodation (Madison & Nicoll, 1986), and vol- 
tage-dependent excitatory currents (Clark et al, 1994). 
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Paired-Pulse Facilitation 
Paired-pulse facilitation (PPF) refers to a short-term form of homosynaptic 

facilitation in which the second of a pair of action potentials produces a larger 
EPSP as compared to the first. Homosynaptic PPF is thought to be due to 
residual Ca 2§ in the presynaptic terminal (Zucker, 1993; Wu & Saggau, 
1994). In general the magnitude of facilitation varies from 50 to 100%, with 
maximal facilitation occurring at approximately 50 ms. A second phenomenon 
known as paired-pulse depression (PPD) of IPSPs can also result in facilitation 
of EPSPs (Nathan and Lambert, 1991; Metherate & Ashe, 1994). PPD relies 
on the activation of presynaptic GABA B receptors and tends to peak at 100-300 
ms (Davies et al, 1990; Fukuda et al, 1993). 

Slow IPSPs 
The inhibitory neurotransmitter GABA mediates most inhibition in the 

nervous system. The GABA A receptor mediates a ligand-gated fast IPSP; the 
GABA a receptor mediates a second messenger-gated slow IPSP. The slow 
IPSPs typically peak at 100-200 ms and last 500-1000 ms (Hablitz & Thai- 
mann, 1987; McCormick, 1989). 

To date few neural-network models have incorporated either of these prop- 
erties, in part because their role in information processing is unclear. One 
possibility is that they contribute to the processing of temporal information in 
the range of tens to hundreds of milliseconds. Consider the interval-discrimina- 
tion task: The first pip produces a pattern of activity in the network and trig- 
gers a series of time-dependent properties. When a second identical pip arrives 
100 ms later it essentially arrives in a different cortical environment. Accord- 
ingly, as a result of PPF, some synapses will be facilitated and others will be 
inhibited. Thus the same input may produce a different pattern of activation in 
the network. These differences could be used to encode temporal information. 

A Model of Temporal Information Processing 
As a step towards addressing the question of whether time-dependent 

neuronal properties may underlie temporal processing, we used a neural 
network composed of integrate-and-fire elements that incorporated PPF and 
slow IPSPs in addition to fast EPSPs and IPSPs. We focused on PPF and slow 
IPSPs because they have been described in some detail in cortical neurons 
(Creager, Dunwiddie, & Lynch, 1980; McCormick, 1989; Nathan & Lambert, 
1991) and can be incorporated efficiently into integrate-and-fire units. Fur- 
thermore, PPF may be particularly relevant to temporal processing because the 
amplitudes of EPSPs provide temporal information about recent spike occur- 
rence. 

Integrate-and-fire elements 
In our simulation, we used integrate-and-fire elements similar to those used 

in some previous models (W6rg6tter & Koch, 1991; Buonomano & Mauk, 
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FIGURE 2. Integrate-and-fire elements that incorporate slow IPSPs and PPE Traces 
represent the voltages of the simulated integrate-and-fire elements, a. Slow IPSP. By 
triggering a spike in the lower excitatory element (Ex) a suprathreshold EPSP is elici- 
ted in the inhibitory element (Inh), resulting in a fast EPSP followed by a slow IPSP in 
the upper Ex unit. The time constant of the slow IPSP is 80 ms. For illustrative 
purposes the connection strengths were increased for this figure, b. PPF. The second 
of two consecutive spikes in an Ex element produces a larger EPSP in the postsynaptic 
unit. c. PPF function. The PPF function was simulated with an alpha function peaking 
at 100 ms. For control experiments, the time-varying profile of the slow IPSP and PPF 
were transformed into step functions from 30-300 ms, dashed lines in a and c. 
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1994). Each element was composed of a single compartment with a membrane 
time constant. All synaptic currents were summed and, if the voltage of the 
compartment reached threshold, a spike was generated. Both excitatory (Ex) 
and inhibitory (Inh) cells produced postsynaptic currents that were described 
by an instantaneous rise and an exponential decay. The GABA A and GABA a 
fast and slow IPSP components were modeled as a single current with a slow 
decay (Figure 2). PPF of EPSPs was simulated with an alpha function 
(Figure 2a), with a peak facilitation of 60% occurring at 100 ms. 

Network architecture 
The excitatory and inhibitory elements were incorporated into a randomly 

connected circuit representing cortical layers IV and III (Douglas & Martin, 
1989). The network was composed of 100 inputs, and 150 and 250 elements in 
layers 4 and 3, respectively. The Ex units projected forward to both the Ex and 
Inh units in the next layer (Figure 3). In keeping with experimental observa- 
tions, 20% of the elements in each layer were inhibitory and 15-20% of the 
connections onto each element type were inhibitory. 

Simulations of Temporal Processing 

Interval discrimination 
The simplest task studied was interval discrimination: Two pulses were 

presented on the same input channels with different intervals between them. 
Each pulse simulated a brief stimulus such as a tap, tone or flash. The first 
stimulus pulse initiated a set of excitatory and inhibitory interactions in the 
network. Due to time-dependent changes imposed by PPF and slow IPSPs, the 
network was in a different state upon the arrival of the second pulse. Thus, 
even if the second pulse was identical to the first, some units would have dif- 
ferent probabilities of firing depending on the inter-pulse interval. These units 
could be used to encode temporal information. To demonstrate this, we added 
an output layer to the network and trained it to recognize interval-specific 
patterns produced in layer 3 by five different stimulus intervals (80, 130, 180, 
230 and 280 ms). All excitatory units in layer 3 (Ex3 units) were connected to 
a number of output units equal to the number of stimuli being discriminated. A 
supervised-learning rule was used to train each output unit to respond to a 
given stimulus (Buonomano & Merzenich, 1995). The output layer and the 
supervised-learning rule are not meant to be part of a realistic simulation of 
temporal processing. However, they do provide a means for determining 
whether the activity pattern in the network is competent to discriminate bet- 
ween different intervals. With the exception of the changes of connection 
weights between the Ex3 and output units during training, there was no plastic- 
ity in the connection weights or time constants at any level of the network. If 
the output units were able to discriminate between the intervals, it could only 
be as an emergent product of interactions between the units. Indeed, after train- 
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FIGURE 3. Network circuit and architecture. Integrate-and-fire elements were incor- 
porated into a two-layer network representing neocortical layers IV and III. Each layer 
of the network contained excitatory (Ex4 and Ex3) and inhibitory (Inh4 and Inh3) 
units. Each box represents a population of elements of a given cell type. Each cell type 
received inputs from three other cell types. The convergence (conv) indicates the 
number of presynaptic inputs each element received. The connection probability 
between any two cell types was determined by the convergence value divided by the 
total number of presynaptic elements. (See text for details.) 
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ing, output units did spike in response to the appropriate interval, demonstrat- 
ing that activity patterns produced in the Ex3 units contained sufficient infor- 
mation to code the temporal intervals (Figure 4). 
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FIGURE 4. a. Interval tuning curves. A supervised-learning rule was used to train 
each of five output units to respond to one of five intervals (80, 130, 180, 230, 280). 
Each output element received inputs from all Ex3 units. In this manner, the response 
of each output element corresponded to the weighted average of a population of inter- 
val-sensitive Ex3 elements. Interval tuning curves were constructed from 100 presenta- 
tions of each interval. Generalization was shown by the smooth tuning curves around 
each target interval. (See text for additional information about the tuning curve for 
output #5.) b. Control simulation. When the time course of the slow IPSPs and the 
PPF were described by step functions (see dashed lines in Figure 2), the network was 
unable to discriminate any of the intervals. 

Temporal generalization 
In addition to performing temporal discriminations, a biologically plausible 

model must exhibit generalization along a temporal dimension. The network 
was therefore tested with intervals varying from 30 to 330 ms, and interval 
tuning curves were constructed for the output units (Figure 4a). Although each 
output unit had been trained to respond to only one of five stimuli, each exhib- 
ited a tuning curve centered around its trained interval. Note that, with these 
tuning curves, the network forms a population code by which it can represent 
any interval between 30 and 300 ms. (Output unit #5, trained at the 280-ms 
interval, demonstrated a significantly worse tuning curve because a 280-ms 
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interval approached the limit of the time constants of the network.) To demon- 
strate that the ability of the network to perform temporal discriminations was a 
result of the time dependency of the PPF and the slow IPSPs, we performed a 
control experiment in which PPF and slow IPSPs followed a step function 
(dashed lines in Figure 2). In these control simulations, output units were 
unable to discriminate among any of the trained intervals and exhibited flat 
tuning curves (Figure 4b). 

Temporal-pattern discrimination 
Interval discrimination is a simple temporal task that could be solved using 

delay lines. Discriminating sequences of inputs is a more complex task. In such 
a task, it is necessary to keep track of more than one interval, a difficult task 
for models that rely on delay lines. To examine the ability of the network to 
solve a more complex temporal task, we trained the network to discriminate 
among four different stimuli. Each stimulus consisted of four pulses with 
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FIGURE 5. Random-sequence discrimination, a. Four different stimuli were used 
during training. Each stimulus consisted of four 5-ms pulses, with the intervals bet- 
ween pulses randomly selected between 50 and 250 ms. b. Each of four output units 
was trained to respond to one of the four stimulus sequences. After training, each 
output element responded preferentially, but not exclusively, to its training sequence. 
e. Phoneme discrimination. The two output elements were trained to discriminate 10- 
and 20-ms VOTs (/ba/) from 70- and 80-ms VOTs (/pa/). The network was then tested 
with intermediate VOTs. Tuning curves were constructed from 100 presentations of 
each stimulus. 
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randomly assigned inter-pulse intervals (Figure 5a). After training, we found 
that each output unit responded preferentially to the pattern of Ex3-unit activity 
that was elicited by the appropriate intervals (Figure 5b). 

Phoneme discrimination 
Speech perception is a preeminent example of a task that relies on temporal 

cues. An important cue for discriminating voiced and unvoiced phonemes 
(e.g., /ba/ and /pa/) is the voice-onset time (VOT). The VOT is the time 
between air release and vocal-cord vibration. "Ba" tends to have VOTs below 
30 ms whereas "pa" has VOTs above 30 ms (Wood, 1976). A network with 
two outputs was first trained to discriminate/ba/and/pa/by training with the 
two shortest (10 and 20 ms) and the two longest (70 and 80 ms) VOTs. The 
network was then tested with intermediate values of simulated VOTs. After 
training, output units responded best to the VOT values on which they had 
been trained, and response magnitude decreased in a monotonic fashion as a 
function of the VOT (Figure 5c). Response curves were qualitatively similar to 
those observed in psychophysical studies of VOT discrimination (Wood, 
1976). 

Conclusions 

Plasticity 
We have shown that, using elements with realistic neuronal properties, 

temporal processing emerges as a result of state-dependent changes imposed on 
network dynamics. Without the need to change the parameters of any units, the 
network was able to perform interval, pattern, and phoneme discrimination. 
Further, generalization occurred to similar temporal patterns. We expect that 
increasing the complexity of the elements, through incorporating other neuron- 
al properties and permitting synaptic plasticity, will further improve perfor- 
mance. A common form of synaptic plasticity, referred to as Hebbian associa- 
tion, assumes that synaptic strength increases if both the pre- and postsynaptic 
elements are coactive. However, our simulation experiments that incorporated 
Hebbian plasticity revealed difficulties in employing Hebb's rule with continu- 
ous-time networks having time-varying inputs. Hebbian association leads units 
to respond to the most frequent synchronous input patterns, which in the above 
tasks corresponded to the first pulse. And, of course, the first pulse was 
common to all of the intervals. Thus, the network became more responsive to 
the first pulse and not to the later pulses that contained the critical temporal 
information. Hebb's rule is well suited to reinforce simultaneous activity 
coming from spatially distinct inputs, but much remains to be learned about the 
temporal parameters that affect Hebbian plasticity. Furthermore, it is likely 
that more sophisticated learning rules that accommodate the role of both excita- 
tion and inhibition may be essential for learning temporal patterns. 
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Previous models 
In work on temporal discrimination within psychology, the most prevalent 

accounts of temporal processing are internal-clock theories (Church, 1984; 
Macar, 1985). Internal clocks are hypothetical mechanisms in which a neural 
pacemaker generates pulses, with the number of pulses relating to a physical 
time interval recorded by some sort of counter. Internal-clock models have 
been used in a large body of research on human temporal psychophysics. To 
our knowledge, there are no physiological data that support the existence of 
pacemakers and counters processing temporal information on the order of 
hundreds of milliseconds. 

More neurobiologically oriented models have often been based on the exist- 
ence of delay lines or elements with a spectrum of different time constants 
(Braintenberg, 1967; Tank & Hopfield, 1987; Grossberg & Schmajuk, 1989), 
or thresholds (Ant6n, Lynch, & Granger, 1991). Indeed, the nervous system 
does use delay lines for the detection of interaural delays used for sound locali- 
zation. However, these delays are on the order of a few hundred microsec- 
onds. For complex temporal stimuli on the order of tens to hundreds of milli- 
seconds, delay-line models require an ad hoc architecture and lack biological 
support. Our simulations suggest that known time-dependent neuronal proper- 
ties (not limited to PPF and slow IPSPs) with fixed and equal time constants 
permit a randomly connected network to transform temporal information into a 
spatial (place) code. This transformation occurs at each layer of the network, 
and may thus be amplified throughout the layers. The general conclusion that 
arises from our work is that temporal combination-sensitive neurons (e.g., 
Margoliash, 1983; Margoliash & Fortune, 1992) may emerge as a result of 
time-dependent changes in network state. That is, if stimulus A is presented to 
an animal followed by stimulus B, A produces a change in the state of the 
cortical network as a result of time-dependent neuronal properties. Then, 
stimulus B produces a pattern of activity that codes for B preceded by A, rather 
than for B alone. On this account, a place code develops for temporal relations 
between stimuli without the need to postulate any explicit timing mechanisms. 
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PART THREE: PERCEIVING 

In the natural environment, complex combinations of stimuli guide be- 
havior. Friends are recognizable through multiple stimuli~shape of eyes, 
color of hair, sound of voice, and so on. What biobehavioral processes mediate 
perceiving complex stimuli, and how may those processes be simulated? 

Studies of the neural mechanisms of perceiving have identified a number of 
general characteristics of the perceptual systems of mammals: (1) Sensory 
processing begins with physical energies that stimulate appropriate receptors 
that then activate sensory pathways leading to thalamic nuclei that, in turn, are 
the origins of pathways leading to sensory areas of the cerebral cortex. Using 
the visual system as an example, photoreceptors activate ganglion cells in the 
retina that give rise to fibers that innervate the lateral geniculate nucleus 
(LGN). Fibers from the LGN then innervate cortical neurons in the primary 
visual area (V1)of the occipital cortex. (2) Neurons in primary sensory areas 
send efferents to neurons in sensory association cortex, with successive neu- 
rons responding most strongly to ever more complex combinations of stimuli 
originating from ever larger regions of the environment. Referring again to the 
visual system, cells in V1 respond to a particular orientation of line only when 
the line occurs in a small region of the visual field (i.e., V 1 neurons have small 
receptive fields), whereas cells in visual association areas respond most strong- 
ly to certain combinations of lines and have large receptive fields (see Tanaka, 
this volume). (3) These feedforward pathways from receptor to sensory asso- 
ciation cortex are complemented by recurrent pathways (see Chapter 1). For 
example, in the visual system, recurrent pathways extend from V1 to LGN, 
from deeper to more superficial sensory association areas, and from motor 
association to sensory association areas (see Singer, this volume). Of course, 
each sensory system has modality-specific characteristics as well. Again with 
reference to the visual system, V1 gives rise to two initially largely independ- 
ent sensory association "streams"~a dorsal stream to the parietal lobes whose 
neurons are most strongly activated by movement and location, and a more 
ventral stream to the temporal lobes whose neurons are most strongly activated 
by form and color (Mishkin, Ungerleider, & Macko, 1983). (4) Lastly, cells in 
sensory association cortex that respond to complex combinations of stimuli are 
broadly tuned; i.e., they respond most strongly to one particular combination 
of stimuli but to other combinations as well (see Singer and Tanaka, this 
volume). 

The overall structure of sensory systems (e.g., pathways from thalamic 
nuclei to cortex) is primarily determined by genetic factors. However, the 
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specific connectivity between neurons within a brain region (e.g., within a 
thalamic nucleus or within a cortical region) is too detailed to be coded directly 
given the limited number of genes. Instead, the genes provide an extremely 
rich potential connectivity that is then winnowed to connections between 
neurons that are frequently coactive during prenatal and postnatal periods (see 
Singer, Burgos, and Luskin, this volume). Moreover, many of the same cellu- 
lar processes underlie both prenatal and postnatal changes in connectivity; e.g., 
Ca2+ influx via NMDA receptors and second messengers instigated by 
monoaminergic neuromodulators (see Singer and Frey, this volume). Learning 
is truly postnatal development. 

A central problem confronting the analysis of perceiving is how the diverse 
neural activity initiated by a complex stimulus can be integrated, or "tied 
together," so that behavior is guided by the concerted activity initiated by the 
stimulus and not by partial combinations or components alone. This is known 
as the binding problem, and a number of nonmutually exclusive mechanisms 
have been proposed whereby it may be addressed. Among these are the follow- 
ing: (1) Since all aspects of a stimulus initiate neural activity at approximately 
the same time (e.g., the neural activity produced by the form and location of 
the same object), synchronized neural activity may provide a basis upon which 
neural events in disparate brain regions may be integrated (see Singer, this 
volume; vonder  Marlsburg, 1985). (2) Neural activity in disparate brain 
regions may initiate activity in other regions that then activate recurrent path- 
ways which simultaneously affect the disparate regions (see Singer, this 
volume, Edelman, 1987). (3) Biologically important events (e.g., reinforcers 
such as food) may occur after the diverse neural activity initiated by a complex 
stimulus, and such events activate neuromodulatory systems that project 
nonspecifically to large brain regions. The conjunction of the neuromodulator 
with coactivity between units in these diverse regions may modify the connec- 
tions in a coordinated fashion (Singer, Frey, and Chapter 18, this volume). (4) 
The nonspecifically projecting output of the hippocampus to sensory-associa- 
tion cortex (Amaral, 1987) may simultaneously affect synaptic efficacies 
throughout those regions (Gluek & Myers and Chapter 18, this volume). 

The simulations in Part Three (Trehub, Hummel, and Gluck & Myers) 
are sensitive to various of these characteristics of perceptual systems and 
address the binding problem in differing ways. What unites these differing 
efforts is their treatment of perceiving as the cumulative outcome of the con- 
certed effect of fundamental biobehavioral processes. 
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CHAPTER 8 

DEVELOPMENT AND PLASTICITY 
OF NEOCORTICAL PROCESSING ARCHITECTURES 

Wolf Singer 
Max-Planck-Institut f-fir Hirnforschung 
Frankfurt/Main, Germany 

ABSTRACT 

One of the basic functions of the cerebral cortex is the analysis and repre- 
sentation of relations among the components of sensory and motor patterns. It 
is proposed that cortex applies two complementary strategies to cope with the 
combinatorial problem posed by the astronomical number of possible relations: 
(1) Analysis and representation of frequently occurring, behaviorally relevant 
relations by groups of cells with fixed but broadly tuned response properties 
and (2) dynamic association of these cells into functionally coherent assem- 
blies. Feed-forward connections are thought to be responsible for the specific 
response properties of neurons and reciprocal, associative connections for 
dynamic grouping. During development the architectures of both types of 
connections are susceptible to experience-dependent modifications, but become 
fixed in the adult. The feed-forward connections also appear to lose much of 
their functional plasticity, while the synapses of the associative connections 
retain a high susceptibility to use-dependent modifications. The reduced plastic- 
ity of feed-forward connections is probably responsible for the invariance of 
cognitive categories acquired early in development, while the persistent adap- 
tivity of reciprocal connections is a likely substrate for the ability to generate 
representations for new perceptual objects and motor patterns throughout life. 

Introduction 
A fundamental feature of the cerebral cortex is the similarity of its organiza- 

tion across different areas (Szent~lgothai, 1979; Douglas, Martin, & Whitter- 
idge, 1989). This suggests that the cortex performs computational operations of 
a general nature that support functions as diverse as perception, motor pro- 
gramming, remembering, planning, language processing, and reasoning. 

Reprinted with permission from Singer, W. (1995). Development and plasticity of 
cortical processing architectures. Science, 270, 758-764. Copyright 1995 American 
Association for the Advancement of Science. 
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What exactly these omnipotent processing algorithms are remains elusive, 
but the wealth of data gathered over the last few decades permits some educat- 
ed guesses. Analysis of sensory systems suggests that it is one basic function of 
cortical modules to detect consistent relations among incoming signals, often 
referred to as features, and to represent such relations by responses of neurons. 
The iteration of this process is thought to lead eventually to descriptions of the 
consistent constellations of elementary features that characterize individual 
perceptual objects. The assumption is that cortical representations of motor 
programs have a similar format in which descriptions refer to the spatio-tempo- 
ral relations among activated muscles. Because the number of possible feature 
constellations that are examined and eventually represented is astronomical, it 
is essential that cortical processing algorithms be capable of coping with 
combinatorial problems. 

I propose that there are two main strategies. First, hard-wired neurons are 
used to detect and represent relations that are particularly frequent and import- 
ant. Second, dynamic grouping mechanisms, allowing for a flexible recombina- 
tion of responses from hard-wired neurons, enable different, higher-order rela- 
tions to be analyzed and represented successively within the same hardware. 
Because most of the data relevant to this context are from the mammalian 
visual system, the two coding strategies and the associated adaptive mechan- 
isms will be exemplified in this modality. 

Two Strategies, Two Classes of Connections 
Neurons in the primary visual cortex of mammals evaluate particular spatial 

and temporal relations among the responses of retinal ganglion cells and repre- 
sent these relations by their feature-specific responses. Among the extracted 
features are the location, orientation and polarity of luminance gradients, their 
direction of motion, their spectral composition, and their interocular disparity, 
the last reflecting viewing distance. For the extraction of these features, signals 
of retinal ganglion cells have to be correlated with one another, and this ap- 
pears to be achieved by selective recombination of inputs, as first proposed by 
Hubel and Wiesel (Hubel & Wiesel, 1962; Hubel, 1975) and supported by 
several recent studies (Chapman, Zahs, & Stryker, 1991; Jagadeesh, Wheat, & 
Ferster, 1993). Thus, in order to detect and to represent the joint firing of 
ganglion cells responding to the vertical outlines of an object, inputs from 
vertically oriented rows of ganglion cells are made to converge selectively on 
individual cortical cells (Figure IA). This strategy of input recombination 
probably also is used for the evaluation of other relations that are analyzed at 
the level of primary visual cortex (V1). In all likelihood the same basic opera- 
tions are iterated in prestriate cortical areas. As suggested by the substantial 
divergence of projections beyond V1 and by the functional specialization of 
neurons in prestriate areas, many of these operations appear to be performed in 
parallel, each of the areas evaluating particular subsets of higher-order rela- 
tions in feature space (Figure IB; Maunsell, 1995). 
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FIGURE 1. Schematic representation of fe~-forward, RF-generating (broken lines) 
and reciprocal, assembly-forming connections (solid lines) within primary visual cortex 
(A) and betwe~a different areas of the visual cortex (B). Panel C shows an example of 
perceptual grouping on the basis of vicinity and colinearity. The colinearly arrangext 
line segments defining the outlines of a diamond get grouped together and pop out 
from the randomly distributed line segments of the background. The figure can be 
segregated from ground due to the enhanced saliency of figure-defining contour ele- 
ments. 
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The assumption is that the preference of cortical neurons for particular 
features results from the specific combination of converging feed-forward 
connections as exemplified in Figure IA for cells tuned to horizontally 
(columns I and III) and vertically oriented contours (column II). The output of 
retinal ganglion cells (lightest circles in retina) that are aligned in horizontal 
(columns I and III) or vertical rows (column II), respectively, converges after 
relay in the thalamus onto cortical cells in layer IV. Because of this specific 
combination of inputs, layer IV cells acquire orientation-selective RFs tuned to 
vertical and horizontal orientations. The output of the orientation-selective 
layer IV cells is then relayed further onto pyramidal cells in other cortical 
layers and these in turn project with feed-forward connections to prestriate 
visual areas as indicated in Figure lB. Note that this wiring diagram is highly 
simplified and omits most of the sophistication of intracortical circuitry. As 
indicated in Figure 1B, it is assumed that this strategy of evaluating and repre- 
senting particular relations among input signals by selective recombination of 
feed-forward connections is iterated over the subsequent processing stages in 
prestriate visual areas. The assembly-forming connections (solid lines) are 
assumed to originate from and to terminate on pyramidal cells, thus assuring 
reciprocal excitatory interactions. In addition, they terminate on inhibitory 
interneurons which in turn synapse on pyramidal cells. As indicated in Figure 
1B, grouping functions are also attributed to the reciprocal connections among 
cortical areas occupying the same level in the processing hierarchy, and to the 
back-projections from higher to lower processing stages. The latter are thought 
to bias grouping as a function of computational results obtained at the respec- 
tive higher level. The general organization of these ensemble-forming interare- 
al connections resembles that of the intra-areal grouping connections: They 
originate from pyramidal cells, are excitatory, and terminate on both pyramidal 
cells and interneurons in the target areas. In the present example, the tangential 
intra-areal grouping connections (l~gure IA) are proposed to link preferential- 
ly columns responsive to colinear contours, an architecture for which there is 
some experimental support (see arrangement of shaded RFs in the retina). 
Intrinsic connections span larger distances along trajectories corresponding to 
the location of orientation columns responding to colinear contours (Schmidt, 
L(iwel, Goebel, & Singer, in preparation). The effect of the resulting grouping 
is that signals evoked by colinear contour borders get selected and bound 
preferentially for joint evaluation at subsequent processing stages. 

Interestingly, however, this strategy of recombining inputs and generating 
cells with selective response properties is not pursued to exhaustive descrip- 
tions, neither of the elementary features represented in V 1 nor of the immense- 
ly more complex constellations of features of natural objects. At all processing 
stages, neurons remain broadly tuned to variations of stimulus parameters 
along different feature dimensions. The responses of individual cells are 
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ambiguous, and a full description of a particular feature or constellation of 
features can be obtained only by evaluating jointly the graded responses of a 
population of neurons. At first sight, such coarse coding appears uneconomical 
as it seems to require even more neurons to describe a particular feature or 
constellation of features than a strategy that uses the responses of individual, 
sharply tuned cells as descriptors. However, broadly tuned individual cells 
respond to many different features, so as a consequence, populations coding 
for different features overlap. Thus, a single cell can participate at different 
times in the analysis and representation of different features, and this can be 
exploited to reduce substantially the number of required representational units 
(Hebb, 1949; Braitenberg, 1978; Grossberg, 1980; von der Malsburg, 1985; 
Singer, 1985; Edelman, 1987, 1989; Palm, 1990; Abeles, 1991; Gerstein & 
Gochin, 1992; Young & Yamane, 1992). 

The problem with overlapping population codes, however, is that natural 
visual scenes usually contain many image components that are adjacent or 
overlapping in Cartesian and in feature space, thus evoking simultaneous 
responses in overlapping populations of broadly tuned cells. In order to exploit 
the advantage of population coding, the responses related to a particular feature 
must be identified and labeled in a way that assures their joint evaluation at 
subsequent processing stages and prevents false conjunctions with responses 
evoked by unrelated features. 

This requires a dynamic selection process that permits the grouping of dis- 
tributed neuronal responses in ever-changing constellations. Due to dynamic 
grouping, signals are selected at one level and reassociated in a flexible and 
context-dependent way at the next level via the feed-forward connections. This 
allows for dynamic rerouting of signals within a fixed hardware configuration 
and circumvents the combinatorial explosion of representational units that 
would result if every possible feature or constellation of features had to be 
analyzed by selective recombination of feed-forward connections and repre- 
sented by sharply tuned neurons. It can therefore be iterated over successive 
processing stages to analyze and represent in a versatile way relations of ever- 
increasing complexity, up to the level where the represented relations describe 
whole perceptual objects. 

I propose that a system exploiting this strategy needs two classes of connec- 
tions: first, feed-forward connections that are responsible for the generation of 
neurons with feature-selective receptive fields (RFs); and second, reciprocal 
connections among these neurons that serve to dynamically associate them into 
assemblies. To economize neurons, the former should generate cells preferring 
frequently occurring features that are suitable for the definition of perceptual 
objects. The latter, in contrast, should not contribute to the feature-specific RF 
structure but should allow for a maximum of combinatorial freedom in asso- 
ciating feature-coding cells. Thus, the constraints for the architecture, the 
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development, and the use-dependent malleability of the two classes of connec- 
tions are different. Before reviewing evidence on the development and adaptiv- 
ity of "feed-forward, feature-extracting" and "reciprocal, assembly-forming" 
connections, the organization and putative mode of action of the latter requires 
brief discussion. The two classes of connections are depicted in Figure IA. 

Strategies for Response Selection 
Dynamic selection and association of responses for further joint processing 

is accomplished best by enhancing their saliency. In principle there are two 
strategies to raise the saliency of distributed responses. The selected neurons 
can be made to discharge more vigorously, or they can be made to discharge in 
precise temporal synchrony. Both mechanisms enhance the impact of the se- 
lected responses, the first profiting from temporal and the second from spatial 
summation of synaptic potentials in the target cells. Grouping through syn- 
chronization has the additional advantage that it can operate at a fast time scale 
because no temporal integration is required and selection can occur at the level 
of individual action potentials. This permits multiplex grouping operations and 
may be beneficial when several groups need to be established simultaneously 
within the same cortical area. 

Available evidence suggests that both strategies are used. The discharge 
rate of cells in V1 can be modified in a context-dependent way by concurrent 
stimuli presented remote from the classical RF (Nelson, 1985; Morrone, Burr, 
& Maffei, 1982; Blakemore & Tobin, 1972; Gilbert & Wiesel, 1992), and 
recently it has been demonstrated that cells in V 1 responding to the component 
features of a perceptual figure respond more vigorously than cells which 
respond to similar features that are not part of a figure (Lamme, van Dijk, & 
Spekreijse, 1993; Lamme, 1995). This supports the hypothesis of response 
selection by modulation of discharge rate. Experiments on response selection 
by attentional mechanisms also show an enhancement of selected responses 
(Wurtz, Goldberg, & Robinson, 1980; Moran & Desimone, 1985). 

Evidence for synchronization of distributed responses is more recent be- 
cause it can be obtained only by recording simultaneously from more than one 
cell. But it is now firmly established that cortical cells can synchronize their 
discharges with a precision in the range of milliseconds (for reviews, see 
Singer, 1993; Singer & Gray, 1995). The analysis of correlated firing among 
simultaneously recorded neurons had initially been used as a tool to investigate 
neuronal connectivity. Hence, early cross-correlation studies did not consider 
stimulus-or context-dependent variations in correlation probability. Still, 
numerous studies revealed correlated firing among spatially distributed cortical 
neurons (Toyama, Kimura, & Tanaka, 1981a,b; Michalski, Gerstein, 
Czarkowska, & Tarnecki, 1983; Ts'o, Gilbert, & Wiesel, 1986; Ts'o & Gil- 
bert, 1988; Aiple & Kriiger, 1988; Hata, Tsumoto, Sato, Hagihara, & Ta- 
mura, 1988; Hata, Tsumoto, Sato, & Tamura, 1991; Gochin, Miller, Gross, & 
Gerstein, 1991; Schwarz & Bolz, 1991; Roe & Ts'o, 1992). 
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Later investigations have focused on stimulus-induced correlated firing, 
emphasizing the dynamic aspect and context dependence of synchronization 
phenomena. Stimulation-dependent synchronization always occurs with close to 
zero phase lag, is often associated with oscillatory firing patterns, and is not 
time locked to the stimulus, the latter indicating that synchrony is generated by 
neuronal interactions. Such dynamic synchronization has been found between 
(1) neurons distributed within the same cortical area (Gray & Singer, 1989; 
Engel, KSnig, Gray, & Singer, 1990; Livingstone, 1991; Eckhorn, Schanze, 
Brosch, Salem, & Bauer, 1992; Gray & Viana Di Prisco, 1993; Eckhorn, 
Frien, Bauer, Woelbern, & Kehr, 1993; but see also Gawne & Richmond, 
1993); (2) neurons distributed across different areas within the same hemi- 
sphere (Eckhorn, Bauer, Jordan, Brosch, Kruse, Munk, & Reitboek, 1988; 
Engel, Kreiter, Kfinig, & Singer, 1991; Bullier, Munk, & Nowak, 1992; 
Nowak, Munk, Chounlamountri, & Bullier, 1994); (3) neurons located in 
different hemispheres (Engel, K~Jnig, Kreiter, & Singer, 1991; Nelson, 
Nowak, Chouvet, Munk, & Bullier, 1992); (4) between visual areas and 
multimodal association cortex (Bressler, Coppola, & Nakamura, 1993; Roelf- 
sema, K6nig, Engel, & Singer, 1994); and (5) between somatosensory and 
motor cortex (Murthy & Fetz, 1992). 

Cells preferentially synchronize their responses if activated by contours of 
the same object, and can rapidly switch the partners with which they synchro- 
nize when stimulus configurations change (Gray, K~Jnig, Engel, & Singer, 
1989; Engel, KOnig, & Singer, 1991). Evidence does suggest that synchroniza- 
tion probability is related to behavior. In strabismic cats, V1 neurons driven by 
different eyes no longer synchronize their responses. This may reflect the 
inability of strabismic subjects to fuse the images seen by the two eyes (K~inig, 
Engel, L~iwel, & Singer, 1993). When strabismus leads in addition to amblyo- 
pia, perceptual deficits are associated with disturbances in the synchronization 
patterns of cortical neurons rather than with abnormalities in the response 
properties of individual cells (Roelfsema, KOnig, Engel, Sireteanu, & Singer, 
1994). In animals trained to perform sensory-motor tasks, synchronicity was 
seen to increase both within (Abeles, Bergman, Margalit, & Vaadia, 1993; 
Vaadia, Haalman, Abeles, Bergman, Prut, Slovin, & Aertsen, 1995) and 
across areas (Bressler et al, 1993) in relation to problem solving. This depend- 
ence of synchronization patterns on stimulus configurations and performance 
supports the hypothesis that synchronization serves to select the responses of 
distributed neurons and associate them into coherent assemblies for joint pro- 
cessing. (For comprehensive reviews see Gray & Singer, 1989; Engel et al, 
1990, 1991a,b; Livingstone, 1991; Bullier et al, 1992; Murthy & Fetz, 1992; 
Nelson et al, 1992; Eckhorn et al, 1988, 1992, 1993; Bressler et al, 1993; 
Gawne & Richmond, 1993; Gray & Viana Di Prisco, 1993; Nowak et al, 
1994; Roelfsema et al, 1994.) Studies based on lesions and on selective manip- 
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ulations of early experience have identified the tangential intra-areal (L6wel & 
Singer, 1992), the interhemispheric callosal (Engel et al, 1991; Nelson et al, 
1992) and feedback connections (Nelson et al, 1992; Sillito, Jones, Gerstein, & 
West, 1994) as substrates of these synchronization phenomena. 

Experience-dependent plasticity of feed-forward connections 
The basic features of the feed-forward connections to V 1 seem to require no 

experience for their expression, as many neurons develop their characteristic 
selectivity for elementary features before birth in monkeys, and prior to eye 
opening in other mammals (Hubel & Wiesel, 1963; Wiesel & Hubel, 1974). 
The same is true for the columnar arrangement of response properties and the 
layout of maps. The specification of these architectures is thus the result of 
evolutionary selection. Still, the expression of some of these features does 
depend on activity. Blockade of spontaneous retinal discharges prevents segre- 
gation of the afferents from the two eyes into ocular dominance columns 
(Stryker & Harris, 1986), suggesting the possibility that spontaneous activity 
promotes axon sorting. Ganglion cells in the developing retina engage in 
coherent oscillatory activity (Galli & Maffei, 1988; Meister, Wong, Baylor, & 
Shatz, 1991), providing the option to exploit synchronous activity for the iden- 
tification of the origin and neighborhood relations of afferents. 

However, a substantial fraction of neurons in V 1, especially those in layers 
remote from thalamic input, develop feature-specific responses only if visual 
experience is available. Receptive-field properties and maps in these layers can 
be modified by manipulating visual experience during a critical period of early 
postnatal development (for reviews see Blakemore, van Sluyters, & Movshon, 
1976; Fr6gnac & Imbert, 1984; Stryker, 1991; Rauschecker, 1991; Goodman 
& Shatz, 1993). Thus, there is room for epigenetic shaping of receptive field- 
generating feed-forward architectures. 

This activity-dependent refinement of connections is based on a Hebbian 
correlation analysis. Synapses are strengthened if the probability is high that 
they are active in temporal contiguity with the postsynaptic target cell, and 
they destabilize if inactive while their target is driven by other inputs 
(Rauschecker & Singer, 1979; Miller, Keller, & Stryker, 1989). Neurons wire 
together if they fire together. Such a selection mechanism is ideally suited for 
generating architectures capable of extracting consistent, frequently occurring 
relations. Of the many afferents converging onto a particular target cell, only 
those that are frequently coactivated become consolidated. As a consequence, 
the cell becomes tuned to the stimulus configuration that produced this coher- 
ent input pattern. Accordingly, selective exposure to particular patterns in- 
creases the percentage of cortical cells tuned to these patterns, albeit within the 
limits of the genetically predetermined architecture. Thus, cells in V1 can be 
made to prefer certain orientations (Blakemore & Cooper, 1970; Hirsch & 
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Spinelli, 1970; Rauschecker & Singer, 1981) or directions of motion (Tretter, 
Cynader, & Singer, 1975) more than others, but they cannot be instructed to 
develop preferences for patterns that they would not respond to normally. 

It is largely unknown to what extent the preferences for more complex 
constellations of features at higher processing stages are subject to experience- 
dependent specification. Cells tuned to feature constellations characteristic of 
faces are present in inferotemporal cortex of monkey babies (Rodman, O'Sca- 

FIGURE 2. Putative synaptic processes likely to mediate the induction of both ex- 
perience-dependent circuit selection during development and long-lasting synaptic gain 
changes in the adult. Here, only glutamatergic synapses are considered. A. Summary 
of ligand-gated and voltage-gated mechanisms that contribute to depolarization and 
modulate the concentration of Ca 2+ ions ([Ca2+]i) in the postsynaptic dendritic com- 
partment. Glu: Glutamate; mGlu (rectangle, left): metabotropic glutamate receptor; 
NMDA (square, center): N-methyl-d-aspartate receptor; AMPA (diamond, fight): ot- 
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; IP3: lnositol- 
triphosphate. B.-E. Homosynaptic and heterosynaptic modifications of synaptic trans- 
.mission for tw.o inputs terminatin.g on spines of the same dendritic segment.. Mechan- 
~iical~efl~ea~Cmmgo[vC~ed~s?~admd~catt~.c~e~she~iima~eSY~abOlmSp~tu~e Af t~Ohdxarr~,hWS 
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laidhe, & Gross, 1993). This suggests that even complex relations get extracted 
and represented by genetically determined feed-forward architectures. Whether 
this is true also for patterns that are less stereotyped and significant than faces 
is unknown. 

Synaptic mechanisms for selection of  feed-forward connections 
The selection process appears to be initiated by signals generated in the 

respective postsynaptic neurons, which evaluate synchrony in the activity of 

density of the stippling reflects both the expected level of depolarisation and the in- 
crease of [Ca2+]i. In B, C and D only the left-hand input is active, while in E both 
inputs are simultaneously active. The four conditions differ in the amplitude of the 
depolarizing responses of the postsynaptic dendrite. It is assumed that this amplitude is 
determined both by the activity of the modifiable synapses and by the state of other 
excitatory, inhibitory and modulatory inputs to the same dendritic compartment (not 
shown). B. The left input fiber discharges at low frequency. Only AMPA and mGlu 
receptors are activated~, voltage-gated Ca 2+ conductances are inactive. There is no 
substantial rise in [Ca 2 ]i and no lasting modification of synaptic transmission at the 
active synapse. C. The left input fiber discharges at higher frequency. Now both 
NMDA- and voltage-gated Ca 2§ channels are moderately activated. [Ca2§ rises to an 
intermediate level and leads to long-term depression (LTD) of the active synapse. 
There is only a small spread of depolarization to other spines. D. The depolarizing 
response is assumed to be stronger than in C, either because the left input fiber dis- 
charges at higher frequency or because it is active in conjunction with other excitatory 
inputs. Accordingly, NMDA receptor-gated and voltage-gated Ca z+ conductances are 
also more activated. The massive increase of [Ca2+]i in the activated spine leads to 
long-term potentiation (LTP). Moreover, depolarization spreads to other compartments 
of the cell and is thought to trigger action potentials. This spread of depolarization, 
aided perhaps by back-propagating Na + spikes (Stuart & Sakmann, 1994; Yuste & 
Denk, 1995) activates voltage-gated conductances. This is assumed to lead to an inter- 
mediate rise in [Ca2+]i at the postsynaptic side of the inactive synapse, which as a 
result undergoes heterosynaptic depression. E. Conditions are as in D, except that the 
second input is now also active. This facilitates the recruitment of ligand-gated Ca 2+ 
sources at the synapses of the second input and raises [Ca2+]i above LTP threshold so 
that the second input is no longer depressed, but undergoes LTP. Because the first 
input already causes substantial depolarization of the dendritic compartment, the 
second input can undergo LTP at activation levels well below those that would be 
required if the first input had not been activated. Most of the experience-dependent 
developmental-circuit changes can be accounted for by this scenario if one equates 
LTP and LTD with consolidation and disruption of synaptic connections, respectively. 
F. Illustration of the dependence of the polarity of synaptic-gain changes on the depo- 
larization level of the dendritic compartment (Artola & Singer, 1993). Ordinate: direc- 
tion of gain change. Abscissa: depolarization achieved during activation. O- and 0 +" 
thresholds for the induction of LTD and LTP. G. Experimentally determined (Hansel, 
Artola, & Singer, 1994) increases of dendritic Ca 2+ concentration expressed as fluo- 
rescence change (%AF/F) of the Ca 2+ indicator Fura2 (abscissa) after activation proto- 
cols leading to weak LTD (lst point), strong LTD (2nd point) and strong LTP (3rd 
point). Ordinate: Average amplitude of synaptic gain changes induced with the three 
stimulation protocols. As predicted in a model by Lisman (1989) there is a close corre- 
lation between changes in membrane potential (F), the increase of [Ca2+]i, and the 
polarity and magnitude of synaptic-gain changes. 
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converging afferents (Rauschecker & Singer, 1979; Miller et al, 1989). The 
end result is morphological changes of axonal and dendritic arborizations 
(Friedl~der, Martin, & Wassenhove-McCarthy, 1991; Antonini & Stryker, 
1993; Kossel, L6wel, & Bolz, 1995). N-methyl-d-aspartate (NMDA) receptors 
have been assigned an important role in experience-dependent circuit selection. 
Their activation protects inputs firing in conjunction with the postsynaptic cell 
against destabilization, promotes heterosynaptic repression of other, inactive 
inputs, and is a necessary prerequisite for the reconnection of previously 
weakened connections (Kleinschmidt, Bear, & Singer, 1987; Gu, Bear, & 
Singer, 1989; Bear, Kleinschmidt, Gu, & Singer, 1990). This supports the 
hypothesis that NMDA receptors evaluate the coincidence between pre- and 
postsynaptic activation and that Ca 2 § entry through the NMDA receptor serves 
as an early signal in the cascade leading to synapse stabilization (Bear, Cooper, 
& Ebner, 1987; Bear, Cooper, & Ebner, 1989; Fox & Daw, 1993). Synapses 
which are inactive while the postsynaptic cell is discharging weaken, and it has 
been proposed that this is because they cannot activate their NMDA receptors 
(Kleinschmidt et al, 1987; Gu et al, 1989; Bear et al, 1990). Synapses can also 
weaken if they are active while the postsynaptic cell is prevented from respond- 
ing (Reiter & Stryker, 1988), another condition in which activation of NMDA 
receptors is unlikely. 

These conditions are strikingly similar to those required for the induction of 
synaptic-gain changes in the adult such as homosynaptic long-term potentiation 
(LTP), heterosynaptic depression, and homosynaptic long-term depression 
(LTD), all of which are rapidly induceable and long-lasting changes of synap- 
tic efficacy, first discovered in the hippocampus (Figure 2). The suggestion 
that these use-dependent changes in synaptic gain could also serve as a first 
step in experience-dependent circuit selection is receiving experimental sup- 
port. In vitro studies on visual-cortex slices demonstrated LTP (Artola & 
Singer, 1987; Tsumoto, 1992; Kirkwood, Dudek, Gold, Aizenman, & Bear, 
1993) and LTD (Artola, Br6cher, & Singer, 1990; Tsumoto, 1993; Kirkwood 
& Bear, 1994a,b), revealed a similar dependence of plasticity on NMDA- 
receptor activation as in developmental changes (Singer & Artola, 1995) and, 
most importantly, showed an age-dependent decline in the susceptibility to 
undergo LTP that paralleled the time course of the critical period (Kato, Arto- 
la, & Singer, 1991; Kato, Braun, Artola, & Singer, 1991; Crair & Malenka, 
1995) for experience-dependent modifications. This decline is associated with a 
reduced contribution of NMDA receptor-mediated synaptic responses (Kato et 
al, 1991a,b; Crair & Malenka, 1995), whereby three factors seem to contrib- 
ute: (1) a reduction of NMDA receptors (Tsumoto, Haghara, Sato, & Hata, 
1987; Bode-Greuel & Singer, 1989; Fox, Sato, & Daw, 1989; Fox, Daw, 
Sato, & Czepita, 1992); (2) an increase of postsynaptic inhibition that prevents 
lifting of the Mg 2§ block (Kato et al, 1991a,b); and (3) a developmental 
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change in the gating characteristics of the NMDA receptor (Hestrin, 1992). 
Recently, it has been shown that rearing animals in the dark, which prolongs 
the critical period, also retards the decline in LTP susceptibility (Kirkwood, 
Lee, & Bear, 1995). Furthermore, there is evidence that manipulations which 
facilitate LTP induction, such as addition of the neuromodulators acetylcholine 
and norepinephrine (Br5cher, Artola, & Singer, 1992) or direct depolarization 
of postsynaptic cells, also favor the induction of experience-dependent modifi- 
cations of receptive-field properties (Fr6gnac, Shulz, Thorpe, & Bienenstock, 
1988; Greuel, Luhmann, & Singer, 1988). However, despite the attraction of 
these analogies, direct proof that LTP and LTD serve as first steps in devel- 
opmental-circuit selection is still missing. 

It is of particular interest that the experience-dependent selection of feed- 
forward connections is not determined solely by local correlations of activity, 
but is supervised by attentional mechanisms. Sensory signals induce circuit 
changes only when the animals attend to these signals and use them for the 
control of behavior. Visual stimulation does not induce changes of ocular 
dominance and orientation selectivity of cortical neurons when applied during 
anesthesia. Likewise, monocular deprivation fails to induce circuit changes in 
awake animals when the signals conveyed by the open eye are inappropriate 
for visuo-motor coordination. This is the case, for example, when rotation of 
retinal coordinates interferes with visually guided eye, head, and body move- 
ments. Conversely, passive visual stimulation does produce changes in feed- 
forward connections even under anesthesia when paired with electrical activa- 
tion of central-core projections. (For a review of the literature on central 
gating of developmental plasticity, see Singer, 1990). 

Experience-dependent modifications also fail to occur when the noradrener- 
gic, the cholinergic, or the serotoninergic projections to the visual cortex are 
inactivated, the permissive effects of these modulatory projections being 
mediated by f~, M1 and $2 receptors, respectively (Kasamatsu & Pettigrew, 
1979; Bear & Singer, 1986; Gu & Singer, 1993, 1995). No data are yet avail- 
able on a putative gating function of the dopaminergic system. It is noteworthy 
that this blockade of experience-dependent circuit changes occurs without 
noticeable alterations of the neuron's responses to visual stimuli, suggesting 
that the control of long-lasting synaptic modifications by the modulatory 
systems is mediated by second-messenger interactions that do not directly inter- 
fere with the electrophysiological properties of the neurons. These results 
indicate that the developing brain has the option to shape its architecture not 
only as a function of frequently occurring input constellations, but also as a 
function of their behavioral relevance. This implies that there are evaluation 
systems in the brain which are able to judge the adequacy of sensory signals in 
the context of ongoing processing and to prevent sensory input from modifying 
circuits if it does not meet with the "expectancies" that are defined by the 
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genetically constrained architecture of the brain. Disturbances of experience- 
dependent shaping of neuronal architectures during development can thus have 
several quite different causes. First, genetic predispositions could lead to the 
development of architectures that do not match well with the actual conditions 
of the environment to which the developing brain is exposed. If this mismatch 
is too large, experience-dependent adaptation of functional architectures may 
not occur or may remain incomplete. Second, there could be inborn malfunc- 
tions of the gating systems that evaluate the behavioral relevance of experience 
and permit use-dependent changes in circuitry. Such malfunctions could prev- 
ent experience-dependent shaping of architectures despite normal environmen- 
tal conditions. Disturbances of these gating functions could become particularly 
relevant in the context of ontogenetic learning processes that require social 
interactions, such as filial imprinting in animals and the development of higher 
cognitive abilities in humans. Third, all cerebral functions could be normal but 
the environment could be impoverished, failing to provide the information 
which the developing brain requires to optimize its functional architecture. 
Thus there are multiple possibilities for disturbances of experience-dependent 
shaping of neuronal architectures, and it is to be expected that abnormalities in 
the development of neuronal connectivity are not infrequent. It may be worth- 
while, therefore, to extend the search for pathophysiological causes of abnor- 
mal behavior to developmental disturbances in the wiring of the neuronal 
hardware, and to not confine clinical studies to the investigation of molecular 
and cellular disturbances only. 

A large number of cellular mechanisms have been identified that change 
during early development in parallel with the decline of use-dependent plastici- 
ty. This suggests that numerous processes cooperate in the maintenance of use- 
dependent plasticity during the critical period. Modifications have been de- 
scribed for surface-recognition molecules at synaptic locations, for distribu- 
tions of a variety of neurotransmitter receptors and voltage-gated Ca 2§ chan- 
nels, for the gating characteristics of NMDA receptors, for the laminar distri- 
bution of modulatory afferents, and for a large number of second-messenger 
systems. (For reviews see Singer, 1990, and Shaw, Needler, Wilkinson, Aoki, 
& Cynader, 1984). Recently, neurotrophins such as nerve-growth factor 
(NGF) and brain-derived neurotrophic factor (BDNF) have also been shown to 
play a role in experience-dependent selection of feed-forward connections, but 
the results are still inconclusive. The effects of adding NGF were found 
compatible with the hypothesis that input selection could be based on competi- 
tion for neurotrophins released by the postsynaptic target in an activity-depend- 
ent way (Maffei, Berardi, Domenici, Parisi, & Pizzorusso, 1992; Carmignoto, 
Canella, Candeo, Comelli, & Maffei, 1993; Berardi, Cellerino, Comenici, 
Fagiolini, Pizzorusso, Cattaneo, & Maffei, 1994; Domenici, Cellerino, Berar- 
di, Cattaneo, & Maffei, 1994). Application of BDNF but not of NGF was 
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found to prevent sorting of thalamic afferents into ocular dominance columns 
(Cabelli, Hohn, & Shatz, 1995), and intracortical infusion of BDNF but not of 
NGF in monocularly deprived kittens quite unexpectedly promoted disconnec- 
tion of non-deprived inputs, thus reversing the polarity of the selection 
mechanism (Galuske, Kim, Castren, Thoenen, & Singer, 1996; Singer, 1994). 

Thus, while the rules governing activity-dependent circuit selection are 
reasonably well understood, much remains to be done to clarify the underlying 
molecular mechanisms. 

Use-dependent plasticity of assembly-forming connections 
Much less data are available on the developmental specification of feedback 

projections and reciprocal intra- and interareal cortico-cortical connections. 
Most of these pathways attain their final selectivity only during postnatal life, 
and their architecture is highly susceptible to activity-dependent modifications. 
In cat V1 the tangential intracortical connections already exhibit a crude peri- 
odic patterning prior to eye opening, suggesting some experience-independent 
selectivity in the organization of these connections. However, some authors 
(LiJbke & Albus, 1992) have concluded that the patchy pattern of intrinsic 
connections at the time of eye opening closely resembles that seen in adults, 
requiring no further developmental refinement. But whether this selectivity is 
related to the columnar pattern of feature-specific cells that emerges at almost 
the same time is unknown. The tangential axons continue to grow beyond the 
time of eye opening, combining extension with refinement towards the highly 
selective mature pattern (Price & Blakemore, 1985; Luhmann, Singer, & 
Martinez-Millan, 1990; Callaway & Katz, 1990; Galuske & Singer, 1996; but 
see Liibke & Albus, 1992). Depriving kittens of vision delays this refinement 
(Callaway & Katz, 1991), and data from strabismic kittens indicate that vision- 
dependent selection of these intracortical connections follows a correlation rule 
in much the same way as has been established for the feed-forward connec- 
tions, suggesting similar mechanisms of selection CL/Swel & Singer, 1992). 
Columns exhibiting a low probability of coherent firing lose their reciprocal 
connections. One consequence is that cells in these columns also lose the abili- 
ty to synchronize their discharges, even when activated conjointly with coher- 
ent stimuli (K(Jnig et al, 1993), supporting the notion that cortico-cortical 
connections have a synchronizing action. Conversely, contiguous activation of 
spatially distant columns increases their mutual coupling to the extent that cells 
actually acquire two spatially separate receptive fields, the ectopic one reflect- 
ing the response properties of the remote columns (Singer & Tretter, 1976). 

In V1 of the normally reared adult, the tangential intracortical connections 
selectively link columns with similar feature preferences and the density of 
connections decreases with distance (Ts'o & Gilbert, 1988; Gilbert & Wiesel, 
1989; Malach, Amir, Harel, & Grinvald, 1993). This agrees with the postulate 
that the architecture of assembly-forming connections should reflect the Gestalt 
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criteria for perceptual grouping (Gray et al, 1989; Engel et al, 1991). The 
organization of the tangential connections in V1 seems appropriate for the 
grouping of responses according to the criteria of vicinity and similarity 
(Figure 1). The fact that tangential connections are selected by experience 
according to a correlation rule makes the conclusion unavoidable that their 
mature architecture reflects, at least to some extent, the joint probabilities with 
which particular features co-occurred during early development. Such acquisi- 
tion of knowledge about typical feature constellations by changes in architec- 
ture would be ideally suited to support figure-ground distinctions and perceptu- 
al grouping. Responses to feature constellations characteristic for perceptual 
objects would become grouped preferentially and routed together via feed- 
forward connections for further joint processing. 

No data are available yet on the genetic constraints limiting epigenetic 
modifiability of these tangential cortical connections, nor is it known whether 
their use-dependent selection is gated by modulatory systems. Data are also 
lacking on the development and the epigenetic modifiability of reciprocal corti- 
co-cortical long-range connections. Except for the callosal connections in the 
cat between contralateral areas 17, which seem to exhibit a dependence on 
experience similar to that of the intrinsic tangential connections (Innocenti & 
Frost, 1979), virtually nothing is known about the role of experience in the 
development of interareal and feedback projections. It is unlikely, though, that 
they would be less susceptible to epigenetic selection than the intra-areal 
connections. 

Plasticity in the mature cortex 
In the adult, use-dependent plasticity of feed-forward connections appears to 

be very limited, at least at lower levels of processing. The synapses of thalamic 
afferents become much less susceptible to undergo LTP (Crair & Malenka, 
1995), and in V1 the structure of RFs can be altered only with invasive condi- 
tioning procedures (Fr6gnac et al, 1988; Greuel et al, 1988). But even at 
higher levels, such as the inferior temporal cortex of primates, extensive train- 
ing is required in order to produce a statistically significant increase of neurons 
tuned to newly learned patterns (Miyashita, 1988; Sakai & Miyashita, 1991). 
The situation appears to be similar in other sensory cortices, although modifi- 
cations of response properties have been described after conditioning and 
extensive stimulation in both auditory cortex (Weinberger, 1993; Recanzone, 
Schreiner, & Merzenich, 1993) and somatosensory cortex (Merzenich & 
Sameshima, 1993; Kaas, 1995; Merzenich & de Charms, in press). The 
changes of RF properties were confined to modifications of tuning width, size, 
and minor changes in preferred features. Drastic alterations in response proper- 
ties of neurons can be observed in higher sensory areas and in motor centers as 
a function of changes in attention or the behavioral task. Since these modifica- 
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tions occur on a fast time scale, they are probably due to dynamic context- 
dependent rerouting of input signals rather than to synaptic modifications of 
feed-forward connections. 

These findings seem to exclude that, in the adult, representations of new 
patterns are generated to any substantial extent by modifications of the RF- 
forming feed-forward connections, and shifts the focus to the assembly-form- 
ing associative circuits. Indeed, there is ample evidence for their malleability 
despite the fact that research on their function still has a short history. Most of 
the studies that have demonstrated LTP and LTD in neocortical slices of 
mature animals have actually investigated the malleability of reciprocal cortico- 
cortical connections, although this is rarely made explicit. Recordings typically 
are obtained from neurons in supragranular layers, and responses are investi- 
gated that are elicited either from white matter, layer IV, or adjacent regions 
within supragranular layers. If monosynaptic, and the claim is that they are, 
these responses are mainly if not exclusively due either to tangential or ascend- 
ing intra-areal connections, or to long-range cortico-cortical projections. Thus, 
it is safe to conclude that, in the adult, cortico-cortical connections are highly 
susceptible to LTP and LTD and hence to use-dependent long-term modifica- 
tions of their efficacy. 

Evidence for use-dependent changes in the coupling strength of cortico- 
cortical connections is also available from in vivo recordings. Repeated coacti- 
vation of neuron pairs in the auditory cortex of monkeys led to enhanced 
synchronization of their discharges, and this effect occurred only when the 
animals paid attention to the tone used for activation (Ahissar, Vaadia, Ahis- 
sar, Bergman, Arieli, & Abeles, 1992). This is best explained by enhanced 
efficacy of connections that do not contribute to the RF proper but have syn- 
chronizing effects, a characteristic feature of tangential intracortical connec- 
tions (K6nig et al, 1993; Ts'o & Gilbert, 1988; Ts'o et al, 1986). 

Several studies demonstrated striking rearrangements of retinotopic and 
somatotopic maps, both after prolonged stimulation of afferent pathways and 
denervation (Weinberger, 1993; Recanzone et al, 1993; Merzenich & Sa- 
meshima, 1993; Kaas, 1995; Merzenich & de Charms, in press; Chino, Smith, 
Kaas, Sasaki, & Cheng, 1995; Schmid, Rosa, & Calford, 1995; Das & Gil- 
bert, 1995). Because these modifications occurred over large distances, they 
could not be accounted for by adaptive changes at the level of feed-forward 
connections, but had to be attributed to enhanced efficacy of tangential intrac- 
ortical connections. It appears that under the extreme condition of deafferenta- 
tion, the intracortical association connections can increase their efficacy so 
much that they can actually drive cells in remote columns and hence generate 
RFs. Recent evidence suggests that this increase in efficacy is associated with 
sprouting and the formation of new synaptic contacts (Darian-Smith & Gilbert, 
1995). 
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Long-term changes in the efficacy of the ensemble-forming association 
connections at one level of processing are expected to alter the activity patterns 
conveyed by feed-forward connections to the next level. Hence, the response 
properties of neurons at this level should change. This seems to be in contra- 
diction to the relative stability of RFs in the adult. One explanation is that the 
expected modifications may be revealed only if the effect of grouping opera- 
tions is studied rather than the structure of classical RFs. This, however, will 
require application of more complex stimuli and the analysis of context- 
dependent response modifications. Context-dependent modifications of RFs 
have been shown in V 1. Responses to stimuli presented in the classical RF are 
modulated by concomitant stimulation of neighboring regions in the visual field 
(Nelson, 1985; Morrone et al, 1982; Blakemore & Tobin, 1972; Gilbert & 
Wiesel, 1992), but also subsequent to intensive and repeated activation of these 
regions (Pettet & Gilbert, 1992). 

Conclusions 
Although data on use-dependent development of cortical circuits are still 

sparse, the following conclusions appear warranted. (1) During early postnatal 
development both the feed-forward, RF-generating connections and the recip- 
rocal, assembly-forming connections are susceptible to experience-dependent 
modifications, and these use-dependent changes appear to obey a correlation 
rule emphasizing the role of coherent activity in circuit selection. Converging 
inputs conveying consistent messages become consolidated, the consistency 
criterion being repeated, correlated activation. Despite its substantial malleabil- 
ity, the architecture of the feed-forward connections appears to be constrained 
by genetic predisposition more than that of the assembly-forming connections, 
but more data are needed to substantiate this point. (2) After the end of mor- 
phogenesis the architectures of both connection systems crystallize, and in 
sensory cortices most of the RF-forming pathways also seem to lose the ability 
to undergo use-dependent gain changes, while this ability is retained by the 
assembly-forming connections. (3) This persistent functional malleability of 
assembly-forming connections is the likely basis for the generation of new 
representations, because it allows for a rapid and flexible association of fea- 
ture-representing neurons into new constellations. It is also responsible for the 
short- and long-term changes in cortical maps observed after extensive stimula- 
tion or denervation. (4) The rules and induction mechanisms underlying use- 
dependent gain changes of assembly-forming connections in the adult are 
similar to those supporting circuit selection during development. It is therefore 
attractive to assume that LTP or LTD serves as an initial step in both process- 
es. As LTP and LTD are phenomena that can rapidly be reversed, they alone 
cannot suffice to generate new representations, i.e., durable associations of 
feature-specific cells. They may, however, play an important role for the rapid 
and context-dependent association of neurons and hence for the flexible selec- 
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tion and routing of activity across subsequent processing stages. Permanent 
associations could form if synapses that often undergo LTP, or whose potentia- 
tion is not rapidly reset, would eventually strengthen irreversibly. Adult plas- 
ticity would thus appear as the continuation of developmental processes, with 
the only difference that it no longer leads to modifications of the blueprint of 
the architecture and operates mainly by regulating the efficacy of assembly- 
forming connections. 
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CHAPTER 9 

INFEROTEMPORAL CORTEX AND OBJECT RECOGNITION 

Keiji Tanaka 
The Institute of Physical and Chemical Research (RIKEN) 
Saitama, Japan 

ABS1RACT 

Cells in the anterior part of the inferotemporal cortex (area TE) of the 
monkey brain selectively respond to various moderately complex object 
features, and those that respond to similar features cluster in a columnar region 
oriented vertically to the cortical surface. Cells within a column respond to 
similar but not identical features. Data from optical imaging in TE have sug- 
gested that the borders between neighboring columns are not discrete, but that 
there is a continuous mapping of complex-feature space within a larger region 
containing several partially overlapping columns. This continuous mapping 
may be used for various computations, such as production of the image of an 
object at different viewing angles, illumination conditions, and articulation 
poses. 

Introduction 
Visual object recognition, i.e., recognition of objects from their visual 

images, is a key function of the primate brain. This recognition is not a process 
of template matching between the input image and stored images, but a flexible 
process in which considerable change in an image--arising from differing 
illuminations, viewing angles, and articulations of the object~can be tolerat- 
ed. In addition, our visual system can deal with novel objects based on previ- 
ous visual experience with similar objects. Generalization may be an intrinsic 
property of the primate visual system. This chapter searches for the neural 
organization essential for these flexible aspects of visual object recognition in 
the anterior part of the inferotemporal cortex. 

The anterior part of the inferotemporal cortex (area TE) represents the final 
stage of the ventral visual cortical pathway, which is thought to be essential for 
object vision in the monkey. This pathway starts at the primary visual cortex 
(V1) and leads to area TE via relays in several non-primary visual cortical 
areas (V1-V2-V4-TEO-TE). A bilateral lesion of TE (Dean, 1976; Gross, 
1973) or deafferentation of TE by a complete bilateral lesion of the middle 
stage (Yaginuma, Osawa, Yamaguchi, & Iwai, 1993) results in severe deficits 
in the visual recognition or discrimination of objects. TE, in turn, projects to 
several polymodal brain sites outside the visual cortex, including the perirhinal 
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cortex (area 35/36), the prefrontal cortex, the amygdala, and the striatum of 
the basal ganglia. The perirhinal cortex projects to the hippocampus via the 
entorhinal cortex (area 28). 

I do not assume that visual object recognition is completed within the cir- 
cuits leading to and including area TE, but rather that it depends on neural 
activities distributed over the brain beyond the visual cortex. However, be- 
cause area TE is located at the final common stage in the processing of visual 
images of objects, I assume that area TE and its afferent circuits are essential 
for much of the flexible properties of visual object recognition. The perirhinal 
cortex may also be a key structure for visual object recognition, because recent 
lesion studies have shown its importance for the execution of visual delayed 
nonmatching-to-sample independent of the hippocampus (Eacott, Gaffan, & 
Murray, 1994; Gaffan, 1994; Gaffan & Murray, 1992; Meunier, Bachevalier, 
Mishkin, & Murray, 1993; Murray & Mishkin, 1986; Suzuki, Zola-Morgan, 
Squire, & Amaral, 1993; Zola-Morgan, Squire, Amaral, & Suzuki, 1989; 
Zola-Morgan, Squire, Clower, & Rempel, 1993). However, too little is known 
about the perirhinal cortex to identify the nature of its contribution to visual 
object recognition. 

This review article is eccentric in that our own data are emphasized and the 
citation of other references is selective. The selection is not based on the value 
of the studies, but on their relevance to the subject at hand. For an overview of 
studies on the inferotemporal cortex, readers should consult other reviews 
(e.g., Rolls, 1991; Miyashita, 1993; Gross, 1994; Desimone, Miller, & Che- 
lazzi, 1994), especially for discussions of the mechanisms of short-term 
memory of object images. I first summarize the data from unit-recording 
experiments to show that cells in TE respond to moderately complex object 
features, and that those responding to similar features cluster in a columnar 
region. The process by which the selectivity occurs is then looked for in the 
afferent pathways to TE. Data on optical imaging of TE is next introduced in 
the discussion of the function of TE columns. This discussion is further elabo- 
rated to include how the concept of an object emerges in the brain. 

The recordings introduced in this article were from the part of TE lateral to 
the anterior middle temporal sulcus (AMTS), which is often referred to as TEd 
(dorsal part of TE), and were obtained from anesthetized preparations. 

Stimulus Selectivity of Cells in TE 
An obstacle to the study of neuronal mechanisms of object vision has been 

the difficulty in determining the stimulus selectivity of individual cells. Great 
variety exists among objects in the natural world, and we do not know how the 
brain partitions this diversity into its constituent features. 

Single-unit recordings from TE were initiated by C.G. Gross and his col- 
leagues (Gross, Bender, & Rocha-Miranda, 1969; Gross, Rocha-Miranda, & 
Bender, 1972). They found that cells in TE had large receptive fields, most of 



162 K. Tanaka 

w 

] 5 deg. 

40 i/s 

l s  

/ /  

Z;2~ ,: ,  

= 

0.59 0.68 

"T-" 
~ m m m m m m m m m m : m m m m m m m m m m m  

0.02 0.10 
�9 --  I I I I "  . --  m L  - I ' ~ - - I  

I ii 

FIGURE 1. An example of the reduction process used to determine the feature critical 
for the activation of cells in the ventral visual pathway. The responses were averaged 
over ten repetitions of the stimuli. The underlines indicate the period of stimulus 
presentation, and the numbers above histograms indicate the magnitude of the respons- 
es normalized by the response to the image of a water bottle. This cell was recorded 
from TEd. 
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which included the fovea, and that some cells responded specifically to a 
brush-like shape with many protrusions, or to the silhouette of a hand. They 
extended the study of stimulus selectivity by using two different methods, one 
constructive and the second reductive. In the first method, they used Fourier 
descriptors that were defined by the number (frequency) and amplitude of 
periodic protrusions from a circle. A contour of any shape can be reconstruct- 
ed by linearly combining elementary Fourier descriptors of frequencies and 
amplitudes. Some cells responded specifically to Fourier descriptors of a par- 
ticular range of frequencies with considerable invariance for the overall size of 
the stimulus (Schwartz, Desimone, Albright, & Gross, 1983). However, this 
method was not very promising, since the same group of authors found that the 
response of a TE cell to a composite contour was far from the linear combina- 
tion of its responses to the elementary component contours (Albright & Gross, 
1990). Fourier descriptors do not appear to provide the basis by which the 
inferotemporal cortex represents objects. 

The second method used by Gross was the reductive method. Diverse 
objects were initially presented within the receptive fields of individual cells. 
After an object had been found that effectively stimulated a cell, paper cutouts 
simulating various features of the object were presented to characterize more 
precisely the nature of the critical stimuli (Desimone, Albright, Gross, & 
Bruce, 1984). Our work extended the reductive method by devising a proce- 
dure in which the test features were systematically varied with the aid of a 
specially designed image-processing computer system (Fujita, Tanaka, Ito, & 
Cheng, 1992; Ito, Fujita, Tamura, & Tanaka, 1994; Ito, Tamura, Fujita, & 
Tanaka, 1995; Kobatake & Tanaka, 1994; Tanaka, Saito, Fukada, & Moriya, 
1991). 

In the new method, spike activities were first isolated from a single cell. 
Then, many three-dimensional imitations of animals and plants were presented 
to determine which stimuli were effective. Next, images of the effective stimuli 
were taken by a video camera and presented by the computer to a TV monitor 
to determine the most effective stimulus. Finally, the image of the most effec- 
tive stimulus was simplified, while maximal activation persisted, by sequential- 
ly removing parts of the features contained in the image. The minimal stimulus 
that continued to activate the cell maximally was determined to be the critical 
feature for that cell. Figure 1 exemplifies the process for a cell recorded from 
TEd, in which the effective stimulus was reduced from the image of a water 
bottle to the combination of a vertical ellipse and a downward projection from 
the ellipse. 

After the reduction process had been completed, the image was modified to 
examine the selectivity further. Figure 2 exemplifies this latter process for a 
second TE cell, whose domain of selectivity was most clearly determined. The 
cell responded maximally to a pear model within the routine set of object 
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FIGURE 2. An example of further study of selectivity after the reduction process was 
completed. This second cell is different from the cell shown in Figure 1, but was also 
recorded from TEd. 

stimuli, and the critical feature was determined to be "a rounded protrusion 
from a rounded body with a concave smooth neck." The body or the head by 
itself did not evoke any responses (Figure 2, first line). The head had to be 
rounded because the response disappeared when it was replaced by a square, 
and the body had to be rounded because the response decreased by 51% when 
it was cut in half (second line, left). The neck had to be smooth and concave 
because the response decreased by 78% or 85% when the neck was replaced 
by one that was either straight or had sharp corners, respectively (second line, 
right). The critical feature was neither the right upper contour nor the left 
lower contour because neither stimulus by itself evoked responses (third line, 
left). The width and length of the projection were also not critical (third line, 
right). 

A third example of a TE cell is shown in Figure 3. The cell responded 
strongly to the face of a monkey toy (top left), and the critical feature was 
determined to be a configuration in which two black spots and one horizontal 
black bar were arranged in a gray disk (top line, second from left). Both the 
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bar and the spots were indispensable (top line, right two) and the circular 
outline was also essential (bottom left). The contrast between the inside and 
outside of the circular contour was not critical (bottom line, second from 
right). However, the spots and bar had to be darker than the background within 
the outline (bottom right). 

By determining the critical features for hundreds of cells in TE, we reached 
the conclusion that most cells in TE require moderately complex features for 
their activation, such as the 16 examples in Color Plate 1 (p. 185). The critical 
features were more complex than orientation, size, color, and simple textures, 
which are known to be extracted and represented by cells in V1. Some of the 
features were shapes that were moderately complex, while others were combi- 
nations of such shapes with color or texture. Responses were selective for the 
contrast polarity of the shapes: That is, contrast reversal of the critical feature 
reduced the response by more than half in 60% of tested cells, and replacement 
of the solid critical features by line drawings of the contour reduced the re- 
sponse by more than half in 70% of tested cells (Ito et al, 1994). 
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FIGURE 3. A third example of a TEd cell. 
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FIGURE 4. Tuning of responses of eight TEd cells for the orientation of a stimulus. 

lnvariance or Selectivity for Position, Orientation, and Size 
Gross et al (1972), in their pioneering experiments, found that cells in TE 

had large receptive fields within which the critical stimulus continued to evoke 
responses. Using sets of shapes whose critical features were determined by the 
reduction method, and other shapes in which the critical features were some- 
what modified, we demonstrated that selectivity for shape was generally pre- 
served over large receptive fields (Ito et al, 1995). Although selectivity was 
generally preserved for the critical features, responding was also affected by 
their orientation in the frontoparallel plane (Tanaka et al, 1991) and by their 
size (Ito et al, 1995). 

Figure 4 shows the data from eight cells for the tuning of responses to 
orientation in the frontoparallel plane. Rotation of the critical feature by 90 ~ 
decreased the response by more than half for most cells (A-F). The tuning of 
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the remaining cells was broader: The response was reduced by more than half 
only when the feature was rotated 180 ~ (G), and some cells showed only 
smaller decreases even with rotation of 90 ~ and 180 ~ (H). 

The effects of stimulus size on the response varied more among cells. 
Twenty-one percent of tested TE cells responded to ranges of size of more than 
four octaves of the critical features, whereas 43 % responded to size ranges of 
less than two octaves. Tuning curves for four TE cells, two from each group, 
are shown in Figure 5. The tuned cells may be in the process of forming size- 
invariant responses or, alternatively, both size-dependent and -independent 
processing of features occurs in TE. 
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FIGURE 5. Tuning of responses of four TEd cells for the size of a stimulus. 

Columnar Organization in TE 
How are cells with various critical features distributed in TE? By recording 

from two TE cells simultaneously with a single electrode, we have found that 
cells located near one another in the cortex have similar stimulus selectivity 
(Fujita et al, 1992). The critical feature of one isolated cell was determined by 
using the procedure described above, while---at the same time---responses of 
another isolated cell, or of non-isolated multi-units, were recorded. In most 
cases, the second cell responded to the optimal and suboptimal stimuli of the 
first cell. The selectivity of the two cells varied slightly, however, in that the 
maximal response was evoked by slightly different stimuli, or the mode of the 
decrease in response differed when the stimulus was changed from the optimal 
stimulus. Figure 6 shows an example of the latter cases. 

To determine the spatial extent of the clustering of cells with similar selec- 
tivity, we examined the responses of cells recorded successively along long 
penetrations made either vertically or obliquely to the cortical surface (Fujita et 
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FIGURE 6. An example of simultaneous recording from two nearby neurons in TEd. 
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FIGURE 7. Responses of cells recorded along a vertical penetration in TEd. The 
responsiveness of the cells was tested with the set of stimuli shown at the bottom, 
which was made in reference to the critical feature of the first cell indicated by the 
arrow. Effective stimuli are listed separately for individual recording sites in their 
order of effectiveness (m indicates multi-unit and s single-unit recording). 
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al, 1992). The critical feature of a cell at the middle of the penetration was 
first determined. Then, we presented a set of stimuli including the optimal 
feature for the first cell, its rotated versions, and ineffective control stimuli. 
Cells recorded at different positions along the penetration were tested only with 
the fixed set of stimuli. As shown in Figure 7, cells recorded along the vertical 
penetrations generally responded to the same critical feature as the first cell or 
to some closely related stimulus. The cells responding to common stimuli 
spanned nearly the entire thickness from layer 2 to layer 6. In the penetrations 
made obliquely to the cortical surface, the situation was different. The cells 
that were responsive to the critical feature of the first cell, or to related stimuli, 
were restricted to a small region neighboring the first cell. The horizontal 
extent of the region averaged 400 ~m. The cells outside this region either did 
not respond to any of the stimuli in the set or responded to control stimuli that 
were ineffective in activating the first cell. 

III 

FIGURE 8. Schematic drawing of the columnar organization in TE. 
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In summary, the TE region is composed of columnar modules in which 
cells within a column respond to similar but not identical features (Figure 8). 
The width of a columnar module across the cortical surface may be slightly 
greater than 400/zm. The span of a column along an oblique penetration is 
smaller than the true width of the column when the penetration crosses its 
periphery. The number of modules, which was estimated by a division of the 
whole surface area of TE into 500-by-500-/zm squares, was 1300 modules. 
Although the columns are drawn as discrete units in Figure 8, the overlap and 
continuity between neighboring columns is estimated later in the chapter using 
optical imaging. 

Organization of afferents to TE 
Selective responses to complex features, which were first observed in TE 

cells, can be traced to earlier stages in the afferent pathway to TE. We have 
found that cells requiring such complex features for their maximal activation 
were already present in TEO and V4 (Kobatake & Tanaka, 1994), although 
their proportion was small. 

To compare such cells in TEO and V4 with cells in TE, we compared the 
responses of individual cells to a fixed set of simple features versus individual- 
ly determined critical features (Kobatake & Tanaka, 1994). The fixed set of 
stimuli consisted of: (1) 16 bars at four orientations differing by 45 ~ and two 
sizes (either 0.5 ~ x 2 ~ or 0.5 ~ x 10 ~ and (2) 16 squares of four different colors 
and two sizes (0.5 ~ x 0.5 ~ or 2.5 ~ x 2.5~ Stimuli both darker than and lighter 
than the background were included. This set was sufficient to evoke good, 
although submaximal, responses in cells in V2 and V4 that showed selectivity 
only in the domain of orientation or color, and size. Most cells in TE either did 
not respond to the simple stimuli included in the set, or their responses were 
minimal compared with their responses to the individually determined complex 
critical features (as shown in Figure 9, left). 

TEO and V4 contained cells with various levels of stimulus selectivity. 
Some TEO and V4 cells showed no or negligible responses to any of the 
simple stimuli, as had cells in TE, while others showed moderately strong 
responses to some of the simple stimuli in addition to the maximal response to 
the complex critical features (as shown in Figure 9, right). The remaining cells 
even responded maximally to some of the simple stimuli. Figure 10 shows the 
proportion of occurrence of three groups of cells classified by the magnitude of 
their maximum response to the simple stimuli normalized for the overall 
maximum response of the cell. 

TEO and V4 were characterized by a mixture of cells with various levels of 
selectivity. We may take this mixture as evidence that selectivity is constructed 
through local networks in these regions. If we randomly sample cells from a 
local network in which selective responses to complex features are constructed 
by integrating simple features, the sample should include cells having various 
levels of selectivity. Cells located close to the input end of the network should 
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be maximally activated by simple features, those close to the output end should 
respond only to complex features, and those at intermediate stages should show 
intermediate properties. 
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FIGURE 9. Responses of a TEd cell (left) and TEO cell (fight) to a set of  simple 
stimuli. Their responses to individually determined critical features are shown at the 
top of the figure. 
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FIGURE 10. Proportion of cells with different levels of selectivity to complex 
features. The maximum response to the simple stimuli was less than 0.25 of the re- 
sponse to the complex critical feature for Mature Elaborate cells, between 0.25 and 
0.75 for Immature Elaborate cells, and greater than 0.75 for Primary cells. 
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Although we did not find clear evidence of selectivity to complex features 
in V2, slightly stronger responses to complex patterns than to simpler stimuli~ 
such as bars and gratings~were not unusual in this area (Lehky, Sejnowski, 
& Desimone, 1992). Selectivity to moderately complex features may develop 
gradually throughout the lower stages and become apparent in V4 and TEO. 
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F I G U R E  11. Dis t r ibut ion  o f  labeled axon terminals  in TE after a s ingle focal inject ion 
o f  P H A - L  into TEO. 

The anatomical organization of the forward projection from TEO to TE is 
consistent with the idea that selectivity to moderately complex features is 
already developed in the circuit up to TEO. We injected an anterograde tracer, 
PHA-L, into a single small region (the horizontal width of the injection sites 
was 330-600/zm) of the part of TEO representing the central visual field, and 
observed labeled axon terminals in TE (Saleem, Tanaka, & Rockland, 1993). 
Labeled terminals were largely limited to three to five focal regions in TE 
(Figure 11). In each of the projection foci, the labeled terminals were not 
restricted to the middle layers, but were distributed to columnar regions ex- 
tending from layer 1 to layer 6. The horizontal width of the columnar foci was 
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200-380 #m, which was slightly smaller than the electrophysiologically deter- 
mined width of columns in TE. As noted above, the receptive fields of cells in 
TE are large, usually including the fovea, and no retinotopical organization has 
been found in TE. Thus, the specificity of connections from TEO to TE should 
be defined in the feature space, not in the retinotopical space. It is suggested 
that outputs from a single site of TEO may carry information about a particular 
complex feature, and they are sent, therefore, only to a limited number of foci 
in TE. 
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FIGURE 12. Two single axons projecting from TEO to TE. The axon shown in the 
left half made terminal arbors only in layers 1 and 2, whereas the axon on the right 
made arbors only around layer 4. 

Although the overall distribution of labeled terminals was elongated to form 
a columnar region, this does not necessarily mean that individual axons make 
arbors in columnar regions. Indeed, single axons reconstructed from serial 
sections were heterogenous in shape. Some axons terminated exclusively in 
layer 4 and the bottom of layer 3, as the one shown in Figure 12, right. Some 
other axons terminated only in layers 1 and 2, as the one shown in Figure 12, 
left. There were also single axons that terminated in elongated regions, includ- 
ing both middle and superficial layers. It is possible that a single site in TEO 
sends many different kinds of information about a complex feature to a column 
in TE, and that they interact with each other through the local network within 
the TE column. 
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In summary, two characteristics may emerge first in TE: One is the colum- 
nar arrangement of cells with overlapping yet slightly different selectivity in 
local regions, and the other is the invariance of responding for stimuli at dif- 
ferent positions in the visual field. The receptive fields of cells in TE are large, 
including the fovea, and the selectivity of responses is essentially constant 
throughout these large receptive fields. A significant fraction of the cells in 
TEO and V4 respond to moderately complex stimuli as in TE. However, the 
receptive fields of cells in TEO and V4 are still much smaller than those of 
cells in TE and are retinotopically organized (Boussaoud, Desimone, & Unger- 
leider, 1991; Kobatake & Tanaka, 1994). This indicates that there are two 
steps in the formation of cells that respond to integrated features and are in- 
variant with respect to changes in stimulus position. First, the selectivity is 
constructed for stimuli at a particular retinal position in TEO and V4, and then 
the invariance is achieved in TE by obtaining inputs of the same selectivity but 
having receptive fields at different retinal positions. 

Optical Imaging of the Columnar Organization 
To characterize further the spatial properties of columnar organization in 

TE, we used the technique of optical imaging (Wang, Tanaka, & Tanifuji, 
1994). The intrinsic signals, which are thought to originate mainly in the 
increase of deoxidized hemoglobin in capillaries around regions of elevated 
neuronal activity (Frostig, Lieke, Ts'o, & Grinvald, 1990), were measured. 
The cortical surface was exposed and illuminated with red light tuned to 605 
nm. Activated neuronal tissue utilizes oxygen from hemoglobin, so the density 
of deoxidized hemoglobin increases in nearby capillaries. Because deoxidized 
hemoglobin absorbs much more light at 605 nm than oxidized hemoglobin, the 
region of cortex with elevated neuronal activities becomes darker in the re- 
flected image. 

Method 
To find visual stimuli that would be effective for the area of TE exposed for 

optical imaging, and to establish the relation between the optical changes and 
elevated neuronal activities in TE, we combined single-cell electrophysiologi- 
cal recordings with optical imaging. Unlike previous studies of V 1 and V2, the 
single-cell recordings were conducted in separate sessions prior to the optical 
imaging session. Activities of single cells were recorded with a microelectrode, 
and the critical features were determined for 15 to 25 cells recorded in six to 
eight penetrations at different positions. The optical imaging was performed 
while the critical stimuli and various control stimuli were presented. Five to 25 
different stimuli were used, each of which was presented 24 or 40 times for 
four seconds. 

To determine the change in activity due to the effect of the critical stimuli, 
the intensity of the image obtained when a critical stimulus was presented was 
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divided by the intensity obtained under baseline conditions. Two baseline 
conditions were used, one in which no visual stimulus was presented and a 
second in which stimuli were presented but not containing the critical features. 
The first baseline condition measured the activity generated by the critical 
features against the level of background activity, and the second against the 
level of activity induced by visual stimuli that did not contain the critical 
features. 

Findings 
Each of the critical features determined in the preceding unit-recording 

sessions activated two to 12 dark spots within the imaged region of TE (3.3 by 
6.1 mm). The locations of the spots were different for different features, and 
one of the spots covered the position of the electrode penetration from which 
the critical feature was determined. The average diameter of individual spots 
was 490/zm, which approximately coincided with the width of columns in TE 
inferred from unit-recording experiments (Fujita et al, 1992). Note that ob- 
servable changes in the optical signals are obtained only if a large proportion 
of the cells within a column were activated by the critical feature. Thus, clus- 
tering of cells that responded to a moderately complex feature was confirmed. 

The set of visual stimuli used in one block of optical imaging included three 
critical features, which were determined for three different cells recorded in 
the same penetration. Two of them were combinations of two colors of differ- 
ent luminosity, and the third one included a gradation of color from light blue 
to dark blue. All three stimuli evoked dark spots around the electrode penetra- 
tion. The spots all covered the position of penetration, but they overlapped 
only partially. Each of the spots was about 500 ~m in size, and the size of the 
overall region was 1100 ~tm. The stimuli were similar in that each contained a 
change in luminosity. 

Similar stimuli also produced partially overlapping activations in another 
case. The stimuli were a series of faces presented from different viewing 
angles. All of the five cells recorded in an electrode penetration selectively 
responded to the sight of a face. For one of the cells, the image of a face could 
be simplified to a combination of eyes and nose, but we did not find simplified 
stimuli for the remaining four cells. Three of the five cells maximally respond- 
ed to frontal images, and the other two maximally responded to profiles. Thus, 
we included five different views of one face in the stimulus set used for optical 
imaging. 

In the optical-imaging phase of the experiment, all of the face stimuli 
evoked activation spots around the penetration (we failed to recover the exact 
location of the electrode penetration in this case). Each activation spot partially 
overlapped the other four spots, and, moreover, the center positions of the 
spots systematically moved in one direction as the face turned from the left 
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profile to the right profile through the frontal and 45-degree images. Individual 
spots were 300-400 #m wide, and the overall region they covered was 800 #m 
in the axis along which the centers of the spots moved. This systematic shift of 
activation was also obtained with the face of another person: At the same 
viewing angle, the two faces activated the same region. The possibility that the 
systematic shift was caused by movement of a part of the face (e.g., the nose) 
was excluded because, even at different horizontal positions, the frontal image 
always activated the region at the center. 

i 

f 

FIGURE 13. Revised schematic diagram of columnar organization in TE. 

These facts suggest that several columns representing different but related 
features overlap one another and together compose a larger-scale unit in TE. 
The findings obtained when the viewing angle of a face was varied also suggest 
that some complex features are continuously mapped within larger scale groups 
of cells (Figure 13). Whether the mapping is continuous throughout a large 
part of TE, or whether discontinuities exist between groups of cells whose 
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diameters are approximately one mm, is yet unknown. Considering the large 
dimensions of the feature space that TE should represent, the latter is more 
likely. 
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FIGURE 14. Twenty-eight shape stimuli used in delayed matching-to-sample training 
with adult monkeys. 

Changeability of Selectivity in the Adult 
The stimulus selectivity of cells in TE changes in the adult according to 

changes in the visual environment. To demonstrate such changes, we trained 
two adult monkeys to discriminate 28 moderately complex shapes, shown in 
Figure 14, using a behavioral test apparatus containing a visual display 
equipped with a touch screen to monitor responding. We used a delayed match- 
ing-to-sample task (Kobatake, Tanaka, & Tamori, 1992; Kobatake, Tanaka, 
Wang, & Tamori, 1993) in which one of the shapes served as the sample 
stimulus, and changed randomly from trial to trial. After the screen for the 
sample display had been touched, a 16-second period elapsed (the delay peri- 
od) during which the sample stimulus was not present. Then, five shapes (the 
comparison stimuli) were presented at different display positions. One of the 
comparison stimuli was the same as the sample stimulus, and if the screen for 
this stimulus was touched the monkey received a drop of juice. After a year of 
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training, the monkeys were placed under anesthesia for repeated recordings 
from cells in TE. For individual cells, we determined the best stimulus from 
the set of animal and plant models we had used to investigate critical features 
in naive monkeys. The response to the best object stimulus was then compared 
with the responses of the same cell to the shape stimuli used in training. 
Because of time constraints, we did not perform the reduction process in this 
experiment. 

In TE of the trained monkeys, about one-fourth of the cells gave a maxi- 
mum response to some of the stimuli used in the training. Conversely, only 5 % 
of TE cells in untrained animals responded maximally to these stimuli. These 
results indicate that the number of cells responding to the training stimuli 
increased due to the year-long discrimination training. However, the spatial 
organization of the modified cells in the cortex is yet to be studied. We do not 
know whether new columns were formed for the discrimination of training 
stimuli, or whether some of the cells in the columns present before training 
became tuned to the training stimuli. Whether similar changes happened in 
TEO and V4 is also unknown. 

Earlier work by Sakai and Miyashita (1991) had demonstrated the effects of 
discrimination training on stimulus selectivity in adult monkeys, but only indi- 
rectly. Using a delayed matching-to-sample procedure with Fourier descriptors 
as stimuli, they reinforced responding directed toward one of two comparison 
stimuli. Unlike the prior study, the sample and comparison stimuli were not 
identical, but were arbitrarily related to one another by the procedure. After 
training for about a month, during which the arbitrary sample-comparison 
correspondence was acquired, recordings from TE cells were made using the 
same task paradigm. Some cells responded to two stimuli composing a pair, 
and these responses were significantly more frequent than would be expected 
by chance. Considering that the pairing of stimuli was arbitrary, the dual 
responsiveness of the cells to the paired stimuli could have been formed only 
through the adult training. 

In two studies, responses of cells in TE and surrounding regions changed 
within the course of recording from the same single cell. Miller and his col- 
leagues (Miller, Li, & Desimone, 1991; Li, Miller, & Desimone, 1993) found 
that, as the newly introduced stimulus became familiar, responses to the stimu- 
lus decreased in cells at the border region between TE and the perirhinal cor- 
tex. This effect is to be distinguished from habituation of responses to succes- 
sive presentation of the same stimulus, because the decrease occurred even 
after several intervening presentations of different stimuli. However, because 
the changes that Miller et al (1991) observed were opposite in direction to 
those we observed after long training, the two phenomena are not likely to be 
related. Rolls et al (1989) found that responses of cells in TE and the ventral 
bank of the superior temporal sulcus to a set of faces changed rapidly after the 
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introduction of a new set of faces. These changes included both increased and 
decreased responses. In our own experiments, the changes observed in the 
responses of cells likely occurred over a longer time period because the per- 
formance of the monkeys improved throughout the five months of training. 

Functions of the TE Columns 
Columnar organization suggests that an object feature is not represented by 

the activity of a single cell, but by the activity of many cells within a single 
columnar module. Representation of features by columnar modules whose 
constituent cells have overlapping selectivity to the effective stimuli satisfies 
two apparently conflicting requirements in visual recognition: robustness to 
subtle changes in input images, and precision of representation. While the 
image of an object projected to the retina changes due to changes in illumina- 
tion, viewing angle, and articulation of the object, the global organization of 
outputs from TE changes very little. The clustering of cells with overlapping 
and slightly' differing selectivity buffers the columnar module against these 
changes. 

Representation by multiple cells with overlapping selectivity can be more 
precise than a mere summation of representation by individual cells. A similar 
argument has been made for hyperacuity (Erickson, 1968; Snippe & Koender- 
ink, 1992). The position of the receptive fields changes gradually in the retina 
with a large overlap among nearby cells. By taking the difference between the 
activity of nearby cells, an acuity much smaller than the size of the receptive 
fields is produced. A similar mechanism to that in retinal space may work in 
feature space with largely overlapping and gradually changing selectivity, as 
discussed by Trehub in this volume. A subtle change in a particular feature that 
does not markedly change the activity of individual cells can be coded by the 
differences in the activity of cells with overlapping and slightly different selec- 
tivity. 

The function of the columnar organization in TE may go beyond the dis- 
crimination of input images. The optical-imaging experiments suggest that 
there is a continuous mapping of features within cortical units about one mm in 
size across the cortical surface. This may have two functional consequences. 
One effect is to make an evenly distributed variety of cell properties along the 
feature axis. Continuous mapping may be a tool to make the full divergence 
without omission (Malach, 1994; Purves, Riddle, & LaMantia, 1992). A 
second effect is to permit computations that involve variations on the feature to 
be carried out by local neuronal circuits. These computations may transfer the 
image of an object for three-dimensional rotations and for production of the 
image under different illumination conditions and articulation poses. 

A series of studies recently performed with slices of rat motor cortex 
suggest that there are two kinds of connections between pyramidal neurons 
through their axon collaterals (Thomson & Deuchars, 1994). Pyramidal cells 
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within a narrow columnar region 50 to 100 #m wide are tightly connected by 
synapses on the basal dendrites or the proximal part of the apical dendrites. 
Activation by these connections produces rapidly rising, large excitatory post- 
synaptic potentials (EPSPs) that cause the pyramidal cells to tend to fire syn- 
chronously. The second anatomical arrangement also favors the synchronous 
firing of pyramidal cells within a narrow column. Input axons appear to make 
synapses indiscriminately on the apical dendrites of these pyramidal cells, 
which are gathered together to form bundles (Peters & Yilmaz, 1993). The 
resulting narrow column corresponds to the "minicolumn" of Mountcastle 
(1978). In contrast, pyramidal cells with a longer horizontal distance are 
connected by synapses at the distal part of the apical dendrites. The EPSPs are 
small and slowly rising, but long lasting: They may contain the N-methyl-D- 
aspartate (NMDA) type of glutamate receptors. 

Taken together, we may draw a schema for area TE in which cells within a 
minicolumn make up a functional unit, receiving common inputs and mutually 
exciting one another. Nearby minicolumns exert weak, but long-lasting, effects 
on each other. After a minicolumn is activated by the retinal visual input, 
subthreshold activation propagates from it to nearby minicolumns, forming a 
pattern of activation with a focus. The focus of activation may move from one 
minicolumn to another, through interaction with distant activation foci in TE or 
with other brain sites. This mechanism may be used for various kinds of 
computation that the visual system must conduct to realize the flexibility of 
visual recognition, such as transfer of the image of an object for three-dimen- 
sional rotations, production of the image under different illumination condi- 
tions, and, in the case of faces, recognition of the image with different expres- 
sions. In this way, the columnar organization of TE may provide an overlap- 
ping and continuous representation of object features upon which various kinds 
of calculations can be performed. 

Binding Activities in Distant Columns 
Because object features to which individual TE cells responded were only 

moderately complex and cells within a single column responded to similar 
features, the computation performed within a column can provide only infor- 
mation on partial (but not necessarily local) features of object images. To 
represent the whole image of an object, computations in several or several tens 
of different columns must be combined. This raises the problem of "binding," 
that is, how are different sets of activity discriminated when there are more 
than two objects in nearby retinal positions? The receptive fields of TE cells 
are too large to discriminate different objects according to their retinal posi- 
tions. The problem of binding exists regardless of the presence or absence of 
so-called "concept units" in brain sites beyond TE. Concept units, if present, 
have to discriminate different sets of TE activity originating in different ob- 
jects. 
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One possible mechanism to solve the problem is the synchronization of 
firing of different modules (Engel, Konig, Kreiter, Schillen, & Singer, 1992; 
Singer, 1993). If the image of an object synchronizes the firing of some 
modules, and the activity of those modules is not coordinated with the firing of 
other modules activated by simultaneously present different objects, then this 
synchrony can provide a basis by which the features of the same object may be 
bound together. Firing synchronized with oscillations has been found between 
cells in the cat visual cortex, and some context dependency of the synchroniza- 
tion has also been reported. Although oscillating firing has not been found in 
TE (Young, Tanaka, & Yamane, 1992; Tovee & Rolls, 1992), non-periodic 
synchronization may be present in TE. 

Another possible mechanism of binding in TE is selection by attention 
(Crick, 1984). We can pay attention to only one object at a time, or a few at 
most. If representation of the features of an attended object is enhanced and 
that of other objects is suppressed, the binding problem is resolved. This is a 
likely mechanism, because strong effects of attention have been found on 
responses of TE cells (Richmond & Sato, 1987; Moran & Desimone, 1985; 
Spitzer, Desimone, & Moran, 1988; Chelazzi, Miller, Duncan, & Desimone, 
1993). 

A third possibility is that a single object initiates various separate sites of 
activity in TE that are then integrated through interactions involving loops of 
activity with retinotopically organized activity in earlier stages of the ventral 
pathway. TE projects back to TEO, V4, V2, and even V1 (Rockland, Saleem, 
& Tanaka, 1994; Rockland & Van Hoesen, 1994). There are also step-by-step 
feedback projections. Kawato and his colleagues (Kawato, Inui, Hongo, & 
Hayakawa, 1991; Kawato, Hayakawa, & Inui, 1993) have made a similar 
suggestion concerning the potential importance of feedback projections in 
integrating the disparate neural activity generated by a single object. (See also 
Singer, this volume.) 

"Face Neurons" in the Anterior Part of the Superior Temporal Sulcus 
(STPa) 

In the early 1980s, cells were found in STPa that selectively responded to 
the sight of a face (Bruce, Desimone, & Gross, 1981; Perrett, Rolls, & Caan, 
1982; Perrett, Mistlin, & Chitty, 1987; Rolls, 1992; Yamane, Kaji, & Kawa- 
no, 1988; Young & Yamane, 1992). These so-called face neurons have been 
extensively studied. There are reports that such cells are also present in TE 
itself (Baylis, Rolls, & Leonard, 1987; Tanaka et al, 1991), in area TG 
(Nakamura, Matsumoto, Mikami, & Kubota, 1994), and in the amygdala 
(Leonard, Rolls, Wilson, & Baylis, 1985; Nakamura, Mikami, & Kubota, 
1992). The meaning of "selectivity" varied among these studies: Some present- 
ed only a few non-face stimuli, and most did not test partial features of the 
image of a face. However, a few us~  an image made with scrambled patches 
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of a picture of a face, and this scrambled face was not effective (Bruce et al, 
1981). A few other studies found cells that were not activated by a face with- 
out the eye or by the eye only (Perrett et al, 1982; Rolls et al, 1985). We 
found systematically arranged columns in TE that responded to different views 
of faces. These data indicate that, in order to activate some face cells, all of the 
essential features that make up a face must be present. Thus the image of a 
face may activate more complex features than some other objects represented 
by cells in TE. 

The presence: of face neurons cannot be generalized to the representation of 
other objects. Faces are important media for social communication between 
individuals. Faces of monkeys have special significance for monkeys and, for 
laboratory monkeys, so do those of human beings. There are reports that the 
activity of face neurons in STPa represents individual differences and expres- 
sions by means of a population coding (Baylis, Rolls, & Leonard, 1985; 
Young & Yamane, 1992; Rolls & Tovee, 1995). Discriminating faces from 
other objects is only a preliminary stage in representing expressions or features 
of individual faces. The units prepared for population coding of individual 
differences and expressions of faces may appear as "cognitive units" for faces. 
This view is supported by the finding that some STPa cells respond to the view 
of body poses or movements or hand actions (Perrett, Smith, Mistlin, Chitty, 
Head, Potter, Broennimann, Milner, & Jeeves, 1985; Perrett, Harries, Bevan, 
Thomas, Benson, Mistlin, Chitty, Hietanen, & Ortega, 1989; Perrett, Hieta- 
nen, Oram, & Benson, 1992; Oram & Perrett, 1994). Body movements and 
hand actions often express important information about the relation between 
individuals in the scene, or between the individual in the scene and the observ- 
er. These groups of cells in STPa may be specially prepared for social 
communication. 

Object Recognition by Activities Distributed over the Brain 
Sakata and his colleagues have recently found shape-selective cell activity in 

areas of the intraparietal sulcus (Sakata & Kusunoki, 1992; Taira, Mine, 
Georgopoulos, Murata, & Sakata, 1990). Many cells in the lateral bank of the 
sulcus selectively responded to visual images of switches that the monkey had 
been trained to manipulate. The switches varied in shape, so the monkey posi- 
tioned its hand differently when it reached toward different switches. The 
discharges began when the monkey saw the switches, and--because the dis- 
charges decreased when the task was performed in a dark room--the activity 
was evoked, in part at least, by visual inputs. 

In addition, some cells in the more posterior part of the sulcus responded to 
more primitive features of stimuli, including the 3D orientation of a pole or the 
3D tilt of a plane. Using a computer graphic system that permitted the presen- 
tation of stimuli with or without retinal disparity, they found that the neural 
activity initiated by the images declined when binocular disparity was eliminat- 
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ed (Kusunoki, Tanaka, Ohtsuka, Ishiyama, & Sakata, 1993; Tanaka, Kusuno- 
ki, Ohtsuka, Takiura, & Sakata, 1992; Tanaka, Murata, Taira, Shikata, & 
Sakata, 1994). Thus, binocular disparity was a critical cue for the responsive- 
ness of these cells. 

Taken together, these findings seem to indicate a flow of information 
concerning the 3D shape of objects that the monkey may manipulate. This 
coincides with the proposition by Goodale and his colleagues (Goodale, Miln- 
er, Jakobson, & Carey, 1991; Goodale & Milner, 1992), based on human 
clinical data, that the dorsal pathway leading to the parietal cortex is responsi- 
ble for "visuo-motor control," but not for "spatial vision" (Mishkin, Unger- 
leider, & Macko, 1983). For an object to be manipulated, its 3D structure 
should be perceived. There may be a representation of object shape in the 
dorsal pathway that is independent of the representation of objects in the ven- 
tral pathway and, probably, that represents the shape only coarsely. This dorsal 
representation may influence the representation of objects in the ventral path- 
way through the indirect connection via the parahippocampal structures (Van 
Hoesen, 1982; Suzuki & Amaral, 1994) or via regions in the superior temporal 
sulcus (Seltzer & Pandya, 1978, 1984, 1989, 1994). 

The accumulated findings favor the idea that there are no cognitive units 
representing the concept of objects, but that instead the concept is found in 
activities distributed over various regions in the brain. When the visual image 
of an object is presented, it is processed in the ventral visual pathways and a 
representation, including its similarity to other objects and different views of 
the same object under different conditions, is reconstructed there. This repre- 
sentation in the ventral visual pathway utilizes population coding on two levels. 
First, the image of the object is represented by a combination of multiple par- 
tial (including both holistic and local) features represented by different columns 
in TE. Because the partial features are represented in an analog manner, the 
combinatorial representation can be understood as a combination of similarities 
to different "prototypes" of object images (Edelman, 1995). The second level 
of population coding occurs in the representation of partial features. The 
features are represented by multiple cells within a TE column that have over- 
lapping selectivity. Triggered by inputs from the inferotemporal cortex, emo- 
tional information about the object is read out in the amygdala, associations 
with other objects are read out through the perirhinal cortex, and the behavior- 
al significance emerges from the prefrontal cortex. The visual image of the 
object is also processed in the dorsal pathway, and information necessary for 
the monkey to manipulate the object is read out in the parietal cortex. All this 
recovered information, distributed over the brain, may constitute the neural 
basis for the concept of an object. 
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PLATE 1 (Tanaka, Chapter 9). Sixteen examples of the critical features of cells in 
TEd. They are moderately complex. 

PLATE 2 (Senft, Chapter 3). A set of somatic groups arrayed as arching laminae, to 
represent a sector of cerebral cortex (neurites exist in this simulation, but have been 
rendered invisible). Color is used to differentiate the overlapping cell groups assigned 
to the various "cortical layers." 

PLATE 3 (Senti, Chapter 3). A subset of elements from a larger simulation represent- 
ing cell groups in the brainstem, thalamus and cortex. A set of fibers from the brain- 
stem invade the thalamus from below. 

PLATE 4 (Luskin, Chapter 2). A representative SVZa-derived cell that recently 
synthesized DNA in the migratory pathway of a P3 animal. The SVZa was injected 
with retrovirus (encoding lacZ) on P0, and BrdU was administered 4 and 2 hours prior 
to perfusion. The anti-BrdU staining was visualized immunohistochemically using the 
ABC-immunoperoxidase method and VIP as a chromogen. The chromatin of the BrdU- 
positive cells appears dark purple; it is surrounded by the blue B-galactosidase histo- 
chemical reaction product in the cytoplasm of the lacZ-positive cells. Note that 
although the double-labeled cell in the middle of the photomicrograph recently repli- 
cated, it has an elongated cell body and a leading process, characteristic of a migrating 
neuron. Scale bar: 20 #m. Dorsal is up, anterior is to the right. (Modified from 
Menezes et al, 1995 with permission.) 

PLATE 5 (Georgopoulos, Chapter 13). Top: Preferred directions of 475 directionally 
tuned cells recorded during a 3D reaching task. Lines are vectors of unit length. (From 
Schwartz et al, 1988. Reproduced with permission; copyright by the Society for 
Neuroscience.) Middle: The same population of cells (light blue lines) shaped for a 
movement in the direction indicated by the yellow line. Their length is proportional to 
the changes in cell activity associated with the particular movement direction illustrat- 
ed. The direction of the population vector (orange) is close to that of the movement. 
(From Goorgopoulos et al, 1988. Reproduced with permission; copyright by the Socie- 
ty for Neuroscience.) Bottom: 95 % confidence cone for the direction of the population 
vector (line in the center of the cone); the movement direction (yellow line) is within 
the cone. (From Georgopoulos et al, 1988. Reproduced with permission; copyright by 
the Society for Neuroscience.) 
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PLATE 1 (Tanaka, Chapter 9). 

PLATE 2 (Senti, Chapter 3). 
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PLATE 3 (Senti, Chapter 3). 

PLATE 4 (Luskin, Chapter 2). 
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PLATE 5 (Georgopoulos, Chapter 13). 
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CHAPTER 10 

SPARSE CODING OF FACES IN A NEURONAL MODEL: 
INTERPRETING CELL POPULATION RF~PONSE 
IN OBJECT RECOGNITION 

Arnold Trehub 
Department of Psychology 
Neuroscience and Behavior Program 
University of Massachusetts, Amherst 

ABSTRACT 

Response to faces as measured by cell discharge in the temporal cortex of 
monkeys suggests a sparse cell-population coding of complex visual stimuli. 
The prevailing view assumes that a sparse population code requires the joint 
contribution of a relatively small group of cells (a neuronal ensemble) for 
effective coding and recognition. This assumption is based primarily on the 
consistent observation that single cells in the temporal cortex are broadly tuned 
rather than narrowly tuned to individual faces. It has been argued that the joint 
activity of a relatively small number of broadly tuned cells, each responsive to 
a different constituent feature of a face, could form an ensemble code selective 
enough to distinguish individual faces. In the present study, schematic faces 
were presented as stimuli to a model neuronal system for visual pattern learn- 
ing and recognition. This model effectively codes individual faces by means of 
competitive activity among single cells during recognition instead of by ensem- 
ble coding. The computer simulation permitted an analysis of the activity pro- 
files of all tuned cells during learning and recognition of the faces. All cells 
were found to be broadly tuned even though coding.was mediated by the dis- 
crete output of single cells on a competitive basis in a sparse neuronal popula- 
tion rather than by .the joint activity of a group of cells. The results show that 
the observation of broad tuning of cells in temporal cortex under typical exper- 
imental conditions does not warrant the conclusion that neuronal ensembles are 
required for the coding of individual faces. Suggestions are made for changes 
in the design of experiments to better test hypotheses about the coding of faces 
(or any other complex visual patterns). 

Introduction 
A central question for our understanding of visual pattern recognition in the 

brain is how neurons in the visual system code perceived objects. Face recog- 
nition is a particularly important aspect of complex pattern recognition and, 
following the early reports of face-selective cells in the temporal cortex of 
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monkeys (Gross, Rocha-Miranda, & Bender, 1972; Desimone, Albright, 
Gross, & Bruce, 1984), there has been a major effort to understand the neu- 
ronal coding of faces (see, for example, Kosslyn & Mumford, 1991; Bruce, 
Cowey, Ellis, & Perrett, 1992). 

In the typical experimental procedure, the spike discharge of single cells in 
the inferior temporal cortex of the monkey is recorded while the animal is 
presented with pictures or drawings of faces. It has been observed that cells 
which selectively discharge in response to faces as a stimulus class exhibit 
broad tuning curves in response to the faces of particular individuals. Mainly 
on the basis of this observation, the prevailing view is that single cells cannot 
adequately account for selective recognition of individual faces. Instead, it has 
been proposed that the neuronal processing is in the form of a sparse popula- 
tion code wherein face recognition requires the joint contribution of a small 
population of cells, each selectively responsive to the presence of a different 
facial feature (Baylis, Rolls, & Leonard, 1985; Young & Yamane, 1992). In 
this formulation, it is the pattern of activity over an ensemble of cells (a joint 
activity vector) that constitutes the recognition code (Gross, 1992; Gross & 
Sergent, 1992). 

An unresolved issue is how a neuronal population code, sparse though it 
may be, can selectively evoke a correct recognition response to a particular 
member of a stimulus category. This paper examines the activity levels of 
individual cells in a simulated neuronal model of visual object recognition 
when the system is required to learn and recognize each face in a group of 
line-drawn faces. Analysis of cell response profiles suggests an alternative 
interpretation against the common view that sparse coding of a complex visual 
pattern such as an individual face implies a neuronal ensemble of separately 
coded features. The results indicate that instead of a coding scheme based upon 
an ensemble of separate features, a sparse group of cells where each is holisti- 
cally tuned to a different exemplar of a particular face provides effective face 
recognition. 

Brief Description of Model 
The neuronal model simulated here (Trehub, 1991, chapters 2, 3, 4, 5, and 

7) consisted of five key integrated mechanisms: (1) a 16xl6-cell foveal retina; 
(2) a mechanism for triggering saccadic excursions to regions of high edge 
density in the visual field; (3) a putative post-retinal mechanism for positioning 
the centroids of retinotopic excitation patterns close to a standard internal axis 
(stimulus capture); (4) a learning mechanism for tuning synaptic transfer 
weights on individual adaptive cells (filter cells) in a detection set to patterns of 
retinal stimulation; (5) a competitive (winner-take-all) mechanism that selects a 
recognition response contingent on the relative activation levels of cells in the 
detection set in the context of each stimulus. The spike frequency of each cell 
can be considered as a positive monotonic function of its activation level. 
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Processing Sequence 

Contour H Contour Flux H -~-~'-~ H Afferent Diameter Detection Integration ~ntrol Control 
H Retinoid [ J Input to 

Registration I q Synaptic ,,Matdx 

[ Pattern Centroid Adjustment 

Inhibition Of Currently L ~ Pattern 
Dominant Flux Integral~ LmmJRec~176 

FIGURE 1. Processing sequence for parsing an object in a complex visual environ- 
ment. 

Figure 1 illustrates the processing sequence for parsing an individual face 
out of the set of 10 faces presented in the model's visual field. The total field is 
analyzed by an array of retinotopically indexed cells (flux detectors), each of 
which receives input from a relatively small region of the complete retinal 
field. Each flux detector integrates the amount of visual contour excitation in 
its particular retinal region and discharges with a frequency proportional to its 
total excitation. The contour flux detectors feed a matched array of cells that 
control visual saccades. The flux detector with the highest discharge frequency 
captures control of the saccadic apparatus and directs a saccade to the circum- 
scribed visual region that provides its input. Thus, the region of visual space 
with the highest contour density will be fixated first. 

There is a field constriction mechanism that limits the fovea-centered aper- 
ture of retinotopic input to a short-term memory module called a retinoid 
(Trehub, 1977). The retinoid can translate retinotopic excitation patterns over 
cells in an egocentric coordinate space. It is quadrantally organized, and 
automatically locates and positions pattern centroids on a standard reference 
axis within the visual system by shifting its visual pattern so that excitation is 
balanced within a threshold of tolerance over all quadrants. At the start of the 
parsing process, the visual field aperture is constricted to a small window on 
the stimulus field and an initial tolerance level is set for hemifield mismatch in 
the retinoid system. The centroid of the current effective visual pattern is then 
shifted to the standard egocentric reference axis. The visual aperture is pro- 
gressively enlarged in a stepwise fashion and, at the same time, the system 
relaxes its tolerance for quadrantal-excitation imbalances. At each step, the 
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system seeks to adjust the current centroid of the stimulus component within 
the afferent aperture so that it lies approximately on the reference axis. When 
the visual aperture reaches a limiting size, the pattern of retinoid excitation in 
its standardized position within the aperture is projected to a neuronal mechan- 
ism for learning and recognition called a synaptic matrix (Trehub, 1991). 

A schematic of the synaptic matrix is shown in Figure 2. Its structural 
properties and the learning rule can be briefly summarized as follows. Retino- 
topic afferents S.. are in discrete point-to-point synapse with a following set of Ij 
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F I G U R E  2. Schematic of a synaptic matrix. Afferent inputs are designated S... Mosaic 
cells are designated M. Dots represent fixed excitatory synapses; short obliq/~e slashes 
represent fixed inhibitory synapses; filled lozenges represent adaptive excitatory syn- 
apses. Reset neuron (-) generates an inhibitory postsynaptic potential to reset all class 
cells when discharged. Given any arbitrary input to the synaptic matrix, the class cell 
coupled with the filter cell having the highest product sum of afferent axon activity and 
corresponding transfer weights will fire first and inhibit all competing class cells. 
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neurons, called mosaic cells (M). The axon of each mosaic cell is in parallel 
adaptive synapse with all members of a set of cells in the detection matrix, 
which are called filter cells (/'). Each filter cell is in discrete synapse with an 
output neuron called a class cell (~). Each class cell integrates the activation 
input from its coupled filter cell. The axon of each class cell bifurcates and 
sends a collateral back in adaptive synapse with the dendrites of all mosaic 
cells (M) in the imaging matrix. Finally, a reset neuron (marked -) receives 
excitatory input from the axons of all class cells (fl) and sends its own inhibi- 
tory input back in parallel synapse with all class cells. Integration of filter-cell 
input to paired class cells, together with the reset mechanism, ensures that the 
class cell that receives the highest activation from its coupled filter cell will 
fire first and inhibit all competing class cells. 

One-trial learning of a visual stimulus pattern takes place by modification of 
adaptive synapses on filter cells in the detection matrix and mosaic cells in the 
imaging matrix. (In this simulation, processes taking place in the imaging 
matrix will not be discussed.) The magnitude of learning-related changes in 
synaptic transfer weight (if) are determined according to the following expres- 
sion: 

(~im-- b + Sim (c + kN -1) (1) 
b--~Lim 

where ~im is the transfer weight of synapse (~im' from the basal value (b) 
b--}Lim 

to the saturation limit (Lim), on an adaptive filter cell m; b is the initial transfer 
weight of the unmodified synapse; c is a fixed synaptic contribution from the 
active axonal contact on dPim; kN -~ is a proportional synaptic contribution 
taking account of N coactive axons on the cell m at the time of learning, and a 
synaptic modification constant k; and Sire is the activity level of axonal input at 
dPim. The product sum of afferent axon activity over the mosaic cell array (M) 
and the corresponding synaptic transfer weights (if) on each filter cell deter- 
mine its activation level. 

The parameter values used in the present study for stimulus capture, learn- 
ing, and recognition of faces were the same as used in a previous simulation of 
self-directed learning in a complex environment (Trehub, 1991, chapter 12). 

Procedure 
The stimuli that were presented to the model consisted of schematic faces 

(in pixel display) that had been used in previous experiments to explore percep- 
tual classification in humans. A subset of 10 faces taken from the original line- 
drawn stimuli used in studies by Reed & Friedman (1973) and Nosofsky 
(1991) were digitally scanned and reduced in size so that each face was approx- 
imately 18 pixels in height. All 10 faces were presented together throughout 
the simulation. 
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1 2 3 4 5 

6 7 8 9 10 

FIGURE 3. Bit-mapped face stimuli. Faces 1-5 are in category A; faces 6-10 are in 
category B. 

The 10 faces could be separated into 2 different categories with 5 faces in 
each category on the basis of a multidimensional (MDS) analysis of eye height, 
eye separation, nose length, and mouth height (]Figure 3; Reed & Friedman, 
1973; Nosofsky, 1991). In the current study, each of the faces was assigned an 
identifying name and a letter designation indicating that it belonged to category 
A or B (e.g., Tim-A, Ned-B). Before the start of the recognition procedure, 
synaptic transfer weights on one filter cell (f~) in the detection set were tuned 
(weights selectively increased by the learning mechanism) to a random pattern 
of retinal excitation. This cell evoked the response "RANDOM" whenever it was 
the most active filter cell in the detection set. On all subsequent trials the 
neuronal model was presented with all 10 faces in a single display. On each 
trial, the model retina automatically fixated on an individual face in a quasi- 
random fashion. The task was to capture a face, report its name (face recogni- 
tion), and give its category designation. If the response was correct, the opera- 
tor typed in "YES" and another face was captured and the procedure repeated. 
If the response was wrong, the operator typed in "No- and a previously un- 
modified filter cell (e.g., f2) in the detection set was synaptically tuned to the 
retinal pattern of the captured face (the current exemplar) by the intrinsic 
properties of the learning mechanism. Then the operator typed in the appro- 
priate name and category designation which would be evoked by the model 
whenever f2 was the most active filter cell. Again, the system captured another 
face and the same procedure was repeated. Notice that on the first recognition 
trial, the only possible response that the system could make was "RANDOM", 
since it had nothing else in its response repertoire. Each response to a captured 



face was counted as a trial whether the response was correct and followed 
immediately by a new capture, or whether it was incorrect and resulted in the 
exemplar-tuned synaptic modification of another filter cell in the detection set 
(learning). The simulation proceeded until 400 trials were completed. Perfor- 
mance was examined for face recognition and category designation in each of 
16 sequential blocks of 25 trials for each block. 

R e s u l t s  
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Face recognition and categorization 
Figure 4 shows the learning curves over all blocks. The percentage of 

correct responses for both face recognition and categorization was character- 
ized by a curve with an initial rapid rise over the first 50 trials followed by 
deceleration of improvement. The categorization response improved more 
rapidly than did the recognition of individual faces. At the end of the 400 tri- 
als, correct performance for both recognition and categorization was at the 
96% level. The conclusion that categorization of faces improved more rapidly 
than the recognition of individual faces was based on the following considera- 
tions. In the simulation, a correct identification of a face also evokes its correct 
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25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 

NUMBER OF TRIALS 

FIGURE 4. Plot of performance. Points plotted show the percent of correct responses 
over 16 blocks of 25 trials each. Filled circles indicate level of performance for face 
recognition in each of the successive trial blocks. Open squares indicate level of per- 
formance for category designation on corresponding blocks. 
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category. Only those trials where the identification response was wrong could 
provide information about the rate of category learning (cat) relative to the rate 
of recognition learning (rec). Since two categories of faces (A and B) were 
presented, there was a 50% chance that a wrong identification response would 
nevertheless name a face in the correct category. Hence on each block of trials 
we would expect a relative advantage for category performance on the basis of 
chance alone. Only if the magnitude of the advantage were greater than ex- 
pected by chance could we conclude that categorization improved more rapidly 
than recognition. Thus in order to determine if the rate advantage for categori- 
zation was significantly greater than chance expectation, the following formula 
was applied on each block of trials: 

Exp Adv [cat] = % Correct [rec] + (100 - % Correct [rec])/2 (2) 

The differences between the observed percentage of correct categorization 
and the Expected Advantage [cat] over all 16 blocks of 25 trials provided the 
data on which to assess the rate of improvement in categorization. There was 
an unbiased advantage for categorization ranging from +20% on block 1 to 
+6% on block 8. Over the last eight blocks, the categorization advantage 
ranged from + 4% to 0%. A total of 70 filter cells in the detection set had been 
synaptically tuned by the learning mechanism to exemplars of the captured 
faces. All filter cells exhibited broad tuning curves over the faces that were 
captured. This is illustrated in Figures 5 and 6 where the activation levels of 
10 different filter cells are shown in response to each of the 10 faces. These 
were randomly selected from the cells that signaled the correct response in a 
sample drawn from the last 50 trials in which 10 different faces were captured. 

Cell response profiles 
On each trial, the neuronal model selects a discrete recognition response on 

the basis of competitive activity among cells. The filter cell with the highest 
activation level evokes its associated name for the face that has been captured 
while inhibiting the output effects of all other cells. It is important to notice 
that a filter cell that has been selectively tuned to a particular face can exhibit a 
stronger response to other faces. This will not degrade the effectiveness of the 

FIGURE 5 (left). Activation levels of each of 10 sampled filter cells (F-cells) in 
response to exemplars of each of the 10 face stimuli. Activation response of each F- 
cell plotted against each face. Each F-cell in the left column had been synaptically 
tuned during learning to one of the 5 faces in category A. Each F-cell in the fight 
column had been tuned to one of the 5 faces in category B. For each cell, the face that 
it had learned is indicated by being circled. In each of the 10 plots, faces in category A 
are ordered so that the level of F-cell activation evoked by each face grades down to 
the left of the distribution; faces in category B are ordered so that the activation they 
evoked grades down to the fight of the distribution. 
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recognition system as long as the response of the correct cell is higher than any 
other cell in the detection set at the time that its learned exemplar or a pattern 
most similar to it is captured. For example, it can be seen in Figure 5 that F- 
cell 7 gives a stronger response on the trials in which faces 5 and 8 were 
captured than on the trial in which face 9 (the face it had learned) was cap- 
tured. Yet, as Figure 6 shows, the response of F-cell 7 to the capture of face 9 
is stronger than any of its competing filter cells when face 9 is the effective 
stimulus. 

The overall selectivity of the recognition system can be characterized 
by the number of competing filter cells which approach the peak activation 
level on each trial in which there is a correct response. This is illustrated in 
Figure 7 which shows the distribution of the number of competing cells with 
activation levels within 10% of the peak on all correct trials. It was found that 
on 31% of the trials there was no competing cellular activity within 10% of the 
peak response. On 41% of the trials there was only one competing cell within 
this range. The general shape of the selectivity distribution is similar to the 
reported distribution of discrepancies between population vectors (ensembles) 
of unit responses in cells of the macaque inferotemporal cortex and correspond- 
ing stimulus (face) vectors (Young & Yamane, 1992). 

Implications 
It is clear from these results that filter cells exhibit a graded response to all 

faces and therefore do not exhibit a punctate code. This finding is consistent 
with some kind of sparse coding mechanism for face recognition. However, 
the question of how sparse coding is used to ensure reliable recognition is more 
problematic. It is commonly proposed that a sparse population code entails the 
joint activity of a relatively small number of cells (an ensemble), each making 
its own necessary contribution to the set of encoded features which, taken 
together, characterize an individual face (Baylis, Rolls, & Leonard, 1985; 
Gross, 1992; Gross & Sergent, 1992; Young & Yamane, 1992). Similarly, in 
the more general context of object recognition, it has been suggested that 
objects are coded by sparse combinations of active cells where each cell repre- 
sents the presence of a particular complex partial feature of the object (Tanaka, 
1993; Tanaka, Saito, Fukada, & Moriya, 1991). Let us call this kind of code 
sparse-code 1. This approach to the problem of object recognition postulates a 
structure of overlapping feature detectors (mini-templates) in the visual system 

FIGURE 6 (left). Activation evoked by each face plotted against each F-cell. For each 
face, the cell that had learned it is indicated by being circled. Cells that had learned 
faces in category A are ordered so that their response levels grade down to the left; 
cells that had learned faces in category B are ordered so that their response levels 
grade down to the fight. 



200 A. Trehub 

50 

LU 
u 40 ,z 

3o 

o 20  

10 

0 I II -- - 
0 1 2 3 4 5 6 7 

NUMBER OF COMPETING F-CELLS 
(within 10% of peak response) 

FIGURE 7. Bar graph showing the percent of trials in which differing numbers of 
competing F-cells had an activation response within 10% of the observed peak re- 
sponse. 

that are assumed to be distributed in replicated fashion over the visual field. 
The critical notion is that each stack of feature detectors (putatively in colum- 
nar organization) is tagged by its retinotopic location so that a complete object 
can be uniquely defined by the whole concurrent activation pattern of a se t  of 
particular detectors at their particular locations. 

However, a caution must be raised here. If, at any given moment, there is 
only one object in the visual field, then an activated set of spatially indexed 
features might provide a unique definition of that single object. But what if 
there is more than one object in the visual field, as is normally the case in the 
natural world? Under the normal circumstance, we would need a biologically 
plausible mechanism that is able to map our complex retinal activation patterns 
onto just those discrete groups of spatially-indexed feature detectors that corre- 
spond to each of the separate objects in view (the binding problem). This is not 
a trivial problem. Indeed, it remains one of the serious obstacles for the gener- 
al class of pattern recognizers based upon the principle of detecting and com- 
bining partial features. 

An alternative interpretation of sparse coding is suggested by the operating 
characteristics of the neuronal model (Trehub, 1991) that generated the results 
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obtained in the present simulation study. In this model, when a face is captured 
within the visual afferent aperture, all filter cells show increased activation, but 
the cell with the highest activation level in response to the current retinal 
(proximal) stimulus evokes the appropriate discrete output. Hence, for each 
proximal stimulus a single cell can generate a code precise enough for effective 
recognition (Barlow, 1972, 1985; Konorski, 1967; see also Konishi, 1991). 
The joint contribution of other coding cells is not required. 

If this is the case, why did effective performance in the present simulation 
require that more than 10 filter cells be synaptically tuned to learn 10 faces? 
The answer is revealed in the difference between the distal (environmental) and 
the proximal (retinal) stimulus. When a face is in the visual field, we do not 
know exactly where its features will be registered on the retina. At one time, 
fixation might be centered on the upper part of a given face; at another time on 
a lower part of the same face. The features of a constant distal stimulus may 
excite differing proximal patterns on the retina at different times. Variations in 
fixation of no more than 1 degree in visual angle can result in significant 
changes in the distribution of foveal excitation. Each retinal pattern represents 
only an exemplar of a given stimulus. Some exemplars may vary from pre- 
viously learned patterns to the extent that they exceed the capacity of the 
recognition system to generalize correctly. Thus effective recognition of a face 
(or any other complex pattern) requires that different cells be tuned to at least a 
few different exemplars of the face in order to facilitate proper generalization 
and compensate for fortuitous shifts in exemplar capture (Trehub, 1991). In 
this sense, the sub-population of exemplar-tuned cells that individually signal a 
particular face also constitute a sparse code for that face. Notice, however, that 
this code is significantly different from sparse-code 1 in that it does not require 
the joint activation of an ensemble of exemplar-tuned cells to achieve effective 
recognition. Let us call this kind of neuronal code sparse-code 2. 

The characteristic strategy for investigating selective coding of faces (or 
other objects) in neurophysiological experiments has depended on finding cells 
in which the peak spike rate is systematically evoked by the presentation of 
particular faces in an arbitrary set of stimuli (Desimone et al, 1984; Perrett, 
Mistlin, & Chitty, 1987; Young & Yamane, 1992; see also Tanaka et al, 1991; 
Gallant, Braun, & Van Essen, 1993). Implicit in this strategy is the general 
assumption that if the output of a cell is to be a reliable indicator of a particular 
object, the cell must respond more vigorously when that object is seen than 
when any other object is seen. This investigatory approach precludes the pos- 
sibility of uncovering a neuronal recognition mechanism based upon competi- 
tive discrimination by sparse-code 2. For example, under the usual paradigm, 
F-cell 7 in the present simulation (Figures 5 and 6) would be thought to more 
likely code for face 5 or face 8 than for face 9, which it actually learned and 
correctly recognized within the competitive recall model (Trehub, 1977, 1991). 
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If the neuronal brain mechanism for face recognition in the monkey is 
organized on the principle of sparse-code 2 then several implications for the 
interpretation of single-cell recordings follow: (1) broad tuning of many cells 
in response to a particular face (or any other complex pattern) does not 
straightforwardly imply an ensemble code; (2) discovering a set of exemplar- 
tuned cells requires that we record the concurrent  responses of a large number 
of cells to many presentations of each face (the distal stimulus) in the stimulus 
set because the retinal pattern (the proximal stimulus) that is captured is likely 
to vary over time even for identical faces as a result of shifts in fixation; (3) 
given the effect of variation in fixation, it would be helpful for the interpreta- 
tion of results to monitor fixation throughout an experiment; (4) the critical 
indicator of selective coding is not the relative spike rate of a cell in response 
to different stimuli, but rather the rate of its output relative to other cells 
responding at the same time. 
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CHAPTER 11 

STRUCTURE AND BINDING IN OBJECT PERCEPTION 

John E. Hummel 
University of California, Los Angeles 

ABSTRACT 

This chapter discusses the problem of structure in shape perception and 
object recognition. This problem, and the characteristics of its solution, pro- 
vide a powerful set of tools for understanding many properties of human object 
recognition, including the strengths and limitations of our ability to recognize 
objects in novel viewpoints, and the role of time and attention in object recog- 
nition. Many of the problems surrounding the representation of structure center 
on the binding problem~the problem of representing what goes with what. 
Many properties of human object recognition can be understood in terms of the 
ways the visual system solves the binding problem. The chapter uses two 
recent models of object recognition to illustrate these points: Hummel and 
Biederman's (1992) JIM, and Hummel and Stankiewicz's (1996) JIM.2. This 
chapter is written from a behavioral and computational perspective rather than 
a neuroscientific one. The emphasis is on the abstract nature of the representa- 
tions and processes the visual system must bring to bear on the problem of 
structure, and on the behavioral implications of those representations and 
processes. 

Constancy and Structure in Object Perception 
The great problem in the study of human object recognition is to understand 

object constancy, our capacity to recognize objects despite variations in the 
image presented to the retina. This capacity takes two forms. The most 
commonly studied is recognition despite variations in viewpoint. We can 
recognize objects in a wide variety of views even though different views can 
present radically different images to the retina. This capacity is particularly 
challenging to understand because human object recognition is robust to some, 
but not all, variations in viewpoint. Recognition is indifferent to the location of 
the image on the retina, left-right reflection (Biederman & Cooper, 1991a; see 
also Tanaka, this volume), scale (Biederman & Cooper, 1992), and some rota- 
tions in depth (Biederman & Gerhardstein, 1993, 1995; but see Tarr & Biilth- 
off, 1995). However, it is sensitive to rotation in the picture plane (as when an 
object is upside down; Jolicoeur, 1985, 1990; Tarr & Pinker, 1989, 1990). 
The second property of human object constancy is our capacity to generalize 
over variations in an object's exact 3D shape. This capacity has at least two 
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familiar and important manifestations. First, we are remarkably good at recog- 
nizing objects as members of a class, such as "chair" or "car," rather than just 
as specific instances, such as "my office chair" or "Toyota Camry." And 
second, we can easily recognize novel members of known object classes: The 
first time we see a Dodge Viper, it is easy to recognize it as a car, even if we 
have never before seen a car with exactly that shape. 

Together, these properties make human object recognition challenging to 
understand because they defy explanation in terms of simple geometric laws. 
The mathematics of projective geometry is well understood, and if human 
recognition performance were predictable in terms of it, then models based on 
these laws would provide an adequate and intuitive account of human object 
recognition. But these laws do not explain our capacity for object recognition. 
A system based strictly on the laws of projective geometry (e.g., one that 
somehow converted retinal images into object-centered representations of 3D 
shape) would be equally able to accommodate all variations in viewpoint 
(which the human is not), but would not tolerate variations in an object's shape 
(which the human does). 

These and other properties of human object constancy have led some re- 
searchers to postulate that we recognize objects on the basis of structural de- 
scriptions specifying the object's parts (or features) in terms of their relations 
to one another (Biederman, 1987; Clowes, 1967; Marr & Nishihara, 1978; 
Palmer, 1978a; Sutherland, 1968; Winston, 1975). The most explicit such 
theory to date is Biederman's (1987) recognition by components, and its vari- 
ants (Bergevin & Levine, 1993; Dickenson, Pentland, & Rosenfeld, 1992; 
Hummel & Biederman, 1990; 1992; Hummel & Stankiewicz, 1996). Accord- 
ing to this theory, objects are represented as collections of geons in particular 
categorical relations. (Geons are simple volumes such as cylinders, bricks, and 
cones, distinguished by categorical contrasts in the properties of image edges; 
Biederman, 1987.) For example, a coffee mug would be represented as a 
curved cylinder (the handle) side-attached to a straight vertical cylinder (the 
body). The relations are critical: If the curved cylinder were attached to the top 
of the straight cylinder, then the object would be a bucket rather than a mug 
(Biederman, 1987). This type of representation provides a natural account of 
many properties of human object recognition. Note that it will not change if the 
mug is translated across the visual field, moved closer to or farther from the 
viewer, or rotated in depth (provided the handle does not disappear behind the 
body). But rotating the mug 90 ~ about the line of sight (so that the body is 
horizontal and the handle is on top) will change the description. Like human 
object recognition, this description is sensitive to rotations about the line of 
sight, but insensitive to translation, scale, left-right reflection, and some rota- 
tions in depth. It is also insensitive to things such as the exact length of the 
handle or the exact width of the body, making it suitable as a basis for class 
recognition (Biederman, 1987). 
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There is behavioral evidence for parts-based structural descriptions in 
human object recognition. Biederman and Cooper (199 lb) have shown that one 
object image will prime another to the extent that they depict the same geons in 
the same relations. (If a person views and names an object at one time, and 
then views and names the same object, say, five minutes later, then his naming 
response is likely to be faster the second time than it was the first time---and 
faster than the time required to name a new image. This increase in naming 
speed is referred to as priming. A component of this priming is mediated by 
specifically visual representations of shape; Biederman & Cooper, 1991a,b, 
1992.) There is also substantial evidence that the relations between an object's 
features or parts play an important role in the representation of object shape 
(Goldmeier, 1972; Hummel & Stankiewicz, 1995; Palmer, 1977, 1978b; Saiki 
& Hummel, 1996a,b; in press). For example, Hummel and Stankiewicz (1995) 
showed that human object perception is more sensitive to the relations between 
an object's parts than to the parts' positions relative to any single reference 
point (i.e., coordinates of the type proposed in normalization-based theories of 
object recognition; see, e.g., Olshausen, Anderson, & Van Essen, 1993; 
Poggio & Edelman, 1990; Ullman, 1989; Ullman & Basri, 1991). These and 
other findings suggest that we represent objects in memory as structural de- 
scriptions specifying the interrelations among their parts (see Quinlan, 1991, 
for a review). Of course, this is not to say that objects are represented exclu- 
sively as structural descriptions (Farah, 1992; Hummel & Stankiewicz, 1996; 
Tarr & Pinker, 1990). We shall return to this point shortly. 

The defining property of a structural description is that it specifies the rela- 
tional structure of an object's shape. Rather than representing an object's parts 
in terms of their coordinates relative to the origin of a reference frame, a struc- 
tural description represents an object's parts in terms of their positions relative 
to one another (see Hummel, 1994; Palmer, 1978a). How might the visual 
system generate a structural description from an object's image? This question 
is particularly interesting, because relational structures are difficult to represent 
in systems of discrete processing elements, such as nervous systems and artifi- 
cial neural networks (see Fodor & Pylyshyn, 1988). 

This chapter discusses the problem of structure in shape perception and 
object recognition: Given a representation of the local features in an object's 
image, how can the visual system generate a description of the object's parts 
and their interrelations, and then use that description to recognize the object? 
This problem, and the characteristics of its solution, provide a powerful set of 
tools for understanding many properties of human object recognition. Many of 
the problems surrounding the representation of structure center on the binding 
problem~the problem of representing what goes with what~and many proper- 
ties of human object recognition can be understood in terms of the ways the 
visual system solves the binding problem in the context of shape perception. 
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The chapter will use two models~Hummel and Biederman's (1992) JIM, and 
Hummel and Stankiewicz's (1996) JIM.2~to illustrate these points. Although 
the chapter emphasizes the representation and processing of relational informa- 
tion in vision, the issue of structure is very general. Relational structures play 
an important role in virtually all aspects of cognition, including language, 
categorization (Barsalou, 1993; Saiki & Hummel, 1996a,b), similarity judg- 
ment (Medin, Goldstone, & Gentner, 1993), and reasoning (Gentner, 1983; 
Gick & Holyoak, 1980; Holyoak & Thagard, 1989). The role of structure in 
these domains bears important relationships to the role of structure in vision 
(see Jackendoff & Landau, 1991; Logan, 1994). Indeed, many of the routines 
my colleagues and I have proposed for processing structure in the context of 
vision also apply to the representation and processing of structure in the 
domain of reasoning (Hummel & Holyoak, 1992, 1993; Hummel, Meltz, 
Thompson & Holyoak, 1994; see also Shastri & Ajjenagadde, 1993). 

This chapter is written from a behavioral and computational perspective 
rather than a neuroscientific one: The focus is more on the nature of the prob- 
lem the visual system is solving, and on the abstract nature of the representa- 
tions and processes it brings to bear on its solution, than on the neurophysio- 
logical details of that solution. 

Structural Description and Dynamic Binding 
Generating a structural description from an object's image entails solving 

three related problems (Hummel & Biederman, 1992). Consider generating the 
description cone on top of brick from the image of a cone on top of a brick. 
First, the local features (e.g., contours and vertices) of the cone and brick must 
be segmented into groups so that the features of one do not interfere with the 
interpretation of the other. (This problem is a variant of the familiar figure- 
ground problem in vision.) Likewise, the parts' attributes (e.g., the shapes of 
their cross sections and axes, their orientation, aspect ratio, etc.) must also be 
bound into sets. And finally, the representation of the cone must be bound to 
the relation above, while the brick is bound to below. 

The representation of these bindings is critically important. Bindings can be 
either dynamic or static. A dynamic binding is one in which a single represen- 
tational unit (e.g., symbol, neuron, or collection of neurons) is used in many 
different combinations without sacrificing its independence. For example, one 
unit might represent cones and another might represent the above relation; a 
cone above another part would be represented by explicitly tagging these units 
as bound together. A static binding is one in which a separate unit is pre-dedi- 
cated for each conjunction. For example, one unit might respond to cones 
above other parts, another might respond to cones below other parts, and so 
forth. Structural description requires dynamic binding (Hummel & Biederman, 
1992). The number of units required to pre-code all possible part-relation 
conjunctions would be enormous (growing exponentially with the number of 
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relations). More importantly, static binding sacrifices the independence--and 
therefore the similarity structure--of the bound entities: The similarity of a 
cone above something to a cone below something is completely lost in a repre- 
sentation where each part-relation binding is coded by a separate unit. This 
loss of similarity structure is a fundamental property of static binding that 
cannot be overcome even with sophisticated static codes, such as Smolensky's 
(1990) tensor products (Hummel & Biederman, 1992; Hummel & Holyoak, 
1993). Dynamic binding is thus a prerequisite to structural description. Under- 
standing how the visual system represents structure means understanding how 
it solves this dynamic binding problem. 

There is some evidence that synchrony of firing is one basis for dynamic 
binding in biological visual systems (Engel, KSnig, Kreiter, & Singer, 1991; 
Gray, KSnig, Engel, & Singer, 1989; Gray & Singer, 1989). The basic idea is 
that neurons belonging to the same perceptual group (e.g., because they are 
responding to different parts of the same contour or surface) generate spike 
trains roughly in synchrony with one another; those same neurons tend to fire 
out of synchrony when they belong to different groups. Albeit controversial 
(see, e.g., Tovee & Rolls, 1992), this idea has attracted a great deal of atten- 
tion in the neuroscientific and computational vision communities. (See Singer, 
this volume.) 

From a computational standpoint, the question of how dynamic binding is 
represented (e.g., by synchrony or some other means) is less important than 
the questions of how it is established (e.g., how do neurons know whether they 
should be grouped) and how it can be used to perform useful work. This 
chapter is concerned primarily with the latter issues: How can dynamic binding 
be established and used for structural description and object recognition?mand; 
in addition, with the related question: What are the benefits and costs of 
dynamic binding in object perception? Both models reviewed here use syn- 
chrony for dynamic binding, but neither is committed to this convention. What 
is more important is the manner in which the binding is used and the properties 
that result from it. The next section reviews Hummel and Biederman's (1992) 
JIM (for John and Irv's Model) model of object recognition. JIM serves to 
illustrate how dynamic binding can be used for structural description, and 
some of the behavioral properties that result from this approach to object 
recognition. The following section presents some important limitations of 
JIM--and of dynamic binding in general--and reviews Hummel and Stankie- 
wicz's (1996) JIM.2 model of how the visual system might recognize objects 
given these limitations. 

The advantages of dynamic binding: JIM 
JIM is a seven-layer artificial neural network (l~gure 1) that uses synchro- 

ny of firing for dynamic binding and structural description. As input, it takes a 
line drawing of an object. Units in its first two layers represent local features 
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FIGURE 1. The architecture of JIM (Hummel & Biederman, 1992). Units are coded 
to depict their responses to the image in the Key. In Layers 3 and above, large circles 
indicate units activated in response to the image and dots indicate inactive units. Units 
in Layer 1 represent image edges (discontinuities in surface orientation and depth). 
Layer 2 represents the vertices, axes, and "blobs" (elongated, oriented regions of activ- 
ity) defined by conjunctions of edges in Layer 1. Layer 3 represents the geons in an 
image in terms of their properties: Axis shape (Axis)--straight or curved; Cross section 
shape (X-Scn)---straight or curved; whether the Sides are parallel (p) or non-parallel 
(n); Coarse orientation (Orn.)---vertical (v), diagonal (d), or horizontal (h); Aspect 
Ratio----elongated (long) to flattened (flat); Precise orientation (Orientation); Position 
along the horizontal dimension of the visual field (Horiz. Pos.)--left (1) to fight (r); 
Position along the vertical dimension of the visual field (l&rt. Pos.)---bottom (b) to top 
(t); and Size--large or small. Layers 4 and 5 represent the relative orientations, loca- 
tions, and sizes of the geons in an image. Units in Layer 6 respond to specific conjunc- 
tions of units in Layers 3 and 5, and units in Layer 7 sum the outputs of Layer 6 units 
over time to respond to complete objects. 
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(such as contours, vertices, and axes) at each of 22 x 22 locations in the image. 
The model's intermediate layers represent a structural description of the ob- 
ject's shape. Units in Layer 3 respond to the shape attributes of individual 
geons (e.g., whether a given geon has a straight or curved axis, etc.), and units 
in Layers 4 and 5 code the categorical relations between geons (e.g., whether 
one geon is above or beside another, etc.). Units in Layers 6 and 7 use the 
outputs of Layers 3 and 5 as the basis for object recognition. The model's 
input is completely viewpoint-specific. (For example, a given object will acti- 
vate one set of local feature units when it is in the upper left of the visual field, 
and a completely different set of units when it is in the lower right.) However, 
recognition is largely viewpoint-invariant. As with human object recognition, 
JIM's ability to recognize an object is completely unaffected by the location of 
the image in the visual field, the size of the image, some rotations in depth, 
and even left-right reflection. Also like that of the human, JIM's performance 
suffers when an object image is misoriented in the picture plane. Importantly, 
the model achieves these invariances on the basis of a single exposure to each 
object" Trained on just one view of an object, JIM (like the human) can subse- 
quently recognize that object in a wide range of new viewpoints (even new 
orientations in depth). This capacity distinguishes JIM from most other models 
of object recognition, and from all models based on normalization or transfor- 
mation procedures (Olshausen et al, 1993; Poggio & Edelman, 1990; Ullman, 
1989; Ullman & Basri, 1991). 

Dynamic binding plays a central role in JIM's capacity for structural de- 
scription and object recognition. When an image is presented for recognition, 
edge and vertex units in Layers 1 and 2 group themselves into sets correspond- 
ing to geons by synchronizing their outputs. Units representing features of the 
same geon fire in synchrony with one another, and out of synchrony with units 
representing the features of other geons. Synchrony is established on the basis 
of strictly local interactions between contour and vertex units, making it possi- 
ble to group features into geons without any prior knowledge of the geons' 
identities. Because of these interactions, the outputs of local feature units arrive 
at Layer 3 in packages corresponding to geons (i.e., one geon per unit of 
time). This fact is critically important because it makes it possible for the units 
in Layer 3 to code the attributes of geons in a completely independent fashion. 
In turn, this independence gives rise to all of the model's other properties. 

This point bears elaborating. Each unit in Layer 3 responds to one geon 
attribute. For example, one unit will respond to any geon with a curved cross 
section (such as cones and cylinders), another will respond to any geon with a 
straight cross section (such as wedges and bricks); other units code whether a 
geon's sides are parallel or non-parallel, whether its axis is straight or curved, 
its aspect ratio, and still others code its orientation, size, and location in the 
image. A given unit will respond to any geon with its target property, regard- 
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less of the geon's other properties. For example, the curved-cross-section unit 
will respond to any geon with a curved cross section, regardless of the geon's 
location, size or orientation in the image. Similarly, the units that code a 
geon's location in the visual field will respond to any geon in their target loca- 
tion; the same is true of the units that code orientation and size. That is, every 
attribute is represented in a form that is completely independent of every other 
attribute. 

This independence gives rise to two critical properties as a natural conse- 
quence. One is invariance with viewpoint. The same units will respond to, say, 
a cone (curved cross section, non-parallel sides, and straight axis) regardless 
of where the cone is located in the visual field, its size or its orientation (bar- 
ring "accidental" views, such as when the cone is viewed end-on, projecting a 
circle to the retina; see Lowe, 1987). The second critical property of the 
independence is that it automatically captures the similarity structure of differ- 
ent geons, and different geon-relation combinations (i.e., objects). For exam- 
ple, the representation of a cone is more similar to that of a cylinder (curved 
cross section, parallel sides, and straight axis) than to that of a brick (straight 
cross section, parallel sides, and straight axis). Units in Layers 4 and 5 use a 
geon's metric properties (size, location, and orientation) to compute the rela- 
tions between separate geons. These units are independent of those that code 
geon shape attributes. For example, the same unit codes the above relation 
regardless of what is above what. As a result, if two objects are similar in the 
relations among their parts but differ in the parts' shapes, then their representa- 
tions will overlap on the relation units relations, but not on the part attribute 
units; and if two objects are similar in their parts but differ in their relations, 
then their representations will share geon attribute units but not relation units. 
In general, the independence of the shape and relation units makes it possible 
for the representation to completely capture an object's attribute structure (see 
Hummel & Biederman, 1992). 

In turn, this independence is possible only because of the dynamic binding 
established in Layer 2. This binding is carried forward in Layers 3 through 6. 
In Layer 3, it binds shape attributes into packages corresponding to geons, and 
in Layer 5, it binds relations to geons. For example, a cone above a brick 
would be represented as two sets of synchronized units: the cone attribute units 
in Layer 3 will fire in synchrony with the above unit in Layer 5 while the brick 
attributes fire in synchrony with the below unit. The cone-above set must fire 
out of synchrony with the brick-below set. If the features of the cone "acciden- 
tally" fire in synchrony with those of the brick, then the resulting pattern in 
Layer 3 would specify curved cross section, straight cross section, parallel 
sides, and non-parallel sides without specifying how they go together. Such a 
pattern cannot distinguish a brick and a cone (curved cross section with non- 
parallel sides and straight cross section with parallel sides) from a cylinder 
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and a wedge (curved cross section with parallel sides and straight cross section 
with non-parallel sides), or even from a single geon with a combination of 
these properties. 

In summary, representing shape attributes and relations independently gives 
rise to some very desirable properties, but it depends critically on dynamic 
binding. 

Behavioral implications of  JIM. One line of support for this type of representa- 
tion is the ease with which it can account for the properties of human object 
recognition. As noted previously, human object recognition is completely 
invariant with translation, scale, and left-right reflection; it is largely invariant 
with orientation in depth, but sensitive to orientation in the picture plane. 
JIM's recognition performance captures all these aspects of human object 
recognition. These properties are detailed in Hummel and Biederman (1992), 
so I shall describe only two of them (arguably the most interesting) here: invar- 
iance with reflection, and sensitivity to orientation in the picture plane. 

Human object recognition is invariant with left-right reflection in the sense 
that an object image will visually prime its left-right reflection just as much as 
it primes itself (Biederman & Cooper, 1991a). (As elaborated shortly, this 
complete invariance obtains only with prime-probe delays on the order of 
minutes; with delays of about 3 seconds, images prime themselves more than 
they prime their reflections; Stankiewicz, Hummel, & Cooper, 1995.) This 
finding strongly suggests that at least a component of the visual representation 
of shape is completely indifferent to left-right reflection. This is especially 
interesting because not all objects are even the same 3D shape under left-right 
reflection. A left-right reflection of a left shoe is not a left shoe; it is a right 
shoe. Similarly, there exists no object in the 3D world that would project to the 
retina as the left-right reflection of a grand piano. (Grand pianos are not bilat- 
erally symmetrical.) Nonetheless, we happily recognize these fictional objects 
as grand pianos. In general, our propensity to ignore left-right reflection in 
recognition speaks to a deep disrespect for the laws of projective geometry. 
Although invariance with reflection is impossible to explain in terms of a 3D 
geometric approach to object recognition, it can be explained straightforwardly 
in terms of geon attributes and relations. In JIM, "left-of" and "right-of" are 
both coded as the single relation "beside," making the representation indiffer- 
ent to left-right orientation. As a result, JIM's recognition performance is 
completely invariant with left-right reflection" Trained to recognize a grand 
piano as a piano, JIM would just as easily recognize the reflection of a grand 
piano as a piano. (For the same reason, JIM could not distinguish a piano from 
its reflection, although JIM.2 could.) This property derives directly from the 
nature of JIM's structural descriptions. 

One of the most robust findings in the human object-recognition literature is 
sensitivity to orientation in the picture plane. We are faster to recognize an 
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upright image of an object than we are to recognize an upside-down image. 
Moreover, the time to name an object increases almost linearly with the degree 
of misorientation (for reviews, see Jolicoeur, 1990; Quinlan, 1991; Tarr, 
1995). This finding has led numerous researchers to postulate that we recog- 
nize misoriented objects by "mentally rotating" them to an upright orientation: 
The greater the misorientation, the further we must rotate the image, hence the 
linear function. However, the story is not quite so simple. In some studies 
(e.g., Jolicoeur, 1985), responses are slightly faster when an object is com- 
pletely upside down (i.e., 180 ~ off upright) than when it is almost upside down 
(slightly less than 180~ It is impossible to account for this effect in terms of 
simple linear "mental rotation." However, it follows naturally from JIM's 
structural descriptions. Tested with images rotated in the picture plane, JIM 
shows a monotonic decline in performance to 135 ~ and a slight increase in 
performance at 180 ~ (Hummel & Biederman, 1992). Importantly, it does so 
without performing rotations of any kind. Rather, performance declines be- 
cause rotations in the picture plane perturb the geons' relations and categorical 
orientations. For example, consider a lamp whose shade is above its base when 
the lamp is upright. The shade will appear both above and beside the base 
when the lamp is rotated 45~ it will only be beside the base at 90 ~ , and it will 
be beside and below the base at 135 ~ . The mismatch between the relations in 
the rotated image and the relations in the upright lamp continues to increase 
through 135 ~ of rotation, so performance gets worse. Performance improves at 
180 ~ because the mismatch in the relations (and the geons' categorical orienta- 
tions) actually decreases. Although the above/below relations are still reversed 
at 180 ~ , the spurious "beside" relation disappears. 

In summary, JIM simulates the major invariances and view sensitivities of 
human object recognition, and its ability to do so derives directly from the 
structural descriptions it uses for recognition. In turn, these descriptions 
depend critically on the independent coding and dynamic binding of shape 
attributes and relations. As discussed in the next section, another line of sup- 
port for the role of such representations in human shape recognition comes 
from some of their limitations, and what those limitations imply about human 
object recognition. 

The limitations of dynamic binding: JIM.2 
Although an independent coding of part attributes and relations affords 

several advantages, it is also subject to a number of important limitations. As 
noted previously, independent coding makes a representation heavily dependent 
on dynamic binding. JIM requires all an object's geons to fire cleanly out of 
synchrony with one another. If the features of two or more geons happen to 
fire in synchrony "accidentally," then the binding of geon attributes to one 
another and to their relations will be completely lost. The resulting representa- 
tion will be virtually useless for recognition (see Hummel & Biederman, 1992; 
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Hummel & Stankiewicz, 1996). JIM is therefore premised on strong assump- 
tions about the speed and reliability with which dynamic binding can be estab- 
lished: It must be error-free and it must be established prior to recognition. 
Unfortunately, both these assumptions are almost certainly wrong. Dynamic 
binding, by synchrony or any other means, is likely to be error-prone because 
it requires a process to actively assign units to groups. Perceptual grouping 
(e.g., binding image features into geons) is especially likely to be error-prone 
because it requires the simultaneous consideration of multiple, often contradic- 
tory cues. For the same reason, it is virtually guaranteed to be time consuming 
(see Hummel & Stankiewicz, 1996). 

By contrast, object recognition is both reliable and fast. Indeed, it is argu- 
ably too reliable and too fast to depend as critically on dynamic binding as JIM 
does (see Hummel & Stankiewicz, 1996). Apparently, human object recogni- 
tion is not subject to the kind of strong binding constraints demanded by a 
completely independent coding of attributes and relations. But this does not 
imply that structural descriptions play no role in human object recognition. 
Rather, it suggests that structural descriptions----or, more generally, any repre- 
sentation based on a fully independent attribute code---is not, by itself, suffi- 
cient to explain human object recognition. 

In the attempt to understand how human object recognition might evidence 
the strengths of a structural description without the limitations of a fully inde- 
pendent attribute code, Hummel and Stankiewicz (1996) have proposed a 
hybrid model of object recognition. This model, JIM.2, augments dynamic 
binding for structural description with static binding for speed and reliability. 
The model's architecture is illustrated in Figure 2. As with JIM, the first two 
layers of JIM.2 code local image features (contours, vertices, and axes) sepa- 
rately at each location in the visual field; Layers 3 and 4 use the outputs of 
these feature detectors to generate a structural description of an object's shape; 
and Layers 5 and 6 use those descriptions as the basis for object recognition. 
Synchrony of firing, established by local interactions in Layers 1 and 2, groups 
image features into geons. This model contains a set of units~like JIM's 
Layers 3 and 5~that  represent geon shape attributes and relations in a com- 
pletely independent fashion (the Independent Geon Array, or IGA, in JIM.2's 
fourth layer). The IGA has all the strengths and limitations of JIM's independ- 
ent geon and relation code: complete preservation of object similarity structure 
and limited invariance with viewpoint, but strong dependence on dynamic 
binding. This part of JIM.2 gives the model the properties of a structural de- 
scription when dynamic binding is established correctly. 

But dynamic binding takes time. When an image is first presented to the 
model, all the local feature units (contours, vertices, and axes) tend to fire at 
once, even if they belong to separate geons. During this period, the representa- 
tion generated on the IGA is virtually useless for recognition because it does 
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FIGURE 2. The architecture of JIM.2 (Hummel & Stankiewicz, 1995a). Units in 
Layer 1 represent the contours in an object's image. Units in Layer 2 respond to ver- 
tices (heavy solid lines) and axes of parallel and non-parallel symmetry (dashed lines). 
Layer 3 consists of gated modules (cylinders) with finite circular receptive fields (light 
ellipses over Layers 1 and 2). Receptive fields of three sizes are distributed in a 
hexagonal lattice over the visual field. Layer 4 has two parts: The Independent Geon 
Array (IGA) contains 11 units that code the properties of geons (Axis, Cross Section, 
Aspect Ratio, and Sides, as in JIM) and 5 units that code a geon's categorical relations 
to other geons; the Substructure Matrix (SSM) contains 11 shape-attribute units at each 
of 17 positions in a circular reference frame. Units in Layer 5 respond to specific 
patterns of activation on Layer 4, and units in Layer 6 sum the outputs of Layer 5 units 
over time to respond to complete objects. 
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not specify how shape attributes go together into geons. However, JIM.2 's  
fourth layer contains an additional collection of units--the Substructure Matrix 

(SSM)---that preserve the separation of geon attributes, even when multiple 
geons fire in synchrony. The SSM is a coordinate-like representation in which 
separate collections of units respond to geon attributes at each of 17 positions 
in a circular reference frame: Each unit in the SSM codes a static binding of 
one geon attribute to one location in the reference frame. Although geons that 
fire in synchrony with one another are superimposed on the IGA, they remain 
separate on the SSM. 

The mapping of feature outputs (in Layer 2) to the IGA and SSM is con- 
trolled by a collection of gated modules in Layer 3. Modules have finite recep- 
tive fields at a variety of locations and sizes over the image (see Figure  2). 
Whenever a collection of feature units fires--whether that collection belongs to 
a single geon or to multiple geons--the modules map their outputs simultane- 
ously to both the IGA and the SSM. Each feature is mapped into the SSM in a 

a. SSM 

con 

b. SSM 

cone, above 
smalle 

c. SSM 

~r Ck, below 
ser 

FIGURE 3. Illustration of the mapping of feature outputs (Layer 2) to Layer 4's 
Independent Geon Array (IGA) and Substructure Matrix (SSM). a. When all an ob- 
ject's features fire at once, the properties of the object's geons (here, a brick and a 
cone) are superimposed on the IGA but are kept separate on the SSM. SSM locations 
responding to the cone are marked with Cs, those responding to the brick are marked 
with Bs, and those responding to neither are indicated with a dot. Image locations are 
coded coarsely by SSM locations, so a given geon will activate a range of locations in 
the SSM. The strength of a location's response to a given geon is caricatured in the 
size of the corresponding letter (e.g., small Cs depict weak responses to the cone and 
large Cs depict strong responses), b. When the cone fires by itself, it will be repre- 
sented by itself on both the IGA (along with its relations to the brick) and the SSM. c. 
When the brick fires by itself, it will be represented by itself on both the IGA (along 
with its relations to the cone) and the SSM. 
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location corresponding to its location relative to the whole feature collection. 
Consider Figure 3. The modules will map the features of the cone (which are 
in the upper region of the feature collection) to the upper region of the SSM, 
and map the features of the brick (which are in the lower region of the feature 
collection) to the lower region of the SSM. Although they will be superim- 
posed on the IGA, the cone and brick will remain separate on the SSM. Once 
the features of the cone and brick start to fire out of synchrony with one anoth- 
er (l~gure 3b and 3c), the modules will map their outputs to the IGA and SSM 
in separate packages (one package per unit time). 

The result of these operations is the following. When an image is first 
presented to the model, all its features will fire at once, producing a view- 
sensitive representation on the SSM. (This representation is invariant with the 
location and size of the image in the visual field, but sensitive to the orientation 
in which the object is depicted.) If the view is familiar, then the model will 
recognize the object immediately based on this representation. But if the view 
is unfamiliar (e.g., it is a rotation or a left-right reflection of a familiar view), 
then the representation on the SSM may be insufficient for recognition. Thus, 
the advantage of the static attribute-location binding in the SSM is that it frees 
the model from dependence on dynamic binding, permitting rapid recognition 
of familiar object views; the disadvantage is that it is view-sensitive. But given 
enough time, the local feature units in Layers 1 and 2 will segment themselves 
into geon-based sets. As each geon fires, the IGA represents it in terms of its 
shape attributes and relations to the other geons in the object: Once dynamic 
binding is established, JIM.2 represents the object as a structural description. 
Like the structural descriptions in JIM, the structural descriptions in JIM.2 are 
invariant with left-right reflection and some rotations in depth. 

Behavioral implications of JIM.2. The most immediate prediction of this model 
is that recognition will be fast and initially view-sensitive (by virtue of the 
SSM), but given time to generate a structural description, recognition will be 
relatively viewpoint-invariant (by virtue of the IGA). To turn these observa- 
tions into specific predictions, it is necessary to estimate (1) how long it takes 
to generate a structural description on the IGA, and (2) how long the view- 
sensitive representation lasts on the SSM. (As long the SSM remains active, 
recognition will be somewhat view-sensitive, even after a view-invariant repre- 
sentation is generated on the IGA.) As discussed in Hummel and Stankiewicz, 
a reasonable estimate of the time required to generate a structural description 
from an image is on the order of 150 to 300 ms. Recent behavioral results 
from my laboratory (discussed below) suggest that the activation trace on the 
SSM may last a few seconds. Naturally, both these estimates depend on several 
factors (such as the viewing conditions, the nature of the task, and so forth), 
but they provide a ballpark estimate of the time course of view-sensitive and 
view-invariant recognition. Given these estimates, JIM.2 predicts that object 
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recognition will be viewpoint-sensitive for a few seconds, and then later 
become more robust to variations in viewpoint. 

Ellis and Allport (1986) report findings consistent with this prediction. 
They had subjects view two pictures in succession and say whether they de- 
picted objects with the same name. Subjects were faster to respond "yes" if the 
pictures depicted the same object (e.g., two pictures of the same car) than if 
they depicted different objects with the same name (two different cars). At 
inter-stimulus intervals (ISis) under two seconds, they found that response 
times were faster still if the objects were depicted at the same orientation in 
depth: Recognition was initially sensitive to viewpoint. But at longer ISis, this 
same-view benefit disappeared: Eventually, recognition was robust to changes 
in viewpoint. These data suggest that recognition is mediated by two represen- 
tations, one fast but viewpoint-sensitive, the other slow but viewpoint-robust 
(Ellis & Allport, 1986). Using a similar paradigm, Ellis, Allport, Humphreys, 
and Collis (1989) later showed that the same-view benefit is insensitive to 
translation and, under some circumstances, scale. Although it is view-sensitive, 
even the fast representation is not strictly retinotopic (Ellis at al, 1989). These 
data are strikingly consistent with the predictions of JIM.2: The SSM supports 
rapid recognition that is robust to translation and scale, but sensitive to orienta- 
tion in depth (and left-right reflection). By contrast, the IGA is slow but robust 
to variations in viewpoint. 

A related line of support for JIM.2 comes from the literature on information 
integration across eye movements. Irwin and his colleagues (e.g., Carlson- 
Radvanski & Irwin, in press; Irwin, 1992; Irwin & Andrews, 1995) have 
shown that the information preserved across saccadic eye movements has the 
properties of a structural description rather than a literal representation of the 
positions of local features in the image. (Among other things, it is capacity- 
limited in a manner consistent with the capacity limits of dynamic binding.) 
Interestingly, it takes approximately 300 ms to initiate a saccade. It is tempting 
to speculate that part of this time reflects the visual system's generating a struc- 
tural description prior to the saccade: The description takes time to generate, 
so the visual system postpones the saccade until it has been generated. Other 
factors undoubtedly contribute to the delay as well, but the relationship is 
suggestive. 

The relationship between binding and view-invariance in JIM.2 also pre- 
dicts that there will be a relationship between visual attention and view-invar- 
iance. Dynamic binding of the type required for structural description requires 
visual attention (Enns, 1992; Logan, 1994; Treisman, 1993; Treisman & 
Gelade, 1980; Treisman & Schmidt, 1982; see Stankiewicz et al, 1995, for a 
review). However, attention is not necessary for object recognition (Tipper, 
1985; Tipper & Driver, 1988; Treisman & DeShepper, 1995). If attention is 
necessary for dynamic binding, then whatever representation mediates the 
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recognition of unattended objects must be based on static binding. It is possible 
that something like the SSM serves this function. 

Support for this conjecture comes from some recent findings regarding the 
role of attention in priming for left-right reflections of object images (Stankie- 
wicz et al, 1995). Recall that Biederman and Cooper (1991a) showed that 
visual priming is invariant with left-right reflection. JIM and JIM.2 account for 
this invariance in terms of the structural descriptions generated in response to 
attended images. If we assume that the SSM mediates recognition in the ab- 
sence of visual attention, then JIM.2 predicts that: (1) ignored objects will be 
visually primed, (2) this priming will obtain even if the first and second images 
fall in different parts of the visual field (i.e., like the SSM, the priming should 
be indifferent to translation), and (3) the priming will be sensitive to left-right 
reflection in that an ignored image will prime itself in the same view, but not 
in the left-right reflected view. This is exactly the pattern observed by Stan- 
kiewicz et al (1995). When subjects attended to an object on one trial, both the 
same view and its reflection were visually primed on the next trial. Ignored 
objects were primed only in the same view, but this priming obtained even 
though the first and second images never fell in the same part of the visual 
field. Moreover, the effects of view (same vs. reflected) and attention (attend- 
ed vs. ignored) were strictly additive: Attended objects in the same view 
enjoyed the same advantage in priming over attended objects in a reflected 
view as ignored objects in the same view enjoyed over ignored objects in a 
reflected view. This additivity is consistent with the suggestion that the repre- 
sentation mediating the same-view priming (e.g., the SSM) is independent of 
the representation mediating the reflected-view priming (e.g., the IGA; see 
Stankiewicz et al, 1995). 

The fact that ignored objects were primed in the same view despite the 
images' falling in different parts of the visual field is more interesting than it 
appears. Priming for ignored images was no more sensitive to translation 
across the visual field than priming for attended images. This finding suggests 
that attention plays no role whatsoever in the visual system's capacity for trans- 
lation invariance. Because the SSM is just as indifferent to translation as the 
IGA, this is exactly the pattern predicted by JIM.2. 

The priming observed by Biederman and Cooper was completely invariant 
with reflection, in that an image primed its reflection just as much as it primed 
itself. By contrast, the priming observed by Stankiewicz et al was at least 
partially view-sensitive: Even in the attended condition, priming was greater 
for the same view than for the reflected view. The difference between the 
findings of Biederman and Cooper and those of Stankiewicz et al is due to a 
difference in the time between prime and probe trials. Biederman and Cooper 
used a long-term priming paradigm in which the time between successive 
presentations of an image was on the order of minutes (with several other 
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images presented during the intervening period). By contrast, Stankiewicz et al 
observed their same-view advantage using a short-term priming paradigm in 
which successive presentations of an image occurred within about 3 seconds of 
one another (with no other images in between). When Stankiewicz et al used a 
long-term paradigm like that of Biederman and Cooper, the priming they 
observed was completely invariant with left-right reflection (like that observed 
by Biederman and Cooper). Ignored objects showed no long-term priming at 
all. Apparently, priming in the SSM is short-lived compared to priming in the 
IGA (Stankiewicz et al, 1995). 

Summary and Extensions 
Representing object structure entails dynamically binding independent shape 

attributes into relational structures. The benefit of this approach is that it 
completely preserves an object's attribute structure, giving view-robust recog- 
nition as a natural consequence. The cost is that dynamic binding is expensive, 
requiring both time to establish (and, in the case of synchrony, even to repre- 
sent), and finite attentional resources to maintain. The strengths of this ap- 
proach to object representation provide a very natural account of the strengths 
of human object recognition (Hummel & Biederman, 1992). And, perhaps 
more interestingly, the limitations provide a natural account of many of our 
limitations (Hummel & Stankiewicz, 1996). 

Naturally, there remain many open questions about the visual representation 
of object structure. For example, although there is reason to believe that 
dynamic binding of some form is a prerequisite to the representation of rela- 
tional structures (see Fodor & Pylyshyn, 1988), it is still unclear how nervous 
systems accomplish dynamic binding. Synchrony is a candidate mechanism, 
but the role of synchrony remains controversial. And even if synchrony proves 
to be one means for dynamic binding, it is certainly possible that there are 
others. (See Singer, Trehub, this volume.) 

Other aspects of the representation of structure remain a mystery as well. 
Cognitive scientists and neuroscientists are almost completely in the dark about 
the nature of the relations represented in biological visual systems. JIM and 
JIM.2 are based on highly simplified categorical relations, such as "above," 
"below," and "beside." Although this representation is almost certainly insuf- 
ficient, virtually nothing is currently known about what the "right" set of rela- 
tions is. Similarly, it is unknown whether one set of relations supports visual 
recognition and a different set supports, say, visual reasoning. These questions 
remain virtually unexplored in both the behavioral and neuroscientific commu- 
nities. But whatever their answers turn out to be, it seems certain that the 
problem of structure is one that the visual system has adapted to solve, and that 
the nature of its solution has profound implications for the properties of human 
object recognition. 
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CHAPTER 12 

A NEURAL-NETWORK APPROACH 
TO ADAPTIVE SIMILARITY AND STIMULUS REPRESENTATIONS 
IN CORTICO-HIPPOCAMPAL FUNCTION 

Mark A. Gluck and Catherine E. Myers 
Center for Molecular and Behavioral Neuroscience 
Rutgers University 

ABSTRACT 

We previously presented a top-down, connectionist model of cortico-hippo- 
campal interaction during classical conditioning (Gluck & Myers, 1993) which 
argues that the hippocampal region adapts stimulus similarity according to two 
basic principles: a bias to differentiate---or reduce similarity--between stimuli 
that are predictive of different salient future events, and a bias to increase 
similarity between stimuli that co-occur and/or predict similar future events. 
The original cortico-hippocampal model of Gluck and Myers (1993) addressed 
a wide range of intact and hippocampal-lesion data. It also generated a number 
of novel and testable predictions about behavioral phenomena that should be 
hippocampal dependent. In more recent work (Myers, Gluck, & Granger, 
1995) we have shown how at least one aspect of the proposed hippocampal- 
region function could arise from the substrate of the entorhinal cortex, the 
major sensory input to the hippocampal formation. Other work has shown how 
the role of cholinergic modulation from the medial septum can be incorporated 
into the model and relevant behavioral data explained (Myers, Ermita, Harris, 
Hasselmo, Solomon, & Gluck, 1996). This modeling suggests instead that the 
hippocampus is always active during normal learning. What should differ 
consistently between intact and hippocampal-lesioned animals are the strategies 
or methods by which they master tasks. This viewpoint suggests that attempts 
to differentiate and identify "hippocampal-dependent" or "hippocampal-inde- 
pendent" tasks may not be the most useful way to proceed. Rather, empirical 
emphasis should focus on tasks that can be solved by both intact and hippo- 
campal-lesioned animals, and concentrate on ways in which generalization or 
transfer performance differs between the two groups. 

Introduction 
The hippocampal region (Figure 1) is composed of a group of structures 

located deep within the brain, and includes the hippocampus itself as well as 
the nearby dentate gyms, subiculum and entorhinal cortex. The entorhinal 
cortex receives highly processed information from the multimodal cortical- 
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FIGURE 1. Schematic of major information-flow pathways in the hippocampal region. 
Highly processed, multimodal inputs enter entorhinal cortex and proceed in a largely 
unidirectional pathway through the hippocampal formation (dentate gyms, hippocampal 
fields CA3 and CAI and subiculum---not shown) before returning to entorhinal cortex 
and thence back to the same cortical areas where they arose. There is also a bidirec- 
tional pathway through the fornix connecting the hippocampus with subcortical areas 
such as medial septum. Many other connections exist in addition to the major ones 
shown here. 

association areas. Information flows in a roughly unidirectional fashion from 
the entorhinal cortex to the dentate gyms, to hippocampus, to the subiculum 
and back to the entorhinal cortex before returning to the same sensory areas 
where it originally arose (Amaral & WiRer, 1989). In addition to this basic 
pathway, there are a large number of direct connections between the structures 
of the region and to other structures such as medial septum. 

Damage to the hippocampal region in humans produces a characteristic 
anterograde-amnesia syndrome, strongly impairing the learning of new "epi- 
sodic" or "declarative" information, the kind of information about individual 
events and experiences that is generally accessible to conscious control (Squire, 
1987). In contrast to episodic or declarative memories, which are often ac- 
quired in a single exposure, other kinds of memory are acquired incrementally 
over many exposures. These "procedural" memories often survive hippocam- 
pal-region damage relatively intact. Thus, animals with lesion to the hippo- 
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campal region can still learn to choose the novel item from a pair of objects 
where one object was seen immediately before (Zola-Morgan & Squire, 1992), 
acquire simple discriminations of singly presented odor stimuli in an operant 
task (Eichenbaum, Fagan, Mathews, & Cohen, 1988), and learn to navigate to 
an escape platform when starting from a constant location in a pool (Eichen- 
baum, Cohen, Otto, & Wible, 1991). Similarly, human hippocampal-damaged 
amnesics are not impaired in learning simple classification tasks (Knowlton, 
Squire, & Gluck, 1994), or elementary motor skills or responses (Cohen, 
1984; Gabrieli, McGlinchey-Berroth, Carillo, Gluck, Cermack, & Disterhoft, 
1995). All of these spared tasks can be solved by incremental formation of 
habits or tendencies, without requiring episodic memories of any individual 
learning trial. 

Interestingly, the extent of impairment often depends critically on the pre- 
cise extent of the lesion. One example is the latent-inhibition effect, in which 
prior unreinforced exposure to a stimulus retards later learning to respond to 
that stimulus (Lubow, 1973). Latent inhibition is attenuated by broad hippo- 
campal-region damage (Solomon & Moore, 1975; Kaye & Pearce, 1987) but 
not by damage strictly limited to the hippocampus and sparing entorhinal 
cortex (Honey & Good, 1993; Reilly, Harley, & Revusky, 1993). Similarly, 
odor-discrimination reversal is impaired by hippocampal lesion but actually 
facilitated after entorhinal lesion (Otto, Schottler, Staubli, Eichenbaum, & 
Lynch, 1991). These and other results (e.g., Jarrard, 1993; Zola-Morgan & 
Squire, 1992) suggest that the different substructures of the hippocampal 
region make differentiable contributions to the processing of the region as a 
whole; however, the specific assignment of function to substructure, and 
knowledge of the ways in which they interact, are as yet unclear. 

Stimulus Representation and the Hippocampus 

A top-down model of adaptive representations in the hippocampal region 
We previously presented a top-down, connectionist model of cortico-hippo- 

campal interaction during classical conditioning (Gluck & Myers, 1993). The 
fundamental explanatory mechanism of this model was similarity. Similarity 
can be defined operationally as the degree to which an organism generalizes 
what it knows about one stimulus to another stimulus (James, 1896; Shepard, 
1958; Tversky, 1977). There are many ways to conceptualize the psychologi- 
cal notion of similarity. One approach is to view stimulus items as represented 
by points in a high-dimensional psychological space; within this geometric 
model of similarity, small inter-item distances are representative of high simi- 
larity, while large inter-item distances are representative of low similarity 
(Shepard, 1957). Initially, the distance between points in this psychological 
space may reflect physical similarity of stimuli. For example, a 1000-Hz tone 
is physically more similar to a 1200-Hz tone than to a 600-Hz tone, and the 
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arrangement of these stimuli in psychological space may reflect this ordering 
(Figure 2A). 

If two stimuli have high similarity, what is learned about one will general- 
ize strongly to the other; this will facilitate transfer between them, but impede 
learning to discriminate them. Thus, similarity can have important conse- 
quences for learning. In Gluck and Myers (1993), we reviewed evidence that 
similarity in psychological space is not fixed, but changes during learning in 
response to correlations between stimuli. For example, if an animal learns that 
food is signaled by the 600- and 1000-Hz tones but not by the 1200-Hz tone, 
then the similarity in psychological space may be altered to reflect this (Figure 
2B). As a result, there may come to be high similarity, and hence high general- 
ization, between stimuli that are similar in meaning. Related accounts of adap- 
tive similarity have been proposed within cognitive psychology for theories of 
concept learning (Kruschke, 1992; Nosofsky, 1984) and categorical perception 
(Harnad, Hanson, & Lubin, 1994). 

In several recent papers we described comparative behavioral analyses that, 
we argued, suggest that animals (and possibly people) with damage to the 
hippocampal region are unable to alter stimulus similarity based on experience. 
While these hippocampal-damaged subjects can still learn whether or not to 
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FIGURE 2. If stimuli are represented as points in a high-dimensional "psychological 
space," then the similarity, or tendency to generalize between them, is illustrated by 
the distance between them in this space. A. Initially, stimulus locations may reflect 
physical similarity: The representation of a 1000-Hz tone may be closer to that of a 
1200-Hz than a 600-Hz tone. B. Similarity is assumed to alter as a function of experi- 
ence; if both the 1000-Hz and 600-Hz tones predict reward but the 1200-Hz tone does 
not, similarity (and distances in psychological space) may change to reflect this. 
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respond to an individual stimulus, their performance is notably impaired on 
many tasks involving learning relationships between stimuli~especially in the 
absence of explicit reinforcement. This observation led to our proposal that one 
function of the hippocampal region is to adapt stimulus similarity to facilitate 
learning (Gluck & Myers, 1993). More specifically, we proposed that the 
hippocampal region adapts stimulus similarity according to two basic princi- 
ples. The first is a tendency to differentiate---or reduce similarity~between 
stimuli that are predictive of different salient future events. We called this 
principle predictive differentiation. For example, if stimulus A predicts 
reward but B does not, similarity between them should decrease, minimizing 
generalization between them and facilitating their discrimination. The second 
principle is a tendency to increase similarity between stimuli that co-occur 
and/or predict similar future events. We called this principle redundancy 
compression. Thus, if A and B reliably co-occur (and are therefore likely to 
make similar predictions about future reward), the similarity between A and B 
is increased, enhancing generalization and decreasing discriminability between 
A and B. 

Output Response 

Weight( 
Connectiq 

Output Node 

Internal (Hidden) Nodes 

Input Nodes 

Stimulus Inputs 

FIGURE 3. An example of a connectionist network. Input activations representing the 
presence or absence of inputs feed through weighted connections to activate an internal 
or hidden layer; these activations in turn pass through weighted connections to activate 
an output-layer node. The activation of this output node is interpreted as the strength 
(or probability) of a response. The activations of the hidden-layer nodes represent a 
remapping of the inputs, and representational similarity here leads to generalization at 
the output node. All connection weights are assumed to be modifiable. 
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For most simple training paradigms in which there is a simple set of stimu- 
lus-stimulus correlations, our theory makes clear predictions for learning and 
generalization that can be deduced at a verbal or qualitative level, without 
computer models or simulations. In brief, our theory predicts that these chang- 
es in similarity will be evident in normal intact animals, but missing or altered 
in animals with damage to the hippocampal region. This provides us with a 
clear and formal theory for how and where we expect hippocampal-lesioned 
animals to differ behaviorally from normal animals. Although the theory can 
be applied usefully at just this verbal-qualitative level, a formal instantiation of 
the theory allows the specification of exact predictions, as well as providing a 
way to explore more subtle interactions among multiple stimuli in complex 
training paradigms. 

A connectionist model of adaptive similarity in cortico-hippocampal function. 
Classically conditioned learning can be implemented within a connectionist 
network model (Figure 3). Inputs representing the presence or absence of 
stimuli (including contextual stimuli) activate an internal or "hidden" layer of 
nodes through weighted connections; these internal nodes, in turn, activate an 
output node through weighted connections. The activity level of the output 
node defines the strength (or probability) of a conditioned response. The 
remapping of stimuli to activations that occurs at the hidden layer is a represen- 
tation of stimuli similar to that conceptualized in Figure 2: Namely, inputs that 
activate similar (or dissimilar) representations in the hidden layer will be more 
(or less) likely to activate similar output responses. 

All the connection weights in the network of Figure 3 are assumed to be 
adaptive---that is, changeable through experience---and learning consists of 
modifying these weights until the correct conditioned response is given to each 
pattern of input stimuli. Algorithms are known for training the upper layer of 
weights between the hidden- and output-layer nodes, so long as the desired 
activation of the output-layer node is known. For example, the least-mean- 
square (LMS) algorithm (Widrow & Hoff, 1960) is a correlational rule directly 
related to psychological learning theories (Rescorla & Wagner, 1972) as well 
as putative mechanisms of synaptic plasticity such as long-term potentiation 
(LTP; Donegan, Gluck, & Thompson, 1989; Levy, Brassel, & Moore, 1983; 
Brown, Kariss, & Keenan, 1990; see Frey, this volume). 

The desired activations at hidden-layer nodes are not known a priori, 
however, and thus more complex mathematical procedures are needed to allow 
training the lower layer of weights. Although algorithms do exist that can train 
these multi-layer weights~notably the error backpropagation algorithm 
(Rumelhart, Hinton, & Williams, 1986)~their mathematical complexity makes 
it difficult to imagine how such algorithms might be implemented in the cere- 
bellar and cerebral cortices (although see Schmajuk & DiCarlo, 1990). 
However, if the desired response of the hidden nodes to an input pattern were 
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somehow known, then the lower layer of weights could be trained using a 
second application of LMS. In Gluck and Myers (1993) we proposed that the 
hippocampal region can provide this kind of information regarding desired new 
stimulus representations in long-term memory, formalized here as the activa- 
tions of the hidden-layer nodes. 

(A) I n t a c t  M o d e l  (B) L e s i o n e d  M o d e l  

Long-Term Hippocampal 
Memory Region Long-Term Memory 

Respons.~ Stim i I~npu t  
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FIGURE 4. The cortico-hippocampal model (Gluck & Myers, 1993). A. The intact 
model. A hippocampal-region network learns to reconstruct its inputs, plus a prediction 
of US arrival, while forming new stimulus representations in its internal layer that 
compress redundant information but differentiate predictive information. These new 
representations are acquired by a cortical network, which learns to map from them to a 
prediction of classification or behavioral response, and which is the site of long-term 
memory. B. The lesioned model. Disabling the hippocampal network is assumed to 
result in the cortical network's no longer being able to acquire new representations, 
although it can still learn to map from existing representations to new behavioral 
responses. 

A model of the hippocampal region is shown in the rightmost portion of 
Figure 4A, and is termed an autoencoder (Hinton, 1989). This network is 
broadly similar to the basic network shown in Figure 3, except for the addition 
of enough output nodes to reconstruct the entire input pattern as well as predict 
the conditioned response. This network may be trained by an algorithm such as 
error backpropagation. The hidden-layer activations, determined in the hippo- 
campal-region network, are transferred incrementally to a cortical network (in 
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the leftmost portion of Figure 4A), which is assumed to be the site of long- 
term memory storage. The cortical model can then use one application of LMS 
to modify the input-hidden-layer weights, and a second independent application 
of LMS to modify the hidden-output-layer weights. 

Within this model framework, hippocampal-region damage is simulated by 
disabling the hippocampal-region network, as shown in Figure 4B. In this 
case, the cortical network is assumed to be unable to modify its lower-layer 
weights, although it can still modify its upper-layer weights. Thus, even 
without hippocampal input, the cortical network can continue to learn new 
behavioral responses based on preexisting (and now fixed) hidden-layer repre- 
sentations. The computational processing remaining in Figure 4B following 
removal of the hippocampal-region network can, therefore, be compared to 
behavior after a broad hippocampal-region lesion, including the hippocampal 
formation and entorhinal cortex (the so-called H + EC lesion). These intact and 
lesioned models can be applied to simple associative-learning preparations such 
as classical conditioning, and accurately capture the behavior of intact and 
lesioned animals in a variety of paradigms (Gluck & Myers, 1993; Myers & 
Gluck, 1994). We discuss a few examples below. 

Evidence for redundancy compression. The first putative hippocampal function, 
redundancy compression, increases similarity between co-occurring or redund- 
ant stimuli. One of the simplest paradigms in which redundancy compression is 
expected is sensory preconditioning. Consider two distinct stimulus cues, A 
and B, perhaps two tones. The representations they evoke should be highly 
distinct~like the 1000-Hz and 600-Hz tones shown in Figure 2A. As such, 
there should be very little generalization between A and B. If A is subsequently 
paired with the US (A + training), a test presentation of B should evoke very 
little response. However, if prior to the A+ training there are repeated non- 
reinforced trials pairing A and B, redundancy compression should make the 
representations of co-occurring cues A and B more similar, as in the 1000-Hz 
and 600-Hz tones in Figure 2B. This will increase generalization between A 
and B, so that subsequent A + training will transfer partially to B, with the 
result that presentation of B should evoke conditioned responding. This sen- 
sory-preconditioning effect is seen in intact animals (Thompson, 1972) and also 
in the intact model (Figure 5A). Because our model assumes that sensory 
preconditioning arises from hippocampal-dependent representational compres- 
sion during the pretraining phase, the effect is not present in the lesioned 
model (Figure 5A). Similarly, hippocampal damage through fimbrial lesion 
attenuates sensory preconditioning in rabbits (Port & Patterson, 1984). 

Conversely, in compound preconditioning, preexposure to AB retards later 
learning to discriminate them in both normal animals and children (Lubow, 
Rifkin, & Alek, 1976). The intact model shows this behavior (Figure 5B) 
since preexposure increases generalization and retards discrimination of A and 
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B; this hippocampal-dependent effect does not occur in the lesioned model 
(Gluck & Myers, 1993). Thus, our model makes the novel prediction that there 
should be a seemingly paradoxical facilitation of learning after hippocampal- 
region damage in compound preconditioning; this prediction remains to be 
experimentally tested. 

FIGURE 5. Simulations with intact and lesioned models. A. Sensory preconditioning: 
Unreinforced preexposure to a compound AB followed by training to respond to A 
produces stronger responding to B alone than a control condition with no preexposure. 
The intact, but not the lesioned, model shows this effect. B. Compound precondition- 
ing: Unreinforced preexposure to AB in the intact model slows later training to dis- 
criminate A and B, as shown by less relative difference in responding to A and B 
(Diff(A,B)). The model predicts hippocampal-region lesion should eliminate the effect. 

Evidence for predictive differentiation. In our theory, the hippocampal region 
is also assumed to mediate predictive differentiation, decreasing the similarity 
between stimuli that are to be mapped to different outputs. The simplest para- 
digm in which differentiation is expected is a discrimination task in which two 
stimuli A and B are associated with different responses (e.g., A predicts the 
US but B does not). In the intact model, the hippocampal-region network 
constructs new internal representations that decrease the similarity between A 
and B. These new differentiated representations are acquired by the cortical 
network's hidden layer, which can then map these representations to different 
responses as the task requires. Interestingly, the lesioned model shows no 
particular deficit on this task, and learns as quickly as the intact model (Figure 
6A; Gluck & Myers, 1993). This is because the preexisting (fixed) hidden- 
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layer representations in the lesioned model's cortical network are likely to 
partially distinguish A and B for this simple task, and thus all the network must 
do is map these distinguishable representations to the correct responses. 

FIGURE 6. Simulation results. A. Stimulus discrimination: Training to respond to A 
but not to B. The intact model forms new stimulus representations that differentiate A 
and B, and then maps them to opposite responses. The lesioned model simply maps 
from preexisting (fixed) representations in the cortical network to the correct respons- 
es. There is no impairment in conditioned-discrimination learning in the lesioned 
model. B. Easy-hard transfer: Learning a hard discrimination between A and B is facil- 
itated by prior training on an easier discrimination along the same stimulus continuum 
in the intact, but not the lesioned, model. This is shown by a smaller relative dif- 
ference in responding to A and B (Diff(A,B)) after a fixed amount of training in the 
lesioned model than in the intact model. This prediction of hippocampal-dependence 
remains to be tested. Adapted from Myers et al (1995). 

Consistent with the model's implications, hippocampal lesions do not impair 
learning a simple discrimination across a variety of preparations (e.g., Good & 
Honey, 1991; Jones & Mishkin, 1972; Port, Romano, & Patterson, 1986; 
Zola-Morgan, Squire, Rempel, Clower, & Amaral, 1992; Zola-Morgan & 
Squire, 1986; Jarrard, 1993; Ross, Orr, Holland, & Berger, 1984; Silveira & 
Kimble, 1968). In some cases, hippocampal-region damage has even been 
shown to facilitate learning (e.g., Eichenbaum, Fagan, & Cohen, 1986; 
Eichenbaum et al, 1988; Eichenbaum, Otto, Wible, & Piper, 1991; Port, 
Mikhail, & Patterson, 1985; Schmaltz & Theios, 1972). Our model provides 
an interpretation of this seemingly paradoxical facilitation of learning after 
hippocampal lesion. Figure 6A shows that the lesioned model learns somewhat 



230 M.A. Gluck and C.E. Myers 

faster than the intact model, which must spend time constructing new represen- 
tations that are not strictly needed for the training task. (But, as described 
later, these new representations may be relevant for future generalizations of 
this learning). 

The additional time and effort spent by the intact model in constructing 
these new and differentiated stimulus representations can be very helpful if the 
task changes so that the same cues are relevant but their meaning has changed. 
A simple example of this occurs in the easy-hard transfer paradigm, in which 
animals are first trained on an "easy" discrimination (e.g., black vs. white) and 
then transferred to a "hard" discrimination along the same stimulus continuum 
(e.g., dark gray vs. light gray). This transfer facilitates learning more than an 
equivalent amount of pretraining on the hard discrimination itself (e.g., 
Lawrence, 1952; Riley, 1968; Terrace, 1963). The intact model correctly 
shows this effect (Figure 6B; Gluck & Myers, 1993): The difference in output 
activations to the two hard stimuli, Diff(H +,H-), was greater following pre- 
training on the easy task than following pretraining on the hard task. During 
pretraining on the easy task, the hippocampal-region network differentiates the 
representations of the two stimuli, which predict different outcomes. Since 
these two stimuli differ on only a single dimension (e.g., brightness), that 
dimension will be differentiated, with the result of decreased generalization 
between stimuli with differing values of this dimension. This differentiation 
will help in the subsequent hard task, involving the same dimension. In the 
control condition, with pretraining on the hard task, the same mechanisms 
operate, but they are slower because the stimuli are harder to distinguish. 
Therefore, the pretraining is not as effective. In the lesioned model, with no 
differentiation mechanisms, the easy-hard transfer effect is not obtained. This 
leads to the novel prediction that hippocampal-lesioned animals will not show 
easy-hard transfer, another prediction that remains to be tested. 

Application to contextual sensitivity. The model also applies to the effects of 
hippocampal lesion on contextual processing. Many of the learning deficits 
associated with hippocampal damage can be described as contextual deficits, 
since they suggest an inability to incorporate information about the environ- 
mental conditions under which an event occurs (Hirsh, 1974). It should be 
noted that this does not reflect a general inability to perceive contextual cues, 
since lesioned animals can still learn to discriminate contexts (e.g., Good & 
Honey, 1991; Phillips & LeDoux, 1994). What seems to be disrupted in the 
lesioned animal is the ability to use context to interpret the meaning of condi- 
tioned cues (Myers & Gluck, 1994). For example, in the eyeblink preparation, 
if a normal animal is trained to respond to a cue in a specific context, and that 
cue is then presented in a novel context, the response to that cue will often be 
weaker in the new context; this effect is eliminated in hippocampal-lesioned 
animals (Figure 7A; Penick & Solomon, 1991; Honey & Good, 1993). 
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FIGURE 7. Simulation of context effects. A. In normal animals, a conditioned re- 
sponse to A may decrease if A is presented in a new context (Hall & Honey, 1990); 
hippocampal-lesioned animals do not show this response decrement after a context shift 
(Penick & Solomon, 1991; Honey & Good, 1993; figure replotted from data presented 
in Penick & Solomon, 1991.) B. The intact, but not the lesioned, model correctly 
shows this response decrement with context shift (Myers & Gluck, 1994). 

[Although this context-shift phenomenon is robust in the rabbit eyeblink prepa- 
ration, it does not occur in all preparations, cf. Bouton & Peck, 1989. In 
Myers and Gluck (1994), we discuss how our model provides an interpretation 
of this variance across species and preparations.] 

As the hippocampal-region autoencoder learns to generate CRs, it also 
learns to reconstruct its inputs, including contextual cues. Thus, contextual 
information is included in the representations formed in the autoencoder's 
internal layer. As a result, the context influences the internal-layer representa- 
tions in such a way that, if the CS is later presented in a new context, the 
representation of that CS will be more weakly activated than it was in the train- 
ing context. Figure 7B shows the simulated response decrement after context 
shift in the intact version of the model, which parallels observations in the 
intact animal shown in Figure 7A. The model also correctly predicts that with 
extended training the hippocampal representation will exclude irrelevant con- 
textual information and become more and more context-dependent (Myers & 
Gluck, 1994). There is some evidence of this kind of time dependence of 
contextual sensitivity in animals (Hall & Honey, 1990; see also Myers & 
Gluck, 1994, for review). In the lesioned model, however, no new representa- 
tions are formed, so there is no means for incorporating contextual information 
into the representation of a CS. As a result, the lesioned model is relatively 
insensitive to context (Figure 7B). This is consistent with the occurrence of the 
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strong responding generally shown by hippocampal-lesioned animals in a new 
context (Figure 7A). The cortico-hippocampal model can similarly account for 
results from a range of context studies (Myers & Gluck, 1994), including the 
release from latent inhibition with context shift. Moreover, the model provides 
a computational instantiation and elaboration of several existing qualitative 
theories that have implicated the hippocampus in context learning (Hirsh, 
1974; Penick & Solomon, 1991). 

Limitations and open issues. Although the Gluck and Myers (1993) model 
accounts well for the behavioral data from lesion studies of animal condition- 
ing, it makes no substantive contact with the anatomical and physiological 
substrates that could give rise to this behavior. In Myers et al (1995), we made 
a first attempt at showing how at least one aspect of the proposed hippocampal- 
region function could arise from the substrate of the entorhinal cortex. Much 
of our more recent work focuses on extending this approach, integrating 
bottom-up and top-down modeling. An important theme of this research has 
been an endeavor to use existing bottom-up models developed by other re- 
searchers to implement the top-down processes suggested by our own previous 
work. 

A bottom-up model of redundancy compression in entorhinal cortex 
Although the intact model of Figure 4A adopts the simplifying assumption 

that the hippocampal region functions in a unitary fashion, the hippocampal 
region is, in fact, anatomically divided into several distinct structures, as 
shown in Figure 1. We have hypothesized that the representational function 
computed in our intact model's hippocampal region may be subdivided, and 
the subfunctions localized in different anatomical sites around the region. In 
particular, we proposed that stimulus-stimulus redundancy compression could 
emerge from the anatomy and physiology of superficial entorhinal cortex 
(Myers et al, 1995). 

This suggestion is based on a prior bottom-up model of superficial piriform 
(olfactory) cortex, which argued that the anatomy and physiology of the struc- 
ture are sufficient to implement hierarchical clustering of odor inputs (Ambros- 
Ingerson, Granger & Lynch, 1990). In brief, they proposed a competitive 
network model in which local recurrent inhibition silences all but the most 
strongly responding pyramidal cells; these "winning" cells then respond to a 
family or cluster of inputs with similar features. Recurrent feedback from the 
piriform cortex to olfactory bulb is also assumed to allow iterative responses to 
odors, from which successively finer-grained (hierarchical) classifications can 
be constructed. One aspect of this model is that, since similar inputs tend to be 
clustered to similar output responses, the network performs redundancy 
compression of exactly the sort we have previously proposed to occur in the 
hippocampal region (Myers et al, 1995). In particular, if two inputs co-occur, 
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they will be treated as a single compound input. Later, if one of the inputs 
occurs alone, the network will tend to treat this as a degraded version of the 
compound input, and assign it to the same cluster as the compound. 

Interestingly, the piriform cortex and entorhinal cortex elide in rat, and 
their superficial layers are closely related anatomically and physiologically, 
suggesting the possibility of related functionality (Woodhams, Celio, Ulfig, & 
WiRer, 1993; van Hoesen & Pandya, 1975; Price, 1973). Specifically, superfi- 
cial entorhinal cortex contains pyramidal cells with sparse nontopographic 
connections with afferents in layer I (van Hoesen & Pandya, 1975) with denser 
feedback connections to local inhibitory cells (Kohler, 1986). And, entorhinal 
cortex shows NMDA-dependent, theta-induced long-term potentiation (LTP) 
(deCurtis & Llinas, 1993). Noting this similarity, Gluck and Granger (1993) 
suggested that entorhinal cortex performs a similarity-based clustering opera- 
tion similar to that proposed to occur in piriform cortex. 

(A) Entorhinal Network 
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FIGURE 8. A. In the entorhinal model, target cells are excited by sparse afferents, 
and in turn activate local inhibitory-feedback interneurons. Feedback silences all but 
the most strongly activated target cells. Synaptic plasticity makes these "winning" 
target cells more likely to "win" in response to similar inputs in the future. The result- 
ing network activity is constrained by stimulus-stimulus redundancy compression. B. 
The H-lesioned model, in which an entorhinal-cortex network provides new com- 
pressed representations to the internal layer of a long-term memory network. 

In sum, then, we have proposed that the entorhinal cortex is sufficient to 
implement the redundancy-compression aspect of the representational changes 
we ascribed to the hippocampal region as a whole (Myers et al, 1995). A 
model implementing these proposed processes, and based on the physiological- 
ly and anatomically motivated model of Ambros-Ingerson et al (1990), is 
shown in Figure 8A. One difference between the piriform and entorhinal 
models is that the piriform model assumes repetitive sampling and input 
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masking, based on recurrent connections from piriform cortex to olfactory 
bulb. We have not assumed this in the entorhinal model, and so it only per- 
forms a single-stage, similarity-based clustering or compression of its inputs. 
The resulting network is similar to the unsupervised competitive-learning 
systems developed by Kohonen (1984), Rumelhart and Zipser (1985), Gross- 
berg (1976), and others. A second important difference between the piriform 
and entorhinal cortices is that, while the piriform cortex is primarily an olfac- 
tory area, the entorhinal cortex receives input from a broad spectrum of 
polymodal cortices, as well as from the piriform cortex. Thus, we have sug- 
gested that, while the piriform cortex might be sufficient to implement redun- 
dancy compression within the olfactory domain, the entorhinal cortex is re- 
quired to implement redundancy compression between stimuli from different 
modalities, or across the polymodal features of a single stimulus (Myers et al, 
1995). 

Evaluating the entorhinal model. The present hypothesis assumes that a selec- 
tive hippocampal lesion (the "H" lesion) that does not otherwise damage entor- 
hinal cortex might allow redundancy compression processes to survive. Be- 
haviors that depend mainly on these processes should continue to be exhibited 
after H lesion, while behaviors that require other representational processes 
such as predictive differentiation should be disrupted. We can evaluate this 
situation by constructing an H-lesioned model, as shown in Figure 8B, in 
which the hippocampal-region network of Figure 4A is replaced by an entor- 
hinal network. [Full details of this model implementation are given in Myers et 
al, 1995.] The long-term memory network continues to operate as in the intact 
model, except that the new representations provided by the entorhinal network 
are biased only by stimulus-stimulus redundancy compression, not by the other 
representational biases attributed to the hippocampal region as a whole. 

Once again, consider latent inhibition, in which unreinforced preexposure 
to a cue slows subsequent learning to respond to that cue (Lubow, 1973). In 
our intact model, latent inhibition is caused by compression of the preexposed 
cue with co-occurring and equally non-reinforced contextual cues. The subse- 
quent increase in learning time results because the model must first redifferen- 
tiate the cue from the context before a response can be selectively associated 
with the cue (~gure 9A); the effect is correctly absent in the lesioned model 
(Myers & Gluck, 1994). Because this effect is assumed to depend primarily on 
redundancy compression, the entorhinal network in the H-lesioned model is 
sufficient to produce latent inhibition (Figure 9B). Consistent with the model, 
rats with selective (ibotenate) hippocampal lesions but no entorhinal damage 
show normal or even enhanced latent inhibition (Honey & Good, 1993; Reilly 
et al, 1993). 

More important, however, is how the model interprets subtle differences in 
transfer behavior following latent inhibition. When shifted to a new context 
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FIGURE 9. Latent inhibition in the model. A. In the intact model, prior exposure to A 
slows subsequent learning to respond to A, compared with a non-exposed condition; 
this effect is correctly eliminated in the H+EC-lesioned model (Myers & Gluck, 
1994). B. In the H-lesioned model, however, latent inhibition is preserved, consistent 
with animal data on selective H-lesion (Myers et al, 1995). Additionally, the H-le- 
sioned model correctly exhibits a release from latent inhibition if a context shift occurs 
between exposure and training phases. 

between exposure and acquisition phases, the intact animals show release from 
latent inhibition, but the H-lesioned animals do not (Honey & Good, 1993). 
This implies that the superficially similar latent-inhibition phenomenon ob- 
served in intact and H-lesioned animals may result from different underlying 
processes. The intact, but not the H-lesioned, model shows a similar release 
from latent inhibition after a context shift, consistent with the animal results 
(Myers et al, 1995). The difference in context sensitivity in the models results 
from different hippocampal-region processing. The intact model compresses 
information during the preexposure phase by incorporating contextual informa- 
tion with the representation of the cue. Then, in the subsequent acquisition 
phase, it must differentiate these. But, if there is a context shift, the cue's 
representation is already differentiated from the new context, resulting in a 
release from latent inhibition. The H-lesioned model compresses information 
during the preexposure phase by reducing the amount of representational 
resources used to encode the cue. This compression cannot be undone without 
hippocampal-mediated differentiation, and the only way to accomplish this 
during the acquisition phase is to "hunt" for features of the compressed repre- 
sentation that happen to distinguish cue and context. This is made no easier by 
a context shift and, therefore, the H-lesioned model shows no release from 
latent inhibition (Figure 9B). 
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This work represents a first attempt to map a behaviorally driven "top- 
down" model onto actual physiological substrates. This is done by showing 
that at least one portion of the proposed function of the hippocampal region 
could emerge from the circuitry of the entorhinal cortex. Open questions for 
future work are where the other remaining components of the proposed func- 
tion could be sited, and how these modules and the presumed entorhinal clus- 
tering module interact~both during learning and after various kinds of selec- 
tive lesion. Other open questions involve how other brain structures modulate 
hippocampal-region processing in physiologically realistic ways, and how the 
hippocampal region actually interacts with cortex during learning. These issues 
are partially addressed in the next two sections. 

Incorporating models of septohippocampal cholinergic modulation 
The original cortico-hippocampal model concentrated on the pathways 

carrying information in and out of hippocampus but, as mentioned above, there 
is also an important bidirectional pathway through the fornix connecting the 
hippocampus with subcortical structures (see Figure 1). One important input 
through the fornix is a modulatory cholinergic input from the medial septum. 
Hasselmo and Schnell (1994) have suggested that this cholinergic input can be 
used to switch the hippocampus between two processing states: In the presence 
of acetylcholine (ACh), the hippocampus stores new information and suppress- 
es pattern reconstruction via the recurrent collaterals in CA3. In the absence of 
ACh, storage is suppressed, and pattern reconstruction is allowed to occur to 
retrieve stored patterns for transfer to long-term cortical or cerebellar storage. 
This hypothesis is consistent with physiological studies (Hasselmo, Schnell & 
Barkai, 1995) showing that ACh both enhances synaptic plasticity and sup- 
presses activity in hippocampal stratum radiatum (the site of synapses from 
recurrent collaterals) more than activity in stratum lacunosum-moleculare (the 
site of synapses from extrinsic inputs). It is also consistent with behavioral data 
showing that classical conditioning is retarded after interruption of septohippo- 
campal cholinergic inputs by medial septal lesion (Berry & Thompson, 1979) 
or the anticholinergic drug scopolamine (Figure 10A; Solomon, Solomon, 
Vander-Schaff, & Perry, 1983). 

We have approximated Hasselmo's storage-recall switching hypothesis 
within Gluck and Myers's original cortico-hippocampal model by noting that 
the tendency of the hippocampal-region network to store new information, as 
opposed to simply processing it and recalling old information, is determined by 
the hippocampal network's learning rate (Myers et al, 1996). Disrupting septal 
input can therefore be approximated by lowering this learning rate--although 
not the rate at which this information is transferred to the cortical network, nor 
the rate at which cortical associations develop. The consequence of this depres- 
sion of hippocampal learning rates is to strongly retard classical conditioning in 
the model in a manner that is proportional to the amount of depression (Figure 
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10B). The anticholinergic drug scopolamine causes a similar dose-dependent 
effect in both rabbits (Solomon et al, 1983) and humans (Solomon, Groccia- 
Ellison, Flynn, Mirak, Edwards, Dunehuew, & Stanton, 1993). 

Consistent with the model's behavior, the empirical data suggest that the 
effect of disrupting septohippocampal cholinergic pathways is not to abolish 
learning, but rather to delay its onset: More trials are needed before learning 
occurs, but once it begins, learning proceeds at approximately normal rates and 
eventually reaches the same asymptotic level as under normal conditions 
(Myers et al, 1996). It is interesting to note the relationship between our model 
of septohippocampal modulation during conditioning and the two-stage condi- 
tioning model proposed by Prokasy (1972). Prokasy proposed that the period 
during which the behavioral response was acquired was preceded by a prior 
period in which the response remained relatively constant at its baseline level. 
Both the absolute baseline level and the temporal duration of this first stage 
were assumed to vary with individuals. Prokasy's model therefore predicts the 
S-shape acquisition curve seen in intact subjects (Figure 10A). The two-stage 
model is consistent with the cortico-hippocampal model. The cortico- 
hippocampal model assumes that the hippocampal region forms stimulus repre- 
sentations that are then acquired by the cortical network. The cortical network 
cannot solve the task until these hippocampal-mediated representations are 
formed and transferred. Therefore, the intact model shows an initial period of 
baseline responding until the hippocampal representations evolve (Figure 
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FIGURE 10. A. Classical eyeblink conditioning in rabbits is disrupted by systemic 
administration of the anticholinergic scopolamine. The onset of learning is delayed but, 
once begun, learning proceeds at normal rates (Solomon et al, 1983). B. A similar 
effect is obtained in the model by lowering the learning rate of the hippocampal region 
(Myers et al, 1996). This is an approximation of Hasselmo and Schnell's (1994) 
hypothesis that septohippocampal ACh determines the rate at which the hippocampus 
stores new information. 
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10B). The effect of decreasing the hippocampal learning rate to simulate anti- 
cholinergic drugs can, therefore, be interpreted as an extension of the initial 
phase within Prokasy's two-stage model. This is also consistent with the inter- 
pretation by Thompson, Berger, Berry, Hoehler, Kettner, and Weisz (1980) of 
the functional consequences of medial septal lesions. 

Dose dependence of cholinergic and anticholinergic drugs. An important 
aspect of the modeling work is its generation of predictions regarding the ef- 
fects of cholinergic and anticholinergic drugs. In our pilot studies, raising the 
learning rate of the hippocampal network improved learning in the model to 
some extent (Myers et al, 1996). This is consistent with data showing that 
patients with basal forebrain damage may show temporary memory improve- 
ments given the cholinergic agonist physostigmine (Chatterjee, Morris, Bow- 
ers, Williamson, Doty, & Heilman, 1993). Similarly, patients with Alzhei- 
mer's disease, who typically show basal forebrain damage and reduced brain 
acetylcholine levels (Whitehouse, Price, Struble, Clark, Coyle, & DeLong, 
1982), show some cognitive and memory improvements given physostigmine 
(Thai, Fuld, Masur, & Sharpless, 1983; Davis & Mohs, 1982) or the choliner- 
gic agonist Tacrine (Knapp, Knopman, Solomon, Pendlebury, Davis, & 
Gracon, 1994; Manning, 1994). 

Beyond some optimal level, however, further increases in the hippocampal 
learning rate actually retards learning in the model (Myers et al, 1996). Figure 
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FIGURE 11. A. Classical eyeblink conditioning can be facilitated by moderate doses 
of physostigmine; but beyond some optimal dose, there is no facilitation or even im- 
pairment. Adapted from Ogura & Aigner (1993). B. A similar "dose dependency" 
results in the model from increased hippocampal learning rates. After some initial 
improvement, further increases in learning rate do not facilitate learning. Adapted 
from Myers et al (1996). 
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l iB  shows this dose-dependent effect of increased hippocampal learning rate in 
the intact model. This retardation with very high learning rates is a general 
property of connectionist networks (cf. Jacobs, 1988). 

Figure I lA shows that the cholinergic-esterase inhibitor physostigmine can, 
at moderate doses, improve learning in normals, but at dosages exceeding this 
optimum level, either no facilitation (e.g., Santucci, Kanof, & Haroutunian, 
1989; Ogura & Aigner, 1993; Sweeney, Bachman & Coyle, 1990) or actual 
impairment may occur (e.g., Ennaceur & Meliani, 1992; Miyamoto, Narumi, 
Nagaoka, & Coyle, 1989; Dumery, Derer, & Blozovski, 1988). Similarly, 
although moderate doses of the cholinergic agonist oxotremorine can improve 
learning in aged rats, higher doses actually impair learning (Markowska, 
Olton, & Givens, 1995). The model therefore provides an account for these 
empirical phenomena, which have been problematic in the clinical pharmacol- 
ogy literature. The ability of cholinergic drugs to produce a robust memory 
facilitation in normal subjects is important given the recent pharmacological 
interest in producing drugs that facilitate memory. One important aspect of 
future modeling work is to more accurately investigate expected dose-response 
curves in normal subjects and subjects with reduced brain acetylcholine levels. 

Discussion 
The original cortico-hippocampal model of Gluck and Myers (1993) ad- 

dressed a wide range of data from intact and hippocampal-lesioned organisms. 
It also generated a number of novel and testable predictions about behavioral 
phenomena that should be hippocampal dependent. The theory underlying this 
model also makes contact with a wide range of preexisting, albeit more qualita- 
tive, theories of hippocampal-region function. 

For example, Eichenbaum, Cohen, and their colleagues (Eichenbaum, Otto, 
& Cohen, 1992a; Eichenbaum et al, 1992b) proposed that the hippocampus is 
needed to form flexible representations during learning. This proposal is relat- 
ed to our demonstration that the absence of appropriate stimulus representa- 
tions during learning can result in altered transfer performance in hippocampal- 
lesioned animals (Gluck, Myers, & Goebel, 1994). We have already noted 
how our model instantiates qualitative suggestions that the hippocampal region 
is necessary for contextual processing~even though our model does not 
assume context per se is the hippocampus's chief domain (cf. Hirsh, 1974; 
Penick & Solomon, 1991). 

Similarly, our model holds that configural learning may often require 
hippocampal-dependent, stimulus-stimulus learning and may, therefore, be 
especially susceptible to hippocampal damage (Myers & Gluck, 1994). This is 
consistent with Rudy and Sutherland's (1989) view that configural learning is 
especially hippocampal dependent. This relationship was highlighted in a 
recent article by Alvarado and Rudy (1995), in which these authors wrote 
"...our suggestion that it is the degree of associative conflict between the 
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configural representation and the representation of the elements that determines 
when the hippocampal formation is essential can be considered to be an impli- 
cation of Gluck and Myers's principle of predictive differentiation" (p. 1062). 

Our model stands in stark contrast to qualitative theories that the hippocam- 
pus is involved primarily in spatial learning (e.g., O'Keefe & Nadel, 1978). 
Clearly, spatial learning is extremely disrupted in animals with hippocampal- 
region damage (e.g., Morris, 1983; Jarrard, 1993); it is also true that "place 
cells" form in the hippocampus that respond preferentially when the animal is 
in a particular region of space (e.g., O'Keefe, 1979; McNaughton, Chen,& 
Marcus, 1991). However, our model and theory suggest that the hippocampus 
is involved in all kinds of learning that depends heavily on the formation of 
new representations. For this reason, our theory predicts that spatial learning, 
which presumably involves associating arbitrary views and proprioceptive 
information into concepts of "place," might be especially sensitive to hippo- 
campal damage---even though spatial learning per se is not the function of the 
hippocampus. This argument is similar to that advanced by many others who 
have considered possible information-processing roles for the hippocampus 
(e.g., Donahoe & Palmer, 1994; Eichenbaum et al, 1988; Taube, 1991). 

One of the most important goals of this modeling work was to produce a 
simple description of the information-processing role of the hippocampal 
region in associative learning. The specific proposal was that the hippocampal 
region adapts stimulus representations to produce generalization and thereby 
facilitate learning. The model demonstrated that this simple mechanism was, in 
fact, sufficient to generate a range of behaviors observed in intact animals and 
animals with hippocampal-region damage. The model also demonstrated that it 
was not necessary to posit specialized stimulus-specific or task-specific 
mechanisms to explain this range of behaviors. We know that at least some of 
this proposed hippocampal-region function can emerge from the biological 
substrate---and we hope that future work will show that the entire function can 
be so mapped onto brain regions. We also know that the basic story is consist- 
ent with subcortical modulation by the medial septum and with stimulus pro- 
cessing in sensory cortex. 

The modeling also provides a framework for understanding why several 
previously problematic phenomena might occur~including the facilitation of 
discrimination learning after hippocampal-region damage, the elimination of 
latent inhibition with a broad hippocampal-region lesion but not a smaller 
hippocampal-only lesion, and the U-shaped dose-response curve for cholinergic 
drugs in normal subjects. Additionally, the modeling provides several novel 
predictions about which tasks ought to be hippocampal dependent, such as 
compound preconditioning and easy-hard transfer. These predictions provide 
means for testing the model, but they also can be used to guide research 
toward productive paradigms. 
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The model also demonstrates the difference between a structure being active 
during a behavior versus being necessary for that behavior. The fact that dis- 
crimination learning might be unaffected----or even facilitated~by hippocampal 
damage has been interpreted to suggest that the hippocampus is inactive---or 
even inhibitory---during conditioned learning. This suggestion is at odds with 
neurophysiological data showing that the hippocampus is not only active during 
learning, but performs very specific functions. For example, hippocampal 
activity is strongest during initial learning and decreases as a task becomes 
fully mastered (Sears & Steinmetz, 1990). 

Our model suggests, instead, that the hippocampus is always active during 
normal learning. The fact that some tasks do not strictly require mediation by 
the hippocampal region does not contradict this. What should consistently be 
different between intact and hippocampal-lesioned animals are the strategies or 
methods by which they master these tasks. A simple example comes from the 
reversal paradigm: Although both intact and lesioned animals are assumed to 
solve the initial discrimination, the model predicts that only intact animals 
construct new representations that differentiate the stimuli. Thus, the intact 
animals perform differently from the lesioned animals on the reversal phase. 
Therefore, statements that some behaviors are "hippocampal dependent" while 
others are "hippocampal independent" may not be the most useful conceptuali- 
zations. Instead, experimental tasks that can be solved by both intact and 
hippocampal-lesioned animals should be used with the focus on the different 
ways in which generalization or transfer performance proceeds. 
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PART FOUR: BEHAVING 

This section is concerned with behavioral processes. We treat these pro- 
cesses separately from those mediating perception only because of the limita- 
tions of language; the sequential nature of language is ill-suited to depict the 
parallel, interacting nature of biobehavioral processes. Neural-network simula- 
tions, as imperfect as they may be in a given instance, are conceptually better 
equipped to describe such processes and to explore their implications. 

Before introducing the chapters on behaving, we identify two general points 
arising from simulations of perceiving. First, as the phenomena being simulat- 
ed grew more complex, the simulations tended to become less tightly con- 
strained by the relevant biobehavioral science. For example, the simulations of 
object perception (Hummel) assumed a hierarchical network structure consist- 
ing, in part, of elements called geons. Geons are perceptual primitives from 
which more complex objects could be synthesized. Although the neuroanatomy 
of perceiving is consistent with a hierarchical network structure, neurophysio- 
logical work (see Tanaka) indicates that the effective stimuli for activating 
neurons in visual-association cortex are not so neatly defined as the concept of 
geon suggests. Moreover, the stimuli that most effectively drive neurons 
undoubtedly vary depending on the history of the individual with respect to 
particular combinations of stimuli and the consequences for behaving in their 
presence (e.g., Sakai & Miyashita, 1991). In spite of differences between the 
simulated primitives and those identified through direct neurophysiological 
observations, the simulations usefully illustrate that, given a biological mechan- 
ism whereby the activity of disparate units may be bound together, the concert- 
ed effects of perceptual primitives can specify complex perceptions. A second 
general point is that simulation research not only provides a means for explor- 
ing the implications of basic biobehavioral processes, but also suggests poten- 
tially promising avenues for new experimental research. For example, neu- 
rophysiological research indicates that a complex stimulus activates a substan- 
tial population of broadly tuned neurons. However, simulations indicate that 
the activity of populations of broadly tuned units can guide behavior by means 
of different mechanisms, e.g., through the concerted output of a substantial 
number of units (Gluck & Myers) or through the output of a single unit whose 
activity survives inhibitory interactions with other, less strongly activated, 
units (Trehub). Electrophysiological research must distinguish between these 
alternative mechanisms for achieving specificity of output from a population of 
broadly tuned units. 

In this section, Georgopoulos's electrophysiological work indicates that 
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behaving as well as perceiving arises from the activity of a population of 
broadly tuned neurons. Each neuron fires most rapidly when executing a 
movement in a particular direction, and less strongly as the movement departs 
from the preferred direction. (Note that broad tuning is not an inherent proper- 
ty of neurons, but the net effect of interactions between that neuron and other 
neurons synapsing upon it.) The direction and vigor of movement can be de- 
scribed by a population vector that is the resultant of the activity of the indi- 
vidual neurons within the population. Of course, the vector itself has no reality 
status; it is simply a descriptive tool to summarize the concerted effect of a 
population of individual neurons. Thus, when Georgopoulos states that "one of 
the possible operations of the network may be described as the computation of 
the neuronal population vector," a claim is being made about the effect of the 
neuronal population and not about the cause of the movement. In short, locu- 
tions that characterize movements as produced by population vectors, or 
changes in direction of movement as produced by rotating population vectors 
are employing convenient metaphors to summarize the neural processes that 
produce behavior. 

Palmer's chapter draws upon behavioral research to better define the task 
that confronts the effort to simulate biobehavioral processes through neural 
networks: Any of a wide range of stimuli must be able to guide any of a wide 
range of responses. Neurophysiological research indicates that this is a formid- 
able task because both perceiving and behaving involve the activity of popula- 
tions of neurons (i.e., the binding problem arises). Further, behavioral re- 
search indicates that environment-behavior relations emerge as the cumulative 
effect of a selection process (selection by reinforcement), and that complex 
relations are products of prolonged histories of selection. The net effect de- 
pends on the precise nature of the selection history (see the Training Algo- 
rithm, Chapter 1) as well as the structure of the nervous system simulated by 
the neural network (see the Genetic Algorithm, Chapter 1). The chapters by 
Berthier and Gullapalli are directed at different aspects of the selection his- 
tory. Berthier emphasizes the developmental history. For example, reaching in 
adults is the product of the coordinated activity of three motor systems control- 
ling the trunk, arms, and fingers, respectively. These systems myelinate suc- 
cessively, which permits selection to modify the synaptic efficacies of these 
three populations of neurons during different developmental periods. Gullapal- 
li emphasizes the individual history. Specifically, he examines the effects on 
behavior of changes in the criteria for reinforcement as training progresses 
from simple to more complex behavior. Procedures that reinforce successively 
closer approximations to complex behavior~shaping procedures~permit 
reinforcers to select behavior of a complexity that would otherwise be unat- 
tainable. 
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CHAPTER 13 

MOTOR CORTEX: NEURAL AND COMPUTATIONAL STUDIES 
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and Departments of Physiology and Neurology 
University of Minnesota Medical School, Minneapolis 

ABSTRACT 
The motor cortex can be regarded as a network of neurons processing, inter 

alia, spatial motor information. A basic component of this information is the 
direction of movement in space. Experimental studies in behaving monkeys 
have shown that the impulse activity of single motor-cortical cells relates to 
this component in an orderly fashion, such that the frequency of cell discharge 
is a sinusoidal function of the direction of movement, with the direction for 
which cell discharge is highest denoting the "preferred direction" of the cell. 
The neuronal ensemble of such directionally tuned cells can be regarded as a 
network in which each cell is represented as a vector pointing in the cell's 
preferred direction. The network operates to generate a signal in the direction 
of a desired movement. We regard this operation as the vectorial summation of 
the cell vectors, weighted by a scalar measure of the intensity of cell activa- 
tion. The resulting vector sum is called the "neuronal population vector." 
Analysis of experimental data has shown that the population vector points in 
the direction of the movement. In addition, the population vector can be calcu- 
lated as a time-varying signal and, as such, is a robust predictor of the direc- 
tion of the upcoming movement during the reaction time and during instructed 
and memorized delays. Finally, it has proven a good tool for monitoring and 
deciphering directional information when more complex directional operations 
are performed. 

Introduction 
The motor cortex is located on the lateral and medial surface of the cerebral 

hemisphere, just in front of the central sulcus, and is the major precentral 
motor area. Several premotor areas have been identified anterior to the motor 
cortex. They are interconnected with the motor cortex and, taken together, 
constitute a highly interactive group of motor areas in the cerebral cortex. This 
chapter focuses on the coding of directional information by single cells and 
neuronal populations in the motor cortex. Applications of these analyses are 
discussed, together with neural-network modeling studies to which the coding 
scheme has led. 
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Directional Tuning of Single Cells 
When an organism is reaching in space, cell activity during the reaction 

time relates primarily to the direction of the movement and less to its extent 
(Georgopoulos, 1990; Fu, Flament, Coltz, & Ebner, 1995). Specifically, cells 
in the motor cortex (Georgopoulos, Kalaska, Caminiti, & Massey, 1982; 
G~rgopoulos, Schwartz, & Kettner, 1986; Kalaska, Cohen, Hyde, & Prud'- 
homme, 1989; Caminiti, Johnson, & Urbano, 1990; Schwartz, Kettner, & 
Georgopoulos, 1988; Schwartz, 1992), as well as in other motor structures 
(Kalaska, Caminiti, & Georgopoulos, 1983; Fortier, Kalaska, & Smith, 1989; 
Caminiti, Johnson, Galli, Ferraina, Burnod, & Urbano, 1991), are directional- 
ly selective and broadly tuned with respect to the direction of movement. Cell 
activity is highest for a movement in a particular direction (the cell's "pre- 
ferred direction") and decreases progressively with movements farther and 
farther away from this direction. These changes in cell activity relate to the 
direction, not the endpoint of the reaching movement (Georgopoulos, Kalaska, 
& Caminiti, 1985). Quantitatively, cell activity is a linear function of the 
cosine of the angle between the preferred direction of the cell and the direction 
of a particular movement (Georgopoulos et al, 1982; Schwartz et al, 1988), as 
follows: 

d i ( n  t) = b i + aicOSOc(i)M(l) (1) 

where d.(M t) is the discharge rate of the i th cell with movement in direction M l, 
b i and a i are regression coefficients, and O is the angle formed between the 
cell's preferred direction C(i) and the direction of movement M(1). Equation 1 
holds both for 2D reaching movements performed on a plane (Georgopoulos et 
al, 1982) and for free 3D reaching movements (Georgopoulos et al, 1986; 
Schwartz et al, 1988). An example is shown in Figure 1. The preferred direc- 
tions differ for different cells and are distributed in the whole 3D directional 
continuum (Color Plate 5, p. 188, top panel; Schwartz et al, 1988). Finally, 
pairs of cells with similar preferred directions tend to show excitatory synaptic 
interactions whereas pairs of cells with opposite preferred directions tend to 
show inhibitory synaptic interactions (Georgopoulos, Taira, & Lukashin, 
1993). 

Directional Coding by Neuronal Populations 
The broad directional tuning indicates that a given cell participates in 

movements of various directions, and that, conversely, a movement in a par- 
ticular direction will involve the engagement of a whole population of cells. 
Therefore, a unique signal for the direction of a movement could reside in the 
activity of the neuronal ensemble. We proposed a vectorial code for the recov- 
ery of this signal from the neuronal ensemble (Georgopoulos, Caminiti, Kalas- 
ka, & Massey, 1983; Georgopoulos et al, 1986; Georgopoulos, Kettner, & 
Schwartz, 1988), as follows: (1) A cell is represented as a vector that points in 
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DIRECTION OF MOVEMENT 

FIGURE 1. Directional tuning of a cell recorded in the arm area of the motor cortex 
during 2D reaching. Top: Impulse activity during five trials of reaching in the direc- 
tions indicated in the drawing at the center. Short vertical bars indicate the occurrence 
of an action potential. Rasters are aligned to the onset of movement (M). Longer verti- 
cal bars preceding the onset of movement indicate the onset of the target (T); those 
following the movement indicate, successively, the entrance to the target zone and the 
delivery of reward. Bottom: Average frequency of discharge (+ SEM) from the onset 
of the stimulus until the entry to the target zone are plotted against the direction of 
movement. Continuous curve is a cosine function fitted to the data using multiple- 
regression analysis. (From Georgopoulos et al, 1982; reproduced with permission. 
Copyright by Society for Neuroscience.) 
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the cell's preferred direction. (2) Cell vectors are weighted by the (scalar) 
change in cell activity during a particular movement. (3) The sum of these 
vectors (i.e., the population vector) provides the unique outcome of the ensem- 
ble coding operation. This operation can be expressed as follows: 
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FIGURE 2. Neuronal-population coding of the direction of reaching illustrated for a 
motor-cortical population (N = 241 cells) and 8 movement directions on a 2D working 
surface. Vectorial contributions of single cells (continuous lines) add to yield the 
population vector (dotted arrow). Each cluster represents the same population; the 
movement directions are shown in the diagram at the center. The population vector 
points in or near the direction of the movement. (From Georgopoulos et al, 1983; 
reproduced with permission.) 



248 A. P. Georgopoulos 

It was found that the population vector points in the direction of the 
movement (Georgopoulos et al, 1983; Georgopoulos et al, 1986; Georgopoulos 
et al, 1988; Figure 2 and Color Plate 5, p. 188, middle and bottom panels). 
The population-vector approach has proved useful not only in studies of motor 
cortex (Georgopoulos et al, 1983; Georgopoulos et al, 1986; Georgopoulos et 
al, 1988; Kalaska et al, 1989; Caminiti et al, 1990) but also in studies of other 
brain areas, including the cerebellum (Fortier et al, 1989), the premotor cortex 
(Caminiti et al, 1991), area 5 (Kalaska et al, 1983), and area 7 (Steinmetz, 
Motter, Duffy, & Mountcastle, 1987). 

Three aspects of the population-vector analysis are remarkable: its simplici- 
ty, its robustness, and its spatial outcome. The ongoing calculation of the 
population vector is a simple procedure, for it (1) assumes the directional selec- 
tivity of single cells, which is apparent, (2) weights vectorial contributions by 
single cells on the basis of the change in cell activity, which is reasonable, and 
(3) relies on the vectorial summation of these contributions, which is practical- 
ly the simplest procedure to obtain a unique outcome. The population vector is 
a robust measure, for it can convey a good directional signal with only a small 
number of cells (Georgopoulos & Massey, 1988). Finally, the population 
vector is a directional measure, isomorphic to the direction of movement in 
space. Indeed, the population analysis transforms aggregates of purely tempo- 
ral spike trains into a directional signal. 

Some general properties of the neuronal population vector 

The neuronal population vector predicts the direction of reaching for move- 
ments of differing origins. When monkeys made movements that started from 
different points, the population vector predicted well the direction of the reach- 
ing movement (Kettner, Schwartz, & Georgopoulos, 1988; Caminiti et al, 
1991), even when the preferred directions of individual cells shifted somewhat 
with different movement origins (Caminiti et al, 1990). 

The direction of reaching is predicted well by neuronal population vectors in 
different cortical layers. In these studies, the population vector was calculated 
from two separate sets of cells recorded in the upper (II and III) and lower (V 
and VI) layers of the motor cortex (Georgopoulos, 1990). The average abso- 
lute angle between the population vector calculated from cells in the upper 
layers and the direction of movement was 4.31 ~ (SD = 2.98 ~ for eight differ- 
ent movement directions, compared to 2.32 ~ (SD = 2.06 ~ for the lower layers 
(Georgopoulos, 1990). This finding suggests that the ensemble operation of the 
population vector can be realized separately in the upper and lower layers. 
This is important because information can then be distributed to different struc- 
tures according to the differential projections from the upper and lower layers 
(Jones & Wise, 1977). 
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The neuronal population coding of the direction of reaching is resistant to loss 
of cells. The population coding described above is a distributed code and as 
such does not depend exclusively on any particular cell. This robustness was 
evaluated by calculating the population vector from progressively smaller 
samples of cells randomly selected from the original population (Georgopoulos 
et al, 1988). It was found that the direction of the population vector can be 
reliably estimated from as few as 100-150 cells (Figure 3), and from many 
fewer if optimal algorithms are used (Salinas & Abbott, 1994). 
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FIGURE 3. Directional variability of the population vector (ordinate) plotted against 
population size (abscissa). Points in the graph are means of eight half-angles of 95 % 
variability cones, one for each of the eight movement directions used. Units on the 
ordinate are in degrees. (From G~rgopoulos et al, 1988; reproduced with permission 
by the publisher.) 

The neuronal population vector transmits directional information comparable 
to that transmitted by the direction of movement. In the standard two- 
dimensional movement task used in our studies, monkeys (Georgopoulos et al, 
1982) and human subjects (Georgopoulos & Massey, 1988) moved a manipu- 
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landum from the center of a planar working surface to a target on the circum- 
ference of a circle. In this case, movement directly toward the target is the 
ideal direction. If the subject's movements were directly toward the target, 
performance would be perfect, and the movement could be said to transmit the 
maximum possible information. However, movements are rarely dead on 
target, and, therefore, the information transmitted is rarely maximal. The 
greater the dispersion of the movement endpoint around the target, the less the 
information transmitted. This dispersion may be parceled into errors in the 
amplitude of movement and in the direction of movement, and these two types 
of errors may be studied separately. Since we were primarily interested in the 
control of the direction of movement, subjects were instructed to "move in the 
direction of the target" with no restrictions on the amplitude or endpoint of the 
movement. This provided a purely directional task. The information transmit- 
ted by the direction of movement was calculated from a "performance matrix" 
in which the ideal and actual directions were tabulated (Georgopoulos & 
Massey, 1988). 

Essentially the same technique was used to calculate the information trans- 
mitted by the direction of the population vector. Since the population vector is 
the vectorial sum of weighted contributions of individual cells, and since these 
weights change from trial to trial due to inter-trial variability in neuronal 
discharge, the direction of the population vector varies somewhat from trial to 
trial. This variation in the direction of the population vector was treated in 
exactly the same way as the direction of movement, and the information 
transmitted calculated. Based on the information transmitted by the direction of 
movement and the direction of the population vector (Georgopoulos & Massey, 
1988), we found the following. First, the information transmitted by both of 
these measures increased as the input information increased, but more slowly 
than the maximum possible, tending to saturate at high levels. This loss of 
information was probably due to noise generated during the initial (perceptual) 
and successive (perceptual-motor) processing stages. Second, the information 
transmitted by the population vector was consistently greater than that transmit- 
ted by the movement vector by approximately 0.5 bits. Thus, some informa- 
tion is lost between the motor cortex and the movement. However, this loss 
differed from that due to noise, for it did not increase with increasing stimulus 
information but remained constant at about 0.5 bits at all levels of input infor- 
mation. The second form of loss could occur during processing in other motor 
structures or during the biomechanical implementation of movement. 

The neuronal population vector predicts the direction of dynamic isometric 
force. The dynamic relations of cell activity in the motor cortex to the direction 
of 2D isometric force has been investigated more recently (Georgopoulos, 
Ashe, Smyrnis, & Taira, 1992). The following experimental arrangement 
allowed dissociation of the dynamic and static components of the force. 
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Monkeys produced pure force pulses on an isometric handle in the presence of 
a constant force bias such that the net force (i.e., the vector sum of the mon- 
key's force and the bias force) was in a visually specified direction. The net 
force developed over time had to maintain the specified direction and to in- 
crease in magnitude until it exceeded a criterion intensity threshold. 

The most interesting case occurred when the directions of the net and bias 
forces differed by being, for example, orthogonal. In order for the task to be 
performed successfully under these conditions, the animal's force has to 
change continuously in direction and magnitude. At every moment during 
force development, the vector sum of the movement force and the bias force 
had to be in the visually specified direction. This experimental arrangement 
effectively dissociated the animal's force vector, the direction of which 
changed continuously in a trial, from the net-force vector, the direction of 
which remained invariant. Eight net-force directions and eight bias-force direc- 
tions were employed. 

Recordings of neuronal activity in the motor cortex revealed that the activi- 
ty of single cells was directionally tuned in the absence of bias force, and that 
this tuning remained invariant when the same net forces were produced in the 
presence of different directions of bias force. These results demonstrated that 
cell activity does not relate to the direction of the animal's force, since the net 
force was equivalent to the dynamic component of the force exerted by the 
animal after a static component vector (equal and opposite to the force bias) 
was subtracted. These findings suggest that the motor cortex provides a dyna- 
mic force signal during force development with other, possibly subcortical, 
structures providing the static compensatory signal. This latter signal could be 
furnished by antigravity neural systems, given that most static loads encoun- 
tered are gravitational in nature. According to this general view, the force 
exerted by the subject consists of dynamic and static components, each of 
which is controlled by different neural systems. These signals converge in the 
spinal cord and provide an ongoing integrated signal to the motoneuronal 
pools. 

The foregoing results establish that coding of directional information applies 
to the motor output in general, even in the absence of joint motion. Moreover, 
the direction specified by the motor cortex is not that of the total force exerted 
by the animal but of the dynamic component of the force; i.e., the component 
of the force remaining after subtraction of a constant, static force. 

lime-varying properties of the neuronal population vector 
The population vector is a robust predictor of the direction of movement, as 

shown by the following analyses in which the population vector was calculated 
as a time-varying signal at short successive intervals (e.g., every 10 or 20 ms). 
The relation of this signal to an ongoing or a planned movement was assessed. 
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The neuronal population vector predicts the movement trajectory in continuous 
tracing movements (Schwartz 1993, 1994). In this experiment monkeys 
smoothly traced sinusoids with their index finger from one end of the display 
screen to the other. The direction of the population vectors, calculated succes- 
sively along the trajectory, changed throughout the sinusoidal movement, 
closely matching the smoothly changing direction of the finger path. Moreo- 
ver, a neural "image" of the sinusoidal trajectory of the movement was ob- 
tained by connecting successive population vectors tip-to-tail (Georgopoulos et 
al, 1988). This finding suggests that the length of the population vector carries 
information about the instantaneous velocity of the movement. 

The neuronal population vector predicts the direction of reaching during the 
reaction time. This is the simplest case of predicting in time the direction of an 
upcoming movement. Given that changes in cellular activity in the motor 
cortex precede the onset of movement by 160-180 ms, on the average (Geor- 
gopoulos et al, 1982), it is an important finding that the population vector 
predicts the direction of the upcoming movement during the period when the 
movement is being planned (Georgopoulos, Kalaska, Crutcher, Caminiti, & 
Massey, 1984; Georgopoulos et al, 1988). An example is shown in Figure 4. 

The neuronal population vector predicts the direction of reaching during an 
instructed-delay period. In these experiments monkeys were trained to with- 
hold the movement for a period of time after the onset of a visual cue signal, 
and then to move in response to a "go" signal. During this instructed delay 
period, the population vector in the motor cortex (computed every 20 ms) gave 
a reliable signal specifying the direction of movement that was later triggered 
for execution (Georgopoulos, Crutcher, & Schwartz, 1989b). 

The Neuronal Population Vector Deciphers Complex Directional Processing 
The results summarized above underscore the operational usefulness of the 

neuronal population vector for monitoring in time the directional tendency of 
the neuronal ensemble. We took advantage of this property and used the 
population vector as a probe to decipher the neural processing of directional 
information during various cognitive operations. 

Memory holding 
In these experiments (Smyrnis, Taira, Ashe, & Georgopoulos, 1992) 

monkeys were trained to move a handle on a 2D working surface in directions 
specified by a light on the plane. They first moved the handle to "capture" a 
light on the center of the plane, and then moved the handle in the direction 
indicated by a peripheral light (the cue signal). A signal to move (the go sign- 
al) was given by turning off the center light. The following tasks were used. In 
the non-delay task, the peripheral light was turned on at the same time as the 
center light went off. In the memorized delay task, the peripheral light stayed 
on for 300 ms (cue period) and the center light was turned off 450-750 ms later 
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FIGURE 4. The population vector points in the direction of movement well before the 
movement begins. Top: The results for two movement directions in 2D space are il- 
lustrated. Middle: The population vector was calculated every 20 ms. Bottom: The 
average instantaneous (20 ms bin) velocity of the movement is also shown. Before 
target onset (T), the population vector is very small in length and its direction varies 
from moment to moment�9 Well before the onset of movement (M), the vector increases 
in length and points in the direction of the upcoming movement�9 (From Georgopoulos 
et al, 1984; reproduced with permission by the publisher.) 

(delay period). Finally, in the non-memorized delay task the peripheral light 
stayed on continuously, whereas the center light went off 750-1050 ms after 
the peripheral light came on. 

Recordings in the arm area of the motor cortex allowed the population 
vector to be calculated every 20 ms, following the onset of the peripheral light. 
We were interested in two aspects of the information carried by the population 
vector--its direction, which can be interpreted as the directional information 
carried by the population signal, and its length, which can be regarded as the 
strength of the directional signal. We found that the directiori of the population 
vector during the memorized delay period was close to the direction of the 
target. The length of the population vector was similar in the cue period but 
longer during the memorized than the non-memorized part of the delay. Three 
phases were distinguishable. First, the population vector showed an initial 
increase in length that started approximately 100 ms following the cue onset 
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and peaked at 250 ms. We interpret this initial peak as reflecting an encoding 
process. This increase was very similar for both memorized and non- 
memorized delay tasks. The second phase differed for memorized and non- 
memorized tasks, having a stronger, sustained signal during the memorized 
delay than the non-memorized delay period. We refer to this as a holding-in- 
memory process. Finally, following the onset of the go signal, the population 
vector length increased similarly for all tasks, which reflects a movement- 
generating process. 

The directional information carried by the population vector in the 
memorized task identified the memorized information in a direct fashion. 
Moreover, this analysis provided some insight into the time course of encoding 
and holding in memory of directional information. An interesting aspect of 
these findings is that the increase in the signal during the memorized delay 
period was observed in the absence of the target, although one might have 
expected the signal to be stronger in the presence rather than in the absence of 
the visual stimulus. This finding strengthens our interpretation that the in- 
creased signal was a memory rather than a sensory signal. It also raises the 
more general possibility that the motor cortex may be particularly involved in 
memorial processes when only part of the sensory information about an 
upcoming movement is present. 

Memorized complex trajectory 
The studies summarized above dealt with motor-cortical activity during a 

task that required memorization of the direction of a straight movement. A 
related question concerns the neural mechanisms subserving memorized, 
complex movement trajectories (Hocherman & Wise, 1991). We investigated 
this problem in a recent study (Ashe, Taira, Smyrnis, Pelizzer, Georgakopou- 
los, Lurito, & Georgopoulos, 1993) in which monkeys were trained to perform 
from memory an arm movement requiring an orthogonal bend, up and to the 
left, following a waiting period. They held a 2D manipulandum over a spot of 
light at the center of a planar working surface. When this light went off, the 
animals were required to hold the manipulandum there for 600-700 ms and 
then move the handle up and to the left to receive a liquid reward. At the time 
of movement, there were no external signals specifying the time to initiate or 
the trajectory of the movement. Following 20 trials of the memorized move- 
ment trajectory, 40 trials were performed with visually triggered movements in 
radially arranged directions. The activity of 137 single cells in the motor 
cortex was recorded extracellularly during performance. A substantial percent- 
age (62.8%) of cells changed activity during the waiting period prior to the 
beginning of movement. Other cells did not change activity until after the 
minimum waiting time was over, and, occasionally, cell activity changed 
almost exactly at 600 ms after the center light was turned off. However, the 
most interesting observation was that a few cells changed activity exclusively 
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FIGURE 5. Examples of two cells (A and B) that showed changes in activity during 
the execution of the memorized movement trajectory (top) but not during movements 
of the visually instructed task (bottom). For each cell, the following are plotted. Top: 
Twenty trials of impulse activity (short vertical bars) are shown aligned to the onset 
(C) of the beginning of the delay (i.e., the time that the center light went off). Subse- 
quent longer vertical bars indicate the end (E) of the waiting period, the exit of the 
handle from the center (M), and the entrance into the endpoint window. The vertical 
scale in the histogram indicates impulses. Middle: The same data are plotted aligned to 
the exit of the handle from the center window. Bottom: Five trials of visually triggered 
movements in the direction shown to the left of the rasters are shown aligned to the 
exit (M) of the handle from the center window. The longer vertical bar preceding M 
indicates the onset of the visual target (T). Filled triangles below the horizontal axes 
indicate fixed events; horizontal bars indicate the range of time for the event indicated 
below them. (A, cell Pi054u/6; B, cell Pi062u/4). (From Ashe et al, 1993; reproduced 
with permission by the publisher.) 
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during the execution of the memorized movement (l~gure 5). These cells were 
completely inactive during performance of similar movements in a visually 
guided control task. Together, these findings suggest that performance of a 
movement trajectory from memory may involve a specific set of cells, other 
than those activated during visually guided or memorized movements. This 
conclusion is consistent with the results of recent modeling studies (Lukashin, 
Wilcox, & Georgopoulos, 1994). 

Mental rotation 
The mental-rotation task required a transformation of an intended move- 

ment direction. We first carried out psychological experiments in human sub- 
jects. Then we trained monkeys to perform the same task and recorded the 
activity of single cells during performance of the task. Finally, we tried to 
relate the neural results with the behavioral observations from the human stud- 
ies, and to interpret the latter in terms of the former. The objective was to 
coordinate neurophysiology with cognitive psychology as closely as possible. 

The task required subjects to move a handle at an angle from a reference 
direction defined by a visual stimulus on a plane. Since the reference direction 
changed from trial to trial, the task required that, for a given trial, the direction 
of movement be specified according to this reference direction. In the psy- 
chological studies (Georgopoulos & Massey, 1987) human subjects performed 
blocks of twenty trials in which the angle above and its departure (counter- 
clockwise or clockwise) were fixed, although the reference direction varied. 
Seven angles (spaced between 5 ~ and 140 ~ ) were used. The basic finding was 
that the time to initiate a movement (reaction time) increased in a linear fashion 
with the angle. The most parsimonious hypothesis to explain these results is 
that subjects arrive at the correct direction of movement by shifting their motor 
intention from the reference direction to the movement direction, traveling 
through intermediate angular space. This idea is very similar to the mental- 
rotation hypothesis of Shepard and Cooper (1982), which accommodates the 
monotonic increase of reaction time with orientation angle during a judgment 
task. The task is to decide whether a given line drawing is the same as, or a 
mirror image of, a comparison drawing. The subjects are said to rotate a visual 
image when responding. In fact, the mean rates of rotation and their range 
among subjects were very similar in the perceptual (Shepard & Cooper, 1982) 
and motor (Georgopoulos & Massey, 1987) studies. Moreover, when the same 
subjects performed both perceptual and motor rotation tasks, their processing 
rates were positively correlated (Pellizzer & Georgopoulos, 1993), which 
implies similar processing constraints for both tasks. 

In the neurophysiological studies (Georgopoulos, Lurito, Petrides, 
Schwartz, & Massey, 1989a; Lurito, Georgakopoulos, & Georgopoulos, 
1991), two rhesus monkeys were trained to move the handle 90 ~ and counter- 
clockwise from the direction of the reference stimulus. These trials were 
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intermixed with others in which the animals moved in the direction of the 
target. The time-varying neuronal population vector was calculated during the 
reaction time, with the following results: When the animal's arm moved 
toward the reference stimulus, the vector pointed in the direction of the stimu- 
lus; when the arm moved away from the stimulus, the vector rotated from the 
direction of the stimulus to the movement direction through a counterclockwise 
angle. This is illustrated in Figure 6. It is remarkable that the population 
vector rotated at all, especially through the smaller, 90 ~ counterclockwise 
angle. 

These results showed clearly that whatever the cognitive processes involved 
in the task, they were accompanied by a rotation of an analog signal. The 
occurrence of a true rotation was further documented by a transient increase, 
during the middle of the reaction time, in the recruitment of cells whose pre- 
ferred directions were between the stimulus and movement directions. This 
indicated that rotation of the population vector was not the result of varying 
activations of only two cell groups, one whose preferred directions centered on 
the stimulus and the other on the movement direction. This rotation process, 
"sweeping" through a directionally tuned ensemble, provides for the first time 
a direct visualization of the neural processes accompanying a dynamic cogni- 
tive process. 

In summary, the results of these studies reveal the neural correlates of a 
dynamic cognitive representation (Freyd, 1987)~a time-varying, dynamic 
representation of direction in the motor cortex showing a transformation of 
direction when required and achieved. On the behavioral level, the mean rota- 
tion rate and range of rates observed with monkeys were very similar to those 
obtained with humans. 

Context-recall memory scanning 
In the preceding studies, we identified the neural correlates of a mental- 

rotation process as an orderly rotation of the neuronal population vector from 
the direction of the stimulus to that of the movement, through successive direc- 
tions within a specified angle. This rotation paralleled the spatial rule operating 
in the mental-rotation task, which required the production of a movement at an 
angle from a stimulus direction. In the present study (Pellizzer, Sargent, & 
Georgopoulos, 1995) we sought, instead, to determine the neural correlates of 
a cognitive process that was not based on a spatial constraint but on the serial 
position of stimuli within a sequence. Given an arbitrary sequence of stimuli 
on a circle, with one identified as the test stimulus, the criterion response was 
movement toward the stimulus that followed the test stimulus in the sequence. 
This task is a visuomotor version (Georgopoulos & Lurito, 1991; Pellizzer & 
Georgopoulos, 1993) of a context-recall memory scanning task (Sternberg 
1969). Previous psychophysical studies (Pellizzer & Georgopoulos, 1993) 
suggested that the processing mechanisms differed between mental-rotation and 
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FIGURE 6. Results from a direct (left) and a rotation (fight) case in a mental-rotation 
task. A. Task description. Unfilled and filled circles indicate the dim and bright lights, 
respectively. Interrupted and continuous lines with arrows indicate the stimulus (S) and 
movement (M) directions, respectively. B. Neuronal population vectors calculated 
every 10 ms from the onset of the stimulus (S) at positions shown in A until after the 
onset of the movement (M). When the population vector lengthens, for the direct case 
it points in the direction of the movement, whereas for the rotation case it points initial- 
ly in the direction of the stimulus and then rotates counterclockwise and points in the 
direction of the movement. C. Ten successive population vectors from B are shown in 
a spatial plot, starting from the first population vector that increased significantly in 
length. Notice the counterclockwise rotation of the population vector (fight). D. Scat- 
terplots of the direction of the population vector as a function of time, starting from the 
first population vector that increased significantly in length following stimulus onset 
(S). For the direct case, the direction of the population vector is in the direction of the 
movement ('180~ for the rotation case, the population vector rotates counterclock- 
wise from the direction of the stimulus (-90 ~ ) to the direction of the movement 
(- 180~ 
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context-recall tasks. In order to determine the neural mechanisms in the latter 
task, we recorded single-cell activity in the motor cortex of a monkey trained 
to perform a context-recall and, as a control, an instructed-delay task. We also 
re-analyzed the neural data from the mental-rotation study (Lurito et al, 1991) 
to provide a comparison to the present context-recall study. 

In the control task, a yellow stimulus was presented in one of eight direc- 
tions and stayed on for 400 ms, after which it turned blue. This provided the 
go signal for the monkey to exert a force pulse such that a force feedback 
cursor exceeded a certain threshold. In the context-recall task, three yellow 
stimuli (list stimuli) were presented successively (every 400 ms) at different 
positions on the circle, and stayed on the screen. After an additional 400 ms, 
one of these stimuli (excepting the last) turned blue. This identified the test 
stimulus, and also served as the go signal. The monkey then moved the cursor 
in the direction of the stimulus that followed the test stimulus in the sequence. 
During the response time, the patterns of neural activity in the motor cortex 
initially resembled those associated with the direction of the second stimulus. 
When the test stimulus was the first in the sequence, cell activity continued to 
reflect the direction of the second stimulus which in this case was the appro- 
priate motor response. However, when the test stimulus was the second in the 
sequence, neural activity changed to reflect the pattern associated with the 
direction of the third stimulus which was now the appropriate motor response. 
This switch was abrupt, occurring -100-150 ms after the go signal, and was 
evident both in the activity of single cells and in the time-varying neuronal 
population vector, which changed direction within -50-60 ms. 

These findings reveal neural correlates of a switching process that is differ- 
ent from mental rotation (Lurito et al, 1991). Additional evidence for the dif- 
fering nature of the two neural processes was provided by an analysis of the 
directional selectivity of cells that changed activity during the response time. In 
a rotation process, the set of cells that change activity during the response time 
should include cells whose preferred directions are intermediate between the 
stimulus and response directions. Indeed, this is what was observed (see Figure 
13 in Lurito et al, 1991). In contrast, a switching process, such as postulated 
for the context-recall task, should not involve the activation of cells in direc- 
tions intermediate between the test stimulus ($2) and motor response ($3). 
And, this was precisely what was observed (see Figure 4 in Pellizzer et al, 
1995). The time taken to derive the direction of movement in the mental- 
rotation task reflects a transformation, whereas time in the context-recall task 
reflects a selection process. Finally, these studies provide an insight into the 
neural mechanisms of these processes in a particular brain area, namely the 
motor cortex. But, it is obvious that other brain areas are likely to be involved. 
Additional experiments are needed to delineate such areas and elucidate their 
contributions to performance. 
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Neural-Network Modeling of Motor-Cortical Directional Operations 
The motor cortex can be essentially regarded as a neural network whose 

elements are directionally tuned. One of the possible operations of the network 
may be described as the computation of the neuronal population vector. The 
broad directional tuning of single cells seems to be a general property of the 
population operation, and broad tuning has emerged for units in the hidden 
layer of a three-layer network trained to calculate the population vector 
(Lukashin, 1990). 

The contribution of interactions among cells to the computation of the 
population vector also requires examination. It is known that there are exten- 
sive local interconnections (Huntley & Jones, 1991) among cells in motor 
cortex and these promote functional neuronal interactions (Stefanis & Jasper, 
1964; Asanuma & Brooks, 1965). Our objective was to (1) identify the nature 
of these interactions among directionally tuned cells in the motor cortex, (2) to 
study interactions among units in an artificial neural network made of direc- 
tionally tuned elements with massive interconnections, and (3) to compare the 
findings obtained from the motor cortex with those from artificial neural 
networks. We found the following (Georgopoulos et al, 1993). First, in the 
motor cortex, interactions between cells were more than twice as frequent 
when they were tuned than when they were not. The interaction between pairs 
of cells ranged from strongly positive (i.e., excitatory) to strongly negative 
(i.e., inhibitory) as the angle between the preferred directions of the cells 
varied from 0 ~ (i.e., same preferred direction) to 180 ~ (i.e., opposite preferred 
directions). Second, the same trend was found between the directionally tuned 
elements of a massively interconnected, dynamic artificial network during the 
computation of the population vector. Third, when computation of the popula- 
tion vector was stable, the strength of the synaptic interactions was low. In the 
best (i.e., most stable) case, the mean synaptic strength tended toward 2/N, 
where N is the number of elements in the network. This is consistent with the 
finding that cortical cells in an area are extensively but weakly interconnected 
(Martin, 1988). Such findings tend to validate the correspondence between the 
motor-cortical and the artificial neural network and open the possibility of 
using such networks to interpret the cognitive operations involved in mental- 
rotation and context-recall tasks. 

The time-varying directional operations discussed in the preceding sections 
have recently been modeled using a massively interconnected artificial neural 
network consisting of directionally tuned neurons. The outcome of this simula- 
tion has reproduced the neuronal population vector (Lukashin & Georgopoulos, 
1994a,b) and many of the experimental findings. This work has led to a novel 
hypothesis concerning how the memorized trajectories of complex movements 
could be stored in the synaptic connections of overlapping neural networks 
(Lukashin et al, 1994). In brief, there is a general-purpose network that is 
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involved in all movement, memorized or not, that carries no information about 
trajectories of specific paths of movement (e.g., circles, ellipses, scribbles, 
etc.), and that, if activated in isolation, would produce straight-line trajecto- 
ries. There are also networks that are highly specific for a particular trajectory 
(e.g., clockwise circle) and that are interconnected with the general-purpose 
network. When a specific trajectory is to be performed, the appropriate specif- 
ic network coordinates with the general-purpose network to produce the de- 
sired trajectory. Simulations demonstrate that the size of the specific network 
need be less than 5 % of the size of the general-purpose network for the desired 
trajectory to be stored and reproduced (Lukashin et al, 1994). It is noteworthy 
that such very specific cells have, in fact, been observed at low proportions in 
neurophysiological recordings during the performance of memorized trajecto- 
ries (Hocherman & Wise, 1991; Ashe et al, 1993). 

How specialized are these small networks of cells and how do such net- 
works come about in the first place? As yet, we can only speculate on these 
issues. With respect to the general-purpose network, it is reasonable to assume 
that it is present at birth, since it is assumed to subserve all movement. There 
are several possibilities concerning the specialized networks. One is that there 
are a number of small-size networks, specific for basic paths of movement 
(e.g., straight lines, curves, and combinations thereof~"motor-shape primi- 
tives"), present at birth. Then, learning other, complex motor acts would 
consist of adjusting the connection strengths between the general-purpose and 
specific networks. This idea implies that all of the specialized networks are 
used routinely, although not as frequently as the general-purpose network. 
Another possibility is that innate specific networks code for more complicated 
shapes and are large in number. The mechanism of motor learning would then 
be similar to that described above, but only a small number of the specialized 
networks would be required. Under these circumstances, a number of the 
complex, specialized networks might never be used. Such a situation would be 
parallel to that encountered in the immune system, in which a potential exists 
for making a large number of antibodies but only some are actually made, 
depending on the exposure of the organism to specific antigens. In both cases 
there is a selection---of a specialized trajectory or of an antibody--from a 
large ensemble available. Finally, an intermediate possibility would be that we 
begin with motor-path primitives, but end with more complex trajectories by 
combining these primitives with the general network to become very special- 
ized and to form other trajectories in novel associations. 

Concluding Remarks 
The topics reviewed above demonstrate the richness of neurophysiological, 

behavioral, and neural-network modeling studies of the direction of movement 
in space. They underline the heuristic value and power of the neuronal popula- 
tion-vector analysis in deciphering directional neuronal operations. And, a 
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scheme for the possible translation of motor-cortical directional commands to 
muscle activations via spinal interneuronal systems has been proposed (Geor- 
gopoulos, 1988, 1996) and modeled (Lukashin, Amerikian, & Georgopoulos, 
1996). 

The population-vector analysis provides quite a general scheme. It need not 
be confined to physical space but may be generalized to arbitrary spaces and 
dimensions. Indeed, applications have been made successfully to the coding of 
faces in the inferotemporal cortex of the monkey (Young & Yamane, 1992) 
and have been suggested for coding combinations of finger movements 
(Georgopoulos et al, 1993). 
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CHAPTER 14 

SELECTIONIST CONSTRAINTS ON NEURAL NETWORKS 

David C. Palmer 
Department of Psychology 
Smith College 

ABSTRACT 

Repeated cycles of selection among variable units of behavior is offered as 
a model of adaptive complexity for neural-network researchers because of its 
simplicity, power, and consistency with behavioral research. How such ele- 
mentary processes can yield complex behavior is discussed, and aspects of 
variability, reinforcement, and replication of units are explored in turn. It is 
concluded that a network that simulates the reinforcement of behavior can be 
powerful, but that training programs of evolving contingencies are necessary as 
well. Cogent simulations require an understanding of the behavior to be simu- 
lated as well as an appropriate network model. 

Introduction 
The following observations are offered to those neural-network researchers 

whose primary motivation is to exploit the methodology not primarily to solve 
engineering problems but to model adaptive behavior in nature. To these re- 
searchers a network that, say, sorts mail is of interest only to the extent that it 
does so in a behaviorally plausible way, that is, as a human or even another 
animal might do the task. Such a network might be demonstrably inferior to 
another that had been specifically crafted to do the job but might, nevertheless, 
be chosen for study because it helps us evaluate a theory of behavior. Thus, 
what is already known about principles of behavior constrains our models. It is 
the goal of this paper to discuss these constraints. 

What counts as a constraint? Unfortunately, there is no overarching consen- 
sus among behavioral scientists on "what is already known about principles of 
behavior" generally, nor, perhaps, is there any single phenomenon the inter- 
pretation of which everyone endorses. In what follows I make no attempt to 
survey impartially different viewpoints; rather, I will present only the position 
that to me is most cogent, that of selectionism. Selectionism is the view that 
complexity in both the structure and behavior of organisms can be explained as 
the cumulative product of repeated cycles of differential selection on variable 
substrates. Selectionist accounts are appealing because of their parsimony and 
power: Only relatively simple processes are invoked, there is no appeal to 
control by processes or agencies that themselves defy explanation, and the 
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space, or universe, of potential products of selection is virtually unlimited. In 
the few pages available to me I intend to discuss only the most general implica- 
tions of a selectionist approach to behavior for neural-network simulations; the 
reader who wishes more detail is referred to Donahoe and Palmer (1994). 

Seleetionism 
Contingencies of selection operate at different levels, are mediated by dif- 

ferent mechanisms, and have been analyzed and codified by different research 
traditions. Stable, adaptive changes in structure and behavior that emerge over 
generations are typically explained by appealing to the principle of natural 
selection and are studied by the sciences of genetics and evolutionary biology. 
The processes are well known and widely accepted as adequate explanations of 
complexity in the structure of organisms: Genetic variation arising from breed- 
ing or mutation ensures variability among individual organisms; some variants 
are better suited to survive to breeding age or to have more offspring than 
others in the prevailing circumstances; consequently the relevant variations 
tend to be represented in higher proportions in subsequent generations. Chang- 
ing contingencies can select new, increasingly complex classes of organisms. 
Thus organisms can be as admirably adapted to a unique set of environmental 
demands as if they were designed by an omnipotent engineer. 

Adaptive changes in behavior in an individual organism are typically ex- 
plained by appealing to the principle of reinforcement and are studied by the 
sciences of neurobiology and the experimental analysis of behavior. The relev- 
ant processes are not yet thoroughly understood, nor universally accepted as 
explanations of all adaptive behavior, but they are analogous to those of natural 
selection and are potentially as powerful: Behavior varies from moment to 
moment; some units of behavior are more likely than others to lead to import- 
ant consequences (reinforcers); these behaviors tend to be repeated under 
similar conditions in the future. Changing contingencies can select new and 
increasingly complex classes of behavior. Thus complex behavior can be as 
admirably suited to a unique set of environmental demands as if it were willed 
by an omniscient mind. 

Selection has been invoked at other levels of analysis as well, from the 
evolution of cultures (Campbell, 1975) to the locomotion of protozoans 
(Baldwin, 1895), the operation of the immune system (Jerne, 1955), and prob- 
lem solving in humans (Popper, 1972). With respect to modeling behavior with 
neural networks, both selection over "generations" and selection within the 
"lifetime" of a network are relevant. Genetic algorithms can be used to select 
neural architectures that most effectively solve a particular problem or class of 
problems by simulating the selective breeding process (cf. Burgos, this vo- 
lume). Alternatively, the connectivity of networks of a given architecture can 
be modified by simulating the selective effects of reinforcement of complex 
repertoires in organisms; as a consequence, any output of the system that meets 
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some criterion will tend to be repeated (replicated) under similar conditions. 
These approaches are endorsed here not only because of the potential power of 
selection to produce complex adaptations, but because they appear to be analo- 
gous to the way nature has solved problems. 

Common to all selectionist systems is the replication of units over time with 
blind variability in the form, structure, or behavior of the unit. By blind vari- 
ability, I mean simply that the variability is not guided by future exigencies. 
The finch does not know whether climatic changes in the next few years will 
favor birds with short, stout beaks or long, slender ones. The size and shape of 
the beaks of its offspring will vary, but not in order to satisfy a particular 
future contingency. The hungry rat exploring a Skinner Box does not know 
that a particular response will lead to food delivery. Its behavior varies but it 
does not do so in order to meet the particular contingency in effect. However, 
variability in form or behavior need not be random. We are more likely to be 
born with an extra finger than an extra liver; past contingencies of survival 
have ensured that vital organs and functions tend to survive minor genetic 
variation, e.g., through redundant genetic coding and repair mechanisms. In 
the field of behavior, if one response is no longer reinforced we are more 
likely to execute other responses in our repertoire than a completely novel 
response. Thus, in some cases, variation in nature can be guided by the past, 
but it is always blind to the future. If future changes are similar to past chang- 
es, variability might seem to be goal directed. For example, in the Galapagos 
Islands, the types of seeds available to finches vary with rainfall, and different 
types of seeds favor different types of beak. Since trends in weather can fluc- 
tuate widely over relatively short intervals, variability in beak structure is 
adaptive. However, eye structure should be relatively invariant since the optics 
of vision are presumably essentially constant from generation to generation. 
Thus, because of long exposure to such evolutionary contingencies, we might 
expect finch offspring to vary more widely in beak size and shape than in the 
form or function of the eye. Although this appears to be an example of varia- 
tion with respect to a future contingency it is so only to the extent that the 
future is like the past. 

Clearly, the ability of a selectionist system to "solve a problem" posed by a 
future contingency depends on the gap between the current state of the system, 
the required future state of the system, and the variability of the system. If 
contingencies are stable, variability is detrimental; wide variations are more 
likely to reduce one's fitness than to enhance it. On the other hand, if contin- 
gencies vary widely, large variations might be adaptive. To the neural-network 
researcher attempting to model selectionist systems, there is no single answer 
to the amount of variability to build into a network, for nature herself has no 
single answer. One can either model particular systems of particular organisms 
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using as a guide our current understanding of the mechanisms underlying such 
variability, or one can let the contingencies in the network's "world" determine 
the appropriate variability of the system. 

The Universe of Products of Selection 
The universe of potential products of selection is that set of every conceiv- 

able variant over unlimited cycles of replication. The size of this set is not 
entirely unconstrained~it is constrained by the mechanisms that generate 
variability, for example--but one can see that it can be enormous. It will be 
helpful here to consider an artificial selectionist system that is fully constrained 
by our assumptions. For instance, slightly modifying an example invented by 
Dawkins (1986), we can imagine a system that begins with a string of type- 
writer keyboard characters and replicates it (generates "offspring") with minor 
random variations in length and in the choice of characters at each position in 
the string. These second-generation strings are then replicated with variations, 
and the process continues over many generations. It is clear that the potential 
space of this system is infinitely large and, although most of it is gibberish, it 
includes not only the complete works of Shakespeare, but everything else that 
has ever been written or ever could be written with the characters from our 
keyboard. Thus, such a system is potentially very powerful. If we want a Keats 
sonnet or an Ogden Nash limerick, it is there. If we want to write ravishing 
poetry, we need not be inspired by the muse; we merely have to sift through 
our universe of variations until we find something that suits our purpose. 

The universe of potential body forms would presumably be the products of 
every permutation of DNA bases. Again, most of these products would be 
biological gibberish, but tucked away in this enormous universe is every organ- 
ism that ever lived, in addition to every variety of hopeful monster that might 
be selected by future contingencies. The universe of behavior is less easily 
imagined, as the units of behavior and the origins of variability in behavior are 
not completely understood, and in any case would be specific to individual 
organisms. However, a perusal of the Guinness Book of World Records 
stretches our notions of the potential behavior of members of our own species. 
The permutations of human behavior are extraordinary, not to say ridiculous. 

These imaginary universes of potential products of selection illustrate the 
adequacy of a system of replication with variation to satisfy contingencies in 
the relevant system. Of course, to find a particular item in one of these uni- 
verses can be a formidable task. To find a particular string of letters in Daw- 
kins's universe by searching randomly would take forever. In order for such a 
system to be useful there must be a strategy for sifting out the candidates that 
suit our purposes. Fortunately, for every item in the set, there is a family tree 
that we can trace to bring us straight to that string. If there were some sort of 
algorithm for making choices at every branch of a family tree, we could arrive 
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at our string in relatively short order. For example, Dawkins chose to select 
strings that more and more closely approximated Hamlet's observation about 
the shape of a cloud, 

Methinks it is like a weasel. 

In his selectionist system each generation was winnowed down to a single, best 
string which served as the parent of the next generation of variants. Although 
the space of variations was enormous, his simulation converged on the correct 
string in a few tens of generations. The actual number of generations in which 
a solution is found depends on arbitrary parameters such as the fecundity and 
variability of the strings. The feature of interest is not the actual number of 
generations required, but the evident superiority of a systematic search over a 
random search through the universe of possible variations. 

It is contingencies of selection that choose paths through the universe of 
variations and determine the composition of the population of units at any 
generation. Systematic contingencies can select any element in the universe and 
can do so relatively efficiently. In Dawkins's simulation the contingencies were 
systematic because the topography of the desired variant was specified by his 
selection algorithm; in every generation it was clear which variants were most 
suitable. In the evolution of species, selection is systematic because contingen- 
cies of survival typically change slowly relative to the reproduction rate of 
organisms. As a consequence, evolution can keep pace with changing contin- 
gencies, and we observe that species are typically wonderfully suited to the 
local contingencies of survival. We marvel at the uncanny camouflage of the 
walking stick, shaped over countless generations, presumably, by the increased 
chance of escaping predation that accrued to any individual that looked more 
like a twig than its cousins. If contingencies change abruptly, however, biolog- 
ical evolution may be unable to keep pace, and the observer will no longer 
marvel at the match between the organism and the requirements of its world; 
species become extinct. In general, then, replication with variation can gener- 
ate virtually limitless candidates for the solution to a problem; however, find- 
ing that solution requires a systematic search carried out by contingencies of 
selection. 

The relevance of these observations to neural-network researchers is two- 
fold: First, a network that "replicates" behavior with variation would not only 
simulate the behavior of many organisms, it would be, in principle, extremely 
powerful in generating potentially adaptive behavior. Second, demonstrating 
the potential of such a system requires a program of selection contingencies 
that pick out the correct branches in the family tree of the ultimate target 
behavior. Unfortunately, although the problem of designing a selectionist 
network is relatively straightforward, the problem of developing a program of 
contingencies necessary to demonstrate its power can be formidable. The 
former problem requires technical expertise, the latter requires behavioral 
expertise. In particular, we must understand something about the history of the 
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behavior we are trying to shape. It is easy to shape more forceful leverpresses 
in a rat or more accurate letter formation in a child because it is clear what is 
required at every step. However, the kinds of complex behavior that are usual- 
ly of greatest interest are often the product of sequences of other behavior or 
are built up of smaller units of behavior, and the lineage of the target behavior 
may be unclear. What do we do when we solve a math problem in our head, 
for example? How do we answer questions about past events? What is the 
difference between hearing something and listening to something? How do we 
compose sentences? Designing an appropriate network architecture is only a 
part of answering such questions. Moreover, there are many ways in which to 
design a selectionist system. Dawkins's technique for generating poetic strings 
was presumably not the same as Shakespeare's. If our networks are to cast 
light on the behavior of organisms, they must be guided by what is known 
about the selection of behavior. We begin with a consideration of the selection 
contingencies themselves. 

Reinforcement 
Reinforcement, as studied in most experimental procedures, is, to a first 

approximation, binary; that is, it either occurs or does not occur. As far as 
information for the use of the network is concerned, it merely indicates that a 
response has met the minimum requirements of a contingency in a particular 
setting. This is not to say that the effect of reinforcement is invariant; to the 
contrary, the effectiveness of a reinforcer on a target response depends on the 
nature of the response, various motivational variables, the magnitude, quality, 
and delay of the reinforcer, the strength of incompatible responses, and the 
history of the organism under similar conditions. However, under appropriate 
motivational conditions~such as those in effect in most conditioning experi- 
ments~the variability in behavior owing to variability in the effectiveness of 
the reinforcer is swamped by the variability in behavior owing to the contin- 
gency of reinforcement. Ultimately both sources of variability need to be 
accounted for, but complexity in both behavior and structure can arise from 
contingencies in which the selection contingency is all-or-none. Thus, to the 
extent that reinforcement in organisms is insensitive to variations in behavior, 
it is an example of unsupervised learning. Backpropagation algorithms may be 
computationally useful but do not simulate reinforcement. Nothing in the rein- 
forcement signal tells the network which dimension of the response was critical 
in meeting the contingency, and the omission of reinforcement tells the net- 
work nothing about the deficiencies of the response. The cases, in which, say, 
the amount of reinforcement varies in proportion to the intensity or duration of 
the response, are too exceptional to vitiate this conclusion. 

Variability is fundamental to products of selection 
A binary reinforcement signal merely indicates that the minimum require- 

ments of a particular reinforcement contingency have been satisfied. It can not 
specify a blueprint for responding. Any variation that meets the contingency is 
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eligible for reinforcement. We notice that behavior varies from instance to 
instance, and over repeated trials many unique responses will be strengthened. 
These will all have had a common effect in meeting the contingency but need 
not be identical or even similar in other respects. A sieve sifts out particles 
exceeding a minimum size, but it does not specify the shape, composition, 
precise size, or any other feature of the particles. Thus, just as one can escape 
predation by hiding, by playing dead, by looking fierce, by tasting bad, and so 
on, a rat in an operant chamber can press a bar with its left paw, its right paw, 
both paws, its nose, and so on, and the barpressing contingency will still be 
met. It is true that we can insist that the rat press the bar with its left paw and 
withhold reinforcement for any nonconforming topographies, but a change of 
focus reveals the same fundamental variability: The rat can press the bar force- 
fully or gently, with its toes or its heel, for a short or long duration. Regard- 
less of the specificity of our contingency, behavior is free to vary in any re- 
spect that is not specified. It is, of course, logically possible that a contingency 
could completely specify the value of every parameter~this would be analo- 
gous to specifying the architecture, activity, connection weights, and so on, of 
every node in a neural network~but  a system of such contingencies would be 
satisfied only rarely. If Dawkins had simply waited for a single mutation to 
match his target string, he would still be waiting; in fact, using modern com- 
puters to generate string variations, he could expect to wait at his terminal for 
many billions of years before a variation met the requirements of his contin- 
gency! In nature, contingencies necessarily tolerate variability. 

When contingencies of reinforcement are stable over the course of one's 
observations, responses can be seen to divide into two classes, those that meet 
the prevailing contingency and those that do not. It is customary to refer to 
those responses that meet an enduring contingency as a functional response 
class (Catania, 1973), but whether a class, so defined, "hangs together" as a 
useful unit of analysis depends on its orderliness with respect to changing 
contingencies (Skinner, 1935). For example, rats occasionally press the lever 
when rearing and exploring the upper corners of the front of an operant 
chamber, as we might grab a shelf when climbing a wobbly ladder, but pre- 
sumably these adventitious leverpresses do not vary systematically with food 
deprivation or schedules of reinforcement. In network simulations a target 
behavior may be emitted because our algorithms have built variability into the 
network. Such responses are not cause for celebration until they vary in an 
orderly way with contingencies, that is, until we can produce them on demand. 

Thus selection is a blunt tool. The unsettling implication of this prosaic 
truth is that what we are trying to model with our neural networks is a fuzzy 
target. Variability is fundamental to the classes of objects, attributes, or be- 
haviors that emerge from programs of selection, yet the classes are orderly. 
Fortunately this variability is naturally simulated by neural networks; even 
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when the output vector of a network is the same, networks are unlikely to be 
replicated in every detail. In some cases, this may be seen as a weakness. 
Some of the behavioral domains that cognitive scientists hope to understand are 
superficially amenable to formal modeling. Language, for example, has been 
modeled with the formalisms of linguistics. However, the units of analysis in 
formal systems are typically fully constrained and are thus incommensurate 
with the units of analysis arising from a selectionist system. (For example, 
"grammatical sentence" has a precise meaning in a formal linguistic system, 
but among native speakers the term is fuzzy.) Of course, it is a strength of 
network research, not a limitation, that it simulates actual behavior rather than 
a formal model of behavior. (Cf. Palmer & Donahoe, 1992, for further discus- 
sion of this point.) 

Replication: What is selected? 
As noted above, in a static environment, behavior can be seen to vary in an 

orderly way with motivational procedures, called establishing operations 
(Keller & Schoenfeld, 1950; Michael, 1982), and with contingencies of rein- 
forcement. Thus, in a stable context, under typical motivational conditions, it 
is customary to say that behavior is a function of its consequences, or, simply, 
that reinforcement strengthens or maintains behavior upon which it is contin- 
gent. However, a more general statement is that reinforcement alters the stimu- 
lus control of behavior. That is to say, reinforcement alters the strength of 
antecedent-behavior relations. When a response is followed closely in time by 
a reinforcer, the response becomes more likely to occur under the same condi- 
tions in the future. When the context is constant, response rate, or probability, 
changes as a function of its consequences, because the environment is not a 
variable. When the context changes, however, we notice a decrement in re- 
sponding, revealing the evocative role of antecedent conditions. These anteced- 
ent conditions include prior behavior of the organism as well as, we presume, 
proprioceptive and interoceptive stimulation. Of course, we demonstrate func- 
tional control by antecedents with variables that can be manipulated; thus we 
commonly say that reinforcement alters environment-behavior relations. 

Clearly this is not a claim that every response is elicited by a specific ante- 
cedent stimulus (i.e., as in S-R psychology). As already mentioned, responding 
is a function of many variables acting together. Rather, it is a claim that rein- 
forcement alters the strength of behavior through a change in the control of 
that behavior by the conditions that prevailed at the time the behavior was 
emitted. (See Donahoe, Palmer, & Burgos, in press; Dinsmoor, 1995; for 
more detailed discussions of this issue and related topics.) 

With respect to neural networks, then, the appropriate unit of selection 
appears to be the connection strength between elements. This, of course, is 
typical in network research; it is perhaps for this reason that neural-network 
simulations appear to be so promising as tools for interpreting complex be- 
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havior. However, some network researchers may feel that their work is con- 
strained by a different interpretation of operant behavior, specifically, one in 
which reinforcement alters the strength of spontaneously emitted behavior 
(e.g., Stein, Xue, & Belluzzi, 1994). This view has been supported by the 
science of behavior (e.g., Skinner, 1938), but only in stable environments and 
only because a science of behavior, as such, does not require modeling the 
physiological substrate of behavioral regularities. 

Behavior is fluid and parallel 
If the behavior of organisms were serial and punctate, so that only a single, 

discrete unit of behavior occurred at any moment, reinforcement could effi- 
ciently select environment-behavior relations that satisfied a contingency. 
However, organisms are continually engaged in a variety of overlapping, fluid 
behaviors from postural adjustments, orienting responses, exploratory respons- 
es, and locomotor behavior to manipulations of objects. In addition, one may 
engage in a variety of behaviors within the skin, such as subvocal speech, 
conditioned and unconditioned perceptual behavior, and autonomic activity. 
Some subset of these responses might be relevant to a particular contingency; 
for example, grasping and eating food requires the coordination of orienting, 
perceptual, and motor behavior. Nevertheless, part of the organism's activity is 
typically irrelevant to any given contingency. To be maximally efficient, rein- 
forcement should alter the probability of only those responses required by the 
contingency. However, there is nothing in the reinforcement signal itself that 
can differentiate its effects on the organism. Thus there is a "credit-assign- 
ment" problem: How are the effects of reinforcement distributed in a network 
so that target behaviors consistently emerge in a particular contingency? 

Heterogeneity of response systems 
The organism is not a tabula rasa, and the architecture of biological net- 

works is not homogeneous. Some environment-behavior relations are more 
easily conditioned than others. Some response systems can be recruited for a 
wide variety of functions, while other response systems are narrowly commit- 
ted to a particular function and modulation by environmental events is limited. 
We use our hands for everything from scratching a mosquito bite to waving to 
the Queen, and hand movements can be quickly conditioned to an arbitrary 
stimulus, including stimulation arising from our own overt and covert be- 
havior. Pupil dilation, he.art. -rate and blood-pressure changes, sweating, and 
other homeostatic activity s~rve to maintain the internal economy of the organ- 
ism and are not so easily recruited by arbitrary stimuli. We can get a friend to 
move his hand in a novel way just by asking him to do so; by asking, we can 
also get him to stop breathing, but only briefly, and a request for heart-rate 
changes will meet little success at all. Such differences in controlling relations 
are perhaps the main reason that the operant-respondent distinction is so widely 
honored. 
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To a limited extent, this offers a structural solution to the credit-assignment 
problem: Different response systems may be differentially susceptible to rein- 
forcement. Some responses, such as those that regulate circulation, respiration, 
blood pressure, digestion, and other dimensions of the internal economy of the 
organism, are narrowly committed to a single function; it would not be adap- 
tive for these autonomic responses to vary widely with arbitrary contingencies 
of reinforcement. Other responses, such as those executed by the limbs, hands, 
and fingers of humans can be recruited for virtually any arbitrary task. This 
functional distinction corresponds roughly to that between behaviors mediated 
by smooth muscles and those mediated by skeletal muscles. Some theorists 
have argued that the effects of operant and classical conditioning are restricted 
to skeletal and smooth muscles respectively (e.g., Konorski & Miller, 1937), 
but the issue remains unresolved. Although attempts to demonstrate the sen- 
sitivity of visceral responses to operant conditioning have been equivocal and 
controversial (Miller & Dworkin, 1974), changes in the control of skeletal 
behavior with reinforcement can be much more consistently demonstrated. 
Nevertheless, this observation does not suggest a general solution to the credit- 
assignment problem; it merely reflects the fact that some of the activity of 
organisms, committed to one function, is not free to vary widely in the service 
of other functions. However, even if the effects of reinforcement were restrict- 
ed to skeletal responses, there are still an enormous number of responses that 
inevitably occur in parallel. How can the effects of reinforcement be restricted 
further to those responses that are actually required by a contingency of rein- 
forcement? In freely moving organisms the environment is heterogeneous and 
unpredictable; much of the activity of such organisms must be sensitive to 
modification. Moreover, it is the ability of networks, biological or artificial, to 
discover adaptive solutions to novel problems that excites our interest. 

The domain of the reinforcement signal 
In response systems that are typically studied with the operant procedure, 

both the potential response and the potential discriminative stimulus, if not 
completely arbitrary, can at least vary over a tremendous range. We can 
arrange a reinforcement contingency so that an experimental subject will press 
the left key when he receives a light shock to his finger, or an elbow in his 
ribs, or a touch on the shoulder, or when he smells lilacs, or when he sees one 
of indefinitely many visual stimuli, or hears one of indefinitely many auditory 
stimuli, or when he senses that the entire room is tipping or speeding up, or 
when he tastes ginger, vinegar, or anise. Moreover, we can get him to press it 
with any one of ten fingers, his nose, his palms, his elbows, and so on. Under 
the appropriate motivational conditions our subject can acquire a virtually 
unlimited number of discriminated operants. If reinforcement is to be explained 
by the strengthening of neural pathways it is evident that the responsible phys- 
iological mechanisms must be diffuse. That is, the reinforcement signal must 
be poised to alter an enormous range of pathways at every moment. 
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Temporal contiguity 
Reinforcement modifies the strength of responses that immediately precede 

it in the same context. The effectiveness of a reinforcer is reduced if it is 
delayed following a target response, with greatly reduced reinforcing effects 
found with delays of about half a minute (Grice, 1948; Lattal & Metzger, 
1994; Lattal & Gleeson, 1990; Logan, 1960; Schlinger & Blakely, 1994; 
Wilkenfield, Nickel, & Blakely, 1992). However, observation of a laboratory 
animal, such as a rat, in even an impoverished environment, reveals that it can 
engage in dozens of conspicuous behaviors in a 30-second interval. If rein- 
forcement has even a modest effect on all of them it would appear to reduce 
the effectiveness of a reinforcement contingency: The target behavior would be 
competing with many irrelevant responses. However, the research on delay of 
reinforcement reveals a gradient of effectiveness. The more closely reinforce- 
ment follows behavior, the greater the effect on the behavior. This gradient of 
effectiveness provides one constraint on the selection of behavior: Those 
responses that precede the reinforcer most closely in time are strengthened the 
most. 

The power of temporal contiguity is revealed by a common classroom 
demonstration known as the "superstition experiment" (Skinner, 1948). In this 
demonstration a hungry pigeon, previously trained to eat readily from the food 
magazine, is given brief access to food every 15 seconds. It is commonly 
observed, following such a procedure, that the bird is engaging in some stereo- 
typic behavior such as pacing back and forth, pecking, or turning~behavior 
apparently captured by adventitious contingencies of reinforcement. 

The conditioning process is usually obvious. The bird happens to be 
executing some response as the hopper appears; as a result it tends to 
repeat this response. If the interval before the next presentation is not so 
great that extinction takes place, a second "contingency" is probable. 
This strengthens the response still further. (Skinner, 1948, p. 168) 

Thus, under some conditions, temporal contiguity between reinforcer and 
behavior is sufficient to strengthen a target behavior. There need be no causal 
relationship between the behavior and its consequences, and "superstitious" 
behavior can be supported. What then distinguishes adaptive behavior from 
superstitious behavior? In a sense, all behavior maintained by reinforcement is 
superstitious. The causal relationship between behavior and its consequences is 
not available as a stimulus to the organism; it sometimes plays a role in human 
behavior, but even so the relationship cannot be determined with certainty for 
any individual future contingency. That temporal contiguity should be adequate 
to select adaptive behavior is a reflection of contingencies in nature. Actions 
typically have immediate consequences that, in an everyday sense, are caused 
by the action. For some of these consequences, it is appropriate that the be- 
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havior should occur again under similar conditions. It is true that our actions 
may initiate a cascade of events with delayed consequences, and that these may 
also be important. However, it appears that delayed consequences are not 
sufficiently reliable for organisms to have evolved sensitivity to them. There is 
only one event, or constellation of events, that immediately follows a response, 
but there are an infinite number of delayed consequences. 

It may appear that humans are exceptional in being sensitive to long-term 
consequences. We plant seed in the spring and harvest in the fall; we toil in 
school and qualify for a job only after we graduate some years later; we hang 
the umbrella on the doorknob to remind us to bring it to work the next day. In 
every case of control by delayed consequences there appears to be some sort of 
mediating behavior; we may analyze and describe the contingencies, in which 
case our behavior may be under the immediate control of our own verbal 
behavior rather than the long-term consequence itself. If a ten-dollar bill were 
to drop into your lap right now, as a would-be reinforcer for some long past 
behavior, the credit-assignment problem would be conspicuous. Without col- 
lateral data and mediating analysis, there would be no effect on the target 
behavior. 

We seem to have arrived at contradictory conclusions: At every moment, 
reinforcement must be poised to strengthen an enormous number of potential 
environment-behavior relationships, but its effects are actually restricted to the 
immediately preceding events. A possible resolution is that a uniform, diffuse 
reinforcement signal is broadcast to all elements of the network, but only those 
connections between recently active elements are strengthened. With this 
design, the network would be simple but versatile; it could learn to emit reli- 
ably any arbitrary behavior in any circumstance, provided that its behavior 
were sufficiently variable that the target response were emitted at least once. 
Immediately after the response was emitted, a reinforcement signal would be 
sent to all parts of the network. But only connections mediating the target 
response would be recently active, and only those would be strengthened. 

Behavioral discrepancy 
Temporal contiguity between behavior and its consequences is not sufficient 

to alter the stimulus control of that behavior. The consequence must be, speak- 
ing loosely, "surprising" to the organism. If the current context has been reli- 
ably paired with a reinforcer, then a full range of conditioned behavior will be 
evoked by the context even before the reinforcer is delivered. If there is no 
difference between this constellation of behavior and the behavior actually 
evoked by the reinforcer itself, then there is no additional change in the stimu- 
lus control of behavior. If the dog salivates as much to the sound of the can 
opener as to the food itself, the food will be a less effective reinforcer once the 
can opener has operated. There is relatively little discrepancy between the 
conditioned behavior to the can opener and the unconditioned behavior to the 



Selectionist Constraints on Neural Networks 275 

food itself. However, the sound of the can opener will be an effective reinforc- 
er unless it, too, is highly correlated with some antecedent event. 

If the dog is thoroughly satiated with food there will be relatively little 
salivation to the food, even in the absence of the sound of the can opener. In 
this case, too, there will be relatively little effect on the stimulus control of 
behavior, since there is little discrepancy between behavior evoked by the 
reinforcer and that evoked by other events. Thus, temporal contiguity between 
behavior and a consequence is not sufficient to strengthen behavior; there must 
be a behavioral discrepancy as well (Donahoe, Crowley, Millard, & Stickney, 
1982; Kamin, 1968; 1969; Rescorla & Wagner, 1972; vom Saal & Jenkins, 
1970). 

What is the effect of a single reinforcement ? 
Although reinforcement procedures are typically applied repetitively 

throughout experimental sessions and perhaps for many sessions, it is not the 
case that repetition of contingencies is necessary for the seqection of behavior. 
A single trial is often sufficient to establish a new discriminated operant in 
strength. The behavior of rats in mazes and cats in puzzle boxes led early 
researchers to view acquisition as a gradual process and to speak of learning 
curves, but Skinner (1938) showed that a single reinforcer could effect a 
considerable increase in the probability of a barpressing response in a hungry 
rat. Casual interpretation of human behavior reveals that behavior is commonly 
conditioned in a single trial. We usually need to be told only once where a 
meeting will be held, or the price of an item in a store, or the grade we re- 
ceived on an exam. Thus, the physiological changes underlying learning~ 
those changes simulated, however abstractly, by our network models~must 
happen rapidly. 

Skinner was able to observe single-trial learning in the laboratory only 
when the organism had been thoroughly adapted to the chamber and to the 
operation of the food magazine, that is, only when competing behavior was 
weak. A naive rat commonly startles and freezes at novel sounds such as the 
operation of the food magazine, and, even when hungry, a naive rat may spend 
more time sniffing and exploring the experimental chamber than in eating 
freely available food. Thus, the behavior of an organism is an integration of 
the effect of many concurrent contingencies. Although the effect of a single 
reinforcement can be substantial, this can be reliably demonstrated with a 
novel response only under tightly controlled conditions. 

If the effect of a single reinforcement is apparent only with tight experimen- 
tal constraints, what are we to make of our everyday experience, in which we 
learn names, dates, places, anecdotes, weather forecasts, and many other 
things with only a fleeting exposure to them, often with little obvious rein- 
forcement? If a famished rat in a Skinner Box represents the ideal preparation 
in which to observe one-trial learning, we should hardly expect to observe it in 
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the complex world of an adult human. Nevertheless, it would be quite anoma- 
lous for an adult human to take more than one trial to learn that flipping a 
switch had a conspicuous effect such as turning on a heater, opening a panel, 
operating a CD player---or delivering a morsel of food. 

One is tempted to assert that rapid learning reflects the difference between 
rats and humans, that we have much larger brains, and, simply, that we are 
smarter than they are. Indeed, it would be absurd to argue that species differ- 
ences are irrelevant, but are we to conclude that humans are more easily condi- 
tioned than rats or, abstracting, that larger networks are more easily condi- 
tioned than smaller ones? It is not obvious that this should be the case, and one 
might plausibly argue that, because of the greater number of potential compet- 
ing responses at any moment, large networks would tend, all other things being 
equal, to be more variable than smaller networks. Greater variability would no 
doubt be adaptive if novel behavior were required but might tend to retard the 
emergence of a single, dominant response. As an analogy, the person who 
weighs every imaginable alternative may solve some formidable and obscure 
problems but may take a long time to solve everyday problems with obvious 
solutions. In any case, explaining an anomaly by resorting to claims of species 
differences, in the absence of either relevant experimental evidence or theoreti- 
cal justification, is empty and has no explanatory force. Fortunately other 
explanations are possible. 

One-trial learning is commonplace in human behavior only when the target 
behavior is already a strong response in the subject's repertoire but just hap- 
pens to be weaker than other behavior under the prevailing circumstances. The 
behavior to be conditioned when an adult human learns that the weatherman 
predicts rain, or that a wall switch turns on the overhead fan, or that the soup- 
of-the-day is clam chowder are all responses that have been thoroughly condi- 
tioned under similar circumstances. When we listen to a weather report we are 
already inclined to assert that it will rain, or, as it may be, that it will be fair. 
The same variables that make us tune in to the weather report in the first place 
increase the likelihood that we will make statements about the weather. The 
weather report itself merely selects some subset of those statements. When we 
discover a switch, we are already confident that it will turn something on. In a 
restaurant, "clam chowder" is one of some dozens of responses that are already 
weakly evoked by the setting long before the waiter recites the daily specials. 
The effect of the contingency of reinforcement is to slightly modify the control 
of the target response by the current setting so that it becomes stronger than the 
myriad other responses that tend to be evoked in that setting. At any moment, 
the potential behavior of an experienced organism can be thought of as a 
panorama. Reinforcement of a well-practiced response is analogous to increas- 
ing the illumination on a figure in the panorama to make it stand out from the 
background. 
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In contrast, some responses have little or no baseline strength. They have to 
be drawn into the panorama from scratch, as it were. When we hear someone 
speak in an unfamiliar tongue we usually find ourselves wholly unable to 
repeat what was said. Even repeating a single word may be difficult. We may 
have to try many times before we get it even approximately right, particularly 
if it is composed of unfamiliar phonemes. When we first learn to ride a bicy- 
cle, to operate a clutch, to swim, to juggle oranges, to "walk the dog" with a 
yo-yo, the relevant behavior is shaped for the first time, and it commonly takes 
many trials before successful behavior consistently emerges. The target be- 
havior has no baseline strength; our behavior is highly erratic at first and 
smooths out over repeated trials. 

To a naive rat, an operant chamber is a feast of unfamiliar smells, textures, 
and other stimulation. The target response, pressing the bar, often does not 
appear as a smooth unit during baseline conditions. That is, either the rat does 
not press the bar at all or does so with a topography that differs considerably 
from the form of the response after prolonged training. For example, the rat 
may rest a paw on the bar as it rears its body, or it may sniff and nibble at the 
bar, operating the microswitch in either case. Thus, there are many irrelevant 
features of the behavior of the rat, irrelevant, that is, with respect to the con- 
tingency of reinforcement. Over the course of continued exposure to the con- 
tingency, the relevant elements of the response tend to be selected and many of 
the irrelevant ones tend to extinguish. The behavior appears to be a smooth and 
efficient unit. Although this fitful emergence of optimal performance might 
appear to be inefficient, it is adaptive. It is important to recall that another 
contingency of reinforcement might select nibbling or rearing rather than 
barpressing as the target response; nothing in the phylogenetic or ontogenetic 
history of the rat has made barpressing a preferred unit of response. Thus the 
emergence of units of behavior often takes multiple trials because of the 
weeding out of variability, not because reinforcement is ineffective on any one 
trial. 

However, once barpressing has become differentiated as a smooth unit of 
behavior, the effect of a single instance of reinforcement will be more evident, 
particularly in transitions between schedules of reinforcement. For example, 
when reinforcement is withheld, barpressing will extinguish: It will virtually 
disappear from the observable repertoire of the rat. However, extinction is not 
symmetrical with acquisition; the effect of prior training has not been erased. 
If the contingency is reinstituted, the response returns to full strength almost 
immediately. To some extent this is because the response does not have to be 
differentiated from a variable substrate again; it appears as a smooth unit 
immediately. A second reason is particularly relevant to neural-network 
models: When a response is put on extinction, the organism does not return to 
its baseline state. The effects of reinforcement are not eliminated by extinction 
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trials; rather the response loses strength relative to competing behavior just to 
the point that it is seldom emitted in the relevant context. Once it stops being 
emitted, there are, of course, no more extinction trials, and further weakening 
does not occur. Moreover, if competing behavior is strong, the loss of strength 
of the target response may be quite small. When the contingency of reinforce- 
ment is renewed the strengthening effect need only be sufficient to nudge the 
response into prominence for it to appear in apparently substantial strength. 

Winner takes all 
Thus we can view behavior as a cauldron of competing responses. The 

overt behavior of the organism usually seems to be unitary, smooth, and organ- 
ized, but the strength of those alternative behaviors that typically emerge 
during extinction reveals that the context potentiates a variety of behaviors, 
presumably simultaneously. We occasionally see blends of incompatible be- 
havior: In speech we may stutter and halt, or begin one metaphor and end with 
another, or utter a Spoonerism. When avoiding an oncoming pedestrian we 
may falter left and right in a clumsy pas-de-deux. But more commonly our 
behavior has a fluid unity. At the behavioral level of analysis this poses no 
problems; indeed it is a blessing. The problem emerges at the physiological 
level of analysis--and for those who would simulate behavior with neural 
networks. How is the typically smooth performance of the organism to be 
squared with the claim that, at any moment, many responses have appreciable 
strength? 

One possibility is that there is a "winner-take-all" relationship among 
competing responses. That is, the strongest response at any moment gets emit- 
ted. Responses of substantial, but lesser, strength are suppressed. Physiologi- 
cally, this can presumably be effected by inhibitory interconnections among 
motor neurons, at least within response systems. This would permit the organ- 
ism to emit compatible responses simultaneously but would suppress behavior 
that competes with the dominant response within any response system. We 
might walk left around a tree, or right around a tree, while solving anagrams 
in our head, but we would not, as a consequence of some sort of behavioral 
averaging, walk into the tree. 

Experimental chambers are typically simple environments, permitting only 
a relatively narrow range of behavior; when running wheels, chains, string, 
bits of wood, and multiple levers are available, the behavior of a rat will be 
more variable than in a chamber with a single manipulandum, and the effect of 
an explicit contingency of reinforcement will be less apparent. When explicit 
contingencies of reinforcement are arranged for two behaviors concurrently, it 
is commonly observed that an organism will appropriately allocate its time 
between the two behaviors, but it is more accurate to say that it allocates its 
time with respect to all concurrent contingencies, natural as well as contrived. 
The proportion of time allocated to a particular activity depends, not just on 
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the schedule of reinforcement for that particular response, but on the richness 
of that schedule relative to all concurrently available schedules. A robot in an 
industrial assembly line will weld joints in sheet metal over and over again, 
relentlessly, until it wears out; its human counterpart will stop for coffee 
breaks, for lunch, when the foreman is out, when the whistle sounds, when a 
pretty woman walks by the window, when any one of myriad other distractions 
occur, and he may go on strike at last. When simulating behavior with neural 
networks it is tempting to regard the performance of the robot as an objective, 
and, indeed, for instrumental purposes that may be appropriate; for the pur- 
poses of demonstrating the relevance of the workings of a neural network to 
the behavior of organisms, however, the factory worker is a better model. 

Acquired reinforcement 
Some stimuli, such as food, water, warmth, and sexual contact, are innately 

reinforcing, presumably because organisms that devote much of their behavior 
to getting these things are more likely to produce viable offspring than those 
who are not so reinforced. Other stimuli, such as money, hearing one's self 
praised, good grades, and so on, acquire their reinforcing properties in the 
lifetime of the individual, presumably through being paired with other rein- 
forcers. Moreover, sometimes reinforcement can be mediated by our own 
overt behavior, or even our covert behavior~that is, behavior below the 
threshold of observability to another. (Note that the observability of a response 
is not some essential property of that response; rather, it depends on the ob- 
server and his tools. Galvanic skin response, tongue movements, and salivation 
are all undetectable to the casual observer. There is no reason in principle to 
limit the scope of our interpretations to behavior that is typically observable 
without special apparatus.) For example, we may plan a chess maneuver "in 
our head," or rehearse a debating point covertly before springing it on our 
spouse. We may struggle covertly with a math or logic problem, or engage in 
various recall strategies as we attempt to remember a name. If these covert 
exercises are "successful" we will emit the behavior overtly at a later time. 
Thus, not only can reinforcement mechanisms alter environment-behavior 
relations, both elements~environment and behavior~may recursively recruit 
reinforcement mechanisms if they have been established as acquired, or condi- 
tioned, reinforcers. 

Acquired reinforcers can be quite idiosyncratic: One child glows when 
praised by a teacher, another is embarrassed, and a third, hoping to impress 
the tough set, is surly. Since there is nothing that predicts what arbitrary events 
will be of value to an organism in its particular circumstances, natural selection 
could not have arranged a separate mechanism for acquired reinforcement, one 
activated by money, one by praise, etc. It must be the case that acquired rein- 
forcers recruit the same reinforcement mechanisms as primary reinforcers. 
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It is beyond the scope of the present paper to discuss the variables contribut- 
ing to the establishment of acquired reinforcers. However, to a first approxi- 
mation, any event that is highly correlated with an unconditioned reinforcer 
will itself become a reinforcer. Once established, an acquired reinforcer func- 
tions like a primary reinforcer and can in turn alter the function of antecedent 
stimuli. Thus, in chains of behavior or events, early elements can function as 
acquired reinforcers even though they may long precede an unconditioned 
reinforcer. Thus we come under the control of "signs of success." Our be- 
havior is controlled by the immediate consequences that have been correlated 
with other reinforcers in the past. Acquired reinforcement is important in 
understanding the selection of complex human behavior such as problem solv- 
ing, behavior chains, and, in general, any behavior that is not maintained by 
promptly delivered, biologically important consequences. Since this includes 
most complex human behavior, it is clear that acquired reinforcement must be 
represented in our simulations. 

Sources of Variability 
Central to any selectionist account of complexity is variation in the substrate 

that is being replicated. Genetic variability is understood to arise from sexual 
reproduction and from mutations produced by defects in transcription of the 
genetic code, radiation, toxins, and other insults to the organism. In behavior, 
the units of analysis are not so well understood at the physiological level. Even 
so, it is possible to identify several sources of variability in behavior. 

When we flip a light switch, swat a mosquito, or laugh at a joke, our 
behavior has a conspicuous unity. No observer would dispute that the behavior 
occurred. Much of our behavior is of this sort, with simple, discrete responses 
being particularly clear examples. However, the human brain contains billions 
of richly interconnected neurons, most of which fire at some appreciable base- 
line rate. That rate increases when the rate of input to the cell from other 
neurons increases, and the rate increases still further if synaptic efficacies have 
been modified by reinforcement. Thus reinforcement is just one of the varia- 
bles affecting the probability with which a neuron fires. The activity of the 
populations of neurons that participate in any behavior will be modified by 
reinforcement but will not be fully determined by it. Thus, even under condi- 
tions of low stimulation and when the organism is at rest, the nervous system is 
not an array of dormant switches but a boiling stew of activity. Moreover, 
even the simplest of behaviors~raising a finger toward a letter key, turning a 
head toward a voice---are mediated by many millions of muscle fibers which 
are activated in turn by as many neurons. What is a simple, orderly event at 
the behavioral level is a highly complex confluence of events at the neuromus- 
cular level. There are indefinitely many ways that a population of muscle 
fibers can execute a response. No matter how small the variance in the physio- 
logical processes that control each molecular event, the number of permuta- 
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tions of possible variations will ensure that no two responses, however inter- 
changeable functionally or similar in form at the behavioral level, are ever 
identical in their neural substrates. However, the integration of the molecular 
events yields great order at the level of the contingency: The lever still gets 
pressed. In this light, it is not response variability that needs to be explained 
but response unity. 

Although no neural-network models remotely approach the complexity of 
the nervous system, they model this variability well--or at least much better 
than other approaches in normative cognitive science. Variability is produced 
in part by the sheer number of variables that contribute to the control of an 
output vector. The response is usually evaluated by a very coarse sieve: Did 
the target response occur, or did it not? In complex networks it is typically 
possible for a target response to be mediated by an enormous number of 
network states. In addition, it is common to include a random process in one or 
more of the parameters of networks, reflecting, in part, our ignorance of the 
molecular operation of the nervous system we are trying to model. Thus, 
although the complexity of the target response itself is grossly simplified in 
simulations, the complexity of control of the response is modeled relatively 
well. 

A second source of variability is in the environment, or in the stimulation of 
the organism by the environment. Owing to practical constraints on network 
size, this variability is usually modeled poorly in network simulations. It is 
common to represent an environmental event by the activation of one or only a 
few input nodes, a coarse model of the effect of environmental stimulation. 
Because of the enormous number of sensory receptors and because of the 
dynamic relationship between the environment and the organism, it is clear that 
no two events ever affect the organism in precisely the same way. It is neces- 
sarily the case that contingencies of reinforcement tolerate variability not only 
in response topography but in the controlling stimuli as well. 

Variability in contingencies of reinforcement is another source of variability 
in behavior. Generally, selection contingencies tend to reduce variability" A 
hungry rat pressing a lever on a schedule of intermittent reinforcement is, at 
least at a molar level, doing the same thing over and over. (Analogously, 
contingencies of survival tend to weed out variations that do not meet some 
minimum requirement.) In contrast, an extinction procedure tends to lead to 
an increase in behavioral variability (e.g., Schwartz, 1980, 1982). This can be 
simulated in a network in a relatively straightforward way: If extinction trials 
reduce the control of a response by a particular context, the response will 
eventually become weaker than competing behavior. In an organism, or net- 
work, with a rich repertoire, variability will be a natural consequence. Extinc- 
tion procedures may also have a second, more direct effect on variability; the 
abrupt termination of a reinforcement contingency can have a potentiating 
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effect on other behavior. The organism becomes more active, is more likely to 
attack conspecifics or to engage in other available activities (Azrin, Hutchin- 
son, & McLaughlin, 1965). Instances of the operant response are likely to vary 
more in force, duration, and length of runs than during the reinforcement 
condition (Mechner, 1958; Notterman, 1959). Thus extinction can serve a 
motivational function with widespread effects on behavioral variability. 

Conclusion 
As noted above, designing a network that exemplifies selection is only one 

step toward simulating behavior; we also need to determine the "family tree" 
of selecting contingencies. When the behavior to be modeled is complex, 
designing an adequate selection program can be formidable. For example, we 
might design a model that selected variations in chains of DNA bases, but 
although such a model would, in principle, be able to produce the genetic code 
for an amoeba, a cat, or a human being, we do not know enough about the 
required genetic codes to guide the selection process. Similarly, in models of 
complex behavior we need a thorough understanding of the behavior to be 
simulated. We must distinguish between basic units of behavior and higher- 
order behavior which is built up of these units. Selection from a variable sub- 
strate is an appropriate explanation for the units, but only indirectly for the 
higher-order behavior. A child's early attempts to use a can opener, to unlock 
a cabinet, to pronounce a new word all appear to be examples of variable 
behavior shaped by its consequences. But solving a novel multiplication prob- 
lem, say, 342 x 259, does not. Of course, as a parlor game we could just begin 
generating "ballpark" answers that are shaped and winnowed by our audience; 
the answer would be preceded by a closely related candidate answer, and so 
on. But usually when faced with such a problem we just get down to work and 
calculate the precise answer; the answer would not be selected from closely 
related candidates. However, the sequence of behavior leading to the answer 
appears to defy explanation in selectionist terms only because it is not a be- 
havioral unit. A change of focus would reveal that the whole performance was 
composed of smaller units that could indeed be so understood. Simulating such 
a performance with a selectionist network would require identifying appro- 
priate units of analysis. 

Thus, the adequacy of our simulations depends on appropriate network 
architecture, appropriate scheduling of contingencies of selection, and a fair 
understanding of the behavior we are trying to simulate. An important advan- 
tage of neural-network research is that it helps us to evaluate our understanding 
of these three domains and may help us bootstrap our way to a better under- 
standing. Because of the complexity of the subject matter, there may be no 
better alternative. 
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CHAPTER 15 

ANALYSIS OF REACHING FOR STATIONARY 
AND MOVING OBJECTS IN THE HUMAN INFANT 

Neil E. Berthier 
Department of Psychology 
Neuroscience and Behavior Program 
University of Massachusetts, Amherst 

ABSTRACT 
The psychological literature emphasizes the roles of neural maturation, the 

actor-environment relationship, dynamics of the body, and learning of appro- 
priate motor actions in determining the course of motor development. This 
chapter relates these factors to the model of Berthier (1996) and extends that 
model to the case of catching a moving object. 

Introduction 
In the early decades of this century the study of motor development was 

viewed as a central topic in developmental psychology. Leaders in the field 
investigated how motor control develops and how neural and environmental 
factors interact to guide development. These early theories of motor develop- 
ment were part of an intense nativist-environmentalist debate, and the theoreti- 
cal view of motor development emerging from this period has often been dis- 
torted and misunderstood. A goal of this chapter is to reconsider some of these 
early views and relate them to a more modern view of how infants might gain 
control of their motor systems. A mathematical model of the development of 
reaching is presented that views infants as exploring possibilities for action and 
selecting those actions that are the most effective and efficient. The last section 
of the chapter extends the model to the catching of moving objects by infants 
and investigates how infants "predict" future positions of a moving object. 

The Development of Motor Control 

Early theoretical analysis 
Although John B. Watson was not a developmental psychologist, his be- 

haviorist viewpoint had clear implications for the study of development. In 
contrast to most other areas of psychology, his influence in developmental 
psychology provoked a strong reaction against the environmental determination 
of behavior (Horowitz, 1992). The two leading figures in the area of motor 
development, Arnold Gesell and Myrtle McGraw, took seemingly nativist 
positions in opposition to Watson. Partly because of the nativist-environmental- 
ist debate, Gesell's and McGraw's statements were interpreted as arguing for 
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the nativist position that motor development was almost entirely determined by 
the unfolding of a genetic plan. However, neither Gesell nor McGraw was an 
extreme nativist, and their theoretical contributions provide for a significant 
role of the environment in determining development. They discovered many 
important facts about motor development, but their work led to a decades-long 
hiatus in research on the development of motor control. I will consider these 
earlier views more fully because many are still relevant to current problems 
and because they directly influenced later views of the development of motor 
control. 

Gesell and McGraw are considered maturationists. That term loosely means 
that the critical determiner of development is the underlying maturation of the 
nervous system. A strong maturationist position contends that development is 
simply the unfolding of one's genetic inheritance, with the environment playing 
only a minor role in determining the developmental outcome. 

Arnold Gesell. Arnold Gesell was a leader in developmental psychology in the 
early part of this century. From 1911 to 1948 he was the director of the Yale 
Clinic of Child Development, where he and his colleagues studied the devel- 
opment of both normal children and children from special populations (Thelen 
& Adolph, 1992). Gesell argued that development was directed and determined 
by maturation of the central nervous system and that this maturation was 
controlled by the genes. He concentrated on careful observation and descrip- 
tion of the development of behavior (Thelen & Adolph, 1992), and believed 
that the mechanisms underlying development were largely biological and 
should be studied by biologists. A large part of his research legacy was the 
generation of developmental norms~scales that describe when the average 
child first shows particular behaviors, and time ranges for the appearance of 
these behaviors. Gesell and his coworkers used motion-picture film to record 
infant behavior, and provided detailed and extensive descriptions of children's 
development. 

Typical of Gesell and his colleagues' work are the studies performed by 
Halverson (1931, 1933) tracing the development of prehension. In these studies 
infants were studied longitudinally from 4 to 60 weeks of age. During experi- 
mental sessions they were presented with a set of various graspable objects 
while their behavior was recorded on motion-picture film for later frame-by- 
frame analysis. Direct, unfilmed observations were also conducted through a 
one-way window. In Halverson's 176-page monograph (Halverson, 1931), the 
development of reaching was described in excruciating detail. He described ten 
types of grasps, at least seven types of approach, and four stages in the ap- 
proach pattern. He concluded that the increase in reaching proficiency was due 
to anatomical growth of the digits, maturation of the neuromusculature, train- 
ing, and increased sensibility of the fingertips. If the role of psychology in the 
study of motor development is simply to describe behavior, Gesell and his 
coworkers largely met this goal. 
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Myrtle McGraw. Myrtle McGraw performed most of her work in motor devel- 
opment at Columbia University during the 1920s, '30s, and '40s. Unlike 
Gesell's, a large part of McGraw's work was aimed at determining how 
change occurred. A good example is her work on the development of creeping 
and crawling (McGraw, 1941). This study was based on 82 infants and used 
both motion-picture film and written descriptions. McGraw identified nine 
stages in the development of crawling but, unlike in Gesell's work, the stages 
were informed by neuroanatomical findings about the development of neuro- 
muscular systems. Conel (1939) had shown that the neuroanatomy of the infant 
brain was very different from that of the adult brain: Infant cerebral cortices 
lack the internal connectivity and dendritic complexity seen in adults. The 
descending cortical connections are also immature at birth and largely unmye- 
linated. Conel's (1939) results led McGraw to conclude that the cortex of the 
human infant was largely non-functional at birth and that brainstem and spinal 
systems controlled behavior in neonates. These assumptions about the func- 
tional capability of the infant nervous system led McGraw to describe crawling 
as, first, a reflexive activity controlled by brainstem and spinal areas, then an 
inhibited and disorganized activity during the period when the motor cortex 
gained functional connections with spinal areas and, finally, a voluntary and 
adaptive behavior when the cerebral cortex became fully involved. 

For McGraw, the role of learning in the control of movement was minimal 
until the cortical systems become almost fully functional. McGraw's classic 
study (1935) of the development of a pair of twins, Johnny and Jimmy, led to 
the conclusion that training has little effect on behavior until the neural system 
is "ready." In this study, McGraw provided one of the twins with special 
training on a task, such as roller skating, and then compared how well the 
specially trained twin performed relative to his untrained sibling. She conclud- 
ed that early training had little effect on the long-term development of the skill. 

The legacy of the maturationists. For several decades after Gesell's and 
McGraw's work, psychologists showed little interest in pursuing research in 
motor development. These fallow years were primarily the result of the strong 
maturationist views of developmental psychologists and the belief that Gesell 
and McGraw had largely "solved" the problem of motor development. The 
view that neonates were reflexive creatures whose behavior is controlled by 
subcortical areas persisted well into the 1970s. Then, other work~such as that 
of Haith (1980) on neonatal eye movements and Zelazo, Zelazo, and Kolb 
(1972) on the adaptability of walking--indicated that infant behavior was 
purposeful, directed, and cognitively interesting. 

Modern views of motor development 
The psychological study of motor control and motor development re- 

emerged in more recent decades largely as a result of the growth of cognitive 
psychology and the development of dynamic-systems theory. Cognitive psy- 
chology suggested that movements were cognitively planned and programmed, 
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and thus of interest to psychologists. Dynamic-systems theory provided a set of 
tools and ideas within which movement could be better understood. 

Dynamic-systems theory. Kugler, Kelso, and Turvey (1980) used recent pro- 
gress in the mathematical study of nonlinear systems to devise a new way of 
viewing motor behavior. They suggested that the mechanical properties of the 
organism's motor systems and of the environmental situation are the main 
determiners of actions. In the context of motor development, Thelen (1995) 
has argued that behavior can be modeled as a set of stable states or stable 
cycles, and that changes in behavior reflect phase transitions between those 
stable states. 

Dynamic-systems theory has been most useful in understanding cyclic or 
rhythmic behavior. Thelen (1995) argues that rhythmic movement is the result 
of interactions between underlying component oscillators, each with its own 
physical characteristics. For example, Thelen, Kelso, and Fogel (1987) studied 
kicking movements of infants and concluded that kicks were best understood as 
spring-like oscillatory movements. With each kick, energy was injected into 
the limb and the mass-spring properties of the limb determined the kinematics 
of the kick. Goldfield, Kay, and Warren (1995) examined the activity of inf- 
ants in a "Jolly Jumper" and found that they began with a few tentative bounc- 
es, but quickly settled on a pattern that resulted in stable oscillations of the 
Jumper. 

In the field of motor development, the dynamic-systems approach has been 
greatly influenced by the work of Eleanor Gibson. Gibson argued against a 
cognitive-representation theory of mental development, and for a theory based 
on direct perceptions of the affordances of the environment (Gibson & Spelke, 
1983). A key assumption of her approach is that infants actively explore their 
environment and learn the affordances available to them (Gibson, 1988). In the 
field of motor development, these ideas have led dynamic-systems theorists to 
emphasize the role of the infant's exploration of the dynamics of the situation 
when learning appropriate and adaptive ways of moving. The Jolly Jumper 
study (Goldfield et al, 1995) shows how infants learn the dynamics of the 
system in order to behave in a way that leads to stable bouncing. The dynamic- 
systems theorist talks about exploration by the infant of the environment-infant 
dynamic system and the "soft-assembly" of behavior that fits that system 
(Ihelen, 1995). 

A second major idea from the Gibsonian theory is that the actor cannot be 
considered in isolation from the situation in which the action occurs. This leads 
dynamic-systems theorists to argue that one must understand the loads imposed 
on the body, and the kinematics and dynamics of the body-environment sys- 
tem, to understand motor control. For example, Thelen, Fisher, and Ridley- 
Johnson (1984) showed that stepping could be elicited at an age when it did not 
normally occur if the infant was placed upright in water, thereby reducing the 
load on the leg musculature. 
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Dynamic-systems theory has been very successful in the domain of rhyth- 
mic activities such as kicking, stepping, and bouncing, but it was not clear how 
the theory could be extended to inherently non-rhythmic behaviors such as 
reaching. More recently, Thelen and coworkers have examined the develop- 
ment of reaching using the dynamic-systems approach, with some success 
(Thelen, Corbetta, Kamm, Spencer, Schneider, & Zernicke, 1993). Studying 
four babies longitudinally, they found that young infants initially have individ- 
ual reaching styles but that, later in development, all infants come to reach 
similarly. This convergence of motor patterns presumably arises because all 
babies ultimately face the same dynamic constraints in reaching (Thelen et al, 
1993). 

Cognitive approach. The cognitive approach to the study of behavior is cur- 
rently the predominant approach in both developmental psychology and the 
domain of motor control. While cognitive psychologists come in all types, 
common assumptions are that mental representations and their manipulations 
are keys to understanding cognition, and that the flow of information through 
the brain and its processing are the most important topics for study. In the 
domain of motor control, cognitive and applied psychologists usually assume 
that motor activity is the result of a planning process, and that a major problem 
in planning is the generation and parameterization of motor programs (Rosen- 
baum, 1991; Schmidt, 1982). Unlike other areas of cognitive psychology, 
however, motor-control researchers have investigated extensively how learning 
occurs, and what type of information is important in the learning process 
(Schmidt, 1982). 

E.J. Gibson has also had considerable impact on cognitive developmental- 
ists, even though the Gibsonian framework emphatically rejects the notion of 
mental representation. Among Gibsonians studying motor development, von 
Hofsten has used cognitive constructs to describe the mechanisms underlying 
infant behavior. For example, von Hofsten and Lindhagen (1979), in discuss- 
ing the success of infants in catching moving objects, conclude that the be- 
havior "reflect[s] a basic human capacity to time-coordinate one's behavior 
with external events, and to foresee in one's actions future positions of moving 
objects." Similarly, more recent work by von Hofsten, Spelke, and Feng 
(1993) argues that infants predict the future positions of moving objects by 
reasoning about the physics of the world. 

Summary 
The above work provides some of the key ideas that should be incorporated 

into a general theory of motor development. As argued by the maturationists, 
one must acknowledge the role of neural development in both guiding and 
constraining what motor actions are possible and likely. However, the matura- 
tionists can be faulted when they contend that experiential factors are ineffec- 
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tive before a certain stage of development. It seems possible that experience 
plays a role in early motor development (e.g., von Hofsten, 1993). The 
arguments of dynamic-systems theory that actor-environment dynamics are a 
key constraint on movement and that motor development is a soft-assembly of 
behavior determined by the infant's exploration are compelling. It is difficult to 
see how an infant could track changes in the dynamics of arm movement using 
a readout of the genetic code. There are also cognitive aspects to the problem 
of motor development. How do infants predict the future position of a moving 
object in order to intercept it? How does an infant determine how to preshape 
hand configuration for different-shaped objects? Clearly, these are challenging 
problems for the infant to solve within the context of development. However, 
it is not clear that these problems are solved through manipulations of mental 
representations. 

A Mathematical Model of Infant Reaching 

Kinematic features of infant reaching 
Reaching is an appropriate problem for the study of motor development. Its 

development takes place over an extended period and is influenced by the 
maturation of spinal and brain systems. Mechanically, the arm is a complex, 
dynamic system that is continually changing in strength and size. The infant 
must also deal with the challenges of accommodating to different external loads 
on the arm. Finally, the manner in which infants reach is also indicative of 
their perceptual and cognitive capabilities. 

Early work on infant reaching by Halverson (1931) and White, Castle, and 
Held (1964) was primarily descriptive and relied on photographic methods. 
This work focused on the way infants approached a graspable object, and 
described the various grasps that infants employed during development. 

The use of video and, later, modern kinematic motion systems in the 
domain of infant reaching was pioneered by von Hofsten (von Hofsten, 1979; 
von Hofsten & Ronnqvist, 1988). These systems allowed hand speed during 
the reach to be estimated, von Hofsten found that the infant's hand was con- 
stantly accelerating and decelerating during reaching. This pattern of move- 
ment is dramatically different from the adult pattern, where simple reaches are 
accomplished with a single acceleration and deceleration of the hand. von 
Hofsten (1979) termed each acceleration and deceleration of the hand a 
movement unit. He hypothesized that, because each unit was defined by an 
acceleration of the hand, movement units were actually the underlying sub- 
movements of the reach. To test whether movement units represent the func- 
tional submovements of the reach, the curvature of the hand path has been 
compared with the timing of the movement units. If movement units represent 
a corrective sequence of submovements, then one would expect that each 
submovement would result in a change in hand direction and that peaks of 
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curvature would be associated with minima of the hand-speed profile. Fetters 
and Todd (1987) found in a longitudinal study of 10 infants at 5, 7, and 9 
months that, indeed, 413 out of 425 curvature peaks (i.e., 97 %) were associat- 
ed with speed minima. Other studies, while generally supportive, have not 
found such a tight association of curvature peaks with speed minima, von 
Hofsten (1991) analyzed reaches from 19- to 31-week-old infants and found 
that 644 out of 862 curvature peaks (i.e., 79%) coincided with speed minima. 
Moreover, Matthew and Cook (1990), analyzing data from young infants, 
found that some directional corrections occurred within movement units. 

While the results showing that changes in curvature occur between move- 
ment units are consistent with movement units being the components or action 
units of the reach, the results showing direction changes within movement units 
appear~at first glance---inconsistent with this view. There are two possible 
explanations for the within-movement unit changes in direction. First, in the 
cited studies, directions and angles were measured using coordinates of Carte- 
sian space. Thus, an impulse of force generated by the elbow musculature 
would result in simple rotation at the elbow. Such a movement would be 
elementary, but would result in curvature of the hand path. Second, it is likely 
that current algorithms for decomposing reaches into movement units do not 
identify all of the submovements. Most algorithms use an approach of peak- 
and-valley finding and define movement units as a region of the hand-speed 
profile in which a peak of criterion height is demarcated by valleys of criterion 
depth. These algorithms usually treat a region of the reach that has several 
small "bumps" in the hand-speed profile as a single movement unit. Each of 
these bumps, however, might reflect an underlying submovement. 

If infant reaches are composed of a sequence of submovements, what might 
the underlying submovements look like, and how might we fully decompose 
reaches into submovements? There is consensus on the kinematics of adult 
submovements. Georgopoulos (1986) observed that, when adults reach for 
positions or objects without an emphasis on accuracy, hand-speed profiles 
show a dome or bell shape. Others have shown that these hand-speed profiles 
are well fit by "minimum-jerk" polynomials (e.g., Flash & Hogan, 1986). 
Minimum-jerk speed-profile polynomials are fourth order and result from the 
assumption that the reacher is minimizing the total jerk (third time derivative 
of position) of the hand movement. These results have been taken to support 
the hypothesis that adults plan movements that minimize jerk, and these types 
of polynomials provide very good fits to the empirical data. 

An attractive feature of minimum-jerk speed polynomials is that they can be 
specified by three parameters~a height, a width, and a position in time. If we 
assume that infants have elementary minimum-jerk submovements, is there a 
way we can determine the number and parameters of the submovements? 
Berthier (1996) has proposed an algorithm for accomplishing this task based on 
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the results of Flash and Henis (1991). Flash and Henis forced adults to make 
movements in two steps by switching targets during the first movement. They 
found that these two-step movements could be decomposed into two elementa- 
ry submovements, each of which was minimum-jerk. In regions of overlap 
(i.e., when both submovements were activated), the total movement profile 
was simply the sum of the submovements. 

The Berthier (1996) algorithm used a stripping procedure that sequentially 
decomposed the reach into minimum-jerk submovements from the largest to 
the smallest submovement. Because Flash and Henis (1991) found that the 
submovements summed, one can work backwards and find and fit the largest 
submovement and subtract it from the data. One can then find the next largest 
submovement, estimate its parameters, and so on. At each step, the fitting of 
the three parameters of the polynomial is done by a gradient-descent method. 
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FIGURE 1. Batting- and reaching-speed profiles for movements by a 6-month-old 
infant. The end of the time series is the time of contact with the target object for each 
of the movements. A. An out-and-back batting movement which resulted in the infant's 
batting the toy out of the experimenter's hand. B. A more typical reach by the same 
infant that occurred just before the bat. Both movements have been decomposed into an 
underlying set of submovements (dashed lines) with the experimentally recorded data 
given by the solid line. 

Figure 1A shows the result of the decomposition of an out-and-back "bat- 
ting" movement by a 6.5-month-old infant. As can be seen, the algorithm 
decomposed the movement into two submovements. The sum of the two 
minimum-jerk submovements closely fits the data. Figure 1B shows the 
decomposition of a more typical infant reach. I found that the algorithm 
worked very well to decompose most infant reaching movements. Given the 
high quality of the fit in Figure 1, it seems likely that infant reaches are 
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composed of a sequence of submovements that are simple in form and similar 
to adult movements, von Hofsten's (1991) description of movement units as 
varied and irregular in shape led him to conclude that the action units of the 
reach were generated by a relatively complex process. However, the current 
data suggest that a relatively simple process could underlie the sequence of 
submovements in infant reaching. 

The finding that infants reach in a sequence of submovements does not 
force one to conclude that the sequence is correcting (i.e., changes the course 
of movement). Matthew and Cook (1990) provide evidence that the infant's 
hand moves in a correcting path during a reach, but Ashmead, McCarty, 
Lucas, and Belvedere (1993) could find no evidence that infants corrected their 
reaches when a target was shifted. The current state of the literature leaves 
open the question of corrections during reaches. 

Infant reaching as the time-optimal solution to a stochastic control problem 
Is there a reason that infants use multiple submovements in reaching for 

objects, or are multiple-submovement reaches simply a reflection of neural and 
biomechanical limitations of the infant? Berthier (1996) proposed that infants 
adopt these reaching kinematics, not because they are the only types of 
movements that infants can make, but because moving this way is both time- 
efficient and reliable. Instead, infant reaching was modeled as a stochastic 
optimal-control problem, where the amount of stochasticity was related to the 
level of motor control the infant possessed at particular times in development. 
Berthier used a reinforcement-learning algorithm known as Q-learning to 
compute optimal reaching strategies, but hypothesized that infants solve the 
problem by trial-and-evaluation learning. 

Figure 1 indicates that it is not a limitation of strength that causes infants to 
employ multi-submovement reaches. The figure shows an out-and-back batting 
motion in which the infant retracted her hand from a toy held by an experi- 
menter and then rapidly accelerated her hand to knock the toy out of the exper- 
imenter's hand. The rapid forward motion covered the same distance and 
roughly the same path as a typical reach, but the distance was covered in a 
single high-speed movement. The difference between this case and a typical 
reach is that at contact with the target, the infant's hand is not in position to 
effect a grasp of the toy. This result suggests that some characteristic of the 
reaching-to-grasp task caused the infant to adopt the multi-submovement 
kinematics. Berthier (1996) suggested that this characteristic was the demands 
of accurately positioning the hand for grasping. 

The Berthier model builds on the work of Meyer, Abrams, Kornblum, 
Wright, and Smith (1988), who studied the speed-accuracy trade-off captured 
by Fitts's Law (FiRs, 1954). Meyer et al assumed that adults could reach for a 
target with any number of submovements but that faster submovements come 
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at the cost of accuracy. The task for the adult is then to plan a movement that 
maximizes the probability that the hand arrives in the target zone in the mini- 
mal time. Meyer et al (1988) analytically identified reaches that met this cri- 
terion and found a good fit to actual reaches by adults. 

The same trade-off between speed and accuracy might be faced by infants 
when reaching, but~because of the state of their development~the problem 
might be more severe. It seems likely that reaching with high average speeds 
might lead infants to entirely miss the target. It might be more time efficient 
and reliable for infants to reach in several small movements when they have 
poor control over their hands. 

Movement as transitions between submovements. Berthier modeled infant 
reaching as a discrete-step Markovian decision task. The infant is assumed to 
have the hand at a particular position in space and is faced with a decision of 
which movement to generate next. The submovement selected by the infant 
then causes a state transition to a new state. The current level of motor control 
the infant possesses is captured by a stochasticity parameter that determines the 
variability of the state-transition mapping. If the stochasticity is low, it is likely 
that a particular submovement would cause a state transition to a particular 
next state. If the stochasticity is high, a particular submovement could cause 
transitions to one of many different next states. 
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FIGURE 2. The simulated number (solid line) and speed (dashed line) of submove- 
ments as a function of age. Increasing age was modeled as decreasing stochasticity in 
the arm model. The values of stochasticity are x 10 s. 



Analysis of Reaching for Stationary and Moving Objects in the Human Infant 293 

Berthier simulated a planar reaching task and showed that with low levels of 
stochasticity (high levels of motor control) the time-optimal solution is to reach 
for the target using a single submovement. With high levels of stochasticity 
(low levels of motor control) the time-optimal solution is to reach for the target 
with several submovements. When the results of simulations with various 
levels of stochasticity are plotted, the kinematics match the data obtained from 
infants. Figure 2 shows how increasing age (decreasing stochasticity) affects 
the number and speed of submovements. As stochasticity decreases, the 
number of submovements decreases and their distance increases. Speed of the 
first submovement at first increases with age, but when stochasticity decreases 
to a critical point, the speed of the first submovement decreases and then 
increases. The latter prediction that speed will decrease and then increase with 
age has been supported by work of Berthier and McCarty (1996). In a simple 
reaching task, they found that five-month-olds reached significantly faster than 
seven-month-olds, and that seven-month-olds reached significantly more slowly 
than nine-month-olds. As predicted by the model, when the infants showed 
slower and then faster hand speeds, they also showed steadily decreasing 
numbers of submovements. 

Berthier (1996) directly assessed the level of motor control of six 
6.5-month-old infants by measuring the angular error during reaching. For 
each submovement, the angle between the direction to the target and the direc- 
tion the hand actually went during that submovement was computed. Figure 3 
shows these angular errors in both azimuth and elevation. As can be seen, the 
errors are distributed as a Gaussian with a mean of zero. The 95% confidence 
intervals on the means were plus and minus a few degrees and included zero. 
These data show that, on the average, infants are heading directly for the tar- 
get. If the model correctly captures the process and the directional error of 
movement reflects a limitation on the infant's ability to control the arm, then 
these data show that infants are reaching as effectively as possible under the 
circumstances. 

Berthier (1996) then compared the measured error with the error assumed 
in the simulations of the model. The error from the simulations is plotted as the 
third curve in Figure 3, and is comparable in shape and magnitude to the 
measured error. Because the simulation error was taken from simulations that 
showed kinematics similar to 6.5-month-old infants, the comparison of simula- 
tion and actual error provides strong support for the underlying assumptions of 
the model. 

Learning of submovements. So far, we have addressed how well the model 
actually predicts the behavior of infants and examined whether the critical 
assumption of error in movement is supported by actual infant data. The model 
also hypothesizes that the observed strategies of movement come about via a 
learning mechanism. It is assumed that particular strategies arise because the 
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infant actively explores the effects of particular movements and selects 
movements in the future that have been shown to be efficient in the past. In 
this way infants determine which movements are most effective for the state of 
development of their neural control systems. As the infant grows, new strate- 
gies of movement replace older strategies that are no longer efficient. 

The simulations above used Q-learning (Watkins & Dayan, 1992) to comp- 
ute the optimal reaching strategies for particular levels of stochasticity. Q- 
learning is a reinforcement-learning procedure where a controller learns to 
control movement in a plane by trial and evaluation, and Q refers to the quality 
of the action. In Q-learning, the system computes a Q-function that maps states 
and actions to an evaluation function that informs the controller of the expected 
total cost of executing that action from that state. Q-learning proceeds with the 
system's choosing actions, noting the consequences of actions, and then updat- 
ing the Q-function. At the end of training, the Q-function contains all the 
information needed for the controller to execute optimal decisions; the Q- 
function implicitly defines optimal strategies of reaching. The general proce- 
dure is memory based in that during reaching little "planning" is performed 
and movements are selected by reference to the Q-function. 
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Although Q-learning effectively computed time-optimal reaching strategies 
in the above simulations, and provides a congenial metaphor for how infants 
might learn efficient reaching strategies, the above implementation of Q- 
learning is not a realistic model of how infants might learn to reach. The first 
deficiency is that the simulations start with a random strategy of reaching. It is 
clear from McGraw's work (McGraw, 1941) and from more recent work by 
von Hofsten (1982) that young, pre-reaching infants do not randomly flail their 
arms about. McGraw (1941) believed that subcortical systems initially control 
infant movement. She concluded that subcortical systems provide an initial set 
of behaviors that are later supplanted by more flexible and powerful control as 
the cortical systems mature. 

McGraw (1941) ruled out any role for experience and learning until the 
descending cortical systems mature, but more recent work by von Hofsten 
(1982) and Ennouri, Dubon, Notides, and Bloch (1994) shows that early arm 
movements of human neonates are goal and task oriented and somewhat flexi- 
ble. In a theoretical paper, von Hofsten (1993) argued against the idea that 
early arm movements are fixed and reflexive and proposed instead that pre- 
reaching movements are action oriented from very soon after birth, von Hof- 
sten (1993) suggested that infants discover successful ways of reaching by 
searching a "task space" for efficient solutions. 

The existence of early, baseline reaching strategies would be helpful for 
two reasons. First, these strategies would put bounds on the infant's motor 
actions. It seems likely that if infants simply executed random arm movements 
early in learning they would strain or damage their muscles or arms. Early 
crude strategies would protect the integrity of the arm during early learning. 

Second, baseline reaching strategies would hasten learning. In many control 
situations, reinforcement-learning algorithms are very slow because of the 
large number of possible control actions. Barto (1990) has suggested that the 
use of a crude controller in early learning would bootstrap learning because (1) 
it would focus learning on regions of the state space that were likely to hold 
the solution, and (2) the learning system would not have learn to control the 
"easy" part of the system, but could focus on learning to control the more 
difficult and nonlinear parts of the problem. 

Extension of the model to catching a moving object 

A more realistic and powerful knowledge structure. The previous model 
assumed that infants were attempting to reach for objects in minimal time and 
that the determining factor in which strategies fulfilled this goal was the in- 
fant's ability to control its movements. Infants were assumed to determine 
which strategies matched their current level of motor control through explora- 
tory learning, the results of which were memorized, i.e., stored in a look-up 
table. A major failing of the above simulations is that look-up tables are both 
psychologically unrealistic and computationally limiting. 
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Using look-up tables to store information leads to an unacceptable increase 
in the size of the data structure for many real-life problems. In the simulations 
of arm movement, even with a simple model of the arm and a limited work- 
space, 32,400 states were required. And, each of these states was in turn asso- 
ciated with 486 Q-values, one for each action. Thus, 15,746,400 floating point 
variables would be required to store all the Q-values! Obviously, a more cogni- 
tively interesting problem with a more complicated state space and set of ac- 
tions would require prohibitively large look-up tables. 

In the above simulations, the look-up-table approach also leads to slow 
learning because of generalization problems. Because of the storage require- 
ments for a complete Q-function table, we combined the Q-values for neigh- 
boring states in a 10-by-10 mm space into a single Q-value. This significantly 
reduced the required storage but often led to errors because the stored Q-value 
was not correct for all of the states within the 10-by-10 space. The Q-values 
might be approximately correct for most of the states in the space, but incor- 
rect for at least one of the states. This inappropriate generalization sometimes 
led to execution of clearly inappropriate actions. In addition, a look-up table 
limits the amount of beneficial generalization that can occur. For example, 
there may be a group of states that share the same Q-values and within which it 
would be appropriate to generalize. In this case, one would only have to learn 
the correct Q-values for a single state and then generalize it to the appropriate 
neighboring states. Finally, look-up tables do not make sense psychologically. 
It is difficult to imagine an infant using a large database that stores all the 
appropriate actions for each of the possible states of the arm. For these reasons 
the use of artificial neural networks to approximate the Q-function was ex- 
plored in the current research. 

Neural-network knowledge structures. Many types of artificial neural networks 
have been used to store control information. Among the most useful methods 
for on-line learning are the radial-basis-function networks. These networks use 
a relatively small number of basis functions to represent and interpolate the 
desired function (Poggio & Gerossi, 1990), statistical methods (Geman et al, 
1992; Gullapalli, 1992), and random representations that use an expansion 
recoding of the input to represent information (Albus, 1981). A psychological 
model of reaching, the Knowledge Model (Rosenbaum et al, 1995), uses relat- 
ed methods to represent the knowledge underlying reaching. 

We used Cerebellar Model Arithmetic Computers (CMACs) to represent 
the Q-function because they were inspired by the anatomy and physiology of 
the cerebellum, an area that is believed to be important in adaptive control and 
in controlling reaching (Albus, 1981; Berthier, Singh, Barto, & Houk, 1993) 
and because CMACs have been shown to work very well in control problems 
(Miller, Kraft, & Glanz, 1992; Sutton & Whitehead, 1994). 
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Catching a moving object. Several studies have examined the ability of infants 
to catch moving objects (von Hofsten & Lindhagen, 1979; von Hofsten, 1980; 
von Hofsten, 1983; Robin, Berthier, & Clifton, 1996). This task requires 
infants to perceive the direction and speed of the target object and to anticipate 
its future position in order to effect a successful grasp. Infants as young as 5 
months are successful at least some of the time in grasping a moving target. 
The task is interesting from a cognitive perspective because, while older inf- 
ants readily catch moving objects, it is not clear if they succeed by "predict- 
ing" the future position of the moving object or if they employ some less 
cognitive, more lower-level process. 

von Hofsten (von Hofsten & Lindhagen, 1979; von Hofsten, 1983) was the 
first to study infants reaching for moving objects. In his studies, objects moved 
at various speeds in a horizontal arc in front of the infant. It was found that 
infants as young as 5 months were able to catch objects moving at a speed of 
as much as 120 cm/sec. Analysis of the kinematics of reaching led von Hofsten 
to conclude that infants predict the future position of a moving object in order 
to obtain it (von Hofsten, & Lindhagen, 1979; von Hofsten, 1983). Recently, 
von Hofsten, Spelke, and Feng (1994) found that infants could catch a moving 
object that was moving diagonally in front of them in a frontal plane, von 
Hofsten et al (1994) concluded that infants use their knowledge of Newton's 
Second Law to predict the future position of a moving object. 

Robin et al (1996) have not emphasized the physical reasoning of infants in 
predicting the future locations of moving objects. They found that infants 
aimed their hands in front of the moving object and gradually closed the dis- 
tance between the two. Such a movement strategy might simply be the result of 
some type of visuo-motor coupling. 

While contacting a moving object is prima facie evidence that infants are 
able to predict the future position of that object, it is not clear from the existing 
data if infants truly predict movement of objects in the cognitive sense of the 
word. Full-blown prediction would imply an ability to sense the current posi- 
tion, heading, and speed of an object, and then to compute the position of that 
object at some future time. Given the difficulty that children and adults have 
catching thrown objects, it seems unlikely that infants possess the ability to 
predict the motion of arbitrarily moving objects. Instead, it seems likely that an 
infant's ability to catch a moving object is based on some simpler strategy. The 
major goal of the current simulations was to test whether a simple mechanism 
might be sufficient to explain the ability of infants to catch moving objects. 

The current simulations used Q-learning to compute the optimal reaching 
strategies for catching a moving object. The workspace and arm model are 
identical to Berthier (1996). In the current simulations, the target was moving 
at various speeds in an arc in front of the infant and the Q-function was stored 
in an artificial neural network instead of a look-up table. 
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The artificial neural network that stored the Q-function was a set of 
CMACs, one for each action. The input to each CMAC was the x and y posi- 
tions of the hand and the angular position of the moving object at the current 
time. In the current simulations the object moved along an arc in a 120-by-120 
mm workspace. The object entered the workspace 350 ms after the start of the 
trial at (120,80), moved through (100,100), and exited at (80,120). The 
simulated path of the target is identical to that of an object moving on the end 
of a 100 cm pole, as was used in the studies with infants. The simulated speed 
of the object was either 10 or 20 cm/sec. 

Because of the difficulty of the problem and because Q-learning with a 
large number of actions requires extensive training, the number of actions in 
the current simulations was reduced from the number used in the stationary- 
target simulations. This was done by noting that in many reaching experiments 
the speed of a reach is linearly dependent on the distance of the reach. This 
assumption allowed us to use action vectors of two dimensions, a speed and a 
direction, with the distance being computed from the speed element of the 
action vector. Sixty actions were used, with directions going from -10 to 125 
degrees in steps of 15 degrees, and speed going from 80 to 580 mm/sec in 
steps of 100 mm/sec. The distance was computed by dividing the speed by 
four. The temporal duration of a submovement was given by dividing the 
distance covered during the submovement by the speed and adding 100 ms for 
initiating the movement. 

The use of a relatively small number of discrete actions limits the positions 
to which the hand can be moved. Because we wanted to keep the number of 
possible actions to a minimum, we allowed a larger target zone than with the 
stationary-target-object simulations. In the current simulations, we used a 
target zone of 20 by 20 mm centered on the target, and increased the stochas- 
ticity accordingly. Simulations with this arrangement using the stationary target 
indicated that a stochasticity of .0002 with the stationary target mapped to a 
stochasticity of about .0008 with the moving target. 

The input to each CMAC was the state of the system, the x and y positions 
of the hand and the current angular position of the target. At each step the 
connection weights of the CMAC were updated so that the output was brought 
closer to the target Q-value for the executed action. The CMACs used 28 
subdivisions (tilings) of the state space. There were four three-dimensional, 12 
two-dimensional and 12 one-dimensional tilings. Each tiling divided the dimen- 
sion into eight equal intervals, so that each of the one-dimensional tilings was 
composed of eight stripes, each of the two-dimensional tilings was composed 
of 64 rectangles, and the three-dimensional tiling was composed of 512 cubes. 

Table 1 shows the average number of submovements in a reach, the aver- 
age position of a grasp for successful reaches, and the percent of reaches that 
resulted in a successful grasp for both speeds of the moving object. Because 
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Stochasticity N Submovements Position of Grasp 

lOcm/sec Target Speed 

Percent Grasp 

.0(0)O1 1.0 (117.5,82.4) 100.0 

.00001 1.0 (117.5,82.4) 99.7 

.0001 1.22 (113.7,86.1) 91.8 

.0002 1.41 (109.7,89.4) 79.5 

.0005 2.31 (87.3,110.0) 76.9 

.0007 2.31 (87.3,110.3) 72.3 

20 cm/sec Target Speed 

.000001 1.0 (117.5,82.5) 100.0 

.00001 1.0 (117.5,82.4) 99.5 

.0001 1.09 (114.5,85.8) 62.9 

.0002 1.19 (110.5,89.6) 71.0 

.0005 1.90 (73.1,121.6) 9.1 

.0007 1.47 (98.4,101.0) 32.7 

TABLE 1. The average number of submovements in a reach, the average position of a 
grasp for successful reaches, and the percent of reaches that resulted in a successful 
grasp for both speeds of the moving object. 

the object was moving at constant velocity across the workspace from (140,62) 
to (62,140) passing through (100,100), the position of the object at contact 
implicitly gives the movement time and average speed of the hand. With low 
levels of stochasticity, reaches invariably resulted in grasp of the target at both 
the fast and slow target speeds. Higher stochasticities resulted in an increase in 
the number of misses and increases in the latency to grasp. 

The current simulations match experimentally observed behavior" The 
simulations predict that the speed of the object will affect the probability of 
grasp. This prediction is consistent with findings from von Hofsten and Lind- 
hagen (1979), in which infants were tested with objects moving at 3.4 to 30 
cm/sec. As predicted by the simulation, infants had greater difficulty with 
faster-moving objects. 

The model assumes that decreasing stochasticity reflects increasing motor 
control on the part of the developing infant. In the current simulations, de- 
creasing stochasticity led both to increased probability of grasping and to 
grasping the target at an earlier point in its path. While no data are available on 
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the point of grasp as a function of age, substantial data exist showing improv- 
ing success over the first year (von Hofsten & Lindhagen, 1979; von Hofsten, 
1983; Robin et al, 1996). As with the current simulations, this improved per- 
formance was dependent on the speed of the target object; infants learn to 
catch slower-moving objects before they learn to catch faster-moving objects 
(von Hofsten, 1983). 

The result that performance is greatly dependent on the speed of the object 
and the age of the infant is not surprising, but infants have at least one strategy 
at their disposal that would be relatively unaffected by the speed of the target 
or their level of motor control. A possible solution to the problem would be to 
extend their hand into the path of the target object and to wait for the object to 
approach their hand. This strategy might even work better with faster-moving 
objects than slower-moving objects because the infants would not have to 
extend their hands for as long a period of time. For the range of speeds mod- 
eled here and used by von Hofsten (von Hofsten & Lindhagen, 1979; von 
Hofsten, 1983) and Robin et al (1996), infants do not adopt this strategy but 
instead "track" the moving object. This "tracking" allows the infant to grasp 
the target as soon as possible and essentially makes the problem an optimal- 
time problem as modeled here. For faster target-object speeds this does not 
result in as high a success rate as the "wait" strategy described above, but may 
be a carry-over from the infant's experience with stationary objects. 

The current simulations demonstrate that it is possible to catch moving 
objects without any knowledge of physics and without reasoning about the path 
of the moving object. In the current simulations, there is no knowledge of 
physics nor is there any module that predicts the future position of the moving 
object. The current simulations work because the network learns a relationship 
between "the object's position and velocity at a particular time, and which 
reaches are successful for those values. 

It remains to be seen how powerful this simple mechanism is. Clearly, the 
network used here does not generate predictions for arbitrarily moving objects, 
but learns to solve a particular problem. If the current model captures the 
essentials of how infants contact moving objects, one would predict that infants 
would not succeed with arbitrarily moving objects, and that the likelihood of 
success would depend on the infant's previous experience with moving objects. 
Some movement trajectories should be substantially easier for the infant to 
cope with than others. 

The current simulations address one of the major shortcomings of the earli- 
er Berthier (1996) model. The moving-object simulations used an artificial 
neural network to store the information that guides reaching by the infant. The 
use of the neural network is not only more psychologically realistic, but allows 
faster learning because it provides for beneficial generalization between neigh- 
boring states. A major problem in the current simulations is that individual 
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CMACs were used for each of the actions. While multiple CMACs worked 
acceptably for the current task, learning would be accelerated if generalization 
could occur across actions. Further, the number of CMACs (actions) deter- 
mines how long it takes to solve a particular problem, with simulation time 
being prohibitive for a few hundred actions. This severely limits the usefulness 
of this neural-network architecture for larger problems. 

The current computational limitations arise mainly because the control 
problem is formulated with discrete actions. However, the problem actually 
involves control actions that are real valued. In the context of connectionist 
reinforcement-learning algorithms, discrete-action problems are much better 
understood than real-valued action problems. Gullapalli (1992) has, however, 
explored the use of reinforcement learning with real-valued actions and devel- 
oped a controller for a robot insertion task that uses an artificial neural network 
with real-valued outputs. He showed that such an approach could be very 
successful if a function was implemented to "shape" learning (see Gullapalli, 
this volume). Extension of the present model to such a neural network is 
currently being explored. 

Conclusions 
The present work provides insight into the mechanisms underlying the 

development of infant reaching. The current simulations and those of Berthier 
(1996) easily and gracefully predict the basic kinematics of reaching and the 
time course of development. The model also relates to theoretical approaches 
to motor development and can accommodate the constraints and mechanisms of 
neural development. In the simulation of contact of moving objects, the model 
provides a parsimonious hypothesis of how infants might catch moving objects 
and makes predictions about how well infants might solve particular problems. 
Further experimentation and simulation is required to determine how well the 
modeled mechanisms can account for behavior in a wider range of situations. 

Throughout the present chapter, there has been a tension between the theo- 
ries and hypotheses we might want to investigate, and the theories and hy- 
potheses that are implementable and understandable in a mathematical model. 
As the computational understanding of the current type of control problems 
increases, the class of implementable theories will increase. Until then, it will 
be a continuing struggle between the theories that are most interesting and 
those that are good candidates for investigation. 
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REINFORCEMENT LEARNING OF COMPLEX BEHAVIOR 
THROUGH SHAPING 

Vijaykumar Gullapalli 
Princeton University 

ABSTRACT 
This chapter describes the utility of shaping,  a procedure used in experi- 

mental psychology for the reinforcement learning of complex behavior. The 
principle underlying shaping is that complex behavior can be acquired by first 
learning related simpler behavior. Simulation results illustrating this approach 
are presented for a control task in which a neural network is trained using 
reinforcement learning for a five-degree-of-freedom robot hand. 

Introduction 
An important topic occupying the attention of researchers is the process 

underlying the learning of complex behavior via reinforcement feedback. 
When complex behavior is learned, the problem of "strengthening" behavior, 
which is the focus of most learning experiments and theories, is preceded by 
the problem of getting the desired complex behavior to occur. For reinforce- 
ment to occur, the target response must occur first. Indeed, spontaneous occur- 
rence of the desired behavior becomes extremely unlikely as the complexity of 
the behavior increases. Nevertheless, it is possible to train humans and other 
animals to produce very complex behavior by suitably manipulating the rein- 
forcement contingencies and the environment. 

One approach to developing complex behavior, well known to animal learn- 
ing researchers, is the method of shaping by successive approximations (e.g., 
Skinner, 1938; Staddon & Ettinger, 1989; Donahoe & Palmer, 1994). The 
principle underlying shaping is that learning complex behavior can be facilitat- 
ed by first learning related simpler behavior. Although defining related simpler 
behavior might be difficult when covert cognitive behavior such as language or 
mathematics is to be learned, it is relatively easy to determine a sequence of 
approximations that will lead to mastery of a target overt behavior. Indeed, 
shaping has been most useful for teaching motor skills to animals, and, for the 
same reason, shaping can also prove useful for training artificial learning 
systems to perform as skilled controllers. 

In this chapter, we present simulation results illustrating the utility of 
shaping in training robot controllers via reinforcement learning. In these simu- 
lations, we trained a neural network to control a dynamic simulation of a five- 
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degree-of-freedom robot hand on a key-pressing task. Before describing the 
task and the implementation in detail, we present a brief overview of the 
shaping procedure. 

Shaping 
Shaping is an ancient animal-training procedure that has been studied by 

experimental psychologists interested in animal learning (Honig & Staddon, 
1977). The term "shaping" itself has been attributed to the psychologist Skin- 
ner (1938), who used the technique to train animals, such as rats and pigeons, 
to perform complicated sequences of actions for rewards. Skinner describes 
how the technique is used to train pigeons to peck an illuminated spot on a 
pecking disk: 

We first give the bird food when it turns slightly in the direction of 
the spot from any part of the cage. This increases the frequency of such 
behavior. We then withhold reinforcement until a slight movement is 
made toward the spot . . . .  We continue by reinforcing positions succes- 
sively closer to the spot, then by reinforcing only when the head is 
moved slightly forward, and finally only when the beak actually makes 
contact with the spot... 

The original probability of the response in its final form is very low; 
in some cases it may even be zero . . . .  By reinforcing a series of succes- 
sive approximations, we bring a rare response to a very high probability 
in a short time . . . .  The total act of turning toward the spot from any 
point in the box, walking toward it, raising the head, and striking the 
spot may seem to be a functionally coherent unit of behavior; but it is 
constructed by a continual process of differential reinforcement from 
undifferentiated behavior, just as the sculptor shapes his figure from a 
lump of clay. (Skinner, 1953, pp. 92-93) 

The phrase "reinforcing a series of successive approximations" expresses 
the essence of shaping. Given the task of training an animal to produce com- 
plex behavior, the trainer must (1) judge what constitutes an approximation to, 
or a component of, the target behavior, and (2) determine how to differentially 
reinforce successive approximations so that the animal easily learns the target 
behavior. 

Unfortunately, neither of these two components of shaping has been formal- 
ized rigorously in the psychology literature, even though shaping is widely 
used both in psychological studies and to train pets and circus animals. Staddon 
(1983), for example, observes that the trainer often has to rely on an intuitive 
understanding of the way the animal's behavior is generated when determining 
which behavioral variations are precursors to the target behavior and how to 
reinforce these precursors. Variations in the behavior of individual animals 
also must be taken into account when making these judgments. 
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The limitations of relying on intuition when judging approximations to the 
target behavior are especially apparent when the behavior under consideration 
is cognitive (covert) in nature. However, when the overt behavior of the 
animal is being shaped, behavioral approximations become equivalent to physi- 
cal distances, and it is therefore easier to determine a sequence of approxima- 
tions that will lead to mastery of the target behavior. It is therefore not surpris- 
ing that shaping has been used most often for teaching motor skills to animals. 
For the same reason, shaping can also prove useful for training artificial learn- 
ing systems to perform as controllers of motor behavior. 

Several neural-network researchers have noted that training a controller to 
perform one task can facilitate its learning a related second task (e.g., Self- 
ridge, Sutton, & Barto, 1985; Gullapalli, 1990; Wieland, 1991). Selfridge, 
Sutton, and Barto (1985) studied the effect of shaping a controller to balance a 
pole mounted on a cart. They observed that overall learning times were typical- 
ly shorter when a previously trained controller was retrained on a modification 
of the cart-pole system than when an untrained controller was trained from 
scratch. This was demonstrated for several types of modifications including 
increasing the mass of the pole, shortening the pole, and shortening the track. 
(See Barto & Sutton, this volume.) 

Wieland (1991) illustrated the utility of shaping using a different version of 
the cart-pole task in which the controller had to simultaneously balance two 
poles mounted on a cart. Because it is easier to solve the two-pole balancing 
problem when the pole lengths are very different than when the pole lengths 
are almost equal, Wieland trained a controller by starting with poles of lengths 
1.0m and 0. lm and gradually increasing the length of the shorter pole to 0.9m. 
Although it is very difficult to balance poles with lengths as close as 1.0m and 
0.9m, the shaping process resulted in a controller that was able to do so. 
Wieland and Leighton (1988) also studied the utility of shaping schedules for 
accelerating other learning methods based on gradient-descent procedures. 

Other applications of shaping in neural-network research have been in the 
area of training recurrent nets. Allen (1989) trained recurrent nets to generate 
long sequences of outputs using a shaping procedure that involved initially 
training the nets with short target sequences and introducing longer sequences 
gradually over training. Another related form of shaping was studied by 
Nowlan (1988). In this case, a robust attractor state for a recurrent network 
was developed by first training initial states near the attractor, and then gradu- 
ally increasing the distance of the initial states from the attractor. 

In this chapter, we focus on the utility of shaping for training controllers via 
direct reinforcement-learning methods. The behavior of a controller was 
shaped over time by gradually increasing the complexity of the control task as 
the controller learned. At the same time, the evaluation function used to 
compute the reinforcement delivered to the controller was also changed to 
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reflect the increasing complexity of the task. This procedure is analogous to 
the manner in which shaping is used to train animals, and to the manner in 
which shaping was used in some of the studies cited previously. 

Shaping Control Behavior 
To shape the behavior of the controller, one has to determine (1) a series of 

approximations to the target behavior and (2) how to differentially reinforce 
successive approximations to the target behavior. The task under consideration 
involved controlling a robot hand as it pressed keys on a calculator keypad. A 
detailed description of the task follows. 

Key pressing using a robot hand 
The control task used to examine the utility of shaping involved pressing 

keys on a simulated calculator keypad using the index finger of a simulated 
dynamic model of the Stanford/JPL hand. The finger had three degrees of 
freedom (joints) and the motion of the hand was restricted to a plane parallel to 
the x-y plane of the calculator face. Thus, in all there are five degrees of free- 
dom to be controlled. The task is depicted in Figure 1. The axes of rotation of 
the finger joints of the Stanford/JPL hand are as follows. The first joint (link- 
ing the finger to the palm) permits rotation about an axis parallel to the z-axis, 
thereby permitting abduction/adduction movements of the finger. The other 
two joints have axes of rotation that are perpendicular to both the first link of 
the finger and the z-axis, permitting motion similar to that of the phalanges of a 
human finger. 

Y~~X 

FIGURE 1. The arrangement for the key-pressing task. The simulated Stanford/JPL 
hand and the calculator are shown to scale. Only the index finger of the hand is indi- 
cated because only that finger was used in the task. The triangle represents the palm of 
the hand; the large circle represents the f'mgertip. The small dark circle on the calcula- 
tor face is the "footprint" of the center of the fingertip. 
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The control actions are positioning commands that locate the hand in its 
plane of motion and position the three joints of the index finger. The key to be 
pressed is specified by setting a single bit in a 24-bit command input vector 
supplied to the controller. Additional inputs to the controller include proprio- 
ceptive feedback of the positions and velocities of the finger joints and the 
hand, a fingertip force sensation, and a binary "key-pressed" sensation that is 
set whenever a key is pressed and reset whenever a new target key is specified. 
To successfully press a key, the fingertip must depress the key to the level of 
the face of the calculator (z = 0). Provision of the hand position and velocity 
feedback permits the controller to learn to press any key starting from any 
initial hand configuration. 

Because pressing a key involves positioning the fingertip over the key, then 
pressing, and then releasing it, the task is fairly complicated. The controller 
has to learn a sequence of actions to execute a single key-press operation. As 
one might imagine, the probability of a reinforcement-learning controller's 
generating such a complex sequence of behavior by chance (i.e., through 
stochastic search) is infinitesimal. A simple evaluation criterion that only sign- 
als successful key presses is therefore not useful for training the controller. 
Fortunately, we can shape the target behavior by defining successive approxi- 
mations to the key-pressing operation, and providing more informative differ- 
ential evaluations that facilitate learning. 

The first problem in implementing shaping was to determine a series of 
approximations to the target behavior. This was not very difficult for the key- 
pressing task. A fairly intuitive series of approximations to the key-press 
operation is the following: 

(1) Raise the fingertip so that it is not in contact with the keypad surface 
(thereby preventing accidental key strikes). 

(2) Move the fingertip towards the target key, keeping the fingertip raised. 
(3) Position the fingertip over the target key, keeping the fingertip raised. 
(4) Position the raised fingertip over the target key, then press down with 

the fingertip. 
(5) Position the raised fingertip over the target key and press down until the 

key is fully depressed. 
(6) Position the raised fingertip over the target key, press down until the 

key is fully depressed, and then release the key by raising the fingertip. 
The second problem in implementing shaping is deciding how to differen- 

tially reinforce approximations to the target behavior. This is more complicat- 
ed. To differentially reinforce the controller as it learns a series of approxima- 
tions, the training agent (or critic) has to maintain a behavioral history of the 
controller and infer from that history how well the controller has learned each 
approximation. Based on this inference, the critic must determine if the con- 
troller requires further training on a particular approximation or if it is ready to 
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be trained on the next, more sophisticated, approximation. While it is wasteful 
to continue training the controller on an approximation that it has already 
mastered, switching to a more sophisticated approximation too quickly can also 
be detrimental to learning the ultimate target behavior. To best realize the 
benefits of shaping, accurate judgment of the controller's ability at every stage 
in training is therefore necessary. Clearly, the time frame over which the 
behavioral history is maintained and evaluated is a factor in making these 
judgments. 

Our approach to the problem of differentially reinforcing the controller's 
behavior is (1) to restrict the time frame over which the controller's behavior is 
evaluated to individual training runs, i.e., individual attempts at the target 
behavior, and (2) to require that the behavior progressively satisfies the criteria 
for all the approximations to the target behavior, starting with the simplest, in 
each attempt at the target behavior. This approach allows the reinforcement 
criteria to be switched to increasingly sophisticated approximations quickly 
over training, while at the same time ensuring that the controller is trained on 
an approximation only if it has successfully met the criteria for all simpler 
approximations. Moreover, this approach sidesteps the question of how to infer 
the controller's ability at a given stage of training from its behavioral history 
over a longer time frame. 

In the key-pressing task, for example, the critic maintains the behavioral 
history of the controller only over individual training runs. Each run begins 
with a new target key being assigned and ends after a fixed number of time 
steps have elapsed. During the course of each training run, the performance of 
the controller is evaluated using a series of criteria, each attuned to a corre- 
sponding approximation to the criteria given in the list above. The criterion 
used to determine the evaluation was selected at each time step based on the 
state of the hand and the portion of the above series of approximations that had 
already been accomplished. For example, if the fingertip was raised but not 
located over the target key, an evaluation criterion that rewarded motion 
towards the target key while keeping the fingertip raised was selected. If the 
fingertip had already been positioned over the target key, downward motion of 
the fingertip while keeping it over the target key was rewarded, and so on. 

Initially, the controller might spend the entire duration of a training run 
learning to satisfy the criterion for the simplest approximation. With time, the 
controller learned to consistently satisfy the criteria for the simpler approxima- 
tions, and the frontier of learning shifted to approximations closer to the target 
complex behavior. Thus, most of a training run was spent in learning the 
approximation to the target behavior at the current frontier of learning. 

Implementation details 
This section provides additional implementation details on the simulations. 

We describe the controlled process, the architecture of the neural network used 
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to implement the learning controller, and the evaluation function(s) used. The 
networks used in these simulations were all standard fully connected feedfor- 
ward networks (e.g., Rumelhart et al, 1986; Hinton, 1987). 

The robot. As described above, the robot used in the key-pressing task was a 
dynamically simulated Stanford/JPL hand (see Figure 1). Only the index 
finger of the hand was used. Furthermore, the motion of the hand base was 
restricted to a plane parallel to the x-y plane. The control actions were position- 
ing commands that moved the hand base in its plane and positioned the three 
joints of the index finger. 

Proprioceptive feedback of the position and velocity of each joint was 
provided to the controller. Additionally, a simulated fingertip-force sensation 
was used to provide feedback during key presses. This force was a function of 
the height of the fingertip above the keypad, as shown in Figure 2. 

Fingerotip force 

0.5 

0 I I ~1 ~" 

z Height (cm) 

FIGURE 2. The output of the simulated fingertip force sensor as a function of  the 
height of  the fingertip above the keypad. 

The controller. The overall architecture of the controller is shown in Figure 3. 
The inputs to the network included a 24-bit command input specifying the 
target key, feedback of the position and velocity of the hand and of the force 
on the fingertip, and finally, a representation (an efference copy) of the net- 
work's output on the previous time step. The network had 30 backpropagation 
units in the hidden layer and five Stochastic Real-Valued (SRV) units in the 
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Position/velocity/ Efference copy 
Target key force feedback of control actions 

i SRV units I 

Control actions 

FIGURE 3. The general architecture of the controller used in the key-pressing task. 

output layer. As shown in the figure, the output units are connected to both the 
input and the hidden units. 

The most popular description of backpropagation units is given in Rumel- 
hart, Hinton, and Williams, 1986. SRV units are described in detail in Gulla- 
palli, 1990. These latter units are designed to learn real-valued outputs through 
reinforcement feedback. The procedure for training networks with SRV output 
units and backpropagation hidden units is also described in Gullapalli, 1990. 

The backpropagation units used the logistic function (f(x) = 1/(1 +e-~)) to 
compute their outputs. The initial weights of all the units were set to random 
values selected from a uniform distribution over the interval [-0.5, 0.5]. The 
learning rate alpha was set to 0.01 for the hidden (backpropagation) units and 
0.001 for the SRV units. The learning rate on the variance, rho, was also set to 
0.001 for the SRV units. 

The evaluation. In each training run, the evaluation was computed using a 
sequence of criteria based on the portion of the key-press operation already 
accomplished. (See earlier description of the criteria.) For the purposes of 
computing the evaluation, the fingertip was considered to be positioned over 
the target key when the x-y distance to the key (denoted d) became zero and the 
hand velocities became very small. The key was considered to be pressed when 
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the fingertip height (denoted z) became 0. In the following, the height of the 
fingertip at the previous time step is denoted zt. ~ . Also note that each key on 
the keypad is 0.3 cm high (see Figure 2). 

The procedure used for computing the evaluation was the following. If the 
fingertip was not yet positioned over the target key, 

r =  I00 "5(1 - [ 1-zl/6) ifz < 0.3, 

.5(e -a - [ 1-z I/6) otherwise. 

Once the fingertip was positioned over the target key, 

= ~0.7rpRES s + 0.3d if key has NOT been pressed, 
r 

l rRELEAS E otherwise, 

where 

m 

/ ' P R E S S  " -  

and 

r LE^sn 

I0 .5 (1 -  z/3) + 0.5 if z < Zt_l, I 
--1 

J 0.5(1 - z/3) otherwise 

(1-Izl/3) 

ifz > 0.3 

otherwise, 

0.5(1 - [ 1<1/3)  + 0.5 if z,_~, I 
J 0.5(1 - [ 1<1/3 ) otherwise 

1- 11<1/3 

ifz < 0.3 

otherwise. 

If the evaluation computed under any of the above conditions was less than 
zero, it was set equal to 0. 

Training methodology 
In order to keep computer simulation time reasonable while retaining all the 

essential aspects of the key-pressing task, we restricted the choice of the target 
keys to three keys, which are highlighted in Figure 4. These keys were chosen 
to require a broad range of motion of the fingertip. The controller was trained 
in a series of training runs, each of which began with a new target key being 
picked randomly. The probability of picking the key used in the previous train- 
ing run was 0.1, while that of picking either of the other two keys was 0.45. 
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FIGURE 4. The set of target keys used in the key-pressing task, shown encircled by 
bold circles. 

The initial hand configuration used in a training run was the configuration 
of the hand at the end of the previous training run. However, if the previous 
training run left the fingertip touching the keypad, the last two finger joints 
were repositioned so that the fingertip was no longer in contact with the 
keypad. In either case, the initial velocities were set to zero. Each training run 
lasted 15 time steps, during which the controller was trained using the appro- 
priate evaluation criterion at each time step as described above. The sensory 
feedback to the controller was also updated at each time step. 

For the purpose of comparison, we also attempted to train a controller on 
the key-pressing task without resorting to shaping. An identical training proce- 
dure was followed in this case, with the sole modification being the use of a 
single evaluation criterion that only rewarded pressing the target key. 

Results 
The performance of the controller on the key-pressing task after 25,000 

training runs is shown in Figures 5 through 7. Each figure contains four panels 
that show the motion of the hand over twelve time steps when pressing each of 
the three target keys. Panel a contains three strip charts that show the values of 
three quantities at each time step over the course of a key-press operation. 
These quantities are the distance from the fingertip to the target key (D, rang- 
ing from 0 to 9 centimeters), the height of the fingertip above the calculator 
face (Z, ranging from 0 to 1 centimeter), and the payoff, or evaluation (P, 
ranging from 0 to 1). Panels b, c, and d show the motion of the hand during 
the key-press operation from three different viewpoints. 
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FIGURE 5. Pressing the # key on the calculator keypad. The initial position of the 
fingertip was the final position after pressing the A key. The dark triangle denotes the 
initial location of the hand. See text for details. 

9 
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(c) (d) 

FIGURE 6. Pressing the 8 key on the calculator keypad. The initial position of the 
fingertip was the final position after pressing the # key. The dark triangle denotes the 
initial location of the hand. See text for details. 
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FIGURE 7. Pressing the A key on the calculator keypad. The initial position of the 
fingertip was the final position after pressing the 8 key. The dark triangle denotes the 
initial location of the hand. See text for details. 

The strip charts show that the fingertip was lowered as it approached the 
target key until it made contact with the key and began to depress it. Then, 
once the key was fully depressed, the fingertip was raised to release the key. 
The sharp drop in the evaluation on the time step when the key was fully de- 
pressed (i.e., z = 0) was due to the switching of the evaluation criteria from 
one that rewarded downward movement to one that rewarded upward move- 
ment. 

As evidenced by these figures, the controller learned to successfully execute 
the key-press operation for all three keys. Note that due to the dynamic nature 
of the hand model, the motion of the fingertip depended on the initial state of 
the hand, thus the figures presented here are merely representative samples. 
We tested the controller's performance with the hand starting in 10,000 
random initial states and, in all the test runs, the target key was pressed suc- 
cessfully. 

By comparison, without shaping, the controller did not learn the key-press 
task even after 500,000 training runs. Moreover, this was true even when the 
controller was trained to press just a single target key (the 8 key). These results 
support the views expressed at the beginning of the chapter regarding the diffi- 
culty of using reinforcement learning to generate complex behavior without the 
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benefit of shaping. Without shaping, the probability of the complex behavior is 
so low that the target response never occurs, and therefore the reinforcer is 
never delivered. 

Summary 
In this chapter, we used a control problem to demonstrate how learning to 

solve complex problems can be facilitated by the shaping process of first learn- 
ing to solve simpler subproblems. In this example, the shaping procedure 
proved indispensable for training the controller. Shaping is a natural way of 
introducing the trainer's knowledge into reinforcement-learning systems. In the 
key-pressing task, for example, the trainer's knowledge helped determine the 
series of approximations used in the shaping procedure and the inputs (sensa- 
tions) to provide the controller. This example attests to the viability of rein- 
forcement-learning approaches to learning complex control behavior when 
suitable shaping techniques are used. 
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PART FIVE: REINFORCEMENT LEARNING 

Biobehavioral research indicates that reinforcement learning is the funda- 
mental means by which experience changes responding. In reinforcement 
learning, change is dependent on a time-varying, global feedback signal that 
contains no information about the response other than some measure of its 
overall characteristics at that moment (see Chapter 1). Based on research at the 
behavioral level, the likelihood of a response recurring in an environment is a 
function of the prior consequences of the response in that environment 
(Donahoe & Palmer, 1994; Palmer, this volume). At the cellular level, synap- 
tic efficacies change when pre- and postsynaptic neural coactivity is accompa- 
nied by a neuromodulator (Frey, this volume). Neuromodulators, such as 
dopamine, are liberated by neural systems that project nonspecifically from 
midbrain nuclei to cortical and subcortical regions (see Donahoe and Mon- 
tague, this section). Stimuli that strengthen (reinforce) behavior~such as food 
for a hungry animal~activate neurons in these midbrain nuclei, and cause the 
volumetric release of the neuromodulator. Ultimately, the synapses whose 
efficacies are most greatly modified are those between neurons that are most 
reliably coactive when the neuromodulator occurs. And, these are the synapses 
along pathways mediating the environment-behavior relation preceding the 
reinforcer. On any one occasion, the efficacies of many irrelevant synapses 
may be changed. However, over time, the cumulative effect of the reinforcer is 
to modify the relevant synapses. Through this process, a nonspecific reinforc- 
ing system produces specific effects. 

The emergence of specific effects as a cumulative product of global pro- 
cesses appears to be a general selection strategy exploited by evolution. On the 
level of species, death comes to all organisms, but--~ver time---those particu- 
lar genotypes having greater reproductive fitness tend to predominate. On the 
level of the individual organism, a reinforcing stimulus affects all immediately 
prior environment-behavior relations, but---over time---those particular rela- 
tions that most reliably precede the reinforcer predominate. On the cellular 
level, a nonspecific neuromodulator modifies synaptic efficacies between all 
concurrently active pre- and postsynaptic neurons, but----over time---those 
particular synapses that are most reliably activated in conjunction with the 
neuromodulator are most affected. Finally, on the intracellular level, the pro- 
teins synthesized in the nucleus (due to second messengers initiated by the 
conjunction of neurotransmitter and neuromodulator) migrate diffusely down 
the dendrite where they affect all previously stimulated receptors, but---over 
time---those particular receptors most reliably stimulated are most altered 
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(Frey & Morris, in press). Moment-to-moment processes at these differing 
levels appear chaotic, but their cumulative effects are orderly. 

Two prerequisites for reinforcement have been identified: temporal contigu- 
ity and discrepancy (Palmer, this volume; see also Chapter 1). The role of 
temporal contiguity between the critical events has been documented on the 
behavioral (e.g., Gormezano & Kehoe, 1981), neural (e.g., Stein & Belluzzi, 
1989), and cellular levels (e.g., Magee & Johnston, 1997; Markham, Liibke, 
Frotscher, & Sakmann, 1997). The role of a reinforcer-instigated discrepancy 
was first identified at the behavioral level (e.g., Kamin, 1968, 1969; Rescorla 
& Wagner, 1972). Now, findings reported in Schultz's chapter provide in- 
sights into the processes associated with discrepancy at the neural level. Infor- 
mation at the cellular level is also becoming available (e.g., Abbott, Varela, 
Sen, & Nelson, 1997), but much remains to be uncovered concerning the 
neural systems and cellular processes involved in the biological computation of 
discrepancy. 

Research at all levels of analysis points to selection by reinforcement as the 
basis of learning in living organisms, and workers in other fields have also 
appreciated its potential power; e.g., in applied mathematics (Werbos, 1974), 
artificial intelligence (Minsky, 1961), engineering (Widrow & Hoff, 1960, and 
philosophy (Dennett, 1981). The chapter by Barto and Sutton provides an 
abstract analysis of reinforcement learning in artificial intelligence that identi- 
fies its special strengths and characterizes some of the key conceptual issues. In 
reading this chapter, it is important to appreciate the nature of their distinction 
between agent and environment because the concept of agent includes only a 
part of what is included in the biobehavioral concept of organism. In artificial 
intelligence, the essence of the discrepancy requirement is captured by tempo- 
ral-difference models, which are used by Montague and by Moore and Choi 
to simulate reinforcement learning in a variety of situations (see also chapters 
by Berthier and Gullapalli, this volume). 

Among the major challenges to reinforcement learning as a general ap- 
proach to complex behavior are these: (1) How can selection processes, which 
operate on a moment-to-moment basis, account for learning when environmen- 
tally mediated reinforcers are often delayed beyond the limits of the contiguity 
requirement? (2) How can reinforcers select behavior that entails complex 
response topographies and extended sequences of movements? Efforts to 
address the temporal challenges are described in chapters by Donahoe, Barto 
and Sutton, and Moore and Choi (see also Berthier, this volume). The 
complexity challenge is addressed in Clouse's chapter through the implementa- 
tion of shaping (see also Gullapalli, this volume). 
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CHAFFER 17 

ADAPTIVE DOPAMINERGIC NEURONS REPORT 
THE APPETITIVE VALUE OF ENVIRONMENTAL STIMULI 

Wolfram Schultz 
Institute of Physiology 
University of Fribourg, Switzerland 

ABSTRACT 

This chapter describes how midbrain dopaminergic neurons in behaving 
monkeys detect and process environmental stimuli having appetitive value for 
the behavior of the subject. The majority of dopaminergic neurons show rather 
uniform, brief activations following presentation of appetitive stimuli almost 
exclusively. These stimuli include both primary rewards and conditioned 
stimuli predicting such rewards. Dopaminergic neurons are not activated by 
aversive or innocuous stimuli, or show quantitatively smaller activations fol- 
lowing neutral and aversive stimuli that are physically very similar to and that 
occur in close temporal and contextual proximity to the appetitive stimuli. 
Stimuli that activate dopaminergic neurons must occur unpredictably. Primary 
rewards are only effective when they are not preceded by a conditioned, 
reward-predicting stimulus. Otherwise, the response is transferred to the earli- 
est reward-predicting stimulus and no longer occurs to the primary reward. 
This transfer is reminiscent of Pavlovian stimulus substitution, suggesting that 
single dopaminergic neurons react to the most salient reward-related stimulus 
in a manner that parallels the behavior of the subject. When a predicted reward 
fails to occur, dopaminergic neurons are depressed in their activity at exactly 
the time when the reward would have occurred. Taken together, these results 
suggest that dopaminergic neurons code a deviation or error in the prediction 
of reward in close correspondence with the Rescorla-Wagner model of animal 
learning, according to which the gain in associative strength depends on the 
degree of stimulus unpredictability. Further, the transfer of responding from 
the primary reward to the conditioned, reward-predicting stimulus demon- 
strates the adaptive capacities of dopaminergic neurons" They are capable of 
responding to a wide variety of intrinsically neutral environmental stimuli 
associated with rewards. The message of dopaminergic neurons is broadcast as 
a global reinforcement signal to the large majority of neurons in the striatum 
(caudate nucleus and putamen) and to many neurons in the frontal cortex, 
where it is able to influence neuronal and synaptic activity occurring around 
the time of the dopaminergic signal. The responses of dopaminergic neurons 
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and the associated architecture strongly resemble the adaptive-critic module of 
temporal-difference models of reinforcement learning developed on the basis of 
behavioral theories. These models, after having learned the predicted outcome 
of behavior, modify synaptic strength of a target actor according to the predic- 
tion. They have been used for constructing a variety of biologically plausible 
artificial networks that efficiently learn even complex tasks. These arguments 
suggest that the dopaminergic message can be effectively used as global rein- 
forcement signal for adapting behavior according to the value of environmental 
stimuli. 

Introduction 
Two decades of psychopharmacological work have firmly established the 

crucial involvement of ascending midbrain dopaminergic systems in prime 
motivational functions. Experiments have studied dopaminergic functions by 
selective lesions and by administration of direct and indirect dopamine agonists 
and antagonists while assessing concurrent changes in various aspects of be- 
havioral reactivity--including incentive learning, electrical self-stimulation, 
and drug self-administration (Wise, Spindler, de Wit, & Gerber, 1978; Be- 
ninger & Hahn, 1983; Fibiger & Phillips, 1986; Robbins & Everitt, 1992; 
Wise & Hoffman, 1992; Robinson & Berridge, 1993). Based on this extensive 
body of evidence, electrophysiological studies in behaving animals were under- 
taken to explore the detailed mechanisms of the motivational role of dopami- 
nergic systems. These studies revealed that dopaminergic neurons were acti- 
vated by specific environmental stimuli eliciting overt behavioral reactions 
(Miller, Sanghera, & German, 1981; Steinfels, Heym, Strecker, & Jacobs, 
1983; Schultz, 1986). More recent studies have demonstrated that dopaminer- 
gic neurons are rather specifically activated by rewarding components of 
environmental stimuli occurring in specific situations (Romo & Schultz, 1990; 
Ljungberg, Apicella, & Schultz, 1992; Mirenowicz & Schultz, 1994). In par- 
ticular, it appeared that two stimulus characteristics were necessary and suffi- 
cient for the responsiveness of dopaminergic neurons to external stimuli. First, 
the stimulus should be a primary reward, a conditioned stimulus predicting 
such a reward, or a new, potentially rewarding stimulus. Second, the stimulus 
itself should not be predicted by another phasic stimulus. This chapter will 
discuss the possible function of these responses by assessing the behavioral role 
of stimuli that are effective in driving dopaminergic neurons, and by exploring 
how the dopaminergic message sent to neuronal circuits in the striatum and 
frontal cortex could act to control the subject's behavior. 

Values, Rewards and Reinforcers 
Certain stimuli in the environment possess special value for the welfare of 

the individual subject by determining its survival and the survival of the spe- 
cies. Arbitrary, intrinsically neutral stimuli can acquire conditioned value by 
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being associated with such stimuli. Stimuli having value serve three basic 
behavioral functions. Through their attention-grabbing or alerting function, 
they interrupt ongoing behavior, elicit immediate behavioral reactions and 
change the priorities of behavioral action. Through their reinforcing function, 
they increase behavioral reactivity to repeated presentations of these stimuli. 
Through their emotional function, they set up internal states of subjective 
feeling. The character of such values can be appetitive or aversive. Appetitive 
stimuli give rise to approach behavior following orienting reactions, they 
increase approach behavior with repeated stimulus presentation and thereby 
enhance the impact of the stimulus (rewarding or positive-reinforcing value), 

Unconditioned food or liquid 

During learning 
reward 

stlrn~lus (food or liquid) 

, - =  i 
~r i i i �9 # 

After learning 
conditioned stimulus reward 

FIGURE 1. Processing of appetitive stimuli during learning. Top: Independent of 
learning, the occurrence of a primary food or liquid object will, often on the basis of a 
corresponding hunger or thirst drive state, induce approach behavior by the organism. 
Middle: During learning, the repeated pairing of an arbitrary, intrinsically neutral 
stimulus with a primary reward induces the organism to begin reacting to the stimulus. 
Bottom: Following sufficient stimulus-reward pairings, the intrinsically neutral stimu- 
lus becomes a conditioned, reward-predicting stimulus. It induces an internal motiva- 
tional state by evoking an expectation of the reward, often on the basis of an underly- 
ing drive, and elicits the behavioral reaction. The scheme applies to both classical 
conditioning, where reward delivery automatically follows the conditioned stimulus, 
and instrumental (operant) conditioning, where reward delivery requires the active 
participation of the organism following the conditioned stimulus. 
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and they induce internal states of pleasure and hedonia. Aversive stimuli give 
rise to withdrawal behavior following orienting reactions, increase withdrawal 
behavior with repeated stimulus presentation, and thereby serve to reduce or 
escape the impact of the stimulus (punishing value) and induce internal states 
of fear and anger. 

These processes can be illustrated in a basic paradigm of motivated reac- 
tions, which will be limited to appetitive reactions for reasons of application to 
dopaminergic neurons. The presentation of a food or liquid elicits approach 
behavior (Figure 1, top). According to different theories, the efficacy of these 
stimuli is determined to varying degrees by an internal hunger or thirst drive 
based on a corresponding homeostatic challenge (e.g., reduced blood glucose 
or increased blood electrolyte concentrations in the hypothalamus). Repeated 
pairing of such a "primary" reward with an arbitrary, intrinsically neutral 
stimulus will result in very similar and increasingly frequent approach behavior 
to this arbitrary stimulus (Figure 1, middle) until this now "conditioned" 
stimulus reliably elicits the behavioral response (Figure 1, bottom). It has been 
suggested that a central representation of the conditioned stimulus is associated 
with a central representation of the reward, such that the occurrence of the 
conditioned stimulus evokes a representation of the primary reward and pre- 
dicts its occurrence (Dickinson, 1980). On the possible basis of a correspond- 
ing drive, the conditioned incentive stimulus would elicit an expectation of the 
primary reward and set an internal motivational state leading to the behavioral 
reaction (Bindra, 1968). It is important to note that the conditioned stimulus 
appears to elicit behavioral reactions that are very similar to those elicited by 
the primary reward itself, suggesting that the conditioned stimulus becomes a 
substitute for the primary reward in many respects (Dickinson, 1980). Import- 
ant components of the behavioral response are transferred from the primary 
reward to the conditioned, reward-predicting stimulus. This stimulus substitu- 
tion occurs in all forms of appetitive and aversive learning and constitutes a 
basic Pavlovian process. 

These concepts explain why primary rewards and conditioned, reward- 
predicting stimuli may elicit very similar approach behavior. As primary 
rewards are usually referred to as unconditioned stimuli, the following ques- 
tions arise: (1) To what extent are these primary rewards really unconditioned? 
(2) What would be gained by allowing arbitrary stimuli to become conditioned 
stimuli? Although food objects are usually referred to as primary rewards, 
every visitor to foreign countries immediately understands that the appetitive 
value of food objects is not necessarily intrinsically determined or innate, 
leaving the conclusion that so-called "unconditioned" primary rewards are also 
affected by experience. What, then, is unconditioned with primary rewards? It 
might be the taste experienced when the object activates the gustatory recep- 
tors, but that again may very well be conditioned. It appears that the final 
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variable determining the primary, unconditioned biological value of nutrient 
objects may be the vegetative reactions following its ingestion, which may 
require up to several minutes. Such vegetative reactions are determined by 
innate constraints and constitute hard-wired biological constants serving as an 
internal reference determining the ultimate value of external objects. If ap- 
proach behavior in early life is initially determined by instincts, then the major- 
ity of primary rewards become conditioned during life experience, thereby 
acquiring all the behavioral characteristics of unconditioned stimuli. Thus, the 
value of nutrient objects is determined by the vegetative reactions following its 
ingestion, and the value of environmental stimuli associated with these objects 
is expressed by the behavioral reactions leading to their acquisition. The advan- 
tage of an organism's capacity for learning to react both to primary rewards 
and to arbitrary, conditioned stimuli lies in the enormous variety of stimuli that 
can be potentially processed by an individual. For obtaining objects of prime 
biological importance, the individual becomes capable of adapting to the vari- 
able number of stimuli that actually occur in an environment with limited 
resources (Friston, Tononi, Reeke, Sporns, & Edelman, 1994). 

Given the central behavioral importance of primary rewards and condi- 
tioned, reward-predicting stimuli, one might assume that the brain processes 
reward information by employing robust neuronal systems with high internal 
redundancy that continue to maintain functioning even after partial destruction. 
However, the largely conditioned nature of reward-related stimuli also requires 
a highly adaptive system with a minimum of hard-wired connections, which is 
nevertheless internally redundant. The physically inhomogeneous nature of 
rewards does not allow them to affect the brain through specific peripheral 
receptor systems tuned to a limited range of physical stimuli. Rather, the brain 
needs to employ neuronal mechanisms with a high degree of adaptive capacity 
for extracting the reward information from inhomogeneous and inconstant 
stimuli. 

Appetitive Value of Stimuli Activating Dopaminergic Neurons 

Primary rewards 
The majority of dopaminergic neurons (75-85 %) are activated by phasically 

occurring primary appetitive stimuli, such as solid or liquid food, whereas the 
remaining neurons are not influenced by any stimuli that we have tested. 
Responses are very phasic, occurring with latencies of 50-110 ms and lasting 
less than 300 ms. Neural responses are observed when the animal touches a 
small morsel of hidden food during exploratory movements in the absence of 
other phasic stimuli or receives a drop of liquid at the mouth outside of any 
behavioral task or while learning a task (Romo & Schultz, 1990; Ljungberg et 
al, 1992; Mirenowicz & Schultz, 1994). The responses do not discriminate 
between different rewards, but do discriminate between reward and non- 
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reward. Neurons activated by primary rewards do not respond or are occasion- 
ally depressed in their activity when non-food objects are touched~even when 
their shape is similar to that of food objects---or when a fluid valve is audibly 
operated without actually delivering liquid. Only very few dopaminergic 
neurons are activated by innocuous primary aversive stimuli, such as an air 
puff to the hand or a drop of hypertonic saline to the mouth. However, these 
responses are not strong enough to result in an average population response 
(Mirenowicz & Schultz, 1996). 

Conditioned stimuli 
The majority of dopaminergic neurons (50-75%) are activated by condi- 

tioned visual or auditory stimuli that have become valid predictors of reward 
(Schultz, 1986; Schultz & Romo, 1990; Ljungberg et al, 1992; Mirenowicz & 
Schultz, 1994). Responses do not discriminate between visual and auditory 
stimuli; the same neurons respond to both modalities. Conditioned stimuli are 
generally slightly less effective than primary rewards, both in terms of re- 
sponse magnitude in individual neurons and in terms of the fraction of neurons 
activated. 

In most situations, dopaminergic responses show an all-or-none discrimina- 
tion between appetitive and neutral or aversive stimuli (Ljungberg et al, 1992; 
Mirenowicz & Schultz, 1996). Only very few neurons are also activated by 
conditioned aversive light or sound stimuli (Mirenowicz & Schultz, 1996). In 
situations in which neutral or aversive stimuli are presented in close temporal 
proximity and random alternation with physically very similar appetitive stimu- 
li, the discriminative capacity of dopaminergic neurons becomes quantitative 
and the all-or-none discrimination is lost. For example, a small box that opens 
rapidly in front of the animal does not by itself activate dopaminergic neurons. 
However, responses occur to every opening if the box on some trials contains 
a visible morsel of food (Ljungberg et al, 1992) or when it opens without food 
in random alternation with an identical, food-containing box next.to it (Schultz 
& Romo, 1990). In both experiments, responses to opening of the baited boxes 
are stronger than to the empty boxes. Animals perform an indiscriminate 
ocular orienting response to each opening, but approach only the baited box 
with the hand. 

Novel stimuli 
Dopaminergic neurons are activated by novel stimuli as long as they elicit 

behavioral orienting reactions (e.g., ocular saccades). Neuronal responses as 
well as orienting reactions subside after several tens of stimulus repetitions 
(Ljungberg et al, 1992), although particularly salient stimuli may remain 
somewhat effective for over 1,000 trials (Hollerman & Schultz, unpublished). 

Conclusion 
Given their responses to a limited range of stimuli~primary rewards, 

conditioned, reward-predicting stimuli, and novel, potentially rewarding stimu- 
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FIGURE 2. Responses of dopaminergic neurons at different phases of learning a reac- 
tion-time task. Top: Response to a largely unpredicted liquid reward during initial 
sound-reward pairings, but with very little response to the sound stimulus (left). The 
same neuron also responds to the liquid delivered unpredictably outside of any task 
(fight). Bottom: Several days later during established task performance, responding of 
another dopaminergic neuron to the now-conditioned sound but the absence of respond- 
ing to the liquid reward (left). It is as if the response had been transferred from the 
primary reward to the conditioned stimulus predicting it. The response of the same 
neuron to the liquid delivered unpredictably outside of any task is maintained, suggest- 
ing unchanged efficacy of the liquid (fight). Note, different time bases are used be- 
cause of the sound-reward intervals. Histograms are composed of neuronal impulses 
shown as dots below. Each dot denotes the time of a neuronal impulse, and its distance 
from the stimulus indicates real-time intervals. Each line of dots shows one trial, the 
sequence of trials being from top to bottom. Reproduced with permission from Mire- 
nowicz and Schultz (1994). 

li---dopaminergic neurons report the motivational value of environmental 
stimuli. As far as nutrient objects are concerned, the response is not related to 
obtaining or ingesting these objects but to the presentation of the associated 
stimuli. The dopaminergic response is evoked by the mere presentation of the 
stimulus and does not depend on a specific behavioral response being reward- 
ed. Dopaminergic neurons respond almost exclusively to stimuli of appetitive 
value, but they do not appear to discriminate in a simple manner between 
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different appetitive stimuli. They signal the presence of stimuli of appetitive 
value without indicating further details of the stimuli. Thus, dopaminergic 
neurons report a basic motivational value assigned to environmental stimuli, as 
opposed to other brain systems that might be more concerned with the explicit 
properties of individual appetitive stimuli. The response occurs in the majority 
of dopaminergic neurons and appears to be rather homogeneous~both in terms 
of similarity of responses to different stimuli and different degrees of condi- 
tioning, and in terms of similarity of responses by different neurons. This 
population response, together with the profuse innervation of target structures, 
constitutes a high degree of internal redundancy which allows the system to 
maintain its function in reporting the appetitive value of environmental stimuli 
despite partial destruction that may occur with aging or following inadvertent 
exposure to neurotoxic substances. 

Adaptive Properties of Dopaminergic Neurons 
The response of dopaminergic neurons is transferred systematically from 

primary rewards to conditioned, reward-predicting stimuli, and the response to 
the conditioned stimulus induces a loss of responding to the primary reward 
(Figure 2). The response to the conditioned stimulus itself can be further trans- 
ferred to an earlier predictive stimulus with loss of response to the now-pre- 
dicted conditioned stimulus. Thus, the dopaminergic response systematically 
occurs to the earliest reward-predicting stimulus, whereas subsequent predicted 
stimuli lose their efficacy for activating dopaminergic neurons (Figure 3, 
Schultz, Apicella, & Ljungberg, 1993). The responses to the conditioned 
stimuli become progressively smaller as the stimulus occurs farther away from 
the primary reward, the maximum interval between effective conditioned 
stimulus and primary reward being about 10-15 s. The response transfer occurs 
both during initial learning and in well-learned behavioral situations. During 
learning of an instrumental leverpressing task, the response is transferred from 
the liquid delivered at the animal's mouth to reward-predicting conditioned 
visual or auditory stimuli (Ljungberg et al, 1992; Mirenowicz & Schultz, 
1994). In well-learned behavioral situations, the response transfers from a 
morsel of food encountered during self-initiated arm movements to conditioned 
visual or auditory stimuli (Romo & Schultz, 1990), and from a free drop of 
liquid occurring at an unpredicted moment to a conditioned auditory stimulus 
predicting such liquid (Mirenowicz & Schultz, 1994). Responses to both the 
earliest conditioned stimulus and the subsequent stimuli may coexist for a 
limited period during learning, whereas the transfer is immediate when it 
occurs between established behavioral situations. This suggests that response 
transfer is a basic neurobiological phenomenon with dopaminergic responses 
that is not the result of a general reduction of sensitivity to primary rewards 
and is independent of the learning context itself. 
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The transfer of the response of dopaminergic neurons from primary rewards 
to conditioned, reward-predicting stimuli strongly resembles Pavlovian stimu- 
lus substitution of behavioral reactions. The neuronal response transfer indi- 
cates that the conditioned stimulus becomes a substitute for the primary reward 
in eliciting a neuronal response. This reveals three important characteristics of 
the response of dopaminergic neurons. (1) The principal effective stimulus for 
dopaminergic neurons is the earliest reward predictor. In parallel with be- 
havioral conditioning, dopaminergic neurons react to exactly the same stimulus 
as does the organism's behavior. Dopaminergic neurons thus track the central 
stimulus for approach behavior. However, it should be noted that the dopami- 
nergic response to conditioned stimuli can be independent of the organism's 
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FIGURE 3. Responses of dopaminergic neurons to unpredicted primary reward 
showing response transfer to progressively earlier reward-predicting stimuli. All dis- 
plays are population histograms obtained by averaging normalized peri-event time 
histograms for all dopaminergic neurons recorded in the behavioral situations indicat- 
ed, independent of the presence or absence of a response. Top: In the absence of any 
behavioral task, no population response was observed in 44 neurons tested with a small 
light (data from Ljungberg et al, 1992), but there was an average response in 35 
neurons to a drop of liquid delivered at a spout in front of the animal's mouth (Mire- 
nowicz & Schultz, 1994). Middle: Response to a reward-predicting (trigger) stimulus 
in a spatial-choice reaching task, but absence of response to reward delivered during 
established task performance (23 neurons; Schultz et al, 1993). Bottom: Response to 
an instruction cue preceding by a fixed time of 1 s the reward-predicting trigger stimu- 
lus in an instructed spatial-reaching task (19 neurons; Schultz et al, 1993). Time bases 
are different because of varying intervals between conditioned stimulus and reward. 
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behavior; it also occurs when the animal erroneously fails to react. (2) 
Somewhat surprisingly, the neuronal responses engage the large majority of 
neurons in a functionally rather homogeneous system. This indicates a rather 
holistic influence of the reward signal on a wide variety of neuronal activities 
underlying behavioral output. (3) In parallel with behavioral conditioning, the 
response of dopaminergic neurons changes from one stimulus to another, 
suggesting that the neuronal response undergoes conditioning in a way similar 
to the rewarded behavioral response. This allows a reward-predicting function 
to be acquired by a large number of arbitrary stimuli to which the dopaminer- 
gic neurons then respond. This enormously increases the chance of the neu- 
rons' detecting the limited number of appetitive stimuli present in a given 
environment. 

Relations to Associative Learning Theories 

Learning theories 
Contemporary learning theories characterize learning as acquisition of 

associative strength by a conditioned stimulus. The increment in associative 
strength during each learning episode in which the conditioned stimulus is 
paired with a reward is determined by the equation 

A v  = (x-v) .  (1) 

The gain in associative strength AV is determined by (h-V), where V is the 
current associative strength of the conditioned stimulus on that episode and ~, is 
the maximum associative strength that could be sustained by the reward. The 

> 0 and I~ > 0 parameters represent the conditioned and unconditioned stimu- 
lus salience, respectively (Rescorla & Wagner, 1972; Mackintosh, 1975; 
Pearce & Hall, 1980). Thus, (X-V) reflects the extent to which the conditioned 
stimulus has already been established as a predictor of reward or, in other 
words, the extent to which the reward is currently predicted by the conditioned 
stimulus. When V= ~,, the associative strength of the conditioned stimulus is 
sufficient to fully predict the occurrence of the reward and no further learning 
will occur (i.e., AV becomes zero). By contrast, when ~> V, the associative 
strength of the stimulus does not fully predict the reward and the AV term is 
positive and leads to further increments in associative strength. In this sense, 
the (h-V) term represents the extent to which the animal has failed as yet to 
learn the full predictive relation between the conditioned stimulus and the 
reward. For this reason, (h-V) could be said to represent an error in the predic- 
tion of reward. Learning algorithms that serve to minimize the (~,-V) term can 
be considered as error correcting. Recent work has suggested that this learning 
rule is formally equivalent to the delta rule (Widrow & Hoff, 1960) of artificial 
neuronal networks (Sutton & Barto, 1981), thus allowing single neuronal 
elements, at least theoretically, to implement this error-driven learning rule. 
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FIGURE 4. Dopaminergic neurons code an error in reward prediction. Top: A drop 
of liquid reward occurs in the absence of prediction (an error in the prediction of 
reward). The dopaminergic neuron was activated by this unpredicted occurrence of the 
liquid. Middle: A conditioned stimulus predicts a reward, and the reward occurs 
according to the prediction (no error in the prediction of reward). The dopaminergic 
neuron is activated by the reward-predicting stimulus (response scattered in the raster 
to the left) but fails to be activated by the predicted reward (right). Bottom: A condi- 
tioned stimulus predicts a reward, but the reward fails to occur because of lack of 
response by the animal. The activity of the dopaminergic neuron is depressed precisely 
at the time when the reward would have occurred. Note the depression occurring > 1 s 
after the conditioned stimulus without any intervening stimuli (an internal process of 
reward expectation). 
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Apart from their role in learning, rewards have a separate, equally crucial 
function of maintaining established behavior. An established behavioral re- 
sponse will undergo extinction in the absence of the continued occurrence of 
rewards. However, whereas the efficacy of rewards during learning depends 
on their unpredictable occurrence, their occurrence is fully predictable during 
established behavioral performance. This distinction might help to delineate the 
potential involvement of neurons whose responses to reward show different 
characteristics in the two phases of learned behavior. 

Do dopaminergic neurons report an error in the prediction of  reward? 
A central tenet of associative learning theories is the dependence of learning 

on the unpredictability of reward (Rescorla & Wagner, 1972; Mackintosh, 
1975; Pearce & Hall, 1980; Donahoe, Crowley, Millard, & Stickney, 1982). 
The responses of dopaminergic neurons to reward-related stimuli occur under 
very similar conditions. This suggests that dopaminergic responses follow the 
(X-V) term and signal an error in the prediction of reward. The occurrence of a 
reward without being predicted could be considered an error in reward predic- 
tion. Accordingly, dopaminergic neurons are activated by primary rewards 
only when the time of reward delivery is not predicted by any conditioned 
phasic stimulus (Figure 4, top). By contrast, the error signal should be small 
when a predicted reward actually occurs. Dopaminergic neurons are activated 
by the reward-predicting stimulus, but little or no activations are recorded in 
response to the predicted reward (Figure 4, middle). The transfer of neuronal 
responding from primary rewards to conditioned, reward-predicting stimuli 
apparently abolishes the primary reward response. Thus, neurons responding 
to reward encountered during spontaneous movements in the absence of phasic 
reward-predicting stimuli lose this response when a conditioned stimulus elicits 
the movement (Romo & Schultz, 1990). Neuronal responses activated by drops 
of liquid outside of any task disappear when the same reward is delivered at 
regular intervals of 4-5 s, each drop of liquid serving as a predictor for the 
next drop (Ljungberg et al, 1992). In learning situations, neurons respond to 
reward before the task is acquired but lose the response when a stimulus has 
become a valid reward predictor (Figure 2; Ljungberg et al, 1992; Mirenowicz 
& Schultz, 1994). Accordingly, when a more complicated task, such as a 
spatial delayed-response task, is acquired through a series of intermediate 
tasks, the learning phase of each intermediate task is accompanied by dopami- 
nergic responses that disappear when the learning curve of each intermediate 
task reaches its asymptote (Schultz et al, 1993). 

An inverse error in reward prediction does occur when a predicted reward 
fails to be delivered. Dopaminergic neurons are activated by the reward-pre- 
dicting stimulus but are depressed in their activity at exactly the time at which 
the reward would have occurred (Figure 4, bottom). This was observed in all 
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22 neurons tested in various behavioral situations in which reward was with- 
held deliberately by the experimenter or failed to occur following an error of 
task performance by the animal (Ljungberg, Apicella, & Schultz, 1991; 
Schultz et al, 1993; Hollerman & Schultz, unpublished). Interestingly, the 
sharply delimited neuronal depression did not occur to an immediately preced- 
ing phasic stimulus. Rather, the last external stimulus occurred when the 
animal had touched the wrong response lever more than 1 s earlier, suggesting 
that dopaminergic neurons have access to an internal clock monitoring the time 
of expected reward delivery. 

Reward responses are not conditioned to the general learning context; they 
occur whenever the reward occurs unpredictably in time. A reward occurring 
500 ms earlier than predicted elicits a dopaminergic response for a few transi- 
tory trials, after which the reward becomes ineffective again (Hollerman & 
Schultz, unpublished). By contrast, the reward prediction provided by the 
general behavioral context alone does not abolish a response, as shown by the 
fact that responses to unpredicted rewards persist for several months of exper- 
imentation in the laboratory. This occurs even though the situation is highly 
associated with reward. Thus, the response to primary reward is only abolished 
when a conditioned stimulus predicts the time of the reward. 

Responses to a conditioned stimulus also depend on whether that stimulus is 
unpredicted itself, and are reduced when the stimulus is signaled by a preced- 
ing cue (Figure 3; Schultz et al, 1993). Extensive overtraining attenuates 
responses to conditioned stimuli (Ljungberg et al, 1992), probably because the 
stimuli become predicted by the events in the preceding trial during highly 
stereotyped and automated task performance. 

The responses of dopaminergic neurons show two prominent characteristics 
that have so far not been found together in other brain structures: temporal 
reward unpredictability, together with a rather uniform response of nearly the 
whole neuronal population. Reward responses and other forms of reward-relat- 
ed activity are found in several brain structures--such as the striatum, amygda- 
la, orbitofrontal cortex and anterior cingulate cortex--but these responses 
usually occur in well-established behavioral tasks where reward is fully pre- 
dicted by the conditioned stimuli (Niki & Watanabe, 1979; Thorpe, Rolls, & 
Maddison, 1983; Nishijo, Ono, & Nishino, 1988; Apicella, Ljungberg, Scar- 
nati, & Schultz, 1991; Schultz, Apicella, Scarnati, & Ljungberg, 1992). In 
addition, these structures show several forms of specific task-related activity of 
which the reward responses constitute only a fraction. Also, this reward signal 
is not sent in a global, divergent fashion to a large number of postsynaptic 
neurons. These characteristics suggest that a function of such signals is to 
maintain established behavior rather than bring about learning. Thus, reward 
information may be treated differently by the brain in certain conditions, may 
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have functions that vary according to the learning or established phase of 
behavior, and may occur in different neuronal systems with architectures 
corresponding to the possible function of the reward signal. 

Ffon 

( 

FIGURE 5. Dopaminergic message sent to striatum and cortex. The rather homogene- 
ous population response of dopaminergic impulses to appetitive stimuli and its progres- 
sion from the substantia nigra to the postsynaptic structures can be schematically 
viewed as a wave of synchronous, parallel activity. Our results show that the responses 
to appetitive stimuli of dopaminergic neurons in group A9 of the substantia nigra 
projecting to the striatum are indistinguishable from the responses in the dorsomedial 
substantia nigra and adjoining group A10 projecting to the frontal cortex. 

Postsynaptic Influence of the Dopaminergic Message 
The characteristic response of dopaminergir neurons, combined with the 

particular anatomical organization, provides clues to the way the dopaminergic 
signal may be used by the brain. The rather homogeneous response of dopami- 
nergic neurons and the divergent nature of dopaminergic terminal arborizations 
suggest that the dopaminergic message is broadcast as a parallel population 
signal to postsynaptic structures (Figure 5). Dopaminergic neurons innervate 
virtually every neuron in the dorsal striatum (caudate nucleus and putamen) 
and the ventral striatum (the nucleus accumbens in rodents), and a considerable 
fraction of neurons in the frontal cortex. The striatum is engaged in closed 
loops involving the frontal cortex and, in addition, receives input from postcen- 
tral sensory and association cortex and from limbic cortical and subcortical 
structures (Figure 6). Neurons in the striatum and frontal cortex display very 
specific, behavior-related activities coding stimulus meaning, short-term 
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FIGURE 6. Influences of the dopaminergic system on basal ganglia circuitry. The 
highly simplified scheme shows the three major inputs to the striatum from (1) the 
frontal lobe, (2) the postcentral primary sensory and association cortex, and (3) cortical 
and subcortical limbic structures. The message from the basal ganglia is sent back to 
the frontal lobe. Dopaminergic neurons act on these circuits in the striatum and thus 
are in a position to influence important forebrain centers that organize and control 
behavioral output. The striatum denotes both the dorsal caudate and putamen and the 
ventral striatum, including nucleus accumbens. For reasons of simplicity, the dopami- 
nergic projection to the frontal lobe has been omitted (upper left: dorsolateral, orbital 
and medial prefrontal cortex, medial and lateral premotor cortex, primary motor cor- 
tex). 

memory, preparation of action, expectation of reward and execution of 
movements, thereby participating in transferring internal intentional states into 
overt actions for obtaining rewarding goals (Schultz, 1995; Schultz, Romo, 
Ljungberg, Mirenowicz, Hollerman, & Dickinson, 1995). Dopaminergic 
varicosities in striatum and cortex form synapses on dendritic spines which are 
equally contacted by cortical afferents (Freund, Powell, & Smith, 1984; 
Goldman-Rakic, Leranth, Williams, Mons, & Geffard, 1989; Smith, Bennett, 
Bolam, Parent, & Sadikot, 1993). An estimated 10,000 cortical terminals and 
1,000 dopaminergic varicosities contact each striatal neuron (Doucet, Descar- 
ries, & Garcia, 1986; Wilson, 1995; Groves, Garcia-Munoz, Linder, Manley, 
Martone, & Young, 1995), thus allowing the dopaminergic inputs to play a 
crucial role in determining the efficacy of cortical influences on striatal neu- 
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rons. Although inputs from heterogeneous cortical areas may remain largely 
segregated in the striatum (Alexander, DeLong, & Strick, 1986), the estimated 
number of 10,000 cortical inputs to a given striatal neuron indicates some 
degree of integration of information. It is quite possible that afferents from 
different but functionally related cortical areas converge on single striatal 
neurons, as suggested by convergent projections from somatotopically related 
areas of primary somatosensory and motor cortex into discrete striatal regions 
(Flaherty & Graybiel, 1993). 

As pointed out by Flaherty and Graybiel (1994), the patterns of divergence 
and convergence are particularly suitable for allowing new associations to 
form. The wave of parallel dopaminergic population activity arriving at post- 
synaptic structures could lead to simultaneous release of dopamine from a large 
number of sites onto the majority of postsynaptic neurons. The observed phasic 
responses with high instantaneous frequencies seem particularly suited for 
efficiently releasing dopamine at synaptic sites, as higher impulse frequencies 
lead to disproportionally larger dopamine release following rapid saturation of 
dopamine reuptake (Gonon, 1988). Dopamine concentrations inside the synap- 
tic cleft are at least 15-20 times higher than a few micrometers away (Kawa- 
goe, Garris, Wiedemann, & Wightman, 1992), allowing a localized influence 
of dopamine release on specific parts of postsynaptic neurons. In this way, the 
nondifferential global population signal of dopaminergic neurons would be able 
to influence the control of behavioral action by widespread projections to struc- 
tures involved in highly differentiated information processing. 

A more formal assessment of this interaction may provide some indications 
on how the nondifferential dopaminergic activity could be applied as a teaching 
signal for specifically influencing processing in the striatum (Figure 7; see also 
Frey, this volume). In a reduced model, let A and B be two sets of inputs 
converging on a single striatal neuron I, each individual input contacting a 
dendritic spine of that neuron. The stems of the same spines are indiscriminate- 
ly contacted by dopaminergic input X. Let us assume that inputs from dopami- 
nergic neuron X are activated by a reward-related stimulus, and that only 
cortical input A is activated at the same time by some specific aspect of the 
same stimulus. Dopaminergic neuron X transmits the message that a reward- 
related stimulus has occurred without giving further details, whereas cortical 
input A carries detailed information about specific aspects of the same reward- 
related stimulus~such as modality, body side, color, texture, position, sur- 
rounding, or whether it is food, fluid or a conditioned sound or light--and may 
also code the details of an approach movement (different components of the 
same stimulus being coded by specific activity in different inputs A). Input B 
remains inactive as it codes different stimuli or different components of stimuli 
that are not now occurring. Through the simultaneity or near simultaneity of 
activity in A and X, the activity of neuron X could modify synaptic transmis- 
sion between A and I but leave the transmission at the inactive B--,I synapse 
unchanged. Thus, the message about a reward-related stimulus coming from 
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dopaminergic neuron X specifically modifies the A--,I neurotransmission. The 
key function of dopaminergic neuron X would be to signal the stimulus (prim- 
ary reward or reward-predicting stimulus) that is particularly important for 
behavior, acting as a kind of gate for the highly structured activity occurring in 
cortico-striatal and limbic-striatal connections. 

As an example, corticostriatal synaptic activity related to a particular sen- 
sory signal or movement during which reward was encountered would be 
modified when dopaminergic neurons were nearly simultaneously activated by 
the reward event. The fact that primary reward occurs after the sensory signals 
or movements that produce it rules out a strict simultaneity in real time bet- 
ween dopaminergic responses and activity in postsynaptic structures. Dopa- 
mine released after reward delivery needs to influence synaptic efficacies to 
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o~ 

FIGURE 7. Synaptic arrangement of inputs from cortical and dopaminergic neurons to 
medium spiny striatal neurons. The dendritic spine is contacted by a cortical terminal 
and en passant by a dopaminergic axon. In the basic design of hypothetical dopamine- 
dependent heterosynaptic plasticity induced by a reward-related stimulus, cortical 
neurons A and B converge at the tip of different dendritic spines on a single striatal 
neuron I. The synaptic weights of these connections are modifiable. The modification 
occurs only when dopaminergic input X, coming indiscriminately to the stems of the 
same dendritic spines, is active at about the same time. In the present example, cortical 
input A, but not B, is active when dopaminergic neuron X is activated by a reward- 
related stimulus. This leads to a modification of the A~I transmission, but leaves the 
B~I transmission unaltered. Anatomical data from Freund et al (1984), drawing modi- 
fied from Smith and Bolam (1990). 
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postsynaptic structures whose activity has recently peaked. This assumes some 
briefly enduring events, such as a hypothetical eligibility trace (Sutton & 
Barto, 1981; Houk, Adams, & Barto, 1995) that lasts for a short lapse of time 
in neuronal or synaptic activity of postsynaptic structures, upon which the 
dopaminergic signal could act to modify synaptic processing. 

Neuronal-Network Models Using Dopamine-like Reinforcement Signals 
The response of dopaminergic neurons to primary rewards provides a suit- 

able basis for constructing neuronal-network models that use a biologically 
derived reinforcement signal for modifying synaptic weights implementing 
learning. Several characteristics appear to be particularly well suited for such 
reinforcement models. (1) Dopaminergic neurons respond to rewards. Howev- 
er, responses occur only when the reward appears unpredictably in time. Thus 
they signal an error in the prediction of reward in correspondence with the 
Rescorla-Wagner model of behavioral learning, and provide a biologically 
plausible means whereby rewards could be processed by single neuronal 
elements. The importance of temporal aspects of the predictability of stimuli is 
suggested by the fact that the temporal variation in reinforcer occurrence af- 
fects learning (Dickinson, Hall, & Mackintosh, 1976). (2) The acquisition of 
responsiveness to arbitrary stimuli demonstrates that dopaminergic neurons not 
only respond to primary rewards but that their responses are also influenced 
and modified by the same reward signal they are reporting. At the same time 
as they send a reward message to postsynaptic structures, they are themselves 
influenced by that message. (3) The way the dopaminergic message is sent to 
postsynaptic structures is very appropriate for influencing a large number of 
neurons irrespective of their specific function or current behavioral relation- 
ship. The majority of dopaminergic neurons respond rather homogeneously to 
physically different reward-related stimuli and produce a global reward mes- 
sage that is synchronously broadcast to a large number of neurons engaged in 
different activities underlying the current behavior. This influence would spe- 
cifically affect those neurons or synapses that are selectively activated by the 
same environmental signal that also activated the dopaminergic neurons within 
a short time span. In this way, the global, nondifferential dopaminergic signal 
has a differential effect on active postsynaptic elements. 

What is known about dopaminergic responses to reward-related stimuli has 
been utilized to varying degrees in neuronal models. (See Chapter 18.) A 
straightforward reinforcement system reports the correct execution of a desired 
behavioral response by homogeneously broadcasting an all-or-none reward 
signal independent of predictability to a large number of postsynaptic elements 
where it exclusively reinforces the weights of those synapses that are active 
around this time (Wickens & K6tter, 1995). Processing units in such model 
networks acquire properties very similar to those of biological single neurons 
in primate parietal association cortex (Mazzoni, Andersen, & Jordan, 1991). 
Networks based on the architecture of the basal ganglia are able to acquire 
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conditional oculomotor responses (Arbib & Dominey, 1995). All of these 
models take account of the global nature of the reinforcement signal but do not 
exploit the particular response properties of dopaminergic neurons. 

On the basis of the Rescorla-Wagner model, a class of very efficient rein- 
forcement models termed temporal-difference models has been developed 
independently which, amazingly, reproduce virtually all of the salient charac- 
teristics of dopaminergic neurons outlined above (Sutton & Barto, 1981; cf. 
Donahoe & Palmer, 1989; see also Barto & Sutton, this volume). The adap- 
tive-critic module of these networks initially reacts to unpredicted positive 
outcome (the critic mimicking responses to unpredicted primary reward) and, 
upon learning, transfers the response to a predicting stimulus (the adaptive 
component learning to respond to the conditioned, reward-predicting stimulus). 
By analogy to higher-order conditioned stimuli, signals that predict progres- 
sively earlier outcomes have proven to be particularly helpful in learning rather 
long sequences of behavior directed at remote outcomes. The general architec- 
ture of temporal-difference models remarkably resembles the architecture of 
the basal ganglia. Notable similarities are (1) the global influence of the critic 
on the actor elements, which resembles the nigrostriatal dopaminergic projec- 
tion, and (2) the way in which the critic learns to react to the conditioned 
stimulus by being influenced by the reinforcement signal, possibly resembling 
the striatonigral connection. 

In particular, by generating outcome-predicting signals, temporal-difference 
models have been able to learn a wide variety of different behavioral tasks, 
from balancing a pole on a wheel to playing backgammon and chess. (See 
Clouse, this volume.) As their strong correspondence with the activity of 
dopaminergic neurons has become understood, these models have been applied 
to the architecture and functions of the basal ganglia (Barto, 1995; Houk et al, 
1995). A very similar model strongly resembling dopaminergic activities trains 
neuronal networks to perform ocular reactions on the basis of the acquired 
value of stimuli, the value-signaling module functioning like the adaptive critic 
of temporal-difference models (Friston et al, 1994). A related form of predic- 
tive learning has recently been used for modeling the foraging behavior of 
honeybees in unknown territory (Montague, Dayan, Person, & Sejnowski, 
1995; see also Montague, this volume). 
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CHAPTER 18 

SELECTION NETWORKS: SIMULATION OF PLASTICITY 
THROUGH REINFORCEMENT LEARNING 

John W. Donahoe 
Department of Psychology 
Neuroscience and Behavior Program 
University of Massachusetts, Amherst 

ABSTRACT 
Evolution through natural selection has addressed the problem of modifying 

synapses throughout large networks of neurons by exploiting diffusely project- 
ing neuromodulatory systems. When pre- and postsynaptic neurons are coac- 
tive, synaptic efficacies increase or decrease dependent upon whether the 
neuromodulator dopamine is simultaneously present or absent. Salient charac- 
teristics of this process can be simulated with selection networks, artificial 
neural networks whose architecture instantiates a processing system whose 
connection weights are modified by a scalar reinforcing signal. This arrange- 
ment resolves both the temporal paradox and the binding paradox, twin chal- 
lenges to any attempt to interpret complex behavior by means of neural net- 
works. Further, by exploiting an emergent property of selection 
networks~acquired reinforcement~critical aspects of imagining, thinking, 
and language acquisition can also be interpreted. 

Introduction 
This chapter has four primary goals: (1) to identify critical experimental 

findings that inform and constrain the search for a biobehaviorally plausible 
account of plasticity (learning), (2) to describe a general approach to simulat- 
ing the mechanisms whereby behavior is acquired, (3) to describe a general 
approach to simulating the mechanisms whereby configurations of stimuli 
come to guide behavior, and (4) to expose some of the implications of this 
approach for complex behavior. A deep and comprehensive natural-science- 
based understanding of human behavior lies in the future, but its broad outlines 
are emerging in the present. 

Biobehavioral constraints 
The preceding chapters have identified a very substantial body of research 

that must be honored by any attempt to achieve a biobehaviorally faithful 
neural-network interpretation of complex behavior (i.e., cognition). Let me 
highlight a few of the central findings. 
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Temporal constraints. From experimental work at the behavioral level, we 
know that evolutionarily important events~such as food for a food-deprived 
organism~change the way in which the environment guides behavior only 
when the environment and behavior occur in close temporal proximity to such 
events (see Palmer, this volume). This conclusion is complemented by findings 
at the cellular level in which synaptic efficacies change only when certain 
neurotransmitters, and the intracellular processes to which they give rise, occur 
concurrently~as with glutamate and dopamine during long-lasting hippocam- 
pal long-term potentiation (LTP) (see Frey, and Meyer, this volume; Stein & 
Belluzzi, 1989; Stein, Xue, & Belluzzi, 1993). The consequences of these 
findings for neural-network simulations are clear: The algorithm(s) simulating 
the modification of synaptic efficacies (i.e., the updating of connection 
weights) must be temporally constrained, perhaps to something on the order of 
100 ms. Moreover, the simulated processes must operate locally at the individ- 
ual synapse if the exquisite specificity of the environmental guidance of be- 
havior is to be achieved. (To say that the critical processes operate locally does 
not preclude the influence of events originating at more remote neural sites if 
those events have local effects at the time synaptic efficacies are changed.) 

The temporal constraints imposed by both behavioral and cellular findings 
raise special problems for efforts to interpret complex behavior: Behavior often 
changes when events of direct biological significance occur after considerable 
delay or are absent altogether. For example, the scientist spends long hours in 
the laboratory, but the interval between that behavior and food on the table is 
great indeed. Somehow, neural networks intended to simulate the behavior of 
experienced organisms must function as if they were exempt from severe 
temporal constraints while remaining consistent with research imposing a short 
temporal horizon on the mechanisms of plasticity. The approach developed in 
this chapter attempts to accomplish these seemingly incompatible tasks. The 
apparent conflict between the moment-to-moment restrictions enforced by 
biobehavioral research and the longer-term sequences of events to which ex- 
perienced organisms are sensitive is designated the temporal paradox. 

Discrepancy constraint. Behavioral and neuroscientific research have led to a 
second general constraint: The biologically important events that foster learn- 
ing do so only when those events are unexpected. Or, more technically, biolog- 
ically important events change the environmental guidance of behavior only 
when the behavior they evoke is not otherwise occurring at that moment 
(see Palmer, this volume; see also Kamin, 1969; Donahoe, Crowley, Millard, 
& Stickney, 1982; Rescorla, 1968; Rescorla & Wagner, 1972). Cellular re- 
search is consistent with this behaviorally based conclusion. A biologically 
significant event, such as apple juice introduced into the mouth of a food- 
deprived monkey, no longer activates dopamine-producing neurons if the juice 
is preceded by another stimulus, such as the onset of a light, with which it has 
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been reliably paired during the animal's past (see Schultz, this volume). And, 
the work of Frey (this volume) and others (summarized momentarily) also 
implicates dopamine in synaptic plasticity. The specific biological mechanisms 
implementing the discrepancy are not fully characterized, but a number of non- 
mutually exclusive candidates are available. These include negative-feedback 
mechanisms operating at the levels of both neural-systems and intracellular 
processes. As examples, (1) the activation of dopaminergic neurons, which is 
initially produced by inputs from biologically important events, may be attenu- 
ated by other inputs activated by stimuli that reliably precede the biologically 
important event due to "collision" between the two inputs (Shizgal, Bielajew, 
& Rompre, 1988; cf. Schultz, Romo, Ljungberg, Mirenowicz, Hollerman, & 
Dickinson, 1995) or through inhibitory circuits recruited by inputs to the 
dopaminergic neurons (Houk, Adams, & Barto, 1995) and (2) the response of 
dopaminergic neurons may be attenuated when the release of dopamine acts on 
inhibitory autoreceptors located on the dopaminergic neurons themselves 
(Kalsner & Westfall, 1990; Meyer, this volume; cf. Groves, Garcia-Munoz, 
Linder, Manley, Martone, & Young, 1995). 

Binding constraint. Behavioral and neuroscientific findings are the source of a 
third general constraint on neural-network simulations of complex 
behavior~the binding constraint. At the behavioral level, any of a great 
number of stimuli may guide any of a great number of responses. Therefore, 
the biological mechanisms of synaptic plasticity, whatever they are, must be 
competent to affect many synapses throughout the brain simultaneously (see 
Palmer, this volume). Findings at the level of neuroscience point in the same 
direction. Stimuli~especially the complex combinations of environmental 
events typical of the real world--activate populations of neurons in sensory 
and sensory-association areas (see Tanaka, this volume). The conclusion that 
behavior is guided by the activity of populations of neurons is shared both by 
those who view the size of the neuronal population as sharply restricted by 
inhibitory interactions (see Trehub, this volume) and by those who envision 
larger, hierarchically organized populations of elements (see Hummel, this 
volume). Somehow, the neural mechanisms of perceptual learning must bind 
together a population of spatially diverse neurons into coherent patterns of 
firing. 

A similar need for binding is required for the neural activity underlying 
responding. At the behavioral level what is regarded as a single response, such 
as elevating the arm, is at the neural level the concerted expression of the 
contraction of thousands of muscle fibers brought about by the activity of 
thousands of neurons (see Georgopoulos, this volume). As with perceptual 
processes, motor processes require the coordinated activity of populations of 
neurons. Accordingly, the biological mechanisms of plasticity must change the 
efficacies of many synapses throughout the nervous system while, at the same 
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time, confining the changes to the "correct" synapses; i.e., those needed to 
mediate the selected environment-behavior relation. 

The full task confronted by the mechanisms of plasticity .is even more 
formidable: In order for the environment to guide behavior appropriately, not 
only must synapses be modified to form the two populations of neurons mediat- 
ing the relevant perceptual and motor processes, but synapses of the many 
neurons interconnecting these two populations must be modified. In short, one 
population of neurons mediating sensory processes must appropriately activate 
a second population of neurons mediating motor processes. (Ignored for now is 
a further complication: Sensory and motor processes are interdependent; i.e., 
the activity of one may affect the other.) The need for the mechanisms of plas- 
ticity to be able to modify the synaptic efficacies of large populations of neu- 
rons while restricting the modified synapses to those needed to mediate specific 
environment-behavior relations constitutes the binding paradox. 

Biological mechanisms of neural plasticity 
How has evolution through natural selection addressed the dual challenges 

of the temporal and binding paradoxes? The first clue comes from the work of 
James Olds who, together with his then graduate student Peter Milner, discov- 
ered that electrical stimulation of certain regions of the brain strengthened the 
responses that preceded them (Olds & Milner, 1954). That is, such stimulation 
functioned as a reinforcer of behavior. 

Nonspecific projection systems. Subsequent neuroanatomical work indicated 
that the various neural sites for which electrical stimulation was reinforcing 
had the common effect of stimulating neurons in a region of the midbrain 
known as the ventral tegmental area (VTA). Other work showed that axons 
from cells in the VTA projected widely within the brain, including (among 
others) to the motor-association areas of the frontal and prefrontal cortex 
(Fallon & Laughlin, 1987; Lindvall, Bjorklund, & Divac, 1978; see Figure 1 
for a schematic diagram of these diffuse dopaminergic projections.) Further- 
more, stimulation of VTA neurons caused dopamine to be liberated in these 
areas (Hoebel, 1988; Stellar & Stellar, 1985). Because of their widespread 
distribution, dopaminergic neurons have the potential to affect the functioning 
of many other neurons. Consistent with this possibility, dopaminergic neurons 
have large projection fields and numerous synapses located along their axon 
shafts by which they can affect substantial populations of neurons (Groves, 
Lindner, & Young, 1994). Because synapses on a single dopaminergic axon 
can affect the responses of many neurons to other transmitters, dopamine is 
often designated a neuromodulator rather than a classic neurotransmitter. 

Dopaminergic neurons commonly make synapse at the base of many of the 
numerous spines formed on the dendrites of target neurons. And, these spines 
often contain at their tips glutaminergic synapses receiving inputs from other 
neurons. Because glutamate is the primary excitatory neurotransmitter in the 
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brain, and thus plays a central role in neural processing, the juxtaposition of 
dopaminergic and glutaminergic synapses suggests an interaction between their 
effects. Further, the joint effects of glutamate and dopamine may be spatially 
restricted to the relatively isolated intracellular compartments provided by the 
spines. Thus, all levels of observation--neuroanatomical, ultrastructural, and 
biochemical~indicate that the reinforcing effects of dopamine can be simulta- 
neously widespread and specific to particular synapses. In short, evolution 
through natural selection appears to have "solved" the binding paradox by 
exploiting diffusely projecting neuromodulatory systems. This strategy confers 
yet another benefit: As the brain grew larger over evolutionary time, a dopa- 
mine-dependent mechanism of synaptic plasticity could accommodate growth 
by simply extending its projections further (Donahoe & Palmer, 1994). Point- 
to-point specification of the connectivity of the brain by the genome was not 
required, and would have been impossible in any case because the complexity 
of the human brain exceeds the capacity of the genome to specify it. 

Given that synaptic plasticity is dependent on interactions between the 
dopaminergic neuromodulatory system and the glutamate transmitter system, 
what is the nature of that interaction? Here, the focus is upon the f unc t iona l  
effect of glutamate-dopamine interactions on synaptic plasticity. Experimental 
studies (e.g., Frey, this volume; Chioda & Berger, 1986; see Wickens & 
Kotter, 1995, p. 195-198 for a review) indicate that the conditions necessary 
for long-term modifications in synaptic efficacy are the following: (1) Efficacy 
increases if activation of the presynaptic neuron causes the release of glutamate 
that, in turn, activates the postsynaptic neuron and if their coactivity is fol- 
lowed within less than a few hundred ms by a pulse of dopamine. That is, 
synaptic efficacies are modified by a heterosynaptic mechanism. (2) Efficacy 
decreases when glutamate from the presynaptic neuron activates the postsynap- 
tic neuron and their coactivity is not followed by a pulse of dopamine. The 
first effect is known as LTP and the second as long-term depression (LTD). 
Other combinations of pre- and postsynaptic activity with or without the pres- 
ence of dopamine have not been shown to have any consistent long-term effect 
on synaptic efficacy. 

In keeping with experimental findings concerning the conditions that pro- 
duce LTP and LTD, the present computer simulations incorporated a learning 
algorithm in which coactivity in the pre- and postsynaptic units increased the 
connection weight between the units if a reinforcer occurred, but decreased it 
otherwise (Donahoe, Burgos, & Palmer, 1993). For LTP, or acquisition, the 
change (A)~here, an increase---in the connection weight w between the ith 
presynaptic unit and the jth postsynaptic unit from time-step t-1 to time-step t is 
given by 

A wj(t)  = w~i(t ) - w:i(t- 1) = ~.ai(t- 1)a.(t)r(t) (1) 

where c~ (0< c~< l) is the learning-rate parameter, a (0< a < 1) is the activa- 
tion level of a unit, and r is the strength of the dopaminergic reinforcing signal 
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(where r is the momentary increase in the activation of VTA units from time- 
step t-1 to t. According to Equation 1, the higher the activation levels of the 
pre- and postsynaptic neurons and the stronger the dopaminergic reinforcing 
signal, the greater the increase in connection weight. (In the actual simulations, 
other factors also affected the magnitude of the change in connection weight; 
e.g., competition was implemented among the multiple presynaptic inputs for 
control over potential receptor sites on the postsynaptic unit as described in the 
appendix of Donahoe et al, 1993.) 

For LTD, or extinction, the change--now, a decrease---in connection 
weight between a pre- and postsynaptic unit is given by 

- A  wij(t ) = ~.ai(t-1)~(t ) (2) 

where 1~ (0 < I~ < 1, 1~ < a) is the extinction-rate parameter. Thus, the greater the 
coactivations of the pre- and postsynaptic units when the dopaminergic rein- 
forcer is absent, the greater the decrease in connection weight. 

Simulation of the Selection of Behavior 
Figure 1 provides a schematic representation of the major dopaminergir 

projections originating from the VTA. Our present concern is with projections 
to the frontal cortex and basal ganglia, for these structures are the most directly 
implicated in the control of behavior. The significance of projections to the 
hippocampal region is considered later in the chapter. Figure 2 depicts a 
neural-network architecture that functionally represents the sensory- and 
motor-processing units and their relation to the simulated nonspecific reinforc- 
ing system. A network of this general architecture is called a selection network 
because, as shown below, the reinforcing system has the cumulative effect of 
selecting those pathways that mediate environment-behavior relations. 

For now, consider only the motor subnetwork of Figure 2. Units in the 
motor subnetwork become activated as the result of environmental stimulation 
and endogenous intranetwork events that produce "spontaneous" unit activity, 
(Donahoe, Palmer, & Burgos, in press). The behavior of the network is simu- 
lated by two classes of output units~R units and CR/UR units. R units simu- 
late the operant behavior of the network; i.e., the great majority of behavior 
commonly described as voluntary (cf. Skinner, 1938). CR/UR units simulate 
the reflexive behavior of the network; i.e., behavior elicitable by environmen- 
tal stimuli as a consequence of natural selection. Elicited behaviors are conven- 
tionally designated as unconditioned responses (URs) when reflexively elicited 
and as conditioned responses (CRs) when elicited by arbitrary stimuli that have 
previously been paired with reinforcing stimuli. The lines within the network 
represent pathways between units, with heavier lines indicating pathways 
having strong initial connection weights. Heavier lines are present for connec- 
tions within the dopaminergic reinforcing system. These include the class of 
units stimulated by the reinforcing stimulus (sR), the pathways from the VTA 
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FIGURE 1. Schematic diagram of major dopaminergic systems of the brain. Of spe- 
cial concern are projections from the ventral tegmental area (VTA) to the prefrontal 
cortex, basal ganglia of the neostriatum, and the hippocampal region (including CA1 
and subiculum). 

(which innervate all units within the motor subnetwork), and the reflexive 
CR/UR system. Lighter lines indicate pathways between the largely glutami- 
nergic neural-processing units, whose connection weights are small at the 
beginning of training and are modifiable by the nonspecific reinforcing system. 

Two procedures are used for the behavioral study of plasticity, and salient 
outcomes of both can be simulated with networks of the type shown in Figure 
2. In the first procedure---the classical or Pavlovian procedure---some stimulus 
(e.g., S 1) activates a class of input units and is followed shortly thereafter by 
the reinforcing stimulus, S R, which activates its own class of input units. A 
standard laboratory example of the classical procedure is provided by Pavlov's 
dog given food after the sound of a metronome. In the second procedure--the 
operant or instrumental procedure---input units are activated unsystematically 
by the environment and, if the target behavior (R) occurs, then S R units are 
activated. A standard laboratory example of the operant procedure is Skinner's 
rat pressing a lever for food. Whichever procedure is simulated by the neural 
network, the environment activates input units and these, in turn, probabilisti- 
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FIGURE 2. Basic architecture of a selection network. The reinforcing stimulus (S R) 
activates the simulated ventral tegmental area (VTA), which then nonspecifically 
projects a reinforcing signal (heavy lines with arrows) to connections in the motor 
subnetwork. The strength of the VTA signal is proportional to the positive difference 
(d2) between the activation of the VTA at the current moment (time step t) and the 
previous moment (time step t-l). The VTA signal also modulates the strength of a 
second nonspecific reinforcing signal from the simulated hippocampus to sensory- 
association units in the sensory subnetwork. The strength of the hippocampal signal is 
proportional to the difference (dl) between the activation levels of inputs to the hippo- 
campus at times t and t-1. (See text for a description of the functioning of a selection 
network.) 

cally activate sensory-association, motor-association, and ultimately output 
units. In the classical procedure, S1 input units and S R units are activated 
within a short time interval of one another with the result that these two classes 
of units and CR/UR units, which are activated by the S R units, are coactive 
during training. Since S1 units and CR/UR units are reliably and strongly 
activated in concert with VTA units, connection weights along pathways lead- 
ing away from S 1 units and toward CR/UR units are most rapidly strengthened 
by the simulated dopaminergic system. Over time, the action of the nonspecific 
projection system increases connection weights along pathways extending from 
the class of S 1 input units to the class of CR/UR output units. As shown in the 
left panel of Figure 3, the cumulative effect of this process simulates the 
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acquisition of CRs. A similar process of selection of pathways by the reinforc- 
er occurs with the operant procedure. Now, however, in addition to the activa- 
tion by the environment of some input units (although not necessarily any 
particular input unit) and of S R input units by the reinforcing stimulus, other 
units--R units--are also activated in temporal proximity to activation of the 
dopaminergic system. Activity in the class of R units is enforced by the proce- 
dural arrangement in which S R units are activated only after the R unit has 
been activated. Acquisition in the operant procedure as measured by the levels 
of activation of an R and CR/UR unit is shown in the right panel of Figure 3. 
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FIGURE 3. Simulations of conditioning with the classical (left panel) and operant 
(fight panel) procedures. The activation levels of the output units for the reflexive, or 
conditioned, response (CR) and the operant (R) are shown. Conditioning begins more 
slowly with the operant procedure because the reinforcing stimulus occurs only on 
trials in which the activation level of R is greater than zero. Within the operant proce- 
dure, conditioning of the CR generally proceeds more rapidly than the R (see Donahoe 
and Palmer, 1994). 
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To summarize, synaptic efficacies increase when coactivity of pre- and 
postsynaptic neurons is accompanied by dopamine from the nonspecific projec- 
tion system. Neural networks embodying this arrangement~i.e., selection 
networks~are competent to simulate acquisition with both the classical and 
operant procedures. (For simulation of other conditioning phenomena, see 
Donahoe et al, 1993; Donahoe & Palmer, 1994; Donahoe, Palmer, & Burgos, 
in press). Although classical and operant procedures are quite distinct in terms 
of the behavioral contingencies they impose---an S 1-S R contingency in the first 
case and an R-S R contingency in the second--the outcome of both procedures 
may be simulated by a common mechanism for modifying synaptic efficacies. 
(The simulation of the results of both procedures assumes, of course, that the 
units mediating the relevant environment-behavior relations can be affected by 
the nonspecific dopaminergic system. If the relevant units cannot be affected 
by that system, as is likely the case with autonomically mediated behavior, 
then the outcome of the procedure cannot be simulated without incorporating 
additional processes.) Of the two procedural arrangements, the operant is by 
far the more important for the emergence of complex behavior because new 
environment-behavior relations are not restricted to reflexive behavior but 
include the full behavioral potential of the organism. The entire behavioral 
repertoire of the learner is within reach of a diffusely projecting dopaminergic 
system: Whatever units are coactive prior to the occurrence of the reinforcing 
stimulus~no matter how many or how dispersed within the motor subnet- 
work~their connection weights can be modified by the reinforcer. 

Acquired reinforcement 
If the temporal interval between unit coactivity and the reinforcing signal is 

sufficiently short, then modifying synaptic efficacies by means of a nonspecifi- 
cally projecting neuromodulatory system resolves the binding paradox. Within 
the motor subnetwork, an indefinitely large number of motor-association and 
motor units can have their connection weights changed in a coordinated fash- 
ion, resulting in the formation of a population of units whose concerted activity 
generates the target behavior. But what of the temporal paradox? How can a 
suitable temporal interval occur given the relatively long interval (on the neural 
time scale) that inevitably elapses between the occurrence of the target be- 
havior (e.g., lever pressing by a rat) and the occurrence of the reinforcing 
stimulus (e.g., consumption of a food pellet)? Or, in terms of a neural net- 
work, how can binding occur when the activity of units in the motor subnet- 
work~particularly a multisynaptic subnetwork--may occur many time steps 
before the VTA is activated by S R input units? 

Environmentally mediated acquired reinforcement. The resolution of the 
temporal paradox draws upon work at both the behavioral and neural levels. At 
the behavioral level, research indicates that acquisition of even relatively 
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simple responses, such as leverpressing, does not readily occur when the target 
response is followed by a putative reinforcer with delays typical of behavioral 
procedures. The interval between the execution of the target response and 
direct contact with the reinforcer is generally too great for the response to be 
easily acquired. To illustrate, in order for leverpressing to be rapidly acquired, 
the rat must first receive pairings of the sound of the feeder with food. Only 
after the rat avidly approaches the food tray upon hearing the sound of the 
feeder is leverpressing easily acquired (Skinner, 1938; cf. Spence, 1947). The 
sound of the feeder allows leverpressing to be more immediately reinforced 
than it would be by food alone. 

As shown in the simulation of the classical procedure (see the left panel of 
Figure 3), a stimulus that has been paired with a reinforcer can itself activate 
the nonspecifically projecting reinforcing system. After pairing with the rein- 
forcer, the stimulus--such as the sound of the feeder--activates VTA units via 
connections from motor-association units (see Figure 2). Thus, the sound of 
the feeder provides a more immediate acquired reinforcer for the target re- 
sponse, with the result that connection weights are modified with shorter 
delays than if activation of the VTA waited upon the stimulation of S R units by 
food. 

Internally mediated acquired reinforcement. With acquired reinforcement, 
activation of the nonspecific reinforcing system is mediated by environmental 
stimuli that intervene between the target response and the occurrence of the 
ultimate reinforcer. However, the activation of the nonspecific reinforcing 
system via connections from motor-association units will occur even if such 
intervening environmental events are not present. Within the motor subnetwork 
shown in Figure 2, activation of the nonspecific reinforcing system has two 
effects during operant procedures: (1) Connections from motor-association 
units to R units are strengthened (i.e, the target response is acquired) and (2) 
connections from motor-association units to the VTA are strengthened. Be- 
cause of this second effect, selection networks are able not only to emit the 
target response but also to change their own connection weights before the 
occurrence of either the target response or the external reinforcer, if a network 
has a relevant history of selection by reinforcement, then the environment can 
activate the VTA via connections from activated motor-association units. In 
short, an experienced network acquires the capacity to strengthen its own 
connections. The process whereby this comes about is called internal rein- 
forcement (Donahoe et al, 1993; Donahoe & Palmer, 1994, pp. 97-99; Houk et 
al, 1995; Wickens & Kotter, 1995; cf. Goldman-Rakic, 1987; Goldman-Rakic, 
Chafee, & Friedman, 1993). Indeed, internal reinforcement is required when 
the motor subnetwork contains more than one layer of motor association units, 
which simulates behavior mediated by multisynaptic pathways. In a motor 
subnetwork containing two layers of motor-association units, acquisition was 
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retarded when only one layer could implement internal reinforcement via 
connections to the VTA, and was prevented when the internal reinforcement 
circuits were eliminated altogether and the VTA could be activated only by 
direct pathways from S R units (Donahoe & Palmer, 1994, pp. 97-101). Thus, 
natural selection has resolved the temporal paradox by implementing internal- 
feedback circuits that, together with intervening environmental stimulation, 
activate the nonspecific reinforcing system earlier than would be the case if 
changes in synaptic efficacy were dependent on the occurrence of innate bio- 
logically significant events (see also Wickens & Kotter, 1995). 

Simulation of the Selection of Stimulus Configurations 
Through exploiting a nonspecifically projecting reinforcing system aug- 

mented by feedback circuits that internally activate the reinforcing system, 
natural selection has met the twin challenges posed by the binding and tempo- 
ral paradoxes. However, those challenges have thus far been addressed only as 
they appear in motor systems in the brain; i.e., in frontal cortex and basal 
ganglia. But, behavior is mediated by populations of neurons in sensory as well 
as motor systems. How are coherent populations of neurons formed in parietal- 
temporal-occipital cortex? Such populations must also be formed in these areas 
if behavior is to be guided by complex configurations of stimuli. 

The resolution of the binding and temporal paradoxes in sensory-association 
cortex, in particular, is less clear than in frontal cortex and basal ganglia~as 
imperfect as is our understanding of the latter. Nevertheless, the general out- 
lines of the answer seem functionally similar: Neuromodulators released by 
nonspecific projection systems play a central role. 

Formation of primary sensory neural populations 
The primary focus here is upon the formation of neuronal populations in 

sensory-association cortex, but a few words about primary sensory cortex are 
in order. In primary sensory regions, the temporal and spatial structure of the 
environment acts upon the somatotopically organized structure of the brain to 
produce coactivity in neighboring neurons. For example, coactivity between 
neurons in primary sensory cortex shapes the connectivity of the visual system 
through activity-dependent mechanisms operating during postnatal development 
(e.g., Engel, Kreiter, Konig, & Singer, 1991). The effect of coactivity is 
dependent on the presence of neuromodulators from nonspecifically projecting 
subcortical nuclei. For example, during cortical development, changes depend 
not only upon coactivity between glutaminergic neurons 03ear, Kleinschmidt, 
Gu, & Singer, 1990), but also upon the neuromodulators norepinephrine and 
acetylcholine (see Singer, this volume; also Bear & Singer, 1986). Axons 
liberating norepinephrine arise from cells in the locus coeruleus and those 
liberating acetylcholine from substantia innominata, septal nuclei, diagonal 
band, and dorsolateral pons. The conjunction of coactivity and neuromodulator 
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produces populations of neurons that respond coherently to similar stimuli 
arising from nearby regions of the environment, as in the sensitivity of cells 
within a visual cortical column to similar spatial frequencies and orientations 
within its receptive field (e.g., De Valois & De Valois, 1988; Hubel & Wiesel, 
1968). 

Formation of sensory-association neural populations 
In experienced organisms, behavior is typically guided by complex combi- 

nations of stimuli (see Tanaka, this volume). As an illustration, in space per- 
ception, one's location within a familiar room is specified by the particular 
combination of stimuli arising from the walls and objects within the room. This 
combination guides walking. For another, in reading, the complex visual 
stimuli arising from words must be integrated with each other and with the 
auditory and articulatory processes that reflect the grapheme-phoneme corre- 
spondences of English. This combination guides reading. How are neuronal 
populations formed whose concerted activity specifies such complex combina- 
tions of stimuli? 

The formation of functional populations of neurons depends critically upon 
interactions between the hippocampus and sensory-association cortex. Axons 
from polysensory neurons in sensory-association cortex are the origins of 
multisynaptic pathways that serve as inputs to the hippocampus (Amaral, 
1989). Processing within the hippocampus converges on CA1 hippocampal 
neurons whose axons give rise to multisynaptic pathways that diffusely project 
back to sensory-association cortex. This reciprocal neuroanatomical arrange- 
ment allows the output of hippocampal CA1 cells to affect the functioning of 
polysensory cells throughout sensory-association cortex. More specifically, 
CA 1-mediated feedback from hippocampus is hypothesized to alter synaptic 
efficacies between coactive pre- and postsynaptic neurons in sensory-associa- 
tion cortex. The synaptic and intracellular mechanisms mediating the proposed 
effect of nonspecific CA l-hippocampal feedback are not clear. As one possibil- 
ity, glutamate, which is known to be liberated by some CA1 efferents, may 
potentiate the response of polysensory cells to their initially weak inputs from 
several sensory systems, thereby increasing the likelihood of activating the 
postsynaptic neuron (cf. Jay, Burette, & Laroche, 1995). Given that coactivity 
is thereby made more likely between presynaptic sensory neurons and postsyn- 
aptic polysensory neurons, the eligibility of these synapses for modification is 
increased. This increased eligibility for modification can then be exploited by 
nonspecific dopaminergic projections from the VTA that are known to inner- 
vate the sensory-association cortex of primates, but not rats 03erger, Gaspar, 
& Verney, 1991). Thus, the reinforcing system that modifies synaptic effica- 
cies in the frontal lobes can serve a functionally equivalent role in the sensory- 
association cortex of the parieto-temporal-occipital lobes. Through the coordi- 
nating action of the reinforcing dopaminergic system, populations of sensory- 
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association neurons form and activate, in turn, appropriate populations of 
neurons in the motor system. On this view, the hippocampus detects higher- 
order conjunctions of activity in multiple sensory channels and then "teaches" 
the sensory-association cortex to represent these conjunctions by strengthening 
synaptic efficacies among the relevant postsynaptic neurons; i.e., those that are 
activated by their multisensory inputs at times when the reinforcing system is 
activated. (Interactions between neurons in hippocampus and sensory- 
association cortex play important roles in other complex behavior, including 
memory, but they are not considered here. For an overview, see Donahoe & 
Palmer, 1994). 

Simulation of formation of polysensory cells 
The sensory subnetwork (see Figure 2) can be used to simulate the forma- 

tion of polysensory cells with the proposed mechanism. Suppose that some 
behavior is reinforced in the presence of two stimuli (e.g., S 1 and $2) but not 
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FIGURE 4. Simulations of the formation of S1-$2 polysensory units. Shown are the 
activation levels of S 1-$2 units produced by the co-occurrence of inputs to the polysen- 
sory units from S1 and $2 units (see text). Initially, the S1 and $2 inputs only weakly 
activate the polysensory S1-$2 unit. Under the control of hippocampal output, S1-$2 
units become polysensory, either rapidly with a strong DA signal (DA = 0.9) or more 
slowly with a weaker DA signal (DA = 0.1). 
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otherwise. As a consequence, behavior eventually occurs upon the joint occur- 
rence of S1-$2, but not when either S1 or $2 is presented singly. Figure 4 
presents the results of a simulation of the formation of a polysensory S 1-$2 
unit that is strongly activated by the co-occurrence of the two stimuli. When 
the dopaminergic signal is strong (DA = 0.9), the cell rapidly becomes poly- 
sensory; when the dopaminergic signal is weak (DA = 0.1), the cell develops 
more slowly. (See Gluck and Myers, this volume, for a detailed development 
of a hippocampal simulation that is broadly consistent with the approach taken 
here.) 

The net result of this process is that a nonspecifically projecting reinforcing 
system augmented by internal-feedback circuits has the potential to resolve the 
temporal and binding paradoxes in both the motor and sensory systems. 
Through the action of reinforcers~innate and acquired, environmentally and 
internally mediated~populations of neurons are selected in both sensory and 
motor systems that, together, implement complex environment-behavior rela- 
tions in a coordinated fashion. 

Role of inhibitory units. Although nonspecific neuromodulatory systems ad- 
dress the binding problem very effectively, they encounter a potential difficul- 
ty: Because a nonspecific reinforcing signal modifies synaptic efficacies bet- 
ween all coactive pre- and postsynaptic neurons, many of the modified synaps- 
es would likely involve neurons that were coactive for reasons causally unre- 
lated to the reinforced environment-behavior relation. This would lead, if 
unchecked, to the modification of many irrelevant synapses with the ultimate 
consequence of impairing efficient neural processing. 

Natural selection has addressed this potential undesirable side effect of 
nonspecific reinforcing systems through the evolution of local inhibitory cir- 
cuits. Units implementing inhibitory circuits have been successfully simulated 
in selection networks. Consider a network whose layers of excitatory units are 
richly interconnected to excitatory units in other layers. When inhibitory units 
are not present between excitatory units within a layer, units in that layer 
compete strongly with one another for control over units in downstream layers 
on which their outputs converge. The result is that many upstream units must 
be active in order to strongly activate a downstream unit. This uneconomical 
use of units also arises when inhibitory units are not present between excitatory 
units within downstream layers. Now, a unit in an upstream layer weakly 
activates many units in the downstream layer. This produces interference 
among the upstream units in their ability to produce nonoverlapping patterns of 
activation in downstream units. Competition and interference among units are 
greatly reduced when local inhibitory units are implemented. The addition of 
inhibitory circuits permits a network to mediate multiple input-output relations 
by forming a series of local "winner-take-all" circuits. Experimental work at 
both the behavioral (Blough, 1975) and neural levels (Hartline & Ratliffe, 
1957) demonstrates the effect and existence of such circuits. 
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Implications for Complex Behavior 
In the concluding section of the chapter, some implications of the approach 

for complex behavior are outlined. Three sets of phenomena are touched upon: 
(1) conditioned perceiving, (2) problem solving, and (3) language acquisition. 
Before considering these implications, some general comments about the 
present approach are in order. 

Biobehavioral and cognitive-science approaches to neural networks 
The foregoing treatment of neural networks has been constrained and 

informed by experimental work at the behavioral and neural levels of analysis. 
However, much potentially relevant biobehavioral research has not been incor- 
porated. For instance, nothing in the simulations directly reflects the intracellu- 
lar second-messenger cascade that produces changes in synaptic efficacies. 
Only the presumed net effect of those processes~the change in synaptic effic- 
acy~has been simulated. For another, although the general form of the net- 
work architecture is faithful to the neuroanatomy of a nonspecific dopaminer- 
gic reinforcing system, many aspects of that system have not been simulated. 
Only one feedback pathway has been implemented~e.g., from prefrontal 
cortex to VTA~although other feedback pathways are present in the 
brain~e.g.,  from the basal ganglia of the neostriatum to the VTA and substan- 
tia nigra. It is unlikely~and even undesirable---for any simulation to instan- 
tiate all biobehavioral knowledge because the simulation would then be as 
complex (and as difficult to understand) as the processes whose outcomes it 
simulates. Instead, it is sufficient for the simulation to capture the phenomena 
to the desired particularity, employing those processes and structures minimal- 
ly necessary to accomplish that goal, while not violating any known experi- 
mental finding. To the extent that the outcome of the simulation is consistent 
with the phenomenon, then~to that extent~are the simulated processes 
competent to produce the phenomena. In short, the simulation demonstrates 
that those processes "explain" the phenomena. Of course, as the range of 
phenomena encompassed by a simulation increases, the need to incorporate 
additional findings may also increase (see Chapter 1). 

The approach to neural networks pursued here differs fundamentally from 
parallel distributed processing in normative cognitive science. In cognitive 
science, the structure of networks and the algorithms modifying their connec- 
tion weights are typically constrained only by knowledge of the behavioral 
output of the organism and by logico-mathematical considerations, not by 
direct information about the internal processes and structures mediating that 
output. Internal events are merely inferred from their external behavioral ef- 
fects, a strategy that is fraught with perils of two sorts: (1) Behavioral observa- 
tions do not sufficiently constrain inferences about underlying events to make 
any particular inference compelling. Who would claim that a reasonable way to 
understand the internal workings of a computer is to look at only its inputs and 
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outputs? (2) Internal events that are solely the product of inferences from 
behavior invite circular reasoning. That is, behavioral observations provide the 
basis for the inferences, but then the validity of the inferences is judged by 
their consistency with the behavior that led to the inferences in the first place 
(Donahoe & Palmer, 1994, p. 9-10). 

The treatment of neural networks nicely illustrates the differences between 
the biobehavioral and cognitive-science approaches. In biobehavioral science, 
the great bulk of evidence points toward reinforcement learning as the means 
by which synaptic efficacies (connection weights) are modified~although, of 
course, much remains to be known about the workings of the process. A quick 
survey of ten recent cognitive-science texts on my bookshelf revealed that only 
three mentioned reinforcement learning at all, and one of these was dismissive. 
Indeed, the most commonly used learning algorithm employs a technique 
known as backpropagation (Rumelhart, Hinton, & Williams, 1986), which 
lacks biological plausibility. Neural networks were mentioned in more of the 
texts~six of the ten--but the units and architectures of the networks were 
unrelated to the relevant neuroscience except in one instance. Others have 
commented on the lack of correspondence between the neural networks in 
cognitive science and in neuroscience (e.g., Crick & Asanuma, 1986). In 
cognitive science, it is sufficient for the outcome of the simulation to mimic the 
observed behavior. Such an approach may be quite reasonable for many engi- 
neering purposes (see Barto and Sutton, this volume), but it differs from the 
function of simulation in biobehavioral science. In biobehavioral science, 
simulation explores the implications of processes and structures that are the 
fruits of independent experimental analyses. (For further discussion of this 
issue, see Van Orden, Bosman, Goldinger, & Farrar, and Barnes & Hampson, 
this volume; cf. Donahoe & Palmer, 1989; Rumelhart, McClelland, & The 
PDP Group, 1986.) 

Conditioned perceiving 
One of the most important omissions from the neural networks thus far 

considered are recurrent connections. Recurrent connections extend from units 
within the network to other units that are more "superficially" placed; e.g., 
from motor-association units to sensory-association units. Until this point in the 
presentation, only feedforward connections have been considered; e.g., from 
sensory- to motor-association units. Through the operation of recurrent connec- 
tions, the activity of a unit at one time can affect its own activity at some later 
time. And, in the brain, recurrent connections between regions are often as 
plentiful as feedforward connections: The feedforward pathways from thalamus 
to cortex are complemented by equally rich recurrent connections from cortex 
back to thalamus. Recurrent connections have not been considered for simplici- 
ty's sake alone; a nonspecifically projecting reinforcement system is as com- 
petent to modify connection weights along recurrent pathways as feedforward 
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pathways, and with the same ability to resolve the temporal and binding para- 
doxes. 

Only one effect of recurrent connections is considered here---the establish- 
ment of conditioned perceiving as a normal accompaniment of learning 
(Donahoe & Palmer, 1994, pp. 275-277, 333-340). Assume that recurrent 
connections extend from motor-association back to sensory-association units 
(see Figure 2). Intracortical and cortico-thamalic connections of this sort are 
well documented (e.g., Fuster, 1989). Consider now the events that would 
transpire during the acquisition of any environment-behavior relation. Envi- 
ronmental stimuli activate units first in the sensory and then the motor subnet- 
work. The former include units whose concerted activity mediates perceiving. 
When the target behavior occurs, the reinforcing system is engaged and in- 
creases the connection weights of all recently coactive synapses. This process 
strengthens synapses along pathways leading from activated input units to the 
target output units. When recurrent connections are present, an additional 
effect occurs: Units in motor-association areas activate pathways that connect 
to sensory-association units. If active recurrent connections make synapse with 
recently activated sensory-association units, then the reinforcing signal 
strengthens such recurrent connections from motor-association to sensory- 
association units. Which sensory-association units are most likely to have been 
recently activated and, hence, have their connections from recurrent pathways 
strengthened? The most recently activated sensory-association units are precise- 
ly those that were activated by the stimulating environment prior to the rein- 
forcer. Thus, an automatic accompaniment of the strengthening of feedforward 
connections to units in the motor subnetwork is the strengthening of recurrent 
connections from motor-association units to sensory-association units. The 
functional significance of strengthening these recurrent connections is that 
whenever those motor-association units are activated in the future---by path- 
ways from whatever other units--some of the units in sensory-association 
cortex that mediated the original perception will be reactivated. Thus, some of 
the neural activity underlying perceiving is automatically conditioned when 
learning occurs. This conditioned activity in sensory-association units is the 
physical counterpart of conditioned perceiving; i.e., imagining and reminisc- 
ing. The unit activity underlying conditioned perceiving can then reafferent 
units in the motor subnetwork thereby affecting the likelihood of previously 
reinforced behavior. 

Problem solving 
The ability to solve problems~to "think"~is one of the hallmarks of our 

species. Such behavior is largely covert and the environmental reinforcers (if 
any) follow a temporally extended sequence of many responses. What main- 
tains this covert sequence of behavior that is reinforced by the environment 
after such long delays? The processes of conditioned perceiving and internal 
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reinforcement provide potential routes to an answer. First, the present envi- 
ronment triggers perceptual processes that generate covert motor activity 
previously conditioned to those processes. Then~via recurrent 
connections~conditioned perceiving occurs that, in turn, evokes further covert 
motor activity previously conditioned to those conditioned perceptions. Repeat- 
ed cycles of these covert processes are maintained by feedback circuits mediat- 
ing internal reinforcement. Internal reinforcement occurs when motor- 
association units activate the nonspecific reinforcing system as a result of 
reafference. (For a more complete biobehavioral treatment of problem solving, 
see Donahoe & Palmer, 1994; pp. 277-293.) 

In its simplest form, the operation of the internal reinforcing system can be 
illustrated by the following simulation. A stimulus ($2) was paired with an 
environmental reinforcing stimulus (S R) while, on other trials, another stimulus 
(S 1) was paired with $2 alone. After $2-S R pairings had established functional 
internal reinforcing circuits that could be activated by $2, conditioning to S 1 
occurred even though S1 had never been paired with an environmental rein- 
forcer. These training conditions were simulated using a network architecture 
that had been produced by a genetic algorithm (see Burgos, this volume). This 
particular genetic algorithm favored the evolution of an architecture that could 
learn to respond to either of two stimuli after 8 time steps. Figure 5 shows the 
results of the simulation: Responding was acquired to S 1 through the action of 
the internal reinforcement mechanism alone. Note that the genetic algorithm 
that guided the development of the architecture did not select for the capacity 
to learn under these conditions, but simply for learning to respond to either of 
two stimuli. Learning via the internal reinforcement mechanism alone was an 
emergent product of the evolutionary process. (This simulation exemplifies a 
phenomenon known as higher-order conditioning; Pavlov, 1927). 

The internal reinforcement system is the origin of another emergent process 
that contributes to problem solving~short-circuiting. Assume that there are 
two parallel neural processes, each of which is potentially competent to pro- 
duce the target response. The first is a cortical process requiring a number of 
cycles of reafferent relations between units in the motor- and sensory-associa- 
tion subnetworks before motor units are activated that produce the target 
response. The second process involves a more direct pathway whereby units in 
sensory-association cortex can activate the motor units of the target response, 
but by means of a pathway that initially provides a pattern of activation that is 
less discriminable than the pattern produced by the less direct, reafferent 
pathways. As learning progresses, the target response would first be mediated 
by the slower, but more distinctive, reafferent process. However, over time, 
the target response would come to be mediated by the faster, more direct 
perceptual process. For example, a shift might occur between cortical control 
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of the motor system to largely subcortical control involving the basal ganglia of 
the neostriatum (see Figure 1). This shift to the more rapid process (i.e., the 
one that more quickly mediates the target response) would occur automatically 
because the delay in both internally and environmentally mediated reinforce- 
ment would be less than for the longer process. And, to the extent that verbal 
behavior is correlated with cortical involvement, a shift of the behavior from 
conscious to automatic processing would be anticipated by this account. 
Measures of neural imaging (see Raichle, this volume) and of retention (e.g., 
Knowlton, Mangels, & Squire, 1996) document a shift in neural processing of 
the type described. The central point is that short-circuiting is an emergent 
product of the neural mechanisms of internal reinforcement. Although there is 
more to problem solving and thinking than conditioned perceiving and internal 
reinforcement, important aspects of this complex behavior appear understand- 
able in these terms. 
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Language acquisition 
The final complex phenomenon for which the biobehavioral mechanisms of 

reinforcement provide at least a partial solution is language acquisition. Our 
species uniquely acquires verbal behavior, and does so without continuous 
reinforcing stimulation from the environment. Indeed, the apparent absence of 
reinforcement has been thought by some to constitute an insurmountable 
impediment to a biobehavioral account of language acquisition (e.g., Brown & 
Hanlon, 1970; for critical reviews, see Donahoe & Palmer, 1994, pp. 317- 
319; Palmer, 1986). Verbal behavior and its acquisition pose the most formid- 
able challenges to a biobehavioral approach, but the process of acquired rein- 
forcement~both environmentally and internally mediated~suggest one path to 
its resolution. 

Consider a child acquiring the ability to have its behavior guided by verbal 
stimuli (i.e., to comprehend speech). Although the auditory stimuli of speech 
are complex., the ability of such stimuli to control behavior does not present 
special problems for the reinforcement process itself. For example, a child 
"follows directions" and its behavior is reinforced by the environmental conse- 
quences of that behavior (the sought-after candy is obtained) and by acquired 
reinforcers from caretakers (the child is told that it has done well). 

Recall, however, that whenever any environmental stimulus acquires the 
ability to guide motor responses it also acquires the ability to activate the inter- 
nal reinforcing system. Of all behavior, human vocal behavior is uniquely able 
to capitalize on this latter process. To a greater degree than any other be- 
havior, human vocal behavior produces stimuli (vocal speech) that are similar 
to the stimuli that, though prior conditioning, already guide behavior. That is, 
if a child vocalizes "baby" upon seeing a doll, that vocalization produces a 
stimulus~the speech sound/baby/~that is physically similar to the auditory 
stimulus /baby/ that already controls behavior and, therefore, activates the 
internal reinforcing system of the speaker. In the vernacular, /baby/is already 
a meaningful stimulus. Thus, when the child says "baby," that response 
immediately produces a stimulus that activates the internal reinforcing system. 
There is an immediate, environmentally instigated and internally mediated 
acquired reinforcer for speaking. In addition, the more closely the child's vocal 
responding produces stimuli that approximate the ones produced by adult 
vocalizations, the greater the activation of the internal reinforcing system. In 
short, vocal behavior~and vocal behavior uniquely~immediately and appro- 
priately engages the neural mechanisms of internal reinforcement. According 
to this interpretation, language acquisition is not directly dependent on receiv- 
ing reinforcing feedback from others but on the prior comprehension of speech 
by the listener himself. That is, for language to be acquired, comprehension 
must precede production~as it does. Only then are the stimuli produced by the 
child's vocalizations able to activate the internal reinforcing system. 
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Biobehavioral accounts of verbal behavior require further experimental 
analyses to identify the relevant processes and further simulation research to 
explore the full implications of those processes. Nevertheless, no complex 
phenomenon seems beyond the reach of the approach and many phenomena 
appear within its grasp. 
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CHAPTER 19 

REINFORCEMENT LEARNING IN ARTIFICIAL INTELLIGENCE 

Andrew G. Barto and Richard S. Sutton 
Department of Computer Science 
University of Massachusetts, Amherst 

ABSTRACT 
This chapter provides an overview of an approach to the study of learning 

that, in broad terms, has developed as a part of the field of Artificial Intel- 
ligence (AI), where it is called reinforcement learning due to its roots in rein- 
forcement theories of animal learning. We introduce the field from the perspec- 
tive of AI and engineering, describing some of its key features, providing a 
formal model of the reinforcement-learning problem, and defining basic 
concepts that are exploited by solution methods. Detailed discussion of solution 
methods themselves and their history are very broad topics that we do not 
attempt to cover here. 

Introduction 
This chapter describes an approach to the study of learning that has devel- 

oped largely as a part of the field of Artificial Intelligence (AI), where it is 
called reinforcement learning due to its roots in reinforcement theories that 
arose during the first half of this century. Reinforcement learning in AI con- 
sists of a collection of computational methods that, although inspired by ani- 
mal-learning principles, are primarily motivated by their potential for solving 
practical problems. 

Although the ideas of reinforcement learning have been present in AI since 
its earliest days (e.g., Minsky, 1954, 1961; Samuel, 1959), several factors 
limited their influence. Chief among them is that AI research in the 1960s 
followed the allied areas of psychology in shifting from approaches based in 
animal behavior toward more cognitive approaches. This shift left little room 
for reinforcement theories. Although critics have argued convincingly that one 
cannot understand or generate all intelligent behavior on the basis of rein- 
forcement principles alone, reinforcement-learning theorists believe that AI 
systems and cognitive theories that steer clear of these basic learning principles 
are handicapped as well. 

A related factor that limited the influence of reinforcement-learning princi- 
ples in AI is the belief that they were too computationally weak to be of much 
use. However, there is now ample evidence that reinforcement learning can be 
very powerful. Some of the most impressive accomplishments of artificial 
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learning systems have been achieved using reinforcement learning. For exam- 
ple, Tesauro (1994, 1995) designed a system that used reinforcement learning 
to learn how to play backgammon at a very strong masters level; Zhang and 
Dietterich (1995) used reinforcement learning to improve over the state of the 
art in a job-shop scheduling problem; and Crites and Barto (1996) obtained 
strong results on the problem of dispatching elevators in a multi-story building 
with the aim of minimizing a measure of passenger waiting time. These are all 
very large-scale problems that present formidable difficulties for conventional 
solution methods. 

In addition to these successes, the growing interest in reinforcement learn- 
ing among current AI researchers is fueled by the challenge of designing intel- 
ligent systems that must operate in dynamic real-world environments. For 
example, making robots, or robotic "agents," more autonomous (that is, less 
reliant on carefully controlled, fully anticipated conditions) requires decision- 
making methods that are effective in the presence of uncertainty and that can 
meet time constraints. Under these conditions, learning seems essential for 
achieving skilled behavior, and it is under these conditions that reinforcement 
learning can have significant advantages over other types of learning. 

Despite much recent progress in machine learning, including new learning 
methods for artificial neural networks, most machine-learning research has 
focused on learning under the tutelage of a knowledgeable "teacher" that can 
explicitly tell the system how it should respond to a set of training examples. 
Although supervised learning, or learning from examples, as this type of learn- 
ing is called, is an important component of more complete systems, it is not by 
itself adequate for the kind of learning that an autonomous agent must accom- 
plish. It is often very costly, or even impossible, to obtain instructions that are 
both correct and representative of the situations in which the agent will have to 
act. In uncharted territory--where one would expect learning to be most bene- 
ficial~an agent has to learn from its own experiences rather than from a 
knowledgeable teacher. The primary source of information and feedback in 
reinforcement learning is this interaction with an environment. Of course, an 
agent should also be able to take advantage of the knowledge and experience of 
other agents to the extent that it can, but it should not subordinate its own 
intrinsic goals, determined by its definition of what events are intrinsically 
reinforcing, to the more superficial goal of meeting the specifications set of 
another, possibly fallible, agent. 

Reinforcement learning has developed into an unusually multidisciplinary 
research area. Researchers from AI, artificial neural networks, robotics, con- 
trol theory, operations research, and psychology are actively involved. In this 
chapter we introduce the field largely from the perspective of AI and engineer- 
ing. We describe some of the key features of reinforcement learning, provide a 
formal model of the reinforcement-learning problem, and define basic concepts 
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that are exploited by solution methods. Reinforcement-learning methods 
themselves and their histories are very broad topics that we do not attempt to 
cover here. The reader should consult Barto (1992); Barto, Bradtke, & Singh 
(1995); Kaelbling (1993); and Sutton (1992) for some of these details and 
extensive bibliographies. We also do not discuss how this model of reinforce- 
ment learning relates to details of animal-learning theory or to neuroscience. 
The reader should consult Barto (1992, 1994) for some references to this litera- 
ture. 

Some Key Features 
A good way to introduce some of the key features of reinforcement learning 

is to consider a few of the examples and possible applications that have moti- 
vated and guided its development: 

(1) A master chess player makes a move. The choice is informed both by 
planning~anticipating possible replies and counter-replies~and by immediate, 
intuitive judgments of the desirability of particular positions and moves. 

(2) An adaptive controller adjusts parameters of a petroleum refinery's 
operation in real time. The controller optimizes the yield/cost/quality tradeoff 
based on specified marginal costs without sticking strictly to the set points 
originally suggested by human engineers. 

(3) Phil prepares his breakfast. When closely examined, even this apparent- 
ly mundane activity reveals itself as a complex web of conditional behavior and 
interlocking goal-subgoal relationships: Walking to the cupboard, opening it, 
selecting a cereal box, then reaching for, grasping, and retrieving it. Other 
complex, tuned, interactive sequences of behavior are required to obtain a 
bowl, spoon, and milk jug. Each step involves a series of eye movements to 
obtain information and to guide reaching and locomotion. Rapid judgments are 
continually made about how to carry the objects or whether it is better to ferry 
some of them to the dining table before obtaining others. Each step is guided 
by goals, such as grasping a spoon, or getting to the refrigerator, and is in 
service of other goals, such as having the spoon to eat with once the cereal is 
prepared and of ultimately obtaining nourishment. 

(4) A mobile robot decides whether it should enter a new room in search of 
more trash to collect or start trying to find its way back to its battery-recharg- 
ing station. It makes its decision based on how quickly and easily it has been 
able to find the recharger in the past. 

These examples share features that are so basic that they are often over- 
looked. All involve an interaction between an active decision-making agent and 
its environment in which the agent seeks to achieve a goal despite variations or 
uncertainties in the environment. The agent's actions are permitted to affect 
the future state of the environment (e.g., the next chess position, the level of 
reservoirs of the refinery, the next location of the robot), thereby affecting the 
options and opportunities available to the agent at later times. Correct choice 
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requires taking into account indirect, delayed consequences of action, and thus 
may require foresight or planning. At the same time, the effects of actions 
cannot be fully predicted, so the agent must frequently monitor its environment 
and react appropriately. These three features~interactivity, uncertainty, and 
explicit goals~are key features of problems requiring intelligent adaptive 
behavior. Reinforcement learning is centered on such problems. 

Another key feature of the reinforcement-learning approach is that it explic- 
itly considers the whole problem of a goal-directed agent interacting with an 
uncertain environment. This is in contrast to many approaches that address a 
putative subproblem without addressing how it fits within a larger picture. We 
have already mentioned, for example, that much of machine-learning research 
is concerned with supervised learning without explicitly specifying how such 
an ability would finally be useful. Other AI researchers have developed theo- 
ries of planning without considering its role in real-time decision making or the 
question of where the predictive models necessary for planning would come 
from. Whether or not these approaches are yielding useful results, it is clear 
that their focus on isolated subproblems has now become an important limita- 
tion. 

Reinforcement learning takes the opposite tack by starting with a complete, 
interactive, goal-seeking system. All reinforcement-learning systems have an 
explicit goal, can sense aspects of their environments, and can choose actions 
to influence their environments and goals. Goals that involve planning address 
its interplay with real-time action selection and the question of how environ- 
mental models are acquired. Goals that involve supervised learning do so 
informed by a very specific role that specifies which capabilities and features 
are critical, and which are not. 

Being complete in this sense does not, of course, mean that the reinforce- 
ment-learning approach currently fills in all the details, or even suggests how 
they should be filled in. Reinforcement learning is developing in an abstract 
framework that, while very broad in scope, requires imposing additional struc- 
ture to address certain kinds of questions. There are many directions in which 
the reinforcement-learning model we describe here can be profitably special- 
ized and extended. 

An Example 
The familiar children's game of naughts and crosses (Tic-Tac-Toe) provides 

a very simple example of reinforcement learning. Two players take turns 
playing on a three-by-three board. One player plays crosses (X's) and the other 
naughts (O's) until one player wins by placing three marks in a row~horizon- 
tally, vertically, or diagonally~as the "X" player has in Figure 1. 

If the board fills up with neither player getting three in a row, the game is a 
draw. Because a skilled player can play so as never to lose, let us assume that 
we are playing against an imperfect player whose play is sometimes incorrect, 
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FIGURE 1. Naughts and Crosses (Tic-Tac-Toe). Two players take turns until one of 
them wins by placing three of his marks (X or O) in a row in any direction. 

thereby allowing us to win occasionally. How might one construct a player that 
will find the imperfections in its opponent's actions and learn to maximize its 
chances of winning? 

Although this is a very simple problem, it cannot readily be solved in a 
fully satisfactory way by classical techniques. For example, the classical 
"minimax" solution from game theory is not correct here because it assumes 
perfect play by the opponent. A minimax solution would never reach a game 
state from which it could lose, even if in fact it always won from that state 
because of incorrect play by the opponent. Classical optimization methods for 
sequential decision problems, such as dynamic programming (e.g., Bertsekas, 
1987), can compute the optimal solution for any opponent, but require a 
complete specification of that opponent, including the probabilities with which 
the opponent would make each move in each board state. We assume this 
information is not available a priori for this problem, as it is not for the vast 
majority of problems of practical interest. On the other hand, such information 
can be estimated from experience, in this case by playing many games against 
the opponent. About the best one can do with classical methods is to first build 
from experience a model of the opponent's behavior up to some level of con- 
fidence, and then apply dynamic programming to compute an optimal solution 
given the approximate opponent model. Functionally, this is not that different 
from some reinforcement-learning methods. 

Here is how the naughts-and-crosses problem could be solved most easily 
using a simple reinforcement-learning approach. First we set up a table of 
numbers, one for each possible state of the game---i.e., one for each possible 
configuration of X's and O's on the three-by-three board. Each number 
provides an estimate of the probability of our winning from that state. Assum- 
ing we always play X's, then for all states with three X's in a row the probabil- 
ity of winning is 1, because we have already won. Similarly, for all states with 
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three O's in a row, the correct probability is 0 as we cannot win from them. 
All the other states, the nonterminals, we set initially to the same value, say 
0.5, representing a 50% chance of winning. 

Now we play a great many games against the opponent. To select our 
moves we examine the states that would result from each of our possible 
moves (one for each blank space on the board) and look up their estimated 
probabilities of winning. Most of the time we select as our move the one that 
leads to the state with the highest estimated probability of winning. Occasional- 
ly, however, we select randomly from one of the other moves instead; these 
are called exploratory moves because they cause us to experience states that 
might otherwise never occur. A sequence of moves made and considered 
during a game can be diagrammed as in Figure 2. 

Opponent's Move 

0[11" M(Tve 

()pD~ncnt's Move 

()ur Move 

()pponenl's M(l\'e 

Olir Mtwc 

Starling Position 

{ 
{ 
{ 

. ; 9  ..--il;;" 
) " ' -  

FIGURE 2. Moves in Naughts and Crosses. The bold lines represent the moves taken 
during a game. The dashed lines represent moves that we (our algorithm) considered 
but did not make. Our second move was an exploratory move, meaning that it was 
taken even though some other alternative move, that leading to e', was more highly 
ranked. Exploratory moves do not result in learning, but each of our other moves does, 
causing backups as suggested by the curved arrows and detailed in the text. 

Now, while we are playing, we change the probability estimates for the 
states in which we find ourselves during the game. We attempt to make them 
more accurate estimates of the probabilities of winning from those states. 
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Informally, we say that the probability estimate for the state after each regular 
move is "backed up" to the estimate for the state after our preceding move, as 
suggested by the arrows in Figure 2. More precisely, the probability estimate 
for the earlier state is moved a fraction of the way from its current value to the 
value of the later state. Letting x k denote the state after our kth move, and let- 
ting V(xk) denote the estimated probability of winning from that state (the value 
of state xk), the update rule can be written: 

v(x ) .= v(x ) + 

where c~ is a small positive fraction called the step-size parameter. 
This update rule performs quite well with this task. For example, if the 

step-size parameter is reduced properly over time, this method will converge 
for any fixed opponent to the true probabilities of winning from each state 
given optimal play by the algorithm (Singh, Jaakkola, & Jordan, 1994). Fur- 
thermore, the moves then taken (except on exploratory moves) will, in fact, be 
the optimal moves against the opponent. If the step-size parameter is not 
reduced to zero over time, then a player using this rule will also play well 
against opponents that change their play slowly over time. This update rule is 
closely related to the method Samuel used in his 1959 program for learning 
how to play the game of checkers (Samuel, 1959). Sutton (1988), who refined 
and analyzed algorithms like this, called them temporal-difference methods. 

This example is very simple, but it illustrates some of the key features of 
reinforcement-learning methods. First, there is the emphasis on learning while 
interacting with an environment, in this case with an opponent player. Second, 
there is a clear goal, and correct behavior requires planning or foresight that 
takes into account delayed effects of one's choices. The simple reinforcement- 
learning player of naughts and crosses will, for example, learn to set up multi- 
move traps for a short-sighted opponent. It is a striking feature of reinforce- 
ment learning that it can achieve the effects of planning and lookahead without 
using a world model or carrying out an explicit search over sequences of 
choices. To be sure, planning using world models can be useful, but it is not 
always worth the effort. 

On the other hand, the naughts-and-crosses example is so simple that it 
might give the false impression that reinforcement learning is restricted to such 
tasks. Although naughts and crosses is a two-person game, reinforcement 
learning also applies in the more natural context in which there is no explicit 
external adversary. Naughts and crosses involves a relatively small, finite-state 
set, whereas reinforcement learning can be applied to very large or even infi- 
nite-state sets. For example, Tesauro (1994, 1995) combined the algorithm 
described above with an artificial neural network to acquire impressive skill in 
playing backgammon, which has a huge number of states--approximately 10 z~ 
The neural network provides this program with the ability to generalize from 
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its past experiences, so that in new situations it selects moves based on infor- 
mation saved from similar situations faced in the past, as determined by its 
network. Thus, how well a reinforcement-learning system can work with 
problems having very large state sets is intimately tied to how appropriately it 
can generalize from past experience. Methods for supervised learning, which 
focus almost exclusively on the problem of forming appropriate generaliza- 
tions, are most relevant to this aspect of reinforcement learning. A neural 
network is clearly not the only, or necessarily the best, way to do this. 

Other features of the naughts-and-crosses example are not essential to rein- 
forcement learning, for example, learning with no prior knowledge beyond the 
rules of the game. However, although many other reinforcement-learning 
examples begin similarly devoid of knowledge, reinforcement learning by no 
means entails a tabula rasa view of learning and intelligence. On the contrary, 
prior information can be incorporated into a reinforcement-learning system in a 
variety of ways that can be critical for efficient performance (Clause & Utgoff, 
1992; Lin, 1992; Maclin & Shavlik, 1994; Mitchell & Thrun, 1993). 

The naughts-and-crosses player also had to look ahead one step in order to 
evaluate the possible immediate results of a move. To be able to do this, it had 
to have a model of the game that allows it to "think about" how its environ- 
ment will change in response to moves that it may never make. However, the 
naughts-and-crosses player used its model in only a very simple way, whereas 
other reinforcement-learning systems make much more extensive use of envi- 
ronmental models (e.g., Barto et al, 1995; Moore & Atkeson, 1993; Sutton, 
1990, 1991). They can generate hypothetical experiences from which they can 
learn in the same way that the naughts-and-crosses player learns from real 
experience, or they can "reason" about the consequences of possible behavior 
and make various kinds of plans. These more complicated model-based rein- 
forcement-learning systems can include a full range of high-level, symbolic 
processing, and an important aspect of reinforcement learning is the improve- 
ment of environmental models through learning. Thus, although reinforcement 
learning is often associated only with very low-level processing, this is by no 
means an essential aspect of the approach. 

On the other hand, there are reinforcement-learning methods that do not 
need any kind of environmental model at all. Watkins (1989) called these 
primitive methods. Systems using only primitive methods cannot even think 
about how their environments will change in response to a single action. 
Because models have to be reasonably accurate to be useful, primitive methods 
can have advantages over more complex methods when the crucial bottleneck 
in solving a problem is difficulty in constructing a sufficiently accurate envi- 
ronmental model. Primitive methods are also important building blocks for 
model-based methods. 
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The naughts-and-crosses player had access to the complete state of the 
game, but reinforcement learning can also be applied when part of the state is 
hidden, ar when different states appear to the learner to be the same (e.g., 
Whitehead & Ballard, 1990; Jaakkola, Singh, & Jordan, 1995). Finally, the 
naughts-and-crosses player is a reinforcement-learning system on just one 
level. The decisions refined by learning are about the primitive moves of the 
game. Recalling our comments about the abstract nature of the reinforcement- 
learning framework, nothing prevents reinforcement learning from working at 
higher levels, for example, where each of the "actions" is itself the application 
of a possibly elaborate problem-solving method (e.g., Maes & Brooks, 1990; 
Mahadevan & Connell, 1991; Singh, Barto, Grupen, & Connolly, 1994). In 
hierarchical learning systems, reinforcement learning can work simultaneously 
on several levels (Dayan & Hinton, 1993; Singh, 1991, 1992). 

Fully satisfactory solutions are of course not yet available in all cases. Most 
of the theoretical results that exist so far, in fact, apply only to problems that 
share with the naughts-and-crosses problem the use of a tabular representation 
of a finite set of state values and access to complete environmental states 
(Barto et al, 1995). However, many reinforcement-learning researchers, like 
many other AI researchers, are willing to forge ahead when theoretical guaran- 
tees are lacking, and many applications of reinforcement-learning methods 
have been realized in ways that go considerably beyond available theory. 
Moreover, some of these applications have been very successful, as in the 
examples mentioned above by Tesauro (1994, 1995), Zhang and Dietterich 
(1995), and Crites and Barto (1996). 

The Credit-Assignment Problem 
In his famous paper "Steps Toward Artificial Intelligence," Minsky (1961) 

presented the basic ideas of "success-reinforced decision models" and dis- 
cussed the major computational problem that complex reinforcement-learning 
systems would have to solve to be successful. He called this the credit-assign- 
ment problem: 

In applying such methods to complex problems, one encounters a serious 
difficulty--in distributing credit for success of a complex strategy among 
the many decisions that were involved (p. 17). 

Later researchers distinguished between temporal and spatial aspects of the 
problem. Temporal credit assignment concerns determining which actions in 
the sequence of preceding actions were responsible for an eventual success (or 
failure). For example, if you win a chess game, how should you apportion 
credit among all the moves you made? The spatial aspect of the problem, on 
the other hand, concerns allocating credit to the many, possibly simultaneous, 
decisions that finally yielded an overt action. For example, if in winning the 
chess game your temporal credit-assignment mechanism assigned a certain 
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amount of credit to a particular move, how should you further apportion this 
credit among the various decisions that caused you to select it? Both aspects of 
the credit-assignment problem remain central problems for modern reinforce- 
ment-learning systems. 

The approach to temporal credit assignment used by many reinforcement- 
learning systems, including the naughts-and-crosses player described above, 
was introduced to AI in Samuel's program for learning how to play checkers 
(Samuel, 1959). The idea is that a reinforcement-learning system should not 
have to wait to learn until an externally supplied reinforcement signal occurs. 
The checkers player, for example, should not have to wait until the end of a 
game to receive reinforcement. The player should be able to produce for itself 
internal reinforcement when it achieves important subgoals during a game. 
Moreover, the player should be able to learn to recognize when important 
subgoals are achieved. Samuel's method for doing this is related, as previously 
noted by Minsky (1961), to the phenomenon of conditioned reinforcement in 
animal learning. An event that regularly precedes a reinforcing event can itself 
acquire the ability to reinforce still earlier activity; i.e., the event becomes a 
conditioned reinforcer. Conditioned reinforcers can, in turn, confer reinforcing 
qualities upon earlier events, making them into conditioned reinforcers as well. 
This suggests a recursive mechanism by which a system can learn long se- 
quences of actions that ultimately bring about real success, that is, success as 
determined by the ultimate primary reinforcer. Much of modern reinforcement 
learning exploits this process. 

The spatial aspects of credit assignment are not unique to reinforcement 
learning. For example, the error backpropagation method for adjusting the 
weights of a multi-layer artificial neural network is a spatial credit-assignment 
method widely used in supervised learning (Rumelhart, Hinton, & Williams, 
1986). Although this algorithm can be adapted to address temporal aspects of 
credit assignment, it ordinarily only addresses the spatial aspects by apportion- 
ing the credit (in this case, the blame) among the weights of a complex net- 
work for the errors made by the network as a whole. Similarly, reinforcement- 
learning systems have to adjust their decision rules even if some other mechan- 
ism produces timely reinforcement. Reinforcement-learning systems can use a 
variety of methods developed for supervised learning, although some methods 
are better suited than others due to the different demands of reinforcement 
learning. 

The general approach to credit assignment taken by reinforcement-learning 
systems is the major feature distinguishing them from methods based more 
directly on evolutionary metaphors, such as genetic algorithms (Goldberg, 
1989; Holland, 1975). Like reinforcement learning, evolutionary methods can 
be used to adapt the interactive behavior of an agent to achieve an explicit 
goal, but they do so without assigning credit on an intra-individual basis. For 
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example, if an agent does well, credit is assigned to all of its behavior, inde- 
pendently of how specific components of this behavior were related to success; 
full credit will even be given to behavior that was not expressed during the 
agent's lifetime. As a consequence, evolutionary methods, when used alone, 
may be inherently less efficient than methods that assign credit by taking 
into account intra-individual details about an agent's decision mechanisms and 
how they are marshaled over time. On the other hand, by not attempting intra- 
individual credit assignment, evolutionary methods are not misled by credit's 
being incorrectly assigned. In any event, we do not consider evolutionary 
methods to be especially well adapted to the reinforcement-learning problem. 
Although evolution and learning, especially reinforcement learning, share 
many features and can naturally work together, as they do in nature, they do 
not have equal access to the same credit-assignment mechanisms. 

The Reinforcement-Learning Problem 
Although certain learning algorithms are commonly associated with rein- 

forcement learning, it is more useful to define reinforcement learning in terms 
of learning problems, or collections of problems, rather than as a collection of 
algorithms. Here we present a model of the problem that many AI researchers 
have adopted in their approaches to reinforcement learning. This model is 
based on the Markov Decision Process formalism that has been widely studied 
by decision theorists (e.g., Bertsekas, 1987; Ross, 1983). 

Situation 
St 

AoE.T ] 
Reward 
rt 

, 4 ~  ENVI RONM ENT 

Action 
a,  

FIGURE 3. A Reinforcement-Learning Model. A reinforcement-learning agent and its 
environment interact over a sequence of discrete time steps. The actions are the choic- 
es made by the agent; the situations provide the agent's basis for making the choices; 
and the rewards are the basis for evaluating these choices. 

The agent-environment interface 
Reinforcement learning is about learning how to act to achieve a goal. A 

fruitful way of modeling such learning is based on viewing a decision maker, 
or agent, as a control system that is trying to develop a strategy by which it 
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can make its environment behave in a favorable way (where "favorable" has a 
precise meaning). A simple type of strategy maps each situation to a probabili- 
ty distribution over the actions that are possible for that situation. Upon deter- 
mining that it is in a new situation, the agent selects an action according to the 
probability distribution for that situation. As the agent learns, it changes this 
mapping, called its pol icy ,  based on its accumulating experience. 

To make the model more specific, think of the agent and its environment as 
interacting over a potentially infinite sequence of discrete time steps t = 
1,2,3,... At each time step t, the reinforcement-learning agent finds itself in a 
situation,  s t e S, and on that basis uses its current policy to choose an action,  a t 
e. A(St) , where ,Zl(St) is the set of actions available for situation s .  One time step 
later, in part as a consequence of its action, the agent receives a numerical 
reward,  r+ ~ e 9~, and finds itself in a new situation, st+ 1 e S (Figure 3). Rein- 
forcement-learning methods specify how such experiences produce changes in 
the agent's policy, which tells it how to select an action in any situation. 
Roughly speaking, the agent's objective is to find a policy that maximizes the 
amount of reward it receives over the long run. 

It is important to understand the degree of abstraction this model involves. 
It is a very abstract and flexible model that can be applied at many different 
levels to many different problems. The actions, for example, could be low- 
level controls such as the voltages applied to the motors of a robot arm, or 
high-level decisions such as whether or not to have lunch or go to graduate 
school. Similarly, the situations can take a wide variety of forms. They could 
be low-level situations, such as direct sensor readings, or high-level ones, such 
as symbolic descriptions of the objects in a room. Some of the things making 
up a situation could even be entirely mental or subjective. For example, the 
agent could be in the situation of not being sure where an object is, or of 
having just been "surprised" in some clearly defined sense. Similarly, some 
actions could also be totally mental or computational, e.g., they may control 
what the agent chooses to think about, or where it focuses its attention. In 
general, actions can be the results of any decisions we learn how to make, and 
the situations can be anything we can sense that might be useful in making the 
decisions. 

In particular, it is a mistake to think of the interface between a reinforce- 
ment-learning agent and its environment as the physical boundary between a 
robot's or an animal's body and the external environment. Usually the bound- 
ary is drawn closer to the agent. For example, the motors and mechanical 
linkages of a robot and its sensing hardware should usually be considered parts 
of the environment rather than parts of the learning agent, even though these 
parts were probably designed to make the learning agent's task easier. Similar- 
ly, if we apply the model to a person or animal, the skeleton, muscles, and 
sensory organs should all be considered part of the learning agent's environ- 
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ment. Reinforcers, too, may presumably be computed inside the physical 
bodies of natural and artificial learning systems, but are considered external to 
the reinforcement-learning agent. 

The general rule we follow is that anything that cannot be changed arbitrari- 
ly by the learning agent is considered external to it and, thus, part of its envi- 
ronment. Note that we do not assume that events in the environment are 
unknown to the agent, only that they are incompletely controllable. For exam- 
ple, the agent will often know quite a bit about how its reinforcers are comput- 
ed as a function of its actions and the situations in which they occur. But we 
always consider the reward computation to be external to the agent because it 
defines the problem facing the agent and, thus, is beyond its ability to change 
arbitrarily. In some cases, in fact, the agent may know everything about its 
environment and still face a difficult reinforcement-learning problem, just as 
we may know exactly how a puzzle like Rubik's cube works but still be unable 
to solve it. The agent-environment boundary represents the limit of the agent's 
control, not of its knowledge. 

The agent-environment boundary can even be located at different places for 
different purposes. In a complicated robot, many separate reinforcement-learn- 
ing agents may be operating at once, each with its own boundary. For exam- 
ple, one agent may make high-level decisions that form part of the situations 
faced by a lower-level agent that implements the high-level decisions. In prac- 
tice, the agent-environment boundary is determined once one has selected 
particular sensations, actions, and reinforcers, and thus identified a particular 
decision-making problem of interest. 

The reinforcement-learning model is a considerable abstraction of the 
problem of learning to make decisions based on their consequences. It propos- 
es that whatever the details of the sensory and control apparatus, and whatever 
objective one is trying to achieve, any problem of learning goal-directed be- 
havior can be reduced to three signals passing back and forth between an agent 
and its environment: One signal represents the choices made by the agent (the 
actions); a second signal represents the basis on which the choices are made 
(the situations); and a third signal defines the goal of learning (the rewards). 
We do not claim that this framework is adequate to usefully model a// decision- 
learning problems, but it has proven to be widely applicable. Of course, the 
situation and action representations will vary greatly from application to appli- 
cation, and will strongly affect performance. In reinforcement learning, as in 
other kinds of learning, such representational choices are at present more art 
than science. 

Goals, rewards, and returns 
In reinforcement learning, the concept of goal is modeled by a special 

scalar signal called the reward that passes from the environment to the agent. 
Informally, the agent's goal is to maximize the total reward it receives. This 
means not just immediate reward, but reward over the long run. 
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The use of a scalar reward signal to formalize the idea of a goal is one of 
the most distinctive features of reinforcement learning. Although this way of 
formulating goals might at first appear limiting, in practice it hag proven to be 
very flexible and very widely applicable. The best way to see this is to consid- 
er examples of how it may be used. For example, to train a robot to walk, 
researchers have provided reward on each time step proportional to the robot's 
forward motion. In learning to run a maze, the reward is often zero except 
upon reaching the goal, when it becomes + 1. Another common approach in 
maze learning is to give a reward of-1 for every time step that passes prior to 
reaching the goal; this encourages the agent to reach the goal as quickly as 
possible. To train a robot to find and collect empty soda cans for recycling, 
one might give it a reward of + 1 for each empty can collected. One might also 
give the robot punishers when it bumps into things, or when people yell at it. 
For an agent learning to play backgammon or chess, the natural rewards for 
winning, losing, and drawing are + 1, -1, and 0, respectively. 

It is important to remember that rewards define the ultimate goal of the 
learning process. The rewards delivered to a reinforcement-learning agent 
should represent what you really want the agent to do. In particular, the 
reward signal is not the place to impart to the agent prior knowledge about how 
to achieve what you want it to do. For example, a chess-playing agent should 
be rewarded only for actually winning, not for achieving subgoals such as 
taking its opponent's pieces or gaining control of the center of the board. If 
these kinds of subgoals are rewarded, the agent might find a way to achieve the 
subgoals without achieving the real goal, e.g., taking the opponent's pieces 
even at the cost of losing the game. The reward signal is a way of communicat- 
ing to the robot what it should achieve, not how it should be achieved. 

Newcomers to this model of reinforcement learning are sometimes sur- 
prised that the rewards--the definition of the goal of learning--are computed 
in the environment rather than in the agent. Certainly, most ultimate goals for 
animals are recognized by computations occurring inside their bodies, e.g., by 
sensors for recognizing food and hunger, pain and pleasure, etc. However, as 
we discussed in the previous section, one can simply redraw the agent-envi- 
ronment interface such that these parts of the body are considered to be outside 
of the agent (and thus part of the agent's environment). For example, if the 
goal concerns a robot's "internal" energy reservoirs, then these are considered 
part of the environment; if the goal concerns the positions of the robot's limbs, 
then these too are considered part of the environment--the boundary is drawn 
at the interface between the limbs and their control systems. 

Roughly speaking, structures and processes are considered part of the agent 
if they are completely, directly, and with certainty, controllable; otherwise 
they are considered part of the environment. The ultimate goal is always 
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something over which the reinforcement-learning agent has imperfect control: 
It cannot, for example, simply decree that the goal has been achieved (in the 
same way that it can arbitrarily set an internal parameter of its decision-making 
process). Therefore, we place the reward source outside of the agent. Note that 
this does not preclude the agent from defining for itself an internal goal, or a 
sequence of internal goals. Indeed, the commonly used method for temporal- 
credit assignment, based on Samuel's approach described above, does just that: 
It effectively defines internal goals. 

Until this point, we have been imprecise when we spoke of the goal of 
learning as maximizing reward over the long run. How might this be formally 
defined? If the sequence of rewards received after time step t is denoted r t+l  ~ 
r+2, r+3, "", then what aspect of this sequence do we wish to maximize? 
There are several useful answers to this question. The simplest is to maximize 
the total reward: 

r+]  + r+2 + r+3 + ... +r r (1) 

where T is a final time step. This approach makes sense in applications in 
which there is a natural notion of final time step in a trial, that is, when the 
agent-environment interaction breaks naturally into subsequences, such as 
plays of a game, trips through a maze, or any sort of repeated attempt where 
each repetition ends with a reset to a standard state. In these cases Equation 1 
defines the return for time step t, i.e., the return that accumulates after time 
step t. 

On the other hand, suppose that the agent-environment interaction does not 
naturally break into identifiable subsequences but simply goes on without limit. 
This would be the natural way to characterize a continuous process-control 
application, or an application to a robot with a long expected lifespan. The 
total-reward formulation then becomes problematic because the final time step 
becomes T approaches ~ ,  and the return as given by Equation 1 becomes a 
sum of an infinite number of terms. Thus the return, which is what the agent is 
trying to maximize, could itself be infinite (e.g, if the agent receives a reward 
of + 1 at each time step). 

The additional concept we need is that of discounted return. According to 
this approach, the agent's objective is to learn how to select actions so that, at 
every time step, the discounted sum of the rewards received over the future is 
maximized. That is, the objective is to learn to maximize the following defini- 
tion of return for each time step t: 

o o  

Ft+ 1 -F "y rt+ 2 + ,),2 rt+3 + . . .  = ~ ,~,k-1 Ft+k (2) 
k=l  

where ~, is a positive number called the discount factor. 



Reinforcement Learning in Artificial Intelligence 373 

The discount factor determines the present value of future rewards" A 
reward received k time steps in the future is worth ~-~ times what it would be 
worth if it were received immediately. If 0 _< ~ < 1, this infirrite discounted 
sum is finite as long as each individual reward is finite. If ~, = 0, the agent is 
"myopic," i.e., only concerned with maximizing immediate rewards. Its objec- 
tive in this case would be to learn how to act at each time step t so as to 
maximize only r+  ~. If each of the agent's actions happened only to influence 
the immediate reward, not future rewards as well, then a myopic agent could 
maximize Equation 2 by separately maximizing each immediate reward. But, 
in general, acting to maximize immediate reward can reduce access to future 
rewards so that the total reward may actually be reduced. As ~, approaches one, 
the objective takes future rewards into account more strongly" The agent 
becomes more farsighted. Other definitions of return for infinite-duration 
problems are possible (Mahadevan, 1996), but the discounted return is the 
simplest mathematically. 

Example: A problem that served as an early illustration of reinforcement 
learning is the problem of pole-balancing (Michie & Chambers, 1968). The 
objective here was to apply forces to a cart moving along a track so as to keep 
a pole hinged to the cart from falling over (Figure 4). We define a balancing 
failure as the fall of the pole past a given angle from vertical or the cart's 
exceeding the limits of the track. The pole is reset to vertical after each balanc- 
ing failure. This problem could be treated as a total-reward problem, where the 
natural subsequences are the repeated attempts to balance the pole. The reward 

I I 

FIGURE 4. The Pole-Balancing Problem. The objective is to apply forces to a cart 
moving along a track so as to keep a pole hinged to the cart from falling over. 
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in this case would be + 1 for every time step on which failure did not occur, so 
that the return at each time would be the number of steps before failure. Alter- 
natively, a punisher of-1 could be given for each failure and zero reward at all 
other times. The return at each time would then be related to -3' k, where k is 
the number of time steps before failure. In either case, the return is maximized 
by keeping the pole balanced for as long as possible. 

Situations and states 
The state of a system with respect to an external observer is a summary of 

the observer's past experience with the system. The summary need not be a 
complete history of every observed input and output, but it must contain all the 
information that makes a difference as far as the system's future behavior is 
concerned. In particular, the observer must be able (in principle) to predict the 
system's future behavior just as well from knowledge of its current state as 
from knowledge of its complete history. For example, the state of a cannonball 
in flight is its current position vector and velocity vector. It doesn't matter how 
its current position and velocity came about. 

In reinforcement learning, the external observer is the agent, and the state 
of interest is the state of the environment. In fact, the notion of "situation" is 
meant to be an approximation of the environment's state. What exactly is the 
state of the environment? The agent's past experience with the environment 
consists of all of the previous situations, actions, and rewards. Assuming that 
interaction began at t = 0, the complete history at time t is 

H = {s, r ,  at_,, St_l, rt_l, a_2, s_z, . . . ,  r l ,  ao, So}. (3) 

Any signal X t f. X ,  t ___ 0, gives the state of the environment at time step t if and 
only if the joint probability of the state, situation, and reward at time step 
t+  1, given x t and at, the action at time step t, is the same as their joint prob- 
ability given H and a t. When the number of possible states, situations, re- 
wards, and actions are finite, this can be written simply as follows: 

P{Xt+l=X, St+l=S, r + l = r  l x ', at} = P{xt+,= x, S +l=S, r + , = r  I H,  a }, (4) 

for all t _ 0, x e X, s e S, r e 9?, a e A(s), and all possible H,  where X, S, 9?, 
and A($t) are finite sets of possible states, situations, rewards, and actions, 
respectively. In reinforcement learning, situations are intended to approximate 
the environment's states. The situations are in fact true states if and only if 

P { s+ ,=s ,  r + , = r  I s ,  a} = P {s+,=s ,  r + , = r  I H , a }  (5) 

for all t _ 0, s e S, r e 9?, a e A(st), and all possible H.  (If any of these sets 
are not finite, e.g., if a reward can be any real number, then the same condi- 
tions can be written in terms of probability density functions.) In this important 
special case, the environment and its interface define a Markov Decision 
Process, or MDP. If an MDP has a finite number of states, and a finite number 
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of actions are available for each state, then it is a finite MDP. Because it is 
particularly easy to conceptualize and to prove theorems about finite MDPs, 
they play a central role in the theoretical analysis of reinforcement learning. 

The conditional probability distributions given by Equation 5 constitute a 
complete description of the dynamics of the MDP. As far as the agent is con- 
cerned, the dynamics specify how the environment changes over time in re- 
sponse to its actions. If a reinforcement-learning agent has complete knowledge 
of its environment's dynamics, then it faces a reinforcement-learning problem 
under conditions of complete information. Most problem-solving methods in AI 
have addressed problems of complete information, whereas reinforcement 
learning focuses primarily on problems of incomplete information. The reader 
should be careful not to confuse complete and incomplete information with 
complete and incomplete observation of the environmental state. We refer to 
the case of complete observation by saying that the environment has the 
Markov property. 

One can show that by iterating Equation 4 or Equation 5 an agent can 
predict any future state and reward from knowledge only of the current state 
and its proposed course of action (together with knowledge of the dynamics) as 
well as would be possible given the complete history. It also follows that the 
situations in MDPs provide the best possible basis for choosing actions. That 
is, the best policy for choosing actions as a function of situations is just as 
good as the best policy for choosing actions as a function of complete histories. 

Even when the situations are not technically states in the sense of exactly 
satisfying Equation 5, it may still be appropriate to think of the situation in 
reinforcement learning as an approximation to the environment's state. In 
particular, we always want the situation to be a good basis for predicting future 
rewards and for selecting actions. For some purposes, it is also desirable to use 
present situations to accurately predict following situations. States provide an 
unsurpassed basis for doing all of these things. To the extent that situations 
approximate states in these ways, one can obtain better performance from 
reinforcement-learning systems. For all of these reasons, it is useful to think of 
the situation at each time step as an approximation to an MDP's state, although 
one should remember that a situation is often not precisely a state. Although 
most reinforcement-learning algorithms can be applied when the situations are 
not states, sometimes with good results, almost all of the formal theory rests on 
the assumption that situations are actual states. 

Example: In the pole-balancing problem introduced in the previous section, 
a situation would be a state if it exactly specified, or made it possible to exactly 
reconstruct, the position and velocity of the cart along the track, the angle 
between the cart and the pole, and the rate at which this angle is changing (the 
angular velocity). In an idealized cart-pole system, this information would be 
sufficient to exactly predict the future behavior of the cart and pole, given the 
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actions taken by the controller. In practice, however, it is never possible to 
know this information exactly because any real sensor would introduce some 
distortion and delay in its measurements. Furthermore, in any real cart-pole 
system there are always other components of the state, such as the bending of 
the pole, the temperatures of the wheel and pole bearings, and various forms of 
backlash, which slightly affect the behavior of the system. These factors would 
cause violations of Equation 5 if the role of state were played by only the posi- 
tions and velocities of the cart and the pole. 

However, often the situations of the positions and velocities serve quite well 
as approximate states. In several of the early studies of learning the pole-bal- 
ancing problem, in fact, learning was successful despite the fact that each situa- 
tion provided only a very coarse representation of the true state. For example, 
in our work (Barto, Sutton, & Anderson, 1983), the possible cart positions 
were divided into three regions: right, left, and middle. The situations indicat- 
ed only in which of these three large regions the cart was located (and there 
were similarly rough quantizations of the other three intrinsic state variables). 
These rough approximations to the state were sufficient to easily solve the 
problem using reinforcement learning. In fact, this coarse representation of the 
state probably facilitated learning because it forced the learning agent to ignore 
fine distinctions that would not have been particularly useful in solving the 
problem. 

Example: In draw poker, each player is dealt a hand of five cards. There is 
a round of betting in which each player exchanges some of his cards for new 
ones, and then there is a final round of betting. At each round of betting, a 
player must match the highest bets of the other players or else drop out (fold). 
After the second round of betting, the player with the best hand and who has 
not folded is the winner and collects all the bets. 

The relevant state in draw poker is different for each player. Each player 
knows the cards in his own hand, but can only guess at those in the other 
players' hands. A common mistake is to think that the state must include the 
contents of all the players' hands and the cards remaining in the deck. Howev- 
er, this would provide more information than the state. In a fair game, one 
assumes that the players are in principle unable to determine these things from 
their past observations. If a player did have such information, some future 
events (such as the cards one could exchange for) could be better predicted 
than by remembering all past observations. 

In addition to knowledge of one's own cards, the state in draw poker in- 
cludes knowledge of the bets and the numbers of cards drawn by the other 
players. For example, if a player draws three new cards, you may suspect he 
retained a pair and adjust your estimate of the strength of his hand accordingly. 
The players' bets also influence your assessment of their hands. In fact, all of 
your past history with these particular players is part of the state. Does Ellen 
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like to bluff, or does she play conservatively? Does her face or demeanor 
provide clues to the strength of her hand? How does Joe's play change when it 
is late at night, or when he has already won a lot of money? 

Although everything ever observed about the other players may have an 
effect on the probabilities that they are holding various kinds of hands, in 
practice this is far too much to remember and analyze, and most of it will have 
no clear effect on one's predictions and decisions. Very good poker players are 
adept at remembering just the key clues and at sizing up new players quickly, 
but no one remembers everything that may be relevant. As a result, the situa- 
tions people use to make their poker decisions are imperfect state models, and 
the decisions themselves are presumably imperfect. Nevertheless, people can 
still make very good decisions in such problems. The inability to have access 
to a perfect representation of the environment's state is probably not a severe 
problem for an AI agent. 

Value Functions 
Almost all reinforcement-learning algorithms are based on estimating value 

functions--functions of situations, or of situation-action pairs, that estimate 
how good it is for the agent to be in that situation. The notion of "how good" is 
defined in terms of expected future rewards or, to be precise, as the expected 
return given, by Equation 1 or Equation 2, for example. Of course, the re- 
wards an agent can expect to receive in the future depend on what actions it 
takes. Accordingly, value functions are defined with respect to a particular 
policy. Recall that a policy, let us call it 7r, is a mapping from situations s e S 
to probability distributions over possible actions a e A(s). Informally, the value 
of a situation under a policy 7r, denoted V~(s), is the expected return when 
starting in s and following 7r. For MDPs, we can define V~(s) formally as: 

T 

V~(s) = E {~=rk l st=s}, (6) 

for the total-reward case, where the return is defined by Equation 1, and where 
E { }  denotes the expected value given that the agent follows policy 7r. For the 
discounted case, in which the return is given by Equation 2, W(s) is defined 
as" 

o a  

v- s) = e I s=s}. 

Similarly, following Watkins (1989), we define the action-value, or quality, 
of taking action a in situation s under a policy 7r, denoted Q'~(s,a), as the 
expected return starting from s, taking the action a, and thereafter following 
policy 7r: 



~78 A.G. Barto and R.S. Sutton 

T 
Q'(s,a) = E {~=trk I s=s,  a=a}, (8) 

for the total-reward case, and 

Q'(s,a) = E ~0]r l St=S, at=a}, (9) 

for the discounted-reward case. In either case, the (situation) value function is 
related to the action value function by 

W(s) = E {a'(s,a (,))}, (10) 

where a l,) is the action selected according to the probability distribution over 
actions gwen by 7r(s). 

For MDPs, the value functions V~(s) and Q~(s,a) can be estimated from 
experience. For example, if an agent follows policy 7r and maintains an aver- 
age, for each situation encountered, of the actual returns that have followed 
that situation, then the averages will converge to the situation's value, W(s), as 
the number of times that situation is encountered approaches infinity. If sepa- 
rate averages are kept for each action taken in a situation, then these averages 
will similarly converge to the action values, Q~(s,a). Estimation methods of 
this kind are often called Monte Carlo methods because they involve averaging 
over many random samples of actual returns. Of course, if there are very many 
situations, or very many actions possible in each situation, then it may not be 
practical to keep separate averages for each situation individually. Instead, the 
agent may maintain V ~ and Q" as parameterized functions and adjust the 
parameters to better match the observed returns. This can also produce accu- 
rate estimates, although much depends on the nature of the parameterized 
function approximation. 

A fundamental property of value functions used throughout reinforcement 
learning and dynamic programming is that they satisfy particular recursive 
relationships if the situations are genuine states. For any policy 7r and any state 
s the following consistency condition holds between the values of any "neigh- 
boring" states: 

= e i s = s} 

oo 

---- E .  {Ft+ 1 + ~ "~kr+k+ 2 I St=S} k=O 

= El- {rt+l + "YVX(St+l ) I st=s}, 

for the discounted-reward case, and 

(11) 
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Vr(s) = E .  {rt+ 1 "~- gr(S,+l ) I st=s} (12) 

for the total-reward case for t 4= T. Similar consistency conditions hold for Q". 
These conditions can be used in several different ways to compute or approx- 
imate V and Q'~. lr 

Example: Figure 5a uses a rectangular grid to illustrate a simple finite 
MDE The cells of the grid correspond to the states (situations) of the problem. 
At each cell, four actions are possible: NORTH, SOUTH, EAST, and WEST, 
which deterministically cause the agent to move one cell in the respective 
direction in the grid. Actions that would take the agent off the grid leave its 
location unchanged, but also result in a reward of-1.  Other actions result in a 
reward of 0, except those that move the agent out of the special states A and B. 
From state A, all four actions yield a reward of + 10 and take the system to 
A'. From state B, all actions yield a reward of + 5 and take the system to B'. 

Suppose the agent selects the four actions with equal probabilities in all 
states. Figure 5b shows the value function, W, for this policy, for the dis- 
counted-reward case with "r = 0.9. This value function was computed by 
solving the system of equations given by Equation 11. Notice the negative 
values near the lower edge; these are the result of the high probability of hit- 
ting the edge of the grid there under the random policy. Notice that A is the 
best state to be in under this policy, but that its expected return is less than 10, 
its immediate reward. The expected return is reduced because from A the 
agent is taken to A', from which it is likely to run into the edge of the grid. 
State B, on the other hand, is valued more than 5, its immediate reward, 
because from B the agent is taken to B', which has a positive value. From B' 

A~ \ 
+10} 
/ 

A' 

B \ 3.3 8.8 4.4 5.3 1.5 

+5 i~ + 1.5 3.0 2.3 1.9 0.5 

B' 0.1 0.7 0.7 0.4 -0.4 

-1.0 -0.4 -0.4 -0.6 -1.2 

-1 .s -1.3 -1.2 -1.4 -2.0 

(a) (b) 

FIGURE 5. Rectangular-Grid Illustration of a Value Function. a. Each cell is a state, 
and the agent can move one cell in any of the cardinal directions. Cells A, A', B, and 
B' are special states. Rewards are generated as described in the text. b. The value 
function for the policy of selecting the four actions with equal probabilities in all states. 
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the expected penalty (negative reward) for possibly running into an edge is 
more than compensated for by the expected gain for possibly stumbling onto A 
or B. 

The Optimality Equation 
Solving a reinforcement-learning problem means finding a policy that 

maximizes the expected return for each situation. For finite MDPs, we can 
precisely define the optimal solution in the following simple way. Value func- 
tions define a partial ordering over policies. A policy 7r is better than or equal 
to a policy 7r' if its expected return is greater than or equal to that of 7r' for all 
states. In other words, 7r > 7r' if and only if W(s) >_ W'(s) for all s e S. 
There is always at least one policy that is better than or equal to all other po- 
licies. This is an optimal policy. Although there may be more than one, we 
denote all the optimal policies by 7r*. They share the same value function, 
denoted V*, defined as 

V*(s) = W*(s) = max W(s) for all s e S (13) 

and the same action-value function, denoted Q*, defined as 

a*(s,a) ~* = Q (s,a) = max Q~(s,a) for all s e S, for all a e ,4(s). (14) 

Because V* is the value function for a policy, it must satisfy a consistency 
condition such as Equation 11 or Equation 12. Because it is the optimal value 
function, however, V*'s consistency condition can be written in a special form, 
often called the optimality equation, which is independent of the policy. Intui- 
tively, the optimality equation is based on the fact that the value of a state 
under an optimal policy must equal the expected return for the best action from 
that state: 

oo 

V*(s) = maXa Elr* {k~'O [ st=s, at=a}, (15) 

for the discounted-reward case. From this follows the optimality equation for 
the discounted-reward case: 

V*(s) = max E {r+l + ~,V*(s+~) I s=s, at=a }, (16) 
a 

for all s e S. For finite MDPs, the optimality equation has a unique solution 
independent of the policy, unlike the ordinary consistency condition (11), 
whose solution depends on the policy. The optimality equation is actually a 
system of equations, one for each state, so that there are I Sl equations in I Sl 
unknowns. If the dynamics of the environment are known, then in principle 
one can solve this system of equations for V* using one of a variety of methods 
for solving systems of nonlinear equations. 
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Once one has V*, it is relatively easy to determine an optimal policy. For 
each state s, there will be one or more actions at which the maximum is ob- 
tained in the optimality equation. These are all equally good actions. Any 
policy that selects only from among these is an optimal policy. Another way of 
saying this is that any policy that is greedy with respect to the optimal evalua- 
tion function V* is an optimal policy. The term greedy is used in computer 
science to describe any search or decision procedure that selects alternatives 
based only on local or immediate considerations, without considering the 
possibility that such a selection may prevent future access to even better alter- 
natives (Pearl, 1984). Consequently, it is descriptive of policies that select 
actions based only on their short-term consequences. The beauty of V* is that 
if one uses it to evaluate the short-term consequences of actions, specifically 
the one-step consequences, then a greedy policy is actually optimal in the long- 
term sense in which we are interested because V* already takes into account 
the reward consequences of all possible future behavior. By means of V*, the 
optimal expected long-term return is turned into a quantity that is locally and 
immediately available for each state. 

The optimality equation therefore provides one route for finding an optimal 
policy, and thus for solving a reinforcement-learning problem. Unfortunately, 
the solution outlined above is almost never directly useful. This solution relies 
on three assumptions that are rarely true in practice: (1) Situations are actual 
states, i.e., the agent-environment interaction can be modeled as an MDP; (2) 
We accurately know the complete dynamics of the environment, required to 
even obtain the optimality equation; and (3) We need enough computational 
resources to complete the computation of the solution. For the kinds of prob- 
lems in which we are interested, one is generally not able to implement this 
solution exactly because various combinations of these assumptions are violat- 
ed. For example, although the first two assumptions present no problems for 
the game of backgammon, the third is a major impediment. Since the game has 
about 102~ states, it would take thousands of years on today's fastest computers 
to solve the optimality equation for V*. Unless there is some special additional 
mathematical structure that can be exploited, one has to settle for approximate 
solutions. 

Many different decision-making methods can be viewed as ways of approx- 
imately solving the optimality equation. For example, heuristic search methods 
of AI (Pearl, 1984) can be viewed as expanding the right-hand side of Equation 
16 several times, up to some depth, forming a "tree" of possibilities, and then 
using a heuristic evaluation function to approximate V* at the "leaf" nodes. 
(Heuristic search methods such as A* are almost always based on the total- 
reward case, e.g., when the rewards are negative costs.) The methods of 
dynamic programming can be related even more closely to the optimality 
equation (Bertsekas, 1987). Many primitive reinforcement-learning methods 
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are well understood as approximately solving the optimality equation, using 
actual experienced transitions in place of knowledge of the expected transi- 
tions. 

Example: Suppose we solve the optimality equation for the simple grid 
problem introduced in the previous example and shown again in Figure 6a. 
Recall that state A is followed by a reward of + 10 and transition to state A ', 
while state B is followed by a reward of + 5 and transition to state B'. Figure 
6b shows the optimal value function, and Figure 6e shows the corresponding 
optimal policies. Where there are multiple arrows in a cell, either action is 
optimal. 

\ 
+10) 

/ 
A' 

B \ 22.0 24.4 22.0 19.4 17.5 

+5 19.8 22.019.8 17.8 16.0 " ~  

B' 17.8 19.817.8 16.0 14.4 

16.0 17.816.0 14.4 13.0 

14.4 16.0 14.4 13.0 11.7 

__, +,__ + .  
1" ._1'. 

t J ,_t 
t JJ 

(a) (b) (c) 

FIGURE 6. Rectangular-Grid Solution. a. The rectangular-grid illustration, b. The 
optimal value function, V*. e. Optimal policies, 7r*. Where there are multiple arrows 
in a cell, either action is optimal. 

Learning 
We have said that an agent's objective in a reinforcement-learning problem 

is, roughly speaking, to find a policy that maximizes the amount of reward it 
receives over the long run. We can now be more precise about what this 
means. The agent may be thought of as interacting with its environment over 
an infinite number of time steps. If the agent is trying to maximize total reward 
given by Equation 1 over subsequences of finite length, then we can imagine 
that it experiences an infinite number of such subsequences (e.g., can play an 
infinite number of games of backgammon). A reinforcement-learning agent has 
successfully completed learning when all the actions that it selects are optimal, 
i.e., when all of its actions are given by some optimal policy. This means that 
a Ber successful learning, the agent always acts to maximize the expected return 
from each situation it encounters. Obviously, this ideal situation is usually only 
achievable in the limit, if at all, as the time step of interaction goes to infinity. 
Most of the algorithms we consider have been designed to achieve, under 



Reinforcement Learning in Artificial Intelligence 383 

idealized circumstances, this kind of learning-in-the-limit, or asymptotic learn- 
ing. This is what we mean by saying that an agent should eventually learn to 
act optimally. 

Optimal learning may be contrasted with asymptotic learning. One might 
imagine that the agent should not only achieve optimal behavior in the limit, 
but should also improve its behavior as quickly as possible. That is, it should 
optimally learn how to behave optimally by making the best use of all of the 
experience it accumulates during its lifetime, as well as any prior knowledge it 
might bring to the task. An agent that learns optimally would maximize the 
total amount of reward it receives over its entire lifetime, not just over some 
time period in the infinite future. Although an ideal reinforcement-learning 
agent would be capable of optimal learning, we do not regard optimal learning 
as a realistic goal in designing reinforcement-learning agents. For the kinds of 
problems in which we are interested, optimal learning strategies can be gener- 
ated only with extreme computational cost. We are, however, interested in 
algorithms by which an agent can improve its performance efficiently over 
time but without undertaking the complex process of designing an optimal 
learning strategy. 

Even the ability to asymptotically learn to act optimally is usually beyond 
what is possible for a reinforcement-learning agent. We do not realistically 
expect that a reinforcement-learning agent would ever really achieve optimality 
even if it could learn over an infinite time period. A well-defined notion of 
optimality organizes the approach to learning we describe in this chapter and 
provides a way to understand the theoretical properties of various learning 
algorithms. However, it is an ideal that reinforcement-learning agents can only 
approximate to varying degrees. We noted previously that even if the rein- 
forcement-learning agent has a complete and accurate model of its environ- 
ment's dynamics, it is usually impossible for the agent to simply compute an 
optimal policy by solving the optimality equation. For example, board games 
such as chess are a tiny fraction of human experience, yet large, custom-de- 
signed computers still cannot compute the optimal moves. A critical aspect of 
the problem facing a reinforcement-learning agent will always be the computa- 
tional power available to it, in particular, the amount of computation it can 
perform in a single time step. Although it is unclear how to quantify computa- 
tional demands, they must be recognized. 

The memory available to the agent is also an important constraint. The 
agent may require memory to build up approximations of value functions, 
policies, and models. In problems with small, finite situation sets, it is often 
possible to form these approximations using arrays or tables. In most cases of 
practical interest, however, there are far more situations than could possibly be 
entries in a table. In these cases the functions must be approximated using 
some sort of compact representation. Most of the theory of reinforcement 
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learning applies to the tabular case, but many practical applications have used 
more compact representations. 

So, our model of the reinforcement-learning problem forces us to settle for 
approximations. However, it also presents some unique opportunities for 
achieving useful approximations. For instance, we said above that a reinforce- 
ment-learning agent has successfully completed learning when all the actions it 
selects are given by some optimal policy. But, this does not mean that the 
agent's policy has to be optimal. An optimal policy specifies an optimal action 
for every possible situation, but for an agent to behave optimally its policy has 
to be optimal only for the situations it actually encounters. How the agent 
would act in situations it never encounters has no impact on the total amount of 
reward it will receive. Similarly, in approximating optimal behavior, there may 
be many situations that the agent will encounter with such a low probability 
that selecting suboptimal actions for them will have little impact on the amount 
of reward it receives. Tesauro's backgammon player, for example, plays with 
exceptional skill even though it might make very bad decisions on board con- 
figurations that occur rarely in games against experts. In fact, such rare con- 
figurations may make up a very large fraction of the game's state set. The 
interactive nature of reinforcement learning makes it possible to approximate 
optimal policies in ways that put more effort into learning to make good deci- 
sions for frequently encountered situations, at the expense of less effort for 
infrequently encountered situations. This is a key property that distinguishes 
reinforcement learning from other approaches to approximately solving MDPs. 

Summary 
Let us summarize the elements of the model of a reinforcement-learning 

problem that we have presented. Reinforcement learning is about learning how 
to behave in order to achieve a goal. The reinforcement-learning agent and its 
environment interact over a sequence of discrete time steps. The specification 
of their interface defines a particular problem: The actions are the choices 
made by the agent; the situations provide the agent's basis for making the 
choices; and the rewards are the basis for evaluating these choices. Everything 
inside the agent is completely known and controllable by the agent; everything 
outside is incompletely controllable but may or may not be completely known. 
A policy is a stochastic rule by which the agent selects actions as a function of 
situations. Roughly, the agent's objective is to learn a policy that maximizes 
the amount of reward it receives over the long run. 

The state of the environment is a summary of the history of its situations, 
inputs (agent actions), and rewards that is sufficient to determine how it will 
behave in the future. The situation is meant to approximate the state. The 
dynamics of the environment are the stochastic relationships between the state 
and action at one time step and the situation and reward at the next. If an 
environment has the Markov property, then knowledge of the situation is suffi- 
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cient to predict the environment's future behavior given a proposed course of 
action; the situation is a sufficient proxy for the state. This is rarely exactly 
true, but often nearly so, and situations should be chosen or constructed so that 
the Markov property approximately holds. If the Markov property does hold, 
then the environment is called a Markov Decision Process, or MDP. A finite 
MDP is an MDP with finite situation and action sets. Most of the current 
theory of reinforcement learning is restricted to finite MDPs. 

The return is the function of future rewards that the agent seeks to maxi- 
mize. It has several different definitions depending upon whether one is inter- 
ested in total reward or discounted reward. A policy's value function assigns to 
each situation the expected return from that situation given that the agent uses 
the policy. The optimal value function assigns to each state the largest expected 
return from that state achievable by any policy. A policy whose evaluation 
function is the optimal evaluation function is an optimal policy. Whereas there 
is only one optimal evaluation function for a given MDP, there may be many 
optimal policies. Any policy that is greedy with respect to the optimal evalua- 
tion function is an optimal policy. The optimality equation is a special consist- 
ency condition that the optimal value function must satisfy and that can, in 
principle, be solved for the optimal value function, from which an optimal 
policy can be determined with relative ease. 

Most of the algorithms that have been developed for reinforcement learning 
were designed for asymptotic learning, which means that, under ideal circum- 
stances, as learning continues indefinitely, all the agent's actions approach 
optimal actions. We pointed out that this does not mean that the agent's policy 
must become an optimal policy; it only has to be optimal for the situations the 
agent actually encounters. We contrasted this with optimal learning, in which 
the agent should improve its behavior as quickly as possible by making the best 
possible use of all of the experience it accumulates during its lifetime, as well 
as any prior knowledge it might bring to the task. Although the rate of learning 
is a central issue in reinforcement learning, we do not regard optimal learning 
as a realistic goal in designing reinforcement-learning algorithms due to the 
extreme computational cost of obtaining optimal learning strategies for the 
kinds of problems that interest us. 

The ability to asymptotically learn to act optimally is also usually impossi- 
ble for a realistic reinforcement-learning agent due to limitations in computa- 
tional resources. Even if the agent has a complete and accurate model of its 
environment, the agent may not be able to perform enough computation per 
time step to fully use it. The memory available to the agent is also an important 
constraint. The agent may require memory to build up approximations of value 
functions, policies, and models. In most cases of practical interest, there are 
far more situations than could possibly be entries in a look-up table, and the 
functions must be approximated using some sort of compact representation. 
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Although most of the theory of reinforcement learning is restricted to the 
tabular case, many practical applications have used more compact representa- 
tions. 

Reinforcement-learning problems differ according to the level of knowledge 
initially available to the agent. In problems of complete information, the agent 
has a complete and accurate model of its environment's dynamics. In problems 
of incomplete information, this level of knowledge is not available. It is im- 
portant not to confuse complete and incomplete information with complete and 
incomplete observation of the environmental state. We refer to the case of 
complete observation by saying that the environment has the Markov property. 
For problems of incomplete information, model-based reinforcement-learning 
methods attempt to make up for the lack of a model by learning a model on 
line based on experience with the environment. Primitive methods attempt to 
optimize the policy without constructing a model of the environment's dynam- 
ics. Intermediate cases are possible as well. 

A well-defined notion of optimality organizes the model of reinforcement 
learning we have described in this chapter. Optimality provides a way to 
understand the theoretical properties of various learning algorithms, but it is an 
ideal that reinforcement-learning agents can only approximate to varying 
degrees. In reinforcement learning, we are concerned with cases in which 
optimal solutions cannot be found but can be approximated in some way. 
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THE TD MODEL OF CLASSICAL CONDITIONING: 
RESPONSE TOPOGRAPHY AND BRAIN IMPLEMENTATION 
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ABSTRACT 

Classical-conditioning procedures instill knowledge about the temporal 
relationships between conditioned stimuli, which are regarded as predictive 
signals and triggers for action, and the unconditioned stimulus, the event to be 
timed. This knowledge is expressed in the temporal features of the conditioned 
response, which typically develops such that its peak amplitude occurs at times 
when the unconditioned stimulus is expected. A simple connectionist network 
based on Sutton and Barto's Time Derivative Model of Pavlovian Reinforce- 
ment provides a mechanism that can account for and simulate virtually all 
known aspects of conditioned-response timing in a variety of protocols, includ- 
ing delay and trace conditioning and conditioning under temporal uncertainty. 
The network is expressed in terms of equations that operate in real time ac- 
cording to Hebbian competitive-learning rules. The unfolding of time from the 
onsets and offsets of events such as conditioned stimuli is represented by the 
propagation of activity along delay lines. Inputs to the processing unit from 
conditioned stimuli arise from collateral taps off of each sequential element of 
these delay lines. The model can be aligned with anatomical circuits of the 
cerebellum and brainstem that are essential for learning and performance of 
eyeblink conditioned responses. 

Overview 
Classical conditioning is a form of reinforcement learning in which the 

behavioral output, the conditioned response (CR), carries information about the 
imminence and timing of the reinforcing event, the unconditioned stimulus 
(US). Conditioned responses typically increase progressively in amplitude over 
the interval spanned by the onset of the conditioned stimulus (CS) and the US, 
peaking at the time of US and decreasing afterwards. This feature of CR 
topography and timing has guided the development of learning rules that have 
found application in domains of prediction and control of artificial systems. 
One widely adopted learning rule is that employed by adaptive critics (Barto, 
1995). Adaptive critics provide an actor with immediate evaluative feedback 
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derived from predictions of future reinforcement. For example, Barto, Sutton, 
and Anderson (1983) applied an adaptive critic to the cart-pole balancing 
problem. The critic forewarns the agent responsible for generating control 
signals with information about the likelihood that the system's current state will 
result in a penalty without ameliorating action. 

Sutton and Barto (1990) showed that the critic of the pole balancer can 
simulate a wide variety of classical-conditioning phenomena. In the context of 
classical conditioning, the adaptive critic is known as the Time Derivative 
Model of Pavlovian Reinforcement, or simply the TD model. The critic in the 
cart-pole system is mathematically identical to the TD learning rule (see Barto, 
Sutton, & Anderson, 1983, Equation 7, p. 841). 

The TD model is a member of a broader class of models that Sutton and 
Barto (1990) refer to as Y theories of reinforcement learning. Such theories 
take the following form: 

a v,. = xj t (1) 

As with Hebbian learning rules generally, changes in associative value, A 
V. for CS/, are computed as the product of two factors. The coefficients c~. and 
fi are rate parameters (0 < et~,l~ < 1). The factor X/represents the salience and 
associability of CS/, what Sutton and Barto (1990) call eligibility. Eligibility is 
a weighted average of previous and current strengths of CS.. The other factor, 

Q 1 

Y, represents reinforcement. Reinforcement in time-derivative models is a 
function of the difference (time derivative) between the response or output at 
time t, Y(t), and the response or output on the previous time step, Y(t - At) 
(Equation 2). Any system or device that would implement a time-derivative 
learning rule must be capable of monitoring the actor's output on both current 
and immediately preceding time steps. 

~" = Y(t) - Y( t -  At) (2) 

Models that conform to the basic structure of Equation 1 have been applied 
with uneven success to data from classical eyeblink conditioning. As reviewed 
by Sutton and Barto (1990), the TD model is superior to most Y theories of 
reinforcement. Furthermore, it can describe the appropriate timing and topog- 
raphy of eyeblink CRs, if one assumes that the CS-US interval is segmented 
into a sequence of time-tagged units, each of which develops its own associa- 
tive value over training. This representation of the CS is referred to as a 
complete serial compound (CSC). It resembles the approach to conditioned- 
response timing and topography employed by Desmond and Moore's VET 
model (Desmond, 1990; Desmond & Moore, 1988, 1991b, 1992; Moore, 
1991, 1992; Moore, Desmond, & Berthier, 1989). VET is an acronym derived 
from associative values based on expectations of reinforcement timing. VET's 
advantage over other models lies in the wide range of phenomena it can 
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encompass, but perhaps its most striking vindication is data illustrating that CR 
topography can be controlled by both the onset and offset of CS events. 

The success of the VET model comes at some cost in parsimony. Unlike the 
TD model, it assumes the existence of two neuron-like processors. One proces- 
sor, the E unit, "instructs" the other processor, the V unit, which generates the 
CR. In this role, the E unit resembles the critic in the pole-balancing problem. 
Where the critic provides a system's controller with predictions of penalties, 
the E unit provides the V unit with information about the expected timing of 
the US. 

Goals 
The purpose of this chapter is to show that the TD model can be extended 

to classical-conditioning protocols in which the offset as well as the onset of a 
CS controls the topography of the CR. One such case is trace conditioning. 
Another case involves training with varying CS-US intervals. In order to 
simulate appropriate CR topographies for these protocols, Desmond and 
Moore (1988) suggested in their VET model that CS offset, like CS onset, 
initiates a cascade of activation over a set of time-tagged serial components. 
We shall show that the TD model with a similar representation of both CS 
onset and offset is capable of simulating CRs from trace conditioning and from 
protocols with a varying CS-US interval. Furthermore, unlike VET, it can do 
this with one processing unit instead of two, although not without costs of its 
own. 

Another purpose of this chapter is to suggest a scheme whereby the TD 
model might be implemented in the brain. There are a number of brain systems 
that express TD learning, such as the basal ganglia (Houk, Adams, & Barto, 
1995), but we shall confine our attention to the cerebellum, as this part of the 
brain mediates the learning and performance of CRs such as the eyeblink. 

The TD Model 
The following equation expresses the TD learning rule for classical condi- 

tioning. 

AVi( t )  = fl[~, (t) + ~ Y(t) - Y(t - 1)] x ~ X i(t) (3) 

where 

Y(t) = F,.j V.(t)X.(t).j (4) 

The subscript j includes all serial CS components, and X.(t) indicates the on-off 
status of the jth component at time t. Y(t) corresponds to CR amplitude at time 
t. It cannot take on negative value, h (t) represents the strength of the US at 
time t. c~ and f~ are rate parameters. Notice that we have dropped the subscript 
from ct, so that Of i = ~ for all i. X g(t) is the eligibility of the ith CS component 
for modification at time t, given by the following expression. 
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~ .  B m 
X i (t dr- 1)  --  X i(t)  -~ ~ [ X . ( t ) - X  i(t)] 

whereO < ~_< 1. 

(5) 

The parameter 3'(0 < "r < 1) is the "discount" factor (see Barto, 1995), a 
key feature of the TD model which primarily determines the rate of increase of 
CR amplitude, Y(t), as the US becomes increasingly imminent over the CS-US 
interval. With the CSC representation of CSs, the TD model generates realistic 
portraits of CRs as they unfold in time. Realistic CRs resemble the classic goal 
gradients of traditional S-R reinforcement theory: The CR ramps upward to the 
predicted onset of the US. This aspect of CR waveforms reflects imminence- 
weighted (discounted) predictions of the US. Imminence weighting is a crucial 
feature of adaptive critics in reinforcement learning. 

Figure 1 shows a family of asymptotic CR waveforms with different values 
of 3' and di. (Details regarding implementation of the TD learning rule for 
simulations can be found in Sutton & Barto, 1990.) The figure shows that CR 
topography depends primarily on -/: The smaller the value of "r, the lower the 
peak value of CR amplitude, Y(t). Lower values of "r also increase the positive 
acceleration of CR amplitude, A ~'(t), without compromising the accuracy of 
Y(t)'s prediction of the timing of the US. 

In practice, CR topography depends on the physical characteristics of CSs 
and their serial components. These characteristics, such as acoustic frequency 
and intensity, can be captured by the variables X..(t) in Equation 4, as suggested 

J 
by Kehoe, Schreurs, Macrae, and Gormezano (1995), and by physical con- 
straints of the motor system. Physical constraints include such things as the 
limitations on the positions that the effectors can assume. In the case of classi- 
cally conditioned eyelid movements, the eyelids are normally open. In this 
position, CR amplitude has a value of 0. A fully developed CR is one in which 
the eyelid's position moves from open to completely closed. Yet, no matter 
how strong the prediction that the US will occur, the eyelids can only close so 
far. This constraint implies that the progressive closure of the lids in the course 
of CR production can saturate before the US's anticipated time of occurrence. 
In addition, these constraints on eyelid position render it impossible for nega- 
tive predictions of the US to be expressed directly in eyelid movement~pre- 
dictions that the US will not occur at some time when it would otherwise be 
anticipated. No matter how strong the prediction that the US will not occur, 
the eyelids can only open so far and no farther. 

TD Model Differs from VET 
Although they both aim to describe intra-trial as well as intertrial real-time 

aspects of classical conditioning, the TD model differs from the VET model in 
a number of ways. The TD model is simpler than the VET model because it 
consists of one learning rule that can be mapped directly onto behavior. The 
VET model has two learning rules: one for computing the expected time of the 
US, the other for computing the associative weights that map onto behavior. 
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As noted above, the VET model employs a representation of the CS which 
assumes that CS onsets and offsets initiate cascades of time-tagged serial 
components. Although not crucial, published simulations with VET assumed 
that next-in-line serial components are activated with a latency of 10 ms and 
that they remain active for 100 ms. Although serial components nearer in time 
to the US are more eligible for modification than those that are temporally 
remote, and therefore acquire greater synaptic weight, the overlapping pattern 
of activation fosters the development of robust CRs that increase sharply in 
amplitude as the US becomes imminent. Unlike VET, the TD model does not 
assume overlapping activation of serial components. The amplitude of the CR 
increases over the CS-US interval simply because components nearer the US 
gain greater synaptic weight than those that are more remote. 

The Sutton-Barto-Desmond Model 
Our interest in the TD model arose from a long-standing goal of developing 

computational models capable of describing CR waveforms in a variety of 
classical-conditioning paradigms. We began this quest with the TD model's 
predecessor, the Sutton-Barto (SB) model, which is another I~ learning theory 
developed by Sutton and Barto (1981). The Sutton-Barto (SB) model is given 
by the following equation. 

m 

A Vi(t ) = f l [Y ( t ) -  Y(t-1)1 x ~ X i(t) (6) 

The resemblance of the SB model to the TD model is obvious, yet they 
differ fundamentally. In the SB model Y(t) can include the primary reinforce- 
ment term, ~,. That is, Y(t) = ~. V.(t)X (t) + h. In the TD model Y(t) excludes 

�9 �9 �9 J_  

k, as indicated by EquaUon 4. l~nstead ~, is explicitly represented in the learn- 
ing rule, Equation 3. 

Although the SB model does not generate realistic CRs, an elaboration of 
the basic model known as the Sutton-Barto-Desmond (SBD) model can gener- 
ate rudimentary features of CR topography for a limited number of protocols. 
The SBD model has been described elsewhere (Blazis & Moore, 1991; Moore, 
1991; Moore, Berthier, & Blazis, 1990; Moore & Blazis, 1989a,b,c; Moore, 
Desmond, Berthier, Blazis, Sutton, & Barto, 1986). Limitations of the SBD 
model (Desmond, 1990; Sutton & Barto, 1990) prompted development of the 
VET model. 

The SBD model assumes that CR topography is guided by a template. Some 
agency exists that has a priori knowledge of what a fully developed CR is 
supposed to look like. CR topography depends on the assumed form of the 
template. In the VET model, CR topography is not guided by a template. 
Instead, CR topography arises from low-level mechanisms derived from the 
spread of activation from one serial component to the next and the timing of 
the US. In short, the form of the CR is selected by the timing relationship 
between the CS and the US, subject to physical constraints of the motor sys- 
tem. The TD model resembles the VET model in this regard. 
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The template approach to CR topography presents several difficulties which 
have been reviewed by Desmond (1990). The main difficulty is one of inflex- 
ibility. For example, the template assumed by the SBD model does not predict 
appropriate CR waveforms in a number of standard training protocols, includ- 
ing trace conditioning, long CS-US intervals, and mixed CS-US intervals. The 
VET and TD models overcome these limitations of flexibility because CR 
timing and topography are not predetermined. They are selected from ingredi- 
ents contributed by the salience and timing of CS components with respect to 
the US. 

Second-Order Conditioning 
Although the VET model has proven to be superior to the SBD model in 

providing flexibility in CR topography and timing, it has limitations of its own. 
The main limitation is that it cannot generate second-order conditioning. The 
VET model is incapable of generating second-order conditioning because, like 
the Rescorla-Wagner model, its learning rule assumes that learning occurs only 
on time steps or trials where a discrepancy exists between the magnitude of the 
US predicted by CS elements and the magnitude of the US as represented by 
the scalar value of the US, k. In second-order conditioning, the US does not 
occur, so there is no mechanism that permits the formation and modification of 
connections between the second-order CS and the CR. 

In contrast, I7' learning models such as SB are capable of generating second- 
order conditioning, so long as some portion of the second-order CS precedes 
the first-order CS (see Barto & Sutton, 1982, Figure 5, p. 230). If the would- 
be second-order CS occupies precisely the same time steps as the first-order 
CS, the SB model predicts blocking of conditioning to the would-be second- 
order CS. If the would-be second-order CS follows the first-order CS, its 
connection weights to the response become negative in value. The would-be 
second-order CS becomes a conditioned inhibitor. The TD model possesses 
these same attributes. 

S-S versus S-R Learning 
Experimental psychologists and animal-learning theorists distinguish bet- 

ween two broad classes of associative theory. They differ on the question: 
What is learned? For some, the answer is an S-R relationship. For others, the 
answer is an S-S relationship. S-R theories assume that connections are learned 
between stimuli and responses. S-S theories assume that connections are 
learned between stimuli or their representations in the brain. The theories of 
Thorndike, Guthrie, and Hull are examples of S-R theories. The theories of 
Tolman, Lewin, Mowrer, and Pavlov are examples of S-S theories. The dis- 
tinction between the two types of associative theory becomes important for 
understanding why models behave as they do. 
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FIGURE 2. Simulated CRs to CS-alone probes of 150 and 500 ms, following 1,000 
trials of trace conditioning with a 150-ns CS and a 200-ms trace interval, after Des- 
mond and Moore (1991 b). 
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The VET model is S-S because changes in connection weights are computed 
with respect to the discrepancy between (1) the magnitude of the representation 
of the US provided by CS elements active at the time and eligible for modifica- 
tion, and (2) the magnitude of the US provided by the US: 

A Vi(t ) = fl  [k ( t )-  Y(t)] x t~ X i (7) 

The SB model is S-R because changes in connection weights are computed 
with respect to the discrepancy between the current output of the system and 
preceding outputs, as indicated by Equation 6. 

The TD model is a hybrid theory because it employs both types of discrep- 
ancy to compute changes in connection weights. The US dominates on time 
steps when it is present; the discrepancy between current and preceding output 
dominates on time steps when the US is not present. 

13) Model Simulations with Onset and Offset CSC 
As noted previously, the VET model requires two processing units. The TD 

model with the CSC assumption allows it to simulate the key features of CR 
topography with the same flexibility and precision as the VET model but with 
one processing unit instead of two. Hence, only one learning rule, Equation 3, 
is necessary to generate appropriate output, as illustrated by simulations of two 
benchmark protocols. 

CS onset-offset synchrony in trace conditioning 
Desmond and Moore (1991b) showed that CS onset and offset both contrib- 

ute to the topography and timing of eyeblink CRs. To show this, rabbits were 
trained in trace conditioning with a CS-US interval of 350 ms. The CS dura- 
tion was 150 ms, and the trace interval, the time between CS offset and the 
US, was 200 ms. After training, the rabbits were probed with CSs of varying 
duration. Probes of 150 ms elicited unimodal CRs with peaks at the temporal 
locus of the US, i.e., about 350 ms after CS onset. Longer probes resulted in 
bimodal CRs. For example, when probed with a CS duration of 400 ms, two 
peaks appeared. The first occurred 350 ms after CS onset, which was attribut- 
ed to the onset cascade of serial components. The second peak occurred 200 
ms later, which was attributed to asynchronous displacement of the offset 
cascade. 

Figure 2 shows a simulation of a similar experiment using the TD model 
with the CSC assumption applied to onset and offset cascades. Like the VET 
model, the TD model predicts the two CRs that arise when the CS duration 
used in trace conditioning is lengthened on probe trials. In agreement with 
Desmond and Moore's (1991b) trace-conditioning study and predictions of the 
VET model, the amplitude of these peaks is not as great of that of the single 
peak in 150-ms probes. This is because the single peak represents the syn- 
chronized summation of associative values from onset and offset cascades. 
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FIGURE 3. Simulated CRs to CS-alone probes of 200 and 700 ms, following 1,000 
delay-conditioning trials with a 200-ms CS-US interval alternated with a 700-ms CS- 
US interval, after Millinsen et al (1977). 
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With longer probes, the associative values of these two cascades are no longer 
synchronized. Hence, the first peak is due to the onset cascade; the second 
peak is due to the offset cascade. The two peaks are equally high. This does 
not agree with data from Desmond and Moore (199 l b) showing that the second 
peak is not as high as the first peak. The VET model captures this difference 
by including a global parameter that takes account of the inverted-U nature of 
optimal CS-US-interval functions. The function specifies that training at the 
optimal CS-US interval, 250 ms for the rabbit eyeblink, is more efficacious 
than training at other CS-US intervals. The TD model does not include this 
parameter. 

Training with mixed CS-US intervals 
Millenson, Kehoe, and Gormezano (1977) trained rabbits in delay eyeblink 

conditioning with a mixture of two CS-US intervals, 200 and 700 ms. After 
training, the animals were probed with CS durations of 200 and 700 ms. On 
200-ms probes, CRs were unimodal with peaks at 200 ms. On 700-ms probes, 
CRs were bimodal with peaks at 200 and 700 ms. These results are predicted 
by the VET model (Desmond and Moore, 1988). They are also predicted by 
the TD model. As in the VET model, the TD model predicts only one CR peak 
on 200-ms probes because components of the offset cascade acquire negative 
associative values. This happens because offset serial components are systemat- 
ically not reinforced by the US in the presence of positively valued onset 
components that occupy the interval between 200 and 700 ms. Training with a 
mixture of two CS-US intervals is tantamount to a conditioned-inhibition 
procedure for the offset components. The negatively valued offset components 
cancel the effect of the positively valued onset components in this interval, 
thereby reducing or eliminating the second amplitude peak on 200-ms probes. 
On 700-ms probes, the negatively valued offset components are activated too 
late to affect the CR. 

Figure 3 is a simulation of the CS-US mixture experiment just described. It 
shows a single peak on 200-ms probes and two appropriately timed peaks on 
700-ms probes. The second peak is higher than the first because extinction of 
onset components in the 200-700-ms interval is blocked on 200-ms training 
trials by the presence of negatively valued offset components. In contrast, 
onset components in the 0-200-ms interval undergo unblocked extinction 
during 700-ms training trials. This extinction is not blocked by the presence of 
negatively valued offset components. 

The difference in the amplitude of the first and second peaks is not support- 
ed by data. Millenson et al (1977) found that the two peaks had about the same 
amplitude, and this is the prediction of the VET model. The VET model does 
not predict a smaller first peak because extinction, like acquisition, can only 
occur at times when the US is predicted by the E unit. The associative values 
of serial components active at other times do not change from one trial to the 
next. 
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Although not supported by data, the greater amplitude of the second peak 
on 700-ms probes makes sense from the CR-as-prediction viewpoint espoused 
by Sutton and Barto (1981). The amplitude of the second peak can be regarded 
as a measure of the likelihood of the US given that it did not occur at the point 
in time predicted by the first peak. Hence, by incorporating CS-offset cas- 
cades, the TD model computes conditional likelihoods of US timing. 

Implementation of TD Learning in the Cerebellum 
TD learning can be implemented in the cerebellum by aligning known 

anatomical arrangements with elements of the learning rule. In TD learning, 
we assume that each computational time step after the onset or offset of a CS is 
represented by an anatomically distinct input to the cerebellum. The easiest 
way to think about this is to imagine that the onset of a CS initiates a spreading 
pattern of activation among neurons tied to whatever sense modality is in- 
volved. This spreading of activation might occur within the brainstem or 
among cerebellar mossy fibers and their associated granule cells. A reasonable 
physical model of the process would be a tapped delay line, as in the VET 
model, but other plausible schemes have been suggested (e.g., Buonomano & 
Mauk, 1994). 

Consistent with numerous neurobiological studies, the implementation 
scheme relies on evidence from rabbit eyeblink conditioning that CR topogra- 
phy is formed in cerebellar cortex through converging contiguous action of 
parallel-fiber and climbing-fiber input to Purkinje cells. This action produces 
synaptic changes known as long-term depression (LTD). Experimental evi- 
dence from a variety of techniques supports this view, and it has guided 
implementation schemes for other computational models such as VET (Moore 
& Desmond, 1992; Moore et al, 1989). 

Figure 4, adapted from Rosenfield and Moore (1995), summarizes the 
neural circuits that are likely involved in rabbit eyeblink conditioning. The 
figure shows that CS information ascends to granule cells in the cerebellar 
cortex (Larsell's lobule H-VI) via mossy fibers originating in the pontine nuclei 
(PN). Information about the US ascends to cerebellar cortex by two routes, 
mossy-fiber (MF) projections from the sensory trigeminal complex, spinal 
oralis (SpO) in the figure, and climbing-fiber (CF) projections from the inferi- 
or olive (IO) nucleus. A CR is generated within deep cerebellar nucleus inter- 
positus (IP), where the CR is formed by modulation from Purkinje cells (PCs). 
A full-blown CR is expressed as an increased rate of firing among IP neurons 
(e.g., Berthier & Moore, 1990; Berthier, Barto, & Moore, 1991). This activity 
is projected to the contralateral red nucleus (RN). From RN, activity is pro- 
jected to motoneurons (MN) that innervate the peripheral musculature control- 
ling the position and movements of the eyelids and eyeball (Desmond & 
Moore, 199 l a). The RN also projects to SpO, giving rise to CR-related activi- 
ty among these neurons (Richards, Ricciardi, & Moore, 1991). 
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FIGURE 4. Cerebellar and brainstem circuits underlying eyeblink conditioning, after 
Rosenfield and Moore (1995). 

Figure 4 depicts an inhibitory projection from IP to IO. The consequence 
of this arrangement is that olivary signals to PCs are suppressed when the CR 
representation within IP is robust. This anatomical feature suggests that climb- 
ing fibers are only excited when the US occurs and the CR is weak or absent, 
implementing a simple delta learning rule such as Equation 7. The TD learning 
rule is not a simple delta rule because of the ~, Y(t) term in Equation 3. 

The TD learning rule is implemented by a combination of two reinforce- 
ment components. The first is donated by the US, ~ in the model's learning 
rule. ~ can be interpreted as the S-S or primary reinforcement component. The 
implementation scheme assumes that ~, can be aligned with climbing-fiber 
activation of PCs, which functions to produce LTD among coactive parallel- 
fiber (PF) synapses, as depicted in the figure. The second reinforcement opera- 
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tor is donated by the ~'(t) terms in the learning rule, ~ Y(t) - Y(t - 1). ~'(t) can 
be interpreted either as the S-R component or as the second-order conditioning 
component. 

Figure 5 shows circuit elements, not shown in Figure 4, for implementing 
the Y(t) component of the learning rule. These components include the projec- 
tions to cerebellar cortex from the RN and SpO indicated in Figure 4. We 
hypothesize that the RN projection carries information about Y(t) to cerebellar 
cortex as an efference copy. Parallel fibers project this information to PCs that 
have collaterals to a set of Golgi cells (Go). Because these projections are 
inhibitory 0to, 1984), these PCs invert the efference signal from the RN. In 
addition, the interpositioning of the PCs between the RN and Golgi cells atten- 
uates the signal and implements the TD model's discount factor, ~,. 

--< 

T T 'T < + 
! -- 

~ < I  ITI~ 

FIGURE 5. Neural circuits implementing -y Y(t) and other variables of the TD learning 
rule. 

Because Golgi cells are inhibitory on granule cells, the consequence of their 
inhibition by PCs receiving efference from the RN would be to disinhibit activ- 
ity of granule cells. In other words, since granule cells relay CS information 
from the PN to PCs involved in LTD and CR generation, disinhibition of 
granule cells by Golgi cells enhances the information flow from active CS 
components. Mathematically, the implementation scheme assumes that the 
variables X. in Equation 4 engage granule cells. The PFs arising from these 
granule cell~s engage LTD PCs in proportion to Y(t) x X.. 

J 
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In this scheme, PCs driven by projections from the RN would increase their 
firing rate so as to mimic the representation of the CR as it passes through the 
RN en route to MN and SpO. Berthier and Moore (1986) recorded from 
several H-VI PCs with CR-mimicking increases in firing. Since increases in 
firing during a CS are incompatible with CR formation through LTD, it is 
likely that these PCs were inhibiting motor programs incompatible with CR 
generation, e.g., eyelid and eyeball musculature that would lead to eyelid 
opening instead of eyelid closure. Here, we are suggesting an additional func- 
tion of these PCs, that of projecting inverted and discounted CR efference from 
the RN to Golgi cells. 

The implementation scheme assumes that the Golgi cells that receive the 
inverted efference from the RN also receive a direct, non-inverted, excitatory 
projection from SpO. This projection carries information about the CR at time 
t -  At. Therefore, the Golgi cell in Figure 5 fires at a rate determined by the 
differential between two inputs: ,,t, Y(t) donated by the RN and Y(t- At) donated 
by SpO. Hence, Golgi cells act as Y(t) detectors. In terms of Equation 3, Y(t) is 
transmitted to cerebellar granule cells by the RN, and Y(t- 1) is transmitted to 
granule cells from SpO. The RN input engages PCs that inhibit Golgi cells 
responsible for gating inputs from CSs to PCs. Efference from SpO engages 
the same Golgi cells directly. Because Golgi cells are inhibitory on granule 
cells, the bigger the RN input relative to SpO input, the bigger the signal from 
CS serial components active at that time, be they from onset or offset cascades. 
Enhanced throughput from active CS elements in the granular layer would lead 
to local recruitment of other active PFs that synapse on PCs involved in LTD 
and CR generation. 

In this way, the Golgi cells that implement Y(t) reinforce and maintain the 
down-regulated state of active PF/PC synapses subject to LTD. Mechanisms 
that allow this to occur have been spelled out in recent articles (Eilers, 
Augustine, & Konnerth, 1995; Ghosh & Greenberg, 1995; Kano, Rexhausen, 
Dreesen, & Konnerth, 1992; Konnerth, Dreesen, & Augustine, 1992). Paral- 
lel-fiber/PC synapses that are activated by a CS element are down-regulated by 
the contiguous activation of climbing-fiber input from the inferior olive nu- 
cleus, triggered by the US. As CS elements earlier in the sequence of elements 
become capable of evoking an output that anticipates the US, inhibition is 
relayed to the olive and the US loses its capacity to trigger a climbing-fiber 
volley, as shown is Figure 4. However, the down-regulation of these synapses 
is maintained, and still earlier CS elements are recruited, by PFs carrying Y x 
X. to LTD PCs as indicated in Figure 5. 

j 

In a single-unit recording study, Desmond and Moore (1991a) observed an 
average lead time of 36 ms from the onset of activity in RN cells having highly 
CR-related firing patterns and the peripherally observed CR. The average lead 
time of SpO cells with CR-related activity was 20 ms. Therefore, the time 
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difference in CR-related efference arising from the two structures is probably 
on the order of 15-20 ms. This difference spans one 10-ms time step used in 
simulations employing the TD model. This temporal difference is consistent 
with a conduction velocity of 2 m/s for the 10-mm trajectory of unmyelinated 
axons from the RN to rostral portions of SpO. The 10-ms grain also ensures 
high-fidelity resolution of fast transients. The fastest transients in eyeblink 
conditioning occur during unconditioned responses (URs). At their fastest, the 
eyelids require 80 ms to move from completely open to completely closed, 
with a peak velocity of approximately 4-5 mm/20 ms. 

Efference from SpO neurons recorded among H-VI PCs would tend to lag 
behind the peripherally observed CR, if it arises from more caudal portions of 
the structure. Berthier and Moore (1986) observed a continuum of lead and lag 
times among PCs that increased their firing to the CS. Purkinje cells that 
receive projections from SpO (not shown in the figure) would be expected to 
increase their firing, but with a lag relative to those receiving projections from 
the RN. It makes sense that the proportion of CR-leading PCs observed by 
Berthier and Moore (1986) matched the number of CR-lagging PCs, since 
these two populations would merely be reflecting CR efference from two 
temporal vantage points. 

Figure 6 is an expanded version of Figure 5 showing three sets of granule 
cells associated with three serial CS components. In the expanded model, these 
serial CS components arise from CS onsets and offsets, just as in Desmond and 
Moore's VET model. The degree to which information from any of these serial 
CS components reaches the PCs to which they project is determined by Golgi 
cells firing in proportion to t'(t), as just described. Figure 1 shows that, 
depending on "r, TD-simulated CRs are positively accelerating in time up to the 
occurrence of the US, so Y(t) increases progressively over the CS-US interval. 
Therefore, those PF/PC synapses activated near the time of the climbing-fiber 
signal from the US would have the greatest impact in establishing and 
maintaining LTD of PF/PC synapses that ensure the appropriate form and 
timing of CRs. The spatial arrangement of PF/PC synapses has no significance 
for CR timing, nor would their arrangement have an effect on the responsive- 
ness of PCs to PF input patterns (De Schutter & Bower, 1994). 

Implications of the Implementation 
The implementation scheme has several testable implications. One that has 

already been mentioned is that the firing pattern of most H-VI PCs with CR- 
related firing resembles the CR in form, in that their moment-to-moment rate 
of firing mirrors topographical features of the response. We maintain that this 
pattern of firing reflects CR efference. Since this efference cannot arise from 
proprioceptors, which are absent in muscles controlling the eyeblink, and since 
the axons of motoneurons innervating these muscles do not possess recurrent 
collaterals, this efference must arise from premotor centers. The RN and SpO 
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are the prime candidates. One can only speculate as to the functions of this 
efference. We suggest that one function is to activate Golgi cells that modulate 
information flow through the granule cells. Another function, would be to 
excite those PCs that project to deep nuclear cells which engage motor systems 
incompatible with CRs, such as those involved in eye opening or saccadic eye 
movements. 

The implementation scheme also requires that Golgi cells~which modulate 
information flow from the time-tagged components of CS onsets and 
offsets~fire in relation to changes in eyelid position, i.e., they fire in relation 
to Y. This property of Golgi-cell firing patterns has been reported by Van Kan, 
Gibson, and Houk (1993), in a study of monkey-limb movements, and Edgley 
and Lidierth (1987), in a study of cat locomotion. 
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FIGURE 6. The complete TD implementation scheme showing three sequentially 
activated CS components, representing both onset and offset cascades in the manner of 
Desmond and Moore's (1988) VET model. 
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A third implication of the implementation scheme concerns the effects of 
inactivation of the RN through the use of pharmacological agents or cryostatic 
probes. Although activation of the RN would cause a temporary interruption of 
the information flow that results in a conditioned response, it would not prev- 
ent learning the primary association between components of the CS and the 
US. This association would proceed with little disruption because the PN and 
the IO would still be able to convey CS and US information to cerebellar 
cortex. Evidence for this proposition comes from a study of rabbit-eyeblink 
conditioning by Clark and Lavond (1993). They demonstrated that inactivation 
of the RN by cooling did not prevent learning, as CR magnitude recovered 
immediately upon reactivation of the RN. 

Inactivation of the RN would, however, interrupt efference about the posi- 
tion of the eyelid at times t and t - At from the RN and SpO. Thus, Y would 
not be available to cerebellar cortex. According to the TD model, Y allows for 
increments of predictive associations in the absence of the US, as would occur 
in second-order conditioning (Kehoe, Feyer, & Moses, 1981). This being the 
case, inactivation of the RN would interfere with second-order conditioning. 
Animals trained simultaneously in first- and second-order conditioning with the 
RN inactivated would be expected to show first-order learning, as in the Clark 
and Lavond (1993) study, but little or no second-order learning. 

Interpretations of I~: Efference or Afference 
The implementation of the TD model interprets Y as efference. From a 

mathematical perspective, it is possible to interpret Y in terms of afference 
from CS components. This becomes apparent from the form of the TD learn- 
ing rule actually employed in simulations (Sutton & Barto, 1990). 

A V.(t) --j~ [)k (t) "4" "y ~j Xj(I) Vj(I- ] ) - ~ j  Xj(I- 1) V(t-  1)] x ol "Xi (t) (8) 

A recent study by Ramnani, Hardiman, and Yeo (1995) suggests that the 
efference interpretation of Y is correct. This experiment shows that temporary 
inactivation of IP by muscimol application prevents extinction of the CR. That 
is, CS-alone trials that would normally lead to a gradual elimination of the CR 
had no effect whatsoever. When tested later, after the muscimol blockade had 
been removed, the previously established CR was at full strength. It did extin- 
guish with continuing presentation of CS-alone trials. This finding is consistent 
with the efference interpretation of the model because inactivation of IP elimi- 
nates the CR and therefore prevents efference from the RN and SpO from 
affecting learning. Under an afference interpretation, inactivation of IP would 
not prevent C8 information from ascending to cerebellar cortex, where extinc- 
tion would proceed normally, as this information arises from the PN. 

Summary and Conclusions 
This chapter considered how the TD theory of reinforcement learning, 

which lies at the heart of promising applications in adaptive control in both real 
and artificial systems, might be adapted to training protocols in which behavior 
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is controlled by both the onset and offset of CSs. The TD model with the CSC 
assumption does a reasonably good job of generating appropriate CR wave- 
forms in such protocols. 

The chapter also reviewed the similarities and differences between the TD 
model (CSC) and earlier attempts to model CR topography and timing by 
Moore et al (1986) and Desmond and Moore (1988) in terms of concepts about 
associative learning developed and refined by experimental psychologists over 
the course of decades, emphasizing the TD model's relationship to S-R and S-S 
theories of learning. 

The chapter also suggests an implementation scheme for TD learning within 
the cerebellum. The implementation draws on neurobiological evidence regard- 
ing how LTD is established, reinforced, and maintained among Purkinje cells 
that form the CR. The implementation incorporates recent anatomical findings, 
reviewed by Rosenfield and Moore (1995), that allow these Purkinje cells to 
receive both components of the TD model's reinforcement operator~the 
primary component donated by the US and the secondary component donated 
by Y(t) = Y(t) - Y ( t -  At) .  T h e  implementation scheme lays the foundation for 
network simulations at the cellular level. 

The entire exercise reinforces the synergy that has enlightened and invig- 
orated behavioral and neurobiological studies of reinforcement learning. In 
particular, the TD model appears to be the most comprehensive rendering of 
classical conditioning that has been proposed to date. As far as applications to 
adaptive control in artificial systems are concerned, the TD model's role in 
reinforcement learning is becoming ever more ubiquitous (Sutton, 1992). 
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CHAPTER 21 

BIOLOGICAL SUBSTRATES OF PREDICTIVE MECHANISMS 
IN LEARNING AND ACTION CHOICE 

P. Read Montague 
Division of Neuroscience 
Baylor College of Medicine 
Houston, TX 

ABSTRACT 
A number of experimental studies have shown that diffuse monoaminergic 

systems influence neural plasticity and ongoing neural activity. In the verte- 
brate, these systems also play a role in activity-dependent development. In this 
chapter, I address the kinds of information that such systems could construct 
and deliver to their widespread target structures. I suggest that these diffuse 
systems may be positioned to construct prediction errors about the amount of 
reinforcement expected in the future. The framework is motivated by an estab- 
lished body of computational theory built around the method of temporal dif- 
ferences (TD). I demonstrate that this way of viewing the output of diffuse 
systems can account for the firing-rate changes in mesencephalic dopamine 
neurons during simple learning tasks, and provide a good account for the deci- 
sion-making behavior exhibited by bees and humans on simple choice tasks. 

Introduction 
The ability of an animal to anticipate future salient stimuli requires predic- 

tion. Sensory events and their representations in the nervous system must 
reliably predict the likelihood, time, and magnitude of future important events 
such as food, danger, destructive stimuli, and mates. Over the years, psy- 
chological experiments have established that both vertebrates and invertebrates 
are capable of such prediction and are capable of selecting appropriate actions 
based on these predictions (for reviews see Dickinson, 1980; Mackintosh, 
1983; Gallistel, 1990; Gluck & Thompson, 1987). Although many classical 
and instrumental conditioning phenomena are well understood from a psy- 
chological point of view, the neural mechanisms that generate, evaluate, and 
utilize predictions are in general unknown. 

There are, however, systems of neurons in both vertebrates and inverte- 
brates whose activity clearly relates to reward and salience processing. In the 
vertebrate brain, neuromodulatory systems have long been thought of as 
systems that report on the salience and emotional valence of events in the 
world. Although a number of subcortical structures are involved in reporting 
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on reward and salience (e.g., see Ledoux, 1992), this information is thought to 
be carried in part by activity in widespread systems of axons which deliver 
neurotransmitters such as norepinephrine, acetylcholine, dopamine, and sero- 
tonin to their targets. These axonal systems originate in small nuclei in the 
midbrain and basal forebrain and are sometimes collectively called diffuse 
ascending systems. Invertebrates have similar sets of neurons that respond to 
rewarding stimuli and deliver neuromodulators to widespread target regions 
(Hammer, 1993). Diffuse systems differ in their neurotransmitters, afferent 
input, and exact pattern of output connections. However, they all have the 
common property of collecting information from a wide array of structures and 
sending information out to widespread targets. 

We have previously proposed that diffuse neuromodulatory systems meet a 
number of general requirements for neural systems that could construct, dis- 
tribute, and use information about predictions (Quartz, Dayan, Montague, & 
Sejnowski, 1992; Montague, Dayan, Nowlan, Pouget, & Sejnowski, 1993; 
Montague, Dayan, & Sejnowski, 1994; Egelman, Person, & Montague, 1995). 
We have further suggested a computational explanation for how diffuse sys- 
tems play different roles in development, learning, and decision making. 

In this chapter, I briefly summarize a set of algorithms~called temporal 
difference or TD algorithms~that learn the sort of temporal dependencies 
discussed above. These algorithms have been applied successfully as models of 
classical conditioning. I show how various forms of these algorithms provide a 
computational framework for understanding the kinds of signals that diffuse 
neuromodulatory systems may construct and use. I further show how the same 
framework captures the decision-making behavior displayed by bees and 
humans on simple choice tasks. 

Temporal Difference Models of Conditioning 
Any system that learns to predict must have the capacity to generate predic- 

tions, assay the error in the predictions, and make learning contingent on the 
errors. These requirements are equivalent to many features of most adaptation 
rules in psychology and engineering (Kalman, 1960; Rescorla & Wagner, 
1972; Widrow & Stearns, 1985). The rule on which this chapter focuses is the 
temporal difference or TD rule. The TD rule is an adaptation of the Rescorla- 
Wagner rule for conditioning (Rescorla & Wagner, 1972) which takes proper 
account of the detailed time course of learning during training episodes (Sut- 
ton, 1988; Sutton & Barto, 1981, 1987, 1989, 1990). TD is also closely relat- 
ed to a learning rule suggested early by Konorski (1948) and has been used to 
model the behavior of the cerebellum at the cellular level (Moore, Berthier, & 
Blazis, 1990). 

The computational problem 
We briefly summarize the assumptions that underlie temporal difference 

(TD) models of classical conditioning (Sutton & Barto, 1987, 1989, 1990). At 
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time t, let x(t) be a vector with components x~(t) = 1 or 0, denoting the pres- 
ence or absence of stimulus i at time t. As a reminder that we will make a 
connection with real biological data, we will consider the components of x(t) as 
populations of neurons in the cerebral cortex that represent the state of the 
environment. At time t, the animal also receives a scalar reward r(t). Under 
TD, the computational goal of learning is to use the current stimuli x(t) (as 
represented in the cortex) to predict a measure of the long term discounted 
reward V(t) that will be available from time t onward: 

V(t) = F,3~-tlr(s) = ,y~ 1) + "~r(t+2) + 37r(t+3) + ... (1) 
s > t  

where 0 < ~, < 1 is a discount factor that models the fact that future rewards 
may be worth less than current ones. In non-deterministic problems, the 
computational goal is to predict the expected value of this quantity. For this 
framework to work, it is important that V(t) be a function of time solely 
through the inputs x(t). This assumption requires that future rewards do not 
depend on past rewards except through the current stimulus state x(t). Under 
this assumption, V(x) satisfies the simple recursive relationship: 

V(x(t- 1)) = r(t) + ~/V(x(t)) (2) 

The job for the cortex is to construct an estimate ~(x(t)) of the actual V(x). In 
the simplest case, actual estimates of the predictions V(x(t)) are constructed as: 

V(x(t)) = x(t)" w(t) (3) 

where w(t) is the weight of stimuli in the estimate V(x). Using the estimate 
V(x(t)), the difference between the two sides of Equation 2, 6(t), is defined to be 
the error in the current estimates" 

A 

6(t) = r(t) + ~/ V(x(t)) - V(x(t-1)) (4) 

6(t) is called the TD error since it involves the difference between the predic- 
tions at two successive time steps. 

Weight changes are specified as: 

AWl(t- 1) = rtx.(t- 1)6(t) (5) 

As in the Rescorla-Wagner rule or the engineering delta rule (Widrow & 
Stearns, 1985), the associated weights are adjusted to reduce the error. In 
Equation 5, rl is a fixed learning rate. 

As described above, learning in the TD rule is driven by any inconsisten- 
cies between the predictions made at one time and those made at later times, 
and specifies how adjustable weights should be changed to minimize these 
inconsistencies. Weight changes depend on presynaptic activity and a measure 
of ongoing prediction error (Equation 5). Any biological model based on this 
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framework would require the prediction error to be communicated to wide- 
spread targets so that it can affect plasticity at all appropriate synaptic sites (see 
below). 

Representing a stimulus through time 
This description does not specify one critical detail: How is a sensory 

stimulus represented through time? It is necessary to specify such a representa- 
tion so that when the prediction error di(t) is large, there is some kind of 

Modality I Modality II 

Acti on sel ecti on 

r(t) 
5(t) 

eye movements prediction error 
se l f -made sounds 

FIGURE 1. Constructing scalar predictions through convergence and divergence. 
Modality I and Modality II represent cortical regions or patches of cortex within a 
single region. Neuron P is a linear unit that collects highly convergent input C(t) from 
these cortical representations in the form V(t) = F,V(i,t) where r is a temporal 
derivative of the net excitatory input to domain i iri the cortex. I use V(t)-V(t-1) for 
~'(t). In the simplest interpretation, the convergence onto P forces the summation 
F, iV(i,t ), so that the input to P is a scalar. The output of P diverges to widespread 
targets, ensuring that the output is also a scalar. In this arrangement, any information 
encoded topographically in the cortical layers would be discarded. P also receives 
input from representations of salient events in the world and within the organism (r(t)). 
This arrangement permits the linear output of P, ~i(t)=r(t)+ V(t)-V(t-1), to act as a 
prediction error of future reward and expectations of reward. Fluctuations in neuro- 
modulator delivery about some baseline level represent these prediction errors. The 
general features of this arrangement are supported by anatomical and physiological 
data (Schultz, 1992; Schultz et al, 1993). As indicated, the same error signal can be 
used to bias action selection (see Figures 3, 5). 
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FIGURE 2. Conditioning using TD error signal. A. ~i(t) plotted versus timestep and 
trial. At timestep 60, a sensory cue was presented and was followed 20 timesteps later 
by a reward (r(t) = 1 for t=  80; r( t )=0 for t :r 80). The sensory cue has adjustable weights 
associated with the 40 timesteps following its initial onset at timestep 20. These 
weights are adjusted according to Equation 5. The evolution of ~5(t) (left panel) and the 
weights (fight panel) is shown. On trial 200, the reward is withheld and/i(t) is negative 
on t=80.  If the plot of/i(t)  were a physiological recording from a mesencephalic 
dopamine neuron (Schultz et al, 1993), one would see a transient change in firing at 
the onset of the predictive sensory cue, followed by a transient reduction in firing rate 
at the time that the reward had previously been delivered (t=80). B. These panels 
display the same information as in A, however, the consistency of reward delivery has 
changed. Reward is still delivered 20 timesteps after the onset of the sensory cue, but 
only on 80% of the trials. This inconsistency has obvious effects on the prediction 
error ~5(t) at specific times. In a physiological experiment after training, such a profile 
for/i(t) could be seen as a transient increase in firing rate at the sensory cue onset, 
followed by changes in firing rate at the time the reward is delivered. These latter 
changes might be increases or decreases in firing rate (learning rate=0.3 for both A 
and B). 
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"temporal pointer" to the stimulus and time that consistently precede the fluc- 
tuations in tS(t). 

We assume that the presentation of a sensory cue, say a light, elicits multi- 
ple representations of the light for a number of succeeding timesteps. In es- 
sence, we assume that different synapses are devoted to different times, 
although all of them represent the light from the point of view of the rest of the 
brain. I use the simplest form of such a representation: dividing the epoch 
following the stimulus into a finite number of equal time steps, each associated 
with a separate weight. For example, in Figure 2, the sensory cue is presented 
at timestep 60 and has weights associated with the succeeding 40 timesteps. In 
general, one would want to have a set of representations over continuous time 
rather than discrete time. This form of temporal representation is what Sutton 
and Barto (1990) call a complete serial-compound stimulus and is a form of 
Grossberg and Schmajuk's (1989) spectral timing model in which a learning 
rule selects from a spectrum of timed processes. How the brain generates 
analogous temporal representations is an important but unanswered question. 

Neurons that compute and distribute prediction errors 
We have recently proposed that the diffuse ascending systems are reporting 

information about predictions of future stimuli simultaneously to widespread 
targets (Quartz et al, 1992; Montague et al, 1993; Pouget et al, 1993; Mon- 
tague et al, 1994). Specifically, we have suggested that descending connections 
from cortical representations to various subcortical nuclei in the midbrain and 
basal forebrain can make predictions about future stimuli through sets of 
adaptable weights (l~gure 1). This work has suggested that errors in predic- 
tions analogous to those expressed in Equation 4 could be distributed to wide- 
spread target regions through diffusely projecting axonal systems, to influence 
activity-dependent map development in the neonate as well as learning and 
behavioral decisions in the adult (Quartz et al, 1992; Montague et al, 1993; 
Pouget et al, 1993; Montague & Sejnowski, 1994; Montague et al, 1994; 
Egelman et al, 1995). 

Schultz and colleagues have recently discovered neurons in the primate 
midbrain whose activity is consistent with a computation of prediction error 
(Ljungberg, Apicella, & Schultz, 1992; Schultz, 1992; Schultz, Apicella, & 
Ljungberg, 1993). This area, called the ventral tegmental area (VTA), contains 
dopaminergic neurons which send axons to widespread target regions, includ- 
ing various limbic structures involved in reward-dependent learning (Oades & 
Halliday, 1987). Schultz and colleagues have recorded from these neurons in 
alert primates learning simple reaction-time and choice tasks. In one of these 
tasks, a sensory stimulus (light) consistently precedes the delivery of reward 
(mechanically delivered juice). Early in training, most of the neurons increase 
their firing rate to the delivery of the juice and do not respond to the onset of 
the light. Later in training, the neurons transiently increase their firing rate at 
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the onset of the light and fire at baseline levels at the delivery of the reward. 
Using the temporal representation described above, we have shown that this 
change in firing is well described by a TD model in which the fluctuating 
output of a diffuse system is viewed as the prediction error (Figure 1; Quartz 
et al, 1992; Montague et al, 1993; Montague et al, 1994). 

It has been suggested that diffuse neuromodulatory systems act as "gates" 
for synaptic plasticity, defining the epochs during which synaptic modification 
can and cannot occur (Rauschecker, 1991). Our proposal for diffuse ascending 
systems is consistent with this interpretation; however, the information carried 
in the "gating" signal is not a simple "print now" signal that defines those 
epochs when synaptic strengths can be changed. Instead, the activity levels in 
diffuse axons carry information about prediction errors in future rewards 
through fluctuating changes in neuromodulator release. The output di(t) of 
diffusely projecting neurons carries a sign that permits it to select the direction 
of synaptic change. I view this sign as representing modulation of the output of 
P above (tS(t)>0) and below (di(t)< 0) some basal firing rate, thus incurring 
increased and decreased release of neuromodulator about some basal level. 

Classical conditioning: predicting the time and magnitude of future states 
In Figure 2 I show how the TD model accounts for classical conditioning to 

a sensory cue that predicts the delivery of reward at a consistent time in the 
future. In these examples, a sensory cue is presented at timestep 60 and has 
weights in the succeeding 40 timesteps. At timestep 80, a reward (r(t)= 1.0) is 
presented for one timestep. After training, if the reward is not delivered, there 
is a large negative fluctuation in di(t) that would be viewed as a large reduction 
in firing rate in the diffusely projecting neuron (trial 200, Figure 2A). Such an 
effect has been observed by Schultz in recordings from dopamine neurons 
(Schultz et al, 1993). 

As illustrated in panel B of Figure 2, the algorithm is sensitive to the con- 
sistency of the reward delivery. In this example, the reward was again deliv- 
ered at timestep 80, but only on 80 of the trials. In a real experiment, peristi- 
mulus time averages of neuronal firing rates are often compiled for analysis. In 
this case (Figure 2B), such an average would show initially brisk responses 
only to reward delivery in early trials. In later trials, the sensory cue would 
cause a large response and the average response to reward would be 
variable---perhaps a fraction of the number of spikes resulting from presenta- 
tion of the sensory cue. Effects similar to this latter suggestion are reported 
and discussed in Schultz (1993). 

Translating Prediction Errors into Behavioral Decisions 
One interesting aspect of TD models of conditioning is that the same signal 

di(t) used to improve predictions can also be used to choose actions in an 
appropriate manner. As originally demonstrated by Barto, Sutton, and Ander- 
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FIGURE 3. Neural architecture of model bee. A. Two units (B,Y) that receive input 
from a one-dimensional retina converge on linear unit P. The activity of these units 
represents the fraction of blue and yellow (black and gray here) in the visual field of 
the model bee. The model bee moves about in a circular arena and views a wall cov- 
ered in stripes colored blue or yellow. Changes in the field of view change the input to 
B and Y, and this is communicated to P as temporal derivatives (one-timestep temporal 
differences). During movement through the simulated arena, ~5(t) influences the deci- 
sion to randomly reorient (Equation 7). On encountering a flower, /i(t) is used to 
update the weight associated with the selected flower according to Equation 9. B. 
Empirically derived utility curve for nectar volumes (Real, 1991). This curve was used 
as the saturating response of neuron R and acted as r(t) at each flower landing. 
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son (1983), this use of the TD error signal can allow a system to learn difficult 
control problems (also see Barto, Sutton, & Watkins, 1989). In this section, I 
demonstrate how 6(t) can be used to select actions in a manner consistent with 
decision-making behavior demonstrated by bees and humans in simple tasks. 

We have explored models in which the fluctuating output 6(t) of the diffuse 
system (output of P in Figure 2) could control neural activity that relates to 
behavioral decisions. These efforts require that the widely broadcast output of 
P directly influence the activity of target neurons involved in changing some 
kind of ongoing behavior. The models I present below are not necessarily 
meant to map directly onto specific neuroanatomy; however, they do suggest 
how the diffuse systems could sensibly influence behavioral choices in a 
manner consistent with real data. First, I present a simple model showing how 
this framework could control foraging behavior in a bee. Bees also possess 
analogous diffuse axonal systems that are important for reporting information 
about rewards to the rest of the bee brain (Hammer, 1993). Second, I apply a 
similar model to decision making in a simple card-choice task, and compare 
the results of the model to those obtained in humans performing the same task. 

Risk aversion in foraging bees 
Real and colleagues (Real, 1991) performed a series of experiments on 

bumblebees foraging on artificial flowers whose colors~blue and 
yellow--predicted the delivery of nectar. They examined how bees respond to 
the mean and variability of this reward delivery. The experiment was equival- 
ent to a stochastic two-armed-bandit problem (Bush & Mosteller, 1955) except 
that the bees had to fly from choice to choice so that constraints other than 
reward delivery also played a role in their decision making. In one experiment, 
blue and yellow flowers yielded the same mean reward except that the variance 
of reward was 0 for blue flowers and > 0 for yellow. In practice, 83 % of the 
bees' visits were to the constant-yield blue flowers. Reversing the statistics of 
nectar delivery for blue and yellow caused the bees to switch their sampling 
accordingly. Again, they sampled approximately 83% from the constant-yield 
flower. In a second series of experiments, Real and colleagues demonstrated 
that the bees could be induced to visit the variable and constant flowers with 
equal frequency if the mean reward from the variable flower type was made 
sufficiently high. 

These results suggest that the uncertainty of the reward is an important 
variable in the bees' decision making. This foraging strategy can be viewed as 
risk aversion, since the bees choose to avoid the more uncertain predictor 
(yellow or blue) despite the equivalent mean return from each flower type. 

We used the model architecture shown in Figure 3 to address the experi- 
ments described above (Montague et al, 1994). The existence of a diffusely 
projecting neuron P that would deliver prediction errors to targets has been 
suggested by the recent physiological and anatomical work of Hammer (1993). 
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In the model architecture, sensory units report on the percentage of blue and 
yellow in the visual field. Similar to the model in Figure 1, the weighted 
temporal derivatives of sensory-unit activity provide input to tho linear unit P, 
along with information about reward (r(t)). Activity along r(t) follows the 
empirically derived (utility) curve in Figure 3B. The output of P, di(t), is used 
to update weights (wB, wr) during flower encounters. In addition, the output 
was used to select actions. I have examined two models employing di(t) in 
action selection; both give qualitatively similar results as shown in Figure 4. 
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FIGURE 4. Risk-averse foraging by real bees and model bees. The left panel shows 
the behavior of real and model bees on a foraging task. The real bees were presented 
with an artificial field of flowers containing 100 yellow and 100 blue flowers. All the 
blue flowers contained 2 #1 of nectar. One-third of the yellow flowers contained 6 #1, 
with the remainder containing no nectar. In practice, the real bee preferred the con- 
stant-yield blue flowers, sampling them on approximately 83 % of landings. At a learn- 
mg rate of 0.9 (X in Equation 9), the model bee matched the real bee behavior (see 
Equations 7 and 9). Each trial represents 40 flower visits. The right panel demonstrates 
that real bees can be induced to forage equally from the constant-yield flowers and the 
variable-yield flowers if the mean return from the variable flowers is made sufficiently 
high. Each point represents an indifference point: the mean-variance pair at which the 
real or model bee foraged equally from each flower type. The points connected by a 
line represent pooled data from real bees. The spray of small dots indicates results for 
the model bee at learning rate X=0.9. The larger diamonds are results for the model 
bee at learning rate X =0.1. 

In one case, we modeled the biasing of actions such as steering and landing 
with a probabilistic algorithm: 

q(Y) = exp~(w~.r)) (6) 
exp(lz(wnxB)) + exp,(writ)) 

where q(Y) is the probability of choosing a yellow flower. Values of # > 0  
amplify the difference between the two predictions, so that larger values of # 
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make it more likely that the larger prediction will result in choice toward the 
associated flower color. ~ was varied from 2.8 to 6.0 and comparable results 
obtained. In this case, the predictions are used directly to choose an action. 

In the second case, we gave the bee a cyclopean eye and allowed it to move 
about in a circular arena with flowers distributed along the wall of the arena. 
As the model bee changed direction, the output of P, di(t), was used to bias 
actions by choosing the probability of randomly reorienting (tumbling) in the 
next step. 6(0 would fluctuate depending on the current value of the weights 
and the changes in sensory input. Using this error signal, the bee randomly 
reorients according to" 

P = 1 (7)  
r 

1 + exp(m6(t)+b) 

The latter model permits the bee to perform a biased random walk in a 
manner similar to klinokinesis displayed by bacteria moving up nutrient gradi- 
ents (Spudich & Koshland, 1975). 

In both models of action selection, the weights are updated according to the 
Rescorla-Wagner rule (Rescorla & Wagner, 1972) and only upon flower 
encounters. As shown in Figure 4, the model bee displays risk-averse foraging 
and the mean-variance tradeoff exhibited by real bees. The tradeoff between 
mean reward and its variance (uncertainty) results from the nonlinear utility of 
reward for increasing nectar volumes, i.e., the saturating response of the unit 
R reporting nectar volumes to P (Figure 3). 

Although both models are extreme simplifications of the constraints that 
impinge on a foraging bee, they do demonstrate how bottom-up neural con- 
straints can produce decision-making strategies exhibited by real biological 
systems. Since such strategies are usually analyzed in cognitive or economic 
terms, the possibility of relating these descriptions to testable neural constraints 
opens up a number of interesting questions. 

Human choice behavior: a substrate for matching behavior 
The preceding examples of bee foraging show how a simple use of TD 

error can capture bee foraging in an environment where the predictors of 
reward are initially uncertain but the reward distributions are stationary. One 
job of the foraging bee is to decide when and how to build up a model of its 
world through exploration and when and how to exploit the model to obtain 
reward. In short, there is a necessary tradeoff between exploration and exploi- 
tation. 

I address the exploration-exploitation conflict below, in a model that uses 
the TD error (6(t)) in a fashion analogous to that employed with the model bee. 
In the following example, the reward distributions are not stationary but vary 
with the history of choices. In this case, I show how a use of tS(t) analogous to 
that above causes a system to sample so as to match the average rate of return 



Biological Substrates of Predictive Mechanisms 417 

from the two alternative choices. The results obtained with the network are 
then compared to some preliminary data from human subjects performing the 
same task. 

Card-choice experiment 
Figure 5 illustrates a card-choice task given to a model similar to the bee 

model above. The task was also given to human subjects (n= 13). The task is 
to select a card from one of two decks, after which a reward is delivered along 
r(t). As cards are selected, the amount of reward from each deck changes as a 
function of the fraction of choices made from Deck A as computed over a 30- 
card window. The reward functions are shown in Figure 5. This model 
amounts to a game where the environment chooses a fixed strategy and reacts 
to the opponent's choices. The rate at which rewards from either deck are 
changed depends on how fast the fraction of choices from Deck A changes. 
Hence, the speed with which the environment reacts is defined by the window 
over which the fraction of Deck A choices is computed. The model or human 
plays against this strategy. These reward curves were adapted from an experi- 
ment performed by Herrnstein to examine issues relating to rational choice 
theory (Herrnstein, 1990, 1991; Herrnstein, Loewenstein, Prelec, & Vaughan, 
1993). 

Notice that the reward functions cross at one point. After this crossing, the 
reward function for Deck B continues to grow and the reward function for 
Deck A stays approximately the same. At each card selection, the subject (or 
model) is thus given a choice of whether to switch decks or stay on the last 
deck chosen. 

The model and its behavior 
In this model, two sensory units (analogous to B and Y in Figure 3A) 

represented the two decks of cards and provided weighted input to unit P. The 
output of P, di(t), was used to decide whether the current deck was selected. 
The model made choices by making random transitions between Deck A and 
Deck B, thus inducing fluctuations in tS(t) as before. The probability that the 
current deck was selected was: 

p - ( 8 )  
$ 

1 + exp(mc3(t)+b) 

where r(t) = 0 before a card is actually chosen. The model randomly chose 
one deck as a starting point and "looked back and forth" between decks; the 
fluctuations in/~(t) assigned a value to the transitions between choices; and P 

$ 

determined the probability that a given deck was selected after a transition (see 
Figure 5A). Analogous to the bee example, the sensory weights (w A and w 8) 
determined the sign and magnitude of fluctuations in ~(t), and thus influenced 
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FIGURE 5. Card-choice task. A. A model analogous to the bee architecture above 
was given a simple card-choice task. The model made transitions between two decks of  
cards, A and B, which resulted in fluctuations in /i(t). /i(t) was used to determine 
whether the current deck was chosen using a decision function that depended on tS(t) 
(sigmoid in Equation 8). Once a deck was selected, a reward was received according 
to the reward functions shown in panel B. On reward presentation, the weights asso- 
ciated with each deck were updated according to a Rescorla-Wagner rule (Equation 9). 
B. Unlike the bee model, the reward distributions were not stationary but changed as a 
function of  the fraction of choices made from Deck A. Human subjects were given the 
same task with identical reward distributions (Figure 6). 
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the choices between the decks. Once a deck was selected, the weight for the 
selected deck was updated according to a Rescorla-Wagner rule. 

AWsOen ) -- ~k(YsOen_l ) -  Ws(fn_l)) (9) 

f ,  is the fraction of choices from Deck A at iteration n, w (f,_l) is the weight 
associated with the selected deck at iteration n-l, r(f,_~) is the reward asso- 
ciated with the deck selected, and k is a learning rate (or equivalently a forget- 
ting rate). For the networks, the fraction of choices from Deck A converged to 
the zone 0.31-0.41 (Figure 5B). This range includes the crossing point of the 
reward functions. The slope of the linear portion of the decision function (m) 
was varied from (-0.1,-5.0) and b was varied from (0.0,15.0). In preliminary 
experiments, shown in Figure 6A, human subjects tended to fluctuate near the 
crossing point of the reward functions or remain near the optimal fraction of 
choice from Deck A (Egelman et al, 1995). These experimental results are 
compared to results with the model using various initial conditions, learning 
rates, and parameters for the decision function. 

The humans and the networks tend to fluctuate around the crossing point of 
the reward functions, so that the average rate of return from the two choices is 
approximately equal. In experiments where an animal is given multiple be- 
havioral alternatives, each of which yields rewards of various sizes or 
strengths, the animal tends to adjust its sampling of alternatives so as to match 
the relative rewards obtained from each alternative. In view of the importance 
of certain diffuse systems (e.g., dopamine) for reward-dependent behavior, our 
use of the diffuse-system output to constrain action choices provides one 
bottom-up explanation of how diffuse systems may establish constraints that 
favor matching. 

Conclusions 
We have seen that temporal difference algorithms provide a mathematical 

framework for describing one role that diffuse neuromodulatory systems could 
play during ongoing learning and action choice. In this framework the same 
error signal is used to improve predictions and choose actions. Diffuse neuro- 
modulatory systems are known to influence both synaptic plasticity and ongo- 
ing neural activity, making these TD models a reasonable starting point for 
theories of their role during learning and decision making. There is one re- 
maining domain in which diffuse ascending systems are known to play a role: 
activity-dependent stages of cortical development. 

Preliminary work has suggested how a TD error signal could influence the 
initial self-organization of sensory representations (Quartz et al, 1992; Mon- 
tague et al, 1993). This is an important possibility, since it would allow the 
system to adjust its sensory representations so as to better account for the 
constraints communicated by reward and punishment signals. 
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FIGURE 6. Human and model performance on card task. A. Raw data from 6 human 
subjects performing the same card task as the model. These data represent the trend 
observed in preliminary experiments: Subjects tend to fluctuate near the crossing point 
of the two reward functions, with a minority of subjects discovering the strategy for 
achieving better long-term returns (two subjects fluctuating around 0.8). B. Perfor- 
mance of 4 incarnations of the model (shown as net 1-net4). In each case, some param- 
eter is different: starting point, learning rate, slope of the linear portion of the decision 
function, inflection point of the decision function. The crossing point of the reward 
functions is a stable point for the network; as such, the networks sample so that the 
average rate of return from the two alternatives is approximately matched. 
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There are a number of interesting issues raised by our attempts to connect 
computational theories to biological substrates: How is time represented by 
neurons? How does the brain avoid picking up spurious correlations in the 
absence of sufficient data to average away noise? How are coherent sensory 
representations constructed? These questions are of course not answered here. 
However, connecting the physiological data with both behavioral and computa- 
tional theories builds testable links between the biological hardware and its 
outputs. 
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CHAPTER 22 

THE ROLE OF TRAINING IN REINFORCEMENT LEARNING 

Jeffery A. Clouse 
Department of Computer Science 
University of Massachusetts, Amherst 

ABSTRACT 

In reinforcement learning, an automated learning agent acquires the ability 
to perform tasks based on evaluative feedback from a critic. Unfortunately, in 
multi-step tasks this feedback is sparse and only weakly informative. In pre- 
liminary research reported here, feedback from a critic was augmented with 
additional information from a human training agent. Such information provides 
the learner with richer feedback and allows the learning agent to acquire its 
task much more quickly. In addition to reporting preliminary results with a 
human trainer, this chapter reviews other work of this type and identifies 
general issues in the design of automated training agents to complement rein- 
forcement learning. 

Introduction 
In reinforcement learning, a learning agent attempts to improve its perfor- 

mance on a task in which it must choose a series of actions. The agent gains 
knowledge about the task through trial-and-error experience of the conse- 
quences of its actions. The source of that information is an automated critic 
and the information comes in the form of occasional feedback that indicates the 
desirability of the current state in which the learner finds itself. 

At each successive time step of a multi-step task, the learning agent selects 
an action based on its current policy, which is a mapping between the current 
state of the task and an action. It then executes the chosen action, which 
changes the task state. At this point, the critic may provide the learning agent 
with a scalar reinforcement signal that indicates the value of the new state. The 
signal may arise from a mechanism internal to the critic or externally from the 
environmental consequences of the current action. The goal of the learning 
agent is to change its action-selection policy so that it will visit undesirable 
states less often and desirable states more often as learning progresses. That is, 
the agent adapts its policy to increase the frequency of positive signals and 
decrease that of negative signals. 

Reinforcement-learning methods, such as actor/critic methods (Sutton, 
1984) and Q-Learning (Watkins, 1989), were designed to allow a learning 
agent to develop a policy based solely on the critic's scalar feedback. Many 
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researchers have demonstrated success with reinforcement-learning methods 
(Gullapalli, 1992; Lin, 1992; Whitehead, 1992; Barto, Bradtke, & Singh, 
1993). However, the training information provided by the critic may be weak 
and sparse, often occurring only upon completion of the task. For example, 
after executing many actions, the learner may be informed by the critic that the 
state it has reached is not desirable. The critic does not give the learner any 
other information about the task~not which action to perform, or which of 
its many actions led to the receipt of the feedback, or which sequence of ac- 
tions might have been better. The critic provides only simple, scalar feedback 
that is often delayed. 

This chapter describes the effects of providing the learner with another 
source of information--a training agent. Figure 1 presents the components of 
such a learning scenario and the interfaces between the components. The 
unshaded region of the figure depicts the basic components required for rein- 
forcement learning: the task, the learning agent, and the critic. The task re- 
ceives actions and produces state information; the learning agent receives state 
information and reinforcement, and produces actions; and the critic receives 
state information and produces reinforcement. 

The shaded region of the figure represents the addition of a training agent 
to the scenario. As the learner engages in trial-and-error behavior, the training 
agent observes the state of the task and provides the learner with additional 
information. Note that, in reinforcement learning, the critic is also a training 
agent, but one whose interactions with the learner are constrained to provide 
scalar feedback. The training agent that is added to the reinforcement-learning 
scenario does not necessarily have such constraints placed upon it. A major 
goal of the present chapter is to identify some of the procedures whereby a 
training agent may best benefit the performance of the learning agent. 

FIGURE 1. Additional Training Information. 
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Overview 
Clouse and Utgoff (1992) implemented an instantiation of the scenario in 

Figure 1, wherein the critic's training information was augmented with train- 
ing information from a human trainer. While observing the learning agent 
carry out the task, the human trainer provided the learning agent with actions 
to perform. Details of this system are presented in the next section of the 
chapter. 

The refiaaining sections briefly review other learning systems in which the 
critic's feedback is augmented by information from a trainer, and then identify 
issues that arise when a training agent is added to a reinforcement-learning 
scenario. These issues include the form of the information supplied, the 
methods by which the learner incorporates the additional information, and the 
time at which the trainer provides the information. The chapter concludes by 
describing two types of multi-step tasks in which reinforcement learning does 
not, by itself, produce an effective policy but in which the addition of a train- 
ing agent may alleviate the problem. 

Learning Using a Human Training Agent 
In a system first studied by Clouse and Utgoff (1992), a human served as 

the training agent that provided the automated learner with additional informa- 
tion about the task. While the automated agent learned the task by means of 
reinforcement learning, the human monitored the learner's performance in real 
time. When the trainer identified situations in which he believed that the learn- 
er needed assistance, he indicated an action that the learner should perform. 
Although the task was learnable without a trainer, the trainer was introduced to 
determine whether this could hasten learning. (See Clouse & Utgoff, 1992 for 
specific details of the implementation.) 

The learning agent 
To learn to choose the correct actions, the learning agent employed an 

actor/critic version of reinforcement learning, a method that is closely related 
to the dynamic programming method of policy iteration (Bellman, 1957; Barto, 
Bradtke, & Singh, 1993). The reinforcement-learning method is called 
"actor/critic" because of the two components of the adaptive mechanism. The 
learner maintains both a policy~which is an actor because it produces ac- 
tions~and an evaluation function~which is a critic because it provides 
internal feedback for changing the policy. 

The development of the evaluation function is based solely on the feedback 
that the environmental critic provides. Given the current state and the critic's 
current feedback, the evaluation function is trained to predict the future values 
of the feedback received in that state. The policy, on the other hand, is 
changed---or adapted~ based on the output from the evaluation function, 
regardless of whether the critic provided any feedback. Because the evaluation 
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function learns to predict future feedback, the current action taken by the 
learner receives credit or blame for that predicted feedback. The alternative is 
for the learner to perform actions until the critic provides feedback, and then 
attempt to allocate that feedback across the previous actions. The problem of 
deciding how to allocate current feedback across previous actions is known as 
the temporal credit-assignment problem. In the experiments described below, 
the evaluation function and policy are each implemented as a linear network 
(Nilsson, 1965). 

In addition to the actor/critic method, another mechanism for alleviating the 
credit-assignment problem involves eligibility traces of previous actions. The 
trace mechanism slightly adjusts the evaluation of previous states and the 
choice of action in those states, thereby assigning partial credit or blame for 
the critic's current feedback to the learner's previous actions. For example, if 
the critic provides a negative scalar signal for the current state, then the evalua- 
tion of previous states is adjusted to make the choice of previous actions also 
less likely. The policy and evaluation function each have associated eligibility 
traces, which are vectors that record a decaying average of previous states and 
actions. The changes, or updates, to the policy and evaluation function are 
based on their associated eligibility traces. Thus, previous actions receive 
partial credit or blame for the critic's current feedback, because changes in the 
values of previous states are based on the evaluation of the current state and on 
the remaining contribution of previous states to the trace. 

Incorporating the trainer's actions 
When a learning agent adapts without a trainer, the learner operates within 

the standard reinforcement-learning cycle. In the first step, the agent chooses 
an action based on its current policy and then performs the action. Before 
receiving feedback from the critic, the learner updates its eligibility traces, 
recording the action it performed and the state of the task. In the final step 
after receiving the critic's feedback, the learner updates its evaluation function 
and policy based on the eligibility traces and the feedback received from the 
critic. The agent continues this cycle until training is stopped. These steps are 
presented in the first column of Table 1, labeled Reinforcement Learning. 

So that the learner may adapt based on information received by the training 
agent, each of the steps mentioned above is changed. Before performing any of 
the learning steps, though, the learner determines whether the trainer has 
supplied an action. If not, the learner performs the standard reinforcement- 
learning steps, as if there were no trainer. 

Each of the steps that the learner performs when the trainer provides an 
action differs from that of reinforcement learning alone because the actions 
provided by the trainer are not simple scalar values. These changes are 
summarized in the second column of Table 1, labeled Learning from Trainer's 
Action, and are highlighted with italics. 



426 J.A. Clouse 

Reinforcement Learning 
(without trainer feedback) 

choose an action and perform it 

update eligibility traces 

receive critic's feedback 

adapt based on critic's feedback 

~ r n i n g  from Trainer's Action 
(with trainer feedback) 

perform the trainer's action 

zero eligibility traces and 
add trainer's action 

ignore critic's feedback 

adapt based on positive feedback 

TABLE 1. Learning Steps. 

The first change is that the learner performs the action provided by the 
trainer, not the action chosen by its own policy. Secondly, the trainer may 
provide the learner with an action when the learner's most recent actions were 
judged inappropriate by the trainer. This requires each eligibility trace to be 
treated in a special way: The traces are reset when the trainer provides an 
action. If the traces were not reset, then the learner's most recent actions 
would receive credit for having reached the state at which the trainer inter- 
vened. The effect of not resetting the traces would, therefore, be for the learn- 
er to increasingly perform those inappropriate actions. To prevent this, the 
learner's actions are expunged from the eligibility traces and do not receive 
credit. Note, the assumption that a "good" trainer always provides correct 
actions need not inevitably hold: An effective trainer may give the learner an 
action to emphasize that action and then reward the actions that lead up to it. 
Nevertheless, because the trainer can volunteer an action when the learner's 
recent actions were inappropriate, the traces are reset whenever the trainer 
provides the action. 

After the eligibility traces have been reset, they are updated with the train- 
er's action and the current state. Then, any feedback from the critic is ignored 
and the learner associates positive feedback with the new state resulting from 
the trainer's action. In the last step, the evaluation function and policy are 
updated based on the new eligibility traces and the reinforcement signal. Thus, 
the trainer's action~and only the trainer's action~is rewarded. However, 
since the trainer's action may not necessarily be the best action, it too becomes 
part of the eligibility traces where it can be blamed (or credited) for future 
feedback received by the learner. 
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The multiple-step task 
The multiple-step task employed in the experiments is the inherently un- 

stable, dynamic cart-pole task (see Anderson & Miller, 1990). The task con- 
sists of a simulated 4.8-meter one-dimensional track, a wheeled cart that can 
move freely on the track, and a pole that is hinged to the top of the cart and 
can swing freely to the left or right (see Figure 2). The objective of the task is 
to keep the pole within twelve degrees of vertical and the cart within the 
boundaries of the track by pushing the cart left or right at each discrete time 
step. To achieve this end, the learner must develop a policy that specifies 
which of these two actions, push left or push right, to perform at each time 
step. 

FIGURE 2. The Cart-Pole Task. 

Experiments 
To evaluate the learner's performance with and without access to a human 

trainer, we performed two sets of experiments. In the first set, the learner 
received training information from only the critic, which provided a failure 
signal (-1.0) when the pole was no longer within twelve degrees of vertical or 
the cart had hit the edge of the track. In the second set of experiments, a 
human trainer provided the learner with additional information through the use 
of a real-time, interactive graphics interface that allowed the trainer to observe 
the state of the cart-pole task as the learner manipulated it. The trainer provid- 
ed the learner with training information by pressing either of two keys on a 
keyboard, one associated with a push to the left and the other with a push to 
the right. Each keystroke represented an action for the learner to perform at 
the time the key was pressed. 

Both sets of experiments consisted of twenty runs, each of which began 
with the learning agent's policy and evaluation function initialized, and ended 
either when the learner failed to balance the pole or had kept it balanced suc- 
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cessfully for 10,000 time steps. (The actions of the trainer, although performed 
by the learner, did not count towards this total). Each run consisted of several 
trials, each beginning with the cart-pole system in a random, solvable state. 

Without_ Training With Training 
X + s  X + s  

Trials 992.0 + 723.5 8.3 + 6.1 
Total Actions 181,529.2 + 113,420.7 10,767.1 + 866.5 
Trainer's Actions 0.0 + 0.0 7.3 + 4.3 

TABLE 2. Results of Experiments. 

Results 
The results of the first and second sets of experiments are reported in Table 

2 under the column headings Without Training and With Training, respective- 
ly. The table presents the means and standard deviations of the number of trials 
per run (top row), the total number of actions per run (middle row), and the 
number of trainer-supplied actions per run (bottom row). 

As seen in the top row, the information provided by the human trainer 
reduced the total number of trials required to learn to keep the pole balanced. 
With only the critic's feedback, the learner needed an average of 992 trials to 
complete a run successfully. That is, the learner failed at the task an average of 
991 times before developing a successful policy. In contrast, with the help of a 
human trainer, the learner achieved the same performance in an average of 8 
t r ia ls~a decrease of two orders of magnitude. Furthermore, as shown in the 
bottom row of the table, this improvement required an average of only about 
seven actions by the human trainer. Thus, very little additional information 
was needed from the trainer to achieve a drastic reduction in the number of 
failures before the task was solved. 

The addition of a trainer also reduced the total number of actions, or weight 
updates, for the two linear networks. As shown in the middle row of the table, 
the learning agent that developed its policy without benefit of a trainer needed 
to perform an average of 171,529 actions before beginning to satisfy the cri- 
terion of 10,000 successful actions in a row. Achieving this performance re- 
quired approximately one hour of real-time simulation. With the trainer's help, 
the same criterion began to be satisfied in an average of 767 actions, which 
consumed about 3.5 minutes of real-time simulation. This also represents an 
improvement of two orders of magnitude--from 171,529 to 767 actions. 
Finally, notice that the variability of performance was much greater without a 



The Role of Training in Reinforcement Learning 429 

trainer. The large standard deviations without a trainer were partially due to 
the trial-and-error nature of reinforcement learning: The exploration choices 
made by the learning agent sometimes find an effective policy quickly, but at 
other times cause a delay in finding a policy. The standard deviations with a 
trainer were relatively small. Even though the learner was still exploring the 
task-space, the input from the training agent constrained the learner to explore 
those portions of the space in which a solution was more likely. 

Discussion 
In the foregoing experiment, a great reduction in the amount of training was 

achieved by allowing a human trainer to interact with the automated learning 
agent through interventions in real time. Similar results were achieved in a 
related set of experiments (Clouse & Utgoff, 1992) using a different method of 
reinforcement learning (Q-learning) and a different multiple-step task (a vehi- 
cle navigation problem). A human trainer helped the automated learner achieve 
a reduction in the number of training trials of one order of magnitude. Thus, 
this experiment also demonstrated that a learner can acquire a task in many 
fewer training trials when it receives actions from a training agent than when it 
is restricted to the critic's feedback alone. 

Other Simulations of Training 
Other researchers have taken related approaches to providing an automated 

learning agent with additional information. Utgoff and Clouse (1991) employed 
the simple reinforcement-learning method used by Samuel in his ground-break- 
ing checkers program (Samuel, 1963) to learn an evaluation function over the 
state space of the problem. During training, the estimated value of the current 
state was changed to reflect the estimated value of the successor state chosen 
by the learning agent. Also, when the learner determined that its evaluation 
function was incorrect, it queried an automated trainer. An incorrect evaluation 
function was defined as one in which the difference between the estimated 
value of a state and the estimated value of its successor exceeded a criterion. 
The training agent provided the learner with the correct value for the current 
state. With the trainer's help, the learner was able to perform the task in only 
one training trial. Without a trainer, the agent required almost 500 trials. 

Lin (1992) employed an approach he referred to as teaching. This approach 
required the human trainer to develop prior to the experiment complete se- 
quences of actions for teaching the learning agent. In teaching, the human 
trainer led the learning agent from start states to goal states, with the learner 
recording the trainer's actions into a lesson. The learning agent then repeatedly 
replayed the lessons, updating its policy as if it were performing the actions in 
the lesson, while also performing trial-and-error experiments on its own. The 
results of the experiments indicated that the learning agents were able to learn 
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much more quickly with training. In one case, the learning agent was able to 
learn a task with training that it did not learn with reinforcement learning 
alone. 

More recently, researchers have studied providing the learning agent with 
information in the form of advice, represented as n~-raEN rules (Maclin & 
Shavlik, 1994). Because the learner's policy was represented in a feed-forward 
neural network, the advice could be incorporated using techniques from 
knowledge-based neural networks (Towell, Shavlik, & Noordewier, 1990) that 
allow IF-THEN rules tO be added into the network. Although the advice could 
not be developed and presented in real time, the presentation of a single piece 
of advice allowed the learner to improve significantly its performance on the 
task. 

Issues To Be Addressed When Adding a Training Agent 
The possibility of adding a trainer to the learning scenario raises three 

general questions: 
What information does the training agent provide? 
How does the learner incorporate that information into its policy? 
When does the trainer provide the training information? 
These questions also apply to the feedback provided by the critic in rein- 

forcement learning, and are answered as follows. First, the information pro- 
vided by the critic takes the form of scalar signals. Second, these signals are 
incorporated into the learner's policy via a reinforcement-learning algorithm. 
Finally, the times when the information is given are largely determined by the 
nature of the problem. For example, the critic in the cart-pole task gives the 
learner negative scalar feedback when the pole is no longer balanced, thus 
indicating that the learner has not met the objective of the task. In other prob- 
lems, the critic gives the learner positive feedback when the learner has 
achieved a particular goal or subgoal of the problem. 

Unlike the critic, the trainer that is added to reinforcement learning is not 
constrained to provide only a single scalar feedback signal. The trainer can 
provide various forms of information, such as actions, scalar feedback, and 
advice. However, because reinforcement-learning methods are not designed to 
deal with non-scalar training information, the underlying learning mechanisms 
of the learner must be modified. Another complicating factor is that, while 
there are guiding principles for deciding when a critic should provide feed- 
back, it is unclear when a training agent should supply the learner with training 
information. 

The following sections examine these issues, point out how the systems 
presented above might deal with them, and present alternatives to be investi- 
gated in future simulation research concerning the effects of training on learn- 
ing. 
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The form of additional information 
In two of the training systems (Clouse & Utgoff, 1992; Lin, 1992), the 

trainer provided actions to the learner. These actions yielded rich knowledge in 
that a particular state of the problem was linked to the action that should be 
performed in that state. Moreover, the training agent's action might also have 
been useful because it caused the learner to explore a different part of the state 
space, thereby obtaining important knowledge about how to perform in the task 
that might not otherwise have been gained. 

In Utgoff and Clouse (1991), the additional information given to the learner 
took the form of the direct value of particular states. Since this was exactly 
what the learner was attempting to establish, these values represented clearly 
useful training information. In other work (Maclin & Shavlik, 1994), the 
information supplied by the trainer took the form of W-WHEN rules, and this 
advice allowed the agent to perform better. 

In addition to the forms of information discussed above (actions, state 
values, and advice), the information supplied by the critic can also be varied. 
The critic supplies criticism in the form of scalar values that allow the training 
agent to employ the operant conditioning technique of shaping. In shaping, the 
training agent slowly changes the criterion conditions for the presentation of 
reward so as to expose the learning agent to progressively more difficult prob- 
lems. Using shaping, the trainer can reward the learner when it performs an 
approximation to the requisite task. After the learning agent is able to perform 
this simpler task, the training agent can then change its criterion for supplying 
scalar feedback to make the learner perform a slightly more complicated prob- 
lem, but one that is still simpler than the target task. After several such approx- 
imations, the learning agent is able to perform the requisite task. Such a tech- 
nique has been successfully implemented with a robot in a reaching task 
(Gullapalli, 1992; see also Gullapalli, this volume). 

Another form of information, sets of actions, represents a new approach to 
giving task knowledge to a learner (Clouse, 1995). The set of actions can 
either be one from which the learning agent should choose an action, or one 
from which an action should not be chosen. When the set contains actions from 
which the learning agent should choose, the trainer can present a set with a 
limited number of actions early in the training. As the learner's abilities pro- 
gress, the trainer can relax control over the learning agent, allowing more 
actions to be members of the set. Conversely, if the set represents actions the 
learning agent should not take, then the set may be large initially and slowly 
decrease as the learning agent improves its skill. By constraining the subset of 
possible actions, these two types of additional information allow the training 
agent to prevent the learner from making costly mistakes as it learns. 

Because the training agent is not as constrained as the critic, there are many 
forms of information that he can supply to the learning agent. Findings from 
the study of a few systems indicate that advice, actions, scalar feedback, and 
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exact values can all serve as beneficial forms of feedback. However, it is 
unknown which forms of information provide the most valuable feedback. It 
has also not been determined whether specific aspects of a particular task might 
influence which form of the trainer's information would most benefit the learn- 
ing agent. 

Incorporating additional information from the trainer 
In addition to investigating what type of information is given the learning 

agent, we must also determine how the agent is to utilize the information, i.e., 
how the agent adapts its policy. Reinforcement-learning methods have been 
proven to produce policies that approach optimal policies (Watkins & Dayan, 
1992), and they also appear to most closely approximate the methods whereby 
experience changes the behavior of living organisms. For these reasons, we 
assume below that the learner's underlying adaptive mechanism is reinforce- 
ment learning. Nevertheless, one must still determine how best to provide 
scalar feedback to the reinforcement-learning algorithm based on information 
that the trainer supplies, and how the learning agent chooses its actions. 
Depending on which form the information takes, the means of incorporating 
the information into the reinforcement-learning cycle must change in corre- 
sponding ways. 

Basic reinforcement-learning methods produce adaptation based on scalar 
feedback from the critic. To accommodate learning with an automated trainer 
that gives scalar feedback, one must decide how to deal with simultaneous 
feedback from both the critic and the trainer. For example, should the trainer's 
concurrent feedback take precedence over the critic's, or be ignored? A more 
complicated solution would be to adapt based on a weighted average of the two 
scalar signals. Although incorporating another source of scalar feedback into 
reinforcement learning may seem a straightforward matter, important and 
perhaps unintended consequences flow from how the feedback signals are 
combined. 

As we reported previously (see Table 1), Clouse and Utgoff (1992) intro- 
duced a new set of steps into the learning cycle in order for the learner to 
incorporate the trainer's action: The learning agent was required to perform 
the trainer's action. However, many plausible procedures exist for incorporat- 
ing training information. For example, the learner might perform whatever 
action its policy dictates, but associate positive feedback with the action only if 
it is the same action given by the trainer. Also, in earlier work, the critic's 
feedback was ignored by the learning agent when the trainer provided the 
action. Alternatively, a weighted sum of the two scalar values might be used in 
the adaptation process. Finally, the eligibility traces were also treated in a 
special manner in previous work, being reset when the trainer provided an 
action. As an alternative, the traces might be left intact but training with them 
would only occur when the learner has produced the action. 
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In the case where the trainer provides sets of actions, the learner might be 
constrained to perform only those actions in the trainer's action set. That is, 
when the learner must choose an action to perform, its actions are confined to 
the choices in the trainer's specified action set. Another option would be for 
the learner to perform whatever action it chose, and then to associate a positive 
scalar signal with the action if it was one from the trainer's set. Many options 
exist for incorporating feedback from the trainer, and they remain to be ex- 
plored in future simulation research. 

When to provide training information 
In addition to questions concerning what information to provide and how to 

provide it, questions arise about when the trainer should supply the information 
to the learning agent. Again, many possibilities exist. At one extreme the 
trainer might never volunteer information (pure reinforcement learning), while 
at the other the trainer might always provide information. Below, we identify 
some of the intermediate possibilities. 

In most of the training systems described earlier, the additional information 
was provided at the whim of a human trainer. In Lin's (1992) work, the trainer 
provided the learning agent with entire sequences of actions, but the criteria 
for providing the sequences were unclear. In Clouse and Utgoff's (1992) work, 
the criteria employed by the human trainers were similarly unclear. Training 
was given whenever the human deemed it helpful. Similarly, Maclin and 
Shavlik (1994) allowed human trainers to provide advice at their discretion. 
None of these systems addressed the issue of when the training information 
should be provided, but simply allowed a human trainer to guide the system in 
an unprincipled manner. 

Automating the trainer. In order to evaluate different criteria for deciding when 
to provide additional information, automated trainers must be designed that 
follow prescribed policies. The long and unknowable pre-experimental histo- 
ries of human trainers and the variability inherent in living organisms make the 
pursuit of these questions difficult unless the trainer is automated (i.e., simu- 
lated). 

A policy for deciding when to provide the learner with additional informa- 
tion can vary as a function of time, the output changing with the number of 
task actions that the learning agent performs. For example, the training agent 
might give help frequently at the beginning of training and less frequently as 
training progressed. More complicated functions of time can also be employed. 
For example, a policy might have the training agent help the learner for a 
period of time, stop helping for some period, and then revert to helping after 
yet another set period of time. 

The trainer's policy need not be based on time alone; it can vary with the 
quality of the learner's performance, which can be measured by the actual 
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scalar feedback. Thus, the trainer might help the learner only when the learner 
received negative feedback. However, because feedback can be scarce, a 
policy based on environmental feedback alone may be insufficient. For that 
reason, a policy based on both time and performance could be more effective, 
o r~ in  the case of certain tasks~necessary. As an example of this type of 
policy, a decaying average of the environmental feedback could control wheth- 
er the trainer helps the learner. As long as the decaying average remains below 
a specified threshold, the training agent continues to help the learning agent. 
As soon as the average of the environmental feedback surpasses this threshold, 
the training agent stops helping. 

The training agent's policy for deciding when to provide information to the 
learner can also be a function of the current state of the learner's task. The 
current state of the task provides important information if the automated trainer 
knows which task states are difficult or dangerous or particularly significant 
for other reasons. This form of automated policy can be based on a set of 
heuristic rules for determining when to help. 

Another possible technique for determining when the trainer should inter- 
vene involves active-exploration policies (cf. Thrun & Mfller, 1992). Active 
exploration is designed to help reinforcement-learning agents develop effective 
trial-and-error experiences. Instead of employing these techniques to determine 
when to explore, they can be used to decide when the learner should be given 
help. For example, the trainer might develop a map of the task space that 
indicates the learning agent's competence at performing the task in each state. 
If this competence map indicates that the learner's acquired knowledge of the 
current state is inadequate, then the training agent can intervene. 

Deciding when a trainer should help a learning agent is clearly a question 
whose answer lies in the future. The most well-studied cases are those in which 
the trainer always provides feedback (supervised learning) and those in which 
the trainer never provides feedback (reinforcement learning) about the specific 
characteristics of the learner's performance. We have also considered here 
some of the alternatives between these two extremes. For other related work, 
see research in Intelligent Tutoring Systems (Woolf, 1988), which concerns 
providing information by an automated trainer to human learners, and research 
in Distributed Artificial Intelligence (Durfee, Lesser, & Corkill, 1989), which 
concerns interactions between two automated agents. 

Conclusions 
Reinforcement learning is an effective means for adapting neural networks 

to the demands of many tasks. However, reinforcement-learning algorithms 
become much more powerful when they can take advantage of the contribu- 
tions of a trainer. To take advantage of a training agent's knowledge of a task, 
a number of issues must be resolved about how the trainer interacts with the 
learning agent and how the learning agent incorporates the trainer's informa- 
tion. This chapter has presented several options for dealing with these issues. 
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Preliminary work clearly demonstrates the benefits of providing the learner 
with access to a training agent. In one system (Clouse & Utgoff, 1992), the 
trainer's presence allowed the learning agent to perform its task with two 
orders of magnitude fewer training trials. Another system (Utgoff & Clouse, 
1991) demonstrated that a learner could perform a task after only one training 
trial with input from a trainer. A third system (Lin, 1992) determined that a 
task that could not be acquired with a reinforcement-learning algorithm alone 
could be mastered with the help of a trainer. 

Multi-step tasks benefit particularly when reinforcement learning is supple- 
mented with a training agent. Two major potential benefits are apparent. For 
some multi-step tasks, the learning agent employing only reinforcement learn- 
ing takes a prohibitively long time to develop a policy. With the help of a train- 
ing agent, the learner can arrive at a policy much more quickly. For other 
multiple-step tasks, failure may be highly undesirable or even catastrophic. A 
trainer can circumvent such consequences by disallowing a learning agent from 
performing whatever action is dictated by its own transient policy. The addi- 
tion of an effective automated trainer provides a fail-safe means by which the 
learning agent can acquire the ability to perform the task. As examples, when 
the form of knowledge employed by the training agent is either individual task 
actions or sets of task actions, the training agent can supply state-action pairs 
that prevent the learner from failing and, by so doing, enable the learner to 
acquire those actions. By using scalar criticism (shaping), the trainer can begin 
by implementing a task at which the learner cannot fail catastrophically, and 
then progress slowly to the final target task. Through such means, the addition 
of an automated training agent to the learning scenario gives promise of devel- 
oping automated learning agents that are competent to solve problems currently 
deemed beyond the reach of reinforcement learning. 
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PART SiX: COMPLEX BEHAVIOR--LANGUAGE 

A problematic trend resurfaced in the preceding section on Reinforcement 
Learning: As the complexity of the simulated phenomena increased, the degree 
to which the simulations were informed by the relevant biobehavioral science 
decreased. For example, reinforcement learning was sometimes motivated 
primarily by experimental findings about nonspecifically projecting, neuro- 
modulatory systems (e.g., Donahoe and Montague) and at other times by 
mathematical arguments, as with dynamic programming (e.g., Barto & 
Sutton). Indeed, both experimental and mathematical considerations informed 
the same simulation, as with motor control using the biobehaviorally grounded 
concepts of reinforcement and shaping together with the mathematically in- 
spired technique of backpropagation (Gullapalli). Moreover, different simula- 
tions by the same researcher drew upon different literatures at different 
times~experimental science on some occasions and formal (logical/mathemat- 
ical) considerations on others (cf. Barto & Sutton in this volume and Houk, 
Adams, & Barto, 1995; see also Gluck & Myers, this volume). 

The treatment of language in this section shows the same intermixing of 
formal considerations with biobehavioral findings and, further, the failure of 
relevant biobehavioral findings to fully inform the simulations. Using modern 
imaging techniques, Raiehle identifies multiple neural systems for processing 
verbal stimuli, which Gullapalli and Gelfand then use to design their network 
architecture. However, each feature of a word in the simulations corresponds 
to a single unit, whereas ensembles of neurons are activated by single features 
in the real nervous system (e.g., Tanaka, this volume). Similarly, experimental 
research in phonetics provides the foundation for Jordan's simulations of the 
parallel transmission of phonemes. But, different articulatory gestures corre- 
spond to single units, whereas experimental research indicates that responses 
reflect the concerted action of many motor neurons (Georgopoulos, this 
volume). Further, connection weights between units are modified using back 
propagation instead of reinforcement learning or other biologically plausible 
algorithms (e.g., Rumelhart & Zipser, 1985). Continuing, Barnes and I-lamp- 
son's simulations are motivated by behavioral research on the development of 
equivalence relations among verbal stimuli, but connection weights are again 
modified by backpropagation, and single units now correspond to whole 
words, not features. Finally, Van Orden, Bosman, Goldinger and Farrar 's  
simulations rely upon neuropsychological research on dyslexia and neuroana- 
tomical work on recurrent connections, but the units in the neural network now 
represent letters, phonemes, and meanings instead of features or words. What 
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are we to make of these differences (even inconsistencies) among the simula- 
tions with regard to their reliance upon formal rather than experimental con- 
straints? And, what are we to make of differences in the extent to which relev- 
ant biobehavioral science informs the simulations? 

The short answer is: We are at the very beginning of efforts to achieve 
biobehavioral interpretations of complex behavior and, hence, most current 
simulations are best regarded as preliminary forays into the domain of complex 
behavior whose primary purpose is to establish the competence of neural 
networks to produce complex behavior as their emergent product (cf. Elman, 
1995). Viewed in this light, Gullapalli and Gelfand's simulations successfully 
demonstrate that training can automatically shift verbal processing from one 
subnetwork to another (see short-circuiting, Chapter 18). Jordan's simulations 
successfully demonstrate that parallel transmission is a general and emergent 
characteristic of neural networks, and not a language-specific phenomenon. 
Barnes and Hampson's simulations successfully demonstrate that equivalence 
classes can be mediated by neural networks/f the architecture is appropriate. 
And, the simulations of Van Orden and his colleagues successfully demon- 
strate that neural networks with recursive connections can mediate a variety of 
verbal relations that might otherwise be considered beyond their competence. 

The longer answer is too long to be given here. However, it would include 
the following: The dominant approach to complex human behavior~cognitive 
psychology~has traditionally adopted a "top-down" approach to explanation. 
That is, explanation takes the form of special-purpose, high-level processes and 
structures~e.g., deep vs. surface processing, short-term vs. long-term 
memory, etc.~that arise as inferences from behavioral observations. This 
strategy contrasts with a biobehavioral approach in which high-level processes 
and structures are seen as emergent products of general-purpose, low-level 
processes and structures that are known through direct experimental observa- 
tion (see Palmer & Donahoe, 1992; Donahoe & Palmer, 1994). This state of 
affairs is rapidly changing as cognitive science increasingly appreciates the 
unexpectedly powerful experimental and conceptual armamentarium of modern 
biobehavioral science. In the near future, it may be hoped that cognitive 
psychology will concur with its erstwhile bugaboo, the behaviorist B.E Skin- 
ner: "The physiologist of the future will tell us all that can be known about 
what is happening inside the behaving organism. His account will be an im- 
portant advance over a behavioral analysis, because the latter is necessarily 
'historical'~that is to say, it is confined to functional relations showing tempo- 
ral gaps . . . .  [Neuroscience] will make the picture of human action more nearly 
complete." (Skinner, 1974, pp. 236-237). 
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CHAPTER 23 

FUNCTIONAL BRAIN IMAGING AND VERBAL BEHAVIOR 

Marcus E. Raichle 
Department of Radiology and Neurology 
Washington University School of Medicine 
St Louis, MO 

ABSTRACT 

Recent advances in brain imaging with positron emission tomography (PET) 
and functional magnetic resonance imaging (fMRI) coupled with studies of 
event-related potentials (ERPs) now permit us to examine safely the normal 
human brain while it functions. These studies provide a much clearer under- 
standing of the architecture of language systems in the brain and exciting new 
insights into how the normal human brain produces observable behavior. 
Neural-network models should yield important conceptual insights into the 
interpretation of the emerging data on functional brain imaging. 

Introduction 
Early discussions of the "mind-brain problem" largely treated the brain as a 

black box. Then, in 1861, French surgeon and anthropologist Pierre Paula 
Broca described a clear relationship between a patient's difficulty in speaking 
and an injury to a specific part of the patient's brain due to a stroke. Since this 
seminal observation, a vast body of scientific literature has accumulated impli- 
cating various parts of the human brain in specific aspects of human behavior 
including language. The remarkable level of sophistication to which this work 
has risen is detailed in several recent books (e.g., Damasio & Damasio, 1989; 
Shallice, 1988). 

The view of brain organization arising from the study of patients with brain 
injury does raise some questions of interpretation. The size and location of 
brain injury varies greatly from patient to patient, making a precise correlation 
between damage to a particular area of the brain and the function normally 
served by that area sometimes difficult to determine. Furthermore, each patient 
may be assumed to have some features of brain organization that are unique to 
the patient. And, finally, it remains uncertain whether one can simply attribute 
a lost or disrupted function to a particular area of injury. Because of the inter- 
connected nature of brain areas, injury in one area is likely to have effects on 
other areas that cannot necessarily be predicted from the location and size of 
the injury itself. Thus, although the study of patients with brain injury has 



Functional Brain Imaging and Verbal Behavior 439 

provided much valuable information concerning brain organization, exactly 
how this information relates to the normal functioning of the human brain 
remains an open question. 

Only recently have scientists interested in brain function had the opportunity 
to explore it analytically---to peer inside the black box during its normal activi- 
ty. This ability stems from developments in imaging technology over the past 
20 years, most notably positron emission tomography, usually referred to as 
PET, and magnetic resonance imaging, usually referred to as MRI. These 
techniques can now capture precisely localized physiological changes in the 
normal human brain associated with behaviorally induced changes in neuronal 
activity (Posner & Raichle, 1994). 

It is important to point out that the underlying assumptions of current brain- 
mapping studies using PET and functional MRI (fMRI) are not modern ver- 
sions of phrenology. The phrenologists of the past century posited that single 
areas of the brain, often identified by bumps on the skull, uniquely represented 
specific thought processes and emotions. In contrast, modern thinking posits 
that each area of the brain contributes quite simple mental operations that form 
the elementary components of observable behaviors. Observable behavior and 
thought processes emerge through the cooperative interactions of many such 
areas. Just as diverse instruments of a large orchestra play in a coordinated 
fashion to produce a symphony, so a group of diverse brain areas, each per- 
forming quite elementary and unique mental operations, work together in a 
coordinated fashion to produce human behavior. The prerequisite for such 
analyses is the conviction that complex behaviors can be broken down into a 
set of constituent mental operations. 

The History of Functional Brain Imaging 
The modern era of brain imaging began in the early 1970s with the intro- 

duction of a remarkable technique called X-ray computed tomography, now 
known as X-ray CT or just CT. South African physicist Allan M. Cormack 
and British engineer Sir Godfrey Hounsfield independently developed its prin- 
ciples, with Hounsfield constructing the first CT instrument in England. Both 
investigators received the Nobel Prize in 1979 for their contributions. 

X-ray CT takes advantage of the fact that different tissues absorb different 
amounts of X-ray energy. The denser the tissue, the more energy it absorbs. A 
highly focused beam of X-rays traversing the body will exit at a reduced 
energy level depending on the tissues and organs through which it passes. A 
beam of X-rays passed through the body at many different angles through a 
plane collects sufficient information to reconstruct a picture of that body sec- 
tion. It was crucial to the application of X-ray CT that clever computing and 
mathematical techniques were developed to process the vast amount of infor- 
mation needed to create the images. Without the availability of sophisticated 
computers, the task would have been impossible. 
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The emergence of X-ray CT had two immediate consequences. First, it 
changed the practice of medicine, because X-ray CT was much superior to 
standard X-rays. For the first time, physicians could safely and effectively 
view living human tissue, such as the brain, with no discomfort or risk to the 
patient. Standard X-rays had revealed only bone and some surrounding soft 
tissue. Second, X-ray CT stimulated scientists and engineers to consider alter- 
native ways of creating images of the body's interior using other mathematical 
and computer strategies for image construction. These efforts went beyond the 
picture of human anatomy provided by X-ray CT in that they began to focus on 
function. 

Among the first groups to be intrigued by the possibilities opened by X-ray 
CT were experts in tissue autoradiography. This method had been used for 
many years in animal studies to investigate organ metabolism, biochemistry 
and blood flow. In tissue autoradiography, a radioactively labeled compound is 
injected into a vein. After the compound accumulates in the organ under inves- 
tigation, the animal is sacrificed and the organ (e.g., the brain) removed for 
study. The organ is then carefully sectioned, and the individual slices are laid 
on a piece of film sensitive to radioactivity. Much as the film in a camera 
records a scene, the X-ray film records the distribution of radioactively labeled 
compound in each slice of tissue. 

When the X-ray film is developed, scientists have a picture of the distribu- 
tion of radioactivity within the organ and, hence, can deduce the organ's spe- 
cific functions. The type of information provided by the picture is determined 
by the radioactive compound injected. For example, a radioactively labeled 
form of glucose measures brain metabolism, because glucose is the primary 
source of energy for cells of the brain. Central to functional brain imaging with 
PET is the measurement of brain blood flow, which is achieved through the 
injection of radioactively labeled water. 

Investigators adept at tissue autoradiography were fascinated when X-ray 
CT was introduced. They realized that if the anatomy of an organ could be 
reconstructed by passing an X-ray beam through it, then they could also recon- 
struct the distribution of a previously administered radioisotope. One had 
simply to measure the emission of radioactivity from the body section. This 
insight was the birth of autoradiography with living human subjects. 

One crucial element in the evolution of human autoradiography was the 
choice of radioisotope. Workers in the field selected a class of radioisotopes 
that emit positrons, which otherwise resemble electrons but carry a positive 
charge. Positrons produced within tissue almost immediately combine with 
nearby electrons. A positron and electron annihilate one another in this interac- 
tion, emitting two high-energy gamma rays in the process. Since the gamma 
rays travel in nearly opposite directions, radiation-detection devices arrayed in 
a circle around the organ of interest can detect the pairs of gamma rays and, 
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with the aid of computers, locate their origin with remarkable precision. The 
crucial role of positrons in human autoradiography gave rise to the name posi- 
tron emission tomography or PET. 

More recently, another imaging technique has been developed to take its 
place alongside PET in revealing the function of the human brain. This tech- 
nique is known as magnetic resonance imaging, or MRI. MRI is derived from 
the potent laboratory technique of nuclear magnetic resonance (NMR), which 
was designed to explore detailed chemical features of molecules. The technique 
garnered a Nobel Prize in 1972 for its developers, Felix Bloch of Stanford 
University and Edward Purcell of Harvard University. The method exploits the 
fact that many atoms behave as tiny compass needles when placed in a magnet- 
ic field. By skillfully manipulating the magnetic field, scientists can align the 
atoms. Applying radio-wave pulses to the sample perturbs the atoms in a pre- 
cise manner and, as a result, they emit detectable radio signals unique to the 
number and state of the atoms in the sample. Careful adjustments of the 
magnetic field and the radio-wave pulses yield specific information about the 
sample under study. 

NMR moved from the laboratory to the clinic when Paul C. Lauterbur of 
the University of Illinois found that NMR can form images when detecting 
protons. Protons are abundant in the human body, being found primarily in 
water and fat. Using mathematical techniques borrowed from X-ray CT, but 
later modified extensively, images of the anatomy of organs of the living 
human body were produced that far surpassed those produced by X-ray CT in 
their detail. Because the term "nuclear" made the procedure sound dangerous 
to some, NMR soon became known as magnetic resonance imaging, or MRI. 
The current excitement over both PET and MRI for imaging of normal brain 
function stems from their ability to detect signals associated with changes in 
neuronal activity through changes in local brain blood flow. I turn briefly to 
the nature of these changes in blood flow, and to their relation with changes in 
neuronal activity. 

Measuring Brain Function with Imaging 
Measurements of blood flow to local areas of the brain are at the heart of 

assessing brain function with both PET and fMRI (Posner & Raichle, 1994). 
The idea that blood flow is intimately related to brain function is a surprisingly 
old one. The English physiologists Charles S. Roy and Charles S. Sherrington 
formally proposed the idea in 1890. (For a detailed review of this history see 
Posner & Raichle, 1994 and Raichle, 1987.) They suggested that an automatic 
mechanism regulated the blood supply to the brain, with the amount of blood 
depending on local variations in activity. Although subsequent experiments 
have amply confirmed the existence of such an automatic mechanism, its exact 
nature remains somewhat unclear. Obviously, this remains a challenging area 
for research. 
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PET measures blood flow in the human brain through the use of an autora- 
diographic technique developed in the late 1940s by Seymour S. Kety and his 
colleagues for use with laboratory animals. (For a detailed review, see Raichle, 
1987.) PET relies on radioactively labeled water, specifically hydrogen com- 
bined with oxygen-15, a radioactive isotope of oxygen. The labeled water 
emits copious numbers of positrons as it decays. The labeled water is adminis- 
tered into a vein in the arm and, in less than a minute, the radioactivity accu- 
mulates in the brain, providing the basis for an image of blood flow. 

fMRI measures a complex function of blood flow: When blood flow in- 
creases during normal brain function, the amount of oxygen consumed by the 
brain does not (Fox, Raichle, Mintun, & Dence, 1988). Under these circum- 
stances, more oxygen is present locally in the tissue because the blood flow has 
been increased but the demand for oxygen has not. Since the amount of oxygen 
in the tissue affects its magnetic properties, a fact first noted in 1935 by Linus 
Pauling (Pauling & Coryell, 1936), fMRI can detect the change. This change is 
often referred to as the BOLD---or Blood Oxygen Level Dependent~effect 
(Ogawa, Lee, & Tank, 1990; Ogawa, Tank, Menon, Ellermann, Kim, 
Merkile, & Ugurbil, 1992; Kwong, Belliveau, Chesler, Goldberg, Weiskoff, 
Poncelet, Kennedy, Hoppel, Cohen, Turner, Chen, Brady, & Rosen, 1992). A 
measure of blood flow equivalent to that measured by PET with oxygen-15- 
labeled water has proven difficult with fMRI, primarily because of the short 
half life (i.e., the T1 relaxation time) of the water protons in the fMRI experi- 
ment. (The T1 relaxation time of the water proton in brain tissue is approx- 
imately one second, whereas the half life of oxygen-15-1abeled water is 123 
seconds---more suitable for the measurement of blood flow in the human 
brain.) 

The Imaging Strategy 
A distinct strategy for the functional mapping of neuronal activity has 

emerged during the past 15 years. Initially developed for PET, it has been 
extended, with modifications, to fMRI. 

This approach extends an idea first introduced into psychology in 1868 by 
Dutch physiologist Franciscus C. Donders. Donders proposed a general 
method to measure thought processes based on a simple logic. He subtracted 
the time needed to respond to the onset of any light (say, by pressing a key) 
from the time needed to respond only to the onset of a light of a particular 
color. He found that discriminating color required about 50 milliseconds more 
than responding to any light onset. In this way, Donders sought to isolate and 
measure a mental process by subtracting a control state (i.e., responding to any 
light) from a task state (i.e., responding to a particular color of light). 

The current functional-imaging strategy is designed to accomplish a com- 
parable subtraction regarding information about the areas of the brain that 
distinguish the task state from the control state. In particular, images of blood 
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flow, or blood flow-related changes in the case of fMRI (i.e., the BOLD sign- 
al), obtained in a control state are subtracted from those obtained when the 
brain is engaged in the task. The control state and the task state are carefully 
chosen so as to isolate as well as possible a limited number of mental opera- 
tions when the images of the two states are subtracted. Subtracting blood flow- 

FIGURE 1. Illustration of image subtraction and image averaging in the development 
of positron emission tomographic (PET) images of brain function. In the top row are 
two PET blood-flow images in a normal human subject, one labeled Task State and the 
other labeled Control State. These images represent horizontal M slices~ through the 
center of the brain. The front of the brain is toward the top and the left side is to the 
reader's left. Darker areas have higher blood flow than lighter areas. During the task 
state, the subject passively viewed a flashing annular checkerboard. During the control 
state the subject simply maintained fixation. (See text for details.) The difference in 
blood flow between the two states is shown in the difference image on the right in the 
top row. Once such a difference image is obtained, computer techniques transform it to 
a standard brain so that comparisons can be made with other individuals (middle row 
of difference images). From these individual difference images an averaged or mean 
difference image (bottom image) is made. Because the changes in blood flow are 
small, individual difference images tend to be somewhat variable due to the presence 
of statistical noise in the images and to variation among the subjects. Significant aver- 
age changes reflect changes common to the sample of individuals. All of the images 
appearing subsequently in this chapter are mean difference images formed in the above 
r l l a n n e r .  
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dependent measurements made in the control state from the task state is intend- 
ed to isolate those parts of the brain uniquely responsible for performing the 
task. 

To obtain reliable data, the average of many responses is taken across indi- 
vidual subjects (usually the case with PET) or experimental trials from the 
same person (usually the case with fMRI). Averaging enables researchers to 
detect changes in blood flow associated with mental activity that would other- 
wise easily be confused with spurious shifts resulting from statistical noise in 
the resulting images. Averaging results across individuals has another import- 
ant potential advantage in that it may indicate what common features of brain 
organization are shared by different subjects. Knowledge of such common 
features is essential for understanding the species-unique and universal capacity 
of humans for language, for example. An illustration of the image-subtraction 
and averaging strategy used for PET is shown in Figure 1. 

For the remainder of the chapter, I focus on studies of language, largely 
from our own laboratory. This is done for several reasons: First, the work 
nicely illustrates the implementation of the strategies described above. Second, 
the work reflects the concerted effort of cognitive scientists and neuroscien- 
tists. Third, the results are pertinent with regard to cognitive theories of brain 
function. And fourth, these studies reveal important lessons about how to 
conduct functional-imaging research and what conclusions to draw from such 
studies. The following discussion is not intended as a complete review of func- 
tional-imaging studies of language but, rather, as an overview of functional 
brain-imaging strategies, using our studies of language as illustrations. These 
findings have important implications for neural-network modeling. (For a more 
in-depth review of human cognition and functional brain imaging, see Posner 
& Raichle, 1994.) 

The Study of Language: An Example 
The manner in which language skills are acquired and organized in the 

human brain has been the subject of intense investigation for more than a 
century. Work began in earnest in 1861 when Pierre Paula Broca described a 
patient for whom a damaged left frontal lobe destroyed the ability to speak. 
Broca's studies of language localization were complemented by those of Carl 
Wernicke, a German neurologist. In 1874, Wernicke told of people who had 
difficulty comprehending language following damage to the left temporal lobe. 
From these beginnings has emerged a concept of language organization in the 
human brain that, in broad outline, posits the following: Information flows 
from visual and auditory reception areas to areas at the junction between the 
left temporal and parietal lobes for comprehension, and then on to frontal areas 
for verbal response selection and speech production. Almost all of this infor- 
mation was gleaned from patients with brain damage. Could this organization 
represent the actual functioning of the normal brain as revealed through 
modern neural-imaging techniques? 
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In the mid-1980s my colleagues Steven E. Petersen, Michael I. Posner, 
Peter T. Fox, and Mark A. Mintun and I began a series of experiments (Peter- 
sen, Fox, Posner, Mintun, & Raichle, 1988, 1989; Petersen, Fox, Snyder, & 
Raichle, 1990; Raichle, Fiez, Videen, MacLeod, Pardo, Fox, & Petersen, 
1994) to begin to answer this question. We elected to begin our work with an 
analysis of the manner in which the normal human brain processes single 
words from perception to speaking. The initial experiments were designed in a 
hierarchical manner in which levels of information processing of increasing 
complexity were employed. This design is in keeping with the subtractive 
model presented previously. In our experiments, words were presented to the 
subjects either on a television monitor or through earphones. In the presenta- 
tion to follow, I will focus on those aspects of the study involving the visual 
presentation of words. 

Opening the eyes 
Regardless of the task to be performed by our subjects, they were always 

asked to fix their gaze on a small fixation point in the middle of a television 
monitor. This was done to prevent the unwanted activation of brain areas 
involved in saccadic eye movements from complicating the analysis. When one 
compares the simple act of opening one's eyes and fixing on a small dot in the 
middle of a television monitor with lying quietly when one's eyes are closed 
(Figure 2, top row) a significant increase in brain activity occurs in the back of 
the brain in those areas known to respond to visual stimuli. Subsequent chang- 
es in the strength of the image add to this already-present activity produced by 
simply opening the eyes and fixing the gaze. 

Words as passive visual stimuli 
Common English nouns appeared on the television monitor at the rate of 

one word a second while the subjects continued to fix their gaze on the fixation 
point. This added stimulation produced a marked increase in the extent and 
complexity of brain activity in the visual areas of the brain as shown in Figure 
2 (second row). The subjects were not instructed to respond to the words in 
any way, but simply to fix their gaze on the fixation point. These results 
suggested that words had special properties as visual stimuli that had powerful 
effects on the visual system of the human brain. What properties of the stimuli 
might produce these effects? Further analysis of words as visual stimuli was 
needed (Petersen et al, 1990). 

Subsequent research indicates that a very important factor is the orthograph- 
ic regularity of words and word-like symbols (Petersen et al, 1990). Two 
levels of analysis appear to be taking place in the visual system as we passively 
view words. At one level, the brain analyzes the visual features of the stimuli 
regardless of their relationships to letters and words. These visual features 
appear to be processed in multiple areas of the visual system on both sides of 
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the brain. Responses to false fonts containing only meaningless features are 
particularly strong on the right side of the brain. 

At a second level, the brain analyzes the visual word form. Visual stimuli 
consistent with the pronunciation rules of the English language uniquely acti- 
vate a group of areas in the visual system of fluent readers of English. This 
coordinated response among a group of areas clustered in one part of the visual 
system is acquired as we learn to read, and is probably critical to the facility 
with which skilled readers handle words. 

Reading words aloud 
Following the hierarchical design of the original experiment, the subjects 

were next asked to read aloud words (i.e., common English nouns) when each 

FIGURE 2. Mean difference PET images obtained from four different task states. A 
group of normal subjects performed a hierarchically designed series of language tasks. 
Each row represents the mean difference between images of the designated task state 
and a control state. The images on the left represent projections of the changes as seen 
on the lateral surface of the brain with the front of the brain to the reader's left. The 
horizontal lines through the bottom left image denote the orientation of the horizontal 
slices seen to the right of the images on the left. These horizontal images are oriented 
with the front of the brain toward the top and the left side to the reader's left. The Z 
values indicate millimeters above (+) or below (-) a horizontal plane through the brain 
at Z = 0. Four task states are indicated under the leftmost images. (See text for de- 
scription of the conditions during the various task states.) 
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appeared on the television monitor. For most individuals fluent in their native 
language, this is an easy task to perform. One might easily envision such a task 
being performed effortlessly at the same time as another, unrelated task--the 
point being that such a task requires little of our conscious attention. 

Not surprisingly, the motor areas of the brain were activated when individ- 
uals spoke the words as they were read from the television monitor. As shown 
in Figure 2 (third row), these areas included the primary motor certices in 
both cerebral hemispheres (Figure 2, third row, Z = 40). In addition, other 
motor areas buried more deeply within the cerebral hemispheres (l~gure 2, 
third row, Z = 20) were also activated--including the cerebellum (Figure 2, 
third row, Z = -20). 

At this point it should be noted that the act of speaking words, occurring in 
its simplest form during the reading aloud of single words, did not produce 
activity in the classic areas of the left cerebral hemisphere known as Broca's 
and Wernicke's areas. This was probably one of the first surprises to emerge 
from the studies of language in normal people using modern imaging tech- 
niques. The classical theories of language organization based on more than a 
century of research on patients with brain injury would have predicted clear- 
cut activity in these areas. 

Although not mentioned above, listening to words does produce activity in 
posterior left temporal cortex at the temporo-parietal junction in the region 
classically thought of as Wernicke's area. Furthermore, this area remains 
active when normal individuals repeat aloud the words they hear. However, it 
is important for the standard theory of language organization that this area was 
not activated when the same individuals read aloud words that were presented 
visually. Clearly, Wernicke's area, as classically defined from studies of brain- 
injured patients, is not active in an obligatory fashion when we speak. Critics 
of this new view were quick to point out that the new imaging techniques, such 
as PET and fMRI, might simply not have been sensitive enough to detect a 
change in Wernicke's area when people read aloud. Were it not for the find- 
ings in the next stage of the experiment (generating verbs aloud for visually 
presented nouns), this criticism would have been difficult to evaluate. 

Generating verbs aloud 
The next stage of the experiment required the subjects to generate a verb 

aloud when a noun was presented visually (e.g., see car, say drive). This task 
may seem an unnecessarily complex next step in the hierarchical design of the 
experiment, and linguists have been particularly critical! After all, the task 
involves a number of complex mental operations such as determining the 
meaning of the presented word (semantics) and the relation between the mean- 
ing of the word and the choice of an appropriate verb (syntax). Additionally, it 
is a very powerful episodic-memory encoding task as well as a semantic re- 
trieval task. Concerns about such issues obscure a most important difference 
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between this task and reading or repeating words aloud. This difference lies in 
the requirement that subjects must devote considerable conscious attention to 
the task and, among other things, suppress the tendency to speak the word they 
see and, instead, utter an appropriate verb. Furthermore, the verbal response 
must occur rapidly, because the nouns were being presented at the rate of 40 to 
60 per minute. It was clear to us that subjects found this task difficult when 
they first attempted it; they often fell behind and occasionally skipped respond- 
ing to nouns. 

The changes in neural activity we observed in the brain (Figure 2, bottom 
row) confirmed that the task of generating verbs for visually presented nouns 
placed a significant additional burden on processing resources. In addition to 
areas previously activated, new areas within the left frontal (Figure 2, bottom 
row, Z = 40, 20, and 0) and temporal (Figure 2, bottom row, Z = 0) lobes 
were activated together with an area along the anterior midline (Figure 2, 
bottom row, Z = 40). Areas qualifying as Broca's and Wernicke's areas were 
clearly activated, and there was a surprising additional involvement of the right 
cerebellum (Figure 2, bottom row, Z = -20). Recall that portions of the 
cerebellum were active during reading aloud (Figure 2, third row, Z = -20), 
but this additional activation in the right cerebellar hemisphere during verb 
generation took place in a distinctly separate area. Whatever else might have 
been predicted about the neural substrate of this task, the involvement of the 
right cerebellar hemisphere was completely unanticipated prior to obtaining 
these results. 

The fact that some areas of the motor system active during word reading 
(Figure 2, third row, Z = 20) were actually inactive during verb generation 
was an additional surprise. Because of the nature of the intensity scale used in 
Figure 2, where only positive differences between the task state and the con- 
trol state are shown, this inactivation is not shown. Suffice it to say that these 
areas, which were very active during reading aloud, were mysteriously inac- 
tive during verb generation. This pattern of results hints at the possibility that 
the task of verb generation actually requires different brain circuits rather than 
simply additional brain circuits for speech production. Our thinking in this 
regard was dramatically affected by the following entirely serendipitous event. 

While we were studying an additional group of subjects on the verb- 
generation task, one subject was given practice on the task to ensure that he 
could do it with less difficulty and greater accuracy. Recall that subjects had 
never practiced the verb-generation task prior to performing it in the PET 
scanner. The additional practice had totally unexpected effects on our results. 
Practice not only improved performance but also led to a failure to activate any 
of the areas seen in our previous study of verb generation with naive subjects 
(Figure 2, bottom row). Practice on the verb-generation task appeared to allow 
the brain to perform the task with the same circuits used for simply reading a 
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word aloud (Figure 2, row 3). If reliable, this was indeed a surprising finding. 
Therefore we set about studying the effect of practice on the brain circuits used 
for speech production. 

Practice effects 
The first study examined in greater detail the effect of practice on the verb- 

generation task. We learned (Raichle et al, 1994) that when normal subjects 
practiced generating verbs for the same list of 40 common English ncuns their 
reaction times became significantly shorter over a period of about 10 minutes. 
During this time they went through the same word list 10 times, being encour- 
aged by the examiner to proceed as quickly as possible. A critical feature of 
the learning process was the fact that as they practiced, their responses became 
quite stereotyped. Although each of the words on the list could be associated 
with several verbs, practice led to the repeated selection of just one verb for 
each noun. In a sense, an automated, stimulus-response pattern of behavior 
was established. If, after learning had occurred, a new word list was substitut- 
ed, their behavior returned to the unpracticed state; i.e., responses were signif- 
icantly slower and unstereotyped. It should also be noted that, regardless of the 
amount of practice or whether the subjects were speaking verbs or nouns, the 
actual time needed to say the word did not change. What did change was the 
time necessary to begin the response and the nature of the response (stereo- 
typed versus unstereotyped). Armed with this more complete information 
concerning the behavioral effects of practice, we were now in a position to 
evaluate the effect of practice on the brain circuits in a new imaging experi- 
ment. 

In the new imaging experiment (Raichle et al, 1994), normal subjects per- 
formed the verb-generation task with visually presented nouns naively and after 
10 minutes of practice. The control task was simply reading aloud the same 
words as they were presented on the television monitor. Consistent with our 
earlier experiments, the naive generation of verbs in response to visually 
presented nouns again showed involvement of the same brain areas. This find- 
ing was reassuring and supported our confidence in the imaging method. With 
practice on the task, the changes were dramatic. The areas in the frontal and 
temporal cortex in the left hemisphere and the right side of the cerebellum, 
which were activated during the verb-generation task in the naive state (top 
row, Figure 3), were completely replaced by active areas deep within the brain 
hemispheres after only a few minutes' practice (bottom row, Figure 3). It 
should be noted that these latter areas were also used for the far simpler task of 
reading nouns aloud. In addition, areas in the left occipital cortex significantly 
increased their activity after practice on the verb-generation task (Figure 4). 
These same areas were active during the passive visual presentation of words 
(l~gure 2, second row, Z = 0) and unchanged during reading nouns aloud 
(Figure 2, third row, Z = 0) and naively generating verbs for visually pre- 
sented nouns (Figure 2, fourth row, Z = 0). 
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These results strongly support the hypothesis that different brain circuits are 
activated when performing verb generation for the first time than when prac- 
tice has perfected or automated the task. Why should such an arrangement of 
brain circuitry be necessary? Why two circuits? Why not just do a better job of 
utilizing existing brain circuits as we learn? The answer may not simply be that 

FIGURE 3. Neural activity shown by PET difference images during the verb- 
generation task in the early (upper row) and late (lower row) stages of practice. The 
control state for these subtraction images was simply reading aloud the same visually 
presented nouns. 
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FIGURE 4. Sagittal view of neural activity shown by a PET difference image during a 
verb-generation task. The control state for this subtraction image was simply reading 
aloud the same visually presented nouns. The difference image to the right represents a 
sagittal slice of the brain 9 mm to the left of the midline. Note the marked increase in 
blood flow in the medial occipital cortices occurring after practice on the verb-genera- 
tion task. 

the brain needs two circuits, one for the non-conscious performance of highly 
automated tasks and the other for the performance of novel, non-automated 
tasks. The answer may instead be related to our need to strike a balance bet- 
ween the efficiency conferred by automation of much of our behavior and the 
occasional need to modify our programmed behavior in accordance with 
unexpected contingencies in our environment. Only further research can clarify 
such issues. What is clear is that functional brain imaging adds a remarkable 
new dimension to our thinking about how language and other cognitive activi- 
ties are implemented in the human brain. 

The Temporal Dimension 
While functional imaging studies with PET provide new insights into the 

functional brain anatomy of the neuronal circuits underlying various cognitive 
activities, they do not provide any information on the temporal sequence of 
information processing within these circuits. Metaphorically, one might think 
of a network of brain areas (see Figure 2) as a group of individuals in the 
midst of a conference call. The temporal information sought would be equival- 
ent to knowing who was speaking to whom and when. Such information is 
critical to understanding how specific brain areas are coordinated as a network 
to produce observable behavior. 

The temporally varying changes in brain activity revealed by fMRI have 
raised the possibility that this technique, with its speed of data acquisition 
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FIGURE 5. PET difference image (upper fight) and event-related potentials (ERPs, 
lower row) during the verb-generation task. Note the increase in blood flow in the PET 
image occurring in left frontal and temporal cortices during naive performance of the 
verb-generation task. The ERP difference records were obtained by subtracting the 
waveforms recorded when reading nouns aloud from those obtained during the verb- 
generation task. The arrows connect the PET blood-flow responses with difference 
ERP waveforms recorded at the nearest overlying electrode (heavy line = frontal 7 
electrode, light line = temporal 5 electrode). The horizontal bar below the ERP 
waveforms indicates the visual presentation of the noun and the vertical arrow indicates 
the cue to respond with the verb. Note that activity in frontal cortex precedes that in 
temporal cortex by over 400 msec. The numbers below the vertical lines indicate the 
times in msec after presentation of the word. 
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approaching a few tens of milliseconds, might provide both the anatomy and 
the sequence of information processing within functional brain circuits. The 
stumbling block, however, is the difference between the speed of neuronal 
activity and the rate of change of the fMRI signal. Signals from one part of the 
brain can travel to another in as little as a few milliseconds. Unfortunately, 
changes in blood flow and blood oxygenation (which is dependent on changes 
in blood flow) often require several seconds to occur after the onset of a 
change in neuronal activity. In all likelihood, the only methods that respond 
quickly enough are the electrical recording techniques such as electroen- 
cephalography (EEG) and magnetoencephalography (MEG). 

One might reasonably ask why these latter techniques have not been used to 
address the type of experimental problems now studied with PET and fMRI. 
Put briefly, EEG and MEG have limitations in their spatial resolution and 
sensitivity. Even though great strides have been made, particularly with MEG, 
the accurate localization of the source of brain activity remains difficult when 
electrical recording is used in isolation. Furthermore, the resolution becomes 
poorer the deeper the source of brain activity. 

Neither PET nor fMRI suffers from difficulty in localizing the anatomical 
source of a signal. Both techniques can sample all parts of the brain with equal 
spatial resolution and sensitivity. Recently, several successful attempts have 
been made to combine the spatial information of functional-imaging techniques 
with the temporal information from electrical techniques (Snyder, Abdullaev, 
Posner, & Raichle, 1995). One such attempt brought together investigators 
from our laboratory and the University of Oregon to study the temporal 
dynamics of the naive verb-generation task (Snyder et al, 1995). Event-related 
potentials (ERPs) were recorded during both verb generation and reading 
nouns aloud. Differences in the ERPs were then computed. Based on the find- 
ings of this study, it became clear that information processing unique to naive 
verb generation began in midline frontal cortices between 180 and 200 milli- 
seconds after the noun was presented. This was followed by a spread of activi- 
ty laterally to the left prefrontal cortex between 220 and 240 milliseconds after 
stimulus onset. Only later did activity arise in the left posterior temporal cor- 
tex, peaking between 620 and 640 milliseconds after the noun was presented 
(Figure 5). 

These data, admittedly preliminary, provide important information about 
the role of specific areas of the brain in information processing during the 
verb-generation task. For example, the activation in posterior temporal cortex 
(Figure 2, fourth row, Z = 0 and Figure 5) in the vicinity of the classical 
Wernicke's area is involved rather late in many rapid semantic tasks that 
produce reaction times much faster than 600 milliseconds. The later activation 
of Wernicke's area may be more closely related to the integration of word 
meanings for the overall meaning of phrases, sentences or other more complex 
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verbal units. Regardless of their final interpretation, data combining informa- 
tion from electrical and imaging studies are likely to benefit our models of 
information processing and to represent an important future direction in func- 
tional brain research. 

Summing Up 
Modern functional brain imaging with PET and fMRI, complemented by 

ERPs, will play an important role in our understanding of the functional organ- 
ization of the normal human brain. These new tools, guided by the principles 
of cognitive science, have the potential to dissect the basic mental operations 
underlying behavior and to correlate them with specific neural circuitry. Refer- 
ring to Figure 2, even relatively simple cognitive tasks recruit extensive areas 
of the brain to mediate performance. Although we are beginning to make 
statements about the roles of such groups of areas or circuits, further studies 
must determine the basic mental operations assigned to the individual brain 
areas within a given circuit. The studies of the neural processing of words that 
I have presented in this chapter give some indication of the manner in which 
such an analysis might proceed. This information, coupled with findings from 
studies of patients with brain injury and basic studies in laboratory animals 
using a variety of sophisticated techniques, bodes well for our future under- 
standing of human brain function. Armed with such information, we will be in 
a much better position to appreciate the neural basis of human behavior. 
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CHAPTER 24 

NEURAL MODELING OF LEARNING 
IN VERBAL RESPONSE-SELECTION TASKS 

Vijaykumar Gullapalli and Jack J. Gelfand 
Princeton University 
Princeton, NJ 

ABSTRACT 

We present a dynamic neuronal model of the diverse brain areas involved in 
learning verbal response selection that replicates observed human cognitive 
behavior. This model is based on recent positron emission tomography 
(PET), functional magnetic resonance imaging (fMRI), and event-related 
potential (ERP) data as well as the neuroanatomy and physiology of the brain 
areas involved. The model also captures the postulated dynamics of cortico- 
thalamo-basal ganglionic loops in the prefrontal cortex. 

Introduction 
Cognitive models of learning with practice have been studied for some time 

(Anderson, 1987; Crossman, 1959; Logan, 1988; MacKay, 1982; Newell & 
Rosenbloom, 1981; Schneider, 1985), and several different mechanisms for 
learning with practice have been proposed. Because of the wide latitude in 
devising cognitive models, these mechanisms~e.g., chunking (Newell & 
Rosenbloom, 1981), priority and association learning (Schneider, 1985), 
composition and strengthening (Anderson, 1987), instance recall (Logan, 
1988), and strengthening of nodal connections (MacKay, 1982)---are based on 
widely different functional architectures. However, recent studies of the func- 
tional anatomy of the brain obtained through the positron emission tomography 
(PET), functional magnetic resonance imaging (fMRI) and event-related poten- 
tial (ERP) techniques have shed some light on the actual brain mechanisms 
involved in learning with practice. Information obtained from such studies is 
crucial, because it yields strong modeling constraints over and above those 
obtained from cognitive studies alone. 

The focus of this chapter is on modeling the brain mechanisms involved in 
iterated verbal response-selection tasks while satisfying neuroanatomical and 
functional constraints, as well as data from brain-imaging and ERP studies 
(Raichle, this volume). Human cognitive behavior in iterated verbal response- 
selection tasks is a simple yet interesting example of learning with practice. 
When subjects are asked to respond, for example, with appropriate verbs for a 
visually presented list of nouns, repeated presentation of the list initially elicits 
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varying responses to each noun; with practice, however, stereotypic responses 
develop. Practiced responses also are produced faster than responses by naive 
subjects. In addition to these basic characteristics, verbal response selection 
shows dependence on several cognitive variables that, when manipulated, can 
give rise to priming, masking, interference, and other cognitive phenomena. 

We present a heterogeneous dynamic neuronal model that integrates at a 
systems level the diverse areas of the brain involved in these tasks. Our model 
replicates both the high-level cognitive behavior and the neuronal-level charac- 
teristics of the brain circuits involved. This has necessitated the modeling of a 
significant portion of the language understanding and generation system on the 
neuronal level including the representation of words, direction of attention, 
response-selection processes and output processes. Much is unknown about 
some of these components. In some cases we have included the known neuron- 
al circuits and hypothesized dynamics, and in others we have captured only the 
gross characteristics of their hypothesized functionality. One might ask "Why 
attempt such an undertaking at this stage?" There are several reasons. First, we 
have had to take into account data from a number of different fields to ensure 
that the model is consistent with what is known. The model requires the inte- 
gration of such knowledge in an organized framework. In addition, assump- 
tions are stated explicitly enough in the model to be verified or refuted by 
future experimental work. Our choice of the components of the model and the 
roles ascribed to them can also result in specific predictions about how the 
disruption of these components can affect overall behavior. These predictions 
can also be verified through future experimental work. 

Many of the cognitive models proposed for learning with practice posit a 
single stream of processing and involve improving the efficiency or the focus 
of attention of the process with multiple exposures to the task. In contrast, 
other investigators have suggested that cognitive processing utilizes multiple 
processing streams and that the observed properties of learning are a manifesta- 
tion of changes in one of those streams. (e.g., Kounios, Osman, & Meyer, 
1987; Kounios, 1993; Logan, 1988, 1992; Schweikert & Wang, 1993). Kou- 
nios (Kounios et al, 1987; Kounios, 1993) has used a speed-accuracy decom- 
position method to infer that multiple simultaneous processes may be involved 
in semantic memory operations. He has postulated that a continuous computa- 
tional process operates in parallel with discrete all-or-none search in a sen- 
tence-verification paradigm. Logan (1988; 1992) has postulated that learning of 
automatic responses involves the formation of a knowledge base of instances of 
each exposure to the task. A response in a particular task results from a race 
between two separate processing streams, one algorithmic and the other a pure 
recall of instances. With this approach, he has been able to reproduce the 
power law of speed-up in response time with practice and other observed 
changes with practice---such as changes in the distribution of response times, 
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the shape of the learning curve, and the distribution of stereotypic responses 
with practice. 

Multiple processing streams were also found in a recent study by Raichle, 
Fiez, Videen, MacLeod, Pardo, Fox, and Petersen (1994), who used the PET 
technique to examine the differences in the functional anatomy of the brain 
during naive and practiced performance of verbal response selection. PET 
scans over repeated presentations showed a shift in brain activity from the 
anterior cingulate, the left prefrontal and left posterior temporal cortices, and 
the right cerebellar hemisphere in the naive condition to the sylvian-insular 
cortex bilaterally and the left medial extrastriate cortex after practice. Introduc- 
tion of a novel stimulus after practice reactivated the regions active in the naive 
condition. Raichle et al (1994) concluded that two distinct brain circuits were 
employed in verbal response generation, one for controlled selection of re- 
sponses and the other for the production of learned or automatic responses. 

In addition to the PET study of Raichle et al, there is a great deal of infor- 
mation to guide us in our modeling effort. Numerous studies have indicated 
that the left prefrontal cortex plays a role in language processing (Demb, 
Desmond, Wagner, Vaidya, Glover, & Gabrieli, 1995; Kapur, Rose, Liddle, 
Zipursky, Brown, Stuss, Houle, & Tulving, 1994; Petersen, Fox, Snyder, & 
Raichle, 1990; Raichle et al, 1994; Snyder, Abdullaev, Posner, & Raichle, 
1995). There is evidence to suggest that temporal-association areas are respon- 
sible for accessing cognitive or semantic representations of words. This can 
include Wernicke's area as well as other left posterior temporal areas (Dronk- 
ers, Redfern, & Lucy, 1995; Wise, Chollet, Hadar, Friston, Hoffner, & 
Frackowiak, 1991). Furthermore, it is believed that anterior cingulate cortex 
specifically represents information pertaining to the task that is currently being 
performed (Pardo, Pardo, Janer, & Raichle, 1990; Janer & Pardo, 1991; Vogt, 
Finch, & Olson, 1992). The role of the sylvian-insular cortex is not well 
understood. Raichle et al (1994) have postulated that it serves as an associative 
store for learned responses to stimuli in a fashion similar to premotor cortex 
(Mitz, Godschalk, & Wise, 1991). In addition to the roles played by the corti- 
cal areas discussed above, it is believed that subcortical structures such as the 
thalamus and basal ganglia participate in language function (Crosson, 1992; 
Wallesch & Papagno, 1988). 

Neural-Modeling Methods 
Although verbal response selection is a high-level cognitive behavior, our 

model is implemented at the neuronal level to enable us to incorporate our 
knowledge of the neurophysiology of the brain areas participating in the task. 
We have used grouped models of the neurons in our implementation, primarily 
because little is known about the impact of sub-neuronal dynamics on the high- 
level cognitive behavior. However, one of our goals is to determine the appro- 
priate level of detail needed to model all the relevant aspects of verbal response 
selection in humans. 
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The most important feature of our model is that it incorporates the dynamic 
characteristics of the brain circuits involved. This allows us to replicate the 
temporal characteristics of the observed cognitive behavior, which is essential 
for any meaningful study of the phenomenon of learning. It also enables us to 
compare the dynamic behavior of the model in simulations with the temporal 
characteristics of neuronal activations revealed by ERP data. 

Fronto-Thalamo-Basal Ganglionic Loop 
Striatal Thalamus Left 
Spiny Reciprocal Prefrontal 
Cells GPi monosynaptic Codex 

Disinhibition projections _ 

Controlled pathway 

Anterior 
Cingulat 
Cortex 

Tasks 

Input 
words 

Cortical 
Modules 

Associative memory 

Automatic pathway 

Sylvlan 
Insular 
Cortex 

Artlculatory 
output 

FIGURE 1. The architecture of the verbal response-selection model. 

System Architecture 
The architecture of the model is depicted in Figure 1. A primary feature of 

this architecture is the presence of two processing streams. The controlled 
stream consists of the frontal cortex, the basal ganglia, and the thalamus. There 
is also an automatic stream, which consists of the sylvian-insular cortex. Both 
receive inputs from the anterior cingulate cortex representing the task and 
cortical modules in left medial temporal cortex representing the input words. In 
the PET studies, these were the areas whose excitation differed significantly in 
the naive and practiced performance of the response-selection task (e.g., 
Raichle et al, 1994). Both these streams receive common inputs from the 
sensory areas and send outputs to the motor areas. 

The cortical modules representing the anterior cingulate and the sensory and 
language areas are organized as columns of neurons that correspond to cortical 
columns, each functioning as a relatively coherent information-processing unit 
as discussed by Mountcastle (1978). Each cortical module forms a distributed 
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representation of some internal state of the organism or external state of the 
environment. Cortico-cortical interconnections formed through Hebbian learn- 
ing (Hebb, 1949) make it possible for the cortical modules to develop robust 
representations. 

The representations used clearly have a major impact on the functioning of 
a model. In the current model, we used a distributed representation over the 
sensory and language cortical modules to encode stimulus words, with each 
module denoting a "feature" or "category" of words (e.g., "colors" or 
"verbs"). The rationale for this representation is presented in the next section. 
These cortical representations are input to the basal ganglia, the sylvian-insular 
cortex, and the frontal cortex. Additionally, the cingulate module stores a 
representation of the task (e.g., "generate a color response"), and provides it to 
the basal ganglia and the sylvian-insular cortex. 

A more detailed diagram of the input-representation configuration and the 
projections involving the dorsolateral left prefrontal cortex and subcortical 
structures is shown in Figure 2. In addition to receiving projections from the 

SENSORY INPUT 

Task + Stimulus Word 

& 
ANTERIOR TEMPORAL 

ClNGULATE ASSOCIATION CORTEX 
CORTEX 

Representational Cortical Columns 
LEFT PREFRONTAL 

CORTEX 

Reciprocal 
Monosynaptic 
Connections 

STRIATAL SPINY CELLS 

Selec~ve disinhibitJon 

GLOBUS PALLIDUS 

BASAL GANGLIA 

FIGURE 2. Architecture of the cortico-thalamo-basal ganglionic loop that makes up 
the controlled response-selection pathway. For clarity, only projections to one striatal 
spiny cell are shown. Similar convergent projections go to each striatal neuron. The 
lateral inhibitory connections between neurons within each association-cortex column 
are also not shown. 
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sensory/language cortical modules, the frontal cortex also has highly specific 
reciprocal projections with the thalamus, resulting in local cortico-thalamic 
loops that, when active, may sustain activity in frontal-cortex neurons (Houk & 
Wise, 1993; Alexander, Crutcher, & DeLong, 1990; Groenewegen & Be- 
rendse, 1994; Houk, 1995; Selemon & Goldman-Rakic, 1985). These loops 
could be activated through selective disinhibition by the basal ganglia (Chevali- 
er & Deniau, 1990). In this model, striatal spiny cells in the basal ganglia 
function as a pattern recognizers providing a contextual set for the prefrontal 
cortex. Based on inputs from the cortical modules and the cingulate, the basal 
ganglia selectively disinhibit the frontal cortex-thalamus loops corresponding to 
the word features appropriate for the task, thereby latching these features in the 
frontal cortex. Thus the output of the controlled circuit is an appropriate word 
represented by the selected features in the frontal cortex. 

In parallel with the controlled circuit, the sylvian-insular cortex module, 
which forms the automatic circuit, produces a response associated with the 
cortical inputs. The structure and function of the insular lobe has been re- 
viewed by Augustine (1985). Because there is a lack of concrete anatomical 
evidence at this point for the mechanisms that mediate this associative re- 
sponse, we simply modeled the insular learning as a linear associative network. 
Although this is not biologically faithful, it does have the property of incre- 
mentally learning the correct output response based on examples given by the 
performance of the controlled pathway, and thus allows us to observe the 
overall dynamics of the model. 

The output of the overall system is determined by the earliest information to 
arrive from the two parallel pathways. This is similar to a "race model" in a 
multi-process cognitive system as suggested by Kounios (1993) and Logan 
(1988, 1992). At each time step, we determined if any neuron in the pathway 
was selected based on whether the ratio of its activity to that of the other 
neurons in the pathway exceeded a fixed threshold. We then compared the 
activity levels of the maximally active neurons in each pathway and designated 
the pathway with the higher level of activation as the winner. Because the peak 
activity of neurons in both pathways was of comparable magnitude, the path- 
way that reached its peak activity sooner won the race to determine the output. 

Representation of Words 
Our use of a distributed representation over the sensory and language corti- 

cal modular array (Wise & Houk, 1994) to encode stimuli is inspired by the 
functional anatomy of the cortex (e.g., Penfield & Rasmussen, 1950; Mount- 
castle, 1978; Asanuma, 1975). The general organization of cortical circuits 
appears to be in the form of a distributed set of functionally specific regions or 
columns interactively involved in the execution of a given task. Each function- 
ally specific region extracts from its inputs higher-level information regarding 
a particular aspect of the task. 
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Sharing of processed information through reciprocal cortico-cortical projec- 
tions between regions enables information extracted in one region to influence 
the processing of information in other regions concerned with the execution of 
the task. Cortical organization in columns with reciprocal projections between 
columns has been observed, for example, in the primary and secondary visual 
areas (Mountcastle, 1978), as well as in the motor cortex (Asanuma, 1975). 

Modules in the cortical modular array (Wise & Houk, 1994) in our imple- 
mentation (Figure 3) correspond to local information-processing regions of the 
cortex, with each module concerned with the representation of a "feature" or 
"category" of words. For example, a module might represent a color or colors 
associated with the stimulus word, or the fact that it is a verb. As a result, each 
word is represented as a distributed activation of the features associated with 
that word. 

Cortical Module I Cortical Module 2 Cortical Module 3 

FIGURE 3. Block diagram of the cortical modular array used in our implementation to 
represent words. Lines ending in open circles denote reciprocal excitatory projections 
between neurons in different modules, while those ending in filled circles denote in- 
hibitory projections between neurons within a module. For clarity, not all the excita- 
tory projections are shown. 

In our preliminary model, the nominal level of this distributed activation is 
predetermined for each word. The levels of activation are given in Table 1. 
Thus, presentation of a stimulus word is brought about by adding the activa- 
tions indicated in the table to the corresponding neurons in the cortical mod- 
ules. If no value is specified in the table for a neuron, its activity is not 
changed. 

For example, when the stimulus APPLE is presented, (among others) the 
activations of the neurons representing EAr are increased by 0.5 and those of 
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the neurons representing SWEET by 0.7, while the activations of the neurons 
representing 1,~, for instance, are not changed at all. These changes in activa- 
tion values were selected to reflect the degree of association between the stimu- 
lus and the corresponding word. Thus, for instance, while ~I,  LE is highly 
associated with both RED (1.0) and l~urr (1.0), it is associated to a lesser extent 
with EAT (0.5), and not at all with BLACK (0.0). 

Two factors influence the temporal dynamics of these distributed activa- 
tions. First, shunting-type lateral inhibition (e.g., Pinter, 1983; Grossberg, 
1973; Furman, 1965) among the neurons in a cortical module, depicted by 
filled circles in Figure 3, results in a winner-take-all type selection of the 
feature represented by that module. The equation governing this lateral inhibi- 
tion within a module (see, for example, Pinter, 1983) is 

dy /dt = l(y /7 ) -  (y, ~ ajm(Ym)), 
m < > n  

(1) 

where T is the cell time constant, I is the current weighted sum of inputs to the 
cell, a is the weight of inhibition, and fm(Ym)iS the conductance between 
neighboring neurons in a module. In our current implementation, we used T = 
1.0, a = 10.0, and the identity function fn(Ym) = Ym" 

Momdeling neurons as leaky integrators with shunting-type inhibition leads to 
dynamic interactions between the new activity due to presentation of a stimulus 
and the previously existing activity of neurons in a module. These interactions 
play a significant role in determining what is represented in each module: 
Previous strong activity of other features might inhibit weak new activity of a 
feature, resulting in suppression of a feature in the predetermined representa- 
tion of the stimulus word. Alternatively, previous activation of the same fea- 
ture might lead to priming of the new feature, increasing its prominence in the 
representation. 

In contrast, the cortical modules attempt to maintain a coherent set of 
features in a representation by filling in missing features that were often active 
in the past in conjunction with those that are currently active. This is accom- 
plished by mutually excitatory projections between neurons in different mod- 
ules of the cortical modular array, as shown in Figure 3. The strengths of 
these projections are adapted via Hebbian learning (Hebb, 1949) according to 
the following equation: 

w (t + 1) = 6w (t) + ~Ym(t)y,(t), (2) 

where w (t) is the weight or synaptic strength between neurons n and m, (5 is 
the weight-decay factor, c~ is the learning rate, and Ym and y, are activations of 
neurons in different cortical modules. 

Due to the dynamic nature of the representation of stimulus words, present- 
ing the same word in different historical contexts can elicit different responses 
due to priming effects, much as occurs with human subjects. 
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Simulation Results 
In this section, we present simulation results that demonstrate the features 

of the model. For these simulations, we selected a list of 20 words to repre- 
sent. Of these, six were used as stimuli, while the responses could be selected 
from all 20. The words were classified into four groups" stimuli, color names, 
verbs, and miscellaneous. A separate cortical module was used to represent 
words in each group. Table 1 contains the (predetermined) activations of the 
words in each sensory/language cortical module when each of the stimulus 
words is presented. 

Stimulus: APPLE BANANA GRAPE CAT DOG MOUSE 

Potential Responses 

APPLE 
BANANA 
GRAPE 
CAT 
DOG 
MOUSE 

1.0 

BLACK 
BROWN 
RED 
YELLOW 

1.0 

1.0 

1.0 

1.0 

0.5 
0.3 

BUY 0.9 0.9 0.9 
EAT 0.5 0.2 
FALL 0.8 0.8 0.7 
RUN 

HOUSE 
FRUIT 1.0 0.8 
PET 
SWEET 0.7 0.4 
SOUR 0.5 0.1 
TREE 0.4 0.1 

0.9 

0.5 
0.9 

1.0 
0.5 
0.6 

1.0 
0.2 

1.0 

0.8 0.7 0.9 
0.5 0.9 0.7 

0.2 0.3 0.1 
0.8 0.9 0.9 

0.3 0.3 0.2 

1.0 1.0 1.0 

TABLE 1. Representation of the stimulus words in the preliminary model as activa- 
tions of cortical modular array neurons representing the features that constitute poten- 
tial responses. 
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FIGURE 4. Example of selection of an appropriate response for different tasks by the 
controlled circuit. The COLOR and VERB task plots are activations of neurons in the 
cingulate cortex representing those tasks. The response activations (e.g.,  RED, BUY, 
TREE) are of neurons in the prefrontal cortex. 
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The model captures the dynamics of cortico-thalamo-basal ganglionic loops 
suggested by Houk and Wise (1993) based on neurophysiological evidence 
gathered by several researchers (Alexander et al, 1990; Chevalier & Deniau, 
1990; Wang, Rinzel, & Rogawski, 1991; Fuster & Alexander, 1973; Gold- 
man-Rakic & Friedman, 1991). An example of this is presented in Figure 4. 
The first plot shows the activity of frontal-cortex neurons when no task is 
specified. As can be seen, the initial activity of the neurons due to stimulus- 
word presentation decays with time. When a COLOR task is specified, the activi- 
ty of neurons representing a color associated with the stimulus word is sus- 
tained through selective activation of the corresponding loops, while the activi- 
ty of the other neurons decays away. Similarly, when a VERB task is specified, 
activity of neurons representing actions associated with the stimulus word is 
selectively sustained. 

As reported by Raichle et al (1994), the median response times of human 
subjects decreases significantly over successive blocks of presentation of the 
same set of stimuli. If a novel stimulus set is presented immediately following 
these repeated blocks, the response time returns to about the same level as in 
the naive condition for the original stimulus set. We ran a similar experiment 
with our system. We presented three stimuli, APPLE, DOG, and MOUSE, for 10 
successive blocks, followed by 10 more blocks with the stimuli BANANA, 
ORmE, and CAT. The task (COLOR) remained the same. As illustrated in 

Performance While Learning COLOR Responses Through Praclice: Novel St imu l i  in B l ock  11 

. . . . . . . . . . . . . .  APPLE', DOG, IV~US'E 
BANANA,  GRAPE CAT  

L = . v 

\ 
, - - - . - - - . - - . . . . . . - - . - - . - -  
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T ra i n i ng  B lock  (3  S t imu lus  Words  Pe r  B lock )  

FIGURE 5. Performance while learning COLOR responses through practice. The stimu- 
li were switched from (APPLE, DOG, MOUSE) to (BANANA, GRAPE, CAT) in block 11. 



466 V. Gullapalli and J.J. Gelfand 

Figure 5, the response time of the system also decreased with repeated presen- 
tations of the same stimulus set for 10 blocks. Moreover, as with human sub- 
jects, presentation of a novel stimulus set resulted in a significant increase in 
the response time, which decreased with further repetitions. 

A similar experiment, in which we switched the task instead of the stimuli 
in the 1 l th presentation, also produced interesting results. In this experiment, 
all six stimuli were presented for 10 blocks of the COLOR task. As shown in 
Figure 6, the response time of the model decreased with repeated presenta- 
tions, as was expected. When the task was switched to VERB in the 1 l th block, 
the response time returned to the naive performance level and then began to 
decrease with further presentations. 
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FIGURE 6. Performance while learning verbal responses in two different tasks. Task 
switched from COLOR to VERB in block 11. 

Discussion 
The results given in the last section indicate that a model based on the 

anatomical and functional features of the brain areas participating in learning 
word-association tasks does indeed simulate the cognitive behavior observed in 
humans. For this initial test of the overall model, we necessarily made many 
simplifications and assumptions concerning individual system components. 
Some of the important questions and issues raised by this modeling effort, 
along with possible directions of future work, are discussed below. 
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Comparison of the modeling that we have done here with regional cerebral 
blood flow assumed a direct relationship between neural activity and local 
blood flow. This simple relationship may not be generally true (Horwitz & 
Sporns, 1994). For example, Ackerman, Finch, Babb, and Engel (1984) have 
found that long-duration suppression of hippocampal pyramidal-cell firing was 
accompanied by increased 2-deoxyglucose uptake, indicating an increase in 
local regional cerebral blood flow. The mechanisms modeled in this paper do 
not include any suppression of activity as part of the operation of the circuit. It 
is possible, however, to envision a multi-stream architecture in which one 
stream might be actively suppressed while the other stream was in the process 
of generating a response. In this case, an increase in activity measured by PET 
or fMRI would indicate a decrease in excitation rather than an increase. 

A primary issue for investigation is the existence of dual--controlled and 
automatic--pathways for verbal response selection. Demb et al (1995) have 
suggested that the decrease in fMRI and PET activation of the left prefrontal 
cortex with repeated semantic processing may not be an indication of a shift in 
processing between streams in a two-stream model, but rather a decreased 
response to the processing of repeated stimuli, as has been reported at the 
single-cell level in monkeys performing an object working-memory task 
(Miller & Desimone, 1994; Miller, Li, & Desimone, 1993). To address this 
issue, more information is needed to test the hypothesis that the sylvian-insular 
cortex serves as an associative store of the learned automatic response (Raichle 
et al, 1994). Although the PET data from the study of Raichle et al support 
such a model, there are other nearby areas in the Sylvian fissure that partici- 
pate in language processing and generation. Higher-resolution data from fMRI 
is needed to pinpoint the precise area involved in the learning process. Addi- 
tional functional evidence---especially temporal data from ERP~is  also needed 
to evaluate the conclusions of the PET study. The model predicts that the 
shortening of response time is due to faster output from the insula. This could 
easily be tested with ERP data obtained from a learning protocol similar to that 
in Raichle's PET study. The ERP data of Snyder et al (1995) show that excita- 
tion of the insula occur after the cingulate, frontal, and temporal cortices for 
initial exposures to nouns in a use-generation task. If this two-stream model is 
correct, the excitation of the insula should occur more quickly as the excitation 
in the other areas diminishes with practice. 

Raichle et al (1994) found that the insula were inhibited bilaterally with 
respect to simple word repetition during naive word-association tasks, but 
became more excited bilaterally after practice. Bilateral participation makes it 
difficult to use lesion studies of patients to uncover the function of the insula 
because of the small chance of finding a patient with an appropriate lesion on 
both the left and right sides. One might expect that patients with damage to any 
one side will recover all or nearly all of their language function. However, 
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patients with focal damage to the language areas of the left insula are mildly 
aphasic and exhibit an apraxia of speech characterized by substituting one 
sound for another or omitting, adding, transposing, and distorting sounds 
(Dronkers, 1995; Miller, 1989). This occurs variably, with subjects sometime 
demonstrating normal production of the proper sound sequence for a given 
word. Thus, programming of word generation is disrupted. It is not, however, 
a Broca's aphasia where motor commands for speech are not generated. It is a 
disturbance of the motor plan. Based on these observations and the fact that the 
insula project to premotor areas (Augustine, 1985), we believe it worthwhile to 
investigate a recurrent-feedback network model of insular participation whose 
dynamics result in the ordered presentation of output as a series of phonemes 
or other linguistic primitives to the premotor (probably Broca's) area. This role 
for the insula is not necessarily contrary to a two-stream model of controlled 
and automatic response generation. It is possible that the associative-memory 
role of the insula is to associate an input stimulus with an output of the appro- 
priate string of phonemes to be projected to the motor system. 

At present, we have only modeled those areas that were observed to change 
their level of excitation during the learning process. In the future, we plan to 
include other known language-related areas in greater detail along with their 
projections to the motor system. Also, the architecture we describe here uses 
distributed, modular arrays for the representation and processing of informa- 
tion (Goldman-Rakic, 1988; Wise & Houk, 1994; Mesulam, 1990). Little is 
known about the specific information encoded by the cortical modules in word- 
association areas. In our current implementation, we postulate that cortical 
columns encode information regarding features or categories of words. Several 
alternative word representations organized around lexical, orthographic, or 
phonetic attributes of words are possible, and are being investigated at the 
present time. Because the representation of words must be a component of a 
more complex system that processes more complex linguistic structures such as 
sentences, a hierarchical system architecture (cf. MacKay, 1987) would prob- 
ably be more suitable than the simple representation scheme used here. 

The behavior of the neurons in the left prefrontal cortex in the model is 
similar to the sustained activity of prefrontal-cortex neurons observed by 
Fuster & Alexander (1973) and Goldman-Rakic (1994) in delayed-response 
tasks. Thus, the prefrontal area could serve as a working memory where task- 
specific representations are maintained for use by other cognitive and motor 
areas involved in the execution of a verbal response task. We would predict 
that lesions that cause a lack of inhibition of the cortico-thalamic loops would 
result in the generation of inappropriate responses. Lesions that cause a partial 
or global inhibition of the thalamo-cortical loops would result in deficits in 
initiating responses. Deficits in shifting set would result from lesions that 
damage the ability to alter the modulation of thalamo-cortical loops. Similar 
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deficits have been observed in prefrontal- and subcortical-lesion patients. 
However, more specific correlations are needed between the lesion sites and 
the resulting effects on the dynamics of these neuronal circuits to confirm the 
features of this model. 

Another important aspect of the system that requires further study is the 
functional role of the cerebellum. Raichle et al (1994) found that the right 
cerebellar hemisphere is activated in the naive condition of the word-associa- 
tion task. Leiner, Leiner, and Dow (1991, 1993), and others (Akshoomoff, 
Courchesne, Pres, & Iragui, 1992; Berntson & Torello, 1982; Ito, 1993; 
Schmahmann, 1991) have pointed out that the cerebellum has a significant role 
in cognitive and language functions, a fact that has long been overshadowed by 
its prominent motor role. It is possible that the cerebellum has a role in error 
correction for potential response words, especially when action-related re- 
sponses are to be produced. This hypothesis is based on data from Fiez, Peter- 
sen, Cheney, and Raichle (1992), who found that damage to the right cerebel- 
lar hemisphere of a human subject due to stroke resulted in the patient's inabil- 
ity to generate appropriate word-association responses, especially verb re- 
sponses. In this regard, the cerebellum may act as a language area for action- 
oriented aspects of language. This role may be a naturally arising complement 
of the well-established motor role of the cerebellum. The principal feature of 
Fiez's patient RC-1 was the absence of feedback concerning his performance in 
the word-association task. He made errors but was unaware of these errors. 
The mechanism of cerebellar participation may be similar to that for using 
feedback to correct errors in motor control. Berthier, Singh, Barto, and Houk 
(1993), for example, postulate such a mechanism that uses Purkinje cells in 
cortico-cerebellar modules to recognize complex states of cell firing in the 
cortex to select appropriate responses. 

Finally, the cerebellum may play an important role in facilitating learning in 
the automatic pathway. In the above-mentioned study by Fiez et al (1992), the 
cerebellar patient was also impaired in learning new word associations with 
practice. Here again, the cerebellum could be acting as a pattern-recognizing 
system that detects when the type of response produced by the controlled 
pathway matches that required by the task. In case of a match, the cerebellum 
enables learning of the appropriate response. Simulations to test the authentici- 
ty of this mechanism and to determine possible alternative mechanisms for 
facilitating learning are currently being conducted. 
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CHAPTER 25 

SERIAL ORDER: A PARALLEL 
DISTRIBUTED PROCESSING APPROACH 

Michael I. Jordan 
Department of Brain and Cognitive Sciences 
Massachusetts Institute of Technology 

ABSTRACT 
A theory of learned sequential behavior is presented, with a focus on coar- 

ticulatory phenomena in speech. The theory is implemented as a recurrent 
parallel distributed processing network that is trained via a generalized error- 
correcting algorithm. The basic idea underlying the theory is that both serial 
order and coarticulatory overlap can be represented in terms of relative levels 
of activation in a network if a clear distinction is made between the state of the 
network and the output of the network. 

Introduction 
Even the most cursory examination of human behavior reveals a variety of 

serially ordered action sequences. Our limb movements, our speech, and even 
our internal train of thought involve sequences of events that follow one anoth- 
er in time. We are capable of performing an enormous number of sequences, 
and we can perform the same actions in a variety of different contexts and 
orderings. Furthermore, most of the sequences that we perform were learned 
through experience. 

A theory of serial order in behavior should clearly be able to account for 
these basic data. However, no such general theory has emerged, and an im- 
portant reason for this is the failure of current formalisms to deal adequately 
with the parallel aspects of serially ordered behavior. We can tentatively dis- 
tinguish two forms of parallelism. The first is parallelism that arises when 
actions in a sequence overlap in their execution. In speech research, such 
parallelism is referred to as coarticulation (Kent & Minifie, 1977; Moll & 

* *  

Daniloff, 1971; Ohman, 1966), and it greatly complicates the traditional de- 
scription of sequential speech processes. The second form of parallelism occurs 
when two actions are required to be performed in parallel by the demands of 
the task or by implicit constraints. Such is the case, for example, in the dual- 
task paradigm, in which actions that have been learned separately must be 
performed together. This differs from the case of coarticulation, in which 
actions that are nominally separate in time are allowed to be performed in 
parallel. It is important to characterize both how such parallelism can arise 
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within a sequential process and how it can be constrained so that unwanted 
parallel interactions are avoided. 

In this paper, I present a theory of serial order that describes how sequences 
of actions might be learned and performed. The theory is embodied in the form 
of a parallel distributed processing network (Rumelhart & McClelland, 1986). 
Such networks are composed of a large number of simple processing units that 
are connected through weighted links. In various forms, such networks have 
been used as models of phenomena such as stereopsis (Marr & Poggio, 1976), 
word recognition (McClelland & Rumelhart, 1981), and reaching (Hinton, 
1984). The success of these models has been due in large part to their high 
degree of parallelism, their ability to bring multiple interacting constraints to 
bear in solving complex problems, and their use of distributed representations. 
However, none of these properties seems particularly well suited to the prob- 
lem of serial order. Indeed, a criticism of this class of models has been their 
inability to show interesting sequential behavior, whereas the more traditional 
symbolic approaches~typically by assuming a sequential processor as a primi- 
tive--deal with serial order in a much more straightforward manner. This 
criticism is challenged in this chapter, in the context of a theory of serial order 
that takes advantage of the underlying primitives provided by parallel distribut- 
ed processing. 

Serial Order 
Many of the problems encountered in developing a parallel distributed 

processing approach to the serial-order problem were anticipated by Lashley 
(1951). Lashley pointed out the insufficiency of the associative-chaining solu- 
tion to the serial-order problem. The associative-chaining solution assumes that 
serial ordering is encoded by directed links between control elements repre- 
senting the actions to be ordered, and that the performance of a sequence 
involves following a path through the network of control elements. Lashley 
argued that this solution fails to allow different orderings of the same actions 
because there is no mechanism for specifying which link should be followed 
from an element having more than one outgoing link. He also argued that 
serial behavior shows anticipatory effects of future actions upon the current 
action, and that such context effects are not accounted for within the associa- 
tionist framework. 

Buffer approaches to serial order 
Lashley's arguments have had an impact on those seeking to understand the 

role of feedback in a theory of motor behavior, but have been less influential 
on those interested in the structure of motor programs. This is in all likelihood 
due to the impact on theorists of the development of the digital computer, 
which made it possible to see how arbitrary sequential programs can be exe- 
cuted. Theories based explicitly on the computer metaphor have invoked the 
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notion of a buffer which is loaded with the actions to be performed, and a 
program counter which steps through the buffer (Shaffer, 1976; Sternberg, 
Monsell, Knoll, & Wright, 1978). Despite the generality of such a theory, 
simple buffer theories are known to have several problems, including accoun- 
ting for error patterns (Kent & Minifie, 1977; MacKay, 1981). It is also true 
that coarticulation is not well handled by buffer theories. One approach is to 
assume that buffer positions can interact with each other (Henke, 1966). 
However, this interaction, which must occur when successive actions are 
simultaneously present in the buffer, takes time, as does the process of reload- 
ing the buffer once a set of related actions has been executed. This approach 
implies the presence of delays at certain times in the production of long se- 
quences, but such delays are not observed in fluent sequential behavior (cf. 
Shaffer & Hardwick, 1970). Another problem is that interactions between 
actions should depend on their relative positions in the buffer, not their abso- 
lute positions. For example, the interactions between the phonemes/i /and/n/ 
should presumably be the same when saying "print" and "sprint." This would 
seem to imply the need for a complex mechanism whereby learned interactions 
can automatically generalize to all buffer positions. Such issues, which arise 
due to the explicit spatial representation of order in buffer theories, seem to be 
better handled within an associationist framework. 

Associationist approach to serial order 
Wickelgren (1969) revived the associationist approach by assuming that 

serial order was indeed encoded by directed links between control elements, 
but that the control elements were different for different orderings of the same 
actions. The control element for the action B in the sequence ABC can be 
represented by the form ^B c whereas the control element for B in the sequence 
CBA is represented as cBA. These control elements are distinct elements in the 
network, thus there is no problem with representing both the sequences ABC 
and CBA in the same network. In this account, actions are different in different 
contexts, not because they are executed in parallel, but because they are pro- 
duced by different control elements. 

Wickelgren's theory provides a solution to the problems posed by Lashley 
but it has several shortcomings. First, it requires a large number of elements, 
yet has difficulty with the pronunciation of words, such as "barnyard," that 
have repeated subsequences of length two or more (Wickelgren, 1969). Sec- 
ond, effects of context in speech have been shown to extend up to four or five 
phonemes forward in an utterance (Benguerel & Cowan, 1974). Extension of 
the theory to account for such effects would require an impossibly large 
number of control elements. Finally, note that there are only representations 
for tokens in the theory, and no representations for types. There is nothing in 
the theory to tie together the contextual variations of a given action. This 
means that there is no way to account for the linguistic and phonetic regulari- 
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ties that are observed when similar actions occur in similar contexts (Halwes & 
Jenkins, 1971). 

Parallel-processing approaches to serial order 
A different approach is to assume that actions are to some extent produced 

in parallel (Fowler, 1980; Rumelhart & Norman, 1982). The parallelism 
allows several control elements to influence behavior at a particular point in 
time, and therefore provides an account of coarticulatory effects, even though 
actions are represented in terms of context-free types. Rumelhart and Norman 
(1982) have shown that a model of typing incorporating parallelism can pro- 
duce overlapping keystrokes much like those observed in transcription typing. 

Allowing parallel activation of control elements accounts for context sen- 
sitivity; however, the problem of temporal ordering remains. Rumelhart and 
Norman achieved temporal ordering by assuming that elements suppress other 
elements through lateral inhibitory connections if they precede those elements 
in the sequence. This particular scheme is susceptible to Lashley's critique 
because all possible inhibitory connections must be present to allow the per- 
formance of the same elements in different orders, and a mechanism is needed 
for selecting the particular inhibitory connections used in the performance of a 
particular sequence. However, there are other ways of achieving the same 
effect that are not open to Lashley's critique (Grossberg, 1978; Grudin, 1981). 
Essentially, all of these schemes produce temporal order by inducing a graded 
activation pattern across the elements in the sequence, such that elements more 
distant in the future are activated less than earlier elements. Elements are 
assumed to influence behavior in proportion to their level of activation. Be- 
cause the next action in the sequence is the most highly activated, it has the 
most influence on behavior. Once the activation of an element reaches a 
threshold, it is inhibited, allowing the performance of other items in the se- 
quence. 

A problem with these parallel-activation theories is that they have difficulty 
with sequences in which there are repeated occurrences of actions. In a pure 
type representation, there is simply no way to represent the repeated action. 
Rumelhart and Norman used a modified type representation in which they 
introduced special operators for doublings (e.g., AA) and alternations (e.g., 
ABA). However, they provided no general mechanism. For example, sequenc- 
es such as ABCA invoked a parser to break the sequence into pieces, thus 
allowing no parallel influences across the break. This is not a satisfactory solu- 
tion, in general, because data in speech show that coarticulatory influences can 
extend across sequences like ABCA (Benguerel & Cowan, 1974). Another 
possibility is to assume that repeated occurrences of actions are represented by 
separate control elements (representation by tokens). However, the combined 
effects of partially activated control elements will cause the first occurrence of 
a repeated action to move forward in time, whether or not this is actually 
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desirable. Indeed, in a sequence such as ABBB, the B may overwhelm the A 
and be executed first. These problems are enhanced in featural representations 
of the kind that are often posited for actions (Grudin, 1983; Perkell, 1980; 
Rosenbaum, 1980) because the total activation from elements representing the 
repeated features will be greater than the activation levels for features that only 
occur once in the sequence, irrespective of the order of the features. Such 
problems arise because the single quantity of activation is being used to repre- 
sent two distinct things: the parallel influences of actions and the temporal 
order of actions. 

It is my view that many of these problems disappear when a clear distinc- 
tion is made between the state of the system and the output of the system. 
Explicitly distinguishing between the state and the output means that the system 
has two activation vectors, which allows both temporal order and parallel 
influences to be represented in terms of activation. In the theory developed in 
this paper, the state and the output are assumed to be represented as patterns of 
activation on separate sets of processing units. These sets of units are linked by 
connections defining an output function for the system. Serial order is encoded 
both in the output function and in recurrent connections impinging on units 
representing the state; there is no attempt to encode order information in direct 
connections between the output units. 

Coarticulation 
In this section, I briefly introduce some of the parallel aspects of sequential 

behavior that have been considered important in the development of the current 
theory. 

Several studies involving the recording of articulator trajectories have 
shown that speech gestures associated with distinct phonemes can occur in 
parallel. Moll and Daniloff (1971) showed that in an utterance such as "freon," 
the velar opening for the nasal/n/can begin as early as the first vowel, thereby 
nasalizing the vowels. Benguerel and Cowan (1974) studied phrases such as 
"une sinistre structure," in which there is a string of the six consonants/strstr/ 
followed by the rounded vowel/y/. They showed that lip-rounding for the/y/  
can begin as early as the first/s/. This is presumably allowable because the 
articulation of the consonants does not involve the lips. 

These examples suggest that the speech system is able to take advantage of 
"free" articulators and use them in anticipating future actions. This results in 
parallel performance and allows speech to proceed faster and more smoothly 
than would otherwise be possible. Such parallelism clearly must be constrained 
by the abilities of the articulators. However, there are other constraints in- 
volved as well. In the case of "freon," for example, the velum is allowed to 
open during the production of the vowels because the language being spoken is 
English. In a language such as French, in which nasal vowels are different 
phonemically from non-nasal vowels, the velum would not be allowed to coar- 
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ticulate with the vowels. Thus the articulatory control system cannot blindly 
anticipate articulations, but must be sensitive to phonemic distinctions in the 
language being spoken by only allowing certain coarticulations. 

The situation is more complicated still if we note that constraints on paral- 
lelism may be specific to particular features. For example, in the case of 
/strstry/, only the rounding of the/y/can be anticipated. The voicing of the/y/  
cannot be anticipated because that would change the phonemic identities of the 
consonants (for example, the /s /would  become a/z/). Again, such knowledge 
cannot come from consideration of strategies of articulation, but must reflect 
higher-level phonemic constraints. 

Thus, speech presents a difficult distributed-control problem in which 
constraints of various kinds are imposed on the particular patternings of paral- 
lelism and sequentiality that can be obtained in an utterance. What I wish to 
show in the remainder of this paper is how this problem can be approached 
with a theory based on parallel distributed processing networks. 

A Theory of Serial Order 
Let there be some sequence of actions x~,x2,...,x ~, which is to be produced 

in the presence of a plan p. Each action is a vector in a parameter or feature 
space, and the plan can be treated as an action produced by a higher level of 
the system. The plan is assumed to remain constant during the production of 
the sequence, and serves primarily to designate the particular sequence that is 
to be performed. 

In general, we would like the system to be able to produce many different 
sequences. Thus, different vectors p are assumed to be associated with differ- 
ent sequences of actions. A particular sequence is produced when a particular 
vector p is presented as input to the system. Note that, in principle, there need 
be no relationship between the form of plan vectors and the sequences that they 
evoke. Rather, a plan vector evokes a particular sequence because it was 
present as input to the system when the sequence was learned. Thus, plans may 
simply be arbitrary patterns of activation that serve to key particular sequenc- 
es; they need not be scripts for the system to follow. 

Actions are produced in a temporal context composed of actions nearby in 
time. This context entirely determines the desired action, in the sense that 
knowing the context makes it possible to specify what the current action should 
be. It is proposed that the system explicitly represents the temporal context of 
actions in the form of a state vector and chooses the current action by evaluat- 
ing a function from states to actions. At each moment in time, an action is 
chosen based on the current state, and the state is then updated to allow the 
next action to be chosen. Serial order does not arise from direct connections 
between units representing the actions; rather, it arises from two functions that 
are evaluated at each time step: a function f which determines the output action 
x at time n, 

n 
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x = f ( s  ,p) (1) 

and a function g which determines the state s +  ~, 

s+~ = g(SN, p), (2) 

where both functions depend on the constant-plan vector as well as the current- 
state vector. Following the terminology of automata theory (Booth, 1967), f 
will be referred to as the output function, and g will be referred to as the next- 
state function. (From the definition, it can be seen that the plan p plays the role 
of the input symbol in a sequential machine. The use of the term "plan" is to 
emphasize the assumption that p remains constant during the production of the 
sequence. That is, we are not allowed to assume temporal order in the input to 
the system.) 

Assumptions are made in the theory about the form of these functions. The 
output function f is assumed to arise through learned associations from state 

State 
Units 

Plan ~ ~ j ~ - ~  Output 
Units Hidden Units 

Units 

FIGURE 1. The processing units and basic interconnection scheme (not all connec- 
tions are shown). The plan and state units together constitute the input units for the 
network. 
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and plan vectors to output vectors. These learned associations are assumed to 
generalize so that similar states and plans tend to lead to similar outputs. The 
major requirement for the next-state function g is that it have a continuity 
property: State vectors at nearby points in time are assumed to be similar. This 
requirement makes sense if the state is thought of as representing the temporal 
context of actions; intuitively, it seems appropriate that the temporal context 
should evolve continuously in time. Note that if the continuity property holds, 
then the generalizations made by the output function are such as to spread 
actions in time and, as learning proceeds, there is a tendency towards the 
increasing parallel execution of actions nearby in time. This process is dis- 
cussed below in detail, where it is also shown how the generalizations leading 
to parallelism can be constrained. 

A basic network architecture that embodies the theory is shown in Figure 
1. The entities of the theory~plans, states, and outputs~are all assumed 
to be represented as distributed patterns of activation on three separate pools of 
processing units. The plan units and the state units together serve as the input 
units for a network that implements the output function f through weighted 
connections from the plan and state units to the output units. There are hidden 
units in the path from the plan and state units to the output units to allow for 
nonlinear output functions. Finally, the next-state function is implemented with 
recurrent connections from the state units to themselves and from the output 
units to the state units. This allows the current state to depend on the previous 
state and on the previous output (which is itself a function of the previous state 
and the plan). 

In the proposed network, there is no explicit representation of temporal 
order and no explicit representation of action sequences. This is because there 
is only one set of output units for the network so that, at any point in time, 
only one output vector is present. Output vectors arise as a dynamic process, 
rather than being prepared in advance in a static buffer and then serially exe- 
cuted. Representing actions as distributed patterns on a common set of proces- 
sing units has the virtue that partial activations blend together in a simple way 
to produce the output of the system. 

Although it is possible that the next-state function as well as the output 
function arises through learning, this is not necessary for the system as a whole 
to be able to learn to produce sequences. Furthermore, given that the next-state 
function is set up in such a way that the continuity property holds, little is lost 
in the current framework if the recurrent connections necessary for the next- 
state function are taken as fixed and only the output function is learned. This 
latter approach is taken in the remainder of the chapter. 

One choice of values for the fixed recurrent connections is based on the 
conception of the state as a temporal context. Consider the case of a sequence 
with a repeated subsequence or a pair of sequences with a common subse- 
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quence. It seems appropriate, given the positive transfer that can occur in such 
situations as well as the phenomena of capture errors (Norman, 1981), that the 
state should be similar during the performance of similar subsequences. This 
suggests defining the state in terms of the actions being produced. However, 
the representation must provide a sufficiently extensive temporal context that 
no ambiguities arise in cases involving repeated subsequences. If the state were 
to be defined as a function of the last n outputs, for example, then the system 
would be unable to perform sequences with repeated subsequences of length n, 
or to distinguish between pairs of sequences with a common subsequence of 
length n. To avoid such problems, the state can be defined as an exponentially 
weighted average of past outputs, so that the arbitrarily distant past has some 
representation in the state, albeit with ever-diminishing strength. This represen- 
tation of the state is achieved if each output unit feeds back to a state unit with 
a weight of one, if each state unit feeds back to itself with a weight/z, and if 
the state units are linear. In this case, the state at time n is given by 

S N = ].tSn_ 1 

n-1 

- ' -  Xgl l_~  " 

r = l  

+ x_, (3) 

(4) 

The similarity between states depends on the particular actions that are added 
at each time step and on the value of #. In general, with sufficiently large 
values of #, the similarity extends forward and backward in time, growing 
weaker with increasing distance. 

Learning and parallelism 
In the network, learning is realized as an error-correcting process in which 

the weights of the network are incrementally adjusted based on the difference 
between the actual output of the network and a desired output. Essentially, the 
next-state function provides a time-varying state vector, and the error informa- 
tion drives changes in the mapping from this state vector and the plan vector to 
the output. The form that desired output vectors are assumed to take is a 
generalization of the approach used in traditional error-correction schemes 
(Rumelhart, Hinton, & Williams, 1986). Rather than assuming that a value is 
specified for each output unit, it is assumed that, in general, there are con- 
straints specified on the values of the output units. Constraints may specify a 
range of values that an output unit may have, a particular value, or no value at 
all. This latter case is referred to as a "don't-care condition." It is also possible 
to consider constraints that are defined among output units; for example, the 
sum of the activations of a set of units might be required to take on a particular 
value. Constraints enter into the learning process in the following way: If the 
activation of an output unit fits the constraints on that unit, then no error cor- 
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rections are instigated from that unit. If, however, a constraint is not met, then 
the error is defined as a proportion of the degree to which that constraint is not 
met, and this error is used in changing system parameters towards a configura- 
tion in which the constraint is met. 

In many realistic sequence-learning problems, it would seem that desired 
outputs cannot be assumed to be directly available at the output units of the 
network. For example, in the case of speech production, the information 
provided to the learner is auditory or perceptual, whereas desired output 
information for the production module must be specified in terms of articulator 
motion. A related problem is that target information may be delayed in time 
relative to performance. Such problems of a "distal teacher" have been ad- 
dressed in recent work that shows how the constraints may themselves be 
learned (Jordan & Rumelhart, 1992). The constraints are implemented in an 
auxiliary network that models the mapping from the network outputs to the 
distal results. Once the model is learned, backpropagation through the model 
converts distal error vectors into error vectors for the output units. For exam- 
ple, if the auxiliary network models the mapping from articulatory events to 
auditory events, then backpropagation can be used to convert auditory errors 
backward into articulatory errors. The error vectors that are computed by this 
process can be thought of as providing target outputs for the underlying se- 
quential network. Thus, for current purposes, we can make the simplifying 
assumption that desired outputs are provided directly by an external agent. 
There is a caveat, however: When the auxiliary network models a many-to-one 
function, then the error vectors computed by backpropagation implicitly speci- 
fy a region in output space, rather than a point. Of course, it is precisely this 
underspecification that is of interest, because it allows actions in a sequence to 
have an effect on one another. Here, I use don't-care conditions in the specifi- 
cation of desired output vectors to allow consideration of a particularly simple 
case: regions that are rectangular and parallel to the axes of the output space. 
For further discussion of the general case, see Jordan (1990). 

Consider first the case in which desired output vectors specify values for 
only a single output unit. Suppose that a network with three output units is 
learning the sequence 

.9 * * 

�9 . 9  * 

�9 * . 9  

The network is essentially being instructed to activate its output units in a 
particular order, and this case can be thought of as involving local representa- 
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tions for actions. At each time step, errors are propagated from only a single 
output unit, so that activation of that unit becomes associated to the current 
state s.., Associations are learned from s~ to activation of the first output unit, 
from s 2 to activation of the second output unit, and from s 3 to activation of the 
third output unit. These associations also generalize so that, for example, s 

1 
tends to produce partial activations of the second and third output units. This 
occurs because s~ is similar to s 2 and s3, and~by  the assumption of continuity 
of the next-state function~similar inputs produce similar outputs in these 
networks. After learning, the network will likely produce a sequence such as 

.9 .7 .5 

.7 , .9 , .7 

.5 .7 .9 

where at each time step, there are parallel activations of all output units. If the 
network is driving a set of articulators that must travel a certain distance, or 
have a certain inertia, then it will be possible to go faster with these parallel 
control signals than with signals where only one output unit can be active at a 
time. 

The foregoing example is simply the least constrained case and further 
constraints can be added. Suppose, for example, that the second output unit is 
not allowed to be active during the first action. This can be encoded in the 
target vector for the first action so that the network is instructed to learn the 
sequence 

.9 * * 

. 1  , . 9  , * 

~g ~ . 9  

After learning, the output sequence will likely be as follows" 

m 

.9 .7 .5 

.1 , . 9  , . 6  

.5 .7 .9 

where the added constraint is now met. In this example, the network must 
block the generalization that is made from s 2 to s~. 
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As further constraints are added, and fewer generalizations across nearby 
states are allowed, performance becomes less parallel. Minimal parallelism 
will arise when neighboring actions specify conflicting values on all output 
units, in which case the performance will be strictly sequential. Maximal paral- 
lelism should be expected when neighboring actions specify values on nonover- 
lapping sets of output units. Note that there is no need to invoke a special 
process to introduce parallelism into the system. Parallelism arises from the 
ability of the system to generalize, and is a manifestation of the normal func- 
tioning of the system. Indeed, in most cases, it will be more difficult for the 
system to learn in the strictly sequential case when there are more constraints 
imposed on the system. 

Serial order 
Before turning to a more detailed discussion of coarticulation, it is worth 

considering how the current theory fares with respect to some of the general 
requirements of a theory of serial order. It should be clear that the theory can 
deal with the problem of converting a static input into a time-varying output, 
given that the state changes over time, and given that an appropriate output 
function can be constructed. Different orderings of the same actions can be 
achieved, both because the state trajectories may differ between the sequences 
and because the output function depends on the plan, and the plan can distingu- 
ish the different orderings. The theory has no problem with repeated actions; 
the existence of repeated actions simply indicates that the output function is not 
one-to-one, but that two or more state, plan pairs can map to the same output 
vector. Finally, sequences such as ABAC, which cause problems for an asso- 
ciative-chaining theory because of the transitions to distinct actions after a 
repeated action, are possible because the state after the first A is not the same 
as the state after the second A. 

The theory is able, in principle, to account for a variety of regularities that 
occur within and between sequences. This is because outputs and states are 
represented as types; that is, there is only one set of output units and one set of 
state units. The same weights underlie the activation of actions, in whatever 
position in the sequence, and in whatever sequence. Thus, particular weights 
underlie the regularities observed for similar actions in similar contexts. For 
example, the fact in English that voiceless stops are aspirated following /s/ 
(e.g., ~spin~ is pronounced [sbln]), would be encoded by inhibitory connec- 
tions from state units encoding the recent occurrence of a voiceless alveolar 
fricative to output units controlling glottal and labial movements. In the se- 
quential-network architecture, this encoding allows the allophonic regularity to 
generalize immediately in contexts other than the initial portion of the word. 
Such a sensitivity to relative position, rather than absolute position, is difficult 
to obtain in architectures using spatial buffers (Sejnowski & Rosenberg, 1986), 
and problematic to obtain (in full generality) in schemes using context-sensitive 
allophones (Rumelhart & McClelland, 1986; Wickelgren, 1969). 
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One of the more important tests of a theory of serial order is that it account 
for interactions both forward and backward in time. In the current theory, time 
is represented implicitly by the configuration of the state vector. Interactions in 
time are due to the similarity of the state vector at nearby points in time. There 
is no time arrow associated with this similarity, thus, forward and backward 
interactions are equally possible. 

Limitations on the structure of the functions f and g will lead to some 
sequences being more difficult to learn and perform than others. For example, 
the temporal context cannot extend indefinitely far in time; thus, the repetition 
of lengthy subsequences that make transitions to different actions can be diffi- 
cult to learn and perform. Also, similarity between action transitions in differ- 
ent plans can cause interference, as can similarity between plan representa- 
tions. The interference can lead to errors and to the learning of one sequence 
causing negative transfer on another sequence. Such interactions can also have 
a positive side, of course, in the form of positive transfer. 

Dynamic properties of the networks 
When a network learns to perform a sequence, it essentially learns to follow 

a trajectory through a state space. The state space consists of the ensemble of 
possible vectors of activation of the output units. An important fact about the 
learned trajectories is that they tend to influence points nearby in the state 
space. Indeed, the learned trajectories tend to be attractors. 

Consider, for example, a network taught to perform the cyclic sequence 

~ ~ ~ ~ 

.25 .25 .75 .75 .25 

The trajectory of the network is on the four corners of a square in the first 
quadrant of the plane. The trajectory will repeatedly move around this square 
if the initial vector of activations of the output units is one of the corners of the 
square. It is also possible to set the initial activations of the output units to 
other values, thereby starting the network at points in the space other than the 
four corners of the square. Figure 2 (left panel) shows the results of a simula- 
tion experiment in which the network was started at the point (.4,.4). As can 
be seen, the trajectory spirals outward and begins to approximate the square 
more and more closely. When the network is started at a point outside of the 
square, the trajectory is found to spiral inward towards the square. A sample 
trajectory starting from the point (.05,.05) is shown in the right panel of 
Figure 2. When the network was initialized at each of 100 points 
in the state space, it was found that all trajectories reached the square in the 
limit, demonstrating that the square is a periodic attractor. Note that trajecto- 



484 M.I. Jordan 

ries starting inside the square approach the limit cycle less rapidly than do 
trajectories starting outside the square. At a point inside the square, the trajec- 
tory is subject to influences associated with all four corners, and these in- 
fluences are in conflicting directions and therefore tend to cancel one another. 
At a point outside the square, however, only a pair of adjacent corners tend to 
influence the trajectory, and adjacent influences do not conflict in this exam- 
ple. 

The dynamics exhibited by the networks described above has several useful 
properties. The system tends to be noise-resistant, because perturbed trajecto- 
ries return to the attractor trajectory. The system is also relatively insensitive 
to initial conditions. Finally, the learning of a particular trajectory automatical- 
ly generalizes to nearby trajectories, which is what is desired in many situa- 
tions. The relevance of these properties to motor control has been recognized 
by several authors (Kelso, Saltzman, & Tuller, 1987; Saltzman & Kelso, 
1987). I wish to suggest that such dynamics may also characterize the higher- 
level dynamic system that is responsible for serial ordering. 

Application of the theory to coarticulation 
The theory presented in this paper involves a dynamic system that is con- 

strained through a learning process to follow particular trajectories. The learn- 
ing process relies on constraints on the output of the system. These constraints 
implicitly define regions in output space through which trajectories must pass, 
and thereby delimit the possible range of effects of temporal context. 

In the case of speech, the form of the constraints on articulation depends on 
inter-articulator organization, both kinematic and dynamic, and on the function 

I_ I 
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O.4 

0.8 
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FIGURE 2. Two examples of the activations of the two output units plotted with time 
as a parameter. In each case, the square is the trajectory that the network learned. Left 
panel: The spiral trajectory is the path that the network followed when started at the 
point (.4,.4). Right panel: The spiral trajectory is the path that the network followed 
when started at the point (.05,.05). 
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that relates articulatory events to perceptual events. This latter function in- 
cludes at least two kinds of mappings---one that relates articulator motion to 
pre-categorical auditory representations, and one that relates pre-categorical 
representations to post-categorical representations. After preliminary learning, 
both of these mappings can be assumed to be represented internally and there- 
by available to compute articulatory constraints from perceptual data as dis- 
cussed in Jordan (1990). The salient characteristic of both of these mappings is 
that they are many-to-one (cf. Atal, Chang, Mathews, & Tukey, 1978). Thus, 
during imitative learning, the error vectors that are computed from the back- 
propagation of perceptual information implicitly specify regions of articulatory 
space rather than points. As described previously, the underlying dynamic 
system will form trajectories that pass smoothly through these regions. This 
yields contextually dependent variants of a given articulatory equivalence class. 
In summary, coarticulation is hypothesized to be a form of smoothness in 
articulatory space that is subject to perceptual constraints. 

The perceptual information that provides target vectors for imitative learn- 
ing may be either pre-categorical or post-categorical. Clearly, children's ability 
to acquire accent and other non-distinctive aspects of speech suggests that 
learning must be at least partially based on pre-categorical target information. 
It is tempting to hypothesize that the locus of target information evolves as 
post-categorical representations are formed over the course of development: 
Using a post-categorical target specifies a larger region of articulatory space, 
and therefore allows more flexibility in the choice of an articulatory trajectory. 
Of course, this flexibility is obtained with a corresponding loss in the ability to 
acquire articulation that reflects pre-categorical details. 

In this section, I present some simple simulations of a system learning 
phonetic sequences. It should be emphasized that I am not proposing a realistic 
model of speech production in this section. A major simplification is that I 
have defined desired output vectors directly in articulatory terms using target 
values and don't-care conditions. This representation ignores the problem of 
converting perceptual information into articulatory information as well as the 
effects of articulatory dynamics. (Both of these issues can be addressed, 
however, within the framework of the forward-modeling approach; see Jordan 
& Rumelhart, 1992.) Nonetheless, the simulations are useful in elucidating the 
network algorithms hypothesized to underlie coarticulation. Also, they allow 
some qualitative predictions to be made. 

The problem of serial ordering in speech is typically treated in discrete 
terms, and the relation between discrete higher-level processes and continuous 
lower-level articulatory processes has provoked much debate in the literature 
on speech production (Fowler, 1980; Hammarberg, 1982; Perkell, 1980). In 
the current theory, however, such issues are not particularly problematic 
because the entire system can be thought of as operating in continuous time. It 
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is consistent with the current theory to assume that the defining state equations 
are simply a discrete version of a continuous-time dynamic system. In the 
continuous case, learning involves imposing constraints intermittently on the 
system at various points in time. In geometric terms, constraints appear as 
regions through which continuous-network trajectories must pass, with trajec- 
tories between regions unconstrained. To approximate the continuous system in 
the simulation, I have inserted several time steps between steps at which con- 
straints are imposed. During these intermediate time steps, the network is free 
running (these intermediate steps can be thought of as having don't-care condi- 
tions on all of the output units). By conducting the simulation in this manner, it 
is possible to demonstrate the differences between the current approach and an 
assimilatory model in which different allophones are produced at each time 
step and interactions must begin and end at allophonic boundaries (cf. Fowler, 
1980). 

F e a t u r e  i s t r s t r y 

v o i c e  8 1 1 * 1 1 * 8 

place 7 9 9 2 9 9 2 7 

s o n o r a n t  8 2 1 5 2 1 5 8 

s i b i l a n t  1 9 2 4 9 2 4 1 

n a s a l  * * 1 * * 1 * * 

h e i g h t  9 9 9 9 9 9 9 9 

back 1 * * 2 * * 2 1 

r o u n d  1 * * * * * * 9 

TABLE 1. Target vectors for the string/istrstry/. 

Simulation experiments 
For the purposes of describing the simulations section, I use the term 

"phoneme" to refer to a vector of target values and don't-care conditions. 
Representations for the phonemes were adapted from a list of real-valued 
features proposed by Ladefoged (1982). Eight features were selected that 
provided adequate discriminations between the particular phonemes used in the 
simulations. The feature values were all between 0.1 and 0.9. Choices for 
don't-care conditions were based on known allophonic variations (for example, 
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the rounding for the French/s/was taken to be a don't-care condition, because 
it is possible to have a rounded or an unrounded/s/). 

The network used in the simulations had 8 output units, 10 hidden units, 6 
plan units, and 8 state units. The state units had recurrent connections onto 
themselves with weights of # = 0.5. 

The procedure used in the simulation was essentially that of the preceding 
section, with the following modification. During learning trials, target vectors 
(i.e., phonemes) were presented to the network every fourth time step. Learn- 
ing occurred only on these time steps. During the intermediate three time 
steps, the units were updated normally with no learning occurring. 

In the first experiment, the network was taught to perform the sequence 
"sinistre structure." The phonemes that were used are shown in Table I for the 
embedded sequence /istrstry/ only. The learning process involved repeated 
trials in which the phonemes in the sequence were used as target vectors for 
the network. The plan was a particular constant vector whose composition is 
irrelevant here because the network learned only this one sequence. The results 
for the embedded sequence/istrstry/are shown in Figure 3, which displays the 
output trajectories actually produced by the network once the sequence was 
learned to criterion. The network learned to produce the specified values, as 
can be seen by comparing the values produced at every fourth time step with 
the values in the table. The network also produced values for the don't-care 
conditions and for unconstrained parts of the trajectories. In particular, the 
value of .9 for the rounding feature of the rounded vowel/y/was anticipated as 
early as the third time step. In a control experiment, the sequence "sinistre 
stricture," in which the same consonant sequence is followed by the unrounded 
vowel/i / ,  was taught to the network. As shown in Figure 4, there was now no 
rounding during the entire utterance. These results parallel the data obtained by 
Benguerel and Cowan (1974). 

In a third experiment, the network learned the sequence "freon," where the 
feature of interest was the nasal feature associated with the terminal/n/. In the 
phoneme vectors, the / f /was  specified as 0.1 for the nasal feature, t he /n /was  
specified as 0.9, and the intervening three phonemes had don't-care values for 
the nasal feature. Thus, this experiment is analogous to the previous experi- 
ment, with the interest in the anticipation of the nasal feature rather than the 
rounding feature. The results are shown in Figure 5 in terms of the activation 
of the nasal feature at every fourth time step. As in the data of Moll and 
Daniloff (1971), there was substantial anticipation of the nasal value o f / n /  
before and during the two vowels. Note that a steeper dropoff in the amount of 
anticipation occurred in this sequence than in the sequence/istrstry/. An inves- 
tigation of the weights learned during these sequences revealed that the exten- 
sive coarticulation in the latter sequence arose from the repetition of 
phonemes. The rounding o f / y / w a s  produced in a temporal context in which 
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Performance on/istrstry/ 

Voice 

Place 

Sonorant ~ f  

Sibilant 

Nasal [ 

Height 

Back 

Round [__f 
o 1~ " ~4 s~ 

Time 

FIGURE 3. Output trajectories for the sequence/istrstry/. 
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Performance on l istrstr i /  

Place 

Sonorant [ 
Sibilant 
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Time 

FIGURE 4. Output trajectories for the sequence/istrstri/. 
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/ s t r / w a s  the preceding subsequence. A very similar context occurred after the 
f i rs t / r / ,  thus, there was necessarily coarticulation into the first repetition of 
/str/. These considerations suggest that, in general, more forward coarticula- 
tion should occur over strings that have homogeneous phonemic structure than 
over strings with heterogeneous phonemes. 
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FIGURE 5. Activation of the nasal feature at every fourth time step during perfor- 
mance of the word "freon." 

Another interesting aspect of the simulated coarticulation can be seen by 
considering the voicing feature in Figure 5. This feature is unspecified for the 
phoneme/r /  ( t h e / r /  in French can be voiced or unvoiced depending on the 
context; compare "rouge" and "lettre"), but is specified as a 0.1 for the direct- 
ly adjacent features /t/ and /s/. Nevertheless, the first /r/ receives a small 
amount of voicing, which comes from the positive value of voicing for the 
nearby, but not adjacent, phonemes /i/ and /y/. This result emphasizes the 
underlying mechanism of activation of the output units: Units are activated to 
the extent that the current state is similar to the state in which they were 
learned. This means that units with don't-care conditions take on values that 
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are, in general, a compromise involving the values of several nearby 
phonemes, and not merely the nearest specified value. Typically, however, the 
nearest phoneme has the most influence. 

These considerations suggest that the amount of forward coarticulation 
should depend not only on the preceding phonemes, but also on the following 
phoneme. If the phoneme following/y/is unrounded, for example, then round- 
ing of the/y/should be anticipated less than when the following phoneme is 
rounded or unspecified on the rounding feature (as in the example of "struc- 
ture"). This prediction was borne out in simulation. The French pseudowords 
"virtuo, .... virtui," and "virtud," in which the rounded phoneme/y/is followed 
by the rounded phoneme/o/, the unrounded phoneme/i/, or the "don't-care" 
phoneme/d/, were taught to the network. The results are shown in Figure 6 in 
terms of the activation of the rounding feature at successive points in time. The 
figure shows that forward coarticulation in the network clearly depends on the 
following context. 
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Discussion 
In their review on coarticulation, Kent and Minifie (1977) distinguish 

between submovements in an articulatory sequence that have "immediate 
successional impact," that is, those that "must follow one another in a pre- 
scribed sequence," and submovements without immediate successional impact, 
that are "accommodated within the sequential pattern defined by the locally 
critical articulatory transitions." The model presented in this section obeys this 
distinction, where constraints specify the locally critical articulatory transi- 
tions. The model also provides a mechanism for the process of "accommoda- 
tion," by which features without immediate successional impact can be in- 
tegrated into the articulatory program. 

It is worthwhile to compare the current simulation to a feature-spreading 
model such as that proposed by Henke (1966). Henke's model is essentially a 
buffer model, in which positions in the buffer are loaded with the phonemes to 
be produced. Phonemes are lists of trinary features, each of which can have 
the value + ,  -, or 0. When a buffer position is to be executed, features having 
value 0 are filled in by an operator that serially inspects "future" buffer posi- 
tions until a plus or a minus is found. Once all features are filled in, the allo- 
phonic variation thus created can be executed. Although this model is similar 
to the current simulations in the sense that both rely on context-independent 
representations of phonemes that specify dimensions along which the phonemes 
can be altered, there are important differences. 

From a conceptual point of view, the underlying mechanisms that determine 
output values are quite different and have different empirical consequences. In 
the current approach, parallel performance arises automatically, without the 
need for a special process to program in the parallelism. This occurs because 
the current state is similar to the state in which nearby phonemes were learned, 
and similar states tend to produce similar activations of the output units. There 
is therefore no implication that features can spread indefinitely in time, which 
is true of a strict interpretation of Henke's model (Gelfer, Harris, & Hilt, 
1981). Rather, the spread of a feature in time diminishes due to the dropoff in 
similarity of the state. For related reasons, there is no implication that feature 
vectors change discretely in time. As the state evolves continuously in time, 
the components of the output vector also evolve continuously in time, with no 
necessary coherence between anticipated or perseverated features and adjacent 
segments (cf. Fowler, 1980). Indeed, there is really no notion of a segment in 
the output of the network. Also, whereas Henke's model is an assimilatory 
model of coarticulation, the current model is best thought of as a model of 
parallelism in speech production. As shown in the simulations, the parallel 
model predicts nonadjacent interactions: For example, the amount of forward 
coarticulation of a feature in a phoneme depends on what follows the phoneme. 
Although an assimilatory model could be constructed to mimic such behavior, 
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it would seem better accounted for within the parallel approach. However, I 
know of no empirical evidence relevant to deciding this issue. (The following 
experiment would constitute a critical test. Consider forward vowel-to-vowel 
coarticulation, such as the raising o f / a /  when it is followed by /i/ in the 
sequence/papi/(Manuel & Krakow, 1984). When this sequence is followed by 
/e/(e.g. ,  in the sequence/papipe/), the/e/acts to lower the/i/ .  The question 
is what happens to the /a/ in /papi/ vs. /papipe/. Under an assimilation hy- 
pothesis, the /a /should  be lower in the latter case because the source for its 
raising (the/i/) has been lowered. Under the hypothesis of parallelism, on the 
other hand, the/a/should be at least as high in/papipe/as in/papi/, because 
both the /e /and  the / i /ac t  to raise/a/.) Finally, it should be noted that in the 
current model, utterances are not explicitly represented (i.e., in a buffer) 
before being produced. Rather, the process is truly dynamic; utterances are 
implicit in the weights of the network, and become explicit only as the network 
evolves in time. 

The simulations presented above relied only on the simplest constraints on 
the output units. However, much could be gained by considering more com- 
plex constraints such as inequality constraints, range constraints, or constraints 
between units. For example, certain low-level effects of context, such as the 
dentalization of the /d / in  "width," are often treated as phonological in origin, 
rather than resulting from coarticulation. This is presumably because the place 
of articulation jumps discretely to dental, rather than moving somewhere 
between alveolar and dental. In the current model, however, the /d /could  be 
represented as having a range constraint on the place of constriction feature 
(i.e., a constraint that the place be between a pair of values). The actual value 
chosen for the place feature will be dependent on the neighboring context, and 
a context such as the dental fricative could well drive this value against a 
boundary of the range constraint. Similarly, constraints between units can 
determine which articulatory configuration is chosen out of several possibili- 
ties. For example, if the sum of the activations of three output units must be a 
particular value, then it is possible to trade off the activations among the units 
if particular units are further constrained by the neighboring context. Finally, 
the general case of learned, nonlinear constraints allows modeling of the role 
of the nonlinear mapping from articulation to acoustics in determining the way 
in which articulatory components trade off (Jordan, 1990). 

There are two possible versions of a parallel model of coarticulation. The 
first assumes that parallelism is feature-specific, that is, that particular features 
of a phoneme can be anticipated or perseverated. This approach is consistent 
with the distinction of Kent and Minifie (1977) discussed above, and is the 
approach that I have emphasized. However, it is also possible to assume that 
all of the components of a phoneme must be activated together. This is the 
approach favored by Fowler (1980), who claims that coarticulation results 
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from the coproduction of "canonical forms." In the current framework, such 
phoneme-specific parallelism occurs when phonemes specify constraints on 
nonoverlapping sets of output units. In the limiting case, each phoneme can 
constrain a unique output unit, in which case the partial activations of output 
units lead to the partial production of entire phonemes rather than specific 
features. It is still possible to represent phonemes by features, but this must be 
done at a lower level in the system, below the level at which parallelism arises. 

However, it would appear that feature-specific parallelism is necessary. For 
example, in the production of a sequence of vowels followed by an /n/, it 
would seem important that only the velar movement associated with the nasal 
be anticipated, and not the alveolar tongue position. There is some evidence 
for this in the data of Kent, Carney, and Severeid (1974). In recordings of the 
articulatory movements during the utterance "contract," they found that the 
movement towards the alveolar tongue position for the/n/began 120 millisec- 
onds after the onset of velar lowering for the /n/. This suggests that the 
features of the /n /are  not being controlled synchronously. 

To summarize, the current proposal is that coarticulation results from the 
similarity structure of the state at nearby points in time. The dropoff in similar- 
ity of the state defines the zone in which the features of a phoneme can possi- 
bly be present in the output. Within this zone, the pattern of coarticulation that 
is obtained depends on the constraints that are imposed by the features corre- 
sponding to nearby phonemes. 

Conclusions 
The current theory provides an alternative to the traditional motor-program 

approach to the serial-order problem. The traditional approach, based on the 
von Neumann conception of a stored program, assumes that motor actions are 
instructions that are assembled into a structure that is then scanned by a se- 
quential processor. The parallelism and interactiveness of real behavior prove 
burdensome to such an approach, and typically, extra mechanisms must be 
invoked. In the current approach, on the other hand, parallelism is a primitive, 
arising directly from the continuity of the mappings defining the system. Strict- 
ly sequential performance is simply the limiting, most highly constrained case. 

This chapter has concentrated on only certain aspects of the serial-order 
problem, namely those involving learning and coarticulation. Jordan (1986) 
discusses other issues, including rate, errors, hierarchies, and dual-task paral- 
lelism. 

The concept of state is central to the current theory. Time is represented 
implicitly by the configuration of the state vector, and it is the assumption of a 
continuously varying state that relates nearby moments in time and provides a 
natural way for behavior to be parallel and interactive locally while still broad- 
ly sequential. The similarity structure of the underlying state provides a theo- 
retical point of convergence for many kinds of behavioral data. The pattern of 
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coarticulation depends on this similarity structure, errors are more likely when 
discriminations must be made between similar states, dual-task interference is a 
function of similarity, and learning is faster when similar actions are associated 
to similar states. Thus, if the theory is to prove useful, elucidation of the simi- 
larity structure of the states underlying sequential behavior becomes an over- 
riding theoretical and empirical concern. 
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ABSTRACT 

Connectionist models have been developed that can simulate some of the 
extended histories of reinforcement that are thought to be largely responsible 
for complex human functioning. In particular, a number of models have suc- 
cessfully simulated equivalence-class formation and other forms of arbitrarily 
applicable relational responding. A recent example of one such model is de- 
scribed. We then consider the major weaknesses of the model, and focus on 
the idea that future models should be neurophysiologically constrained. Final- 
ly, we examine the hypothesis that hippocampal functioning may be critical to 
the emergence of arbitrarily applicable relational responding. 

Introduction 

The physiologist of  the future will tell us all that can be known about 
what is happening inside the behaving organism. His account will be an 
important advance over a behavioral analysis, because the latter is 
necessarily "historical "---that is to say, it is confined to functional rela- 
tions showing temporal gaps. Something is done today which affects the 
behavior of  an organism tomorrow. No matter how clearly that fact can 
be established, a step is missing, and we must wait for the physiologist 
to supply it. He will be able to show how an organism is changed when 
exposed to contingencies of reinforcement and why the changed organ- 
ism then behaves in a different way, possibly at a much later date. What 
he discovers cannot invalidate the laws of a science of behavior, but it 
will make the picture of human action more nearly complete. (Skinner, 
1974, p. 215). 

Skinner clearly argued that the study of neurophysiology will play an 
important role in developing a complete science of behavior. We presume few 
behavior analysts would disagree with Skinner on this point. Nevertheless, we 
question the idea that physiologists will one day provide behavior analysis 
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with the necessary data to fill those temporal gaps between stimuli and re- 
sponses. In other words, it would be a mistake to assume that an imaginary 
neurophysiologist will one day knock on the behavior-analytic door and say: "I 
hear you've been waiting some time for the necessary data to fill that temporal 
gap between stimulus and response---well here it is, and feel free to call me if 
you have any further questions!" Unfortunately for behavior analysis, the 
sc.ientific community simply doesn't work like that. The questions and issues 
that interest neurophysiological researchers are unlikely to coincide or overlap 
at a specific point in time, at least in any meaningful way, with the research 
interests and questions of the behavior-analytic community. Thus, if behavior 
analysis wants to fill those temporal gaps with neurophysiological data, then its 
researchers will have to become more aware, and possibly involved, in the 
necessary research activity~a daunting prospect for many if not most be- 
havioral researchers, who often do not have the appropriate scientific training 
in the biological sciences. Nevertheless, all is not lost. Fortunately, the devel- 
opment of connectionist science has provided the behavior-analytic community 
with an opportunity to forge those all-important links with those involved in 
the study of neurophysiology. The current chapter represents a small step in 
this direction. 

Connectionism and Neurophysiological Plausibility 
Much of the connectionist research conducted during the 1980s was of the 

demonstration variety. In effect, connectionist scientists were content to devel- 
op models that successfully simulated a certain type of behavior (cf. Bechtel & 
Abrahamsen, 1991). More recently, however, connectionist science has 
become more interested in constraining its models with neurophysiological 
data. In effect, a connectionist model, it is argued, should not only simulate a 
particular performance, but should also be designed and operate in accordance 
with what is known about neurophysiological structures and processes (see 
Donahoe, Burgos, & Palmer, 1993). 

Connectionist scientists with a background in neurophysiology are clearly 
best placed to design neurophysiologically plausible connectionist networks. 
Presumably, however, their knowledge of the processes of nonhuman and 
human learning is somewhat limited. It is feasible, therefore, that a connection- 
ist researcher with a background in neurophysiology could develop a neu- 
rophysiologically accurate network, but fail to simulate the appropriate per- 
formance, not because the network is faulty, but because the researcher has 
failed to provide the necessary conditions for learning. This is where the 
behavior analyst can be of use, and in the process he or she can learn someth- 
ing about the neurophysiological processes that fill that temporal gap between 
stimuli and responses. Clearly, if this is to happen, however, it is important for 
behavior analysis to make a serious contribution to the development of neu- 
rophysiologically plausible connectionist simulations of nonhuman and human 
behavior. 
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Simulating Complex Human Behavior 
A first step in the process of contributing towards the development of 

neurophysiologically plausible models of behavior may be to put aside, initial- 
ly, the requirements imposed by neurophysiological constraints and simply 
develop networks that successfully simulate the data from behavior-analytic 
studies. Once a number of working but non-neurophysiologically constrained 
models have been developed, the behavior analyst can then refine and modify 
the models in accordance with the more neurophysiologically constrained 
models of the modern connectionist researcher. 

In fact, a number of behaviorally oriented researchers have developed 
connectionist models of nonhuman behavior that have not been explicitly con- 
strained by neurophysiology (see Commons, Grossberg, & Staddon, 1991, for 
some relevant examples), whereas others have developed very tightly neu- 
rophysiologically constrained models of basic nonhuman conditioning effects 
(e.g., Donahoe et al, 1993). As yet, however, there are very few connectionist 
simulations of data obtained from behavior-analytic studies of complex human 
behavior. Although some might argue that we should deal with the more basic 
nonhuman behaviors before even attempting to simulate human performances, 
there appears to be no good reason why some researchers cannot work from 
the "bottom up" (i.e., starting with basic nonhuman behavior) while others 
work from the "top down" (i.e., starting with complex human behavior). In 
fact, it could be argued that this "pincer movement" might be a more effective 
research strategy. For example, top-down research may encourage and help 
bottom-up researchers to extend their basic models to complex human be- 
havior, and bottom-up research may encourage and help top-down researchers 
to develop models that produce complex human behavior by building upon the 
simpler units of nonhuman behavior (see Thompson & Lubinski, 1986). Of 
course, as suggested previously, behavioral researchers (both bottom-up and 
top-down) should be aiming towards neurophysiologically plausible models, be 
they of simple nonhuman behavior or complex human performances. It is with 
this overall research strategy in mind that we turn our attention to complex 
human behavior. 

Stimulus Equivalence and Relational Responding 
Behavior analysis has always been interested in human behavior, but until 

relatively recently most human research in behavior analysis was of the applied 
variety. In recent years, however, basic research into human behavior has 
flourished. This is due, in part, to the behavioral effect known as stimulus 
equivalence. This phenomenon is normally produced in the following way. 
Subjects are first trained in a series of related conditional discriminations, 
using a matching-to-sample format and arbitrary stimuli such as nonsense 
syllables or abstract shapes (in the interests of clarity, authors reporting on 
equivalence studies normally label the syllables or shapes with alphanumerics, 
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such as A1, B 1, C1, and so forth). For example, a subject might be exposed to 
a training procedure in which reinforcers (e.g., points exchangeable for 
money) are delivered when the subject chooses the comparison stimuli B 1 and 
C 1 in the presence of the sample stimulus A1, and chooses the comparisons B2 
and C2 in the presence of the sample A2 (choosing the "incorrect" comparison, 
such as B2 in the presence of A 1, is not reinforced). If the subject then selects, 
without further training, C1 in the presence of B 1 (and vice versa), and C2 in 
the presence of B2 (and vice versa), the stimuli are said to participate in two 
equivalence relations (i.e., A1-B1-C1 and A2-B2-C2). The concept of condi- 
tional discrimination, as traditionally defined, does not predict the emergence 
of this untaught performance. For example, neither the B 1 nor the C 1 stimulus 
has a history of differential reinforcement as a conditional discriminative stimu- 
lus with regard to the other, and therefore neither stimulus should reliably 
control selection of the other. Remember also that the stimuli used in equiv- 
alence studies are arbitrary (i.e., they are not related to each other along any 
consistent physical dimension, such as color, shape, or size) and thus primary 
stimulus generalization is also unable to account for equivalence responding. 

One explanation for the equivalence effect is based on the idea that equiv- 
alence is a form of generalized, or overarching class, of operant behavior (see 
Barnes, 1994; Barnes & Holmes, 1991; Hayes, 1991; Hayes, 1992; Hayes & 
Hayes, 1989; Hayes & Hayes, 1992). According to this account, known as 
relational frame theory, equivalence and other forms of derived relational 
responding emerge because the human verbal community explicitly reinforces 
equivalence responding in young children. For example, during early language 
development a child might be exposed to the following three types of parent- 
child interaction; (i) reinforcers in the form of praise and/or cuddling may be 
delivered for uttering two different names (e.g., "seat" and "chair") for an 
object (i.e., A1-B1 and A1-C1), (ii) reinforcers may be delivered for correctly 
identifying an appropriate object (an actual chair/seat) when someone else 
provides either of the two names 031-A 1 and C 1-A 1), and (iii) reinforcers may 
be given for uttering "chair" when asked for another word that means "seat," 
and vice versa (i.e., B1-C1 and C1-B1). In effect, this sequence of verbal 
interactions, and others like it, provides a history of explicit reinforcement for 
responding in accordance with the relation of equivalence. Consequently, if a 
child with this history of reinforcement is told on one occasion, while looking 
at a picture of a motor vehicle, that it is a picture of a "car," and on another 
occasion that it is a picture of an "automobile," the child may, without any 
further teaching, derive, in an appropriate context, the equivalence relation 
between "car" and "automobile" (e.g., the child will utter "automobile" when 
asked for another word that means "car," or vice versa). According to rela- 
tional frame theory, a functionally similar behavioral effect is obtained during 
the typical equivalence experiment. In other words, the context of the equiv- 
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alence experiment is discriminative for responding that is functionally similar 
to the responding that was reinforced when the subject was taught that some 
words "mean the same thing." (See Barnes, 1994, for a detailed discussion of 
this issue.) In fact, the matching-to-sample format may be particularly likely to 
produce equivalence because this format is often used in preschool education 
exercises in which children have to look at a picture and point to the appro- 
priate word or words that "mean" the picture. 

It is important to understand that relational frame theory also addresses 
other types of relational responding that cannot readily be categorized as 
equivalence (Dymond & Barnes, in press, a; Dymond & Barnes, in press, b; 
Steele & Hayes, 1991.) Consider, for example, a subject who is taught that A 
is the opposite of B, and B is the opposite of C, and is then asked what is the 
relation between A and C. According to the relational frame account, for a 
subject to provide the correct answer (i.e., A is the same as C) he or she would 
require an appropriate history of explicit reinforcement for responding in 
accordance with the relational frame of opposition (e.g., explicit reinforcement 
would have been provided for responding to cold as the opposite to hot, to hot 
as the opposite to chilly, and to cold and chilly as the same). 

It should be clear by now that one of the most important features of the 
relational frame account of stimulus equivalence, and other forms of relational 
responding more generally, is the emphasis it places on extended and 
sometimes complex histories of explicit reinforcement as one of the main 
sources of untaught or derived behavior. One problem with this approach, 
however, is that these histories are often so prolonged and complex that it 
would be very difficult, and in some cases highly unethical, to synthesize them 
in the behavioral laboratory, and thereby test directly the relational frame 
account. Consider, for example, the basic idea (outlined previously) that the 
verbal community provides a young child with an appropriate reinforcement 
history for equivalence responding when the community reinforces uttering the 
names for stimuli, and also reinforces the following of simple instructions 
containing those names. Clearly, it would be highly unethical to test this form 
of history effect by confining all verbal interactions with a newborn child to 
those types of interaction that are supposed to be necessary for equivalence 
responding, and preventing or suppressing all other forms of interaction that 
are supposedly not causally related to equivalence. 

Of course, researchers interested in examining the role of extended rein- 
forcement histories on equivalence responding do not have to confine them- 
selves to newborn children as subjects. In one recent study, for example, a 
California sea lion was provided with a history of explicit reinforcement for 
responding in accordance with twelve different sets of equivalence relations, 
and then demonstrated untaught or derived equivalence responding across a 
further eighteen sets of stimuli (Schusterman & Kastak, 1993). This finding 
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clearly supports relational flame theory, because equivalence responding only 
emerged after the subject had been provided with a history of explicit rein- 
forcement for equivalence responding (i.e., a history that is functionally simi- 
lar to the "naming history" that is presumed to be largely responsible for 
equivalence in humans). 

Although it may be possible to demonstrate relational frame history effects 
on equivalence responding using nonhuman subjects, it is important to remem- 
ber that relational frame theory does not confine itself to explaining only 
equivalence; it also represents an attempt to explain far more complex forms of 
human behavior (e.g., complex instructional control, analogical reasoning, 
clinical disorders). The important point here is that these complex human 
behaviors are presumed to be produced by verbal histories that are far more 
extended and complex than the "basic" naming history that is thought to be 
largely responsible for equivalence. The problem, therefore, for the behavioral 
researcher is that any attempt to simulate these histories using nonhuman 
subjects will become increasingly difficult as the histories grow in length and 
complexity. For example, a child's ability to respond appropriately to a simple 
instruction that he or she has not been explicitly taught to follow (e.g., "When 
the bell rings, get the cake from the oven.") normally requires, from a rela- 
tional frame perspective, a behavioral history that spans a number of years (see 
Hayes & Hayes, 1989, pp. 179-180). The difficulty involved in synthesizing 
such a history should not, of course, discourage researchers from attempting to 
simulate these histories with nonhuman subjects. Nevertheless, the relatively 
recent developments in connectionist science provide the behavior analyst with 
another alternative to nonhuman research when he or she wishes to examine 
complex history effects that would be difficult or unethical to simulate accu- 
rately using human subjects. In fact, it will be shown here that the highly 
controllable and extremely precise methodology provided by the connectionist 
approach may allow the behavior-analytic researcher to examine the types of 
prolonged and often complex histories of reinforcement that, from a relational 
frame point of view, characterize many aspects of human behavior. The next 
section focuses on this very issue. 

A Connectionist Simulation of Complex Human Behavior 
The following model was designed to simulate complex human behaviors, 

as viewed from the relational frame perspective. Having described this r 
tionist simulation, we will then examine some of the important issues arising 
from this work, including our key concern that future models of complex 
human behavior should strive for neurophysiological plausibility. 

Responding in accordance with sameness, difference, and opposition 
As outlined previously, relational frame theory represents an attempt to 

explain a great deal more than stimulus equivalence. For example, the theory 
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explicitly incorporates forms of relational responding that cannot be categor- 
ized as equivalence. In fact, the first empirical investigation of relational frame 
theory (Steele & Hayes, 1991) aimed to demonstrate that teenage human sub- 
jects could respond in accordance with the derived relations of coordination (or 
sameness), opposition, and difference. 

In Steele and Hayes' study, subjects were first provided with nonarbitrary 
relational pretraining that was used to establish three contextual stimuli (ab- 
stract shapes) as functionally equivalent to the words "same, .... different," and 
"opposite" (Figure 1, top panel). For instance, subjects were trained to match 
a long line with a long line when presented with the SAME contextual stimu- 
lus, a long line with a short line when presented with the OPPOSITE contextu- 
al stimulus, and a long line with a square when presented with the DIFFER- 
ENT contextual stimulus. After the subjects had successfully completed the 
pretraining, they were trained in six matching-to-sample tasks (the stimuli were 
abstract shapes) in the presence of the three contextual stimuli (Figure 1, 
second and third panels from top). When the SAME contextual stimulus was 
presented, matching B1 and C1 to A1 was reinforced. When the OPPOSITE 
stimulus was presented, matching B3 and C3 to A1 was reinforced. When the 
DIFFERENT stimulus was presented, matching B2 and C2 to A1 was rein- 
forced. 

After subjects had successfully completed the foregoing training, they were 
repeatedly exposed to 15 test tasks in the absence of any feedback. The first 
four of these tasks tested for the mutually entailed relations of sameness and 
opposition (Figure 1, lower four panels). For example, subjects were trained 
on Task 2 to match B3 to A1 in the presence of the OPPOSITE contextual 
stimulus; if, on Task 8, they then consistently matched A1 to B3 in the pres- 
ence of the OPPOSITE stimulus, this demonstrated responding in accordance 
with the mutually entailed relation of opposition (i.e., train OPPOSITE/A1-B3 
and obtain without further training OPPOSITE/B3-A1). The remaining 11 
tasks, 11 to 21 (Figure 1, lower three panels) examined combinatorially en- 
tailed relational responding. Tasks 17 to 21 involved the more complex of 
these derived relations and will, therefore, be examined individually. On Task 
17, subjects were presented with the SAME contextual stimulus, C1 as the 
sample, two familiar comparisons, B1 and B2, and a novel comparison, N3 
(i.e., S [C1] B1-B2-N3). As predicted, subjects consistently chose B1; this 
demonstrated responding in accordance with the combinatorially entailed rela- 
tion of sameness (i.e., train SAME/A1-B1 and SAME/A1-C1, and obtain 
without further training SAME/B l-C1). The subjects' choice of B2 on Task 18 
(i.e., D [C1] B1-B2-N3) demonstrated responding in accordance with the rela- 
tions of sameness and difference (i.e., train SAME/A1-C1 and 
DIFFERENT/A l-B2 and obtain without further training DIFFERENT/C l-B2). 
Choosing N3 on Task 19 (i.e., O [C1] B1-B2-N3) was based on the relations 
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of sameness, difference, and opposition. In effect, neither B1 nor B2 could be 
the correct choice on Task 19 because subjects had been trained that B 1 and C 1 
are the same as A1, and B2 is different from A1, but not the opposite to A1, 
and thus not the opposite to C1. By choosing N3, the only remaining option, 
subjects thereby demonstrated three different types of relational control, none 
of which were directly trained. The subjects' performance on Task 19 indicat- 
ed that the forced choice of N3 should cause it to enter into the network of 
relations. In effect, the forced choice of N3 in the presence of OPPOSITE and 
C1 might be sufficient to establish N3 as the opposite to C1 and therefore the 
same as C3. The responses on Task 20 (O [N3] C1-C2-C3) and on Task 21 (S 
[N3] C1-C2-C3) to C1 and C3 respectively, supported this prediction. 

The connectionist simulation 
Our first connectionist model, called RELNET, was designed to simulate 

the pattern of arbitrary relational responding obtained by Steele and Hayes, but 
with one important difference. Steele and Hayes used normally developing 
adolescent subjects, who had already been exposed to the verbal community 
for many years and had therefore (it was assumed) been provided with an 
extended history of explicit reinforcement for responding in accordance with 
the relations of sameness, difference, and opposition. A key prediction of rela- 
tional frame theory is that derived responding in accordance with arbitrary 
stimulus relations should only emerge in subjects who have received explicit 
training to respond in accordance with those relations (i.e., derived responding 
should not emerge if subjects have received insufficient explicit training in the 
relevant stimulus relations). A further prediction is that the accuracy on tests of 
derived responding should increase as a function of prior explicit training in 
the relevant stimulus relations (see Lipkens, Hayes, & Hayes, 1993). Accord- 
ingly, a complete connectionist simulation of the relational responding reported 
by Steele and Hayes must demonstrate both the training and testing perfor- 
mances produced in the laboratory, and the inferred effects of prior explicit 
training by the verbal community on the laboratory-produced performances. 

To simulate prior explicit training, RELNET was designed so that seven 
different sets of stimuli, each composed of eight stimuli, could be used (i.e., 
Set 1: A1, B1, C1, B2, C2, B3, C3, N3/1; Set 2: D1, El, F1, E2, F2, E3, 
F3, N3/2, and so on). The seven stimulus sets were used to produce eight 
levels of explicit training (i.e., no explicit training, exposure to one explicit 
training set, and so on up to seven explicit training sets). Exposure to Training 
Set 1 involved training all 21 tasks illustrated in Figure 1. Exposure to Train- 
ing Sets 1 and 2 involved training all 21 tasks shown in Figure 1, and also 
training the same 21 tasks but using Stimulus Set 2. Thus, a total of 147 tasks 
were explicitly trained when subjects were exposed to all seven sets of stimuli 
(i.e., 21 multiplied by 7). 
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FIGURE 1. Relational frame tasks from Steele and Hayes (1991). Each task presents a 
pretrained contextual cue, a sample, and two or three comparisons. In the Steele and 
Hayes study, subjects were trained on the first six tasks and were then tested on the 
remaining fifteen tasks, the assumption being that adolescent subjects would have 
sufficient exposure to the contingencies of reinforcement provided by the verbal 
community to allow them to derive the predicted relationships without explicit training 
on similar tasks with different stimuli. In contrast, the connectionist network was 
trained on all twenty-one types of task, using up to seven different stimulus sets (i.e., 
twenty-one tasks per set), each set containing completely new stimuli (thus simulating 
the prior exposure to the verbal contingencies experienced by the Steele and Hayes 
subjects). The network was also trained on the first six tasks only from an eighth 
stimulus set, and then tested using the remaining fifteen tasks from this eighth set. 
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In conjunction with this explicit training across 0 to 7 stimulus sets, an 
eighth and completely novel set of stimuli (i.e., W1, X1, Y1... N3/8) was used 
to train RELNET on Tasks 1 to 6 only (i.e., limited training), before it was 
tested on Tasks 7 to 21 (see Figure 1, and substitute the A, B ,C, N3/1 stimuli 
with the W, X, Y, N3/8 stimuli). In effect, training with Stimulus Sets 1 to 7 
simulates the preexperimental history of explicit reinforcement for responding 
in accordance with the relations of sameness, difference, and opposition, 
whereas the training and testing on Stimulus Set 8 directly simulates the Steele 
and Hayes experimental procedures with adolescent subjects. 

The complete RELNET model consists of an encoder, a central relational 
responding machine, and a decoder. The three modules were implemented 
separately in the simulation. The encoder and decoder simply preprocess 
stimuli for and decode outputs from the relational responding machine, and 
thus we will focus upon the latter. 

The relational responding machine is a three-layered network with 83 in- 
puts, 8 hidden units, and 19 outputs. The input layer and the hidden layer are 
fully interconnected and the hidden and output layers are connected as shown 
in Figure 2. The stimulus identity element (input units 1-64, labeled A1 to 
N3/8) represents the stimuli that function as samples and comparisons across 
the eight stimulus sets. If, for example, we wished to present a task to the 
network in which the stimuli A1, B1, and B2 were used, input units 1, 2, and 
3 would be activated. The sample-marking duplicator (input units 65-80, la- 
beled Z1 to Z8/s) simply copies the activation from each task (as represented 
in the stimulus identity element), and marks one of the stimuli as a sample 
from that task. For example, when A1 is activated as a sample with B 1 and B2 
as comparisons, the Z1, Z1/s, Z2, and Z3 input units are activated. If B 1 was 
the sample, then Z2/s would be activated and Z1/s would be turned off. The 
sample-marking duplicator mirrors activation in exactly the same way for each 
individual task across each of the eight stimulus sets (e.g., when W 1 is activat- 
ed as a sample with X1 and X2 as comparisons, then Z1, Z1/s, Z2, and Z3 are 
activated in the sample-marking duplicator). The element labeled 
SAME/DIFF/OPP contains the inputs for contextual stimuli. In effect, the 
three input units 81, 82, and 83 represent SAME, DIFFERENT, and OP- 
POSITE, respectively (e.g., when the SAME cue is presented on a relational 
task, unit 81 is activated, and 82 and 83 are turned off). 

The outputs are representations of the stimulus set identity (output units 1- 
8), the output stimulus identity (output units 9-16), and the sample-comparison 
relations of sameness, difference, and opposition (output units 17-19). The 
output from the stimulus set identity classifies the chosen stimulus as belonging 
to one of the 8 stimulus sets (i.e., output unit 1 represents Set 1, output unit 2 
represents Set 2, and so on). The output stimulus identity classifies the chosen 
stimulus within each set. For example, depending on the output from the 
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stimulus set identity, output 9 represents the first stimulus within each stimulus 
set (i.e., A1, D1, and so forth to W1), output unit 10 represents the second 
stimulus in each set (i.e., B1, El,  and so forth to X1), and so on (i.e., output 
unit 16 represents the eighth stimulus in each set; N3/1, N3/2, and so forth to 
N3/8). Thus, if output units 1 and 9 are activated this identifies stimulus A1 as 
a chosen comparison. If, however, output units 2 and 10 are activated this 
identifies stimulus E1 as the chosen comparison. Finally, the three units 17, 
18, and 19 represent the three relations of sameness, different, and opposite, 
respectively (e.g., if unit 17 is activated, but 18 and 19 are not, sameness is 
the controlling relation). 
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FIGURE 2. A schematic representation of the relational responding machine that 
shows how the training and testing was implemented. 
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RELNET was trained using the standard backward-error propagation algo- 
rithm (Rumelhart, Hinton, & Williams, 1986), and the output format described 
above, to output the correct comparison, and the controlling relation (same- 
ness, difference, or opposition) on each task. There were 8 levels of explicit 
training, involving either no exposure to any of the 7 stimulus sets, or expo- 
sure to from 1 to 7 sets of stimuli. Limited training was also given at each 
level of explicit training on Tasks 1 to 6 using Stimulus Set 8. The same 
randomly generated starting weights were employed across all 8 levels of train- 
ing to simulate increasing amounts of exposure to the verbal community. This 
entire procedure was repeated 10 times using different randomly generated 
starting weights, yielding a total of 80 runs. All training was conducted to the 
same error criterion (ecrit < .05 difference between the total sum of squares 
of the actual output and the target output; see McClelland & Rumelhart, 1988, 
pp. 140-141). Testing RELNET involved presenting the 15 untrained tasks 
from Set 8 to the model and recording any differences between the obtained 
and predicted outputs. 

The effects of explicit training across Stimulus Sets 0 to 7, together with 
limited training on Tasks 1 to 6 of Stimulus Set 8, on the overall performances 
of the relational responding machine on the untrained Tasks 7-21 from Stimu- 
lus Set 8, are shown in Figure 3. In Figure 3 (upper graph), performance is 
represented as the total error sums of squares (TSS) calculated across the 15 
test tasks, for Set 8, and averaged across 10 runs. Figure 3 (lower graph) 
shows performance in discrete error scores (DES). A DES was defined as (i) 
an output unit that failed to acquire at least 50% of its predicted activation 
(i.e., it failed to identify the correct comparison, relation, or both), or (ii) an 
unpredicted response by an output unit of greater than 50% (i.e., it identified 
either a sample [always an incorrect response], an incorrect comparison, an 
incorrect relation, or some combination thereof). Figure 3 (lower graph) dis- 
plays DESs calculated across the 15 test tasks averaged across the 10 runs. 
Analysis of the TSS and DES scores produced similar results. Training and 
testing on Stimulus Set 8, after explicit training on Set 1, vastly improved the 
performance of the relational responding machine compared with no explicit 
training on Set 1. We also predicted that performance should depend on the 
amount (in addition to the mere presence) of previous explicit training. To 
examine this, repeated-measures analyses of variance were conducted for 
explicit training with 1 to 7 stimulus sets for TSS and DES data. The effects of 
amount of training were highly significant; error scores were an inverse func- 
tion of the amount of explicit training, F(6, 54) = 14.50, p < .0001 for TSS 
and F(6, 54) = 5.66, p < .0001 for DES. Posttests revealed that for both 
measures, increasing the amount of training from 1 set to 3 sets reliably de- 
creased error scores, whereas training with additional sets did not yield signifi- 
cant increases in performance, though the trend was in the predicted direction, 
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FIGURE 3. Upper graph: Mean total sum of squares error scores (TSS) produced by 
the trained relational responding machine, summed across 15 test tasks from Stimulus 
Set 8, as a function of the number of explicit training sets. Lower graph: Mean discrete 
error scores (DES) produced by the trained relational responding machine, summed 
across fifteen test tasks from Stimulus Set 8, as a function of the number of explicit 
training sets. 
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with some suggestion, though nonsignificant, that accuracy reached its maxi- 
mum at four training sets. 

In summary, these data show that it is possible to construct a network that 
will perform well on tasks that require arbitrarily applicable relational respond- 
ing. In effect, the network responded in accordance with the relations of 
sameness, difference, and opposition on 15 untrained tasks following training 
on only 6 tasks (i.e., Stimulus Set 8). Furthermore, it was shown that this 
performance required that explicit training be provided on at least three of 
seven stimulus sets, each of which employed the same 21 types of task as 
Stimulus Set 8. Overall, the accuracy of the network's performance on the 
eighth stimulus set depended on both the presence and amount of explicit train- 
ing on Sets 1 to 7. Explicit training, therefore, is a necessary precursor if the 
network is to respond in accordance with derived sameness, difference, and 
opposition relations. Finally, the fact that some explicit training is essential is 
shown by the finding that limited training on Set 8 alone reduced noise in the 
network, but did not lead to an accurate performance. 

The foregoing demonstration model clearly shows that it is possible to 
simulate adult human performances obtained in the behavioral laboratory using 
a relatively simple connectionist network. We have also simulated other 
examples of derived relational responding with modified versions of RELNET. 
These simulations have been reported elsewhere (see Barnes & Hampson, 
1992; Barnes & Hampson, 1993; Cullinan, Barnes, Hampson, & Lyddy, 
1994), and will not be addressed here because they did not involve any sub- 
stantial changes to the basic design concept of RELNET, or to the procedures 
used to train the network. These simulations of human performance observed 
in the behavioral laboratory represent an important step for behavior analysis, 
and perhaps, in the long run, for connectionist science. Nevertheless, it is only 
one step in the right direction. There is a major problem (with many sub- 
problems) that must be resolved before connectionism can hope to provide a 
thoroughly adequate domain for modeling human behavior. In the remaining 
half of this chapter we will examine this problem (including many of the inher- 
ent sub-problems), and in so doing help to highlight the more important direc- 
tions for future research in this area. 

Problems with the Current Models 
The major problem with our current family of models is that they were 

designed as "in-principle" demonstrations to show that connectionist techniques 
are applicable to issues of complex learning. They were not intended to repre- 
sent neurophysiologically plausible simulations of the phenomena in question, 
nor were they intended as complete accounts. When we began our project, 
issues of neural plausibility were less pressing for connectionist researchers 
than they are today. It was important, then, to show that connectionism was 
not ruled out from the start as a way of modeling relational frame effects, 
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given the doubts expressed by Fodor and Pylyshyn (1988) about its general 
relevance for complex combinatorial phenomena. Today, however, simply 
demonstrating that connectionism can simulate relational framing behaviors is 
no longer an appropriate research strategy. In the intervening period, ap- 
proaches have emerged in both cognitive and behavioral psychology that 
emphasize the neurological variables involved in behavior. Cognitive neuro- 
science is now attempting to explain cognitive phenomena in terms of data and 
theories drawn from the brain sciences as well as data derived solely from 
psychological experimentation (e.g., Kosslyn, 1994; Kosslyn & Koening, 
1992; Posner & Raichle, 1994). Its models, too, are no longer as undercon- 
strained as they were previously. Nowadays, ideally, cognitive models should 
do justice to what is known about the structure and function of relevant brain 
systems as well as produce a pattern of responses to inputs analogous to that of 
a human subject in a psychological experiment. In the behavioral camp, biobe- 
haviorism now seeks to supplement standard descriptions of behavioral interac- 
tions, couched in the language of the experimental analysis of behavior, with 
accounts of the internal neurophysiological processes thought to support such 
interactions. Connectionist modeling is now uniquely poised to pull together 
these two research strands, particularly where phenomena are modeled which 
are of interest to both cognitive and behavioral workers, such as the interaction 
between old and new learning (e.g., exactly how, at the neurological level, is a 
generalized, overarching class of operant behavior [or relational frame] estab- 
lished, and exactly how is new learning incorporated into this operant class?). 

The basic limitation of our earlier approach~its lack of neural 
plausibility--- produces several specific problems that we shall now outline. 
Several of these problems are related and their solutions intertwined, but in the 
interests of clarity we shall first consider them in isolation before looking at 
ways to resolve them. 

Problem 1: The simulations were too global, and hence the issue of  task 
decomposition into simpler subtasks was not sufficiently addressed, nor was 
any attempt made to model, in more detail, possible subcomponents o f  the 
tasks 

Our model was designed to simulate all of the important behavior obtained 
in the Steele and Hayes relational frame study, and the explicit history of 
reinforcement (from the verbal community) that supposedly allowed the teen- 
age subjects to demonstrate relational framing. In effect, we aimed to mimic (i) 
the acquisition of the relevant overarching operant classes (i.e., relational 
frames) across a number of different stimulus sets or stimulus domains (re- 
ferred to as explicit training or old learning), (ii) training on the to-be-tested 
set of stimuli (referred to as limited training or new learning), and (iii) the 
demonstration of derived relational responding (referred to as successfully 
integrating the new learning with the old learning). Upon closer inspection, 
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however, the relational frame procedures involve at least the following sub- 
tasks: 

(i) The learning of several input-output pairs in succession without interfer- 
ence. In a typical stimulus-equivalence or relational frame experiment, partic- 
ipants must learn the appropriate responses to a series of related conditional 
discriminations or stimulus configurations. We refer to this as learning multi- 
ple input-output pairs. 

(ii) The learning of the entailed relations across or between trials. An import- 
ant, if obvious, point about a relational frame or equivalence experiment is that 
stimuli recur across a series of trials in different configurations. For example, 
suppose a participant learns that VEK is the same as JUF on Trial 1, but dif- 
ferent from YUG on Trial 2, then the relationships between Trials 1 and 2 
have implications for the relationship between JUF and YUG which might be 
tested at some later time. For correct responding to occur, this relationship 
must either be learned at the time that Trials 1 and 2 are mastered, or derived 
at the time of testing. Either way, what we call inter-trial learning must take 
place. 

(iii) The retention of learned relationships. Learned relationships from a given 
domain must be retained (have a durable effect) since derived responding at 
some future time is possible. The effects of learning must endure (though for 
how long is, of course, an empirical question). We refer to this as learning 
retention. 

(iv) The use of previous learning. Previous learning, from other domains, is 
used to interpret current learning. For example, to exploit relations such as 
"same, .... different," or "opposite," participants must be able to use previous 
experience with these types of relations. However, for old learning to modulate 
new learning in this way, its effects will need to be recovered or elicited at the 
appropriate time, presumably being activated by certain contextual cues inher- 
ent in the new learning. This is what we refer to as the recovery of old by 
current learning. 

(v) Derivation of new responses. New responses are derived by combining old 
and new learning. This we refer to as the bringing to bear of old on new learn- 
ing. 

While it is not inconceivable that all five of these subtasks could be carried 
out by one undifferentiated network, it is clear that they cannot all be carried 
out satisfactorily by ours. Our networks were designed to show how relation- 
ships derived from extensive training on other domains (or stimulus sets) could 
be brought to bear and used to produce new (untaught) responses following 
limited training on a new set of pattern pairs (i.e., the eighth stimulus set). 
Thus we focused on the issues of inter-trial learning and the bringing to bear of 
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old on new learning. The three other subtasks~learning multiple input-output 
pairs, learning retention, and the recovery of old by current learning-- were 
heavily finessed, but as we shall see shortly, these issues must be faced if 
neurophysiologically plausible models are to be constructed. 

Problem 2: The learning of  several input-output pairs in sequence without 
interference was finessed 

Human and nonhuman animals are constantly dealing with new learning 
situations. In many cases, new learning can be acquired without interfering 
with or being disrupted by old learning, though of course there are conditions 
under which interference effects do occur in human learning and memory (see 
Baddeley, 1976, for a discussion). Connectionist models, of the type we used, 
are not so powerful. They suffer from catastrophic interference in which 
previous learning is disrupted by current input (McCloskey & Cohen, 1989; 
Ratcliff, 1990). We avoided this problem by presenting all pattern sets together 
in a given training epoch (equivalent to old learning always being refreshed at 
the same time as new). In reality, of course, the world is not so obliging; new 
environments do not routinely include copies of old environments to assist the 
learner! Humans learn from new input, without necessarily being disrupted by 
it. In effect, they cope with the "sensitivity-stability" problem (Hebb, 1949). 

Problem 3: Pattern sets used to represent stimuli were overspecified 
One important aspect of relational framing is the (presumably learned) abili- 

ty to respond to a set of stimuli as participating in a particular relational frame, 
and for this ability to be produced, at least in part, by previous learning in 
other domains (i.e., with different stimulus sets). In other words, the system 
must exhibit inter-trial learning as well as bringing to bear relevant old learn- 
ing from other domains. To a large extent we finessed this aspect of the prob- 
lem too. RELNET overspecified the relational frames, insofar as the sample- 
marking duplicator provided a set of inputs to the network that remained 
constant across each of the different stimulus sets. Learning, in the case of our 
model, entailed the gradual strengthening of the relational frames by the 
sample-marking duplicator, across a set of domains (or stimulus sets). The 
relational frames were not, therefore, fully derived. 

Problem 4: The networks were designed with unprincipled architectures," we 
made no attempt to map networks onto known aspects of  neuroanatomical 
structure or function 

All of our simulations have made use of simple three-layer networks whose 
architecture was motivated as much by considerations of parsimony as by any 
known neuroanatomy. The scheme of connections was used because it permit- 
ted a clear separation between the domain-variant aspects of the input-output 
mappings (i.e., the explicit training sets) and the domain-invariant aspects 
(i.e., the sample-marking duplicator). No attempt was made to make contact 
with relevant neurophysiological knowledge. 
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Problem 5: A biologically dubious learning rule was used 
It is highly debatable whether backward error propagation is a biologically 

plausible learning rule (cf. Crick & Asunama, 1986). The algorithm assumes 
that an error signal is sent back through the network and used to assess the 
amount by which connection weights need be altered to produce the desired 
response. Despite the fact that many brain areas are known to be reciprocally 
connected, with as many backward connections as there are forward (Kosslyn 
& Koenig, 1992), the evidence for such a learning scheme is quite tenuous. A 
further obvious problem is that backprop is a global learning mechanism which 
operates over the entire network, whereas there are reasons for thinking that 
synaptic changes are generally local. 

Toward More Plausible Simulations 
In this section we outline our revised strategy to work toward more neu- 

rophysiologically plausible simulations, by offering some potential solutions to 
the problems we have just considered. 

Problems 1, 2, 3, and 4: one or two learning systems ? 
On grounds of parsimony we initially approached the relational frame task 

as a whole, finessed the problem of sequential learning, chose an architecture 
consisting of one network, and used highly specified pattern sets, but as we 
have just seen, there are grounds for thinking that learning tasks often decom- 
pose into simpler subtasks. As we shall now explain, there are also grounds for 
arguing that the neural processes of learning are correspondingly complex and 
involve at least two learning subsystems. 

In this spirit, we are now exploring the idea that complex human learning, 
of the sort that we are investigating, involves the interaction between at least 
two neural subsystems. The first, the cortical-response (S-R) subsystem, is 
sensitive to moment-to-moment changes in the environment and the appropriate 
responses to them, and is ultimately capable of long-term retention of the 
stable products of previous learning. While this subsystem is capable of dealing 
rapidly and flexibly with changing environmental demands, if unassisted it is 
limited in its ability to support inter-trial learning and is potentially vulnerable 
to catastrophic interference between old and new learning. These difficulties 
can, however, be overcome with the help of the hippocampal system, the 
second learning subsystem. This second subsystem relies on the hippocampus 
and associated structures and has a variety of functions which support those 
aspects of learning which go beyond the learning of single trials. These func- 
tions include (i) extracting regularities across sets of trials, (ii) retaining the 
results of several environment-behavior interactions as captured by the cortical- 
response system over intermediate time periods, (iii) interleaving new and old 
learning in the cortex, and (iv) the reinstatement and bringing to bear of old on 
new learning. We use the term hippocampal system in the same way as Cohen 
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and Eichenbaum (1993)to refer to the hippocampus or hippocampalformation 
itself together with the para-hippocampal system. According to this usage, the 
para-hippocampal system is taken to include the various cortical areas sur- 
rounding the hippocampus, whereas the term hippocampal formation applies 
only to the dentate gyrus, areas CA3 and CA1 of Ammon's horn, and the 
subiculum. 

Our appeal to two learning systems is in line with recent work on cognitive 
neuroscience (e.g., Cohen & Eichenbaum, 1993; Eichenbaum, Otto, & Cohen, 
1994; Squire, 1992), connectionist modeling (e.g., French, 1995; Gluck, 
Chapter 21, this volume; McClelland, McNaughton & O'Reilly, 1994; O'Reil- 
ly & McClelland, 1994), and biobehavioral approaches (e.g., Donahoe, 
Burgos & Palmer, 1993; Donahoe & Palmer, 1994; Donahoe, Chapter 19, this 
volume). 

We now summarize what we see as three major roles of the hippocampal 
learning system, and show how these, when properly understood, will allow us 
to resolve some of the problems with our earlier simulations. We do not pre- 
tend to offer a complete review of what is by now an extensive literature on the 
hippocampal system; instead we survey its likely computational functions and 
indicate their relevance to relational framing behaviors. 

Hippocampus as a special type of learning system. A reasonable body of evi- 
dence can be adduced to support the proposition that the hippocampal system is 
involved in a qualitatively distinct form of learning. The cognitive researchers 
Cohen and Eichenbaum (1993) have recently described this learning as rela- 
tional or declarative. According to these researchers, such learning can take 
many forms. It might, for instance, involve the links between an animal's 
movements through a maze, the relative positions of cues in the environment, 
and the availability of reinforcement at a given location, or it might involve 
learning a list of paired associates. Despite these variations, all declarative 
learning, according to Cohen and Eichenbaum, shares the common characteris- 
tic that it captures the outcome of various processing modules, which are 
bound or chunked together by the hippocampal system. Its representations are 
therefore relational and compositional. Its stored memories can be accessed by 
a wide variety of other processors and expressed flexibly in novel contexts (cf. 
Cohen & Eichenbaum, 1993, p. 73). 

We assume that relational framing involves what Cohen and Eichenbaum 
call declarative information processing, since whenever responses in the match- 
ing-to-sample task go beyond simple configural learning, a wide variety of 
relata are involved. In the case of derived responding, in particular, the current 
input-output mappings (new learning) must be related with those previous 
mappings that combined to yield neural patterns that support responding in 
accordance with relational frames (old learning). If the new and old mappings 
are successfully related, then the new mappings are incorporated into a set of 
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already established mappings, and the neural patterns for responding to a set of 
stimuli as participants in a specific relational frame are established. 

To investigate the tasks which interest us we are now using the working 
assumption that the hippocampus, acting as a relational processor, and in 
cooperation with the cortex, produces the more important neural patterns 
necessary for relational frame behaviors to emerge from multiple exemplars of 
explicitly taught stimulus relations. In other words, the hippocampus is essen- 
tial for the formation and activation of relational frames. 

In drawing attention to the role of the hippocampus as a special type of 
processing system, we go beyond the views expressed on its role by Donahoe 
and Palmer (1994), who concentrate on its role as an enhancer or integrator of 
existing cortically co-occurrent or "polysensory" events. They chiefly focus on 
the interface between the hippocampus and the cortex and effectively treat the 
hippocampus as a black box. We, on the other hand, suggest that a full under- 
standing of complex learning will be possible only following an examination of 
the special contribution made by hippocampal activity. We appreciate and 
value their parsimonious account, but defend our own breach of parsimony on 
the grounds that it seems to be required both by our analysis of the relational 
frame task and from relevant work on the neurobiology of learning. 

Hippocampal involvement in the coordination of old and new learning and 
temporal aspects of learning. Together with other structures, the hippocampus 
appears to coordinate the neural effects of learning. According to a range of 
cognitive researchers, there is good evidence that it can act as an intermediate 
store of recently acquired and not fully established memories (Eichenbaum et 
al, 1994), that it exhibits a phenomenon known as long-term potentiation 
involving changes in synaptic plasticity (Lynch, 1986; Lynch & Baudry, 
1988), that it is involved in the consolidation of memories (Kim & Fanselow, 
1992; Squire, 1992; Zola, Morgan, & Squire, 1990), and that it is not the final 
repository of information storage or locus in which the effects of learning are 
neurally represented (Cohen & Eichenbaum, 1993; Squire, Shimamura, & 
Amaral, 1989). 

Many of these facets of hippocampal activity are brought together by the 
idea that the hippocampus acts as a buffer device for retaining information 
prior to its eventual transfer to more durable cortical locations (McClelland, 
McNaughton, & O'Reilly, 1994). The use of such a dual-learning system, 
according to McClelland et al, permits new learning to be gradually meshed or 
interleaved with old, thus avoiding catastrophic interference. Such interleaving 
can, in humans at least, take place over time intervals as long as fifteen years. 
McClelland et al have constructed connectionist models of these key hippo- 
campal-cortical interactions. In their simulations, the hippocampus is designed 
to acquire rapidly several input-output mappings without interfering with 
previously acquired structure, and to aid or "teach" the cortex to extract new 
structure from inputs. 
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With somewhat different emphasis, in a two-stage theory of hippocampal 
processing, Eichenbaum et al (1994) have argued that the para-hippocampal 
region is capable of retaining individual learning experiences over intermediate 
time periods in a passive form, thus protecting individual traces from the 
moment-to-moment interference and overwriting experienced by short-term, 
active cortical representations. The hippocampus proper is then used for rela- 
tional comparisons between new learning and old learning, and is finally 
assumed to exert its long-term cortical effects by modifying, or making con- 
nections between, relevant cortical areas. 

Whatever the final outcome of this debate, there is sufficient agreement 
about hippocampal functions to conclude that for relational framing to occur, 
the hippocampal system (i) is needed for the learning of multiple input-output 
pairs without interference, (ii) permits inter-trial learning, and (iii) acts coop- 
eratively with the cortex in learning retention. 

Hippocampus for use of~interpretation of learning. Although a large proportion 
of the current literature on hippocampal-system activity is devoted to its role 
during learning or encoding, there is, however, also a role for the hippocam- 
pus at retrieval. There are two major ways in which the system is thought to be 
involved at the stage that memories (prior learning) are used. First, as a 
temporary, intermediate locus of storage, it will allow the appropriate respons- 
es to be acquired and re-emitted across sets of input-output pairs. Thus, as we 
have just pointed out, Eichenbaum et al (1994) have shown that the para- 
hippocampal system may be specialized for this. Second, and more relevant for 
our current concerns, the hippocampal system seems to have a role in the 
reinstatement or reconstruction of cortically retained learning. Again, accounts 
of this differ, but O'Reilly and McClelland (1994) have used formal modeling 
methods to show that the hippocampus is well designed to accomplish pattern 
completion at retrieval. 

The important point here is that the act of relational framing can be thought 
of as a type of cueing by contextual stimuli in which new (current) inputs are 
discriminative for old learning and, during a hippocampal-dependent pattern 
completion process, untaught relational responses emerge. 

An example of hippocampal support. We can illustrate some of these hypothe- 
sized functions with a simple example and toy network. Suppose a child has 
already learned the names and ages of two individuals~Fred, aged 40, and 
George, aged 10. We assume that cortical neuronal groups already signify 
these names and ages and their co-occurrence and will refer to these groups as 
name, age, and person nodes respectively, such that name and age nodes are 
mutually facilitatory and interconnected through person nodes. Suppose, now, 
the child learns that Fred is the father of George and, on a later occasion, that 
George is the son of Fred; that is, in the presence of George and Fred, she 
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0 ~  

"George" 

("Fred") 

INPUTS 

Fred < "Fred" 
P1 

George "George" 

<---C1 ~ Son "son" 
// \ \  

C 2 ~  Father ("father"') 

~ 1 0  

7 

O ~  P1 INPUTS 
P2 

Charles 4-----"Charles" 

C~ ~ P5~william {-------"William" 

/ �9 Son ("son") 

Charles? 
, ~  06' ~ - -  Father ~ "father" 

William? 

FIGURE 4. Simple networks for learning to select the appropriate response given the 
names of two individuals as input and the specification of the relationship, "son" or 
"father." Upper section: the network response "George" is guided by the configuration 
node C1, which represents the co-occurrence of Person 1, (P1), Person 2 (P2) and 
"son;" (the response "Fred" is guided by the corresponding co-occurrence at C2 of P1, 
P2, and "father"). Lower section: previous selective training on "Charles," "William," 
and "son" as inputs and "William" as output (and other similar mappings) is insuffi- 
cient to permit derived responding of "Charles" as response, given "Charles," "Wil- 
liam," and "father" as inputs. 
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learns to orient or respond to George when the word "son" is used, and to Fred 
when the word "father" is used. One simple way in which this could occur is 
for a response to be shaped up to the co-occurrence of person, age, and the 
new status information. In this way, it is theoretically possible for the child to 
learn directly about a number of father-son relationships, say that Peter is the 
father of Joe, Joe is Peter's son, and so on. An illustration of this for the 
implicative relationships between Fred and George is illustrated in Figure 4 
(upper section). Notice that so far all we are assuming is that the child is 
responding to the co-occurrence of information, and that all learning is corti- 
cal. We make no strong assumptions about learning rules at this stage, though 
we do assume that connected nodes are mutually excitatory. 

However, this simple scheme is likely to fail as learning progresses for two 
reasons. First, as other father-son pairs are learned, catastrophic interference 
will occur as new learning disrupts old. For this reason alone some comple- 
mentary learning and gradual interleaving of new learning is likely to be neces- 
sary. Second, and crucially for our understanding of relational frame effects, 
the system is incapable of derived responding since no inter-trial learning has 
taken place. The network may well "know," having been previously instructed, 
that, say, Charles is aged 42 and has a son, aged 7, named William, and be 
able to respond with "William" to the input configuration "Charles," 
"William, .... son." Thus constituted, however, the network will be unable to 

II I t  | !  l !  If respond "Charles" when presented with "Charles, William, father 
(Figure 4, lower section). As it stands, the network has not acquired the 
necessary neural patterns to demonstrate responding in accordance with a rela- 
tional frame or frames in which sons and fathers may participate. A simplified 
neural pattern that would, however, support an appropriate relational frame is 
represented in Figure 5. Here the links between the "father" node and the set 
of ages around the "42" node (within the age range of the prototypical father) 
permit additional activation to flow from the "42" node to node P5, which is 
strongly associated to the name "Charles." 

We showed in our previous models that bidirectional training alone, without 
suitable architecture to support it, cannot give rise to relational framing be- 
haviors. We now postulate that relational framing can be accomplished with 
hippocampal support. Suppose that the hippocampus, acting as a relational 
processor, coordinates information from the stimulus side with information 
regarding successful responses. Neuroanatomically it is known that responding 
to both stimulus and response information is possible since the hippocampal 
system is bidirectionally connected to a range of areas including the motor 
cortex (Cohen & Eichenbaum, 1993; Amaral, 1987). Also, work on nonhuman 
learning suggests that so-called hippocampal place maps are response valenced 
in the sense that they indicate the behavioral significance of places visited, and 
do not merely offer an epistemologically neutral survey of the world (see 
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Cohen & Eichenbaum, 1993, for a discussion). Given an accumulated set of 
mappings involving father-son relationships (i.e., links between named indi- 
viduals specified as "father" or "son"), and the appropriate responses to them, 
the hippocampus now has the "raw material" to relay back to the cortex the 
common characteristics of all father-son mappings encountered to date. One 
way in which this could take place is for it to categorize mappings as either 
"father" or "son," and in the process extract their prototypical features. Thus, 
in our simple example, father mappings are characterized by the selection of 
individuals aged around 40 years, while son mappings typically involve indi- 
viduals of 10 years or less. In other words, the hippocampus establishes a 
neural pattern that supports a relational frame in which all fathers and sons, 
and their prototypical features, may participate and transmits this to the cortex 
(see French, 1995, for details of a simple network architecture that can accom- 
plish this). Alternatively, the neural patterns that support individual relational 
frames may gradually take place in the cortex itself. In either case, new link- 
ages will eventually arise in the cortex that allow for responding in accordance 
with relational frames. 

O ~  P1 INPUTS 

P2 
"Charles" < ~ ~ C h a r l e s  ( "Charles" 

~ / i  

- 05 t h e r . ~  "father" 

/ 

H I PPOC AMPU S 

FIGURE 5. Prototypical information about a series of father and son mappings, sup- 
plied with the assistance of the hippocampus, permits new linkages between "father" 
and the set of typical ages of fathers. The latter, in turn, increases activation in co- 
occurrent nodes, in this case P5, which then guides the response "Charles." (See text 
for full explanation). 
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These new linkages can then be used to support derived relational respond- 
ing. To return to our example, recall that the two mappings between father and 
son are characterized by the selection of older and younger individuals respec- 
tively. Persons with ages closer to the relevant prototypical age will thus be 
more likely to be selected as a father or a son, as appropriate. Thus the inputs 
"Charles, . . . .  William, . . . .  father" will now be able to activate the response 
"Charles," since the crucial additional linkage, between nodes "father" and 
"42," has been interleaved into the cortex from the results of previous map- 
pings distilled in the hippocampus. 

To summarize: the hippocampus provides the cortex with the information 
needed to relate the specific aspects of new learning with the general, prototyp- 
ical aspects of earlier learning. Using our simple example again, the terms 
"father" and "son" eventually trigger general characteristics of father and son 
mappings rather than being tied to any single individual. In our discussion, we 
have assumed, probably naively, that this transfer is all-or-none and relatively 
direct. In practice, the process of information transfer is likely to be much 
more interactive than this with the prototypical information slowly growing in 
the cortex, and the hippocampus, in turn, having progressively more and more 
prototypical information available from the cortex to join with the interpreta- 
tion of specific mappings. 

The details of this process are far from fully specified, but we can hypothe- 
size that it involves the following elements: (i) the hippocampus combines 
mappings from a series of learning trials, within and between domains (or 
stimulus sets), (ii) it helps in the separation of these mappings in the cortex 
during initial learning (it avoids catastrophic interference), (iii) as learning 
progresses, it helps the cortex to develop the neurological patterns required for 
responding in accordance with relational frames, (iv) it helps bring to bear the 
effects of old learning on new learning. 

This analysis goes some way towards dealing with Problems 1 to 4, since 
the subtasks of relational framing are addressed. In effect, the problem of 
multiple input-output pairs is faced; the neurological patterns required for rela- 
tional framing are extracted, across pattern sets, by the hippocampus in con- 
junction with the cortex; it is not supplied ab initio; and the architecture 
needed to carry out these activities is neurologically principled. 

Problem 5: alternative learning rules 
A major problem with our earlier simulations was the use of backward 

error propagation as the learning rule for training our networks, the biological 
implausibility of which has already been noted. 

There are by now in the connectionist literature a variety of other learning 
rules which could serve as alternatives, but space does not permit us to review 
all of these here. We do, however, wish to note that one recent learning rule, 
in which neuronal connections are selectively strengthened by broadcast, rein- 
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forcement-triggered signals, offers one currently very attractive alternative (cf. 
Donahoe & Palmer, 1994). As currently constituted, Donahoe and Palmer 
present a powerful, parsimonious, and plausible account of single-trial input- 
output learning that relies on straightforward cortical-motor links. It remains to 
be seen, however, whether their learning rule can be further expanded to cope 
with multiple-trial learning without interference and inter-trial learning. 
Donahoe and Palmer argue that output from CA1 neurons can similarly 
modulate and strengthen stimulus co-occurrences at the site(s) of original learn- 
ing, and argue that this may be sufficient to explain equivalence responding. 

We, on the other hand, maintain that the hippocampus needs to combine the 
co-relations of input-output neural mappings within and across domains (i.e., 
within and across stimulus sets) in order to produce relational frame behaviors. 
Whether or not this process in its entirety can be accomplished using the learn- 
ing rule developed by Donahoe and Palmer is not clear. It is possible, for 
example, that hippocampal-cortical interactions are governed by the type of 
learning rule suggested by Donahoe and Palmer, but it might also be the case 
that the unique and hard-wired architecture of the hippocampus has been natu- 
rally selected to fulfill its "special" role as a relational processor. We also 
assume that hippocampal "teaching" of the cortex eventually results in the 
formation/connection of new neuronal groups in association areas not necessar- 
ily directly involved in the early stages of learning to respond in accordance 
with relational frames (e.g., when learning to name), and these groups then 
contribute towards the neural patterns that support increasingly complex rela- 
tional framing behaviors (e.g., following instructions and analogical 
reasoning). 

Conclusions 
In this chapter we have outlined some of the phenomena associated with 

relational framing behaviors, discussed some of our initial attempts to model 
them using connectionism, criticized our models on various grounds, and 
offered ways forward to a more neurologically plausible family of models. In 
doing so, we were prompted to examine relational framing as composed of 
several subtasks, and argued for the existence of two complementary learning 
systems at the neural level. 

There are benefits to be gained from this type of local and detailed analysis 
of complex learning behaviors, and from submitting ourselves, as psychologi- 
cal scientists, to the constraints of neurophysiologically plausible models. 
When we do so, the issues revealed have a global relevance for both behavior- 
al and cognitive neuroscience. 
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CHAPTER 27 

A RECURRENT-NETWORK ACCOUNT 
OF READING, SPELLING, AND DYSLEXIA 

Guy C. Van Orden, Anna M.T. Bosman, 
Stephen D. Goldinger, and William T. Farrar, IV 
Arizona State University 

ABSTRACT 
We present a recurrent-network account of printed word perception, spell- 

ing, and dyslexia. Our account explains why phonology is fundamental to 
reading and spelling, and why spelling is more difficult than reading. It also 
provides a basis for simulating the behavior displayed by children with reading 
problems (developmental dyslexia) and by adults with acquired reading prob- 
lems (acquired dyslexia). 

Introduction 
Recurrent networks are connectionist models in which activation flows from 

input to output and back again, creating feedback loops. Behavior is modeled 
in self-organizing patterns of activation, but activation in any part of the 
network is always reflected throughout the network. Bidirectional flow of 
activation binds activation at each part to activation at every other part. This 
holism is the basis of our claim to a mind as embodied action metaphor: 
Perception and action are emergent in the coupling (resonance) of an organism 
and its environment (Varela, Thompson, & Rosch, 1991). One entailment of 
this metaphor is that an organism and its environment are themselves interde- 
pendent (cf. Turvey & Carello, 1981). In this chapter, we illustrate these 
claims in an explanation of reading and spelling that assumes interdependence 
between readers and the printed word. The empirical basis of our account is 
performance in laboratory reading and spelling tasks. 

The description presented in this chapter derives from a general theoretical 
framework proposed by us and our colleagues (Grossberg & Stone, 1986; 
Stone & Van Orden, 1994; Van Orden & Goldinger, 1994; Van Orden, Pen- 
nington, & Stone, 1990, 1996), and is rooted in mathematical dynamic-systems 
theory (cf. Thelen & Smith, 1994). Clarifying the metaphor of mind as em- 
bodied action will be easier once we have presented our account in more de- 
tail. We begin by discussing a classic cognitive phenomenon: phonologic 
mediation in reading and spelling. Then, we describe a resonance theory of 
word perception and spelling. At its heart, we offer an explanation of why 
phonology is fundamental to reading and spelling, and why spelling is more 
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difficult than reading. This account predicts non-intuitive "feedback" phenom- 
ena that have been corroborated in laboratory studies. We describe these stud- 
ies, and then suggest how a recurrent network might accommodate the anoma- 
lous reading behavior of developmental and acquired dyslexics. In the final 
section, we return to the metaphor that underlies our approach. 

Phonologic Mediation in Reading and Spelling 
The emphasis in much reading research is on the perception of single 

words, as this is the most important aspect of reading skill. Poor word percep- 
tion severely limits the development of skilled reading and reading comprehen- 
sion (Perfetti, 1985). A perennial question in such research is whether a 
word's phonology (loosely, the "sound" of a word) influences visual word 
perception. A recent accumulation of empirical findings forcefully suggests 
that phonology's role in word perception is fundamental. Numerous experi- 
ments have shown that the phonology of a letter string affects its perception in 
simple reading tasks. (For overviews, see Berent & Perfetti, 1995; Van Orden 
et al, 1990.) For example, subjects tend to mistake ROZE for an exemplar of 
FLOWER in a categorization task, or they misclassify the letter string SUTE 
as a word in a lexical decision task, or they overlook misspellings such 
as MUNKEY in a proofreading task (Van Orden, Stone, Garlington, Markson, 
Pinnt, Simonfy, & Brichetto, 1992). And in writing, systematic misspellings, 
such as substituting ROZE or ROWS for ROSE are common. (For an over- 
view, see Bosman & Van Orden, in press.) These errors indicate that phonolo- 
gy is central to reading and spelling. With respect to phonology, a ROZE is a 
ROWS is a ROSE. Note, however, that phonology is not explicit in these 
printed forms; it is only implicit with respect to the knowledge that readers 
bring to reading and spelling. 

The effects of phonology are apparent with readers and writers spanning the 
full range of reading skill (i.e., beginning, skilled, and disabled readers). They 
are found across languages (in both alphabetic and non-alphabetic writing 
systems) and across laboratory tasks. These tasks include naming (quickly 
reading words aloud), lexical decision (quickly classifying words versus 
nonwords), semantic categorization (quickly determining whether words 
belong to designated categories), and proofreading (carefully checking a 
document for spelling errors). Why is phonology so involved in reading or 
spelling? It clearly is not always helpful, often leading to errors in these exper- 
imental tasks. In the next section, we describe a recurrent-network account of 
word perception and spelling. Our account pertains to a very simple recurrent 
network that has been implemented (Farrar & Van Orden, 1994), but the prin- 
cipled basis of our account is not tied to the specifics of our simulation. No 
claim is made with respect to a "correct" architecture (see Stone & Van Orden, 
1994; Van Orden & Goldinger, 1994; Van Orden et al, 1990, 1996). We 
return to this issue in the final section of the chapter. 
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Reading and Spelling are Fundamentally Related 
Imagine a fictitious nervous system that perceives printed words. This 

system consists of three families of neurons: letter neurons, phoneme neurons, 
and semantic neurons. Every neuron in each family is (potentially) bidirection- 
ally connected to every neuron of the other two families. Bidirectionally 
connected means that if a feedforward connection exists from neuron "x" to 
neuron "y," there is also a feedback connection from neuron "y" to "x." Now, 
imagine a specific pattern of activation across the letter neurons, due to the 
presentation of a printed word. This letter pattern feeds activation forward 
through a matrix of "synaptic" connections, creating patterns of activation 
across phoneme and semantic neurons. The phoneme and semantic neurons, in 
turn, feed activation back through a top-down matrix of connections, trans- 
forming their patterns back into letter patterns. Whenever the feedback patterns 
match the original letter pattern, top-down activation c o n s e r v e s  bottom-up 
activation. Consequently, the "matched" letter neurons conserve their capacity 
to reactivate matching phoneme and semantic neurons that, in turn, reactivate 
the letter neurons, and so on. This feedback cycle is temporarily stable, result- 
ing in a coherent dynamic whole: a r e s o n a n c e .  

This simple neural network is only for exposition. It is helpful to consider 
word perception in terms of artificial neural activity, but analogies between 
cognitive systems and actual nervous systems, albeit compelling, are limited. 
We conceive of word perception in cognitive terms. Figure 1 illustrates cogni- 

Letter ~- .~  ( Phoneme ~--~ ( Semantic 
Nodes Nodes ~ Nodes 

FIGURE 1. Macrodynamics of reading and spelling performance emergent in a recur- 
rent network. The boldness of the arrows indicates the overall strength of the relations 
between letter, phoneme, and semantic node families (see text). 
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tive macrodynamics of word perception (Van Orden & Goldinger, 1994) and 
spelling (Bosman & Van Orden, in press), and Figure 2 illustrates micrody- 
namics. 

Figure 1 portrays a recurrent network with three families of fully interde- 
pendent nodes (letter nodes, phoneme nodes, and semantic nodes). On average, 
the connections between node families differ in strength; the rank order of 
overall strength is illustrated by the relative boldness of arrows in the figure. In 
alphabetic languages, letters and phonemes correlate quite strongly. For 
example, the letter B is almost always pronounced as/b/, and the phoneme/b/ 
is always written with a B. Correlations between phonemes and semantic 
features, or letters and semantic features, are far weaker than correlations 
between letters and phonemes. Knowing that a word begins with the letter B 
indicates almost nothing about its meaning, but much about its initial pronun- 
ciation. 

Notice also that phoneme-semantic connections are depicted as stronger 
than letter-semantic connections, primarily because we speak before and more 
often than we read. Moreover, once in place, this asymmetry is self- 
perpetuating. Reading strengthens phoneme-semantic connections, because 
phonology functions in every instance of printed-word perception. Thus, even 
the exceptional condition of people who read more than they speak would 
support phoneme-semantic connections that are at least as strong as letter- 
semantic connections. Also, if a coherent positive-feedback loop forms from 
semantic to phoneme nodes before the feedback loop from semantic to letter 
nodes, then printed or spoken discourse may proceed without the contribution 
of the feedback loop from semantic to letter nodes. The absence of resonance 
in the latter feedback loop may preclude strengthening the connections between 
letter and semantic nodes (see discussion below, and Grossberg & Stone, 
1986). Thus, at this macro-level of description, families of nodes differ in the 
overall strength of relations with other families. These differences in overall 
correlational structure are illustrated in the relative boldness of the arrows in 
Figure 1. 

The strong bidirectional connections between letter and phoneme nodes, as 
compared to those with semantic nodes, causes the letter-phoneme dynamic to 
cohere (resonate) before all others. These strong connections between letters 
and phonemes explain why phonology is so fundamental to reading and spell- 
ing. Stated differently, it explains why sound-alike words (ROSE and ROWS) 
may be confused in reading (Van Orden, 1987), and explains why the majority 
of spelling errors (ROZE instead of ROSE) are phonologically acceptable. 
(Van Orden & Goldinger, 1994, 1996 describe various other phenomena 
that derive from the powerful correlations of spelling and phonology.) 

In a model analogous to Figure 1, presentation of a printed word activates 
letter nodes that, in turn, activate phoneme and semantic nodes. Following 
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initial activation, recurrent feedback begins among all these families of nodes. 
Similarly, presentation of a spoken word activates phoneme nodes that, in turn, 
activate semantic and letter nodes. (And, word production would begin with 
activation of semantic nodes that, in turn, activate phoneme and letter nodes.) 
In all these cases, initial activation leads to recurrent feedback among all fa- 
milies of nodes. However, the strongest recurrent dynamic is between letter 
and phoneme nodes, which creates the common basis of reading and spelling. 

/ h /  / a I /  / i [  2 

1 2 

I h /  ~al l  / h i  / a t /  l i /  

H I Y H I Y 
1 2 2 1 2, 2 

L___.y 
(a) (b) (c) 

FIGURE 2. A simplified illustration of microdynamics that describe reading and spell- 
ing performance for the word HI. a. Presented with HI, activation feeds forward from 
letter nodes to phoneme nodes, b. In turn, phoneme nodes feed activation back to letter 
nodes, e. A resonance that emerges between letter and phoneme nodes corresponding 
to HI. (To reduce the number of lines in the figure, bidirectional connections are de- 
picted with double-headed arrows.) 

Figure 2 illustrates microdynamics. We zoom in on the connectivity bet- 
ween letter and phoneme nodes (and ignore, for now, phoneme-semantic and 
letter-semantic connectivity). In Figure 2A, reading the printed word HI acti- 
vates the letter nodes H 1 and I2, which activate the phoneme nodes /h/~ and 
/a~/2 but also competing nodes such as/1/2 (as in/hit/) which must be inhibited. 
(The subscripts refer to the positions of the letters or phonemes within words.) 
Figure 2B shows how, in turn, phoneme nodes feed activation back to letter 
nodes (illustrated for the phoneme nodes /h/1 and /aI/2 ). The phoneme node 
/a~/: activates the correct letter nodes H~ and 12 and also competing letter nodes 
such as the letter node Y2 in MY or BY. Thus, early patterns of activation are 
loosely structured, entailing activation of correct, but also many incorrect, 
candidates for resonance (Van Orden et al, 1990). Interactions between nodes 
then select combinations of nodes through cooperative-competitive dynamics 
(Grossberg & Stone, 1986; Stone & Van Orden, 1994). 

Reliable performance emerges if the overall bidirectional configuration of 
connections favors mutual activation between the letter nodes H~ and 12 and the 
phoneme nodes/h/~ and/a~/2 . This advantage grows over time as the "strong 
grow stronger" and the "weak grow weaker" (McClelland & Rumelhart, 
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1981). This is illustrated in Figure 2C, which combines the flow of activation 
from letter nodes to phoneme nodes and from phoneme nodes back to letter 
nodes, as assumed in a recurrent network. Presentation of the spoken word 
/ha~/to the network (as in a spelling task) leads to a similar dynamic between 
phoneme and letter nodes. Thus, activation initiated in phoneme nodes may 
generate a coherent pattern of activity across letter nodes. 

Why Spelling is More Difficult than Reading 
In the course of writing, everybody experiences occasional doubts about 

how to spell a word, but we almost never forget how to read a word. This 
asymmetry between reading and spelling is evident at all levels of skill 
(Bosman & Van Orden, in press). The account we offer explains why people 
find spelling more difficult than reading. It may be simply described with 
respect to the previous illustrations of microdynamics (letter-phoneme dynam- 
ics), and macrodynamics (dynamics among families of nodes). 

Returning to Figure 2, reading the word HI not only activates the phoneme 
nodes/h/~ and/aI/2 , and the letter nodes H 1 and I2, but also all possible pro- 
nunciations of H 1 and 12 and all possible spellings of /h/~ and /aX/2 . Thus, 
correctly reading a word requires inhibition of incorrect phoneme nodes, and 
correctly spelling a word requires inhibition of incorrect letter nodes. In the 
case of reading, the letters are presented to the model (or reader) such that 
phoneme*letter ambiguity is quite unlikely to produce full activation of incor- 
rect letter nodes, because the persistent and stable input at letter nodes acceler- 
ates the formation of feedback loops with phoneme and semantic nodes (as 
illustrated by bold arrows in Figure 2C). However, in the case of spelling, this 
resonant pattern must be generated from phonologic and semantic activation 
alone. There is no environmental support for correct letter nodes. 

The crux of spelling is that English orthography, generally, has more possi- 
ble spellings for any given word than possible readings, and this is true for 
most (but not all) alphabetic writing systems (e.g., Stone, Vanhoy, & Van 
Orden, in press). Consider, for example, the multiple possible "spelling bod- 
ies" that may correspond to the "rime" / firch/: IRCH as in BIRCH, ERCH 
as in PERCH, URCH as in LURCH, and EARCH as in SEARCH. Stone et 
al (in press) estimated that 69% of low-frequency English one-syllable words 
are spelling-phonology consistent (at the grain size of spelling bodies and 
rimes), but only 28% are phonology-,spelling consistent (at the same grain 
size). In a larger sample, including both low- and high-frequency one-syllable 
words, 72% of all spelling-phonology consistent words were phonolo- 
gy-,spelling inconsistent. These linguistic analyses clearly indicate that phonol- 
ogy-,spelling inconsistency is the rule for English. 

Although both reading and spelling are powerfully constrained by the strong 
correlational structure of the letter-phoneme dynamic, the occasional inconsis- 
tencies in these relations are resolved by different sources of constraint. Now, 
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we refer again to the illustration of macrodynamics in Figure 1. When a model 
"reads" a low-frequency, spelling--,phonology inconsistent word such as PINT, 
the more consistent letter-phoneme relation would rhyme with MINT (and 
HINT, LINT, TINT, etc.; Kawamoto & Zemblidge, 1992). Similarly, the 
letter-phoneme dynamic would yield two correct pronunciations for words like 
WIND (although it would typically favor the more regular pronunciation, 
Kawamoto & Zemblidge, 1992). In both these cases, relatively strong seman- 
tic-phoneme relations may supply sufficient secondary constraints to encourage 
the appropriate letter-phoneme dynamic. In the case of WIND, semantic con- 
straints may also be due to context, and contextual sources of semantic activa- 
tion contribute via the relatively strong connections between semantic and 
phoneme nodes. 

In the case of spelling, however, a model must resolve the inverted patterns 
of ambiguity in the phoneme-letter dynamic. To spell a low-frequency phonol- 
ogy--,spelling inconsistent word such as HEAP, the rime/_ip/'s correct spell- 
ing would compete with a more strongly correlated incorrect spelling body 
_EEP (as in DEEP, BEEP, KEEP, PEEP, SEEP, and WEEP). Additionally, 
the phoneme-letter dynamic yields two correct spellings for homophones (e.g., 
ROSE/ROWS). In either case, correct spelling must rely on relatively weak 
semantic-letter dynamics to sufficiently activate the appropriate letter nodes (as 
illustrated in Figure 1); even contextual support is filtered through the weak 
letter-semantic connections. This weaker support for spelling, compared to the 
strong support for reading (i.e., phoneme-semantic dynamics) is the "macro- 
basis" for the asymmetry between reading and spelling. Thus, spelling is more 
difficult than reading for two reasons" (1) Microdynamic phoneme--,letter rela- 
tions are more inconsistent than letter-,phoneme relations (Stone et al, in 
press), and (2) macrodynamic support for spelling (i.e., letter-semantic connec- 
tions) is weaker than macrodynamic support for reading (i.e., phoneme- 
semantic connections). 

Productive Use of This Simple Model 
The recurrent dynamic system described above predicts a rather non- 

intuitive micro-effect. This effect concerns the consistency of relations between 
letters and phonemes. Until recently, all discussion of consistency has con- 
cerned a classic "feedforward," spelling--,phonology effect. Inconsistent words 
such as PINT are named more slowly than consistent words such as DUCK. 
(_INT in PINT may be pronounced as in MINT; _UCK is only pronounced as 
in DUCK.) The feedforward consistency effect answers the question" Does it 
matter in word perception that a spelling may have more than one pronuncia- 
tion? From most theoretical perspectives, this is the only sensible question. In 
a naming task, the letter string is unambiguous to subjects (it is right in front of 
their eyes); the only potential ambiguity arises with respect to derived phonol- 
ogy. However, our "feedback hypothesis" generalizes perceptual ambiguity in 
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the phonology--,spelling direction as well. We were led to ask the feedback 
question" Does it matter in visual word perception that a pronunciation may 
have more than one spelling? 

Recently, Stone et al (in press) tested for the effects of both feedforward 
and feedback consistency on performance in a lexical-decision task. They used 
a factorial design that included four types of words. In bidirectionally consist- 
ent words such as DUCK, the spelling body (_UCK) can only be pronounced 
one way, and the pronunciation rime (/_uk/) is only spelled one way. In spell- 
ing--,phonology inconsistent words such as MOTH, the spelling body can be 
pronounced in multiple ways (BOTH), but the pronunciation rime (/_6th/) is 
only spelled one way. In phonology--,spelling inconsistent words such as 
HURL, the spelling body is pronounced in only one way, but the pronunciation 
rime can be spelled in more than one way (GIRL). In bidirectionally inconsist- 
ent words such as WORM, the spelling body can be pronounced in multiple 
ways (DORM), and the pronunciation rime can be spelled in multiple ways 
(FIRM). Stone et al found strong evidence for perception as a "two-way 
street;" correct response times were equally (and strongly) slowed by both 
feedforward and feedback inconsistency. Additionally, they found a reliable 
interaction; all inconsistent words produced approximately equal response 
times, even those that were inconsistent in both directions. Only words that 
were bidirectionally consistent produced better performance. Recently, Patrice 
Gibbs (personal communication, May 1995) found a similar effect of phonolo- 
gy-,spelling consistency in a naming task. 

Again, note the non-intuitive nature of this phenomenon. The letter string is 
clearly visible to the subject, and it remains visible until a response is record- 
ed. However, if feedback from phonology suggests that some other letter string 
could have been presented, performance is slower. Ziegler and Jacobs (1995) 
reported a similar counter-intuitive finding in a letter-search task. Subjects in 
their experiment were briefly presented with a letter string such as BRANE (a 
"pseudohomophone" of the word "Brain"), followed by a pattern mask 
(#####). The subjects were instructed to indicate whether a predesignated let- 
ter, for example the letter "i," was present in the masked letter string. In the 
case of BRANE, they misreported having seen the letter "i" more often than in 
a control stimulus. Similarly, they misreported not having seen the letter "i" in 
the letter string TAIP (a pseudohomophone of the word "Tape"). Presumably, 
the phonology of the pseudohomophones BRANE or TAIP suggested that 
"Brain" or "Tape" was presented, causing subjects to misreport the presence or 
absence of the letter "i." 

Developmental Dyslexia 
Dyslexic children read poorly relative to non-dyslexic children of the same 

age, background, intelligence, and instructional level. No skill is more essen- 
tial than reading for normal functioning within literate cultures; developmental 



530 G.C. Van Orden et al 

dyslexia can broadly undercut a child's potential for success and happiness 
(Bryant & Bradley, 1985). Dyslexics typically show qualitative differences 
from non-dyslexics in simple reading and language tasks. Moreover, their 
performance is impaired even relative to younger non-dyslexic children who 
successfully read at the same level (i.e., reading-age control subjects; Bosman, 
van Leerdam, & de Gelder, 1995; Pennington, Van Orden, Smith, Green, & 
Haith, 1990; see Rack, Snowling, & Olson, 1992, for review). These devel- 
opmental dyslexics show specific deficits on tasks that require constructive use 
of phonology (e.g., phonological awareness and pseudoword-naming tasks, 
described shortly). We have offered an account of developmental dyslexia that 
derives from our account of phonologic mediation in skilled reading (Van 
Orden & Goldinger, in press). 

A pseudoword-naming task requires fine-grain "phoneme-size" knowledge 
of how letter strings translate into phonology. In this task, a subject is shown a 
letter string, such as the pseudoword BINT, that shares spelling structure with 
actual words. (Consider MINT, BIN, etc. Skilled readers pronounce pseu- 
dowords analogously to words; Seidenberg, Plaut, Petersen, McClelland, 
McRae, 1994). Dyslexic readers name pseudowords much more slowly and 
produce more "unacceptable" pronunciations than reading-age controls (Rack 
et al, 1992). They may also perform poorly when judging whether someone 
else has given an "acceptable" pronunciation of a pseudoword (Snowling, 
1980). Poor performance in pseudoword naming is a primary symptom of 
dyslexia. 

Correct performance in phonological-awareness tasks also depends upon 
fine-grain, phoneme-size knowledge of the phonology of a word. These tasks 
typically require subjects to manipulate or judge the phonology of words. In a 
"pig Latin" task, for example, the first phoneme of a word must be moved to 
the end and pronounced with/AY/(e.g., /dog/becomes/og.day/). Dyslexics 
perform very poorly on this task relative to reading-age control subjects, even 
when they need only recognize whether someone else has produced correct pig 
Latin (Pennington et al, 1990). Deficits in phonological awareness are typically 
correlated with deficits in pseudoword naming, and both deficits appear to be 
influenced by heredity (Olson, Wise, Conners, Rack, & Fulker, 1989; Pen- 
nington et al, 1990). 

These findings all motivate the hypothesis that dyslexia is a deficit in fine- 
grain knowledge of phonology and its relation to print in alphabetic languages. 
The importance of phonology in dyslexia agrees with our account of skilled 
reading in which phonology also plays a crucial role. The crux of reading is 
perception of individual printed words (Perfetti, 1985), and the crux of word 
perception is coherent phonology. Accordingly, developmental dyslexia might 
be explained by an absence of phonology in reading. It turns out, however, 
that absent phonology is far too simple a hypothesis (Bruck, 1988). Dyslexic 
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subjects, who show a pronounced deficit in pig-Latin performance (Pennington 
et al, 1990), nevertheless produce a very high proportion of categorization 
errors to homophonic foils (e.g., ROWS or ROZE categorized as FLOWERS, 
Van Orden et al, 1990; Van Orden & Goldinger, 1996). 

The paradox for the absent-phonology hypothesis is that the same dyslexic 
subjects show both negative and positive phonology effects. Demonstrations of 
negative phonology (such as pseudoword naming and pig-Latin deficits) are 
consistent with the absent-phonology hypothesis (Bruck, 1988). However, 
categorization errors to homophonic foils are not. A key difference between 
pseudoword (BINT) naming versus categorization may be the added constraints 
in categorization produced by category names. This source of constraint may 
exaggerate the dyslexics' susceptibility to phonology in the categorization task, 
especially with pseudoword homophones such as ROZE. It does so, however, 
by enhancing ("cleaning up") letter-phoneme dynamics, which explains their 
very high error rates to homophonic foils. Thus, our ability to observe phonol- 
ogy effects in dyslexics is partly a function of the task examined. We propose 
that different tasks emphasize different grain sizes of phonology, and these 
contribute to the respective positive and negative effects. To better understand 
our proposal, it is first necessary to understand how covariant learning serves 
as a basis for non-dyslexic reading. 

Crosstalk is the basis of covariant learning. Crosstalk extracts positive 
correlations between families of nodes (cf. Reeke & Edelman, 1984). Reading 
performance is enhanced by consistent crosstalk whenever a letter-phoneme or 
letter-phoneme-semantic correspondence is shared across a neighborhood of 
words. In word naming, consistent crosstalk is the source of many common 
effects, such as rule-strength and word-frequency effects. Rule strength is 
estimated by a count of all words that share a particular letter-phoneme corre- 
spondence. Strong-rule words are composed of letter-phoneme relations that 
appear in many words (K-/k/). Weak-rule words have at least one letter- 
phoneme relation that is relatively rare (ZZ-/z/). Strong-rule words (DESK) 
and pseudowords (DASK) are named faster and more accurately than weak- 
rule words (FIZZ) and pseudowords (NOZZ; Rosson, 1985). Also, high- 
frequency words are named faster and more accurately than low-frequency 
words (Forster & Chambers, 1973). Figure 3 illustrates how these effects 
would emerge via eovariant learning in a very simple model. BE and BY share 
a relatively strong rule (B-/b/), and BE is the more frequent word (in the fig- 
ure). 

In Figure 3A, a BE learning trial brings four pairs of nodes into collective 
resonance: B 1~ --/b/~,B~-- ~/i/2, E 2-- ; /b / l ,  andE 2~ ;/i/2. Suchreso- 
nance increases the connection weights between all the nodes involved. At this 
point in the model's development, the resonance B~E 2 -- --/b~i2/is an "encap- 
sulated" whole. Although we can anticipate potential subresonances in the a 
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FIGURE 3. Consistent crosstalk- in a recurrent network capable of covariant learning. 
a. The consequences for the connections between letter nodes and phoneme nodes of a 
learning trial for the word BE. b. Likewise for the word BY. c. A second learning trial 
for the word BE. The presence of a line between two nodes indicates an increase in the 
connection weights between them. The width of the lines ranks the strength of the 
relations that accumulates across learning trials. Notice across the figures that the 
width of the lines between B and /b/1 increases faster than those of other relations. 
This is due to consistent crosswalk. 

priori t'elations between letter and phoneme nodes, these are not reflected in 
the model's behavior. If the network were presented again with the word BE, 
the activation values of the same four nodes would grow symmetrically toward 
resonance. Thus, the model's behavior would reflect only coarse-grain, word- 
size knowledge. This simple figure illustrates how dimensionally nonspecific 
(holistic) relations can emerge behaviorally prior to relational rule-like knowl- 
edge (Thelen & Smith, 1994). The later emergence of rule-like knowledge is 
illustrated in panels 3B and 3C. 

A subsequent BY trial, shown in 3B, brings its four pairs of nodes into 
-- ~/b/l '  B1 ~/aX/2 ' Yz -~/b/i, and Y2 -- ;/aI/2 )' collective resonance (B~ -- 

thus adjusting all the connection weights involved. Notice at this point that the 
connections between B~ and/b/] have been adjusted more often than any other 
connections. If, in turn, another BE learning trial occurs (3C), then the four 

-- -~/b/1 B -- ; / i / 2 ,  E 2 -- -~/b/1 and  E 2 ~- pairs of connection weights: B~ , ~ 
/i/2 are adjusted again by its four component resonances. Because B correlates 
with the same pronunciation in BY and BE, the configuration of weights in the 
resonance B 1 ~ ~ /b/~ is tuned toward this strong subword resonance more 
often than configurations promoting other component resonances. The bidirec- 
tional connections between B~ and/b/~ emerge as a strong rule via consistent 
crosstalk. 

Strong-rule resonances, such as B -- ~ /b/, are examples of local (fine- 
grain) dynamics exhibiting relatively high self-consistency. After learning, the 
component resonances of a strong-rule word show themselves behaviorally 
because they coalesce quickly and thereby facilitate naming. Consequently, 
even relatively unfamiliar words are named quickly if they are composed of 
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strong rules (Rosson, 1985). Additionally, the naming of pseudowords (e.g., 
BINT) is primarily constrained by these same fine-grain resonances, as will be 
seen in our account of developmental dyslexia. 

Earlier in this chapter, we described a fictitious nervous system to introduce 
the construct r e s o n a n c e .  We also oversimplify the nervous system in this sec- 
tion to introduce our account of dyslexia. Postmortem studies have found 
anatomical anomalies in the brains of dyslexics (e.g., see Galaburda, Rosen, & 
Sherman, 1989) that may be due to subtle anomalies in neuronal migration. 
Small deviations in neural positioning may cause large changes in patterns of 
connectivity between neurons in different brain regions. A rough analogy with 
connectivity in network models inspired our "haphazard-connections" hypothe- 
sis concerning the performance deficits of dyslexics. (Please do not interpret 
this rough analogy as a claim to anatomical plausibility. We merely wish to 
acknowledge the inspiration for our behavioral account.) 

(,,,, 
,," ,,,, \ 

El <' - -  B , - - - - - -S  
1 2 

(a) (b) 

/b / ........ .....~l i / .... 

B,r  E~ "'') 
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FIGURE 4. An illustration of the failure to develop fine-grain dimensions of word 
perception, a. The consequences for the connections between the letter nodes and 
phoneme nodes of a learning trial for the word BE when letter and phoneme nodes are 
haphazardly connected, b. Likewise for the word BY. c. A second learning trial for 
the word BE. The presence of a line between two nodes indicates an increase in the 
connection weights between them. Notice that the bidirectional f'me-grain relation 
between B 1 and/b/1 does not emerge in this haphazardly connected illustration. 

Figure 4 illustrates a haphazard pattern of connectivity between letter and 
phoneme nodes. (Compare this to Figure 3, in which all connections are 
symmetrical.) We can easily track the outcome of covariant learning, given 
this haphazard connectivity. Once again, consistent crosstalk extracts positive 
correlations between letter and phoneme nodes. However, although BE and BY 
share a relatively strong rule (B-/b/), it does not emerge as a self-consistent 
subresonance in the behavior of the model. This is the key to our account. 

In Figure 4A, a BE learning trial brings four nodes into collective reso- 
nance 031 --, /b/i, B~ -- ; / i / 2 ,  E 2 ~ /b/l, and E 2 -- r. /i/2), and adjusts six 
connection weights. As in Figure 3A, at this point in the model's development 
the resonance BIE 2 --, r, /bli2/ is an encapsulated whole. The model would 
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correctly produce the whole-word phonology of BE, but its behavior would be 
opaque to substructures such as B 1 -- ;/b/~. A subsequent BY trial, shown in 
4B, brings four pairs of nodes into collective resonance (B~ ~ ; /b/l, B~ ,-- 
/al/2 , Y2-- ~/b/~, and Y2--"/aI/2 ) and adjusts five connection weights. Notice 
the difference between panel B in Figure 3 and panel B in Figure 4. The 
feedforward connection weight b~ --,/b/~ grows faster than other connections in 
the resonance B~E 2 -- ~- /b~i2/, due to covariant learning. However, the sub- 
word relation B~ ~ -~/b/~ does not grow in self-consistency due to the absence 
of feedback connections. The haphazard connectivity between B~ and/b/~ in 
Figure 4B does not allow the emergence of the component resonance B 1 -- ; 
/b/~, and this state of affairs is unchanged by additional BE trials (4C). 

Consider the subword dynamics for the word BE following the learning 
trials depicted in Figure 4. An advantage due to covariant learning between B~ 
and /b/~ may still affect performance. The relatively strong connection B~ --, 
/b/~ would promote a faster overall time to resonance for the word BE. The 
node/b/~ is strongly activated by B 1, and/b/~ conserves this strong activation 
for the whole-word resonance when it feeds activation back to E 2. In turn, E 2 
feeds this activation forward to /i/z, /i/2 feeds it back to B~ and E 2, and the 
activation has been conserved in a word-size feedback loop. At no time, 
however, does a subresonance B~ ~ ~ /b/~ emerge in the behavior of the 
model. 

We noted previously that pseudoword (BINT) naming is primarily depend- 
; /b/ .  These are necessary to ent upon fine-grain resonances such as B~ 1 

insure integrity of pseudoword pronunciation, but they do not reliably emerge 
in a model with haphazard connectivity. This translates behaviorally into a 
deficit in pseudoword naming (as well as reading proper names, unfamiliar 
words, etc.). Skilled pseudoword naming is a fairly predictable function of the 
statistical relation between words' spellings and their pronunciations (Seiden- 
berg et al, 1994). With haphazard connectivity, a model is robbed of its stron- 
gest source of information about how pseudoword spellings relate to phonolo- 
gy. A model analogous to our simple illustration would fail to derive a full 
complement of the fine-grain letter-phoneme relations necessary to mimic 
skilled pseudoword naming. Thus, dyslexia may be a failure of perceptual 
development to derive these fine-grain dimensions of word perception. 

Remember, however, that strong positive phonology effects are found in 
categorization performance with both word (ROWS) and pseudoword (ROZE) 
homophones. The word effect is explained by the coarse-grain (word-size) 
phonology that emerges in the haphazardly connected model. However, the 
effect of pseudeword (ROZE) phonology requires the added contextual con- 
straints on phoneme-semantic dynamics due to availability of the category 
name (FLOWER). This context is strong enough to cause skilled readers to 
misinterpret highly familiar homophone words in a categorization task Oared 
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& Seidenberg, 1991). We suggest that context acts to compensate for the noisy 
letter-phoneme dynamics of dyslexic readers via semantic-phoneme dynamics, 
as illustrated in Figure 1. 

The essential point for implementing our scheme is that haphazard connec- 
tivity blocks the emergence of letter-phoneme resonances (i.e., attractors; see 
Jordan, this volume) that would normally act relatively independently of the 
coarse-grain resonances from which they derive. These fine-grain dynamic 
structures are necessary to mimic the full range of intact performance to print- 
ed language. We could even zoom in on the phoneme nodes, revealing their 
finer-grain resonances between acoustic and articulatory nodes. Then, we 
could propose haphazard connectivity between acoustic and articulatory nodes, 
thus precluding the development of proper "phoneme resonances." In this 
way, the haphazard-connectivity hypothesis might be extended to explain poor 
performance on phonological-awareness tasks. 

Acquired Dyslexia 
Patients with acquired dyslexia have reading difficulties as a consequence of 

brain trauma. In a seminal article, Marshall and Newcombe (1973) described 
two apparently distinct syndromes of acquired dyslexia: surface and deep 
dyslexia. Both are defined by characteristic profiles of errors in the naming 
task (Shallice, 1988). The utility and reliability of syndrome categories is 
highly controversial (Caramazza, 1986), but we need not endorse such distinc- 
tions for our purpose. We merely focus on theoretically important patterns of 
naming errors associated with each syndrome. Our goal is to produce similar 
errors in "lesioned" models that previously produced skilled patterns of naming 
performance. Here, we describe briefly our simulations of two error types 
identified by Marshall and Newcombe: the regularization error and the seman- 
tic error. 

Regularization errors are characteristic of surface-dyslexic patients. These 
errors occur when words such as PINT, with irregular pronunciations, are 
incorrectly read aloud to rhyme with similar regular words (e.g., MINT, 
HINT, and LINT). Although skilled readers also occasionally make regulariza- 
tion errors (Kawamoto & Zemblidge, 1992), surface-dyslexic patients make 
many more. Semantic errors are characteristic of deep-dyslexic patients, 
occurring when words are incorrectly read aloud as semantically related 
words. For example, the word BUSH might be read aloud incorrectly as 
TREE. The separate occurrence of semantic and regularization errors is 
sometimes interpreted as evidence against recurrent-network models (Shallice, 
1988; see Van Orden et al, 1996 for a review and counter-argument). Farrar 
and Van Orden (1994) recently simulated these two error types. 

We began with a recurrent-network architecture very similar in structure to 
the simple illustrations presented earlier in this chapter. Three families of 
nodes (see Figure 1) were "taught" a sample of English words using a Hebbi- 
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an-type learning algorithm, until the model produced patterns of naming per- 
formance similar to those of skilled readers. (Specifically, we implemented 10 
learning trials for each "high-frequency" word and one for each "low- 
frequency" word. The "naming response" was taken from the pattern of the 
most active phoneme units, and "naming time" was defined as the number of 
cycles required to generate a coherent pattern of activation of the phoneme 
units.) Of particular present relevance, the model produced an interaction of 
frequency with consistency. Low-frequency inconsistent words such as PINT 
were named more slowly than low-frequency consistent words such as DUCK, 
whereas all high-frequency words were named quickly (see Waters & Seiden- 
berg, 1985). 

To simulate the regularization error, we added noise to our intact network. 
Noise was implemented as a uniform distribution of small positive or negative 
changes in activation that were added in each cycle to the activation values of 
randomly chosen nodes. The effect was to erode the network's capacity for 
correct naming of words having highly inconsistent pronunciations, such as 
PINT. Instead of the correct phonemes for PINT, the network activated 
phoneme nodes that regularized PINT to rhyme with MINT. In effect, the 
noise eroded the (already weak) phoneme-semantic constraints, such that the 
model expressed only the powerful constraints of letter-phoneme dynamics. 
Because letter-phoneme dynamics primarily reflect the strongest correlations 
between letters and phonemes, these dynamics lead to regularization errors 
(Kawamoto & Zemblidge, 1992). 

It is important to note that we could have implemented noise in many ways 
with the same consequences. For example, we could have introduced small 
changes in randomly chosen connection strengths. Similarly, the locus of noise 
is not crucial. Bidirectional flow of activation makes the system highly interde- 
pendent. Consequently, noise introduced anywhere in the system spreads 
throughout the system, in the next time step. 

To simulate semantic errors, we further "lesioned" the noisy network that 
was producing regularization errors. We set all of the letter-phoneme connec- 
tion weights to zero, effectively "cutting" those connections. (We could have 
cut fewer connections with the same effect; the minimum proportion of discon- 
nections that produces semantic errors is interdependent with other modeling 
choices.) Subsequently, the network produced semantic errors; when presented 
with BUSH the network generated a pattern of activity across phoneme nodes 
corresponding to TREE. Setting the letter-phoneme connections to zero creates 
a highly unstable network, causing it to rely on semantic-phoneme dynamics, 
the most reliable remaining source of constraints. However, in the absence of 
letter-phoneme constraints, semantic-phoneme dynamics are sometimes misled 
into a semantic error from which the normally weak letter-semantic dynamics 
cannot rescue the network. Semantic errors are especially likely when semantic 



4 Recurrent-Network Account of Reading, Spelling, and Dyslexia 537 

nodes of one word (BUSH) are strongly correlated with phoneme nodes of a 
different word (TREE). 

Mind as Embodied Action 
The attentive reader has probably noticed that we refrained from calling our 

cognitive account a neural network. We chose the term recurrent network 
instead. This choice was not made simply for aesthetic reasons. The term 
neural in "neural network" has a connotation we wish to avoid. It suggests too 
strong an analogy with the nervous system, or (worse yet) that cognition 
should be explained in terms of the nervous system. For all we know, there 
may be more differences than similarities between cognitive behavior and the 
behavior of nervous systems (cf. Freeman, 1995). Thus, "nodes" in our recur- 
rent network do not refer to neurons, nor do their interconnections refer to 
synapses. 

The previous caveat resurrects the issue of the metaphor underlying our 
account, specifically, mind as embodied action (see Introduction). This view of 
cognition, as described by Varela et al (1991), means, first, that 

...cognition depends upon the kinds of experience that come from 
having a body with various sensorimotor capacities, and second, that 
these individual sensorimotor capacities are themselves embedded in a 
more encompassing biological, psychological, and cultural context. (pp. 
172-173) 

The term action emphasizes that perception and action are fundamentally inter- 
related (see also Turvey & Carello, 1981). This proposed interdependence is 
obvious in the behavior of a recurrent network. When our network is presented 
with a printed word, the initial activations of the letter nodes feed activation 
forward to phonologic and semantic nodes that, in turn, feed activation back to 
the letter nodes. In a strongly nonlinear system, feedforward and feedback 
activation undergo successive nonlinear transformations, eventually producing 
a resonant whole. This illustrates, in model systems, the irreducible interde- 
pendence of input and output (see also van Leeuwen, Steyvers, & Nooter, 
1995). 

It is easy to confuse nodes in a network (or subsymbols, Van Orden et al 
1990; Van Orden & Goldinger, 1994) with traditional symbolic representa- 
tions. This is another confusion that we wish to avoid. Nodes are not mental 
representations. They are pragmatic notations for purposes of modeling or 
illustration, and serve a narrative function only. Thus, nodes are not psy- 
chologically real (atomic) units of cognition, and they should not be attributed 
causal or explanatory properties independent of the dynamics in which they 
participate (cf. Putnam, 1981; Turvey & Carello, 1981). The network models 
that we propose refer only to observed patterns of intercorrelation between 
laboratory manipulations and performance. This pragmatic approach to model- 
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ing implies that nodes chosen at one grain size are no more "real" than nodes 
that might have been chosen at other grain sizes. To rephrase, modeling a 
particular behavior or performance requires a smart (or pragmatic) choice of 
nodes (see also Putnam, 1981). We choose nodes at the finest grain size of 
reliable covariation between laboratory manipulations and performance (Van 
Orden et al, 1990; "van Orden & Goldinger, 1994). A fairly good description 
of results obtained from reading and spelling research can be achieved using 
letter, phoneme, and semantic (feature) nodes. Note that a degree of arbitrari- 
ness is unavoidable; other research problems may lead to other choices. The 
crux is the ability to mimic, in as parsimonious a model as possible, the ob- 
served complexity in laboratory performance. 

The pragmatic constraints on the choice of nodes are further revealed by the 
following example. Choosing to model letter perception using a grain size of 
letter nodes would be too "coarse" a choice, because it ignores reliable effects 
of font, handwriting, and other episodic variables (e.g., Sanocki, 1987). A 
finer grain size (e.g., letter-feature nodes) would be necessary. Conversely, 
choosing to model sentence comprehension using a grain size of letter nodes is 
a too "fine" a choice of grain. Using letter nodes to model the phenomena of 
sentence comprehension would build in unnecessary detail. These performance 
phenomena are typically word- or morpheme-size, and nodes chosen at these 
grain sizes would be more appropriate. The strength of our model comes not 
from the discovery of true nodes, but from the generality and simplicity of its 
behavioral account. Dynamic interactions among small families of nodes can 
account for a vast literature of performance in laboratory reading tasks, and the 
entailed principles extend to cognition at large (Stone & Van Orden, 1994; Van 
Orden et al, 1990; Van Orden & Goldinger, 1994). 

In summary, we have shown that a simple recurrent network has great utili- 
ty for mimicking phenomena in reading and spelling. Our approach motivates 
principled explanations for why phonology is fundamental to reading and spell- 
ing, why spelling is more difficult than reading, why words with multiple rime 
spellings are more slowly read, and why developmental and acquired dyslexics 
have difficulties in reading. 
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simulation, 260 

Natural selection, 1, 2, 4, 21, 
59, 66, 72, 264, 279, 336, 
339 

Networks 
relation to neuroscience, 15 

Neural plasticity, 80 
Neural plausibility, 509 
Neural-network 

knowledge structures, 296 
Neuroanatomy, 20, 37 
Neurocomputational algo- 

rithm, 59 
see learning algorithm 

Neurodevelopment, 20, 22, 
37, 42, 347 
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Neurotransmitters, 82 
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