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Preface 

There are many good AI books. Usually they consecrate at most one or two chapters 
to the imprecision knowledge processing. To our knowledge this is among the few 
books to be entirely dedicated to the treatment of knowledge imperfection when build-
ing intelligent systems. We consider that an entire book should be focused on this 
important aspect of knowledge processing. The expected audience for this book in-
cludes undergraduate students in computer science, IT&C, mathematics, business, 
medicine, etc., graduates, specialists and researchers in these fields. The subjects 
treated in the book include expert systems, knowledge representation, reasoning under 
knowledge Imperfection (Probability Theory, Possibility Theory, Belief Theory, and 
Approximate Reasoning). Most of the examples discussed in details throughout the 
book are from the medical domain. Each chapter ends with a set of carefully peda-
gogically chosen exercises, which complete solution provided. Their understanding 
will trigger the comprehension of the theoretical notions, concepts and results.  

Chapter 1 is dedicated to the review of expert systems. Hence are briefly discussed 
production rules, structure of ES, reasoning in an ES, and conflict resolution. Chapter 2 
treats knowledge representation. That includes the study of the differences between data, 
information and knowledge, logical systems with focus on predicate calculus, inference 
rules in classical logic, semantic nets and frames. Chapter 3 starts with taxonomy of 
imperfection, usual and precise meaning, and continues with experiments and events, 
formal definition of events, defining probabilities, Bayes Theorem, random variables and 
distributions, expectation and variance, and examples. Chapter 4 deals with statistical 
inference. Chapter 5 is dedicated to Bayesian networks. It treats uncertain production 
rules, belief networks with examples, and different software to implement them. Chapter 
6 tackles the certainty factors theory. Belief theory is discussed in Chapter 7. Thus, belief 
approach, agreement measures, Dempster-Shaffer theory, combining beliefs topics, and 
transferable belief model are highlighted. Chapter 8 reviews some aspects of possibility 
theory. Approximate reasoning, with the sub-topics fuzzy sets, fuzzy logic, hedges, and 
defuzzyfication are the key words for the Chapter 9.  

The next and the last chapter, Chapter 10, is dedicated to a short review of different 
usable notions in uncertainty management, as well as to the presentation of the Com-
putational Theory of Perception of Zadeh. 

Obviously, the authors take full responsibility for all opinions and mistakes, either 
hidden or not through the book. (Such as, for example, to leave out any reference to 



      Preface VI 

neural nets.) They will appreciate, however, if the readers will send back to them their 
comments and suggestions. 

 
Features of the book: 

a) Comprehensive comparative approach to deal with most of the techniques of 
management of knowledge imperfection  

b) Breakthrough fuzzy techniques approach for handling real word imprecision 
c) Numerous examples throughout the book in the medical domain 
d) Each chapter is followed by a set of detailed solved exercises. 

 
July 2008 The Authors 

 



Notations 

Ω2  power set of Ω  
A  algebra 

 arrow set of a directed acyclic graph 
α  significance level, precision degree 
B  the Borel sigma-algebra 

),(b πn  binomial distribution, parameters n and π 
)(πBe  Bernoulli distribution, parameter π 

Bel(A) belief in subset A of worlds 
)|(bel X•Ω  conditional belief measures 

cf certainty factor 
),( YXCov  covariance of a pair of random variables X and Y 

D descriptor 
)(VDom  domain of variable V 

E  event 

E  complement of event E 
)(XE , )(φE  expectation of random variable X, of function φ  

EA expected agreement 
]1 ,0[: →RF  distribution function 

]1 ,0[: →Pg  uncertainty measure 

H hedge 
κ  kappa coefficient 

)(ωm  measure of “world” ω  

m(A) measure of subset A of worlds 
MB measure of belief 
MD measure of disbelief 

]1 ,0[: →Ωµ F  membership function of fuzzy set F over Ω  

N  set of natural numbers 
N  node set of a directed acyclic graph 
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),( 2σµN  normal distribution, parameters µ  and 2σ  
]1 ,0[: →Ν P  necessity measure 

•vN , wN•  row total, column total in contingency tables 

••N  total number of cases in a contingency table 

)(O e  odds in favor of proposition e  

OA observed agreement 
)(P E  probability of event E 

)( fP  probability of formula f 

)(PL E  logical probability of event E 

)|( BAp  probability of event A conditioned by event B 

)|( ehp  probability of formula h conditioned by formula e 

Pl(A) plausibility of subset A of worlds 
)(λPo  Poisson distribution, parameter λ  

]1 ,0[: →Π P  possibility measure 

π() predicate 
]1 ,0[: →Ωπ  possibility distribution 

)|( pq  conditional possibility of proposition q given p 

R  set of real numbers 
mR  m-dimensional real space 

),( YXρ  correlation coefficient of two random variables 

S  sigma-algebra 
2s  sample variance 

)(# FΣ  sigma-count of fuzzy set F 

)(t ν  Student (t) distribution, parameter ν  

)(XVar  variance of random variable X 

)(ix  ordered component of a data sample 

2X  Pearson statistic 

Aχ  characteristic function of subset A 

)(2 νχ  chi-square distribution, parameter ν  

ω  world 
Ω  universe 

|| X  cardinal of set X 

∧  logical “and” 
∨  logical “or” 

 logical “if-then” (implication) 

K  Kleene implication 



  Notations IX 

H  Heyting implication 

⇔  logical equivalence 
¬  logical “not” 
∀  quantifier “any” 
∃  quantifier “exists” 

 “infer” 
# number 
∅  impossible event 
∪  disjunction of events, union of subsets, union of fuzzy sets 
∩  conjunction of events, intersection of subsets, intersection of 
                                        fuzzy sets 

∞

=1n

 countable union of subsets 

∞

=1n

 countable intersection of subsets 

×  Cartesian product of fuzzy sets 
⊗  tensor product, multiplication of fuzzy numbers 
⊕  composition of beliefs, addition of fuzzy numbers 

 composition of functions, composition of (crisp, fuzzy) relations 
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1   “Classical” Expert Systems 

1.1   Production Rules 

Getting knowledge means both accumulating knowledge and understanding a subject 
or a domain (of knowledge). 

The (human) experts are people who possess enough knowledge in a certain field, 
who acquired in the past a practical experience in that field and can give now perti-
nent advices in it. The experts are able to give definitions and/or concepts and also to 
express their knowledge in terms of rules.  

Definitions are of the form: 

term IF condition 

The conditions can be composed of several elements connected by AND or OR. As 
an example, some experts may define the term “pneumonia” by the following  
condition:  

temperature > 38ºC AND white blood count > 10000 cells/mm3  
 AND chest X-ray = lobar infiltrate 
 AND symptom = stitch. 

Production rules are of the form: 

IF antecedent THEN consequent  
 premise  conclusion (in logic) 
 condition  action (in practice) 

The antecedent can be “multiple”, i.e. composed of several elements connected by 
AND or OR. The consequent also can be “multiple”. These components will be 
named facts. 

The structure of a fact is very simple: it contains a variable – which represents a 
characteristic of an object, a possible value of this variable, and an operator that  
connects the variable and the value. 

All this can be expressed either as a predicate 
operator(variable, value) 

or, in other form 
variable_operator_value. 



2 “Classical” Expert Systems 

For example, the objects are Canadian citizens, which have as characteristics the 
height, the eye color, etc. Considering the height, it is possible to represent it by  
several variables, such as: 

• The height expressed in centimeters. Here the centimeter was chosen as unit, and 
the values are obtained by measurements. Therefore we will obtain real numbers as 
values. Usually these numbers will be approximated by natural numbers. 

• The height expressed in feet and inches. It is practically the same situation as 
above, but this time the values are presented in pairs (of natural numbers). 

• The height expressed linguistically. When we do not have the time or the condi-
tions to precisely measure a person, we can appreciate (subjectively) his height in 
terms such as “very tall”, “tall”, “medium” and so on. Here the values are fuzzy 
terms.  

If we consider the eye color, then it seems that the variable representing this char-
acteristic has to have linguistic values, the names of colors. Nevertheless, it is worth 
noting that numbers could represent colors (in optics just one – the wave-length, in 
imagistic three – the red, green and blue components). 

Among the linguistic variables there is a group that is treated by specific means. 
These are the Boolean variables, which can take only two values: true res. false. 

Now, the operators connecting the variables to their values are of mathematical 
type 

=, <, ≤, ... 
or of linguistic type  

is, has, ... 

A production rule can represent many things: simple relations, recommendations to 
follow, orders to be executed, research strategies, heuristics obtained from previous 
experience. Here are typical examples: 
 

• relation 
 

IF 

THEN 

prednisone is taken at a level of 30 mg/day 

cholesterol increases by 5 to 13 mg/l 

• recommendation 

 

IF 
 
 

AND 
 

THEN 

the number of patients affected by a disease 
is very small compared to the number of 
patients in the study 
the disease is present throughout these re-
cords 

the advice is “eliminate these records from 
the study” 

• directive 
[Negnevitsky 2000] 

IF 
AND 
AND 

THEN 

the car is dead 
the fuel tank is empty 
we need to use the car 

refuel the car 
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• strategy 

 

IF 
 
THEN 

AND 

IF 
AND 

THEN 
AND 

heart rate is between 100 and 150 
beats/minute 

significant tachycardia 
heart rate was checked 

heart rate was checked 
PR interval is larger than 0.2 seconds 

1st degree AV block 
PR interval checked 

• heuristic 

 

IF 
AND 
AND 

THEN 

the patient coughs 
whizzing is present 
dispnæa is present 

it is almost sure that ‘asthma’ is the ‘dis-
ease of patient’ 

1.2   Expert Systems 

Expert systems are computer programs for solving complex problems at the level of 
human expert in a narrow problem area. 

Since a human expert continuously adapts his knowledge, it is clear that an expert 
system will be accepted only if: 

− its knowledge base can be easily updated and/or corrected, and 
− its conclusions can be justified. 

An expert system is capable to function even its knowledge base is quite incom-
plete. Usually, the learning process during which the knowledge base is updated at an 
acceptable level is long and costly. The knowledge base has to contain thousand of 
rules to be fully operational.  

Before the personal computer era (i.e. before 1980), the general opinion was that 
for developing an expert system it is necessary to form a large team composed by: 

1) Project manager, 
2) Domain expert(s), 
3) Knowledge engineer(s), 
4) Programmers. 

The leader was the project manager, who organized the work, and coordinated the 
others members of the team.  

The domain expert had the greatest expertise (to be captured in the expert system) – 
in a certain domain – and the ability to communicate his knowledge.  

The programmers had to transform the acquired knowledge in computer programs 
(written in Prolog, LISP, or other specific programming languages).  

The knowledge engineer was a person capable of designing, building, testing, and 
integrating an expert system in the workplace. He was a liaison between the domain 
expert and the programmers. Finally, 

5) The end-user is any person who uses the expert system once it was developed. 

Expert Systems            3 



4 “Classical” Expert Systems 

Today this team is reduced since we can use expert system shells. This can elimi-
nate the need for programmers and also might reduce the role of knowledge  
engineers. 

An expert system shell is an expert system with the knowledge removed. There-
fore, by using a shell, the user has to add the knowledge in the form of rules, and then 
provide relevant data to solve a problem. 

1.3   Structure of Rule-Based Expert Systems 

A rule-based expert system has five components: 

1) The knowledge base that contains the domain knowledge represented as a set of 
IF-THEN production rules. The knowledge base is analogue to the long-term human 
memory. There is a total order among production rules. We can consider that each 
production rule has attached a priority that can be changed.  

2) The facts base contains facts used to match against the IF part (i.e. the condition 
part) of rules stored in the knowledge base. This facts base is analogue to the short-
term human memory (i.e. is very mobile).  

 

Fig. 1.1. Structure of an expert system 

3) The inference engine carries out the reasoning by linking the rules to the facts, 
and by deducing new facts. 

4) The user interface is the means of communication between users and the expert 
system. 

Knowledge 
engineer 

Developer 
interface 

Domain 
expert User 

Explanation 
module 

User interface 

Inference 
engine 

Knowledge 
base 

Facts 
base 

External 
database 

External 
programs 
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5) The explanation module enables the user to ask the expert system how a  
particular conclusion is reached, and why a specific fact is needed. It is an essential 
component for developing activities. 

4’) The developer interface is needed to modify the knowledge base, and to store 
the knowledge in an external DBMS (database management system). Usually this  
interface includes knowledge base editor, debugging aids, and input/output facilities. 

In the Figure 1.1 above a sketch of the medical MYCIN expert system is presented 
(as it was conceived by its developers). 

1.4   Reasoning in an Expert System 

From a logical point of view, the most important part of an expert system is the infer-
ence engine.  

It works in a cyclic manner. At each stage, it takes a production rule – from the 
knowledge base – and compares it with facts stored in the facts base. This comparison 
occurs systematically either between the antecedent of the rule and the stored facts, or 
between the consequent and the stored facts. Therefore two different situations:  
forward chaining res. backward chaining are identified. 

In Figure 1.2 a graphical representation of the two situations is presented. 

 

Fig. 1.2. Forward chaining vs. backward chaining 

To simplify the presentation, let us suppose that all rules in the knowledge base are 
of single-fact consequent, i.e. they are Horn1 clauses 

IF naa ∧∧ ...1  THEN c  

                                                           
1 Alfred Horn (1918-1988), American mathematician. 

Knowledge base 

IF A is X THEN B is Y 

 coincidence 

Facts base 

B is Y A is X 

action 

Knowledge base 

IF A is X THEN B is Y 

Facts base 

B is Y A is X 

 coincidence 

 action 

Reasoning in an Expert System            5 



6 “Classical” Expert Systems 

where 1a , …, na  and c are facts. The forward chaining reasoning is described as  

follows: 

Step 0. Start with a knowledge base K, a facts base F, and a fact f to be tested.  
Unmark all rules in K. 

Step 1. If all rules in K are marked, print “f cannot be inferred”. Stop. 
Step 2. Select from K a rule ρ  that is not marked. Compare to the facts in F all 

components of the antecedent of rule ρ . 

 If all the components of the antecedent belong to the facts base F, then  
compare the tested fact f with the (unique) consequent of ρ . 

 If they coincide, then print “f is inferred”. Stop. 
 If not, then 
 Attach the consequent of ρ  to the facts base. 
 Mark the rule ρ  as “fired”. 
 Unmark all rules previously marked as “visited”. 
 Continue with step 1. 
 If not, then mark the rule ρ  as “visited” and continue with step 1. 

The backward chaining reasoning is described as follows: 

Step 0. Start with a knowledge base K, a facts base F, an empty stack S, and a fact f 
to be tested. Push f on stack S. 

Step 1. Check if the stack S is empty. 
 If yes, print “f cannot be inferred”. Stop. 
 If not, extract (pop) t from stack S. Continue with step 2. 

Step 2. Check if there is an unmarked rule ρ  in K whose consequent equals t. 

 If yes, check whether all components of the antecedent of ρ  are in F.  

 If yes, then  
 Mark the rule ρ  as “fired”. 

 Unmark all rules previously marked as “visited”. 
 Attach t to the facts base F. 
 If t equals f, print “f is inferred by ρ ”. Stop.  

 If not, continue with step 1. 
 If not, then 

 Push t on stack S. 
 Push on S all components of the antecedent of ρ  that are not 

in F. 
 Mark rule ρ  as “visited”.  

 Continue with step 2. 
 If not, continue with step 1. 

To explain in detail the functioning of the inference engine we will represent IF-
THEN rules by the sign ⇒ , and the connector AND by the sign ∧  as in classical 
propositional calculus. Facts will be represented by lowercase letters. 
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As an example, the knowledge base contains seven production rules: 

rule 1: ysra ⇒∧∧   rule 5: sed ⇒∧  
rule 2: pb⇒   rule 6: xp⇒  

rule 3: rqpc ⇒∧∧   rule 7: zs ⇒  
rule 4: qd ⇒     

Let us represent in Figure 1.3 the seven production rules above as the special  
arrows in a directed bicolor graph. 

Let us point out that there is no variability in anyone of the seven production rules. 
Once a rule was used (i.e. “marked as fired”) there is no need to fire it again! 

 

 

Suppose we “know” five facts a, b, c, d, e, and we want to establish, by forward 
chaining, whether z can be inferred or not from these facts.  

Rule 1 cannot be fired at once, because we do not know yet the status of r, nor of s. 
The first rule to be fired is rule 2 (since its antecedent b is a fact), thus we attach p to 
the facts base. 

Now two strategies are possible: either to continue from the fired rule downward, 
or to restart from the beginning. Both strategies give the same result: rule 4 should be 
fired next, and q should be attached to the facts base. 

The two strategies above point now to different rules to be fired next: either rule 5, 
or rule 3. If we always continue from the fired rule downward (and we restart from 
the beginning if necessary) then z is obtained as a fact in five steps. However, by  
using the other strategy we need seven steps to obtain the result! 

In Figure 1.4 below the first two steps are presented.  
If we use backward chaining to check our “goal”, i.e. to check whether z can be  

inferred or not, then a supplementary stack is needed. This stack will contain all 
“goals”; some of them are temporarily left aside because we reach for new “sub-
goals” with a higher priority. The top of the stack will be compared to the THEN part 
of all rules. When it matches the THEN part of a rule, and all components of the  
corresponding antecedent (the IF part) are found in the facts base, then this top of the 
 

 

Fig. 1.3. Graph representation of the knowledge base 

 rule 1 

 rule 5 

 a  x  p  b 

 c  r  y 

 z  s 

 q  d 

 e 

Reasoning in an Expert System            7 
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Fig. 1.4. First two steps in forward chaining example 

stack will be removed and placed into the facts base. In all other situations, the com-
ponents that are not found in the facts base will be pushed on the stack. 

Our initial goal z will be the first top of the stack. 
This time we start with “rule 7” because it is the first one to contain the fact z in the 

THEN part. In the IF part of this rule there is s, which is not – for the moment, in the 
facts base – and finding whether s can be inferred or not becomes the new sub-goal. 

Due to rule 5, it is immediate that s is inferred; therefore it will be removed from 
the stack and placed into the facts base. Now by use of rule 7 z is inferred. These two 
steps are presented in Figure 1.5. 

Most of medical expert systems (beginning with MYCIN, which was developed in 
1975 to choose anti-bacterial therapy for patients suffering from a severe infection) 
are backward chaining driven.  

Here is an example of production rules that are used in medical therapy: 

rule 579: IF 
AND 
AND 

 
THEN 

The infection that requires therapy is meningitis 
The patient’s chest X-ray is abnormal 
Active-tb is one of the diseases that the patient’s chest 
X-ray suggests 
there is strongly suggestive evidence that Mycobacte-
rium-tb is one of the organisms (other than those seen 
on cultures or smears) that might be causing the  
infection 
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Fig. 1.5. First two steps in backward chaining example 

and here is an example of how a production rule appears in MYCIN: 

($AND (SAME CNTXT GRAM GRAMPOS) 
      (SAME CNTXT MORPH COCCUS) 
      (SAME CNTXT CONFORM CLUMPS)) 
(CONCLUDE CNTXT TALLY STAPHYLOCOCCUS TALLY 700) 

1.5   Conflicts Resolution 

Another task of the inference engine is to choose the production rule to be fired. Once 
fired, a rule may affect the firing of other rules. Let us consider a simple example: 

rule 1: IF 
THEN 

the traffic light is green 
go across the street 

rule 2: IF 
THEN 

the traffic light is red 
go across the street 

rule 3: IF 
THEN 

the traffic light is red 
stop and wait 

Conflicts Resolution            9 
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It is clear that rule 2 and rule 3 are in conflict.  
If the common IF part of rules 2 and 3 is true, then the inference engine has to 

choose to fire one of these rules. This is called conflict resolution. 
It is obvious that the rules are ordered and the inference engine may choose to fire 

the first matching (rule 2 in our case). However, it is obvious also that is not always 
the best choice. 

It is preferable to attach to each rule a priority. Usually the priorities are modified 
by the firing of a meta-rule.  

If it has enough time, the inference engine can choose among all the rules and find 
the most specific one. This is called the longest matching strategy. Here it is an  
example: 

 

rule 1: IF 

THEN 

the season is autumn 

the advice is to take the umbrella  

rule 2: IF 
AND 
AND 
THEN 

the season is autumn 
the sky is covered  
the weather forecast is rain 

the advice is to stay at home  

 
In this case the second rule will be chosen, its IF part being more specific. 
Other conflict resolution method, called data most recently entered, is based on the 

time tags attached to each fact in the database. 
Finally, we can have a random choice, based on a RANDOM function. 
Thus, the methods of conflict resolution are: 

– Natural order, 
– The highest priority, 
– The longest matching strategy, 
– Data most recently entered, 
– Random choice. 

To improve the performance of an expert system we should supply the system with 
knowledge about knowledge (i.e. with meta-knowledge), which controls the produc-
tion rules. Because we cannot distinguish formally between a rule and a meta-rule, the 
meta-rules will be placed on the top of the knowledge base. 

In general, expert systems can deal with incomplete and uncertain data, and also 
permit inexact reasoning. However, the expert systems have three main shortcomings: 

1) Opaque relations between rules, 
2) Ineffective search strategy, 
3) Inability to learn. 

1.6   Solved Exercises 

1) The knowledge base is the following: 

IF A is true, THEN B is true 
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IF C is true, THEN D is true 
IF E is true, THEN F is true 
IF B is true AND D is true, THEN G is true 
IF B is true AND F is true, THEN H is true 
IF D is true AND F is true, THEN I is true 

and the facts base is the following: 

A is true 
E is true. 

Using the methods of forward chaining and backward chaining, try to establish the 
goal H is true. 

2) An expert system has the following knowledge base: 

rule 1: DP ⇒  
rule 2: EP ⇒  
rule 3: DBA ⇒∧  
rule 4: GBA ⇒∧  
rule 5: CA⇒  
rule 6: PB ⇒  
rule 7: KA⇒  
rule 8: CLD ⇒∧  
rule 9: HLD ⇒∧  
rule 10: AX ⇒  
rule 11: DE ⇒  
rule 12: LA⇒  
rule 13: ZWH ⇒∧  
rule 14: WLP ⇒∧  

(a) The facts base is the following: 

B, C, X. 
Show explicitly how our expert system will “prove” H, reasoning by backward 

chaining. 
(b) If the expert system reasons by forward chaining and the facts base is the  

following 

A, B,  

which are the facts “proved” by the expert system? 
3) The production rules are as follows 

IF today_is_rain THEN tomorrow_is_rain 
IF today_is_rain AND rainfall_is_low THEN tomorrow_is_dry 
IF today_is_rain AND rainfall_is_low AND temperature_is_cold 

THEN tomorrow_is_dry 
IF today_is_dry AND temperature_is_warm  

THEN tomorrow_is_dry 
IF today_is_dry AND temperature_is_warm AND sky_is_overcast 

THEN tomorrow_is_rain 

Solved Exercises            11 
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Given that each day can be only rainy or dry, forecast by backward chaining the 
weather tomorrow. 

Using forward chaining, forecast the weather knowing that today_is_dry, tempera-
ture_is_warm, sky_is_overcast are facts. 

4) The knowledge base is: 

rule 1: MAHA⇒   rule 9: CHDSTCCAMA ⇒∧∧∧  
rule 2: MAGM ⇒   rule 10: TIBSTCCAMA ⇒∧∧∧  
rule 3: BIFE ⇒   rule 11: GIUNLNLLDS ⇒∧∧∧  
rule 4: BILECF ⇒∧¬ )(   rule 12: ZEUNBS ⇒∧  

rule 5: CAEM ⇒   rule 13: OSBWCFBILN ⇒∧∧∧  
rule 6: CAFOCLPT ⇒∧∧   rule 14: PISWBWBICF ⇒∧∧∧  
rule 7: UNHOMA ⇒∧   rule 15: ALFWBI ⇒∧  
rule 8: UNCCMA ⇒∧    

and the known facts are: BS¬ , CF, DS, EM, FE¬ , HA, HO¬ , TC. (Of course, 
sign ¬  means “not”.) 

Try to “prove” CH, reasoning by backward chaining. 

Solutions. 1) When using forward chaining, the fired rules are, in order, the 1st, the 
3rd, and the 5th. The goal is obtained, when using backward chaining, by the same 
rules, fired in reverse order. 

2) (a) H is “proved” after firing the rules 9, 12, 10, 1, and 6.  
(b) All letters, except X, are “proved facts” by forward chaining, and all rules, 

except the 10th, are fired. 
3) The result of backward chaining depends on known facts about weather today. 

Of course, using forward chaining, from the 4th and 5th rules we obtain as forecast to-
morrow_is_dry and tomorrow_is_rain. 

(The apparent contradiction of conclusions of the first two rules shows that the 
classical logic is not an adequate tool in expert systems. In Chapter 7 it will be shown 
how production rules are really used in classical expert systems.) 

4) It is a useful example of “guessing” that cheetah (CH) is the animal, knowing 
that: 

BS = has_black_stripes, CF = can’t_fly, DS = has_dark_spots,  
EM = eats_meat, FE = has_feathers, HA = has_hair, HO = has_hoofs, 

and TC = has_tawny_color. 

The other facts appearing in the rules may be interpreted as:  

AL = is_an_albatros, BI = is_bird, BW = is_black_and_white,  
CA = is_carnivore, CC = chews_cud, CL = has_claws,  
DS = has_dark_spots, FO = has_forward_eyes, FW = flies_well,  
GI = is_a_giraffe, GM = gives_milk, LE = lies_eggs,  
LL = has_long_legs, LL = has_long_neck, MA = is_mammal,  
OS = is_an_ostrich, PI = is_a_pinguin, PT = has_pointed_teeth,  
SW = swims, TI = is_a_tiger, UN = is_ungulate, ZE = is_a_zebra. 
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2   Knowledge Representation 

2.1   Data, Information and Knowledge 

In Figure 2.1 the variations (in voltage) of the current at the extremity of a transmis-
sion wire is presented. A well-tuned device, which is able to eliminate noise,  
“captures” the current as the sequence of bits: 

1010110010101111110000101100011111001010 

and prints it. 

Suppose we possess the following knowledge: every bit should be com
l d h h h bi i f 8

 

Fig. 2.1. Current in a point of a transmission wire 

Suppose we possess the following knowledge: every bit should be complemented, 
then we have to group the bits in sequences of 8: 

01010011 01010000 00111101 00111000 00110101 

Finally, we have to interpret these sequences according to the ASCII code. The re-
sult is printed as 

SP=85 
Both the sequence of 40 bits and the sequence of 5 characters are considered as 

data. 
Now, suppose Your brain is trained such as to interpret the sequence above as 
“systolic pressure of the patient is 85”  

which is an information. 
All this helps us to understand the hierarchy of terms: 

0. Variations of state of an object 
1. Data 
2. Information 
3. Knowledge 
4. Meta-knowledge. 
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We may possess knowledge that allows us to transform data. Certain knowledge 
allows us to extract information from data. Information means interpreted data. (How 
knowledge is acquired is not our concern.). 

The meta-knowledge is knowledge about the knowledge that we have to use in a 
given situation.  

In the previous chapter knowledge was represented in form of production rules. 
However, knowledge may be represented in several other ways. In the following  
sections we explore other possibilities: more complex logical systems, semantic nets, 
frames. 

2.2   Logical Systems 

Perhaps one of the oldest ways to represent knowledge is encountered in classical and 
predicate logic. 

Today’s logic is a vast area of human knowledge, dealing with all aspects of  
reasoning processes. Its history is ancient, more than 2000 years ago Aristotle (384-
322 b.Ch.) described several simple inference rules. The last century witnessed, long  
before the appearance of computers, a tremendous expansion of different branches of 
logic. 

Classical (i.e. Aristotelian) logic is a tool indispensable for all kind of human 
knowledge representation; moreover, it is the first auxiliary in formalizing arguments. 
We will present the elements of this logic and some of its extensions. 

To construct a logical system we need: 

1) A language,  
2) A truth structure, which can be described either syntactically, or semantically, 

and 
3) A list of inference rules. 

The simplest example of a logical system is the propositional calculus. Its language 
is a part of the natural language (in our case, the English), more precisely that part 
formed by declarative sentences having a well defined truth value (either “true”, or 
“false”). 

In inter-human communication processes information is transmitted, orders are 
given, questions are asked, and exclamations are made. The sentences having an im-
perative, interrogative or exclamatory component are left outside propositional calcu-
lus. Only pure declarative sentences belong to the propositional calculus. Examples: 

“Where are you going?”  NO (it is interrogative) 
“Give me the surgical knife!”  NO (it is imperative) 
“Look how ill that person is!”  NO (it is exclamatory) 
“Number five is odd”  YES (it is “true”) 
“A patient has fever”  NO (it is an imprecise sentence) 
“John Johnson has fever”  YES (suppose we know it is “true”) 
“John Johnson is forty-five years old and has fever” 
 YES (and it is a composed sentence) 
“It rains now over Toronto” 
 NO (because the truth value is not certain). 
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It is difficult enough to define precisely the term “proposition”. For the sake of 
simplicity let us adopt the naïve approach: a proposition is simply a statement,  
expressed in a sequence of words, which has a precise meaning and is evaluated by 
Your brain either as “true” or as “false”.  

For example, we could accept that 

“The result of sputum lab test is not good” 
“Diabetes is a frequent chronic disease” 

and 

“The patient has tuberculosis” 

are propositions. On the contrary, 

“My patient has” and “The result of the lab test will be good” 

are not propositions: the first has no meaning in itself (except perhaps in a specific 
context), the second cannot be evaluated now, it is “yet undecided”. 

Notice that  

“The result of sputum lab test is not good” 

has the same meaning as 

“It is not true that the result of sputum lab test is good”. 
Also,  

“Diabetes is a frequent chronic disease” 

could be rewritten as 

“Diabetes is a frequent disease and diabetes is a chronic disease”. 

It is possible to express any compound proposition in terms of simpler ones, using 
the so-called logical connectors. 

There are four logical connectors used in inter-human communication: 

1) “and”, denoted by ∧ , used to form conjunction, 

2) “or”, denoted by ∨ , used to form disjunction, 

3) “if-then”, denoted by ⇒ , used to form implication, 

4) “if and only if”, denoted by ⇔ , used to form equivalence. 

A fifth sign ¬ , read as “not”, is used to form negations.  
A proposition is called atomic if it cannot be expressed, using logical connectors 

∧ , ∨ , ⇒  or ⇔ , in terms of simpler ones. For example, “The result of sputum lab 
test is not good” and “The patient has tuberculosis” are considered atomic  
propositions. 

Atomic propositions that do not contain the sign ¬  are called simple. 

However, there is a large gap between propositions above and formal propositions 
treated in propositional calculus. To be precise, let us specify that the language L of 
propositional calculus is based on the following alphabet 

all lowercase Courier letters, _, ¬ , ∧ , ∨ , ⇒ , ⇔ , (, ). 

The underscore sign is used to replace the white spaces between words. Thus, 
propositions became words. 

Logical Systems            15 Logical Systems            15 
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The “correct words” of the language L known as the well-formed formulas, are 
described by the following rules: 

(R0) Any (finite) word composed by lowercase Courier letters and/or signs _ is a 
well-formed formula (w. f. f.) 

(R1) φ¬  is a w. f. f. where φ  represents a w. f. f. 

(R2) ψ∧φ , ψ∨φ , ψ⇒φ , ψ⇔φ  are w. f. f.’s where φ , ψ  represent w. f. 

f.’s (not necessarily distinct) 
(R3) )(φ  is a w. f. f. where φ  represents a w. f. f. 

(R4) No other w. f. f. does exist. 

It is customary to represent propositions (not necessary simple) by lowercase italic 
letters p, q, r, …. For example, 

diabetes_is_a_frequent_chronic_disease 

is represented formally as 
qp ∧  

where p  represents diabetes_is_a_frequent_disease and q  represents 

diabetes_is_a_chronic_disease”. 
In general, if p  and q  represent propositions, then: 

p¬  represents the proposition interpreted as “It is not true that p ”, 

qp ∧  represents the proposition interpreted as “ p  and q ”, 

qp ∨  represents the proposition interpreted as “ p  or q ”, 

qp ⇒  represents the proposition interpreted as “if p , then q ”, 

qp ⇔  represents the proposition interpreted as “ p  if and only if q ”.  

The main objective of propositional calculus is to establish the truth-value of  
compound propositions given the truth-values of simple components. The main rules 
used are summarized in the following two tables: 

p  p¬  

true false 
false true 

 
 

p  q  qp ∧  qp ∨  qp ⇒  qp ⇔  

true true true true true true 
true false false true false false 
false true false true true false 
false false false false true true 

 
Notice that conjunction qp ∧  is “true” only if both components p  and q  are 

“true”. 
Notice also the situation of the implication: if the “premise” p  is “false”, then 

qp ⇒  is “true” regardless of the truth-value of the “conclusion” q . 
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As for the equivalence qp ⇔ , notice that it is true whenever p  and q  have the 

same truth-value. 
Sometimes we call fact a “true” atomic proposition, and knowledge a “true”  

implication (i.e. a proposition of the form qp ⇒  that is “true”). 

Several syntactic rules (“laws”) of propositional calculus exist. 

(I) Law of double negation 

)( p¬¬  has the same truth-value as p  

Hence, if it is “false” that “The result of sputum lab test is not good”, then it is 
“true” that “The result of sputum lab test is good”. 

(II) Law of contraction 
pp ∧  has the same truth-value as p  

pp ∨  has the same truth-value as p . 

(III) Law of commutation (not valid for the implication!)  
qp ∧  has the same truth-value as pq ∧  (whatever the truth-values of p  

and of q ) 

qp ∨  has the same truth-value as pq ∨  

qp ⇔  has the same truth-value as pq ⇔ . 

(IV) Law of association  
rqp ∧∧ )(  has the same truth-value as )( rqp ∧∧  

rqp ∨∨ )(  has the same truth-value as )( rqp ∨∨ . 

(V) Laws of distribution (of conjunction with respect to disjunction, and of dis-
junction w. r. t. conjunction)  

)( rqp ∨∧  has the same truth-value as )()( rpqp ∧∨∧  

)( rqp ∧∨  has the same truth-value as )()( rpqp ∨∧∨ . 

(VI) Laws of De Morgan (duality of conjunction and disjunction)  
)( qp ∧¬  has the same truth-value as )()( qp ¬∨¬  

)( qp ∨¬  has the same truth-value as )()( qp ¬∧¬ . 

Hence according to the first law of De Morgan, the negation of “Diabetes is a  
frequent chronic disease” could be expressed as “Diabetes is not a frequent disease or 
diabetes is not a chronic disease”. 

(VII) Law of the implication  

qp ⇒  has the same truth-value as qp ∨¬ )( . 

According to this last law, the proposition “If the result of sputum lab test is not 
good, then the patient has tuberculosis” has the same truth-value as the proposition 
“The result of sputum lab test is good, or the patient has tuberculosis”. 

Logical Systems            17 
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(VIII) Law of the equivalence  
qp ⇔  has the same truth-value as )()( pqqp ⇒∧⇒ , or as 

))()(()( qpqp ¬∧¬∨∧ . 

Although humans use in communication all five logical signs, it is clear from the 
above laws that some of these are superfluous. Clearly ⇒  and ⇔  are expressed in 
terms of ¬ , ∧  and ∨ , as the laws (VII) and (VIII.2) above show. 

A proposition is said to be in normal form if it is expressed as a disjunction 

nppp ∨∨∨ ...21  

where each component ip  is expressed as a conjunction 

...21 ∧∧ ii qq  

where each component ijq  is an atomic proposition. 

The results above show that every compound proposition is equivalent to a normal 
form. This allows a certain “automatic” treatment of the propositions in propositional 
calculus. 

Let us remind the Horn clauses, which are compound propositions of the form 
qppp n ⇒∧∧∧ )...( 21  

i.e. implications having as “premise” a conjunction of several propositions. Inter-
preted in the following way: “ q  is true if we are able to establish that nppp ,...,, 21  

are all true”, the Horn clauses constitute the basis of a logic-dedicated programming 
language, whose name is Prolog. This language is well adapted to the so-called Artifi-
cial Intelligence. 

Combining the law of double negation (I) with the law of De Morgan (formula 
VI.1 above), we obtain 

qp ∧  has the same truth-value as ))()(( qp ¬∨¬¬  

showing that ∧  is expressed in terms of ¬  and ∨ . Hence we could reduce in  
propositional calculus, without loosing any truth-value, the set of logical signs to ¬  
and only. 

We could reduce the set of logical signs in another way. Namely, reversing the law 
of the implication (VII) and taking into account the law of double negation (I), we  
obtain the formula 

qp ∨  has the same truth-value as qp ⇒¬ )(  

showing that ∨  is expressed in terms of ¬  and ⇒ . It is easy to establish that 

qp ∧  has the same truth-value as ))(( qp ¬⇒¬  

and the law of the equivalence (VIII.1) shows that all five logical signs are expressed 
in terms of ¬  and ⇒ . 

An obvious question appears. Could the set of logical signs be reduced to only 
one?  

The answer is negative if we restrain to these five signs above. However, the  
answer is positive if we consider other logical signs!  
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Indeed, there exist other logical connectors. In some circumstances humans use the 
“either-or” connector, denoted by XOR , described by the following truth table: 

p  q  qpXOR  

true true false 
true false true 
false true true 
false false false 

It is obvious that qpXOR  has the same truth-value as )( qp ⇔¬ . The normal 

form equivalent to qpXOR  is ))(())(( qpqp ∧¬∨¬∧  and the most important 

property of this connector is the following 

qqp XOR)XOR(  has the same truth-value as p . 

Perhaps the most useful “non-human” logical connector is the so-called NAND , 
whose truth table is the following 

p  q  qpNAND  

true true false 
true false true 
false true true 
false false true 

For this connector it is easy to establish that 

p¬  has the same truth-value as ppNAND , 

qp ⇒  has the same truth-value as )NAND(NAND qpp  

therefore NAND  alone is self-sufficient to express all human logical signs! Of  
crucial importance is the fact that, by using p-n-p transistors, simple electronic cir-
cuits simulating NAND  operation can be assembled. These serve as “bricks” for 
building the arithmetic-logic unit of every contemporary computer. 

2.3   Predicate Calculus 

In propositional calculus the sentences admit decompositions in “simple” sentences 
(that do not contain logical signs ¬ , ∧ , ∨ , ⇒ , ⇔ ). Parentheses are also used, 
though they are not necessary. For example, to avoid all ambiguity in the expres-
sion qp ∨¬ , we could insert parentheses specifying either as qp ∨¬ )( , or as 

)( qp ∨¬ . 

The language of propositional calculus is very much simplified in contrast to the 
natural language (English). For example, in English ∧  means not only “and”, it 
means also “but” or “and then”. Temporal aspects are not taken into account. How-
ever, the main deficiency of the propositional calculus is the impossibility to treat 
general sentences. 

Predicate Calculus            19 
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A first extension, much more comprehensive, is the predicate calculus. In the 
frame of predicate calculus, the sentences admit a decomposing into: 

– Consants, 
– Variables, 
– Functions, 
– Predicates, 
– Logical signs (the same as in the propositional calculus), and 
– Quantifiers. 

Constants name objects. Variables denote generically objects from a domain. Func-
tions may have arbitrary values and one or several arguments, which are variables. 
Predicates are special functions, their specificity consisting of the values they may 
take, namely only T (“true”) or F (“false”). The arguments of a predicate are either 
constants, or variables. The universal quantifier is denoted ∀  (“any”), and the exis-
tential quantifier is denoted ∃  (“exists”). The quantifiers do not appear alone; any 
quantifier always precedes a variable. (Notice that in predicate calculus quantifying 
predicates is not allowed!) 

Let us consider the predicate (of a single variable X, which denotes generically  
persons) 
is_a_physician(X) 
Starting from this predicate, the following simple sentence is built 
is_a_physician(john) 

where john is a constant. Moreover, the following two sentences, more complex, are 
built: 

∀X(is_a_physician(X)) meaning “any person is a physician”, 
∃X(is_a_physician(X)) meaning “there exists physician(s)”. 

If the domain of variable X is the persons living in a big city, the first sentence is 
false and the second is true. 

Let us consider the example of a predicate π of two variables X, Y, both variables 
denoting generically persons from a domain. The expression: 

π(X,Y) 

may be interpreted as “X is the son of Y” or, what is the same, “Y is the father of X”.  

Starting from this predicate several particular sentences are built, such as: 

π(john,peter) i.e. “john_is_the_son_of_peter”. 

Moreover, four sentences involving one quantifier are assembled: 

∀X(π(X,Y)) “is a universal father” 
∀Y(π(X,Y)) “is a universal son” 
∃X(π(X,Y)) “is a father” 
∃Y(π(X,Y)) “is a son”. 
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In these four examples one variable is “bound”, the other is “free”; this means our 
four sentences are in fact predicates of a single variable! Further examples (in which 
two quantifiers appear): 

∀X(∀Y(π(X,Y))) “any son has as father any person”, 
∀X(∃Y(π(X,Y))) “any son has at least one father”,  
∃X(∀Y(π(X,Y))) “there exists at least one son, such that any person is his 

father”,  
∃X(∃Y(π(X,Y))) “there exists at least a son that has at least one father”,  
∀Y(∀X(π(X,Y))) “any father has any person as son”,  
∀Y(∃X(π(X,Y))) “any father has at least one son”,  
∃Y(∀X(π(X,Y))) “there exists at least one father having any person as a 

son”, 
∃Y(∃X(π(X,Y))) “there exists at least a father that has at least one son”. 

It is easy to find out the truth-values of any sentence above. Moreover, it is easy to 
detect the logical equivalence between ∀X∀Y and ∀Y∀X, res. between ∃X∃Y and 
∃Y∃X. 

In predicate calculus the (English) sentences “John is a physician” and “any patient 
is treated by a physician” are expressed, by the intermediate of the predicates 
is_a_physician(), is_a_patient() and treats(), as follows: 

is_a_physician(john) 
∀X(is_a_patient(X)∧∃Y(is_a_physician(Y)∧treats(Y,X))) 

(However, there are differences between meanings in the natural language and in 
predicate calculus. In natural language “any patient is treated by a physician” nor-
mally means “any particular patient is treated by a single physician”. The formal  
expression of the latter meaning is more complicated.) 

Of course, any sentence from the predicate calculus has a well-defined truth-value, 
which is either T (“true”), or F (“false”). All the “laws” of propositional calculus are 
still valid in the predicate calculus. Several new “laws” are valid here, such as: 

¬∃X(φ(X)) has the same truth-value as ∀X(¬(φ(X))) 

which expresses the logical equivalence between sentences “there is no …” and  
sentences in which the predicate is negated (“for any …, not …”). 

However, in general the logical truth-value of a “correct formula” – obtained by 
quantifying the variables that appear in a predicate – depends essentially on the interpre-
tation of the predicate, in fact on the interpretation of all components of the “formula”. 

If we want to formalize the predicate calculus, so as to avoid any possible paradox, 
a good start is a clear definition of an “atomic formula”, followed by a good recursive 
definition, based on clear rules, of what a “correct formula” should be. This is not the 
intent of this book. 

Very important are the formulas of type “implication”, i.e. of the form ch ⇒  (“if 
hypothesis h, then conclusion c”) which extend the production rules. An example, in 
which only one predicate π of two variables is involved, is the following formula: 

π(X,Y) ⇒ ∃Z(π(X,Z)∧π(Z,Y)). 

Predicate Calculus            21 



22 Knowledge Representation 

Let us present two different interpretations. First, the domain is formed by persons, 
and π(X,Y) is interpreted as “X is the son of Y” (as above). The formula is “true” 
when the “left hand” π(X,Y) is “false”. However, it is immediate that in this inter-
pretation the “right hand” formula ∃Z(π(X,Z)∧π(Z,Y)) is “false” when π(X,Y) 
is “true”. Because the implication “true”⇒“false” has a “false” truth-value, it is clear 
that the sentence above may be “false”. 

Now let the domain be the set of real numbers (i.e. the variables X, Y take real  
values), and π(X,Y) is interpreted as “X < Y”. This time the “right hand” formula 
∃Z(X<Z ∧ Z<Y) is “true” when X < Y is “true”. Because “true”⇒“true” is “true”, 
our sentence above is always “true”.  

2.4   Inference Rules in Classical Logic 

In any logic, the inference of truth follows some rules. Three types of inference are 
known: 

• Deductive, 
• Inductive, 
• Abductive. 

Deductive inference rules are known since Aristotle. Perhaps the best known is 
modus ponens, which in propositional calculus is formally expressed as: 

q
qp

p
a

⇒
 or as 

q

qpp ⇒,
 

and which is interpreted in natural language as: “knowing that a proposition p is true 
and that the implication qp ⇒  is true, the truth of the proposition q is inferred”. 

This rule is “certain” and is easily extended to predicate calculus, as follows: 

(a)
(X))(X)X(

(a)
ψ

ψ⇒φ∀
φ

a  

and allows the deduction of some “true” conclusions such as, for example, “Socrates 
is mortal” from “Socrates is human” and “all humans are mortal”. 

Another very well known “certain” rule is the so-called syllogismus; here only  
implications appear: 

rp
rq

qp
⇒

⇒
⇒

a  

This rule is interpreted as follows: knowing that implications qp ⇒  and rq ⇒  

are true, the truth of the implication rp ⇒  is inferred. 

In logical software another “certain” rule is implemented. This is the so-called 
resolution, which is presented as follows: 
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rp
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∨

∨¬
∨

a
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and allows an automatically treatment of the list containing all known true facts. 
Inductive inference rules allow generalizing particular facts. For example, from 

true facts “John is ill”, “Peter is ill”, “George is ill” we infer by induction that “every-
body is ill”. We feel that inductive inference rules are not certain. Of course, there is 
an exception: the mathematical induction. 

The abductive inference rule: 

p
q

qp
a

⇒
 

is, of course, “uncertain”. However, it is largely used in scientific research to identify 
the “reason” of a phenomenon when its effects are known. 

Let us summarize. A logical system consists of the following: 

1) A formal system, consisting of: 

– the syntax of the logical language (how to construct well-formed formulas) 
– the semantics of the logical language (how the formulas are in concordance 

with our manner of thinking about reality), and 

2) A set of inference rules for deducing other formulas from the axioms. 
There are an infinite number of possible logical systems. Two logical systems can 

be different because they use: 

a) Different symbols in the alphabet, 
b) Different rules for obtaining the well-formed formulas, 
c) Different number of truth values, 
d) Different manners for extending the truth values from elementary sentences to 

compound sentences; 
e) Different sets of inference rules, or 
f) Different sets of axioms. 

A particular logical system could be used to represent knowledge. 

2.5   Semantic Nets 

Semantic nets are another type of classical techniques for representing information 
and knowledge. In fact, from the mathematical point of view, semantic nets are  
directed (labeled) graphs. The vertices (nodes) of such a graph represent objects, real 
or abstract. The edges (arrows, links) are used to express relationship between objects. 

The links provide the basic structure for organizing knowledge. 
Look at the example in Figure 2.2 below. It is easy to infer that Ann and Bill are 

the grandparents of John (even if there is no explicit links “grandfather_of”, “grand-
mother_of” and not all the knowledge is represented by links, see for example the 
case of “sister_of”). This net may cover also the explanation for John’s disability! 

As another example, “virus”, “sickness” and “syndrome” are vertices, and 
“may_cause” is an arrow from “virus” to “sickness” (or to “syndrome”). The usual  
interpretations of arrows in medicine are the following: “is_a_part_of”, 
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“is_a_propriety_of”, “treat”, “determine” etc. Usually arcs appear in pairs, for exam-
ple “treat” and “is_treated_by”, “determine” and “is_determined_by”, “sub-
stance_measured” and “measured_by”. 

However, the use in medicine of semantic network is limited by the complexity of 
graphical representation of real medical problems. 

The most used links in general semantic nets are expressed by: 

– is_a, which means “is an instance of”, i.e. “belongs to a class”, and 
– a_kind_of, which means subordination between classes. (In fact, between a class 

and a super-class). 

Of course, the objects in a class have attributes in common: each attribute has a 
value. The combination attribute-value is called property. Thus 

property(Attribute,Value) 
is a special predicate. Triples 

object-attribute-value 
are used to characterize all the knowledge in a semantic net. 

father_of

wife_of

husband_of

father_of

John

mother_of

wife_of

husband_of

sister_of

Ann Bill

mother_of mother_of

BillAnn Carol

 

Fig. 2.2. Example of a semantic net 

2.6   Frames 

When humans face a new situation, they adapt the closest “frame” which they found 
in their memory to represent that situation. It is by comparison with the prototypes 
that adaptation takes place. The description of a universe is achieved gradually by  
increasing the experience regarding that universe. 

To represent knowledge, in [Minsky 1975] it was proposed to adopt frames, i.e. ab-
stractions in which objects are classified taking into account their general properties and 
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first the most important ones. The frames constitute a manner of implementing proto-
types. By using frames, we can reason without paying attention to the irrelevant details. 

If the semantic networks are represented by bi-dimensional graphs, then in the  
representation of frames we add a third dimension. More precisely, each vertex (node) 
can have a more or less complex structure. 

The frames are structures that present limited aspects of knowledge. To give a  
general definition, we consider that a frame is a name that names a group of slots and 
the values that fulfill the attached fillers. (Of course, the frame name could be consid-
ered as the value of filler attached to a particular slot NAME.) 

Every filler has its own type; the types are extremely diversified, from the Boolean 
type to the type of the frame itself. 

We have to stress that each filler is fulfilled, from the frame creation, which an im-
plicit value. We can fulfill the fillers, following their importance, by replacing the  
implicit value by a significant value 

Consider, as an example, the frame that represents the notion of car.  
 

(NAME:) Car 
make: 
model: 
year: 2006 
speed: 5 
engine: 
tires: 4 
color: 
… 

Some fillers are empty; others contain implicit (by default) values such as: 

tires: 4 

The utility of frames lies in hierarchical frame systems and inheritance of proper-
ties; a frame can be the value for a filler of another frame, thus the inheritance.  

Here is a simple example of inheritance: 
 
Sport car  Car   
make:  make:   
…  …   
  engine:  Engine 
  …  number of cylinders: 
    carburant: 
    … 

The solid arrows represent relations between a frame and a super-frame. The inter-
rupted arrows represent relations between a filler and a value that is a frame. 

It has to be stressed that values of fillers could be also logical procedures or even 
computer programs. 

A frame description can be expressed in terms of a rule system. 
However, it is not a good idea to introduce predicates for each possible filler (frame); 

it is better to introduce predicates that express relationships in a frame  system. 
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predicate: means: 

frame(X) X is a frame 
is_a(X,Y) The frame X is a sub-frame of Y 
slot(S,X) S is a filler of frame X 
default(V,S,X) V is the implicit value of filler S from frame X 

The following rule  

is_a(X,Y) ∧ is_a(Y,Z) ⇒ is_a(X,Z). 

expresses the hierarchical subordination between the given frames. 
High quality medical vocabularies, as for example Medical Entities Dictionary, use 

frames for knowledge representation. Here is an (incomplete!) example from MED: 

Slots for frame 14 Anatomical Structure 

 
 

Slot Name Slot Value(s) 

0 MED-CODE 14 
1 UMLS-CODE T017 
2 NAME ANATOMICAL STRUCTURE 
3 DESCENDANT-OF 1 Medical Entity 
4 SUBCLASS-OF 1 Medical Entity 
5 SYNONYMS ANATOMIC ENTITY 
6 PRINT-NAME Anatomical Structure 
7 HAS-PARTS  
8 PART-OF  

11 DEFINITION  
37 SITE-OF-PROBLEM  
50 MAIN-MESH  
51 SUPPLEMENTARY-MESH  

175 OBSERVATION-SITE-OF  

237 
DEFAULT-SHORT-
DISPLAY-NAME 

 

238 DEFAULT-DISPLAY-NAME  

Another example of frame, taken from medicine: 

Slot Name Slot Value(s) 
NAME: Acute glomerulonephritis 
Triggered_by: Facial edema, … 
Confirmed_by: Asthenia, anorexia, … 
Caused_by: Recent streptococci infection 
Causes: … 
Complications: … 
Differential diagnostic: … 
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We notice that the fillers are used to specify values but also to specify the connec-
tion with others concepts (confirmed_by). 

May be the most important structure of frame type is the one standardized in the Ar-
den syntax. Here the fillers are grouped in three categories: a) maintenance, b)  
library, and c) knowledge. In the inside of each filler a different formalism can be used: 
production rules, detailed descriptions, program codes, etc. Because all knowledge has 
to be implemented on the computer, data concerning the version, the author, and the 
creation date is inserted in the maintenance fillers. In the library fillers the goal, the key 
words for index creation, the details explanation and the possible connections with other 
information are inserted. Finally, in the knowledge filler the data type, the logic and the 
action (eventually as computer programs in pseudo-code) are inserted. 

Here is the structure of an Arden frame (the optional fillers are not underlined)  

Maintenance slots: Library slots: Knowledge slots: 
Title: Purpose: Type: 
Filename: Explanation: Data: 
Version: Keywords: Priority: 
Institution: Citations: Evoke: 
Author: Links: Logic: 
Specialist:  Action: 
Date:  Urgency: 
Validation:   

Of course, the knowledge slots are the most important. In the filler attached to Data 
the data are placed. In the filler attached to Logic 

• data from filler Data are used, 
• tests are performed, and 
• decision whether the filler Action should be used or not is taken. 

We can place here (in filler Action) all kind of programs, starting with elementary 
computations until complex rules needed to classify an object.  

2.7   Solved Exercises 

1) Translate the following sentences into predicate language: 

Basketball players are tall. 
John sent the email to all his fiends. 
John sent the email only to his friends. 

2) Express in predicate calculus the following set of sentences: 

John likes fruits. 
Bananas are fruits. 
People eat what they like. 
Does John eat bananas? 

3) (From [Luger 2002]) The following conceptual graph (which is not a semantic 
net!) represents the sentence 

John cut down the tree using an axe. 
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cut down

tree

axe

agent

object

instrument

John

 

Express in natural language the knowledge represented in the graph: 

agent

object

instrument

part_of

eat

soup

hand

John

 

Kateexperiencebelief

object

Neg.

John

cakeobject

experience
likes
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4) (From [Rich and Knight 1991]) Enclose the following set of sentences into a 
formalism that facilitates the representation of knowledge they contain: 

When you go to a soccer game, you usually buy a ticket, hand the ticket to the 
ticket taker, and then go to find a seat. 

Sometimes you buy a hotdog before going to your seat. 
When the game is over you leave the arena. 
Alain went to the soccer game. 
Did Alain buy a ticket? 

5) Imagine a frame for the books of your library: 

Solutions. 1) Obvious translations are: 

∀X(is_player(X,basketball)⇒is_tall(X)), or 
∀X(is_basketball_player(X)⇒is_tall(X)), 

∀Y(friend(Y,john)⇒sent(john,Y,email)), 

∀Y(sent(john,Y,email)⇔friend(Y,john)). 

2) The sentences are formalized in predicate calculus by using a constant john, 
four variables 
F denoting a generic fruit, 
B denoting a generic banana, 
P denoting a generic person (people), 
O denoting a generic object 

and four predicates is_fruit(), is_banana(), likes(), eats(), as  
follows: 

rule 1: ∀F(is_fruit(F)⇒likes(john,F))  
rule 2: ∀B(is_banana(B)⇒is_fruit(B))  
rule 3: ∀P∀O(likes(P,O)⇒eats(P,O))  

If we express the question as follows 
∀B(is_banana(B)∧eats(john,B)) 

its truth is easily obtained. Starting with a constant b such that 
is_banana(b) 

is true, we obtain: 

from rule 2: is_fruit(b) is true, 

from rule 1: likes(john,b) is true, 

from rule 3: eats(john,b) is true. Thus the answer to the question is “yes”. 

However, two problems appear: 

a) It is supposed “john” is “people”. Rule 3 should be expressed, more exactly, as: 
rule 3’: ∀P∀O(is_people(P)∧likes(P,O)⇒eats(P,O))  
b) Our question was roughly expressed as 
∀B(is_banana(B)∧eats(john,B)) 
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In fact, this should be translated in natural language as “John eats all bananas (in the 
world)” or “John eats any banana (he grasps)”. The use of two quantifiers ∀, ∃is an 
oversimplification! 

Notice that in Prolog language all the above is expressed more clearly in four 
clauses and two facts: 

likes(john,F) :- fruit(). 
fruit(F) :- banana(F). 
eats(P,O) :- person(P),object(O),likes(P,O). 
object(O) :- fruit(O). 
person(john). 
banana(b). 

the goal being for example: 

eats(john,b)? 

3) “John eats soup using his hands”, res. “Kate’s belief is that John doesn’t like 
cakes”. These interpretations are obvious. Note the waste of space when using con-
ceptual graph representations instead of sequences of characters.  

4) At least two more quantifiers, namely “usually” and “sometimes”, are necessary. 
There is not enough knowledge about Alain to precisely answer the question. An ade-
quate answer could be “we are not sure”. 

People are “sure” that Alain leaved the arena. However, classical logic does not al-
low us to derive, directly or indirectly, the sentence “Alain leaved the arena” from the 
sentences we “know”. (Of course, we do not know whether the game is over or not. It 
seems a lot of knowledge is “supposed”.) 

5) In recent books, the back of the title page contains several descriptors: 

ISBN (10 and/or 13) 
Edition number 
Printing number 

a.s.o. All these should be considered as slots. However, it is a good idea to respect the 
Arden syntax and to insert in our frame structure also maintenance and/or library 
slots. Especially very comprehensive Keywords slot would be extremely useful. 
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3   Uncertainty and Classical Theory of Probability  

3.1   Taxonomy of Imperfection 

Generally, a piece of evidence e is obtained after intecrpretation (in the “brain” of the 
observer) of a message received from one or several “sensors”. 

The piece of evidence e may come from different worlds ... , , , 21 ωωω  (in which e 

is “true”) and the “brain” may have an opinion about who the actual world is. 
We will follow here the approach of Philippe Smets [Smets 2000]. A piece of evi-

dence e is called perfect if it is 

1) Consistent (contradiction-free), 
2) Precise (imprecision-free), and 
3) Certain. 

Unfortunately, the observer (or even the sensor) has to deal with all kind of imper-
fect data. Therefore, an imperfection label could be attached to the piece of evidence. 

Many types of “error” could contribute to uncertainty. Let us present the most 
common, considering statements (propositions) that could be made about a valve in-
tended to open/close a pipe, res. about a device that should measure the cardiac  
frequency (statements sent to physician You by a nurse): 

 
Statement Error Reason 
Turn the valve off 

I measured the cardiac frequency 
Ambiguity 

What valve? 

Which patient? 
Turn valve#1 

I measured the cardiac frequency 
of patient#1 

Incompleteness 
Which way, on or 
off? 

It was good, or bad? 
Turn valve#1 off 

The cardiac frequency of patient#1 
is good 

Incorrect 
Correct is “on” 

In fact it is not good 

Turn valve#1 to 5 

The cardiac frequency of patient#1 
is 90 

Imprecise 
Correct is 5.4 

In fact is 92 
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Turn valve#1 to 5.4 

The cardiac frequency of patient#1 
is 92 

Inaccurate 
Correct is 9.2 

In fact is 68 

Turn valve#1 to 5.4 or 8.2 

The cardiac frequency of patient#1 
is 92 or 68 

Unreliable 
Impossible several 
simultaneous values 

Valve#1 setting is at 7.3 

The device shows the cardiac fre-
quency of patient#1 is 73 

Bias 
Should be 7.5 

It should be 75; the 
device is deteriorated 

Valve#1 setting is at 5.4 or 5.5 or 
5.3 

The device shows the cardiac fre-
quency of patient#1 fluctuant 
around 73 

Random 
Statistical fluctuation 
 
The fluctuation is 
random? 

Valve#1 is not stuck 

The cardiac frequency of patient#1 
is not constant 

False negative 
Valve is stuck 

In fact it is constant 

Valve#1 is not stuck because it’s 
never been stuck before 

The cardiac frequency of patient#1 
is not constant because it was never 
constant before 

 
Invalid induc-
tion 

Valve is stuck 
 

In fact is constant 
now 

Output is normal and so valve#1 is 
in good condition 

The device shows normal hence the 
cardiac frequency of patient#1 is 
good 

 
Invalid deduc-
tion 

Valve is stuck in 
“open” position 

The device is defec-
tive 

 

Considering that our piece of evidence is a statement, the following taxonomy 
(classification) of imperfection is identified by Smets. 

A) Inconsistency, when no world satisfies the statement (in the opinion of the ob-
server). This can be: 

A1) Conflicting (disagreement among the data), 
A2) Incoherent (conclusions drawn from data, which does not make sense), 
A3) Confused (a milder form of incoherence). 

B) Imprecision, when several worlds satisfy the statement. Two major ramifications: 

B1) Data without error 
B1a) Missing (incomplete, deficient), 
B1b) Vague (approximate, ambiguous, fuzzy); 

B2) Data with error(s) 
B2a) Erroneous (just wrong), 
B2b) Inaccurate (essentially imprecise; however, not completely erroneous), 
B2c) Invalid (would lead to unacceptable conclusions), 
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B2d) Distorted (wrong, but not far from correct), 
B2e) Biased (systematic error), 
B2f) Meaningless (cannot be fitted to reality). 

C) Uncertainty, which depends on the quality of the evidence and/or the quality of 
the “brain” of the observer. Two major ramifications: 

C1) Objective (related to the evidence) 
C1a) Propensity: Random (subject to change), Likely (will probable occur), 
C1b) Disposition: Possible (ability to occur), Necessary (negation is not  

possible); 
C2) Subjective (related to the observer) 

C2a) Believable (observer accepts data around 50%, but is ready to recon-
sider it), 

C2b) Probable (observer accepts data around 80%; however, is not ready to 
reconsider it), 

C2c) Doubtful (observer can hardly accept data), 
C2d) Possible (observer considers that data could be true), 
C2e) Irrelevant (observer does not care about the data), 
C2f) Undecidable (observer is not able to decide if true or false). 

Thus, inconsistency appears when there is no world ω  that is compatible with the 
evidence e. Usually the consistency of information is not graduated; we speak only of 
consistent or inconsistent information.  

We may consider that the evidence e induces a partial order among the worlds: 
some worlds 1ω  are more compatible with evidence e than other worlds 2ω . Usually 

this partial order is connected with the “quantity of changes” that a world has to  
undertake so that it becomes compatible with evidence e.) 

If several worlds ... , , 21 ωω  are compatible with evidence e, we say that we have 

an imprecision. Thus, evidence e is precise if only one world is compatible with e. 
In what follows we will be interested in probabilistic reasoning. As an example, 

consider the following: around the logical reasoning (supposed perfect)  
“If a patient has a toothache and there is a large black hole in the aching tooth, then 

the patient has a cavity” 
we have at least these two if-then rules, apparently of the same kind: 
“If a patient has a toothache, then there is a probability of 0.9 that he/she has a  

cavity” 
“If the patient has a cavity, then there is a probability of 0.4 that he/she has a  

toothache”. 
What the numbers 0.9 and 0.4 mean and how they are related? A possible answer 

is given by the classical Probability Theory. 

3.2   Usual and Precise Meaning 

We live in a continuously changing world, we receive incomplete information and we 
possess imperfect knowledge about it. Still, we have to take decisions that affect our 
state. Of course, we would like to foresee the effects each possible decision could 
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cause and we are endowed, naturally, with an evaluation system. However, in general 
the effects are “not sure”, each of them is more or less likely to be observed. Our past 
experiences, combined with our reasoning system, help us to evaluate the respective 
likelihood, which we call also chance. 

Our everyday life is governed by a number of “happenings” and their large number 
usually prevents us to fully understand what “happens in reality”. A first step toward 
the comprehension of life consists in studying isolate simple deterministic cause-
effect phenomena, such as: 

– If a stone (coin, dice) is released from our hand, then it falls down to earth 
– If the temperature increases over 0ºC, then the ice melts 
– The iron will rust because of the existence of oxygen in the air 

and so on. In some cases formulas – even elaborate and complex – are found, which 
allow us to compute in advance a future situation. However, our imperfect knowledge 
prevents us to make fully reliable predictions and forces us to speak about “chances”, 
“probabilities”, and “random behavior”. 

The meaning of the words probability and random seems obvious for everybody. 
Usually we “understand correctly” these words in sentences expressed in a natural 
language. However, our intuition is often misleading. 

Let us consider some examples, taken from examination papers (in reputed English 
universities [Lindley 1965]): 

1) Circular discs of radius r are thrown onto a circular plane table of radius R that 
is surrounded by a border of uniform width r lying in the same plane as the table. If 
the discs are thrown independently and at random, and N discs stay on the table, show 
that the probability that a fixed point on the table will be covered is … 

2) Color blindness appears in 1% of the people in a certain population. How large 
must a random sample (with replacement) be if the probability of its containing a 
color blind person is 0.9? 

3) In each individual there is a pair of genes, each of which may be of type X or of 
type x. An individual with xx is considered abnormal. Each of the parents of a child 
transmits one of its own genes to the child. Mating in the population is to be assumed 
to be random. Show that among normal children of normal parents the expected  
proportion of abnormal is … 

4) A patient with a needle 5 cm long in his chest is X-rayed. If the orientation of 
the needle is quite random, what is the distribution of the length of the needle’s 
shadow? 

5) A radioactive source emitting alpha particles in random directions (all equally 
likely) is held at distance d from a plane photographic plate (supposed infinite). What 
is the distribution of …? 

Another example, taken recently from the Internet: 

6) In the UK 50.9% of all babies born are girls; suppose then that we are interested 
in the event A: “a randomly selected baby is a girl”. According to the frequentist  
approach its probability is 0.509. 

We feel that probability is somehow expressing chances of appearance of an event. 
However, “random” is more difficult to be explained; in our minds it should have to 
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do something with equally likely and perhaps the best illustration of the word is given 
by assuming the use of a (perfect) dice. 

There are other ways to express chances of appearances of an event; for example in 
bookmaker’s idiom the word odds is doing the job. 

Careless use of words may easily lead to paradoxes, and the use of probability and 
random without proper definitions makes no exception. This is one reason why we 
need precise definitions for these terms (concepts). 

People interested in chance games and insurance policies initiated long ago the 
study of probabilities. The Chevalier de Méré is remembered as to ask Pascal1 to 
compute gain chances in dice games; the solution was given in 1654 in a letter to Pi-
erre Fermat. More results by Huygens2 appeared in 1657 in De Ratiociniis in Ludo 
Aleae and were presented also by Jacques Bernoulli3 in his book Ars Conjectandi, 
which was published posthumous in 1713. In De Mensura Sortis and in Doctrine of 
Chances, which appeared in 1711 res. 1718, de Moivre initiated insurance calculus. 

A name that should appear in any book of probabilities is Thomas Bayes4. In a fa-
mous paper An essay towards solving a problem in the doctrine of chances, published 
posthumous (1763), some basic ideas about how to treat probabilities were  
presented. 

Many paradoxes, due to loose axiomatic approach when working with probabili-
ties, lead during the 19th Century to serious developments in mathematical analysis. 
During the 20th Century the accent moved to statistics, despite the incomplete foun-
dation of probability theory. The first axiomatic treatment of probabilities appeared in 
the treatise of A. N. Kolmogorov published in 1933.  

Still today there are different opinions about how to interpret the word “probabil-
ity”. Perhaps it is best to emphasize the ideas of Bruno de Finetti: “the probability (of 
an event) is an expression of the agent’s view of the world and as such it has no  
existence of its own”. 

Usual meaning of “probability” is linked to a particular “event”. In what follows 
we present the classical approach to probabilities, which is based on a “calculus” with 
events. 

3.3   Experiments and Events 

In mechanics, when studying the evolution of a mechanical system, we encounter a 
lot of laws having a deterministic character, as for example the law of falling bodies. 
This law allows You to very accurately predict the trajectory of a bullet or a rocket. 
We are convinced that if the “experience” is repeated, exactly the same result will be 
obtained. 

On the contrary, in thermodynamics most of the laws are not of deterministic type. 
The thermodynamic phenomena are random; it is impossible to predict a certain result 
of such a phenomenon or process; however, You may predict a distribution of results. 

                                                           
1 Blaise Pascal (1623-1662), Pierre Fermat (1601-1665), Abraham de Moivre (1667-1754),   

French mathematicians. 
2 Christiaan Huygens (1629-1695), Dutch mathematician and astronomer. 
3 Jacques Bernoulli (1654-1705), Swiss mathematician. 
4 Thomas Bayes (1702-1761), British Presbyterian minister. 
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The biological laws (starting with Mendelian inheritance laws) have all a random 
character. 

By experiment we understand a repeatable process, having an identifiable or a 
measurable outcome. Typical examples are: 

• After throwing a dice we obtain an identifiable outcome;  
• After measuring (in microns) the diameter of a cell, or the weight of a person 

(in grams), or the systolic pressure of a man, we obtain measurable outcomes;  
• After looking at a pulmonary X-ray of a patient we obtain an identifiable  

outcome;  
• After counting the flu cases detected by a physician we obtain an identifiable 

outcome (even if this is expressed as a number). 

(Recall that measuring an object means comparing it with another object, previ-
ously chosen as a measure unit, and not counting!) 

In most cases – and usually in biology – the outcome of an experiment is not 
unique and cannot be accurately predicted; we say that the experiment is random. 
This means in fact that if several times a random experiment is repeated, each time a 
different result could be obtained. 

From the logical point of view, the possible outcomes cannot be decomposed.  
Accordingly, by an elementary event we understand a possible outcome of a random 
experiment. An event is simply a collection of elementary events. 

Obvious examples are obtained when throwing a dice (with six possible outcomes). 

Many ordinary people consider only the appearance of  as an “event”. However, 

according to our definition above, the appearance of  is an elementary event and 

an event is also the appearance of  or ! After such an experiment, a lot of 

events – not only six, but also fifty-eight others – may appear! 
As another example, an “event” is the detection of a tumor when regarding the 

pulmonary X-ray of our patient “John Johnson”. (Here we encounter a simpler situa-
tion, only two outcomes are possible: we detect, or we do not detect the tumor. How-
ever, we will see later that we have here, according to the theory, four different 
events!) 

Consider for example the experiment consisting of measuring the diameter of a 
cell, which gives us a measurable result. If we choose an arbitrary interval ],[ ba  of 

real numbers – where ba <  – we obtain the following event: the result of measuring 
a cell’s diameter falls into our interval, that means between a and b. Denote by E this 
particular event. 

From a logical point of view, we may consider also the complementary event: the 
result of measuring the cell’s diameter falls outside our interval, that means either  

before a, or after b. This complement of E will be denoted E  (read “E bar”). 
Of course, if our interval is [0, 1 (km)], then it is “certain” that the result of meas-

uring cell diameters will fall into this interval. In this case we obtain the certain 
event. The complementary of the certain event is called the impossible event and is 
denoted by the symbol (the same used in set theory to denote the void set). 
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(When throwing a dice, the certain event consists of the appearance of any face; 
the impossible event consists of not appearing any face at all.) Let us continue now to 
measure the diameter of cells and let us choose another interval ],[ dc  of real num-

bers ( dc < ). Denote by F the following event: the result of measuring a diameter 
falls in this latter interval, namely between c and d. 

Now we have two genuine events, E and F (and automatically two complementary 

events, E  and F ). However, logic tells us that another event appears: the result of 
measuring a diameter falls between c and b (see Figure 3.1 below).  

FE

a c b d  

Fig. 3.1. Conjunction of events: example 

It is natural to denote this latter event by FE ∩  and to say that it is the conjunc-
tion of events E and F. We will read this as “the event E and F”. 

In general, given the events E and F as outcomes of the same experiment, we can 
imagine another event FE ∩  as an outcome of our experiment. 

For example, if we throw a dice, and if E denotes the appearance of a “less than 
three points” face, and F denotes the appearance of an “even” face, then FE ∩  is 

exactly the appearance of . 

However, if E is the appearance of  and F is the appearance of , then 

obviously FE ∩  is impossible, i.e. 
∅=∩ FE . 

In general, if for two events E and F one has 
∅=∩ FE , 

it is said that the events are exclusive. 
From a logical point of view, given two events E and F, we could consider a  

disjunction FE ∪ . In our “measuring cells” example above, this event could be  
interpreted as follows: the result of measuring a cell’s diameter falls between a and d 
(see Figure 3.2 below).  

 

a c b d

FE

 

Fig. 3.2. Disjunction of events: example 

Experiments and Events            37 



38 Uncertainty and Classical Theory of Probability 

Attention, we may have other situations, such as that illustrated in the Figure 3.3 
below; here FE ∪  means that the results of measuring diameters falls between a 
and b, or between c and d. 

a cb d

FE ∪

 

Fig. 3.3. Disjunction of events: another example 

The three operations with events, presented above (complement, conjunction, and 
disjunction) allow us to construct a calculus with events. We do not insist on this  
calculus, because it is analogous to the calculus with sets. The notations used suggest 
this also. 

This analogy is the basis of representing events as subsets of a “universe” Ω ; then 
the conjunction of events becomes the intersection of the corresponding subsets (see 
Figure 3.4), and the disjunction of events becomes the union of the corresponding 
subsets. Of course, Ω  itself represents the certain event. 

 

Fig. 3.4. Conjunction of events in the universe 

Consider now a finite family nEEE ,...,, 21  of events. If the disjunction of these 

events coincides with the certain event, then we say that the family is exhaustive. 
If each two events ji EE ,  ( ji ≠ ) from the family are exclusive, i.e. 

∅=∩ ji EE , we say that the events in the family are mutually exclusive. 

The most interesting situation is that of a mutually exclusive and exhaustive family 
of events. In this case the family is called complete. 
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As a very simple example, consider a dice thrown on the table. Denote 1E  the ap-

pearance of the face , 2E  the appearance of  or , 3E  the appearance 

of any other face. It is obvious that the family 321 ,, EEE  is complete. 

The use of notations from Set Theory is not casual. Let us explain why.  

3.4   Formal Definition of Events 

Consider a “universe” Ω  of “possible worlds”. To be formally correct, let us define 
an algebra (over the universe Ω ) as a family A  of subsets of Ω  that satisfies two 
conditions: 

(S1) A∈Ω , 

(S2) A∈− YX  for every A∈YX , . 

(Recall the difference YX −  is the set of elements of Ω  that belong to X , not 
also to Y . The complement of subset X  is exactly X−Ω .) 

Proposition 3.1. If A is an algebra (over the “universe” Ω ), then it satisfies: 

(I) A∈∩ YX  for every A∈YX , , 

(U) A∈∪ YX  for every A∈YX , . 

Indeed, condition (I) follows from the equality )( YXYX −Ω−=∩  that  

expresses intersection in terms of the difference. As for (U), the equality 
))(( YXYX −−Ω−Ω=∪  is used; hence the union can also be expressed in 

terms of the difference. 
A sigma-algebra (over Ω ) is a family S  of subsets of Ω  that satisfies the  

following three conditions: 

(S1) S∈Ω , 
(S2) S∈− YX  for every S∈YX , , 

(S3) If ,...,...,, 21 nXXX  is a countable family of subsets from S , then 

 S∈
∞

=
U

1n
nX . 

Recall the countable union U
∞

=1n
nX  of the family ,...},...,,{ 21 nXXX  is the set of 

all elements of Ω  that belong to at least a member nX  of the family. 

The countable intersection I
∞

=1n
nX  of a countable family of subsets from the 

sigma-algebra S  belongs to S , because of the relation 

Formal Definition of Events            39 



40 Uncertainty and Classical Theory of Probability 

 UI
∞

=

∞

=
−Ω−Ω=

11

)(
n

n
n

n XX . 

The superior limit of the family above, denoted n
n

Xlimsup , is the set of all  

elements of Ω  that belong to nX  for infinitely many n. Thus, 

 I U
∞

=

∞

=
=

1

  limsup
n nk

kn
n

XX  

and it is obvious that S∈n
n

Xlimsup  when all S∈nX . 

Dually, the inferior limit of the family ,...},...,,{ 21 nXXX , denoted n
n

Xliminf , 

is the set of all elements of Ω  that belong to nX  for all except a finite number of n. 

Thus, U I
∞

=

∞

=
=

1

  liminf
n nk

kn
n

XX . 

The inclusion n
n

n
n

XX limsupliminf ⊆  is always true. When the equality 

n
n

n
n

XX limsupliminf =  takes place, the common value is called the limit of the 

family ,...},...,,{ 21 nXXX . 

Hence, a sigma-algebra contains, together with a countable family of subsets, its 
superior limit and its inferior limit. 

Examples. 1) Of course, if Ω  is an arbitrary set, then its power set Ω2  is a sigma-
algebra. 

Recall the elements of the power set Ω2  are the functions }1 ,0{: →Ωχ . 

2) Consider N=Ω  the set of natural numbers and, for a subset X , define A∈X  

if either X  is finite, or the complement X−N  is finite. Then A  is an algebra, but 
not a sigma-algebra. 

Indeed, the subset of even natural numbers is not in A . However, this is a count-
able union of finite subsets! 

3) Consider R=Ω  the set of real numbers. Start with the family J  of left closed, 
right open intervals 

 } and |{) ,[ ∞<<≤<∞−∈= bxaxxba R  

where ba <  are real numbers. 
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Define the family D  of countable unions of intervals, i.e. D∈D  iff there exists a 

finite family },...,,{ 21 nJJJ  where each J∈kJ , such that ∅=∩ lk JJ  for 

lk ≠ , and U
n

k
kJD

1=
= . 

Now, define the family S  as follows: S∈S  iff either D∈S , or D∈− SR . 
Finally, define the family B  as the “smallest” sigma-algebra containing S . B  is 

known as the Borel5 sigma-algebra, and its elements are known as the Borel sets in R . 

If we repeat the construction above for mR=Ω , taking as intervals in J  the  
Cartesian products (see Figure 3.5 for an example) 

 ) ,[
1

ii

m

i
ba

=
× , 

then we obtain the m-dimensional Borel sigma-algebra. 

Now, consider a sigma-algebra E  (over Ω ). Its elements will be called events. In 
this case Ω  is called the event space. 

Consider the set },{1 TH=Ω  related to a fair coin toss. The sigma-algebra 12Ω  

describes the possible results that may appear after one toss. On the other hand, the 
possible results of the examination of patients’ pulmonary X-ray are described by a 

similar sigma-algebra 22Ω  where }detectednot  tumor detected,tumor {2 =Ω . 

Despite the similarity of the sigma-algebras, we feel there is a difference, and what 
make the difference are the different chances. 

3.5   Defining Probabilities 

Chances of events can be modeled by probabilities. As was pointed out above, the 
systematic study of probability has started around 1650. Since then at least three main 

                                                           
5 Émile Borel (1871-1956), French mathematician. 

 

Fig. 3.5. 2-dimensional Borel set 

Defining Probabilities            41 



42 Uncertainty and Classical Theory of Probability 

approaches to define probability have been accepted: logical, frequentist, and subjec-
tive (Bayesian). 

In the logical (classical) approach, we identify elementary outcomes in a way that 
makes them equally possible (using, for example, the assumptions of symmetry and 
homogeneity). Then, given an event E , we attach its probability )(PL E  by dividing 

the number of elementary outcomes favorable to E  to the total number of elementary 
outcomes. 

As an example, picking a club card from an ordinary deck of cards is an event  

related to 13 elementary outcomes from a total of 52, so its probability is 25.0
52

13 = . 

(However, how we do know that the choice of the card is “random”, not related to any 
prior knowledge about the arrangement of cards? We do not.) 

As another obvious example, the probability of a head appearing after tossing of a 

fair coin is 5.0
2

1 = . (However, how do we know that the coin is “fair”, i.e. symmet-

ric and homogeneous? We do not.) 
In the frequentist approach, we restrict attention to phenomena that are inherently 

repeatable under identical conditions. Then we define the probability )(PF E  as the 

limiting value of relative frequency with which the event E  occurs when the number 
of repetitions tends to infinity. Of course, to estimate )(PF E  we limit ourselves to a 

“big” number of repetitions. 
As an example of frequentist approach, let us estimate the probability of a rain  

falling over Toronto tomorrow. Consider data registered in 200 days and count the 
number of rainy days (let us say 84); assume that each day is “identical” to each other 

(i.e. has the same chances to be a rainy day), so the relative frequency is 42.0
200

84 = ; 

we estimate our probability by its frequency. 
Thomas Bayes highlighted the main critics of the above definitions and his ideas 

are best explained when considering tossing a coin. The number 5.0
2

1 =  accepted as 

the probability of a head appearing after a (single) toss is neither a property of the 
coin, nor of the experimental setup that generates the outcome. This is an opinion of 
the agent You who observes the experience and, due to its limited knowledge, cannot 
predict exactly the outcome! When our agent You must decide something that de-
pends on the outcome of the toss, his estimate of the probability is obtained as follows 
– he would pay an amount to enter in a game, in which he would gain 1 when the 
head appears, res. 0 in the contrary case. The maximal amount that the agent You is 
willing to pay is the probability of the event. 

More precisely, in the Bayesian approach, we imagine a bet about the truth of a 
proposition e = “the event E  will appear”, against an opponent (which considers as 
true the negation e¬ ); we evaluate the odds )(O e  in favor of e  against e¬  when 

the bet is judged “fair”; from this value the probability of the event E  will be, by 

definition, ))(O(1
)(O)(PB e

eE += .  
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Of course, any other person is free to evaluate his odds in favor of e  against e¬  
at a value different from our )(O e ! Moreover, any change in our state of knowledge 

may lead us to re-evaluate the odds! 
What kind of probability is appropriate, and how You would assess )(P E  – i.e. the 

probability of the event E  – in each case?  
Each of the three approaches above has some advantages and some weaknesses 

(drawbacks). Indeed, the logical approach is very simple when applied to (ideal) coin 
tossing, (ideal) dice throwing, drawing (ideal) balls from urns a.s.o. However, what 
means “equi-possible”? We have no grounds – mainly because of insufficient infor-
mation – for favoring an elementary outcome over another; that is we implicitly use 
the principle of insufficient reason. And this is leading to paradoxes! 

The probability )(P E  refers always to a future possible event E and is estimated 

now. It has no meaning if we know that the event “has appeared”. 

time
now

Estimate 
)(P E

Re-estimate 
)(P E  ? 

 E  A 
message 

“A has appeared” 
has been received 

 

Fig. 3.6. Re-estimating probabilities 

In Figure 3.6 a typical situation is presented. We estimate now the probability of a 
future event E. However, as times goes by, we receive a message stating that “event A 
has appeared” and we know that this could modify the chances of E. We are obliged 
to re-estimate the probability of (still future) E. 

If we are now and we think in advance of such a situation, then the re-estimate 
should be denoted differently from )(P E . A classical notation is )|( AEp , read as 

“the probability of E conditioned by A”. 
A good example of conditioning events is taken from actuaries. Consider the  

following sentence: 

“The probability that a man aged 40 will die within 10 years from now is 15%”. 

Here the event E is death within 10 years from now and the event A is “the man 
will reach age 40”. 

Let us give a more relevant example, from medicine. Suppose we have patients 
suffering or not from a disease D, and we imagine a test S, which could give either 
positive, or negative results. Sometimes we use the sentence: 

 
“The patient tests positive provided he/she has disease D” 
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and more often we use the sentence: 

“The patient has disease D, provided he/she tested positive”. 

Both are examples of conditional events. It is essential which event comes first. 

3.6   Defining Probabilities (II) 

To formally define probabilities, let us consider a universe Ω  and a sigma-algebra E  
(over Ω ) whose elements are the events.  

We will interpret )(P E  as the area of the subset E, accepting that the universe Ω  

has a unit area (see Figure 3.7). 

 

Fig. 3.7. Probabilities – geometrical representation 

A first and immediate relation is the so-called relation of the complement: if E is 
an event and we “know” its probability, then we “know” also the probability of the 
complement 

)(P1)(P EE −= . 

As a consequence, if E has a “big” probability, then the complement E  has a 
“small” probability. In particular, the impossible event has null probability 

0)(P =∅ . 

The addition relation is easy to express: if E and F are two arbitrary events, then 

)(P)(P)(P)(P FEFEFE ∩−+=∪  

i.e. “knowing” probabilities )(P E  and )(P F , we “know” also )(P FE ∪ , provided 

we “know” )(P FE ∩ ! This relation is immediate if we look at Figure 3.4: if we add 

the areas of E and F we obtain the area of FE ∪ , but we notice that the area of the 
intersection FE ∩  was counted twice! 

The a priori realization of the event A restrains the universe (from Ω  to the subset 
A – see Figure 3.8). AE |  is represented by the intersection of the two subsets, but if 
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we want to calculate its probability, we have to report ourselves to the new universe A 
instead of Ω  (and the area of A should be 1 in this new situation). Therefore, 

)(P

)(P
)|(

A

AE
AEp

∩=  

(obviously, valid when 0)(P ≠A ). 

Two events E and F are called independent if no one is conditioning the other, 
which means the a priori realization of one is not changing the probability of the 
other: 

)(P)|( EFEp =  and )(P)|( FEFp = . 

For example, if we have two coins and we throw them separately, then it is ac-
cepted that the appearances of the head in each one are independent events.  

 

Fig. 3.8. Geometrical representation of conditional events 

The relation of the independent events is the following: 

)(P)(P)(P FEFE ⋅=∩ . 

This relation allows us to say that the probability of obtaining a double six (when 

throwing two independent dice) is 
36

1
. 

Let us give now a formal definition of probabilities. As above E  is the sigma-
algebra of events (over the universe Ω ). The starting point is the definition of  
conditional probabilities. 

A probability is simply a (two-argument) function  

]1 ,0[: →× EEp , 

which satisfies the following conditions: 

(P1) 1)|( =AAp  for all E∈A . 

(P2) Finite additivity 

AE |  
A 

E 
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If E∈21, AA  and E∈B , and if ∅=∩∩ BAA 21 , then 

)|()|()|( 2121 BApBApBAAp +=∪ . 

(P2’) Countable additivity 
If E∈B  and ,..., 21 AA  is a countable family of events such that 

∅=∩∩∩ )()( BABA ji  for ji ≠ , then 

∑
∞

=

∞

=
=

11

)|()|(
n

n
n

n BApBAp U . 

(P3) )|()|()|( CABpCApCBAp ∩⋅=∩  for all E∈CBA ,, . 

Of course, we say that )|( BAp  is the probability of the event A conditioned by B, 

or the conditional probability of the event A given B. 
From the above axioms, we deduce the following important results: 

Proposition 3.2. 1)|( =Ω Ap  for all E∈A . 
Indeed in (P3) let us put Ω== CB . Then,  

)|()|()|( Ω∩Ω⋅Ω=ΩΩ∩ ApApAp  or )|()|()|( ApApAp Ω⋅Ω=Ω . 

Proposition 3.3. 1)|()|( =−Ω+ BApBAp  for all E∈BA, . 
Indeed, in (P2) let us put AA =1 , AA −Ω=2 . Then,  

)|()|()|( BApBApBp −Ω+=Ω . 

In general, if nAAA ,...,, 21  is a complete family of events then 

1)|(
1

=∑
=

n

i
i BAp  for all E∈B . 

Remark. Starting with the function p, we obtain by 

)|()(P Ω= EpE  

the “probability” of A that we used before. This function 

]1 ,0[:P →E  

satisfies the conditions: 

(Π1) 1)(P =Ω , 

(Π2) ∑
∞

=

∞

=
=

11

)(P)(P
n

n
n

n AAU  if ∅=∩ ji AA  for ji ≠ ,  

and in particular 
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)(P)(P)(P 2121 AAAA +=∪  if ∅=∩ 21 AA . 

From (P3) we obtain the formula for the conditional probability: 

)|()(P)(P ABpABA ⋅=∩ . 

Examples. 1) Toss a die. Then }6 ,5 ,4 ,3 ,2 ,1{=Ω . Here we consider that E  is the 

power set (i.e. the set of all subsets) of Ω  and has 64 elements. 
If }6 ,2{=A  and }6 ,5 ,4{=B , then the event A conditioned by B is }6{| =BA . 

Also }4 ,2{)(| =−Ω BA  and }5 ,4{)(| =−Ω AB . The values 
3

1
)(P =A , 

2

1
)(P =B , 

3

1
)|( =BAp  are immediate. 

2) Consider the real numbers R , and we want to define “probability”. 

We have to choose first the set E  of “events” of R . We choose this set such that 
it contains all left-closed, right open intervals. 

Because E  is a sigma-algebra, this set contains all countable unions of intervals. 
Each set A of E  can be expressed as a countable union of intervals.  

How can we define the functions P and p? There are several possibilities. Here is 
one: 

Consider a continuous function RR: →φ  such that all its values are strictly  

positive, and also 1d )(
 

 
=φ∫

∞

∞−
xx . 

If )' ,[ aaA =  and )' ,[ bbB =  are intervals such that ' ' baba <<< , then 

∫ φ=
' 

 
d )()(P

a

a
xxA  and ∫∫ φφ=

' 

 

' 

 
d )(d )()|(

b

b

a

b
xxxxBAp . 

3.7   Bayes’ Theorem 

The first result of Thomas Bayes is easy to state and to prove. It states that if BA,  are 

events and we know the probabilities )|( BAp , )(P A  and )(P B , then )|( ABp  is 

computed as follows: 

)(P

)(P)|(
)|(

A

BBAp
ABp

⋅= . 

Indeed, we use twice the relation of conditional probability 

)|()(P)(P ABpABA ⋅=∩ , )|()(P)(P BApBAB ⋅=∩  

and we exploit the commutativity of the conjunction of events. 
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As an immediate application of this result, we obtain a very important probability 

)(P

)(P)|(
)|(

test

diseasediseasetestp
testdiseasep

⋅=  

provided all three probabilities in the right hand of the formula have good estimations. 

As for the second result of Bayes, it has the following mathematical expression: 

Theorem 3.1. If nDDD ,...,, 21  is a complete family of events, whose a priori prob-

abilities )(P),...,(P),(P 21 nDDD  are known, and if S is another event such that all 

conditional probabilities  

)|(),...,|(),|( 21 nDSpDSpDSp  

are known, then the reversed conditional probabilities )|( SDp i  are obtained from 

the formula: 

)|()(P...)|()(P)|()(P

)|()(P
)|(

2211 nn

ii
i DSpDDSpDDSpD

DSpD
SDp

⋅++⋅+⋅
⋅

= . 

Proof. Recall that if nDDD ,...,, 21  form a complete family of events, then 

Ω=∪∪∪ nDDD ...21  and ∅=∩ ji DD  for ji ≠ . 

To prove the theorem it is enough to establish that 

)|()(P...)|()(P)|()(P)(P 2211 nn DSpDDSpDDSpDS ⋅++⋅+⋅= . 

Denoting ii DSA ∩= , we have U
n

i
iAS

1=
=  and ∅=∩ ji AA , hence  

∑
=

=
n

i
iAS

1

)(P)(P  from condition (Π2). Now )|()(P)(P iii DSpDA ⋅=  and the 

theorem is proved. 
Bayes' theorem is a tool used to re-evaluate the probabilities of different diagnostic 

hypotheses. 
The notations nDDD ,...,, 21  above may refer to these diagnostic hypotheses. The 

a priori probabilities )(P iD  are estimated by different methods, for example by us-

ing national statistical surveys. The event S is a sign or symptom. In the context of the 
presence of this sign, the probabilities of diagnostic hypotheses should be reevaluated; 
the Bayes' theorem above provides us with a formula to calculate these a posteriori 
probabilities. 

Let us consider the following simple example: 

1D  – our patient has TB, 

12 DD =  – our patient has not TB, 

S – patient “John Johnson” tests positive (in the pulmonary X-ray). 
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Of course, 21, DD  is assimilated to a complete family of events. From national 

statistical data we know that 3% of the population has TB. Therefore we estimate: 

03.0%3)(P 1 ==D ; 

consequently 

97.003.01)(P 2 =−=D . 

We estimate now )|( 1DSp . From medical experience we know that 90% of the 

patients with TB test positive in the pulmonary X-ray. Hence, 90.0)|( 1 =DSp . 

Also, there is a small chance, let us say 1%, that a non-TB person tests positive. 
Hence 01.0)|( 2 =DSp . 

We have now all the ingredients for the Bayes’ formula: 

736.0
0367.0

027.0

01.097.090.003.0

90.003.0
)|( 1 ==

⋅+⋅
×=SDp  

Therefore, the probability that “John Johnson”, who tested positive in the pulmo-
nary X-ray has TB is estimated at 73.6%. 

(That is, because of the event S, the probability of a tb diagnosis raised from 3% to 
73.6%.) 

3.8   Misleading Aspects 

It seems obvious that, given an event E, some events may favor and some others  
disfavor our event. Inexperienced people could “believe” that, if an event A favors 
another event B and the event B favors a third event C, then A should favor also C. 

Let us try to define what “favor” means. It seems reasonable to accept that 
)P()( BB|Ap > , i.e. the appearance of A will increase the probability of B, should be 

a good definition for “A favors B”. Hence, the transitivity reasoning (similar to a  
syllogism) 

CA

CBBA

favors

favors,favors
 

is replaced by a simple implication 

 if 
)(P)|(

)(P)|(

CBCp

BABp

>
>

, then )(P)|( CACp > . 

However, it is not difficult to find a counter-example. Consider the event space 

=Ω {00000, 00100, 01100, 10000, 11000, 11001, 11010, 11100} 
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whose “worlds” ω  are described binary, and denote by kA  the event “the kth digit of 

ω  is 1}. It is easy to establish that 
8

5
21 )(P)(P == AA , 

8

3
3 )(P =A  and that 

8

5

5

4
12 )|( >=AAp , 

8

3

5

2
23 )|( >=AAp , i.e. 1A  favors 2A  and 2A  favors 3A . 

However, 
8

3

5

1
13 )|( <=AAp , hence 1A  does not favor 3A ! 

3.9   Random Variables and Distributions 

“Random variables” and “distributions” provide another way to describe results of 
some particular random experiments.  

In general, a variable may take several values. Univariate variables are supposed to 
take values from R , the set of real numbers. 

A set D  of values is called discrete if for each distinct “points” Dwv ∈,  there  

exist open intervals ),( baIv = , ),( dcI w =  such that vIv∈ , wIw∈  and 

∅=∩ wv II . 

Discrete subsets of R  are necessarily finite or countable, thus their values could 
be “listed”. (However, in general, countable subsets of R  are not necessarily  
discrete!)  

The expression “X is a discrete random variable” means: 
• The possible values of the variable ,...21 ,...,, nxxx  are numeric and dis-

crete, and 
• We know all the probabilities ,...21 ,...,, nppp  associated to these values. 

    The values ,...21 ,...,, nxxx  form the so-called domain of the random variable X. 

    A discrete random variable X is perfectly described by its distribution table: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
  

...

...
  

...

...

21

21

n

n

ppp

xxx
. 

where in the first row the elements of the domain of X are listed. The probabilities on 
the second row are real numbers that satisfy two conditions: 

1) All are positive, i.e. 0≥np  for each value nx . 

2) Their sum is 1: 

1... ...21 =+++ +nppp  . 

The number np  is interpreted as the “chance” that the random variable X will 

take, in a future experiment, exactly the value nx . In other words, np  is the prob-

ability of the event nxX = , i.e. 

)(P nn xXp ==  . 
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(Here the event space Ω  is exactly the domain of the random variable. The events 
are all the subsets of Ω .) 

The distribution table shows how the “chances” are distributed among the possible 
values of the random variable. For this reason we use the word “distribution” instead 
of the longer “random variable”. 

When the values are ordered: 

...21 ... <<<< nxxx  

cumulative probabilities are easily obtained: 

∑
=

=≤
n

i
in pxX

1

)(P . 

Conversely, if the cumulative probabilities are known, then the ordinary probabili-
ties np  for 1>n  are obtained as follows: 

)(P)(P 1−≤−≤= nnn xXxXp . 

As an example, the following table 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
  

16

1

16

6

16

9

aaAaAA
 

may describe the genotype (of a specific gene, with alleles A and a). Obviously, 
16

9
 

is the probability that an individual of the population, chosen at random, belongs to 
genotype AA. 

Expressing the genotype AA by number 0, the genotype Aa by 1 and the genotype 
aa by 2, the table 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
 

210
 

16

1

16

6

16

9  

describes a distribution of probability. The corresponding random variable could be 
interpreted as “the number of dominated alleles in the genotype”. 

3.10   Expectation and Variance 

In general, given a discrete random variable: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
  

...

...
  

...

...
  :

21

21

n

n

ppp

xxx
X  
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if we can compute the value 

...2211 ...)( +⋅++⋅+⋅= nn pxpxpxXE  

this value is known as the expectation of the variable X. It is in fact the “weighted 
average” of the possible values ,...21 ,...,, nxxx , the weights being exactly the prob-

abilities ,...21 ,...,, nppp  . The number )(XE  could be thought of as a “center” of 

the values of X. 
For example, for the discrete random variable 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
  

...

...
  

...

2...42
 

2

1

4

1

2

1
n

n

 

the value 

...
2

1
2...

4

1
4

2

1
2 +⋅++⋅+⋅

n
n  

is not a number, thus “ )(XE  cannot be computed”. 

Given a discrete random variable X and a real number r, the table  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−−
−   

...

...
  

...

...
  :

21

21

n

n

ppp

rxrxrx
rX  

defines another random variable, denoted by rX − . Its expectation is obviously 
rXErXE −=− )()( . 

In general, if X is a random variable with discrete domain 

,...}21 ,...,,{ nxxxD =  

and }{ np  is a distribution associated to X by 

)(P nn xXp == , 

then the expectation )(φE  is defined for each function 

R→φ D:  

for which the series ∑ ⋅φ
n

nn px )(  is a real number. Namely, 

∑ ⋅φ=φ
n

nn pxE )()( . 

In particular, if β+⋅α=φ nn xx )(  with “constant” R, ∈βα , and )(XE  exists, 

then )(φE  is denoted, by convention, )( β+αXE  and we have 

β+⋅α=β+α )()( XEXE . 
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As another particular case, if 2)( nn xx =φ  for each Dxn ∈ , then )(φE  is  

denoted, by convention, )( 2XE . 

Proposition 3.4. Under the notations above, if )( 2XE  exists, then 

22 )()( XEXE ≥ . 

Indeed, ∑ ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅−⋅=−

n n
nnnn pxpxXEXE

2
222 )()(  

0

2

≥⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅−=∑ ∑

n
n

m
mmn ppxx . 

Hence the expectation )( 2XE  of the square 2X , provided it exists, is always 

bigger than the square 2)(XE . The difference between these numbers is called the 

variance of the random variable X and is denoted )(XVar . Therefore, 

22 )()()( XEXEXVar −= . 

Another formula exists 

)))((()( 2XEXEXVar −= , 

which expresses the fact that the variance of X is the expectation of the square of the 
deviation of the random variable X from its expectation )(XE . This justifies the use 

of the variance as a measure of the spread of values around the “center” )(XE . 

Consider now the elements of the event space Ω  are pairs 2),( R∈mn yx , where 

,...}21 ,...,,{ nxxx  and ,...}21 ,...,,{ myyy  are both discrete. If for each pair 

),( mn yx  a number 0≥nmr  is specified, such that 

∑∑ =
n m

nmr 1 

we have a bi-variate discrete distribution. 

Consider a variable X with discrete domain ,...}21 ,...,,{ nX xxxD =  and another 

variable Y with discrete domain ,...}21 ,...,,{ mY yyyD = . Given a bi-variate discrete 

distribution }{ nmr  associated to the pair ),( YX  by 

)(P mnnm yYxXr =∩== , 
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the expectation is defined for each real function 

R→×Φ YX DD:  

for which the series ∑∑ ⋅Φ
n m

nmmn ryx ),(  is a real number. Obviously, 

∑∑ ⋅Φ=Φ
n m

nmmn ryxE ),()( . 

The above considerations apply in particular for the functions “sum” 

mnmn yxyx +=Σ ),(  and “product” mnmn yxyx ⋅=Π ),( . Hence 

∑∑ ⋅+=Σ
n m

nmmn ryxE )()(  and ∑∑ ⋅⋅=Π
n m

nmmn ryxE )()( . 

The events }{ myY =  form a countable family; they are mutually exclusive and 

exhaustive. Hence 

∑ =∩===
m

mnn yYxXxX )(P)(P . 

Therefore, the variable X is turned on a discrete random variable, by 

∑=
m

nmn rp ,  

and, as such, may have the expectation )(XE . Analogously, the variable Y is turned 

on a discrete random variable by 

∑===
n

nmmm ryYq )(P  

and may have an expectation )(YE . 

Proposition 3.5. Under the notations above, if )(XE  and )(YE  exist, then )(ΣE  

exists and )()()( YEXEE +=Σ . 

Let us express Y in table form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
  

...

...
  

...

...
  :

21

21

m

m

qqq

yyy
Y  

The function Σ  is identified to the sum YX + , which is a uni-variate random 
variable, whose values are the possible distinct sums mn yx + . Therefore, the prop-

erty of the expectation E with respect to the sum of random variables, is resumed by 
the following formula: 
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)()()( YEXEYXE +=+ . 

If the product Π  is identified to the product YX ⋅ , which is a uni-variate random 
variable whose values are the possible distinct sums mn yx ⋅ , then the expectations 

)( YXE ⋅ , )(XE  and )(YE  may appear. The covariance of the pair ),( YX  is  

defined as 

)()()(),( YEXEYXEYXCov ⋅−⋅= . 

Two discrete random variables X with domain ,...}21 ,...,,{ nX xxxD =  and Y 

with domain ,...}21 ,...,,{ mY yyyD =  – both uni-variate – are called independent if  

)(P)(P)(P mnmn yYxXyYxX =⋅===∩=   

for every Xn Dx ∈ , Ym Dy ∈ . 

An immediate computing proves the following. 

Proposition 3.6. If X and Y are independent uni-variate discrete random variables, 
then 0),( =YXCov . 

Suppose 0)( >XVar  and 0)( >YVar . The relation 

0)()(),(2)(2 ≥+α=+α+α YXVarXVarYXCovXVar   

is valid for every R∈α . The quadratic polynomial in α  cannot have real roots; 
hence its discriminant is negative. Therefore 

0)()(),( 2 ≤⋅− YVarXVarYXCov  

which is equivalent to  

1
)()(

),(
1 ≤

⋅
≤−

YVarXVar

YXCov
. 

The expression 

)()(

),(
),(

2

YVarXVar

YXCov
YX

⋅
=ρ  

is known as the correlation coefficient between X and Y. 

In general, 

),()()()( YXCovYVarXVarYXVar ++=+ . 

However, if the random variables X and Y are independent, then we have the  
equality 

)()()( YVarXVarYXVar +=+ . 
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3.11   Examples of Discrete Distributions 

A random variable that takes only one value is assimilated to a real number. Genuine 
random variables take at least two values. 

The simplest random variables are the so-called Bernoulli distributions, which 
are associated to some experiments in which the result can be only a “success” or a 
“failure”. 

A Bernoulli distribution takes only two values, denoted by:  

0, which corresponds to “failure”, respectively  
1, which corresponds to “success”. 

This set of random variable plays an important role in Bayesian networks (see 
Chapter 6), because the values 0, respectively 1 are easily identified with “false”,  
respectively “true”.  

A Bernoulli random variable is perfectly determined by the probability of “suc-
cess”; if this probability is denoted by π , then the corresponding table is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ππ−1

10
. 

This particular random variable will be denoted by )(πBe . Its expectation and 

variance are easily computed: 

π=π))((BeE , )1())(( π−π=πBeVar . 

When throwing a (perfectly equilibrated) coin, the result is expressed by the ran-

dom variable )(
2

1Be ; the values of the random variable )(
2

1Be  are interpreted for  

example as the number of heads that appear (0 or 1).  

The following table  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
49.051.0

MaleFemale
 

describes the sex of a (future) newborn child. (From statistical data it is known that in 
every 100 newborn children, usually 51 are girls). Thus the number of boys that are 
born (in single birth) is expressed as )49.0(Be . 

Consider four coins that are thrown simultaneously. The number of heads that ap-
pear is represented by a random variable, which obviously has only 0, 1, 2, 3 or 4 as 
values. An immediate computing identifies the respective probabilities: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

16

1

16

4

16

6

16

4

16

1

43210
 . 
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Let us imagine now that we are not throwing simultaneously four coins, instead we 
throw four times in sequence the same coin. It is obvious that the “number of heads 
that appear” is the same random variable as above. 

This example admits the following generalization. Consider a sequence 

nXXX ,...,, 21  of n Bernoulli random variables, all of type )(πBe , each one repre-

senting an independent trial. All are characterized by the same probability π  of a 
“success” in the respective trial. The number of overall “successes” in the n consecu-
tive trials is the sum 

nXXX +++ ...21 , 

which constitutes a new random variable. This is denoted by ),(b πn , and its values 

are the numbers: 0, 1, ... , n. The probability to obtain a number of k “successes” in 
the n consecutive trials – i.e., that variable ),(b πn  takes k as value – has the follow-

ing expression 

knk
k

n
kn −π−π⎟

⎠
⎞

⎜
⎝
⎛==π )1()),(b(P , 

thus the distribution table of ),(b πn  is: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ππ−π⎟

⎠
⎞

⎜
⎝
⎛π−ππ− −− nknk

k

nnn n

nk

...)1(...)1()1(

......10
1 . 

The random variables ),(b πn  that are obtained for different numbers n of compo-

nents and for different probabilities π  are called binomial distributions. 
The values of the binomial distribution ),(b πn  are discrete; hence the following 

formula, that gives the “cumulated” probabilities, is obvious: 

∑
=

=π=≤π
j

k

knjn
0

)),(b(P)),(b(P  for 1≥j . 

If these values are known, any probability )),(b( knP =π  is immediately  

obtained: 

)1),(b(P)),(b(P)),(b(P −≤π−≤π==π knknkn . 

Another useful formula is the following 

)1),(b(P)),(b(P)),(b(P −≤π−≤π=≤π≤ injnjni . 

Let us resume: a binomial distribution is linked to an experiment satisfying the 
conditions: 

a) It consists of a number n of trials. 
b) The result of each trial is classified either as a “success”, or as a “failure”. 
c) The probability p of a success is the same in all trials.  
d) Every trial is independent from each other.  
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Its values are the number of successes obtained in the n trials. 

The expectation of the binomial distribution ),(b πn  is easily obtained: 

npnE =π)),(b( . 

As for the variance, its formula is immediate: 

)1()),(b( π−π=π nnVar . 

Example. A test is assembled of 15 questions, each one with five possible answers 
(and only one correct). Evaluate the probability that a person, who answers at random, 
will obtain exactly 8 correct answers (i.e. over 50% success rate). Compute the aver-
age of correct answers obtained by persons who answer at random.  

When answering at random, the number of correct answers is a binomial random 
variable (one says also that “is binomially distributed”) associated to a number of 15 

trials, and the probability of success, in each trial, is 2.0
5

1 ==π . If the number of 

correct answers is 8=k , then we should look in the tables for (or to compute) the 
probability )8)2.0  ,15(b(P = , which is 0.0035, hence less than 1%! 

 

On the other hand, 

32.015))2.0  ,15(b( =⋅=E . 

Therefore, a number of 3 correct answers will be obtained in average. 
There exist tables that contain the values )),(b(P kn =π  for “standardized” values 

of π  ( 25.0=π , 1.0=π  and others). However, the present use of computers makes 
these tables superfluous. 

In Microsoft Excel there is a built-in function BINOMDIST with four arguments 
(see Figure 3.9 above): 

 

 

Fig. 3.9. Binomial distribution in Excel 
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— Number of “successes” k. 
— Number of trials n. 
— Probability of a success π . 
— A logical parameter, whose value TRUE indicates the cumulated probability. 

In Microsoft Excel there is another built-in function NEGBINOMDIST. This is 
used to obtain the probability of exactly f failures before obtaining the kth success (on 
condition that the probability p of a success is the same for all trials). 

Another family of discrete random variables is that of Poisson6 distributions. As 
pointed out above, a binomial random variable counts the number of “successes” ob-
tained in a fixed number, n, of trials. Similarly, a Poisson random variable counts the 
number of “rare appearances” that happen in a given time interval, or in a delimited 
space interval (a region, a domain). 

A Poisson experiment is characterized by three conditions: 

1) The number of appearances in a given interval is independent to what happens 
into any other interval. 

2) The probability of a single appearance in a given interval is proportional to the 
“length” of that interval. 

3) The probability of several appearances in an interval tends to 0 when the 
“length” of the interval tends to 0 (this is interpreted, as “the appearances are 
rare”).  

A Poisson distribution represents the “chances” of a number of appearances that 
happen in a given interval, when the conditions of a Poisson experiment are met. Such 
a distribution depends on a single (real positive) parameter λ  and is usually denoted 
as )(λPo . It takes as values the natural numbers 0, 1, 2, ..., n, ... with respective 

probabilities 

)exp(
!

))((P n
n

nλ
nPo −⋅==λ . 

Several tables that contain the values of probabilities ))((P nPo =λ  for different 

particular values of the parameter λ  exist. However, such tables are superfluous  
today; for example, in Microsoft Excel the built-in function POISSON is available. 

It is relatively easy to establish the following results concerning the expectation 
and the variance of a Poisson distribution: 

λ=λ))((PoE  and λ=λ))((PoVar . 

Examples. 1) In biology and other life sciences it is accepted that the incidence of  
attacks of parasites on a population is well described by a Poisson distribution. Here n 
is the number of parasites that attack the same individual of the population. 

2) The chief of an emergency unit knows, from his past experience, that in average 
12 emergency calls are received each month that impose the use of the helicopter.  

                                                           
6 Denis Poisson (1781-1840) – French mathematician and physicist, creator of the mathematic- 

cal physics. 
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However, the helicopter is able to fulfill at most three missions per day. What is 
the probability that, in an ordinary day, more that 3 emergency calls that impose the 
use of the helicopter are received? 

The estimation is simple, since such phenomena are modeled using Poisson distri-

butions. In our case 4.0
30

12 ==λ  (let us admit every month has 30 days). The prob-

ability of an overflow  

00077.0)3)((P1)3)((P =≤λ−=>λ PoPo  

is extremely low. However, once in three years we should expect an exceptional  
situation! 

3.12   Continuous Distributions 

In previous sections only random variables whose domain (i.e. the set of values) was 
a discrete subset of R  were treated. We will consider now (uni-variate) random vari-
ables whose domain is assimilated to the whole set R  of real numbers. These are 
known as the continuous distributions. 

Values of such a distribution appear, obviously, as results of measurements 
(lengths, weights, time durations, temperatures, concentrations etc.). 

For continuous distributions it is impossible to say, in general, that they describe 
the distribution of “chances” among the different possible values of the corresponding 
random variables. In fact, if X is a continuous random variable, then the probability of 
the “event” xX =  is, in general, zero! 

A continuous distribution is described by a real function 

]1 ,0[: →RF , 

which satisfies the following conditions: 

(Di1) )()( 21 xFxF ≤  for every pair of real numbers 21 xx < . 

(Di2) 0)(lim =
−∞→

xF
x

 and 1)(lim =
∞→

xF
x

 

and the connection with the random variable X is given by the relation 

)()(P xFxX =≤  for every R∈x . 

The monotone increasing function F is called the distribution function of the  
random variable X.  

If we follow this approach, then any discrete distribution is in fact nothing else 
than a particular case of continuous distributions. Indeed, if 

...21 ... <<<< nxxx  

is the ordered sequence of values of the discrete random variable X (that is associated 
to the discrete distribution), then the diagram of cumulated (relative) frequencies is in 
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fact a graphical representation of the distribution function. For a number x inside the 
interval )1  ,( +kk xx , it is obvious that 

)()()()( kk xFxXPxXPxF =≤=≤= , 

which explains the “stepwise” aspect of the distribution function (see Figure 3.10  
below). 

The most important distribution functions are described by use of the so-called 
density functions. 

A density function is a real function  

RR →:f , 

which satisfies the following two conditions: 

(De1) 0)( ≥xf  for every R∈x , 

(De2) 1d )(
 

 
=∫

∞

∞−
xxf . 

The connection between a density function and a distribution function, hence a 
random variable X, is given by the following relations: 

∫ ∞−
=≤=

x
xxfxXxF

 
d )()(P)(  and )(

d

d
)( x

x

F
xf = ,  

provided f is a continuous function. Moreover, 

∫=≤<
b

a
xxfbXa

 

 
d )()(P . 

As in the discrete case, for continuous distributions the expectation and the vari-
ance are defined. More precisely, once a density function ϕ  is specified, the expecta-

tion )(φE  is defined for each real function 

RR →φ :  

 

Fig. 3.10. Distribution function of a discrete random variable 
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for which the integral ∫
∞

∞−
φ xxfx d )()(  is a real number. As an important particular 

case, for the square 2)( xx =φ , if )(φE  exists, it will be denoted )( 2XE . As in the 

discrete case, 22 )()( XEXE ≥ , and the variance of X is defined as 

)))((()()()( 222 XEXEXEXEXVar −= =− . 

Of course, the expectation )(XE , if it exists, is a “center” of the values of X. The 

variance )(XVar  is a measure of the spread of values around the center. 

The main properties of the expectation and variance cannot be obtained without  
recurring to multi-variate random variables. 

The simplest case is that of bi-variate random variables. Their domain is the plane 
2R  of pairs of real numbers.  
A continuous bi-variate distribution is described by a real function 

]1 ,0[: 2 →RF  

satisfying the following six conditions: 

(2Di1) ),(),( 21 yxFyxF ≤  for every 21 xx <  and y. 

(2Di2) ),(),( 21 yxFyxF ≤  for every x and 21 yy < . 

(2Di3) 0),(),(),(),( 22122111 ≥+−− yxFyxFyxFyxF   

for every 21 xx <  and 21 yy < . 

(2Di4) 0),(lim =
−∞→

yxF
x

 for every y. 

(2Di5) 0),(lim =
−∞→

yxF
y

 for every x. 

(2Di6) 1),(lim
,

=
+∞→

yxF
yx

. 

Of course, a pair ),( YX  of (uni-variate) random variables X and Y could represent 

a bi-variate random variable. 
As such, the connection between the distribution F and the random variable 

),( YX  is expressed in the following way 

)(P),( yYxXyxF ≤∩≤=  for every 2),( R∈yx . 

The most interesting situation appears when 

vuvufyxF
xy

d d ),(),( ∫∫
∞−∞−

=  
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where RR →2:f  is a two-variable function with positive values, called the joint 
density function. 

In case the joint density function f is specified, the expectation )(ΦE  is defined 

for each real function 

RR →Φ 2:  

for which the integral ∫ ∫
∞

∞−

∞

∞−
Φ dy d ),(),( xyxfyx  is a real number. 

The main particular cases are: 

– The affine functions γ+⋅β+⋅α=Λ yxyx ),(  with “constant” 

R,, ∈γβα , and in particular  

– The sum yxyx +=Σ ),(  and the mean yxyx ⋅+⋅=Α
2

1

2

1
),( , 

– The product yxyx ⋅=Π ),( . 

As in the discrete case, the additivity property of the expectation: 

)()()( YEXEYXE +=+  

can be established. Moreover, the covariance of the pair ),( YX  is defined as 

)()()(),( YEXEYXEYXCov ⋅−⋅= . 

Suppose the uni-variate random variables X, Y are described, respectively, by the 
distribution functions 

]1 ,0[:, →RGF . 

This means we have the relations  

)()(P xFxX =≤ , )()(P yGyY =≤  for every R∈yx, . 

The possible values x, y of the random variables could be added. Based on the ad-
dition of values, we may define the sum YX +  of random variables in case we are 
able to compute 

)()(P sHsYX =≤+  for every R∈s . 

Of course, the sum YX +  will be described by the distribution function 
]1 ,0[: →RH . 

The following Proposition is a standard result in classical Probability Theory. 

Proposition 3.8. If the joint density of the pair ),( YX  is 

RR →2:f  

and if YXS += , then the density function of S exists and is given by: 
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 d ),()( uusufsh −= ∫
+∞

∞−

. 

Indeed, for any real number s we have 

vuvufsYXsS

svu

d d ),()(P)(P ∫∫
≤+

=≤+=≤ . 

A simple change of variable v, in the integral, to vuw +=  leads to 

wuuwufsS
s

d d ),()(P −=≤ ∫∫
+∞

∞−∞−

 

which, compared to wwh
s

d )(∫
∞−

, proves the Proposition. 

Analogous results can be established for the product YXP ⋅= , the quotient 
YXQ /=  and other random variables (that are defined accordingly). 

3.13   Examples of Continuous Distributions. Normal 

In many cases of theoretical reasoning normal (i.e. Gaussian) distributions play im-
portant roles. A normal distribution, determined by the real parameters µ  and 

02 >σ , is denoted by ),( 2σµN  and is characterized by the density function: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

µ−−
πσ

=ϕ
2

2

2

)(
exp

2

1
)(

x
x . 

The graph of this function is bell-shaped – usually known as “the Gauss’ bell” – 
and is symmetric with respect to the vertical line µ=x . 

After computing some integrals the following results are obtained 

µ=σµ )),(( 2NE  and 22 )),(( σ=σµNVar , 

formulas that give an obvious interpretation of the two parameters. The parameter µ  

is referred to as the (theoretical) mean, and 2σ  is referred to as the (theoretical)  
variance, i.e. the square of the (theoretical) standard deviation 0>σ  of the random 

variable ),( 2σµN . It is not surprising that the “spread of the bell” depends on the 

extent of σ  (see Figure 3.11 below for some examples).  
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axis of values of the variable 

Graph of the density 
function for 2 , 42

Graph of the density function 
for 0 , 1Graph of the den-

sity function for 
0 , 25.02

 

Fig. 3.11. Examples of normal densities 

Obviously, a normal distribution may take any real number as a value. However, 
the “probability of values” diminishes as they depart “away” from the mean µ . 

It is impossible to fill in tables for all normal distributions. The following result 
was extensively used in the past to compute in relation to normal distributions. If X is 

a distribution of type ),( 2σµN , then the distribution 

)(
1 µ−
σ

= XZ  

is of type )1 ,0(N . Moreover, 

⎟
⎠
⎞

⎜
⎝
⎛

σ
µ−≤=≤ x

ZxX P)(P  

and this allows us to use data found in tables of the so-called standard normal distri-
bution )1 ,0(N . 

However, the use of tables is obsolete today, and the general software allows all 
kind of computing related to normal distributions. For example, in Excel two built-in 
functions, called NORMDIST and NORMINV, which depend on the parameters µ  

and σ , are available. The dialog box of the first is presented in the Figure 3.12 below. 
To compute values in the classical way, i.e. in relation to the standard normal distribu-
tion, two supplementary built-in functions NORMSDIST and NORMSINV are also 
available.  

A (bell shaped) Gaussian density function that corresponds to a continuous distri-
bution, is ideal, it cannot appear in connection with a natural population. However, 
some natural “biological” distributions – such as the distribution of the height (in cm) 
of humans, or the distribution of the intelligence quotient (IQ) of humans – are ap-
proximately bell-shaped. (For example, the IQ of humans is assimilated to a normal 
distribution of mean 100 and standard deviation 10.) 

Traditionally, normal distributions quantify the involuntary errors that appear in 
measurements of lengths or weights. Here, if µ  represents the measured value, σ   
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Fig. 3.12. Computing with normal distributions in Excel 

will represent the measuring error. Normal distributions are also assimilated to the so-
called “noise” that affects data transmission. 

Sometimes the relative position of an individual from a normally distributed popu-
lation is of interest. For example, we know that an individual has obtained a result of 
80 in a competition. This number, 80, tells us nothing about the classification of that 
individual, because it can be near to the minimum result, near to the median, as well 
as near to the maximum. The real performance is not obvious! 

A usual method to describe the real performance is to indicate the standard score 
(known also as the z-score). This score expresses how much standard deviation is 
“under” the result. It is computed easily, by subtracting the population mean µ  from 

the result x, then by diving the difference µ−x  to the standard deviation σ .  

σ
µ−= x

z . 

In practice µ  and σ  are estimated from the data available. For example, if the  

result 80 was obtained by a person at an IQ test (for which it is assumed that 100=µ  

and 10=σ , then the z-score has value –2, which corresponds to a weak performance 
of that person. 

The normal distribution helps us to define what a “normal” individual means. In 
quality theory, individuals having z-scores between –2 and +2 are labeled as “stan-
dard”, and individuals whose z-scores are between –3 and +3 are labeled as “normal”.  

Let us notice that, by this standardization, a value of an arbitrary normal distribu-
tion is replaced by a value of the standard normal distribution )1 ,0(N . Keep in mind 

the idea that by standardization the scores of (individuals from) different populations 
could be compared. 
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The family of normal distribution is important because some very interesting  
results, concerning arbitrary distributions, are expressed in terms of normal distribu-
tions. For the theory of sampling the following result is extremely important: if 

nXXX ,...,, 21  are distributions of type ),( 2σµN , i.e. are normal with the same 

theoretical mean µ  and the same theoretical standard deviation σ , then the distribu-

tion of the average 

)...(
1

21 nXXX
n

Y +++=  

is also normal, with the same mean µ  and another standard deviation (smaller 

than σ ). It is established that this standard deviation is exactly 
n

σ  in case all 

nXXX ,...,, 21  are mutually independent. In measure theory the above result is in-

terpreted as follows: the distribution X expresses the result of a single measurement, 
the parameter µ  expresses the obtained value, and the parameter σ  expresses the in-

verse of the precision. (High precision means σ  small, near to 0.) After a series of 

measurements nXXX ,...,, 21  (of the same object), we expect the average to express 

the measure of that object, with higher precision. 
Normal distributions appear in several theoretical results that express other kind of 

“limit behavior” of random variables of other types. For example, if we consider a bi-
nomial distribution ),(b pn  where the parameter n is “big” and the parameter p is not 

near to the extremes 0 and 1, then the histogram of its probabilities will suggest a 
Gaussian bell. This allows the use of the normal distribution as an approximation of 

such a binomial ),(b pn . More precisely, the normal ),( 2σµN  having the mean 

np=µ  and the variance )1(2 pnp −=σ  is a good approximation. Thus, calculus of 

the value ⎟
⎠
⎞⎜

⎝
⎛ +≤σµ<−

2

12
2

1
),(P kNk  replaces the direct calculus of the value 

)),(b(P kpn = , which is more tedious.  

Let us mention that the approximation of a binomial distribution with a normal  
distribution is satisfactory when:  

9.01.0 << p , 30>n  and 5>np . 

3.14   Examples of Continuous Distributions. Chi-Square 

It was stated above that, by using the “standardization formula” 

σ
µ−= X

Z  

the normal distribution ),( 2σµ∈ NX  is replaced by the “normal standard” distribu-

tion Z (i.e. )1 ,0(NZ ∈ ). The values of Z are, exactly as those of X, either positive or 
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negative; however, the former are “grouped” symmetrically around the origin. (In 
fact, 99.7% of the values are situated between –3 and +3.)  

What can be said about the square 2Z ? Of course, its values cannot be negative, 
thus they are definitely not symmetrical around the origin. (Still, 99.7% of the values 

are between 0 and 239 = !) 

The density function of the square 2Z  is easily represented; by using the function 
CHIDIST implemented in Excel. In the Figure 3.13 below it is apparent that no “axis 
of symmetry” exists, and the expectation is not obvious. 

When is the square 2Z  useful? Of course, if Z expresses a random error (positive 

or negative), then 2Z  will express the square of the error. In some situations, after a 
series of measurements (of the same object), the “cumulative” error is expressed as a 
sum of squares, not necessarily reduced at a singe term. This imposes the following 
generalization. Consider several random variables νZZZ ,...,, 21  (all normal stan-

dard and mutually independent). The sum of squares 

22
2

2
1 ... ν+++ ZZZ  

considered as a random variable, is known as the chi-square distribution with ν  

degrees of freedom and is denoted )(2 νχ . 

Therefore, we have a new family )}(2 ν{χ  of continuous random variables, which 

“depend” on the parameter ν , the number of degrees of freedom, which is a natural 
number (1, 2, 3 etc.). 

The function CHIDIST from Excel allows us to represent the density functions of 
these random variables – see the Figure 3.13 above for examples and Figure 3.14  
below for the control. 

These densities are uni-modal, the unique peak being above the abscissa 2−ν . It 
is easy to understand the topics 

CHIDIST(abscissa x, number of degrees of freedom). 

  

Fig. 3.13. Density function of Z2 (left) and of )10(2χ  
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However, the use of CHIDIST in Excel is different from that of NORMSDIST. For 
historical reasons, in fact CHIDIST(x, ν ) is exactly the probability that the distribu-

tion )(2 νχ  takes values larger than x (and not less than x as in the case of 

NORMSDIST). 

 

Fig. 3.14. Use of CHIDIST in Excel 

Computation allows us to obtain the expectation and the variance of these distribu-
tions. The results are easy to remember, being connected to the number of degrees of 
freedom:  

ν=νχ ))(( 2E , ν=νχ 2))(( 2Var . 

The intensive use of the family of chi-square distributions )}(2 ν{χ  is due to im-

portant results in sampling theory. One of these results is expressed as follows. Sup-
pose our individuals under study are grouped in several “modalities” (taking into ac-
count two criteria); the respective numbers are inserted in a contingency table 

  Column c  Row totals 
 … … … … 
Row r … rcn  … •in  

 … … … … 
Column totals … cn•  … ••n  

Consider the statistic 

2
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−

×
=

••

••

••

••∑∑ n

nn
n

nn

n
X cr

rc
crr c

. 
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This statistic is following approximately the distribution )(2 νχ , where the num-

ber of degrees of freedom is exactly )1()1( −⋅− CR , R being the number of rows, C 

the number of columns of the data table. 
In sampling theory we encounter another interesting result. Suppose we have a 

sample of volume n from a normally distributed population ),( 2σµN  and the stan-

dard deviation of the sample is s. Then the quotient 
2

2)1(

σ
− sn

 is a random variable 

of type )1(2 −χ n , thus the number of degrees of freedom is 1−n . (Obviously, this 

result cannot be used directly, because in general the theoretical standard deviation σ  
is not known!) 

3.15   Student and Fisher-Snedecor Distributions 

The t-distributions appeared a century ago in a paper by W. Gosset7, published under 
the pseudonym “Student”, that is why they are known also as the Student distribu-
tions. The family )}(t{ ν  of these distributions is “parameterized” by the same num-

ber ν  as the family )}(2 ν{χ . The reason is obvious if we take into account the  

definition: 

ννχ
=ν

)(
)(t

2

Z
 . 

Remember that Z represents a standard normal distribution, i.e. of type )1 ,0(N , 

and ν
νχ )(2

is the arithmetic mean of squares of ν  copies of distributions of type 

)1 ,0(N . 

To compute with this family )}(t{ ν  of distribution, in Excel a built-in function 

TDIST is available. Its use is as follows. 
TDIST(abscissa x, number of degrees of freedom, laterality parameter). 
The laterality parameter has values either 1 (i.e. unilateral) or 2 (i.e. bilateral). 
In the Figure 3.15 below the density function of the distribution t(10) is presented. 

It is apparent that the “curve” is symmetric with respect to the origin, its graph is 
“similar” – however, not identical – to that of a Gaussian. (In fact, for 30>ν  the 
graphs of )(t ν  and )1 ,0(N  practically coincide.) 

The use of the family )}(t{ ν  of distributions is due also to some important results 

from the sampling theory. Two of these results are as follows. 

Suppose the population is normally distributed, with mean µ  and variance 2σ , 

and suppose nxxx ,...,, 21  is a “small” sample of volume n. Denote by 

                                                           
7 William Sealey Gossett (1876-1937), English mathematician. 
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Fig. 3.15. Density function of t(10) 

n

xxx
m n+++

=
...21  the sampling mean and by s the sampling standard deviation 

1

(...( 22
))1

−
++ −−

n

xx mnm
. Then the quotient 

n
s

m µ−
 follows a distribution of 

type )1(t −n  with 1−n  degrees of freedom.  

(Let us mention here that the quotient 
2

2)1(

σ
− sn

 follows a chi-square distribution 

with 1−n  degrees of freedom.) 
Suppose two samples from the same (normally distributed) population are avail-

able. From the first sample, of volume 1n , the sample mean 1m  and the sample  

standard deviation 1s  are computed. Analogously, from the second sample, of vol-

ume 2n , the sample mean 2m  and the sample standard deviation 2s  are computed. 

If at least one of the numbers 1n , 2n  is “small”, then the quotient 

21

21

11

nn
s

mm

+

−
 is 

Student distributed with 221 −− nn  degrees of freedom. In the quotient above the 

square 2s  of s is a weighted average of the squares 2
1s  and 2

2s  of the respective 

standard deviations, more precisely  

2

)1()1(

21

2
22

2
112

−+
−+−

=
nn

snsn
s . 
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The use of the family of distributions )},(F{ 21 νν , which are known as Fisher-

Snedecor8 distributions, is also due to some results from the sampling theory. The 
motivation appears when considering “practical” problems of the following type: if 
data from two samples are available, samples from distinct populations supposed 
normally distributed, it is true that the spread of individuals in the populations is the 
same? (In other words, the theoretical standard deviations – or the variances – of the 
two populations are the same?) 

 

Fig. 3.16. Density functions of F(8, 6) and of F(10, 16) 

Obviously, if this is true, then the quotient of the respective variances (or theoreti- 
cal standard deviations) is 1. Theoretical standard deviations are estimated by sam-
pling standard deviations. When the quotient of the sampling standard deviations is 
far from 1 (i.e. is either “big” or “near 0”), we will have no reason to accept that vari-
ances coincide.  

The definition of (theoretical) Fisher-Snedecor distributions is justified by the fact 
that theoretical standard deviations are estimated by sampling standard deviations. By 

definition, ),(F 21 νν  is the quotient 

2
2

2
1

1
2

)(

)(

ν
νχ

ν
νχ

 of two arithmetic means. 

In the Figure 3.16 above the density function of two such distributions is repre-
sented. The similarity with density function of chi-square distribution is apparent (?!).  

Of course, in Excel the built-in function that allows computing with Fisher-
Snedecor distributions is FDIST. 

In case of two samples of volumes 1n  res. 2n , extracted from normally distributed 

populations having the same variance – in particular extracted from the same  
(normally distributed) population, the quotient of the squares of the sampling standard 

                                                           
8 G. W. Snedecor (1881-1974), American statistician. 
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deviations 
2
2

2
1

s

s
 follows a distribution of type )1,1(F 21 −− nn , the number of de-

grees of freedom being 11 −n  and 12 −n . 

The “practical” use of all distributions N, 2χ , t, F above (and of many others) in 

significance testing supposes the choice of a threshold that delimits the “rejection re-
gion”. This region will contain values that are considered “significantly” different 

from 0 (in cases of N, 2χ , t) respectively from 1 (in case of F). What “significantly” 

means is a personal option, related to the risks we are ready to accept. In Chapter 4 
this subject will be approached. 

3.16   Formal Definition of Random Variables 

The treatment of random variables above is applications oriented; a formal definition 
of (uni- or multi-variate) random variables is given in the context of the so-called 
Measure Theory. Recall the intervals R⊂) ,[ ba  generate a sigma-algebra B  over 

R , which is called the real Borel sigma-algebra, and whose elements are called Borel 

sets. More generally, the Cartesian products ) ,[
1

ii

m

i
ba

=
×  generate a sigma-algebra 

over the m-dimensional real space mR . The “events” of this sigma-algebra mB  are 
called m-dimensional Borel sets. 

Let us start with a sigma-algebra A  over the universe Ω . 

A function mX R→Ω:  is called random variable if 

A∈− )(1 BX  for any m-dimensional Borel set B. 

Here )(1 BX −  is a notation for the set })(|{ BX ∈ωΩ∈ω . 

According to this definition, the notion of random variable depends on the sigma-

algebra A . In case Ω= 2A  all functions mX R→Ω:  are random variables. 

As an example, suppose we toss a coin several times, each time 1=h  denotes the 

apparition of head, 0=h  denotes the apparition of tail. Then 4321 hhhh=ω  denotes 

the combination of heads/tails that appear in four consecutive tosses. Ω  has 16 ele-

ments, and Ω= 2A  has 65536 elements. 4321)( hhhhX +++=ω , which denotes 

the number of heads in four consecutive tosses, is a random variable. Also 
),()(' 4321 hhhhX ++=ω  is a (bi-variate) random variable. A less obvious exam-

ple is "X , where rX =ω)(" , the rank of the first head that appears (or 0 if no head 

will appear). 
Consider another universe 'Ω  and a sigma-algebra A'  over 'Ω . The following 

definitions are taken from Measure Theory. 
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The pair ),( AΩ , where A  is a sigma-algebra over Ω , is called measurable 
space. A measurable function 

),'(),(: A'A Ω→ΩF  

is simply a function ': Ω→ΩF  such that A∈− )'(1 AF  for any A'∈'A . 

Thus, random variables are nothing else than measurable functions 

),(),( mBA mR→Ω . 

In particular, measurable functions 

),(),(: BBn RR →nY  

are simply n-argument functions RR →nY :  that satisfy the condition 

nB∈− )(1 BY  for any (real) Borel set B.  

Theorem 3.9. Let A  be a sigma-algebra of events over the universe Ω , let 

R→Ω:,...,1 nXX  be (univariate) random variables, and RR →nY :  a measur-

able function. Then the composition 

R→Ω:),...,( 1 nXXY o  

given by ))(),...,(())(,...,( 11 ωω=ω nn XXYXXY o  is a random variable. 

The proof is standard in Measure Theory (see [König 1997], [Taylor 1997]). In 

short, denote by B a real Borel set. Then, by hypothesis, nB∈− )(1 BY . 

On the other hand,  

)}())(),...,((|{)()),...,(( 1
1

1
1 BYXXBXXY nn

−− ∈ωωω=o . 

Now, for ) ,[
1

ii

n

i
baD

=
×= , we have  

I
n

i
iiin baXDXX

1
1 )} ,[)(|{}))(),...,((|{

=
∈∈ωω=∈ωωω B . 

Sets D generate the sigma-algebra nB ; therefore, 

B∈∈ωωω }))(),...,((|{ 1 CXX n  for each nB∈C , 

in particular for )(1 BYC −= . Thus, 

B∈− )()),...,(( 1
1 BXXY no  

which ends the proof. 
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As particular cases, 21 XX + , 21 XX − , 21 XX ⋅ , },min{ 21 XX , 

},max{ 21 XX  are random variables, provided 21, XX  are random variables. 

The set R  of real numbers is totally ordered by ≤ . As a direct consequence, an 
ordering between uni-variate random variables R→Ω  can be defined by 

21 XX ≤  iff )()( 21 ω≤ω XX  for all Ω∈ω . 

Each real number R∈a  can be assimilated to a “trivial random variable” 
R→Ω:a , defined by a=ω)(a  for all Ω∈ω . Of course, a≤X  means 

aX ≤ω)(  for all ω . 

Consider a sequence ,...,...,, 21 nXXX  of uni-variate random variables. Given 

Ω∈ω , a sequence of real numbers 

),...(),...,(),( 21 ωωω nXXX  

appears. If for Ω∈ω  this sequence is convergent, denote by )(ωX  its limit. Thus, 

)(lim)( ω=ω n
n

XX . 

Suppose for all Ω∈ω  the sequence above is convergent and all )(ωX  are real 

numbers. In this case the numbers )(ωX  determine a new random variable X, and it 

is natural to denote it as n
n

Xlim . 

We have now all the ingredients needed to formally define the expectation )(XE , 

at least for some uni-variate random variables X. 

There are two conditions that the expectation operator E is bound to fulfill: 

(E1) For any R∈ba, , if ba ≤≤ X , then bXEa ≤≤ )( . 

(E2) If ,...,...,, 21 nXXX  are random variables such that ...21 ≤≤ XX  

...... ≤≤ nX  and n
n

XX lim=  exists, then )(lim)( n
n

XEXE = . 

As an example, consider Ω  finite, },...,,{ 21 Kωωω=Ω . Given positive num-

bers Kppp ,...,, 21  such that 1...21 =+++ Kppp , the formula 

∑
=

ω⋅=
K

k
kk XpXE

1

)()(  

defines an operator E that satisfies conditions (E1) and (E2). An expectation of this 
kind is called a “weighted average”. 

Any expectation operator E gives rise to a probability. Indeed, consider an event A 
from the chosen sigma-algebra A  of subsets of Ω . The characteristic function of A 
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⎩
⎨
⎧

∉ω
∈

=ωχ
A

Aω
A  

if0

if1
)(  

is a random variable R→Ω . It is immediate that 10 ≤χ≤ A , hence 

1)(0 ≤χ≤ AE . 

Now, the probability of the event A may be defined by  

)()(P AEA χ= . 

More details are found in [Halmos 1974] or [Doob 1994]. 

3.17   Probabilities of Formulas 

Probability Theory is strictly connected to Measure Theory, where the notions of 
length, surface and volume are defined and extended. However, what is important is 
that the results obtained in Probability Theory can be adapted to sentences and  
reasoning. 

As we pointed out in the previous chapter, in the basic Probability Theory the 
probability is a function defined on events. Such events could be related to a random 
variable. In these situations statements (formulas) express the events. We will now try 
to define directly a calculus with probabilities of formulas, taking into account that a 
statement could be “true” in some worlds and “false” in others. 

More precisely, the probability P is a real function with a set (“event”) as argu-
ment. It is very convenient to take a description of the event, regarding this as equiva-
lent to the set. For example, given random variables X and Y defined over Ω , it is 
convenient to write )(P YX <  instead of the formally correct 

)})()(|({P ω<ωΩ∈ω YX . “ YX < ” is a formula. 

In the following, we figure out an observer receiving messages from the environ-
ment. These messages give him hints about the truth status of several statements of in-
terest. The observer imagines several worlds, such that for each pair there exist a 
statement that is true in one world and false in the other. These are called the possible 
worlds, and their set will be denoted by Ω. (One of these worlds is the actual one, but 
the observer does not know which.) 

A measure of the worlds is a function 

]1 ,0[: →Ωm  

such that: 

(M1) 0)( ≥ωm  for all Ω∈ω , 

(M2) 1)( =ω∑
Ω∈ω
m . 

(i.e. the measures of all possible worlds are positive and sum to 1) 
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(For example, the function m could express the belief of our observer about the 
chances of possible worlds to be the actual one.) 

The probability of a formula f, written )( fP , is the sum of the measures of all 

possible worlds in which f is true, i.e. 

∑
=ω

ω=
f

mfP

|

)()( . 

The probability of a formula f expresses the belief of our observer (agent) in the 
“truth” of the formula. 

For example, consider the outcome ),( 21 XX  after tossing a pair of dice. We 

have 36 different possible worlds ω. in Ω. An observer (agent) who knows that one of 
the dice is falsified would have a certain opinion about the “true world”. Another  
observer that has no prior knowledge at all about the dices would presumably con-
sider all possible worlds being equal candidates to became the “true world”, thus he 

will define his measure m by the obvious 
36

1
)( =ωm  for all Ω∈ω .  

Consider the formula 121 =+ XX . There is no world ω in which this formula is 

true. Thus 0)1( 21 ==+ XXP . 

Consider the formula 321 =+ XX . There are two different worlds 

)2()1(| 211 =∧==ω XX  

)1()2(| 212 =∧==ω XX  

in which the formula is true. Thus 
18

1

36

1

36

1
21 )3( =+==+ XXP . 

The definition above supposes all the possible worlds are explored and this is not a 
practical approach. Let us give an alternative definition, without directly using meas-
ure function. Instead, we will accept four axioms (A1-A4) below. 

(A1) If the composed formula gf ⇔  is a tautology (i.e. it is true in all 

worlds), then formulas f and g have the same probability: 

)()( gPfP = . 

(This is obvious, both formulas f and g select the same possible worlds in 
which they are true.) 

(A2) 0)( ≥fP  for any formula f. 

(A3) If t is a tautology, then 1)( =tP . 

(A4) If )( gf ∧¬  is a tautology, then  

)()()( gPfPgfP +=∨ . 

If we accept these intuitive axioms, then we can follow the model of (classical) 
Probability Theory. From these axioms, the following can be deduced. 
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Proposition 3.10. If f is a formula, then 1)()( =¬+ fPfP . 

Indeed, ff ¬∨  is a tautology. 

Proposition 3.11. If f and g are formulas, then 

)()()( gfPgfPfP ¬∧+∧= . 

Indeed, )()( gfgff ¬∧∨∧⇔  is a tautology. 

Proposition 3.12. If X is a discrete random variable with finite range D and f is a for-
mula, then 

)()( fPxXfP
Dx

==∧∑
∈

. 

In particular, if X is the Bernoulli distribution )(πBe , its range is }1 ,0{=D ; 

therefore 

)()1()0( fPXfPXfP ==∧+=∧ . 

Proposition 3.13. If f and g are formulas, then 

)()()()( gfPgPfPgfP ∧−+=∨ . 

Indeed, ggfgf ∨¬∧⇔∨ )(  is a tautology. 

Given two formulas h and e, the conditional probability of h given e, denoted 
)|( ehp , is a measure of belief in a formula h based on the truth of another formula e.  

Of course, the letter e stands for “evidence”. It represents usually all of the agent’s 
observation about the different worlds ω. And, of course, the letter h stands for  
“hypothesis”. 

)|( ehp  is said to be the posterior probability of the formula h. The usual prob-

ability )(hP  is the prior probability of h and is the same as )true|(hp . 

It is tempting to think “automatically” as follows: )|( ehp  means the probability 

of “h given e”, which means the probability of “h if e”, that means the probability of 
“ he⇒ ”, that means the probability of “ he ∨¬ )( ”. Therefore 

)()|( hePehp ∨¬= . This conclusion is incorrect! 

In fact, it can be shown that )|()()()( ehpePePheP ⋅+¬=⇒ . 

Note the conditional probability )|( ehp  is very different from the probability of 

the implication )( heP ⇒ . The latter is the common measure of all worlds for which 

h is true or e is false, i.e. is exactly )( heP ∨¬ . 

Suppose the evidence e is such that there exist worlds in which e is true. This  
evidence e induces a new measure  

]1 ,0[: →Ωem  
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for which all possible worlds ω such that e is false in ω have measure 0. To fulfill 
axiom (M2), the measures of the remaining worlds should be “normalized” so that the 
overall sum is 1 and not )(eP . An obvious solution is the following: 

ω
ω

⎪⎩

⎪
⎨
⎧ ω=ω

in  false is  if

in   trueis  if

0

)(
)( )(

1

e

em
m ePe . 

From here we obtain immediately  

∑∑
∧=ω=ω

ω=ω=
ehh

e m
eP

mehp
||

)(
)(

1
)()|(   

thus the well-known relation 

)(

)(
)|(

eP

ehP
ehp

∧=  

or, in other terms, 

)|()()( ehpePehP ⋅=∧ . 

The following generalization (known as the “chain rule”), valid for a multiple con-
junction nffff ∧∧∧∧ ...321  of formulas, is obvious 

...)|()|()()...( 213121321 ⋅∧⋅⋅=∧∧∧∧ fffpffpfPffffP n  

)...|(... 1321 −∧∧∧∧⋅ nn fffffp . 

When using probabilities, there are two ways to state that a formula f “is true”: 

• either to write 1)( =fP  (this means that f is true in all worlds), 

• or to condition on f, that means to use f as a component of the evidence e 
in a conditional expression )|( ehp . However, in doing this we restrict 

ourselves only to the worlds in which f is true, all the others are neglected. 

When reasoning under uncertainty, a rational agent is updating his beliefs in the 
light of new evidence. Suppose he possess knowledge k and “knows” the posterior 
probability )|( khp  of the hypothesis h. Later he detects a new piece of evidence e, 

which should be taken into account. 
Of course, the new piece of evidence e is “added” to the old knowledge k, giving 

the new knowledge ek ∧ . The old posterior probability )|( khp  becomes now the 

prior probability, and a new posterior probability has to be calculated. The Bayes rule 
is used to obtain: 

)|(

)|(
)|()|(

kep

khep
khpekhp

∧⋅=∧  . 
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Thus, in order to update the posterior probability, the agent should possess prior 
“estimates” of the conditional probabilities )|( khep ∧  and )|( kep . Usually the 

first is easier to obtain. As for the second, the following result could be used: 
If },...,,{ 21 nhhh  is an exclusive and exhaustive finite family of statements (i.e. a 

covering set), representing all possible hypotheses, then 

)|()|()|( khpkhepkep ii
i

⋅∧=∑ . 

Let us recall the Bayes’ theorem in its most general expression: 

∑
=

⋅

⋅
=

n

j
jj

ii
i

hPhep

hPhep
ehp

1

)()|(

)()|(
)|(  

where },...,,{ 21 nhhh  are mutually exclusive and exhaustive hypotheses, and e is the 

“evidence”. 

Example [Degoulet and Fieschi 1999]. The observer-agent is a physician, and he 
knows from his experience that in most cases a pain in the right lower quadrant is 
caused by appendicitis, let us say he estimates 

p(pain in right lower quadrant | patient has appendicitis) = 0.8. 
He knows that there is a small probability that appendicitis cause also pain in the 

left lower quadrant, let us say he estimates 
p(pain in left lower quadrant | patient has appendicitis) = 0.1. 
Salpingitis is a disease possibly causing pain in the left lower quadrant for women; 

our physician estimates 
p(pain in left lower quadrant | patient has salpingitis) = 0.5. 
He knows also the probability for a new admitted female patient in the hospital to 

be diagnosed with appendicitis res. salpingitis 
P(new female patient admitted has appendicitis) = 0.08, 
P(new female patient admitted has salpingitis) = 0.05. 
(How? Suppose he is thinking this way: last year we had 1000 female patients in 

the hospital and 80 had appendicitis surgery. Therefore, …) 

Let us put this knowledge in a table: 

Possible disease 
D 

Prior probability 
P(D) 

p(pain in right 
quadrant | D) 

p(pain in left 
quadrant | D) 

Appendicitis 0.08 0.80 0.10 
Salpingitis 0.05 0.50 0.50 
Any other 0.87 0.05 0.05 

The Bayes’ Theorem allows us to calculate posterior probabilities: 

p(female patient has appendicitis | pain in right lower quadrant) =  
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483.0
87.0  05.005.0  50.008.0  80.0

08.0  80.0 ==
⋅+⋅+⋅

⋅
, 

p(female patient has salpingitis | pain in right lower quadrant) =  

189.0
87.0  05.005.0  50.008.0  80.0

05.0  50.0 ==
⋅+⋅+⋅

⋅
 

therefore “appendicitis” is the first diagnostic to be considered when a woman is 
complaining of pain in the right lower quadrant. 

What happens if the woman is complaining of pain in both lower quadrants? In 
general – from the theoretical point of view – it is difficult to give an answer. 

What if we suppose the evidences =1e “pain in left lower quadrant” and 

=2e “pain in right lower quadrant” are independent? (Let us say we have reasons to 

accept this as a fact.) Now the Bayes’ Theorem becomes: 

∑
=

⋅∧

⋅∧
=∧

n

j
jj

ii
i

hPheep

hPheep
eehp

1
21

21
21

)()|(

)()|(
)|(  

and independence condition between evidences is expressed in the following way 

)|()|()|( 2121 iii hephepheep ⋅=∧ . 

Thus: 

p(appendicitis | pain in both lower quadrants) =  

306.0
87.0  05.0  05.005.0  50.0  50.008.0  10.0  80.0

08.0  10.0  80.0 ==
⋅⋅+⋅⋅+⋅⋅

⋅⋅
 (decreases). 

On the other hand, 

p(salpingitis | pain in both lower quadrants) = 0.552  

raises high enough to put “salpingitis” as the first diagnostic to be considered. 

In general, let us consider the following equality 

)|()|( khpekhp =∧ . 

This equality expresses a very simple idea: the new piece of evidence e is com-
pletely irrelevant. We can expect irrelevant data received by an agent to overwhelm 
the relevant one. The treatment of such situation will be exposed in the context of 
Bayesian networks (Chapter 5). 

Consider a finite set of statements, where some are evidences (observations) and 
others hypothesis. Bayes’ Theorem, in a general form, concerns observations 

meee ,...,, 21  that influence hypotheses nhhh ,...,, 21  (supposed mutually exclusive 

and exhaustive). The formula is: 
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∑
=

⋅∧∧∧

⋅∧∧∧
=∧∧∧

n

j
jjm

iim
mi

hPheeep

hPheeep
eeehp

1

)()|...(

)()|...(
)...|(

21

21
21  . 

The formula above supposes that it is possible to estimate all conditional probabili-

ties for all possible combinations of ke  for all possible hypothesis ih  (thus m2   

conditional probabilities for each hypotheses) and also to estimate the a priori prob-
abilities of ih . 

The effort is huge. A possible solution is to accept the conditional independence of 
observations regarding the hypotheses: 

)|()|()|( ilikilk hephepheep ⋅=∧ . 

The number of conditional probabilities that have to be estimated is now m and not 
m2  (for each hypothesis). The detailed treatment will be approached in the context of 

Bayesian networks. 

3.18   Solved Exercises 

1) Consider a sigma-algebra E  of events over the universe Ω  and a function 
]1 ,0[:Q →E  satisfying the conditions 

(Π1) 1)(Q =Ω , 

(Π3) If ,...,, 21 EEE  are events such that ...321 ⊆⊆⊆ EEE  and 

EE
n

n =
∞

=
U

1

, then )(Q)(Qlim EEn
n

=
∞→

 

 h1 

h2 

hn 

... 

e1 

e2 

em 

... 

 

Fig. 3.17. Diagram of influences 
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Show that Q satisfies (Π2), i.e. is a probability. 
2) If you have only a fair coin available, how could you produce an event of prob-

ability 3
1 ? 

3) Consider all the families having exactly two children. If π=)girl(P ,  

show the two conditional probabilities )girl a childelder |girls two(p  and 

)girl oneleast at |girls two(p  are different. 
4) Last year Peter decided to buy a new computer. The disk of this computer failed 

yesterday, after working continuously for ten months. Peter found the following sta-
tistical data this morning in a computer magazine: 

Disks make Weight on the market Reliability of products 
Alphadisk 35% 20 
Betadur 30% 15 
Gammamix 15% 15 
Others 20% 5 

(The reliability is expressed by the inverse of the probability of a failure during the 
first year of operation.) 

Estimate for Peter, before opening the system unit, the chances that “Alphadisk” is 
the make. 

5) In a small mining town, 212 inhabitants (from the total of 1018) exhibit a form 
of silicosis disease. The men are most touched, because 180 men are ill. However, the 
other 412 men are not ill. 

Find out the probability that the woman just entering in the medical cabinet has this 
silicosis disease. 

6) Denote )),(b(P knpk =π=  for } ..., ,2 ,1 ,0{ nk ∈ . Show that the values kp  

have a single maximum, and this lies between 2−+ pnp  and 1−+ pnp . 

7) Let X be a random variable defined on ),( AΩ . Prove that 

A∈=ωΩ∈ω })(|{ aX  for any R∈a . 

8) Suppose the random variable X can only assume integer values 0, 1, 2, …. Show 

that ∑
∞

=
>=

0

)(P)(
n

nXXE . 

9) Assume that a specialist physician will diagnose correctly a patient with prob-
ability 0.95. This means that:  

a) Given an ill patient, the probability is 0.95 that the physician will diagnose him 
with the correct illness, and  

b) Given a healthy patient, the probability that the physician will declare him as 
such is also 0.95. 

Suppose the family caring physician is very good, such that 99% of the people that 
he sends to the specialist are actually ill. Compute:  
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a) The probability that a person is healthy, given that the specialist declares him 
as healthy, and  

b) The probability that a person is healthy, given that the specialist declares him 
as ill. 

10) Suppose we have three propositional variables X, Y, Z, i.e. random variables of 
Bernoulli type 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ξξ−

ξ=
1

10
:)(BeX , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ηη−

η=
1

10
:)(BeY , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ζζ−

ζ=
1

10
:)(BeZ  

where 1 res. 0 are assimilated with true, res. false. Denote by x res. x¬  the proposi-
tion 1=X  res. 0=X  (analogously for variables Y and Z). 

Suppose we know all the eight joint probabilities: 

3.0)( =∧∧ zyxP  2.0)( =∧¬∧ zyxP  

2.0)( =¬∧∧ zyxP  1.0)( =¬∧¬∧ zyxP  

05.0)( =∧∧¬ zyxP  05.0)( =∧¬∧¬ zyxP  

1.0)( =¬∧∧¬ zyxP  0)( =¬∧¬∧¬ zyxP  

If we are given z¬  as evidence, calculate the conditional probability )|( zyp ¬ . If 

we are given x and z¬  as evidence, calculate the conditional probability 
)|( zxyp ¬∧ .  

11) f and g are formulas. Prove that )()())(( gPfPgfP +≤⇔¬ . 

12) Given α=)( fP , β=)|( gfp  and γ=¬ )|( gfp , compute the probability 

)( gfP ⇒ . 

Solutions. 1) Indeed, let ,...,...,, 21 nAAA  be a sequence of events such that 

∅=∩ ji AA  for ji ≠ . Denote U
n

k
kn AE

1=
= . It is immediate that 

nnn EEA −= ++ 11 . Moreover, UU
∞

=

∞

=
=

11 n
n

n
n AE  and ∑

=
=

n

k
kn AE

1

)(Q)(Q , thus 

∑
∞

=
=

1n
)(Q)(Qlim

k
kn AE . The conclusion ∑= )(Q)(Q nn AAU  is obvious. 

2) A “fair coin” means that, after one toss, the probability of a head (H) and the 
probability of a tail (T) both equal 2

1 . Of course, the Bernoulli distribution 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2
1

2
12

1
10

)Be(  represents the number of heads obtained, after one toss. By  
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repeating the toss n times the number of heads obtained is represented by the binomial 
distribution ) ,b( 2

1n . Any event related to n tosses is expressed in terms of these: 

kn =) ,b( 2
1 , where } ..., ,1 ,0{ nk ∈  

(more precisely as disjunctions) and we know that 

n

k

n

n
k

n
kn

2
)()) ,P(b(

2

1
2

1
⎟
⎠
⎞

⎜
⎝
⎛

=⋅⎟
⎠
⎞

⎜
⎝
⎛== . 

Because 
3

1
 cannot be expressed as a dyadic number 

n
m

2
, it is rather obvious that, 

using only our fair coin, no event having this probability can be ever produced. 
However, the latter sentence does not refer to “conditional events”! Indeed, take 

4=n  and denote by A the event 3) ,4b( 2
1 ≤ , and by B the event 1) ,4b( 2

1 ≤ . Then 

16

15
)P( =A , 

16

5)P( =B , and BAB =∩ . Hence 

3

1

)P(

)P(
)( =∩=

A

AB
B|Ap  ! 

3) It is a good idea to build a tree of “events” 

It is clear that 2)girl a childelder |girls two( π=p . On the other hand, 

22)1()girl oneleast at |girls two( π−π=π−⋅π+π=p . 

4) We know, from statistical data presented in the magazine, that 

35.0)P( =Alphadisk , 30.0)P( =Betadur ,  

15.0)P( =Gammamix , 20.0)P( =Others  and 

20

1
)|( =Alphadiskfailurep , 

15

1
)|( =Betadurfailurep , 

15

1
)|( =Gammamixfailurep , 

5

1
)|( =Othersfailurep . 

Our task is to estimate )|( failureAlphadiskp . By using Theorem III.1, we ob-

tain 18.0)|( =failureAlphadiskp . Thus, there are 18% chances to blame Al-

phadisk. 
5) The known data are placed in the table below: 

 girl 

boy 

girl 

boy 

girl 

boy 

π

π

π−1  

π−1  

π  

π−1  

Elder child is: 
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 Ill Not ill Total 
Men 180 412  
Women    
Total 212  1018 

It is very easy to find out that 32 women are ill, from a total of 426. The incidence 

of silicosis in women is 075117.0
426

32 = , hence we estimate our probability at 7.5%. 

6) Indeed, knk
k knk

n
p −π−⋅π⋅

−⋅
= )1(

)!(!

!
. If we compare two consecutive 

values, kp  and 1+kp , we obtain 
π−

π⋅
+
−=+

11
1

k

kn

p

p

k

k . The values kp  increase 

until the maximum, then decrease. The maximum rp  is found from 

21 ++ >≤ rrr ppp . 

7) The sigma-algebra of Borel sets is generated by intervals ) ,[ ba  The relation 

⎟
⎠
⎞

⎢⎣
⎡ ++−+=

+

∞

=
nn

n

aaaaa
1

1

1

1

 ,)1 ,[}{ U  shows that }{a  is a Borel set, hence 

A∈− })({1 aX . 

8) The expectation is ∑
∞

=
=⋅=

0

)(P)(
n

nXnXE . On the other hand, it is obvious 

that )1(P)(P)(P +>−>== nXnXnX .  

9) Consider the following events: I = “the person sent to the specialist by the fam-
ily caring physician is ill”, J = “the specialist diagnoses a person with the correct ill-
ness”. We are given: 

95.0)|( =IJp , 95.0)|( =¬¬ IJp , 99.0)(P =I , 01.0)(P =¬I . 

We want a) )|( JIp ¬¬  and b) )|( JIp ¬ . These conditional probabilities are 

found from Bayes’ theorem: 

1610.0...
)(P)|()(P)|(

)(P)|(
)|( ==

⋅¬+¬⋅¬¬
¬⋅¬¬=¬¬

IIJpIIJp

IIJp
JIp , 

616.0
)(P)|()(P)|(

)(P)|(
)|( =

⋅+¬⋅¬
¬⋅¬=¬

IIJpIIJp

IIJp
JIp . 

10) Of course, we could make appeal to the formula 

)(

)(
)|(

zP

zyP
zyp

¬
¬∧=¬ . 

in which the two probabilities, yet unknown, )( zyP ¬∧  and )( zP ¬ , appear. To  

obtain the first one we use (see Proposition 3.11) 

3.01.02.0)()()( =+=¬∧∧¬+¬∧∧=¬∧ zyxPzyxPzyP . 
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However, we need the other, i.e. )( zP ¬ . A solution is to calculate the ingredients 

needed in the analog formula 
)(

)(
)|(

zP

zyP
zyp

¬
¬∧¬=¬¬  and to use Proposition 3.3: 

1)|()|( =¬¬+¬ zypzyp . 

Since 1.001.0)()()( =+=¬∧¬∧¬+¬∧¬∧=¬∧¬ zyxPzyxPzyP , it 

follows 1
)(

1.0

)(

3.0 =+
¬¬ zPzP

, therefore 4.0)( =¬zP  and from here the result we 

need: 75.0)|(
4.0

3.0 ==¬zyp . The conditional probability )|( zxyp ¬∧  is obtained 

directly as )()( zxPzxyP ¬∧¬∧∧ . 

11) Indeed, )( gf ⇔¬  is equivalent to )()( gfgf ¬∧∨∧¬ . If we denote 

α=∧ )( gfP , β=¬∧ )( gfP , γ=∧¬ )( gfP , δ=¬∧¬ )( gfP , then 

γ+β=⇔¬ ))(( gfP . On the other hand, +∧= )()( gfPfP  

β+α=¬∧ )( gfP , γ+α=)(gP . The inequality is obvious, and it turns into 

equality only if 0=α . 
12) The formula gf ⇒  can be expressed as gf ∨¬ , or as )( gf ¬∧¬ . Hence 

)()|(1)(1)( gPgfpgfPgfP ¬⋅¬−=¬∧−=⇒ . On the other hand, 

)()|()()|()( gPgfpgPgfpfP ¬⋅¬+⋅= . Thus )(1)( gPgfP ¬⋅γ−=⇒  

and )()( gP ¬⋅β−γ+β=α . Of course α , β  and γ  cannot be arbitrary. 
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4   Statistical Inference 

4.1   Inferring Scientific Truth: Tests of Significance 

Human knowledge advances continuously; scientific researchers gain new knowledge 
every day. What methods they use? When a phenomenon occurs, reasonable people 
try to detect what causes it, and put forward hypotheses that seem plausible. By ob-
serving further occurrences, some hypotheses are enhanced, some others diminished 
or even rejected, i.e. the plausibility of each explanatory hypothesis is re-evaluated. 

Significance testing is a particular method to assess plausibility degrees. Its par-
ticularity is clear: it refers to special kinds of hypotheses called statistical hypotheses. 

From a common sense approach, testing a particular assumption (i.e. a hypothesis) 
that our personal experience tells us to believe in it is easy to explain: we assume the 
hypothesis is true, and then we compare observations (i.e. data obtained from the real 
world) with logical consequences of our hypothesis. If the available observations are 
compatible with the expected consequences, then we continue to believe – and in 
most cases we strengthen our belief – in our assumption. Of course, if what is ob-
served does not fit close enough to what we expect, then our belief in the assumption 
will diminish, sometimes we may reject entirely our hypothesis. 

(Notice some fuzziness in the previous paragraph: the precise meaning of “close 
enough” is left to anyone of us to decide for himself. And to bear any unpleasant con-
sequence a wrong decision would imply!) 

Obviously, hypotheses put forward by scientific researchers are known as scientific 
hypotheses. 

Conducting a significance test (known also as hypothesis testing) is a method em-
ployed to test a believed assumption about an entire population, using data gathered 
from a sample. In general, the result of a significance test is expressed as a number. 
This number reflects how likely the obtained value of a descriptive statistics – which 
is computed using the data from that sample – may have come from a random sample. 

The approach of Ronald A. Fisher1 was dedicated to scientific researchers: the va-
lidity of a scientific hypothesis is established on the basis of a single test, with the op-
tion of suspending judgment when the results are not “clear enough”. Two options are 
available in this approach: either to “reject the null hypothesis”, or to suspend judg-
ment (there is not enough data to conclude). However, physicians are seldom  
“research workers”; on the contrary, most of their work resembles that of decision 
                                                           
1 Ronald Aylmer Fisher (1890-1962), English geneticist and statistician. 
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makers. For a decision maker a decision must be taken on the basis of limited infor-
mation. A rational decision maker tries to minimize the cost of a wrong decision. The 
approach he/she follows when confronted with two competing hypotheses is clear: a 
choice must be made; the decision is taken on the basis of information previously 
gathered from samples. 

Either as a scientific researcher, or as a decision maker, You are in position to 
make a rational decision – after conducting tests of significance – only when you 
thoroughly understand the idea of these tests. This involves two aspects: 

1) On one hand, you should understand those questions for which tests of signifi-
cance provide (at least partial) answers, and 

2) On the other hand, you have to acquire a sense of the nature of the information 
these tests provide. 

From the point of view of understanding the world and from the logical point of 
view, Fisher’s approach is easier to explain: a scientific hypothesis refers to theoretical 
populations, which usually have an infinite number of individuals and which are repre-
sented by continuous distributions. This scientific hypothesis is replaced by a statistical 
hypothesis, which is expressed by means of a parameter of that population (such as a 
proportion, an average etc.). The value of the parameter is estimated by exploiting data 
extracted from a sample, and then compared to some expected value. The discrepancy 
between the two will influence our belief in the (validity of the) scientific hypothesis. 

A statistical hypothesis that is associated to a scientific hypothesis is based, there-
fore, on a “small” sample extracted from a finite (possibly “large”) population. A first 
source of error has its origins in the identification of the scientific hypothesis with the 
associated statistical one. However, when using statistical methods, in fact we do 
identify these two hypotheses and we try to evaluate the risk of error. 

Scientific researchers use on a large scale a fallacious reasoning, called in Latin 
abductio: 

H

OOH ,⇒
 

and a correct one, called in Latin modus tollens: 

H

OOH

¬
¬⇒ ,

. 

Here the letter H represents a scientific hypothesis, and the letter O represents an  
observation. In both arguments above the implication OH ⇒  is considered an ac-
quired knowledge, i.e. is accepted as “absolutely certain”. Of course, observing O in-
creases our belief in the hypothesis H (however, it cannot assure us that H is “valid”, 
nor “true”), and observing O¬  excludes H as a valid hypothesis. Thus, in classical 
logic we cannot prove a hypothesis (to be true) but we can disprove a hypothesis. 
From this “classical” point of view, a scientific truth is a statement that has a very low 
probability of being proven incorrect in the future (see [Popper 1959]). 

In short, the idea of hypothesis testing (i.e. tests of significance) is simple: our sta-
tistical hypothesis will serve as an alternative to another hypothesis – the so-called 
“null hypothesis” – that is raised only to be rejected. By accepting the validity 
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(“truth”) of the null hypothesis, some statistical consequences will follow, and these 
will be confronted with the observed data. Any strong evidence against the null hy-
pothesis will serve as a justification in favor of the alternative. 

4.2   Relation “Alternative Hypothesis – Null Hypothesis” 

As stated above, a statistical hypothesis is a statement about a population parameter 
(or several population parameters). Such a statement is related to (or is a logical con-
sequence of) a corresponding “scientific hypothesis”. 

Let us present, by some examples, how the relation between the two kinds of hy-
potheses appears. Consider the following statements: 

(1) At the age of 10, girls are more intelligent than boys, 
(2) “Very old” age is a significant predictor of Alzheimer, 
(3) Children are more creative than adults, 
(4) Drug A helps recover people better than drug B, 
(5) Male and female physicians earn different salaries, 
(6) Patients recover after a standard treatment, 
(7) People following a weekly diet prescribed by the famous Dr. C will loose ex-

actly 2 kg, 
(8) Drug D has no effect on tuberculosis, 
(9) The effects of drug E on male and female patients are similar. 

Professionals may declare, as personal beliefs, perhaps as a result of their (possibly 
long) personal experience, any one of these nine statements. 

However, there is a clear distinction between the last three and the first six: the last 
three express equality, similarity or coincidence (notice that “has no effect” means 
“does not change the situation”, or “the situation after a drug treatment is the same as 
the situation before”). On the contrary, the first six statements express inequality, dis-
similarity, or difference. 

This distinction is essential for hypothesis testing. It is essential to point out that 
hypothesis testing can be used to confirm only scientific hypotheses that are ex-
pressed as inequalities, dissimilarities, or differences; in no way equalities like that 
expressed in (7) may be found “true” by hypothesis testing. Perhaps what our profes-
sional (could it be Dr. C himself?) has had in mind has been this: 

(7’) People following a weekly diet prescribed by the famous Dr. C will loose at 
least 2 kg 

and in this form it may serve as a start to a statistical hypothesis testing. 

Let us replace our seven scientific hypotheses (1)-(6) and (7’) above by their corre-
sponding statistical hypotheses. Of course, some parameters of the respective popula-
tions, such as averages, proportions … will be involved: 

(1a) The average IQ of age 10 girls is bigger than the average IQ of age 10 boys, 
(2a) The incidence of Alzheimer disease is higher in “very old” people (compared 

to “old” people), 
(3a) The average creativity index of children is higher than that of adults, 
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(4a) The proportion of recovered people is larger in those treated with drug A 
(compared to those treated with drug B), 

(5a) The average salary of male physicians is higher than the average salary of fe-
male physicians, 

(6a) The average health status of patients, after a standard treatment, is better than 
before the treatment, 

(7a) The average weekly loss of weight of people that follow the diet prescribed by 
the famous Dr. C is at least 2 kg. 

All these sentences will serve as alternative hypotheses in tests of significance.  
In general, in a significance test, the alternative hypothesis is a statement about a  
population parameter, which replaces the (assumed plausible) scientific hypothesis. 
(Notice that in all examples before averages or proportions were involved as population 
parameters.) 

It is customary to call alternative hypothesis and to denote by Ha (or H1) the scien-
tific hypothesis under question, considered as an assessment expressing an inequality, 
dissimilarity, or a difference. 

From a logical point of view, we may declare another assessment in the same 
terms, this time expressing equality or the reverse inequality, similarity, or coinci-
dence. The latter assumption is denoted by H0 and is called the null hypothesis. Fol-
lowing R. A. Fisher, the null hypothesis is raised – as a complement to the alternative 
hypothesis – only to be rejected, and by rejecting it we automatically accept as “true” 
our initial scientific hypothesis. 

Let us present such assessments for the seven examples above: 

(10) The average IQ of age 10 girls is equal to the average IQ of age 10 boys, 
(20) The incidence of Alzheimer disease among “very old” people is the same as 

among “old” people, 
(30) The average creativity index of children is less than that of adults, 
(40) The proportions of recovered people after treatment with drugs A res. B are the 

same, 
(50) The average salary of male physicians coincides with the average salary of fe-

male physicians, 
(60) The average health status of patients, after a standard treatment, is not suffer-

ing any change, 
(70) The average weekly loss of weight of people that follow the diet prescribed by 

the famous Dr. C is exactly 2 kg. 

R. A. Fisher gave the name “null hypothesis” because this hypothesis should be 
“nullified”. The name was retained and survived probably because in most cases the 
null hypothesis could be written as equality “with null”: 

(H0) 0)( =πf  

where f  is a function of the parameters π  of the populations involved in the test. 

Perhaps the best example is: 

(10) 0=µ−µ bg  
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where the parameters gµ  and bµ  represent the average IQ of age 10 girls res. the 

average IQ of age 10 boys. 
There is always possible that the null hypothesis is true, hence rejecting it may lead 

to an error. The probability of such an error is known as the p-value and is usually in-
terpreted as the risk of accepting our scientific hypothesis as being true. 

Supposing some information about the distribution of the population is available, 
the only source of errors appears to be the manner in which the individuals from the 
sample are selected. When the individuals are randomly selected (it is said that  
the sample is randomly selected), the differences between the observed outcome and 
the expected outcome are explained only by chance factors. We could set a threshold 
on these differences, which in our intent will separate “small” (acceptable) differ-
ences, from “large” (unacceptable by chance) differences. This threshold is in fact  
determined by the significance level. 

4.3   Hypothesis Testing, the Classical Approach 

As we pointed out above, in any hypothesis testing data obtained only from a sample are 
considered and processed. Of course, the sampling procedure is supposedly random, and 
usually it is accepted that the populations under study are distributed normally. 

In its classical approach, which is decision-oriented, a hypothesis testing involves 
five consecutive steps, as follows: 

Step 1: Specify the alternative hypothesis, then the null hypothesis.  
Step 2: Choose the statistic that is adapted to the concrete situation. (The word sta-

tistic means “formula involving data extracted from a sample”.) 
Step 3: Choose the significance level, and then determine the associate threshold.  
Step 4: Compute the value of the statistic, using data obtained from the (randomly 

selected) sample.  
Step 5: Decide, by comparing the computed value to the threshold determined by 

the significance level, whether or not to reject the null hypothesis.  

The discussion around hypothesis testing begins with the last step. Here, a decision 
maker has to decide either to reject H0 (and, therefore, to accept the alternative hy-
pothesis Ha as “valid” or “true”), or not to reject the H0. In reality, H0 is either true or 
false – however, our decision maker totally ignores the real status of the world. The 
four different possibilities resulting from this situation are as follows: 

Reality (unknown) 

0H  is false 0H  is true 

Reject 0H Correct!
Erroneous

(type I error) 
Decision

Do not reject 0H
Erroneous

(type II error)
Correct!
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In two of them the decision is correct. However, when rejecting a true H0 our deci-
sion maker commits a type I error. Also, when failing to reject a false H0 he/she 
commits a type II error. 

Of maximum importance in hypothesis testing is the type I error. Its probability, 
i.e. the number  

) trueis H|decision erroneous( 0p=α  

is the significance level whose value was previously chosen (in Step 3). 

Of course, any decision maker wants to keep the significance level as low as possi-
ble – in fact it is the probability of an error! Thus, values such as 05.0=α  are com-
mon, and in medical sciences even values as small as 001.0=α  are recommended. 

4.4   Examples: Comparing Means 

Let us present some typical examples of significance testing. 

Example 1. Suppose the alternative hypothesis is (7a) above, and the null hypothesis 
is (70) above.  

(Notice the alternative hypothesis is expressed as “at least”, i.e. is one-tailed.) 
We start from the assumption that (70) is true, i.e. it is true that a person following 

the diet prescribed by the famous Dr. C will lose weight, on average, 2 kg each week. 
Implicitly, we suppose that the weekly weight loss is a random variable, normally dis-

tributed with mean 2=µ  and variance 2σ  (unknown). A sample of volume N, ex-

tracted from the population of individuals following the diet, is in fact a sequence 

NXXX ,...,, 21  of the corresponding weekly weight losses, which in fact are inde-

pendent random variables of type ),( 2σµN . 

It is well known that, under these circumstances, the sample mean,  

)...(
1

21 NXXX
N

M +++= , 

as a random variable, is again a normal distribution, with the same mean µ  as any 

iX , and variance 
N

2σ
. Hence the population of values 

N

M
σ

− 2
 obtained from sam-

ples of volume N can be considered a random variable of type )1 ,0(N , i.e. a standard 

normal distribution. 

However, as we pointed out above, 2σ  is unknown. Usually it is estimated by the 
so-called sample variance 

))(...)()((
1

1 22
2

2
1

2 MXMXMX
N

S N −++−+−
−

=  
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and we are interested in the formula 

N
S
M

T
2−=  . 

This formula will be chosen (in Step 2) as the statistic to be used in Step 4. 

It is well known in Statistics that T is a random variable of Student type; more pre-
cisely its type is )1(t −N .  

 

 

Fig. 4.1. Rejection region in a unilateral test 

Most of the values of T are concentrated around 0. However, because values 
2<M  will not support the one-tailed hypothesis (7a), we are interested only in posi-

tive values of T. The positive values outside the interval ]  ,0[ t  – which is determined 

by a critical value t – are considered as significantly different from 0. These values 
are from the so-called rejection region, because in case of apparition of such a value 
our decision maker will reject the null hypothesis (see the Figure 4.1 above). 

Once the significance level α  has been chosen (in Step 3), the threshold (i.e. the 

critical value) 0>αt  that delimits the rejection region )  ,( ∞+αt  is uniquely deter-

mined (and computationally well approximated) from the condition α=> α )( tTP , 

which is in fact equivalent to 

α−=≤ α 1)( tTP . 

Hence, the hypothesis testing goes as follows: after choosing a convenient signifi-
cance level α , compute immediately the threshold 0>αt  from the condition 

α−=Θ α 1)(t  

where Θ  is the distribution function of the random variable )1(t −N . Select then a 

random sample of volume N, obtain data Nxxx ,...,, 21  from the sampled individuals, 

and compute the value 
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N
s
m

t
2−=   

where )...(
1

21 Nxxx
N

m +++=  and  

))(...)()((
1

1 22
2

2
1 mxmxmx

N
s N −++−+−

−
= . 

The final decision in Step 5 is taken considering only the relation between this 
computed value t and αt . Namely, if α> tt  , reject the null hypothesis. 

As a particular case, let 10=N  and suppose the significance level 05.0=α  is 
chosen. From here – looking into a table of the )9(t  distribution, or using a special 

function such as TINV in Microsoft Excel – we obtain the threshold 2622.205.0 ≈t . 

Suppose the following data are obtained from the ten individuals of the sample:  

 
Individual Weekly weight loss  Individual Weekly weight loss 

1 2.3 kg  6 2.2 kg 
2 2.8 kg  7 2.2 kg 
3 2.1 kg  8 2.6 kg 
4 3.0 kg  9 2.4 kg 
5 2.3 kg  10 2.1 kg 

 

Notice for all individuals in the sample the weekly weight loss is greater than 2 kg. 
This fact itself strongly supports the alternative! The sample mean is 

(kg)  4.2)1.24.26.22.22.23.20.31.28.23.2(
10

1 =+++++++++  

and the sample variance is 0933.02 ≈s  ( 3055.0≈s ). Therefore, 

1404.4
10/3055.0

24.2 ≈−≈t . 

Notice 05.0tt > ; hence we are entitled to reject the null hypothesis, thus to accept 

as true the alternative hypothesis (7a). 
Suppose the significance level is lowered to 005.0=α . Now the threshold is 

6896.3005.0 ≈t , and we still have 005.0tt > . Even with this significance level 

005.0=α  (ten times less as before), we reject the null hypothesis and we consider 
the alternative hypothesis (7a) to be true. However, if we lower again the significance 
level, this time to 001.0=α , the new threshold will be 7809.4001.0 ≈t  and the 

computed value 1404.4≈t  is no longer in the rejection region. We fail to reject the 
null hypothesis! 
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Fig. 4.2. Modifying the rejection region 

Imagine a continuous change of the significance level from 005.0'=α  (for which 

'α> tt , i.e. t is in the rejection region for 'α ) to 001.0"=α  (for which "α< tt , i.e. t 

is not in the rejection region for "α  – see Figure 4.2).. There exists a particular sig-
nificance level *α , between 'α  and "α , such that t will be exactly the critical value 

*αt . This particular significance level is known as the p-value of the alternative hy-

pothesis. 
Its interpretation is clear: it is the smallest significance level that allows us to ac-

cept the alternative hypothesis as true – by rejecting the null hypothesis –, based on 
the data from the chosen sample only. Many people interpret this p-value as the risk 
of accepting as true the alternative hypothesis (based on the given sample). 

Let us consider, as another particular case, a second sample: 
 

Individual Weekly weight loss  Individual Weekly weight loss 
1 1.6 kg  6 1.6 kg 
2 2.8 kg  7 1.7 kg 
3 1.6 kg  8 2.6 kg 
4 3.0 kg  9 2.4 kg 
5 1.9 kg  10 1.8 kg 

 

This time, for six out of ten individuals in the sample, the weekly weight loss is 
less than 2 kg. This obviously makes the alternative hypothesis (7a) less credible. 

However, let us use the hypothesis testing, as before. This time, the sample mean 

(kg)  1.2)8.14.26.27.16.19.10.36.18.26.1(
10

1 =+++++++++  

is still consistent with the assertion of the famous Dr. C. The sample variance 

2978.02 ≈s  ( 5457.0≈s ) leads us to the computed value 
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5795.0
10/5457.0

21.2 ≈−≈t  

which is less than 05.0t . We fail to reject the null hypothesis, even for the “big” sig-

nificance level 05.0=α ! 

Moreover, the p-value (computed by means of the special function TTEST in Mi-
crosoft Excel) is obtained as 0.2622. Thus the risk of accepting the alternative  
hypothesis as true, based on this particular sample, is high enough! 

Let us draw some general conclusions about pairs of hypotheses similar to  
(7a)-(70). 

Such an alternative hypothesis (Ha) involves – as a single parameter – the mean µ  

of a normally distributed population. It is a one-tailed hypothesis 

(Ha):  value>µ  

and the corresponding null hypothesis takes the form 

(H0):  value=µ . 

In the classical approach, once the significance level α  is chosen, the critical value 

0 >αt  that delimits the rejection region ) ,( ∞+αt  is found from the condition 

α−=Θ α 1)(t  

where 

x
N

x

N
t

Nt

-
N

N

 d
1

1  
)()1(

)(
)(

2/2  

2

1
2

−

∞
− ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

Γ⋅−π

Γ
=Θ ∫  

is the distribution function of the Student distribution )1(t −N . 

 

Fig. 4.3. Using TINV in Microsoft Excel 
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Of course, N is the sample size (volume). To reject the null hypothesis, the follow-
ing value is computed 

N
s

m
t

value−=  

where m is the sample mean and 2s  is the sample variance. In case t  is greater than 

αt , the null hypothesis is rejected. 

When using Microsoft Excel, the critical value αt , which depends on the sample 

size N, is found by means of the function TINV. Its arguments are: 

• The significance level α  (identified as “Probability”, see Figure 4.3 
above), and 

• The number of degrees of freedom, which is 1 −N . 

Example 2. Suppose the alternative hypothesis is (6a) above:  

(6a) The average health status of patients, after a standard treatment, is better 
than before the treatment. 

However, it is very difficult to represent, by a single numerical value, the health 
status of a patient. Let us be more specific, considering only hypotensive patients un-
der the action of an anti-hypotensive drug, and let us evaluate the health status of a 
patient by his heart rate expressed in beats/minute (b/m).  

Hence the pair (6a)-(60) is replaced by 

(6’a) The average heart rate of hypotensive patients increases after a drug  
administration, 

res. 

(6’0) The average heart rate of hypotensive patients, after a drug administration, 
does not suffer any change. 

Formally, we express the hypotheses above by: 

(6’a) ba  µ>µ  

(6’0) ba µ=µ  

where aµ , res. bµ  represent the average heart rate after, res. before the drug admini-

stration. 
The data come naturally in pairs; more precisely, for each patient we measure the 

hearth rate before ( bx ) and after ( ax ) the drug administration. 

Of course, we could compute the difference ba xxd −=  and consider the drug to 

be efficient to our patient when 0>d , inefficient when 0=d  (i.e. if no change is 
detected) and harmful when 0<d . In fact we are testing the efficiency of our anti-
hypotensive drug. Denoting by δ  the average difference, the hypothesis testing above 
is replaced by 
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(6”a) 0 >δ  

(6”0) 0=δ  

which is exactly the situation treated in Example 1, provided the differences d are dis-
tributed normally. 

If we suppose that the heart rate of hypotensive patients, either before or after the 

drug administration, is distributed normally, i.e. is of type ),( 2
bb σµN  res. 

),( 2
aa σµN , then it follows that the differences d are normally distributed, with 

mean ba µ−µ . The variance of differences is unknown and is estimated by the sam-

ple variance 2s . Because we accept ab initio that (6’0) is true, the distribution of the 

differences d is approximately of type )  ,0( 2sN . 

Most of the differences are concentrated around 0. Once a significance level α  has 

been chosen, the critical value 0 >αt  that delimits the rejection region ) ,( ∞+αt  is 

obtained exactly as in Example 1, by means of the Student distribution )1(t −N . 

Consider the following data (from [Daly, Bourke and McGilvray 1991, p.113]) ob-
tained from a sample of size 8: 

 

Individual Before (b/m) After (b/m) Difference 
1 58 66 +8 
2 65 69 +4 
3 68 75 +7 
4 70 68 -2 
5 66 73 +7 
6 75 75 0 
7 62 68 +6 
8 72 69 -3 

The computed value will be obtained by using the formula 

N
s

m
t =  

where m is the sample mean of differences. Here 375.3=m , 8=N , and 
4058.4≈s . Hence 1667.2≈t . 

The decision will be taken after comparing this value t to the critical value αt . 

However, we fail to reject the null hypothesis even for 05.0=α  (because 

tt >≈ 3646.205.0 ). 

Example 3. Suppose the alternative hypothesis is (5a) above and, of course, the null 
hypothesis is (50): 

(5a) The average salary of male physicians is higher than the average salary of 
female physicians, 



 4   Statistical Inference 101 

(50) The average salary of male physicians coincides with the average salary of 
female physicians. 

Let us rewrite the hypotheses in a more abstract form:  

(5’a) fm  µ>µ  

(5’0) fm µ=µ  

where mµ  res. fµ  represent the average salary of male physicians, res. the average 

salary of female physicians. 

Of course, we start by accepting the null hypothesis as true. We will suppose – ab 

initio – that both populations are distributed normally, i.e. are of type ),( 2
mm σµN  

res. ),( 2
ff σµN . 

In Step 2 of a classical hypothesis testing, we have to choose a statistic adapted to 
the concrete situation. In choosing this statistic we should be aware that in fact two 
disjoint samples will be selected, one from the population of (salaries of) male physi-
cians, the other from the population of (salaries of) female physicians. 

These two samples are, generally, not equal in size. Let us denote by: 

– mN  the volume of the sample extracted from the population of male physicians 

(i.e. from the respective salaries), 
– mM  the sample mean of these salaries, and 

– 2
mS  their sample variance. 

On the other hand, denote by: 
– fN  the volume of the sample extracted from the population of (salaries of) fe-

male physicians, 
– fM  the sample mean of these salaries, 

– 2
fS  their sample variance. 

 

 

Fig. 4.4. Standard normal compared to Student distributions 
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A distinction will be made between “small” and “large” samples. Any sample with 
more than 30 individuals will be considered as “large”, otherwise as “small”. 

The statistic we choose depends strongly on the size of the two samples. When 
both samples are “large”, the formula 

zS

MM
Z fm −

= , where 2
f

f

2
m

m

2 11
S

N
S

N
S z +=  

describes Z as a standard normal distribution )1  ,0(N . 
 

In the other case, i.e. when at least one of the samples is “small”, the formula  

tS

MM
T fm −

= , where 
2

)1()1(11

fm

2
ff

2
mm

fm

2

−+
−+−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

NN

SNSN

NN
St  

describes T as a Student distribution )2(t fm −+ NN  – see [Larson 1973]. 

Remember that for 30≥N  the Student distribution )(t N  is approximately the 

standard normal distribution (see Figure 4.4 above).  
Thus, once a significance level α  has been chosen, either )1  ,0(N  or 

)2(t fm −+ NN  will be used in order to obtain the critical value – either αz  or αt  – 

that determines the rejection region. 
Notice that in Microsoft Excel the function NORMSINV will help us in the first 

situation. Its argument will be α−1 . Of course, in the second situation we use TINV 
(with α  as the argument). 

Suppose the two samples are as follows: 

 

Male physician Salary ($)  Female physician Salary ($) 
1 8105  1 74410 
2 6719  2 5452 
3 7909  3 3814 
4 4420  4 4381 
5 6214  5 3995 
6 9407  6 4944 
7 4828  mean fm  16166 

8 6689  variance 2
fs  28540.1 

9 7274  size fN  6 

10 8351    

mean mm  6991.6    

variance 2
ms  1560.2    

size mN  10    
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Attention, if the computed means (i.e. the averages) of the samples are not consis-
tent with the alternative hypothesis, the testing should stop immediately! 

Suppose the typing error (7410 instead of 74410) has been detected and corrected. 
Now fm mm > , i.e. the computed means are consistent with the alternative hypothe-

sis. The computed value will be obtained by the formula (notice both samples are 
“small sized”): 

ts

mm
t fm −

=  where 
2

)1()1(11

fm

2
ff

2
mm

fm

2

−+
−+−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

NN

sNsN

NN
st  

and the decision will be taken accordingly. 
Of course, there is heavy computing involved that needs some programming work. 

This is why classical hypothesis testing is far from being widespread. 
In general, consider typical alternative hypotheses concerning differences of 

means. Two kinds of hypotheses are possible: 

One-tailed (H1) :  21  µ>µ , 

Two-tailed (H1) :  21 µ≠µ . 

(The case 21  µ<µ  is exactly the former one-tailed, with a reversed order of the 

populations.) 
In the one-tailed case, once the significance level α  has been chosen, the rejection 

region ) ,( ∞+r  is determined, as in Examples 1-3, from the condition 

α−=Φ 1)(r  

Φ  being an adequate distribution function. 

In the two-tailed case, the rejection region is a union ) ,() ,( ∞+∪−−∞ rr  where 

0 >r  is determined from the condition 

2
1)(

α−=Φ r . 

The distribution function Φ  is either of normal type, or of Student type. In fact, 
theoretical reasoning identifies several cases. 

The variances of the two populations, 2
1σ  res. 2

2σ , are known. In this case the sta-

tistic used 
 

 

   

Fig. 4.5. Rejection region for α : one-tailed (left), two-tailed (right) 
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σ
−

= 21 mm
z  where 2

2
2

2
1

1

2 11 σ+σ=σ
NN

 

follows a standard normal distribution )1  ,0(N . Of course 1m  and 2m  represent the 

respective sample means. 

The variances of the two populations are unknown, and are replaced by the corre-

sponding sample variances 2
1s  res. 2

2s . However, two exclusive situations should be 

taken into account. 

The homoscedastic case: the unknown variances 2
1σ  and 2

2σ  are equal. In this 

case the statistic used is 
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ps  is a pooled estimate of the common population variance, given by 
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In this case the statistic t follows a Student distribution )2(t 21 −+ NN . 

The heteroscedastic case: the unknown variances 2
1σ  and 2

2σ  are unequal. In this 

case the statistic used is 

s

mm
t 21 −

=  where 2
2

2

2
1

1

2 11
s

N
s

N
s +=  

and follows also a Student distribution. 
Of course, it is supposed that both populations are normally distributed. However, 

the results are approximately correct provided the distributions of the populations are 
not too far from normal. 

Let us point out that a Student distribution )(t N  with 30≥N  is approximately a 

standard normal. 

4.5   Comparing Means, the Practical Approach 

The discussion above shows the difficulties of performing a classical hypothesis test, 
when comparing means. All the computation is done after the significance level α  
has been chosen, and after the data from a sample has been extracted. 

As exemplified above in Example 1, for a given sample there exists a particular 
significance level *α , such that the corresponding critical value (either *αt , or *αz ) 

coincides with the computed value. This *α  is the smallest significance level that  
allows us to accept the alternative hypothesis (by rejecting the null hypothesis), based 
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Fig. 4.6. Controlling TTEST in Excel 

on the given sample. It is called p-value, and it is interpreted as the risk of accepting 
the alternative hypothesis as true (when in fact the null hypothesis is true). 

Modern software eliminates the burden of heavy computation, and allows for the 
reversing the philosophy underneath hypothesis testing. Instead of choosing at the be-
ginning the significance level ( α ) and then doing a lot of computation, maybe it is 
better to first directly compute the p-value of the alternative hypothesis, then to accept 
it or not as true, depending on how comfortable we feel with the obtained p-value. 

This idea is supported in using Microsoft Excel by the function TTEST. Its four ar-
guments are, in order (see Figure 4.6): 

1) The domain Array1 containing the data extracted from the first sample; 
2) The domain Array2 containing the data extracted from the second sample; 
3) A numeric (in fact Boolean) parameter Tails, whose value is 1 in case the alter-

native is one-tailed, res. 2 if two-tailed; 
4) A second parameter Type, whose value is 1 in case the samples are paired, 2 if 

the samples are unpaired but homoscedastic, and 3 if the populations are 
known as heteroscedastic. 

Let us mention here that – in practice – no medical examples exist for which ho-
moscedasticity of populations’ is known. For unpaired samples the second parameter 
should be chosen 3. 

The function TTEST gives us directly the p-value of the alternative hypothesis. 
However, before using TTEST, a preliminary check should be done (otherwise we 
may draw wrong conclusions). Namely, we should check, by using the function 
AVERAGE on both domains, if the sample means are correctly ordered. 

4.6   Paired and Unpaired Tests 

Let us begin this section by considering two formal datasets (see Figure 4.7 below). 
Notice the last value of each data set is possibly an outlier; it is much larger than the 
other data from the respective sets.  
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These outliers raise the respective averages with approx. 25%. However, the order 
is not influenced. (Even without them, the average of dataset 1 remains larger than the 
average of dataset 2.) 

Consider two possible approaches. In the first one, let us admit the data are ob-
tained from patients treated with a drug D and are lab results before and after treat-
ment (for example, creatinine values). Value decreased after treatment signifies  
improvement of the patient status. Hence, the data show not only an average im-
provement of patients status of health, but – with two exceptions – case-by-case im-
provement after treatment with drug D, and this advises us to believe in the truth of 
the following alternative hypothesis: 

(Pa): after a treatment with drug D, the creatinine value decreases. 

The p-value of this sentence, obtained by a paired t-test, is 0.00010, thus confirm-
ing the truth of the alternative hypothesis. 

In the second approach, let us admit the data is obtained from two distinct popula-
tions, for example the first set is obtained from patients treated with placebo, the  
 

 

Fig. 4.7. Data sets compared as paired res. unpaired 
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second set from patients treated with drug D. The smaller average of data set 2 (com-
pared to that of data set 1) indicate an overall efficiency of drug D and advise us to 
believe in the truth of the following alternative hypothesis: 

(Ua): treatment with drug D is efficient (compared to lack of treatment). 

The p-value of this sentence, obtained by an unpaired t-test, is 0.4080. Such a value 
does not confirm the truth of the alternative hypothesis! 

Thus, the same data lead to different conclusions, depending in an essential way of 
the context the data are obtained. 

The same discrepancy appears after renouncing to outliers! 

4.7   Example: Comparing Proportions 

In Examples 1-3 it was assumed that the populations involved were distributed nor-
mally. The pair of hypotheses (10)-(1a) is treated exactly as the pair (50)-(5a) provided 
the intelligence quotient (IQ) is assimilated to a normal distribution with mean 100 
and standard deviation 15. 

However, in some situations the populations involved are definitely not normally 
distributed. 

Consider for example the population of patients treated with drug A – see the pair 
of hypotheses (40)-(4a) above. We can reasonably assume that each patient either re-
covered (tag 1) or not (tag 0). If we randomly select a sample of N patients treated 
with drug A, we may assume that the individuals of the sample are (independent) 
Bernoulli distributions! 

Of course, the parameter Aπ  characterizing such a random variable is interpreted 

as the probability of “success”, i.e. the proportion of a recover. The proportion of re-
covered people found in the chosen sample gives its natural estimation. 

Example 4. Suppose the pair alternative/null hypothesis is as follows: 

(4a) The proportion of recovered people treated with drug A is larger than the pro-
portion of recovered people treated with drug B (i.e. drug A is better than 
drug B)  

(40) The proportion of recovered people after treatment with drugs A res. B are the 
same (i.e. drug A and B are equivalent). 

Formally, these hypotheses are rewritten as follows: 

(4’a) 0A >π−π B  

(4’0) 0A =π−π B  

where Aπ  res. Bπ  represent the respective proportions of recovering. 

Let us follow first the classical approach of hypothesis testing. A sample of volume 

AN  extracted from the population of people treated with drug A is in fact a sequence 

A
,...,, 21 NXXX  of (independent) Bernoulli distributions of type )(Be Aπ .  

The number of recovered people is the sum 
A

...21 NXXX +++  and, as such,  
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is a binomial distribution ),(b AA πN . The sample mean 

),(b
1

)...(
1

AA
A

21
A

A A
π=+++= N

N
XXX

N
P N  is a statistic that expresses 

the proportion of recovered people from those treated with drug A. 

Analogously, a sample of volume BN  extracted from the population of people 

treated with drug B is in fact a sequence 
B

,...,, 21 NYYY  of Bernoulli distributions of 

type )(Be Bπ  and the number of recovered people 
B

...21 NYYY +++  is a binomial 

distribution ),(b BB πN . Of course, the sample mean 

),(b
1

)...(
1

BB
B

21
B

B B
π=+++= N

N
YYY

N
P N  is a statistic that expresses the 

proportion of recovered people from those treated with drug B. 
It is well known that, in general, the binomial distribution ),(b pn  is approxi-

mately normal with mean np=µ  and variance )1(2 pnp −=σ , provided 

9.01.0 << p , 5≥np  and 5)1( ≥− pn . 

Suppose the conditions 9.01.0 A <π< , 9.01.0 B <π< , 5AA ≥πN , 

5)1( AA ≥π−N , 5BB ≥πN  and 5)1( BB ≥π−N  are fulfilled. Then the random 

variable ),(b
1

AA
A

πN
N

 is approximately (normal) of type 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π−π
π

A

AA
A

)1(
,

N
N , and ),(b

1
BB

B
πN

N
 is approximately of type 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π−π
π

B

BB
B

)1(
,

N
N . Hence the difference 

BA PPD −=  

which expresses the difference of proportions of recovered people, will be approxi-
mately of type 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π−π
+

π−π
π−π

B

BB

A

AA
BA

)1()1(
,

NN
N . 

Let us explore the consequences of a true null hypothesis (4”0) π=π=π BA . It 

follows that BA PPD −=  is approximately of type ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+π−π

BA

11
)1(,0

NN
N . 

Thus, in order to find a suitable statistic, we need a pooled estimate of π , the per-
centage of recovered people in those treated with drugs (either A or B). This is ob-
tained as the statistic 
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)......(
1

BA 2121
BA

NN YYYXXX
NN

P +++++++
+

= . 

Our statistic to be used in the hypothesis testing will be 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−
=

BA

BA

11
)1(

NN
PP

PP
Z  

the notation Z indicating that it is a standard normal distribution, i.e. of type )1 ,0(N . 

Suppose the data obtained from samples are as follows: 
 

 Sample A Sample B Both samples 

Total patients 80A =N  75B =N  155BA =+ NN  

Recovered 55 40 95 

Percentage of 
recovered %75.68A =P  %33.53B =P  %29.61≈P  

From here, the z-score is 9692.1≈z , and this corresponds to a p-value 
02446.0* ≈α (see Figure IV.8). This is also known as the Mid-p value (for example it 

is identified as such in Epi Info 2004) and is interpreted according to our risk adversity. 
Obviously, before computing the z-score, we have to check whether or not the two 

percentages AP  and BP  are in the correct relation; if not, the testing will stop. 

 

Fig. 4.8. Computing the p-value in Excel 

When using Microsoft Excel, the p-value *α  is given by a formula 

)(NORMSDIST1 x−=  

where x denotes the coordinates of the cell where the z-score has been computed. 
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It is customary (and well suited when using Microsoft Excel) to present the out-
comes from samples in a contingency table, such as: 

 

Treated with 

Number of 

Drug A Drug B 

Recovered patients 55 40 

Not recovered patients 25 35 
 

Do not forget the conditions 5AA ≥πN  etc. However, Aπ  and Bπ  are unknown 

and will be estimated by AP  res. BP . The values AA PN  etc. are exactly the nu-

meric values in the cells of the contingency table above. Thus the classical approach 
of hypothesis testing may be used only when all numeric components of the contin-
gency table have values at least 5. 

There is another method to treat such data, known as the chi-square test. This 
method compares two 2-values random variables, and evaluates their statistical  
independence.  

The statistical independence of two random variables V, W means that 

)(P)(P)(P wWvVwWvV =⋅===∧=   

for each values v of V and w of W. 

In our case, the variable V is the “Drug” and its values are 
}B" Drug"  ,A" Drug"{∈v ; on the other hand, W is the “Recovery status of pa-

tients”, with values }recovered"Not "  ,Recovered""{∈w . 

If the probabilities are estimated by the relative frequencies (using data from sam-
ples), then the statistical independence of V and W corresponds to the linear depend-
ence of rows (or of columns) of the extended contingency table: 

 

 … w … Row totals 

… … … … … 

v … vwN  … •vN  

… … … … … 

Column totals … wN•  … ••N  

where: 

vwN  is the number of cases for which vV =  and wW = , 

•vN  is the number of cases for which vV = , i.e. ∑
∈

• =
Ww

vwv NN , 
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wN•  is the number of cases for which wW = , i.e. ∑
∈

• =
Vv

vww NN , 

••N  is the total number of cases, i.e. ∑ ∑
∈ ∈

•• =
Vv

vw
Ww

NN . 

This linear dependence means that  

••

••=
N

NN
N wv

vw  for each values v of V and w of W 

or that the value of the expression 

2
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

••

••

••

••

∈ ∈
∑ ∑ N

NN
N

NN

N
X wv

vw
wvVv Ww

 

is 0. 

In our case, the extended contingency table is: 
 

 Drug A Drug B Row totals 
Recovered  55 40 95 
Not recovered  25 35 60 
Column totals 80 75 155 

 

and the linear dependence of rows (or of columns), i.e. the statistical independence of 
variables “Drug” and “Recovery status of patients” means exactly that the null hy-
pothesis (4’0) Bπ=πA  is true. 

The formula above, which gives the so-called the “X square statistic”, measures in 

some way how untrue the null hypothesis is. Big values of 2X  will determine us to 
reject the null hypothesis. 

It is well known in Statistics that 2X  has approximately a distribution of type 

( ))1)(1(2 −−χ cr , where r is the number of distinct values of V and c is the number 

of distinct values of W. In our case 2== cr , hence 2X  is of type )1(2χ . 

Now, the graph of the chi-square distribution could be used to reject/not reject the 
null hypothesis. 

All the above considerations are drastically simplified when using Microsoft Excel! 
Indeed, we find here a built-in function called CHITEST, having two arguments: 

• the rectangular domain (Actual_range) containing the contingency table, 

• the rectangular domain (Expected_range) containing theoretical data that 
correspond to the null hypothesis, i.e. computed using the formula 

••

••=
N

NN
N wv

vw . 
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Fig. 4.9. Computing p-value in Excel 

This function returns the p-value *α , which may be interpreted by anyone accord-
ing to his/hers risk adversity. 

In our case we obtain (see Figure 4.9) ...0489.0* =α  
It is worth noting that the two methods we used above give different p-values 

(0.02446 res. 0.0489). This is not surprising. There are several reasons: the use of in-
termediate estimations of proportions, the approximation of “true” distributions – of 
 

the used statistics – by others, of normal or chi-square type etc. Even the alternative 
hypothesis is different. 

The pair of hypotheses (2a)-(20) is similar to (4a)-(40). The two methods presented 
above are well suited to ascertain opinions or findings about incidence of diseases, 
similar to (2a). 

However, the chi-square distribution is used also to ascertain opinions such as (20) 
or (40), i.e. opinions expressing equality or coincidence. The respective tests are 
known as goodness-of-fit tests. 

4.8   Goodness-of-Fit: Chi-Square 

Census data in many countries show that the proportion of girls at birth is slightly 
greater than 0.5, usually 0.51. It is unanimously accepted that the (genders of) new-
born children may be considered as independent random selections from a sequence 
of Bernoulli distributions with parameter 0.51. This implies that the gender of the 
second newborn in each family is statistically independent of the gender of the first. 

Is this general opinion sustained by statistical data? If the independency hypothesis 
were true, then the number of girls in 4-children families were a binomial distribution 
b(4; 0.51) described (approximately) as follows: 
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Number of girls  0 1 2 3 4 
Probability  0.058 0.240 0.374 0.260 0.068 

 

If we collect data from – let us say 1000 four-children families – then we expect 
the following frequencies to be found: 

 

Number of girls  0 1 2 3 4 
Frequency of families  58 240 374 260 68 

 
What if we will observe a different number of frequencies? Of course, large differ-

ences will force us to revise our opinions. 
The situation above is an example of a so-called multinomial experiment. In gen-

eral, such an experiment is characterized by: 

a) A number of N independent observations that are carried out, each observation 
falling into one of K categories (denoted below by KCCC ,...,, 21 ). The observed 

category frequencies are denoted by KOOO ,...,, 21 . Obviously, 

NOOO K =+++ ...21  (i.e. the sample size); 

b) K probabilities. The probability kp  that an (arbitrary) observation falls into 

category k is known and does not change from one observation to another 
( Kk ,...,2,1= ). Of course, 1...21 =+++ Kppp . The expected frequencies are 

computed using the formula 

kk pNE ⋅= , ( Kk ,...,2,1= ). Of course, NEEE K =+++ ...21 . 

Does the observed data confirm the expectations? Of course, large discrepancies 
between observed data }{ kO  and expected data }{ kE  will stand against the inde-

pendency hypothesis. However, the main problem is: how discrepancy should be 
evaluated?  

The solution proposed by Karl Pearson2 in 1900 uses the number 

( )22 1
kk

kk

EO
E

X −=∑  

as a distance. From a statistical point of view, 2X  is a statistic – i.e. a formula in-
volving data extracted from a sample – whose distribution is approximately that of 

( )12 −χ K  and a chi-square test could be performed. The threshold between “small 

discrepancies” and “large discrepancies” may be interpreted in terms of the 

( )12 −χ K  distribution. 

                                                           
2 Karl Pearson (1857-1936), English mathematician, founder of the statistical journal  

Biometrika. 
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Fig. 4.10. Using chi-square distribution 

In the Figure 4.10 this threshold was fixed according to a level of significance 0.95. 
In practice, by using Microsoft Excel, we could make use of the function CHITEST 

and to interpret its return (i.e. the “p-value”) in the reversed way. Values (very) near 
to 1 are interpreted as follows: “the observed data confirm the hypothesis”. 

For example, suppose that the data collected from the 1000 four-children families 
are as follows: 

 

Number of girls k  0 1 2 3 4 Total 
Number of four-children 
families having k girls 
(observed frequency kO ) 

56 233 377 268 66 1000 

Expected frequency kE  58 240 374 260 68  

Difference )( kk EO −  –2 –7 3 8 –2  

 

The obtained p-value (see Figure IV.11 below) is 0.963, which means that data ob-
tained from the chosen sample supports the opinion that the gender of the second 
newborn in a family is statistically independent of the gender of the first newborn in 
that family. 

The first application of the chi-square goodness-of-fit test dates back to 1901, 
when a very important theory in genetics was confirmed (because it was only in 1900 
when an important paper of Gregor Mendel – published as early as 1865! – came into 
light). Mendel noticed that some characteristics of garden peas plants may disappear 
in all direct offspring, but may reappear in some second-generation offspring. 

A plausible explanation is based on the idea that a “genetic” characteristic of indi-
viduals is determined in each individual by a pair of gametes, which are inherited one 
from the father, the other from the mother. Now, if each of the two genes may take 
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Fig. 4.11. Confirming a hypothesis 

only two values (called alleles) A and a, then a given individual is either homozygous 
(i.e. the two gametes of the gene are identical: AA or aa) or heterozygous (i.e. the two 
 

gametes are different). When two homozygous individuals of different alleles  
are crossed, all the direct offspring are identical heterozygous (this is the “law of  
uniformity”). 

Suppose the determined “genetic” characteristic is the stature, with two possible 
values: tall res. short. The hypothesis is that individuals with gametes AA or  
Aa (= aA) are tall, and individuals with gametes aa are short (i.e. the allele A is 
“dominant”). 

In a population where alleles are equally distributed, the proportion of homozygous 

individuals is 5.0
4

2 = , and the proportion of tall individuals is 75.0
4

3 = . 

If the proportion of the dominant allele is π , then the proportion of homozygous 

individuals is 22 )1( π−+π , and the proportion of tall individuals is 

)1(22 π−π+π . Moreover, the proportions of the three genotypes AA, Aa (= aA) 

and aa are, respectively: 

2π , )1(2 π−π , 2)1( π− . 

The Hardy3 – Weinberg principle states that the proportions of the different geno-
types remain constant from one generation to the next one (i.e. the population is in 
equilibrium). 

To test whether the population under study is in equilibrium, suppose amongst 1000 
individuals, selected at random, the following genotype frequencies are observed: 

 

Genotype AA Aa (= aA) aa Total 
Observed frequency 799 188 13 1000 

 

The incidence of the A allele (which is an estimator of π ) is obviously 

8925.0
10002

18518002 ==
⋅

⋅+⋅
p . 

                                                           
3 Godfrey Harold Hardy (1877-1947), famous English mathematician. 
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Hence the following expected “frequencies” are computed:  

 

Genotype AA Aa (= aA) aa 
Expected  
frequency 

796.56 
21000 p⋅=  

191.89 

)1(21000 pp −⋅=  

11.56 
2)1(1000 p−⋅=  

 

The chi-square test gives a p-value of 0.5251. This value does not support the hy-
pothesis that the population is in equilibrium. (This should trigger an investigation! It 
is usually assumed that most biological populations are in equilibrium for most  
genetic characteristics.) 

Mendel obtained 556 peas [Cramér 1955] that were classified in four groups,  
according to two characteristics: 

• The shape (values round/angular), 
• The color (values yellow/green). 

 

Group round and 
yellow 

round and 
green 

angular and 
yellow 

angular 
and green 

Total 

Observed 
frequency 315 108 101 32 556 

 

From here he deduced that round and yellow are the values determined by the 
dominant alleles A res. B. Mendel hypothesized that these alleles (and the correspond-
ing recessive ones a res. b) are equally distributed in the population. Hence we should 
expect the following:  

 

Group round and 
yellow 

round and 
green 

angular and 
yellow 

angular and 
green 

Expected 
proportion 16

9
 

16

3
 

16

3
 

16

1
 

Expected 
frequency 312.75 104.25 104.25 34.75 

 

The chi-square test gives a p-value of 0.9254, which is large enough to confirm 
Mendel’s hypothesis. 

A chi-square goodness-of-fit test may be used to confirm a supposed distribution of 
a population, based on data obtained from a random sample. For example, since  
Quételet4 it is widely accepted that most numerical characteristics (such as the height 
or the weight) of big biological populations are approximately normally distributed. A 
chi-square test may be used to ascertain the normality. 

Usually the numerical data Nxxx ,...,, 21  )( R∈  obtained from a sample of vol-

ume N are grouped into K groups (or bins) determined by 1−K  separation values 

121 ... −<<< Ksss  and observed frequencies kO  are easily computed.  

                                                           
4 Adolphe Quételet (1796-1874), Belgian statistician. The body mass index is known also as the 

Quételet index. 
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(More precisely, the value ix  is placed into bin k if 

kik sxs ≤<−1 , where −∞=0s  and +∞=Ks .) 

Suppose the population is normally distributed, with mean µ  and variance 2σ . It is 

well known that µ  is estimated by the average 
N

xxx
m N+++

=
...21  and σ  is es-

timated by the standard deviation 
1

)(...)()( 22
2

2
1

−
−++−+−

=
N

mxmxmx
s N . 

Once m and s are found, it is easy to obtain an estimate of the probability that a value x 
falls into the interval ],( 1 kk ss − : 

x
s

mx

s
p

k

k

s

s

k d 
2

)(
exp

2

1
2

2

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
π

= ∫
−

 

and from here the estimated frequency NpE kk ⋅=  of the bin k. 

In Microsoft Excel the function FREQUENCY is used to obtain the observed fre-
quencies kO , then the functions AVERAGE and STDEV are used to obtain the esti-

mations m res. s. As for the estimated probabilities kp , NORMDIST is available.  

Finally, CHITEST will return the p-value. 

 

Fig. 4.12. Checking the random number generator 
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In Figure 4.12 an Excel spreadsheet is presented. 100 numerical values were ran-
domly generated using the random number generator RAND, and then grouped into 8 
bins. The obtained p-value is 0.07271, which does not confirm the normality! This is not 
surprising, because RAND generates uniformly (not normally) distributed numbers. 

Other software produces diagrams that allow visual comparison between a histo-
gram of the sampled data and a graph of the (density of the) estimated normal distri-
bution. The decision – i.e. to accept or to reject the hypothesis that the population is 
normally distributed – is left to the user. 

 

Fig. 4.13. Visual check of normality with Statistica 

For example, Statistica – commercial statistical software developed by StatSoft 
Inc. – produces, from the generated data above, the diagram in Figure 4.13.  

However, a serious error was made in the example above. To understand why, let 

us remember that each chi-square test is based on the statistic 2X , which has, ap-
proximately, a chi-square distribution. The approximation is good only if the expected 
frequency of each bin is at least 5! 

Let us summarize the chi-square goodness-of-fit test. It can be applied for any uni-
variate distribution – either discrete or continuous – for which the distribution func-
tion Θ  can be computed. It is supposed that: 

(H0):  the data follow the specified distribution 
              and the alternative 

(Ha):  the data do not follow the specified distribution. 

The real numbers are divided into K bins, each bin being an interval ],( 1 kk ss −  

that contains at least one observation. The statistic used is 

( )22 1
kk

kk

EO
E

X −=∑  
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where kO  is the observed frequency for bin k and kE  is the expected frequency for 

that bin, which is computed by using the formula 

))()(( 1−Θ−Θ⋅= kkk ssNE . 

The statistic 2X  is approximately )(2 CK −χ  distributed, where C is 1 + the 

number of parameters that are to be estimated for the distribution in question. 
For a good approximation it is required an expected frequency of at least 5 for each 

bin. (Any bin with expected frequency less than 5 should be attached to a neighboring 
bin.) 

4.9   Other Goodness-of-Fit Tests 

In many practical situations, to be able to use a specific method, some a priori condi-
tions regarding the available data should be met. Foe example, a common condition is 
that a sample comes from a normally distributed population. 

Goodness-of-fit tests are tools suitable to confirm that available data follow a 
specified distribution. What we want to confirm is: 

(H0):  the data follow a distribution fully specified by the distribution function 
]1 ,0[: →RF  

by rejecting 

(Ha):  the data do not follow the distribution in question. 

Suppose the data obtained from the sample 

Nxxx ,...,, 21  

has been ordered: 

)()2()1( ... Nxxx ≤≤≤ . 

In case F is continuous, to apply the Kolmogorov-Smirnov test the following sta-
tistic is computed 
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In case F is normal, and the volume of the sample is between 10 and 40, to apply 
the Anderson-Darling test the following statistic is computed: 
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Accepting a theory, based on evidence collected from a sample, after a goodness-
of-fit test, is always a personal decision. (Of course, there is an associated risk!) 
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To support a subjective decision – when detail and/or time are lacking, the so-
called quantile-quantile plot (or q-q-plot) is used. This is a diagram in which the col-
lected data, increasingly ordered 

)()2()1( ... Nxxx ≤≤≤  

are compared to the data 

Nyyy ≤≤≤ ...21  

that correspond to the theoretical distribution specified in the null hypothesis (H0). 
More precisely, 

1
)(

+
=

N

n
yF n   for } ..., ,2 ,1{ Nn∈ . 

A point in the q-q-plot – see Figure IV.14 for an example – represents a pair 
) ,( )( nn yx . If the original (unsorted) data }{ nx  are “extracted” from the distribution 

in question, then all the points lay exactly on the diagonal. Hence, we will accept – 
subjectively – the null hypothesis as “true” only if all the points are “near” to the  
diagonal. 

4.10   Nonparametric Tests. Wilcoxon/Mann-Whitney 

In the previous paragraphs the problem of comparing two populations by taking into 
account their means or proportions, maybe also their variances, was approached. In 
other words, we considered the parameters that characterize the populations: the 

means ( µ ), the proportions ( π ) and the variances ( 2σ ). 

Most of the comparison methods used for continuous random variables are based 
on the “fundamental” hypothesis that some random variables are normally distributed 
(or, at least, approximately normal distributed). Because of this, they are known in the 
statistical literature as parametric tests. 

There are situations in which either the distribution of the variables is not known, 
or the normality hypothesis is clearly not respected. In such situations, to compare the 
population we can use tests that do not suppose anything about the distribution type, 
i.e. nonparametric tests. 

(Obviously, such tests could we used also in case of variables that are normally 
distributed. However, the obtained results will be less “significant” that those ob-
tained using analogous parametric tests.) 

In the most known nonparametric tests, the numeric values of the variables –  
obtained from the sample – are replaced by their ranks. For this reason these are 
called rank tests. 

Let us present, in what follows, one of the simplest rank test, namely the Wilcoxon 
test. The initial alternative hypothesis, in a general expression, is as follows: 

(Ha): the distribution of the values of the numeric random variable (of interest) is 
asymmetrical around 0. 
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Fig. 4.14. A q-q-plot obtained with SPSS (commercial computer software developed by SPSS 
Inc. (www.spss.com) 

The opposed null hypothesis is the following: 

(H0): the distribution of the values of the numeric random variable (of interest) is 
symmetrical around 0. 

According to the general theory of testing, we will try to “deduce” logical conse-
quences of the truth of null hypothesis, then to see whether the data obtained from 
sample are “compatible” or not with these consequences. 

Let us begin by analyzing numerical data nxxx ,...,, 21  obtained from a sample of 

volume n. Obviously, some of the data are positive, some other are negative, and it is 
perfectly possible to find some data which are 0. Suppose m data ( nm ≤ ) are  
non-zero. 

Consider the absolute values || ix  in increasing order 

|)( |)2(|   |)1( | ...| mxxx ≤≤≤  

then replace each data with its corresponding rank. Denote by +T  the sum of ranks of 

positive values and by −T  the sum of ranks of negative values. If hypothesis H0 is ac-

cepted as true, then +T  and −T  are not too different. On the other hand, their sum 

−+ + TT  should be equal to the sum of all ranks, i.e. to 
2

)1( +mm
. We should expect 

both +T  and −T  be “nearly” 
4

)1( +mm
. As +T  departs from 

4

)1( +mm
, the null 

hypothesis becomes implausible and, as a consequence, we are tempted to believe in 
the truth of the alternative (Ha). 
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The computation of the p-value of the alternative hypothesis is based on the fact 
that the statistic 

24/)12)(1(

4/)1(

++
+−+

mmm

mmT
 

is distributed (at least for “large” values of n) approximately standard normal. 
As an example, consider the data in the Excel spreadsheet in Figure 4.15 below. 

Notice that five out of the nine values are positive, the other four are negative (none is 
zero). Apart of the sign, their order is as follows: 

...5.31.29.19.16.05.04.0 <<=<<<  

Two of the positive values are equal; hence their ranks will be both 5.4
2

54 =+
. 

 

Fig. 4.15. Sign and rank of values 

The effect of the command 

MEANS  values  sign 
in Epi Info is presented in Figure 4.16. The p-value of the alternative hypothesis, ob-
tained by Wilcoxon test, is 0.0139, sufficiently small to convince us to accept it as 
true. 

Therefore, we could state that the set of five positive values differs “significantly” 
from the set of four negative values. (Let us notice that by using the classical Student 
test the computed p-value is 0.0042, three times less. However, how could be sure 
that all preliminary conditions of normality, needed in order to apply the Student test, 
are satisfied?) 

Remember the t test is used, in general, in the following context: 

– There are two samples, extracted respectively from two populations, 
– The obtained values from the individuals from samples are numerical, 
– We want to confirm that the center of (values of) the first population differs from 

the center of (values of) the second, and 
– We locate the center of a population in its mean. 
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Fig. 4.16. Results obtained using Epi Info 

The center of a population can be localized also in its median, especially in situa-
tions when we are interested mostly in the ranks, not in the concrete numerical values. 

Numerical values obtained from samples (extracted from populations) appear not 
only as a result of measurings; transformations, rather arbitrary, of ordinal data could 
end in numbers. Some examples: 

hipo = +1,  medium = +2,  hyper = +3; 

– – – = –3,  – – = –2,  – = –1,  + = 1,  + + = 2. 

In such situations applying the t test is not justified. However, nothing prevents us 
to apply non-parametric tests. 

Suppose the data extracted from the first population lead to the set of numerical 
values 

1
,...,, 21 nxxx  

and, analogously, the data extracted from the second population lead to 

2
,...,, 21 nyyy . 

According to Wilcoxon idea, let us order the values from the union of two sets, and 
then attach to each value its rank. (Obviously, the rank is computed in case several 
values are equal.) 
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Denote 1T  the sum of ranks obtained from all 1n  values ix  that form the sample 

extracted from the first population. Analogously, 2T  is the sum of ranks of 2n  values 

jy  that form the sample extracted from the second population. 

The alternative hypothesis, which we want to confirm, is as follows: 

(Ha): the distribution of the values x in the first population differs from the distri-
bution of values y in the second population 

and the confirmation will take place by rejecting the null hypothesis: 

(H0): the distribution of the values x in the first population coincides with the dis-
tribution of values y in the second population. 

The minimum of the sum of ranks 1T  is 2/)1( 11 +nn  and the maximum is 

2/)1( 1121 ++ nnnn . On the other hand, if we accept the null hypothesis as true, we 

expect the sum 1T  be equal to 2/)1( 211 ++ nnn . As 1T  “departs” from this value 

(towards the extremes 2/)1( 11 +nn , res. 2/)1( 1121 ++ nnnn ), the null hypothesis 

becomes less and less plausible. Thus, Wilcoxon test is based on an obvious comput-
ing of sums of ranks. 

In medical literature another test, the Mann-Whitney test, is often encountered. 
This test is meant to solve the same problems as the Wilcoxon test. In fact, the two are 
equivalent. 

In short, in the Mann-Whitney test, instead of a sum of ranks computation, all pairs 
),( ji yx  are compared; XYU  represents the number of pairs ),( ji yx  such that 

ji yx <  plus one half of the number of pairs such that ji yx = . 

The number XYU  is between 0 and 21nn . In case the null hypothesis is true, we 

expect this number be equal 
2

21nn
. As XYU  “departs” from 

2
21nn

, the null hy-

pothesis becomes less plausible. 
The relation between Wilcoxon test and Mann-Whitney test is given by the  

formula 

11121 2/)1( TnnnnU XY −++=  

which expresses the number XYU  (Mann-Whitney) in function of the ranks sum 1T  

(Wilcoxon). It is not surprising that in Epi Info reports the results are presented to-
gether (see Figure 4.16 above). 

The Kruskal-Wallis test is nothing else than a generalization of the Wilcoxon test, 
for the case of more than two samples. 

4.11   Analysis of Variance 

In the second part of the previous section we analyzed comparatively two groups of 
the same population, namely the group of individuals treated with drug D respectively 
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the group of individuals treated by placebo. The groups were considered as samples 
extracted from different populations. 

If drug D is prescribed in several different doses, several groups appear. 
Sometimes we have to compare more than two populations, or more than two strata 

of the same populations, and the comparison is made at the level of means. In such 
situations a generalization of the t test for two populations is used; this generalization 
known as analysis of variance, or ANOVA test. 

From historical point of view, in the first application of the analysis of variance the 
crops obtained after treatment of soil with different type of fertilizers were compared. 
Some of the notations and notion used then (such as “mean of treatment”) are tradi-
tionally maintained. 

To explain how analysis of variance is accomplished, let us consider several popu-
lations, each population having a mean and a variance (obviously, unknown). From 
each population a sample is extracted, as follows: 

 
Population 1 

mean 1µ  

variance 2
1σ  

 
Sample of  

volume 1n  

sample mean 1m  

sample variance 2
1s  

 
… 

Population k 
mean kµ  

variance 2
kσ  

 
Sample of  

volume kn  

sample mean km  

sample variance 2
ks  

 
…

Population K 
mean Kµ  

variance 2
Kσ  

 
Sample of  

volume Kn  

sample mean Km  

sample variance 2
Ks  

 

Analysis of variance is conducted for the following null hypothesis 

(H0): no differences between the populations means exist  to be rejected, in order 
               to confirm the alternative hypothesis 

(Ha): at least two of the means kµ  are different (i.e. at least two of the 

populations differ in mean). 

As usual in hypothesis testing, suppose the null hypothesis is true and deduce 
logical consequences of this fact. If no differences between the populations means 

kµ  exist, we should expect the sample means km  be “near” of each other. Further, 

by grouping the K samples into a single “global” sample of volume ∑= knN , the 

global mean ∑∑= kkk nmnm  does not differ too much from the sample means 

km . We need a number to express how “near” the sample means km  are from the 

global mean m. 
The following, denoted by tradition variability between treatments, is such a number: 

2)( mmnSST k
k

k −=∑ . 

(Initials came from sum of squares for treatments.) 
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The number SST is minimal (in fact it is 0) if and only if all sample means are 
equal: 

Kk mmm ==== ......1 . 

Small values of SST appear when sample means km  are “near” to each other, and 

such situations confirm the null hypothesis. When large differences between sample 
means do exist, at least some of them will differ considerably from the global mean, 
thus a large value of SST will be obtained, and this will confirm the alternative hy-
pothesis (by rejecting the null hypothesis). However, how large should SST be to be 
entitled to reject the null hypothesis? 

“Total” does not play any special role. Its inclusion in the results only emphasizes 
the fact that the statistical test is based on a decomposition of total data variance into 
the two variability sources: that between samples SST and that within samples. 

As an example, consider the action of a drug, during 60 consecutive days, on indi-
viduals grouped into four age categories, expressed in the percentual decrease of the 
cholesterol level: 

 
Under 20 years 20 – 39 years 40 – 59 years Over 60 years 

15, 17 
31,  7 
19, 20 

average = 18.17 

22, 25, 20 
36, 22, 12 
  9, 41, 17 

average = 2.67 

17, 22, 28 
15, 10 
  2,  8 

average = 14.57 

13,  8 
19, 16 

22 
average = 15.60 

 

Here 27=N , 4=K . The results offered by Epi Info are as follows: 
 

ANOVA, a Parametric Test for Inequality of Population Means 
(For normally distributed data only) 

Variation SS df MS F statistic 

Between 305.4376 3 101.8125 1.3414  

Within 1745.7476 23 75.9021  

Total 2051.1852 26   
P-value = 0.2822 

 

The reported p-value is 0.2822, thus rejection of the null hypothesis is improper 
(even if the discrepancy between the averages seems sufficiently large). We do not have 
enough data to conclude that the percentual decrease of cholesterol level depends on the 
age category. (Nor to conclude that it does not depend on the age category!) 

4.12   Summary 

To compare two or more populations, several statistical tests are available. Which one 
is to be used, that depends on the nature of available data from samples. 
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Let us present a simplified scheme: 

(A) To compare two populations: 
(AA) If the data are ranked, then the Wilcoxon rank sum test is used. 
(AB) If the data are quantitative, then: 

(ABA) If one of the populations is not normally distributed, then again 
the Wilcoxon test is used. 

(ABB) If both populations are distributed normally, then the means 

21,µµ  are compared by using a t-test (which, in case of 

“large” samples or known variances, is in fact a z-test). 
(AC) If the data are qualitative, using a z-test compares the proportions 

21, ππ . 

(B) To compare three or more populations: 
(BA) If the data are ranked, then the Kruskal-Wallis test is used. 
(BB) If the data are quantitative, then: 

(BBA) If all populations are normally distributed, then ANOVA is 
used. 

(BBB) If not, then again the Kruskal-Wallis test is used. 
(BC) If the data are qualitative, then a chi-square test is used. 

4.13   Solved Exercises 

1) A theory assesses that the number of humans possessing one of the four blood 
types should be proportional to 

2p , qpq ⋅+ 22 , rpr ⋅+ 22 , respectively rq ⋅2  

where 1=++ rqp . 

Given the observed frequencies 90, 180, 66 res. 49, confirm or reject the hypothe-
sis 4.0=p , 5.0=q , 1.0=r . 

2) A pharmaceutical company announces that drug D is 90% efficient as a pain-
killer for a 12-hours period. 

For 160 patients out of 200, tested under strict clinical control, the drug was effi-
cient: Is the statement of the company correct? 

3) Consider the data from the paper [Doll and Pygott 1952]. Percentage changes in 
gastric ulcer zone, after a three-month treatment, are presented. Data from 32 admit-
ted patients and other 32 external patients, in increasing order, are presented in the 
following tables: 

Table 4.5. Data from admitted patients 

-100 -100 -100 -100 -100 -100 -100 -100 

-100 -100 -100 -100 -93 -92 -91 -91 

-90 -85 -83 -81 -80 -78 -46 -40 

-34 0 29 62 75 106 147 1321 
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Table 4.6. Data from external patients 

-100 -100 -100 -100 -100 -93 -89 -80 

-78 -75 -74 -72 -71 -66 -59 -41 

-30 -29 -26 -20 -15 20 25 37 

55 68 73 75 145 146 220 1044 

Does the admission in hospital influence the results of treatment? 

4) Results of a placebo-controlled clinical test trial to test the effectiveness of a 
sleeping drug are presented. 

 

Patient Drug Placebo  Patient Drug Placebo 
1 6.1 5.2  6 8.4 5.4 
2 7.0 7.9  7 6.9 4.2 
3 8.2 3.9  8 6.7 6.1 
4 7.6 4.7  9 7.4 3.8 
5 6.5 5.3  10 5.8 6.3 

 

Does this evidence support the effectiveness of the drug? 

5) Certain drugs differ in their side effects, depending on the gender. In a study to 
determine whether men or women suffer dizziness when taking a powerful drug, 8 
men and 8 women were given the drug. Each was asked to evaluate the level of dizzi-
ness on a 7-point scale (1 = No effect at all – 7 = Extremely bad). The results are 
shown in the following table. 

 

Men Women  Men Women 
6 2  1 3 
3 2  3 3 
5 4  5 2 
4 7  6 1 

 

Can we conclude that men and women experience different levels of dizziness 
from the drug? 

6) In the following table a comparison of birth weights (in kg) of children born to 
15 non-smoker mothers with those of children born to 14 heavy smoker mothers is 
presented. 

 

Non-smokers (n = 15)  Heavy-smokers (n = 14) 
3.99 3.79 3.60  3.18 2.84 2.90 
3.73 3.21 3.60  3.27 3.85 3.52 
4.08 3.61 3.83  3.23 2.76 3.60 
3.31 4.13 3.26  3.75 3.59 3.63 
3.54 3.51 2.71  2.38 2.34 

 

Does the mother’s habitude of smoking influence the birth weight of her children? 
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7) In 1985 the Coca-Cola Company changed the recipe of its product. Prior to the 
recipe change, Nielsen Company of Canada surveyed soft-drink consumer prefer-
ences and found the following percentages: 

Coca-Cola 20.6% Pepsi-Cola 18.1% 

After the recipe change, another survey produced the following results: 

Coca-Cola 21.4% Pepsi-Cola 17.5% 

(These figures were reported in the Toronto Star.) Nielsen Company of Canada 
samples 1000 consumers in this kind of surveys. Can we conclude that the popularity 
of Coca-Cola has increased after the recipe change? 

Solutions.  
1) We apply the chi-square goodness-of-fit test to the null hypothesis 4.0=p , 

5.0=q , 1.0=r . Using Excel and organizing the computation as follows: 

the p-value that is obtained is not large enough to support this hypothesis. (In fact, the 
observed data is very strong evidence against the null hypothesis!) 

A more experienced statistician could put forward the values 48.0=p , 36.0=q , 

16.0=r , for which the computed p-value 0.877 is supporting the null hypothesis. 

2) The utility of the drug is confirmed in proportion 80.0
200

160 =  of treated pa-

tients, thus in less that 90% of cases. At first sight the statement of the company is 
doubtful. 

However, the data used were obtained from a single sample of 200 treated patients! 
Perhaps the sample is an exception; data from other samples could provide results 
near to 90% efficiency. How large the chances for an exceptional sample are? 

To answer the last question, suppose the sentence of the company is correct. Imag-
ine all possible samples of volume 200 (extracted from the “infinite” population of 
treated patients) are at hand. 
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Denote by π  the probability that drug D is efficient for a treated patient. The sen-
tence of the company is exactly: 

90.0=π   (H0). 

Which logical consequences of this sentence are deduced? 
Denote by S the number of patients, in a sample of volume 200=N , for which 

the drug is efficient (“successful”). Let us admit S is (approximately) distributed nor-
mally. We expect the drug is efficient in  

180=π⋅=µ N  

cases, and the variance of S is 

18)1(2 =π−⋅π⋅=σ N . 

In this “population” of numbers S, the z-score of our particular sample is 

714.4
18

180160 −≈−=z . 

This score is abnormally low and corresponds to an exceptional situation. We can-
not accept as true the sentence of the company. 

In fact, it is easy to evaluate (in Excel) the probability of a number 160 or less of 
successful treatments with the drug: 

0000012157.0)TRUE),18(SQRT,180,160(NORMDIST)160( ≈=≤SP . 

Notice sentences like that enounced by the pharmaceutical company can only be 
“rejected” when using reasoning as above, i.e. significance testing. We would like to 
“confirm” such sentences! 

3) The average of data for admitted patients is –13.8, res. for the external patients 
is 15.3. At first sight there is a difference. Moreover, a paired t-test gives a p-value of 
0.0066, small enough to confirm this difference, i.e. the influence of admission in 
hospital on the results of treatment. However, are all the conditions to apply a t-test 
met? 

4) We use either the parametric (paired) t test, or the non-parametric Wilcoxon test. 
In the first case, function TTEST from Excel gives 0.00556 as p-value; in the second, 
command MEANS from Epi Info gives 0.0036 as p-value. Both are small enough to 
support the effectiveness of the drug. 

5) It is a typical situation of fake quantitative data. In fact, values 1, 2, … are quali-
ties! The Wilcoxon rank sum test gives 0.1664 as p-value. Thus, even at the 15%  
significance level, dependence of gender cannot be concluded. 

6) The average birth weight of children born to non-smoker mothers is 3.59, more 
than 12% grater than the average birth weight of children born to smoker mothers. We 
will accept the sentence “mother habitude of smoking diminishes the birth weight of 
her child” if its p-value is sufficiently small. This p-value is obtained by using a non-
paired t test (heteroskedastic, in the absence of precise information). For example, in 
Excel the function TTEST will return p-value = 0.0123. (What else it is needed?) 
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7) The second survey reports an increase from the earlier 20.6% to 21.4% of Coca-
Cola preference. However, this 0.8% increase may be casual! 

Consider the null hypothesis 

(H0): 21 π=π  

and the alternative 

(H1): 21 π<π . 

Estimations of proportions 1π  and 2π , based on samples (of volume 1000) are 

206.01 =p , 214.02 =p . The pooled proportion is  

210.0
2000

10001000 21 =
⋅+⋅

=
pp

p . 

The value of the test statistic is 0439
002.0)1(

21 −≈
⋅−⋅

−
=

pp

pp
z , and this 

corresponds to a p-value 0.1738. 
Hence, if the significance level is chosen even at 10%, the data obtained from sam-

ples are not enough to confirm the increase in Coca-Cola preference! The increase is 
possibly due to hazard. 
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5   Bayesian (Belief) Networks 

5.1   Uncertain Production Rules 

Very often, knowledge of experts is presented as an ordered list of production rules. A 
production rule is, simply, a statement in which an IF-THEN structure is detected. Of 
course, production rules are stated as such by humans, which make them uncertain.  

Consider a hypothesis h that may cause the apparition of the evidence e. Denote by 
H a Boolean1 random variable (with only two possible values, “true” and “false”). 
Then h can be assimilated to the event “  trueis H ”, and by h¬  we will denote the 
event “ false is H ”. Similarly, E represents another Boolean random variable that 
helps us to describe the evidence e as the event “  trueis E ” and, of course, e¬  will 
represent the event “ false is E ”. The extent of the influence of h over e is described, 
in probabilistic terms, as )|( hep . 

Suppose )|( hep  is known. Of course, the evidence e may appear also when 

false is H ; suppose the probability )|( hep ¬  is also known. 

Both known probabilities above are used when stating the uncertain complete 
production rule: 

IF h  THEN e with probability )|( hep , 

ELSE e with probability )|( hep ¬ . 

Using general axioms of Probability Theory, the probabilities in which the “com-
plementary evidence” e¬  is involved can be easily computed: 

)|(1)|( hephep −=¬ , )|(1)|( hephep ¬−=¬¬ . 

It will be useful to consider all four probabilities above as the components of a  

matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
¬¬¬

¬
)|()|(

)|()|(

hephep

hephep
. 

The uncertain production rule above is well represented diagrammatically by an ar-
row starting in node H and ending in node E (see Figure 5.1 below), and it is an  
obvious extension of the logical implication (in classical logic) eh⇒ . 

                                                           
1 George Boole (1815-1864), English mathematician and logician, founder of Boolean calculus. 
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H E

)|()|(

)|()|(

hephep

hephep

 

Fig. 5.1. Complete uncertain production rule 

Now, the “premise” h may be also uncertain. Its uncertainty is expressed by the 
probability )(hP . Of course, automatically )(1)( hPhP −=¬  and in fact we deal 

with a vector ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
¬ )(

)(

hP

hP
 that is associated to the random variable H. 

The “conclusion” e results uncertain. How we compute the number )(eP  that ex-

presses its uncertainty? Of course, the computing formula should be consistent with 
the classical logic Modus Ponens reasoning rule. The corresponding vector for E, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
¬ )(

)(

eP

eP
, is easily obtained by the following formula:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
¬

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
¬¬¬

¬
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
¬ )(

)(

)|()|(

)|()|(

)(

)(

hP

hP

hephep

hephep

eP

eP
 

that supposes the computing of a matriceal product. 
In fact, what we need is only: 

 )()|()()|()( hPhephPhepeP ¬⋅¬+⋅= . 

However, the matriceal formula above is easily extended to variables H, E that have 
more than two values.  

Let us consider uncertain complete production rules corresponding to logical “true” 
implications ba ⇒  and cb⇒ . 

)|()|(

)|()|(

abpabp

abpabp
A B C

)|()|(

)|()|(

bcpbcp

bcpbcp

 

In classical logic, syllogismus allows us to infer the truth of the implication 
ca ⇒ . This implication corresponds to the uncertain complete production rule: 

)|()|(

)|()|(

acpacp

acpacp
A C

 



 5   Bayesian (Belief) Networks 135 

The matrix equality: 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

¬¬¬
¬

×
¬¬¬

¬
=

¬¬¬
¬

)|()|(

)|()|(

)|()|(

)|()|(

)|()|(

)|()|(

abpabp

abpabp

bcpbcp

bcpbcp

acpacp

acpacp
 

seems natural. However, it is not correct! Indeed, in general 

)|()|()|()|()|( abpbacpabpbacpacp ¬⋅¬∧+⋅∧=  

(see Section 3.17) instead of the supposed equality 

)|()|()|()|()|( abpbcpabpbcpacp ¬⋅¬+⋅= . 

However, when 

)|()|( bcpbacp =∧  and )|()|( bcpbacp ¬=¬∧  

the computing formulas do not contradict our intuition. This happens if we consider 

 as a Bayesian network. 

5.2   Bayesian (Belief, Causal) Networks 

A Bayesian network is a mixed structure, combining combinatorial and probabilistic 
features. 

Let us consider a “classical” example, due to Judea Pearl ([Pearl 1988]). 
Sally’s home is equipped with a burglar alarm. During the office hours Sally re-

ceives a message from John, hers neighbor, who called to say that the burglar alarm 
was ringing. 

However, John is not “fully reliable”; he might have heard a car alarm in the street, 
thinks Sally. 

Sally knows that the burglar alarm can be triggered by a minor earth tremor or a 
malfunction, and she thinks that a minor earth tremor is not affecting normally a car 
alarm. 

Could we help Sally to evaluate quickly the chance a burglary caused John’s call? 
The relationship information we possess is represented in the Figure 5.2. The ar-

rows should be interpreted as “cause” or, better, “may cause”. 
Five random variables: B = “burglary”, T = “earth tremor”, A = “alarm ring”, C = 

“car alarm” and J = “John’s call” are involved. All of them are of Bernoulli type. As 
before, lower-case letter x will denote the statement X = true and notation x¬  will 
denote the statement X = false. Then b stands for “Sally’s house was burgled”, which 
is an interpretation of the statement B = true, t stands for “there was an earth tremor” 
and j stands for “John called”. In this context, jb |  means “John called because 

Sally’s house was burgled”. 
It is convenient to denote generically by )|( JBp  the set of probabilities 

)|( jbp , )|( jbp ¬ , )|( jbp ¬ , )|( jbp ¬¬ . 
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B = “burglary” T = “earth tremor” 

A = “alarm ring” C = “car alarm” 

J = “John’s call”  

Fig. 5.2. The direct acyclic graph 

We usually think that the chances a car alarm went off are not affected by whether 
the burglar alarm went off or the house was burgled, and Sally thinks neither an earth 
tremor has any influence on car alarms. That means no arrows appear between the 
corresponding nodes in the graph above. All this can be expressed in seven condi-
tional independence statements: 

 

)()|( CPACp =  )()|( CPBCp =  )()|( CPTCp =  

)()|( CPBACp =∧  )()|( CPTACp =∧  )()|( CPTBCp =∧  

)()|( CPTBACp =∧∧   
 

or in a single general statement 

)(}),,{|( CPTBACp = . 

(In fact, this statement replaces 4 + 4 + 4 + 8 + 8 + 8 + 16 = 52 equalities between 
probabilities!) 

Notice in the graph structure above that A, B, and T are exactly the nodes that are 
neither descendants of C, nor parents of C. 

In general, consider a directed acyclic graph G having node set N  and arrow set A .  

Consider a single node N∈V . We identify 

– the subset of parents }),(  and   | {)( ANC ∈∈= VUUUV , 

– the subset of descendants  
}    to  frompath    a  is   thereand   | {)( WVWWV ND ∈= , 

– the subset of other nodes )}()(}{{)( VVVV DCNO ∪∪−= . 



 5   Bayesian (Belief) Networks 137 

A Bayesian (belief, causal) network is built over a directed acyclic graph 
),( AN . A random variable VX  is associated to each node V. A conditional table, 

given the variables that label the parents of V and the other nodes, is given. 

More precisely, the following is satisfied in Bayesian networks: 
(BN)  for any N∈V  and )(},...,{ 1 VZZ k O⊆ , if },...,{)( 1 sUUV =C , then 

)...},...,,{|(
2121 sk UUUZZZV XXXXXXXp ∧∧∧∧  

)...|(
21 sUUUV XXXXp ∧∧∧= . 

(Of course, this relation could be used in multiple ways, giving to each random 
variable all possible values.) 

For any initial node I (i.e. having no parent), a prior probability distribution, de-
noted by )(IP , should be specified. 

The random variable VX  is denoted simply by V (i.e. is identified with the node) 

when no confusion is possible. For Bernoulli-type random variables we use lower-
case letters v to denote the statement V = true and notation v¬  to denote the state-
ment V = false. 

In general, suppose we want to obtain a conditional probability )|( wvp . Several 

cases have to be considered: 

1) The node W is a descendent of V ( )(VW D∈ ). Then the first Bayes’ for-

mula 

)(

)()|(
)|(

wP

vPvwp
wvp

⋅=  

should be used in order to reverse the role of the variables. 

2) The node W is a parent of V ( )(VW C∈ ). Then all the other parents U 

should be identified and the formula 

∑ ∧⋅∧=
u

wupuvpwvp )|...(...)|()|(  

should be used. 

3) The node W is neither a parent of V nor a descendant of V ( )(VW O∈ ). 

Then we have to consider two sub-cases: 

a) V has no parents. Then a particular form of the condition (BN) above is 
used, giving 

)()|( vPwvp = .  

b) V has parents. Then the formula 

∑ ∧⋅∧∧=
u

wupuwvpwvp )|...(...)|()|(  

involving all the parents U of V should be used. 

Bayesian (Belief, Causal) Networks            137 



138 Bayesian (Belief) Networks 

In the formulas above, for each parent U all its possible values u should be consid-
ered (thus u and u¬  when U is Boolean). 

5.3   Examples of Bayesian Networks 

In scientific research we are rather often confronted with the following problem: sup-
pose the evidence e has been detected; what are the odds of h to be the cause of the 
appearance of e?  

In probabilistic terms, what is needed is the probability )|( ehp . Suppose all prob-

abilities in the simplest Bayesian network (see Figure 5.1) are known. This supposes 
the knowledge of all values )|( hep , )|( hep ¬ , )(hP . The first theorem of Bayes 

provides an immediate result for the probability we need: 

)()|()()|(

)()|(
)|(

hPhephPhep

hPhep
ehp

¬⋅¬+⋅
⋅= . 

In the domain of medical sciences different words and notations are used. The con-
text is as follows: a sign Σ  may indicate disease ∆  as a possible cause of the condi-
tion of patient. In general, if we select “at random” one individual from the population 
under study, then 

1) He may or may not exhibit the sign. It is said that, for the sign Σ , our individ-
ual tests positive, res. tests negative. 

2) The disease ∆  is present, res. absent in our individual.  
Therefore, in the context above, for each individual one and only one of the follow-

ing four different possibilities may appear:  
a) Tests positive ( +Σ ) and disease is present ( +∆ ). This is the situation of true 

positive (TP) individuals. 
b) Tests positive ( +Σ ) but disease is absent ( −∆ ). This situation is encountered 

in false positive (FP) individuals. 
c) Tests negative ( −Σ ) but disease is present ( +∆ ). The individuals in this cate-

gory are false negative (FN). 
d) Tests negative ( −Σ ) and disease is absent ( −∆ ). This is the situation of true 

negative (TN) individuals. 

In the language of the theory of probability, the sensitivity of a sign Σ  – of course, 
for the disease ∆  – is defined as the probability that an individual “X” tests positive, 
provided the disease is present. Thus,  

) has X""| is X""( ∆+Σ= pySensitivit   

= )FN is X""  TP is X""| is X""( ∨+Σp . 

This probability is estimated by the ratio 
FNTP

TP

ff

f

+
 whenever data obtained 

from a “good” sample from the population is available. (Of course, TPf  is the abso-

lute frequency of the “true positive” individuals in the sample, etc.) 
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The sensitivity is a measure of accuracy of predicting “positive events”. Usually a 
sign Σ  is considered relevant for the disease ∆  if the value of the sensitivity is 
“large”, i.e. over 0.75 (75%). Of course, values over 0.9 (90%) or, better, over 0.95 
(95%) are to be preferred.  

The specificity of a sign Σ  – for the disease ∆  – is defined as the probability that 
an individual tests negative, provided the disease is absent. Thus,  

)not  has X""| is X""( ∆−Σ= pySpecificit   

= )TN is X""  FP is X""| is X""( ∨−Σp . 

This value is estimated by the ratio 
TNFP

TN

ff

f

+
 . 

Notice that the specificity is a measure of error in predicting “negative events”. 
High values of the specificity, the best larger than 0.95 (95%) are preferred.  

 

Fig. 5.3. Two ROC curves 

The receiver operating characteristic curve (in short, the ROC curve) is con-
structed by plotting the sensitivity versus the specificity. It is larger for a model with 
higher predictive accuracy (see Figure 5.3).  

The area under a ROC curve is called the c-statistics and varies from a minimum 
of 0.5 (when the predictions are as good as “pure chance”) to a maximum of 1.  

Another very important notion in our context (of a sign Σ  and a disease ∆ ) is the 
predictive value of the sign for the respective disease. This is defined as the probabil-
ity that the disease is present, provided the individual tests positive, i.e. by the  
formula:  

) is X""| has X""( +Σ∆= pvalue Predictive . 

This value is estimated by the ratio 
FPTP

TP

ff

f

+
. However, a more interesting 

computing formula, involving the notions presented above, can be established from 
the first theorem of Bayes: 
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)1()1( evalencePrySpecificitevalencePrySensitivit

evalencePrySensitivit
value Predictive

−⋅−+⋅
⋅

=  . 

Here the prevalence of the disease ∆  is simply the probability that the disease is pre-
sent in an individual of the population, and is estimated by the incidence of the  
disease in a sample, i.e. by the ratio 

TNFPFNTP

FNTP

ffff

ff

+++
+

 . 

The prevalence of a disease is “small”, usually under 1%. The predictive value of a 
test is “much larger”, usually around 10%. 

A very simple example of Bayesian network (with only three nodes H, 1E , 2E ) is 

presented in Figure 5.4. 

This network corresponds, obviously, to two IF-THEN-ELSE rules: 

IF h THEN 1e  with prob. )|( 1 hep  ELSE 1e  with prob. )|( 1 hep ¬  

IF h THEN 2e  with prob. )|( 2 hep  ELSE 2e  with prob. )|( 2 hep ¬ . 

The relations (BN), for the nodes, are as follows 

)|()},{|( 121 HEpHEEp = , 

)|()},{|( 212 HEpHEEp = . 

Suppose we detected both “evidences” 1e  and 2e  occurred (i.e. 1E  and 2E  are 

both true). What is the probability that h occurred as well? 

We need to compute )|( 21 eehp ∧ . Because both 1E  and 2E  are descendents of 

H, we use the Bayes’ formula 

)()|()()|(

)()|(
)|(

2121

21
21 hPheephPheep

hPheep
eehp

¬⋅¬∧+⋅∧
⋅∧

=∧  . 

 

 E2 

 E1 

H 

 )(hP  

 )|( 1 hep  

 )|( 1 hep ¬  

 )|( 2 hep  

 )|( 2 hep ¬  

Fig. 5.4. Multiple evidence caused by a hypothesis? 
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Now, in order to compute the two probabilities needed in this formula, we use 
axiom (P3) – see Section 3.6 – then a relation (BN) 

)|()|()|()|()|( 2112121 hephepheephepheep ⋅=∧⋅=∧  

and analogously 

)|()|()|( 2121 hephepheep ¬⋅¬=¬∧ . 

This is nothing else that expressions of conditional independence of “events” 1e  

and 2e . Thus, in this simple case, relation (BN) expresses the conditional independ-

ence of “evidences”. 

An interesting observation: if the event “  trueis 2E ” is, under the condition 

“  trueis H ”, more probable that under the condition “ false is H ”, i.e. if 

)|()|( 22 hephep ¬≥  

then  

)|()|( 121 ehpeehp ≥∧ ; 

hence the probability of “  trueis H ” increases if the evidence 2e  occurred after the 

occurrence of evidence 1e . On the contrary, if )|()|( 22 hephep ¬< , it follows 

)|()|( 121 ehpeehp <∧ , in other words the probability of the hypothesis h  

decreases. 

Consider another simple case of Bayesian network, having also three nodes 1H , 

2H  and E. 

The relations (BN) are non-trivial only for two nodes: 

)(}){|( 121 HPHHp = , 

)(}){|( 212 HPHHp =  

and these relations express in fact the conditional independence of random variables 

1H , 2H  (representing hypotheses that could “cause” the evidence). 

 

)|( 21 hhep ∧  

)|( 21 hhep ¬∧
     … 

 E )( 1hP  

2H  

1H  

)( 2hP  

Fig. 5.5. Independent hypotheses 
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Suppose we detected e (i.e. E is true) occurred. What is the probability that 1h  oc-

curred as well, but not 2h ? The answer is simple, and is obtained by comput-

ing )|( 21 ehhp ¬∧ . 

Node E is a descendent of both 1H  and 2H ; therefore, we use the first Bayes’ 

formula 

)(

)()|(
)|( 2121

21 eP

hhPhhep
ehhp

¬∧⋅¬∧
=¬∧ . 

Using the independence of 1H  and 2H , we obtain 

)()()( 2121 hPhPhhP ¬⋅=¬∧ . 

Now, the parents of E are exactly 1H  and 2H , hence 

)()|()()|()( 21212121 hhPhhephhPhhepeP ¬∧⋅¬∧+∧⋅∧=  

)()|()()|( 21212121 hhPhhephhPhhep ¬∧¬⋅¬∧¬+∧¬⋅∧¬+  

)()()|()()()|( 21212121 hPhPhhephPhPhhep ¬⋅⋅¬∧+⋅⋅∧=  

)()()|()()()|( 21212121 hPhPhhephPhPhhep ¬⋅¬⋅¬∧¬+⋅¬⋅∧¬+ . 

Consider the possible causes of a patient’s aching hands or elbows. These causes 
could be: tennis elbow, arthritis, or dishpan hands. In the Figure 5.6 the acyclic graph 
of relations is represented. 

It can be seen that aching hands does not directly depend on whether the patient 
has an aching elbow or tennis elbow. An aching elbow depends only on whether the 
patient has tennis elbow or arthritis. Whether patients have tennis elbow depends on 
whether they have arthritis. In addition, presenting dishpan hands does not directly 
depend on any of the other variables. 

A D 

T

H

E

A = “arthritis” 

D = “dishpan hands” 

E = “elbow aches” 

H = “hand aches” 

T = “tennis elbow” 

 

Fig. 5.6. Example of a DAG 
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001.0)(aP 01.0)(dP

0001.0)|( atp
01.0)|( atp

1.0)|( taep
99.0)|( taep
99.0)|( taep

00001.0)|( dahp

1.0)|( dahp
99.0)|( dahp
99.0)|( dahp

00001.0)|( dahp

A D 

T

H

E

 

Fig. 5.7. Example of a belief network 

In order to present this situation as a belief network we have to specify two prior 
probabilities and several conditional probabilities. Let us present all these data in the 
Figure 5.7 above. 

It can be seen from the data that arthritis and dishpan hands, separately, determine 
almost sure (0.99) hand aches; however, a patient with both has a very low chance 
(0.1) to suffer from hand aches. 

Conditions (BN) exist for all five nodes. They are as follows: 

)(}){|( APDAp = , 

)(}),,{|( DPTEADp = , 

)|()},{|( TAEpTAHDEp ∧=∧∧ , 

)|()},{|( DAHpDATEHp ∧=∧∧ , 

)|()},{|( ATpAHDTp =∧ . 

Let us compute the probability that our patient has tennis elbow, in the absence of 
any other information:  

)()|()()|()( aPatpaPatptP ¬⋅¬+⋅=  

%)1( 0099901.0)001.01(01.0001.00001.0 ≈=−⋅+⋅=  

Once aching elbow is observed, 

)(

)()|(
)|(

eP

tPtep
etp

⋅=  

%)91( 908935.0
)()|()()|(

)()|( =
¬⋅¬+⋅

⋅=
tPteptPtep

tPtep
, 

thus tennis elbow becomes “almost sure”. 
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In the same manner, 

%)9( 0909.0...)|( ==eap , 

raises approx. 90 times, and  

01.0)()|( == dPedp , 

because of a condition (BN). 

Suppose both aching elbow and aching hands are observed; then  

%)9( 0917.0)|( =∧ hetp   

and the chances of a tennis elbow drop approx. 10 times, 

%)91( 908.0)|( =∧ heap , 

thus arthritis becomes “almost sure”, and 

%)9( 0926.0)|( =∧ hedp , 

thus the chances of dishpan hands raise 9 times. 
In general, in a Bayesian network any conditional probability can be found algo-

rithmically, taking into account the graph structure and the natural ordering of nodes, 
as exemplified above. 

5.4   Software 

Heavy computing is necessary even with simple Bayesian networks. Therefore, pro-
grammed software is needed. 

Netica, developed by Norsys Software Corporation, is probably the most widely 
used software in this category. As the developers say, it is “simple, reliable, and high 
performing … it is the tool of choice for many of the world’s leading companies and 
government agencies”. 

The following Bayesian network – see Figure 5.8 – from [Lauritzen and Spiegel-
halter 1988] is presented as a teaching example in Netica. 

The arrows represent, as usual, possible cause-effect links or influences. The two 
top nodes represent “hypotheses” 

VisitAsia – a possible visit to Asia, Smoking – smoking habitude 
which may influence the likelihood of 

Tuberculosis – tuberculosis disease, Cancer – lung cancer disease, 
Bronchitis – bronchitis disease 

and eventually of the two bottom nodes (“evidences” or symptoms for diseases) 
XRay – X-Ray result, Dispnea – dispnea. 
 
The intermediate node TbOrCa represents “tuberculosis or lung cancer”. Obvi-

ously, the variable associated to this node depends, in a deterministic way, from the 
random variables associated to Tuberculosis and Cancer. Therefore, this node is  
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Fig. 5.8. Netica – an example (I) 

“deterministic”, and this is clearly stated in its description inside the file AsiaExam-
ple.dne: 

node TbOrCa { 
kind = NATURE; 
discrete = TRUE; 
chance = DETERMIN; 
states = (true, false); 
parents = (Tuberculosis, Cancer); 
functable =               // Tuberculosis  Cancer   
  ((true,             // present       present  
    true),            // present       absent   
   (true,             // absent        present  
    false));          // absent        absent  ; 
equation = "TbOrCa (Tuberculosis,Cancer) = Tuberculosis||Cancer"; 

}; 

The Figure 5.9 below presents the results Netica produced for a heavy smoker 
whose X-Ray is abnormal and who visited Asia within last 3 years. The chances of 
lung cancer are 53%. 

Of course, the results are strongly dependent on the conditional probabilities “de-
clared” in the file. An excerpt of the description for the node Dispnea is as follows:  

node Dispnea { 
kind = NATURE; 
discrete = TRUE; 
chance = CHANCE; 
states = (present, absent); 
parents = (TbOrCa, Bronchitis); 
probs =  

Software            145 



146 Bayesian (Belief) Networks 

 // present      absent          // TbOrCa  Bronchitis  
 (((0.72,        0.28),          // true    present     
   (0.65,        0.35)),         // true    absent      
  ((0.15,        0.85),          // false   present     
   (0.01,        0.99)));        // false   absent     ; 
}; 

Netica is a powerful tool. It is able to deal with general discrete random variables 
(having several “states”) and also with continuous variables. However, in the latter case, 
only a finite number of “states” are dealt with, obtained by declaring separation levels. 

BayesBuilder is a simpler tool, developed by SNN group at the University of Ni-
jmegen, The Netherlands. It treats data stored in bbnet files, as for example 
asia.bbnet (see Figure 5.10). 

In such files, data about nodes are dispersed in three groups, separating the states, the 
parents, and the role. For example, the data about “Dispnea” node appears as follows: 

node node2 
{ type = table 
  name = "DYSPNOEA" 
  desc = "Dyspnoea" 
  states = {"TRUE", "FALSE"} 
  info = "" 
  refs { } 
} 

prob node2 
{ parents = {node7, node1} //TBORCA, BRONCHITIS 
  p = {  // TRUE FALSE  
            0.72  0.28 // TRUE TRUE  
            0.65  0.35 // TRUE FALSE  
            0.15  0.85 // FALSE TRUE  
            0.01  0.99 // FALSE FALSE  
      } 
} 
role node2 
{ use "10" // TRUE FALSE 
  test "dispnea" 
} 

 

Fig. 5.9. Netica – an example (II) 
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Fig. 5.10. BayesBuilder – same example (I) as in Fig. 5.8 

 

Fig. 5.11. BayesBuilder – same example (II) as in Fig. 5.9 
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Results presented in Figure 5.11 differ from those presented in Figure 5.9 because 
of different conditional probabilities for the pair (Bronchitis, Smoking). Only the first 
two digits of all probabilities are shown. 

However, a very interesting example is stored in the file alarm.bbnet. 
Charles River Analytics Inc. develops the BNet family, which contains: 

a) BNet.Builder software, to create belief networks, entering probabilistic informa-
tion, and rapidly getting results, and 

b) BNet.EngineKit, which is software developed to incorporate Bayesian networks 
technology into other applications. 

5.5   Bias of the Bayesian (Probabilistic) Method 

The knowledge (about effects and their probable causes) is embodied in Bayesian 
network in a more compact form that in rule-based expert systems. 

Of course, the conditional probabilities “inserted” in a Bayesian network are esti-
mated on the basis of “historical” information, and on this basis it can be used to pre-
dict future behavior – of course, in a probabilistic way. Such a tool – we refer to a 
well-designed Bayesian network – is of great help in diagnosis. 

However, Bayesian reasoning is based on three assumptions: 

1) Hypotheses are mutually exclusive, 
2) Hypotheses are exhaustive, 
3) Conditional independence of evidences under both hypothesis and its  

negation. 

Often these conditions are not met. The probabilistic approach supposes also to es-
timate a priori all the probabilities. Often this is difficult.  

Restrictions concerning the values of probabilities should be taken into account; 
for example, the sum of probabilities of all hypotheses has to be exactly 1. 

The computation of all intermediate values is mandatory. However, the majority of 
these coefficients have a minor influence on the final result. Thus, inefficacity is pre-
sent. And the total ignorance is never taken into account. 

5.6   Solved Exercises 

1) An admissions committee of a college is trying to determine the probability that an 
admitted applicant is really qualified.  

As a rule, qualified people have high grade point average. However, only around 
90% of qualified people are able to obtain excellent recommendations. 

About a half of non-qualified people also possess excellent recommendations and 
about a quarter have high grade point average. 
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The admissions committee “admits” all applicants who have high grade point aver-
age and possess excellent recommendations. Of course, all applicants who have not a 
high grade point average and do not possess excellent recommendations are  
“rejected”. The admissions committee “admits” half of the other applicants. 

Which probability the admission committee is trying to estimate? 
 

2) ([Rich and Knight 1991]) Consider the following set of propositions: 
 patient has spots, 
 patient has measles, 
 patient has high fever, 
 patient has Rocky Mountain Spotted Fever, 
 patient has previously been inoculated against measles, 
 patient was recently bitten by a tick, 
 patient has an allergy. 
a) Create a network that defines the causal connections among the corresponding 

nodes. 
b) Make it a Bayesian network by constructing the necessary conditional  

probabilities. 
3) (A typical Judea Pearl exercise.) The belief network shown below formalizes the 

following situation: you have a new burglar alarm installed at home. It is fairly reli-
able at detecting a burglary, but also responds on occasion to minor earthquakes. You 
also have two neighbors, John and Mary, who have promised to call you at work 
when they hear the alarm. John quite reliably calls when he hears the alarm, but some 
times confuses the telephone ringing with the alarm and calls then too. Mary, on the 
other hand, likes rather loud music and sometimes misses the alarm altogether. 

001.0)(BP 002.0)(

 7.0)|( amp
 1.0)|( amp

95.0)|( ajp
1.0)|( ajp

Burglary Earthquake

Alarm 

JohnCalls MaryCalls 

EP

 98.0)|( ebap
 95.0)|( ebap
 95.0)|( ebap
 001.0)|( ebap

 

Compute the joint probability that neither John nor Mary calls and that there is 
both an earthquake and a burglary. That is, compute )( ebmjP ∧∧¬∧¬ . 
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Solutions. 1) The relevant probabilities are given in the Bayesian network shown  
below.  

Here: a means “applicant is qualified”; 
b means “applicant has high grade point average”, 

1)|( abp
25.0)|( abp

9.0)|( acp
5.0)|( acp

1)|( cbdp
5.0)|( cbdp
5.0)|( cbdp
0)|( cbdp

A

B

D

C

 

c means “applicant is in possession of excellent recommendations”, 
d means “applicant is admitted”. 
The commission needs to compute )|( dap .  
However, a supplementary parameter needs to be specified. Namely, one needs to 

estimate the “initial” probability of qualified people. If this is 3.0)( =aP , then 

52.0)|( =dap  (see the figure below). If 6.0)( =aP , then 79.0)|( =dap . 
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2) a) A possible global description of the causal connections between the proposi-
tions is contained in the following directed acyclic graph: 

b) The original example in [Rich and Knight 1991] is based on the following  
probabilities: 

 

 Probability 
P(inoculation) 
P(tickbite) 
P(allergy) 

0.4 
0.0001 

0.1 

p(measles|inoculation) 
p(measles|¬inoculation) 

0.000001 
0.0001 

p(RMSF|tickbite) 
p(RMSF|¬tickbite) 

0.1 
0 

p(fever|RMSF∧¬measles) 
p(fever|RMSF∧measles) 
p(fever|¬RMSF∧¬measles) 
p(fever|¬RMSF∧measles) 

0.9 
0.91 

0.001 
0.8 

p(spots|allergy∧RMSF∧¬measles) 
p(spots|allergy∧RMSF∧measles) 
p(spots|allergy∧¬RMSF∧¬measles) 
p(spots|allergy∧¬RMSF∧measles) 
p(spots|¬allergy∧RMSF∧¬measles) 
p(spots|¬allergy∧RMSF∧measles) 
p(spots|¬allergy∧¬RMSF∧¬measles) 
p(spots|¬allergy∧¬RMSF∧measles) 

0.85 
0.95 
0.1 

0.85 
0.8 
0.9 

0.001 
0.8 

 
Of course, different values are allowed.  
Thus, the probability of an allergy is only 10%. However, if our patient has spots, 

then with 91% probability our patient has an allergy.  

 

Allergy 

Tick bite 

Measles 
inoculation 

Spots 

Measles 

High fever 

RMSF 
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If, furthermore, the patient has high fever, then the probability of an allergy dimin-
ishes to 26% and there is 13% probability that patient was recently bitten by a tick. 

 

 

 

Now, if we know that the patient has previously been inoculated against measles, 
then the probability of an allergy rises to 58% and the probability that patient was re-
cently bitten by a tick rises to 39%. 
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6   Certainty Factors Theory 

6.1   Certainty Factors 

Bayes’ formulas are complex enough and definitely not adequate to human’s brain 
reasoning activities. Certainty factors theory is an alternative to Bayesian reasoning – 
when reliable statistical information is not available or the independence of evidence 
cannot be assumed – and introduces a certainty factors calculus based on the human 
expert heuristics.  

It is well known that the human experts express their estimation by using terms 
such as “most probable”, “probably”, “probably not”, and “improbable”. However, 
these terms do not have the same meaning as in Probability Theory! 

Uncertainty is expressed usually in a linguistic manner, by using words such as 
“usually”, “frequently”, and „sometimes”. It is usual to attach to uncertain knowledge 
a numerical certainty factor. There are several transformation tables of linguistic 
terms in numerical ones. [Negnevitski 2000] provides us two – in which the attached 
values are between 0 and 100 – obtained after investigation of college students (which 
cannot be catalogued, yet, as experts) 

Term After [Simpson 1944] After [Hakel 1968] 

always 99 100 

usually 85 79 

…   

almost never 3 2 

The study lead by [Nakao and Axelrod 1983] has shown that there is a difference 
in perception between physicians and other type of experts, and also between experts 
and laymen about how to estimate uncertainty values (induced by differences in edu-
cation and tradition). Some examples: 

Experts 
Term 

Physicians Non-physicians 
[Negnevitski 2000] 

often 40 59 78 res. 74 

frequently 50 45 73 res. 72 

not often 25 28 13 res. 16 
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It is to notice that the certainty factor of (the truth of) any evidence e, as evaluated 
by a human expert, will have value in the interval [–1, 1]. The value –1 means “defi-
nitely not (true)”. The value 0 means “maximal uncertainty” or “total ignorance”. For 
the medical “facts” only positive values are used.  

On the other hand, in reasoning, we quite frequently use rules that are not “cer-
tain”. These rules have also a certainty factor. The certainty factor of the rule will be 
combined with the certainty factor of premises to obtain an evaluation of the certainty 
factor of conclusion. 

Psychological experiments have shown that in medical reasoning knowledge is  
responsible for the most of uncertainty (and not the reasoning itself). 

6.2   Stanford Algebra 

When MYCIN was created (1974), the developers (of Stanford University – see 
[Shortliffe, Davis, Axline, Buchanan, Green and Cohen 1975]) decided to implement 
in its inference engine several special rules to manage uncertainty. These are known 
today as Stanford Algebra. 

The name MYCIN comes from a common suffix of several anti-microbial agents, 
and denotes a classical expert system for the diagnosis therapy of blood infections and 
meningitis.  

In MYCIN, the process of selection of a therapy is decomposed in four parts: 

1) The infection needs a treatment? 
2) If yes, identification of the organisms susceptible to be responsible is per-

formed, then; 
3) Medication to be recommended is selected, and; 
4) Treatment is prescribed. 

The original version of MYCIN includes more than 200 production rules, all of the 
same type. Most of them are heuristics, based on facts.  

Facts about the “world” are represented as possible uncertain sentences 

parameter (context) predicate value (certainty factor). 

Examples: 

site (of the culture) is blood (c.f. = 1), i.e. absolutely certain, 
identity (of the organism) is Klebsiella (c.f. = 0.8), i.e. almost certain, 
identity (of the organism) is Proteus (c.f. = –0.6), i.e. probably not. 

Here is an example of a production rule in MYCIN – rule 85 – expressed in plain 
English: 

if the site of the culture is blood, 
 the Gram stain of the organism is negative, 
 the morphology of the organism is rod, and 
 the patient is a compromised host, 
then there is a suggestive evidence (0.6) that the identity of the organism is 

Pseudomonas æruginosa. 

The number 0.6 is assimilated to the certainty factor of the rule. 
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For each production rule a certainty factor is defined, which represents the level 
of belief in the conclusion of the rule given the evidence contained in the antecedent 
(considered as precise). 

An important part of the inference engine of MYCIN is composed by strategy rules 
(which are meta-rules). The meta-rules permit to reduce or to reorder the set of rules 
to be used. These rules are also heuristic, so imprecise. Here is an example: 

if the patient is a compromised host,  
 there exist rules mentioning Pseudomonas in premises, and 
 there exist rules mentioning Klebsiella in premises, 

then it is suggested (0.4) to use the rules mentioning Pseudomonas first.  

The certainty factor of a composed premise A is computed – starting from the cer-
tainty degrees of the components – according to the formulas: 

)}(),(max{)( 21 AcfAcfAcf =  if 21 AAA ∨= , 

)}(),(min{)( 21 AcfAcfAcf =  if 21 AAA ∧= , 

)'()( AcfAcf −=  if 'AA ¬= . 

Before applying an uncertain production rule “IF A, THEN B (cf)” the certainty 
factor of the premise A is computed. If negative, the rule will be ignored. If positive, 
the certainty factor of the conclusion B will be computed by multiplying the rule’s 
certainty factor with the certainty factor of the premise A.  

Hence 

)rule()premise()conclusion( cfcfcf ⋅= . 

Example. Consider the rule 85 above. We know for sure, before applying this rule, 
that the site of the culture is blood (cf = 1), and that the Gram stain of the organism is 
negative (cf = 1). We appreciate that the morphology of the organism is rod (cf = 0.9) 
and that the patient is a compromised host with the certainty factor 0.8. 

Since the premise of the rule is a conjunction, the certainty factor of the premise is 
taken as a minimum, so 0.8. From here, we obtain by multiplication, the certainty fac-
tor 48.06.08.0 =⋅  of the conclusion, “it is Pseudomonas”. 

If the same conclusion B is obtained by applying another rule, then its certainty 
factor is reinforced by the following formula: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−
+

⋅++

⋅−+

=

.situationsother  allin 
}min{1

negative are  and  if

positive are  and  if

)(

newold

newold

newoldnewoldnewold

newoldnewoldnewold

||, |cf|cf

cfcf

cfcfcfcfcfcf

cfcfcfcfcfcf

Bcf  

The formula above corresponds to an operation (with real numbers in the interval 
[–1, 1]) 
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⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<β⋅α
βα−

β+α

≤βαβ⋅α+β+α

≥βαβ⋅α−β+α

=β∗α

0 if
|}| |,min{|1

0, if

0, if

,  

which is commutative and associative. These proprieties of operation ∗  make sure the 
independence of final certainty factor of a conclusion, no matter the order in which 
the rules are treated. 

In the expert system MYCIN, the numbers cf are used in the heuristic research to 
establish a priority for the proposed goals. The methods for combining cf’s are de-
rived from probabilities and are related to probabilities. However, they are distinctly 
different [Shortliffe and Buchanan 1975]. 

6.3   Certainty Factors and Measures of Belief and Disbelief 

Consider a production rule 

IF e THEN h 

having the certainty factor cf. (Here cf represents the belief in hypothesis h given that 
evidence e has occurred.) 

If the evidence e is uncertain, and its certainty factor was evaluated at )(ecf , then 

the certainty factor )|( ehcf  of the hypothesis h (based on e) will be computed as fol-

lows: 

cfecfehcf ⋅= )()|( . 

From here, the certainty factor of the hypothesis h is adjusted as follows 

)|()()( oldnew ehcfhcfhcf ⋅= . 

Example. Suppose two rules have as conclusion the same hypothesis, the two cer-
tainty factors were obtained (from human experts): 

Rule 1: IF 1e  THEN h ( 5.01 =cf ) 

Rule 2: IF 2e  THEN h ( 25.02 =cf ) 

we know for sure the evidence 1e  (i.e. 1)( 1 =ecf ), we are almost sure of evidence 

2e  (i.e. 8.0)( 2 =ecf ), and we are totally ignorant about h. 

Starting from 0)(0 =hcf , after the first rule is fired we obtain 

5.0)()|()|(0)( 11111 =⋅==∗= cfecfehcfehcfhcf . 
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Then, after the second rule is fired, 

))((5.0)|()()( 222112 cfecfehcfhcfhcf ⋅∗=∗=  

6.02.05.02.05.0)25.08.0(5.0 =⋅−+=⋅∗= . 

Suppose we know for sure another evidence 3e  and a third rule having conclusion 

h exists: 

Rule 3: IF 3e  THEN h ( 4.03 −=cf ) 

After this rule is fired, 

333.0
4.01

4.06.0
)14.0(6.0)|()()( 312123 =

−
−=⋅−∗=∗= ehcfhcfhcf  

and our confidence in hypothesis h is drastically reduced.  

Now, how a certainty factor of a rule is obtained? Given a rule 

IF e THEN h, 

the degree of confidence in the hypothesis h (due to evidence e), i.e the certainty fac-
tor )|( ehcf , was originally defined in MYCIN as a difference 

)|()|( ehMDehMB −  

where MB is a measure of belief in the hypothesis h due to e, and MD is a measure of 
disbelief in h due to e. 

Thus, in MYCIN a simple way to combine belief and disbelief into a single num-
ber was chosen. 

The measure of belief was defined in terms of probabilities as follows: 

  otherwise
)(1

)()}(),  (max{
1)(P  if1

)|(
⎪⎩

⎪
⎨
⎧

−
−

=
=

hP

hPhPe|hp
h

ehMB  

and the measure of disbelief as follows: 

  otherwise.
)(

)}(),  (min{)(
0)(  if1

)|(
⎪⎩

⎪
⎨
⎧

−
=

=
hP

hPe|hphP
hP

ehMD  

Thus, when lacking evidence we have )()  ( hPe|hp =  and, if h is not “absolutely 

certain” or “impossible”, then 0== MDMB , hence 0=cf . 

On the other side, 0=cf  could appear also when 0>= MDMB . This means the 

belief is cancelled out by the disbelief. 
In general, cf is a number between –1 and 1. A positive value of the cf means the 

evidence supports the hypothesis, since MDMB > . 

As it was specified above, the numbers cf are used in MYCIN to rank different hy-
potheses. 
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However, there are difficulties with this approach because a single piece of discon-
firming evidence could drastically cancel all the confirmation of many previous 
pieces of evidence. For example, nine pieces of evidence could produce a measure of 
belief of 0.9 and a tenth piece of evidence could come with 8.0=MD , thus on the 
whole 1.0=cf .  

In addition, in order to activate a rule in MYCIN, the premise of the rule should 
have a certainty factor of at least 0.2. (This threshold value 0.2 was chosen in order to 
minimize the activation of rules that only weakly suggest a hypothesis, thus to in-
crease the overall system efficiency.) 

In a later version of MYCIN the definition of the certainty factor was changed into 
the following: 

}min{1 MB,MD

MDMB
cf

−
−=  

to soften the effect of a single disconfirming piece of evidence on many confirming 
pieces of evidence. 

Using this definition, from the data in the example above we obtain 

50
20

10

801

8090
.

.

.

.

..
cf ==

−
−=  

thus a value over the activation threshold! 
The major advantage of certainty factors was the simple computations by which 

uncertainty propagates in the system. Moreover, the certainty factors are easy to un-
derstand and clearly separate belief from disbelief. 

However, there are difficulties with the theoretical foundations of certainty factors. 
One problem is that the cf values could rank hypotheses in opposite order as condi-
tional probabilities do (and some people do not accept this behavior). 

A second “strange” problem is the transitivity formula 

)  ()  ()  ( e|icfi|hcfe|hcf ⋅=  

valid for an intermediate hypothesis i based on evidence e. Notice that in Probability 
Theory, in general 

)  ()  ()  ( e|ipi|hpe|hp ⋅≠ . 

The success of MYCIN – despite all these problems – is probably due to short in-
ference chains and simple hypotheses. For situations that are more complex serious 
reasoning errors could be obtained. However, the importance of this type of expert 
system consists mainly in the quality of its production rules. 

6.4   Solved Exercises 

1) The teacher noticed – and all the students agreed upon – that last month there were 
twice as many dry days as rainy days. 
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One of the students noticed that there were no two consecutive rainy days. Hence, 
he added, the certainty factor attached to 

IF today_is_dry THEN tomorrow_is_rain 
should be set to 0.5. Explain and correct the mistake. 

2) From two different human experts we obtained the following: 

IF today_is_dry AND temperature_is_warm  
THEN tomorrow_is_rain (it’s possible enough cf = 0.4)  

IF today_is_dry AND sky_is_overcast  

THEN tomorrow_is_rain (most probably cf = 0.7)  

Today is a dry and warm day, and the sky is overcast. What can be said about the 
weather forecast? 

3) Given the following uncertain rules in a reasoning system 

CBA ⇒¬∧ )(  (0.9) 

EDC ⇒∨  (0.75) 
AF ⇒  (0.8) 
DG ⇒  (0.8) 

and the uncertain facts 

B  (–0.8) 
F  (α) 
G  (β) 

use Stanford algebra to determine the certainty factor of E. 
4) All the rules of the expert system in Chapter 1, Exercise 3 have 0>α  as cer-

tainty factors. Knowing facts A and B are sure (I.e. their c.f. = 1), find the certainty 
factors of C and D. 

5) Verify that the operation ∗  is associative (i.e. satisfies  

γ∗β∗α=γ∗β∗α )()(  

for all ]1 ,1[,, −∈γβα ). 

Solutions. 1) We know from 30 days only 10 were rainy, the other 20 dry. Now, after 
a dry day in 10 cases (50%) followed another dry day, and in the other 10 cases a 
rainy day. If this pattern (tendency?) will continue, then we are totally uncertain about 
what will follow after a dry day. That means the certainty factor should be set to 0, 
not to 0.5. Certainty actors are not probabilities! 

It is sure that after a rainy day a dry day followed. Therefore we are entitled to set 
to 1 the certainty factor attached to  

IF today_is_rain THEN tomorrow_is_dry 

(despite the fact that the weather pattern is subject to change). 

Without the observation of the student, the distribution of the 10 rainy days among 
the other 20 dry days could vary. Each human being, according to his/hers past ex-
perience, sets the certainty factor of the rule above. Remember, –1 means “zero 
chances to be true”. 
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2) The aggregate certainty factor has a value 82.07.0*40 =. . Thus tomor-
row_is_rain is almost sure! 

3) For ]1 ,1[−∈α  we have 8.080 ≤α⋅. , hence C has certainty factor α⋅ 8.090. . 

On the other hand, D has certainty factor β80. . Now, the certainty degree of E is 

}8.0 ,720max{75.0 βα⋅ . . 

4) We have α=αα∗α } ,min{ 2 , and the respective certainty factors are 2α∗α  

and 32 α∗α∗α . 
5) When comparing γ∗β∗α=γ∗β∗α )()(  for 0, >βα  and 0<γ , consider 

the following three cases: a) γ−≥β ; b) γ−<β  and γ∗β−≥α ; c) γ−<β  and 

γ∗β−<α . 
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7   Belief Theory 

7.1   Belief Approach 

The following example is extracted from [Degoulet and Fieschi 1999].  
Suppose a decision agent (physician) faces the following problem: a 68-years-old 

diabetic man, who injured his left foot, has developed an infection that may cause 
gangrene. 

Two therapeutic solutions are possible: 

• To amputate immediately, or 
• To treat with anti-inflammatory medication and wait. 

The first solution may cause death. The second solution may cure the infection or, 
if the medication is ineffective, may require a larger amputation (above the knee) or 
even cause death. 

This is a typical decision situation. A decision tree (see Figure 7.1) can represent it. 

scar
formation

survival

no

extension of 
infection

late amp-
utation

doing 
nothing 

survival

no

Death

Amputation 
above the knee 

medication
and wait 

immediate 
amputation 

Healing

Amputation 
below the knee

Death

Death

 

Fig. 7.1. Example of a decision tree 
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Of course, the decision of our agent depends on several parameters: 

• The likelihood of death during surgery, 
• The likelihood of the extension of infection, and 
• The usefulness (utility) of each final result. 

A “computed” utility is associated to any possible decision, and it seems obvious 
that the “rational” decision is that which corresponds to the maximal utility. However, 
in computing utilities the first two of the above parameters play a decisive role, and 
these are of “probabilistic” type. The agent’s belief, based on his/hers knowledge, is 
involved and needs to be estimated. Of course, his/hers personal experience plays a 
major role in estimating “beliefs”. 

As pointed out in [Smets 2000], beliefs manifest themselves at two mental levels: 

1) The credal level, before the particular decision is made, when beliefs are enter-
tained and updated, 

2) The pignistic level1, when beliefs are converted into probabilities used to make 
decisions. 

The motivation for the use of probabilities is usually linked to “rational” behavior 
in making decisions (see [Savage 1954]). However, this motivation is justified only at 
the pignistic level. At the credal level, “beliefs” are not bound to satisfy the classical 
conditions imposed on probabilities. 

By convention, “the probability of a proposition is 0” means that our proposition is 
assumed to be definitely false, i.e. no new evidence will alter our belief. The probabil-
ity of a proposition reflects the agent’s ignorance about the truth of that proposition. 
However, agents observe the world(s), and they modify/update their beliefs based on 
new “knowledge” acquired. 

Beliefs in propositions can be “measured” also in terms of numbers between 0 and 1.  
Before presenting the main ideas of Belief Theory, let us remind some ideas from 

Probability Theory that support this theory. 
The frequentist approach to treat probabilities has an important advantage: it is 

supported by mathematical analysis, i.e. by limit calculus, and the computations are 
relatively simple. However, the main weakness is serious: it applies only to inherently 
repeatable events; the probability of a future singular event is undefined. And events 
in biology, economics, sociology and politics are unique! 

The major advantage of the Bayesian approach is its flexibility: at least in principle 
each uncertain proposition can be treated. However, neither can be guaranteed that we 
will maintain subjective evaluations – judged today as “correct” – unchanged in the 
future, nor that other people will accept our evaluations as “correct”. The Bayesian 
approach is highly subjective! 

We notice here that very few physicians, and the vast majority of ordinary people, 
are aware of the computations imposed by the “correct rules” of Bayesian reasoning. 
In fact they are not following, by the book, the rules of Probability Theory. In major-
ity they over-estimate, more or less drastically, probabilities. However, due to their 
personal experience, physicians overcome this tendency of over-estimating probabili-
ties and usually prescribe adequate treatment to patients. 

                                                           
1 In Latin credo = to believe, pignus = bet. 
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There is no objective way to assess the status of a living patient, or to identify the 
optimal therapeutic plan. Based on his personal previous experience, the physician 
treating this patient is reaching an opinion about the status – i.e. is forming a belief – 
and is prescribing a treatment on the basis of this belief. 

Typically such a belief is expressed as one or more sentences like this: 

“the patient x has a disease d from group g”  

or, formally, 

patient(x) ∧ disease(d) ∧ group(g)  

∧ is_from(d,g) ∧ has(x,d). 

Of course, the belief is highly subjective and depends strongly on the education 
and experience of our physician. 

In fact, the belief should be expressed as one or more sentences like this: 
“the physician p believes the patient x has disease d from group g”  

or, formally, 

physician(p)∧patient(x)∧disease(d)∧group(g) 

∧is_from(d,g)∧believes(p,has(x,d),b) 

where b denotes the degree of belief. 
Notice that apparently there is no uncertainty in the last sentence, though the uncer-

tainty of 

patient(x) ∧ disease(d) ∧ group(g)  

∧ is_from(d,g) ∧ has(x,d) 

in fact of 
has(x,d) 

is expressed by the evaluator-agent p and it is b. It is obvious that degree of belief b 
depends on physician p. 

7.2   Agreement Measures 

How could we measure the agreement between two (or more) subjective beliefs 
(about the state of the same patient, at a given “moment” in time)? How could we fu-
sion two different beliefs? 

Let us underline this term: agreement. In case numbers express the opinions of the 
“domain experts” or “raters”, the term “similarity” would be appropriate. However, in 
our case the belief of physicians is expressed in categorical terms, this is why we pre-
fer the term “agreement”. 

A large number of agreement measures have been suggested in the past and can be 
found in the literature (see [Hripcsak and all 2002]). Let us review two classical ones: 
the observed agreement and the kappa coefficient. 

In two categories (+ + and – – below) both raters agree and in the other two  
disagree. 
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Table 7.1. 

Rater 1R  judgement  

Positive Negative 

Positive 
(Category + +) 

a cases 
(Category – +) 

c cases Rater 2R  

judgement 
Negative 

(Category + –) 
b cases 

(Category – –) 
d cases 

 
The observed agreement between 1R  and 2R  is computed by the formula 

dcba

da

+++
+=OA  

It is obvious that the values of OA are rational numbers between 0 and 1. Values of 
OA near 1 express a high degree of agreement between our raters; on the contrary, 
values of OA near 0 express a low degree of agreement. 

However, how should the “middle 
value” ½ be interpreted? Accepting the op-
position high-low, the value ½ represents a 
medium degree of agreement. However, in 
our minds a “medium degree of agree-
ment” does not coincide with “a threshold 
between agreement and disagreement”!  

Indeed, we perceive the degree of 
agreement as a degree of belief in the sen-
tence “the two raters agree on their judg-
ments” and from here the confusion can be 

immediate! The following probabilistic analysis will reveal the point. If nothing is 
known about our raters, except that both are “guessing” at random, then the prior 
probability of a positive evaluation by a rater is ½, and the probability of a case to be 
classified in any of the four categories is ¼; hence the expected agreement is ½. In 
such way, a “medium degree of agreement” is obtained purely by chance! 

The serious drawback of this agreement measure OA appears when a is relatively 
small compared to b and c, and very small compared to d. Unfortunately, this is the 
situation (of interest!) of rare diseases, where the vast majority of cases fall in Cate-
gory – –. The value OA in this case is very large (i.e. near to 1), whatever the other 
opinions are! (See the three examples in tables 7.2, 7.3, 7.4: for each the degree of 
agreement is 0.93, even when no agreement on positive cases was detected! 

Another agreement measure is the kappa coefficient, first introduced in [Cohen 
1960]. To define the kappa coefficient, one has to understand first how the expected 
agreement EA is defined. Its definition is analogous to that of OA: 

)(

)()(
EA

dcbaE

dEaE

+++
+=  

where )(•E  denotes the expected value of a random variable. 

Table 7.2 

1R   

+ – 

+ 1 4 
2R  

– 3 92 
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If a number of cases were distributed in the four categories above (see Table 7.1), 
proportional to the opinions of both raters about the observed values, then we expect 

to find, in Category + +, around 
dcba

caba

+++
+⋅+ )()(

 cases. In fact, 

dcba

caba
aE

+++
+⋅+= )()(

)(  and, analo-

gously, 
dcba

dcdb
dE

+++
+⋅+= )()(

)( . 

Hence, the formula of the expected 
agreement is 

2)(

)()()()(
EA

dcba

dcdbcaba

+++

+⋅+++⋅+=

. 
Now, the formula of the kappa coeffi-

cient 
EA1

EAOA

−
−=κ  is set is such a way 

that chance agreement becomes 0. 

A direct formula is immediate: 

)()()()(

)(2

dcdbcaba

cbda

+⋅+++⋅+
⋅−⋅=κ . 

The values of κ  are rational numbers between –1 and 1.  

7.3   Dempster–Shafer Theory 

Let us confine ourselves to the creedal level only and explore how beliefs of individ-
ual agents are entertained or modified. 

In the previous chapters we explored two possibilities to treat uncertainty in a sys-
tem of rules of the form 

IF e THEN h 

namely: 

• The probabilistic approach (statistical, Bayesian, and logical) which assume 
the estimation of a priori probability of h (i.e. the a priori probability that hy-
pothesis H is true), and likelihood of the rule; 

• The approach using certainty factors cf. 

In [Dempster 1967] and then in [Shafer 1976] another approach has been proposed, 
based on belief and plausibility measures. 

The initial point of Dempster–Shafer approach is to consider agents that possess 
knowledge encoded in their evidential corpus. Based on his/hers knowledge, each 
agent You “believes” something about the “real world” 0ω , which is one of the  

   Table 7.3. 

1R   

+ – 

+ 0 4 2R  

– 3 93 

   Table 7.4. 

1R   

+ – 

+ 0 0 2R  

– 7 93 
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possible worlds (elements of the universe Ω ) detected or imagined by You. Changes 
into his/hers “system of beliefs” are possibly induced by supplementary pieces of evi-
dence e “known” by our agent. 

More precisely, given a subset A of Ω , the belief of our agent in the truth of the 
sentence “the real world 0ω  is in A”, expressed as a number between 0 and 1, is de-

noted by Bel(A). Our agent You entertains a system of beliefs }|)(Bel{ Ω⊆AA  that 

is fully determined, at each moment, by the knowledge possessed at that moment. 
Thus the system of beliefs held by our agent You (at a moment t) is nothing else 

than a function 

]1 ,0[2:Bel →Ω . 

To better understand the conditions such a function satisfies it is convenient to 
identify sentences “the real world 0ω  is in A” with the corresponding subsets A of 

Ω . Of course, if the above propositions are interpreted as subsets of Ω , then the  
disjunction res. conjunction of two propositions is interpreted as the union res. inter-
section, and the implication is interpreted as inclusion. 

Let us normalize beliefs. More precisely, consider the agent You possesses a unit of 
belief and denote by )(Am  that part of the whole belief of You that supports A and, 

due to lack of information, does not support any strict subset of A. (“Supports A” 
means “believes that the real world 0ω  is in A”.) Of course, the number )(∅m  is 

expressing the degree of confusion existent in the beliefs of agent You. 
A normalized basic belief assignment (see [Smets 2000]) is a function 

]1 ,0[2: →Ωm  satisfying two conditions: 

(BBA1) 0)( =∅m  (i.e. “no confusion at all”), 

(BBA2) ∑
Ω⊆

=
A

Am 1)(  (i.e. “exhaustion of all belief possessed by You”). 

A general basic belief assignment is bound to satisfy only (BBA2), i.e. it allows the 
existence of a certain amount of confusion in the beliefs of You. 

We suppose that the sum appearing in (BBA2) is defined in some precise way. In 
practical applications the universe Ω  is finite, and in this case the definition is clear. 

It is a fundamental difference between this definition and that of a probability 
measure for which we asked that 

∑
Ω∈ω

=ω 1)(m . 

Therefore, the probability measure is defined on Ω  while the basic belief assign-

ment is defined on Ω2 . 
For example, suppose that universe Ω  has only three elements. In the Probability 

Theory, a probability measure defined on Ω  is expressed by a random variable X 
with three values. Particularly we have the situation induced by a (perfect) die tossed 
for which }6or  5or  4 ,3or  2 ,1{=Ω , and 
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6

1
)1( =m , 

6

2
)32( =∨m , 

6

3
)654( =∨∨m . 

In the Dempster–Shafer theory we can consider that Ω  is composed of the ele-

mentary propositions a, b, c. Then Ω2  contains also their negations cba ∨=¬ , 
cab ∨=¬ , bac ∨=¬  and two exceptional subsets, ∅  and Ω  itself. The basic 

belief assignment m expresses the degree of belief in each possible proposition, ele-
mentary or not. Recall for Ω⊆A  )(Am  is interpreted as that part of the belief of an 

agent in the sentence “the actual world belongs to A” and not in all sentences “the  
actual world belongs to a particular strict subset of A”. Of course, )(Ωm  may be non-

zero; it expresses the global uncertainty still existing in the belief system. For exam-
ple, the following table describes a particular normalized basic belief assignment: 

 

subsets A }{a  }{b  }{c  },{ ca  },{ cb  Ω  

measure )(Am  0.1 0.3 0 0.3 0.2 0.1 
 

We notice in this table that: 

a) 1.0)( =Ωm , thus it is not required that 1)( =Ωm ; 

b) },{}{ cbb ⊂  (i.e. cbb ∨⇒ ), and }),({})({ cbmbm > , thus it is not required 

that )()( BmAm ≤  when Ω⊆⊆ BA ;  

c) No relationship between the measure of {a} and the measure of its complement 
},{ cb  is required;  

d) There exist propositions, such as c, that have zero measure. Generally, the 
propositions p for which 0)( >pm  are called focal. The name comes from the fact 

that we focalize our interest on these propositions;  
e) There is a subset, },{ ba , that does not appear in the table. The reason is simple: 

it is not supported at all, its measure is zero. 

Recall that the propositions a of universe Ω  are interpreted as subsets A of the set 
Ω . The empty subset ∅ symbolizes the contradiction. A “true” implication ab⇒  is 
interpreted as an inclusion AB ⊆ . 

If A is a given arbitrary subset (i.e. a is a proposition) of universe Ω , then gener-
ally we distinguish three types of subsets (propositions) of Ω : 

1) The subsets B (i.e. propositions b) that are contained in A (thus for which 
ab⇒  is true); 

2) The subsets C (i.e. propositions c) that are contained in the complement of A 
(thus for which ac ¬⇒  is true); 

3) The parts D (i.e. propositions d) that intersect both A and its complement 
A−Ω  (thus for which both ad ⇒ and ad ¬⇒  are not true). 

By analogy with the probability definition of an event, we define the belief of a 
subset A (i.e. of a proposition a) of universe Ω , using only the subsets (propositions) 
of type 1, by the formula  
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∑
⊆

=
AB

BmA )()(Bel  (alternate definition ∑
⇒

=
ab

bma )()(Bel ). 

In such way we obtain the belief measure 

]1 ,0[2:Bel →Ω . 

Condition (BBA2) is interpreted as 1)(Bel =Ω . 

The subsets (propositions) of type 2 of A are used – in the same manner as above – 
to define the belief of the negation (“propositional complement”) )(Bel a¬ . 

Because of the existence of parts of type 3, it is obvious that generally, 

1)(Bel)(Bel ≤¬+ aa  for each proposition a. 

The subsets of type 3 are used to define the degree of uncertainty between a and its 
negation a¬ . However, the subsets of type 1 and 3 are used together, to define the 
plausibility of subset A (i.e. of proposition a), by the formula 

∑
∅≠∩

=
AB

BmA )()(Pl  (alternate definition ∑
⇒¬

=
)(

)()(Pl
ab

bma ). 

It is immediate that 

1)(Bel)(Pl =¬+ aa , 

thus )(Bel1)(Pl aa ¬−= . 

It results directly from the definitions that, in general, 

)(Pl)(Bel aa ≤  

and that the difference )(Bel)(Pl aa − , i.e. the interval ⊆)](Pl),([Bel aa  ]1 ,0[ , 

“measures” the uncertainty of proposition a. 
Consider two propositions 1a  and 2a  such that 21 aa ⇒ . If 1ab⇒ , it is clear 

that 2ab⇒  because of syllogism rule. Then, 

)(Bel)()()(Bel 21

21

abmbma
abab

=≤= ∑∑
⇒⇒

 

therefore, the belief measure satisfies the monotonic condition  

(Bel1) If 21 aa ⇒ , then )(Bel)(Bel 21 aa ≤ . 

We know that if 21 aa ⇒ , then 12 aa ¬⇒¬ . Thus we deduce that 

)(Bel)(Bel 12 aa ¬≤¬ , hence )(Pl)(Pl 12 aa ≥ . The plausibility measure satisfies 

the monotonic condition: 

(Pl1) If 21 aa ⇒ , then )(Pl)(Pl 21 aa ≤ . 
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Consider two propositions 1a  and 2a , and their disjunction 21 aa ∨ . To obtain 

∑
∨⇒

=∨
21

)(  )(Bel 21
aab

bmaa  

it is necessary to evaluate all “subsets” B of 21 AA ∪ . There are six possibilities (see 

Figure 7.2). 

1) 1ab⇒  )( 1AB ⊆  

2ab ¬⇒  )( 2 ∅=∩ AB  

 
 
 
 
 
 

 

2) 1ab⇒  )( 1AB ⊆  

)( 2ab ¬⇒¬  ∅≠∩ 2( AB  

      and ))( 2 ∅≠−Ω∩ AB  

3) 1ab⇒  )( 1AB ⊆  

2ab⇒  )( 2AB ⊆  

 
 
 
 
 
 
 

4) )( 1ab ¬⇒¬  ∅≠∩ 1( AB  

      and ))( 1 ∅≠−Ω∩ AB  

2ab⇒  )( 2AB ⊆  

 

5) 1ab ¬⇒  )( 1 ∅=∩ AB  

2ab⇒  )( 2AB ⊆  

 
 
 
 
 

6) )( 1ab ¬⇒¬  ( ∅≠∩ 1AB ) 

)( 2ab ¬⇒¬  ( ∅≠∩ 2AB ) 

 

Fig. 7.2. Subsets of a union 

From situations 1-2-3 we retrieve 1ab⇒ , and from 3-4-5 we retrieve 2ab⇒ . In 

addition, it is obvious that 3 means 21 aab ∧⇒ . Thus we can write: 

∑+∧−+=∨
)6(

212121 )()(Bel)(Bel)(Bel)(Bel bmaaaaaa  
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and from here we deduce the sub-additivity of a belief measure: 

(Bel2) )(Bel)(Bel)(Bel)(Bel 212121 aaaaaa ∧−+≥∨ . 

By contrast, the plausibility measure is super-additive: 

(Pl2) )(Pl)(Pl)(Pl)(Pl 212121 aaaaaa ∧−+≤∨ . 

In case Ω  is finite ( },...,,{ 21 nωωω=Ω ), the relation between the basic belief 

assignment m and its associated belief Bel is expressed algebraically as 

m

n

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗⊗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⊗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

  times

11

01
...

11

01

11

01
Bel  

where Bel and m are identified with vectors having n2  components. From here, tak-

ing into account that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

11

01

11

01 1

, the formula 

Bel
11

01
...

11

01

11

01

  times

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⊗⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⊗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

n

m  

is immediate. 
Hence, starting from the values of a belief measure, we retrieve the values of the 

basic belief assignment by “inclusion-exclusion” type formula: 

( )∑
⊆

−−=
AB

BA BAm )(Bel1)( | ||| , where || X  = cardinal of X. 

Particularly, for p, q and r elementary propositions, we get 

)(Bel)(Bel)(Bel)( qpqpqpm ∨+−−=∨ , 

)(Bel)(Bel)(Bel)(Bel)( qprqprqpm ∨−++=∨∨  

)(Bel)(Bel)(Bel rqprqrp ∨∨+∨−∨− . 

For example, let us toss a coin. A head is obtained? Following Dempster-Shafer 
theory, we obtain the measures 

0)(Bel =head  and 0)(Bel =¬head  

because we have no information about the experiment (the coin may be counterfeit!). 
Suppose that a human expert confirms – with the degree of belief 95% – that the 

coin is “correct” (i.e. the expert is “sure 95%” that 5.0)( =headP ). Now, Demp-

ster–Shafer theory provides us (as we will see it in the next section) with the follow-
ing values: 

475.05.095.0)(Bel =⋅=head  and also 475.0)(Bel =¬head . 

We missed the 5% that the expert cannot certify and that has to be assigned to the 
“universe” headhead ¬∨ ! 
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7.4   The Pignistic Transform 

Suppose },{ 21 ωω=Ω  and the basic belief assignment possessed by our agent m is 

confusion-free. Then m is represented by a point M in the triangle ABC in Figure 7.3. 
When a decision must be made by the agent, he/she will transform the system of be-
liefs into a system of probabilities )( 11 ωPp = , )( 22 ωPp = . These probabilities 

are represented, in Figure 7.3, by a point P on the segment AB. 
There is no “absolute” choice of the point P associated to M. However, the pignis-

tic transformation is given as follows: 

)(
2

1
})({ 11 Ω+= mmp ω , )(

2

1
})({ 22 Ω+= mmp ω . 

A

M

C

B
P  pignistic 

 proportional 
})({ 2m

})({ 1m

)(m

 

Fig. 7.3. Transforming beliefs into probabilities 

In general, the pignistic transform of the b.b.a. ]1 ,0[2: →Ωm , justified in 

[Smets 1994], is the probability ]1 ,0[: →ΩmP  given by: 

)(
||

1

)(1

1
)( Xm

Xm
P

X
m ∑

Ω⊆∈∅−
=

ω
ω , 

where || ⋅  denotes, as above, the cardinality. 

Of course, there are other “rational” transforms, such as the “proportional” one, il-
lustrated in the Figure above. 
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7.5   Combining Beliefs. The Dempster’s Formula 

We would like to combine the obtained evidence from two independent sources (for 
example from two human experts) when the basic belief assignments are expressed.  

We start by analyzing how two different basic belief assignments m1 and m2 can be 
combined to obtain a common basic belief assignment m. 

We know that ∑ =
b

bm 1)(1  and∑ =
c

cm 1)(2 . From here, by multiplication, 

∑ =⋅
cb

cmbm
,

21 1)()( . 

We regroup the sum’s terms in two categories: 

1) those which correspond to the subsets B, C such that ∅=∩ CB ; 
2) the others, which correspond to the subsets B, C such that ∅≠=∩ ACB . 

We obtain: 

∑ ∑ ∑
∅=∩ ∅≠ =∩

=⋅+⋅
CB A ACB

CmBmCmBm 1)()( )()( 2121 . 

If we denote by K the first term of this sum, we get: 

KCmBm
A ACB

−=⋅∑ ∑
∅≠ =∩

1)()( 21 , 

which means that we denote ∑
=∩

⋅
−

=
ACB

CmBm
K

Am )()(
1

1
)( 21 ; then m satisfies 

the condition (BBA2) imposed to basic belief assignments. In order to obtain a genu-
ine basic belief assignment, it would suffice to impose the additional condition  

0)( =∅m . 

This is precisely the formula proposed in [Dempster 1967] for the combination of 
basic belief assignments. 

Hence, starting from two basic belief assignments 1m  and 2m , we compute the 

(discordance) coefficient  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅=⋅= ∑∑

⇔∧∅=∩ ioncontradict
2121 )()(  )()(

cbCB

cmbmCmBmK ,  

then we define the composition 21 mmm ⊕=  of 1m  and 2m  by 

0)( =∅m  and 

∑
=∩

⋅
−

=
ACB

CmBm
K

Am )()(
1

1
)( 21  for ∅≠A  
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≠⋅

−
= ∑

⇔∧
ioncontradictfor    )()(

1

1
)( res. 21 acmbm

K
am

acb

. 

Therefore, to combine two beliefs 1Bel  and 2Bel , from two independent sources, 

we consider the corresponding basic belief assignments 1m  and 2m , we compute the 

composition 21 mmm ⊕=  and, from here, we compute the composed belief Bel. 

Example 1 ([Luger 2002]). Suppose that universe Ω  has four atomic propositions, 
which are the following hypotheses: the patient has a cold (l), flu (f), migraine head-
ache (h), or meningitis (g). We measure the belief of each subset of Ω  according to 
the symptoms. 

Obviously, we have to distribute the “unit belief” on 15124 =−  different subsets. 
Suppose the first piece of evidence is clear, our patient has fever. Any hypothesis, 

except the headache, may be the cause. Our physician, informed by phone, evaluates 
6.0)(1 =∨∨ gflm . If additional information is not available, then the rest of the 

belief (0.4) has to be distributed to the universe: 4.0)(1 =Ωm . 

Suppose that another physician (who is not experienced) obtains some other data 
for diagnosis, namely that our patient has extreme nausea. Now the causes may be l, f 
or h. This physician independently evaluates 7.0)(2 =∨∨ hflm  (and, of course, 

3.0)(2 =Ωm ). 

Knowing both evaluations, we use Dempster’s rule to combine these two beliefs. 

The discordance coefficient is ∑
∅=∩

=⋅=
CB

CmBmK 0)()( 21 , so we obtain 

∑
=∩

⋅=
XCB

CmBmXm )()()(' 21  for all Ω⊆≠∅ X . 

Only for four subsets 

FL ∪ , HFL ∪∪ , GFL ∪∪ , GHFL ∪∪∪=Ω  

we obtain non-zero values: 

42.0)()()(' 21 =∨∨⋅∨∨=∨ hflmgflmflm , 

18.0)()()(' 21 =∨∨⋅Ω=∨∨ gflmmgflm , 

28.0)()()(' 21 =∨∨⋅Ω=∨∨ hflmmhflm  and 

12.0)()()(' 21 =Ω⋅Ω=Ω mmm . 

Suppose a new piece of evidence is obtained, this time a fact from the lab; namely, 
the result of a lab culture is strongly associated with meningitis: 

8.0)(3 =gm  (and 2.0)(3 =Ωm ). 
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Dempster’s formula can help to redistribute the beliefs. Now the discordance coef-
ficient is 

∑
∅=∩

⋅∪=⋅=
CB

GmFLmCmBmK )()(')()(' 33  

56.08.028.08.042.0)()(' 3 =⋅+⋅=⋅∪∪+ GmHFLm  

therefore we have to normalize with the coefficient 44.0
1

)56.01(
1 =−  the follow-

ing results: 

∑
=∩

⋅=⋅
GCB

CmBmGm )()(')("44.0 3  

24.0...)()(')()(' 33 ==⋅Ω+⋅∪∪= GmmGmGFLm , 

084.0)()(')()(')("44.0 33 =Ω⋅∪=⋅=∪⋅ ∑
∪=∩

mFLmCmBmFLm
FLCB

 

 … 
so ...545.0)(" =gm , ...190.0)(" =∨ flm , etc. 

Notice that the quite large value of discordance coefficient K, 0.56, shows that 
there are enough conflictual evidence in the choice of basic belief assignments 1m , 

2m  and 3m . 

Example 2 ([Voorbraak 1993]). Jaundice is a symptom of one of four diseases: 

cirrhosis of the liver (l),  
hepatitis (h),  
gallstones (g),  
cancer of gall bladder (k) 

This may be wrong, but whenever a set of facts and rules is established, it could be 
wrong! In Dempster–Shafer theory one assumes that the set of hypotheses is exhaus-
tive; therefore, we should assume a fifth “disease”: 

any other non-specific liver/gall bladder disorder (n). 

Now l and h are liver problems, on the other side g and k are gall bladder problems. 
Suppose we have some evidence (for example sharp pain in the lower back) that is 

associated with liver problem. A first basic belief assignment could be as follows: 

7.0)(1 =∨ hlm , 3.0)(1 =∨∨∨∨ nkghlm , 

and, of course, 0)(1 =pm  for all the other propositions p. 

Suppose some other evidence is directly available (for example, our patient is not a 
heavy drinker) that downgrades the hypothesis h. The new basic belief assignment is 
now the following: 

8.0)(2 =∨∨ kglm , 2.0)(2 =∨∨∨∨ nkghlm , 

and 0)(2 =pm  for all the other propositions p. 
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What can be said about the compound mass )(21 lmm ⊕ ? 

The only pair b, c such that 0)(1 ≠bm , 0)(1 ≠cm  and cbl ∨⇔  is hlb ∨= , 

nkglc ∨∨∨= , so that ∑
⇔∧

=⋅=⋅
lcb

cmbm 56.08.07.0)()(  21 . 

Because the discordance coefficient K is 0, we conclude 
56.0)(21 =⊕ lmm  

despite the fact that we have no idea how the mass 0.7 is distributed among l and h, or 
how the mass 0.8 is distributed among l, g, and k. 

Suppose that “our patient was not a heavy drinker” is interpreted as evidence 
against the fact that he has liver problems: 

8.0)('2 =∨ kgm , 2.0)('2 =∨∨∨∨ nkghlm , 

0)('2 =pm  for all the other propositions p. 

This time we will get a null value for )('21 lmm ⊕ . Instead, the discordance coef-

ficient is 56.08.07.0)(')( 21 =⋅=∨⋅∨= kgmhlmK , and the compound masses 

are: 

32.0
44.0

14.0
)(')(

1

1
)( 21 ≈=∨∨∨∨⋅∨

−
=∨ nkghlmhlm

K
hlm , 

54.0
44.0

24.0
)(')(

1

1
)( 21 ≈=∨⋅∨∨∨∨

−
=∨ kgmnkghlm

K
kgm . 

Notice that these values do not sum up to 1! The difference in mass is, of course, 
assigned to the universe nkghl ∨∨∨∨ . 

Example 3 ([Klir and Yuan 1995]). Assume that an old painting was discovered. Two 
experts estimate the beliefs, starting from the following three atomic propositions: 

r = it is a genuine painting by Raphaël, 
d = it is a product of one of Raphaël’s many disciples, 
f = it is a counterfeit. 
The beliefs are as follows:  
 

Proposition p r d f dr ∨  fr ∨  fd ∨  

Expert 1 ( )(Bel1 p ) 0.05 0 0.05 0.2 0.2 0.1 

Expert 2 ( )(Bel2 p ) 0.15 0 0.05 0.2 0.4 0.1 
 

Notice both experts do not “believe” d. By using the inclusion-exclusion formula, 
we retrieve the mass distributions (of focal propositions): 

 

Proposition p r f dr ∨  fr ∨  fd ∨  fdr ∨∨  

)(1 pm  0.05 0.05 0.15 0.1 0.05 0.6 

)(2 pm  0.15 0.05 0.05 0.2 0.05 0.5 
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Let us compute the composition of basic belief assignments. We start by obtaining 
the value of discordance coefficient: 

)()()()()()( 212121 rmfmfdmrmfmrmK ⋅+∨⋅+⋅=  

03.0)()()()()()( 212121 =⋅∨+⋅∨+∨⋅+ rmfdmfmdrmdrmfm . 

Thus, 97.01 =− K , i.e. we have strong concordance. Now we can compute the 
masses: 

+∨⋅+∨⋅+⋅= )()()()()()((
97.0

1
)( 212121 frmrmdrmrmrmrmrm  

)()()()()()( 212121 frmdrmrmdrmfdrmrm ∨⋅∨+⋅∨+∨∨⋅+  

))()()()()()( 212121 rmfdrmdrmfrmrmfrm ⋅∨∨+∨⋅∨+⋅∨+  

… 

The results (three digits precision) are presented in the table: 
 

p r d f dr ∨  fr ∨  fd ∨  fdr ∨∨  

)( pm  0.214 0.010 0.095 0.116 0.196 0.059 0.309 
 

Because of the context, proposition d = “it is a product of one of Raphaël’s many 
disciples” is now focal! 

Now the beliefs and plausibilities of propositions are as follows: 
 

Proposition p r d f dr ∨  fr ∨  fd ∨  

Belief Bel(p) 0.214 0.010 0.095 0.340 0.505 0.165 

Plausibility Pl(p) 0.835 0.495 0.660 0.915 0.990 0.786 
 

Therefore, the maximum belief (and the maximum plausibility) belongs to the propo-
sition “is a Raphaël or is a counterfeit”. Perhaps the third expert opinion is necessary! 

7.6   Difficulties with Dempster-Shafer’s Theory 

Dempster–Shafer theory is an example of algebra for the treatment of belief. How-
ever, there are situations when the results seem not natural. 

A suggestive example was given in [Zadeh 1984]. Zadeh considered the situation 
of two physicians consulting a patient. Independently, they establish the following  
basic belief assignments: 

 
Diagnostic d meningitis tumor concussion 

Physician 1 ( )(1 am ) 0.99 0.01 0 

Physician 2 ( )(2 am ) 0 0.01 0.99 
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They are not in agreement on the main diagnostic. If we use Dempster’s rule, then 
we have K = 0.9999, then m(meningitis) = m(concussion) = 0, et m(tumor) = 1. There-
fore, the combined belief in “tumor” – which is a minor diagnostic for both physi-
cians, will be of 100%. This is not natural! 

The drawbacks of Dempster–Shafer theory include (a) the fact that to a minor  
hypothesis one can attach a large belief, and (b) the tedious calculus involved by 
combination formulas. 

7.7   Specializations and the Transferable Belief Model 

The previous approach using function(s) Bel is rather static. A new piece of evidence, 
received and “learned” by the agent(s), could determine a change, even drastic, in 
their systems of belief. The transferable belief model, as introduced in [Smets 1988], 
is able to control such changes. 

In fact, the transferable belief model postulates that the impact of a new piece of evi-
dence consists in reallocating parts of the initial amount of belief among parts of Ω . 

The reallocation – which depends on the capacity of interpreting the evidence by the 
agent, i.e. on his/hers “intelligence” – can be described by a set of numbers ),( ABr , 

which express the proportion of the initial mass belief of A that is transferred to B once 
the new piece of evidence is taken into account (“learned”) by the agent. 

Given Ω⊆A , the letter B symbolizes an arbitrary part of Ω , the numbers 

),( ABr  are non-negative and their sum is 1: 

1),( =∑
Ω⊆B

ABr . 

Therefore, if 0m  is the (non-normalized) basic belief assignment that describes the 

belief of our agent at time 0t  (before the new piece of evidence is taken into account), 

then the b.b.a. 1m  that describes the belief of our agent at a later time 1t  (after 

“learning” the new piece of evidence) will be obtained as follows: 

)(),()( 01 BmBArAm
B
∑

Ω⊆

=  for Ω⊆A . 

Of course, the formula above shows how the “vector” 1m  is obtained as the prod-

uct of the “matrix” r and the “vector” 0m . 

It seems reasonable to accept that our agent will reallocate the initial mass )(0 Am  

only on parts of A2, i.e. to accept that 

0),( =ABr  for AB ⊄ . 

                                                           
2 However, the history (of mathematics) retains other type of reallocations. For example, in a 

letter addressed to Richard Dedekind, dated June 20, 1877, Georg Cantor writes: “To this 
question one should give an affirmative answer, even if for many years I considered as true 
exactly the contrary”. 
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Reallocations of this type are called specializations ([Kruse and Schwecke 1990]). 
Important examples of specializations are obtained if we consider the Dempster’s 

“rule of conditioning”. More precisely, let us accept that the new piece of evidence 
“learned” by the agent You is the following: “it is impossible that the real world 0ω  

be outside Ω⊆X “. If our agent You acts rationally, probably he/she will reallocate 

the “old” part of belief )(0 Am  entirely to the set XA ∩ . This corresponds to the 

specialization Xc  – called conditioning by X – defined by 

⎩
⎨
⎧ ∩=

=
otherwise.0

  if1
),(

XAB
ABcX  

As another example, the pignistic transform can be viewed as a specialization b, 
given by: 

A

B
ABb

#

#
),( =  (obviously, for ∅≠BA, ). 

Suppose r  and 'r  are specializations. Thus, for Ω⊆A ,  

0),('),( == ABrABr  for any AB ⊄  

and  

1),('),( == ∑∑
Ω⊆Ω⊆ BB

ABrABr . 

The last condition is expressed also as follows 

ururu =⋅=⋅ '  

where u is the vector (1, 1, …, 1) with all components 1. 

The matrix product 'rr ⋅  gives rise to a reallocation "r , where 

∑
Ω⊆

⋅=
C

ACrCBrABr ),('),(),(" . 

If AB ⊄ , for any Ω⊆C  we have either CB ⊄  – in which case 0),( =CBr , 

or CB ⊆  – in which case AC ⊄  thus 0),(' =ACr . Hence 0),(" =ABr . 

On the other hand, it is obvious that 

ururrurru =⋅=⋅⋅=⋅⋅ '')()'(  

and the following result is proved. 
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Proposition 7.1. If r  and 'r  are specializations, then 'rr ⋅  is also a  
specialization.                                                                                                                ■ 

 
This result is easily interpreted in dynamic terms. Suppose our agent You possessed, 
at initial time 0t , an “evidential corpus” 0E , which lead him to a basic belief  

assignment 0m . At time 1t , after “learning” new evidence 1E , the agent reallocates 

beliefs such that the new basic belief assignment is 

01 ' mrm ⋅= . 

Later on, at time 2t , after “learning” another new evidence 2E , the new basic be-

lief assignment of our agent becomes 

12 mrm ⋅= . 

Hence 'rr ⋅  corresponds to the reallocation of beliefs determined by the com-
pound new evidence “ 1E  and 2E ”. 

Thus, assimilating both pieces of evidence 1E  and 2E  will “expand” the eviden-

tial corpus to E . It seems natural to accept that the “expansion” of the evidential cor-
pus does not depend on the order the new pieces of evidence are “learned” (taken into 
account). However, this leads to a conclusion 

'' rrrr ⋅=⋅ , 

which is not satisfied by all specializations! 
A Dempsterian specialization s is a specialization that commutes with all the 

other Dempsterian specializations.  
This definition is fully justified if all the possible conditionings are imposed as 

Dempsterian specializations. 

Proposition 7.2. ([Klawoon 1992]). Every Dempsterian specialization s is uniquely 
determined by a basic belief assignment m such that 

∑
=∩

=
BAC

CmABs )(),( . 

Indeed, given s, consider ),()( Ω= XsXm . The relation between s and m follows 

from the commutativity conditions sccs AA ⋅=⋅ , where Ac  is the conditioning on 

A.                                                                                                                                    ■ 

As a simple example, when the “universe” is },{ 21 ωω=Ω , Dempsterian specializa-

tions are described by matrices 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
+

++

Ω

∅
Ω∅

δ
γδγ
βδβ
αβαγα

ω
ω

ωω
1

}{

}{

 }{ }{ 

2

1

21

 where 1=+++ δγβα  
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which are convex combinations of tensor products 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⊗

00

11

00

11
, ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⊗

10

01

00

11
, ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⊗

00

11

10

01
 and ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⊗

10

01

10

01
. 

In general, when Ω  has n elements, Dempsterian specializations are described by 

matrices that are convex combinations of n2  tensor products 

nMMM ⊗⊗⊗ ...21 , 

where each kM  is either ⎟
⎠
⎞

⎜
⎝
⎛

00

11
, or ⎟

⎠
⎞

⎜
⎝
⎛

10

01
. 

7.8   Conditional Beliefs and the Generalized Bayesian Theorem 

Beliefs generalize classical probabilities, thus it is natural to extend reasoning in 
Bayesian networks (see Chapter 5) to beliefs. A definition of conditional beliefs is 
needed. 

Suppose the universe U is a Cartesian product Ξ×Ω . The Dempster-Shafer ap-
proach to treat beliefs of an agent You is difficult, because the subsets of U, in gen-
eral, are not Cartesian products XA ×  with Ω⊆A  and Ξ⊆X . 

However, this is the case of a medical diagnosis process. Here Ω  is the set of 
symptoms and Ξ  is the set of diseases. It is known that 

Ω⊆Ξ⊆ → AX  symptoms   
 tolead

    diseases . 

Suppose for each disease Ξ∈ξ  our agent-physician entertains a belief system, 

over the symptoms Ω , which will be denoted by )|(bel ξ•Ω . The corresponding ba-

sic belief assignment, which can be supposed normalized) is denoted by )|( ξ•Ωm . 

Is there a natural extension of these belief systems to any subset X  of Ξ ? 
The answer to this question was first given in [Smets 1978] (see also [Smets 1993], 

[Xu and Smets 1996]). Its starting point is a dual of the Dempster’s rule of combina-
tion (of normalized basic belief assignments 21 , mm  – see Section 7.5 above), namely 

the formula 

)()())(( 221121

21

BmBmAmm
ABB

⋅= ∑
=∪

o . 

In general, given Ω⊆A  and Ξ⊆X , consider families { }
X

B
∈ξξ  of subsets of A 

such that AB
X

=
∈

ξ
ξ
U . For X∈ξ , the value )|( ξξBmΩ  is defined. Now, the  

formula 
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(DC) 
{ }

)|()|( ξξ
ξξ

BmXAm
XB

Ω
∈

Ω ∏∑=  

defines a (normalized) basic belief assignment )|( Xm •Ω , thus a belief measure 

]1 ,0[2:)|(bel →• Ω
Ω X . 

Of course, this approach supposes that the belief measures )|(bel ξ•Ω , for 

X∈ξ , are “mutually independent”. This means that if the agent “knows” X∈ξ , 

then the observation of Ω⊆A  does not alter the beliefs of the agent about the other 

subsets Ω⊆B .  
Suppose our agent-physician, apart for the conditional belief measures 

)|(bel X•Ω , possesses also an initial belief system regarding the possible diseases, 

denoted by ]1 ,0[2:Bel0 →Ξ . How these are transferred “rationally” into a belief 

measure defined on sets of symptoms? In other words, which belief measure 

]1 ,0[2:Bel →Ω  will be “rationally” adopted by the agent? An answer to this ques-

tion is presented in [Smets 1993]: if ]1 ,0[2:0 →Ξm  is the basic belief assignment 

associated to the initial belief measure 0Bel , then  

)()|(bel)(Bel 0 XmXAA
X

⋅= Ω
Ξ⊆
∑  for Ω⊆A  

defines the belief measure induced over the set of symptoms Ω . 
Once a subset A of symptoms is confirmed, which belief measure 

]1 ,0[2:)|(bel →• Ξ
Ξ A  should be rationally adopted by the agent? The following 

result, presented also in [Smets 1993], is known as the Generalized Bayesian  
Theorem: 

Proposition 7.3. The conditional beliefs ]1 ,0[2:)|(bel →• Ω
Ω X , Ξ⊆X  and 

]1 ,0[2:)|(bel →• Ξ
Ξ A , Ω⊆A  are related to each other by the formula: 

(GB) )|(bel)|(bel ξ
ξ

AAX
X

−Ω= Ω
−Ξ∈

Ξ ∏ .                          ■ 

7.9   Solved Exercises 

1. Treating flu. The Figure 7.4 below presents a decision tree, with utilities on a  
scale between –100 and 100. Obviously, the value 100 corresponds to spontaneous  
healing.  

Which is the decision the agent You will make?  

Solved Exercises            181 



182 Belief Theory 

treat

U=100 

3

healing 
prob=0.3 

wait two 
days 

7

treat imme-
diately

1

healing 
prob=0.95

complications 
prob=0.05 U=–60 

U=90
2

no
prob=0.7 

healing 
prob=0.9

complications 
prob=0.1 U=–10 

U=80
6

healing 
prob=0.5

complications 
prob=0.5 U=0

U=100 
neglect 

5

neglect 

healing 
prob=0.5 

complications 
prob=0.5 U=0

U=100 
4

 
 
2. Suppose there exists 0λ >  such that the belief function Bel satisfies the condi-

tion (called “the λ-rule”): 

)(Bel)(λBel)(Bel)(Bel)(Bel BABABA ⋅++=∪  

whenever Ω⊆BA, , ∅≠∩ BA . 

Show that, for Ω⊆FE, , 

)(λBel1

)(Bel)(λBel)(Bel)(Bel)(Bel
)(Bel

FE

FEFEFE
FE

∩+
⋅+∩−+=∪ . 

3. [Wang and Klir 1992] Suppose m is a normalized basic belief assignment over 

},...,,{ 21 nωωω=Ω  such that ∑
=

<
n

k
km

1

1})({ω . Show that there exists a unique be-

lief function ]1 ,0[2:Bel →Ω  that is associated to m and satisfies the λ-rule. 

4. Suppose the “old” universe Ω  is extended, by taking into account a new possi-
ble world Ω∉θ , to the “new” universe }{θ∪Ω=Θ . Given an “old” belief meas-

ure bel associated to the b.b.a. ]1 ,0[2: →Ωm , two “new” b.b.a.’s 

]1 ,0[2:, →↑↓ Θmm  (hence two “new” belief measures ↑↓ bel,bel ) can be con-

structed, as follows: 
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⎩
⎨
⎧

∈
Ω⊆

=↓
X

XXm
Xm

θ if0

 if)(
)( , 

⎩
⎨
⎧

∈Ω∩
Ω⊆

=↑
XXm

X
Xm

θ if)(

 if0
)( . 

Show that any “new” belief measure ]1 ,0[2:Bel →Θ  can be expressed as a 

weighted average of ↑↓ 21 bel and bel  for “old” belief measures 1bel , 2bel . 

5. Consider a physician (agent) facing a diagnostic problem. The set of possible 
diseases is =Ξ {bronchitis (b), lung cancer (l), tuberculosis (t)}.  

There are two symptoms: the positive X-ray and the fever. The first “universe” is 
obtained from the ordinary X-ray and has only two elements: =Ω' {positive X-ray 
(+), negative X-ray (–)}. The second “universe” has three elements: =Ω '' {no fever 
at all (no), mild fever (mf), severe fever (sf)}. 

Based on his personal experience, the physician is able to form belief systems, 
conditioned on all the three diseases. These belief systems are represented in tables 
below by the associated (normalized) b.b.a.’s 'm , res. ''m . 

'm  {+} {–} {+, –} 
b|•  0.1 0.7 0.2 
l|•  0.4 0 0.6 
t|•  0.8 0 0.2 

(Thus a negative X-ray is considered non informative with respect to lung cancer 
or tuberculosis.) 

''m  {no} {mf} {no,mf} {sf} {no,sf} {mf,sf} {no,mf,sf} 
b|•  0 0 0 0.4 0 0.5 0.1 
l|•  0.4 0 0.4 0 0 0 0.2 
t|•  0 0 0 0.1 0 0.6 0.3 

Suppose the patient A.B. has severe fever and positive X-ray. Compute the belief 
system of the physician, and then transform it into probabilities. 

6. (The fusion agent.) Suppose each sensor agent kΓ  (from a finite family, of 

course) possesses, independently from each other, a belief kBel  about the subsets of 

the same universe Ω , and conveys this belief to a “fusion agent” Φ . How should this 
latter agent “fuse” the systems of beliefs? 

Solutions 
1. Compute iteratively the utilities, starting from leafs toward the root of the decision 
tree. For a situation like this: 

2p

U

2U

1p 1U
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the utility of the “decision of nature” is computed as an average 

2211 UpUpU ⋅+⋅= . 

Hence, 71)10(1.0809.06 =−⋅+⋅=U , 5005.01005.07 =⋅+⋅=U , then 

504 =U  and 5.81)60(05.09095.02 =−⋅+⋅=U . 

Now, for situations like this 
 

U

'U

''U

'''U
 

 
the utility of the “decision” is 

}''','','max{ UUUU = . 

Hence, 71}50 ,71max{5 ==U . Now 7.79717.01003.03 =⋅+⋅=U , and  

finally 5.81}50 ,7.79 ,5.81max{1 ==U . 

The “best” initial decision is that maximizing the utility of 1U , i.e. to treat imme-

diately the flu. 
However, the decision to wait two days is the “best” if the probability of spontane-

ous healing raises from 0.3 to 0.4! 
2. Use twice the λ-rule: once for FEA ∩= , FEB −=  ( EBA =∪ ), and 

then for FEA −= , FB =  ( FEBA ∪=∪ ). In particular, for such a belief  
function,  

)(λBel1

)(Bel1
)(Bel

A

A
A

+
−=−Ω . 

3. Consider the (unique) belief function associated to m. Then for all elements 
Ω∈kω  one has })({})({Bel kk m ωω = . If Bel satisfies the λ-rule, then by induc-

tion ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+= ∏

∈

1})({λ1
λ
1

)(Bel
A

mA
ω

ω  and 0)( ≥Am . On the other hand, the 

equation ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+=Ω= ∏

Ω∈

1})({λ1
λ
1

)(Bel1
ω

ωm  has a unique positive solution if 

∑
=

<
n

k
km

1

1})({ω .  
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4. Denote ∑
Ω⊆

=
X

XMw )(1  where ]1 ,0[2: →ΘM  is the basic belief assignment 

associated to Bel. 
If 01 =w , it is clear that 0)( =XM  for Ω⊆X . Consider, for Ω⊆A , 

}){()( θ∪= AMAm . Then m is an “old” basic belief assignment, and it is obvious 

that ↑= mM , hence ↑= belBel . 

If 11 =w , it is clear that 0)( =XM  for X∈θ . Obviously ↓= mM , where 

)()( AMAm =  for Ω⊆A . 

If 10 1 << w , consider 12 1 ww −= , )(
1

)(
1

1 AM
w

Am =  and =)(2 Am  

}){(
1

2

θ∪AM
w

 for Ω⊆A . An immediate computation confirms the relation 

↑+↓= 2211 mwmwM . 

5. The b.b.a.’s presented in the tables are easily converted into conditional belief 
measures )b|(bel' • , )l|(bel' • , )t|(bel' • , respectively )b|('bel' • , )l|('bel' • , 

)t|('bel' • . Using (GB), we obtain )|(bel1 +•  res. )sf|(bel2 •  as follows: 

 
bel {b} {l} {b, l} {t} {b, t} {l, t} {b, l, t} 

)|(bel1 +•  0 0 0 0 0 0.7 1 
)sf|(bel2 •  0 0 0 0 0.8 0 1 

 

The associated basic belief assignments are 1m  res. 2m . Using the Dempster’s 

formula, the composition 21 mmm ⊕=  is  

 

 {b} {l} {b, l} {t} {b, t} {l, t} {b, l, t} 

m 0 0 0 0.56 0.24 0.14 0.06 
 

and from here, the associated belief is  

 

 {b} {l} {b, l} {t} {b, t} {l, t} {b, l, t} 

Bel 0 0 0 0.56 0.8 0.7 1 
 

Now, the pignistic transform gives as estimates of respective chances, namely 
77.0)t(P = , 14.0)b(P = , 09.0)l(P = . The tuberculosis is the first diagnostic at 

hand. 
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Notice that replacing the “severe fever” with “mild fever” will produce the (non-
normalized) belief  

 

 ∅  {b} {l} {b,l} {t} {b,t} {l,t} {b,l,t} 

)mf|(bel2 •  0.016 0.04 0.04 0.1 0.16 0.4 0.4 1 
 

and the final belief 
 

 {b} {l} {b, l} {t} {b, t} {l, t} {b, l, t} 

Bel 0.0074 0.0509 0.0695 0.3052 0.3797 0.8139 1 
 

Now, the discordance coefficient is 0328.0=K  indicates a weak degree of confu-
sion in the beliefs. The pignistic transform gives the following estimates: 

601.0)t(P = , 080.0)b(P = , 319.0)l(P = . Again the tuberculosis is the first diag-

nostic; however, lung cancer is also probable! 
6. (a) The probabilistic approach. A weight kγ  is associated to agent kΓ  such that 

1...1 =++ nγγ . Thus Bel given by 

)(Bel...)(Bel)(Bel 11 AAA nnγγ ++= , Ω⊆A  

is the “weighted” belief measure over Ω . The weights kγ  may express the “impor-

tance” given to kΓ  when compared to the other sensor agents. 

(b) The belief approach. The fusion agent possesses a belief 0Bel  defined on the 

subsets of },...,2,1{ nI = . This belief expresses, for example, the “credibility” of 

every subset of sensor agents. Each particular belief kBel  is considered as a condi-

tional belief )|(bel k• . The fusion of beliefs is )()|(bel)(Bel 0 KmK
IK

⋅•=• ∑
⊆

, 

where )|(bel K•  is computed from )|(bel k•  by the rule (DC). 
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8   Possibility Theory 

8.1   Necessity and Possibility Measures 

It is not unusual to encounter “possible, but improbable” situations. For example, if X 
is a standard normal random variable, the event X = 1 is possible, but its probability is 
clearly 0. Let us try an approach of possibilities, as introduced by [Dubois and Prade 
1988]. 

An uncertainty measure, defined on a set P  of propositions (containing the “con-
tradiction” false and the “tautology” true, is a function 

]1 ,0[: →Pg  

satisfying the following three conditions 

(U1) 0)false( =g , 

(U2) 1)true( =g , 

(U3) If P∈qp,  and q is a logical consequence of p, i.e. if qp ⇒ , then 

)()( pgqg ≥ . 

Since qp ∨  is a logical consequence of both p and q, we obtain that g satisfies the 

inequality 

)}(),(max{)( qgpgqpg ≥∨ . 

(Of course, together with p and q, the set P  should contain also qp ∨ .) 

Since both p and q are logical consequences of qp ∧ , when P∈qp,  – and sup-

posing that P∈∧ qp  – we obtain that g satisfies the inequality 

)}(),(min{)( qgpgqpg ≤∧ . 

In general, we have no reason to accept that equality is the correct sign (instead of 
inequalities) in the last two relations. However, if we impose equality, we obtain so-
called possibility res. necessity measures. 

A possibility measure is a function 

]1 ,0[: →Π P  

satisfying 0)false( =Π , 1)true( =Π , )}(),(max{)( qpqp ΠΠ=∨Π . Of course, 

as above, we suppose P∈false , P∈true  and P∈∨ qp  when P∈qp, . 
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Notice that the possibility of a union does not depend on the “interaction” of the 
events expressed by propositions p and q, but only on their possibilities. 

Each possibility measure satisfies the following inequality: 

1)}(),(max{)()( =¬ΠΠ≥¬Π+Π pppp  

(if p and p¬  both belong to P ). 

In a dual manner, a necessity measure is a function 

]1 ,0[: →Ν P  

satisfying 0)false( =Ν , 1)true( =Ν , )}(),(min{)( qpqp ΝΝ=∧Ν . 

The duality between belief and plausibility in Dempster-Shafer theory can be ex-
tended in the general case. Namely, given a possibility measure Π, the formula  

)(1)( pp ¬Π−=Ν  

defines a necessity measure Ν. Conversely, once the necessity measure Ν, is given, 
the formula 

)(1)( pp ¬Ν−=Π  

defines a possibility measure Π. This duality allows us to establish that a general ne-
cessity measure N satisfies the following inequalities: 

1)()( ≤¬Ν+Ν pp , 

0)}(),(min{ =¬ΝΝ pp . 

Moreover, several relations involving a pair of dual measures Ν and Π exist: 

a) )()( pp Π≤Ν , 

b) if 1)( <Π p , then 0)( =Ν p , 

c) if 0)( >Ν p , then 1)( =Π p . 

Thus, given dual measures Ν and Π, the interval [ ])(),( pp ΠΝ  characterizing the 

uncertainty of a proposition p has always one of its end-points at 0 or at 1.  
The total ignorance about p is translated into the conditions 0)( =Ν p , 1)( =Π p .  

When 1)( =Ν p , then also 1)( =Π p  and p is a certain proposition. 

If 1)( <Ν p  and also 1)( <¬Ν p , then p is an uncertain proposition. 

If 0)( >Ν p  and 0)( >¬Ν p , p is an incoherent proposition. 

Let us identify, as in Chapter 7, the propositions in P  to subsets of “universe” Ω . 
Interpret the negation ¬  as the complement, the conjunction ∧  of propositions as the 
intersection, and the disjunction ∨  as the union. The elements Ω∈ω  correspond to 
atomic propositions a, i.e. propositions that cannot be expressed as a disjunction 

qp ∨  where both p  and q  are different from a. 



 8   Possibility Theory 189 

Proposition 8.1. Let Ω  be a finite universe and let ]1 ,0[2: →Π Ω  be a possibility 

measure. Then there exists a basic belief assignment ]1 ,0[2: →Ωm  such that Π  is 

exactly the plausibility measure determined by m. 

Proof. Suppose nωωω ,...,, 21  are all the elements of Ω . Because U
n

k
k

1

}{
=

=Ω ω  and 

1)( =ΩΠ , we have ( )})({max1 k
k

ωΠ= . Suppose the elements of Ω  are ordered 

such that })({...})({})({ 21 nωωω Π≥≥Π≥Π . Then 1})({ 1 =Π ω . Moreover, for 

Ω⊆A  we decompose }{ kA ωU= , hence ( ) })({})({max)( jkA ωω Π=Π=Π , 

where j is the minimal index such that Aj ∈ω . 

Consider the following subsets of Ω : 

}{ 11 ω=C , }{ 212 ω∪= CC , …, }{1 nnn CC ω∪= − . 

Now, define ]1 ,0[2: →Ωm  as follows:  

(a) 0)( =Bm  for all subsets Ω⊆B  other than nCCC ,...,, 21 ; 

(b) })({})({)( 211 ωω Π−Π=Cm , …, })({})({)( 11 nnnCm ωω Π−Π= −− ,  

})({)( nnCm ωΠ= . 

It is obvious that 1})({)( 1 =Π=∑
Ω⊆

ω
X

Xm . 

Denote by Pl the plausibility measure determined by m. The, by definition, 

∑
∅≠∩

=
AX

XmA )()(Pl  for Ω⊆A . 

Given Ω⊆A , the minimal index j such that Aj ∈ω  is exactly the minimal index 

k such that ∅≠∩ ACk . Thus == ∑
∅≠∩AC

k

k

CmA )()(Pl  )(})({ Aj Π=Π ω , i.e. 

Π=Pl .                                                                                                                         ■ 

The plausibility Pl defined in the frame of Dempster-Shafer theory is an example of a 
possibility measure: 

Proposition 8.2. If },...,,{ 21 nωωω=Ω  and the basic belief assignment 

]1 ,0[2: →Ωm  is such that 0)( =Xm  for all Ω⊆X  except a “chain” 

Ω⊆⊂⊂⊂≠∅ mCCC ...21 , then the plausibility measure Pl determined by m is a 

possibility measure. 

Proof. m is normalized by hypothesis, hence 0)(Pl =∅ , 1)(Pl =Ω . Only the condi-

tion )}(Pl),(Plmax{)(Pl BABA =∪  remains to be proved.  
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For a given Ω⊆A , by hypothesis ∑
∅≠∩

=
AC

k

k

CmA )()(Pl . If Aj  is minimal among the 

indices k such that ∅≠∩ ACk , then ∑
≥

=
Ajk

kCmA )()(Pl . If Bj  is minimal among 

the indices k such that ∅≠∩ BCk , then ∑
≥

=
Bjk

kCmB )()(Pl . Now, if j  is minimal 

among the indices k such that ∅≠∪∩ )( BACk , then },min{ BA jjj =  and 

∑
≥

=∪
jk

kCmBA )()(Pl . It is clear now that )}(Pl),(Plmax{)(Pl BABA =∪ .        ■ 

The function ]1 ,0[: →Ωπ  given by })({)( ωΠ=ωπ  is called the possibility dis-

tribution associated to the possibility measure ]1 ,0[2: →Π Ω . Of course, since 

)(max)( ωπ=Π
∈ω A

A , Π  is determined by π . 

For given Ω∈ω0 , a possibility distribution ]1 ,0[: →Ωσ  such that 

⎩
⎨
⎧

ω≠ω
ω=ω

=ωσ
0

0

for  0

for  1
)(  is called “singleton”. 

If we consider another universe },...,,{ 21 mθθθ=Θ , then we may take into ac-

count possibility measures ]1 ,0[2: →Τ Θ×Ω . The associated possibility distribution 

]1 ,0[: →Θ×Ωτ  is in fact a possibilistic relation between the “worlds” in Ω  and 

the “worlds” in Θ . (This is in fact a fuzzy relation – see Chapter 9.) 
If π  is a possibility distribution defined on Ω , then a possibility distribution de-

fined on Θ  appears, given by the formula 

)}),(),((min{max)( θωτωπ=θρ
ω

. 

This ρ  is called the composition of π  and τ  and is denoted τπ=ρ o . 

Given a possibilistic relation T and an element Ω∈ω0 , the granule 

τσ=ω ω o
0

)( 0G  is called the possibility distribution conditioned on 0ω . 

8.2   Conditional Possibilities 

Let us adopt again the propositional approach. Ω2  is a Boolean algebra, hence it is 
natural to accept that the set P  of propositions is a Boolean algebra (with respect to 
the logical operations ∨∧¬ ,, , and with constants false, true). Consider a possibility 

measure Π  defined on P . The uncertainty of the fact p is expressed by the numbers 
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)( pΠ  and )( p¬Π . At least one of them is 1. The other number expresses the degree 

of uncertainty. (0 means certain!) 
The conditioning in possibility theory is of interest by analogy to the treatment of 

conditional probabilities. 
For a uncertain rule of the form 

IF p THEN q 

(thus for a uncertain proposition qp⇒ ) analogous numbers )|(π pq  and 

)|(π pq¬  are considered, satisfying the condition 

1)}|(π),|(πmax{ =¬ pqpq .  

These numbers are called conditional possibilities. 
When the above rule is credible enough, we should have 1)|(π =pq  and 

0)|(π ≥¬ pq . 

The conditional possibility )|(π pq  may be obtained as the solution of an equation 

)}(,min{)( qxqp Π=∧Π  

provided this solution exists and is unique. It is apparent that it is the same formula as 
in Probability Theory, provided the product is replaced by min. 

Of course, the conditional possibility may be defined, in general, as a function 
)|π( qp  of two arguments p, q (q not “false”) satisfying some specific axioms (see 

[Bouchon-Meunier, Colletti and Marsala 2002]). For example: 

(CPoss0) 1)|(π =qq  for every false≠q ; 

(CPoss1) )|(π)|(π qpqqp =∧  for false≠q ; 

(CPoss2) 1)|(π =• q  is a possibility measure; 

(CPoss3) )}|(π),|(πmin{)|(π qprqpqrp ∧=∧  for any p, q, r such that 

false≠q  and false≠∧ qp . 

Now, for a Modus ponens reasoning 

IF p THEN q 
 p 
   

 q 

the following matrix formula was suggested: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
(¬Π
(Π

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
¬(¬(¬

¬((
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 (¬Π

 (Π
)

)

)|π)|π
)|π)|π

)

)

p

p

pqpq

pqpq

q

q
 

where the product is replaced by min and the sum by max. Thus for the possibility of 
the proposition q we should use the formulas 

)}}(),|(πmin{)},(),|(πmax{min{)( ppqppqq ¬Π¬Π=Π  

(this will give usually 1) and 

)}}(),|(πmin{)},(),|(πmax{min{)( ppqppqq ¬Π¬¬Π¬=¬Π . 
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Example. Consider the following premises: 

If John is coming, usually Mary is coming. 
If Mary is coming, sometimes the room is noisy. 
John is coming, almost certainly. 

The imprecision is translated into possibility numbers (using the notations m for 
“Mary is coming”, j for “John is coming”, n for “room is noisy”): 

1)|(π =jm , 3.0)|(π =¬ jm  

(0.3 means “usually”, see [Simpson 1944], [Negnevitsky 2000]), 

0)|(π =¬jm  (?), 1)|(π =¬¬ jm  

(this means that Mary is not coming certainly if John is not coming), 

4.0)|(π =mn , 1)|(π =¬ mn  

(0.4 means “sometimes”), 

0)|(π =¬mn  (?), 1)|(π =¬¬ mn  

(this means that the room is certainly not noisy if Mary is not coming). 

Suppose “John is coming, almost certainly”. This is translated into: 

1)( =Π t , 1.0)( =¬Π t  

(0.1 means “almost certainly”). 
Now we reason twice using the (possibilistic) Modus ponens rule 

1) Mary is coming: 
)}}(),|(πmin{)},(),|(πmax{min{)( jjmjjmm ¬Π¬Π=Π  

1}}1.0 ,0min{},1 ,1max{min{ == , 
)}}(),|(πmin{)},(),|(πmax{min{)( jjmjjmm ¬Π¬¬Π¬=¬Π  

3.0}}1.0 ,1min{},1 ,3.0max{min{ == . 
2) Room is noisy: 

)}}(),|(πmin{)},(),|(πmax{min{)( mmnmmnn ¬Π¬Π=Π  

4.0}}3.0 ,0min{},1 ,4.0max{min{ == , 
)}}(),|(πmin{)},(),|(πmax{min{)( mmnmmnn ¬Π¬¬Π¬=¬Π  

1}}3.0 ,1min{},1 ,1max{min{ == . 

From the fact “John is coming, almost certainly”, we conclude “The room will be 
occasionally noisy”. 

Notice the lack of variation in numbers expressing possibilities: the operations min 
and max do not create “new” numbers. This rigidity is a major drawback of possibilis-
tic calculus. 

Remark. We pointed out above that the uncertainty of the fact p is expressed by two 
numbers )( pΠ  and )( p¬Π . If we want to replace them by a single positive number, 
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call it )(possit p  after [Smets 1998], then ½ is a good choice for the complete uncer-

tainty of the proposition p. Suppose that 1)(possit =p  will express a (totally) certain 

proposition, and 0)(possit =p  will express that p¬  is (totally) certain. Obviously, 

the formula 

2

)()(

2

)(1)(
)(possit

pppp
p

Ν+Π=¬Π−+Π=  

satisfies the requirements above. 

The numbers possit are adequate to be compared to the quantification of imprecise 
terms ([Simpson 1944]). Thus “almost certain” is identified to possit = 0.95, “usually” 
to possit = 0.85, “sometimes” to possit = 0.2. 

8.3   Exercises 

1) Draw the possibilistic conclusion from the following propositions: 

(a) When John is ill, rather often one of his colleagues is ill. 
(b) When John is not ill, sometimes one of his colleagues is ill. 
(c) When one of John’s colleagues is ill, almost certainly all our colleagues 

are in danger. 
(d) Today John is, almost certainly, ill. 

Notice that “rather often” is identified to possit = 0.65. 
2) Replace (c), in the list of propositions above, by 

(c’) When one of John’s colleagues is ill, there are 80% chances for our col-
leagues to be contaminated. 

Draw a possibilistic-probabilistic conclusion. 
 

Solutions 

1) Denote j = “John is ill”, h = “one of John’s colleagues is ill”, and o = “all our col-
leagues are in danger. 

The sentences (a)-(d) are translated into the following conditional possibilities: 

(a) 1)|(π =jh , 7.0)|(π =¬ jh  (“rather often”), 

(b) 4.0)|(π =¬jh , 1)|(π =¬¬ jh  (“sometimes”), 

(c) 1)|(π =ho , 1.0)|(π =¬ ho  (“almost certainly”), 

(d) 1)( =Π j , 1.0)( =¬Π j . 

In order to compute the possit for the conclusion o, we need to evaluate what hap-
pens when none of John’s colleagues is ill. If we accept that certainly our colleagues 
are not in danger (?), the final result 1)( =Π o , 7.0)( =¬Π o  will be interpreted per-

haps as “more than half of our colleagues are in danger”. 
2) Denote now c = “(at least one of) our colleagues are contaminated”. The sen-

tences express evaluations with respect to the following simple network 
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...
)|( jh

J H C

...
)( j

)|( hcp

 

It seems natural to reason like in a Bayesian network, after replacing possibilities 
with possit values. Thus 

)(possit)|()(possit)|()( hhcphhcpcP ¬⋅¬+⋅=  

where, obviously, )(possit1)(possit hh −=¬ .  

However, we need an estimate of the probability )|( hcp ¬ . Considering, in a very 

optimistic evaluation, that 0)|( =¬hcp , and knowing 65.0)(possit =h  from Exer-

cise 1, we obtain the estimation ⋅= 8.0)(cP  52.065.0 = . There are 52% chances to 

be contaminated. 
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9   Approximate Reasoning 

9.1   Fuzzy Sets, Fuzzy Numbers, Fuzzy Relations 

In classical set theory there is no boundary between a set and its complement; any 
element x from the universe Ω  is either in a given set A, or in its complement 

A−Ω .  
In classical logic (propositional calculus and predicate calculus) only two truth-

values of propositions are accepted: true and false. 
Neither classical set theory, nor classical logic is characteristic to (ordinary) human 

thinking. They were used during the last century in order to build and to program 
computing machines but now, when these machines are powerful enough; it’s time to 
think a little more intelligent. 

It is well known now that fuzzy sets were (re)invented by Lotfi Zadeh – see [Zadeh 
1965]; since then a lot of people worked in this domain and extended the fuzzy  
approach to logic. 

Let us begin by presenting the main ideas of fuzzy logic. Instead of using only the 
two truth-values 0 (false) and 1 (true), in fuzzy logic all intermediate (real) values  
between 0 and 1, i.e. all the values in the segment [0, 1], may be used as genuine 
truth-values. Thus one accepts that a sentence (proposition) may be partially true. 

This situation is rather theoretical. In computer work we cannot use continuum 
sets, or any other infinite set of truth-values, as for example the dyadic numbers. Thus 
we have to limit ourselves to a “limited number” of degrees of truth (see Figure 9.1). 

Consider the following propositions: “George is tall” and “Vince Carter is tall”. 
(Of course, we mean “height of George is tall” res. “height of Vince Carter is tall”.) In 
classical logic we have to accept these as true or false (depending on a chosen thresh-
old between “tall” and “not tall”, let us say 180 cm). Probably each person watching 
NBA matches will accept the latter as true, but what about the first one? 

In fuzzy logic the first proposition may have, for example, the truth-value 0.75. 
What this means? Perhaps it is accepted that 75% of the people will consider that 
George is tall, i.e. in a classical way of thinking they will fix the threshold between 
“tall” and “not tall” below the height of George.  

There are many other opinions. Instead of discussing them, it is a better idea to  
present now the fuzzy sets.  

Consider a “universe of discourse” denoted by Ω . In classical set theory, any sub-
set A of Ω  is perfectly determined by its characteristic function }1 ,0{: →Ωχ A ,  

where for any Ω∈x  
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1 1 

0 0 

1

0

Classical Fuzzy (theoretical) Fuzzy (practical) 
 

Fig. 9.1. Truth values 

⎩
⎨
⎧

∉
∈

=χ
Ax

Ax
xA  if  0

 if  1
)(  . 

In fuzzy set theory, a fuzzy set F is simply a function ]1 ,0[: →Ωµ F . This is 

called the membership function of F because the number )(xFµ  shows at what  

extent the element x “belongs” to F. 
Of course, if 0)( =µ xF , then it is accepted that the element x is not in F. All the 

elements x with 1)(0 <µ< xF  form a kind of “boundary” of the “core” of F; this 

core is defined as the subset of all x such that 1)( =µ xF . 

A possibility of denoting a fuzzy set (in the universe Ω ) is the following: 

}|))(,{( Ω∈µ= xxxF F ; 

however, some authors use the reverse notation }),|)({( Ω∈µ= xxxF F . 

Examples. 1) Comfortable house. We may interpret this fuzzy notion in terms of the 
number of bedrooms in the house. Thus the universe may be the set 

,...}10 ..., ,3 ,2 ,1{=Ω  of natural numbers. 

)(xF

x  

Fig. 9.2. The fuzzy set “comfortable house” for a four-member family 



 9   Approximate Reasoning 197 

How the fuzzy set F = “comfortable house for a four-member family” may be de-
scribed? A possibility is presented in the Figure 9.2 above. 

2) The expression “around 10” may be considered either as a fuzzy set 

F = {(7, 0.1), (8, 0.5), (9, 0.9), (10, 1), (11, 0.9), (12, 0.5), (13, 0.1)} 

in the same universe of natural numbers, or as the fuzzy set with membership  
function: 

⎪
⎩

⎪
⎨

⎧

<≤−⋅
<<−⋅

≥≤
=µ

14  10 if)14(25.0

10  6 if)6(25.0

14or    6 if0

)(

xx

xx

xx

xF  

in the universe of real numbers. The latter is a triangular fuzzy set. 

A very important family of fuzzy sets, in the universe of real numbers, is formed 
by the so-called trapezoidal fuzzy sets. A trapezoidal fuzzy set (or trapeze) T is  
determined by four real numbers 

rdrululd ≤≤≤  

and by the following membership function (see Figure 9.3 above): 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<<
−
−

<<

≤≤
−
−

≥≤

=µ

rdxru
rurd

xrd
ruxlu

luxld
ldlu

ldx
rdxldx

xT

 if

 if1

 if

or     if0

)(  . 

This is implemented as function trapmf(x, [ld lu ru rd]) in Matlab 1. 

                                                           
1 Software created by The MathWorks, Inc. 

 

Fig. 9.3. A trapezoidal fuzzy set 
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Other interesting families of real fuzzy sets, implemented in Matlab, are the  
following: 

• Triangular (implemented as function trimf), 
• S- and Z-shaped (implemented as functions smf res. zmf), 
• Sigmoids (implemented as function sigmf, see Figure 9.4a), 
• Gaussians (implemented as functions gaussmf and gauss2mf, see  

Figure 9.4b), 
• Difference of sigmoids (see Figure 9.4c for an example), 
• Products of sigmoids and of S-shaped functions. 

a)

b)

c)
 

Fig. 9.4. Fuzzy sets implemented in Matlab 

In general, because 1)(0 ≤µ≤ xF  for every fuzzy set F in the universe Ω  and 

for every Ω∈x , it is obvious that the formula 

)(1)( xx Fµ−=λ  

describes a membership function for a fuzzy set. This fuzzy set is called the comple-
ment of the fuzzy set F and is denoted F .  



 9   Approximate Reasoning 199 

The intersection GF ∩  of two fuzzy sets F and G (both in the universe Ω ) is de-
fined by the membership function: 

)}( ),(min{)( xxx GFGF µµ=µ ∩ . 

For example, if F = “around 12” and G = “around 11” are described by triangular 
fuzzy sets, then GF ∩  is described as in the Figure 9.5 below. This fuzzy set is not 
normal (i.e. it has no membership value 1!). 

Dually, the union GF ∪  is defined by the membership function: 

)}(),(max{)( xxx GFGF µµ=µ ∪ . 

Other useful operations with fuzzy sets are the following: 

• The algebraic sum GF + , defined by 

)()()()()( xxxxx GFGFGF µ⋅µ−µ+µ=µ + . 

• The algebraic product GF ⋅ , defined by 

)()()( xxx GFGF µ⋅µ=µ ⋅ . 

(It is easy to establish that GFGF ⋅=+ .) 

• The Cartesian product HF × , defined by 

)}( ),(min{),( yxyx HFHF µµ=µ ×  

for Θ∈Ω∈ yx ,  and H fuzzy set in the universe Θ . (Here HF ×  is a fuzzy set in 

Θ×Ω .) 
If Θ→Ωφ :  is a function between universes and F is a fuzzy set in Ω , then the 

formula 

⎪⎩

⎪
⎨
⎧

∅=φ

∅≠φµ
=µ

−

−

=φ

)( if                  0    

)( if   )}({sup
)(

1

1

)(

y

yx
y

F
yxH  

defines a fuzzy set H in the universe Θ . 

 

Fig. 9.5. Fuzzy set “intersection” 
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Let us consider now fuzzy numbers. By definition, a real fuzzy number N is a 
fuzzy set in the universe of real numbers, satisfying the following conditions: 

(FN1) There is exactly one real number R∈n  such that 1)( =µ nN . 

(FN2) N is min-convex, i.e. for any R∈yx,  and ]1 ,0[∈λ  

)}(),(min{))1(( yxyx NNN µµ≥λ−+λµ . 

(FN3) Nµ , as a real function, is piece-wise continuous. 

What can be said about the operations? For each operation ∗  with real numbers 
(such as addition, multiplication etc.) a corresponding operation o  with fuzzy  
numbers is defined by: 

} )}(),({min{sup)( zyx MN
xzy

MN µµ=µ
=∗

o . 

In particular, the addition ⊕  of fuzzy numbers is defined by 

} )}(),({min{sup)( zyx MN
xzy

MN µµ=µ
=+

⊕  

} )}(),({min{sup yxy MN
y

−µµ=  

and the multiplication ⊗  of fuzzy numbers is defined by 

} )}/(),({min{sup)(
0

yxyx MN
y

MN µµ=µ
≠

⊗ . 

The addition ⊕  and the multiplication ⊗  of fuzzy numbers are commutative and 
associative. (Although neutral elements could be defined, there is no (natural) oppo-
site, and no natural inverse of a fuzzy number.) 

For each function RR →:f  and each real fuzzy number N, we define another 

fuzzy number )(Nf  by: 

} )({sup)(
)(

)( zx N
zfx

Nf µ=µ
=

 

In particular,  

)(} )({sup)( xzx NN
zx

N −µ=µ=µ
−=

−  

and 

)1(} )({sup)(
1

1 xzx NN

zxN
µ=µ=µ

=
. 

However – it is important to emphasize – these fuzzy numbers do not possess all 
the usual properties of the opposite, res. the inverse. 
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In order to work in a controlled manner with fuzzy numbers, a fourth condition is 
imposed on N: 

(FN4) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>⎟
⎠
⎞

⎜
⎝
⎛ −

≤⎟
⎠
⎞

⎜
⎝
⎛ −

=µ
   if     

 if    
)(

nx
b

nx
R

nx
a

xn
L

xN  . 

Here )(uL , )(uR , the so-called reference functions, are supposed to satisfy  

obvious conditions: 

• 1)0()0( == RL , 

• )()( uLuL =− , )()( uRuR =− , 

• L, R are decreasing on the interval ) ,0[ ∞+ . 

As an example,  

4 ,3 ,2    where
1

1
)()( =

+
== t

u
uRuL

t
. 

Particular positive values of the constants a, b in (FN4) specify the fuzzy number 
),,( banNN =  “centered” in R∈n . The following formulas are obvious: 

),,(),,(),,( dbcamnSdcmMbanN +++=⊕ , 

),,(),,(),,( bmdnamcnmnPdcmMbanN ⋅+⋅⋅+⋅⋅=⊗  

for 0, ≥mn  ( 0,,, >dcba ). 

In the “crisp” case a relation R between elements from the set Ω  and elements 
from the set Θ  is simply a subset of the Cartesian product Θ×Ω . It is possible to 
compose a relation Θ×Ω⊆R  with another relation Ξ×Θ⊆S  obtaining a relation 

Ξ×Ω⊆SR o . Namely,  

SRzx o∈),(  if there exist Θ∈y  such that Ryx ∈),(  and Szy ∈),( . 

 

Fig. 9.6. Reference function 

Fuzzy Sets, Fuzzy Numbers, Fuzzy Relations            201 



202 Approximate Reasoning 

 

Fig. 9.7. Fuzzy sets “much bigger than” 

A fuzzy relation R between the (crisp) sets Ω  and Θ  is a fuzzy set in the  
universe Θ×Ω , i.e. 

},|)),(),,{(( Θ∈Ω∈µ= yxyxyxR R . 

Example. Consider +=Θ=Ω R  and the fuzzy relation R = “much bigger than” be-

tween real positive numbers, defined by 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤<−
≤

=µ

yx

yxy
y

yx
yx

yxR

10 if1

10 if   
9

 if0

),( . 

This fuzzy relation is represented by real fuzzy sets (depending on y) like in  
Figure 9.7. 

As a particular case, any fuzzy set F in the universe Ω  can be assimilated with a 
relation R between Ω  and itself, defined by: 

⎩
⎨
⎧

=µ
≠

=µ
xyx

xy
yx

F
R  if)(

 if0
),( . 

In the case of finite “small” sets Ω  and Θ , a fuzzy relation between the sets Ω  
and Θ  is described as a table of membership function, as for example the following: 

Θ  
Ω  

1y  2y  3y  4y  

1x  0 0 0.3 0.8 

2x  0.4 0.8 0 1 

:Rµ  

3x  0.1 0.7 1 0.9 
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Fuzzy relations are composed. If },|)),(),,{(( Ξ∈Θ∈µ= zyzyzyS S  is a fuzzy 

relation between the sets Θ  and Ξ , then SR o  is the fuzzy relation between Ω  and 
Ξ  defined by 

} )} (),,({min{sup),( zy,yxzx SR
y

SR µµ=µ
Θ∈

o . 

Consider as an example the fuzzy relation described by the following table: 

Ξ  
Θ  

1z  2z  

1y  0.2 0 

2y  0.9 0.2 

3y  0.7 0.8 

:Sµ  

4y  0 0.9 

The composition SR o  is described by the following table (only one value is 
computed): 

1z 2z
:SR . .1x

0.8 .2x
. .3x

, }}2.0  ,4.0max{min{, )} (),,(max{min{ 1112 z,yyx SR
, }9.0  ,8.0min{, )} (),,(min{ 1222 z,yyx SR

, }7.0  ,0min{, )} (),,(min{ 1332 z,yyx SR
} }0  ,1min{} )} (),,(min{ 1442 z,yyx SR

8.0 }0  ,0  ,8.0  ,2.0{max
 

Of course, as a particular case, a fuzzy set F in the universe Ω  can be composed 
with a fuzzy relation R between the sets Ω  and Θ . The result is a fuzzy set RF o  in 
the universe Θ , defined by: 

} y)} (),({min{sup)( x,xy RF
x

RF µµ=µ
Ω∈

o . 

The general definition of fuzzy sets is too coercive. In many applications the mem-
bership value )(xFµ  can be hardly accepted as a “fixed” number, it is rather a fuzzy 

number. We have to change in some way the definition given above. What was  
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defined as fuzzy set becomes now fuzzy set of type I. A fuzzy set of type II is a fuzzy 
set F, in the universe Ω  (of discourse), such that every membership value )(xFµ  is 

a fuzzy number. 

9.2   Fuzzy Propositions and Fuzzy Logic 

Let us return to the problem of assigning truth-values to fuzzy propositions. Consider 
first the most elementary fuzzy propositions. These are obtained from the generic  
expressions 

E:  (linguistic variable) V is (fuzzy set) F 

In this general expression, F is a fuzzy set associated to the linguistic variable V. 
Obvious examples are: temperature is high, wind is strong, speed is slow. 
The set of possible values of the linguistic variable V is called the domain of V and 

is denoted Dom(V). In some fuzzy propositions, values of the variable V are assigned 
to all individuals from a given set S. Thus the linguistic variable becomes a function 

)(: VDomSV → . 

Given a particular value v of the linguistic variable, suppose we know the member-
ship degree )(vFµ . This number is interpreted as the truth-value of the particular 

proposition obtained from E. 
The “truth-value” of a generic expression E is not a number; it depends both on the 

actual value of the linguistic variable and on the definition (i.e. meaning) of the fuzzy 
set F. 

Consider as an example V = temperature, F= high. Let us represent in Figure 9.8 
the membership function identifying the fuzzy set. 

When 36°C is the actual temperature, the membership function has value 0.6. Thus 
the truth-value of the fuzzy proposition 

temperature 36°C is high 

is 0.6. 
The general form of an elementary fuzzy proposition is: 

P:  linguistic value )(sV  is F. 

The truth-value of P is the number ))(( sVFµ ; it depends obviously on the indi-

vidual Ss ∈ . This number may be replaced, of course, by a fuzzy number. 

Example. S = the set of cars moving toward Toronto on highway 401, V = speed and 
F = slow. It is clear that the truth-value of proposition 

“the speed of a car moving toward Toronto on highway 401 is slow” 
is generally “rather false”. 
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Fig. 9.8. “High temperature” 

Human individuals reason using linguistic terms from the natural language. Some of 
the linguistic terms have a clear meaning; they denote specific objects, locations or 
actions (“car”, “Toronto”, “highway 401”, “moving toward”). Other terms are am-
biguous (“young”, “clever”, “high”, “tall”, “slow”, “rather false”, etc.). The latter 
fuzzy linguistic terms cannot be used in a strictly bivalent (i.e. based on only two val-
ues) reasoning system. 

Several fuzzy sets may be associated to a linguistic variable. For example, 
“young”, “adult”, “old”, “very old” a.o. may be associated to “age”. However, for all 
the fuzzy sets that may be associated to the same linguistic variable, the universe of 
discourse should be the same. Between the name of the linguistic variable (“age”, “in-
telligence”, “temperature”, “height”, “speed”) and the associated fuzzy set in a  
general expression a semantic relation “is” exist. 

As another example, consider the linguistic variable “height” and the following 
five associated fuzzy sets: 

“small”, “quite small”, “medium”, “tall”, “very tall” 
and the universe of discourse the set Ω  = [80, 220] representing the heights measured 
in centimeters. Any person defines – in a way or another – these fuzzy sets (an  
example is in Figure 9.9). 

The example above underlines a general feature: terms expressing fuzzy sets are 
composed of two components: a descriptor of another fuzzy set (“small”, “medium”, 
“tall”) and a hedge (“”, “quite”, “very”). 

From the example “(height of) … is very tall” it is clear that we can express a  
generic expression as follows 

)(⋅V  is HD 

where V is the name of a linguistic variable (“height”), H is a hedge (“very”), D is a 
descriptor (“tall”) of a fuzzy set. 

A fuzzy fact can be expressed as follows 

)(oV  is HD 

where o is an object (an element from a set). Its truth-value is ))(( oVHDµ . 
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small 

quite small 

medium 

tall

very tall 

 

Fig. 9.9. Fuzzy sets associated to “height” 

Using logical connectors ¬ , ∧ , ∨ , ⇒  we compose fuzzy propositions from 
fuzzy facts. 

The main idea of fuzzy logic was well expressed by [Zadeh 1973]: 

we want to approximate the description of an input/output relation in-
volving two or more variables by a “small” collection of fuzzy if-then 
rules. 

Obvious examples of fuzzy if-then rules are: 

z is low if x is high and y is not very low, 
z is low is likely when x is low. 

In expressing general fuzzy rules, we may obviously consider the model 

IF fuzzy antecedent THEN fuzzy consequent (fuzzy truth-value). 

However, we have to take into account another ingredient, the fuzzy quantifier. 
In classical logic only two quantifiers are accepted: ∃ and ∀. By contrast, in fuzzy 

logic a lot of quantifiers are allowed. Most used are: 

“most”, “many”, “several”, “few”, “much”, “around” etc. 

Since the definition by [Zadeh 1965] the “fuzzy” world (sets, numbers, logic) inter-
fered with all the theories created beforehand.  

The influence of fuzziness in probabilities is based on the terms likely and  
probable and on their derivates: unlikely, highly unlikely, very probable, very likely, 
not very likely, extremely probable and others. 

The influence of fuzziness in possibilities is based on the terms possible and credi-
ble and on their derivates: almost impossible, quite possible, very credible. The influ-
ence of fuzziness in beliefs is based on the terms believable and plausible etc. 

9.3   Hedges 

Hedges are special linguistic terms by which other linguistic terms (usually  
expressing fuzzy sets) are modified. Examples: “very”, “fairly”, “extremely”, 
“slightly”, “somewhat”, “more or less”.  
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Hedges can be used to modify fuzzy predicates, fuzzy truth-values, fuzzy prob-
abilities, and fuzzy possibilities. For example, in the sentence  

“John is possibly young”  

we may use up to two copies of the hedge “very”, obtaining the following three  
modified sentences: 

“John is possibly very young” 
“John is, very possibly, young” 
“John is, very possibly, very young” 

each one with a different meaning. 

In general, given a fuzzy fact 

P:  )(oV  is D 

and a hedge H, we can construct a modified fuzzy fact 

HP:  )(oV  is HD 

where HD  is a new fuzzy set, obtained from fuzzy set D by applying the hedge. 
What this means? Remember that D, as a fuzzy set, is represented by a membership 
function 

]1 ,0[: →ΩµD  

in the universe of discourse Ω . Consider an increasing one-to-one correspondence 
]1 ,0[]1 ,0[: →h  that represents the hedge. Then the composition 

]1 ,0[: →ΩµDh o  

is obviously a membership function of a fuzzy set in the same universe of discourse. 
This fuzzy set is HD . 

(Notice D and HD  have the same support and the same kernel.) 
Three types of hedges exist: 

1) Strong, which have the property 

vvh <)(  for all )1 ,0(∈v .  

The most used hedge of this type is “very”, defined by the formula 2)(very vv =  

(see Figure 9.10). 
2) Weak, which have the property 

vvh >)(  for all )1 ,0(∈v .  

The most used hedge of this type is “somewhat”, defined by the formula 

vv =)(somewhat ; 
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Fig. 9.10. Hedges “very” and “somewhat” 

3) Not strong, nor weak. A representative of this type is “indeed”, defined by an  
S-shape formula (see Figure 9.11): 

⎪⎩

⎪
⎨
⎧

∈−−

∈
=

]1 ,( if)1(21

] ,0[ if2
)(indeed

2

1
2

1

2

2

vv

vv
v  . 

 

Fig. 9.11. “Indeed” as hedge 

Of course, the modified fuzzy fact 

HP:  )(oV  is HD 

has as truth-value )))((())(( oVhoV DHD µ=µ  and, when this is replaced by a fuzzy 

number, the same (or another) hedge may be applied to this truth-value. 
As an example, assume that John is 22 and that the membership function of the 

fuzzy set “young” is such that 9.0)22(young =µ . Then  
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“John is young”  

has a truth value of 0.9, and 

“John is very young”  

has a truth-value of 0.81. If the truth-value of the proposition “Jack is possibly young” 
is evaluated at 0.7, then the truth-value of the proposition “Jack is possibly very 
young” should be evaluated at 0.49.  

The hedges for fuzzy numbers may be defined as follows. First, remember that if n 
is a real number, then a fuzzy number ),,( banNN =  above n is represented by the 

following membership function 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>⎟
⎠
⎞

⎜
⎝
⎛ −

≤⎟
⎠
⎞

⎜
⎝
⎛ −

=µ
nx

b

nx
R

nx
a

xn
L

xN
 if

 if
)(  

where (let us say) 
21

1
)()(

u
uRuL

+
== . 

2

1
)()( == uRuL  means exactly 1=u . Therefore, we find anx −=  res. 

bnx +=  as the numbers x where 
2

1
)( =µ xN ,  

Now, the hedge “nearly” is defined as follows:  

)05.0 ,05.0 ,()(nearly nnnNn = . 

Analogously, )(about n  is )10.0 ,10.0 ,( nnnN ,  

)(roughly n  is )25.0 ,25.0 ,( nnnN , 

)(crudely n  is )50.0 ,50.0 ,( nnnN . 

The definition of fuzzy numbers (and the hedges above) allows us to evaluate the 
membership value in comparisons like this 

 

Fig. 9.12. The fuzzy real number ),,( banN  
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N is approximately equal M, 
nearly n is approximately roughly m 

etc. thus to evaluate the truth-values of propositions of this kind. It is easy to notice 
that the curves representing the compared fuzzy numbers cross at one or two points. 
The truth-value of a proposition 

) , ,( banN  is approximately equal ) , ,( dcmM  

is given by the maximal level of the intersection points and can be calculated from 
definition formulas. 

Up to now several models for representing modifiers – for fuzzy sets and fuzzy 
numbers – have been considered. It is unanimously accepted that, in representing 
truth-values by using several modifiers before the word “true”, such as 

(undecided) 5.0
16

8 =  somewhat 
16

9
 moderately 

16

10
 

pretty 16

11
 really 16

12  strongly 16

13
 

very 16

14
 extremely  16

15
 (absolutely) 1

16

16 =  
 

the “numeric” values are not equally-spaced between 
2

1
 and 1 (as it was suggested 

above). 

A Bézier transformation is able to convert our modifiers into values in the interval 

]1 ,[
2

1
 which tallies better to our intuition; namely, the values tend to be closer to one 

another as we move towards “absolutely true” – see Figure 9.15. 
A Bézier curve – in a real vector space – is determined by four vectors A, B (called 

“end nodes”) and C, D (called “control nodes”) – see Figure 9.14. Each “point” P on 
such a curve is obtained as a value of the cubic polynomial  

BD)1(3C)1(3A)1()(PP 3223 τττττττ +−+−+−==  

where τ  is ranging from 0 to 1. 

 

Fig. 9.13. Truth-value of “N is approximately equal M” 
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A

B

C

D C

D

A

B

C

D

A

B

 

Fig. 9.14. Bézier curves 

Consider mainly Bézier curves that are contained in the unit square ]1 ,0[]1 ,0[ × , 

usually with end nodes )0 ,0(A =  and )1 ,1(B = . For the control nodes )0 ,1(C =  

and )1 ,(D λ=  we obtain the family called )(λB .  

As an example, the Bézier curve with end nodes )0 ,0(A = , )1 ,1(B =  and con-

trol nodes )0 ,(C
2

1= , )1 ,(D
2

1=  can be used to numerically represent intermediate 

truth values as follows (see Figure 9.15): 

somewhat true 0.62 strongly true 0.94 

moderately true 0.73 very true 0.97 

pretty true 0.82 extremely true 0.99 

really true 0.89 (absolutely) true 1 
 

0.5 0.75 1 

extremely true 
very true 

strongly true 
really true 

pretty true 

moderately true 

somewhat true 

(undecided) 

 

Fig. 9.15. Representing intermediate truth-values  
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TRUE

VERY TRUE 

 

Fig. 9.16. TRUE and VERY TRUE as fuzzy truth-values 

Of course, numeric truth-values may be replaced by fuzzy truth-values. For exam-
ple, “true” as a fuzzy truth-value is well represented by the membership function in 
Figure 9.16.  

In this case “very true” is a fuzzy truth-value obviously different from the numeric 
value 0.97 above. Possible confusions may appear, due to the imprecision of natural 
languages. To avoid confusions, it is a good idea to denote fuzzy sets by capital letters. 

Quantifiers may be also affected by hedges. Let us list several such hedges: “essen-
tially”, “virtually”, “practically”, “occasionally”, “frequently”, “largely”, “basically”, 
“roughly”, “most”. Of course, computer programs need the interpretation of such 
hedges in terms of (either crisp or fuzzy) numbers. 

9.4   Fuzzy Logic 

The source of approximate reasoning lays in the third truth-value ½ introduced by 
Łukasiewicz2, interpreted as “neutral” or “yet undetermined”. 

The negation, conjunction, disjunction and implication are defined in the ternary 
logic of Łukasiewicz as follows (here p, q are 0, 2

1  or 1): 

The “compact” formulas that replace the tables below are as follows: 

(L1) pp −=¬ 1 ,  

(L2) },min{ qpqp =∧ ,  

(L3) },max{ qpqp =∨ ,  

(L4) }1 ,1min{ qpqp +−=⇒ .  

We should notice here that the well-known relation in classical logic 

qp ⇒  is equivalent to qp ∨¬ )(  

is no longer correct: the truth-value 2
1

2
1 ⇒  is 1, not 2

1  ! 

                                                           
2 Jan Łukasiewicz (1878-1956), Polish mathematician. 
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  q 
p p¬  qp ∧  

0 2
1  1 

0 1 0 0 0 0 

2
1  2

1  2
1  0 2

1  2
1  

1 0 

p 

1 0 2
1  1 

 

 

q q qp ∨  
0 2

1  1 
qp ⇒  

0 2
1  1 

0 0 2
1  1 0 1 1 1 

2
1  2

1  2
1  1 2

1  2
1  1 1 

 

 

p 

1 1 1 1 

 

p 

1 0 2
1  1 

In Łukasiewicz’ ternary logic we drop a lot of other well-known “laws” from clas-
sical logic, such as the law of contradiction 

pp ¬∧  is always false  

(here 2
1

2
1 ¬∧  is 2

1 , not 0) and the law of excluded middle 

pp ¬∨  is always true 

(here 2
1

2
1 ¬∨  is 2

1 , not 1). 

However, some other relation from classical logic, such as 

)( qp ∧¬  is equivalent to )()( qp ¬∨¬ , 

qqp ⇒⇒ )(  is equivalent to qp ∨ , 

)( rqp ⇒⇒  is equivalent to )( rpq ⇒⇒  

remain true in ternary logic of Łukasiewicz. 
Many other multi-valued logics with different properties exist. The following two, 

satisfying conditions (L1-L3), are known as: 

a) the ternary logic of Kleene, in which the implication is defined by 

(K4) },1 max{ qpqp K −=⇒  

instead of (L4); 
b) the ternary logic of Heyting, in which the implication is defined by 

(H4) }},min{|{sup 
]1 ,0[

qxpxqp
x

H ≤=⇒
∈

 

instead of (L4). 

The theoretical fuzzy logic is a generalization of the ternary logic of Łukasiewicz. 
The truth-values cover (theoretically!) the interval [0, 1], and the negation, conjunc-
tion, disjunction and implication of truth-values p and q are defined by formulas  
similar to (L1-L4) above. That’s why fuzzy logic is a kind of multi-valued logic. 
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Remember in fuzzy logic we try to emulate patterns of real-life human reasoning. 
Why exactly the formulas (L1-L4) above should be chosen? In fact, there is no appar-
ent reason; it is possible to replace them by other formulas, as in the cases of Kleene 
and Heyting logics. 

For example, instead of the formula (L1) for the negation we may choose any func-
tion ]1 ,0[]1 ,0[: →c  satisfying natural conditions: 

(N0) 1)0( =c  and 0)1( =c   

(compatibility with classical logic) 
(N1) if 'pp <  are numbers in [0, 1], then )'()( pcpc >  

(decreasing condition) 
(N2) ppcc =))((  

(involutivity) 
or 

(N2’) )(1)1( pcpc −=−  

(commuting with classical negation). 

A function ]1 ,0[]1 ,0[: →c  satisfying (N0), (N1), (N2) or (N2’) is called a fuzzy 
complement. 

Special examples of fuzzy complements are the Sugeno functions λc  where 

p

p
pc

λ+
−=λ 1

1
)(  for ),1( +∞−∈λ , which are involutive, and the function γ  given 

by )cos1()( 2
1 pp π+=γ , which commutes with the classical negation. 

Of course, suitable Bézier curves may serve as fuzzy complements. The simplest 
example is the Bézier curve with end nodes )1 ,0(A = , )0 ,1(B =  and the control 

nodes )1 ,1(C = , )0 ,0(D = . It gives a fuzzy complement that commutes with the 

classical negation. An involutive fuzzy complement is obtained by replacing the  
control node D with )1 ,1( . 

 

Fig. 9.17. Fuzzy complements 
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It is immediate that 2
1

2
1 )( =c  for any fuzzy complement that commutes with the 

classical negation. Thus condition (N2’) should be considered if compatibility with 
ternary logic of Łukasiewicz is desired. 

Let us consider now the formula },min{ qp  that is used in (L2) to define the  

conjunction qp ∧  when }1 , ,0{, 2
1∈qp . 

This formula is not the only possibility when trying to define a conjunction qp ∧  

for ]1 ,0[, ∈qp .  

A fuzzy conjunction is a function ]1 ,0[]1 ,0[]1 ,0[: →×T  which satisfies the  

following five conditions: 

(T0) 0)0 ,1()1 ,0()0 ,0( === TTT , 1)1 ,1( =T  

(compatibility with classical logic) 
(T1) ppT =)1 ,(  

(a boundary condition) 
(T2) if p and ' qq <  are numbers in [0, 1], then )' ,() ,( qpTqpT ≤   

(i.e. T is monotonic in the second argument) 
(T3) ) ,() ,( qpTpqT ≤  

(i.e. T is commutative) 
(T4) ) ), ,(()) ,( ,( rqpTTrqTpT =  

(i.e. T is associative). 

These conditions are adequate to define a genuine “conjunction” by 

) ,( qpTqp =∧  for ]1 ,0[, ∈qp . 

Notice that compatibility with ternary logic of Łukasiewicz exists only if 

2
1

2
1

2
1 ) ,( =T . This is not a consequence of conditions (T0-T4).  

In the literature, functions T satisfying conditions (T0-T4) are known as t-norms. 
Hence, a fuzzy conjunction is simply a t-norm. 

Apart from } ,min{) ,( qpqpT = , let us give other three examples: 

qpqpT  ) ,( ⋅=  (the algebraic product), 

}1 ,0max{) ,( −+= qpqpT  (the bounded difference), 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−+=

1e

)1e)(1e(
1log),(

qp
qpT . 

In a dual manner, let us consider the formula },max{ qp  that is used in (L3) to  

define the disjunction qp ∨  when }1 , ,0{, 2
1∈qp . 

A fuzzy disjunction is a function ]1 ,0[]1 ,0[]1 ,0[: →×S  which satisfies the  

following five conditions, dual to (T0-T4): 

(T’0) 0)0 ,0( =S , 1)1 ,1()0 ,1()1 ,0( === SSS  

(T’1) ppS =)0 ,(  
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(T’2) if p and ' qq <  are numbers in [0, 1], then )' ,() ,( qpSqpS ≤  

(T’3) ) ,() ,( qpSpqS ≤  

(T’4) ) ), ,(()) ,( ,( rqpSSrqSpS = . 

These conditions are adequate to define a genuine “disjunction” by 

) ,( qpSqp =∨  for ]1 ,0[, ∈qp . 

Notice conditions (T’2-T’4) are exactly conditions (T2-T4). 
In the literature, functions S satisfying conditions (T’0-T’4) are known as  

t-conorms. Hence, a fuzzy disjunction is simply a t-conorm. 
It is easy to verify that fuzzy conjunctions and fuzzy disjunctions are deduced one 

from another by using the formula 

)))( ),((() ,( qcpcTcqpS = , )))( ),((() ,( qcpcScqpT =  

where c is an involutive fuzzy complement. 
The logic operation of implication is essential for reasoning, either in the classical 

logic or in fuzzy logic. To define the implication qp ⇒  when }1 , ,0{, 2
1∈qp , in 

the logic of Łukasiewicz the formula }1 ,1min{ qp +−  was used. Other possibilities 

are given by the formulas },1 max{ qp−  and }},min{|{max
]1 ,0[

qxpx
x

≤
∈

. 

These particular implications satisfy different conditions. 
A fuzzy implication is a function ]1 ,0[]1 ,0[]1 ,0[: →×I  which satisfies condi-

tions that are adequate to define an implication by 

),( qpIqp =⇒  for ]1 ,0[, ∈qp . 

In classical logic, where }1 ,0{, ∈qp , qp ⇒  is equivalent to qp ∨¬ )( . After 

choosing a fuzzy complement c and a fuzzy disjunction S, we may define the “derived 
fuzzy implication” as follows: 

)),((),( qpcSqpI =  for ]1 ,0[, ∈qp . 

However, in general this formula does not preserve the above equivalence for 
}1 , ,0{, 2

1∈qp , nor the compatibility with ternary logic of Łukasiewicz is  

guaranteed. 
A fuzzy implication may satisfy some of the following conditions: 

(I1) 1),0( =pI  

(dominance of falsity) 

(I2) qqI =),1(   

(left neutrality of truth) 

(I2’) qqI ≥),1(  for 
2

1≥q , res. qqI ≤),1(  for 
2

1<q  

(see [Dubois and Prade 1991], [Trillas and Valverde 1981]) 

(I3) 1),( =ppI  

(identity) 
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(I4) if qp ≤ , then 1),( =qpI  

(boundary condition) 

(I4’) if p and q are numbers in [0, 1], such that 1),( =qpI , then qp ≤  

(strict boundary condition) 

(I5) ))(),((),( qcpcIpqI =  for a fuzzy complement c 

(the contraposition property) 

(I6) if 'pp <  and q are numbers in [0, 1], then ),'(),( qpIqpI ≥  

(i.e. I is decreasing in the first argument) 

(I7) if p and ' qq <  are numbers in [0, 1], then )',(),( qpIqpI ≤  

(i.e. I is increasing in the second argument) 

(I8) )),(,()),(,( rpIqIrqIpI =  

(the exchange property) 

(I9) )),(),,((),( rqIqpITrpI =  for a fuzzy conjunction T. 

None of the above conditions is mandatory. For example, condition (I2’), which is 
an alternative to (I2), is justified by the following observation: when a physician is 
confronted with a sentence of the form “(absolutely) true⇒ really true”, he/she is in-
clined to consider it as being “very true” rather than the “really true” imposed by (I2). 

The exchange property (I8) is unacceptable if we analyze the way a physician is 
reasoning. In his mind the temporal order is extremely important, “first fact P and 
then fact Q” usually triggers a completely different action as “first fact Q and then 
fact P”. 

At first sight condition (I9) seems natural, imposed by the hypothetical syllogism 
inference rule. However, it is not satisfied by any of the known fuzzy implications 
(see [Klir and Yuan 1995])! 

Probably most specialists will accept only the conditions (I1), (I5), (I6) and (I7) as 
genuine for a fuzzy implication. But this is a matter of personal choice. 

Examples. From the bounded difference t-conorm (and the classical negation) we  
derive the fuzzy implication }1 ,1min{),( qpqpI +−=  which extends the Łu-

kasiewicz implication. This satisfies all conditions above, except (I9). From the  
t-conorm },max{ qp  associated to the t-norm },min{ qp  we derive the fuzzy impli-

cation },1 max{),( qpqpI −=  which extends the Kleene implication. This implica-

tion does not satisfy (I3) and (I4). Also the fuzzy implication qppqpI ⋅+−=1),(  

derived from the algebraic product t-norm does not satisfy conditions (I3) and (I4). 
It is easy to propose a Bézier-surface function ),( qpI  – see Figure 9.18 – satisfy-

ing conditions (I1), (I5)-(I7) above. Namely, for ]1 ,0[∈p  we first use the end nodes 

)1 ,0 ,0(A0 = , )0 ,0 ,1(B0 =  and the control nodes )1 ,0 ,1(C0 = , )0 ,0 ,0(D0 =  

in order to obtain )0,( pI , then for ] ,0[ pq ∈  use the end nodes ))0,( ,0 ,(A pIp= , 

)1 , ,(B pp=  and the control nodes ))0,( , ,(C pIpp= , )1 ,0 ,(D p=  in order to 

obtain 
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)2()1()0,()2()1() ,( 2
4

12
4

1 τ−τ++τ+τ−= pIqpJ  

where 3 1/2 −= pqτ  and )2()1()0,( 2
4

1 σ+σ−=pI  with 3 12 −= pσ . Finally 

2/))1 ,1(),((),( pqJqpJqpI −−+= . 

This construction satisfies also conditions (I2’), (I3), (I4), (I4’), smoothness condi-
tions, and also algebraic relations like the following 

)0,(1),(),( pIqppIqpI +=−+  for qp > . 

  

Fig. 9.18. Fuzzy implications: generated by bounded difference (left), generated by Bézier 
curves (right) 

9.5   Approximate Reasoning 

Given a t-norm T, T-granules are immediate generalizations of Cartesian products of 
fuzzy sets. More precisely, 

Given a fuzzy set F in the universe Ω  and a fuzzy set G in the universe Θ , the  
T-granule determined by the pair (F, G) is the fuzzy set defined by the membership 
function  

))(),((),( yxTyx GF µµ=µ  for Θ∈Ω∈ yx  , . 

This fuzzy set, in the universe Θ×Ω , will be denoted GF T× . 

Let us choose – and keep fixed – an involutive fuzzy complement c, a fuzzy con-
junction (t-norm) T, and a fuzzy implication I. Denote by S the fuzzy disjunction  
(t-conorm) induce by c and T. These will help us to define truth-values of fuzzy 
propositions composed of fuzzy facts. 
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More precisely, recall a fuzzy fact P can be expressed as follows 

P: )(oV  is F 

where o is an object, V is a linguistic variable, and F is a fuzzy set in a universe Ω  
that contains all the values of V. The truth-value of P is 

]1 ,0[))(( ∈µ oVF  

thus depends on the object o. 
The notation P¬  will denote the fuzzy proposition “not )(oV  is F”, whose truth-

value will be defined as )))((( oVc Fµ . It is important to make the distinction be-

tween the fuzzy proposition P¬  and the following expression “ )(oV  is not F”, 

which is not a fuzzy fact! 
Now, given another fuzzy fact 

Q: )(uW  is G 

where u is an object, W is a linguistic variable, and G is a fuzzy set in a universe Θ  
that contains the values of W, we may consider the fuzzy propositions 

)(oV  is F and )(uW  is G, denoted by QP ∧ , 

)(oV  is F or )(uW  is G, denoted by QP ∨ , 

whose truth-values will be defined as 

)))(()),((( uVoVT GF µµ , res. )))(()),((( uVoVS GF µµ . 

The logical operations ∨∧¬  , ,  are easily extended to arbitrary fuzzy propositions 
and the corresponding truth-values are obtained accordingly. 

The set of fuzzy propositions is the minimal set of results of possible constructions 
made respecting the following: 

(FP0) Fuzzy facts are fuzzy propositions. 
(FP1) If P is a fuzzy proposition, then P¬  is also a fuzzy proposition. 
(FP2) If P and Q are fuzzy propositions, then QP ∧  and QP ∨  are also fuzzy 

propositions. 

Of course, any fuzzy proposition has a truth-value attached. 
Due to the conditions satisfied by c, T and S, some of the well-known laws in  

classical logic are preserved, some others no. The law of double negation 

)( P¬¬  is equivalent to P (i.e. their truth-values are the same), 

the commutativity of the conjunction res. disjunction  

PQ ∧  is equivalent to QP ∧ , res. PQ ∨  is equivalent to QP ∨ , 

the associativity of the conjunction  
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)( RQP ∧∧  is equivalent to RQP ∧∧ )( ,  

and the De Morgan law  

)( QP ∧¬  is equivalent to )()( QP ¬∨¬ , 

are examples of preserved relations. By contrast, the equivalence of PP ∧  and P is 
not preserved. 

The fuzzy sets F and G, together with the fuzzy implication I, determine a fuzzy 
relation R in the Cartesian product Θ×Ω  described by the membership function 

))(),((),( yxIyx GFR µµ=µ  for Θ∈Ω∈ yx  , . 

(This is similar to the T-granules defined above.) 
From a formal point of view, the chosen fuzzy implication may help us also to  

define a truth-value of the fuzzy proposition QP ⇒  – where P and Q are fuzzy 

facts, which is a notation of the following 

IF )(oV  is F, THEN )(uW  is G. 

Let us remind that the linguistic variable V (appearing in fuzzy fact P) is a “crisp” 
function Ω→SV : , where S is a “crisp” set of objects. Similarly, W is a function 

Θ→': SW , where 'S  is (possibly) another set of objects. The fuzzy proposition 
QP ⇒  induces a “crisp” function ': SSf →  such that )(ofu = . Therefore, it is 

enough to consider the following  

IF )(oV  is F, THEN )(oW  is G 

or, in general,  

IF V is F, THEN W is G. 

having in mind that V and W apply to the same object. 
Logics is not reduced to a formal iterative construction of formulas, it supposes 

also obtaining truth-values by inference rules.  
Classical logic is based on several unanimously accepted inference rules: Modus 

Ponens, Modus Tollens, Syllogismus etc. 
Fuzzy logic is much richer in inference rules as classical logic. Some of these rules 

are obvious, as for example the entailment principle: 

from )(oV  is A (Age of) John is very-young 

and AB µ≥µ  young-veryyoung µ≥µ  

we infer )(oV  is B 

Example:

(Age of) John is young 

(Here A and B are fuzzy sets in the same universe Ω .)  

Another set of obvious inference rules involve fuzzy quantifiers, as for example the 
following obvious dispositional rule: 
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from Most )(oV  are (is) A Most Ontarians are very clever 

and AB µ≥µ  clever-veryclever µ≥µ  

we infer Most )(oV  are (is) B 

 

Most Ontarians are clever 

The Generalized Modus Ponens deserves special attention. In the fuzzy context 
this rule is presented as follows: 

from )(oV  is A 

and IF V is 'A , THEN W is 'B  

we infer )(oW  is B 

Here A and 'A  are fuzzy sets in the same universe Ω  (of the variable V). On the 
other side B and 'B  are fuzzy sets in the universe Θ  of the variable W. 

As an example, knowing that “(height of) John is TALL” and “if (the height of) a 
person is VERY TALL, then (the quality of) that person (as a basketball player) is 
EXCELLENT” we infer “(the quality of) John (as a basketball player) is GOOD”. 

The Generalized Modus Ponens does not require the coincidence of the fuzzy fact 
“ )(oV  is A” with the antecedent “ )(oV  is 'A ” in the IF-THEN rule. Notice that this 

is very different from classical logic, which requires that they match exactly. 
How this is interpreted? Remember the truth-value of a fuzzy fact “ )(oV  is A” is 

exactly )(xAµ , where x stands for the “exact” value of the variable V for our object 

o. This truth-value is supposed known. 
The truth-value of the conditional proposition 

IF )(oV  is 'A , THEN )(oW  is 'B  

is expressed as ))(),(( '' yxI BA µµ , where I is the chosen fuzzy implication. Here y 

stands for the “exact” value of the variable W for the object o. Of course, this truth-
value depends on the object o, and on the fuzzy sets 'A  and 'B . 

On the other side, the hypothesis in Generalized Modus Ponens is a conjunction of 
this conditional proposition and of the fuzzy fact  

)(oV  is A. 

Since the latter has truth-value )(xAµ , for this conjunction the following truth-value 

is obtained 

)))(),((),(( '' yxIxT BAA µµµ  

where T is the chosen t-norm. 
Now, the truth-value of the fuzzy fact “ )(oW  is B” may be defined as )(yBµ  

once we know the membership function of B. A definition of fuzzy set B is as  
follows: 
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)))}(),((),(({sup)( '' zxIxTz BAA
x

B µµµ=µ
Ω∈

 for Θ∈z . 

The simplest situation is obtained when we consider the obvious t-norm 
} ,min{ qp  and the fuzzy implication }1 ,1min{ qp +− . Many different choices are 

possible. 
Consider the fuzzy relation R – in the Cartesian product Θ×Ω  – determined by 

the fuzzy sets 'A  and 'B  and by the fuzzy implication I. Then the formula above  
defines B as a kind of composition RA o . Of course, RAB o=  in case min=T . 

The Generalized Modus Ponens, as presented above, supposes the fuzzy sets A, 'A  
and 'B  are defined. It helps to describe a new fuzzy set B. However, the construction 
above produces rather imprecise fuzzy sets B, even in the simplest situation. 

In Figure 9.19 such an example is presented. Here R=Θ=Ω  and A is a translate 
of 'A . The t-norm is } ,min{ qp  and the fuzzy implication is }1 ,1min{ qp +− . Not 

only the core of B is larger than the core of 'B , but our impression is that B is not so 
“near” to 'B  at the extent A is to 'A .  

In what follows a measure of consistency of two fuzzy sets in the same universe is 
needed. Such a measure is given, once a t-norm T is chosen, by the T-degree of  
consistency  

))}(),(({sup)',( ' xxTAAd AA
x

µµ=
Ω∈

 for A, 'A  fuzzy sets in Ω . 

The approximate reasoning is based on suitable choices of fuzzy sets 

nAAA ,...,, 21  in the universe Ω  of the variable V, of fuzzy sets nBBB ,...,, 21  in 

the universe Θ  of the variable W, and on the general schema: 

IF )(oV  is 1A , THEN )(oW  is 1B  

IF )(oV  is 2A , THEN )(oW  is 2B  

… 
IF )(oV  is nA , THEN )(oW  is nB  

)(oV  is A 

)(oW  is B 

 

 

Fig. 9.19. Results of GMP 
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The fuzzy sets nAAA ,...,, 21  res. nBBB ,...,, 21  in most cases are chosen of tri-

angular type, as for example the following: 

NL (negative large) PS (positive small) 
NM (negative medium) PM (positive medium) 
NS (negative small) PL (positive large) 

Z (approx. zero) 

to cover main variation interval ] ,[ aa−  as in the Figure 9.20 below: 

The approximate reasoning is an extension of the well-known polynomial interpo-
lation problem: given n pairs of real or complex numbers ),( 11 yx , ),( 22 yx , …, 

),( nn yx  with jk xx ≠  for jk ≠  – called nodes (or support points, see [Stoer and 

Bulirsch 1980]), the Lagrange formula 

∑ ∏
= ≠ −

−
=

n

j jk kj

k
j xx

xx
yxL

1

)(  

gives the value in x of the polynomial L that interpolates through all nodes (see Figure 

9.21a). This formula involves a “degree of consistency” ∏
≠ −

−

jk kj

k

xx

xx
 between the 

number x and the support abscissa jx  for } ..., ,2 ,1{ nj ∈ .  

In case Ω  and Θ  are contained in R  and are respectively covered by seven fuzzy 
sets as in Figure 9.21b, then the analogue of the interpolation polynomial is formed by 
seven (min-)granules.  

The approximate reasoning is typical in fuzzy logic controllers. The most common 
way to determine fuzzy set B is referred to as the method of interpolation. It consists 
of the following two steps: 

Step 1. Calculate the degree of consistency r between the given fuzzy fact “ )(oV  

is A” and the antecedent of each IF-THEN rule, for example using the formula: 

 

Fig. 9.20. Triangular fuzzy sets covering an interval 
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)}}(),({ min{ sup xxr
jAA

x
j µµ=

Ω∈
, }..., ,2 ,1{ nj ∈ . 

Step 2. Calculate the membership function of the fuzzy set B by truncating each 
fuzzy set jB  at level jr  and then taking the union of the truncated sets: 

)}}(,{ min{ max)( yry
jBj

j
B µ=µ . 

An example of interpolation is presented in Figure 9.22. 

9.6   Defuzzification 

Solving some problems supposes the final result should be expressed in crisp terms 
(e.g. as a real number). The result of a fuzzy inference process (or of a fuzzy  
approximate reasoning) is a fuzzy set. Replacing this fuzzy set by a suitable crisp 
value is known as defuzzification. 

Several methods are available. 

1) The center of gravity method supposes that the membership value )(yBµ  is a 

kind of weight attached to the value y from the universe. A weighted mean is then 
considered 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

∫
∫

∑
∑

Y
B

Y
B

B

B

yy

yyy

y

yy
y

 

 

d )(

d )(
or   

)(

)(

µ

µ

µ
µ

 

and this crisp value is chosen as final result. 

      
(a) (b) 

Fig. 9.21. Interpolation in 2R  (a) and fuzzy rules (b) 
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Third Rule (involving 
fuzzy sets 3A  and 3B )

 level 3r

Fact
(fuzzy set A)

First Rule (involving 
fuzzy sets 1A  and 1B )  level 1r

Second Rule (involving 
fuzzy sets 2A  and 2B )

 level 2r

 level 4r

Fourth Rule (involving 
fuzzy sets 4A  and 4B )

Conclusion
(fuzzy set B)

 

Fig. 9.22. Example of interpolation 

This method is implemented in function defuzz in Matlab, as option cen-
troid. It works well in case of a continuum universe Θ  covered by triangular fuzzy 
sets. When the universe Θ  is discrete it is very possible that the obtained value y  to 

be outside the universe, thus not a genuine value. In the example above we have 
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21
21 6.04.0

3.02.0

3.02.0
yy

yy
y +=

+
+

=  

which is neither 1y  nor 2y ! 

2) The center of maxima method takes into account only the elements Θ∈y  

where the membership values to the resulted fuzzy set B are maximal (maybe < 1). 
Thus the set 

}maximal is )( | { yyM Bµ=  

is considered. In a “tame enough” universe Θ  this set M has a supremum and an in-
fimum. Their arithmetic mean 

)inf(sup
2

1
MMm +=  

is chosen as the final result. 
In the example above the set M is limited to the singleton set }{ 2y , thus 2ym =  

is the final result of the defuzzification process.  
This method works well especially when M is a connected set. When M is discon-

nected, another method could be imagined. 
3) The mean of maxima method (implemented as option mom in defuzz). Now 

a kind of mean value m  of elements of the set M above is considered.  

In the Figure 9.23 a comparison between the crisp values obtained by these three 
methods is presented, supposing that the fuzzy set B is known. 

y m m  

Fig. 9.23. Results of defuzzification 

9.7   Approach by Precision Degrees 

Another approach takes into account the notion of precision degree of a proposition. 
Sometimes a sentence can be decomposed into a first part expressing an idea (or a 
fact) and a second part expressing the imprecision of the first part. For example, in the 
sentence “It is almost sure that in a flu case the temperature of patient is quite high” 
the imprecision is expressed by “it is almost sure”. 
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Fig. 9.24. Precision degree 'β  given by Bézier curves: Case 1 (left) vs. Case 2 (right) 

In general, such imprecise sentences contain a fact “X is A” and an attached preci-
sion degree ]1 ,0[∈α . From a formal point of view, these sentences could be  

expressed as “X is Aα ”. 
Using precision degrees, the Generalized Modus Ponens can be expressed as  

follows: 

from IF V is Aα , THEN W is Bβ  

and )(oV  is A'α  

we infer )(oW  is B'β  

It is worth noting here that for a pair A, B of fuzzy sets two distinct cases are  
identified: 

Case 1. When the degree of precision of “V is A ” is raised from α  to 'α , the de-
gree of precision of “W is B ” also raises from β  to a higher value 'β . 

(Usually in this case the fuzzy sets are chosen such that for 1=α  one has 1=β  

and for 0=α  one has 0=β .) 

Case 2. When the degree of precision of “V is A ” is raised from α  to a higher 
'α , the degree of precision of “W is B ” decreases from β  to a lower value 'β . 

The degree 'β  in the Generalized Modus Ponens rule is obtained from a formula 

involving the three other degrees of precision 

)',,(' αβαϕ=β . 

Following [Khoukhi 1996], the inference process consists of: 

a) computing the similarity degree between the precision degree 'α  of the fact and 
the precision degree α  of the antecedent  
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)},'( ),',(min{ αααα=σ II , 

where I is the chosen fuzzy inference, and then 
b) determining the precision degree 'β  by taking into account the above similarity 

degree, for example as follows: 

}1 ,0max{' −σ+β=β . 

In Figure 9.24 the function ϕ  is described by families of Bézier curves, indexed by 

a parameter ]1 ,0[∈λ , covering the unit square. For example, in Case 1 the end nodes 

are A = )0 ,0(  and B = )1 ,1( . The control nodes are C = )0 ,1(  and D = )1 ,(λ , or 

C = )0 ,(λ  and D = )1 ,0( . 

9.8   Solved Exercises 

1) Assume “young (age)” is represented by a fuzzy set Y 

⎪
⎩

⎪
⎨

⎧

≥
<<−

≤
=

400

4020     20/)40(

201

)(

x

xx

x

xYµ  

and “old (age) is represented by 

⎪
⎩

⎪
⎨

⎧

≥
<<−

≤
=

701

7050     20/)70(

500

)(

x

xx

x

xOµ  

Identify fuzzy term “neither young, nor old” (i.e. “middle aged”). Show that “old” 
implies “not young”. 

2) Given the fuzzy sets – in the universe }5,4,3,2,1{=X  

)}5|81.0( ),4|16.0(),3|1( ),2|64.0( ),1|49.0{(=A  and 

)}5|0( ),4|9.0(),3|1( ),2|6.0( ),1|7.0{(=B , 

calculate the following 

(a) the union BA ∪ , 
(b) the algebraic sum BA + , 
(c) the Cartesian product BA × , 
(d) more or less A, 
(e) more or less A and very B. 

3) Assuming FALSE is a fuzzy set over the universe ]1 ,0[ , described by a Z-type 

membership function, represent the fuzzy set 

(a) SOMEWHAT FALSE 
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(b) FALSE AND NOT FALSE 
(c) SOMEWHAT FALSE AND NOT FALSE 

4) Assuming TRUE is a fuzzy set over the universe [0,  1], described by an S-type 
membership function, draw the fuzzy set 

(a) NOT TRUE (b) SOMEWHAT TRUE 

(c) TRUE AND NOT TRUE (d) SOMEWHAT TRUE AND NOT TRUE 

5) The IQ of an individual is a number around 100. (In probabilistic terms, it is 
obtained from a normal (Gaussian) random variable with mean 100 and standard de-
viation 15.)  

Describe a fuzzy variable based on IQ values, but having fuzzy values “smart”, 
“very smart”, “rather smart”. Usually 16% of the individuals are considered smart.  

6) By the normalization procedure, from a fuzzy set A one obtains the fuzzy set 
NORM(A) – over the same universe X – whose membership function is 

)(
)(max

1
)()(NORM x

z
x A

A
Xz

A µ
µ

=µ
∈

. 

By the intensification procedure, from a fuzzy set A one obtains the fuzzy set 
INTENS(A) – over the same universe X – whose membership function is 

⎪⎩

⎪
⎨
⎧

>µµ−−
≤µµ=µ

.5.0)(  if ))(1(21

5.0)(   if        ))((2
)(

2

2

)(INTENS
xx

xx
x

AA

AA
A  

Knowing that “SLIGHTLY A” is defined as 
INTENS(NORM(A and NOT(very A)))  

give a complete definition of the fuzzy sets SLIGHTLY F, SLIGHTLY G and 
SLIGHTLY F ∨ SLIGHTLY G, where:  

F = TALL = trapmf(x, 150, 190, ∞, ∞) (trapezoidal)  

G = MEDIUM = trimf(x, 130, 160, 190) (triangular)  

7) Denote ]1 ,0[]1 ,0[]1 ,0[: →×T  the function defined by 0)0 ,0( =T  and 

qpqp

qp
qpT

⋅−+
⋅=),(  if 0≠⋅ qp . 

(a) Show that T is a t-norm. 
(b) Show that T is intermediate between the t-norms product and min, i.e. 

},min{),( qpqpTqp ≤≤⋅ . 

8) The “middle point” )P(
2

1
 of a Bézier curve determined by end nodes A, B and 

control nodes C, D is obtained as follows: 
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(a) Construct the middle point C'  of the segment AC, the middle point E of CD 
and the middle point D"  of BD, 

(b) Construct the middle point D'  of the segment EC' , and the middle point C"  
of the segment ED" , 

(c) Construct the middle point X of the segment D'C" . This is exactly )P(
2

1
. 

Show that the Bézier curve determined by A and X as end nodes and C' , D'  as 
control nodes is exactly the “first half” of the original Bézier curve. The second half is 
the Bézier curve determined by X and B as end nodes and C" , D"  as control nodes. 

9) The fuzzy set B (in the universe {1, …, 9} is defined as follows:  

0.1|1 + 0.9|2 + 0.6|3 + 0.1|4 + 0.4|5 + 0.9|6 + 0.8|7 + 0.7|8 + 0.5|9 

Defuzzify this set using: 

a) the center of maxima method; 
b) the center of gravity method. 

10) The generalized modus tollens is an inference rule expressed as follows:  

IF V  is A, THEN W  is B  
)(oW  is 'B  

)(oV  is 'A  

Derive a formula to compute the fuzzy set 'A  given fuzzy sets A, B and 'B . 

11) The sigma-count and the sigma-mean of a fuzzy set A over a finite universe 
U are defined via the membership function Aµ  as follows:  

∑
∈

µ=Σ
Uu

A uA )()(# , res. 
)(#

)(#
)(

U

A
AM

Σ
Σ=Σ . 

Show that  

)(#)(#)(#)(# BABABA Σ+Σ=∪Σ+∩Σ  

and  

))(),(min()()1)()(,0max( BMAMBAMBMAM ΣΣ≤∩Σ≤−Σ+Σ  

for any fuzzy sets A and B in U. 

Solutions 

1) Fuzzy set M = “neither young, nor old” is the intersection OY ∩ , i.e. the 
trapezoidal fuzzy set with ld = 20, lu = 40, ru= 50, rd = 70. It is immediate that 

)()( xx YO µµ ≤  for all x, i.e. YO ≤ . 
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2) Technical exercise. 
3) Suppose FALSE is the trapezoidal fuzzy set trapmf(x, 0, 0, 0, 0.5). In this case 

FALSE AND NOT FALSE is )5.0 ,25.0 ,25.0 ,0 ,(trapmf
2

1
x , a non-normal fuzzy 

set. 
4) TRUE AND NOT TRUE is also a non-normal fuzzy set. 
5) Identify first the 94th percentile of the normal distribution with mean 100 and 

variance 152 = 225. By use of function NORMINV in Microsoft Excel, this percentile 
is found at about 123. A very simple description of “smart” could be given by 

) , ,123 ,100 ,(trapmf ∞∞x . 

(Remark. No negative IQ values exist. Therefore, to be absolute correct, we should 
truncate at 0 the normal distribution above. However, the probability of negative val-
ues is 0.000000000013, a very small value that can be neglected.) 

7) (a) Conditions (T0) and (T1) are obvious. All the three conditions (T2)-(T3)-

(T4) of t-norms are easy to be verified if we notice that ))()((),( 1 qpqpT ϕϕϕ += −  

where ),0[]1 ,0(: ∞→ϕ  is the one-to-one correspondence given by 1
1

)( −=
p

pϕ . 

8) It is easy to obtain CAC'
2

1

2

1 += , DCAD'
4

1

2

1

4

1 ++=  etc. The point X is 

expressed as DCBA
8

3

8

3

8

1

8

1 +++ , i.e. as )P(
2

1
. 

If the Bézier curve determined by A, B, C, D is described by the cubic polynomial 

BD)1(3C)1(3A)1()(P 3223 ttttttt +−+−+−= , then the Bézier curve deter-

mined by A, X, C' , D'  is described by the cubic polynomial 

BD)1(3C)1(3A)1()(Q 3223 tttttts +−+−+−= , i.e. )2(P)(Q ts = . 

9) The fuzzy set B is not normal. The maximal membership values are attained at 2 
and at 6. The result of the defuzzification by center of maxima method is thus 4, 
which has minimal membership value! 

On the other hand, the center of gravity method gives 5.44, which is not a member 
of the universe! 

10) Consider the complements A¬ , B¬  of fuzzy sets A, B. Replace the  
“knowledge” 

IF V is A , THEN W is B  

by its contraposition 

IF W is B¬ , THEN V is A¬ , 

From “ )(oW  is 'B ” with known fuzzy set 'B , applying the Generalized Modus 

Ponens we infer “V is 'A ” where the membership function of fuzzy set 'A  is com-
puted as follows 

)))(),((),((sup)( '' xyIyTx ABB
y

A ¬¬ µµµ=µ . 
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If the chosen fuzzy implication I satisfies (I5) for the classical negation, then the 
fuzzy set 'A  is obtained from: 

)))(),((),((sup)( '' yxIyTx BAB
y

A µµµ=µ . 

11) The relation  

)(#)(#)(#)(# BABABA Σ+Σ=∪Σ+∩Σ  

is obvious, since )}(),(min{)( uuu BABA µµ=µ ∩  for any fuzzy sets A and B in U. 

Notice that the sigma-count satisfies the monotonic condition )(#)(# BA Σ≤Σ  if 

BA ⊆ . 
Starting from the sigma-count, by analogy with probabilities, a conditional sigma-

count is defined by 

)(#

)(#
)|(#

B

BA
BA

Σ
∩Σ=Σ  

(for all non-trivial fuzzy sets B). 
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10   Review 

10.1   Review of Uncertainty and Imprecision 

Consider the unit interval [0, 1]. Its elements may be interpreted as: 

• Probabilities of events, 
• Possibilities of propositions, 
• Beliefs of propositions, 
• Membership degrees of elements, 
• Truth values of propositions, etc. 

and all kind of confusions may appear in the natural language. 
Progress in Artificial Intelligence is not possible without defining units for meas-

uring uncertainty and imprecision. Smets [Sme 2000] suggested calling these units by 
adding the suffix “it” (from “information unit”). Expressed in these units, all the  
values should be between 0 and 1. 

Thus: 

1) probit is the unit for probabilities. Instead of writing 

P(the house of Sally is burgled) = 0.2 

we may write now “the house of Sally is burgled” has probit 0.2; 

2) possit is the unit for possibilities. Instead of  

Π(John is coming) = 1 
Π(John is not coming) = 0.1 

(i.e. “John is coming almost sure”) we may write now “John is coming” has possit 
0.95. 

The transformation formula involves both possibilities: 

2

)(1)(
  

pp
valuepossit

¬Π−+Π= ; 

3) belit is the unit for beliefs. Instead of  

2.0)(Bel =∨ fr  

we may write now “The paint is a Raphael or a forgery” has belit 0.2; 
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4) fuzzit is the unit for membership grades. Instead of  

6.0)180(TALL =µ  

we may write now “180 cm is tall” has fuzzit 0.6; 

5) verit is the unit for truth-values. Instead of  

“most tall men are not very fat” 

we may write now “tall men are not very fat” has verit 0.8. 

Consider, in the following, the universe of discourse Ω . This has: 

• elements ω , 

• crisp subsets A, forming the set Ω=Ω 2)(P , 

• fuzzy subsets F, forming the set )(ΩF . 

Let us review the measures used in uncertain information processing. 

1) A probability distribution over Ω  (finite) is described as a two-rows table  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
...

...

)(...

...

probits

elements

ω
ω

p
 

where the sum of all probits )(ωp  is equal to 1. The function p is extended by 

∑
∈

=
A

pAP
ω

ω)()(  

to the crisp subsets A of Ω  and satisfies the additivity relation 

)()()()( BAPBPAPBAP ∩−+=∪ . 

2) A possibility distribution over Ω  (finite) is described as a two-rows table  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
...

...

)(...

...

possits

elements

ωπ
ω

 

(the “sum equal to 1” condition is not required here). The function π  is extended by 

)(max)( ωπ
ω A

A
∈

=Π  

to the crisp subsets A of Ω  and satisfies the max relation 

))(),(max()( BABA ΠΠ=∪Π . 

3) A basic belief assignment over Ω  is described as a two-rows table  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
...

...

)(Bel...

...

belits

subsets (crisp)

A

A
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where ∅  has belit 0 and Ω  has belit 1, or as a two-rows table 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
...

...

)(...

...

ondistributi mass

subsets

Am

A
 

where the masses m(A) sum to 1. Remember the relations between the belits and mass 
distribution: 

∑
⊆

=
AB

BmA )()(Bel  and ∑
⊆

−−=
AB

BA BAm )(Bel)1()( |  | . 

The belief assignment function satisfies the super-additivity relation: 

)(Bel)(Bel)(Bel)(Bel BABABA ∩−+≥∪ . 

4) A fuzzy set in Ω  can be described as a two-rows table  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
...

...

)(...

...

fuzzits

elements

ωµ
ω

F

 

without any restriction. 

By combining fuzziness with the measures 1)-3) above we obtain several measures 
of fuzzy sets. All these should satisfy an obvious requirement, called monotonicity:  

(M) If GF µµ ≥  for fuzzy sets F and G, then the measure of G is at least the 

measure of F.  

Let us consider some examples. 

5) A probability distribution over fuzzy sets in Ω  is described as a two-rows  
table  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
...

...

)(...

...

probits

setsfuzzy 

Fp

F
 

where, as usual for probability distributions, the sum of all probits )(Fp  is equal to 

1. (Here we accept that the number of distinct fuzzy membership values is finite.) 

6) A possibility distribution over fuzzy sets in Ω  is described as a two-rows  
table  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π ...

...

)(...

...

possits

setsfuzzy 

F

F
 

with no other restriction on the possits. 

7) A basic belief assignment over fuzzy sets in Ω  is described as a two-rows  
table  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
...

...

)(Bel...

...

belits

setsfuzzy 

F

F
 

with no other restriction on the belits. 

By combining fuzziness with the measures above we may obtain also fuzzy  
measures. Before defining this concept, let us consider only one example. 

8) A fuzzy probability distribution over Ω  (finite) is described as a two-rows  
table  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
...

...

)(...

...

probitsfuzzy 

elements

ω
ω

FP
 

where each )(ωFP  is a fuzzy set in [0, 1]. Consider )(ωFP  is defuzzified by the 

center of gravity method to the crisp value )(ωc ; then the following condition should 

be satisfied: 

1)( =∑
ω

ωc . 

Let us treat the notions above from the point of view of fuzzy measures. Consider a 
family C  of subsets of the universe Ω , satisfying the following lattice conditions 

(C1) C∈∅  and C∈Ω , 

(C2) If C∈BA, , then C∈∪ BA  and C∈∩ BA . 

A fuzzy measure on C  is a function 

]1 ,0[: →Cg  

satisfying the following two conditions: 

(FM1) 0)( =∅g , 1)( =Ωg  (boundary conditions), 

(FM2) If C∈BA,  and BA ⊆ , then )()( BgAg ≤   (g is monotonic). 

The number )(Ag  assigned to a subset C∈A  is interpreted as a measure of the 

total available evidence that a given element of Ω , whose characterization is  
deficient in some way, belongs to the subset A.  

Example. Suppose we are trying to diagnose an ill patient. We may be trying to  
determine whether this patient belongs to the set Ω  of people with pneumonia, bron-
chitis, emphysema, or just a common cold. We may consider that the subsets in C  
are exactly these six: 

∅, A = {pneumonia}, B = {pneumonia, emphysema},  

C = {pneumonia, bronchitis}, D = {common cold} and Ω .  
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Now, in defining a fuzzy measure g on C  we have to respect the two strict inclu-

sions BA ⊂  and CA ⊂  and we may define )(Dg  independently of the other  

values of g. 

In general, given a fuzzy measure g on C  and C∈BA, , because of the inclusions 

ABA ⊆∩  and BBA ⊆∩ , the monotonic condition allows us to infer the follow-
ing inequality: 

)}(),(min{)( BgAgBAg ≤∩ . 

Dually, because of the inclusions BAA ∩⊆  and BAB ∩⊆ , the same mono-
tonic condition allows us to infer another inequality: 

)}(),(max{)( BgAgBAg ≥∪ . 

Consider now some important particular cases.  

a) First, in the case of a probability distribution over a finite set Ω , the family C  

is exactly the set )(ΩP  of all subsets of Ω , and the function P  plays the role of g.  

(It is obvious that 1)( =ΩP . If )(Ω∈PA,B  and BA ⊆ , then =)(BP  

)()()())(( APABPAPABAP ≥−+=−∪  since ∅=−∩ )( ABA , thus 

)()( BPAP ≤ . Therefore )}(),(min{)( BPAPBAP ≤∩  and ≥∪ )( BAP  

)}(),(max{ BPAP . 

b) In the case of the belief assignment, the family C  is the same set )(ΩP  of all 

subsets of Ω , now the function Bel plays the role of g.  
(It is very easy to show that if )(Ω∈PA,B  and BA ⊆ , then =)(Bel B  

)(Bel))Bel()(Bel)(Bel))((Bel AA(BAABAABA ≥−∩−−+≥−∪ , because 

0)(Bel))((Bel =∅=−∩ ABA , thus )(Bel)(Bel BA ≤ . It follows that 

)}(Bel),(Belmin{)(Bel BABA ≤∩  and ),(Belmax{)(Bel ABA ≥∪  )}(Bel B , 

but these inequalities may be strict even in the absence of a particular relation  
between A and B.) 

 

pneumonia common cold 

pneumonia or bronchitis 

pneumonia or emphysema 

Ω  

∅ 
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If we force a belief assignment Bel to be a probability measure, then the associated 
basic belief assignment m should have value 0 on each subset of Ω  that is not a  
singleton.  

This result makes a clear distinction between the two particular (fuzzy) measures: a 
probability measure is just a particular case of a basic belief assignment.  

Remember how the total ignorance is expressed by a belief assignment: all subsets 
A different from Ω  have belit 0 (and, of course, 1)(Bel =Ω ). 

Fuzzy measures 
(monotonic) 

Probability 
measures 
(additive)

Belief measures 
(super-additive)

Possibility measures 
(max relation) 

 

Fig. 10.1. Fuzzy measures 

c) In the case of the possibility distribution over a finite set Ω , the family C  is 

again the set )(ΩP of all subsets of Ω , and now the function Π plays the role of g.  

(Now if )(Ω∈PA,B  and BA ⊆ , then BBA =∪ . From the condition 

)}(),(max{)( BABA ΠΠ=∪Π  it follows immediately )()( BA Π≤Π .) 

At a first glance, the possibility measure and the probability measure seem to be 
analogous, because of the similarity between the definition formulas 

∑
∈

=
A

pAP
ω

ω)()(  res. )(max)( ωπ
ω A

A
∈

=Π . However, the additivity relation 

)()()()( BAPBPAPBAP ∩−+=∪  is not analogous to the max relation 

)}(),(max{)( BABA ΠΠ=∪Π . Another difference between these measures is in 

the manner total ignorance is expressed. In the case of possibility measures the total 
uncertainty is expressed by the fact that all elementary possits )(xπ  are equal to 1, 

which implies 1)( =Π A  for all subsets A of Ω . On the contrary, in the case of prob-

ability measures the total uncertainty is expressed by the equality of all probits )(ωp . 

In the Figure 10.1 above, the relations between these measures, as particular cases 
of fuzzy measures are presented. 
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10.2   Production Rules 

Let us consider some examples of IF-THEN rules that may appear in an expert  
system. 

(1)  IF fuel tank is empty 
THEN engine is dead 

This IF-THEN rule expresses a simple relation. The rule is “certain”, no doubt; 
what about its antecedent and its consequent? 

Of course, “dead” is a binary value of a Boolean variable, the state of the engine. 
The other value is “running”. Thus, the consequent of the rule could be considered as 
being precise. 

On the contrary, the antecedent of the rule above is imprecise, and the imprecision 
is dealt with in the context of fuzzy sets. 

We recognize in the antecedent that “empty” is a fuzzy set. In fact, we have a vari-
able (the capacity of the fuel tank), which is of linguistic type. Thus we may consider 
an imprecise value fuzzit(empty). Since our rule is certain, i.e. belit(rule) = 1, this 
value is transferred automatically into verit(engine is dead) that is transformed into a 
crisp truth-value. 

On the other side, the values of the capacity of the fuel tank: empty, low, medium, 
nearly full, full a.o. may be considered as fuzzy sets, covering the real interval 
[0, MAX_CAPACITY]. Of course, the upper limit of our interval depends on the type 
of the car (but, in fact, only on the type of the fuel tank!). 

Both “fuel tank” and “engine” may be considered as slots in the frame “car”.  
Another slot is “type”. 

(2) IF infection is meningitis 
AND patient is a child 

THEN drug recommendation is ampicilline 

This is a classical recommendation. Here several imperfect data appear. 
First of all, we have to point out that the recommendation is not mandatory; many 

physicians recommend other drug treatments in meningitis infections. Thus a degree 
of belief in our rule, as a whole, appears and this degree of belief – or credibility – is 
dealt within belief theory. In this particular case, knowing that there exists a similar 
rule (of the same kind) in which “gentamycin” replaces “ampicilline”, when lacking 
any information about how often the rules are used, we may consider that be-
lit(rule) = 0.5. 

The antecedent is a conjunction, and the first term of it (infection is meningitis) 
usually is subjectively asserted. The best treatment of this kind of assertion is in belief 
theory, where a degree of belief is attached, as for example belit(infection is meningi-
tis) = 0.95. 

The second term of the antecedent is of fuzzy type. It is clear that “child” is a fuzzy 
set, value of the linguistic variable “age”, and a truth-value – derived from a member-
ship degree fuzzit(child) – is obtained for this term. 

Now we have to combine a belit value with a fuzzit value, in order to derive a 
truth-value for the antecedent. One suggestion would be the use of a suitable t-norm: 
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verit(antecedent) = T(belit(infection is meningitis), fuzzit(child)) 

and the most suited here seems to be β⋅α=βα ),(T . 

(3) IF gender is female 

AND age is old 
AND ft4_value is decreased 
AND tsh_value is markedly elevated 

THEN (h) diagnosis is overt hypothyroidism 
AND (a) advice is treatment may benefit 

This rule is a typical diagnosis-recommendation, very similar to a diagnosis-
directive rule, in which “advice” is replaced by “action”. 

The antecedent is a multiple conjunction, in which the first term (“gender is  
female”) is of Boolean type and all the other three terms are of fuzzy type. It is true, 
however, that in today’s medical practice the values “decreased” for the Free Thyrox-
ine test (FT4) and “markedly elevated” for the Thyroid-Stimulating Hormone test 
(TSH) are crisp labels determined by the upper bound 0.8 nanograms per deciliter res. 
by the lower bound 10 milliunits per liter. In the same line of thought “old” for age 
could mean a crisp label determined by the lower bound 50 years. 

Notice the consequent of the rule is a conjunction too. Its first term h is “believed”, 
thus has a degree of belief. On the contrary, a possibility value is attached to the  
second term (expressing how much the patient may benefit from the standard treat-
ment). Thus in the consequent a belit value is combined with a possit value. (The 
choice of specific values is a matter of personal choice of the physician. However, 
these values should be ascertained by statistical evidence/data. For example, well-
designed prospective clinical and epidemiologic studies have found that 13 in 1000 
women older than 50 have unsuspected but symptomatic overt hypothyroidism or 
overt hyperthyroidism that will respond to treatment.) For the combination (AND) 
one suggestion could be to use a t-norm. 

Concerning the imprecision attached to the entire rule the following alternative 
could be suggested: 

– either to consider that the rule is certain (i.e. belit = 1), and the degree of impreci-
sion of the consequent is computed following the scheme 

belit(consequent) = T(belit(h), possit(a)),  
where T is a (previously chosen) t-norm; 

– or to consider that the rule has belit(h) as imprecision value, i.e. that the belit 
value of the diagnosis is transferred to the rule. 

The advantage of the imprecise processing of the rule versus the crisp one becomes 
obvious if we notice that for a woman of 49, in the crisp case the rule is not fired at 
all! 

Such kinds of rules are common in screening for diseases. Although how the fuzzy 
set OLD should be defined is known, the definition of the other fuzzy sets involved in 
this rule should be done following the specific medical guidelines. For example, the 
values of the variable tsh_value could be the following three (trapezoidal) fuzzy sets: 
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NORMAL = trapmf(0, 0.5, 4.5, 6), 
MILDLY_ELEVATED = trapmf(4.5, 6, 9, 10), 
MARKEDLY_ELEVATED = trapmf(9, 10, ∞, ∞).  

(4) IF infection after wound on foot IF infection after wound on foot 
AND antecedent is diabetes AND antecedent is diabetes 
AND age is very old AND age is very old 

 THEN medication and wait THEN immediate amputation below the 
knee 

IF extension of infection 
THEN late amputation above the knee 

These three rules describe two different strategies a physician could select. Of 
course, our physician believes that one is better than the other; it is a matter of  
personal decision! His belief is based on utility calculus done beforehand. 

Suppose belit(left strategy) > belit(right strategy), thus the left strategy (more 
risky!) is chosen. This involves two successive IF-THEN rules, separated in time. 
Time is an important factor that should be taken into account. 

Of course, the problem of computing beliefs may be approached in terms of Bayes-
ian networks, based on the (simplified) graph in Figure 10.2 nd on the estimation of 
all necessary conditional probabilities. 

Of course, the value of interest here is )|( mlp , i.e. the chances of heavy late  

consequences conditioned on an economizing immediate decision. 

(5) IF person is old 
THEN person is ill 
IF person is ill 
THEN person is under treatment 

Putting apart the fuzziness in the antecedents above, these two rules exhibit another 
type of incertitude: they are “generally true”. 

Two approaches can be envisaged: 

– either the possibilistic one, based on conditional possibilities: 

Π(person is ill | person is old) = 1, and  
Π(person is not ill | person is old) ≥ 0 

W – wound on foot 
M – medication and wait 
I – immediate amputation 
E – extension of infection 
S – scar formation (healing) 
D – death 
L – late amputation 

L 

D 
E 

S 
 I 

M 

W 

Fig. 10.2. Graph of possible evolution of an infection 
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Π(person is under treatment | person is ill) = 1, and  
Π(person is not under treatment | person is ill) ≥ 0 

and on the Prade’s computation; 

– or the fuzzy one, using quantifiers.  

As the first rule is concerned, people have the feeling that “most old persons are 
ill”. Thus the first rule is “mostly true”, i.e. 

verit(rule 1) = 0.8 (“mostly”). 

For the second rule, people feel that “almost all ill persons are under treatment”. 
Thus the second rule is “almost true”, i.e. 

verit(rule 2) = 0.9 (“almost”). 

The classical syllogism allows us to derive, in classical logic, the compound rule 

IF person is old 
THEN person is under treatment. 

A very simple calculus 

verit(compound rule) = verit(rule2) ⋅ verit(rule 1) = 0.9 ⋅ 0.8 = 0.72  

(value interpreted as “frequently”) allows us to appreciate that “frequently old persons 
are under treatment”. 

10.3   Perception-Based Theory 

In medical practice (in most other decision contexts also) the information at hand is a 
mixture of measurements and perceptions. When all is measured, classical probability 
theory is of great help. However, it is not helping us to deal with perception-based  
information. 

To be able to compute with perception-based information we first need a represen-
tation of the respective meaning in a form that is suitable to computing. After this  
representation is achieved, truth propagation from premises to conclusions can be put 
at work by a suitable logical engine. 

Let us present in short the approach of [Zadeh 2002], the so-called CTP (Computa-
tional Theory of Perception). This approach involves a family of predicates (Zadeh 
calls them variable copulas) 

isα 

where α represents one of the following “symbols”: 

_ (“void”), for possibilistic constraints, 
=, for equalities, 
<, for inequalities, 
p, for probabilistic constraints, 
u, for usuality constraints, 
v, for veristic constraints (expressed by certainty factors), 
fg, for fuzzy graph constraints, etc. 
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The predicates (variable copulas) isα are used together with variables X and with 
constraining relations A to form the so-called unconditional constraints 

X isα A 

that are fundamental for “computing with perceptions”. 
(The variable X in the unconditional constraint above may have a structure, may be 

a function )(Yf  of another variable Y, may be conditioned by another variable, 

YX | , may be multi-dimensional.)  

Thus, X is D expresses the fact that the variable X has possibility distribution D, X 
isp D expresses the fact that the variable X has probability distribution D, X isu U  
expresses the fact that X is usually U, X isfg G expresses the fact that X is a function 
and G is its fuzzy graph, and so on. 

Generalized constraints are the main semantic elements of the meaning-
representation language. A generalized constraint is obtained from unconditional 
constraints as a production rule  

IF X isα A THEN Y isβ B (equivalent form “Y isβ B WHEN X isα A”) 

or as an exception-qualified rule 

X isα A UNLESS Y isβ B. 

The Generalized Constraint Language is generated by combination, qualification 
and propagation of generalized constraints. 

The rules that govern generalized constraint propagation in CTP coincide with the 
rules of inference in fuzzy logic. The basic rules, expressed in their most general 
form, are the following. 

First conjunctive rule: from X isα A 
and X isβ B 

we infer X isγ C  

Second conjunctive rule: from X isα A 
and Y isβ B 

we infer ),( YX  isγ C  

Projective rule: from ),( YX  isα A 

we infer Y isβ B  

Surjective rule: from X isα A 
we infer ),( YX  isβ B  

Inversive rule: from )(Xf  isα A 

we infer X isβ B 
 where )(Xf  is a function of X. 
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In the first conjunctive rule the copula isγ may be obtained from copulas isα and 
isβ by formulas analogous to that of operation ∗  in Section 6.2. 

From these basic rules other general rules may be derived, as exemplified by the 
following proposition. 

Proposition. If the second conjunctive rule and the projective rule above are  
accepted, then we are entitled to use also the compositional rule: 

from X isα A 
and ),( YX  isβ B 

we infer Y isε E. 

Proof. Indeed, let us suppose we know X isα A and ),( YX  isβ B. Then, using the 

second conjunctive rule, we infer 

)),(,( YXX  isγ C. 

Now, using the projective rule we infer 

),( YX  isδ D 

and using again the projective rule we finally infer 

Y isε E. 

This general rule is of little help. However, particular cases are very important. Let 
us give only two examples. 

Example 1. A and B are fuzzy sets and α = β = _ (void). In this case B is in fact a 
fuzzy relation. We may consider ε= _ and BAE o= , the composition defined in 
Section 9.1. 

Example 2. A and B are probability distributions and α = β = p. If X is uni-variate, A 
is 1-dimensional and if Y is also uni-variate, then B is 2-dimensional. We may  
consider ε= p and BAE o= , the composition of distributions. 

10.4   Solved Exercises 

1) Express the following two production rules into a programmable form: 

When a patient has significantly elevated troponin concentrations and an abnormal 
electrocardiogram, it is likely the patient has had a heart attack. 

When a patient with chest pain and/or stable angina has normal troponin, creatin 
phosphaze and CK-MB concentrations, it is likely that the heart has not been injured. 

2) [Zadeh 2002] We know: 

Most Swedes are tall, 
Most Swedes are blond. 

How many Swedes are tall and blond? 
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Solutions 

1) The two sentences are typical for medical knowledge. A lot of fuzziness and 
subjective feelings are expressed. A possibility to express such knowledge into  
programmable form is as follows: 

IF TC(x) is SE 
 AND ECG(x) is NOT NORMAL, 
THEN P(HS(x) is HEART ATTACK) is VERY HIGH. 
IF (CP(x) is CERTAIN OR SA(x) is CERTAIN) 
 AND T(x) is NORMAL 
 AND CK(x) is NORMAL 
 AND CK-MB(x) is NORMAL. 
THEN P(HS(x) is HEART ATTACK) is EXTREMELY LOW. 

However, in these rules there are different fuzzy sets NORMAL. For CK concen-
trations NORMAL levels expressed in units/liter is a fuzzy set 
trapmf(0, 0, 0.16, 0.25). For troponin concentrations there is not yet a good 
NORMAL description! 

2) A genuine expression of the sentence 
Most Swedes are tall 

is obtained considering “most” as a fuzzy set in the interval [0, 1]. Of course, the 
meaning of “most” is usually translated into a fuzzy set of the shape in Figure 10.3. 

 

Fig. 10.3. Fuzzy set most 

“Swedes are tall” is expressed as a conditional fuzzy set ST |  defined over the 

universe H of humans. (Indeed, for each human being h, a membership value )(hTµ  

measures how tall h is, and another membership value )(hSµ  evaluates the Swede 

nationality.) 
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The sigma-count of the conditional fuzzy set is 

∑

∑
µ

µµ

=Σ

h
S

h
ST

h

hh

ST
)(

))(),(min(

)|(#  

and the translation of our sentence “Most Swedes are tall” is 

)|(# STΣ  is most. 

Similarly, “Most Swedes are blond” is translated into (where B is obviously the 
fuzzy set “blond”) 

)|(# SBΣ  is most. 

Taking into account the properties of the sigma-count (see Exercise IX.11), for the 
possible values 5.0≥  of most, the following inequalities are valid 

mostSBTmost ≤∩Σ≤− )|(#12 . 

Psychological considerations advise us, when lacking specific information, to be 
cautious. We have no reason to favor either bound; instead, the median seems the  
favorite choice.  

Thus, for a particular value 5.0≥  of most, after attaching a linguistic value to the 

median 
2

1 most
most

−− , let us say “frequently”, we are entitled to express the  

sentence “frequently a Swede is tall and blond”. 



References 

[1] Armitage, P., Berry, G.: Statistical Methods in Medical Research. Blackwell, Malden 
(1987) 

[2] Bander, E.: Mathematical Methods in Artificial Intelligence. IEEE Computer Society 
Press, Los Alamitos (1996) 

[3] van Bemmel, J., Musen, M.A.: Handbook of Medical Informatics. Springer, Heidelberg 
(1997) 

[4] Bouchon-Meunier, B., Coletti, G., Marsala, C.: Independence and possibilistic condition-
ing. Annals of Math. and Artificial Intelligence 35, 107–124 (2002) 

[5] Clancey, W.J., Shortlife, E.H. (eds.): Readings in Medical Artificial Intelligence. The 
First Decade. Reading Mass. Addison-Wesley, Reading (1984) 

[6] Cramér, H.: The Elements of Probability Theory. Wiley, Chichester (1955) 
[7] Daly, L.E., Bourke, G.J., McGilvray, J.: Interpretation and Uses of Medical Statistics, 4th 

edn. Blackwell Scientific Publ., Oxford (1991) 
[8] Degoulet, P., Fieschi, M.: Introduction to Clinical Informatics. Springer, Heidelberg 

(1999) 
[9] Dempster, A.P.: Upper and lower probabilities induced by multi-valued mapping. Annals 

of Math. Statistics 38, 325–339 (1967) 
[10] Doll, R., Pygott, F.: Factors influencing the rate of healing of gastric ulcers admission to 

hospital, phenobarbitone, and ascorbic acid. Lancet 1, 171–175 (1952) 
[11] Doob, J.L.: MeasureTheory. Springer, Heidelberg (1994) 
[12] Dubois, D., Prade, H.: An introduction to possibilistic and fuzzy logics. In: Smets, P., 

Mamdani, E.H., Dubois, D., Prade, H. (eds.) Non-Standard Logics for Automated Rea-
soning, pp. 287–326. Academic Press, New York (1988) 

[13] Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning. I. Inferenced with possibility 
distributions. Fuzzy Sets and Systems 40, 143–202 (1991) 

[14] Fu, K.-S., Shimura, M., Tanaka, K., Zadeh, L.A. (eds.): Fuzzy Sets and Their Applica-
tions to Cognitive and Decision Processes. Academic Press, London (1975) 

[15] Giarratano, J., Riley, G.: Expert Systems. PWS Publishing Company (1998) 
[16] Hakel, M.D.: How often is often? Amer. Psychologist 23, 533–534 (1968) 
[17] Halmos, P.R.: MeasureTheory. Springer, Heidelberg (1974) (2nd printing) 
[18] Hripcsak, G., Heitjan, D.F.: Measuring agreement in medical informatics reliability stud-

ies. J. Biomedical Informatics 35, 99–110 (2002) 
[19] Jackson Jr, P.C.: Introduction to Artificial Intelligence. Mason/Charter Publ., New York 

(1974) 
[20] Khoukhi, F.: Approche logico-symbolique dans le traitement des connaissances in-

certaines et imprécises dans les systèmes à base de connaissances. Thèse de doctorat, 
Univ. Reims Champagne-Ardenne (April 4, 1996) 



248 References 

[21] Klawoon, F., Smets, P.: The dynamic of belief in the transferable belief model and spe-
cialization-generalization matrices. In: Dubois, D., Wellman, M.P., d’Ambrose, B., 
Smets, P. (eds.) Uncertainty in AI 1992, pp. 130–137. Morgan Kaufmann, San Marco 
(1992) 

[22] Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, Englewood Cliffs (1995) 
[23] Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin 

(1933); English translation: Foundations of the Theory of Probability. Chelsea, New York 
(1956) 

[24] König, H.: Measure and Integration. In: An Advanced Course in Basic Procedures and 
Applications. Springer, Berlin (1997) 

[25] Kruse, R., Schwecke, E.: Specializations: a new concept for uncertainty handling with be-
lief function. Int. J. Gen Systems 18, 49–60 (1990) 

[26] Larson, H.J.: Introduction to the Theory of Statistics. Wiley, New York (1973) 
[27] Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities in graphical 

structures and their applications to expert systems. J. Royal Statistics Society Series 
B 50(2), 157–194 (1988) 

[28] Lindley, D.V.: Introduction to Probability and Statistics From a Bayesian View-point. 
Part 1, Probability; Part 2, Inference. University Printing House, Cambridge (1965) 

[29] Luger, G.F.: Artificial Intelligence. Addison-Wesley, Reading (2002) 
[30] Mann, H.B., Whitney, D.R.: On a test on whether one of two random variables is stochas-

tically larger than the other. Ann. Math. Stat. 18, 50–60 (1947) 
[31] Minsky, M.: A framework for representing knowledge. In: Winston, P. (ed.) The Psy-

chology of Computer Vision, pp. 211–277. McGraw Hill, New York (1975) 
[32] Nakao, M.A., Axelrod, S.: Numbers are better than words: Verbal specifications of fre-

quency have no place in medicine. Am. J. Med. 74, 1061–1065 (1983) 
[33] Nilsson, N.J.: Artificial Intelligence. Morgan Kaufmann Publ., San Francisco (1998) 
[34] Negnevitsky, M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-

Wesley, London (2002) 
[35] Pearson, K.: On the criterion that a given system of deviations from the probable in the 

case of a correlated system of variables is such that it can be reasonably supposed to have 
arisen from random sampling. Philosophical Magazine 50, 157–175 (1900) 

[36] Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence. Oxford University 
Press, Oxford (1998) 

[37] Popper, K.: The Logic of Scientific Discovery. Basic Books, New York (1959) 
[38] O’Reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience. 

MIT Press, Cambridge (2000) 
[39] Reghis, M., Roventa, E.: Classical and Fuzzy Concepts in Mathematical Logic and Ap-

plications. CRT Press (1998) 
[40] Rich, E., Knight, K.: Artificial Intelligence. McGraw Hill, New York (1991) 
[41] Rowe, N.C.: Artificial Intelligence Through Prolog. Prentice Hall, Englewood Cliffs 

(1988) 
[42] Russel, S., Norwig, P.: Artificial Intelligence. Prentice Hall, Englewood Cliffs (2003) 
[43] Savage, L.J.: The Foundation of Statistics. Wiley, New York (1954) 
[44] Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton (1976) 
[45] Shortliffe, E.H.: Computer-Based Medical Consultations: MYCIN. Amer. Elsevier, New 

York (1976) 
[46] Shortliffe, E.H., Buchanan, B.G.: A model of inexact reasoning in medicine. Math. Bio-

sciences 23, 351–379 (1975) 



 References 249 

[47] Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.G., Cohen, S.N.: 
Computer-based consultations in clinical therapeutics. Explanation and rule acquisition 
capabilities of the MYCIN system. Computers and Bio-medical Research 8, 303–320 
(1975) 

[48] Simpson, R.: The specific meaning of certain terms indicating differing degrees of fre-
quency. The Quarterly J. of Speech 30, 328–330 (1944) 

[49] Smets, Ph.: Un modèle mathématico-statistique stimulant le processus du diagnostic 
médical. Ph. D. Thesis, Univ. Libre de Bruxelles (1978) 

[50] Smets, Ph.: Belief functions. In: Smets, Ph., Mamdani, A., Dubois, D., Prade, H. (eds.) 
Non standard logics for automated reasoning, pp. 253–286. Academic Press, London 
(1988) 

[51] Smets, Ph.: Belief functions: The disjunctive rule of combination and the generalized 
Bayesian theorem. Internet. Approx. Reason. 9, 1–35 (1993) 

[52] Smets, Ph., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 
(1994) 

[53] Smets, Ph.: The transferable belief model for quantified belief representations. In: Gab-
bay, D.M., Smets, Ph. (eds.) Handbook of Defeasible Reasoning and Uncertainty Man-
agement Systems, Quantified Representation of Uncertainty and Imprecision, vol. 1, pp. 
267–301. Kluwer Academic Publishers, Dordrecht (1998) 

[54] Smets, Ph.: Numerical representation of uncertainty. In: Gabbay, D.M., Smets, Ph. (eds.) 
Handbook of Defeasible Reasoning and Uncertainty Management Systems Belief 
Change, vol. 3, pp. 265–309. Kluwer Academic Publishers, Dordrecht (1998) 

[55] Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Heidelberg (1980) 
[56] Taylor, J.C.: An Introduction to Measure and Probability. Springer, Heidelberg (1997) 
[57] Trillas, E., Valverde, I.: On some functionally expressible implications for fuzzy set the-

ory. In: Proc. 3rd Internat. Seminar on Fuzzy Set Theory, Linz, Austria, pp. 173–190 
(1981) 

[58] Voorbraak, F.: As far as I know: epistemic logic and uncertainty. Ph. D. Thesis, Utrecht 
Univ. (1993) 

[59] Wang, Z., Klir, G.J.: Fuzzy Measure Theory. Plenum Press, New York (1992) 
[60] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945) 
[61] Xu, H., Smets, P.: Reasoning in evidential networks with conditional belief functions. Int. 

J. Approx. Reasoning 14, 155–185 (1996) 
[62] Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965) 
[63] Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 

3–22 (1978) 
[64] Zadeh, L.: Toward a perception-based theory of probabilistic reasoning with imprecise 

probabilities. J. Statistical Planning Inference 105, 233–264 (2002) 



Index 

 
abduction (abductive inference rule)     23 
additivity relation     234 
algebra (over a universe)     39 
alternative hypothesis     92 
Arden syntax of frames     27 
atomic proposition     15 

backward chaining     5 
basic belief assignment     234 

normalized –     166 
Bayesian network     137 
belief  

– measure     168 
– network     137 

Bernoulli distribution     56 
binomial distribution     57 
bi-variate discrete random variable     53 
Borel set     41 

causal network     137 
certainty factor     155 
chi-square distribution     68 
clauses 

Horn –     5 
conditional  

– possibility     191 
– probability     78 

conflict resolution     10 
constraint 

generalized –     243 
unconditional –     243 

covariance     55, 63 
c-statistic     139 

Dempsterian specialization     179 
density function     61 

joint – –     63 
developer interface of an expert  

system     5 
directive 

production rule as –     2 
discrete random variable     50 
distribution 

Bernoulli –     56 
binomial –     57 
chi-square –     68 
continuous –     60 
Fisher–Snedecor –     72 
– function     60 
normal –     64 
Poisson –     59 
possibility –     189 
probability –     234 
Student (t) –     70 
– table     50 

domain of a random variable     50 

event 
certain –     36 
complement of an –     36 
elementary –     36 
impossible –     36 
– space     41 

events 
conjunction of –     37 
exclusive –     38 
independent –     45 

mutually exclusive –     38 
 
 
 
 
 
 
 



252 Index 

expectation 
– of a random variable     52 
– operator     75 

experiment 
random –      36 
multinomial –      113 

expert system     3 
– shell     4 

fact     1, 17 
facts base of an expert system     4 
family of events 

exhaustive – –     38 
complete – –     38 

Fisher-Snedecor distributions     72 
focal proposition     167 
forward chaining     5 
frame     25 
fuzzy 

– complement     214 
– conjunction     215 
– disjunction     215 
– fact     205 
– implication     216 
– measure     236 
– probability distribution     236 
– quantifier     206 
– relation     202 
– set     202, 235 
– – of type II     204 
– term     2 

generalized constraint     243 
global mean     125 
goodness-of-fit test     112 
granule     190, 218 

Horn clause     5, 18 
hypothesis 

alternative –     92 
null –     92 

imprecision     32 
inconsistency     32 
independent  

– events     45 
– random variables     55 

inference engine of an expert system     4 

kappa coefficient     164 
knowledge     17 

– base of an expert system     4 

logical  
– connector     15 
– system     14, 23 

max relation     234 
measurable 

– space     74 
– function     74 

measure 
– of worlds     76 

mid-p value     109 
modus ponens     22 

necessity measure     188 
normal  

– distribution     64 
– form of a proposition     18 

normalized basic belief  
assignment     166 

null hypothesis     92 

perfect piece of evidence     31 
plausibility     168 
Poisson distribution     59 
possibility  

– distribution     190, 234 
– measure     187 

principle of insufficient reason     43 
predictive value of a sign     139 
probability 

– distribution     234 
– of a formula     77 
posterior –     78 
prior –     78 

production rule     1 
uncertain complete –     133 

property     24 
proposition 

atomic –     15 
focal –     167 
– in normal form     18 

quantifier     20 
quantile-quantile plot     120 

 
 



 Index 253 

random  
– experiment     36 
– variable     73 

rank test     120 
real fuzzy number     200 
receiver operating characteristic  

curve     139 
rejection region     95 
relation 

addition –     44 
– of independent events     45 
– of the complement     44 
production rule as –     2 

resolution     22 

sensitivity of a sign     138 
semantic net     14, 23 
sigma-algebra     39 

Borel – –     41 
significance-level     94 
specialization     177 

specificity of a sign     139 
standardization     66 
strategy     3 

longest matching –     10 
Student distribution     70 
super-additivity relation     235 
syllogismus     22 

test 
goodness-of-fit –     112 
rank –     120 

T-granule     218 
t-norm, t-conorm     215 

uncertain complete production  
rule     133 

uncertainty measure     187 
user interface of an expert system     4 

variability between treatments     125 
variance of a random variable     53 
well–formed formula     16 

 


	Title Page
	Preface
	Notations
	Contents
	“Classical” Expert Systems
	Production Rules
	Expert Systems
	Structure of Rule-Based Expert Systems
	Reasoning in an Expert System
	Conflicts Resolution
	Solved Exercises

	Knowledge Representation
	Data, Information and Knowledge
	Logical Systems
	Predicate Calculus
	Inference Rules in Classical Logic
	Semantic Nets
	Frames
	Solved Exercises

	Uncertainty and Classical Theory of Probability
	Taxonomy of Imperfection
	Usual and Precise Meaning
	Experiments and Events
	Formal Definition of Events
	Defining Probabilities
	Defining Probabilities (II)
	Bayes’ Theorem
	Misleading Aspects
	Random Variables and Distributions
	Expectation and Variance
	Examples of Discrete Distributions
	Continuous Distributions
	Examples of Continuous Distributions. Normal
	Examples of Continuous Distributions. Chi-Square
	Student and Fisher-Snedecor Distributions
	Formal Definition of Random Variables
	Probabilities of Formulas
	Solved Exercises

	Statistical Inference
	Inferring Scientific Truth: Tests of Significance
	Relation “Alternative Hypothesis – Null Hypothesis”
	Hypothesis Testing, the Classical Approach
	Examples: Comparing Means
	Comparing Means, the Practical Approach
	Paired and Unpaired Tests
	Example: Comparing Proportions
	Goodness-of-Fit: Chi-Square
	Other Goodness-of-Fit Tests
	Nonparametric Tests. Wilcoxon/Mann-Whitney
	Analysis of Variance
	Summary
	Solved Exercises

	Bayesian (Belief) Networks
	Uncertain Production Rules
	Bayesian (Belief, Causal) Networks
	Examples of Bayesian Networks
	Software
	Bias of the Bayesian (Probabilistic) Method
	Solved Exercises

	Certainty Factors Theory
	Certainty Factors
	Stanford Algebra
	Certainty Factors and Measures of Belief and Disbelief
	Solved Exercises

	Belief Theory
	Belief Approach
	Agreement Measures
	Dempster–Shafer Theory
	The Pignistic Transform
	Combining Beliefs. The Dempster’s Formula
	Difficulties with Dempster-Shafer’s Theory
	Specializations and the Transferable Belief Model
	Conditional Beliefs and the Generalized Bayesian Theorem
	Solved Exercises

	Possibility Theory
	Necessity and Possibility Measures
	Conditional Possibilities
	Exercises

	Approximate Reasoning
	Fuzzy Sets, Fuzzy Numbers, Fuzzy Relations
	Fuzzy Propositions and Fuzzy Logic
	Hedges
	Fuzzy Logic
	Approximate Reasoning
	Defuzzification
	Approach by Precision Degrees
	Solved Exercises

	Review
	Review of Uncertainty and Imprecision
	Production Rules
	Perception-Based Theory
	Solved Exercises

	References
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




