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Introduction

As I watch students working toward mastering the principles of statics, 
I find myself frequently answering some of the same basic questions. 

Despite countless hours of working through examples and homework prob-
lems from their textbooks, students often seem to be confused on the same 
several topics.

The problem isn’t that the material in a typical statics class is overly difficult; 
I think the issue is just several simple misconceptions that manifest them-
selves through poorly written examples and unnecessarily complex wording 
in conventional statics textbooks.

That’s why I’ve written Statics For Dummies — to help students of the subject 
get a better understanding than they may otherwise get in a classic textbook. 
In this book, my goal is to answer those basic questions by using simple 
explanations and eliminating a lot of the extra technical jargon.

About This Book
No statics book can tell you how to solve every possible problem you 
encounter. What Statics For Dummies tells you is what you need to know 
and why you need to know it. Why are three-dimensional problems easier 
to solve with vector formulations than with scalar methods? What exactly is 
equilibrium, and how do Newton’s laws guarantee it? How do you know the 
difference between a truss and frame? All of these topics are at the heart of 
understanding statics; after you’ve got these basics down, actually solving a 
statics problem is a snap!

In statics, one of the most important habits to form is being as methodical as 
possible, which means that statics lends itself very nicely to a large number 
of checklists or simple steps to remember and follow. Throughout this book, 
I try to organize certain techniques by outlining the steps that you need 
to follow. Just like when you go grocery shopping, the checklists help you 
remember what fruits and vegetables (or equations or free-body diagrams) 
you need to put in your basket.

The best part of this book is that you have complete control on where you 
want to start. If you just want the tips for solving specific problems, jump to 
Part VI. If you find you need a bit of a refresher on vectors, that’s in Part II. 
Let the table of contents and index be your guides.
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2 Statics For Dummies 

Conventions Used in This Book
I use the following conventions throughout the text to make things consistent 
and easy to understand:

 ✓ New terms appear in italic and are closely followed by an easy-to-under-
stand definition.

 ✓ Bold is used to highlight the action parts of numbered steps, as well as 
keywords in bulleted lists.

I also use other, statics-specific conventions that I may not explain every 
time, so following is a brief list of concepts and terms that I use frequently 
throughout the book.

 ✓ Decimal places: I try to carry at least three decimal places in all my cal-
culations in this book. This move helps ensure enough precision in my 
calculations to demonstrate the fundamental principles without getting 
bogged down in the pesky numerical accuracy issues I cover in Chapter 2.

 ✓ Vector variables: The most important aspect of statics is that you take 
all effects into consideration; if you forget even the smallest behavior on 
an object, solutions in statics can become impossible to accurately calculate. 
To help keep track, I usually use F or P to indicate force vectors, and 
M to indicate a moment vector. I also use i, j, and k to represent those 
common unit vectors in the text; in equations, they appear as .

 ✓ Bold (not in steps): Aside from its use in numbered steps and bulleted 
lists, I also use bold text to represent a vector equation. If you see a 
bolded variable, that indicates a vector is lurking in the discussion. This 
convention is common to most classical textbooks, so I replicate it here 
just for the sake of consistency with vectors you may have already been 
exposed to in a conventional statics or physic class.

 ✓ Arrows on top of vector names: Another method of denoting a vector is 
to use the label or name of the vector with an arrow over the top such 
as . If you see an arrow on top of a letter or word in an equa-
tion, you know that I’m working with vectors.

 ✓ Italics (not as definitions): I also adopt a second sign convention from 
other textbooks: When I talk about a vector’s magnitude (length) in the 
text, I use the name or label of the vector in italics.

 ✓ Absolute value brackets: To represent the magnitude of a vector in an 
  equation, I surround it with absolute value brackets, such as . 
  Because magnitudes are properties of vectors, I still include the vector 

arrow over the label. Just remember that the absolute value brackets 
take precedence, so if you see those, you know I’m primarily talking 
about a scalar magnitude.

 ✓ Plus signs (+) with vector senses: Although it’s not required, I use the 
plus symbol before positive numbers in some vector calculations as a 
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3 Introduction

visual reminder that I have in fact considered the sense (direction) of 
the vector on the Cartesian plane.

 ✓ Origin: I assume that the origin of any given Cartesian plane is (0,0) for 
two-dimensional problems and (0,0,0) for three-dimensional ones unless 
otherwise noted.

What You’re Not to Read
Although I hope you’re interested in every word I’ve painstakingly inscribed 
in this book, I admit that there are a few things you can skip over if you’re 
short on time or just after the most important and practical stuff.

 ✓ Text in sidebars: Sidebars are the shaded boxes that provide extra infor-
mation, such as history or trivia, about the chapter topic.

 ✓ Anything with a Technical Stuff icon: The in-depth info tagged by this 
icon is useful, but it may not be entirely necessary to solve day-to-day 
problems. It may also include information that shows how the information 
being discussed was developed or how the formulations came about.

Foolish Assumptions
As I wrote this book, I made a few assumptions about you, my beloved reader.

 ✓ You’re any college student taking an engineering statics class or study-
ing Newtonian mechanics in your physics classes, or are at least familiar 
with those basic concepts.

 ✓ You remember some math skills, including algebra and basic calculus 
topics such as differentiation and simple integration. 

 ✓ You have proficiency in geometry and trigonometry. The basic rules 
governing sines, cosines, and tangents of angles (both in degrees and 
radians) prove invaluable as you work a statics problem.

 ✓ You’re willing to practice the techniques that I show you. Remember 
all those problems your math teachers made you work back in school? 
Statics may require a similar effort. Practice makes perfect!

How This Book Is Organized
This book starts with a basic review of units and math and goes through vec-
tors, forces, free-body diagrams, equilibrium, and practical statics applica-
tions. Here’s the lowdown on each part.
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4 Statics For Dummies 

Part I: Setting the Stage for Statics
In Part I, I give you some basic refresher information, such as working with 
units, while reviewing some of the basic math that provides the foundation 
for statics. Chapter 1 introduces the concept of statics while Chapter 2 pro-
vides you with a brief refresher about a wide range of mathematics topics, 
including basic algebra and polynomials, trigonometric relationships, and 
basic integration and differentiation of polynomials. Chapter 3 highlights the 
two major systems of units that you encounter in statics and shows you the 
base units for a wide range of values in statics.

Part II: Your Statics Foundation: 
Vector Basics
Part II introduces some basic vector principles. Chapter 4 shows you the 
three basic characteristics of vectors and how you can depict them graphi-
cally. Chapter 5 describes how to define your first vector, describing direc-
tion from one point to another. I also show you several alternative ways to 
define direction by using vectors. In Chapter 6, I explain the basics of vector 
mathematics and explore several useful identity relationships that come in 
handy. Chapter 7 demonstrates how to create one vector from multiple other 
vectors. I explain several basic techniques and show you how to apply basic 
formulas for calculations of each technique. Chapter 8 shows you the oppo-
site information from Chapter 7: how you can split a single vector into mul-
tiple vectors acting in different directions.

Part III: Forces and Moments as Vectors
In Part III, I explore how load effects are created. In Chapter 9, I illustrate 
single concentrated loads (or point loads) and introduce you to the concept 
of self weight as a single value. Chapter 10 covers loads acting over an area 
or a distance and shows you how to turn a distributed load into an equiva-
lent concentrated load as well. In Chapter 11, I show you how to calculate the 
different centroids (geometric centers, such as center of area and center of 
mass/gravity) of different geometric shapes, which proves useful for helping 
you to locate the single equivalent force of a distributed load. Chapter 12 is 
where I introduce rotational effects known as moments, explaining how to 
draw and calculate them.
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Part IV: A Picture Is Worth a Thousand 
Words (Or At Least a Few Equations): 
Free-Body Diagrams
Part IV shows you how to draw the pictures necessary to solve statics problems. 
In Chapter 13, I give you the basic checklist of items to include on a free-body 
diagram (F.B.D.) and then explain how to define supports in terms of forces and 
moments. Chapter 14 shows you what to draw and how to work with multiple 
free-body diagrams at the same time. In Chapter 15, I give you some guidance on 
several ways to simplify some of the more complex diagrams that you create.

Part V: A Question of Balance: Equilibrium
In Part V, I introduce you to the concept of stability or equilibrium in statics. 
Chapter 16 defines the different types of equilibrium by explaining Newton’s 
three laws of motion and the basic assumptions behind the governing equa-
tions of statics. In Chapters 17 and 18, I show you how to apply the basic 
equations of equilibrium to solve for unknown support reactions in two- and 
three-dimensional problems, respectively.

Part VI: Statics in Action
In Part VI, I show you how to identify the major categories of problems you 
come across in the real world. I also highlight several tips and techniques to 
speed up your solution process. Chapter 19 introduces you to trusses and 
simple axial members. I show you the basic techniques for solving for inter-
nal forces in the members of the trusses. Chapter 20 shows you that for many 
members in statics, additional internal forces exist beyond just the simple 
axial cases. I show you how to write equations for these internal forces and 
how to draw a graph of their values. In Chapter 21, you discover how to deal 
with frames and machine structures. Chapter 22 provides you with tools nec-
essary to solve for internal forces of systems whose internal forces vary with 
geometry; I explain the concepts of sag and tension and then provide a useful 
shortcut technique known as the beam analogy.

In Chapter 23, you sink to new depths by exploring the behavior of fluids on 
submerged surfaces. I explain the concept of pressure and unit width in your 
calculations, and how to apply the equations of equilibrium. Things really 
heat up in Chapter 24 as I introduce friction to the problems. I explain the 
logic needed to determine if an object is prone to tipping or sliding and how 
to mathematically prove that.
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6 Statics For Dummies 

Part VII: The Part of Tens
Part VII includes helpful top-ten lists. Chapter 25 provides you with ten 
important statics ideas to remember even if you forget everything else, and 
Chapter 26 gives you ten tips to survive a statics exam.

Icons Used in This Book
To make this book easier to read and simpler to use, I include some icons 
that can help you find and identify key ideas and information.

 This icon appears whenever an idea or item can save you time or simplify 
your statics experience.

 Any time you see this icon, you know the information that follows points out a 
key idea or concept, greatly increasing the number of statics tools you have at 
your disposal.

 This icon flags information that highlights dangers to your solution technique, 
or a common misstep that statics practitioners make but you should avoid.

 This icon appears next to information that’s interesting but not essential. 
Don’t be afraid to skip these paragraphs.

Where to Go from Here
You can use Statics For Dummies either as a supplement to a course you’re 
currently taking or as a stand-alone volume for understanding the basic con-
cepts of statics. 

If you’re taking a statics course or studying Newtonian mechanics in phys-
ics, hopefully you find the organization to be very familiar. I follow the basic 
topics sequence that you experience in a class. However, unlike a classical 
text, if you want to skip a chapter, feel free.

If you’re studying on your own or have never had a statics class, I strongly urge 
you to start at the beginning with Chapter 1 and read the chapters in order. 
The techniques in the later chapters do build on concepts of early chapters. 
That being said, this book isn’t a mystery novel. If you want to skip ahead to 
the topics at the end, go right ahead; you won’t ruin the ending. And if you get 
really lost, you can always fall back to an earlier chapter for a quick refresher!
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Part I

Setting the Stage 
for Statics
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In this part . . .

This first part introduces you to the basic concepts of 
mechanics in engineering and the sciences, as well as 

the differences between the basic fields. You also pick up 
the basic assumptions you need when working statics 
problems. I explain the two primary systems of units 
(U.S. customary and metric) and introduce you to the 
base units of each system. Finally, I review basic algebra, 
geometry, trigonometry, and calculus, all of which you 
encounter frequently in statics.
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Chapter 1

Using Statics to Describe 
the World around You

In This Chapter
▶ Defining statics and related studies

▶ Introducing vectors

▶ Exploring free-body diagrams

▶ Looking at specific applications of statics

Statics is a branch of physics that is especially useful in the fields of 
engineering and science. Although general physics may describe all the 

actions around you, from the waving of leaves on a tree to the reflection of 
light on a pond, the field of statics is much more specific.

In fact, statics is actually a part of most physics courses. So if you’ve ever 
taken a high school or college physics course, chances are that some of the 
information in this book may seem vaguely familiar. For example, one of the 
first areas you study in physics is often Newtonian mechanics, which is basi-
cally statics and dynamics.

Physics classes typically cover a wide range of topics, basically because 
physics has a wide range of applications. Conversely, a statics course is 
much more focused (which doesn’t necessarily mean it’s simple). Whoever 
said that the devil is in the details may well have been talking about statics.

Before you panic, close the book, and begin questioning why you ever thought 
you could understand statics, let me reassure you that just because statics 
isn’t always simple doesn’t mean it’s always difficult. If anything, statics does 
happen to be very methodical. If you follow some basic steps and apply some 
basic ideas and theory, statics actually can become a very straightforward 
application process.

Now, about those details . . .
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10 Part I: Setting the Stage for Statics 

What Mechanics Is All About
The study of the world around you requires knowledge of many areas of 
physics, often referred to as mechanics. The mathematician Archimedes of 
Syracuse (287–212 BC) is often credited as being the first person to systemat-
ically study the behavior of objects by using mechanics and is attributed with 
saying “Give me a place to stand and I will move the Earth.” This statement, 
while rather grandiose for his time, proves itself to be at the very heart of the 
study of mechanics (and, more specifically, statics).

Mechanics refers to one of the core areas of physics, usually concentrated 
around the principles of Sir Isaac Newton and his basic laws of motion, and is 
an area of concentration that engineers and scientists often study in addition 
to basic physics classes. These courses develop the core curriculum for many 
basic engineering programs and are usually common classes across all disci-
plines. Specific engineering disciplines may require additional courses in each 
of these core areas to teach additional (and often more advanced) topics.

One of these core areas is in the area of statics, which isn’t the study of how 
you should move across a shag carpet in order to apply a jolt of electricity 
to your younger siblings or how to implement the latest hygiene techniques 
to avoid those dreadful bad hair days. In this book, I define statics as the 
mechanical study of the behavior of physical objects that remain stationary 
under applied loads (which I discuss later in this chapter). The behavior of 
the floor beams in your house as you stand in the middle of your living room 
is an example of a static application.

The area of dynamics, on the other hand, is the study of objects in motion. 
So as you walk down the hall, your behavior and its effect on your house 
becomes a dynamic application. The result of a car driving down a bumpy 
road, the flow of water through a creek, and the motion of those shiny 
little metallic balls that hang from strings and haunt/hypnotize you with 
their “clack, clack, clack” as they bounce off each other are all examples of 
dynamic behavior.

Finally, you come to mechanics of materials (sometimes referred to as strength 
of materials), which is yet another branch of mechanics that focuses on the 
behavior of objects in response to loads. This area of mechanics builds on 
concepts from both dynamics and statics.

Putting Vectors to Work
One of the most basic tools to include in your basket of statics tricks is the 
knowledge of vectors, which I discuss in detail in Part II of this book. Think 
of vectors as being one of the major staples, such as rice or potatoes, of your 
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11 Chapter 1: Using Statics to Describe the World around You

statics kitchen. Statics forms the foundation for a complete meal of engineer-
ing design. Vectors come in all shapes and forms, and you can use them for a 
wide variety of purposes, which I introduce you to in Chapters 4 and 5.

But the vector discussion doesn’t end there. I also show you several different 
ways to mathematically work with vectors, including building the foundation 
for a vector’s equation (see Chapters 6, 7, and 8).

Peeking at a few vector types
One of the first vectors you need to get familiar with is the position vector, 
which basically tells you how to get from one point to another. These vectors 
are very handy for giving directions, measuring distances, and creating other 
vectors; you can read about them in Chapter 5.

The most common type of vector that you deal with has to do with loads, 
or forces (see the following section). Think of a force as being that number 
that pops up when you step on your bathroom scale that reminds you that 
you should have worked out last night instead of eating a second helping of 
cheesecake. The bigger that number gets, the bigger the force that is being 
applied to your scale. Forces are one of the major types of actions that can 
affect a body in statics.

Understanding some purposes of vectors
One purpose of vectors is to help define direction. Many forces act along 
straight lines but aren’t necessarily acting at a distinct point. By creating 
a unit vector (a special type of vector with a specific length), you can define 
the direction of these lines without actually knowing the specific coordinates 
or location data; unit vectors also prove to be very useful for creating forces 
(another type of vector). Check out Chapter 5 for more on these vectors 
as well.

 You can also use vectors to define the rotational behaviors (or spinning 
effects) of an object, which I explain in Chapter 12.

You can also combine multiple vectors to create a single combined vector, 
which can be useful for dealing with multiple forces. In addition, knowing 
how you can break down vectors into smaller vectors and calculate their size 
allows you to determine, say, how big a chair needs to be to support a given 
weight, including figuring out the size of its legs and even the number of legs 
necessary. In fact, for three-dimensional statics problems, vectors are practi-
cally mandatory. Chapters 7 and 8 deal with combining and breaking down 
vectors, respectively.
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12 Part I: Setting the Stage for Statics 

Defining Actions in Statics
In mechanics, you must become familiar with a large number of actions to be 
able to study how an object behaves, ranging from velocity and momentum 
in dynamics, to thermal effects, stress, and strain in mechanics. Fortunately, 
the types of effects in statics are contained in a fairly brief list:

 ✓ Forces: Forces are a type of load that causes an object to translate (move 
linearly) in the direction of the applied force. Forces can be spread out 
or acting at a single location, but they always cause an object to want 
to translate. You can use forces to measure the intensity of one object 
striking another, the weight of a car as it drives across a bridge deck, or 
the effect of water pressure on the side of a submarine. Flip to Chapters 
9 and 10 for more on forces.

 ✓ Moments: Moments are a type of load that causes an object to rotate in 
space without translation. Moments are usually the result of some sort 
of twisting or spinning effect, such as a shaft attached to a motor, or a 
reaction from a second object that is acting on the other. For example, 
turning the handle of a wrench applies a moment to a bolt, which then 
causes it to rotate. Chapter 12 gives you the lowdown on moments.

One of your biggest challenges in statics is how to accurately depict and deter-
mine the type of action or behavior being applied to a system. If an elephant 
sits on your favorite living room recliner, you can easily tell what the final out-
come of that action will probably be: You now have a broken chair, and a trip 
to the furniture store is in your future. Although most people will wonder how 
you got an elephant in your living room in the first place, as a statics enthusi-
ast you’re more interested in exploring the behavior of the elephant’s weight 
and determining how much force is transmitted through the seat, into the legs, 
and ultimately into the ground. This field is where your study of statics begins 
(don’t worry, no zoology or elephant anatomy knowledge is required).

Because forces and moments are such an important part of statics, you need to 
be able to calculate them for different kinds of problems. In Part III, I show you 
how to calculate forces and moments in both two- and three-dimensional situa-
tions. Load effects in statics are typically classified into three basic categories:

 ✓ Concentrated forces: Concentrated forces (or forces that act at a single 
point) include the force from a ball as it’s thrown toward a wall, or 
even the force that your shoes exert on the floor from your self weight. 
I cover these forces more in Chapter 9.

 ✓ Distributed forces: Distributed forces are forces that are spread over an 
area and are used to represent a wide variety of forces on objects. The 
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13 Chapter 1: Using Statics to Describe the World around You

weight of snow on the roof of your house or of soil pressure on your 
basement wall is a distributed load. Chapter 10 shows you how to deter-
mine their net effect (or the resultant), and Chapter 11 illustrates how to 
determine the location where this resultant is acting.

 ✓ Concentrated moments: Concentrated moments are a type of load that 
causes a rotation effect on an object. The behavior of your hand on a 
door knob or a wrench on a nut is an example of rotational behaviors 
that are caused by moments. I describe the types of moments and how 
they are created in more detail in Chapter 12.

Sketching the World around You: 
Free-Body Diagrams

The ability to draw a free-body diagram (or F.B.D., the picture representations 
of the problem you want to investigate) is vital when you start a static analy-
sis because F.B.D.s depict the problem you’re trying to solve, and they help 
you write the equations you need for performing a static analysis. In fact, 
if you don’t get the F.B.D. completely correct, you may end up solving for a 
completely different problem altogether.

The more you practice creating free-body diagrams, the more proficient 
you become. Free-body diagrams must feature various items, including 
dimensions, self weight, support reactions, and the various forces I discuss 
in Part III. (Head to Chapter 13 for a full checklist of required items.) You 
can also break a larger F.B.D. into additional diagrams; this tactic is useful 
because you can use these smaller diagrams to find information that helps 
you solve for a wide variety of effects, such as support reactions (physical 
restraints) and internal forces, that you may not notice on the larger drawing. 
You can find information on these topics in Chapter 14.

When you’re working with F.B.D.s with multiple applied loads and supports, 
simplifying those diagrams can make your work a lot, well, simpler. Chapter 15 
gives you several tricks for simplifying F.B.D.s; one of the most useful tech-
niques is the principle of superposition, which allows you to quickly compute 
behaviors by simply adding the responses of the individual cases. You can 
also simplify your diagram by moving a force from one location on an object to 
another while preserving the original behavior; you can read more about this 
in Chapter 15 as well.
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Unveiling the Concept of Equilibrium
Isaac Newton (1642–1727) helped establish the laws of motion and gravity 
(covered in Chapter 16) that are still used today. Equilibrium is a special 
case of Newton’s laws where acceleration of an object is equal to zero (that 
is, it isn’t experiencing an acceleration), which results in an object being in 
a stable or balanced condition. If you lean back in your chair such that it’s 
supported by two legs, you notice that you reach a special point where you 
remain somewhat balanced. (But don’t try this at home.) However, if you 
lean a little bit forward, the chair starts to rock forward and usually winds 
up safely back on the front two legs. This simple motion means that equilib-
rium hasn’t been maintained. If you lean too far back, the chair starts to lean 
backward and unless you catch yourself, you soon find yourself lying on the 
ground. But good news: While you’re lying on your back counting the little 
birds circling your head, you’ve actually arrived at a new equilibrium state.

Although you can simplify statics down to three basic equilibrium relation-
ships for two-dimensional problems (and six equations for three-dimensional 
problems, though they’re similar in concept), you can investigate a wide vari-
ety of problems with these relationships. Flip to Chapters 17 and 18 for more 
on equilibrium in two and three dimensions, respectively.

Applying Statics to the Real World
So what’s an engineer to do after getting a handle on F.B.D.s, loads, equilib-
rium, and other statics trappings? Why, put them to use in actual applica-
tions, of course!

Real-world statics is where all the conceptual info you read about becomes 
much more interesting and much more practical. You can employ statics 
concepts to a wide variety of applications; some of the most common ones 
include the following:

 ✓ Trusses: Trusses are systems of simple objects interconnected to create 
a single combined system. They’re commonly used in roof systems and 
as bridges that span large distances. In Chapter 19, I explain the basic 
assumptions of trusses and then illustrate the method of joints and the 
method of sections for analyzing forces within the truss.

 ✓ Beams and bending members: The majority of objects you work with 
in statics have up to three different types of internal forces (axial, shear, 
and moment, which I cover in Chapter 20). These internal forces are 
what engineers use to design structural members within a building. The 
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forces sometimes cause a member to deflect (move away from being par-
allel), creating a bending member. You analyze these bending members 
by using shear and moment diagrams, which you can also read about in 
Chapter 20.

 ✓ Frames and machines: Frames and machines, though similar to trusses, 
can experience similar behaviors to beams and bending members. In 
fact, a large number of structural objects and tools that you use on a 
daily basis are actually either a frame or a machine. For example, simple 
hand tools such as clamps, pliers, and pulleys are examples of simple 
machines. Frames are more general systems of members that you can 
use in framing for structures. Chapter 21 gives you the lowdown on 
working with frames and machines.

 ✓ Cable systems: Cable systems are a unique type of structure and can pro-
duce some amazing architectural bridges known as suspension bridges. 
In Chapter 22, I describe the assumptions behind cable systems and 
present the techniques you need to solve cable problems.

 ✓ Submerged surfaces: Submerged surfaces are objects that are subjected 
to fluid pressure, such as dams. Fluids can apply hydrostatic pressure 
and pressure from self weight to submerged surfaces, and I describe 
both of those in Chapter 23.

A discussion of statics applications wouldn’t be complete without talking 
about friction, the resistance an object feels along a contact surface as it 
moves in a particular direction. The two main types of frictional behavior are 
sliding (where the object moves across the surface in response to a force) 
and tipping (where the object responds to a force by toppling over rather 
than moving across a surface). These friction forces are the source of a large 
number of strange behaviors and require you to make assumptions about a 
behavior and then use free-body diagrams and the equations of equilibrium 
to verify them. Chapter 24 is your headquarters for all things friction.
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Chapter 2

A Quick Mathematics Refresher
In This Chapter
▶ Paying attention to numerical accuracy

▶ Remembering numerical nomenclature

▶ Reviewing basic algebra

▶ Revisiting trigonometry and geometry identities

▶ Dealing with derivatives in calculus

Because you’ve chosen to study statics, you’re probably already aware 
of the importance of mathematics in your studies. If not, I’ve got bad 

news: You just can’t easily avoid numbers and calculations (particularly 
geometry and trigonometry) in your pursuit. Statics can provide you with 
solid physical principles for studying the world around you, but your skill 
with numbers and computations is what makes this information truly shine.

Think about the first rocket scientists that helped send astronauts to the 
moon with the Apollo missions in the 1960s and 1970s. Those scientists 
were among the smartest people on the planet at the time in physics theory, 
astronomy, dynamics, and statics (yes, even back then), among countless 
other areas of expertise. Imagine the success, or lack thereof, they would 
have experienced if they didn’t have strong mathematical backgrounds.

This chapter reviews some of the mathematics skills required to efficiently 
solve statics problems. In this chapter I cover some basic nomenclature 
involving scientific notation, show algebra skills that prove useful, and review 
several geometric and trigonometric fundamentals. I conclude the chapter by 
showing how to use the power rule in calculus to integrate and differentiate. 
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Keeping Things Accurate and 
Determining What’s Significant

In engineering, the accuracy of calculations can be the difference between a 
successful project and one that results in a pile of rubble on the ground. In 
all calculations, the numeric results have a certain number of digits that are 
meaningful, and some that serve no purpose other than to describe the mag-
nitude of the number.

A significant digit is a nonzero value in any numeric quantity. Nonsignificant 
digits are those additional zeroes that help determine the magnitude of the 
number (such as the trailing zeroes on the number 2,500,000 or the lead-
ing zeroes on the decimal number 0.000156). The exception to this rule is 
the case of a zero digit that appears between two nonzero digits, such as in 
the number 106. In this case, the number 106 has three digits, all of which 
(including the zero) are considered significant.

Rounding is used to truncate irrational numbers. For example, the decimal 
form of π (pi) is 3.14159. . . . Because irrational numbers may have an infinite 
number of digits if you carry out the calculation far enough (which is the case 
of pi), you commonly round off the value to a specified number of places. For 
example, rounding 3.14159 . . . to two decimal places results in the value 3.14, 
which contains three significant digits. Similarly, rounding it to four decimal 
places gives the value 3.1416, or five significant digits.

 Don’t confuse significant digits with decimal places; the 3.14 estimation of pi 
contains three significant digits but only two decimal places.

One further complication in the accuracy of calculations involves figuring out 
how many significant digits you need in mathematical operations involving 
both extremely large numbers and very small numbers in the same calcula-
tion. Unfortunately, in many engineering calculations, you never know the 
number of significant digits you need to accurately represent a value until 
after you complete the calculation. However, if you keep a couple of basic 
rules of thumb in mind, you should be fine:

 ✓ Multiplication and division: When multiplying two numbers that have 
a different number of significant digits, remember that the final result 
should have as many significant digits as the number with the smallest 
number of significant digits in the original calculation.

 ✓ Addition and subtraction: When adding or subtracting two numbers 
that have different numbers of significant digits, remember that the final 
result should have as many significant digits as the number with the 
smallest number of significant digits in the original calculation.
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Basically, no calculation result can have more significant digits than any of its 
original input values. For example, say you want to add these numbers:

123,456.789 + 0.000123456789 = 123,456.789123456789

The first value (123,456.789) contains 9 significant digits. The second value 
also contains 9 significant digits (remember, the preceding zeroes don’t 
count). However, accurately reflecting the final sum of these two digits would 
require a staggering 18 significant digits to record precisely. But because 9 
is the most significant digits in either term, that’s the number you include in 
your answer.

 In this book, I try to carry at least three decimal places in all cases regardless 
of the number of significant digits involved in the calculation. 

Nomenclature with Little Superscripts: 
Using Scientific and Exponential 
Notation

A popular system of reporting numerical quantities for engineers and scien-
tists is scientific notation. This method of representing numbers is very useful 
for briefly stating numbers that are extremely large or small. Scientific nota-
tion uses the base power of ten to greatly shorten written numbers by using 
a combination of a numerical multiplier and a 10 raised to some exponential 
value.

By employing scientific notation, you eliminate a lot of unnecessary scrib-
bling. For instance, suppose you want to measure the distance to Pluto 
(either in planet or non-planet form) from the Earth in miles. Now before I 
start to receive nasty e-mails from my astronomer friends, I concede that 
this distance is actually highly dependent on where both planets are located 
on their current orbital cycle (among other factors). But, for the sake of this 
argument, say that this distance is roughly 2.7 billion miles.

In regular notation, you can represent this number as 2,700,000,000 miles. 
Clearly, this large number of zeroes is unwieldy. Using scientific notation, you 
can simply report this number as 2.7 × 109 miles.

The first term is the numeric multiplier and contains all the nonzero terms of 
your number. You always place the decimal just to right of the first nonzero 
digit (meaning the multiplier never goes higher than the ones place). After 
the multiplication sign, the next term is always the 10’s multiplier. To deter-
mine the exponential power (the little superscript number attached to the 10) 
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on the multiplier, you need to count the number of decimal places required 
to move the decimal from its starting location in the original number to a 
position just to the right of the first nonzero numerical value. In this case, 
you move the decimal a total of nine spaces to the left (to land between the 
2 and the 7), so the exponent is a 9.

 For much smaller numbers, you move the decimal to the right, which results 
in a negative exponent. For example, Planck’s Constant (which is a value 
used to describe the size of quanta in quantum mechanics) is expressed as 
6.62606 × 10–34 N · m · s. This number written in normal notation has 33 pre-
ceding decimal zeroes before the actual numerical values. Add the extra 
place you shift to move the decimal to the right of the first nonzero numeri-
cal value, and you have a total exponent of –34.

The other basic rule you need to keep in mind is that when multiplying two 
values expressed in scientific notation, you multiply the numerical multipli-
ers, add the exponent portions, and then make any final adjustments to the 
decimal placement to insure that you have only one nonzero value to the left 
of the decimal place. When multiplying exponent values with the same base 
(the 10 in this example), you simply add the exponents.

Suppose you want to multiply the distance to Pluto by Planck’s constant. 
(Honestly, I’m not sure when you’d need that calculation, but it’s always 
good to be prepared!) First, you multiply the numerical multipliers and then 
compute the new tens exponents by adding them, as follows. 

(2.7 miles · 6.62606 N · m · s) × (10(9 + (–34))) = 
17.890362 × 10–25 miles · N · m · s = 1.7890362 × 10–24 miles · N · m · s

That comes out to 17.890362 × 10–25 miles · N · m · s. But you can have only 
one nonzero number to the left of the decimal point, so you have to adjust 
your answer to 1.7890362 × 10–24 miles · N · m · s. Of course, you should prob-
ably do some serious unit simplification on this answer — I cover that in 
Chapter 3.

Recalling Some Basic Algebra
In the world of statics, a few algebra skills can help you with some of the 
heavier lifting statics requires. In this section, I talk briefly about several 
common and useful algebra techniques you encounter in practice (and 
throughout this book). For more on these and other algebra topics, check 
out Mary Jane Sterling’s Algebra I For Dummies and Algebra II For Dummies 
(Wiley).
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21 Chapter 2: A Quick Mathematics Refresher

Hitting the slopes of functions and lines
One of the more convenient mathematical tricks you use in statics is deter-
mining the slope and equation of a line between two points. The slope of a 
line is the ratio of the change in elevation (or height) to the change in horizontal 
distance; you may know it more simply as “rise over run.” The equation for

slope (signified by m) is . You can also express this equation as

, where y1, y2, x1, and x2 are the coordinates of the two points.

For example, suppose that I rest a ladder on the ground at location Point 1 
and on a ledge at location Point 2 (as shown in Figure 2-1) and want to define 
the properties of the line that connects these two points (the slope).

 

Figure 2-1: 
A ladder 

resting 
against a 

roof has a 
slope.

 

y

x
1

2

10 ft = Rise

20 ft = Run

You may also remember that you can use slope to define the equation of the 
line passing through those two points, where b represents a constant for the 
y-axis intercept (or the point where the line crosses the y-axis at x = 0):

For the ladder example, you can solve for the numerical constant b by plug-
ging in the values for either (x1,y1) or (x2,y2), both of which produce the same 
value for the constant. Note: The arrow in the following equation just indi-
cates that I’m skipping some basic math.
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The constant b is dependent on where your measurement reference (or 
the origin — in this case, Point 1) is located. Thus, the equation of the line 
between Point 1 and Point 2 in Figure 2-1 is y = 0.5x + 0, simplified to y = 0.5x.

Calculating the slope proves to be a very handy trick when you deal with 
position vectors, which I cover in Chapter 5. After you have the equation of 
a line or function, you can make use of all sorts of cool mathematical tricks, 
which I point out in later chapters.

Rearranging equations to solve 
for unknown variables
Sometimes the equation you have doesn’t solve for the variable you need. In 
that case, you can use algebra to juggle the equation in a way that suits it to 
your needs.

Suppose, for example, that you’re given the following equation for the 
moment of inertia (I) of a rectangle having width b and height h.

This relationship would be handy if you knew both b and h. However, sup-
pose you know h and I and want to find b. Rearranging this equation pro-
duces a different equation that would be more helpful in this scenario:

Similarly, if you know b and I, you can rearrange the equation to solve for h:

In this book, I provide guidance on how to generically solve a statics problem to 
produce a final equation. After you have the general equation, you can always 
rearrange the terms (following proper mathematical protocol, of course), to 
solve for a specific variable, or to create completely new relationships.

Sigma notation
Sigma notation (also sometimes called summation notation) is another popu-
lar form of shorthand notation; it utilizes the Greek symbol sigma (Σ), hence 
the name. Simply put, any time you see sigma notation, you know that you’re 
about to do a whole lot of addition.
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Suppose you have several variables (such as P1, P2, P3, and P4) that you want 
to add. You can simply write that equation as follows:

PTOTAL = P1 + P2 + P3 + P4

That isn’t too bad an expression, so long as you don’t want to add an extremely 
large number of terms. But what if you had a list of a thousand or a million 
terms? You’d need several sheets of paper and a whole lot of time to complete 
that problem! Imagine writing that expression as

PTOTAL = P1 + P2 + P3 + . . . + P
n – 1 + P

n

where n is equal to however many terms you have. Sigma notation allows you 
to conveniently express this type of equation in a single compact method:

This is sigma notation. The sigma indicates that this expression is an equa-
tion involving addition. The variable below the sigma represents a counter 
and is increased by one from the first term (in this example, 1) each time 
you add a term to the expression. The variable above the sigma indicates the 
value of the final term in the expression (or n in this example). If you wanted 
to add only the terms from P3 through P

n
, you’d just change i = 1 to i = 3. 

If you wanted to rewrite the first example of P1 through P4, you need only 
modify the variables above and below the sigma, again:

Pretty simple and compact, huh? In fact, in statics, the fundamental equations 
of equilibrium utilize sigma notation every time you write an equation. I explain 
more about equilibrium in Part V, but a word to the wise: Get familiar with 
sigma notation now, if you haven’t already!

Getting into Shapes with Basic 
Geometry and Trigonometry

Algebra isn’t the only basic math you encounter in statics (see the preced-
ing section). You also use some basic geometry and trigonometry principles 
on a regular basis, so the following sections give you the lowdown on these 
concepts.
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Getting a handle on important 
geometry concepts
In this section, I introduce a couple of geometric relationships that show up 
frequently in statics. They show you how you can compute the total angles 
contained within a polygon as well as how to relate angles created by the 
crossing of multiple lines. Geometry For Dummies, 2nd Edition, by Mark Ryan 
(Wiley) gives you more detail on geometric concepts.

Computing angles inside polygons
In any physical analysis problem, basic geometry often plays a very impor-
tant role. Statics is no different — in many of the analysis problems you 
encounter, you need to make use of several basic geometric relationships.

The first relationship involves determining the total degrees in a polygon of a 
given number of sides. Triangles are very popular shapes within static analy-
sis, as are quadrilaterals, parallelograms, and other higher-order shapes. 

The sum of the interior angles for a polygon having n sides can be given by 
the expression

Total Degrees in Polygon = 180(n – 2)

You can easily confirm this formula by using your basic knowledge of tri-
angles and quadrilaterals. A triangle has three sides (n = 3) and a total of 180 
degrees: 180(3 – 2) = 180(1) = 180. Similarly, a quadrilateral has four sides (n 
= 4) and a total of 360 degrees. Quadrilaterals and triangles (such as those 
in Figure 2-2) account for the majority of the problems in this book, but on 
occasion you need to venture to more-complex shapes, and this rule proves 
handy for those cases.

 

Figure 2-2: 
Common 
opposite 

angle rela-
tionships.

 

Line

Triangle Quadrilateral

∑ = 360°∑ = 180°

180°
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Constructing angles created from line segments
Another relationship involves geometric constructions with two parallel 
lines, A and B, and a third line C that crosses them both (see Figure 2-3). In 
this figure, θ3 and θ5 are opposite interior angles (or angles that are across 
from each other whenever two lines cross), and θ4 and θ6 

are also opposite 
interior angles.

 

Figure 2-3: 
Angle rela-

tionships for 
intersecting 
and parallel 

lines.
 

θ1 θ2

θ6 θ5

θ3 θ4

A

B

C

θ1 θ2

θ1 θ2

θ2 θ1

A

B

C

In this construction, you can see that the angles θ1 and θ2 comprise the com-
plete 180 degrees of line A. That is,

θ1 + θ2 = 180 degrees

Similarly, along line B,

θ3 + θ4 = 180 degrees, and θ5 + θ6 = 180 degrees

Along line C,

θ1 + θ3 = 180 degrees, θ4 + θ5 = 180 degrees, and θ3 + θ6 = 180 degrees

These three constructions thus imply that

θ1 = θ4 = θ6 and

θ2 = θ3 = θ5

Double-checking angles with degrees and radians
One of the more common hang-ups I see when working with angular mea-
surements is the basic confusion that exists between the units degrees and 
radians. It turns out that both of these base units are actually related to each 
other, as the following formula shows. Recall that a circular shape has 360 

06_598948-ch02.indd   2506_598948-ch02.indd   25 7/28/10   10:56 PM7/28/10   10:56 PM



26 Part I: Setting the Stage for Statics 

total internal degrees. In radians, this same internal angle is represented by 
2π radians. (Remember that π = 3.14159. . . .)

 You definitely want to pay special attention to which unit setting your calcula-
tor is currently working with — most calculators are capable of dealing with 
both degrees and radians, and many calculators can be easily (and acciden-
tally) switched between these two modes. In fact, I’ve experienced many a 
calculation going awry because I failed to switch modes. But if you’re careful, 
this mix-up won’t be a major issue. Be sure to consult with your calculator’s 
instruction manual if you’re having issues with switching between units.

Recalling the Pythagorean theorem
The Pythagorean theorem is another useful geometric relationship that allows 
you to relate the sides of a right triangle (a triangle with one angle of exactly 
90 degrees). Consider the right triangle shown in Figure 2-4.

 

Figure 2-4: 
Trigono-

metric 
functions 
in a right 
triangle.

 

Right angle = 90°
O = Opposite

A = Adjacent

θ = Reference angle

H = Hypotenuse

θ

You may have seen the formula written as C2 = A2 + B2 or H 2 = A2 + O2. Regardless 
of which letters you use, this formula relates the hypotenuse (the side opposite of 
the 90 degree angle) to the two other sides. This formula is very useful when you 
when you start working with vector resultants (see Chapter 7).

Tackling the three basic identities 
of trigonometry
Trigonometry is the branch of mathematics that deals with triangles. The 
cornerstones of trigonometry are the sine, cosine, and tangent functions 
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that define the relationships among the sides of a right triangle. Referring to 
Figure 2-4, you can see that Side A is the side adjacent to the reference angle 
θ, and Side O is the side opposite to the reference angle. Finally, Side H 
represents the hypotenuse of the right triangle and is found directly across 
from the right angle.

 To help you remember these relationships, try using the anagram 
SOHCAHTOA. No, Sohcahtoa wasn’t the guide who helped Lewis and Clark 
explore the western frontier and ultimately discover the Pacific Northwest. 
SOHCAHTOA can, however, be a tremendous guide for remembering the three 
basic identities of trigonometry:

The hardest part is just remembering how to spell it! S-O-H-C-A-H-T-O-A!

 You want to be sure to carefully denote which angle of the right triangle is 
your reference angle, because its location can affect your assignment of O and 
A in those expressions.

Brushing Up on Basic Calculus
A few of the basic calculus skills that may come in handy in your statics work 
include the differentiation and integration of polynomials and the locations 
and value of maximum and minimum values of polynomial functions. Luckily 
for you, I discuss both in the following sections. Check out Mark Ryan’s 
Calculus For Dummies and Mark Zegarelli’s Calculus II For Dummies (Wiley) 
for a complete calculus review.

The power rule: Differentiation 
and integration of polynomials
Before I illustrate a few of the simpler basics of calculus, keep in mind that there 
is significantly more to differentiation in calculus than just the power rule. After 
all, most engineers and scientists are required to take multiple semesters (some-
times three or four) of various levels of calculus to complete their degrees.

That being said, a large portion of the content covered in a basic statics 
course can be encompassed with the power rule, so that’s where I start.
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Basic differentiation and tangents to functions
The derivative of a function represents the slope of the tangent line to the 
function at a particular location. The derivative of a constant is always zero. 
For a simple function f(x), I define the derivative as f'(x), which is equivalent 
to df(x)/dx. (In this case, the derivative represents the slope of the tangent 
line to the function at x.) The power rule states that for a smooth and continu-
ous polynomial of order n, the derivative of a function f(x) can be expressed as

 The order of a polynomial determines the shape of the curve. A zero order 
polynomial is constant, a first order polynomial is linear, and a second order 
polynomial is curved (or more specifically quadratic).

For example, for the function

f(x) = 4x3 + 5x2 + 24

you can compute the derivative of as

f'(x) = 4 · (3) · x(3 – 1) + 5 · (2) · x(2 – 1) + (0) · 24 = 12x2 + 10x

The terms inside the parentheses indicate the powers of the original term 
being differentiated. Because the derivative of a constant is always zero, the 
24 in this equation disappeared.

 The examples I show here are for first derivatives, but you can also have 
higher-order derivatives, such as second, third, or even hundredth deriva-
tives, in calculus. To compute the second derivative of a function, you com-
pute the first derivative as I explain here and then compute the derivative of 
that derivative. The higher the order derivative that you want to compute, the 
more derivatives you have to take. Fortunately, in statics, usually a second or 
third order derivative is sufficient.

Basic integration
For basic integration, a definite integral for a simple polynomial can employ 
a reverse process to the differentiation technique for the power rule. The 
following equation assumes that the polynomial function f(x) is smooth and 
continuous and evaluated between an upper limit b and a lower limit a.
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When you perform this calculation, you’re actually finding the area under 
the function between the limits of a and b. This value can come in really 
handy when you start calculating centroids (see Chapter 11). To integrate a 
smooth and continuous polynomial of order n such that f'(x) = xn, the integral 
becomes

Using calculus to define local maximum 
and minimum values
On many occasions, the statics equations you write contain variables that 
are frequently in the form of smooth and continuous polynomials (meaning 
that the graph of the function doesn’t contain any jumps or sharp changes) 
of some order n.

This setup is pretty convenient because the power rule I discuss in the previ-
ous sections works effectively on polynomials. The ability to be able to deter-
mine the locations of maximum and minimum values of a polynomial function 
is even handier. If you recall that the slope of a line tangent to a maximum or 
minimum value is always horizontal (or equal to zero), you shouldn’t be sur-
prised that

In order to find the location of a local maximum or minimum value, all you 
need is the first derivative of the original function, the ability to set that first 
derivative equal to zero, and the ability to find the value(s) of the indepen-
dent variable x that satisfy that equation. After you determine the locations, 
simply plug those x values back into the original function f(x) and compute 
the value of that function. For example, consider a third-order function:

f(x) = x3 + 5x2 – 8x – 12

Setting the first derivative equal to zero allows you to find the locations x of 
the local maximum and minimum values.

f'(x) = 3x2 + 10x – 8 = 0
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For this equation, you can find that x1 = 0.667 and x2 = –4.000. Substituting 
these locations into the original function, you can determine which is the 
location of the local maximum value.

f(0.667) = –14.815 and f(–4.000) = 36.000

From this result, you can conclude that the local maximum value of the poly-
nomial f(x) is +36.000 and occurs at a location of x = –4.000.
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Chapter 3

Working with Unit Systems 
and Constants

In This Chapter
▶ Discovering the two basic systems of units

▶ Exploring unit conversions

▶ Covering common constants

As you drive down a road in the United States, you typically see the 
speed limit displayed in terms of mph, or miles per hour. However, this 

abbreviation has little or no meaning in many countries; instead, citizens 
of those countries may refer to speed limits in kph, or kilometers per hour. 
Both are perfectly acceptable units of measure, but because of local customs 
and preferences, familiarity with the other system of units may be somewhat 
lacking (so make sure you’re checking the correct dial on your speedometer 
before you pass a speed trap!).

When working any statics problem, you see that the basic equations and rela-
tionships are consistent regardless of the measurement system. However, 
when you actually put those equations to work, the measurement systems 
and units play a very important role.

In this chapter, I unravel the two major systems of units and explain each in 
detail, including proper base units and metric system prefixes. I also provide 
you with some tips on how to convert between those two systems and con-
clude by discussing issues to remember regarding numeric computational 
accuracy. Though this chapter by itself can’t get you ready to work a com-
plete problem, it can hopefully give you a better awareness of the unit sys-
tems that run throughout statics.

Measuring Up in Statics
Before you start crunching all those wonderful numbers and creating all 
the awesome equations statics requires, you first need to be clear on what 
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system of units you need. Depending on where you live, or whom you’re 
working with, you need to understand each of the two basic sets of units that 
are commonly used: the metric system and U.S. customary units. Good news: 
I cover them both in the following sections.

The metric system
The metric system is a system of units that utilizes a base unit for everything from 
mass to forces to distances. Table 3-1 shows some of the more common base 
units and abbreviations you may encounter when using the metric system.

Table 3-1 Metric Base Units and Abbreviations

Measurement Metric Units Metric Abbreviations

Length meter m

Force Newton N

Time second s

Mass gram g

 I should point out a slight exception to the units of force for the Newton (N). 
The Newton is actually a derived unit created from a combination of other 
units and is expressed as

Notice how this expression contains a mass unit of kilogram, when the metric 
base unit for mass is actually in grams. The second term is a combined unit for 
acceleration. Remember, when you compute a force in Newton units, the mass 
needs to be expressed in kilograms. I show you how to convert grams to kilo-
grams in “Converting to larger and smaller metric units” later in the chapter.

When working with metric units, you have to be able to convert between base 
units with different prefixes. In the later section “Converting to larger and 
smaller metric units,” I show you how easy these conversions are.

 The International System of Units is a system of standardized units that uses 
measurements exclusively from the metric system. The SI abbreviation is 
short for the French system Système International d’Unités and is used exten-
sively in many parts of the world. Within the SI/metric system, you always 
need to be familiar with a subset of conversions.
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Converting to larger and smaller metric units
After you select a proper base unit (see Table 3-1 earlier in the chapter), you 
attach a series of prefix values to that base unit to create a scaled unit (a unit that 
is either larger or smaller than the base metric unit). Table 3-2 shows some of 
the more common prefixes, including prefixes for getting larger (giga-, mega-, and 
kilo-) as well as prefixes for getting smaller (centi-, milli-, micro-, and nano-).

Table 3-2 Metric Conversions

Prefix Symbol Multiplier Exponential 
Conversion

Getting Bigger

giga- G- 1,000,000,000 109

mega- M- 1,000,000 106

kilo- k- 1,000 103

Getting Smaller

centi- c- 0.01 10-2

milli- m- 0.001 10-3

micro- μ- 0.000001 10-6

nano- n- 0.000000001 10-9

To increase from a smaller prefix to a larger prefix, you must multiply by the 
exponential conversion shown in Table 3-2. The first term in the conversion is 
always the starting units. The second term is always the conversion to go from 
the starting units back to the base units. For example, to convert one kilometer 
to its base units of meters, you set up an equation like the following:

The first term (1) is the starting units, or kilometer in this example. The 
second term (2) is the starting-unit-to-base-unit conversion; the units in the 
numerator (or top) of the first term should always be the same as the units in 
the denominator (or bottom) of the second term. (Note: This example’s first 
term doesn’t have a visual numerator, but 1 km is the same as , so 1 km 
acts like a numerator in this case.)
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Making multiple conversions in one equation
After you master basic conversion (see the preceding section), you can also 
do multiple conversions all in the same step. The basic conversion formula 
looks like the following:

Starting Units · Conversion to Base Unit · Conversion to Final Unit = Final Units

All you have to do is simply chain together multiple conversion calculations 
like those in the previous section. For example, suppose you want to calcu-
late how many milligrams are in one megagram. Your calculation would look 
something like this:

In this example, the starting units are megagrams, which means that base 
units are grams (as given by Table 3-1 earlier in the chapter). Your first order 
of business, then, is to convert from megagrams to grams by multiplying 
by 109 as shown in parts (1) and (2) of the equation. But you’re not done 
yet — your final units are milligrams, so you need part (3) of the equation, 
which requires dividing the converted base value by 10–3 (because 1 milli-
gram contains 10–3 grams). Remember to make sure the units in the numera-
tor of (2) are the same as the units in the denominator of (3).

Watching the units and prefixes in this manner can greatly simplify your work. 
In fact, as long as the units end up in the proper denominator and numera-
tor, you actually have a bit of flexibility in the conversion that you perform. 
For example, another way of looking at the final conversion of the previous 
example is by remembering that there are also 1,000 milligrams in 1 gram. 
With this information, you can rewrite the third part of that equation as

Both calculations achieve the same desired result. Remember, when working 
with prefixes, let the units do the work for you!

U.S. customary units
The U.S. customary units, often referred to as English units, are the unit system 
used predominately in the United States. Like their metric counterpart, U.S. 
customary units also have commonly used base units, which I list in Table 3-3.
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Table 3-3 U.S. Customary Base Units and Abbreviations

Measurement U.S. Customary Units U.S. Abbreviation

Length foot ft

Force pound lb (or #)

Time second s

Mass slug (1 lb sec2/ft) slug

The kip: One crazy exception
Typically, the metric and U.S. customary systems are completely exclusive. 
However, one major exception is the kip, a hybrid unit used to express very 
large forces and pressures. The kip unit is actually an abbreviation for the 
kilo-pound, which is a combination of the metric prefix kilo- and the U.S. 
customary unit of force, pounds. Because kilo- means 1,000, you can deduce 
that 1 kip equals 1,000 pounds. Though the kip isn’t a true unit of measure in 
either system, it’s very convenient because it allows you to write bigger num-
bers with fewer zeroes.

 Some textbooks further abbreviate the kip to a single k. To keep from confus-
ing this abbreviation with the metric prefix for kilo-, remember that kilo- is 
a prefix and is always followed by some other base unit of measure, such as 
gram, and the abbreviation reflects that unit (kg). On the other hand, kip is 
already a unit and therefore doesn’t get anything else attached to its end — 
it typically follows a numerical measure (20 k, –134.27 k).

Never the twain shall meet: Avoiding 
mixing unit systems
When a situation arises where you have items expressed in different systems, 
your best bet is to go ahead and convert everything to the same system of 
units. This section shows you how to do just that.

When you find that you need to convert U.S. customary units to metric units 
(or vice versa), having some conversion factors can come in handy. With the 
help of Table 3-4 and the conversion process I outline earlier in the chapter, 
you can convert from system to system with no problem.
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Houston, we have a unit problem
When working with units, you should always 
try to avoid combining units from the metric and 
U.S. customary systems because this move can 
often cause serious problems. It’s what led to a  
failure of NASA’s Mars Climate Orbiter in 1999. 
This instrument burned up on entry into the 

Martian atmosphere as a result of a computer 
conversion error in the calculation of thrust. In 
simple terms, the computer failed to properly 
convert between a force expressed in pounds 
and a force expressed in Newton.

Table 3-4 U.S. Customary to Metric Conversion Factors

Measurement U.S. Customary Units Metric Units

Length 1 ft 0.3048 m

Force 1 lb 4.448 N

Mass 1 slug 14.59 kg

Acceleration 1 ft / sec2 0.3048 m / sec2

Energy 1 ft-lb 1.356 N – m = 1.356 J

Pressure and Stress 1 lb / ft2 47.88 Pa

For example, say your problem deals with a distance expressed in feet (U.S. 
customary) and a force expressed in Newton (metric). You have two options:

 ✓ Convert to metric: To convert a U.S. customary foot to a metric distance, 
you perform the following conversion:

 ✓ Convert to U.S. customary: To convert a metric Newton to a U.S. 
customary measurement, you use this conversion:
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Looking at Units of Measure and 
Constants Used in Statics

The study of statics utilizes many of the units I discuss throughout this chapter. 
However, many of the units you encounter are combinations of the base units 
listed in Table 3-1 earlier in the chapter. This section discusses several major 
categories of those units and their appropriate metric and U.S. customary 
equivalents.

Constants worth noting
You use several physical constants on a regular basis in statics; I list a few of 
the most widespread in Table 3-5, and they appear throughout the book.

Table 3-5 Common Constants

Measurement Metric Units U.S. Customary Units

Gravitational acceleration 9.81 m/sec2 32.2 ft/sec2

Dimensions No conversion 1 ft or 12 inches

Specific weight of water 9810 N/m3 62.4 lb/ft3

Three common statics units 
for everyday life
Although units are always important in any calculation you perform, several 
categories of units seem to occur more often than others. Following are three 
of the more common base units you may encounter. As with all metric units, 
you may see the base units I give here with a different prefix, such as those in 
Table 3-2 earlier in the chapter.

 ✓ Distance: This category includes units that measure the length or dimen-
sions of or between objects. In metric units, the standard unit is the 
meter; in the U.S. customary system, it’s the inch or foot.

 ✓ Angles: An angle is a measurement of an orientation of one line segment 
with respect to another. The common units for angles are radians (which 
are a derived unit of 1 meter per meter or 1 foot per foot) and degrees, both 
of which are consistent in both the metric and U.S. customary systems.
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 ✓ Force: A force is a type of action between physical bodies, or between a 
body and its environment. (I discuss forces in more detail beginning in 
Chapter 9.) Its standard units are the Newton (for metric) and the pound 
(for U.S. customary).

All the derived units you’ll ever need
Several common statics units are based on calculations involving the base 
units listed in the preceding section. A few of the more commonly used units 
are as follows:

 ✓ Moments: A moment is an action that causes rotation (which I talk 
about more in Chapter 12). In metric units, the standard base unit for a 
moment is the Newton-meter (N-m), and in the U.S. customary system, 
the base unit is the foot-pound (ft-lb or lb-ft — the order doesn’t matter).

 ✓ Distributed force effects: I cover the effects of forces acting over a given 
length more in Chapter 10; these units are expressed as a “force per 
distance.” Here, you just need to know that their metric unit is Newton 
per meter (N/m) and their U.S. customary unit is pounds per foot (lbs/
ft). Another common representation for lbs/ft is plf, which is an abbrevi-
ation for “pounds per linear foot.” Similarly, in the event of larger forces, 
you may also encounter a unit of klf, or “kips per linear foot.” Check out 
“The kip: One crazy exception” earlier in the chapter for more on the 
hybrid unit kip.

 ✓ Pressure effects: A pressure is a force that acts over a discrete (distinct) 
area. The metric unit for pressure effects is Newton per square meter 
(N/m2). This unit is also known as the pascal and may be abbreviated 
as Pa. The U.S. customary representation is usually either pounds per 
square foot (lbs/ft2 or psf) or pounds per square inch (lbs/in2 or psi).

 ✓ Volumetric effects: A volumetric effect is a force (such as specific weight) 
acting on a given volume. In the metric system, their unit is Newton per 
cubic meter (N/m3). The U.S. customary units are pounds per cubic foot 
(lbs/ft3 or pcf).

07_598948-ch03.indd   3807_598948-ch03.indd   38 7/28/10   10:56 PM7/28/10   10:56 PM



Part II

Your Statics 
Foundation:

Vector Basics

08_598948-pp02.indd   3908_598948-pp02.indd   39 7/28/10   10:57 PM7/28/10   10:57 PM



In this part . . .

Vectors are a huge part of statics, so in this part, 
I explore the basics of vector mechanics by showing 

you how to depict a vector and explaining a vector’s basic 
properties. I also show you how to actually create a vector 
based on position data, and then I demonstrate how you 
can use this information to create additional vectors. 
I illustrate how you can combine multiple vectors into a 
single resultant vector, as well as break a single vector 
into smaller pieces. As if all that weren’t enough, I also 
give you the lowdown on basic vector mathematics.
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Chapter 4

Viewing the World 
through Vectors

In This Chapter
▶ Understanding basic vector terminology and properties

▶ Sorting through the types of vectors

▶ Depicting a vector

Before you can build a bridge or even think about completing a design, 
you have to begin by understanding the way engineers depict the world 

around them, a fundamental concept in statics. Enter the vector. Essentially, 
the study of vectors is the first step into this larger world of statics analysis.

This chapter focuses on exploring the behavior of vectors, seeing the com-
monalities in their construction, and understanding some of the subtle dif-
ferences in their creation and application. In this chapter, I define the three 
major pieces of information you use to help a vector properly describe an 
action, I show you a few ways to draw a vector, and I break down the three 
primary types of vectors. This chapter won’t have you building a bridge 
immediately, but it does help you take your first step in getting a handle on 
the world around you in proper statics style.

Defining a Vector
You quickly discover that the ability to create and define a proper vector is 
an invaluable set of skills. This ability lends itself fluidly to solving statics 
problems. However, before you can become truly proficient in statics, you 
first need to understand some basic terminology and the three pieces of 
information you need to properly define a vector.

Simply put, a vector is a quantity that helps describe the way that an action 
is applied to an object or group of objects. For example, a velocity vector can 
describe the velocity motion of a golf ball after it has been hit by a nine-iron, 
and a distance vector can help depict how far away and in what direction it 
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landed. A force vector can describe how hard and in what direction the golf 
club strikes the golf ball.

Many different types of vectors exist — from velocity and displacement vec-
tors, to vectors that describe magnetic field behavior, to vectors that are 
mathematical solutions of differential equations. In statics, the force vector 
is the main type of vector you have to deal with. (Note: Don’t confuse these 
types of vectors with the categories of vectors I describe later in the chapter.) 

Understanding the difference 
between scalars and vectors
Before you can dive very far into the heart of your study in statics, you need 
to understand the difference between a vector and a scalar, two terms that 
are always popping up in statics textbooks and practice:

 ✓ Scalar: A scalar quantity (or simply a scalar) is any measurement made 
only with regard to an action’s amount (its magnitude) and not its direc-
tion. Examples of scalar quantities include the cost of this book, the 
temperature of the room around you, or the airspeed of Monty Python’s 
unladen swallow. You can describe all these quantities as a single 
amount. Even time is considered a scalar quantity because time only 
moves in one direction (supposedly).

 ✓ Vector: As I mention earlier in the chapter, a vector is a quantity that 
describes both the size (an amount) and direction of a particular action. 
Examples of a vector include the approach flight path of an airplane 
coming in for a landing (the distance from the runway is a scalar quan-
tity, and the flight path trajectory defines the direction), the velocity of 
a speeding car (the speedometer reading is a scalar, and the compass 
on the dashboard indicates the direction), or the force of an elephant 
sitting on a chair (the mass of the elephant is a scalar quantity, and the 
direction of gravity defines the direction of the elephant’s force).

  In fact, a scalar quantity is often part of the information contained within 
a vector definition, but I talk more about that in Chapter 5. For example, 
the speed of a moving elephant (a scalar quantity) is directly related to 
the velocity vector of that mammal.

Taking a closer look at vectors
Although you can display a scalar entity simply by jotting a number or 
measurement on your piece of paper, the proper representation of a vector 
requires three pieces of very specific information:
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 ✓ Magnitude: The magnitude is the numerical value of a given vector. 
Constructing a vector requires actually knowing a scalar quantity — 
the magnitude. Magnitudes of vectors are scalar quantities and may 
be positive, negative, or zero in value. Just remember that there is no 
direction associated with a magnitude. (Sit tight — I talk about how to 
actually create a vector from a scalar quantity in Chapter 5 and how to 
calculate the magnitude of a vector in Chapter 8.)

 ✓ Sense: The sense of a vector is the sign of the magnitude, or the direction 
in which the vector is acting. The sense is the part of a vector that indi-
cates whether a charging elephant, moving at a speed of 20 miles per 
hour, is heading toward or away from you. You can describe that direc-
tion in several ways, and I cover each of them in Chapter 5.

 ✓ Point of application and lines of action: The point of application is the 
physical location on the object or in space where the vector is acting. 
The line of action of a vector refers to the line in space on which the 
vector is acting, regardless of whether the vector is acting internally 
or externally to the object. In all cases, however, the line of action of a 
vector and the vector’s point of application (if it has one — certain types 
of vectors don’t!) always coincide. That is, the line of action of a vector 
passes through the point of application.

 Vectors can act either internally or externally:

 ✓ External vector: A vector that acts on the external surface of an object. 
Examples of external vectors include drag forces on the wing of an air-
plane, the friction forces you feel when you rub the palms of your hands 
together, and the force of your hands on the cover of this book as you 
read it. (I discuss external vectors in more detail beginning in Chapter 7.)

 ✓ Internal vector: A vector that acts on the object at a specific internal 
location. Examples of internal vectors include the weight of this book 
and the internal compressive force in the legs of the chair you’re sitting 
in (if you’re sitting). I dive deeply into the subject of internal vectors 
beginning in Chapter 16.

Knowing whether vectors are acting externally or internally can help you 
decide how to best tackle a given problem.

Applying vector basics
Sometimes, there’s no substitute for a good example. In this section, I outline 
a scenario that I hope helps you get a firm grasp on vectors and their compo-
nents (which I cover in the preceding section). Imagine trying to give driving 
directions to a friend travelling from his house to yours. In your discussion 
with him, you’d never have a list of directions that states
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“Okay, Tom, first go a half of a mile, and then go another three-quarters 
of a mile, and finally head a quarter of a mile.”

The representation of this directional data is an example of a scalar quantity. 
All three distances in the previous statement are nonnegative values and are 
actually all considered magnitudes.

Unless you simply don’t want visitors or you like getting frantic cellphone 
calls from lost friends (and admit it, who doesn’t?), you need to provide sig-
nificant information that’s missing from that first list of directions.

In this case, you definitely need to describe the sense, or the direction, of 
each of those measurements. You can establish the sense of these direc-
tions by using relative descriptions such as “turn left” or “veer right,” but 
this approach can be dangerous. If your intended direction is west and you 
tell someone accidentally heading south to turn left, his final direction will 
be completely opposite of where you want him to go. One wrong turn can 
render relative descriptions completely inaccurate. To avoid this dilemma, 
use absolute sense descriptions by giving cardinal directions with the proper 
instructions. As you begin to construct vectors, take special care to formu-
late your vectors with specific absolute information.

In Tom’s case, a better set of the previous driving directions, incorporating 
absolute sense description, may be

“Okay, Tom, first go a half of a mile north, and then go another three-
quarters of a mile east, and finally head a quarter of a mile south.”

However, even this set of instructions is still lacking a significant piece of spe-
cific information. In this case, though the directions themselves are decent 
and definitely more detailed, you still don’t know where the trip starts. Tom’s 
starting point in this example represents the point of application.

The current instructions are adequate for relative positioning, although the 
final destination becomes directly dependent on the starting point — if you 
change the starting point, the final destination obviously changes as a result. 
You can vastly improve these relative directions if you also mention the 
starting position:

“Okay, Tom, from your home, first go a half of a mile north, and then go 
another three-quarters of a mile east, and finally head a quarter of a mile 
south. This will get you to my house.”

From this list of directions, your visitor should have very little trouble 
moving from his house to yours (as long as he doesn’t hit any construction 
zones or detours along the way)!
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Drawing a Vector’s Portrait
Unfortunately, in describing driving directions for how your friend travels 
from his house to yours, you don’t usually see the path as a line on the 
ground or on the map (unless of course his car has an oil leak). Similarly, you 
can’t physically see a force vector in action; you see only its resulting influ-
ence on the object. Because engineers are always making sketches to help 
describe the world around them, you need to be familiar with the techniques 
they use to graphically depict a vector.

To draw a vector, you have to graphically represent the three major compo-
nents of a vector: magnitude, sense, and point of application, which I discuss 
in the preceding section. In the sections that follow, I explain how you graphi-
cally represent this information when drawing a vector, as well as describe 
two common vector depictions.

The single-headed arrow approach
In this book, as in most statics and mathematics references, I typically repre-
sent vectors as single-headed arrows that break down into a number of parts 
(which you can see in Figure 4-1):

 ✓ Head: The arrowhead indicates the vector’s sense. However, an excep-
tion to this guideline can occur when vectors are pushing on an object; 
in this case, the head of the arrow is commonly used to indicate the 
point of application. I explain this exception in more detail in Chapter 9.

 ✓ Tail: The tail of the arrow typically depicts the vector’s point of applica-
tion (barring the exception described in the preceding bullet).

 ✓ Shaft: The actual line-length of the arrow represents the vector’s 
magnitude — a longer vector drawing implies a larger action and vice 
versa. The shaft of the arrow aligns with the axis or line of action of the 
vector. Vectors that aren’t oriented horizontally or vertically sometimes 
include an angle measurement to help define the vector’s orientation. 
This angle is usually measured from either a horizontal or vertical refer-
ence. I discuss vector notation more in Chapter 5.

 ✓ Label: The label of the vector can be a letter or name given to a par-
ticular vector arrow to help distinguish it from other vectors in your 
drawings. Sometimes, you actually write the value (with proper units, 
of course) of the magnitude of the vector as the label. In other situa-
tions, you may use an alphanumeric label such as Load1, WindForce, 
or Bob’sWeight — the sky is the limit on how you actually label your 
vectors, but it helps if you name it something to remind you of what 
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that arrow represents on the picture. To help distinguish these entities, 
some textbooks (and this book) write nonnumeric vector labels in bold: 
V. Other texts commonly display vector labels with an arrow symbol 
over the top: .

  This label serves two basic purposes:

 • It acts as a reminder of specific scalar information that you may 
have calculated previously or already know from a statement given 
in the problem. If you don’t know this specific piece of information 
at the time (and you often don’t), you can use the name or label of 
this vector as variables in your equations.

 • For the sake of convenience, you often don’t include the magnitude 
of the vector graphically (by making a vector longer or shorter) 
in your depiction. Instead, you write the numerical quantity of 
the magnitude (if it’s known) beside the arrow. Doing so saves 
space when you’re constructing free-body diagrams (which I dive 
into in Part IV) and helps really small vectors remain visible. The 
drawback: You lose the ability to perform graphical computa-
tion techniques, so you have to rely on vector equations and 
basic geometry to complete your calculations (which I discuss in 
Chapter 7).

 

Figure 4-1: 
Single-
headed 
vector.

 

Point of
application

Direction angle
(Sense)

Length of shaft

(Magnitude)

Tail end of vector

Label = Vector name or magnitude value

Single arrow head
(Head of vector)

Reference
Line of action

θ

Beginning in Part V, I show you several different techniques for solving for 
unknown vector magnitudes. Remember that regardless of which method 
you use to depict the magnitude, the proper representation of a vector 
always includes the vector’s sense. I delve into the ways you can represent a 
vector’s sense in Chapter 5.
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A two-headed monster: The double-headed 
arrow approach
Another useful notation is the double-headed arrow, which helps depict the 
rotation of an action such as the turn of a doorknob (see Figure 4-2). The double-
headed vector contains much the same information as the single-headed 
variety. Specifically, the tail, shaft, and label designations of a double-headed 
vector are all similar to their single-headed cousins described in the preced-
ing section, except this version has two heads.

 

Figure 4-2: 
Creating 

a double-
headed 

vector from 
a rotational 

behavior.
 

Axis of
rotation

Axis of
rotation

M

Typical
door knob

Direction
of rotation

Direction
of curl

– Rotation

Single- and double-headed notation are relatively similar; the difference 
between this illustration and Figure 4-1 is that it has two arrowheads (hence 
the name) and replaces the line of action with an axis of rotation. These 
changes show that the diagram describes a rotation behavior. The double-
headed vector provides some liberties in how you perform calculations with 
vectors that describe a rotation, which I discuss in more detail in Chapter 12.
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Exploring Different Types of Vectors
Most vectors fall into one of three categories, all of which have similar 
requirements — namely, that they must have a magnitude and a sense. 
However, not all three categories have a specific point of application. For 
example, in the case of the sliding vector, the point of action is replaced by a 
line of action. (Check out the earlier “Defining a Vector” section for more on 
the required properties of vectors.) Table 4-1 provides you with a snapshot 
of requirements of the three main vector categories I cover in this section. In 
the following sections, I explain the different categories of vectors and give 
examples for each.

Table 4-1 Types of Vectors and Their Requirements

Type of Vector Magnitude Sense Point of Action

Free Yes Yes No

Fixed Yes Yes Yes

Sliding Yes Yes Not exactly

Fixed vector
A fixed vector is a type of vector where the point of application is set at a dis-
tinct location and can’t be moved without changing the behavior of the initial 
problem. Examples of fixed vectors include the velocity of a particle and the 
gravitational weight of a rigid body.

Figure 4-3 illustrates two different fixed vectors. In Figure 4-3a, the fixed 
vector represents the gravitational influence (or self weight) of the object. The 
center of gravity occurs at only one location within an object. (I discuss 
the center of gravity concept in further detail in Chapter 10.) In Figure 4-3b, 
the fixed vector represents a velocity vector and indicates the speed and 
direction of the object. The velocity vector illustrates the behavior of the 
particle on which it’s acting. 

 

Figure 4-3: 
Fixed 

vectors.
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Free vector
Another type of vector is the free vector, which doesn’t necessarily have a 
specific point of application but rather acts more generally on an object. 
These vectors, such as moments and couples (which you can read about in 
Chapter 11), result in a specific action but may be freely moved around the 
object without changing the original behavior. Figure 4-4 shows you an exam-
ple of a free vector. Note how the object rotates with the same intensity (or 
magnitude) and direction in space regardless of where the action is applied 
on the object. 

 

Figure 4-4: 
Free 

vectors.
 Rigid body

= = =M

M

M

M

Sliding vector
A third type of vector is the sliding vector, which is also sometimes referred 
to as a line vector. Sliding vectors (such as forces on rigid bodies) may freely 
move on an object as long as they remain on their line of action. Unlike the 
fixed vector, the sliding vector doesn’t have a distinct point of application 
but rather acts more generally along a specific direction line (as you can see 
in Figure 4-5).

In fact, this sliding notion leads to the principle of transmissibility, which is 
one of the major requirements in the study of rigid body statics (I discuss 
this principle more in Chapter 9). In statics, a large number of the vectors 
you deal with are considered sliding vectors, or vectors that have lines of 
action. Sliding vectors have very useful properties: They can be moved any-
where along their lines of action and still maintain their original behavior. 
Part III covers these properties in more detail.

 

Figure 4-5: 
Sliding 

vectors.
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Chapter 5

Using Vectors to Better 
Define Direction

In This Chapter
▶ Defining direction and Cartesian coordinates

▶ Creating a position vector

▶ Calculating magnitude of a position vector

▶ Developing unit vectors through several different methods

After you have a handle on how to graphically represent all the infor-
mation required to accurately depict a vector, you’re ready to begin 

tackling different methods for putting vectors to work. The first step is repre-
senting the vector in mathematical terms. In this chapter, I describe the nota-
tion required to do just that and then show some of the basic calculations 
that are essential in the vector creation process.

I also show you how to create several basic vectors and even how to use vec-
tors to create additional vectors. All these techniques add more ammunition 
to your proverbial vector toolbox and are especially essential for simplifying 
three-dimensional statics problems down the road.

Taking Direction from the Cartesian 
Coordinate System

The majority of the basic problems that you solve involve the Cartesian coor-
dinate system, so the following list introduces you to several important terms 
related to that system. You can also check out Figure 5-1 for a look at how 
they work together.
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 ✓ Axis: The axes are the reference lines that act as a simple ruler for 
measuring distances of points or objects from a user-defined reference 
point, known as the origin, which I discuss later in this section. In two 
dimensions, you use two axes: an x-axis and a y-axis. In three dimensions, 
you use three: the x-, y-, and z-axes. Each axis indicates a positive and 
negative direction. You normally only label the positive direction, but 
you can label both as a reminder.

 ✓ Coordinate: In the Cartesian coordinate system, each point in space is 
uniquely expressed as a grouping of numerical values called a coordinate. 
For two dimensions, a coordinate is a pair of numerical values written 
(x,y); in three dimensions, the three values are written (x,y,z).

  You measure these coordinates with respect to a base reference point 
called the origin (see the following bullet). Regardless of how many 
dimensions you have, the x-dimension is always the distance from the 
origin measured parallel to the x-axis. Similarly, the y- and z-dimensions 
are measured parallel to the y- and z-axes, respectively. Coordinates may 
be either positive or negative, indicating their relation to the origin.

 ✓ Origin: The origin is a very special point at which all the axes intersect 
each other. The coordinates of the origin are traditionally taken as (0,0) 
or (0,0,0), and that’s what I assume in this book.

 ✓ Scale: The scale of your Cartesian representation indicates what units 
you’re measuring in. The individual units of the Cartesian coordinate 
system are completely up to you to decide, but remember to be mindful 
of significant digits and accuracy (which I cover in Chapter 2). You can 
measure every distance in cosmic light years if you want, but most dis-
tances here on Earth are normally measured in feet and inches (U.S. 
customary units) or meters (SI/metric units). In many problems, using 
these units lets you minimize problems with numerical accuracy and 
significant digits.
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As a Crow Flies: Using Position 
Vectors to Determine Direction

To start the vector creation process, I present you with the position vector, a 
simple vector that describes how to get from Point A to Point B. The position 
vector defines the most direct path from one point to another. In statics, you 
can even use position vectors to construct other types of vectors, such as 
unit vectors, which I show later in this chapter.

Unlike normal driving directions, which may have turns, detours, and even 
backtracking associated with them, a position vector is concerned only with 
the most direct path from one point to another. Imagine a hiker walking along 
a winding trail; he may zig and zag in many directions as he hikes toward his 
destination. However, this path often isn’t the most direct route possible. The 
true path is often limited by physical driving or walking considerations such as 
availability of roads and bridges or the simple fact that most humans can’t fly.

Consider the navigation example in Figure 5-2. Suppose you’re standing at 
Point A, and your final destination is the top of a nearby hill, designated as 
Point B. Point A and Point B both have unique coordinates in space (otherwise, 
it would be a really short trip). The figure already includes a three-dimensional 
Cartesian coordinate system and indicates the scale, origin, units, and positive 
and negative directions for the scale. Clearly, the most direct route you can 
take is along a straight line that connects Point A with Point B, or the prover-
bial path “as a crow flies.” A crow, or any bird for that matter, isn’t subject to 
the roads or constraints humans are, so it’s free to simply focus on getting 
from Point A to Point B. In statics, position vectors let you do the same thing.

 

Figure 5-2: 
A path as 
the crow 

flies.
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54 Part II: Your Statics Foundation: Vector Basics 

Describing direction in detail
The position vector retains all of the regular properties of a vector that I 
discuss in Chapter 4 in that it still has a magnitude (length), sense (direction), 
and point of application (location in space). 

 Most texts denote the position vector with a lower case r with subscripts 
denoting, in order, the start and stopping points of the vector. A position 
vector from Point A to Point B would be labeled r

AB
. Conversely, the position 

vector that describes the reverse direction, starting at Point B and ending at 
Point A would be labeled r

BA
. Although the two position vectors are connect-

ing the same two points, these vectors are uniquely different, as I discuss in 
the following section.

Figure 5-3 shows the vector from the example in the preceding section and 
helps demonstrate the representation used to define a position vector.

 

Figure 5-3: 
Position 

vector for as 
a crow flies 

example.
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Moving from Point A to 
Point B and back again
By establishing the locations of Point A and Point B, you can define the 
Cartesian coordinates for these points. The order of the start point (vector 
tail) and stop point (vector head) is extremely important when you’re creating a 

10_598948-ch05.indd   5410_598948-ch05.indd   54 7/28/10   10:57 PM7/28/10   10:57 PM



55 Chapter 5: Using Vectors to Better Define Direction

position vector. The first step is to establish a coordinate system if one isn’t 
already declared. In the Figure 5-2 example, I assume that a positive Cartesian 
x-direction is to the east, and a positive Cartesian y-direction is to the north. 
A positive elevation is vertical upwards from the xy plane.

The following formulas show you how you can easily find the relative distance 
traveled along a line between the start and end points.

 ✓ x-distance traveled from start to end: Δ
x
 = (xEND – xSTART)

 ✓ y-distance traveled from start to end: Δ
y
 = (yEND – ySTART)

To find the relative distance traveled from end to start, simply reverse the 
xEND and xSTART terms in the previous calculations. In the event that your 
destination is at a different elevation (such as being on a hill or in a valley) 
than your starting point, you need to include one extra dimension, the 
Cartesian z-direction — you just substitute the z values: Δ

z = (zEND – zSTART)

In this direction, a positive change in the Cartesian z-direction indicates that 
the end point is above the start point. Likewise, a negative value indicates 
that the end point of the vector is below the start point. These generic rela-
tionships easily take into account positive and negative distance values.

 If you’re careful with the math, the signs of the distances can actually help you 
with the sense of the vector.

In the first part of Figure 5-3 earlier in the chapter, you can see that Point B 
is located northeast of Point A. You can define the Cartesian coordinates for 
Point A and Point B from the dimensions and units indicated:

 ✓ Point A = (xA,yA,zA) = (+400,+300,0)

 ✓ Point B = (xB,yB,zB) = (+1600,+1000,+200)

where (x,y,z) are the coordinates of their respective points. The distance that 
needs to be traveled to the right (or east, or positive) is given by the distance 
(xB – xA), and the distance north would be given by the distance (yB – yA). 
More generally:

 ✓ x-distance traveled from Point A to Point B: Δ
x
 = (xB – xA) = 

(+1,600 – (+400)) = +1,200 feet

 ✓ y-distance traveled from Point A to Point B: Δ
y
 = (yB – yA) = 

(1,000 – (+300)) = +700 feet

 ✓ z-distance traveled from Point A to Point B: Δ
z
 = (zB – zA) = 

(+200 – 0) = +200 feet

If you travel in the opposite direction from Point B to Point A (refer to the 
second part of Figure 5-3), you get the same numeric values, but the signs in 
front are now different (-1,200 feet, -700 feet, and -200 feet).
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A First Glance at Determining 
a Vector’s Magnitude

After you have a handle on the three basic properties of a vector (magnitude, 
sense, and point of application) from Chapter 4 and the information to dis-
play them accurately, you’re ready to start making calculations. The follow-
ing sections investigate the calculations for magnitude.

Recognizing the notation for magnitude
In practice, you encounter the magnitude of a random vector F denoted as 

, where the vector name is bound by the norm designation (or the double 
vertical lines). In many engineering mechanics books, you encounter a sim-
pler notation depicted as  with single absolute value brackets, especially 
in equations. I use italics to indicate magnitude in the text. As I note in the 
Introduction, these last two methods are the notation that I use in this text.

Computing the magnitude of a position 
vector: Pythagoras to the rescue!
Pythagoras of Samos was a Greek philosopher and mathematician (circa 
570 B.C.) who is credited with discovering the Pythagorean theorem, which 
proves the relationship between the sides of a right (or 90-degree) triangle 
(see Figure 5-4). To calculate the magnitude of a vector, you need to use your 
ability to locate right triangles and apply some basic geometry.

 

Figure 5-4: 
The 

Pythagorean 
theorem.

 

A
B

C

The two-dimensional Pythagorean theorem
Say you have a position vector between two points. Point A has coordinates 
of (+400,+300,0) and Point B has coordinates of (+1600,+1000,+200). (If this 
sounds like the example in Figure 5-2 earlier in the chapter, that’s because 
it is.) The magnitude of this position vector is actually the direct distance 
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57 Chapter 5: Using Vectors to Better Define Direction

between Point A and Point B. For a simple two-dimensional problem, you 
can calculate the distance between those two points by employing the two-
dimensional Pythagorean theorem (C2 = A2 + B2; see Chapter 2).

Going vertical: The Pythagorean theorem in three dimensions
For a three dimensional problem, you need to do a bit more calculation but 
you can still employ the Pythagorean theorem by simply constructing two right 
triangles inside a box of known dimensions A, B, and C as shown in Figure 5-5.

 

Figure 5-5: 
Three-

dimensional 
Pythagorean 

theorem.
 

A

D B

C

C

B

D

E

A

The distance between two points at different elevations is equal to the square 
root of the sum of the squares of the sides of a right-angle box that fully con-
tains the start and end points on opposite corners.

For example, in Figure 5-5, D is the hypotenuse of the first right triangle, ABD. 
The Pythagorean theorem tells you that for triangle ABD, D2 = A2 + B2

Similarly, you can also create a second, vertically-oriented right triangle ABC 
with a hypotenuse of E and sides C (the height of the box) and D (the previ-
ously calculated hypotenuse of the first triangle). Using the Pythagorean 
theorem yet again, you can state that E2 = C2 + D2. You can then substitute the 
equation for triangle ABD (which represents the value of D2) into this equation 
to get E2 = A2 + B2 + C2 or

Putting Pythagoras to work
In the case of the navigation example in Figure 5-2 earlier in the chapter, 
which shows a position vector between Points A and B, the box that contains 
these two points has sides of distances Δ

x
, Δ

y
, and Δ

z
. Substituting these 
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values into the final equation in the preceding section allows you to compute 
the magnitude of the position vector between Point A and Point B:

Fortunately, the magnitude of a position vector has a specific meaning that 
you can actually see and measure in that it precisely represents the direct 
distance between those two points.

Figure 5-6 illustrates the three-dimensional box required to compute the mag-
nitude of the position vector between Point A and Point B.

The distance calculated is the magnitude of the position vector r
AB

 starting at 
Point A and ending at Point B.

 

Figure 5-6: 
Position 
vector.

 

z

x

y

yEND – ySTART

xEND – xSTART

(xEND , yEND , zEND)
Position
vector r AB

(zEND – zSTART)

B

(xSTART, ySTART , zSTART)A

 One final note on position vectors: Although the distance between Point A and 
Point B is a specific value, the vector r

AB
 that defines the path from Point A to 

Point B isn’t the same as the position vector r
BA

 from Point B to Point A. That 
is, the magnitudes are the same ( ), but the vectors are different 
( ).
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59 Chapter 5: Using Vectors to Better Define Direction

Unit Vectors Tell Direction, Too!
Although it’s not exactly a position vector (see the preceding section), 
a unit vector is also used frequently to help describe directions between 
points in space, particularly vectors’ lines of action. Unit vectors prove to be 
extremely useful in the construction of other vectors, particularly force 
vectors, which I cover more in Chapter 9.

The main difference between the position vector and a unit vector is that the 
position vector tells precisely how to get from one point in space to another 
and the magnitude of the position vector is actually the physical distance 
between the two points. The unit vector, on the other hand, is a vector used 
for describing the orientation of a line that passes through those two points. 
So although a unit vector isn’t as useful for calculating distance, it proves 
to be very handy for specifying direction. In a way, you can think of a unit 
vector as your finger pointing at your final destination as you stand at the 
starting point.

Cartesian-vector notation
In this book, I denote a unit vector by the label u and attach a label as a sub-
script to help describe the direction. Just as before, I denote the magnitude 
of a unit vector as  and attach subscripts to this notation to help define the 
direction, relative to two points on the line of action. This line is actually the 
same line as the line of action of the position vector.

 Unlike the magnitude of the position vector, the magnitude of a unit vector is 
always exactly one unit long. That is, 

Whenever you use the Cartesian coordinate system (see “Taking Direction 
from the Cartesian Coordinate System” earlier in the chapter), you can make 
use of three very special unit vectors. As shown in Figure 5-7, you can define 
a vector of magnitude 1.0 in the positive direction for each of the principle 
Cartesian axes.

 ✓ x-direction: The unit vector parallel to the x-axis has the designation of a 
bolded i or a special marker (kind of like a party hat) over the unbolded 
letter as in the following: 

 ✓ y-direction: The unit vector parallel to the y-axis has the designation of a 
bolded j or the special hat marker over the unbolded letter: 

 ✓ z-direction: The unit vector parallel to the z-axis has the designation of a 
bolded k or the special marker over the unbolded letter: 
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60 Part II: Your Statics Foundation: Vector Basics 

 The arrow over the vector label u
z
 is the same as bolding; it’s just another way 

to designate that you’re talking about a vector.

 

Figure 5-7: 
A unit 

vector.
 

y

z

x

1

1
1

2

2

2

Using unit vectors to create 
position vectors
To write a vector in Cartesian vector notation, you take full advantage of 
those three unit vectors (i, j, and k) that I talk about in the preceding section. 
For example, if you have a vector V with magnitude  of 10 meters in the 
positive x-direction, you can write this vector as

You can also have a vector going in a combination of directions. Suppose 
that vector V has a piece in the x-direction of magnitude  that equals 15 

meters and a piece in the negative z-direction of magnitude  that equals 26 
meters. You can then write the vector V as

Because there’s no y-direction component, the coefficient in front of the 
j (y-direction) is zero. You also notice that the coefficient in front of the k 
(z-direction) is a negative value. This negative value simply indicates that the 
magnitude of that piece of the vector is acting in the opposite direction from 
the assumed positive z-direction. 
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Position vectors can be Cartesian too!
In terms of the generic coordinates (xA, yA, zA) for Point A and coordinates (xB, 
yB, zB) for Point B, you can write the position vector from Point A to Point B as

or even more generically as

As long as you choose the points for the start and the end of the vector cor-
rectly, and you can correctly determine the Cartesian coordinates of each of 
those points, the signs of the coefficients in front of each of the unit vectors 
i, j, and k take care of themselves. In fact, the signs of the scalar values (deal-
ing only with magnitude and not with sense) are what help you determine the 
sense of the vector — a negative scalar coefficient tells you that piece of the 
vector is acting in the negative direction of the unit vector noted immediately 
after that scalar value.

For example, try to write the actual position vector in Cartesian coordinates 
from Point A to Point B for a navigation example where Point A has coordi-
nates of (+400,+300,0) and Point B has coordinates of (+1600,+1000,+200). 
(For a visual, check out Figure 5-2 earlier in the chapter.) The notation for the 
label of this vector is r

AB
.

In this example, the change in the x-dimension (Δ
x
) is 1,200 feet, the change 

in the y-direction (Δ
y
) is 700 feet, and the change in the z-direction (Δ

z
) is 200 

feet. (To see the calculations that produce these figures, check out “Moving 
from Point A to Point B and back again” earlier in the chapter.)

You can now write the position vector from Point A to Point B as

Relationship between a vector, its magnitude, and its direction
In the example in the preceding section, you create a simple position vector 
V = 10i + 0j + 0k meters by using a known distance (the magnitude) and its 
direction. You can simplify this vector even further by omitting the terms 
that have zero as their coefficients. This step leaves a new form of the vector V: 
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The original vector V was created from the given information that the magnitude 
of the vector is 10 meters parallel to the positive Cartesian x-axis. If you examine 
this setup in general terms, you may conclude the following relationship:

For the navigation example, you can substitute the following terms into the 
equation:

 ✓ 

 ✓ 

 ✓ 

Thus, the expression above is more accurately written as:

Notice that this expression directly relates the vector itself as the multiplication 
of its scalar magnitude and a unit vector in the direction of that magnitude. 
Imagine that! Creating a new vector from a unit vector!

Creating Unit Vectors from Scratch
In the preceding section, I identify a unit vector as a means to define the 
direction of a vector’s line of action. In this section, I explain several basic 
techniques for creating a unit vector. After you have this step accomplished, 
you can easily construct a properly defined vector notation for any action.

Shrinking down position vectors
In the section “Relationship between a vector, its magnitude, and its direction” 
earlier in the chapter, I develop the expression for a vector based on its mag-
nitude and direction. If you do a little rearranging of the last equation of that 
section, you get the following expression:
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63 Chapter 5: Using Vectors to Better Define Direction

This expression illustrates that you can establish the direction of a vector’s 
line of action by taking the vector representation over the magnitude of that 
same vector. Suppose you have a position vector from Point A to Point B 
given as

with a magnitude of 

(You may recognize these numbers from the example in “Unit Vectors Tell 
Direction, Too!” earlier in the chapter.) You can easily create a unit vector 
to describe the orientation of the line of action between Point A and Point B 
(the line that connects those two points):

Notice that a unit vector has no actual units because the vector terms have 
units of feet in the numerator of each term, and the magnitude (or distance) 
gives units of feet in the denominator, so they cancel out. To verify that this 
vector meets the criteria of being a unit vector, you simply need to calculate 
its magnitude:

Realize that because the coefficients of the unit vector terms are typically 
irrational numbers, the magnitude rarely computes to be exactly 1.0. This 
discrepancy is another example of the importance of significant digits and 
computational accuracy that I introduce in Chapter 2. For the purposes of the 
example here, you’ll be happy that 0.999 is approximately 1.000.

Using angular data and direction cosines
Another technique that’s sometimes handy for creating a unit vector utilizes 
calculations involving the direction cosines. The direction cosines represent 
the angles between any two given vectors — even two unit vectors! You can 
use the three Cartesian axes as the reference because you already have those 
three special i, j, and k unit vectors to define them. (Flip to the earlier section 
“Cartesian vector notation” for the details on these unit vectors.)
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One of the major difficulties of using direction cosines is in actually deter-
mining the angle between the vector or line of action of interest and the 
Cartesian axis. These angles often occur on geometric planes that aren’t 
perpendicular to any Cartesian axis and therefore may be difficult or cumber-
some to compute.

Figure 5-7 earlier in the chapter illustrates the three unit vectors with respect 
to each of the three principal Cartesian axes. For example, Figure 5-8a shows 
the x-direction unit vector u

x
 = i. The direction cosine for this vector, the 

angle α, is the angle between the line of action of the vector you’re working 
with and the line of action of the x-direction unit vector, contained within the 
plane of those two vectors. Similarly, Figure 5-8b shows the y-direction unit 
vector u

y
 = j. The direction cosine for this vector, the angle β, is the angle 

between the line of action of your vector and the y-direction unit vector. Figure 
5-8c shows the z-direction unit vector u

z
 = k, and the direction cosine for this 

vector, the angle γ, is the angle between the line of action of your vector and 
the z-direction unit vector, contained within the plane of the two vectors.

 

Figure 5-8: 
Direction 

cosines can 
help create 

unit vectors.
 

y

x

z

V

α

β

γ

(0, 0, 0)

Line of
action

z

y

x
α j

(a) z

β

y

x

(b) z

y

x

(c)

Line of
action

γ

Line of
action

Line of
action

Note: In some texts, you may see the angles for the direction cosines referred to 
as θ

x
, θ

y
, and θ

z
 to represent the angle between the vector’s line of action and its 

corresponding Cartesian axis unit vector. Here I use α, β, and γ, respectively.
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The previous example showed how to piece together different parts of a 
vector in order to compute a different vector. You can use a similar 
technique with direction cosines to create a unit vector as follows: 

. The only information you need for 
this example is the three angles between the line of action and each of the 
principal Cartesian axes.

Utilizing proportions and similar triangles
Yet another method that you may find useful for creating unit vectors utilizes 
the proportions or ratios of the dimensions of a vector’s or object’s line of 
action.

In some textbooks, you see a vector or line of action with an odd-looking pair 
of numbers written around a triangle. In the case of the vector, this small 
triangle is attached to the shaft of the vector. For a line of action, you see 
the triangle attached somewhere along the line, or you can infer it from the 
given dimensions of an object or distance between given points. This propor-
tion technique is useful because you eliminate the need to even calculate the 
angle for the line of action, and as a result you may actually improve issues 
with accuracy and significant digits, as I mention in Chapter 2.

This proportion triangle represents a horizontal and vertical proportion and 
is comparable to the slope diagrams you may remember from your algebra 
class. The horizontal line segment of this proportion triangle represents the 
horizontal proportion, and similarly the vertical line segment represents the 
vertical proportion.

The secret to using these proportion values lies in applying the basic trigo-
nometry functions sine, cosine, and tangent (which I touch on in Chapter 2). 
In Figure 5-9, each of the three proportion triangles shown all have the same 
angle θ in common. If you draw a right triangle such as the first one shown, 
you can easily compute θ from

You can then take that angle and plug it back into the direction cosines 
formula from the preceding section.

For the example of Figure 5-9, you can compute the angle between the horizontal 
x-axis and the vector is
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Note that the horizontal proportion in this example is a negative value 
because it’s measured in the direction opposite to the positive x-axis. The 
vertical proportion is positive because it’s measured in the same direction 
as the positive y-axis.

 In this example, there’s no z-dimension. In fact, you rarely see proportional 
dimensions in three dimensions, due to the difficulty of clearly representing 
the proper values in a drawing.

 

Figure 5-9: 
Creating 

unit vectors 
by 

proportions.
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As drawn, the angle θ is a direction cosine with respect to the x-axis. 
Similarly, you can calculate the remaining direction cosines for the other 
axes and plug them straight into the unit vector notation from the preceding 
section. Just remember, by first calculating this angle, you normally end up 
dealing with an irrational numerical value when you apply a sine, cosine, or 
tangent function. 

In Figure 5-9, the proportion triangle is actually a right triangle. Using the 
Pythagorean theorem (which I discuss earlier in this chapter), you can 
quickly compute its hypotenuse:

You can then calculate the direction cosine with respect to the positive 
x-axis as 

and the direction cosine with respect to the positive y-axis as 

Note that for the third dimension, the direction cosine for the z-axis is 90 
degrees, and consequently cos(90) = 0.

Assembling these into the unit vector equation as follows:

produces a unit vector

Knowing which technique to use
So how do you know which of the techniques in the preceding sections is 
best for your situation? The following checklist shows you some factors that 
affect your choice:

 ✓ Position vectors: Position vectors are most readily utilized in problems 
that can be defined by Cartesian coordinates. For example, problems 
involving points on a map and lengths of cables or ropes are all candi-
dates for using position vectors. Problems in three dimensions often use 

10_598948-ch05.indd   6710_598948-ch05.indd   67 7/28/10   10:58 PM7/28/10   10:58 PM



68 Part II: Your Statics Foundation: Vector Basics 

position vectors in one manner or another. In fact, a three-dimensional 
problem is a very strong indicator that position vectors may be worth 
checking into.

 ✓ Direction cosines: Direction cosines aren’t as common as problems 
utilizing Cartesian coordinates. However, if a problem doesn’t provide 
any linear dimension data, that may be a good indicator that you need a 
direction cosine calculation.

  You need all three angles to be able to create your unit vector. If you 
can’t find all three angles, you can’t use the direction cosine method.

 ✓ Proportions and similar triangles: Proportions and similar triangles 
can be a bit easier to spot. Namely, you can manipulate problems with 
a vector or line of action that have the proportion triangle directly 
denoted with this technique. One major reason for using this method is 
a lack of suitable information (such as angular information or Cartesian 
coordinate data) to use either of the other methods.
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Chapter 6

Vector Mathematics and Identities
In This Chapter
▶ Performing vector addition and subtraction

▶ Using cross products and dot products

▶ Noting useful vector properties

After you’re familiar with how to depict the velocity of a particle (see 
Chapter 4) and write the equation for a force vector (see Chapter 5), 

you want to start looking at how to work with those vectors through 
mathematics. Vectors become especially important when you work three-
dimensional statics problems, and the skills I show you in this chapter 
introduce some of the methods for performing calculations with them.

In working with vectors, you soon discover a variety of basic operations that 
are similar to many of the basic mathematic operations you have used when 
working with scalar values. However, there are also some special rules that 
you need to observe. In this chapter, I introduce these operations and rules 
and show you how to apply them to your vector problems. I also give you 
a convenient list of properties you’ll use with these operations throughout 
your statics work.

Performing Basic Vector Operations
As you may have learned in your conventional math classes, addition and 
subtraction are among the most basic (and important) calculations that you 
work with. Vectors are no different; addition, subtraction, and relocation all 
become important skills, and that’s what I cover in the following sections.

Adding vectors
Simply put, the addition of vectors involves collecting each of the pieces of 
the action that are acting in a common direction and then representing them 
with some indicator of the direction of those pieces. This indicator can be 
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another vector and in fact is often a unit vector (which is a special type of 
vector that has a magnitude of exactly 1.0) in the direction of each of the 
three Cartesian axes (covered in Chapter 5).

To add two vectors together, you simply add the scalar coefficients in front 
of each unit vector (i, j, and k) to make new scalar coefficients. Consider two 
vectors, P

1
 and P

2
:

and

The sum of these two is then

To further illustrate this concept, use Figure 6-1 to define the following 
navigation problem.

 

Figure 6-1: 
Vector 

addition in 
navigating.
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Using the construction techniques I discuss in Chapter 5, you can see that 
the position vector that defines the direct path from Point 1 to Point 3 can be 
given by

Instead of creating a position vector directly between Point 1 and Point 3, 
suppose you want a more roundabout path. You define a position vector A 
for path #1 between Point 1 and Point 2, such that

11_598948-ch06.indd   7011_598948-ch06.indd   70 7/28/10   10:58 PM7/28/10   10:58 PM



71 Chapter 6: Vector Mathematics and Identities

and another position vector B for path #2 from Point 2 to Point 3, such that

You can also travel a different path but still reach the same destination. That 
is, you can start at Point 1 and travel directly to Point 2 (along the position 
vector A), and then turn and travel from Point 2 to Point 3 (along the position 
vector B). In this case, your start point and end point would be exactly the same 
as the direct path. When you write this path out, you can see that the new path 
has the same start point and end point and is simply the sum of the individual 
path segments of the two legs of the trip (A and B). In mathematical terms,

Substituting in the expressions for A and B, notice that the result is the exact 
same vector. This simple example illustrates the concept of addition of vec-
tors. What you may notice is that the original, C, is actually the sum of the 
individual paths (A and B) that are taken, and the ordering of the paths does 
not matter.

 Check out the later section “Useful Vector Operation Identities” for some 
handy vector addition properties.

Subtracting vectors
Subtracting vectors is basically the same operation as adding vectors (see 
the preceding section), only in reverse. The only difference is that you actu-
ally convert the vector being subtracted to a negative vector and then add 
the vectors. To create a negative vector, you just need to reverse the signs of 
each of the scalar coefficients; you can do so by simply multiplying each of 
the scalar terms by –1. For example, look at the following vector P

1
:

The negative vector of this vector is

If you want to subtract vector P
1
 from vector P

2
 in the preceding section, 

you just add the negative of vector P
1
 to vector P

2
 as shown in the following 

equation:
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Figure 6-2 illustrates the subtraction of two vectors. Notice that the final 
result of the operation is an entirely different vector from the vector created 
by addition.

 

Figure 6-2: 
Subtraction 
of a vector.

 

−F+F

θ

θ θ

θ

Positive and Negative Vectors

y

x

F3

F1

F2 F3
⇒ = F1 F2

+

Addition of F
1
 and F

2

y

x

F3

–F1

F2
F3
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1
 from F

2
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In this regard, the subtraction of a vector is similar to the subtraction of two 
scalar quantities: The term being subtracted is simply the addition of its 
negative representation.

Moving vectors head to tail
In the earlier sections in this chapter, I illustrate the basic vector concepts 
as a series of simple steps: First, action #1 occurs, followed by another 
action #2. However, in the physical world, this sequence may or may not be 
the case. In fact, a vector may experience multiple actions simultaneously. 
Moving vectors head to tail when adding them is a quick and easy way of 
working with simultaneous actions. In fact, if you have a hundred simulta-
neous actions on an object, connecting the tail of one action to the head of 
another action for every action on the object helps you determine the com-
bined response. The final combined response will be from the tail of the very 
first action you listed to the head of the very last action you listed.
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 Order doesn’t matter for simultaneous events. However, you can only attach a 
single tail of a vector to any given vector arrowhead. You can’t attach the tails 
of multiple vectors to the head of the same vector.

For example, Figure 6-3a shows a baseball that has been struck by a bat. The 
baseball may experience a velocity in both the upward direction (as defined 
by vector B) as well as a velocity in a horizontal direction (as defined by 
vector A). Velocity A makes the ball move away from the batter, and velocity B 
makes it rise in the air. Each of these actions is independent of the other, and 
each may have a significantly different magnitude of action.

 

Figure 6-3: 
Simulta-

neous 
actions on a 

baseball.
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As I discuss in the “Adding vectors” section earlier in the chapter, you can 
represent the combined action on the baseball by adding the combined 
actions on the ball.

Figure 6-3b illustrates the case where the action B is drawn first. At the 
conclusion of action vector B (or at its head), the action A begins acting in 
its own direction. That is, at the conclusion of action B, the tail of action A 
begins.

Similarly, in Figure 6-3c, action A can be the first action that affects the base-
ball. Upon the conclusion of action A, action B begins. Thus, the tail for the B 
action is attached to the head of A.

Suppose you define a new vector C as being the combined action of A and B. 
The new vector C shown in both scenarios of Figure 6-3b and c, results in the 
magnitude, sense, and angle for the line of action (θ) of C being identical. If 
the three major properties of a vector are the same, the two vectors are actually 
the same. (Flip to Chapter 4 for more info on these basic vector properties.)
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What Do You Mean I Can’t Multiply 
Vectors? Creating Products

Mathematically speaking, adding and subtracting vectors and scalars are 
basically the same operation. However, the two remaining scalar operations — 
multiplication and division — work a little differently with vectors.

You can’t directly multiply two vectors, but you do have other unique opera-
tions at your disposal, such as products. The following sections deal with two 
of the more popular products: dot products and cross products.

 “Useful Vector Operation Identities” later in the chapter shows you some 
properties to keep in mind as you work with products.

Dot products
The dot product is a type of operation that allows you to create a projection, 
or the portion of one vector that acts in the same direction as a second 
vector; it always produces a scalar result. It just requires knowing the mag-
nitude of the two vectors involved and the angle between their lines of 
action. This type of operation proves to be useful in physics calculations 
and for quickly determining the action of one vector along the line of action 
of another vector. After all, if you’ve gone through all of the trouble of speci-
fying the direction of a vector in its notation, it only makes sense that you 
should be able to put that information to work as well.

Figure 6-4 illustrates two different vectors A and B that are oriented at some 
arbitrary angle, θ, between them.

 

Figure 6-4: 
Finding the 

dot product 
of vectors A 

and B.
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The dot product of Figure 6-4’s vectors is defined as follows:

In these equations,  represents the portion of vector A that’s acting in the 
direction of vector B. Similarly,  represents the portion of vector B that’s 
acting in the direction of vector A.

Cross products
The cross product is an operation performed on two different vectors that 
produces a third vector that is orthogonal (perpendicular) to each of the 
original vectors.

 Don’t confuse the cross product operator (×) with the x-style multiplication 
operator × you learned early in your math career. These are distinctly differ-
ent operations.

The cross product proves to be very useful in calculating rotational quanti-
ties called moments, which I cover in Chapter 12.

 Unlike the dot product, which returns a scalar quantity, the cross product 
computation always returns a new vector (complete with Cartesian vector 
notation). Check out the preceding section for dot product details.

Figure 6-5 illustrates two different vectors A and B that are oriented at some 
arbitrary angle θ between them.

The cross product for Figure 6-5 is defined as follows:

where n is a normal vector to both A and B. The challenge in calculating the 
cross product is usually in calculating the normal vector n. If you know the 
direction of n, the computation isn’t much more difficult than the dot product 
calculation in the preceding section.

Unfortunately, that same vector n is often an unknown entity. Fortunately, 
there is a second identity, involving a determinant (a mathematical operation 
that utilizes a 3-x-3 matrix of values) that is much easier to calculate. The first 
line of the determinant always contains the unit vectors in the direction of 
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each of the Cartesian axes. The second line is always the scalar coefficients 
of each of the unit vectors for the first vector listed in the cross product. The 
third line is always the scalar coefficients of each of the unit vectors for the 
second vector listed in the cross product.

 

Figure 6-5: 
Finding 

the cross 
products for 

vectors A 

and B.

 

A

B

θ

AB ×

BA ×

Orthogonal linePlane of both
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For example, say you have a vector A defined as

where A
x
, A

y
, and A

z
 are scalar components in the Cartesian x-, y-, and 

z-directions respectively, and a vector B defined as

where B
x
, B

y
, and B

z
 are scalar components in the Cartesian x-, y-, and 

z-directions respectively. You can then calculate the cross product from the 
determinant by using the following setup
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In this example, the second line of the 3-x-3 determinant contains the scalar 
coefficients of the unit vectors for vector A because it’s the first vector listed 
in the cross product. The third (or bottom) line is made up of the scalar coef-
ficients of the unit vectors in vector B because it’s the second listed vector.

 You have to assemble the contents of the determinant very carefully for this 
method to work. Reversing the order of A and B produces a uniquely different 
normal vector. That is:

 Figure 6-6 is a quick illustration that I like to use to help me remember the 
signs on all those pesky cross products. In the three locations shown, scribble 
the unit vectors i, j, and k. Now, locate the two vectors you want to cross. 
Circle the first vector in your operation and then the second vector. The term 
that remains uncircled is the resulting unit vector direction of that cross 
product operation. Now for the cool part: If your second term is located coun-
terclockwise from the first, the sign of the result is positive. Likewise, if the 
second term is located clockwise from the first term, the sign of the result is 
negative. If the first and second terms are both the same, the result is 0. Test it 
out with the equations in this section — it works!

 

Figure 6-6: 
Shortcut for 
remember-

ing cross 
product 

signs.
 

CCW = “+”

= Unit vector
 cross product

CW = “−”ĵ k̂

î

The following equations explain the results of Figure 6-6. It shows all the 
combinations without requiring you to memorize the nine values below, 
which will hopefully help you remember them a bit more easily.
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Useful Vector Operation Identities
To further expand your toolbox for working with vectors, this section pres-
ents a few useful identities and discusses orders of operation. They all use 
the following vectors A, B, and C, such that

 Throughout this book, I refer to several of these properties, so you may want 
to dog-ear this page.

 ✓ Associative property of vector addition

 ✓ Commutative property of vector addition

 ✓ Distributive property of vector addition

 ✓ Commutative property of vector dot products

 ✓ Anti-commutative property of vector cross products

 ✓ Distributive property of vector cross products
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Chapter 7

Turning Multiple Vectors into a 
Single Vector Resultant

In This Chapter
▶ Examining resultant vectors

▶ Constructing resultant vectors graphically

▶ Implementing the parallelogram method

▶ Performing vector calculations to determine resultants

Objects in statics can be subjected to a wide variety of actions from an 
almost infinite list of sources. Having the ability to transform a system 

of many similar effects into a single equivalent behavior (called a resultant) is 
a truly handy skill.

Resultants aren’t necessarily a cause-and-effect relationship. If you sit on a 
tiny, cushy kiddie chair (cause), the outcome (result) would likely be that the 
chair may be a bit lumpier (or in a few more pieces) than it was before.

In statics, the resultant behavior has a different meaning. Resultants repre-
sent a way of consolidating information. For example, if you sit on the kiddie 
chair and your friend comes in and sits on the chair at the same time, the 
statics resultant is that two people are applied at the same location (on your 
chair), or that twice the number of loads have been applied to your chair.

In this chapter, I show you several different methods for determining a stat-
ics resultant, each of which requires different techniques. Some of these 
methods can be labor intensive yet light on mathematical requirements, 
and others are more complex yet robust. However, being able to consoli-
date multiple vectors into one combined vector makes your calculations so 
much easier. Picture a statics problem as a cage full of hyper kittens — if you 
open the cage, the kittens run out in any number of directions and at differ-
ent speeds. That’s a lot of different vectors at work! Resultants give you the 
ability to substitute those hyperactive critters with a single replacement. In 
simple terms, why deal with a hundred different actions when you can deal 
with just one?
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Getting a Handle on Resultant Vectors
A resultant vector (or simply a resultant) is the most basic representation of 
a system of combined actions that result in the same behavior as the original 
system. Often, this equality means you combine multiple vectors into a single 
equivalent vector.

Depicting a resultant vector
The first part of Figure 7-1 shows an object subjected to three separate 
actions in three different directions. With all of those actions combined, the 
body should experience a single response in a unique direction. That com-
bined response is illustrated in the second part of the figure by V

RES
 and is 

oriented at its own unique angle θRES.

 

Figure 7-1: 
Resultant 

vector rep-
resentation.

 Multiple Vectors

Rigid body

θ2

θ1
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V2
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VRES

 The resultant vector’s magnitude (numerical value) and orientation (combined 
sense and direction) are uniquely determined by the magnitudes and orienta-
tions of the original uncombined vectors.

The position vector I discuss in Chapter 6 is actually a type of resultant 
vector. It starts at a given location and ends at a second point. However, a 
position vector actually has an infinite number of paths (if you ignore walls, 
fences, and other physical barriers) to get from one point to another. The 
position vector is the simplest representation of a path from one point to 
another, independent of which of the individual pieces you use.

Principles of resultants
The resultant calculations for a vector are the same regardless of the type of 
vector. Force vectors, velocity vectors, and displacement vectors can all be 
combined with similar types of vectors to create resultants. But before you 
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start combining force vectors with displacement vectors to calculate resul-
tants, keep a couple of simple guidelines in mind:

 ✓ Only vectors of similar types may be combined to create resultants. 
A resultant vector is the same vector type as the vectors that create it. 
Force vectors can only be combined with other force vectors — you 
can’t combine a force vector and a velocity vector to produce a position 
vector resultant.

 ✓ Magnitudes and directions of resultant vectors can be larger, smaller, 
or the same as any of the combined vectors. The magnitude and direc-
tion (sense) of a resultant vector are directly related to the properties of 
the vectors that are combining to make the resultant. Two large vectors 
in opposite directions may produce a very minimal resultant effect.

 Because a resultant is also a vector and has been created from combining 
smaller vectors, it has its own magnitude, sense, and point of application, 
which are a direct result of the vectors that helped create the resultant. For 
more on these properties, look at Chapter 4.

Calculating resultant magnitude 
and direction
You can calculate the magnitude and direction of resultant vectors in many 
valid ways. Generally, these techniques fall into one of three categories: 
graphical methods, geometric methods, and vector equation methods.

 ✓ Graphical methods: Graphical methods typically include making a 
detailed sketch (drawn to scale) of all the vectors in the system you 
want to determine the resultant for. You then make a physical measure-
ment from the drawing to determine the solution.

 ✓ Geometric methods: Geometric methods use basic sketches and geometric 
principles to determine the resultant of two vectors.

 ✓ Vector equation methods: Vector equation methods use Cartesian vector 
notation (from Chapter 4) to determine the resultant of a system of vectors. 
They require the vector mathematics I explain in Chapter 6.

The most common way to illustrate a system of vector actions is the head-to-
tail construction I first discuss in Chapter 6. This construction technique is 
very useful in each of the three major resultant construction techniques that 
I describe in the coming sections. You can perform the head-to-tail construc-
tion method by using the following steps:

 1. Select an arbitrary starting point.
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  The origin of your coordinate system is often a convenient starting 
point, but you’re not required to use that point. However, you must 
choose an origin somewhere.

 2. Choose any one of the original vectors and place its tail at the starting 
location you determined in Step 1, making sure to maintain the origi-
nal orientation and sense.

  You can start with either vector, but after you use a vector one time, 
you can’t use it again. You must keep the same magnitude and direction 
for each vector.

 3. Select one of the remaining original vectors and affix the tail of that 
vector to the head of the vector from Step 2.

 4. Keep attaching vectors to each other (by repeating Steps 2 and 3) until 
you’ve used all of the original vectors.

 The order of selection for the vectors that you choose in Steps 2 and 3 isn’t 
important. You can use them in any order, but you can only use a vector once 
in this technique, and you must use all vectors.

Consider the system of vectors in Figure 7-2, which shows a rigid body with 
three vectors acting on it. There are multiple ways to find the resultant using 
the head-to-tail method. For illustrative purposes, I show you two different pos-
sibilities for constructing the resultant of the system of vectors. Notice that the 
final vector has the same magnitude, sense, and line of action for all cases.

 

Figure 7-2: 
Head-to-tail 

vector 
system 

construc-
tion.
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Using Graphical Techniques 
to Construct Resultants

The easiest method for determining the resultant of a system of forces is to 
create a scaled drawing. Graphical methods are very convenient because 
they typically require you to perform very few mathematical calculations and 
you don’t need a vector formulation at all. If you can draw a line at a speci-
fied length and angle/direction, you can determine the resultant. Plus, this 
method can handle multiple vectors at once. Computer aided drafting (CAD) 
programs and hand drawings with rulers, protractors, and compasses pro-
vide useful tools for these techniques.

The graphical methods do have their drawbacks, though. They’re time- 
consuming to draw, and you can really only use them on two-dimensional 
problems. Although you can theoretically use this method in three dimensions 
as well, it’s definitely not an easy (or efficient) method for those problems. 
Graphical methods also require a computer or mechanical drafting tools, and 
you can’t guarantee their numerical accuracy because your tools are only 
so accurate (mechanical protractors are accurate to about one-degree incre-
ments, and your magnitude measurements are always limited by the scale of 
your ruler). As CAD systems have become more popular, you can actually use 
CAD drawings to achieve more accurate numerical measurements of the mag-
nitude and direction of the resultant. Despite some of these accuracy issues, 
graphical methods can provide an effective (and often quick) qualitative view 
of size of the magnitude and general direction of a resultant vector.

The actual procedure for construction of a graphic representation of a resul-
tant vector is fairly straightforward. Consider the rigid body of Figure 7-3a. In 
this example, notice that the magnitude of each force vector is given and that the 
directions of those vectors are described by either angles or proportions.

To perform this construction, you utilize the head-to-tail construction tech-
nique from the preceding section with a couple of minor modifications. Just 
follow these steps:

 1. Choose your starting point and establish a grid for construction; indi-
cate that your scale is one grid square represents one vector unit.

 2. Select one of the two vectors and affix its tail to the starting location 
of Step 1.

  In Figure 7-3b, I’ve arbitrarily chosen to start with the 1.41-Newton 
force. Be sure to precisely draw the force at its true scale length of 
1.41 Newton at an angle of 45 degrees from the start point.

  

Preserving the proper magnitude and direction angles in your sketches 
is very important. If your sketches aren’t accurate, you can’t expect your 
final measurements to be accurate!
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Figure 7-3: 
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 3. Sketch the next vector to scale at the proper orientation; repeat for 
any additional vectors.

  Start by laying in the line of action (line in space where the vector is 
acting) of the force. You can easily find this line in the example in 
Figure 7-3b because you actually know the proportions of the grid.

  To establish this line that passes through the end point of the vector 
from Step 2, follow these steps:

 A. Locate a second point by counting down the number of grid 
squares on the vertical leg of the proportion triangle (which I 
discuss in Chapter 5) and then counting over the number of grid 
squares that are on the horizontal leg of the proportion triangle.

 B. Draw a continuous line of action through these two defined points 
to establish the direction of the vector you’re working with and 
then measure a distance that has the same length as the magnitude 
of this vector along the line of action from the end point of the 
vector in Step 2.

  In the example, you measure five units from the end point of 
the 1.41-Newton force. This new point is the head location for 
the 5-Newton force.

 C. Draw your vector arrow from the tail point to the new head location.
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  Remember that proportion triangles tell you the direction of the line of 
action of the force. You can then use the magnitude to determine how 
far down that line of action the head is from the tail of the force vector.

 4. Sketch the resultant by drawing a vector arrow from the start point of 
Step 1 to the end point of the last vector that you drew.

Congratulations — you’ve determined the direction of the resultant vector! 
You can now use a protractor to measure the angle of the resultant vector 
relative to a horizontal gridline, a vertical gridline, or even one of the original 
vectors’ lines of action. The choice is yours. To determine the magnitude 
of the resultant, you simply need to use a ruler to measure the length of the 
resultant vector’s arrow on your grid.

Using Geometric Methods to Construct 
Resultants: The Parallelogram Method

To avoid the problems inherent in graphical solutions (see the preceding sec-
tion), geometric methods can present a better estimate of the magnitude and 
direction of a resultant. They don’t require vector formulations, and the solu-
tion method is very, well, methodical. Unfortunately, these techniques only 
work effectively on two-dimensional problems and only on a maximum of two 
vectors at a time (although you can repeat the process with your resultant 
and additional vectors until only one resultant remains).

The most popular geometric construction technique is dubbed the parallelo-
gram method because it incorporates an actual parallelogram into the solu-
tion process. However, you need to master several trigonometric identities to 
use this technique, so I tackle those in the following sections before showing 
you how to create the resultant.

Useful geometric relationships
By far the most essential geometric identities you need, aside from 
SOHCAHTOA (which I explain in Chapter 2), are the law of cosines and the 
law of sines. Each of these methods utilizes angle and dimensional relation-
ships for triangles such as the one shown in Figure 7-4, which shows a trian-
gle 123, having sides of length A, B, and C and corresponding opposite angles 
of a, b, and c, respectively.
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Figure 7-4: 
The law of 
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Law of cosines
The law of cosines provides a formula that relates two sides and an included 
angle (an angle between two adjacent sides of a polygon) to the length of the 
third side. These formulas can be expressed as

A2 = B2 + C2 – 2BCcos(a)

B2 = A2 + C2 – 2ACcos(b)

C2 = A2 + B2 – 2ABcos(c)

Notice in Figure 7-4 that each of these expressions includes the length of two 
sides, and the angle between those same two sides. From this information 
you can then determine the length of the third side.

 You must know at least two sides and the angle between those two sides to 
compute the third side by using the law of cosines. However, if you happen 
to know all three sides of the triangle but none of the angles, you can actually 
solve for the included angle by rearranging the equation and using an inverse 
cosine function (or cos-1). For example, to find angle a

Similarly, you can create expressions for the angles b and c by rearranging 
their respective law of cosines equations.

Is that the Pythagorean theorem I see?
An interesting fact pops up when you apply 
the law of cosines to a right triangle (which 
has a 90-degree angle). If you substitute c = 
90 degrees into the last equation, you get the 
following:

C2 = A2 + B2 – 2ABcos(90) = A2 + B2 (because 
trigonometry tells you that cos(90) = 0), or C 2 = 
A2 + B2, which is a classic representation of the 
Pythagorean theorem for right triangles. For 
more information on the Pythagorean theorem, 
you can look at Chapter 2.
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Law of sines
The law of sines is another extremely useful geometric relationship, given by 
the relationships

where the parameters of this expression are the same parameters shown in 
Figure 7-4. This relationship basically says that the ratios of a side of a tri-
angle with respect to the sine of its opposite angle (the angle directly across 
from that side) are always constant for any given triangle. To use the law of 
sines, you must know at least one side of a triangle and its corresponding 
opposite angle to establish the ratio. Then, to actually solve for unknown 
parameters, you simply need to know either another side or another angle of 
the triangle. You can then rearrange the expression and solve for one of the 
unknowns; I show you how to do that in more detail in the following section.

The parallelogram method
The parallelogram method is a basic geometric method for determining the 
resultant of two vectors by constructing a parallelogram. You locate the 
resultant force and then use the laws of sines and cosines to perform calcula-
tions on one half (a triangular section) of the parallelogram. A parallelogram 
is a specific variation of the quadrilateral (four-sided geometric shape) and is 
shown in Figure 7-5.

 

Figure 7-5: 
A parallelo-

gram.
 

B

α

α

β

β

B

AA

A parallelogram by definition has the following properties:

 ✓ Opposite sides of the parallelogram are congruent (or equal) and must 
be parallel.

 ✓ Opposite angles of the parallelogram are also congruent.

 ✓ The total sum of the internal angles of a parallelogram must add up 
to 360 degrees.

12_598948-ch07.indd   8712_598948-ch07.indd   87 7/28/10   10:59 PM7/28/10   10:59 PM



88 Part II: Your Statics Foundation: Vector Basics 

Figure 7-6 shows a block subjected to a force of 200 Newton at an angle of 45 
degrees from the vertical, and a second force of 350 Newton at an angle of 30 
degrees below the horizontal

 

Figure 7-6: 
A sample 
parallelo-

gram.
 

y

x

45˚
200 N

30˚

350 N

To use the parallelogram method, you follow these basic steps:

 1. Connect the two known force vectors at their tail locations, preserving 
their orientation and magnitude.

  You connect the two vectors at their tails and place this point at the 
origin of your Cartesian axes as shown in Figure 7-7.

 

Figure 7-7: 
Constructing 
a parallelo-

gram for 
two forces.
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 2. Construct a parallelogram where one side is the magnitude of one of 
the vectors in its current position and the other side is the magnitude 
of the other vector in its current position.

  In this example, one side of the parallelogram is 200 Newton and the 
other is 350 Newton, as shown in Figure 7-7. You may have to pick up 
one of the forces and move it such that the tails of the vector arrows are 
acting at the same location. You can do that because forces are sliding 
vectors (or vectors that can act anywhere along their lines of action), so 
you can actually slide them along their respective lines of action until 
their tails meet at a common point.

 3. Compute the angle δ between the vectors.

  The angle θ is the difference of 90 degrees between the x- and y-Cartesian 
axes and the 45-degree orientation of the 200-Newton force (so θ = 
90° – 45° = 45°). The angle δ is the angle between the 200-Newton and 
350-Newton forces and is the sum of θ + 30 degrees, or 75 degrees. 
Remember that the 30 degrees is the orientation angle of the 350-Newton 
force below the x-axis.

 4. Compute the angle ϕ for the remaining angles.

  Because you know all quadrilaterals must have a total of 360 degrees in 
interior angles, you can compute the remaining unknown interior angle 
as follows:

  δ + δ + ϕ + ϕ = 360°

  75 ° + 75° + 2ϕ = 360 °

  2ϕ = 210°

  ϕ = 105°

 5. Draw the resultant force vector as the diagonal of the parallelogram.

  Because the parallelogram contains two diagonals, you select the one 
that shares the tail points of the original vector. In this example, the tail 
of the resultant is at the same point as the tail of the original 200-Newton 
and 350-Newton vectors, and the head of the resultant is at the opposite 
corner, as you can see in Figure 7-8).

 6. Remove one of the triangular regions from the parallelogram that was 
created when you sketched the resultant force vector in Step 5.

  Which triangle you select makes no difference because they’re both the 
same. The top triangle has the same angles and sides as the bottom one. 
Include any dimensional or angular information that you may know or 
have previously calculated. In Figure 7-9, I’ve chosen the upper triangle 
for my calculations in this example.
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Figure 7-8: 
Displaying 

the resultant 
and angular 
information.
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Figure 7-9: 
Examining 
a resultant 

triangle.
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 7. Use the law of cosines to determine the magnitude of the resultant force.

  After splitting the parallelogram into a force triangle consisting of the 
resultant and two sides, you know at least one of the angles of the tri-
angle and the two adjacent sides from the original 200-Newton and 350-
Newton vectors. In Figure 7-9, you know two sides of the triangle and 
the included angle of 105 degrees. You can plug this info into the law of 
cosines; your result looks something like the following:

 8. Use the law of sines to compute the remaining angle α to help estab-
lish the direction of the resultant.

  This angle gives the orientation of the resultant relative to the original 
200-Newton force vector. At this point, you now know all three side 
dimensions and one of the related angles. Using the law of sines, you can 
establish the triangle’s ratios.
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  The boxes in this equation just help you remember the pieces you need 
to solve for. Because you know the 105-degree angle and the opposite 
side of 445.81 Newton, you can definitely use those two values to estab-
lish the ratio. Because you want to compute the angle α, you must use 
the ratio term that includes that parameter. A bit of rearranging pro-
duces the calculation for the desired angle:

 9. Define your reference line for the angle measurements.

  Measuring from the x- or y-axis is usually the most common reference 
location. However, you can also measure the direction angle of a resul-
tant relative to the angle of any other vector.

  If you want to base the calculation from the vertical Cartesian y-axis, you 
can compute the measured angle from

  θ
y
 = 45° + 49.31° = 94.31°

  which is measured clockwise from the positive Cartesian y-axis. Similarly, 
if you want to base your reference from the positive Cartesian x-axis, you 
can report the reference angles as

  θ
x
 = 90° – θ

y
 = 90° – (45° + 49.31°) = –4.31°

  In this case, the angle is a negative value, which indicates that it occurs 
below the positive Cartesian x-axis. Either direction is a correct repre-
sentation, and both are displayed in Figure 7-10.

 

Figure 7-10: 
Repre-

senting the 
direction of 

the resultant 
force.
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 Define your reference clearly. Be sure to include a sketch that properly illus-
trates where you’re measuring from, and in which direction.

Using Vector Methods to 
Compute Resultants

One of the most consistent ways of determining a resultant force is by using 
the vector addition I explore in Chapter 6. You can use this technique with 
as many vectors as your heart desires, and it works with two- and three-
dimensional problems (unlike the other two techniques in this chapter, which 
only work easily in two dimensions). It requires only basic math skills — if 
you can add, you can do vector addition — and it doesn’t generally have 
the accuracy concerns of the graphical techniques (see “Using Graphical 
Techniques to Construct Resultants” earlier in the chapter). Note: You may 
need to use some basic trigonometry to create the original vectors in the first 
place (as I show in Chapter 5), but after that’s done, actually computing the 
resultant is a breeze!

The greatest advantage of the vector methods is that you don’t have to find 
perpendicular distances or worry about maintaining accurate information 
about the sense of the vector as you do with the other methods in this chap-
ter. All that information is built into the notation of the vector itself. In fact, if 
you can create vectors, the hardest part of your statics work is already com-
plete because all you need to do is use vector addition to compute the com-
bined result. As long as your calculator has batteries and you can create the 
necessary Cartesian vectors, finding the resultant vector should be a snap!

Consider the system of two vectors A and B in Figure 7-11, which shows a 
simple vector addition case. Vectors A and B are combined to create a resul-
tant vector C. However, with vector addition, you can also find the resultant 
of multiple vectors all at once. Utilizing the same head-to-tail construction 
technique I discuss in the graphical methods section earlier in this chapter, 
you can quickly determine the resultant for the system. However, if you know 
the vector representation for each of the forces A, B, C, and D, you can find 
the resultant as being from the tail of vector A to the head of vector D.
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Figure 7-11: 
Resultants 

of two 
vectors and 

of multiple 
vectors.
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Using vector addition
If you have the vectors defined in vector notation with all the i, j, and k 
pieces already determined (see Chapter 5), you can calculate resultants with 
the following vector addition formula:

Even better, you can expand this simple example to easily handle multiple 
vectors in exactly the same way:

Consider the example of Figure 7-12, which shows a particle subjected to 
three forces F

1
, F

2
, and F

3
.

To find the resultant of these vectors, you simply add them together:
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Figure 7-12: 
You can 

add multiple 
vectors to 

find the 
resultant.

 

y

x

z

F1 = 10i + 10j + 10k lbs

F2 = 5i – 6j + 8k lbs

F3 = –10i + 2j lbs

Particle

Gathering all of the terms in front of i, j, and k, you can then simplify the 
expression to

Thus, the resultant of the three vectors of this example is 5i + 6j + 18k, which 
itself is in vector notation. From here, you can then find the magnitude of the 
vector by using the following equation:

Calculating the direction 
of the vector resultant
After you’ve computed the vector form and the magnitude of the resultant, 
you can define the direction in any of the ways I define in Chapter 5. Perhaps 
the easiest is to simply create a unit vector from this information. For the 
example in the preceding section, you need to divide the resultant vector by 
its magnitude to create the unit vector that describes the direction. You can 
then compute the direction cosines to determine the angles if you so desire. 
The following equation shows you how to create a unit vector for Figure 7-12 
in the previous section.
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Chapter 8

Breaking Down a Vector 
into Components

In This Chapter
▶ Understanding vector components

▶ Calculating Cartesian components

▶ Creating non-Cartesian components

In Chapter 7, I show you how to take multiple vectors and combine them 
into a single resultant behavior, which is a useful skill in helping simplify 

the number of actions on an object. That works fine if you’re interested in 
examining the combined behaviors of an object, but what happens when 
you’re interested in studying multiple behaviors but only have a single resul-
tant to work with? For this situation, you need to understand how to create 
multiple behaviors of a resultant, or the components of a resultant vector.

The most useful feature of working with components is that these behaviors 
let you explore basic behaviors in more detail. For example, when an airplane 
is coming in for a landing, its approach is actually a vector with a given ori-
entation at a specific speed. However, the pilot must maintain a certain hori-
zontal behavior (which ensures that the plane actually reaches the runway 
and doesn’t overshoot) to land the plane safely while guaranteeing that the 
vertical descent isn’t so fast that it causes the plane to crash into a fiery heap 
when it hits the ground. The pilot needs to be aware of both the vertical and 
horizontal behaviors at the same time, for uniquely different reasons.

In this chapter, I show you how to break a single vector back into multiple 
behaviors that act entirely in Cartesian or non-Cartesian directions.

Defining a Vector Component
You may be asking yourself, “Why on earth would I care about breaking one 
combined action into several smaller actions?” Answer: In many statics and 
physics problems, you’re often interested in examining these individual 
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actions on a case-by-case basis. These individual actions of a single resultant 
vector are known as components. For example, consider the projectile motion 
example shown in Figure 8-1.

 

Figure 8-1: 
You can 

break the 
action of 

shooting a 
basketball 

into 
components.
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In this example, a player is shooting a basketball at a hoop in the distance. 
When she attempts the shot, the ball has a unique velocity (magnitude) and 
direction angle θ, which defines the initial path of the projectile (sense and 
line of action) at the exact instance she releases the ball. Together, these 
three pieces of information define the initial velocity vector of the basketball. 
(Flip to Chapter 4 for more on these three main vector properties.)

Because the player remains stationary as she attempts the shot (this isn’t a 
slam-dunk attempt), the problem you want to examine is what’s happening to 
the basketball itself — especially whether the path results in a scoring shot.

From experience, you should be able to recognize that as the player begins 
the shot, the ball moves upward with a certain vertical velocity while moving 
away from her with another horizontal velocity. These two velocities are the 
horizontal and vertical components of the combined (or resultant) velocity 
vector for the basketball.

In two dimensions, you need to represent two components for every resul-
tant vector, and in three dimensions you actually have three components 
that you need to determine. However, for both two- and three-dimensional 
cases, these components together must always result in the same original 
combined behavior.

 A component of a resultant vector must also be the same type of vector as the 
resultant itself. If you’re finding the components of a force vector, the compo-
nents are also force vectors.
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In the parallelogram method discussion in Chapter 7, I show you how to 
create a resultant vector of two vectors by constructing a basic parallelo-
gram where the resultant is the diagonal across the parallelogram that shares 
the tail point of the original two vectors. The two sides of the parallelogram 
(the original vectors) that share the tail of the resultant are actually compo-
nents of that resultant vector, as shown in Figure 8-2.

 

Figure 8-2: 
Components 

of a 
resultant 

and paral-
lelogram.
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Resolving a Vector into Cartesian 
and Non-Cartesian Components

The process of creating a vector component is known as resolving a vector. In 
working with vectors in statics, you always resolve two-dimensional actions 
such as forces and displacements into exactly two pieces for two-dimensional 
problems and into exactly three pieces for three-dimensional problems. (You 
can also depict two-dimensional actions with three-dimensional components 
by making a third component that has zero magnitude.)

To accomplish this task, you need to decide which type of component is actually 
required. These types of components are often separated into two categories: 
Cartesian (or rectangular) components and non-Cartesian components.

 ✓ Cartesian components: As the name Cartesian components implies, 
all of the resolved vector components are aligned with the Cartesian 
x-, y-, and (for three-dimensional problems) z-axes of your coordinate 
system. Sometimes you see them referred to as rectangular components. 
Rectangular components are probably the most common components 
you calculate and, fortunately, are usually the easiest to compute.

 ✓ Non-Cartesian components: Non-Cartesian components of a vector aren’t 
necessarily aligned with the Cartesian-axes. One or more components 
may be aligned with the Cartesian axes, but at least one is not. (If all 
were aligned with the axes, they’d be Cartesian components.)

In later chapters, I help you with the actual selection process for choosing 
the type of components to help you best solve a particular problem, and I 
give you some additional pointers on choosing the appropriate directions of 
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your components. But for now, in the following sections I focus on explaining 
the specific calculation techniques you actually employ after you determine 
the type of component.

 After you compute the vector components, you can begin to compute their 
magnitudes, and represent them with vector equations.

Using Cartesian concepts to calculate 
Cartesian components
To determine the components in two dimensions, you need to follow a few 
simple steps to create right triangles:

 1. Form a right triangle from the vector by using a line parallel to the 
x-axis attached at the tail and a second line parallel to the y-axis and 
attached to the head of the vector.

 2. Draw the x-component vector by drawing from the tail point of the 
original vector.

  Locate the head of the x-component vector at the intersection of the 
horizontal and vertical lines.

 3. Draw the y-component vector by drawing from the intersection of the 
horizontal and vertical lines (the tail point).

  Place the head of the y-component vector at the head point of the 
original vector.

Figure 8-3 shows the finished diagram.

 

Figure 8-3: 
Cartesian 

components 
in two 

dimensions.
 

y

x

Head point

Tail point

Vertical line

F y -componentFy

x-component

Fx

13_598948-ch08.indd   9813_598948-ch08.indd   98 7/28/10   10:59 PM7/28/10   10:59 PM



99 Chapter 8: Breaking Down a Vector into Components

To determine the components in three dimensions, you use a similar head-to-
tail construction technique.

 1. Form a cube around the vector by placing one corner at the vector’s 
tail and one at the opposite diagonal corner at the vector’s head.

 2. Establish reference lines by drawing a vertical line through the head 
point of the original vector; at the point where this vertical line 
crosses the horizontal plane, draw one horizontal line parallel to the 
x-axis and a second horizontal line parallel to the z-axis.

  In the example in Figure 8-4, your first reference line is parallel to the 
y-axis and crosses the horizontal plane xz.

 3. Determine the x-direction vector components by drawing the x-
component vector from the tail point of the original vector.

  In Figure 8-4, you place the point labeled Int. #1 at the head of the x-
component, which represents the location where a horizontal line drawn 
parallel to the z-axis intersects with the x-axis of the reference coordinate 
system.

 4. Establish the z-direction vector component by drawing the z-component 
vector from the head of the x-component to the point where the two 
horizontal lines intersect.

  In this example, you draw from Int. #1 to Int. #2.

 5. Determine the y-direction vector component by placing its tail at the 
horizontal intersection and its head at the head point of the original 
vector.

  In Figure 8-4, you place the tail of the y-component vector at Int. #2.

 

Figure 8-4: 
Cartesian 

components 
in three 

dimensions.
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Figuring component magnitudes
For two-dimensional problems, the process of resolving a vector into compo-
nents is as simple as drawing a right triangle. Consider the example in 
Figure 8-5a, which shows a force of 250 Newton acting at an angle of 130 
degrees from the positive x-axis of the Cartesian coordinate system, which 
is the same as measuring 50 degrees from the negative x-axis.

 

Figure 8-5: 
Calculating 

components 
in two 

dimensions.
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To resolve this force vector into its rectangular components, you need to 
first locate a right triangle, indicated by the shaded region in Figure 8-5a. The 
original vector is located on the hypotenuse of this right triangle, and the 
component vectors are then drawn along the other two edges of the right tri-
angle as shown in Figure 8-5b.

Using the principles of SOHCAHTOA (refer to Chapter 2), you can calculate 
the magnitude of the x-component of this from

where the angle 50 degrees is measured from the negative x-axis.

Similarly, you can compute the y-component,

 The values that you just computed are only the scalar magnitudes of the com-
ponents and don’t include the sense or direction of the component. For two-
dimensional problems, you need to create component vectors or assign the 
directions by using simple logic and the Cartesian unit vectors i, j, and k, as 
I discuss in Chapter 5.
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Using the bracket notation method of three-
dimensional vector representation

Statics provides a few ways to represent vector 
information, including i, j, and k unit vector 
notations and scalar magnitudes and associ-
ated directions I discuss in Chapter 5.

But you’ll see another bracket notation method 
pop up from time to time in calculus and phys-
ics textbooks, and it can be useful at times in 
statics. The major advantage of this notation is 
that the scalar components in each of the prin-
ciple directions are readily visible and require 
no additional calculations to determine them.

For example, consider the acceleration vector 
a written in Cartesian notation:

The bracket representation for this vector is:

If you compare the Cartesian notation with the 
bracket notation, you see that each term in 
the bracket is actually one of the three scalar 
components of the Cartesian vector notation. 
In this acceleration example, the first term 
in the brackets, or the x-component, is +2.5 
meters per second squared; the second term, 
or the y-component, is –3.1 meters per second 
squared; and the third term, or the z-component, 
is +6.2 meters per second squared.

Using scalar magnitudes and directions to create vector components
In Figure 8-5, the x-component of the force has a magnitude of 160.69 Newton. 
However, looking at the vector representation of the x-component, you can 
clearly see that the component is acting to the left, or in the negative x-direction. 
Because you can denote the negative x-direction by using the –i unit vector, 
you can create the x-component force vector:

You calculate the y-component vector in a similar fashion. Recognizing that 
the y-component of this vector is acting in a positive y-direction, you can use 
a positive j unit vector to describe the direction.

Computing vector components in three dimensions
 When you resolve a three-dimensional vector into its rectangular components, 

the components must be mutually perpendicular to each other, which usually 
means each component is parallel to one of the three Cartesian axes.
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Determining the components of a three-dimensional vector is actually 
fairly simple as well. For example, if you wanted to find the rectangular or 
Cartesian components of the following velocity vector:

you simply need to strip off the numerical values that occur before the i, j, 
and k values in the vector representation.

Determining components on a 
non-Cartesian orientation
Although Cartesian vectors always work with any statics problem you 
encounter, sometimes they aren’t the most efficient tool in your proverbial 
toolbox.

The major advantage of using non-Cartesian components is that it allows 
you to use a more convenient coordinate system that may better match the 
symmetry of the object. For example, consider the force from a shockwave 
caused by an explosion. In this type of phenomenon, the shockwave moves in 
three dimensions, radially, away from the center of the explosion. If you use 
Cartesian representation to portray this force, you need three vector compo-
nents for every small area on the surface of the shockwave, and each point 
on the surface has a different set of three components. However, if you chose 
to work in a different, non-Cartesian coordinate system such as spherical 
coordinates, you can transform this complex three-dimensional problem into 
a more simplified one-dimensional situation.

Calculating non-Cartesian components 
of two-dimensional vectors
In this section, I show you how to calculate a non-Cartesian component and 
its corresponding Cartesian component. Figure 8-6 shows the same 250-
Newton force from Figure 8-5 earlier in the chapter oriented at an angle of 
130 degrees from the positive Cartesian x-axis (or shown as 50 degrees from 
the negative x-axis).
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In this example, I’ve arbitrarily chosen to find one component in the direc-
tion of the Cartesian y-axis and the other, non-Cartesian component along the 
line Oa that is oriented 45 degrees below the negative x-axis. The following 
sections show you how you can use some of the resultant techniques from 
Chapter 7 to determine the magnitudes of these components.

Using the parallelogram method
In the parallelogram method, you basically construct a parallelogram with 
sides in the direction of the y-component and the component in the direction 
of Oa. Referring to Figure 8-6, you already know the resultant (250 Newton) 
and its direction (50 degrees from the horizontal). From geometry, you 
can conclude that the angle between F

y
 and F

Oa
 is 45 degrees as shown in 

Figure 8-7a. You can then pull the force triangle from the parallelogram and 
determine the angles geometrically as shown in Figure 8-7b. 
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From this relationship, you can then compute the scalar components:

Using Cartesian techniques to find non-Cartesian components
An easier technique involves breaking each of these vectors into their respec-
tive x- and y- Cartesian components. First, you need to convert the resultant 
vector R into Cartesian form as shown in the following equation and Figure 8-8:

Even though you don’t know the magnitudes of the components, you can still 
create a Cartesian vector form. Just keep the magnitudes in the equations as 
a variable:

Remember, you can find the resultant vector by performing vector addition 
(see Chapter 6):

13_598948-ch08.indd   10413_598948-ch08.indd   104 7/28/10   10:59 PM7/28/10   10:59 PM



105 Chapter 8: Breaking Down a Vector into Components

 

Figure 8-8: 
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You can then compare all the terms in front of the i unit vector, and all of the 
terms in front of the j unit vector to create a system of two equations that 
you can solve simultaneously.

Solving for the two unknown magnitudes gives you  and 
, which are the same results as the parallelogram method 

example in the  preceding section.

13_598948-ch08.indd   10513_598948-ch08.indd   105 7/28/10   10:59 PM7/28/10   10:59 PM



106 Part II: Your Statics Foundation: Vector Basics 

 Components always come in pairs, and their magnitudes are directly related 
to each other. If you resolve a two-dimensional resultant into components, 
you must include both components in your calculations.

In this example, you calculated a Cartesian y-component and found it to be 
352.21 Newton when paired with the non-Cartesian component along the line 
Oa. However, when you calculate the components for the same original force 
vector (in the earlier section “Using Cartesian concepts to calculate Cartesian 
components”) the y-component only had a magnitude of 191.51 Newton for 
the same original force vector as this example. By comparison, these two 
y-components are significantly different. Depending on the direction of their 
counterpart components, two components acting in the same direction can 
vary quite dramatically. For this reason, you must always work with all of the 
components for a single force at the same time.
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In this part . . .

The chapters in this part introduce you to forces and 
moments, which are common effects that influence 

rigid bodies. I explain the different types of translational 
effects, known as forces, and how to compute the resultant 
(that is, the combined effect) of a distributed force; to 
further your resultant prowess, I also demonstrate how to 
determine the location of this resultant through centroid 
(or center of area) calculations. In addition, I show you 
multiple ways of computing a rotational effect known 
as a moment, including using vectors and utilizing scalar 
values.
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Chapter 9

Applying Concentrated Forces 
and External Point Loads

In This Chapter
▶ Understanding concentrated internal and external forces

▶ Working with internal axial loads in springs, ropes, and cables

▶ Including self weight in your analysis

▶ Taking a look at the principle of transmissibility

As you move forward with your modeling of the world around you, which 
is a major step in the application of statics, one of the biggest obstacles 

you need to overcome is determining how to apply those pesky forces to 
your objects. Forces come from a wide range of sources and occur both inter-
nally and externally on the object, so you want to understand several basic 
rules for how these forces are applied.

In this chapter, I explain the differences between internal and external forces, 
explain more about where these forces come from, and show you several 
common scenarios in which you encounter them. I also show you some 
simple steps for working with forces in ropes, cables, and springs, as well as 
how to handle gravitational forces on objects (or self weight). Finally, I intro-
duce the principle of transmissibility, which allows you to move forces to dif-
ferent locations on an object and proves very useful in statics. This chapter 
serves as a stepping-stone into crafting the pictures you use when applying 
statics to the world around you (which I cover in Part IV).

Comparing Internal and External Forces 
and Rigid and Deformable Bodies

You can typically separate forces into two basic categories: internal and 
external.
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 ✓ External forces: External forces are created by an action external to the 
object itself. Examples of external forces include the force created by 
a ball striking a wall or the weight of snow resting on the roof of your 
house. External forces are often the easiest to calculate because they’re 
usually caused by a visible phenomenon and can be measured.

 ✓ Internal forces: Internal forces are developed inside the object as a 
response to the applied external loads (or external forces) and system 
restraints. Tension in a cable, compression in a column, and torque in a 
drive shaft are all examples of internal forces. One of the major difficul-
ties in working with internal forces is determining the type and direction 
of each; I show you some of the techniques for identifying internal forces 
beginning in Chapter 20.

Because internal and external forces are both force vectors, you need to 
include all the usual information such as magnitude (the numerical value of 
the vector), sense (direction of the vector’s action), and point of application 
(physical location where the vector is acting), as I discuss in Chapter 4. In 
addition to distinguishing between internal and external forces, you have 
to make an assumption about the type of system you’re dealing with. Rigid 
bodies are objects that don’t experience deformation when the vector acts upon 
them. If internal forces act on a deformable body, however, the object undergoes 
a physical change or deformation, which can alter both your internal and exter-
nal load calculations or change any relevant geometric dimensions.

 In reality, all objects are deformable, but for the simple purpose of under-
standing the basic fundamentals of statics analysis, here I assume my objects 
are always rigid bodies.

Exploring External Concentrated Forces
A concentrated force is a force that acts at a point, or more realistically, on 
a very small area. Drawing an external concentrated load requires a single 
arrowhead, as shown in Figure 9-1. Remember that you usually place the vec-
tor’s tail at the point of application on the object.

In Figure 9-1a, a man is pulling on a rope with a tension of 100 Newton; this force 
causes the rope to tighten. In this case, you place the single-headed arrow such 
that the tail of the force is applied where the man’s hands attach to the rope.

Conversely, in Figure 9-1b, a 250-pound man is sitting on a chair. Because 
the force of the man is pushing down on the chair, the single-headed arrow’s 
head is applied at the point of application.
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In reality, your calculations produce the same equations and solutions 
whether the head or the tail of the vector is applied at the point of applica-
tion as long as the sense, magnitude, and line of action are all the same.

The following sections introduce several types of concentrated forces.

Normal forces from contact
In statics, you idealize most contact forces as being concentrated forces. 
Normal contact forces are forces that develop from one object pushing on 
another. They can be caused by self weight, applied external load, or any 
other force. To illustrate this idea, consider the block sitting on the ground in 
Figure 9-2a.

To see the contact forces, you need to separate the block from the ground 
in the picture. In Figure 9-2b, the force from the block pushes down on the 
ground. Conversely, if you examine the block by itself (as in Figure 9-2c), you 
see that in order to keep the block from falling through the ground, a second 
contact force is required to hold the block in its position. This reaction force 
from the ground onto the block is balanced by the contact force from the 
block onto the ground.
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Contact forces for both the ground and the block are always perpendicular 
to the contact surface. For this reason, you sometimes see contact forces 
referred to as normal forces because they’re normal or perpendicular to 
the surface.

 The point of application of contact forces is always somewhere along the 
contact surface, but it’s exact location depends on the type of problem — you 
want to pay special attention to this detail when you encounter friction prob-
lems (such as the ones I cover in Chapter 24) and rotation problems (such as 
those in Chapter 12).

Friction
Friction is a type of external force that develops from resistance as one object 
tries to slide past another. From experience, you know that if you go up to an 
object such as a refrigerator and push on it with a very small force, it doesn’t 
move. However, if you continue to push and eventually push hard enough, 
the refrigerator starts to slide. It’s those hidden friction forces that initially 
prevent the refrigerator from sliding. For a visual of this concept, consider 
the block in Figure 9-3a, which is subjected to a force that causes it to begin 
sliding along the ground.

Just like for normal contact forces, you can separate the block from the 
ground and expose the internal forces. The sense of the friction force on the 
object that wants to move goes against the direction of the motion of the 
object (as shown in Figure 9-3b). The friction force on the opposite side of 
the contact surface (on the ground in Figure 9-3c) is generally in the same 
direction as the motion of the moving object. However, both of these force 
vectors are applied parallel to the contact surface.

If you don’t quite fully understand friction at this point, don’t worry! I explain 
it in a whole lot more detail in Chapter 24.
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Figure 9-3: 
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A few concentrated loads that you want to remember are moments and 
support reactions. Both of these concepts play significant roles in your 
application of statics.

 ✓ Moments: Moments are physical effects that cause an object to want to 
rotate. In Chapter 12, I show you how to draw and calculate a moment.

 ✓ Support reactions: Support reactions are external conditions that 
restrain an object from moving and/or rotating in a specified direction. 
In Chapter 13, I show you how to draw and represent support reactions.

Other unique behaviors can result in concentrated loads, but these cases are 
special. I address those as I come across them throughout the book.

Revealing the Unseen with Concentrated 
Internal Loads

Internal loads are created through the application of external forces and 
effects and are always present on rigid bodies. You only see them when an 
object is physically cut. You can classify internal forces into three major 
categories: internal axial loads, internal shear forces, and internal moments.

 ✓ Internal axial loads: Internal axial loads are the simplest of the inter-
nal forces and are present in many objects, such as ropes and cables, 
simple columns, and springs. Internal axial loads are concentrated 
forces that act parallel to the longitudinal axis of the object. The senses 
of internal axial loads are always referred to as either tension (getting 
longer) or compression (getting shorter).

 ✓ Internal shear loads: Internal shear loads are concentrated forces that 
act perpendicular to the longitudinal axis of the object.
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 ✓ Internal moments: Internal moments are actions that cause the object to 
rotate around a point or an axis and always appear when internal shear 
loads are developed.

Don’t worry too much about shear and moments at this point; I discuss those in 
much more detail in Chapter 20. In this section, I focus on internal axial loads.

Figure 9-4a shows a bar subjected to tensile forces (P) applied on each end. 
This bar is perfectly balanced by these two forces acting in equal but oppo-
site directions. If you cut the bar into two pieces and look at the lower por-
tion (shown Figure 9-4b), you see that a new force, (PINT) is developed inside 
the bar in order to help hold that portion of the bar in its original position. In 
order to hold the bar in place, PINT must equal the applied load P. Likewise, 
if you look at the upper portion of the bar (shown in Figure 9-4c) by itself, 
another internal force is created to keep this part balanced as well. This 
internal force PINT is also equal to the applied load P.

 

Figure 9-4: 
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If you examine the direction of the same force PINT on the upper and lower 
portions, you see that each of the internal forces are of the same magnitude 
P but have different directions depending on which side of the cut line you’re 
working with (see Figure 9-4d). In Chapter 13, I show you how to better repre-
sent these internal forces, and I show you how to start writing equations and 
working with them beginning in Part VI.

Forces in ropes and cables
Forces in ropes and cables are always in an axial direction, along the line of 
the rope or cable, and are always in tension. These forces act along the line 
of action of the rope or cable. That is, the position vector of the rope is in the 
same direction as the unit vector of the force in the cable. For these types of 
objects, you often make use of dimensional data and coordinates.
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In Figure 9-5, a force of magnitude 150 pounds is applied to the end of the 
rope. Because you know the location on the wall is a height of 30 feet, the 
Cartesian coordinates of the knot on the wall are (0,30,0). (Flip to Chapter 5 
for more on Cartesian coordinates.) The end of the rope is located at coordi-
nates of (10,10,10).

 

Figure 9-5: 
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 In Chapter 5, I also mention that you can use a unit vector to define the direc-
tion of a line of action. In the case of these rope problems, you always know 
the line of action because the orientation of the rope itself is on that same line 
of action.

To write a force vector for the force on the rope, follow these steps:

 1. Create a position vector between the ends of the rope.

  Define the end of the rope at the wall as Point 1 and the free end of the 
rope as Point 2. You can calculate the position vector that defines the 
rope from Point 1 to Point 2 from the basic position vector equation:

  Point 2 is the end point of the position vector (the head) and Point 1 is 
the start point of the position vector (the tail); substitute the coordinate 
values from this example to produce a position vector for the ends of 
the rope:
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 2. Calculate the magnitude of the position vector from Step 1.

  To calculate the magnitude of a three-dimensional vector, you utilize the 
Pythagorean theorem, as I discuss in Chapter 5.

 3. Use the position vector from Step 1 and the magnitude from Step 2 to 
calculate the unit vector that describes the line of action of the rope.

  After you have the position vector and the magnitude (or length of the 
rope), you can create a unit vector by dividing the vector itself by its 
magnitude (see Chapter 5).

  The following quick check verifies that this result is indeed a unit vector:

  u
12

 as created from the dimensional data of ropes and cables always 
defines the same line of action as the line of action of the force, or

 4. Create the force vector by plugging the information gathered into the 
force vector formula.

  Here’s what your example looks like in the formula:

  which defines the force acting on the end of the rope at (10,10,10) as a 
Cartesian vector.

  This vector notation also includes additional useful information. For 
example, based on your final calculation, you now know that the rope is 
experiencing a force of +61.2 pounds parallel to the positive x-direction, 
–122.4 pounds parallel to the positive y-direction (or +122.4 pounds 
in the negative y-direction), and +61.2 pounds parallel to the positive 
z-direction. These are the Cartesian components of the force vector F 
(which I discuss in more detail in Chapter 8).

15_598948-ch09.indd   11615_598948-ch09.indd   116 7/28/10   11:00 PM7/28/10   11:00 PM



117 Chapter 9: Applying Concentrated Forces and External Point Loads

 5. Verify that your force vector is correct by verifying its magnitude.

  To verify the magnitude, you just use the Pythagorean theorem a second 
time and plug in the component values for the x-, y-, and z-components.

  Notice that the exact value of the magnitude is only approximately equal 
to 150 pounds because the scalar force components were only taken to 
one decimal place.

Forces in springs
Another type of axial force that you encounter is a mechanical spring object. 
When you think of a spring, you probably picture that wonderful toy you 
owned as a child and the countless hours you spent flopping it down your 
stairs (or trying to straighten it out). In statics, springs are a bit different. 
They may resemble toy springs, but they actually behave quite differently. 
Figure 9-6a illustrates a common depiction of a spring object.

 

Figure 9-6: 
A spring.
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Several features are very important when discussing springs, including line of 
action, stretch, and spring constants:

 ✓ Line of action: As with the depiction of force vectors (see Chapter 4), 
the line of action of a spring refers to the direction of the longitudinal 
axis. The two points that connect the spring to other objects or sup-
ports always occur along the line of action of the spring. As a result, the 
internal axial force of the spring is always along this line.
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 ✓ Stretch: The stretch refers to how much the spring is displaced from its 
original unstretched length. Stretching a spring to make it longer is ten-
sion or elongation (shown in Figure 9-6b), whereas stretching it to make 
it shorter is called compression (Figure 9-6c). The more you stretch a 
spring, the more force is developed in the spring.

 ✓ Spring constants: The spring constant is a measure of how much force 
you need to compress or elongate a spring from its unstretched posi-
tion. Factors that affect spring constants include the cross-sectional 
area of the spring, the unstretched length of the spring, and the material 
the spring is made of.

The following sections look at stretch and spring constants; for more on line 
of action, check out Chapter 4.

Stretch in springs
The force in a spring is directly related to the amount and direction of the 
stretch (or deformation) of the spring. A negative stretch indicates a com-
pressive force; a positive stretch denotes an elongating force. You can com-
pute the stretch (or spring deformation) from

δ
x
 = final length – unstretched length

Spring constants
Spring constants define how stiff a spring actually is and are a measure of 
how much force is necessary to stretch (or compress) a spring a distance 
of one unit. In SI units, the unit of the spring constant is usually Newton 
per meter (N/m), and in U.S. customary units, it’s pounds per inch (lb/in) 
or pounds per foot (lb/ft). For example, Figure 9-7 depicts a spring with an 
unstretched length of 6.5 inches and a spring constant of 3,000 pounds per 
inch. A force applied to the spring compresses the spring to a final length of 
5.25 inches.
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To compute the stretch δ
x
,

δ
x
 = final – unstretched = 5.25 – 6.5 = –1.25 inches

The equation that represents the magnitude of the internal force in a spring 
is given by

where k represents the spring constant parameter and δ
x
 represents the 

spring’s deformation from its unstretched state. You can compute the force 
in the example spring by plugging in the numbers:

The negative sign on the force indicates that the force on Figure 9-7’s spring 
is a compressive force. This finding supports the idea that a shorter spring is 
a compressed spring.

 If you want to determine the direction of the force, you can create a unit 
vector for the line of action as I demonstrate in the “Forces in ropes and 
cables” section earlier in this chapter.

Surveying Self Weight as 
an External Load Value

For many people, self weight is an ominous concept, but don’t worry — 
you’re not climbing on any scales here. In statics, the self weight of an object 
is a measure of the force created by gravity’s effects on the object’s mass.

 ✓ Gravity: Gravity is a force of attraction between masses or particles. On 
Earth, at sea level, the average gravitational acceleration constant is 
taken as 9.81 meters per second squared (m/s2, SI units) or 32.2 feet per 
second squared (ft/s2, U.S. customary units). These values actually vary 
slightly by location because the Earth isn’t a perfectly round sphere. 
However, this variation is very minor, so I use these average values 
throughout the book.

 ✓ Mass: Mass is a measure of the number of atoms in an object in conjunc-
tion with the density of each of those atoms; the mass of an object is a 
fundamental property of that object. Mass is measured in kilograms (kg) 
in SI units and in slugs (lb-s2/ft) in U.S. customary units.
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Self weight is usually either treated as a single concentrated value, which I 
discuss in this section, or spread over a continuous region, which I discuss in 
Chapter 10. Regardless, the basic formula needed to calculate the self weight, 
W of an object is given by

where m represents the mass of the object and g represents the acceleration 
due to gravity. In this form, the weight W of an object is a vector force in the 
direction of the gravitational acceleration g. On Earth, you always assume 
that gravity is acting locally downwards. (Of course, if you’re standing on 
your head, your sense of up and down may be a bit skewed.) Gravity always 
acts towards the center of the Earth. I discuss more about the location of 
application of this force in Chapter 11.

Getting specific on specific gravity 
and self weight properties
When working with self weight, you may sometimes encounter problems that 
don’t directly state the mass or the weight of an object. However, you may be 
able to use other terms, such as the following, to calculate those figures:

 ✓ Density: The density of an object is a measure of the amount of mass of 
an object contained within a certain volume of that object. For example, 
dropping a bowling ball on your foot is a lot different than dropping an 
air-filled balloon of the same size on your foot, and that’s because of 
the effects of density. Temperature is a major factor in the density of an 
object. The density of an object is measured in units of kilograms per 
cubic meter (kg/m3) for SI units, in lb-s2/(ft-ft3) (I won’t bore you with the 
spelled-out version of that one) in U.S. customary units. Density is usu-
ally expressed by the Greek variable ρ, or rho.

 ✓ Specific gravity: Specific gravity (sg) is the density of the material rela-
tive to the density of water, which has a specific gravity of 1.0. One 
useful feature of specific gravity is that the value is unitless and remains 
the same regardless of which measurement system you use. So a spe-
cific gravity of 1.0 in the metric system is a specific gravity of 1.0 in the 
U.S. customary system.

  For example, carbon steel has a specific gravity of approximately 7.8, 
meaning that it’s nearly eight times as heavy as the same volume of 
water. Ice, on the other hand, has a specific gravity of approximately 
0.92 (which means that it’s lighter than water, and one of the reasons 
that it floats!).
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 If the problem gives you the weight of the object, you must include it in your 
calculations. If the mass, density, or specific gravity is provided, you can cal-
culate the weight from the formulas presented in this section. In most struc-
tural problems, the applied forces on an object are often much, much greater 
in magnitude than the actual self weight of the object. So, if you choose to 
neglect the self weight when the applied loads are large, you’ll probably be 
okay. However, keep in mind that if you ignore the self weight of an object 
weighing 200 pounds when the applied loads are only 5 pounds, your results 
will end up being highly inaccurate.

Specific weight (γ) is the weight per unit volume and is a relationship that 
relates density (mass per unit volume) of a material with gravitational effects. 
The formula is:

where γ is the specific weight, measured in Newton per cubic meter or 
pounds per cubic foot in SI and U.S. customary units, respectively.

Working with lumped mass calculations
 Mass is generally distributed throughout each particle of an object. However, 

instead of calculating each weight for each particle (and you may have a lot 
of particles) in an object, you can simplify your work with mass and weight 
by making an assumption about the location at which the weight or mass is 
acting. Compute the grand total of all the particle masses and then express 
this value as a single value, or lumped mass. You can compute the lumped 
mass of an object, m, from the following relationship:

where ρ is the density of the object (as defined earlier in this chapter), and 
V represents the volume of the object measured in cubic meters or cubic feet 
in SI and U.S. customary units, respectively. So, if you know the density of a 
cube of water is approximately 1,000 kilograms per cubic meter at 60 degrees 

Fahrenheit and that the cube has a volume of 0.35 cubic meters, you can cal-
culate the mass of that water cube as

This method is valid for prismatic objects, or simple objects having constant 
dimensions in each direction.
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Introducing the Principle 
of Transmissibility

The principle of transmissibility implies that a force vector acting on a rigid 
body results in the same behavior regardless of the point of application of 
the force vector, as long as the force vector is applied along the same line 
of action. It’s a concept that’s very important within vector mechanics. In 
fact, it forms the basis for one of the three major assumptions that Isaac 
Newton proposed with respect to rigid body mechanics — it doesn’t affect 
the calculations for equations of equilibrium (covered in Chapter 16) because 
ultimately, the direction, point of application, and magnitude of the applied 
vector are still the same. Figure 9-8 shows a graphic representation of the 
principle of transmissibility for rigid bodies.

 

Figure 9-8: 
Principle of 

transmis-
sibility.

 

P1 P2 P1 P2 P1 P2 P2 P1

Rigid body Same line
of action

Notice that for the rigid body shown, a force P1 acting to the right and 
another force P2 acting to the left result in the same net behavior as long as 
the forces maintain their original magnitude and sense, and act on the object 
along the same line of action. That is, the point of application of forces can 
occur anywhere along the same line of action on the object without changing 
the resulting behavior of the object.

15_598948-ch09.indd   12215_598948-ch09.indd   122 7/28/10   11:00 PM7/28/10   11:00 PM



Chapter 10

Spreading It Out: Understanding 
Distributed Loads

In This Chapter
▶ Defining the properties and types of distributed loads

▶ Finding a distributed load’s resultant

▶ Distributing mass throughout an object

▶ Seeing the connection between concentrated and distributed forces

When you throw a small object such as a golf ball at a wall, the force 
the ball makes onto the wall (and of course the force that the wall 

makes onto the ball) acts on a very small area. In many cases, you idealize 
this force as a concentrated load (which I cover in Chapter 9) because the 
force is concentrated onto a small area. But what happens when you throw a 
larger object (such as your malfunctioning TV) with the same force at the same 
wall? In this case, the area of the force when it meets the wall is spread out and 
is therefore no longer concentrated. This type of force is known as a distrib-
uted force and has several unique properties that you need to remember.

In this chapter, I discuss distributed loads in detail and show you how to 
calculate their total combined effect. I also reveal how you can consider self 
weight (see Chapter 9) as a distributed load as well.

Getting a Handle on Some 
Distributed Load Vocab

A distributed load is a load that doesn’t act at a point but rather is spread out 
over a specified length. Because distributed forces are spread out over the 
entire section, they have some properties you want to be aware of: intensity, 
start point, and end point.
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 ✓ Intensity: The intensity of a distributed load is actually the magnitude 
of the load (flip to Chapter 4 for more on magnitude). For a distributed 
load, intensity can be any shape. It’s often a polynomial of zero, first, 
or second order (see Chapter 2); however, you can use any function to 
describe the intensity depending on the loading you’re describing. In the 
following section, I describe several common shapes of intensity functions 
that you may encounter.

 ✓ Start point: The start point of a distributed load indicates where the 
intensity load application actually begins.

 ✓ End point: The end point of a distributed load indicates where the 
intensity loading actually ends.

Figure 10-1 shows a depiction of a fully distributed load (where the start 
point is at one end of the object and the end point is at the opposite end), 
a partially distributed load, and a concentrated load applied to a beam.

 

Figure 10-1: 
Fully 

distributed, 
partially 

distributed, 
and concen-
trated loads.

 

Fully Distributed Load

Intensity function

Partially Distributed Load

End pointStart point

Concentrated Load

P

Distributed loads come in many shapes and varieties depending on how the 
load was created and how it’s applied on the object. Distributed loads can 
be linear, surface, or volumetrically distributed; I deal with these varieties in 
more detail in the following section.
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Take a (Distributed) Load Off: 
Types of Distributed Loads

 You can typically classify distributed loads based on the dimensions in which 
they’re acting. The units of a load intensity always give you some insight into 
the type of load you’re dealing with and can help you choose an appropriate 
method for working with distributed loads. Check out the following sections 
for more on the types of loads and the units they use.

Distributed forces
For distributed forces that act over a linear distance, you measure in force-per-
distance measurements: Newton per meter (N/m) for SI units and pounds per 
foot (lb/ft or plf) in U.S. customary units. Figure 10-2 shows several different 
distributed forces. By far, the two most common of the distributed forces are 
known as uniformly distributed and linearly distributed (though they’re not 
the only options).

 ✓ Uniformly distributed: A uniformly distributed load is a load that has a 
constant intensity over the length of the load. Figure 10-2a illustrates a 
uniformly distributed load with a constant magnitude of wo. A uniform 
load is also a zero-order load distribution because the order of a polyno-
mial of zero order (n = 0) for a polynomial is of the form w(x) = wox

0 = wo, 
which indicates a zero-order (or constant) function.

 ✓ Linearly distributed: A linearly distributed load is a load with an inten-
sity that varies linearly over the length of the load. The lowest intensity 
occurs at one end of the load, and the maximum occurs at the other. You 
can establish all intensity values in between from a linear function, as 
shown in Figure 10-2b. In a linearly varying function, the function is first 
order because it has the form w(x) = ax+b, which defines a linear function.

 ✓ Higher order distributed: A higher order distributed load is a distributed 
load that has an intensity that can be determined by a polynomial of 
order greater than one (or n > 1) or by completely different functions 
altogether (such as trigonometric functions). Higher-order distributions 
such as the one shown in Figure 10-2c can be quite complex and may 
require special calculations.

Surface loads (pressures)
Surface distributed loads (also known as surface pressures) are loads that act 
over a prescribed area. Over that area, the intensity of a surface load can 
vary greatly. You measure a surface distributed load as a force per area, so 

16_598948-ch10.indd   12516_598948-ch10.indd   125 7/28/10   11:01 PM7/28/10   11:01 PM



126 Part III: Forces and Moments as Vectors 

you express the units as Newton per square meter (N/m2) or the pascal (Pa.) 
in SI and pounds per square foot (lb/ft2 or psf) in U.S. customary.

Forces spread over an area are also called pressures. Pressures always act 
over a two-dimensional area (or surface) and can vary in intensity in multiple 
directions. Examples of surface pressures include the pressure of water 
acting on a dam (pressures are very common when dealing with fluids), and 
the weight of snow on the roof of your house. Figure 10-3 shows a pressure 
on a surface; the pressure intensity has the form w(x,y) because it can have 
changing intensities in the x- and y-directions.

 

Figure 10-2: 
Distributed 

forces.
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Figure 10-3: 
A two 

dimensional 
pressure 

distribution.
 Surface

w(x,y)

 Pressure loads are also used frequently in structural analysis to model room 
capacities of people. Various design codes require anywhere from 40 to 100 
pounds per square foot of design load depending on the size, occupancy, and 
purpose of a particular room.

Volumetric loads
Volumetric distributed loads are loads that act over a volume. The most 
common volumetric load is the specific weight, a useful value for calculating 
the self weight of an object. (Take a look at Chapter 9 for details on specific 
weight and self weight.) You measure a volumetric distributed load as a force 
per volume, so you use the units Newton per cubic meter (N/m3) for SI and 
pounds per cubic foot (lb/ft3) in the U.S. customary system. Volumetric loads 
require all three dimensions to calculate (versus the two dimensions pres-
sures require; see the preceding section).

Calculating the Resultant 
of a Distributed Load

Sometimes in statics work, you want to be able to consolidate a distributed 
load into a single value that acts at a single, specific location. This combined 
or consolidated force is known as the resultant. The resultant of a distributed 
load is similar to the resultants of concentrated loads I discuss in Chapter 7. 
With distributed loads, the resultant is a single combined force that repre-
sents the entire effect of the distribution.

 After calculating the resultant, you still need to find the unique point of applica-
tion where it’s acting. I show you how to compute this location in Chapter 11.
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Uniform and linearly varying forces
The simplest resultant forces to calculate are those forces that occur in two 
dimensions. In two dimensions, you calculate the resultant of a distribution by 
evaluating the following relationship: resultant = area under loading distribution.

 To start the calculating process, I like to replace the load diagram with a 
dashed line to represent the boundary as shown in Figure 10-4. In addition, I 
place a concentrated force to represent the resultant of the distributed load. 
The dimension x helps determine the specific location of the resultant, which 
I show you how to calculate in Chapter 11. I use this type of sketch for two rea-
sons. First, it helps determine the necessary dimensions of the area calculation. 
Second, it also preserves a reminder of the original load distribution that I use 
to compute the resultant magnitude.

 

Figure 10-4: 
Uniform 

and linear 
distribution 
resultants.
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Zero order (uniform) distributions
The uniform distribution in Figure 10-4a is one of the simplest resultants to 
compute. By looking at the distribution boundary line, you see that the resul-
tant area that you need to compute is actually the area of the rectangular 
shaded region.

Recall from your basic geometry class (remember that?) that the formula for 
the area of a rectangle is area = base · height, where base and height are the 
dimensions of the rectangle. You can expand this formula to apply to uniform 
distributions:

Resultant = AreaRECTANGLE = base · height = wo · L

For the uniform distribution, the base is the length of the length of the uni-
form distribution, or L. The height of the distribution is actually the intensity, 
wo, of the distribution.

For example, if you stack 300 pounds over a one-foot area and then copy this 
loading repeatedly for the entire length of the beam, you’ve just defined a uni-
form load of 300 pounds per foot. If the beam is 12 feet long, the resultant load 
of this uniform distribution is 300 pounds per foot · 12 feet = 3,600 pounds.

Thus, the resultant of this uniform load is 3,600 pounds total acting on 
the beam.

First order (linearly varying) distributions
The linearly varying distribution shown in Figure 10-4b is another common 
distribution that you often encounter.

To compute the magnitude of the resultant, you need to be able to compute 
the area of a trapezoid (the shaded area of the distribution’s boundary):

where length of the distribution is given by the dimension L, the maximum inten-
sity is given by wMAX, and the minimum intensity is given by wMIN. Geometrically, 
you can represent this calculation as a sum of a rectangle and triangle or as a 
sum of two triangles as shown in Figure 10-5 in the following section.

Other two dimensional distributions
Other two-dimensional distributions that you may encounter can be 
described by higher-order continuous or trigonometric functions and distri-
butions composed of combinations of simple distributions.

Figure 10-5 illustrates a more complex two-dimensional distribution that has 
a varying intensity, w(x), acting over a specified length L.
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Figure 10-5: 
Complex 

two-
dimensional 
distribution 

with varying 
intensity.

 Integration Technique

h

dx

w(x)

L

x

If you remember from calculus, you can easily use an integral to determine 
the area bound by a continuous function. You start by taking an incremental 
slice that has a differential width, at some arbitrary position x. The height of 
the slice is actually the value of the intensity function, w(x), evaluated at that 
point. That is, h = w(x). Using integration, you can then compute the area 
from the following integral:

 As long as you can define the intensity of the distribution as a function w(x), 
or a series of functions w1(x), w2(x), and so on, you can compute the magni-
tude of the resultant of the distribution.

For working with complex or combinations of distributions, you can always 
break up a larger distribution into smaller (and often simpler) pieces. 
Figure 10-6 illustrates a distribution that’s actually a combination of two 
simpler distributions.

In this example, you can break this seemingly complex distribution into a 
combination of a linearly varying distribution shown as Area #1 and a uni-
form distribution shown as Area #2, and you can compute the resultant 
for each of those two distributions separately. After you determine these 
resultants, you can then calculate the resultant of the two smaller resultants 
(Resultant #1 and Resultant #2). This final resultant then has its own posi-
tion, as indicated by xRES. I discuss this topic more in Chapter 11.

Surface loads and pressures 
in multiple dimensions
In concept, calculating the resultant of a surface load is similar to how you 
treat linear distributed loads. Instead of calculating the area under a linear 
distribution, for surface loads, you actually calculate the volume inside the 
pressure distribution. Figure 10-7 shows an example of a three-dimensional 
pressure diagram.
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Figure 10-6: 
Two linearly 

varying 
distributions.
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For a given Cartesian axis, you know (or can determine from calculus) the 
function that describes the pressure distribution. In Figure 10-7, the pressure 
varies in two directions (both x and y) — that is, a pressure distribution can 
vary in two directions. To find the resultant, you have to use some basic cal-
culus involving a double integral for this evaluation:

 

Figure 10-7: 
Three-

dimensional 
pressure 
diagram.
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Now, before you completely panic about all the calculus you may have for-
gotten, here’s how you can handle a pressure distribution defined by a geo-
metric prism. A geometric prism is a three-dimensional shape that has equal 
areas on opposite ends of the shape and a constant length. In Figure 10-7 
earlier in the section, if PTOP1 = PTOP2 and PBOT1 = PBOT2, the distribution shown 
is a geometric prism. To calculate the volume of this prism, you can make use 
of a basic equation for calculating the volume of a prism:

Volume = AreaBASE · height 

Avoiding the double integral
If you redraw the distribution of Figure 10-7 as a two-dimensional linear dis-
tribution that is constant along its length, you can create a new, simpler dis-
tribution as shown in Figure 10-8. If you use the following basic steps, you can 
avoid the double integral and calculus.

 

Figure 10-8: 
Geometric 

prism 
approxima-

tion.
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 1. Determine the resultant (Resultant #1) of the distribution for the cross-
sectional area of the geometric prism, using the techniques I discuss 
in the section “Uniform and linearly varying forces in two dimensions.”

  When you calculate this resultant, you end up with a force per distance, 
so your units are Newton per meter or pounds per foot.
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 2. Create a new distribution in the direction of the length of the original 
distribution.

  As shown in Figure 10-8, you evaluate the second distribution in the 
Cartesian x-direction. The intensity of this new distribution is equal to 
Resultant #1 and is applied uniformly along length L.

 3. Use those same techniques to resolve this second distribution into a 
final resultant (Resultant #2).

  Resultant #2 is actually the resultant of the surface pressure. The units 
on this final resultant are either Newton or pounds.

 This technique only works on distributions that can be defined as geometric 
prisms. If you can’t define the shape as a geometric prism, you have no choice 
but to use the double integrals technique.

Looking at Mass and Self Weight 
as Distributed Values

As I state in Chapter 9, treating mass and weight as a single lumped value is 
valid for prismatic objects, or simple objects having constant dimensions in 
each direction. However, for cases where the object shape is irregular (non-
prismatic), or the density of the object isn’t constant throughout, the mass 
may have a distribution of its own. For example, if you take a prismatic bar 
that has a constant density and cut it into two pieces, each piece still has a 
weight associated with it, which means each piece must have mass as you 
can see in Figure 10-9.

Figure 10-9 shows a prismatic bar with a length L that has been broken into n 
equal-length pieces. That means that the length of each piece is given by  .

 If the cross section of the bar is not prismatic, you have to assume that the 
mass is constant for any given piece and calculate the mass (as I describe in 
Chapter 9) for each piece separately. A distributed mass problem is basically 
a lot of lumped mass problems combined into a single problem.

After you determine the mass of each piece, you can calculate the self-weight 
(W)i of each piece by using the following formula:

where g is the acceleration due to gravity.
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Figure 10-9: 
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Each piece of the bar actually has its own self weight. Usually you can 
assume that the mass is constant over very small increments (or on a piece-
by-piece basis), but from one piece to the next, the distributed masses can be 
vastly different.

 Here’s a handy guide to the units and constants you need (in both SI and U.S. 
customary) to work with distributed mass:

Measurement SI U.S. Customary

Mass kg/m slugs/ft
Gravity 9.81 m/sec2 32.2 ft /sec2

Weight N/m plf

To verify the piecewise values, you can still determine the total weight of the 
bar by adding the weights of all the individual pieces:

The final units of WTOTAL give you the same units (Newton for SI and pounds 
for U.S. customary) as the lumped mass system in Chapter 9.
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Chapter 11

Finding the Centers of 
Objects and Regions

In This Chapter
▶ Discovering what kinds of locations distributed loads have

▶ Calculating centroids for discrete and continuous regions

▶ Looking at center of mass and center of gravity

In Chapter 10, I describe how to find the resultant (combined) force of a 
variety of distributed loads by simply determining the areas under the 

load diagram. This calculation provides you with two of the three pieces of 
information required to fully define a force vector — namely, the magnitude 
(the vector’s length) and the sense (the vector’s direction). However, you also 
need to determine a force vector’s point of application in order to properly 
define the vector. (Check out Chapter 4 for details on these vector properties.)

For concentrated loads (single loads applied at a point — see Chapter 9), 
you can determine the point of application almost by inspection. If a small 
object hits a wall, a concentrated force from the ball is located at the point 
of impact. However, distributed loads (loads spread over a line or area — see 
Chapter 10) are different.

To find the point of application of a resultant of a distributed load, you have 
to calculate the center of area or the centers of mass and gravity for the load 
or object. In this chapter, I show you how to perform these calculations.

Defining Location for Distributed Loads
Depending on the type of distributed loads you encounter along your stat-
ics journeys, the resultant force of each of those loads must act at a specific 
location. As you understand how to specify the locations where distributed 
loads and self weight (the force resulting from the gravitational effects of the 
mass of an object) are positioned, you encounter several terms to define 
these positions: centroid, center of mass, and center of gravity.
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 ✓ Centroid: The centroid or center of area of a geometric region is the geo-
metric center of an object’s shape. For most external distributed loads 
(where the force acts on the object from the outside), the resultant force 
acts at a location known as the centroid of the load distribution. See the 
following section for more on centroids.

 ✓ Center of mass: The center of mass is the location at which the resultant 
mass is assumed to act.

 ✓ Center of gravity: The center of gravity is the average location at which 
the self weight of the object is assumed to act. Usually, the center 
of gravity and center of mass are assumed to be the same location; I 
explain why a little later in this chapter.

Chapter 9 gives you the lowdown on lumped self weight, and Chapter 10 
describes distributed self weight.

Getting to the Center of Centroids
The centroid is actually a set of coordinate values (x,y,z) measured relative 
to a specific reference point. Usually, the origin — or coordinates (0,0,0) — of 
the Cartesian coordinate system that you implement is a convenient refer-
ence point. (See Chapter 5 for more on Cartesian coordinates.) For many 
shapes, this location often occurs inside the boundaries of the region. 
However, in some situations you may actually compute the centroid coordi-
nates at a position outside the boundary.

Determining the location for the resultant of a distributed load involves cal-
culating the centroid of the load region, which I show you how to do in the 
following sections.

Defining a centroid’s region type
When you compute a centroid location, your first step is to always determine 
which equation you should use. To make this decision, you must first classify 
whether a region is discrete or continuous.

 ✓ Discrete region: A discrete region is an area that can be broken up into 
several subregions composed of simple shapes, such as rectangles, cir-
cles, triangles, and parabolic segments, with known or easily determined 
areas. You can also easily express the centroids of these regions based 
on the dimensions of the region.
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 ✓ Continuous regions: A continuous region is any region that isn’t classified 
as a discrete region. This region is normally enclosed by a complex or 
irregular-shaped boundary. To determine the centroid of continuous 
regions, you have to define the boundaries by using mathematical 
functions and then employ basic calculus and integration techniques.

Computing the centroid 
of a discrete region
A discrete region is a type of region made up of a combination of shapes 
referred to as subregions. Each subregion has its own individual area and 
centroid calculation that is usually fairly simple to compute. You can then 
combine these subregion properties to compute a single centroid location 
by using the following equations:

 ✓  is the distance from the origin to the centroid of the discrete region 
measured parallel to the Cartesian x-axis.

 ✓ xi is the distance from the origin to the centroid of subregion i measured 
parallel to the Cartesian x-axis.

 ✓  is the distance from the origin to the centroid of the discrete region 
measured parallel to the Cartesian y-axis.

 ✓ yi is the distance from the origin to the centroid of subregion i measured 
parallel to the Cartesian y-axis.

 ✓ Ai is the area of subregion i.

 ✓ n is the number of subregions that make up the discrete region.

 If the sigma notation in this equation looks foreign to you, flip to Chapter 2.

Noting geometric properties of simple shapes
Figure 11-1 shows six simple shapes that allow you to handle the centroidal 
calculations for the vast majority of discrete regions. With these six basic 
shapes, you can construct many more-complex discrete regions.

 Pay special attention to the location of the origin from which the centroid 
distances xi and yi are determined. Most statics books and other reference 
sources include similar graphics for properties of areas (usually inside the 
front or back cover), but the authors of these texts may base their measure-
ments on completely different origins.
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Figure 11-1: 
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Building a centroid calculation table
When calculating the centroid of discrete shapes, such as the one in Figure 11-2, I 
find that constructing a simple table makes the solution process much easier 
and more straightforward.

 

Figure 11-2: 
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discrete 
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To calculate a centroid coordinate, you need a separate table for each x- and 
y-centroid dimension. To determine the x-centroid location, you start by 
creating a table with the column headings shown in Table 11-1.

Table 11-1 X-Centroid Coordinate Table

Region # x
i
 (in) A

i
 (in2) x

i
 A

i
 (in3)

1 (triangle) 0.67(8) = 5.36 0.5(8)(8) = 32.00 (5.36)(32.00) = 171.52

2 (rectangle) 4 + 0.5(4) = 6.00 (4)(4) = 16.00 (6.00)(16.00) = 96.00

3 (circle hole) 8 – 2 = 6.00 –π(0.5)2 = –0.785 (6.00)(–0.785) = –4.71

TOTAL ------------------
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Next, use the following simple steps to help you complete the table. At the 
end, the calculation in Step 7 is the actual x-coordinate location.

 1. In the first column, list each of the areas that make up the discrete 
region, including any holes or subtracted regions.

 2. In the second column, calculate the distance from the origin of the 
combined region to the centroid of each shape.

  For example, Region #1 (i = 1) is a triangle; Figure 11-1 earlier in the 
chapter shows you that the x-distance to the centroid of a triangle is

 3. Calculate the area for each region and fill the results into the third 
column.

  For Region #1, you can calculate the area of a triangle from

  A1 = 1⁄2(8)(8) = 32.00 square inches

  For regions that are missing or subtracted from other regions (such as 
holes), you calculate the area of the region containing the hole (Region #2) 
as though the hole doesn’t exist and then calculate and subtract the 
area of the hole (Region #3). See “Including holes in discrete regions” 
later in the chapter for more information about this process.

 4. Multiply the values in the second and third columns and put the prod-
uct in the fourth column.

  For Region #1:

  x1A1 = (5.33)(32.00) = 171.52 cubic inches

  Notice that this product for Region #3 contains a negative value, 
because the hole creates a negative area, as I note in Step 3.

 5. Add all the values in the third column and record this value on the 
bottom row for the TOTAL of that column.

 6. Repeat Step 5 for the values in the fourth column.

 7. Compute the  coordinate for the combined discrete region by divid-
ing the total from Step 6 by the total from Step 5:

Based on the result of Step 7, you can now locate the x-coordinate of the cen-
troid, which is located 5.57 inches from the origin in the positive x-direction. 
You measure this distance from the same origin you use in all the calculations.

To locate the y-coordinate of the centroid, you need to create a table similar 
to Table 1-1, using y in place of x.
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Including holes in discrete regions
When you’re working with a strangely shaped discrete region, sometimes it’s 
convenient to overestimate an area with a simple shape and then subtract 
another simple shape from your calculations. Using Figure 11-3a, you can 
overestimate the total region by drawing a rectangle with a horizontal dimen-
sion of b1 + b2 and a vertical dimension of h1 + h2. However, you’re overesti-
mating the total area of the actual region (see Figure 11-3b). To correct this 
estimation, you can then subtract a region having a horizontal dimension 
of b2 and a vertical dimension of h2 (see Figure 11-3c). The area of this sub-
tracted region is computed as a negative number and included in Table 11-1 
earlier in the chapter.

 You can add or subtract regions from your estimated shape as long as you 
apply the correct sign to the area of the region when you calculate it. Areas 
being subtracted are always negative.

 

Figure 11-3: 
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 You must measure the distance to the centroid of each simple area, including 
subtracted regions relative to the same reference point.

Handling trapezoidal regions
One of the more common discrete regions you come across is the trapezoidal 
region, which shows up frequently in submerged surface calculations (which 
I discuss in Chapter 23) and linearly varying load distributions (head to 
Chapter 10). Just like with other discrete regions, you can separate the trap-
ezoidal region into smaller subregions. Figure 11-4 shows two possibilities for 
this division.

The first option is to break the trapezoid in Figure 11-4a into a rectangle and 
a triangle (see Figure 11-4b). The second option is to break the region into 
two triangles (see Figure 11-4c). Regardless of which method you choose, 
your centroid calculations produce the same resulting centroid location 
(assuming you do the math right, of course!).
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Finding centroids of continuous regions
Finding the centroidal coordinates for a continuous region is usually more 
mathematically complex than the discrete centroidal calculations that I 
describe in the preceding section because you need to use your calculus 
skills to perform the integrations to find the centroidal coordinates. The 
equations that you need to use when working with continuous regions are

If you examine these formulas, the continuous region formulas are actually 
very similar to the discrete region formulas. To illustrate how these equations 
are used, consider the continuous region in Figure 11-5a, which is bounded 
by two functions, f1(x) = x2

 on the lower bound edge and f2(x) = x on the upper 
bound edge.

To use these integral equations, you first need to develop expressions for the 
incremental area dA. Start by examining the shaded incremental slice shown. 
This rectangular area can be computed from

The distance x in this centroidal calculation is the distance from the origin to 
the centroid of the rectangular incremental area. It’s just the same variable x 
that you use when you perform your integration calculation.
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Figure 11-5: 
A sample 

continuous 
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centroid.
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 Because you’ve now transformed the area integration into a linear integration 
calculation (as indicated by the dx), you need to change the limits of integra-
tions as well. The upper limit of the linear integrations along the x-axis is 1 
and the lower limit is 0. To compute the x-direction centroidal coordinate as 
shown in Figure 11-5b, you then substitute into the formula and perform the 
integration as follows:

Calculating Figure 11-5c’s centroid location in the y-direction works much the 
same way as the x-direction calculation does, but with a few added issues. As 
in the x-direction, you start by modifying the incremental area calculation to 
become a linear integration calculation. The same dA expression you use for 
the x calculation still works. However, the y-distance requires a bit of work. In 
Figure 11-5c, notice that the variable yi is actually different for each value of x. 
In this case, you need to transform that expression as well.
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 Remember, when you integrate with respect to a variable (in this case, dx), all 
variables in the expression must be in terms of x. In this example, the y loca-
tion of the centroid is also a variable, but you know its relationship to the x 
variable because you know the equations of the upper and lower boundaries 
of the region.

Next, you substitute the expression for y into the centroidal equation:

Notice here that you have to complete a multiplication of two polynomials 
before you can perform the integration. Now, if those polynomials are reason-
ably simple, this multiplication may not be that big an issue.

 If you choose a slicing direction and the algebra and boundary-defining func-
tions seem complex, try developing the incremental area calculations by slic-
ing the region in the opposite direction as I describe in the nearby “Slicing a 
centroidal calculation differently” sidebar. After all, you still end up getting the 
same numeric results no matter how you slice it.

Taking advantage of symmetry
In some cases, you have to find the centroids of objects that have one or 
more axes of symmetry. An object is said to be symmetrical about an axis if 
the part of the object on one side of that axis is a reflection, or mirror image, 
of the part on the other side. Many shapes in engineering are symmetrical.

Some objects have one axis of symmetry, such as the images shown in 
Figure 11-6a and b. Other objects can have multiple axes of symmetry, such 
as the object in Figure 11-6c. And yet other objects can have an axis of sym-
metry that is neither horizontal nor vertical but rather oblique as in Figure 11-6d.

 If you know that an object has an axis of symmetry, you can assume (and 
rightly so!) that the centroid location in the opposite direction must be 
located on that axis of symmetry. For example, Figure 11-6a has a vertical axis 
of symmetry. If you identify that this axis is located 5 millimeters to the right 
of the origin, you also know that the horizontal centroid distance is 5 milli-
meters to the right of the origin as well. You’ve just found one of the centroid 
locations without ever having to write a single equation!
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Slicing a centroidal calculation differently
If the polynomials you need to multiply become lengthy, complex, or full of trigonometric functions, 
you may consider using a process similar to the following:

Sometimes you can simplify the math by changing the direction of the area slices. Reexamine the 
example in Figure 11-5 by using a horizontal incremental area as shown in the following figure.

y

x

dy

dA

yi

x1 x1x2

x2

Origin

1.0

1.0

Horizontal
slices

dy

h(y) = x1– x2

For example, if you repeat the calculation for the y-centroid coordinate but instead slice the incre-
mental area dA horizontally, you get a different expression:

For the horizontal slice, notice that the parameters x1 and x2 are actually dependent on the func-
tions f2(x) = y = x2 and f1(x) = y = (x1)

2. Substituting into the same continuous centroid equation and 
evaluating the integral,

Note that the result is identical to the traditionally calculated result in “Finding centroids of continuous 
regions.” However, the polynomial multiplication for this method is a bit easier to work with. 
Unfortunately, depending on how you slice the continuous region (horizontal or vertical) to obtain 
your incremental area, you can either simplify your calculations or make them significantly more 
complicated. And you won’t know which until you actually try.

17_598948-ch11.indd   14517_598948-ch11.indd   145 7/28/10   11:01 PM7/28/10   11:01 PM



146 Part III: Forces and Moments as Vectors 
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Understanding Centers 
of Mass and Gravity

Although you can use the calculations for centroids and centers of area in 
the previous sections with internal forces and external loads, self weight has 
its own special location requirements. To locate self weight, you first need to 
understand the difference between an object’s center of mass and its center 
of gravity.

 ✓ Center of mass: An object’s center of mass is the single location where 
its total mass can be applied as a single lumped value.

 ✓ Center of gravity: An object’s center of gravity is the location on the 
object where resultant force due to gravity is acting. Self weight is a 
significant gravitational force on any object and is always located at the 
center of gravity.
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Centers of mass and centers of gravity don’t necessarily coincide with the 
centroids of geometric areas, although very often they do (check out “Getting 
to the Center of Centroids” earlier in the chapter for more on centroids). The 
center of gravity and center of mass also don’t necessarily have to be con-
tained within the boundary of the region.

Center of mass
The center of mass isn’t necessarily tied to the geometric dimensions of 
the object but rather to the distribution of the mass within the object. For 
example, engineers often want a racing vehicle’s center of mass as low as 
possible in order to ensure its stability at high speeds. However, the centroid 
of the vehicle is usually located at a position much higher up in the vehicle 
as a result of the physical dimensions of the automobile (see Figure 11-7).

 

Figure 11-7: 
Center of 

mass versus 
centroid in a 

race car.
 

Centroid
of area

Center
of mass

For discrete regions, you can calculate the center of mass from the following 
expression:

For continuous regions, you have to fall back to the integral form (similar to 
the centroid calculations for continuous regions that I discuss earlier in the 
chapter), as follows.

where m is the total mass of the object, and dm is the mass of an incremental 
slice of the object. The variable x represents the distance from the reference 
point to the center of the incremental mass, dm.
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If you think this formula looks very similar to the centroid equations I discuss 
earlier in the chapter, you’re right. The only difference is that instead of using 
the region’s geometric area in your calculation, you’re now using its mass. 
Consider the system of two masses (m1 and m2) shown in Figure 11-8.

 

Figure 11-8: 
Center of 

mass 
calculation.
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 The center of mass is directly related to the location of the mass of each sub-
region and its position relative to a reference location, so always include a 
reference or origin when measuring the center of mass.

Center of gravity
As long as the gravitational pull on an object is uniform, the centers of grav-
ity and mass share the same position. On Earth, you can reasonably assume 
this scenario to be the case because the Earth’s gravitational field typically 
doesn’t fluctuate very much over short distances.

In this book, I assume that the gravitational field is constant for the object, 
and thus that the center of mass and the center of gravity occur at the 
same location.
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Chapter 12

Special Occasions in the 
Life of a Force Vector: 
Moments and Couples

In This Chapter
▶ Getting a grip on rotation and moment basics

▶ Computing magnitudes of moments through two methods

▶ Creating vectors of moments

▶ Relocating forces to new locations

In earlier chapters, I discuss the concept of forces and explain how a force 
(such as a bat) pushing on an object (such as a baseball) causes that 

object to move in the direction of the applied force (known as translating). 
However, not all actions cause an object to move or translate; some cause 
rotation.

In this chapter, I illustrate the rotational behaviors, including moments, cou-
ples, and concentrated moments, of objects and present the equations that 
let you calculate the behaviors that cause these rotational effects.

I Need a Moment: Exploring Rotation 
and Moments of Force

Think about a pinwheel. By blowing on the pinwheel, you’re actually applying 
a force to it. Unlike the examples in previous chapters, the pinwheel doesn’t 
move in the direction of the force because it’s tied to a stick. But it does spin 
or rotate. The pinwheel stays in place, but it spins. The harder you blow (the 
more force you apply) to a pinwheel, the faster it spins.
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150 Part III: Forces and Moments as Vectors 

Rotational behaviors can also occur in objects that are translating. Rolling 
is a combination of both linear motion (or translation) and rotation. The old 
tumblin’ tumbleweeds that you see in classic Westerns are a great example. 
These dried plants move along the dusty countryside (translation), turning 
under the force of the wind (rotation).

The general physics definition of a moment is always “force times distance.” This 
simple concept doesn’t account for several other considerations that come into 
play, but it’s efficient enough to illustrate the units of a moment: Newton-meters 
(N-m) for SI units and pound-feet (lb-ft) for U.S. customary units.

Because a moment is often a direct result of the action of a force vector, a 
moment is also a vector and must also have similar characteristics. Like any 
vector, a moment vector has a magnitude, point of application, and sense 
(see Chapter 4 for more on these basic characteristics).

The magnitude of the moment is a measure of the intensity of the rotational 
effect. Instead of having a unique point of application (location in space) or a 
defined line of action (line in space on which the vector is acting) as forces 
do, the moment actually rotates around an axis called the axis of rotation. 
The sense is the direction of rotation about its axis of rotation. You usually 
represent it as a clockwise (negative) or counterclockwise (positive) behav-
ior. An axis of rotation can either be within the object, which results in a 
rotational behavior known as pivoting, or outside an object, which results in 
a rotational behavior known as orbiting.

Figure 12-1 shows you the similarities between force vectors and moment 
vectors. You display a force with a single-headed arrow, as I describe in 
Chapter 4. The figure also shows you two ways for depicting a rotation — 
one with a circular arrow, and another with a double-headed arrow. See the 
similarities between moment and force sketches? Don’t worry, I discuss these 
methods for drawing moments later in this chapter.
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 Just as with the line of action for a force, the axis of rotation for a moment 
doesn’t have to be aligned with a Cartesian axis. (Chapter 5 gives you the low-
down on Cartesian axes.) An axis of rotation can have any unique orientation 
in space. In fact, one of the difficulties you experience whenever you create a 
moment vector is actually defining the direction of the axis of rotation. I show 
you how to do just that in the “Using unit vectors to create moment vectors” 
section later in this chapter.

Developing rotational behaviors: Meeting 
couples and concentrated moments
You can develop a rotational behavior in several different ways. Some require 
forces, some require distances, and some require neither of those. In statics, 
rotational behaviors are created by one of three principal methods: one force 
and a distance, two parallel forces separated by a distance (or couples), and 
a concentrated rotational effect (or concentrated moment), which I cover in 
the following sections.

One force and one distance
Consider the behavior of an open door when you push on it as shown in 
Figure 12-2.
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In a door assembly, doors typically hang from several hinges that are aligned 
along a single vertical axis of rotation. When you push on the door (apply 
a force), the resulting action is that the door begins to move. Regardless of 
where you apply the force on the door (at the top, on the handle, or by your 
foot on the bottom of the door), the same resulting behavior (a moment) 
occurs along the axis of rotation. This moment is what creates the rotation 
that results in the door swinging open or closed.

Two parallel forces and a distance: Couples
A couple is a type of moment produced by two parallel forces of the same 
magnitude acting in opposite directions and separated by a distance that 
result in a rotational behavior on the object. One example of a couple is the 
forces from your fingers on a doorknob. As you turn the knob, one finger 
is pushing up on the side of the doorknob and the other is pushing down. 
These two forces together cause the knob to rotate. Actually opening or clos-
ing the door requires that you push on the door after you have turned the 
knob, which is the scenario that I discuss the preceding section. Opening a 
door actually requires two moments (mechanically speaking, that is).

As another example, imagine you’re driving your car with your hands at “ten 
and two” in proper driving fashion. As you’re traveling down the road, a ball 
bounces out into the lane in front of you. Out of instinct, you quickly turn 
the wheel clockwise to swerve around the obstacle by pushing up on the left 
edge of the wheel with your left hand while pulling down on the right edge of 
the wheel with your right hand as shown in Figure 12-3.

 

Figure 12-3: 
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The behavior of your hands on the wheel when you turn clockwise is actu-
ally caused by two separate forces applied to the wheel. The force on the left 
side of the steering wheel is acting upward, while the force on the right side 
of the wheel is acting downward. In this example, the resultant of these two 
forces is zero (F + (–F) = 0) or balanced. The wheel isn’t actually translating 
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(or moving) in any direction, but it still experiences a rotational behavior — a 
couple, from these two forces despite having no net force (or zero resultant 
forces) acting on it.

No distance? Concentrated moments
Another scenario that can cause an object to rotate is the application of a 
force or moment to another connected object. This resulting and transmit-
ted moment is known as a concentrated moment. In fact, these mechanisms 
are very common in mechanical shaft design. The purpose of a shaft is to 
transmit a force or moment from one location in an object or mechanism to 
another through the action of the shaft. Consider Figure 12-4, which shows a 
single force F acting on an L-shaped bar.

 

Figure 12-4: 
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In this example, the force causes the shaft to rotate about its axis of rotation, 
which in turn creates a resulting moment on the plate at the location where 
the shaft and plate are connected.

This transmission of moments can occur through multiple objects as well. An 
example of this type of situation occurs in the drive train of your automo-
bile. The engine of your car causes the transmission to rotate, which in turn 
causes the axles to rotate, which in turn cause the wheels to rotate. Now 
obviously, moving a car down the road requires many more factors, but the 
overall concept of the transmitted moment is still valid.

Taking on torque and bending: Types of 
concentrated moments
You can create different types of rotational effects depending on which axis a 
concentrated moment is causing a rotation about. In statics, two of the most 
common effects are bending and torque (or torsion), shown in Figure 12-5.
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 ✓ Torque: A torque is a torsional moment, or one that causes rotation 
about a longitudinal axis of an object that causes a twisting action.

 ✓ Bending: A bending moment is a moment that is applied about an axis 
that is perpendicular to a member’s longitudinal axis, or applied in the 
plane of the cross section (or a slice through the member — see the 
shaded region in Figure 12-5). That is, if it isn’t a torsional moment, it 
has to be a bending moment.

 

Figure 12-5: 
Torque and 

bending.
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 Because moments are also vectors, a resultant moment may have components 
that produce torque and multiple bending effects simultaneously. I talk more 
about computing these effects in Chapter 20.

Getting a handle on the right-hand 
rule for moments of force
In statics, you can find several different variations of right-hand rules that 
prove to be very useful as you start working problems. One of the most useful 
versions helps you determine the sense of a moment about its axis of rotation.

You can determine the sign (or sense) for moments by making an L-shape 
with your right thumb and forefinger. Align your thumb with the positive 
x-axis of your Cartesian coordinate system and then line up your forefinger 
with the positive y-axis at the same time. (This orientation may feel a bit awk-
ward at first, but it does work!). Bend your middle finger naturally so that it’s 
perpendicular to your thumb and forefinger and pointing outward from your 
palm. Your middle finger represents the direction of the positive z-axis (see 
Figure 12-6).

18_598948-ch12.indd   15418_598948-ch12.indd   154 7/28/10   11:02 PM7/28/10   11:02 PM



155 Chapter 12: Special Occasions in the Life of a Force Vector: Moments and Couples

 

Figure 12-6: 
Right-hand 

rule for 
moments of 

force.
 Vector Representation

Axis of
rotation Axis of

rotation

Thumb indicates
sense of movement

or direction
of vector

Double head
vector notation

Arrow heads
point in direction

of thumb

Dire
ctio

n of fi
nger c

url

y

x

z

 The right-hand rule only works with the right hand! If you use your left hand 
by mistake, the direction of your z-axis will be backward.

After aligning your fingers with the Cartesian system, if your moment is 
about one of the Cartesian x-, y-, or z-axes, you can determine the sense of 
the moment by looking at the end of the finger that is parallel to the axis of 
rotation of the moment. In three dimensions, a moment is positive about the 
x-axis if it’s acting counterclockwise when you’re looking at the tip of your 
thumb. The same applies to the y-axis and your forefinger and to the z-axis 
and your middle finger.

Calculating a Moment with Scalar Data
To calculate the magnitude of a moment of a force, you need to include two 
pieces of information in your computations: the force and the distance. In 
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general, you can calculate the magnitude of the moment from the following 
equation:

This equation represents the scalar form of the moment calculation. When 
you use this formula, you’re actually only calculating the magnitude of the 
moment — you haven’t actually considered the sense of the line of action 
required to fully define it as a vector, nor have you defined the axis of rota-
tion. In the scalar equation, the distance term is the distance from the axis of 
rotation.

 When using the scalar calculation, the distance from the axis of rotation to the 
line of action of the force must be perpendicular. No exceptions!

In two dimensions, the x and y Cartesian axes are usually in the plane of the 
page, which results in the third axis, the z-axis, being out of the page because 
it must be perpendicular to the two-dimensional axes. A two-dimensional 
moment of a force located in the xy Cartesian plane is always about the z-axis 
(the axis of rotation is parallel to the z-axis). In vector terms, this fact means 
that the moment in the xy plane has a unit vector direction of k (either posi-
tive or negative depending on the sense of the moment).

Planar rotation about a point
In this section, I show you how to perform the calculation of the moment 
after you know the location of the point in space. I actually explain how to 
choose the necessary moment locations for your calculations when I discuss 
the various techniques of Part VI.

 The major drawback of the scalar method of computing moments is that you 
have to assign the sense of the vector based on logic.

Suppose you want to calculate the moment of the force in Figure 12-7a 
(which shows a force with a magnitude of 300 pounds acting at an angle of 60 
degrees above the negative x-axis) about Point A. Just follow these steps:

18_598948-ch12.indd   15618_598948-ch12.indd   156 7/28/10   11:02 PM7/28/10   11:02 PM



157 Chapter 12: Special Occasions in the Life of a Force Vector: Moments and Couples

 

Figure 12-7: 
Calculating 

a scalar 
moment.

 

Line of
action of Px

Perpendicular
distance
dy = 10 in

Px5 in

= 300 lb

10 in

y

x

60˚

(a)

= +

(b) (c)

P

Line of
action
of Py

Perpendicular
distance

dx=5 in

Py

BBB

AAA

 1. Break the vector into components in the x- and y-direction.

  The first step is to compute the x- and y-components by using the basic 
trigonometry principles that I discuss in Chapter 8.

  After you’ve computed the components, you can apply them to the origi-
nal object one at a time, as shown in Figures 12-7b and 12-7c.

 2. Calculate the moment contribution of each component that you calcu-
lated in Step 1 about the point of interest.

  For the vertical force P
y
 shown in Figure 12-7b, you can calculate the 

moment by multiplying by the perpendicular distance.

  If the dimensions of the force measured to the point are in directions 
parallel to the Cartesian x- and y-axes, you want to break the force into 
components parallel to those axes as well.

  In this case, because the force P
y
 of Figure 12-7b is vertical, you need to use 

the horizontal distance when you calculate the moment at Point A (MA1).

  The direction clockwise is determined by considering which direction 
the force would rotate the object if A were pinned in its current position. 
This clockwise statement is an indication of the sense of the vector. As I 
discuss in “Getting a handle on the right-hand rule for moments of force” 
earlier in the chapter, a moment about the z-axis is considered positive 
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if it’s acting counterclockwise about the axis of rotation; therefore, the 
clockwise moment of the force is actually a negative moment.

  Similarly, you can calculate the moment for the horizontal force P
x
 of 

Figure 12-7c. In this case, you need to use the vertical distance, which is 
perpendicular to the line of action of the horizontal force.

  

 3. Compute the net effect of the moments of the component forces about 
the location of interest.

  Because the net magnitude is positive, you know that the net moment 
about Point A is acting in a positive (or counterclockwise) direction with 
a magnitude of 201 lb-in.

Determining the magnitude and sense 
of a two-dimensional couple
You can treat a couple as either two separate forces or as a pair of forces 
separated by a distance. Both come out to the same magnitude value. You 
compute the moment couple of a pair of forces by relying on the same gen-
eral principle of the force times distance relationship. Consider the couple 
shown in Figure 12-8; it’s created by a pair of 200-Newton forces separated by 
a distance of 2 meters.
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159 Chapter 12: Special Occasions in the Life of a Force Vector: Moments and Couples

To calculate the magnitude of the force couple, you use the formula from the 
preceding section:

where the force is the magnitude of one of the forces in the couple and the 
distance is the perpendicular distance between the lines of action of the 
forces. To determine the sense of the couple, you need to choose both a 
point on one of the forces’ lines of action as well as the other force itself. For 
this example, if you choose Point 1 on the line of action #1 as your reference 
point, you’d choose the force on the line of action #2. Now, to determine 
sense of the moment, you consider the direction of rotation of your selected 
force about your selected point. In this case, the selected force wants to 
rotate about Point 1 in a clockwise direction (which indicates a negative 
sense), so you can say the sense of this couple is negative. Your final solution 
may look something like the following:

Notice that if you choose the other point (Point 2) as your reference point 
and the force on the line of action #1, you end up with the same rotational 
sense.

Calculating a Moment by 
Using Vector Information

Moment magnitudes are pretty simple to calculate by using scalar informa-
tion (and the preceding section), and a little logic helps you determine the 
sense, particularly when you can compute (or already know) the required 
perpendicular distance. For two-dimensional problems, determining a per-
pendicular distance may not be all that difficult, especially if the axis of rota-
tion is aligned to one of the Cartesian axes.

But what happens when you have a three-dimensional force that’s creating a 
moment about some random point in space? Finding that perpendicular dis-
tance can be a little rough, especially when the axis of rotation isn’t aligned 
conveniently. You almost always have to fall back to using the following 
vector form to compute the moment vector M.

where r is a position vector from the axis of rotation to any point on the line 
of action of the force vector F. Warning: The strange × in the equation isn’t 
the multiplication symbol but rather is called the cross product, an operation 
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performed on two different vectors that produces a third vector that’s perpen-
dicular to each of the original vectors. You read this equation as “r cross F.” I 
show you how to actually perform this calculation a little later in this section.

The major advantage of using the vector form over the scalar form when 
calculating a moment is that you don’t have to worry about calculating 
those pesky perpendicular distances because they’re already handled by the 
vector mathematics contained within the cross product calculation. In fact, 
the vector solution forms will always work, although for two-dimensional 
problems, the scalar math calculations are often a lot simpler than perform-
ing a cross product.

 If you align your coordinate system such that one of the Cartesian axes is 
parallel to the axis of rotation, you may find that the notation of your moment 
vector is significantly simpler.

Completing the cross product
The most difficult part of creating a moment vector is actually the computa-
tion of the cross product. Although it’s not mathematically difficult, it can be 
a somewhat lengthy process (as you can see in the equation I show you in 
Chapter 6). Figure 12-9 shows a three-dimensional vector and a center of rota-
tion at Point 1.

 

Figure 12-9: 
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To compute the moment, you need two pieces of information. The first is 
the Cartesian vector formulation for the force that is creating the moment. 
You can use any of the techniques that I describe in Part I to help you create 
the force vector. The second piece of information you need is the position 
vector that starts at Point 1 at the center of rotation (or point of interest) in 
Figure 12-9 and connects to Point 2, which is a point at any location along the 
line of action of the force. It doesn’t matter where you place the second point 
as long as it’s somewhere along the force’s line of action. Normally, you pick 
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161 Chapter 12: Special Occasions in the Life of a Force Vector: Moments and Couples

that second point as the point of application of the force (because you often 
know those coordinates) or a place on the geometry where the dimensions 
are already defined for you.

After you have this information, you can substitute the scalar component values 
into the cross product formula to compute the magnitude of the moment. As I 
cover in Chapter 6, one technique for solving a cross product calculation is using 
a determinant. The determinant form is shown in the following equation.

In the vector formulation, you include the unit vectors for the Cartesian axes 
on line 1. The position vector information goes on line 2, where you include 
the scalar magnitudes of the components of the position vector. On line 3, 
you input the force vector information, which includes the component mag-
nitudes of the force. For lines 2 and 3, you place the x-component information 
for both the position and force vectors in the column below the x-direction 
unit vector (i), the y-component information below the y-direction unit vector 
(j), and the z-component information below the z-direction unit vector (k). 
If your position vector or force vector doesn’t have a particular value for an 
x-, y-, or z-component, you simply put a zero value in that location. The final 
answer from this calculation is a vector representation of the moment of the 
force about the center of rotation.

Using unit vectors to create 
moment vectors
In some cases, you may know the magnitude of an applied moment about 
an axis of rotation, particularly if you’ve used scalar computations to com-
pute the moment. You can create a unit vector defining the direction of the 
moment by creating a different unit vector that describes the direction of the 
axis of rotation.

 You can always relate any vector to its magnitude and direction. For moments, 
you use something like the following:

In this equation, u
M

 is a unit vector in the direction of the sense of the 
moment (or the direction of your thumb if you’ve used the right-hand rule for 
moments, discussed earlier in the chapter).
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Rule of Sarrus
A fairly easy shortcut known as the rule of Sarrus can actually eliminate some of the 
troubles with signs that may pop up when you compute the determinant in your moment vector 
calculations. The following procedure simplifies the computation:

 1. Enter the values into the determinant as described in the nearby section “Completing the 
cross product.”

 2. Augment the matrix from Step 1 by copying the i and j columns to the positions shown in the 
following equation.

  Your calculation now looks like this:

 3. Starting at the upper left i value, multiply everything on the diagonal from upper left to lower 
right; repeat this process for both the j and k values and then add these three multiples.

  You get something like the following expression:

 4. Starting at the lower left Fx value, multiply everything on the diagonal from lower left to upper 
right; repeat this process for both the Fy and Fz values and then add these three multiples.

  Here’s what that expression looks like:

 5. Subtract the results of Step 4 from the results of Step 3.

  This value is the vector formulation of the moment and the mathematical solution of your 
determinant.

The results of this calculation are identical to those from the cross product methodology I describe 
in Chapter 6.
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Consider the example shown in Figure 12-10.
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The unit vector describing the sense and direction of the moment is actually 
the same unit vector that describes the direction of the axis of rotation.

 In Chapter 5, I show you three different techniques for creating unit vectors 
for forces; if you can create a unit vector describing a force’s line of action, 
you can use the same techniques to define an axis of rotation, as the following 
list shows.

 ✓ Using position vectors: If you know two points on the axis of rotation, 
you can use the position vector method to create a unit vector by divid-
ing a position vector by its magnitude. In Figure 12-10, the position 
vector goes from Point 1 to Point 2 (both of which lie on the axis of rota-
tion) because it must be in the same direction as the unit vector u

M
. The 

denominator of this equation is just the magnitude of the position vector 
in equation form.

 ✓ Using direction cosines: If you happen to know the angles between each of 
the Cartesian axes and the axis of rotation, you can use the direction cosine 
formulation (which follows) to create your unit vector for the moment.

18_598948-ch12.indd   16318_598948-ch12.indd   163 7/28/10   11:02 PM7/28/10   11:02 PM



164 Part III: Forces and Moments as Vectors 

Using Double-Headed Arrows to Find 
Moment Resultants and Components

In Chapter 4, I show you how to draw a double-headed vector. These two-
headed monsters are actually extremely useful when you start working with 
moments. One of the major points of confusion with moments has to do with 
the concept of rotation. How do you accurately depict a rotation behavior 
about a point or axis?

In two dimensions, you can easily illustrate a circular arrow depicting the 
direction of the moment because the circular arrow almost always acts 
around the z-axis. However, three-dimensional cases, where the moment can 
act around any axis in space, are a little harder to illustrate. And when you’re 
computing components from the rotational depiction, such illustration 
becomes next to impossible.

For this reason, I like to use the double-headed vector notation as shown in 
Figure 12-11 (though I only use it when I’m working with moments) which lets 
you handle moments easily and effectively in the same manner as you would 
treat a force vector.

 

Figure 12-11: 
Double-
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for moment 

vectors.
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I start by using the right-hand rule for moments to determine the sense and 
the direction of the unit vector to help me define the axis of rotation. (See 
“Getting a handle on the right-hand rule for moments of force” earlier in the 
chapter.) Under the right-hand rule, the double-headed vector points in the 
same direction as your thumb. In Figure 12-11, the moment produces a coun-
terclockwise moment about the axis of rotation, which means the double-
headed vector must point toward the positive end of the axis.
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165 Chapter 12: Special Occasions in the Life of a Force Vector: Moments and Couples

Although this graphical change may seem a little pointless at first, this trans-
formation actually allows you to utilize the same vector component and resul-
tant manipulations you use on force vectors in Chapters 7 and 8. Figure 12-12 
illustrates the similarities between the calculations of single-headed notation 
and those of the double-headed notation.
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In this figure, the components for both notations are computed using the 
exact same vector formulations. For force vectors, the force component in 
the x-direction is the portion of the force vector acting in the x-direction. For 
moment vectors, the component in the x-direction is actually the portion of 
the moment that is acting about the x-axis. That is, the unit vector defining 
the direction of the moment’s double-headed arrow representation is actu-
ally acting in the x-direction, but the final behavior is acting around the axis.

For resultants, the same methodology applies. Figure 12-12 shows that you 
can create a force vector for this two-dimensional application by simply 
adding the vector components of the single-headed notation in the x- and 
y-directions:

Likewise, for the moments, you can create a resultant moment by simply 
adding the vector components of the double-headed notation about the x- 
and y-axis:
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Relocating a Force by Using a Moment: 
Equivalent Force Couples

When performing your basic statics calculations, you often find relocating a 
force from one point to another convenient. By creating an equivalent force 
couple, you can move a force vector to a new location by simply relocating 
the force and creating a new moment at the new location.

 An equivalent system is two systems that experience both the same transla-
tional and rotational behaviors.

Figure 12-13 shows a rigid body with two different points, A and B. In the first 
picture, a force vector F acts at Point A. Notice that the force F at A is eccen-
tric to (or not acting through) Point B.
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To produce the same translational effect on this rigid body (a body not 
deformed by the force), you simply need to relocate the force at Point A to its 
new position at Point B. However, after you move the force from Point A to 
Point B, the rotational behavior of the object changes. In order to capture the 
rotational effects of the force at Point A with respect to Point B, you have to 
include an additional rotational effect, or a moment, which you can compute 
with the following formula:

where r
BA

 is a position vector from the new point (B) to the original point (A). 
The methods for computing the position vectors and force vectors remain 
unchanged. I show you more about the uses and implementation of this idea 
in Part VI.

18_598948-ch12.indd   16618_598948-ch12.indd   166 7/28/10   11:02 PM7/28/10   11:02 PM



Part IV

A Picture Is Worth a 
Thousand Words 

(Or At Least a Few 
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Free-Body Diagrams
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In this part . . .

Free-body diagrams (F.B.Ds) are a vital part of solving 
a statics problem, so these chapters give you a basic 

checklist for constructing the pictures that describe an 
object and the loads acting on it. You also discover how 
to include external applied loads, internal forces, and self 
weight. I introduce the different types of physical restraints 
(known as support reactions) and show you how to include 
them on your F.B.D. I then illustrate how to simplify complex 
free-body diagrams by moving loads from one point on 
an object to another while maintaining the same object’s 
behavior.
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Chapter 13

Anatomy of a Free-Body Diagram
In This Chapter
▶ Knowing what to include on a free-body diagram

▶ Including external force effects

▶ Applying internal force effects

▶ Restraining motion and rotation with support reactions

▶ Remembering self weight

Ask photographers and artists about the pictures they’ve created, and 
you inherently hear about the emotions and feelings that they were 

trying to capture as they portrayed the physical object of their work. Pictures 
in statics provide a different purpose — something a bit more unemotional 
and unbiased; after all, statics is a science. However, the facts do show that a 
picture can serve as a very handy and even necessary tool; these pictures are 
what allow you to create those (objectively) super-awesome equations of 
equilibrium. Without a properly detailed picture (known as a free-body dia-
gram), the game is over before you even get off the bench.

In this chapter, I describe the four types of forces that must be included on a 
free-body diagram and discuss the proper technique for displaying them.

Free-Body Diagrams in a Nutshell
The picture that you draw in statics is known as the free-body diagram (or 
F.B.D. for short) and represents the physical condition of the rigid object 
you want to analyze, including dimension data and the forces acting on the 
system. Free-body diagrams can be complex pictures of multiple objects 
and systems, or diagrams of a smaller subcomponent of a larger piece within 
a system. Each representation must still obey all laws of physics. Without a 
proper F.B.D. sketch, correctly analyzing a problem in any field of engineer-
ing and physics is extremely difficult, if not impossible.

I’ve always found a checklist useful for remembering what to include on any 
given free-body diagram.
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Part IV: A Picture Is Worth a Thousand Words: Free-Body Diagrams 170
You can classify the majority of forces on an object into four separate cat-
egories, each of which becomes an item on the checklist: external forces, 
internal forces, support reactions, and self weight. Just remember, you need 
to include the forces themselves as well as all information that locates their 
point of application (physical location on the object or in space where the 
vector is acting — see Chapter 4). Check out Chapter 9 for more on how all of 
these categories affect concentrated loads; Chapter 10 discusses how exter-
nal and internal forces and self weight relate to distributed loads.

 ✓ External forces: External forces are the forces exerted on a rigid body 
(which isn’t deformed by the force) by sources outside the body. A ball 
thrown at a wall exerts an external concentrated force at the point of 
impact; the weight of snow on your roof exerts a vertical distributed 
external force on the roof.

 ✓ Internal forces: Internal forces are the forces exerted within a rigid body. 
The tension in a rope and the compressive force in the leg of the chair 
you’re sitting on are both examples of internal forces.

 ✓ Support reactions: Support reactions are the physical restraints, such as 
door hinges and bridge piers, that prevent a rigid body from moving.

 ✓ Self weight: Self weight (in both concentrated and distributed form) is 
the force due to gravitational effects on the mass of the object.

In addition to these four categories of forces, you also need to include the 
necessary dimensions and angles that help you properly define their lines of 
action and points of application. I explain more in the coming sections about 
how you actually draw each on the free-body diagram.

Displaying External Forces
External forces are typically the easiest forces for you to determine because 
they’re often the result of a measureable action — you typically know the 
sizes and shapes of their distributions. These forces include both concen-
trated forces (or point loads) and distributed forces (forces over area), as I dis-
cuss in Chapters 9 and 10, as well as concentrated moments, which I discuss in 
Chapter 12.

Consider the example drawing in Figure 13-1, which shows a man pushing 
horizontally on a crate with a force of 100 Newton. The crate also has a very 
heavy lid of uniform thickness resting on its top.

If you want to draw the external forces acting on just the crate (without the 
lid) you have to apply a bit of logic and reasoning to determine the sources 
of external forces. Figure 13-1 has two external forces — concentrated and 
distributed — acting on the rigid crate. The following sections show you how 
to depict those forces in your F.B.D.
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Figure 13-1: 
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Portraying concentrated forces
Concentrated forces are typically the easiest to portray on an F.B.D. For 
any concentrated force vector, you know the magnitude, sense, and point 
of application (or in some cases, the line of action). If you know the point of 
application, you can use that point directly on the free-body diagram. If you 
only know the line of action, you need to locate the line on the F.B.D. and 
then apply the force somewhere along that line.

The first external load acting on the crate in Figure 13-1 is from the force 
exerted by the man as he pushes horizontally at Point A. The force of the 
man’s hands on the edge of the crate in this situation is depicted as a concen-
trated load because the force is applied at a single point. Figure 13-2 shows 
how you can represent this force as a concentrated load.

 

Figure 13-2: 
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To properly represent a concentrated force, you must include information 
about the three basic properties of a vector: magnitude, sense, and point of 
application, all of which I cover in Chapter 4.
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 ✓ Magnitude: The magnitude is the vector’s length. In both parts of Figure 

13-2, notice that the magnitude of the force is given as 100 Newton acting 
horizontally. The 100 Newton in this example is actually the magnitude 
of the vector you’re drawing.

 ✓ Sense: The sense is the direction in which the vector is acting, which 
you can help determine by figuring out which direction the object would 
want to move as a result of the force. Put yourself into Figure 13-2; 
the crate would want to slide to the right if you pushed hard enough. 
Therefore, you can reason that the vector’s sense is also to the right.

 ✓ Point of application: The point of application of this force vector is 
situated at Point A because that’s where the man’s hands are located. 
The most conventional means of representing this vector is to apply the 
tail of the vector at the point of application as shown in Figure 13-2b. 
However, when forces are pushing on objects, placing the head of the 
vector at the point of application instead (as shown in Figure 13-2a) can 
be a more convenient reminder. The principle of transmissibility (covered 
in Chapter 9) tells you that the two drawings shown in Figure 13-2 behave 
identically as long as the crate is considered to be perfectly rigid.

Depicting distributed forces
You draw distributed loads similar to their concentrated counterparts — 
they have a sense to define their direction, and a magnitude (defined as its 
intensity). However, a distributed load has no specific point of application 
because the load is spread out over a line or region. You must include dimen-
sional information that shows where the distributed load begins as well as 
where it ends.

The second type of external load on the crate in Figure 13-1 is from the 
weight of lid as it sits on the crate. When you look at just the lid, this 
50-Newton weight is actually the self weight of the lid itself. However, 
because your F.B.D. is of the forces on just the crate itself, this force becomes 
an external force on the crate.

 Don’t be too alarmed about the difference between self weight and external 
forces. As long as you include the force at its proper location on the object, 
the solution process is identical. Just remember that self weight can be either 
a single value (lumped mass) or a distributed load over a length or area (con-
tinuum). For more on self weight, flip to Chapters 9 and 10.

If you consider the weight of the lid as a uniformly distributed load, you can 
compute that this 50-Newton external force is acting over a length of 1 meter 
(the dimension of the lid). Thus, the external distributed load from the lid is 
computed as , acting downwards.
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173 Chapter 13: Anatomy of a Free-Body Diagram

To display this distributed force on the F.B.D., you need the same three basic 
requirements (magnitude, sense, and direction) as for the concentrated loads 
in the preceding section:

 ✓ Magnitude: As for the concentrated loads, the magnitude (or intensity) 
of the load distribution is 50 Newton per meter.

 ✓ Sense: Because the load is actually coming from a self weight, the sense 
of the distributed load acts in the direction of gravity. I’m assuming this 
object is on planet Earth (because scientists haven’t found any evidence 
of crates on Mars, at least not yet), so gravity and therefore the sense 
are acting downward.

 ✓ Point of application: The point of application of this load depends on 
whether the load is distributed or concentrated. If the load were con-
centrated, it would act at the center of mass of the lid (in this case, 
the midpoint). But, because you’ve calculated the weight of the lid as 
a distributed load and you know that the lid’s thickness is uniform (or 
constant), this load is evenly spread (or uniformly distributed) over the 
entire length.

In addition to these three requirements, you also need a couple of additional 
pieces of information: the start and end points of the load distribution. This 
load’s beginning and ending locations occur at the two ends of the lid. As a 
result, you show the diagram of this load on the crate’s F.B.D. as a series of 
downward arrows acting along the entire area of the crate’s lid. Figure 13-3 
shows how this distributed load is depicted on the lid of the crate.

 The second part of this figure illustrates how you can also display the resul-
tant for this load distribution. See Chapter 10 for more information about com-
puting the resultant.
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Looking at the F.B.D. so far
Figure 13-4 shows the combined F.B.D., including all the external forces I 
describe in the preceding sections. I’ve also added vertical and horizontal 
reactions at the contact surface to keep the free-body diagram correct. I 
explain more about these contact surfaces in the “Restricting Movements 
with Support Reactions” section a little later in this chapter.
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A F.B.D. 

displaying 
concen-

trated and 
distributed 

external 
forces.

 

Rx = Horizontal reaction
at interface

Ry = Vertical reaction
from ground

N
m50 

A
PMAN = 100 N

Conveying concentrated moments
The third type of external load you must remember is loads created by con-
centrated moments (which cause an object to rotate). Concentrated moments 
are actually fairly easy to depict on a free-body diagram.

Because moments are vectors, too, they must again display magnitude, 
sense, and point of application. Figure 13-5a illustrates how a concentrated 
moment can be depicted on a free-body diagram. For both two- and three-
dimensional objects, you display the magnitude of a concentrated moment as 
the numerical value (if it’s known), or a label for the vector (if it’s unknown).

The point of application and sense are usually depicted slightly differently for 
moments in two dimensions and moments in three dimensions, although the 
methods still have similarities.

Moments in two dimensions
For a two-dimensional object as shown in Figure 13-5b, the sense and point of 
application are determined as follows, depending on whether you’re using a 
single- or double-headed arrow:
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 ✓ Single-headed circular arrow:

 • Sense: The sense of a concentrated moment is determined by the 
direction of the circular rotational arrowhead. In this example, the 
moment is acting counterclockwise.

 • Point of application: You can depict the concentrated moment by 
drawing the circular rotational arrowhead about a given point. In 
this case, the point of application is at Point O.
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 ✓ Double-headed arrow:

 • Sense: The sense of the double-headed arrow is determined by 
the right-hand rule for moments, which I explain in Chapter 12. In 
Figure 13-5c, the 1,000 Newton-meters (N-m) cause a counterclock-
wise rotation when you look at the end of the shaft. This moment 
can also be transmitted to Point O, as shown in Figure 13-5b, 
resulting in a counterclockwise applied moment on member AOC.

  Remember, you don’t usually see the axis of rotation in two dimen-
sions because it’s often oriented perpendicular to the plane of the 
drawing (or out of the page). For two dimensions, you just use the 
normal circular vector depiction as I show in Chapter 12.

 • Point of application: Just like for the concentrated loads I describe 
in “Portraying concentrated forces” earlier in the chapter, you can 
also apply the double-headed arrow with the tail or head acting at 
Point B. However, this point must have dimensions to help properly 
locate this action.

 In most two-dimensional free-body diagrams, the moment acts about the z-axis 
(which is the Cartesian axis that seems to be coming out of the page). Double-
headed arrows always act along the axis of rotation of the object, so distin-
guishing the sense of the double-headed arrow in two-dimensional pictures 
can be hard (because you can’t exactly draw the arrow out from the page). 
For that reason, you should probably use the circular arrowheads I discuss 
earlier in this section to denote the direction of the applied moment (shown 
in Figure 13-5b). However, for cases where the moment is acting about a line 
in the plane of the picture (in the xy Cartesian plane), you can still use double-
headed arrows.

 Although you can use double-headed arrows in two dimensions, they’re defi-
nitely better suited for problems in three dimensions, which I discuss in the 
following section.

Moments in three dimensions
For a three-dimensional free-body diagram, the sense and line of action are 
determined as follows:

 ✓ Sense: As with two-dimensional moments (see the preceding section), 
the sense of a three-dimensional concentrated moment is determined by 
the right-hand rule for moments (see Chapter 12).

 ✓ Line of action and point of application: For a three-dimensional rota-
tion, you need to indicate both the line of action and the point of appli-
cation on the object. The line of action is simply the axis of rotation 
about which the moment is acting, and it always passes through the 
point of application (Point O) on the F.B.D. as shown in Figure 13-5c. You 
need to be sure to include all the necessary dimensions to locate the 
point of application and the orientation of the axis of rotation.
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177 Chapter 13: Anatomy of a Free-Body Diagram

Axial Loads and Beyond: Depicting 
Internal Forces

Although external forces (see the earlier “Displaying External Forces” sec-
tion) are the easiest to define and draw, a properly drawn F.B.D. must depict 
all forces, including any revealed internal forces, and their locations acting 
on the object.

Internal forces only appear on an F.B.D. after you’ve sliced the object or 
structure — that is, when you’re looking at a part of an object and not the 
entire object. (In Chapter 14, I explain how to know when to include an inter-
nal force.) Typically, you treat internal forces as concentrated loads and 
concentrated moments and draw them in the exact same manner I describe 
in the “Displaying External Forces” section of this chapter. Their points of 
application are assumed to be at the centroid (geometric center) of the cross 
section. (Chapter 11 gives you more detail on centroids.)

Restricting Movements with 
Support Reactions

Support reactions are the restraints that keep a rigid body from moving away 
when a force is applied, and they are typically classified into two categories: two-
dimensional (or planar) supports and three-dimensional (or spatial) supports.

 ✓ Two-dimensional planar supports: Planar support reactions are the 
restraints for two-dimensional objects. Two-dimensional supports can 
have as many as two restraining forces and one restraining moment, 
depending on the type of support reaction.

 ✓ Three-dimensional spatial supports: Spatial support reactions can be 
much more complex. Three-dimensional restraints will have as many as 
six different forces and moments acting on a given support.

 When dealing with support reactions, you must take into consideration the 
restraints to any motions on the object. If a motion is restrained, a support 
reaction has been created and must be included on your free-body diagram. 
For all support cases, you sketch the support reactions exactly as they’re 
drawn, as concentrated forces and moments acting at the support location. 
Refer to “Displaying External Forces” earlier in the chapter for more on draw-
ing concentrated forces and moments.
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Part IV: A Picture Is Worth a Thousand Words: Free-Body Diagrams 178
 Restraints for translation (movement along a line in any direction) are always 

forces, and restraints for rotation are always moments.

Three basic planar support reactions
In two-dimensional statics, support restraints are categorized into one of 
three different support conditions: roller supports, pinned supports, and 
fixed supports, which I dive into in the following sections.

Rolling along with roller supports
The simplest of the three planar support reactions is the roller support, 
which is free to move parallel to the support surface and to rotate but is 
restrained from moving perpendicular to the support surface. Examples of 
roller supports include a pair of roller skates and the wheels on a car. In 
most textbooks, roller supports are depicted as either a single wheel, or 
multiple wheels as shown in Figure 13-6, where the simplest roller support 
is designated by a simple wheel. The object shown in this figure is free to 
move in one direction parallel to the support surface (or left and right) but 
is restrained in moving in the perpendicular. It’s also free to rotate about the 
support location.
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Freeing up rotation with pinned supports
The second of the three planar support reactions is known as the pinned 
or simple support and is a support reaction that restrains translation in two 
directions but is free to rotate. You commonly encounter two types of pinned 
supports in statics.

 ✓ External pinned support: As its name suggests, the external pinned sup-
port is a support condition that restrains an object externally. You usu-
ally depict this type of support by drawing a triangular support reaction 
as shown in Figure 13-7.
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179 Chapter 13: Anatomy of a Free-Body Diagram

 ✓ Internal pinned (hinge) support: The internal pinned support is also known 
as an internal hinge. At this location, the internal motion of the object is 
restrained from translating but is free to rotate. I explain a lot more about 
internal pins when I talk about frames and machines in Chapter 20.
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As with the roller supports in the preceding section, the restraint of motion 
is what creates the support reaction. Because this support is restrained 
from translating, it must have a restraining force in at least two mutually per-
pendicular (or orthogonal) directions to help hold it back or prevent it from 
moving. As long as these two reaction forces remain perpendicular to each 
other, their overall orientation doesn’t matter. However, for convenience, 
these reactions are typically aligned with the Cartesian x-axis and y-axis of 
your coordinate system.

Restricting everything with fixed supports
The third type of support is known as the fixed support reaction in all three 
possible directions, as shown in Figure 13-8. Because this support restrains 
both of the translations in addition to the rotation, your drawing must have 
three separate support reactions.
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As I mention with the pinned supports in the preceding section, the two 
translation restraints produce two restraining forces. However, for fixed sup-
ports, the rotational behavior of the support is also restrained, and thus you 
must also include a concentrated moment restraint.

Moving on up (or down) with inclined supports
Inclined supports can be either roller, pinned, or fixed supports; the supports 
are just no longer horizontal or vertical but rather inclined along a slope. 
Keep these rules in mind when you’re dealing with inclined supports in two 
dimensions:

 ✓ If a support is free to move, no restraining force is developed.

 ✓ If the object is free to rotate, no restraining moment is developed.

 ✓ If the object is restrained from rotation, the restraining moment that’s 
created is always about an axis perpendicular to the plane of the object.

Roller supports don’t always have to be aligned horizontally or vertically. 
In fact, rollers can be oriented in any direction, so you want to pay careful 
attention to which way the supporting surface is oriented with respect to the 
free-body diagram. Figure 13-9 shows a roller support oriented on a surface 
inclined at an angle θ measured from the horizontal.
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In this example, the roller support is free to move down the incline, so no 
force is acting parallel to the incline. However, the restraining force R of the 
supporting surface prevents the motion perpendicular to the surface. With 
these two directions accounted for, the behavior in the xy plane is now 
properly defined.

Because the supporting surface prevents the object from moving in that 
direction, a hidden support force (or a support reaction) must be created to 
prevent the object from moving. In this case, the support reaction is oriented 
perpendicular (or normal) to the support surface.
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Three-dimensional support conditions
Three-dimensional supports can be a bit more complicated than their two-
dimensional counterparts (see the preceding section). In two-dimensional 
analysis, three support reactions develop at most: two translational forces 
(x- and y-directions) and one rotational moment (z-direction).

To fully define translation in three dimensions, you must define three mutu-
ally perpendicular forces, typically with respect to the Cartesian x-, y-, and 
z-axes. Similarly, you must also account for three mutually perpendicular 
moments to define rotational restraint in three dimensions. 

To model three-dimensional support reactions, you have to once again apply a 
bit of logic about how the object is capable of moving. If any restraint is present 
(either translation or rotation), you must include a support reaction to represent 
that restraint. Although countless three-dimensional supports are possible, I 
describe a couple of the more common ones in the following sections.

Ye olde ball and socket: Pinned supports in three dimensions
A three-dimensional pinned support is commonly referred to as a ball-and-
socket connection and is shown in Figure 13-10. (See “Freeing up rotation with 
pinned supports” earlier in the chapter for pinned-support basics.) Examples 
of common ball-and-socket supports are the hip and shoulder joints on your 
body. If you try moving your arm around, you notice that with some effort, 
you should be able to rotate your arm in any of three directions, but your 
shoulder stays in the same place. That is, it’s free to rotate in any direction 
but is fully restrained from translation (or popping out of its socket). Because 
restraint causes support reactions, you know that your shoulder has three 
translational support reactions but zero rotational support reactions.
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Collar assembly supports
Another common support reaction that occurs in mechanics is the slider or 
collar assembly. This type of support consists of a sleeve that wraps around 
a rod or shaft. In this connection, the sleeve is free to translate parallel to 
the axis of the rod, and is capable of swiveling (or rotating) about the axis of 
the shaft. All other motion (both rotational and translational) is restrained. 
Figure 13-11 shows a common collar assembly and its corresponding free-
body diagram.
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As drawn in this example, the shaft is oriented along the y-axis. Because this 
assembly is free to move in the direction of the shaft, it’s considered unre-
strained in that direction and should have no force for the support reaction 
in that direction. Similarly, the sleeve is capable of rotating about the axis of 
the shaft (the y-axis) and consequently has no moment for the support reac-
tion about the y-axis. The remaining motions are all fully restrained and con-
sequently have both moments and forces as support reactions in the x- and 
z-directions.

20_598948-ch13.indd   18220_598948-ch13.indd   182 7/28/10   11:03 PM7/28/10   11:03 PM



183 Chapter 13: Anatomy of a Free-Body Diagram

Weighing In with Self Weight
The fourth force category deals with the representation of the self weight of 
the object. In Chapter 9, I explain how to calculate self weight for a lumped 
mass (concentrated system), which is a concentrated force acting at the 
object’s center of mass. However, if you’re dealing with a distributed mass 
system (as I describe in Chapter 10), the self weight is actually a distributed 
force. In statics, you commonly neglect the self weight of an object unless 
the problem explicitly states that the object has mass. This omission is usu-
ally acceptable because the nature of many structural systems is such that 
the force from self weight is usually only a small percentage of the total force 
acting on a system. For example, a small construction crane that weighs only 
a few thousand pounds is often capable of lifting loads of many hundreds of 
thousands of pounds. That being said, you absolutely want to consider the 
exact self weight of the object in addition to the external loads if you’re per-
forming a final design of the crane.

 For simplicity in this book, I often neglect self weight. If I don’t mention 
the mass of the object, I also exclude the self weight from the F.B.D. and 
subsequent calculations.
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Chapter 14

The F.B.D.: Knowing What to Draw 
and How to Draw It

In This Chapter
▶ Knowing what to include on a free-body diagram.

▶ Using isolation boxes to zoom in on a free-body diagram.

A free-body diagram (F.B.D.) is the physical representation of an object 
(or part of an object) with all actions acting on it. In statics, this setup 

usually includes forces such as concentrated and distributed loads, support 
reactions, internal forces, and self weight; check out Chapter 13 for more on 
these force categories. These four categories of forces help depict all forces 
on a given object (although in non-statics problems, you may include other 
vector actions such as velocities, accelerations, distances, and many others). 
Consider an 8,000-pound elephant and an 8,000-pound commercial vehicle. 
Both have the same self weight (force due to gravitational effects on their 
masses), but the location of that weight tremendously affects the objects 
they’re resting on in drastically different ways.

In this chapter, I show you some of the situations you need to be mindful of 
when tackling any statics analysis problem with an F.B.D. I start with a basic 
list of items you want to be sure to include on your free-body diagram. I also 
show you how you can extract additional free-body diagrams from within a 
given F.B.D.

Getting Your F.B.D. Started
The old saying that a picture is worth a thousand words may seem clichéd 
at first, but this simple statement accurately emphasizes the importance of a 
well-constructed graphical representation for statics analysis. In fact, without 
this pictorial description, you quickly discover that accurate engineering and 
physics solutions are next to impossible to achieve. In fact, even a simple pho-
tograph can sometimes serve as a basis for constructing a free-body diagram.
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 Think of an F.B.D. as being a snapshot of the support reactions and forces 
acting on an object at a particular instance.

To construct an F.B.D. in Cartesian components by starting with a basic 
picture, just follow these steps:

 1. Sketch the complete object that you’re going to be studying, such as a 
chair or a ladder.

  In reality, the actual shape of the object really doesn’t matter. However, 
knowing the exact locations (points of application) of every force and 
moment vector on that object is crucial. Actually drawing the object can 
give you a reference for measuring those locations.

 2. Draw all external support reactions (physical movement restraints) 
as well as any springs or cables that are attached to the system.

  Support reactions include pinned supports, ball-and-sockets, slider 
assemblies, and so on; I discuss them in more detail in Chapter 13, 
where I also show you how to draw basic two- and three-dimensional 
support reactions. Springs and cables are generally fairly easy to iden-
tify and can provide a quick confidence boost in the construction 
process; see Chapter 9 for more on these items.

 3. Include complex supports, such as ramps and inclined supports.

  Examples of these additional restraints include refrigerators on ramps 
and wedges under crates, along with any information about inclined 
support surfaces (usually expressed in degrees). Flip to Chapter 13 for 
more on inclined supports. In fact, if your object is resting on a ramp or 
incline, be sure to include the angle of the incline as a reference, even if 
you’re focused on just the object.

 4. Draw each external force acting on the systems, as described in 
Chapter 13.

  Assume that all objects in the F.B.D. are rigid (meaning they aren’t 
deformed by the force), even if the system has springs; springs aren’t 
actually rigid, but you can consider a spring rigid at the exact instance 
that you draw the free-body diagram.

  If your F.B.D. is of an isolated object that you’re separating from a larger 
system or support, you also need to include contact forces, which are 
forces that arise when one object pushes on either another object or a 
support surface. However, you don’t include contact forces on a free-
body diagram when both objects (or supports) on either side of the con-
tact surface are already included in the diagram.
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Assuming a direction for support reactions
When you’re drawing an F.B.D., getting the forces onto the diagram is more 
important than worrying about their sign or the direction. As you discover 
in Chapter 16, until you start writing equations, you may not actually know 
the magnitude and sense of the vector for the unknown magnitudes at the 
time you’re drawing the free-body diagram. If you don’t know the magnitude 
(length) and sense (direction) of a vector when you draw it, simply guess 
a direction, include a label on the force, and apply it at its proper point of 
application along its appropriate line of action.

For example, say you want to apply the support reactions to a diagram of 
Figure 14-1a, which illustrates a man standing at the end of a diving board. 
Based on the sketch, you may be inclined to draw the support reactions as 
positive with respect to your Cartesian coordinate system as shown in 
Figure 14-1b, with all vertical loads acting upward and all horizontal loads 
acting to the left. And while being consistent is good practice for now, you 
may soon realize that it’s not always correct. In fact, Figure 14-1c actually 
represents the correct F.B.D. of Figure 14-1a. Notice that the difference 
between Figure 14-1b and c is only in the direction of the vertical reaction A

y
 

located at Support A — upward in b but downward in c.

 You always know the direction of a load resulting from self weight -- it’s acting 
downward and applied at the center of mass, so be sure to go ahead and draw 
it in the correct direction.

Including more than the required 
info on your F.B.D.
In Part II, I emphasize the importance of being able to quickly create 
Cartesian vectors, which comes in handy when you realize that you often 
repeat the vector creation process many times on the same free-body dia-
gram. To make your work easier later, get in the habit of including several 
additional pieces of information, including the following:

 ✓ Coordinate axes: The coordinate axes are a useful reminder of any 
assumptions you’ve made about positive and negative directions. 
Including information regarding the positive directions of each of the x-, 
y-, and z-directions is especially useful because when you start writing 
the equations of equilibrium (which I introduce in Chapter 16), these 
directions can help you determine the sense of any unknown vectors.
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  Although you typically take the Cartesian x-axis as being horizontal (and 
consequently the Cartesian y-axis as vertical), sometimes aligning your 
axis in some other direction is more convenient. You encounter this sit-
uation often when working with problems on ramps and inclined 
surfaces, or in problems that involve forces acting at some non-
Cartesian orientation (or at some angle other than horizontal or vertical).

 ✓ Origin: The origin is the location where the Cartesian axes for your 
system intersect; it serves as a handy reference location and customarily 
has the coordinates (0,0,0).
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 ✓ Labels for points of interest: You also should label some key points of 
interest on your diagram such as the following:

 • All support and internal hinge locations (see Chapter 13)

 • All locations of applied external concentrated loads (see Chapter 13)

 • All locations where forces’ lines of action cross the object or other 
lines of action (see Chapter 4)

 • All resultant force points of application (see Chapter 7)

 • All locations at the start and end of the free-body diagram (see 
Chapter 10)

 • All changes in the geometry of the object

 • All centers of gravity and centers of mass (see Chapter 11)

 ✓ Force vector components: You can also use dotted arrows to indi-
cate perpendicular components and their senses with respect to your 
assumed Cartesian axis direction. Calculate the components of the force 
vectors and sketch them as individual forces on the free-body diagram.

 ✓ Dimensions and angles of supports and forces: You also want to 
include dimensions that relate all of the locations discussed in the pre-
ceding bullets. Be sure to also include information such as angles or 
proportion triangles that may help describe the orientation of any lines 
of action for forces on your free-body diagram. (Chapter 5 gives you the 
skinny on proportion triangles.) You’ll also need to include the angles of 
any inclined supports (see Chapter 13).

  If you provide adequate linear dimensions, angular dimensions may not 
be necessary. A little trigonometry can be used to compute angles on 
free-body diagrams.

Zooming In with Isolation Boxes
Isolation boxes let you take larger objects and zoom in on specific features. 
An isolation box tells you when an internal force needs to be included on a 
free-body diagram — whenever an isolation box crosses a physical object, 
you must include an internal force on the object.

Several features that you may want to explore in further detail on a given free-
body diagram include support reactions and internal forces in members. The 
following sections show you how you can use an isolation box to extract smaller 
(and sometimes more manageable) pieces of a free-body diagram while preserv-
ing the overall behavior of both the larger system and the isolated portion.
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Unveiling internal forces
Depending how you cut the picture when you draw a free-body diagram, you 
can greatly reduce or increase the complexity of the system. For example, 
Figure 14-2a shows a system of two cables oriented at different directions 
connected to a ring that’s suspending a 100-kilogram box.
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According to the procedure outlined in “Getting Your F.B.D. Started” earlier 
in this chapter, the first diagram you should draw is the free-body diagram of 
the entire system, which I show in Figure 14-2b. The system has two support 
reactions each at location A and location B generated by the pinned sup-
ports. The only load applied to the system is the self weight of the box, which 
has a force of 981 Newton (100 kilograms · 9.81 meters per second squared = 
981 Newton).

A total of five forces are acting on the system in Figure 14-2a, four of which 
are unknown at this time. You won’t actually calculate the unknown forces 
at this time (I explain how to do that beginning in Chapter 16), but I do show 
you the free-body diagrams you need to create as part of this process.

In this system, suppose you’re interested in calculating the internal forces 
in each of the rope sections. In order to see these internal forces, you need 
to create isolation boxes that cut these objects and expose these forces. 
Because all the connecting objects are cables, the internal forces are rather 
simple and include only axial forces. The sense of the internal cable forces is 
determined from the knowledge that cables are only capable of transmitting 
tension (or pulling on the free-body diagram). I discuss more about cable 
requirements in Chapter 22.

Applying rules of application
The main free-body diagram of interest in Figure 14-2a is at the ring at location C, 
where all three cables meet. To draw the free-body diagram of just the ring at 
C, you use an isolation box around the ring.

To construct an isolation box, stick to the following basic steps:

 1. Identify the object or detail of interest.

  Decide what part of a structure you need to examine in further detail. 
In this example, you’re interested in what’s happening at the ring at 
location C.

 2. Construct a closed polygon around the object or detail of interest.

  Draw a box, circle, or some closed polygon shape — usually with 
dashed lines — to differentiate between the isolation box and the physi-
cal object itself (refer to Figure 14-2a). Make sure that the isolation box 
is a closed polygon. Labeling the box is handy if you’re going to be using 
multiple isolation boxes.

 3. Extract the contents of the isolation box.

  Copy everything inside the isolation box to a new picture. Include 
external forces, supports, self weight, and all relevant dimensions and 
Cartesian coordinate system data.
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 4. Include all internal forces revealed as a result of the cutting process.

  The chapters of Part VI deal with structures with different types of 
internal forces. Depending on the type of system you are working with, 
different internal forces may appear when you cut an object. For this 
example, you’re dealing with a system of axially loaded cables, which I 
introduce in Chapter 9.

  Look at the free-body diagram again. At any location where the isolation 
box crosses a physical object, internal forces are revealed and must be 
included. In this example, the isolation box for the ring at location C cuts 
three different cables, so you must apply a concentrated axial force at 
each of these locations.

The isolation box for the ring at location C cuts each of the three cables, 
exposing their internal forces on the free-body diagram. Figure 14-3 illustrates 
what a properly constructed free-body diagram for the ring at C looks like. 
Notice how even though you don’t know the magnitude of the internal force, 
you do know the sense of the force because cable forces always act in line 
with the cable and they’re always in tension (or pulling on the object).

 

Figure 14-3: 
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ring C.
 

45˚30˚

FAC
FCB

FCD

y

x

Line of action
of FCD

Line of action
of FAC

Line of action
of FCB

Another object of interest in this example may be the box itself. Because 
you already know the mass of the box, you know that there’s a self weight 
force present on this system. Sketching an isolation polygon around the 
box requires that you also cut cable CD. As before, this move results in an 
unknown internal cable force pulling on the box at D as shown in Figure 14-4.

21_598948-ch14.indd   19221_598948-ch14.indd   192 7/28/10   11:04 PM7/28/10   11:04 PM



193 Chapter 14: The F.B.D.: Knowing What to Draw and How to Draw It

 

Figure 14-4: 
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Take a look at the force vector F
CD

 in Figures 14-3 and 14-4. Notice that the 
internal force in the cable CD is oriented in one direction in 14-3 and the 
opposite in 14-4. Both represent tension in the cable because they’re pull-
ing on their respective free-body diagrams. However, the sense of the force 
changes depending on which isolation box you’re working with. In this case, 
that’s perfectly acceptable. Just make sure that internal forces on opposite 
sides of a cut line (or the location where an isolation box crosses the physical 
object) are equal and opposite in magnitude, sense, and direction.

You can also use an isolation box to capture unknown support reactions and 
relate them to internal forces. On this diagram, you include the two unknown 
support reactions A

x
 and A

y
 and the unknown revealed cable force FAC with 

a 30-degree dimension indicating the orientation of the cable (and as a result, 
its internal force) as shown in Figure 14-5.
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Avoiding problems with incorrect 
isolation techniques
The art of using isolation boxes takes some trial and error to get used to, 
but after you get the basics down, they provide the framework for quickly 
moving through a system with calculation and equation techniques that I 
discuss in later chapters.

One of the potential problems of isolation boxes is the increase in the 
number of unknown reactions or internal forces that you must include on the 
free-body diagram. For example, consider the simple truss structure shown 
in Figure 14-6a, which already indicates the support reactions. If you use an 
isolation box to cut only members CD, CG, and HD as shown in Figure 14-6b, 
notice how the complexity of the free-body diagram greatly increases. You’ve 
cut each member at two different places, exposing six additional internal 
forces as shown in Figure 14-6b — one on each side of each member within 
the isolation box.

The free-body diagram of the remaining portion of the structure also has 
these same six revealed internal forces (as shown in Figure 14-6c). However, 
each pair of forces is acting along the same line of action, with one of the 
forces acting in one direction and the other acting in the opposite direc-
tion for each member. Vector addition tells you that the net effect on that 
member is zero (for example, FCD – FCD = 0).

Your isolation box hasn’t really yielded a whole lot of new information. What 
you want to do is cut the objects in your free-body diagram in a way such 
that only one of any unknown internal force is present on any free-body dia-
gram. The simplest way to accomplish this feat is to require cutting all the 
way through the object or system. Figure 14-7 illustrates a better way of 
cutting this structure, resulting in only one of each unknown internal force 
on the system.

In this example, notice that you only have four unknown forces to deal with, 
whereas before you had six — all of which cancelled each other because they 
were acting in opposite directions with the same magnitude along the same 
line of action.

By cutting the system entirely into two pieces with your isolation box, you 
actually produce two free-body diagrams with the same unknown internal 
member forces. This result is useful because when you start writing equilib-
rium equations (which I show in Chapter 16), you can use either of the free-
body diagrams. Sometimes, one free-body diagram is significantly simpler, 
meaning it has fewer loads, fewer reactions, or more-convenient geometry.
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Using Multiple F.B.D.s
When multiple objects interact with each other, forces inherently exist 
between the objects. The chair you’re sitting on applies a force to the carpeted 
floor below (if you don’t have carpet, pretend you do); you can see the effect 
when you move the chair and see the impression of the chair legs that remains 
behind. Likewise, the carpeted floor itself exerts a force on the legs of the 
chair, preventing it from falling through the floor into your basement.

In systems with multiple objects connected, such as with a clamp or pair 
of pliers, looking at each of the individual pieces is useful. When exploding 
an object (separating connected pieces), your isolation box typically has to 
cut through a pin, bolt, or some other sort of connecting element. Cutting 
through pins or connections is one of the tricks I explore more in detail in 
Chapter 21.

In problems where one object is resting on top of another, such as the block 
resting on a ramp as shown in Figure 14-8a, the forces interacting between 
the two objects are what tell the story.

The only forces acting on the system as drawn are the weight of the block 
itself and the external applied load P, which is 200 Newton. So if the block 
is sitting on an incline and an applied load is pushing the block down the 
incline, what’s holding the block in place? The answer is friction, which is an 
invisible force that exists between two objects as they attempt to move past 
each other. (Don’t worry; I discuss more about friction in Chapter 24).

When you draw two isolation boxes, the internal balancing forces actually 
show up. Figure 14-8b shows the free-body diagram of just the block. In this 
picture, if you draw only the 200-Newton applied force and the 150-Newton 
self weight, you see that the block would clearly want to move downward and 
to the left as drawn.
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However, this scenario can’t physically happen. Clearly, the ramp has to be 
pushing back on the block; otherwise, the block would fall through the ramp, 
which is physically impossible. Think of the support reaction of the block as 
a quasi-roller support (sort of like the roller supports I discuss in Chapter 13). 
To counter the downward forces, a vertical supporting force also has to be 
present to maintain the block in its original position. A portion of this resis-
tance is due to the normal force N.

To prevent the block from sliding to the left, a second force has to be intro-
duced that has a component pushing to the right. The only way for this situ-
ation to occur is for a force vector to be developed that’s acting up the ramp. 
To balance these two forces that are acting on the block at the interface of 
the block and ramp, a second set of forces equal in magnitude but opposite 
in sense have to be acting on the ramp as shown in Figure 14-8c.
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Chapter 15

Simplifying a Free-Body Diagram
In This Chapter
▶ Understanding the principle of superposition

▶ Relocating forces and moments

▶ Determining equivalent systems with the space potato analogy

Chapters 13 and 14 equip you with the countless tools and equations 
to create, calculate, and depict the behaviors of vectors on objects by 

using free-body diagrams (F.B.Ds). F.B.D.s can be complex, intimidating, and 
a bit overwhelming because you often have an object that is subjected to 
distributed loads, concentrated forces, and applied moments applied at 
multiple locations, all acting simultaneously. (Flip to the chapters of Part III 
for more on these concepts.) Figuring out where to begin in tackling these 
diagrams can be quite a task.

One of the first steps you want to perform after making your sketch is to look 
for ways to simplify your F.B.D. In this chapter, I show you several handy 
simplifying techniques that you can utilize on a regular basis.

Presenting the Principle of Superposition
The principle of superposition basically states that multiple actions on an object 
are equivalent to the sum of the effects of each action applied individually. The 
principle of superposition allows you to quickly compute behaviors (such as 
reactions, displacements, and internal forces) from combined multiple load 
cases by simply adding together the responses of the individual cases.

 I assume that all objects in this book are rigid bodies, which are objects that 
aren’t deformed by the forces acting against them. Although the principle of 
superposition is based on assumptions surrounding non-rigid bodies (bodies 
transformed by forces), it’s still a handy tool in mechanics and statics because 
it provides good approximations for many rigid bodies.
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Making the assumptions for superposition
To properly utilize the principle of superposi-
tion, I first need to explain several fundamental 
assumptions that actually appear frequently 
in the derivations and theorems of mechanics 
and physics: small displacement theory, linear 
system behavior, and elastic material behavior.

The basic assumptions that you need to be mind-
ful of are when a load acts on an object, the dis-
placement behavior of the object due to the load 
must remain very, very small. In most classical 
structures, this isn’t an issue because most real-
world structures experience very small displace-
ments. For the purposes of this book, you can 
assume that all of these requirements are met.

The remaining assumptions are mostly related 
to deformation and deformable bodies. 
However, in this text, you are dealing exclu-
sively with rigid bodies. If you want more details 
about these common assumptions, check out 
any basic mechanics of materials or strength 
of materials textbook. 

The major assumptions behind static analysis 
naturally satisfy the requirements for applying 
the principle of superposition. Because you’re 
dealing with rigid bodies, a common assump-
tion is that small displacements are actually 
zero displacements. Assuming zero displace-
ment in a system also automatically satisfies 
the elastic material and linear system behavior 
assumptions because they’re based on zero 
displacement.

Most static systems in this text are linear 
systems, with the exception of cable systems, 
which are almost always nonlinear. Don’t 
worry! I explain more about cable systems 
and how to deal with them in Chapter 22. For 
all examples in this book, I assume that small 
displacement theory is valid and that the mate-
rials of the objects in each example behave 
elastically (or return to their original shapes 
when the load is removed).

The fundamental principles behind the principle of superposition have their 
origins in vector formulations for finding resultants. In Chapter 7, I show 
you how to take two vector components, F

1
 and F

2
, and simply compute the 

vector sum to find a resultant vector F
R
. If you have more than one vector 

component, you can add as many as you like to find the resultant vector. 
That is:

The idea of determining each part individually and then combining them 
to find a single combined behavior is the premise behind the principle of 
superposition.

If you consider all the assumptions from the preceding sections to be true for 
Figure 15-1, you can apply the principle of superposition by examining the 
effects of each load individually, creating three separate F.B.D.s that reflect 
the behavior of each of the individual loads.
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The combined loading of this example consists of a simply supported beam 
subjected to a concentrated load P

1
 acting at a distance c from the left sup-

port. In the same loading, a uniform distributed load with a magnitude of w is 
applied for the entire length of the beam. Finally, a concentrated moment is 
applied at a distance of a from the left end of the beam.

For this example, F.B.D. #1 (shown in Figure 15-1a) is a simply supported beam 
subjected to a uniformly distributed load w over the entire length. F.B.D. #2 
(Figure 15-1b) is the same beam and support reactions with a concentrated 
moment M at a distance a from the left support. F.B.D. #3 (Figure 15-1c) is the 
same beam and support reactions yet again, with the concentrated load P

1
 

applied at a distance c from the left support. The combined effect of each of 
these three load diagrams results in the same combined loading.

This principle is extremely useful for complex loadings situations in statics 
because it allows you to break a problem down into more manageable pieces. 
In fact, you may be surprised to find that many design handbooks out there 
have simple load cases already worked out.
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Centering on Centerlines 
and Lines of Symmetry

Another useful simplification technique is to look for a line of symmetry 
within a structure or loading diagram. A line of symmetry is an imaginary line 
that produces a mirror image of one part of a load or structure onto another. 
For a symmetric condition to occur, you must make sure that each of the 
following is mirrored by the line of symmetry:

 ✓ Beam properties: Properties such as mass, geometry, and cross-
sectional properties.

 ✓ Support reactions: Support reactions (restraints that keep a rigid body 
from moving away when force is applied; check out Chapter 13 for 
more). A fixed support condition on one side of the mirror line must 
be reflected on the other. The one exception to this rule is with pinned 
and roller supports. If all loads are in one direction, a roller support can 
actually mirror a pinned support as long as the parallel component of 
the pinned support is zero.

 ✓ Load magnitude and location: A distributed load must be mirrored by 
either being centered on the line of symmetry or by having an identical 
distributed load on the reflected side of the line. Similarly, you can con-
sider a concentrated load or moment symmetric by itself if it occurs on 
the line of symmetry; otherwise, it must have a matching concentrated 
load or moment and location that is reflected in the line of symmetry.

If any one of these items isn’t properly mirrored about the line of symmetry, 
you can’t consider the loading symmetrical, and the methods in this section 
won’t always work.

In Figure 15-2a, you see a simply supported beam with a partial uniform 
distributed load of magnitude w, with a distributed length of 2b. Because 
the load is centered on the beam, it’s symmetrically loaded — if you draw a 
mirror image line (or line of symmetry) exactly in the middle of the beam, the 
loads, supports, and beam conditions on the left half will be exactly the same 
as those on the right. In cases involving symmetry, you can usually assume 
that the reaction’s symmetric loading will be one half of the total resultant of 
the symmetric loading. In this case, the total applied load amounts to a resul-
tant of 2wb, or wb for each reaction R

A
 and R

B
.

Conversely, Figure 15-2b shows the same load applied nonsymmetrically. In 
this example, no line of symmetry meets all the requirements for mirroring of 
supports, loads, and geometry.

In some cases, lines of symmetry can also occur at different angles from 
the rest of the structure, as shown in the loading of the L-shaped object of 
Figure 15-2c. In this example, the loads and geometry aren’t mirrored by a 
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vertical or horizontal line of symmetry but rather on a line oriented at 45 
degrees passing through the corner of the L shape.

 Symmetry allows you to use the principle of superposition to quickly deter-
mine information about an F.B.D. without having to write any of the more com-
plex equilibrium equations I show you in Part V. For example, consider the 
beam of Figure 15-2a again. With a bit of simple logic and Chapter 10’s resul-
tant techniques for distributed loads, you can quickly determine the unknown 
support reactions RA and RB. In this example, you have a partially uniformly 
distributed load acting in the middle of a beam. If a beam is symmetric, and 
the loads acting on it are also symmetrically positioned, you know right away 
that each support of the beam carries exactly half of the symmetric load. In 
this example, the total load (or resultant) of the distribution is equal to R = 2wb. 
If the force is shared equally by the supports because of symmetry, you know 
that the support reactions are
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Equivalent Systems: Forces on the Move
Another method of simplifying a structure is by determining equivalent behav-
iors through the relocation of forces and moments. (In fact, this principle is 
what drives a lot of the discussion on equilibrium beginning in Chapter 16.) An 
equivalent system is a system of forces and/or moments that you can replace 
with a different set of forces and/or moments and still achieve the same basic 
translational and rotational behaviors. (For more on these behavioral con-
cepts, take a look at Chapter 12.)

To start the discussion of relocating a force, I now introduce you to the 
space potato.

Moving a force: The space potato analogy
The space potato is a unique, albeit somewhat nonsensical, method of refer-
ring to an arbitrary three-dimensional object in space. Suppose you have 
your very own space potato with a force F

A
 acting at a Point A somewhere on 

the object, as shown in Figure 15-3a.

Now suppose you want to compute the effects of this force at a different loca-
tion, such as Point B, on the space potato. To determine these effects, you 
need to compute the equivalent system at that point.

To determine the required translational effect, add a new negative force –F
A
 

at Point A, and an additional force F
A
 at the force’s new location (B). These 

two forces are illustrated by the dashed arrows in Figure 15-3b. The resultant 
of these newly added forces is F

A
 + (–F

A
) = 0, or zero net translational effect.

The original force F
A
 plus the new negative force –F

A
 also cancel each other 

at the original Point A. That is, the forces acting at Point A result in a net 
translational effect of zero at Point A. With that in mind, you can see that the 
only force that now remains on the space potato is the newly relocated force 
F

A
, which is now acting at Point B. Congratulations! You’ve relocated your 

first force. Unfortunately, you’ve also managed to introduce a new behavior 
to the potato in the process.

Now that you’ve relocated the force, examine the two additional forces that 
were added in Figure 15-3b. For now, check out each of the two additional 
forces and their points of application as shown in Figure 15-3c. In this sketch, 
you see that these two new forces are a negative force –F

A
 acting at Point A, 

and a positive force F
A
 acting at Point B. The two forces are parallel, acting in 

opposite directions and separated by a distance. This setup is the very defi-
nition of a moment couple that I discuss in Chapter 12. Remember, moments 
and couples cause rotation in an object, and the added rotational effect of 
this couple is what you also need to include when you move a force.
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To compensate for this couple, you need to compute an equivalent moment 
at Point B, which requires a position vector from your point of interest to a 
point on the line of action (usually taken as the point of application) of the 
original force. Compute the equivalent moment at Point B from the basic 
moment vector formula:

The space potato analogy shows you that to relocate a force, you simply 
need to take the original force and apply it at the new location, plus compute 
a newly applied moment and apply that at the new location. The final result 
of the relocated force and newly created moment are shown in Figure 15-3d.

 Equivalent systems must have both the same translational behavior and the 
same rotational behavior at a given point. Forces provide the translational 
behavior, and moments provide the rotational behavior.

 To relocate a distributed force, you simply need to convert the distributed 
force to a single concentrated resultant, determine the location of that resul-
tant on your space potato, and then follow these same rules for relocating 
a force.
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Moving a moment
In the preceding section, I illustrate how you can convert a couple into a 
single concentrated moment at a new location. But how do you handle an 
applied concentrated moment? As I discuss in Chapter 12, a concentrated 
moment is an action that causes a rotational behavior but doesn’t affect the 
translation of an object. Moment vectors are a type of vector known as a free 
vector, which applies the same rotational behavior regardless of where on 
the object it’s acting (see Chapter 4). As a result, you can freely move any 
moment (both concentrated and couples) around the object as long as the 
magnitude and sense of the moment vector remain unchanged (see Figure 15-4). 
The point of application of a moment or couple doesn’t matter when creating 
an equivalent system. If you want to move a moment, just move it!
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In this part . . .

This part is all about equilibrium, the state of balance 
between opposing forces. Here, I discuss Newton’s 

basic laws of motion and their applications in statics. 
I provide the basic equilibrium formulas and show you 
how to compute unknown support reactions from free-
body diagrams. Plus, I also explain the differences 
between two- and three-dimensional techniques for 
evaluating equilibrium conditions.
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Chapter 16

Mr. Newton Has Entered the 
Building: The Basics 

of Equilibrium
In This Chapter
▶ Defining translation and rotation

▶ Establishing equilibrium equations

▶ Describing improper constraints

You’re sitting comfortably at your desk, intently reading about all the gooey 
goodness that is statics, discovering how to draw and calculate vectors, 

and developing free-body diagrams to describe the world around you, when you 
lean back to stretch your spine. In the process, you suddenly find yourself losing 
balance — both you and your chair fall to the ground. Before you know it, you’re 
lying on the ground wondering, “What the heck just happened?” Your personal 
weight and the weight of the chair have not changed since you sat down. You, 
my friend, have fallen victim to the perils of equilibrium.

After you have the basics of vectors and F.B.D.s down, you’re ready to start 
exploring the single most important concept in statics: equilibrium (or bal-
ance). In this chapter, I show you how equilibrium is defined and introduce 
you to some of the work of Sir Isaac Newton, who provides you with the nec-
essary tools used to explain equilibrium.

For even more information on equilibrium, turn to Chapters 17 and 18. 
Chapter 17 covers scalar methods, and Chapter 18 covers vector methods.

Defining Equilibrium for Statics
The word equilibrium has several different meanings, but in statics lingo it’s 
basically defined as “a state of rest.” In particular, it means that an object or 

24_598948-ch16.indd   20924_598948-ch16.indd   209 7/28/10   11:05 PM7/28/10   11:05 PM



210 Part V: A Question of Balance: Equilibrium 

system isn’t experiencing any motion or acceleration. Now, all you need to 
know is how motion is defined.

In statics, motion is classified into two major categories:

 ✓ Translation: A linear or straight-line movement of an object

 ✓ Rotation: A spinning or turning of an object about a reference point or axis

Translational equilibrium
Any behavior that changes an object’s relative position without causing it to 
rotate is a called a translational effect. Translation is also sometimes referred 
to as displacement. 

Translation occurs only when an object is subjected to unbalanced forces. 
That is, a net unbalanced force (or the resultant of a system of forces) must 
exist in at least one direction for an object to translate in that direction. In 
order for an object to be in a state of translational equilibrium, the resultant 
of all forces on the system must be zero — that is, all the forces on an object 
must be balanced.

Consider the object of Figure 16-1, which is experiencing translation. To prop-
erly depict an object experiencing pure translation, you need to choose two 
arbitrary points — say, the reference point inside the object, and another 
corner point, such as Point D, on the boundary. For the first point you select, 
trace a line from the original position of that point to its final position. In this 
example, I label this line “Line of translation #1.” Now repeat this process for 
a second point (such as Point D). For the second point, you draw a line again 
from the original position of Point D to the final position of that point. I label 
this line “Line of translation #2.” If these two lines of translation remain paral-
lel from the original location to the final location, a pure translational behav-
ior has occurred. These lines of translation can occur at any orientation in 
space, including in three dimensions.

 

Figure 16-1: 
An object 

experiencing 
translation.
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211 Chapter 16: Mr. Newton Has Entered the Building: The Basics of Equilibrium

 One of the ways you can prove whether two lines of translation are parallel is 
by using unit vectors. Parallel lines have identical unit vectors.

Rotational equilibrium
Any behavior that results in a change in the orientation of an object without 
causing it to translate is considered to be a rotational behavior.

 Rotation is defined with respect to an axis. In Chapter 12, I explain that a 
moment is a rotational effect that acts about an axis of rotation. In two dimen-
sions, you don’t actually see this axis of rotation but rather the location where 
the axis of rotation intersects the xy plane. In this chapter, I identify that point 
as the “reference point.”

Be sure not to confuse rotation with revolving or orbiting, which implies a 
motion around or about another object. The moon orbits the Earth, and the 
Earth revolves around the sun. However, the Earth spins, or rotates, about its 
own polar axis. Consider the object of Figure 16-2, which illustrates the differ-
ence between rotating (Figure 16-2a) and orbiting (Figure 16-2b).

 

Figure 16-2: 

Rotating and 
orbiting.
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212 Part V: A Question of Balance: Equilibrium 

To determine whether an object is experiencing rotation, consider the orien-
tation of two points on the object, relative to the axis of rotation (the refer-
ence point). For this example, I arbitrarily choose Point A and Point B on the 
boundary of the object. If the reference point remains unchanged, and Point 
A and Point B experience the same change in angle with respect to the refer-
ence point (the z-axis in this two-dimensional example), you can conclude 
that the object has experienced a pure rotational behavior. Figure 16-2b 
shows an object experiencing an orbit effect. In this case, the orientation of 
the object with respect to itself remains unchanged. That is, the corner A 
doesn’t change, despite its change in orbital location.

 The axis of rotation (see Chapter 12) doesn’t have to be parallel to a Cartesian 
axis, though in many two-dimensional problems in the xy Cartesian plane, the 
rotation occurs about the z-axis. For three-dimensional problems, the axis of 
rotation can actually have any orientation in space. Again, you can use unit 
vectors to help you describe this orientation.

Rotation is always caused by the application of an applied moment, couple, 
or eccentric load (see Chapter 12 if you need more information). If an object 
is subjected to unbalanced moments, couples, or eccentric loads, that object 
experiences a rotation. Thus, if all the rotational behaviors are balanced, an 
object is in rotational equilibrium, and the net effect of the moments (or the 
resultant) of all the rotational behaviors must also be zero.

 In the real world, you can observe an endless combination of translational 
and rotational effects. Objects can be displacing (translating) and, at the same 
time, spinning (rotating). Rolling is actually a combination of translation and 
rotation. For example, a tire on a moving car experiences rolling. The tire itself 
is rotating about its center point (the axle of the car), but at the same time, 
the center of the tire is moving in a straight line in the direction of the travel-
ing car (assuming, of course, that the car is traveling on a straight and level 
stretch of road).

 In order for an object to be in total equilibrium, it must be balanced for all 
translational behaviors at the same time that it’s balanced for the rotational 
behaviors. If either one of these behaviors isn’t balanced, the object can’t be 
considered to be in equilibrium.

Looking for Equilibrium 
with Newton’s Laws

The basic equations of statics and equilibrium are founded in the principles 
of Newtonian mechanics, developed by Sir Isaac Newton in the 17th century. 
Newton’s three laws of motion help describe the way forces and objects 
interact, and ultimately provide the basic equations of equilibrium.
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213 Chapter 16: Mr. Newton Has Entered the Building: The Basics of Equilibrium

Reviewing Newton’s laws of motion
Newton’s laws provide a solid foundation for dealing with objects subjected 
to forces (also known as the study of mechanics). Perhaps the most famous 
of his explanations are contained in his three fundamental laws of motion:

 ✓ Newton’s first law: Newton’s first law of motion, sometimes referred to 
as the law of inertia, states that an object at rest tends to stay at rest 
until acted upon by an unbalanced force. Likewise, an object in motion 
stays in motion with the same speed and in the same direction until 
acted upon by an unbalanced force.

 ✓ Newton’s second law: Newton’s second law of motion states that when 
a force acts upon an object that has mass, a corresponding acceleration 
is produced. This idea led to one of the most popular formulas in all of 
physics:

  , where F represents the unbalanced applied force (the 
resultant), m represents the mass of the object, and a represents 
the resulting acceleration due to those applied forces.

 ✓ Newton’s third law: Newton’s third law of motion is one of the most com-
monly known physics expressions. It states that for every action, there 
is an equal and opposite reaction.

Newton’s third law helps you in creating free-body diagrams. Drawing F.B.D.s 
of parts of objects or systems is often more convenient than drawing entire 
systems. Newton’s third law allows you to replace parts of a complete picture 
with reaction forces. I show you exactly how this is done in Chapters 17 
and 18. For now, check out the example in Figure 16-3, where you notice a 
person pushing on a crate without moving it.
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How a falling apple changed the world
Sir Isaac Newton (1642–1727) was an English 
astronomer, physicist, mathematician, and 
philosopher who is credited with develop-
ing the basic equations of modern physics. 
Legend has it that as he was walking through 
his orchard (or sitting under an apple tree, 
depending on which version of the story you 
hear), he observed an apple falling from a tree 
(or it hit him on the head, again depending 
on the version of the story). From this simple 
event, Newton formulated several basic ideas 
that completely redefined the way that physi-
cists, scientists, and engineers look at the world 
around them. He published these thoughts, and 
others, in a document known as Philosophiæ 

Naturalis Principia Mathematica, which was 
first published around 1687.

For almost 200 years (until the late 19th century), 
these basic rules were indisputable. It wasn’t 
until the development of several very advanced 
theories — such as quantum mechanics theory 
by Max Planck around 1900 and the general 
theory of relativity by Albert Einstein around 
1905 — that the Newtonian laws began to 
break down on the atomic and cosmic scales. 
However, in day-to-day applications, even to 
this day, Newtonian mechanics remain good 
tools for working with basic mechanics and 
physics problems, such as the ones discussed 
in this book.

If you examine the free-body diagram of just the crate, you notice an applied 
force F from the person pushing on the crate. Similarly, if you remove the 
crate from the picture, that person, in reality, is still standing stationary. 
Without the crate, the force the person applies would cause that person to 
move in the direction of his applied force. However, because the man isn’t 
actually moving in reality, there must be an applied force from the box onto 
the person, which is helping to keep the person in his position. The force 
from the box onto the man has the same magnitude and line of action, but 
in the opposite direction, or –F. The net effect of these two forces is then F + 
(–F) = 0. There is no net unbalanced force between the man and the crate, so 
both are said to be in a state of translational equilibrium.

The scalar equations that make it happen: 
The big three
As I discuss in Chapter 1, one of the largest assumptions in statics comes 
from the very definition of the word static, which means “constant” or 
“unchanging.” If an object’s position and orientation are unchanging, its 
velocity and acceleration should clearly both be zero. If a = 0, Newton’s 
second law states that F = m(0) = 0. Thus, for an object to remain at rest, or in 
equilibrium), Newton’s second law requires that the resultant of all the forces 
and all of the moments acting on the object must be zero.
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In two dimensions
In two-dimensional problems, in order to fully define translational equilibrium, 
you need to consider translational behaviors in at least two nonparallel 
directions, which are often taken to be perpendicular to each other and in 
the same direction as the Cartesian axes of your applied coordinate systems 
(typically, in the x- and y-directions).

Now, if you want to study the behavior of a force in the x-direction only, you 
need to only look at the x-components, and verify that the resultant of all the 
x-component vectors is zero. In equation form, this setup means

Likewise, you must also consider at least one other direction (not parallel 
to the Cartesian x-axis) and verify that translation equilibrium occurs in that 
direction as well. In equation form, this requirement means

After defining translational equilibrium, you also need to verify that there are 
no rotational behaviors, or moments. In order to ensure rotational equilib-
rium, the resultant of all moments on the object must be balanced. In equa-
tion form, this is expressed as

In three dimensions
You can apply the same logic you used for two-dimensional problems when 
solving three-dimensional problems. However, you need to

 ✓ Evaluate translational equilibrium in at least three nonparallel directions 
(usually taken as the Cartesian x-, y-, and z-directions)

 ✓ Consider rotational equilibrium by considering the moment affects 
about three nonparallel axes of rotation

To verify equilibrium in three dimensions, you have a total of six equations at 
your disposal — three for translation and three for rotation:

 ✓ For translation:
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216 Part V: A Question of Balance: Equilibrium 

 ✓ For rotation:

Identifying Improper Constraints: When 
Equilibrium Equations Are Insufficient

Sometimes you can determine whether a system is in equilibrium by being 
able to identify unique situations such as concurrent force systems and par-
allel force systems. I explain both of these systems in the following sections.

Concurrent force systems
A concurrent force system applies to objects that have been subjected to a 
system of forces whose lines of action all act through a common point. In 
Figure 16-4, forces F

1
, F

2
, and F

3
 all act concurrently through Point O.
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217 Chapter 16: Mr. Newton Has Entered the Building: The Basics of Equilibrium

Suppose that those forces represent the support reactions for the object. 
Because these forces all have x- and y-components, those three forces may 
mathematically result in translational equilibrium — that is, those three 
forces may all balance each other.

However, if a new force P is applied somewhere else on the object (such as a 
perpendicular distance d from the concurrent point), an interesting phenom-
enon occurs: The reaction forces — F

1
, F

2
, and F

3
 — change values depending 

on the force vector P in order to maintain translational equilibrium. But if 
you calculate the equivalent moment of all the forces at the concurrent point, 
O, you have

From this equation, if d is nonzero (in other words, the load is at some point 
other than the concurrent point) and if the magnitude of the load, , is also 
nonzero, the equivalent moment at the concurrent point can never be equal 
to zero. Physically, this fact means that any single force you apply to the 
object of a concurrent force system at a point other than the concurrent 
point results in a rotational behavior.

 In order for rotational equilibrium to occur, the equivalent moment at all 
points must be equal to zero. If you have a rotational behavior, you can’t have 
rotational equilibrium.

 So, by simply examining the lines of action of the support reactions, you can 
determine whether a given problem is a concurrent force problem, which in 
turn gives you insight into the state of equilibrium of the problem. For this 
example, there is no rotational equilibrium. If more than one force is applied, 
rotational equilibrium is still possible.

Parallel force systems
Like the name implies, a parallel force system applies to objects where all 
applied forces have parallel lines of action. In Figure 16-5, forces F

1
, F

2
, and F

3
 

are all parallel to each other. The magnitude and sense of these force vectors 
may vary, but their lines of action must remain parallel.

Based on their magnitudes, the three forces — F
1
, F

2
, and F

3
 — may feasibly 

balance each other and result in translational equilibrium. If a new force P is 
applied to the system, and if the line of action of the new force is parallel to 
the original three forces, translational equilibrium may still be maintained.
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However, if the new force P is not parallel to the original three forces, you 
need to do some more investigating. If you compute the components of 
vector P such that one of the components (P

1
) is parallel to the forces F

1
, 

F
2
, and F

3
, equilibrium may be achieved in the direction of those forces. 

But remember that for two-dimensional problems, you must always include 
both components in your substitution for the force, P — and that second 
component is what causes the problem. If component P

1
 is parallel to the 

original forces, component P
2
 must mathematically be equal to zero, and 

equilibrium in two unique directions can be guaranteed. However, if the force 
P is oriented in any direction other than parallel to the original forces, the 
component P

2 can never be zero. In this case, the translation in the parallel 
direction may be balanced, but the translation in the direction of the second 
component will never be balanced.

 In order for translational equilibrium to be satisfied, the net translational 
behavior in two unique directions (three directions for three-dimensional 
problems) must be zero. If one direction is unbalanced, equilibrium can’t 
be satisfied.
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Chapter 17

Taking a Closer Look at Two-
Dimensional Equilibrium:

Scalar Methods
In This Chapter
▶ Solving for reactions

▶ Summing forces and moments

▶ Identifying alternative locations for moment equations

The equilibrium equations I present in Chapter 16 give you the tools you 
need to begin studying the effects of behaviors on structures. You’re well 

on your way to determining support reactions, calculating internal forces, 
and solving specific application problems with either scalar or vector tech-
niques. For two-dimensional problems, scalar solution techniques are much 
more efficient, and that’s what I show you in this chapter. But never fear — 
I show you the vector methods (which you almost always need for three-
dimensional problems) in Chapter 18. In this chapter, I show you how to use 
your free-body diagrams (F.B.D.s — see Part IV) to determine the magnitude 
and sense of unknown support reactions. I start the chapter by outlining the 
three basic steps that you follow when working a scalar statics problem and 
then I show you how to create the translational and rotational equilibrium 
equations in two-dimensional situations. Finally, I highlight a few consider-
ations for selecting points for moment equilibrium equations.

Tackling Two-Dimensional Statics 
Problems in Three Basic Steps

As you start to analyze a system or object, keep in mind that you’re always 
using the concepts of static equilibrium to determine the unknown forces 
and behaviors. Although some problems (such as those defined in Part VI) 
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may require specific techniques to unravel them, you quickly discover that 
the vast majority of statics problems begin with the same basic steps:

 1. Draw a free-body diagram of the object of interest.

  Construct your F.B.D. by including all information about the applied 
external forces, any revealed internal forces, the self weight, and 
unknown support reactions.

  Even if you don’t know the magnitude or sense of a particular action at 
this point, go ahead and include it on the diagram. Just make sure that 
the action is located at its proper point of application and oriented with 
its proper line of action, and give the load a label.

 2. Write the equations of equilibrium for your free-body diagram.

  The number of equations you have to write depends on the number of 
dimensions of your free-body diagram:

 • For two-dimensional problems: If you’ve constructed a two-
dimensional F.B.D., you write three equations. You need two trans-
lational equations (sum of forces) and a rotational equation (sum 
of moments).

 • For three-dimensional problems: If you’ve constructed a three-
dimensional F.B.D., you need six scalar equations (three transla-
tional equations and three rotational equations).

  In this step, your primary goal is to determine the magnitude of as many 
of the any unknown support reaction forces as possible.

 3. Calculate any necessary internal forces.

  After you’ve calculated as many of the external reactions as possible, 
your next step is usually to determine internal forces and other more 
specific information about the object(s) you’re working with. Many of the 
problems you encounter within statics have specific solution techniques 
once the support reactions have been determined. I highlight these 
different types of problems in the chapters of Part VI. 

In the coming sections, I show you the techniques for computing the support 
reactions.

Calculating Support Reactions with Two-
Dimensional Equilibrium Equations

When you know the steps (see the preceding section), you’re ready to put 
Mr. Newton’s equations to work for you.
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Consider the structure of Figure 17-1a, which is loaded with a 0.5-kip-per-inch 
uniformly distributed load from Point A to Point B, a concentrated load of 
10 kip at Point B, and a concentrated moment of 40 kip-inches at Point C. The 
structure is supported by a pinned support at Point A and a roller support 
on a 30-degree incline ramp at Point D. In the following sections, I show you 
how to determine the magnitudes of the external support reactions using 
this example.
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First things first: Creating the F.B.D.
Your first step is to create the system F.B.D. by using the tools in Part III. 
Make sure to include the following four types of forces on your diagram:

 ✓ External forces: In the example of Figure 17-1, they’re actually provided 
for you. Just copy the distributed load, the concentrated load, and the 
moment to their locations on the F.B.D. as shown in Figure 17-1b.

 ✓ Internal forces: For this F.B.D., you have no internal forces to include 
because you don’t have to actually cut the structure.

 ✓ Self weight: Neither the mass nor the self weight is given, so you can 
assume that the self weight is negligible in this problem. This example 
has no self weight forces.

 ✓ Support reactions: In this example, the support at Point A is a pinned sup-
port, which means that you need to include at least two unknown support 
reactions. Even though you don’t know the sense or the magnitude at this 
time, you can work around this problem. (I show you how in the “Solving 
for the unknown reactions” section later in this chapter.)

  The roller support at Point D is a bit more complicated. Remember: 
A roller support must have a single reaction force that is normal (or 
perpendicular) to the plane of the support. In this example, the support 
is sloped at 30 degrees from the horizontal, so the line of action of this 
reaction must be perpendicular to the plane of the support. 

Writing the equilibrium equations
In Chapter 16, I introduce you to the equations that you need to develop in 
order to establish equilibrium conditions. For a two-dimensional problem, 
you need to write two translational equilibrium equations (sum of forces) 
and one rotational equilibrium equation (sum of moments):

  

Adding helpful notation
When using the equations of equilibrium, notice that the equations contain 
vector expressions. However, you can actually cheat a little if you consis-
tently assume a vector direction. If two vectors, F

1
 and F

2
, are both acting in 

the positive Cartesian x-direction, you can write their vector expressions in 
terms of their scalar magnitudes and their Cartesian unit vectors:
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The equilibrium equation in the x-direction is then written as

Notice how the unit vector doesn’t actually affect the outcome in the expres-
sion. At the end, you’re left with a scalar expression that involves only the 
magnitudes of the forces acting in that direction.

 I also recommend including a bit of notation before the expression to help you 
remember to be consistent with the directions that you assume to be positive:

In this case, I like to add an arrow indicating the direction that I assume to be 
positive. This arrow serves as a constant reminder as I establish the equations 
of equilibrium.

 It doesn’t matter which way you assume is positive when writing the equilib-
rium equations — just pick a direction as positive and then be consistent with 
it when you start writing the equations.

Similarly, the moment vector equation can also be simplified to scalar expres-
sions if you choose a consistent direction for the axis of rotation. You can 
also add a similar reminder before each of your moment equations:

Summing forces first: Writing two translational equilibrium equations
When you’re solving for reaction forces, it doesn’t really matter which equilib-
rium equation you write first, so for this example I start with summing forces 
in the positive x-direction. To write this equilibrium expression, you must 
include every component of a force (see Chapter 8) that acts in the positive 
x-direction. For example, consider the reaction at Figure 17-1’s Point D, shown 
in Figure 17-2.

On the F.B.D., I assume that the force is acting up and to the left. Based on 
the assumed direction of RD, the corresponding x-component RDx

 must be 
acting to the left, and the y-component RDy

 is acting upward. You must get 
these directions correct, with respect to your assumed direction for RD. A 
mistake in the directions of force components will often prevent you from 
getting a final correct answer.
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Figure 17-2: 
Support 

reaction at 
Point D.
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y-component

x-component

RDy

RD
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The scalar equilibrium equation for translation in the x-direction is

In this equation, I’ve indicated that the positive direction is in the direction of 
the positive x-axis (or to the right). RAx

 is entered into the equation as a posi-
tive value because it is acting in the same direction as the assumed positive 
direction. Likewise, the x-component of RD is negative because it acts in the 
opposite direction. This is one of the expressions required for translational 
equilibrium. At this point, you can’t actually solve this equation because 
there are two unknown values in this equation. However, you have created a 
relationship between RAx

 and RD that satisfies Newton’s laws of equilibrium.

Next, you can write the translational equilibrium in the y-direction:

In this equation, the vertical reaction RAy
 is entered as a negative value 

because a positive direction was assumed upward, and this force was 
assumed to be acting downward. RDy

 is positive because the vertical compo-
nent of the assumed RD is acting upwards. Finally, all the external forces are 
included. The 10-kip concentrated force is negative because it is acting down-
ward, and the resultant of the distributed load (0.5 k/in) · (40 in) is also acting 
downward.
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 Notice, however, that I haven’t included the concentrated moment in either of 
these translation equations. Concentrated moments show up only in the rota-
tional equilibrium equation because they’re rotational behaviors — they don’t 
show up in the translation equations. However, as you see in the following sec-
tion, both concentrated and distributed forces show up in the moment equi-
librium equations.

Summing moments: Writing the rotational equilibrium equation
The third equation that you need to write is the rotational equilibrium equa-
tion. This equation behaves a bit differently because, unlike the sum of forces 
equations that you just wrote, the moment equation requires you to pick a 
specific point about which you calculate the equivalent resultant moments 
for the system.

For the sake of this example, I arbitrarily choose Point B from Figure 17-1 as 
the location and see what happens. (If you want to see an even easier way 
to solve this problem, skip ahead to the “Choosing a Better Place to Sum 
Moments” section later in the chapter.) You calculate the equivalent moment 
of each of the actions on the structure about Point B as shown in Figure 17-3.
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Assuming a counterclockwise moment to be positive, the rotational equilibrium 
equation about Point B is

Each term in the moment equation is the equivalent moment of an action about 
Point B (which is the point you’re summing moments about). Each force (or 
components) is included in the expression and includes the perpendicular dis-
tance to Point B. If it causes a rotation in the opposite direction, you include a 
negative sign before that term. A concentrated moment (40 kip per inch, in this 
example) is included in the equilibrium equation as a single value. It is added 
(or subtracted depending on its direction of rotation) to the equation directly.

 If you have a concentrated moment, this value does not require an associated 
distance. A moment is a free vector, and its equivalent moment at any location 
is the same as the original moment. The sign before this term in the equation 
is based on the assumed positive direction of rotation.

Simplifying, you can derive the final rotational equilibrium equation with 
respect to Point B:

Solving for the unknown reactions
By examining each of the equilibrium equations, you can see that each of the 
three unknown reactions appears in at least one of the equilibrium equations 
(and in the case of RD, multiple appearances):

 � ,

 � , and

 � 

With a few basic algebra skills, simultaneous solution of these equations pro-
duces the values of the magnitudes for RD, RAx

, and RAy
. Of course, the math 

isn’t exactly friendly, but the statics is complete, and you’re now left with 
solvable equations that produce the following reactions:
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 After the algebra is complete, if you find that a particular numerical result has 
a positive value, you know that the direction you assumed on the F.B.D. was 
correct for that load. Notice that RAy

 had a value of –17.0 kip, which tells you 
that instead of acting downward as you originally assumed, it’s actually acting 
in the opposite direction (or upward).

 As long as you’re consistent in assigning directions for all your scalar values in 
the equations, the signs will tell you whether your assumptions are correct.

 When you work with scalar equilibrium problems, if you make even a single 
mistake with one sign or assumed direction, you’re probably done for. It’s not 
because scalar methods are overly that difficult — it’s just human nature to 
make simple sign error mistakes from time to time.

Choosing a Better Place to Sum Moments
When you’re writing the rotational scalar equilibrium equation, you can 
choose any point about which you sum moments, even a point not physi-
cally on the structure. Referring to the Figure 17-1 example in the preceding 
sections, if you were to sum moments about Point A rather than Point B, you 
would eliminate the reactions at Point A from the equilibrium equation alto-
gether, because at this summation location, the perpendicular distances from 
the point of interest to the reaction forces at Point A are zero.

Now this equation only has one unknown, RD, and you can solve for it 
directly, making the math significantly easier than summing moments at 
Point B.

After you have the value and sense for RD, you can then compute the reactions 
RAx

 and RAy
 from the translational equilibrium equations.

 By carefully selecting the points about which you sum moments, you can 
greatly simplify your equation writing. When you’re looking for possible loca-
tions for rotational equilibrium points, you may want to consider the following:
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 ✓ Pinned support locations and internal hinges: Pins and hinges always 
have two unknown forces associated with them.

 ✓ Locations where lines of action of multiple unknown forces intersect: 
This point is known as an instantaneous center or a point of concurrency.

 ✓ Locations that eliminate troublesome forces with inconveniently 
oriented lines of action: As the last example shows, summing moments 
at Point D eliminates some nasty trig calculations from your equations. 
If you’re not sure how to handle an unknown force, sum moments at 
that point so that you can eliminate it from the rotational equilibrium 
equation altogether. But remember, just because you eliminate it from 
the sum of moments equation doesn’t mean you can eliminate it from the 
sum of forces equation.

For example, if you had chosen to sum moments at Point D:

Notice how choosing Point D eliminates all the trigonometry terms that 
showed up in the other equations. However, the problem with summing 
moments at Point D, however, is that terms for RAx

 and RAy
 both appear 

again, which requires solving simultaneous equations again. Regardless, 
the final solution is the same regardless of which moment summation point 
you choose.
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Chapter 18

Getting Better Acquainted with 
Three-Dimensional Equilibrium:

 Vector Methods
In This Chapter
▶ Solving for reactions in three-dimensional problems

▶ Explaining equilibrium in three dimensions

▶ Working with three-dimensional vectors in equilibrium equations

Statics problems in three dimensions are some of the most intimidat-
ing types of problems you encounter. You can easily get lost in all the 

dimensions, coordinates, and angles in three dimensions. A single force in 
three dimensions is completely capable of producing moments about three 
different Cartesian axes (see Chapter 5). And determining whether a rotation 
is positive or negative by the scalar methods I show in Chapter 17 can be a 
real challenge (though not impossible with the right-hand rule I describe in 
Chapter 12). If you choose to work with vectors, a lot of those difficulties are 
automatically handled for you. And after you’ve become an old pro at turning 
forces and distances into vectors, why not let vectors do the work for you?

In this chapter, I show you how to apply all those vector calculations to the 
free-body diagrams (F.B.D.s) I cover earlier in the book. Then I show you how 
to write the equations of equilibrium in vector form to solve for unknown 
support reactions.

Finding a Starting Point
The solution method for solving three-dimensional statics problems is very 
similar to the solution methods for two-dimensional situations that I describe 
in Chapter 17. Although it requires a bit more work upfront, the actual 
completion of the equilibrium equations is much easier from a statics point 
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of view; the math, on the other hand, can be a bit lengthy. To solve for support 
reactions in three-dimensional problems, you follow a similar set of steps to the 
two-dimensional scalar methods, with a few minor exceptions and additions.

Following is a basic summary of the steps required to find the support reac-
tions for a three-dimensional problem:

 1. Draw a free-body diagram of the object of interest.

  You include all concentrated forces, distributed forces, and moments 
on your F.B.D. Be sure to include the necessary information for describ-
ing the lines of action of your forces and the axes of rotations for your 
concentrated moments. You need to construct unit vectors in this pro-
cess, so be sure to include any necessary information to construct posi-
tion vectors in order help you define these important directions. Also, 
remember that you must provide coordinate data and angles.

 2. Write the equations of three-dimensional equilibrium.

  The number of equilibrium equations that are required to solve a three-
dimensional problem depends on the method you use to solve the problem:

 • Scalar methods: If you plan to perform scalar equilibrium calcula-
tions on three-dimensional problems, you need to work with a total 
of six equilibrium equations per F.B.D. — three scalar equations 
for translational equilibrium and another three scalar equations 
for rotational equilibrium. (See Chapter 16 for these six equations.)

  Working a scalar method in three dimensions is actually no differ-
ent than it is in two dimensions. The process is just a little trickier 
in three dimensions because you need to keep track of the direc-
tions (whether they’re positive or negative) by hand, just like you 
do with the two-dimensional problems of Chapter 17. However, in 
three dimensions, a force can create a rotation about any of the 
three Cartesian axes, and keeping track of those signs and magni-
tudes can be a bit confusing.

 • Vector methods: For vector method solutions, the process is actu-
ally a lot more straightforward. Instead of needing six scalar equa-
tions, you need only two vector equations to establish equilibrium:

  

  Although you’re working with fewer equations, you have to do a 
few more calculations upfront — you need to create vectors out 
of every force and moment on your free-body diagram. (I describe 
many of those methods earlier in the book, so if you need a 
refresher, look to Chapters 5, 7, and 8.)
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231 Chapter 18: Three-Dimensional Equilibrium: Vector Methods

  You use these equations to determine as many of the external 
reactions as possible. If your F.B.D. has no more than six unknown 
reactions, these two vector equations can help you calculate the 
magnitudes of all of them. If your F.B.D. has more than six reac-
tions, you may not be able to actually determine their magnitudes, 
but you can to write expressions that relate them to each other.

 3. Calculate necessary internal forces (see Part VI for these techniques).

Seeing Equilibrium within 
Vector Notation

In Chapter 16, I define equilibrium for an object as the state that occurs when 
all translational and rotational behaviors are balanced at the same time, and 
in the preceding section, I show you the two basic vector equations needed 
to define equilibrium. In this section, I explain each of these equations in 
more detail and show you how the vector equations actually contain the 
scalar equations in them automatically.

Equilibrium in translational behaviors
For an object to be in translational equilibrium, the net effect of all forces 
must be in balance. In statics terms, this setup means that the resultant of all 
translational behaviors (forces) must be equal to zero.

In Chapter 16, I mention that it takes a minimum of three translational direc-
tions to establish equilibrium for a three-dimensional object. So, if you 
arbitrarily choose the Cartesian x-, y-, and z-axes to represent your three 
directions, the resultant force F acting on an object can be expressed as

If an object is said to be in equilibrium, the resultant vector F must take the 
following form:

In order for these two expressions to be equal, the following expressions 
must be true:
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That means that the sum of forces in each of the three Cartesian directions 
must be equal to zero. Notice that these three equations are the same trans-
lational equilibrium equations I mention in Chapter 16.

Rotational components
In order for an object to be in a state of equilibrium, all the rotational behav-
iors (or the moments) must also be balanced — that is, the resultant of all 
rotational effects must also be zero. To establish rotational equilibrium, you 
need to ensure that the rotational effects about three different non-coplanar 
axes are also balanced. Following the logic for translational equilibrium in 
the preceding section, you can write a similar expression for the resultant 
moment vector M acting on an object as the following:

For an object to be in rotational equilibrium, the resultant moment M must 
be given by

This resultant implies that the scalar components of the moment about any 
three axes must be equal to zero to ensure rotational equilibrium:

  

Notice that these three equations are the same rotational equations that 
must be satisfied using the scalar methods.

Figuring Support Reactions with Three-
Dimensional Equilibrium Equations

As with two-dimensional equilibrium problems, you always want to try to 
compute all of the magnitudes of the unknown support reactions — or as 
many of the magnitudes as possible — after drawing the F.B.D. of the system. 
Three-dimensional problems are no different.
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In Figure 18-1, a uniform 2-meter-x-3-meter plank with a mass of 10 kilograms 
is supported by a three-dimensional roller at Point A and a three-dimensional 
pinned support (or ball and socket) at Point D. Both Points B and C are tied 
with cables to a point on the wall at Point E. A concentrated point load of 100 
Newton is applied on side AB at an angle of 30 degrees below the horizontal, 
and parallel to the yz plane. A moment of 300 Newton-meters is applied along 
edge BC. In the following sections, I walk you through the basic process for 
computing the magnitudes of the reactions for a three-dimensional statics 
problem. But first, as always, you need to create a proper free-body diagram 
first.
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Establishing the F.B.D.
With any statics problem, regardless of whether it’s two-dimensional or 
three-dimensional, your first step in the solution process is always to sketch 
a free-body diagram of the forces and moments that are acting on the object. 
Then you need to find as many of the unknown support reactions as possible.

Sketching the loads on the F.B.D.
In the example of Figure 18-1, if you draw an isolation box (which lets you 
zoom in on a specific feature of a larger object) around the plank by cutting 
the two cables, you can expose the support reactions that you’re seeking. 
(See Chapter 14 for more on using isolation boxes.)
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 ✓ External forces: Typically, you know the external forces acting on a 
system. The external forces for this problem are the 100-Newton concen-
trated point load alongside AB and the 300-Newton-meter concentrated 
moment along edge BC.

 ✓ Internal forces: Internal forces appear anytime a physical structure is 
cut. In this example, you’re cutting both of the cables BE and CE in order 
to isolate the F.B.D. of the plank. You know that cables are axial mem-
bers only, so you need to include a force for cable BE, TBE, along the line 
from Point B to Point E. Similarly, you include another force for cable 
CE, TCE, acting along a line from Point C to Point E. Even though you 
don’t know the magnitude of these forces, you must include them on the 
free-body diagram.

 ✓ Support reactions: The external support reactions in this example are 
a three-dimensional roller at Point A, which has a single point load 
A

y
 acting upward in the positive y-direction, and a three-dimensional 

pinned support at Point D that has three component forces (D
x
, D

y
, and 

D
z
) acting parallel to each of the Cartesian axes.

  I should point out that in this example, you can also combine these 
scalar reactions into a single resultant (see Chapter 7) that represents 
all of the concentrated forces for the support reaction. For R

D
, the reac-

tion resultant vector at Point D:

  where D
x
, D

y
, and D

z
 represent the scalar magnitudes of the components 

in the x-, y-, and z-directions respectively. Similarly, for the reaction at 
Point A:

  However, because the support at Point A is a three-dimensional roller, 
you automatically know that A

x
 = 0, and A

z
 = 0, so the reaction at Point A 

can be simplified to

 ✓ Self weight: In this problem, you also know that the plank has a mass 
of 10 kilograms, which means that you need to include the self weight 
on your free-body diagram. Compute the weight as W = mg = (10 kg) · 
(9.81 m/s2) = 98.1 N of the plank and apply it at the center of mass of 
the plank acting downward (in the direction of gravity), or in the negative 
y-direction. (For the lowdown on self weight, head to Chapters 9 and 10.)

26_598948-ch18.indd   23426_598948-ch18.indd   234 7/28/10   11:06 PM7/28/10   11:06 PM



235 Chapter 18: Three-Dimensional Equilibrium: Vector Methods

Writing each load in vector form
 When using vector methods for solving, be sure to convert every force and 

moment on the F.B.D. to an appropriate vector form — Cartesian forms are 
usually the most common — by using the techniques I describe in Part I 
of this book. The following list helps you break down these forces for the 
example in Figure 18-1, much like the list in the preceding section does for 
the isolation box.

 ✓ External forces: To convert the moment along edge BC, the double-
headed arrow notation (refer to Chapter 12) tells you that the direction 
of the moment is about the negative z-axis. In vector form,

  You must also convert the 100-Newton concentrated load along edge AB 
to a vector. You can use direction cosines (which I cover in Chapter 5) 
to determine the unit vector and then simply multiply by the 100-Newton 
magnitude:

 ✓ Internal forces: The internal forces of the cables are unknown, but you 
still need to establish expressions for them in terms of their unknown 
magnitudes. For cable BE, you need to define a position vector from 
Point B (2,0,3) to Point E (0,4,3) in order to create a unit vector:

  Similarly, you can create another tension vector for cable TCE using a 
position vector from Point C (2,0,0) to Point E (0,4,3).
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  In both of these cable forces, even though you don’t know the mag-
nitude of the force at this time, you can still treat it as a variable and 
continue with your calculations. In this case, T

BE
 and T

CE
 represent the 

unknown magnitudes of their respective force vectors.

 ✓ Support reactions: For the roller support at Point A and the three-
dimensional pinned support at Point D

  Just as with the cable forces, you still have to include the magnitudes of 
the support reactions in the vectors even though they’re unknown. Just 
leave them as variables for now — I show you how to deal with them in 
the following section.

 ✓ Self weight: The self weight is acting in the direction of gravity (assumed 
downward), so the self-weight vector is expressed as 

Writing the equilibrium equations
In Chapter 16, I introduce you to the equations that you need to develop 
in order to establish equilibrium conditions in three dimensions. In three-
dimensional problems, you must calculate the vector resultants for forces 
(translational effects) and the vector resultants for moments (rotational 
effects), which requires a total of six equations (three each for forces and 
moments).

Summing forces
You establish translational equilibrium of the plank in Figure 18-1 by comput-
ing the resultant force vector of all the force vectors on the system and set-
ting that sum equal to zero. For this example:

Substituting the appropriate vector equations that you computed in the pre-
vious section, and gathering all the terms with common i, j, and k directions, 
you can generate the equations of translational equilibrium as shown in 
Table 18-1, which uses units of Newton.
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Table 18-1 Translational Vector Components

F 0 –50 86.6

T
BE

–0.447(TBE) 0.894(TBE) 0

T
CE

–0.371(TCE) 0.742(TCE) 0.557(TCE)

W 0 –98.1 0

R
A

0 Ay 0

R
D

Dx Dy Dz

By summing each of the columns of this table, you can create the three trans-
lational equilibrium components:

i direction: –0.447(TBE) – 0.371(TCE) + D
x
 = 0

j direction: –50 + 0.894(TBE) + 0.742(TCE) – 98.1 + A
y
 + D

y
 = 0

k direction: 86.6 + 0.557(TCE) + D
z = 0

At this point, you have six unknown magnitudes in this problem — TBE, TCE, 
A

y
, D

x
, D

y
, and D

z
 — but only three equations with which to solve them. You 

need to get your remaining equations from summing moments about some 
reference point.

Summing moments
Summing moments is probably the most labor-intensive step of solving prob-
lems with vector methods because, chances are, you’ll be computing a lot of 
cross products (those pesky calculations I show you in Chapter 12). In fact, 
you need to compute one cross product for every force vector on the object. 
(Imagine if you had 100 forces on an object — that’s a lot of matrices!) So, 
this stage is where you have to be extra careful in your selection of a refer-
ence point for your equivalent moment calculations.

 As a general rule, select your equivalent moment reference points such that 
they produce the simplest mathematical expressions possible. (After all, 
why make your work any harder than it already is?) Places where multiple 
unknown forces intersect at a common point or points where dimensions are 
easy to compute (such as corners of objects) are often prime candidates for 
selection of your equivalent moment reference point. At the end of the day, 
the point you choose really doesn’t matter from a mathematical standpoint, 
because your solutions produce the same numerical value — your equations 
just end up a lot more complex if you don’t choose a convenient point.
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For Figure 18-1, at Point D, you have three of your six unknowns acting simul-
taneously (or concurrently). Based on the criteria, this spot would be a good 
candidate for your reference because you can eliminate all three reactions at 
Point D from the moment equation.

Now you’re ready to start computing equivalent moments. Consider each 
force on a case-by-case basis. You need to compute position vectors for each 
force on the F.B.D., so you create those by drawing your vector from the ref-
erence point (Point D) to the point of action of each force. To help you see 
these vectors, I’ve sketched each position vector for you in Figure 18-2.
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Setting up to complete the cross product
The next step is to compute the equivalent moment vector equation based 
on the forces and moment vector of Figure 18-2. You need to perform a 
cross product calculation for each, and then add each of those calculations 
together. For this problem, the moment about D (M

D
) is written as
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239 Chapter 18: Three-Dimensional Equilibrium: Vector Methods

You compute the position vectors for each expression just as I explain in 
Chapter 4.

 The first letter of the subscript represents the tail point of the position vector, 
and the second letter of the subscript represents the head point. The moment 
vector M doesn’t require a position vector because it’s already a moment and 
it can be moved freely from one point to another on the object. Also, the term 
containing the position vector r

DD
 vanishes because the length of that position 

vector is 0. (The head and tail of your position vector are at the same point.) I 
selected this point for that reason — it greatly simplifies the math.

Table 18-2 shows the results of the cross product computations for each of 
the quantities required for M

D
, the equivalent moment at D. The units for the 

table are Newton-meters.

Table 18-2 Calculating 

150 –86.6 –50

–2.682(TBE) 1.341(TBE) 1.788(TBE)

0 –1.114(TCE) 1.484(TCE)

147.15 0 –98.1

–3(Ay) 0 0

0 0 –300

As you do with the forces, you sum each of the components in the i, j, and k 
Cartesian unit vector directions. From these results, you can then derive the 
final three equations for rotational equilibrium:

–3A
y
 – 2.682(T

BE
) + 147.15 + 150 = 0

1.341(T
BE

) – 1.114(T
CE

) – 86.6 = 0

1.788(T
BE

) + 1.484(T
CE

) – 300 – 98.1 – 50 = 0

At this point, all you’re left with is a mathematics problem that involves solv-
ing for the six unknowns. For this example, I would probably start with the 
last two expressions of the rotational equilibrium equations and solve those 
simultaneously for T

BE
 and T

CE
. After you’ve computed those values, you 
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240 Part V: A Question of Balance: Equilibrium 

can easily substitute into the remaining equations and solve for the other 
unknowns. The final results for this problem are

T
CE

 = +112.04 Newton  T
BE

 = +157.65 Newton

A
y
 = –41.89 Newton  D

x
 = +112.03 Newton

D
y
 = –34.08 Newton  D

z
 = –149.00 Newton

 As with two-dimensional problems, the positive signs on the magnitudes of 
this example indicate that the directions of those respective forces on the 
F.B.D. were in the correct directions. Negative magnitudes tell you that the 
forces were drawn backward.
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Statics in Action
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In this part . . .

This part gets down to showing you the different types 
of structures you encounter in your statics work. Each 

chapter focuses on the different solution techniques that 
are unique to a given system type, including breaking up a 
problem and sketching the various free-body diagrams 
you need in order to write the equations of equilibrium.
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Chapter 19

Working with Trusses
In This Chapter
▶ Knowing how to identify a truss

▶ Explaining the method of joints

▶ Working with the method of sections and instantaneous centers

▶ Identifying truss members with zero-force

Many common structural systems that are used in buildings are made 
from numerous members that have been connected together to form 

a more complex system. When you enter your local hardware store or ware-
house shopping center, take a look up at the ceiling. You may see the most 
popular type of these structural systems: trusses.

Trusses are very lightweight structural systems, capable of spanning very 
long distances. They’re used to span major rivers or to span football fields or 
basketball courts in arenas. You may even possibly have trusses in the roof 
of your home. Trusses provide a wide array of shapes and sizes that make 
them extremely versatile to engineers and architects.

I start this chapter by identifying the major criteria that define trusses so 
that you can spot a truss when you see one. Then I introduce you to two of 
the most popular methods of solving for internal forces in the members of 
the trusses: the method of joints and the method of sections. I conclude the 
chapter by showing you how to determine zero-force members in trusses 
without ever writing a single equation.

Identifying Truss Members
Trusses are structural systems that are composed of numerous members con-
nected together. You may encounter a wide variety of shapes in a truss, but 
these shapes always have several common basic properties:
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244 Part VI: Statics in Action 

 ✓ Internal forces: All members in a truss system must be axial-only 
members — that is, their internal forces are axial (parallel to each mem-
ber’s longitudinal axis) and defined in terms of tension and compression.

 ✓ End connections: All members in a truss are pinned at the ends at loca-
tions known as joints (sometimes referred to as panel points). It’s these 
pinned ends that ensure all internal forces in truss members remain axial.

 ✓ Load locations: All loads are concentrated loads (see Chapter 9) and can 
only be applied at the joint locations. Truss systems have no distributed 
loads or concentrated moments. If a concentrated load isn’t applied at 
the joint, you can’t analyze the structure as a truss; instead, you need to 
analyze it as a frame or machine, which I introduce in Chapter 21.

Trusses are especially useful because of the variety of ways that the mem-
bers can be put together. Figure 19-1 shows examples of several trusses. 
Notice that straight members can be used to create a wide variety of roof 
shapes. Even curved and peaked roofs can be created with trusses. If you can 
imagine it, you can probably create it with a truss system.

 

Figure 19-1: 
Trusses are 

versatile 
and can 

create all 
kinds of roof 

shapes.
 

Howe Truss

Bowstring Truss

Scissor Truss

When you’re solving a truss problem, the first steps are no different than the 
first steps of any other statics problem. You always start a statics problem 
by drawing a free-body diagram (F.B.D. — check out Part IV) of the entire 
system; you then write the equilibrium equations to determine as many of 
the support reactions as possible.
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245 Chapter 19: Working with Trusses

 In this chapter, I provide all the support reactions and skip drawing the initial 
F.B.D. in order to help you focus on the different solution techniques for 
trusses. Just don’t forget to first find the magnitudes of the support reactions 
when you work your own problems.

When you have the support reactions calculated, you’re ready to start solving 
for internal forces by using one of the two common methods: the method 
of joints or the method of sections. Each of these methods has benefits and 
drawbacks. I explain both in the following sections.

The Method of Joints: Zooming In 
on One Panel Point at a Time

The first method for solving a truss system is pretty straightforward. As the 
name of the method implies, you draw an F.B.D. for each joint in the truss; 
you then apply the equilibrium equations to those diagrams.

Consider the truss shown in Figure 19-2, which is pin-supported at Joint A 
and roller-supported at Joint E. The support reactions have been given. With 
this figure, I show you how to use the method of joints to solve for the inter-
nal truss forces in the following sections.

 

Figure 19-2: 
The method 

of joints.
 

Joint C
isolation box

Joint A isolation box

= Hinge
 location

Joint B isolation box

12 ft 12 ft 12 ft 12 ft

16 ft

Ay = 50 k

Ax = 0 k

50 k 50 k Ey = 50 k

B

A E

C D

H G F

Step 1: Drawing isolation boxes
To start the analysis of this truss by the method of joints, first draw F.B.D.s 
of each joint by drawing an isolation box around each joint. Draw an isolation 
box to isolate the joint of interest. When you isolate a joint, you also end up 
cutting each truss member that’s connected to that joint. Also include any 
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246 Part VI: Statics in Action 

support reactions or applied loads that show up on the F.B.D. at that loca-
tion. Figure 19-3 shows the F.B.D. for Joints A, B, and C.

 

Figure 19-3: 
The 

free-body 
diagram of 

Joints 
A, B, and C.

 

FBC

FBH

50 k

FAB

B
FCD

FCFFCH

FBC

FCG
2020 1616

1212

C
FAB

Ay = 50 k

F.B.D. Joint A F.B.D. Joint B F.B.D. Joint C

FAH

A

20 16
12

 When drawing the internal forces for trusses, I find it convenient to assume 
that unknown internal member forces are always in tension. At the joint loca-
tions, by assuming a member is in tension, you must draw the internal force as 
though it’s pulling on the joint.

The following list explains the method you use to draw the F.B.D.s for each of 
the joints at A, B, and C.

 ✓ F.B.D. for Joint A: At Joint A, the isolation box cuts members AB and 
AH. To account for these revealed internal forces, you draw F

AB
 with the 

force arrow point to the right, and you draw F
AH

 with the arrow point up 
and to the right on the joint of A in the F.B.D. You also have the support 
reaction A

y
 = 50 kip acting upward at Joint A. The horizontal reaction 

A
x
 = 0 kip equals zero, so I’ve omitted it from the F.B.D.

 ✓ F.B.D. for Joint B: At Joint B, the isolation box cuts three members — 
AB, BH, and BC — so you must also include the internal forces for each 
of these three members on your F.B.D. For Joint B, the internal force F

AB
 

must now be pointing to the left in order to be pulling on Joint B. There 
is also an applied load of 50 kip acting downward at this joint, so you 
include that on the F.B.D. of the joint as well.

 ✓ F.B.D. for Joint C: At Joint C, the isolation box cuts a total of five mem-
bers — BC, CH, CG, CF, and CD — revealing a whopping total of five 
internal forces on the same joint. Because you have only three equi-
librium equations in two-dimensions, this joint is two degrees indeter-
minate, which means you need to find several of these forces by other 
means (from other joint F.B.D.s).

On each of these free-body diagrams, you also want to make sure to include 
the angles or proportion triangles for all of the forces. (Head to Chapter 5 for 
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247 Chapter 19: Working with Trusses

more on proportion triangles.) However, if the force is horizontal or vertical, 
you don’t really have to indicate the direction because you already know 
that the line of action is oriented at 0 degrees for a horizontal force and at 90 
degrees for a vertical force.

Now, if you’re observant, you’ll notice that F
AB

 has shown up on two free-
body diagrams. On Joint A, it’s pointing to the right, and in Joint B, it’s 
pointing to the left. How can the same internal tension force be pointing in 
two different directions? Look at an F.B.D. of member AB and its connecting 
joints, shown in Figure 19-4.

 

Figure 19-4: 
A free-body 
diagram of 

member AB.
 Cut line

FAB FAB FAB FAB

Cut line
Member FAB
is in tension

BA

Isolation box (to reveal internal force)

Joint
B

Joint
A

BA

To reveal the tension and compression forces in member AB, you start by 
drawing an isolation box (which I cover in Chapter 14) that cuts the member 
at two locations as shown. If you assume that the member is subjected to ten-
sion (as I do), in order for this member to be in tension, the force F

AB
 must be 

drawn as shown — with the left end of the cut member pointing to the left, 
and the right end of the cut member pointing to the right.

Remember that internal forces must remain in equilibrium on either side of a 
cut line. That means that the part of the member that’s connected at the joint 
has an internal force that must balance the F

AB
 force on the other side of the 

cut line from it. For Joint A, the internal force is balancing the force on the 
left end of the cut member that’s pointing to the left. So, on Joint A, it must 
be pointing to the right, or pulling on the joint as you assumed. Similarly, 
for Joint B, the internal force at this joint must balance the force F

AB
 that 

is acting on the right end of the cut member, which is pointing to the right. 
That means that the internal force of member AB acting on Joint B is pointing 
to the left, or pulling on the joint.
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248 Part VI: Statics in Action 

 This logic is applied at every joint a member is connected to. For each of the 
two joints that connect a member, the assumed direction of forces is always in 
opposite directions — even on diagonals.

Step 2: Applying the equations 
of equilibrium
After you’ve drawn the F.B.D.s for a particular joint, your next step is to write 
the equations of equilibrium, which I introduce in Chapter 16.

From this equation, you can solve for the internal force F
AH

, which turns 
out to have a negative value. As in all equilibrium problems, this fact means 
that the assumed direction of the internal force on the F.B.D. was incorrect. 
Because you assumed it was in tension, the negative sign means that it’s 
actually in compression — that’s why the final answer has a (C) after it. This 
way, on all F.B.D.s that contain the force F

AH
, you know that force is in com-

pression. If you find that a member is in tension, you write a (T) after it.

Next, you can write the other equilibrium equation for Joint A.

Notice that this equation was written for the exact way that I originally drew 
the F.B.D. at Joint A. This equation is based on the assumption that the force 
in member AH, F

AH
, is still in tension, even though you now know that’s not 

the case. But that’s okay — trust me.

All you have to do now is simply plug the signed valued into the equation. If 
you calculated a positive value, you plug in a positive value, but because F

AH
 

was negative, you actually substitute the negative value into the equation. 
The signed values take care of any errors with your assumed force direction 
within the equilibrium equation.

Finally, you can also write the moment equation for Joint A:
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249 Chapter 19: Working with Trusses

 As you can see, each force on this F.B.D. is acting concurrently (simultane-
ously) through Joint A. By summing moments at this point, the perpendicular 
distance to each force is actually zero. So for the method of joints, the 
moment equation no longer gives you any useful information about relation-
ships between forces.

 The loss of the moment equation’s usefulness isn’t a major hindrance. It 
just means that in order for you to work with a particular joint, you can only 
completely solve all the forces if there are no more than two unknown forces 
acting on the F.B.D. of interest.

Step 3: Review and repeat
Your next step is to look for another joint that has only two unknowns. At 
this time, the F.B.D. of Joint B has two unknown forces (just F

BH
 and F

BC
, 

because the preceding section determined F
AB

), so you can move to that joint 
and repeat the process.

You keep moving from one joint to the next, learning more about the different 
member forces, and applying them to each F.B.D. Repeating this for all joints 
in the truss reveals all the internal forces within each member.

Drawbacks to the Method of Joints
The major drawback with the method of joints is that in order to solve for a 
member force that’s connected to a joint with a large number of other mem-
bers, such as Joint C in Figure 19-3 earlier in the chapter, you have to first 
solve for forces at several other places. In fact, to solve for the force F

CD
, you 

have two options:

 ✓ Starting at Joint A: First, solve for forces at Joint A as described in 
the preceding section. Next, go to Joint B and do the same. Then go to 
Joint H, followed by Joint G, at which time you could move to Joint C 
and finally solve for force F

CD
.

 ✓ Starting at Joint E: First, solve for forces at Joint E, followed by Joint D.

Depending on which joint you start with, you can greatly increase the 
number of free-body diagrams you have to work with. In this case, to find F

CD
 

by starting at Joint A, you have a minimum of five joints, or ten translational 
equilibrium equations you have to write. Starting at Joint E has much fewer 
F.B.D. stops along the way, but you still have to work at two places, or four 
total translational equilibrium equations.
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250 Part VI: Statics in Action 

 What happens if the truss you’re analyzing is very long and has hundreds of 
joints? If you’re interested in a force in the middle of this truss, you may end 
up having to write an extremely large number of equations. And if you have 
irrational numerical values for each force along the way, you may end up 
incorporating a lot of error into your final answer. I won’t even mention the 
fact that the more steps you take, the more chances you have for writing an 
incorrect equation or keying a bad numerical value into your calculator. 
Generally speaking, the fewer calculations you have to do to get a desired 
answer, the more likely that you won’t make a mistake along the way.

To find forces in the middle regions of long trusses, a technique that lets you 
skip directly to the middle would be pretty handy. That’s where the second 
major method of truss analysis, the method of sections, comes into play (see 
the following, well, section).

And Now for My Next Trick: Slicing 
through the Method of Sections

The second major method of truss analysis is the method of sections. As the 
name implies, in this method you basically slice a truss into sections or, more 
specifically, into two pieces. But you can’t just go hacking up the truss — you 
need to obey several rules:

 ✓ Cut the member that you’re interested in. Obviously, to calculate the 
internal force of a truss member, you must first expose the internal 
force. The only way you can do that is by cutting the member.

 ✓ Cut the truss completely into two parts. Don’t cut partway through a 
truss and then stop. In fact, to assure yourself, you may consider using 
an isolation box that’s completely closed. Remember: You can include 
one of the supports inside your box.

 ✓ Cut a maximum of three members. You’re allowed to cut up to three 
members total. If you cut fewer than three, that’s fine. But if you cut 
four or more, you may have some problems with this method because 
you may not be able to solve for all of the unknowns on the free-body 
diagram.

 ✓ If you cut more than three members, all but two of the members must 
be on the same line of action. In rare circumstances, you can actually 
cut more than three members, but you’ll need to make sure that all but 
at least two of them are collinear. In general, it’s a very rare occasion 
when you can actually cut more than three members at a time.
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If performed properly, the method of sections can save you a load of time 
analyzing those members in the middle regions of trusses. In fact, in many 
cases you can actually calculate the force in a particular member by writing 
just a single equation.

As with any truss analysis, the first steps require that you draw an F.B.D. and 
compute as many of the external support reactions as possible. However, 
with the method of sections, if you have a truss that’s cantilevered (or sup-
ported in such a way that at least one end of the truss is unsupported), you 
may not even have to find the support reactions at all — although calculating 
support reactions is always a good idea, if you can.

Step 1: Cutting the truss
Suppose you’re tasked with the job of finding the force in member CD of the 
truss shown in Figure 19-5.

 

Figure 19-5: 

The method 
of sections.

 Cut line

5 m 5 m 5 m

5 m

Ay = 125 kN

Ax = 0 kN

50 kN 50 kN50 kN 50 kN 50 kN Gy = 125 kN

5 m 5 m5 m

BA C D E F G

MN L K J I H

If you use the method of joints (see “The Method of Joints: Zooming In on 
One Panel Point at a Time” earlier in the chapter) to compute this force, you 
need no fewer than six free-body diagrams (start at N, A, M, B, L, and finally 
C) or even seven free-body diagrams (start at G, H, F, I, E, J, D), depending on 
which end of the truss you started on. That’s a lot of diagrams and even more 
equation writing. (Remember: You have to write two equations per F.B.D. for 
the method of joints.)

To analyze the truss of Figure 19-5, a likely way to cut this truss would be to 
cut members LK, CK, and CD (which is your desired member). This strategy 
obeys all the method-of-sections rules I explain earlier in the chapter.
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Step 2: Drawing the F.B.D. for the two 
remaining truss pieces
After you cut the truss, you’re left with two pieces. Draw the free-body 
diagrams, including all reactions, point loads, and the revealed internal 
forces of members LK, CK, and CD, as shown in Figure 19-6.

 

Figure 19-6: 

A free-body 
diagram 
section.

 Cut line

5 m 5 m 5 m

5 m

Ay = 125 kN 50 kN 50 kN

FLK FLK

FCK

FCD

FCK

FCD

50 kN 50 kN 50 kN Gy = 125 kN

5 m 5 m

BA C D E F G

MN L K J I H

Step 3: Applying the equations 
of translational equilibrium
The F.B.D. that you choose to work with doesn’t really matter, but I usually 
recommend choosing the smaller of the two remaining pieces because this 
strategy usually ensures that your equilibrium equations are smaller as well. 
For this example, I work with the left F.B.D. in Figure 19-6 because it has fewer 
applied loads. However, if you choose to work with the F.B.D. on the right 
instead, you still end up calculating the exact same internal forces, so which 
diagram you select doesn’t really matter.

In this step, you write the two translational equilibrium equations.
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The translational equilibrium equations give you an internal force for a 
member in the interior part of the truss, just not the one you’re interested in 
at this time. But never fear — you still have one equilibrium equation left to 
work with.

Step 4: Applying the equation 
of rotational equilibrium
The last equation you have to work with is the moment equation. The 
moment equation is typically the most useful because you have complete 
control over the point about which the equation is written. In the method of 
sections, the moment equation truly shines.

To choose the point for the moment equation, you need to look back at the 
F.B.D. In this system, you have three unknown internal forces acting on the 
truss after you cut it, one of which is the force you’re interested in. So it 
would be convenient to write an expression that includes F

CD
 but doesn’t 

include F
LK

 or F
CK

 in it. (You know that if you calculate the moment of a force 
at a point on its line of action, the moment from this force is actually zero.) 
Thus the only way to make that happen is to write the moment equation 
somewhere along the lines of action of both member LK and member CK.

Because these two members have different lines of action, only one point in 
space is common to both members; the intersection of the lines of action of 
member LK and CK happens to be at Joint K. Both of those two forces inter-
sect at that location. So if you sum moments at that location, both forces will 
have a perpendicular distance of 0 meters because that point is concurrent 
with each of the forces. Summing moments at Joint K, you’re now left with

Check it out! You’ve found the force of a member in the middle of the truss 
by writing only one equation. All this was possible because you chose to cal-
culate your moment at a convenient point where the other forces intersect, 
and you stuck to the basic rules for creating the F.B.D.

 Choosing a convenient point about which to write your equations isn’t just 
useful in statics but is also a very handy concept in many other areas of study, 
such as structural analysis, dynamics, and mechanics of materials, among 
others. So keep your eyes open for those special locations.
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Step 4, continued: Identifying the 
instantaneous center
Instantaneous center is a term used to describe those locations on an object 
where special things happen. In dynamics, the term refers to the point in 
space (or on an object) about which all other points are moving, resulting 
in a velocity of zero. Although this terminology isn’t 100 percent correct for 
statics, the term can still be used to describe the point through which mul-
tiple forces acting result in zero moment.

For the method of sections, the instantaneous center is the point you look for 
in order to ensure the internal force you’re looking for appears, while making 
the other unknown forces disappear from your moment equation. In many 
cases, especially with trusses of horizontal chords, the instantaneous center 
is often at one of the joints of the truss. However, in practice, this point 
doesn’t have to be at a joint. In fact, it doesn’t have to be within the truss at 
all. Consider the simply supported truss, known as a Gambrel truss, shown in 
Figure 19-7. (For more on Gambrel trusses, see the nearby sidebar.)

 

Figure 19-7: 
An example 

of instan-
taneous 
center.

 
Cut line

Ay = 20 k 20 k 20 k Ey = 20 k

BA C D E

F

G

H

12 ft 12 ft 12 ft 12 ft

12 ft

6 ft

Suppose you wanted to determine the force in truss member DG of the gam-
brel truss shown in Figure 19-7. Because this member is in the middle of the 
truss, your first instinct should be to look at the method of sections as a pos-
sible solution and to slice the truss on the cut line through member DG. One 
possibility is to cut through members FG, DG, and CD.

Taking the F.B.D. on the right half, shown in Figure 19-8, you can see that the 
lines of action for members GF and CD actually intersect at a point outside 
the boundary of the truss. I define that “extra” distance beyond Joint E as x.
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A brief history of Gambrel trusses
The truss shown in Figure 19-7 is known as a 
Gambrel truss, which is known for having a 
double-pitched top chord, or a top chord that 
has more than one slope associated with it.

The Gambrel roof is thought to have been devel-
oped in Indonesia before it was brought to the 
Americas by French, Spanish, English, and 
Dutch explorers in the early- to mid-1700s. The 
shape served a function in that it also allowed 
for easy access of supplies into the upper areas, 
or allowed smoke to escape from cooking 
ovens located inside the structure.

The shape of this truss has a very classic pro-
file to many of agricultural structures of the 
American Midwest from the 1800s. If you ask 
someone to draw a picture of a typical barn, 
chances are he’ll draw a Gambrel roof. In many 
countries around the world, Gambrel trusses 
(sometimes referred to as Mansard trusses, 
despite a subtle difference in actual construc-
tion) are still commonly used today.

To find the distance x, you need to construct a set of similar triangles that 
incorporate the slopes of the two members you want to eliminate. In this 
case, you want to know the force in member DG, F

DG
, which means that you 

want to eliminate forces F
FG

 and F
DC

 from your moment equation. These are 
the two forces that you need to work with to find the instantaneous center at 
Point O. To accomplish this, you set up a relationship using similar triangles.

 

Figure 19-8: 
Locating 

the instan-
taneous 
center.
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256 Part VI: Statics in Action 

For member force F
FG

, you know that its line of action has a 6:12 proportion 
(height-to-length ratio) to describe the slope. This line of action is also the 
hypotenuse of �ODF. Similarly, member force F

DC
 is horizontal and forms the 

lower edge of the same triangle. �ODF has a height of 12 feet (side DF) and a 
length of (x + 12) feet for side DO, or a ratio of 12:(x + 12). Knowing that these 
ratios must be the same, you can then set up a relationship and solve for x:

Thus, the instantaneous center at Point O is located at a distance of 12 feet to 
the right of Point E. When you know this location, you can write the sum of 
moments equation at Point O and solve directly for the force in member FDG:

Shortcutting the Equation Writing: 
Zero-Force Members

For some very specific cases, you can determine the forces within a truss 
without ever performing a single calculation. You just need to be able to iden-
tify a couple of conditions, and if all those conditions are met, you can draw 
conclusions about whether a force is considered a zero-force member, with-
out a doubt. To identify a zero-force member, you have to look at each joint 
on a case-by-case basis and count the number of members, external reac-
tions, or applied point loads that are acting at the current joint being investi-
gated. Figure 19-9 and the following list illustrate the three specific cases that 
allow you conclude whether a member is zero force.
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Figure 19-9: 
Zero-force 
members.
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258 Part VI: Statics in Action 

 ✓ One member: If a joint has only one member and no point loads acting 
at the joint, the member must be zero force.

 ✓ Two members: If a joint has two members acting at it, and no point load 
is applied at the joint, both are zero force as long as the members aren’t 
collinear. If the angle between the members is either 0 degrees or 180 
degrees, you don’t know for certain that both are zero, so you have to 
leave them in your computations.

 ✓ Three members: If a joint has three members acting at it, two of which 
are collinear (and one of which isn’t), and no point load is applied, the 
noncollinear member is zero force. You don’t know the internal forces 
for the two collinear members for sure, so you must retain them in your 
calculations.

  If you have a joint that has two members and a point load, a special case 
may exist. If the point load is collinear with a member, the noncollinear 
member is zero force. This case is useful for members at support locations. 
Often, the members are perpendicular or parallel to support reactions.

When you’ve concluded that a member is a zero-force member, remove 
it from your F.B.D. of the entire system, and then go back and look at the 
system again. Sometimes, removing one member from the F.B.D. helps you 
conclude that another member is also zero by these same basic definitions.

 Also, you only remove a member from the analysis if you’re absolutely sure 
it’s zero force. If the joint doesn’t meet the requirements in this section, or 
you’re still unsure, don’t remove it. Your calculations in the end will verify the 
member is zero force anyway.

In fact, you usually want to identify whether a member is zero force before 
you even start employing the method of joints or the method of sections. You 
typically start looking for zero-force members after you have calculated the 
support reactions. Being able to identify zero-force members can be espe-
cially useful because you can remove members from the analysis altogether, 
which can greatly simplify your free-body diagrams.
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Chapter 20

Analyzing Beams and 
Bending Members

In This Chapter
▶ Explaining axial, shear, and moments as internal forces

▶ Computing internal forces at a point

▶ Developing generalized internal force equations

▶ Drawing shear and moment diagrams

For many engineers, the ability to analyze the internal forces of bending 
members is probably one of the most important skills that you can 

develop, partly because many structures and objects in the real world aren’t 
just axially loaded. In fact, the beams in the floor you’re sitting on (assuming 
it’s not the ground floor) or even the rafters in your roof are all examples of 
bending members.

In this chapter, I help define what a bending member is, and I show you what 
to look for when you identify it. When you know you’re dealing with a bend-
ing member, you’re ready to actually compute the magnitudes of internal 
bending forces, and I show you how. I also decipher yet another sign conven-
tion (assumption) and show you the steps to develop generalized equations 
for internal loads. Finally, I show you one of the most important tools for 
engineers: the ability to quickly draw diagrams of these internal forces.

Defining the Internal Bending Forces
In Chapter 19, I show you how to handle truss systems, which are comprised 
of members subjected to only axial internal forces, which cause a member to 
become longer in tension and shorter in compression (see Figure 20-1). 
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But what happens when a member isn’t loaded with just an axial load? Figure 
20-1 also shows a point load that is acting perpendicular to the member’s lon-
gitudinal axis. When this type of member (also known as a bending member) 
is loaded, it wants to deflect in the direction of the applied load, but not in 
the direction of the longitudinal axis of the member. As a result, axial tension 
or compression are no longer the only forces that appear internally. 

 

Figure 20-1: 
Axial and 

bending 
effects 

compared.
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And then there were three: Internal 
forces of two-dimensional objects
To start the investigation, you need to cut the bending member to expose the 
juicy goodness inside, as I show in Figure 20-2 at an arbitrary distance x from 
the left support. When you cut a bending member, instead of just an axial 
force, three internal loads will appear to help maintain equilibrium.

 ✓ Axial: By inspecting Figure 20-2a, to balance the horizontal reaction A
x
, 

there must be an internal axial force N
x
 that acts parallel to the longitu-

dinal axis to ensure translational equilibrium in this direction.

 ✓ Shear: By inspecting Figure 20-2b, you can see that without the presence 
of the force V

x
, the free-body diagram (F.B.D. — see Part IV) of the object 

can’t be in translational equilibrium in that direction. This internal force 
V

x
 is also known as a shear force, and it acts perpendicular to the longi-

tudinal axis of the member.

 ✓ Moment: From Figure 20-2c, you can see that without the presence of 
the moment M

x the F.B.D. can’t be in rotational equilibrium about Point 
X. The effect of the vertical support reaction and the shear force actu-
ally causes a rotational behavior that must be balanced by the internal 
moment. The contribution of the axial force N

x
 to the internal moment is 

often neglected because the perpendicular distance, Δ, is generally very, 
very small.
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Figure 20-2: 
Exposing 

internal 
bending 

forces.
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Strange new three-dimensional effects
As I show in Figure 20-3, in three dimensions, six internal loads appear on 
every exposed surface (or section) — one for each equation of equilibrium 
(flip to Chapter 16).

 

Figure 20-3: 
Three-

dimensional 
internal 
forces.
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262 Part VI: Statics in Action 

Translation: Another shear force
To balance the exposed internal loads in a three-dimensional F.B.D., you need 
three noncoplanar translational forces to provide the necessary forces for 
equilibrium. You always have an axial force N

x
 that acts along the longitudinal 

axis of the member, and you also have a vertical shear force, labeled V
y
. The 

third internal force V
z
 also acts perpendicular to the longitudinal axis — which 

makes it an additional shear force (refer to Figure 20-3).

Rotation: Torsion and another bending moment
There must also be three rotational equilibrium requirements in a three-
dimensional free-body diagram (refer to Figure 20-3). Just as with two-
dimensional problems, a moment about the z-axis M

z
 is necessary. There 

must also be a torsional moment (sometimes referred to as a twisting 
moment) about the longitudinal axis M

x
. The third moment that is required 

is an additional bending moment, M
y
. 

Calculating Internal Loads at a Point
When beams are designed to be used in buildings, these internal loads are 
what engineers must design for. Engineers must follow local building codes 
and guidelines and have a thorough understanding of the materials that they 
are working with. At this point, I just stick with showing you how to crunch 
the numbers.

To calculate internal loads at a point, you simply cut your structure at the 
point of interest, draw the F.B.D. (including the newly exposed internal 
forces), and then apply the equations of equilibrium (sound familiar?). 
However, with internal loads, you want to be very mindful of the sign conven-
tion that you select. 

Positive moments make you happy!: Yet 
another two-dimensional sign convention
When you expose an axial force on an axial-only member, the sign of the 
force depends on which side of the cut (or exposed face) you’re working 
with. An axial force that is positive in one direction for one F.B.D. would be 
negative for the F.B.D. on the other side of the cut line (or exposed surface). 
Figure 20-4 shows the sign convention for two-dimensional bending members.
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Figure 20-4: 
Sign 

convention 
for shears 

and 
moments.
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 ✓ Axial forces: The sign of the internal axial forces depends on whether 
the object of the F.B.D. is subject to a tensile or compressive load. 
The sign convention for axial forces from bending effects is the same. 
Tension is positive and compression is negative.

 ✓ Shear forces: If the force is acting on the left side of an interface or 
exposed face, it’s positive if it acts upward. If the force is acting on the 
right side of the interface or exposed face, it’s positive if it acts downward.

 ✓ Bending moments: A positive bending moment on each end of a section 
causes a beam to flex downward in the middle. A clockwise moment on 
the left side of the interface (or cut line) is considered positive, while a 
counterclockwise moment on the right side of the cut line is also consid-
ered positive. 

Now, if you picture the positive moment deflected shape as the mouth, and 
the (+) indicator as a nose, all you need are a couple of eyes on your sketch, 
and you’ll have created a happy face. That’s why you can say, “Positive 
moments make you happy!”

Using the sign convention
Often, you don’t know the direction of an internal load until after you perform 
your equilibrium calculations. Just make sure to include the internal loads on 
your F.B.D.s at the beginning, and let your equilibrium calculations confirm 
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your assumed directions. It usually helps to be consistent, so normally you 
want to assign the directions of your internal forces based on the positive 
sign convention that I discuss in the preceding section.

Consider the basic portal frame of Figure 20-5 which experiences a 50-kilo-
Newton (kN) force, a 2 kN per-meter distributed force, and a 40 kN per-meter 
concentrated moment. Suppose you want to compute the internal forces 
acting at Point E of the beam BC. In this example, the support reactions and 
directions at Points A and D have already been shown and are included on 
the drawing. Self weight (gravitational effects on the system) isn’t a concern 
for this problem.

 

Figure 20-5: 

Calculating 
internal 

forces, an 
example 
system.
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To calculate internal forces, the first step is to cut the beam at the location 
of interest (Point E, for this example), and draw a free-body diagram of one 
of the pieces that remains. F.B.D. #1 in Figure 20-6 shows the left half of the 
structure with all the applied external loads, support reactions, and appropri-
ate dimensions. Remember, you also need to include the internal forces -— 
an axial force, a shear force, and an internal moment.

The assumed direction of the internal loads is determined by looking at the 
cut line. From the F.B.D. #1 of Figure 20-6, because all of the internal loads are 
acting to the right of the cut line, you look at the “right” side of the sign con-
vention diagram in Figure 20-4 for each of the internal forces.

The axial force is assumed to be positive if it’s pulling (or acting tensile) on 
the longitudinal axis of the cut member. In this case, N

E
 represents the axial 

force on F.B.D. #1 and is acting to the right. In order for the internal shear 
force V

E
 (which is acting on the right side of the cut line) to be positive, it 

must be acting downward (which is perpendicular to the longitudinal axis). 
The bending moment M

E
 (also on the right side of the exposed face) must be 

acting in a counterclockwise direction to be positive.
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Figure 20-6: 
Free-body 
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for cutting 
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systems at 
Point E.
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For reference, F.B.D. #2 in Figure 20-6 shows the other half of the structure, 
with the appropriate loads, moments, support reactions, and dimensions 
already included on that F.B.D. For this diagram, the same internal loads 
have been revealed, but this time they’re acting on the left side of the cut line 
which means they’re applied with their senses reversed from those of F.B.D. #1. 
On F.B.D. #2 of Figure 20-6, the axial load N

E
, is in tension when it acts to the 

left, the internal shear V
E
 is assumed positive when it acts upward, and the 

bending moment M
E
 is now acting positively in a clockwise direction.

 Notice that the internal loads drawn on a F.B.D. on one side of a cut line are 
always equal and opposite to the internal loads drawn on the F.B.D. on the 
other side of the cut line. This ensures that the equilibrium is maintained at 
the cut line.

Computing internal force magnitudes
With the internal forces drawn, you’re now ready to employ the equations of 
equilibrium that I show you in Part V. For now, I use F.B.D. #1 of Figure 20-6 
for my calculations.
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 It really doesn’t matter which of the two free-body diagrams of Figure 20-6 you 
choose to work with. Assuming that you’ve calculated the support reactions 
correctly and that you have all the applied loads on both free-body diagrams 
and at their proper locations, the numerical calculations you perform produce 
the same results.

I start by summing forces in the x-direction (assuming to the right as 
positive).

At Point E, the axial load, N
E 

= 0 kN. Don’t worry that the axial value is com-
puted to be zero. Numerically, internal forces are permitted to be zero. Next, 
you compute the internal shear force at Point E:

The negative value on the magnitude of the shear V
E
 indicates that the direc-

tion that was assumed on the free-body diagram. Finally, you compute the 
internal moment at Point E.

The magnitude of the internal moment, ME, is computed to be +161.33 kN-
meters. Because this value is positive, the assumed direction is correct.

I can also compute the magnitude of the internal moment, ME, using F.B.D. #2:

Thus, the internal bending moment calculations produce the same result, 
regardless of which F.B.D. you decide to work with. The only difference is 
that the directions (or the senses) of the forces are equal and opposite.

29_598948-ch20.indd   26629_598948-ch20.indd   266 7/28/10   11:08 PM7/28/10   11:08 PM



267 Chapter 20: Analyzing Beams and Bending Members

Writing Generalized Equations 
for Internal Forces

If you want to calculate the magnitudes of internal forces at specific points, 
the procedure I outline in the preceding section is more than adequate. 
Unfortunately, if you want to properly design a beam or a column, you also 
need to determine the maximum and minimum values of axial, shear, and 
moment that your design will safely support. The problem is, you may not 
actually know where these locations are. So what are your options?

One option you may choose is to cut the same member at a hundred differ-
ent locations and perform the same calculations over and over and over. . . . 
(This task isn’t exactly the way I would want to spend a Saturday afternoon.) 
A better option is to try to formulate a more general set of expressions for 
internal loads along the length of the bending member.

Generalized internal load equations are typically created for shear and 
moment at all locations along the length of the member. In the following sec-
tion, I show you how to create a set of algebraic functions as a function of 
location in the member.

Defining the critical points
The generalized equations are valid over distinct regions that occur between 
critical points, which are locations on a beam where a change to the shear, 
the moment, or the relationships between them occurs. Critical points may 
occur at the following locations:

 ✓ Start and end of the bending member: Both ends of the member are 
considered as critical points.

 ✓ Support reactions and internal hinges: All points where support reac-
tions and internal hinges occur are critical points.

 ✓ All concentrated forces: All points where concentrated forces occur are 
critical points.

 ✓ All concentrated moments: All points where concentrated moments 
occur are critical points.

 ✓ Beginning and end of all distributed loads: All points where a distrib-
uted load starts or stops are considered critical points.

 Multiple critical points can (and often do) occur at the same location on 
your beam.
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Consider the simply supported beam shown in Figure 20-7. It’s subjected to 
a linearly distributed load with a maximum intensity of 50 pounds per linear 
foot at the right end. The slope of this distribution is 50 pounds per linear 
foot ÷ 20 feet = 2.5 pounds per square foot. Also acting on this beam is an 800-
pound concentrated force at 6 feet from Point A and a concentrated moment 
of 2,000 pound-feet acting at 5 feet from Point B.

 

Figure 20-7: 

Generalized 
internal 

forces, an 
example.
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Figure 20-7 also shows the F.B.D. of this example, with all loads and moments 
already included at their appropriate locations on the beam. The support 
reactions have already been calculated.

The critical points for this structure are indicated by dashed lines on the 
F.B.D. of Figure 20-7. One critical point occurs at Point A because that’s both 
the left end of the beam and the location of a support reaction. A second 
critical point occurs at the location of the 800-pound concentrated load. A 
third critical point occurs at the 2,000-pound-foot concentrated moment. The 
last critical point occurs at Point B because that is both the right end of the 
structure and the location of a support reaction. 

Establishing the regions of your 
generalized equations
The generalized equations for internal forces of bending members are valid 
within specific regions which are shown in the Figure 20-7 example, between 
those dashed lines that you created for the critical points in the last section. 
I list them in that figure as Region #1, Region #2, and Region #3. What these 
regions allow you to do is create a generic F.B.D. that is valid for all points 
within those regions.
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269 Chapter 20: Analyzing Beams and Bending Members

First you need to establish a reference location that remains unchanged for 
each region. I usually choose to take this reference point as the left end of the 
structure, but you can choose any point you want — just don’t move it! You 
can then draw F.B.D.s specific for each region, as I’ve done in Figure 20-8.

 

Figure 20-8: 
A free-body 

diagram 
for a 

generalized 
equation.
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For Region #1, you cut an arbitrary location at an arbitrary distance, x, from 
your reference. This F.B.D. is valid for all values of x between 0 feet and 6 
feet. Whether x = 1 foot or x = 3.697 feet, this F.B.D. looks exactly the same. 
The only parameter that changes is the x dimension or the location of the 
generalized section. Knowing this, you can then employ the equation of equi-
librium and write expressions for the shear and moment:
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This expression allows you to compute the value of the shear for every loca-
tion value of x within the region. Similarly, you can compute the generalized 
moment equations as

Repeating the process of writing equilibrium equations for each F.B.D. of 
Region #2 and Region #3, you can easily develop the generalized equations. 
For Region #2,

And for Region #3,

These equations represent the generalized equations for internal bending 
forces. Instead of having to perform a ridiculous number of internal load 
calculations with a large number of free-body diagrams, you can now create a 
much smaller number of algebraic expressions that fully define the values of 
the internal loads within the specific regions. 

Discovering other useful tricks 
from generalized equations
The best part about developing mathematical expressions for the generalized 
equations (which are actually mathematical functions) is that you can now 
utilize basic calculus principles to find maximum and minimum values for 
each of those functions. 
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Defining the relationship between shear and moment
With calculus, you can also discover an interesting relationship between the 
function for shear and the function for moment. If you examine the generalized 
equations for shear and moment for each region, for Region #1 of Figure 20-8, 
you can compute the first derivative of the internal bending moment M

x
.

If you recognize the result of this operation, it’s because this derivative actu-
ally ends up being the exact same equation as the internal shear function 
V

x
 for the same region. You can verify that this relationship is valid for all 

regions and can thus be defined as  where M is the moment function 
and V is the shear function for a given region or interval.

 The first derivative of the generalized moment function is equal to the general-
ized shear function over the same interval. Although it may not seem like a big 
deal at this point, this equation is fundamentally crucial in the advanced study 
of structural analysis and mechanics/strength of materials classes. This equa-
tion also serves as your graphical basis for establishing a shortcut method for 
creating shear and moment diagrams in the next section.

Calculating maximum and minimum shear and moments with calculus
Another neat feature with the generalized equations is that you can now also 
calculate the minimum and maximum values for shear and moment over a 
given region. You’ve gone to all the work to create nice continuous algebraic 
functions for shear and moment. You can now apply the principles of calcu-
lus that I discuss in Chapter 2 to find the maximum and minimum values of 
the shear and moment function, as well as their locations.

Plotting a system’s internal forces
Another useful result of having these algebraic expressions for the general-
ized shear and moment equations is that you can now plot their functions on 
a computer (or by hand) and create a complete shear and moment diagram 
that shows you every value of the internal shear and moments along the 
length of the bending member. These shear and moment diagrams are among 
the more important tools an engineer has available for design.

Creating Shear and Moment Diagrams 
by Area Calculations

When you compute the generalized internal force equations in the preceding 
section, you see that those calculations aren’t terribly difficult, but they can 
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take a good amount of time (especially if your problem has a lot of critical 
regions). A faster method is definitely worth investigating.

To help explain a new method based on area calculations, check out Figure 20-9, 
which contains a simply supported beam with a cantilever at the left end and is 
loaded as shown. The reactions have already been provided and are indicated 
on the figure.

 

Figure 20-9: 

Shear and 
moment 
diagram 

construc-
tion, an 

example 
system.

 

B CA

8 m2 m

By = 13.5 kN

20 kN∙m

Cy = 18.5 kN

4 kN
m

Rules to remember when working 
with area methods
To use the area methods, load diagrams must be fairly simple and consist of 
only point loads, concentrated moments, and uniformly distributed loads. 
Any higher-order distributed loads, and the geometry becomes less than 
friendly and you’re better off just creating the generalized equations.

 When you’re working with area methods, keep in mind the following:

 ✓ Construct the framework for the graphs first and align them vertically. 
Place the load diagram on top, with all reactions shown as point loads 
or concentrated moments. Next, place the shear diagram directly below 
the load diagram and then place the moment diagram directly below that.

 ✓ Obey the sign convention, and locate all critical points. You use the 
sign convention for the left end of the beam, as shown in Figure 20-4. 
Locate all critical points as I outline in “Defining the critical points” 
earlier in this chapter.

 ✓ Finish the shear diagram first. You must complete the shear diagram 
before you can start the moment diagram.

 ✓ Start from the left and work to the right. This method allows you to use 
the sign convention as described in the preceding bullet. Place points at 
V = 0 and M = 0 on the left end of each diagram.
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 ✓ The shear and moment diagrams you draw, and the calculations you 
perform, must compute to zero at the right end of the diagram. If you 
don’t calculate a zero when you reach the end, you’ve made an error 
somewhere along the way. What’s worse is that if your shear diagram 
doesn’t equal zero at the end, you’re guaranteed to have an incorrect 
moment diagram.

Constructing the shear diagram
The first diagram that you construct after drawing the loading diagram (or 
free-body diagram) is always the shear diagram. The shear diagram is built 
exclusively from the free-body diagram of the entire system, including exter-
nal applied loads as well as the computed support reactions. If you make a 
mistake in finding the support reaction calculations, chances are your shear 
diagram will be incorrect as well.

Using the example in Figure 20-9, you can compute the shear diagram in the 
following basic steps. Check out Figure 20-10 for a visual.

 1. Starting at Point 1, place a point at V = 0 and then examine the first 
critical region (between Point 1 and Point 2).

  If there are no loads acting in this region, the shear remains unchanged, 
so because the start point is at V1 = 0, the unchanged end point will be at 
the same value, or V2 = 0. There is a concentrated moment at Point 1, but 
remember that moments don’t affect the shear diagram, so just leave it 
alone for now.

 2. At Point 2 place a point at a shear value of V
2
 = 0; draw a line to con-

nect Points 1 and 2.

  At Point B, a reaction of 13.5 kN is acting upward on the beam. This 
reaction is the same as a concentrated load, which will cause the shear 
diagram to jump instantly.

 3. Starting at the value of V
2
 = 0 at Point 2, add another +13.5 kN to that 

value (for V
3 
= 13.5 kN total) and place a point for V

3 
= 13.5 kN on 

the graph.

  This becomes the new value for Point 3.

  Beginning at Point 3, which has a value of V3 = +13.5 kN, you can see that 
this region is subjected to a uniformly distributed load. The area under this 
load (or the resultant) is equal to the change in shear value and helps you 
calculate the shear at Point 4. For this example, the resultant of the distrib-
uted load on this region is (–4 kN per meter)(8 meters) = –32 kN. Because 
this uniform load is acting downward, the resultant must also be acting 
downward. This fact means that the total change from Point 3 to Point 4 
must be –32 kN. The value of shear at point 4 is then (+13.5 kN – 32 kN) 
V4 = –18.5 kN.
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  But be careful: The shape of the shear function between Points 3 and 4 
is dependent on the shape of the load between those points. The order 
of the shear function is always one order higher than the load function 
for the same interval. Thus, a uniform distributed load (with an order of 
zero) results in a linear (or first order shear function). So a straight line 
connecting Point 3 and Point 4 is correct. If this load had been linear (first 
order), the shear function would have been quadratic (or second order).

  At this point, you’re standing at the end of the beam at Point 4, and sit-
ting on a value of –18.5 kN. But the previous section says that you must 
end at a value of zero. So what happened? Even though you’ve reached 
the end of the beam, remember that there is also a vertical reaction, 
C

y
 = +18.5 kN. So the value of Point 5 is equal to the value of Point 4 plus 

the effect of the concentrated point load. Thus, the shear at Point 5, 
V5 = –18.5 kN + 18.5 kN = 0, which means the shear diagram ends on a 
zero value. Good news!

 4. Denote any areas of positive shear with a plus (+) sign inside the 
region and areas of negative shear with a negative (–) sign.

  This notation helps with the moment calculations I discuss in the next 
section. I also like to shade the areas to make them a bit more visible.

 

Figure 20-10: 
Developing 

the shear 
diagram.

 

13.5

+20

V (kN)

M (kN∙m)

–18.5

2nd order

2nd

order

+42.78

(+)

(+)
(+)

(–)

2

7

6

8

9

3

5

4

10

1

x = 3.375x = 3.375

 5. Look for a secondary critical point that occurs at locations of 
zero shear.

  At any locations where the shear diagram has a value of zero, you need 
to add a new critical point if there isn’t one there already. In this dia-
gram, Point 1, Point 2, and Point 5 are already critical points. However, 
there is another place where V = 0, somewhere between Point 3 and 
Point 4. At this location, add a dotted or dashed line and draw it down 
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into the moment diagram, as shown in Figure 20-10. These critical points 
are locations of maximum or minimum moments.

  To calculate the location of this point, you need to employ a bit of 
geometry. In this example, because the shear function is linear at this 
location, you can use the concept of proportions or similar triangles to 
determine the distance of the new critical point from Point 3. Using a 
variable x to denote this location:

  You use this dimension when you calculate the points on the moment 
curve in the following section. If the functions aren’t linear, you need to 
formulate a generalized shear equation, set the equation equal to zero, 
and then solve for the x-dimension that satisfies that condition.

Creating the moment diagram
When the shear diagram is complete, you’re ready to begin drawing the 
moment diagram. The moment diagram is based directly off the shear diagram, 
and all your calculations come from the shear diagram that you previously 
created. The only exception is the presence of concentrated moments, which 
cause a jump in the moment diagram. You need to look at the original load 
diagram to find them!

Using the example earlier in Figure 20-9, follow these steps to create a moment 
diagram:

 1. Place a point at the left end of the moment diagram at a value of M
6
 = 0.

  This becomes Point 6 in this example. At this critical point, the beam 
also has a concentrated moment in the amount of 20 kN-meters acting 
clockwise.

  A clockwise moment is a positive moment. This means that Point 7 has a 
value of M7 = (0) + 20 kN-meters = +20 kN-meters.

 2. Place a new Point 7 at M
7
 = +20 kN-meters.

 3. Compute the change in moment between Point 7 and Point 8 by calcu-
lating the area under the shear diagram between the same two critical 
points (in this case it’s the area under the shear diagram between 
Point 1 and Point 2).

  Because the shear is zero in this region, the change in moment between 
Point 7 and Point 8 is (0 kN-meters)(2 meters) = 0 kN-meters. The value 
at Point 8 is then M8 = 20 kN-meters + 0 kN-meters = +20 kN-meters. 
Because there is no shear between Point 7 and Point 8, the moment 
must remain constant.
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 4. Starting at the value of M
8
 = +20 kN-meters, compute the change in 

moment by calculating the area under the shear diagram for the next 
region.

  �M = (0.5)(+13.5 kN-m)(3.375 m) = +22.78 kN · m

  The final value of Point 9 is then M9= +20 kN-meters + 22.78 kN-meters = 
+42.78 kN-meters. The positive area under the shear diagram means that 
the moment will increase. So now you have the two endpoints declared, 
but what does the moment function between them look like?

  At this point, you need to do a bit of detective work. The first clue is in 
the shape of the shear diagram. Remember that moment diagrams are 
always one order higher than the shear diagram in the same region. So, 
if the shear diagram is linear (first order), as in this case, the moment 
diagram must be second order (or one order higher).

  But that leaves you with another dilemma. It takes a minimum of three 
points to define a second-order curve, and you only have two so far! 
This discrepancy means there are two second-order curves that can 
possibly fit between Point 8 and Point 9 (see Figure 20-11).

 

Figure 20-11: 

Using shear 
values to 

determine 
slopes of 

a moment 
diagram.

 

13.5 kN

0 kN

Slope
= 13.5 kN

+20

V

M

2nd order
curve #1

2nd order
curve #2

Slope = 0
tan at

tan at

8

9
9

8

(+)

(–)

  To deduce which second-order curve actually fits, you need to look at 
the slope of the moment diagram at each point. Recall that the slope 
of the moment diagram is equal to the value of the shear at that point. 
Thus, the slope of the moment diagram at Point 8 is +13.5. The slope at 
Point 9 is 0. Laying these two slopes on the two possible second-order 
curves reveals that curve #1 is the right shape and is the only one that 
is possible. It has the highest positive slope on the left end of the region, 
where the shear was the highest positive value.
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  Be careful, though — this second-order curve won’t necessarily work for 
every linear shear function. You have to look at the slopes to make the 
decision!

 5. Starting at a moment value, M
9
 = 42.78 kN-meters, compute the change 

in moment from Point 9 to Point 10 as the area under the shear 
diagram in this region.

  Because the area under the shear curve is negative, you should expect 
that the change in moment will also be negative.

  �M = (0.5)(–18.5 kN)(8 m – 3.375 m) = 42.78 kN · m

  Thus, the moment value at Point 10 is (M10 = +42.78 kN-meters – 42.78 
kN-meters) = 0 kN-meters. Hence, the moment diagram ends at a value 
of zero. You can deduce the shape of the second-order curve in the 
same manner as in the preceding step. Because the final value was zero, 
this indicates that the work you did is most likely correct. Be sure to 
label and shade your positive and negative moment regions as a useful 
reminder when you’re done.

 6. Look at your diagrams and declare the maximum and minimum shear 
and moment values.

  By looking at the shear diagram, you can see that the maximum positive 
shear VMAX+ = +13.5 kN at Point B (or Point 3) and the maximum negative 
shear VMAX– = –18.5 kN at Point D (or Point 4). Similarly, the maximum 
positive moment, MMAX+ = +42.78 kN-meters at the new critical point 
(or Point 9) and the maximum negative moment, MMAX– = 0 kN at both 
Point 6 and Point 10. With these values determined, you’re ready to begin 
designing this beam — but I’ll save that discussion for another book.
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Chapter 21

Working with Frames 
and Machines

In This Chapter
▶ Identifying frames and machines

▶ Blowing apart a structure for analysis

▶ Looking at additional features such as pulleys, sliders, and slotted holes

The versatility of frames and machines makes them extremely useful 
in day-to-day life for the work and convenience that they provide. In 

fact, the vast majority of structural systems you encounter are classified as 
either frames or machines and may require you to use slightly different tech-
niques to analyze them than the methods I outline for working with trusses 
(Chapter 19) and bending members (Chapter 20). The methods I present in 
those chapters are a whole lot simpler than the methods I present here, so 
you should apply the rules in this chapter only as a last resort. Though these 
techniques aren’t difficult, they can require a lot of additional work if you’re 
not careful. However, these techniques do allow you to solve problems that 
you may not otherwise be able to.

In this chapter, I show you how to identify frame and machine systems and 
then I tell you how to determine if you even need to use these methods in 
your solution. Finally, I show you the actual procedure for dealing with frame 
and machine systems and some of the more common components that are 
added to them.

Identifying a Frame and 
Machine System

You need to be able to identify systems quickly and efficiently. The following 
sections can help you to recognize that your system is a frame or machine by 
discussing the basic properties.
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Defining properties of 
frames and machines
The two types of structural systems that I discuss in this chapter are frames 
and machines and they have several basic differences:

 ✓ Frames: Frames are structural systems (such as your house or office 
building) that are constructed of multiple members, at least one of which 
must be connected by rigid joints (or joints that don’t rotate freely).

 ✓ Machines: Machines are systems that contain moving parts, such as pul-
leys, blades, and pistons, that are created to perform a certain task. Hand 
tools such as pliers, vice grips, and scissors are all examples of simple 
tools that are classified as machines. Machine systems produce the same 
additional internal forces in the members as frames, but may or may not 
have the same rigid joint requirement as a frame. Machines are typically 
used to transmit forces from one location in the structure to another. For 
example, a piston assembly in your vehicle’s engine receives forces from 
the combustion process and transmits those forces through the transmis-
sion, and into the axles or wheels, causing your vehicle to move.

Aside from these differences, frames and machines also have several proper-
ties in common:

 ✓ Member shapes: Members do not have to be straight (or linear). They 
can also be curved or bent into a wide variety of shapes.

 ✓ Internal forces: Internal forces on frames and machines have the same 
type of internal forces as the bending members in Chapter 20 — axial 
forces, shear forces, and bending moments.

 ✓ Loads of any type: Loads can be concentrated loads, distributed loads 
of any shape and order, or concentrated moments, and they can be 
applied at any location.

 ✓ Other items included on the structure: Frames and machines can also 
have other items attached to them. In fact, machines almost always have 
extra tools attached to them, such as pistons and pulleys.

 ✓ Statically indeterminate: Frame and machine systems are not necessar-
ily statically determinate (or have as many available equations as there 
are unknown forces on your free-body diagram — more on those later).

Determining static determinacy
In earlier chapters, I show how to find internal forces and support reactions 
using the equations of equilibrium with three or fewer unknowns on your 
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free-body diagram (or F.B.D.) for two-dimensional problems and six or fewer 
unknowns for three-dimensional problems. Unfortunately, many structures 
often are quite complex, and you can encounter many unknown forces on 
your free-body diagrams. (Check out Part IV for the complete scoop on work-
ing with F.B.D.s.)

Consider the F.B.D. of the two-dimensional machine system shown in Figure 21-1, 
which shows two members pinned together at Point C and supported by pinned 
supports at Points A and B. A concentrated load is applied on member BC.

 

Figure 21-1: 
An inde-

terminate 
frame.

 

R1

R2

R3

R4

P = 10 k

10 in 15 in

10 in

15 in

25 in

25 in
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B

C

In this F.B.D., there are two unknown reactions at the pin support at Point 
A, and two more unknown reactions at the pin support at Point B, for a total 
of four unknowns on the system. Because you have only three equations of 
equilibrium available for each F.B.D. of the system, this system is said to have 
one degree of indeterminacy (or the number of additional unknowns present 
beyond the number of available equilibrium equations). Because Newton’s 
laws of motion (see Chapter 16) provide you with only three equilibrium 
equations per F.B.D., you must find additional equations elsewhere.

Using the Blow-It-All-Apart Approach to 
Solve Frame and Machine Problems

After you’ve identified the degrees of indeterminacy and confirmed that 
you dealing with a frame and machine system, the question you face now is 
exactly how do you solve it?

30_598948-ch21.indd   28130_598948-ch21.indd   281 7/28/10   11:08 PM7/28/10   11:08 PM



282 Part VI: Statics in Action 

Breaking it at the hinges
To solve an indeterminate frame and machine system using only statics 
requires that your system has internal hinges — this will be the place where 
you cut the system. In many frames and machines, this point is the point 
where two or more members are connected, such as Point C in the example 
of Figure 21-1. Figure 21-2 shows the same system broken apart at the hinges.

 

Figure 21-2: 

Exploding 
a frame to 

reveal inter-
nal hinge 

forces.
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Next, draw F.B.D.s for each of the separated members. I arbitrarily assume 
the pinned forces acting on member AC are such that C

x
 is acting to the right, 

and C
y
 is acting upward on member AC. Member BC has the unknown sup-

port reactions and the concentrated load P and forces on the pin at Point C. 

Because the pin at Point C itself must also be in equilibrium, and because I 
already assume that the C

x
 component is acting to the right on the F.B.D. of 

member AB, the C
x
 pin force on member BC must be in the opposite direc-

tion. Likewise, the pin force C
y
 must be assumed to be acting downward 

on member BC because I already assumed that its counterpart was acting 
upward on AC.

 Don’t be alarmed if you perform your equilibrium calculations and discover 
that your forces have a negative value. Just as with other equilibrium calcu-
lations, if you assume the wrong direction for the forces on your F.B.D., the 
signs of your calculations will always tell you. As long as you ensure equilib-
rium of the pin with your assumed directions (by making sure that all forces 
on the pin are balanced), your calculations will still work.
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Knowing where to start solving 
frame and machine problems

 For each two-dimensional F.B.D. you’re able to draw properly, you’re allowed 
to use up to three equilibrium equations — two translational equations and 
one rotational equation.

In the earlier example of Figure 21-2, you now have a total of six unknown 
forces on your two F.B.D.s: the four reaction forces R1, R2, R3, and R4 as well 
as the two unknown hinge forces C

x
 and C

y
. Because you have two members 

on two separate F.B.D.s, you now have 2 members × 3 equations per member 
= 6 total equilibrium equations to work with. This means you now have six 
unknown forces and six equations of equilibrium which means you have a 
statically determinate set of free-body diagrams, or a solvable system. Now 
you just have to figure out where to start.

Starting on a member with a load
For most frames and machines, you typically want to start writing your equi-
librium equations for the member that has a known applied load on it. For 
the example of Figure 21-2, I start with member BC because it has a known 
load value acting on it: 10 kip downwards. The two translational equilibrium 
equations that you write are

Solving for the unknown hinge forces as fast as you can
The trick for solving most frame and machine problems is in determining the 
unknown hinge forces because they provide you with the extra information 
to use on all the other attached members. For the example of Figure 21-2, 
your goal is to get expressions for the hinge forces C

x
 and C

y
.

You still have a rotational equilibrium equation remaining to write for 
member BC, so you want to write this equation with Point B as your refer-
ence. (After all, you don’t want to have to deal with the reactions R3 and R4 
yet, so sum moments at their point of application, and they vanish from the 
moment equations.)
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This produces a handy relationship between the hinge forces C
x
 and C

y
. You 

then switch to each of the remaining F.B.D.s and perform the similar equilib-
rium calculations. First, you write the translation equilibrium equations for 
member AC:

The four translational equilibrium equations that you’ve written for members 
AC and BC are all related to one of the hinge forces at Point C. Finally, I sum 
moments at Point A on member AC to produce another equation for the pin 
forces at Point C.

You now have a second relationship between the same hinge forces C
x
 and 

C
y
. Substituting the rotational equilibrium equations for member AC into the 

rotational equilibrium equation for BC:

 C
x
 –(–C

x
) = 4 k

 2C
x
 = 4 k

 C
x
 = +2 k

Now that you know the horizontal force C
x
, you can substitute into either 

equation and solve for the remaining hinge force C
y
: 

2 k – C
y
 = 4 k

 C
y
 = –2 k

After you know the hinge forces, you can then substitute into the remaining 
equilibrium equations and solve for the support reactions:

 ✓ For R
1
: R1 + 2 k = 0, so R1 = -2 k

 ✓ For R
2
: R2 +(–2 k) = 0, so R2 = 2 k

 ✓ For R
3
: R3 – 2 k = 0, so R3 = 2 k

 ✓ For R
4
: R4 – 10 k – (–2 k) = 0, so R4 = 8 k

 To solve statics problems involving frame and machine problems and other 
indeterminately hinged structures, you must find the hinge forces first. If more 
than one hinge is on a structure, you must solve for the forces on each hinge.
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Considering Other Useful Approaches to 
Common Frame and Machine Problems

While the concept of “blow-it-all-apart” is a pretty sound technique for solv-
ing frame and machine problems, you quickly discover that deciphering the 
forces that you’re dealing with is sometimes a bit harder. In this section, I 
give you a bit more insight in handling some of the more common situations 
that you might encounter.

When more than two members 
meet at an internal hinge
Some frames and machines have more than two members that are connected 
at the same hinge location. Consider the example shown in Figure 21-3, which 
has three axial members connected to the same internal hinge at Point D.

 

Figure 21-3: 
An example 

of multiple 
members at 

a common 
hinge.
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The first figure shows the external pinned support conditions acting at Points 
A, B, and C, for a total of six unknown forces acting on the combined system. 
With only three equilibrium equations available to solve for six unknowns, 
you now know that this structure is statically indeterminate to three degrees. 
This means that you need an additional three equations to solve for the reac-
tion forces. Yikes!

Your first inclination may be to automatically assume that this system meets 
all the criteria to be solved as a truss with the method of joints (see Chapter 19 
for more information on trusses). After all, each member is pinned at the 
end, each member is axially loaded, and the point load is concentrated and 
applied at a hinge point. Clearly, this is a truss, right?

 In order for the method of joints to work, you can have a maximum of two 
unknown forces on any given joint at the time you’re solving it. This rule 
means you can’t use the same truss solution techniques to solve this problem. 

 In this example, you actually have three members (with three internal axial 
forces). At this point, you’re left with only one option: using the frame and 
machine solution techniques of this chapter.

As you did in the previous example, you blow apart the system at all hinge 
locations and draw free-body diagrams of each member. The F.B.D. for 
member AD consists of the pin support reactions A

y
 and A

x
 and the force of 

the hinge at Point D on the member FDA, for a total of three unknown forces.

Similarly, member DB has two unknown support reactions B
x
 and B

y
, and the 

unknown pin force FDB, for a total of three unknowns for this member. Finally, 
member DC also has two unknown support reactions, C

x
 and C

y
, and the 

unknown pinned force FDC, for a total of three more unknowns for this member.

In total, this means that there are three members, with three unknowns per 
member, for a total of nine unknown forces acting on the exploded frame 
system. But you have three equations per F.B.D. that you created, so that 
means that you now also have nine equilibrium equations to work with. Nine 
unknowns and nine equilibrium equations means that this system is now 
statically determinate and thus solvable!

Dealing with pesky pulley problems
A pulley is a mechanical apparatus consisting of a round object attached 
to a shaft that allows the object to rotate. A belt or a rope is then wrapped 
around part of the pulley and is used to transmit a force from one location 
to another. This shaft is then attached to bearings (making it a pin support), 
which is then attached to an external structure or support.
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A pulley serves two basic purposes: It provides a convenient change of angle 
for a force, and when combined with multiple other pulleys, they can help 
you lift a much heavier object than you might otherwise be capable of lifting. 
A pulley is also a very convenient mechanism for transmitting forces between 
mechanical parts. Just look under the hood of your car — several different 
parts of your engine are connected by a variety of pulleys and belts.

Changing force direction with pulleys
Pulleys are used to change the direction of force. Figure 21-4 shows a person 
pulling on a rope wrapped around a pulley, lifting a weight W. 

 

Figure 21-4: 

An example 
of a pulley.
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In many statics problems, pulleys are often considered as frictionless, mean-
ing, the motion of the pulley, or the wrapping of the belt around the pulley, 
does not provide any resistance to the person pulling on the rope. (Don’t 
worry, in Chapter 24, I discuss more about friction problems.) 

Like other machine F.B.D.s, working with pulleys requires you to break the 
system apart into individual pieces. For pulley problems, you first draw an 
isolation box (see Chapter 14) around each individual pulley and cut any nec-
essary ropes or belts — belts and ropes are always axial tension members, 
so you always know the direction of those forces on the F.B.D. Be sure to also 
include the support reactions of the pulley on the F.B.D. You then treat the 
pulley F.B.D. as any other exploded frame or machine part.
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 You get three additional equilibrium equations for each pulley F.B.D. you can 
create from a system of pulleys.

Creating mechanical advantage with pulleys
Interconnecting multiple pulleys and wrapping the same rope multiple times 
around the assembly is known as a block-and-tackle assembly. Block-and-
tackle assemblies are used to increase the amount of force lifted on one end 
of a rope for a given applied load at the other end. Consider the three-pulley 
system of Figure 21-5, which shows a rope passing around Pulley A, wrapping 
around Pulley C and over Pulley B, and connecting to the middle of Pulley C 
again. Suppose you’re interested in calculating the force required to lift a 900-
pound weight suspended from Pulley C. For this example, I assume that each 
of the pulleys is frictionless.

 

Figure 21-5: 
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As with other machine problems, your first step is to explode the system 
into as many pieces as possible and then draw your F.B.D.s. In this example, 
I include the rigid links and supports on my F.B.D. for Pulleys A and B. If I 
had chosen to, I could have drawn a separate F.B.D. for each of the rigid 
links as well, but because I’m not interested in finding their internal forces, 
and because they’re axial members connected to a support (I recognize 
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this because the links are pinned at both ends and don’t have any loads 
acting directly on them), their F.B.D.s would provide little useful informa-
tion with regards to calculating the applied load P. As long as I follow my 
F.B.D. checklist (see Chapter 13), I can actually cut this system in any way I 
want. I just have to make sure to get all the forces, support reactions, inter-
nal axial forces from the cables, and self weight (if there were any) applied 
at the proper locations on the F.B.D. For this problem, I have three unique 
free-body diagrams to consider, one for each pulley that I removed from the 
system (refer to Figure 21-5).

 For multiple pulley problems, you want to start with the pulley that has a 
known load value attached to it. In this case, I’ll start with Pulley C, which is 
supporting 900 pounds.

In drawing the isolation box around Pulley C, I had to cut three cables, which 
means I have to include one internal axial tension force for each of the cables 
that were cut — Pulley A and its link to its support, Pulley B and its link to 
its support, and Pulley C and its support weight of 900 pounds. Applying the 
equations of equilibrium in the y-direction:

 This equation has three unknown tension forces currently acting on it. But, 
because this F.B.D. contains a single rope wrapping multiple times around mul-
tiple frictionless pulleys, I know that the tension in each of the rope segments 
must be equal. That is, TAC = TBC1 = TBC2 = T, where T is the tension in each 
rope segment.

Rewriting the previous equation, I can now solve for the tension T in 
the rope:

T + T + T – 900 lb = 0

T = 300 lb

Next, to determine the amount of force applied I need to look at the F.B.D. for 
Pulley A. This F.B.D. reveals that only a single rope is acting around Pulley A. 
So now I know that the tension in the rope on one side of the frictionless 
Pulley A must be equal to the tension on the other side. This means that:

P = TAC = 300 lb

The force required to hold the 900-pound force on this tackle assembly in 
equilibrium is 300 pounds.
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 Because of the mechanical advantage of the way this system is set up, I only 
need one-third (or 33 percent) of the load in the rope to balance the applied 
weight. In fact, the more times you wrap the same rope around the same 
system of pulleys, the less weight will be required in the rope to balance a sus-
pended load. Talk about advantage!

Tackling Complex and Unique Assemblies 
on Machine Problems

More-complex machines may include unique attachments that provide you 
with a specific functionality. Some examples of these assemblies that you use 
in statics are pistons and slotted connections.

Pistons and slider assemblies
The common piston is a tool that you may find in your car engine or an 
industrial stamping machine (see Figure 21-6).
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In your car, the piston experiences a pressure on one edge (or face) due to 
the combustion of gasoline in the engine. This pressure resultant is a single 
force, PEQUIV, that is applied to the piston at the midpoint (assuming uniformly 
distributed pressure). The natural response of the piston is to move in the 
direction of the applied force, which then exerts a force into the bar AB, 
which can be oriented at any given direction (in this case, at an angle θ).

If the forces are all concentric (or concurrent), ask yourself this: With just 
these two forces on the F.B.D., is the piston in equilibrium? Without either 
of the normal forces NBOT or NTOP, the piston wouldn’t be in balance in the 
perpendicular (or vertical) direction for this example. That means that you’d 
need at least one contact force of the piston against the sidewall in at least 
one direction. But which one needs to be included?

In free-sliding assemblies, such as pistons and slider mechanisms, there are 
actually multiple cases that you need or want to investigate. For the simplest 
cases, you need to consider the events of the first two of the following cases. 
For more complex cases, something like the third one would be a possibility 
as well.

 ✓ Case 1: If the force FAB were to pull on the piston in the direction shown 
(up and to the right), the response of the piston would be to move 
upward and to push against the top edge of the chamber. But as it 
makes contact with the top edge, it loses contact with the bottom edge 
(making NBOT = 0).

 ✓ Case 2: If the force FAB reverses direction such that it is now pushing on 
the piston in the opposite direction, the piston will want to move down 
in response. As it moves down, it makes contact with the bottom wall 
and loses contact with the top edge (making NTOP = 0).

 ✓ Case 3: If the forces become nonconcurrent, which can occur if the 
location of PEQUIV varies (such as would happen with an improper com-
bustion firing) and develops an eccentricity, or if the applied pressure 
isn’t uniformly distributed, the resultant location would no longer be 
at the midpoint. The force acting at an eccentricity from the point of 
application of force FAB would actually cause a rotation of the piston 
within the chamber and produce separate normal forces on both the 
top and bottom walls at uniquely different locations. These forces would 
then partially act as a couple to resist the rotation due to the eccentric 
applied load.

The major issue with these types of problems is that you often don’t know 
which case to start with. This situation means that you have to choose a case 
by making a guess and then verify that the numerical values and their signs 
from your calculations all logically make sense. (For more on this idea, turn 
to Chapter 24.)
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Slotted holes and unidirectional pins
Slotted holes are another feature commonly encountered in engineering 
designs. A slotted hole is an elongated hole (often several inches in length) 
that allows one piece to move relative to another in just one direction while 
maintaining strict contact in the other.

 The purpose of the slot is to remove the restraint in a given direction. Without 
restraint, support reactions can’t develop.

Consider the example shown in Figure 21-7. This apparatus contains a slotted 
hole that connects two members of a frame assembly. The analysis of this is 
the same as if the members were connected with an internal hinge, with one 
exception. Notice that on the F.B.D. of member ACD, the horizontal pinned 
force C

x
 is no longer present because the restraint in that direction has been 

removed by the slot. Likewise, the opposite force on member BC is also 
missing. Force C

y
 can be assumed to be acting in any given direction on ACD 

just as before. Remember: The opposite force direction must be applied on 
member BC.

 

Figure 21-7: 
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Chapter 22

A Different Kind of Axial System: 
Cable Systems

In This Chapter
▶ Addressing nonlinear structural behavior

▶ Defining types of cable systems

▶ Working with concentrated loads on cables

▶ Developing techniques for parabolic and catenary cables

▶ Explaining the beam analogy

Cable systems are common structures in engineering that are popular 
because of their relatively lightweight construction and their aesthetic 

beauty. When someone says, “Picture a bridge in your mind,” many people in 
the United States think of the Golden Gate Bridge in San Francisco, renowned 
for its glowing red shape and long, slender cable system.

Although you still must observe all the rules of equilibrium I discuss in Part V, 
cable systems provide a unique set of challenges in that the forces in the 
cable structures are all dependent on the geometry of the cable system. For 
the same applied loads, you can get completely different geometrical behaviors!

In this chapter, I explain the three major categories of flexible cable systems 
(concentrated loaded, uniformly loaded, and catenary) and the properties 
that make cable systems unique. I show you how to calculate the tension and 
deflection (known as sag) in cables for each of the different types of system 
and introduce a shortcut method known as the beam analogy (but try to 
resist jumping directly to that discussion).

Defining Nonlinear Structural Behavior
In Chapter 19, I show you trusses, which are systems of multiple members 
(objects) that are axially loaded (or members whose internal forces are all 
acting in the direction of their longitudinal axis). Another type of important 
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axially loaded-only member is the flexible cable, which I cover in this chapter. 
Flexible cables are commonly used in a wide variety of applications, including 
power and telephone lines, aerial trams, and suspension bridges.

The internal forces in a cable system depend significantly on the following 
factors:

 ✓ Cable tension force: Cable tension force is the internal axial tension of 
the cable. Cables and ropes can only support axial tension — they can’t 
support compression, shear, or moments (which I cover in Chapter 20).

 ✓ Sag: Sag is a measure of the displacements of a cable system and 
directly affects the internal forces of the cable. Tension in cables can 
change dramatically for the same given applied loads with a simple varia-
tion in the sag of the cable. The sag for all cable systems varies with posi-
tion, and you’ll never see a suspended cable that is entirely horizontal.

 ✓ Geometry: Geometry includes factors such as the span of the cable 
system, the support locations, and the elevations of the cable supports 
and applied loads.

 Cables are assumed to be axial tension-only members and have negligible 
resistance to bending. End supports of cables are always assumed to be 
pinned supports (see Chapter 13) which are free to rotate but can’t move (or 
translate) otherwise. You can’t have a roller support on a cable system. 

In general, you can divide cable systems into three major classifications:

 ✓ Concentrated load systems: Concentrated load systems are cable sys-
tems with point loads (or concentrated forces) acting on them. You can 
apply multiple concentrated loads, but they must be spread out and not 
be continuous or distributed loads. (Flip to Chapters 9 and 10 for more 
on concentrated and distributed loads, respectively.)

 ✓ Uniform load systems: Uniformly loaded cable systems are those sys-
tems that are loaded by a constant, uniformly distributed load acting 
over a horizontal length. A uniformly loaded cable system is sometimes 
referred to as a parabolic cable system.

 ✓ Catenary systems: A catenary system is a cable system that is deflecting 
under its own self weight (the force created by gravity’s effects on the 
system’s mass) or is subjected to a load that acts along the length of the 
cable itself (as opposed to a horizontal dimension).
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Distinguishing among Types 
of Flexible Cable Systems

Loads on cables are typically vertical and are applied as either concentrated 
loads or distributed loads. Self weight of cable systems is often assumed 
to be negligible because it’s usually significantly smaller in comparison to 
applied concentrated and uniform loads. The load type determines the over-
all shape of the geometry and is the primary factor in choosing a solution 
technique. I cover three major types of cable systems in the coming sections.

Recognizing cables under 
concentrated loads
A cable system subjected to concentrated loads deflects into a shape that 
resembles a series of straight line segments. The tension in each of these seg-
ments may have a different magnitude (or the size of the internal cable ten-
sion force) for a given cable segment (section of cable between concentrated 
loads). Concentrated systems are the easiest to work with because the ten-
sion remains constant over a given cable segment and is directly related to 
the angles of the cable segments, which are based on the sag of the system at 
the point loads. Figure 22-1 shows a cable system subjected to concentrated 
point loads.
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 You can use simple geometry to calculate the angles of the cable segments, 
or you can use proportion triangles (which I cover in Chapter 5) to set up 
relationships. Cable systems lend themselves very well to proportion triangle 
calculations because you almost always know the vertical dimensions (sag) 
and the horizontal dimension (cable segment length or distance to point loads). 
I explain more in “Solving for Tension in Flexible Cables” later in the chapter.

Picking out parabolic cable systems
A parabolic cable system develops when a uniform load is applied horizontally 
along the full length of the cable. An example of this type of loading may be 
the result of roadway decks on suspension bridges. Figure 22-2 shows a 
parabolic cable system subjected to uniform loads.

 

Figure 22-2: 
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The deflected shape of a cable subjected to a uniform load is a continually 
curved or parabolic cable-system shape. Suppose you have a parabolic cable 
system that is loaded with 20 pounds per linear foot (or plf) for a cable that 
is 15 feet long and tied to supports that are separated by a distance of 10 feet. 
You can determine the total uniform load (or the resultant) acting on this 
system with the following equation:

Total Load = (20 plf) · (10 ft) = 200 lb

 The parabolic system is only dependent on the intensity of the load and the 
horizontal projection distance over which it acts.

Identifying catenary cable systems
As I note earlier in the chapter, a catenary cable system deflects under a load 
along the length of the cable such as ice on power lines or even the weight of 
the cable itself. Figure 22-3 shows a catenary cable system subjected to 
uniform loads.
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Figure 22-3: 
Catenary 

cable 
system.

 

A B

Sag = f(x)
(varies with position)

Catenary
cable shape

Uniform load
intensity

w
x

Suppose you have a catenary system loaded with 20 pounds per linear foot 
(or plf) for a cable that is 15 feet long and tied to supports that are 10 feet 
apart. You can find the total uniform load acting on this catenary system with 
the following formula:

Total Load = (20 plf) · (15 ft) = 300 lb

You can see that this catenary system has a significantly higher load because 
the resultant load (or total load) from this system is directly related to the 
length of the cable itself.

 This equation looks strikingly similar to the one for parabolic cable systems in 
the preceding section, but it uses some different terms. Be sure you plug in the 
correct numbers for horizontal span or cable length depending on the type of 
system.

For very small-intensity distributed loads (or even very small sag amounts), 
catenary systems are basically the same as parabolic cable systems.

Solving for Tension in Flexible Cables
After you know how to identify the three major types of flexible cable systems 
(see the preceding section), you can calculate the sag and cable tension for 
each type.

One of the problems you face when working with cable structures is that 
you often don’t know the sag until after the load has been applied. And if you 
don’t know the sag, you may find it difficult to determine the maximum ten-
sion in the cable. And if you don’t know the maximum tension in the cable, 
you can’t actually design the cable to hold the loads in equilibrium. And if 
you can’t design the cable, you can’t predict the sag. . . . And hence, you see 
the major problems with cable systems: Where do you start?
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 The forces in the cables become directly dependent on the geometry of the 
system. As the geometry changes, the forces in the systems change. To get 
around this issue, you generally assume one parameter, such as the sag or the 
cable tension values, and then solve the problem for the other value.

Because cable loads are always assumed to be vertical, the horizontal 
components at the reactions are constant and in opposite directions to each 
other. This setup means that the horizontal component at every location 
along a cable is also constant.

Concentrated load systems
You apply a method similar to the method of joints for trusses (which I 
explain in Chapter 19) at every concentrated load location, treating each 
cable segment on either side of the load as an individual two force member 
and drawing a free-body diagram (F.B.D.; see Part IV) of each “joint” (or con-
centrated load). You can compute the tensions in the cable because only the 
two unknown force vectors are acting at that point.

Consider the two cases of Figure 22-4, where two cable systems with the 
same span support the same 100-pound load in the middle. The only differ-
ence is that Case 1 has a sag of 6 inches, and Case 2 has a sag of 8 inches.
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Using a simple F.B.D., you can see that two cable forces TAB and TBC are acting 
at Point B. Because the system in this example is symmetrical, you can take 
advantage of symmetry to note that

TAB = TBC

Equilibrium (see Part V) in the vertical direction then yields the following 
equation for the cable tension in Case 1:

Note that the 20.88 inches value is the hypotenuse of the proportion triangle 
for the forces in the cable segments. (Chapter 5 gives you the lowdown on 
proportion triangles.) For Case 2 (which has a different hypotenuse value 
of 21.54 inches now), you have a similar equation:

As you can see from this example, a small change in the amount of sag can 
make a significant difference in the tension in the cable.

 Larger cable tensions usually occur near concentrated loads. Large tension 
loads can also occur at locations with very small sags. If you don’t believe me, 
try it out in the nearby “Relating tension to sag” sidebar.

Relating tension to sag
To see the relationship between tension and 
sag, hold a small piece of string between your 
fingers at a set distance apart, allowing it to 
have a moderate amount of sag. Hang a small 
weight from this cable and observe its final rest-
ing position. Now, maintaining your hold on the 
string at the same locations (which keeps the 
support reactions the same), gradually apply 
tension to the cable and observe what happens. 
A slight increase in the tension of the string 
causes the sag to decrease, which then causes 
the cable to lift the supported load. Repeat this 
process, and you notice that the sag continues 
to decrease as you increase the tension.

However, you quickly discover that to reduce 
the sag by the same amount each time, you 
must apply more and more tension (by pulling 
harder) on the cable. As you get to really small 
amounts of sag, you may actually have to apply 
a force that causes the string to break. You may 
also see that you can never fully remove all of 
the sag from the cable, because a small amount 
of sag is necessary to develop the vertical 
component of the tension in the cable, which 
is what keeps the supported load in equilibrium.
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Parabolic cable systems
The first step to solving parabolic cable problems is to locate an origin for a 
coordinate system at the location of maximum sag. At this point, you must 
align the x-axis with the horizontal direction and the y-axis with the vertical.

If you remember your basic calculus, you know that the tangent to a curve 
at a point has a slope of zero at a location of maximum or minimum value. 
For cables, this means that the axial force is acting horizontally at the point 
of maximum sag, which means that the tensile force To is horizontal, and the 
vertical component of the cable tension is zero at that location. In calculus 
terms, this information means you can create an expression:

which is the differential equation that governs the behavior of flexible para-
bolic cables.

The reason for this shift of the coordinate system location is that the shape 
of the cable becomes symmetric at the point of maximum sag. This symmetry 
doesn’t mean that the dimensions LA and LB are necessarily the same value, 
but rather that the overall parabolic shape is symmetrical about that point. 
Based on this new origin, you can define y = 0 at x = 0 (this setup is called a 
boundary condition). By integrating the governing differential equation and 
applying a little bit of algebra to the known boundary condition, you can pro-
duce the expression for the deflected shape of the cable:

So with this expression, all you need to know is the vertical load applied, w, 
and the horizontal component of the tension in the cable, To, and you can 
determine the amount of sag y at any point x measured from the origin.

Figure 22-5a shows a parabolic cable with a uniform load of intensity acting 
on a horizontal length.

The F.B.D. of segment BC in Figure 22-5b shows that for a given segment, the 
horizontal component of the tension at all points must be equal to To, or

As you move further from the origin location, the horizontal component 
remains the same, but the vertical component increases to its maximum 
value at the support locations. Thus, the maximum magnitude of the tension 
occurs at the support location.
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 This characteristic also means that the horizontal component To must be the 
same magnitude as the horizontal pin support reactions (if the applied loads 
are all vertical).

Calculating tension when you know sag
You can use a system’s known sag to figure out how much tension it’s sup-
porting. Consider the suspension bridge in Figure 22-6a, which has a span 
between the towers of 500 feet (assumed to be pinned at the towers), and 
a maximum sag of 35 feet at the midpoint. A deck load of 1 kip per foot is 
applied over the horizontal length of 500 feet. To begin your analysis, you 
draw an F.B.D. (as shown in Figure 22-6b) of the cable between the towers 
and treat their supports as pinned at both ends.
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The first step to find the horizontal tension component (To) in the cable is 
to locate the coordinate system at the point of maximum sag at a distance of 
250 feet from both Point A and Point B, measured horizontally. Thus, at a dis-
tance of x = 250 feet from the origin, y = 35 feet (which is the maximum sag).
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Rearranging the basic parabolic cable equation and solving for horizontal 
cable component To gives you the following equation:

The horizontal component has the same magnitude as the support reactions, 
A

x
 and A

y
, so

To = A
x
 = B

x
 = 893 k

If you sum moments at Point A, you can then solve for B
y,
 the vertical reaction 

at Point B:

Now that the vertical and horizontal components of the support reactions 
have been determined, you can compute the maximum magnitude of the 
tension in the cable:

Calculating sag when tension is known
The solution process for calculating sag from tension is basically the reverse 
of the tension-from-sag calculation in the preceding section. Suppose that 
for the suspension bridge shown in Figure 22-6a, the design engineer tells 
you that you’re limited to a maximum of 750 kip of tension in the cable. You 
can show that the vertical component of the reaction remains unchanged 
at 250 kip. (See the preceding section for this calculation.)

Rearranging the magnitude equation, you can compute the horizontal compo-
nent of the cable tension as

Recall that the horizontal component of the cable tension is the same value 
as the horizontal reactions (assuming that all loads are vertical, as they are in 
this example). Utilizing the boundary conditions for this problem at x = 250 ft, 
y = maximum sag, you can create the following equation:
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303 Chapter 22: A Different Kind of Axial System: Cable Systems

By comparing the results in the examples in this section, you can see that by 
allowing the cable to sag almost 10 additional feet, you can reduce its tension 
from 927 kip to 707 kip (or by roughly 25 percent). 

Catenary cable systems
 Catenary cable problems are a little more mathematically challenging because 

the uniform load applied is now a function of the cable length. The more sag 
a cable system has, the more cable length is present to carry the load.

The derivation for a catenary problem is very similar to the derivation you 
use for parabolic cables (see “Parabolic cable systems” earlier in the chapter). 
You still must define your coordinate system such that the origin is at the 
location of maximum sag and the horizontal component of tension To is equal 
to the cable tension at that point.

Figure 22-7a shows the same cable as Figure 22-5, except now the load is 
applied per length of cable, not on a horizontal basis. To clarify this difference, 
I’ve changed the applied load intensity from a w symbol to a μ symbol. Also, 
the length over which the load acts is now the arc length of the cable μs. 
The origin is placed at the location of maximum sag, (at Point C) as shown in 
Figure 22-7b.

 

Figure 22-7: 
Catenary 

cable 
derivation.
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Applying a little calculus gives you the following governing differential 
equation for the catenary cable:
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By comparing this equation to the parabolic version, the load of the para-
bolic system equations, w(dx), has been replaced with μ(ds). The major 
mathematical difference is that the incremental arc length term ds is now 
also a function of both the sag (y) and position (x).

Solving the differential equation and applying a bit of algebra, you can determine 
that the sag of a catenary cable can be expressed by the following equation:

where the cosh term (which you probably remember from trigonometry) rep-
resents the hyperbolic cosine trig function or

In the catenary equation, the a term in the cosh definition is

Finally, the magnitude of the tension T at any point can be shown to be 
related to the sag y at that point:

T = To + μy

If the horizontal component of the tension To in Figure 22-6 is the same 893 
kip, the load applied to the cable is still 1 kip per foot, and the span between 
supports is still 500 feet, you can now compute the sag of a catenary system 
at a distance of x = 250 feet from the new origin with the following equation:

where the parameter a is given by

which lets you then solve for the sag in the catenary cable:

Finally, you can compute the maximum tension at a sag of 35.23 feet on the 
catenary cable by using the equation T = 893 k + 1 klf · 35.23 ft = 928.23 k. 
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That’s slightly higher than the tension of the parabolic case. This discrep-
ancy makes sense because you actually have slightly more total load acting 
on the catenary system due to the fact that the arc length of the cable is 
always longer than its horizontal dimension.

The sag on the parabolic system was given as 35.0 feet, so the same geometry 
conditions applied to the catenary cable only increased the sag by 0.23 feet.

 For this example, the cable is much longer in comparison to the amount of 
sag. For problems with very small sag values, the arc length of the cable is 
very nearly the same as the horizontal distance between the supports. As the 
sag decreases, the total load on the catenary cable structure becomes more 
similar to the horizontal load of the parabolic cables. The difference in cat-
enary behavior comes when the sag of the system becomes much larger.

Taking a Shortcut: The Beam 
Analogy for Flexible Cables

When working with cable systems, the first major piece of information you 
need to determine is the horizontal component of the cable force which 
occurs at the location of maximum sag. The beam analogy for flexible cables 
is a simplified technique for determining the horizontal tension component.

 Before you use the analogy, though, keep the following basic assumptions 
in mind:

 ✓ All loads must be vertical, but they can be either concentrated or 
uniformly loaded.

 ✓ Any distributed load must be acting on a horizontal length, so this 
method doesn’t work for catenary cables.

The beam analogy, as the name implies, requires that you create an analo-
gous beam with the same loads as the cable structure. To implement this 
process, you start by following three simple steps:

 1. Create a horizontal beam having the same length as the cable system 
between support reactions.

 2. Apply all external loads from the cable structures on the beam at the 
same horizontal location and show the vertical reactions of the beam.

  You can’t compute the horizontal reactions yet, but that’s okay.
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 3. Draw the moment diagram for the loadings of the beam.

  From the moment diagram (see Chapter 20), you can then make use of 
the following relationship:

  (To)(ymax) = MBEAM

  The maximum sag occurs at the location of the horizontal tension com-
ponent To.. The moment MBEAM isn’t necessarily the maximum moment 
on the moment diagram; rather, it corresponds to the moment at the 
point on the moment diagram where To is to be calculated.

Consider the cable structure shown in the real system portion of Figure 22-8, 
with sag as shown. Two 30-kip forces are applied at 15-foot increments, one 
each at both Point B and Point C.

 

Figure 22-8: 
Using the 

beam 
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Now you’re ready to create the moment diagram for the analogous beam as 
shown in the analogous beam portion of Figure 22-8. The beam has two sup-
port reactions A

x
 and A

y
 acting at Point A, and two support reactions D

x
 and 

D
y
 acting at Point D, and an applied 30-kip point loads acting at both Point B 

and Point C.
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From equilibrium, you then compute both of the vertical reactions (you need 
both to draw the moment diagram). I choose to sum moments at Point A in 
order to find the vertical reaction at Point D, D

y
 first.

 You can use symmetry to discover that A
y
 = D

y
 = 30 k.

Finally, the shear and moment diagrams are drawn, and you see that at the 
location of maximum sag (Point B), the applied moment MBEAM is 450 kip-feet. 
After you have this moment computed, you can then calculate the internal 
tension To in the cable by using the given sag at the location (or 20 inches in 
this example).

After you compute the tension To, you can then proceed on a segment-by-
segment base and determine the magnitude of the tension in each segment 
(or at all locations).

 If you know the cable tension and want to find the maximum sag, you can also 
compute that from the previous equation by entering the appropriate value of 
To and then solving for the unknown maximum sag value!
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Chapter 23

Those Darn Dam Problems: 
Submerged Surfaces

In This Chapter
▶ Defining fluid pressure parameters

▶ Explaining hydrostatic pressure

▶ Performing submerged surface calculations

▶ Incorporating openings and gates in submerged surface analysis

Because most civilizations use submerged surfaces such as dams to 
control flooding and manage their water resources, engineers must 

understand pressure changes and design their equipment to perform under 
extreme situations.

When you dive into the deep end of a swimming pool, you can feel the pres-
sure pushing all around, and the deeper you swim (or sink, if you’re not a 
strong swimmer), the stronger the pressure you feel. At large depths (such 
as the bottom of the ocean), these fluid pressures can be downright deadly, 
which is why professional deep-sea divers must use specialized equipment 
to survive.

In this chapter, I show you some of the basic calculations that you can per-
form on a submerged surface. I explain the types of forces that are created by 
fluid pressures and how to calculate their quantities. I also show you how to 
apply fluid pressures to your free-body diagrams (F.B.D.s). Finally, I explain 
how to calculate partial fluid pressures on gates and openings.

Feeling the Pressure: Understanding 
Fluid Pressure

For the purposes of this text, I deal only with incompressible fluids (or fluids 
that don’t change volume) such as water. The study of incompressible fluids 
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310 Part VI: Statics in Action 

and their pressures can be broken into two categories: dynamic fluids and 
static fluids.

 ✓ Dynamic fluids: Dynamic fluids include all fluids in motion or subject to 
a pressure. The flow of water within the water lines inside your home 
and the flow of gasoline from the pump to your car are examples of a 
dynamic fluid.

 ✓ Static fluids: Static fluids include fluids at rest or fluids subjected to non-
pressurized flow. Examples of static fluids include a lake or reservoir 
and the milk in your morning cereal bowl.

  In this text, I deal exclusively with static fluids. The forces from static 
fluids are classified into two categories: forces from hydrostatic pres-
sure and forces from fluid self weight.

 • Hydrostatic pressure: Hydrostatic pressure is the pressure associ-
ated with the depth of the fluid below the fluid surface.

 • Fluid self weight: Self weight is gravitational effects acting on the 
mass particles of the fluid.

In Chapter 9, I define a relationship relating the specific weight (γ) of a material 
to its density (ρ): γ = ρg, where g is the gravitational acceleration constant.

The material properties of most fluids are dependent on the temperature of 
the fluid, but for the purposes of this text, I take them as the following:

 ✓ SI units: ρ = 1,000 kilograms per cubic meter and γ = 9,810 Newton per 
cubic meter

 ✓ U.S. customary units: γ = 62.4 pounds per cubic foot. (The U.S. customary 
units for ρ are really ugly, so I just use specific weight in U.S. customary 
units.)

Dealing with hydrostatic pressure 
Hydrostatic pressure is the pressure of a fluid associated with its depth and 
is a function of the type of fluid, the gravitational constant, and the depth of 
the fluid below the fluid surface. Figure 23-1 shows a typical hydrostatic pres-
sure distribution for a fluid.

Hydrostatic pressure is a linear distribution that starts at a value of zero at 
the fluid’s surface and increases linearly with vertical depth. The relationship 
between pressure p and depth z is given by p = ρgz = γz, where ρ is the den-
sity of the fluid, g is the gravitational constant, γ is the specific weight of the 
fluid, and z is the depth below the surface of the fluid.
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Figure 23-1: 
Hydrostatic 

pressure 
distribution.
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So at an arbitrary depth of zA, the pressure is γza. At a depth of 10 feet, the 
hydrostatic pressure is p10 = (62.4 pcf) · (10 feet) = 624 psf.

The resultant (or total force) of this entire distribution occurs at a distance 
of (depth/3) above the bottom. This distance is also the centroid (geometric 
center — see Chapter 11) of a triangular distribution. For more information 
on resultants of distributions, flip to Chapter 10.

Recognizing why zero pressure isn’t exactly zero pressure
In pressure calculations, you have two types of pressure readings: absolute 
pressure and gauge pressure. 

 ✓ Absolute pressure is the pressure exerted on an object, including a body 
of water, by the air and atmosphere above it. However, over small areas, 
this pressure is usually fairly constant and is taken as an approximate 
value of 14.68 pounds per square inch or 101.325 kilopascals.

 ✓ In submerged fluid calculations, you usually make another type of pres-
sure calculation known as gauge pressure, which is a measure of the 
pressure above atmospheric pressure. The gauge pressure at the surface 
of a fluid is taken to be zero (because the depth is zero at the surface) and 
increases with depth.

Working with a unit width
In Chapter 10, I explain that all linear distributed loads have an intensity that 
is measured in units of force per length. Notice, however, the hydrostatic 
pressure calculation earlier in the chapter produced a pressure that was 
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measured in pounds per square foot (which is a force per area unit), which 
are not the correct units for a linear distributed load.

To work around this units issue, you need to include a width dimension. 
Submerged surface problems (especially dams and wall structures) are often 
very long or have an unspecified total length, so you typically assume the 
forces you’re calculating are acting along a unit width, which is equal to either 
1 foot or 1 meter (depending on your system of units). Multiplying the previ-
ous pounds per square foot units by a unit width of 1 foot produces units of 
pounds per linear foot, which satisfies the units for a distributed load.

Determining effects from 
the self weight of water
The self weight from a fluid is the weight of a region of fluid acting directly 
above the object of interest and is the second source of load from fluids. 
Imagine collecting all the water above an object and storing it in a bucket. If 
you place that filled bucket on a scale, clearly it has weight which you must 
apply to the object of interest. Consider the dam shown in Figure 23-2 
subjected to a water depth of 10 feet and a horizontal width on the face of 
the dam of 6 feet.

 

Figure 23-2: 
Self weight 

of water.
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If you want to determine the weight of water acting on the dam, you include 
the volume of water multiplied by the specific weight of the fluid: 

W = (Specific weight of fluid) · (Volume of fluid).

If you don’t know the width of the dam, you’ll need to convert the volume 
calculation to an area calculation multiplied by a unit width, as shown in the 
following equation:

W = (Specific weight of fluid) · (Two-dimensional area) · (unit width)

If you plug in the numbers for Figure 23-2, you get

Ww = (62.4 pcf) · (0.5 · (10 ft) · (6 ft)) · (1 ft) = 1,872 lb per unit width

The resultant force of this self weight occurs at the center of mass (also the 
centroid) of the area of the fluid, or in this case at 2⁄3(6 feet) = 4 feet from the 
front of the dam.

 When you calculate the resultant of the water’s self weight, you must also find 
the centroid of the water’s area to know where the resultant is acting.

Making Calculations under 
(Fluid) Pressure

As with any statics problem, the first step is always to draw the correct free-
body diagram, and submerged surface problems are no different. Check out 
the dam in Figure 23-3a.

 

Figure 23-3: 
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To determine the loads acting on the dam’s foundation, you must draw an 
F.B.D. — such as the one in Figure 23-3b — showing all forces acting on the 
dam, and the assumed support reactions (restraints), which are the foundation 
forces, consisting of a moment, shear, and normal force. The external loads 
appearing on this structure include the water forces from the linear hydro-
static pressure distribution, the self weight of the water above the dam, and 
the self weight of the concrete dam itself.

Drawing the fluid F.B.D.
When you’re drawing a free-body diagram for a submerged surface, you must 
remember that both hydrostatic fluid pressure and self weight from fluids 
can occur simultaneously on the same structure. However, when the face 
of the structure is vertical, there is no fluid self weight acting on it. After all, 
there’s no fluid area vertically above a vertical face.

Consider the sloped concrete dam (γCONC = 150 pcf) with dimensions shown in 
Figure 23-3. The dam holds back water (γH20 = 62.4 pcf) 20 feet deep. A design 
engineer needs to determine the forces on the base of the dam in order to 
design the proper foundation, so in the coming sections, I illustrate the steps 
required to compute these design values.

Creating the hydrostatic 
pressure distribution
The hydrostatic pressure for the problem in Figure 23-3 is a linearly varying 
distribution with a pressure of zero at the water surface and increases to 20(γH20) 
at the base of the dam.

 This hydrostatic pressure acts along the entire height of the dam. However, to 
help keep the representation of this distribution clear, I like to draw it slightly 
off the structure horizontally and align the pressures relative to a vertical 
reference line. When I make this move, I can clearly see the distribution as 
a triangular distribution, and then I know how to compute the distribution’s 
resultant. This trick is actually legal because from a statics point of view, all of 
the forces of the distribution are remaining on their original lines of action.

The first calculation you need to perform determines the hydrostatic fluid 
pressure distribution. The pressure at the water surface, where z = 0, is 
p0 = (62.4 pcf) · (0 ft) · (1 ft) = 0 plf. 
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In Figure 23-3, you know that the depth of the water is 20 feet, so you can 
calculate the pressure intensity at the bottom of the distribution as 
p20 = (62.4 pcf) · (20 ft) · (1 ft) = 1,248 plf.

You can then compute the resultant force PRES of the linear pressure 
distribution (see the preceding section) by determining the area of the linear 
hydrostatic pressure diagram:

PRES = 1⁄2(γz) · (z) · (1 ft) = 1⁄2(γ)(z2)(1)

In this case, the pressure distribution is triangular (or linearly distributed), 
with a value of zero pounds per linear foot at the water surface and 1,248 
pounds per linear foot at the bottom. The resultant hydrostatic pressure for 
a unit width for this example is thus:

PRES = 1⁄2(62.4 pcf)(20 ft)2(1 ft) = 12,480 lb

This load is acting at the centroid of the pressure distribution, which is 
located above the bottom at a distance of:

Finding the dead weight 
of water and dams
Next, you calculate the weight of the water volume acting directly above the 
concrete dam. This weight is applied as a single concentrated point load at 
the center of mass of the water volume (see Chapter 11 for more information 
about centroids and centers of mass).

Determining the self weight of water
To determine the weight of the water above the dam in Figure 23-3, you can 
compute the area of the water in two dimensions and multiply by the specific 
weight of the fluid and then multiply by the unit width, using the following 
formula:

WW = (62.4 pcf) · 1⁄2(15 ft) · (20 ft) · (1 ft) = 9,360 lb

This calculation provides the weight of water per unit width for the water 
acting directly above the concrete dam.

32_598948-ch23.indd   31532_598948-ch23.indd   315 7/28/10   11:10 PM7/28/10   11:10 PM



316 Part VI: Statics in Action 

Establishing the self weight of a concrete dam
You also must include the self weight of the dam on the free-body diagram. 
For convenience of calculation, you can break the dam into two regions, a 
rectangular region with weight WC1 and a triangular region with weight WC2. 
The calculations (which follow) are very similar to the calculation for the self 
weight of water (which you can find in Chapter 9) except that the specific 
weight for normal-weight concrete is approximately 150 pounds per cubic 
foot. For the rectangular region of the dam:

W
C1 = (150 pcf) · (10 ft) · (20 ft) · (1 ft) = 30,000 lb

This weight is acting at a distance of 5 feet from the back of the dam. For the 
triangular region:

W
C2 = (150 pcf) · 1⁄2(20 ft) · (15 ft) · (1 ft) = 22,500 lb

This weight is acting at a distance of 10 feet from the front toe of the dam.

Including base reactions for 
dam structures
The reactions for the base of the dam can be modeled as a fixed support 
and have a horizontal force and a normal force (acting vertically) to prevent 
translation and a moment to prevent rotation.

The horizontal component of the reaction in Figure 23-3 is a shear force V 
acting parallel to the base along the interface of the dam and the foundation. 
Though you draw this force as a single concentrated load, it’s actually spread 
along the entire length of the dam.

The vertical component of this reaction is a normal force N acting perpendic-
ular to the base of the dam. At this time, the point of application (point where 
the force is acting in space) of this normal force is unknown. But for reasons 
I explain in Chapter 24, I assume it to be acting at the bottom corner at the 
back of the dam, or Point O in Figure 23-3b.

Finally, because all of the forces are eccentric to (or not acting at) the back 
corner of the dam, an equivalent moment M must be present at that point in 
order to maintain equilibrium and to prevent the dam from overturning.
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Applying equilibrium equations
After you determine the F.B.D. of the dam in Figure 23-3 and apply the forces 
and support reactions (including the forces from the water and the self 
weight of the concrete dam), the final step is to actually apply the equations 
of equilibrium.

Shear V along the base of the dam is computed to ensure horizontal transla-
tional equilibrium:

The positive sign on this calculation illustrates that the assumed direction of 
the base shear of the dam was correct. Next, the normal force N on the dam 
is computed to verify vertical translational equilibrium:

Finally, you can compute the overturning moment (or the moment that must 
be resisted to prevent the dam from toppling) M, by summing moments 
about the tipping point, or Point O, in Figure 23-3. You find the tipping point 
by examining the dam to determine which point the dam will rotate about 
should it start to fall over.

The negative sign indicates that the moment direction assumed is backwards 
on the free-body diagram. This discrepancy actually has significant mean-
ing with respect to overturning of the dam. As the negative sign implies, in 
order to actually make the dam overturn about Point O, an additional clock-
wise moment would have to be applied to overcome the weight of the water 
and self weight of the concrete dam. This finding means that the dam is in a 
stable (or equilibrium) condition, because in reality that additional moment 
doesn’t actually exist. Hence, the dam can’t overturn. Good news for the folks 
downstream, no doubt!
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Figuring Partial Pressures 
on Openings and Gates

Dams and hydroelectric installations also employ systems of gates and 
valves to use forces from flowing water to spin turbines and provide electric 
power. These gates and openings allow water to flow through to mechanical 
machinery inside of the structure. 

Unless the gate or opening is located at the water surface, the pressure distri-
bution on the opening is no longer triangular, although it does remain linear. 
Instead, the pressure becomes a trapezoidal shape, with a unique pressure 
at the top of the opening and another at the bottom of the opening. Consider 
the pivot gate (a mechanical gate that is hinged or pivoted on one end) shown 
in Figure 23-4a.

The F.B.D. for the pivot gate contains the reaction forces B
x
 and B

y
 at the 

pivot and the normal contact force of the gate on the ground C
y
. The external 

forces acting on the gate include the weight of the water volume, which has 
been broken into a rectangular and a triangular portion (W

W1 and W
W2) respec-

tively, and the trapezoidal hydrostatic distribution acting directly on the gate 
or opening.

 This trapezoidal region has a pressure of γzB per unit width at the top eleva-
tion of the gate and a pressure of γzC per unit width at the bottom elevation. 
The following calculations give you the pressures for the trapezoidal region in 
Figure 23-4b:

γzB = (9,810 N/m3) · (5 m) · (1 m) = 49,050 N/m = 49.1 kN/m

γzC = (9,810 N/m3) · (9 m) · (1 m) = 88,290 N/m = 88.3 kN/m

 To find the resultant, you can calculate the area of this trapezoidal region 
directly and then perform a separate calculation to determine the centroid of 
the single force resultant. However, a simpler method is to break this trapezoi-
dal region into a simple rectangular and triangular region and find the resul-
tant and location of each region individually (keeping the math calculations a 
lot simpler!). 

In the example of Figure 23-4, PRES1 represents the resultant of the rectangular 
subregion and PRES2 represents the resultant of the triangular subregion. You 
can calculate PRES1 per unit width from the uniform distribution, which has an 
intensity of γzB and height of (zC – zB).

PRES1 = (49.1 kN/m) · (9 m – 5 m) = 196.4 kN
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 Because this distribution is rectangular, you also know that its resultant loca-
tion is at a height of 2 meters (or one half of the total) from the base of the 
distribution.

Similarly, you can calculate PRES2 per unit width from the triangular region, 
which has a maximum intensity of γ(zC – zB), and a height of (zC – zB).

PRES2 = 1⁄2(9.81 kN/m3) · (9 m – 5 m) · (9 m – 5 m) · (1 m) = 78.5 kN/m
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You know that the centroid of the triangular region will be at a distance of 
one third of the height of the opening above the base of the opening.

The self weight of the water acting on the gate extends from Point C to Point B 
vertically up to the water surface in Figure 23-4a. In this example, the volume 
of water is a trapezoidal area with a unit width. Just as with the trapezoidal 
hydrostatic pressure I discuss earlier in this section, you can also easily break 
this trapezoidal volume into a rectangular region and triangular region.

You calculate the weight of the water in the rectangular region per unit 
width, W

W1, from W
W1 = (9.81 kN/m) · (3 m) · (5 m) · (1 m) = 147.2 kN and is 

located at a distance of 1.5 meters horizontally from Point B (or half of the 
3-meter horizontal dimension of the pivot gate). The weight of the water in 
the triangular region, W

W2, per unit width is calculated as

WW2 = 1⁄2(9.81 kN/m) · (3 m) · (4 m) · (1 m) = 58.9 kN

which acts at a horizontal distance of 1 meter (to the right) from Point C.

At this point you have all the forces computed that are acting on the gate. 
You can now apply the equilibrium equations as I do in the preceding section 
to compute the vertical reaction at Point C, or the forces on the pin at 
Point B, depending on what information you want to determine.
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Chapter 24

Incorporating Friction into 
Your Applications

In This Chapter
▶ Understanding friction

▶ Computing resultants and friction angles

▶ Exploring sliding and tipping phenomena

▶ Working with wedge and pulley friction

When you think of friction, perhaps you think of the heat that’s gener-
ated when you rub your hands together on a cold morning, or the 

scrapes and burns on your knees when you trip and fall over your dog on the 
way to the refrigerator in the middle of the night. Although these examples 
can be correctly called friction, in statics it has a slightly different meaning.

As you read through this chapter, you may realize that its contents are signifi-
cantly different from the other chapters in Part VI of this text. In the other chap-
ters of this part, I neglect the effects of friction on the problems in order to better 
explain the various techniques used to solve statics problems. However, in the 
real world, friction is an ever-present force that you must account for in all your 
calculations, so this chapter shows you how to do just that.

In this chapter, I describe the different types of friction and how to calculate 
their magnitudes, and then incorporate these values on a free-body diagram 
(F.B.D. — see Chapter 14). I also explore how the different objects in statics 
are affected by the various forms of friction.

Friction: It’s More Than Just Heat!
In the old-time Western movies, a popular image shows a bartender sliding 
a beverage along the bar to a waiting customer at the other end. Somehow, 
magically, the bartender is able to hurl it down the bar and somehow make 
it stop exactly in front of his waiting patron. According to Newton’s first law 
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(which I discuss in Chapter 16), if the mug is moving down the bar, it contin-
ues in the same direction until an outside force acts on it. In this movie, that 
outside force is friction and it’s what the bartender is counting on to save his 
beverages.

You can often blame friction for all sorts of funky behaviors. Stationary 
objects that refuse to move and tall objects that topple rather than slide are 
all victims of friction in one way or another.

Factors affecting friction
Friction is caused by several factors that occur on the surface of all materi-
als. One factor that affects friction is the combination of microscopic imper-
fections on the interfaces of all materials that rub and interlock with each 
other as one object slides past another. The rougher the surface, the more 
frictional resistance that can occur. Another factor that is present in friction 
is the adhesion (or stickiness) between materials. Adhesion is affected not 
only by the materials in contact but also the presence of lubricants (or lack 
thereof) on the contact surface.

Other factors that can affect frictional resistance include applied normal force, 
characteristics of the contact surface, and length/area of the contact surface.

 ✓ Applied normal force: An applied normal force is the force acting 
perpendicular to the contact surface.

  ✓ Characteristics of the contact surface: The frictional characteristics of 
a surface are measured by a numeric constant called the coefficient of 
friction (which is simply a ratio of force required to move an object to 
the contact forces between the friction surfaces).

 ✓ Length/area of contact surface: The more contact length between two 
objects, the more interlocking and adhesion that can be developed.

Friction caused by two objects rubbing past each other is also known as dry 
friction (sometimes referred to as the Coulomb friction force) and is given by 
the inequality F ≤ μsN = FMAX, where F is the resisting friction force and FMAX 
is the force that must be overcome before an object can move. μs is the coef-
ficient of static friction. N is the contact force (or the normal force) perpen-
dicular to the interface between the two objects.
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Types of friction
In mechanics, you actually run into two types of friction:

 ✓ Static friction: Static friction is the friction that resists applied forces 
before an object begins to move.

 ✓ Dynamic friction: Dynamic friction (also known as kinetic friction) is the 
friction that resists applied forces after the object has already started 
moving.

Because all the problems addressed in statics are typically not moving, in 
this book I focus exclusively on problems involving static friction. Table 24-1 
shows approximate values for several common coefficients of static friction 
assuming a dry and smooth surface condition for each material.

Table 24-1 Common Approximate Coefficients of Static Friction

Material Coefficient

Steel on steel 0.8

Glass on glass 0.9

Teflon on Teflon 0.05

Aluminum on steel 0.6

 You can greatly reduce the coefficient of static friction between surfaces by 
lubricating them with oil, grease, or water.

A Sense of Impending . . . Motion? 
Calculating Sense

When you calculate the size of the static friction force FMAX (which happens 
to also be its magnitude) by using the coefficients of static friction and you 
determine that the force’s location (or point of application) must be along the 
interface between the objects, you’ve fulfilled two of three requirements (see 
Chapter 4) for defining a force vector. But what about the sense (or direction) 
of the friction force vector?
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Anytime you try to push a heavy object across the floor and it doesn’t budge 
initially, you might move to another side and push from another direction. 
Regardless of which side of the object you push from, the fact that it doesn’t 
initially move illustrates that the friction force is always fighting against you, 
or more specifically against the direction of intended motion, also called 
impending motion. This concept is the key to working with friction problems.

Impending motion refers to the direction that the object wants to move (or 
rotate) after it has overcome the resisting friction forces. Consider the block 
shown in Figure 24-1, which is subjected to a single horizontal load. From 
Newton’s laws, you know that an object wants to move in the direction of a 
force applied to it.

 

Figure 24-1: 
Impending 

motion 
obeys 

Newton’s 
laws.

 

P
W

F > FMAX

F > FMAX = Motion occurs

F ≤ FMAX

F ≤ FMAX = No motion occurs

P
W

N

N

Direction of
object motion

Direction of
impending motion

W

After you’ve identified the direction of impending motion on an object, you’re 
then ready to begin constructing the appropriate free-body diagrams and 
then you can start writing the equations of equilibrium. The following sec-
tions give you the lowdown on completing these tasks.

An F.B.D. of a problem including friction has all of the same information as 
a problem without friction. The major difference now is that you are also 
including the friction forces on the same diagram.

Establishing equilibrium 
when friction is present
Consider the block shown in Figure 24-2, which is subjected to a horizontal 
force P applied to the edge of a 1,000-pound crate. The coefficient of static 
friction is given as μs = 0.3. The F.B.D. is shown. 
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By looking at the applied force, logic tells you that the impending motion is in 
the direction of the applied load, or to the right. Because the object isn’t cur-
rently moving (after all, the motion is impending, right?), you can apply the 
equations of static equilibrium:

The first equation gives you the value of the normal force on the contact 
interface, N = 1,000 pounds. You use this normal reaction force to determine 
the friction limit FMAX in the following section. You want to apply the other 
equilibrium equation (in the x-direction) to find the actual friction force 
acting on the interface due to the applied force P:

This equilibrium equation tell you that if the applied load is 500 pounds, the 
resisting friction force must also be 500 pounds to ensure equilibrium.

Finding the friction limit FMAX
To determine if the object moves due to the 500 pound load, you need to 
examine whether that load is more than the friction limit FMAX:

FMAX = μsN

 If the friction force F at the interface is less than the friction limit FMAX (which 
is the limiting force before motion occurs), the object doesn’t move. If the 
friction force exceeds the friction limit, there is enough force on the object to 
overcome friction and cause it to start moving in the direction of impending 
motion.

Plugging the numbers for Figure 24-2 earlier in the chapter into the formula, 
you get FMAX = (0.3)(1,000 lb) = 300 lb.
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This result indicates that in order for the object to slide, the friction force F 
must be greater than the friction limit FMAX = 300 pounds. Thus:

F = 500 lb > FMAX = 300 lb

Thus, in this example, you’ve determined that you have sufficient applied 
force to overcome the friction limit, and the crate therefore moves.

Solving Friction Problems by Using 
Logic and Equations Together

Sometimes, contact points on an object can move in different directions. 
An example of this situation is shown in Figure 24-3a, which presents a 150-
Newton plank 4 meters long resting on the ground at Point A and against the 
wall at Point B. The coefficient of static friction at Points A and B is μ = 0.3.

 

Figure 24-3: 
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To draw the complete F.B.D. for this plank, you must account for friction and 
normal forces at every contact point.

 ✓ The end of the plank at Point A wants to move to the left, and the top 
of the plank at Point B wants to slide down the wall. Thus, FA, the friction 
at Point A, must be to the right to oppose the impending motion at 
Point A (see Figure 24-3b).

 ✓ At the same time, Point B wants to move downward due to the weight of 
the plank, and FB, the friction force at Point B, must be acting upward.

 ✓ In addition to the friction forces, a normal force NA occurs at Point A, 
and another, NB, occurs at Point B.

In total, you have four unknowns acting on the F.B.D. of this plank. As it’s cur-
rently drawn, this F.B.D. (see Figure 24-3c) is statically indeterminate to the 
first degree, meaning that there’s one more unknown than there are available 
equilibrium equations.

 For a two-dimensional equilibrium problem, you have only three equilibrium 
equations to work with. Fortunately, by taking advantage of the relationship 
between the friction limit and the normal contact force, you can both simplify 
the F.B.D. and provide extra equations in addition to equilibrium equations. 
I show you how to do this in the following section.

Working with friction angles
At every point where a friction force is applied, you always find a normal 
force applied at the same location. And for an object to move, the friction 
force must be greater than the friction limit: F > FMAX = μsN.

 The friction limit is also a function of the normal force at that same location.

Together, the friction limit and the normal force form rectangular compo-
nents of a single resultant. You can then calculate the magnitude of the resul-
tant of these two forces as

which means that you can compute the resultant by knowing only the 
normal force and the coefficient of static friction (which is already a known 
quantity), as shown in Figure 24-4a. Employing the head-to-tail technique 
I describe in Chapter 6, you can calculate the magnitude R and the direc-
tion of the friction angle, ϕ, of a resultant of those two forces as shown in 
Figure 24-4b. All you have to do is apply a little bit of basic trigonometry.
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Thus, the angle that the friction resultant makes with respect to the normal 
force is also a function of the static friction coefficient, or is a constant, 
because the normal forces in the calculation cancel each other.

Combining friction and normal 
forces into a single resultant
By creating a new single resultant for the friction limit and the normal force, 
you can eliminate having to work with two unknown forces. Instead, you can 
replace this system with a single unknown (in terms of the normal force) 
acting at a known angle, which you can compute from the coefficient of static 
friction.

For the earlier plank example of Figure 24-3, you can compute the friction 
angle as ϕ = tan–1(μ) = tan–1(0.3) = 16.7°.

The combined resultant at each contact point (because μs is the same at both 
points) is given as the following:

Thus, you can replace the friction and normal pairs at both Point A and 
Point B with a single resultant force at a new orientation. I’ve gone ahead 
and done this for you in Figure 24-5.

By replacing the normal and friction components with a single resultant R at 
a new angle ϕ at each contact point, you’re now left with two unknowns, NA 
and NB, on the free-body diagram. Because you have three equations to work 
with, you’re now able to solve for these components.
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You can then solve these two equations simultaneously to give you the 
normal forces NA and NB that are required to keep the 150-Newton plank in 
equilibrium. The results: NA = 138.2 Newton, and NB = 41.4 Newton.

To determine whether the plank starts to slide, you then must calculate the 
friction limit for each contact point (flip to “Finding the friction limit FMAX” 
earlier in the chapter for more on this calculation).

FA MAX = μsNA = 0.3(138.2 N) = 41.5 N

FB MAX = μsNB = 0.3(41.4 N) = 12.4 N

From this F.B.D., you can also calculate the actual friction forces at Points A 
and B by calculating the components of the resultant force and its orientation 
angle ϕ:

FA = 1.04 NAsin(16.7°) = 1.04(138.2 N)sin(16.7°) = 41.3 N

FB = 1.04 NBsin(16.7°) = 1.04(41.4 N)sin(16.7°) = 41.2 N

Because you know the actual friction force at each point, as well as the 
friction limit, you can start to draw some conclusions:

 ✓ Because FA = 41.3 N ≤ FA MAX = 41.5 N, Point A can’t move.

 ✓ Because FB = 41.2 N >FB MAX = 12.4 N, Point B is able to move.

In order for the plank to move, both Point A and Point B must be able to 
move. After all, unless the plank stretches, one point can’t move without the 
other also moving. In the Figure 24-3 example, based on the calculations, 
Point A can’t move because its friction force isn’t sufficient to overcome the 
friction limit (though it’s actually very close). Even though Point B can move, 
you must remember that both points must move for the entire plank to move. 
Your final conclusion would thus be that the plank is unable to slide.
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Timber! Exploring Tipping
Say you’re back in your kitchen, trying to move that refrigerator yet again. 
First you push horizontally at a low point on the refrigerator (as shown in 
Figure 24-6a), and it begins to slide. Great! You push for a while and then take a 
breather. When you return to the task, you decide to push on the upper corner. 
But instead of sliding, what happens? Chances are, if it’s a full-height refrigerator 
and it’s empty, the refrigerator starts to lean and then fall over without ever slid-
ing. This phenomenon of falling over before sliding is called tipping.

Uncovering the tipping point 
and normal force
To quantify tipping, you need to locate the tipping point, which is usually at a 
corner or edge along the contact surface of the object. When tipping occurs, 
the contact surface disappears, with the tipping point remaining as the last 
point in physical contact with the original interface (see Figure 24-6b).
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To begin analyzing tipping problems, you first need to construct an F.B.D. 
(surprise, surprise!). Referring to the free-body diagram in Figure 24-6c, you 
see that all of the old familiar F.B.D. information has been included: external 
forces, self weight, and support reactions (or contact forces and friction 
forces in this case). See Chapter 13 for more on the basic parts of an F.B.D.

However, a new parameter — location of the normal force x — has made an 
appearance. In most F.B.D.s, you assume the normal force is acting in line 
with the center of mass of the object and don’t worry about the location of 
the normal. With tipping and friction problems, the location of the normal 
force matters. To start the analysis, you first apply the translational equilib-
rium equations from earlier in the chapter to determine the normal force N 
and the friction force F:

 The applied force P and friction force F have the same magnitude but oppo-
site directions, and they’re separated by a distance y. Together, these two 
forces cause a moment (or a rotational effect that I discuss in Chapter 12) on 
the object, which causes the object to want to rotate in a clockwise direction 
about the tipping point. To maintain equilibrium, the normal force N shifts 
away from the center of the object in response, to create a balancing couple 
with the weight. The normal force N moves toward the tipping point (which 
causes x to decrease). If the force becomes too great, the distance x may actu-
ally become a negative value. When this situation happens, the normal must 
be located outside the boundaries of the object to balance the overturning 
moment from the applied load P, which is physically impossible. Your fridge is 
no longer stable and tips over.

Moving the normal force to prevent tipping
To continue your analysis of tipping, you first establish your Cartesian coor-
dinate system (see Chapter 5) by placing the origin at the tipping point loca-
tion. Then you write the rotational equilibrium equation for this F.B.D. about 
the tipping point (because tipping is a rotational behavior). For Figure 24-6, 
the equation is
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The terms of this moment equation indicate that each term is set by a physi-
cal parameter of the object or a known applied point load and doesn’t vary, 
except for the position of the normal force with respect to the tipping point 
x. As the applied load P increases, the x parameter for the normal force N 
changes in order to maintain equilibrium. This position is what helps you 
determine whether an object will tip.

If you apply a force, say P = 100 pounds, at the base of the object (or y = 0), 
tipping doesn’t occur. Say the fridge in Figure 24-6 has a base of 12 inches, 
is 60 inches high, and weighs 150 pounds. Substituting these values into the 
moment equation, you can then solve for x:

Because x is positive, you know your assumption of the location of the 
normal force was correct. Now watch what happens if you move the same 
load to the top of the refrigerator, at y = h = 60 inches.

Thus, by simply moving the force, you’ve also moved the location of the 
normal force; in this case, you’ve moved it to the right of the tipping point, or 
outside the physical boundary of the object, so the fridge tips over.

 Note that the sign of x doesn’t actually correspond to a Cartesian coordinate 
value. In this particular example, a negative x actually corresponds to a posi-
tive Cartesian position, so be careful!

Establishing which friction phenomenon 
controls, sliding or tipping
As the preceding section indicates, if you push horizontally at a low point on 
a refrigerator, it’s more likely to slide. And if you push with the same force at 
the top of the refrigerator, it’s more likely to tip. But what if you place your 
refrigerator on a sloped floor and start to increase the angle of the ramp θ 
without applying a force at all. Which friction phenomenon occurs first?

Consider the 300-pound refrigerator acting on the ramp, as shown in 
Figure 24-7a.
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To start your analysis, you must first write the equilibrium equations for the 
F.B.D. If you establish a coordinate system that is inclined with the ramp, 
with the origin at the presumed tipping point, you can create a simpler equa-
tion than if you had used regular horizontal and vertical components. Here’s 
what the equations look like for Figure 24-7:

 Remember, these equilibrium equations are unique to each problem you solve. 
Just draw your F.B.D. (such as the one in the F.B.D. portion of Figure 24-7b) 
and then write the equilibrium equations based on your Cartesian axes.

Next, you list all the possible friction phenomenon that can occur. For this 
simple problem, you have two possibilities, which I discuss in the following 
sections.

 Without knowing which occurs first, you must make a guess. Choose one of 
the two cases and then verify that the assumptions behind that case are 
correct. Friction requires a lot of guess-and-check type of calculations.

Case 1: Checking sliding before tipping
For sliding to occur first, you need to prove that the friction force at the 
bottom of the refrigerator exceeds the friction limit μsN. For sliding to occur 
before tipping happens, the normal force is still located somewhere along the 
contact surface and the x dimension is positive. If sliding occurs, then
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Thus, at a ramp angle of 16.7 degrees, the refrigerator starts to slide. But now 
you must confirm your assumption about the location of the normal force x 
by checking the moment equation:

The positive sign indicates that the normal force is assumed to be acting on 
the correct side of the tipping point, and more importantly, is still in contact 
with the interface.

Case 2: Checking tipping before sliding
For tipping to occur first, you assume that the location of the normal is at the 
tipping point (or x = 0) and then compute the corresponding friction force. 
Finally, to verify, you check that the friction force F is less than the friction 
limit FMAX.

To check tipping for Figure 24-7, you start with the moment equation and 
assume x = 0 (that the normal is located at the tipping point).

If you compare this angle with the result from the preceding section, you see 
that you need a steeper angle to cause tipping than you do to cause sliding.

 If you haven’t already calculated the angle for sliding to occur (perhaps you 
chose to check tipping before sliding), you can check it now by determining 
the friction force F and comparing it to FMAX.

Thus, F > FMAX at the angle required to cause tipping, which implies that slid-
ing would have already occurred. The calculations in the preceding section 
verify this result.
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Examining More Common 
Friction Applications

You encounter a wide variety of other types of friction problems in statics, 
but the most frequently encountered problems typically involve wedges or 
belt/pulley friction.

Wedging in on the action
Wedges are small mechanical devices that transmit (and usually increase) an 
applied force in another direction. Usually, wedges are very long in compari-
son to their thickness, which often eliminates tipping as a concern. (Flip to 
“Timber! Exploring Tipping” earlier in the chapter for more on this concept.) 
Consider Figure 24-8, which shows a force P being applied to Block A. As 
force P increases, Block A moves to the right. Because of the sloped interface 
between Blocks A and B, Block B moves upward as Block A moves to the right.

 

Figure 24-8: 
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To analyze problems involving wedges, you need to draw several F.B.D.s; 
you don’t have to draw them in the order I list here, but make sure you draw 
them all:

 1. Draw one F.B.D. for each individual wedge.

  Normally, you’d draw the combined system F.B.D. in Step 2 first, but in 
this example, looking at the separate diagrams first is helpful. You can 
actually determine the directions of the friction forces by looking at the 
individual behaviors of each block. Make sure to include them in the 
same directions on the combined system in Step 2.
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336 Part VI: Statics in Action 

  Starting with Block A, you know that when the force is applied, the 
impending motion of Block A is to move to the right. (I discuss impend-
ing motion earlier in the chapter.) Thus, the friction on both surfaces of 
the wedge must oppose the motion of direction. The friction force FA is 
to the left and the interface friction force FAB is upward and to the left. 
You also must include both the normal force from the ground (NA) and 
the normal force from Block B sitting on top (NAB). See Figure 24-9.

  Normal forces always act perpendicular to their contact surfaces.

  Similarly, you know that Block B wants to move upward, so the fric-
tion forces on it must oppose that impending motion. Thus, the friction 
at the wall (FB), is acting downward, and the interface friction (FAB) is 
acting down and to the right. (Notice that the force FAB on Block B is in 
the opposite direction of the same force on Block A, which ensures 
equilibrium.)

 

Figure 24-9: 
Free-body 

diagrams for 
separated 

Block A and 
Block B.

 

P
WA

NB

NB

FAB

FAB

Direction
of motion

Direction
of motion

NB

FB

NA

FA

WB

F.B.D.
Block A Only

F.B.D.
Block B Only

 2. Draw an F.B.D. of the combined systems.

  You also need to draw a combined diagram of Blocks A and B. 
Remember to include the normal and friction forces from the contact 
surfaces with the wall and floor on your F.B.D.; you can get those from 
the individual block diagrams in Step 1. See Figure 24-10.

 

Figure 24-10: 
Free-body 

diagram 
for the 

combined 
system of 

unseparated 
blocks.

 

P

NB

NA

FB

FA

WA

WB
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337 Chapter 24: Incorporating Friction into Your Applications

 3. Write equilibrium equations for each individual block and the 
combined F.B.D.

  You sum forces in the x- and y-directions for each of the three diagrams 
in Steps 1 and 2 to develop relationships between unknown forces and 
the applied load P.

 4. Check the friction limits for each friction force.

  Remember, in order for Block A to move, the friction at the floor and at 
the interface with Block B must be larger than the friction limits at each 
location. If Block A can move, you must then check that Block B can also 
move. If Block B doesn’t move, Block A can’t move.

Staying flexible with belts and pulleys
Another type of friction problem that you encounter involves pulleys and 
belt/cable friction. This friction is caused by the motion of a belt or cable rela-
tive to the surface of a pulley or drum assembly (see Figure 24-11). The direc-
tion of movement of the cable determines the direction of the friction force.

 

Figure 24-11: 
A cable 

and pulley 
assembly.

 
F.B.D. of

Pulley and Cable
F.B.D. of

Cable Only

Rx

T2

T1

Ry

T2

T1

F

Friction
opposes
rotation
direction

Direction of
pulley rotation

If T1 > T2

However, you normally express the force on one side of the pulley in terms of 
the force on the other when examining belt friction problems.

33_598948-ch24.indd   33733_598948-ch24.indd   337 7/28/10   11:10 PM7/28/10   11:10 PM



338 Part VI: Statics in Action 

 For frictionless cases, the tension on both sides of a pulley or drum is 
assumed to be equal. If friction is present, that’s no longer the case. The tension 
of the belts on either side of a pulley subjected to belt friction is given by the 
following equation:

where β is the angle of wrap of the belt around the pulley, expressed in radi-
ans. If the belt wraps 180 degrees, the angle of wrap is π or 3.14 radians. The 
larger the angle of wrap, the more force is necessary to overcome friction.
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In this part . . .

Here comes the fun stuff. In this part, I include two 
top-ten lists that give you a quick reference for how 

to tackle a basic statics problem and ten important guide-
lines to remember when taking a statics exam.

34_598948-pp07.indd   34034_598948-pp07.indd   340 7/28/10   11:11 PM7/28/10   11:11 PM



Chapter 25

Ten Steps to Solving 
Any Statics Problem

In This Chapter
▶ Including all the important parts in your drawing

▶ Making common assumptions

You’re walking down the street, confident in your newly honed statics 
skills, when you see a big mass of support reactions and applied loads 

unlike any you’ve ever seen run out of the building in front of you. It quickly 
turns, let’s out an evil laugh, and rushes straight for you. Your first instinct is 
to turn and run (and who can blame you really, some statics problems can be 
especially nasty). Or you can sidestep the problem altogether and pretend to 
not notice, but that means letting an unsolved statics problem run rampant 
through the world. There are innocent bystanders watching, and you must 
ask yourself, “What do I do?”

Armed with paper, pencil, and calculator, you set to work to save all of 
humanity. Now, if only you could remember the vital aspects of statics 
problem solving. Luckily, this chapter provides the ten concepts you need 
to remember for taming that runaway problem.

Sketches Come First
Without a doubt, when in doubt, the first thing you must do is quickly make 
a sketch of the statics problem. You’re not trying to pick it out of a police 
lineup; a sketch just gives you the best basic starting point for static analy-
sis. When you first start sketching, don’t worry about all of the little details 
and the moving internal parts — just make a quick sketch of the object as a 
whole and focus simply on how the object is attached to the world around it. 
For now, disregard any internal features such as internal hinges, pulleys, and 
machine parts.
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Determine the Supports
The attachments of your monster to the world around it represent the 
support reactions (restraints). By determining the support reactions, you can 
actually reduce the scale of the free-body diagram (F.B.D.) to a more manage-
able size. (Head to Chapter 13 for more on supports and F.B.D basics.)

If your statics behemoth is on wheels or is sliding toward you, you’re dealing 
with a support with only one contact force (such as a roller support). If a sup-
port isn’t moving, you need to model that as either a pinned or fixed condi-
tion; a fixed support isn’t rotating either, whereas a pinned support may be. If 
you don’t know the type of support for sure, just assume it’s fixed.

Don’t Forget the Applied 
Loads and Self Weight

Look at the problem, and see what’s causing it to move forward. Is a point 
load or distributed load acting on it? Does it have water pressure pushing 
on it? Is something causing an applied torque or tensile force attached to 
it? These possibilities are all important considerations in your solution. 
Additionally, don’t forget to include any self weight (the force created by 
gravity’s effects on the object’s mass — refer to Chapter 9).

You need to use all of this information to construct a free-body diagram (or 
the detailed diagram that contains all of the loads and dimensions necessary 
for performing a static analysis).

 After you determine the loads and support reactions (see the preceding sec-
tion, you can make a basic free-body diagram of the entire system by using the 
concepts in Chapter 13.

Calculate As Many Unknown Support 
Reactions As You Can

After you’ve created a free-body diagram of a statics problem, your next step 
is to determine any unknown support reactions even though you haven’t 
started looking at the internal features at all. After all, if you’re going to cut 
a huge object loose, you want to have some idea of the size and direction of 
the forces that were holding it back in the first place.
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343 Chapter 25: Ten Steps to Solving Any Statics Problem

When the object was restrained at the supports, it may have been struggling to 
break free, but it was in a balanced state. That means you can apply Newton’s 
laws of motion, or your equations of equilibrium from Part V.

Enforcing the translational equilibrium equations is pretty straightforward. 
You simply add up the forces in a given direction and write the expressions. 
If you’re lucky, you may be able find a reaction or two, or at the very least 
create a relationship between them.

The final equation that you want to write is the moment equation, and this 
one is where you have some control over a beastly problem. Depending on 
how you attack it, you can either make things a whole lot worse or solve 
for unknowns outright. In simple problems (such as statically determinate 
problems, which are problems that have sufficient information to be solved 
by just the basic equilibrium equations), you can usually sum moments at 
a pinned support and knock out two of the total unknown forces from the 
moment equation. However, you have to be more alert with statically indeter-
minate problems. If you have more than three unknown support reactions, 
you have to find a point on the lines of action of as many of these reactions 
(or an instantaneous center) as possible to choose as your summation point. 
(Check out Chapter 19 for more on this topic.)

 For the super crazy problems, you may not be able to determine any of the 
support reactions ahead of time. In fact, some problems can’t be solved at all 
by statics alone. For those problems, you need friends from other mechanics 
subjects to help! But don’t give up hope just yet!

Guess It’s a Frame or Machine
Before you can decide how to tackle a statics problem, you need to be able to 
identify it. Think of yourself as a medical doctor specializing in the treatment 
of bizarre statics problems. You have to first identify the underlying cause 
(identify the type of structure) before you can begin treatment (write and 
solve equations). To accomplish this task, follow this handy checklist:

 ✓ Is this problem a truss? Trusses are pretty simple to identify. Are all mem-
bers of the system connected at the ends (or joints) only through internal 
hinges? Are all loads on the system concentrated forces and are they 
applied only at joints? If you answered yes to both questions, congratula-
tions — you have a truss. You can use the principles of Chapter 19 to deal 
with this problem. If the answer to either of those questions is no, you need 
to ask yourself a few additional questions because you don’t have a truss.

 ✓ Is this problem a submerged surface problem? This one is typically fairly 
obvious. If you have a fluid involved (whether it’s water, oil, or whatever), 
you’re dealing with a submerged surface and can refer to Chapter 23.
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 ✓ Is this problem a cable problem? Another fairly obvious diagnosis, 
doctor. If only a rope or cable system is supporting a load, you’re 
dealing with a cable system. You can handle those fellas by looking 
to Chapter 22.

If none of the checklist categories fits your problem, you probably have a 
system such as a beam or a frame and machine. You can actually solve for 
internal forces of both of these types of categories using the same principles. 
If you slice a member and reveal the internal forces, both of these problem 
types have three internal forces — axial, shear, and moments — at every cut 
location. Chapters 20 and 21 give you solution ideas for these problem types.

 If you’re not sure about the type of problem, always assume you have three 
internal forces at every cut location.

Get Out the Dynamite: Separating Pieces 
from the Problem for Internal Analysis

When you’re ready to dissect the statics problem and look at what’s happen-
ing internally (after all, the internal forces are usually the most important 
for design), you have a couple of different options. If you’re dealing with a 
system that contains internal hinges, many of the major methods of analysis 
involve breaking a structure into smaller pieces. You can run down to the old 
ACME mine and grab a friendly barrel of dynamite, light the fuse (get a long 
one!), and run for cover. Of course, the end result is a lot of smaller pieces, 
and unless you like jigsaw puzzles, you have a few more free-body diagrams 
to draw with this tactic than may otherwise be necessary. Instead, consider a 
more surgical approach.

Instead of blowing the structure to smithereens (which is slight overkill for 
most statics problems), look for pieces of the structure that you can easily 
separate from the main system in a more controlled manner. Items such 
as mechanical attachments (blades, presses, pistons, and so on), cables, 
and pulleys are all prime candidates for extraction. These items are usually 
hinged at their connection points to allow them to rotate. Hinges prove to be 
very useful for removal of objects because you know the moment is always 
zero at these locations. If you know a location of zero moment, it will prove 
to be a useful place to separate the structure because at these locations, you 
no longer have an unknown internal moment to deal with in your moment 
equilibrium equations when you cut the structure. Apply the basic equilib-
rium equations to find the internal hinge forces, and you’re well on your way 
to analyzing the structure.
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Assume Directions of Internal Forces
Remember that to calculate internal forces, you first have to slice a few mem-
bers, which allows you to draw additional free-body diagrams and gives you 
additional equilibrium equations to work with. So you follow the same basic 
steps for applying support reactions, applied loads, and self weight, but in 
addition you must include the internal forces from each and every location.

The problem is that without writing the equilibrium equations, you don’t 
know the values of the exposed internal forces at the time that you’re draw-
ing the free-body diagrams. Most of the time you don’t even know the direc-
tion of the internal forces either. So what do you do? 

The first thing you should do is try to determine the type of member that 
you’ve cut. If you’re dealing with a cable or a rope (see Chapter 22), you 
know that those two systems are both axial-only systems. Furthermore, you 
also know that cable and rope systems’ internal forces are always in tension — 
the direction of the force is pulling on the object. 

If the member you’ve cut is a truss member (Chapter 19), you know that the 
forces in that member are also axial-only. However, truss members may have 
either axial tension or axial compression loads. When you’re drawing your 
free-body diagram, you don’t know whether the member is in compression 
or tension until you start to write the equilibrium equations, so the common 
convention is to assume that the forces in the member are acting in tension 
when dealing with trusses. You then look at the equilibrium equations to con-
firm whether this assumption is true — if the numerical value is negative, the 
direction you assumed is incorrect.

Cutting most other members exposes an axial force, as well as a shear force and 
a moment. As with axial members, the common assumption is that the force 
is acting in tension. Typically, for shear and moment, you can use the positive 
sign convention for internal bending forces that I describe in Chapter 20. At 
this point, what’s most important isn’t the direction of these internal forces 
but rather that you have at least included them on the diagram. In the end, 
regardless of which direction you assume is positive, the signs of the numeri-
cal values from the equilibrium equations always confirm or refute your 
previous assumptions.

Be Consistent with Your Assumptions
Remain consistent in the directions you assume. If you always assume axial 
forces are tension, shear forces are positive, and moments are counterclock-
wise, when you solve the equations for the actual numerical values, a negative 
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sign has the same meaning every time. If you vary your assumptions, you 
have to keep checking your diagram to verify what direction you assumed 
where and how the sign affects it.

Guess That Three (or Six) Equilibrium 
Equations Are Necessary

When you work toward finding internal forces and you have created additional 
free-body diagrams, the next step is to write the equations of equilibrium.

For two-dimensional problems, you have two translational and one rotational 
summation that you need to make (for three total equations). For three-
dimensional problems, you have three translational and three rotation sum-
mation equations, or six total equations.

 The more free-body diagrams you make, the more equations you have to 
work with.

If Friction Is Involved, Guess That 
the Object Slides

The most difficult statics monsters to deal with are those that involve fric-
tion. Many common problems neglect friction, but those that don’t are 
more complex animals. Free-body diagrams of friction problems have extra 
unknown forces acting on them and may even become indeterminate.

As I explain in Chapter 24, tipping and sliding problems always have a friction 
force in the direction of the motion of the object at the boundary or interface 
of every contact surface. The normal contact force location is now at a vari-
able location that’s the key to determining whether the force causes the object 
to slide or to tip over. To get started, assume that the friction force at the 
interface is equal to the friction limit at that surface and then use that force to 
calculate the location of the normal contact force. If the contact force location 
keeps the contact force on the object, the object slides. If the contact force is 
outside the boundary of the object, the object tips, and your original sliding 
assumption is wrong. To correct this inaccuracy, place the normal force at the 
tipping point and resolve the problem as I show you in Chapter 24.
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Chapter 26

Ten Tips for Surviving 
a Statics Exam

In This Chapter
▶ Remembering vital concepts

▶ Getting as much partial credit as possible

Although any science or math test can be a frustrating or intimidating 
experience, a statics test can reach a whole other level of intimidation. 

In this chapter, I present ten suggestions that help make your life a little 
easier during those stressful statics exams.

Find Problems You Know How to Solve
After you’ve received your exam (and you’ve taken a deep breath to help you 
gather your composure), flip through the test and quickly read each problem, 
highlight what you’re being asked to find, and then choose a problem that 
you’re confident you can solve. I outline in Chapter 25 how to break the prob-
lems down into simple, bite-sized pieces. Nothing is worse than sitting in an 
exam and struggling with a difficult problem for far too long. If you spend too 
much time struggling, you may miss really quick and easy point-getters later 
in the exam. Also, if you find and solve the easy problems first, you build up 
some momentum and confidence as you proceed to the hard problems.

State Your Assumptions
Start a problem by listing a few of the necessary assumptions. One or two 
words usually suffice. Check out the following example; you answer the ques-
tions and then jot down your answer in the test margin.
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 ✓ Does this problem need to consider self weight? Is mass or weight men-
tioned somewhere on the picture or in the problem statement?

 ✓ Does this problem need to consider friction?

 ✓ What type of problem is this?

After you’ve listed your assumptions, seeing that list should help you identify 
the specific technique(s) you need to solve your problem.

Relax and Remember Your Basic Steps
Every statics problem, regardless of the type of problem, usually has the 
same basic beginning steps that never change.

 1. Draw a free-body diagram.

 2. Write the equations of equilibrium for the entire system to find 
unknown support reactions.

 3. Proceed to a specific solution technique based on your problem type.

Even if your free-body diagram isn’t totally correct, your instructor at least 
knows that you knew enough to start by drawing a picture and may award 
partial credit. Check out Part IV for more on drawing F.B.D.s.

Identify Your Origin and 
Coordinate System

As you’re drawing your free-body diagram, make sure to clearly indicate your 
origin and Cartesian coordinate system. If you’re working a three-dimensional 
problem, remember that you also need to include a z-axis. And don’t forget 
to apply the right-hand rule (thumb is the x-axis, forefinger is the y-axis, and 
middle finger is the z-axis) so that you get the Cartesian axes properly ori-
ented. Chapter 5 gives you the lowdown on mastering all things Cartesian.

 Make sure that you clearly locate and display the origin with a dimension to 
each axis. You need that information when you start writing equations, espe-
cially if vectors are involved. If you’re working a centroidal calculation type of 
problem, the origin is especially important because all of the centroid calcula-
tions you perform are based on relative dimensions (see Chapter 10).
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Remember Your Vectors
Vectors are very useful for solving statics problems, both two-dimensional 
applications and three-dimensional problems. When working with vectors to 
ensure equilibrium, simply compute the resultant vector (a system of many 
similar effects transformed into a single equivalent vector) of all the applied 
forces and the resultant vector of the applied moments about a given point 
or axis. Set each of these resultants equal to 0i + 0j + 0k and you have your 
equilibrium equations already computed. Head to Chapter 7 for more on 
resultants.

Write Your Equilibrium Equations
Nothing upsets a statics instructor more than not seeing an attempt at a free-
body diagram, unless it’s not seeing the three equations of equilibrium for 
two-dimensional problems written on the paper. Even if you write nothing 
else, put the following equations on a separate line for each problem:

Writing these simple equations demonstrates that you at least understand 
the importance of the concept of equilibrium in the world of statics. And 
nothing makes a professor happier than knowing a student hasn’t slept 
through all of his classes.

After you write these three basic formulas (or compute the resultants if 
you’re working with vectors), use them as a guide for what you must do next, 
which is write each of these equations from the free-body diagram you (hope-
fully) drew earlier. (If you didn’t draw it, get drawing!)

Stuck? Draw More Free-Body Diagrams
Depending on the type of problem you’re solving, you may be required to 
solve for internal forces. In fact, if you’re dealing with an application-type 
problem, you can almost guarantee it wants you to find at least one internal 
force at some point in the problem.

 ✓ Truss problem (see Chapter 19): If the problem is a method of joints-
type of problem, draw an F.B.D. of joints in the system. If it’s a method 
of sections problem, slice the truss into two pieces and draw an F.B.D. of 
one of those pieces.
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 ✓ Submerged surface problem (see Chapter 23): Draw an F.B.D. of the 
submerged object and then include the hydrostatic pressure as a hori-
zontal, linearly distributed load, as well as another force from the verti-
cal weight of the fluid.

 ✓ Frame/machine problem (see Chapter 21): Break apart the system at 
the hinges, remove any pulleys and cables, and separate any tools or 
other strange objects on the system. Each of these pieces gets its own 
separate F.B.D.

After you have the diagrams drawn, write the equilibrium equations for each, 
which should give you a clue as to what to solve for first.

Draw Your Shear and Moment 
Diagrams Correctly

 A shear and moment diagram is practically a gimme on a test, especially if the 
instructor gives you the applied loads and corresponding support reactions. 
As you sketch these diagrams, remember the following:

 ✓ Work your diagrams from the left end of the beam. The methods I 
describe in Chapter 20, and in particular the sign conventions, are all 
based on working from the left.

 ✓ Your diagrams must come back to a zero value at the end. If the reac-
tions are correct and your shear and moment diagram doesn’t come 
back to zero when you’re finished, you know without a doubt that 
you’ve made a mistake in your calculations somewhere. If you don’t 
have time to go back and correct it, circle the discrepancy and leave a 
note for the instructor that says, “This diagram doesn’t close to zero for 
some reason, but I know it should!” You may not get full credit, but that 
simple statement may be worth a couple of points.

 ✓ Concentrated loads cause jumps in diagrams. Concentrated forces 
cause jumps in shear diagrams, and concentrated moments cause jumps 
in moment diagrams.

 ✓ The order of the functions increases as you move down through the 
graphs. The order of the shear function is one order higher than the 
load for a given interval, and the order of the moment curve is one order 
higher than the shear. Remember that the slope of the moment curve is 
directly related to the value of the shear.
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 ✓ Pay attention to positive and negative areas. A positive area under 
a load diagram causes the shear to increase (become more positive), 
and a positive area under a shear curve causes the moment to increase 
(become more positive).

 ✓ Always include units on your graph. Don’t make the instructor guess 
the units. Historically, instructors are very bad guessers.

Assess Your Answers
After you’ve worked through a problem on the test, go back and ask yourself 
whether your answer(s) make logical sense. This strategy is known as apply-
ing engineering judgment. A little common sense can help prevent problems, 
so take a moment after every problem and consider whether your answer 
seems reasonable. 

Acknowledge Mistakes and Don’t Erase
If you realize that you made a serious blunder but don’t have time to rework 
the entire problem, you may be better off with a page full of slightly incorrect 
work than a page with no work. If you can find where you made your error, 
quickly include the correction and then write a couple of words about what 
the mistake was, where you made it, and the effect it has on the remainder 
of your solution process. Even if you don’t fully correct the entire problem, 
at least you’ve identified the mistake, and that’s a big step in conveying your 
competency to your instructor.
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defi ned, 11
distributed forces, 12–13
distributed load, 342
location of, 202
magnitude, 202
mechanics of materials, 10
point load, 342

applied normal force, 322
Archimedes of Syracuse, 10
arcs, centroid of, 138
area methods, 272–273

area of contact surfaces, 322
arrows on top of vector 

names, 2
assessing exam answers, 351
associative property of 

vector addition, 78
assumptions, stating, 

347–348
axes in Cartesian 

coordinate system, 52
axes of symmetry, 144, 146
axial force

bending members, 260
cables, 114–117
defi ned, 113–114
direction, 345
ropes, 114–117
sign convention, 263
springs, 117–119
tension, 345

axis of rotation
Cartesian axis, 151, 212
defi ned, 150
depicting in two 

dimensions, 211
double-headed arrow 

notation, 47
reference point, 211–212

• B •
ball-and-socket connection, 

181
basic steps for problem-

solving, 348
beam analogy for fl exible 

cables, 305–307
beam properties, 202
beams

critical points, 267–268
defi ned, 14
internal loads, 262–266
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belts
angle of wrap, 338
friction, 337–338

bending, 153–154
bending members

axial forces, 260
defi ned, 14–15
internal forces, 259–262
moment forces, 260
shear forces, 260

bending moments, 263
block-and-tackle assembly, 

288–289
bodies

deformable bodies, 110
rigid bodies, 110, 199–200

boundary condition, 300
bracket notation, 101
brackets for absolute value, 

2
bridges

cable systems, 15, 293
suspension bridges, 15, 294

• C •
cable systems

aerial trams, 294
axial force, 114–117
beam analogy for fl exible 

cables, 305–307
bridges, 293
cable segments, 295
cable tension force, 294
catenary cable systems, 

294, 296–297, 303–305
concentrated load 

systems, 294–295, 
298–299

defi ned, 15, 293
end supports, 294
fl exible cables, 294, 

297–299, 305–307
forces, 114
friction, 337–338
geometry, 294

internal forces, 294
parabolic cable system, 

294, 296, 300–303
power lines, 294
problems, 344
proportion triangles, 296
sag, 294–295, 297, 299–305
self weight, 294
suspension bridges, 294
telephone lines, 294
tension, 298–305
uniformly loaded cable 

systems, 294, 296
cable tension force, 294
CAD (Computer Aided 

Drafting) programs, 83
calculating

fl uid pressure, 313–315
forces, 12
internal forces, 220
magnitude and direction 

of resultants, 94
moments, 12, 155–161
resultant magnitude and 

direction, 81
sag in cable systems, 297
sense, 323–324
slope, 21–22
support reactions, 220–225

calculations, accuracy of, 
18–19

calculus, 27–30
car engine, 290–291
Cartesian components of 

vectors, 97–102
Cartesian coordinate 

system
axes, 52
axis of rotation, 152, 212
coordinates, 52
defi ned, 51–52
depiction of, 52
identifying, 348
origin, 52
scale, 52
unit vectors, 59–60

Cartesian notation, 60–62, 
101

catenary cable systems
defi ned, 294
derivation, 303
free-body diagrams, 303
loads, 296–297, 303–305
sag, 303–305
self weight, 294

center of gravity, 48, 136, 
146, 148

center of mass, 136, 146–148
centerlines, 202
centroid

axes of symmetry, 144, 
146

circles, 138
continuous regions, 137, 

142–146
defi ned, 136, 311
discrete regions, 136–142
parabolic arcs, 138
rectangles, 138
squares, 138

checklists, 1
circles, centroid of, 138
coeffi cient of friction, 

322–323
collar assembly, 182
combining vectors, 11, 81
commutative property of 

vector addition, 78
commutative property of 

vector dot products, 78
components of vectors, 

95–106
computer aided drafting 

(CAD) programs, 83
concentrated forces

defi ned, 12, 110–111, 
170–172

examples, 12
free-body diagrams, 

110–111, 172
point of application, 

110–111
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concentrated loads
cable systems, 294–295, 

298–299
depiction of, 124
moments, 113
point of application, 135
support reactions, 113

concentrated moments
bending, 153–154
defi ned, 13, 153
external forces, 170
free-body diagrams, 

174–176
torque, 153–154
translation equations, 225

concurrent force systems, 
216–217

constants, 37
contact forces

free-body diagrams, 186
normal contact forces, 

111–112
point of application, 112

contact surfaces
area, 322
frictional characteristics, 

322
length, 322

continuous regions, 137, 
142–146

continuum, 172
coordinate axes in free-

body diagrams, 187–188
coordinates, 52
cosines, 26–27, 86
Coulomb friction force, 322
couples

defi ned, 152–153
equivalent force couples, 

166
two-dimensional couples, 

158–159
creating rotational 

behaviors, 151–153
critical points on beams, 

267–268

cross product operator (×), 
75

cross products, 75–77, 
159–160

cross sections, 154
cutting trusses, 251–252

• D •
dams

base reactions, 316
equilibrium equations, 317
fl uid pressure, 309–315
gates, 318–320
hydrostatic pressure, 

310–315
openings, 318–320
overturning moment, 317
partial pressures, 318–320
self weight of dam, 316
self weight of water, 

312–313, 315
tipping point, 317

decimal places, 2, 18–19
defl ect, 15
deformable bodies, 110
deformation in springs, 118
degree of indeterminacy, 281
degrees, 25–26, 37
density, 120
derivative of a function, 28
determinant, 75–77
determining support 

reactions, 342
developing rotational 

behaviors, 151–153
diagrams (free-body)

angular dimensions, 188
Cartesian coordinate 

system, 348
catenary cable systems, 

303
centerlines, 202–203
checklist for what to 

include, 169–170

concentrated forces, 
110–111, 171–172

concentrated moments, 
174–176

contact forces, 186
coordinate axes, 187–188
defi ned, 169, 185, 342
dimensions, 188
direction, 187
distributed forces, 

170–173
drawing, 13, 185–186, 

349–350
equivalent systems, 

204–205
exploding objects, 196
external forces, 170–176, 

186, 222
fl uid pressure, 313–314
force vector components, 

188
forces, 186–187, 222
friction, 346
inclined supports, 186
internal forces, 170, 177, 

190–191, 222
isolation boxes, 189–196
labels, 188
line of symmetry, 202–203
linear dimensions, 188
moment vectors, 206
multiple free-body 

diagrams, 196–197
Newton’s third law of 

motion, 213–214
origin, 188, 348
parabolic cable system, 

301
point of application, 170, 

186
principle of superposition, 

13, 199–201
ramps, 186, 196–197
self weight, 170, 183, 222
simplifi cation techniques, 

13, 199–206
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diagrams (free-body) 
(continued)

support reactions, 13, 170, 
177–182, 186–187, 222

three-dimensional 
problems, 230, 233–236

tipping, 330
trusses, 244–248
wedges, 335–337

diagrams (moment), 
271–273, 275–277, 350

diagrams (shear), 271–275, 
350

differentiation of 
polynomials, 27

dimensions in free-body 
diagrams, 188

direction
axial force, 345
free-body diagrams, 187
internal forces, 345–346
moment force, 345
position vectors, 11, 

53–58, 67
resultants, 81, 94
shear force, 345
unit vectors, 59–67

direction cosines, 63–65, 68
discrete regions, 136–142
displacement, 210, 212
distance

centroid, 311
defi ned, 37

distributed forces
defi ned, 12–13
distributed force effects, 38
end point, 173
examples, 13
force-per-distance 

measurements, 125
free-body diagrams, 

170–173
higher order distributed, 

125
linearly distributed, 125
magnitude, 173

point of application, 173
sense, 173
start point, 173
uniformly distributed, 125

distributed loads
concentrated loads, 124
defi ned, 123
depiction of, 124
end point, 124
fully distributed loads, 124
geometric prisms, 132–133
higher order distributed 

loads, 125
intensity, 124
linearly distributed loads, 

125
mass, 133–134
partially distributed loads, 

124
point of application, 135
problem-solving, 342
resultants, 127–133
self weight, 135
start point, 124
surface distributed loads, 

125–127
surface pressures, 125–127
uniformly distributed 

loads, 125
volumetric distributed 

loads, 127
weight, 133–134

distributive property of 
vector addition, 78

distributive property of 
vector cross products, 
78

dividing vectors, 74
division, 18
doors, 151–152
dot product, 74, 75
double-headed arrows 

(vector drawings), 47, 
164–165

double integrals, 132–133

drawing
free-body diagrams, 13, 

185–186, 349–350
moment diagrams, 350–351
shear diagrams, 350–351
sketches, 341
vectors, 45–47

dry friction, 322
dynamic fl uids, 310
dynamic friction, 323
dynamics, 10

• E •
Earth’s gravitational fi eld, 

148
Einstein, Albert, 214
end connections of trusses, 

244
end point of a distributed 

load, 124
end supports of cable 

systems, 294
engine, 290–291
engineering judgment, 351
English units, 34
equilibrium

concurrent force systems, 
216–217

defi ned, 14, 209–210
friction, 324–325
parallel force systems, 

217–218
rotational, 210–212, 

215–216
total equilibrium, 212
translational, 12, 210–211, 

215, 231–232
equilibrium equations

dams, 317
exams, 349
frames, 283–284
machines, 283–284
Newton’s laws of motion, 

212–214
notation, 222
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rotational, 222, 225–226, 
232

three-dimensional 
problems, 215–216, 
230–231, 236–240, 346

translational, 222–225
trusses, 248–249
two-dimensional 

problems, 215, 346
unknown reactions, 

226–227
equivalent force couples, 166
equivalent systems, 166, 

204–205
events, simultaneous, 73
exams

assessing answers, 351
basic steps for problem-

solving, 348
showing your work, 351
tips for success, 347–351

exploding objects, 196
exponential power, 19–20
external forces

concentrated forces, 12, 
110–111, 170–172

concentrated moments, 
170, 174–176

contact forces, 111–112
defi ned, 109–110
distributed forces, 170, 

172–173
examples, 100
force vectors, 110
free-body diagrams, 

170–176, 186, 222
friction, 112–113

external pinned supports, 
178

external vectors, 43

• F •
factors affecting friction, 322
F.B.D.s. See free-body 

diagrams

fi nding friction limit F, 
325–326

fi rst law of motion, 213
fi xed supports, 179–180, 342
fi xed vectors, 48
fl exible cables

beam analogy for fl exible 
cables, 305–307

tension, 297–305
uses, 294

fl uid pressure, 309–315
fl uids

dynamic fl uids, 310
hydrostatic pressure, 

310–311
incompressible fl uids, 

309–310
self weight, 310, 312–313, 

315
static fl uids, 310

force-per-distance 
measurements, 125

force vectors
defi ned, 42
external forces, 110
free-body diagrams, 188
internal forces, 110

forces. See also external 
forces; internal forces

cables, 114
calculating, 12
concentrated forces, 12, 

110–111, 170–172
concurrent force systems, 

216–217
contact forces, 111–112, 

186
defi ned, 11–12, 38
distributed forces, 12–13, 

125, 172–173
free-body diagrams, 

186–187, 222
gravity, 119
hinge forces, 283–284
moments of force, 

154–155

moving, 204–205
negative values, 282
normal contact forces, 

328–329
parallel force systems, 

217–218
relocating, 166
ropes, 114–117
springs, 117–119
sum of forces, 222
tensile forces, 114
translating, 149
zero-force members, 

256–258
frames

defi ned, 15
equilibrium equations, 

283–284
hinges, 282–286
identifying, 279–280
internal forces, 280
loads, 280, 283
member shapes, 280
problems, 344, 350
properties, 280
similarities to and 

differences from 
machines, 280

free-body diagrams
angular dimensions, 188
Cartesian coordinate 

system, 348
catenary cable systems, 

303
centerlines, 202–203
checklist for what to 

include, 169–170
concentrated forces, 

110–111, 171–172
concentrated moments, 

174–176
contact forces, 186
coordinate axes, 187–188
defi ned, 169, 185, 342
dimensions, 188
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free-body diagrams 
(continued)

direction, 187
distributed forces, 170–173
drawing, 13, 185–186, 

349–350
equivalent systems, 

204–205
exploding objects, 196
external forces, 170–176, 

186, 222
fl uid pressure, 313–314
force vector components, 

188
forces, 186–187, 222
friction, 346
inclined supports, 186
internal forces, 170, 177, 

190–191, 222
isolation boxes, 189–196
labels, 188
line of symmetry, 202–203
linear dimensions, 188
moment vectors, 206
multiple free-body 

diagrams, 196–197
Newton’s third law of 

motion, 213–214
origin, 188, 348
parabolic cable system, 

301
point of application, 170, 

186
principle of superposition, 

13, 199–201
ramps, 186, 196–197
self weight, 170, 183, 222
simplifi cation techniques, 

13, 199–206
support reactions, 13, 170, 

177–182, 186–187, 222
three-dimensional 

problems, 230, 233–236
tipping, 330
trusses, 244–248
wedges, 335–337

free vectors, 48–49, 206
friction

adhesion (stickiness) of 
materials, 322

angle of wrap, 338
applied normal force, 322
belts, 337–338
cables, 337–338
coeffi cient of friction, 

322–323
contact surfaces, 322
Coulomb friction force, 322
defi ned, 15, 112–113, 346
dry friction, 322
dynamic friction, 323
equilibrium, 324–325
factors affecting friction, 

322
friction angles, 327–328
friction limit F, 325–326
impending motion, 323–324
kinetic friction, 323
normal contact forces, 

328–329
pulleys, 337–338
rough surfaces, 322
sliding, 332–334, 346
sliding problems, 346
solving friction problems 

with logic and 
equations, 326–327

static friction, 323
tipping, 330–334, 346
tipping point, 330
tipping problems, 346
types of, 323
wedges, 335–337

fully distributed loads, 124

• G •
Gambrel trusses, 254–255
gates

dams, 318–320
pivot gate, 318

gauge pressure, 311

generalized equations for 
internal forces, 267–271

geometric methods for 
constructing resultants, 
81, 85–91

geometric prisms, 132–133
geometry, 23–26, 294
graphical methods for 

constructing resultants, 
81, 83–85

gravity
center of gravity, 48, 136, 

146, 148
defi ned, 119
Earth’s gravitational fi eld, 

148
measurements, 134
self weight, 185
specifi c gravity, 120

• H •
head-to-tail construction 

of vector actions, 72, 
81–82

higher order distributed 
loads, 125

hinges
doors, 151–152
frames, 282–286
machines, 282–286

holes
in discrete regions, 141
slotted holes, 292

hydrostatic pressure, 
310–312, 314–315

hypotenuse, 26

• I •
icons used in this book, 6
identifying

Cartesian coordinate 
system, 348

frames, 279–280
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machines, 279–280
origin, 348

identities of vector 
operations, 78

impending motion, 323–324
inclined supports, 180, 186
incompressible fl uids, 

309–310
industrial stamping 

machine, 290
inertia, 213
instantaneous center

defi ned, 228, 254, 343
example, 254
Gambrel truss, 254–256
locating, 255–256
moment equations, 343

integration of polynomials, 
28–29

intensity of a distributed 
load, 124

internal forces
axial, 113–117, 119, 345
axial forces, 118
bending members, 14–15, 

259–262
cable forces, 294
calculating, 220
defi ned, 14, 109–110, 345
depiction of, 114
direction of, 345–346
examples, 100
force vectors, 110
frames, 280
free-body diagrams, 170, 

177, 190–191, 222
generalized equations, 

267–271
machines, 280
shear force, 113, 345
tension, 345
trusses, 244–247

internal hinges
defi ned, 179
doors, 151–152

frames, 282–286
machines, 282–286

internal loads
axial loads, 113
beams, 262–266
defi ned, 113
moments, 114
shear loads, 113

internal pinned supports, 
179

internal vectors, 43
International System of 

Units, 32
isolation boxes, 189–196

• J •
joints, 14, 244–250

• K •
kinetic friction, 323
kip, 35, 38

• L •
labels

free-body diagrams, 188
vectors, 45–46

law of cosines, 86
law of sines, 87
laws of motion, 213–214
lb-ft (pound-feet), 150
lb/ft3 (pounds per cubic 

foot), 127
lb/ft (pounds per foot), 125
length of contact surfaces, 

322
line of action, 43, 84, 117
line of symmetry, 202–203
line vectors, 49
linear dimensions in free-

body diagrams, 188
linear motion, 150
linearly distributed loads, 125
load locations, 244

loads
beams, 262–266
catenary cable systems, 

296–297, 303–305
concentrated forces, 12
concentrated loads, 124, 

135
concentrated moments, 13
defi ned, 11
distributed forces, 12–13
distributed loads, 123–135, 

342
frames, 280, 283
internal loads, 262–266
location of, 202
machines, 280, 283
magnitude, 202
mechanics of materials, 10
parabolic cable system, 296
point load, 170

locating
instantaneous center, 

255–256
tipping point, 330

location of loads, 202
lumped mass, 121, 172

• M •
machines

defi ned, 15
equilibrium equations, 

283–284
hinges, 282–286
identifying, 279–280
internal forces, 280
loads, 280, 283
member shapes, 280
moving parts, 280
pistons, 290–291
problems, 344, 350
properties, 280
pulleys, 286–289
similarities to and 

differences from 
frames, 280

slotted holes, 292

37_598948-bindex.indd   35937_598948-bindex.indd   359 7/28/10   11:12 PM7/28/10   11:12 PM



360 Statics For Dummies 

magnetic fi eld behavior, 42
magnitude

defi ned, 42–43
distributed forces, 173
loads, 202
moment vectors, 150
moments, 150, 156
notation, 56
Pythagorean theorem, 

56–58
resultants, 80–81
vectors, 42–43, 56–58

Mansard trusses, 255
mass

center of mass, 136, 
146–148

defi ned, 119
distributed loads, 133–134
lumped mass, 121
measurements, 134
non-prismatic objects, 

133–134
prismatic objects, 133

materials
adhesion (stickiness), 322
strength, 10

mathematics skills, 17
maximum values, 29–30
measurements, 134
mechanical advantage of 

pulleys, 288–290
mechanical shafts, 153
mechanical spring object, 

117
mechanics, 10
mechanics of materials, 10
member shapes (frames 

and machines), 280
method of joints, 14, 244–250
method of sections, 14, 

250–253
metric conversions, 33–34
metric system, 32–34
minimum values, 29–30
mixing unit systems, 35–36
moment diagrams, 271–273, 

275–277, 350–351

moment vectors
creating with unit vectors, 

161–163
magnitude, 150
moving, 206
point of application, 150
sense, 150

moments
axis of rotation, 150–151
bending moments, 263
calculating, 12, 155–161
concentrated moments, 

13, 153–154, 170, 
174–176, 225

couples, 158–159, 166
cross products, 75
defi ned, 12, 38, 113, 150
double-headed arrows 

(vector drawings), 
164–165

equivalent force couples, 
166

internal moments, 114
magnitude, 150, 156
Newton-meters (N-m), 150
overturning moment 

(dams), 317
planar rotation about a 

point, 156–158
pound-feet (lb-ft), 150
relocating, 206
relocating forces, 166
sense, 150, 154–155
sum of moments, 222, 

227–228
torsional moments, 262
transmission of moments, 

153
twisting moments, 262

moments of force
bending members, 260
direction, 345
right-hand rule, 154–155

motion
impending motion, 323–324
linear motion, 150

Newton’s three laws of 
motion, 212–214

restraints, 177–178
rotation, 210–212
translation, 210–211

moving
forces, 204–205
moments, 206
vectors head to tail, 72–73

moving parts of machines, 
280

multiplication, 18
multiplying vectors, 74

• N •
N-m (Newton-meters), 150
N/m (Newton per meter), 

125
N/m3 (Newton per cubic 

meter), 127
negative values of forces, 282
negative vector, 71–72
Newton, Sir Issac, 10, 14, 

209, 212–214
Philosophiæ Naturalis 

Principia Mathematica, 
214

Newton-meters (N-m), 150
Newton per cubic meter 

(N/m3), 127
Newton per meter (N/m), 

125
Newton’s three laws of 

motion, 10, 212–214
non-Cartesian components 

of vectors, 97–98, 
102–106

non-prismatic objects, 
133–134

non-rigid bodies, 199
nonsignifi cant digit, 18
normal contact forces, 

111–112, 328–329
notation

bracket notation, 101
Cartesian notation, 101
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Cartesian vector notation, 
60–62

equilibrium equations, 222
magnitude, 56–58
scientifi c notation, 19–20
sigma notation, 22–23

numeric multiplier, 19

• O •
objects

center of gravity, 48, 136, 
146, 148

center of mass, 136, 
146–148

deformable bodies, 110
density, 120
exploding, 196
mass, 119
mechanical spring object, 

117
prismatic objects, 121, 133
rigid bodies, 110, 199–200
symmetry, 144, 146

one force and one distance, 
151–152

openings on dams, 318–320
operation, orders of, 78
opposite interior angles, 25
orbiting, 150, 211
order of selection for 

vectors, 82
orders of operation, 78
orientation of resultants, 80
origin (Cartesian 

coordinate system)
defi ned, 52
free-body diagrams, 188
identifying, 348

overturning moment, 317

• P •
parabolic arcs, centroid of, 

138
parabolic cable system

defi ned, 294
free-body diagrams, 301

loads, 296, 300–303
sag, 300–303

parallel force systems, 
217–218

parallelogram method, 85, 
87–91

parallelograms, 87–88
partial pressures, 318–320
partially distributed loads, 

124
Philosophiæ Naturalis 

Principia Mathematica 
(Newton), 214

pinned supports, 178–179, 
294, 342

pinwheels, 149
pistons, 290–291
pivot gate, 318
pivoting, 150
planar rotation about a 

point, 156–158
planar support reactions, 

177–180
Planck, Max, 214
plf (pounds per linear foot), 

125
plus sign (+), 2–3
point loads, 170, 342
point of application

concentrated forces, 
110–111

concentrated loads, 135
contact forces, 112
distributed forces, 173
distributed loads, 135
free-body diagrams, 170, 

186
moment vectors, 150
resultants, 81
vectors, 43

point of concurrency, 228
polynomials

differentiation, 27–28
integration, 28–29
order of, 28
smooth and continuous 

polynomials, 29
position vectors, 11, 53–58, 

67–68

pound-feet (lb-ft), 150
pounds per cubic foot 

(lb/ft3), 127
pounds per foot (lb/ft or 

plf), 125
power lines, 294
power rule, 28
pressure

absolute pressure, 311
fl uid pressure, 312, 315
gauge pressure, 311
hydrostatic pressure, 312, 

314–315
zero pressure, 311

pressure effects, 38
pressures

fl uid pressure, 309–311, 
313–314

hydrostatic pressure, 
310–311

partial pressures, 318–320
surface pressures, 125–127

preventing tipping, 331–332
principle of superposition, 

13, 199–201
principle of 

transmissibility, 49, 122
prismatic objects, 121, 133
problems. See also three-

dimensional problems; 
two-dimensional 
problems

applied loads, 342
assumptions, 347–348
basic steps, 119, 220, 348
cable problems, 344
equilibrium equations, 

346, 349
frame/machine problems, 

344, 350
friction, 346
internal forces, 345
self weight, 342
separating pieces for 

analysis, 344
showing your work, 351
sketches, 341
statically determinate 

problems, 343
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problems (continued)

statically indeterminate 
problems, 343

submerged surface 
problems, 343, 350

support reactions, 342–343
truss problems, 343, 349

products
cross products, 75–77, 

159–160
defi ned, 74
dot products, 74–75

projection, 74
properties of vector 

operations, 78
proportion triangles

cable systems, 296
trusses, 246–247
unit vectors, 65–68

pulleys
block-and-tackle 

assembly, 288–289
friction, 337–338
machines, 286–289
mechanical advantage, 

288–290
Pythagoras of Samos, 56
Pythagorean theorem, 26, 

56–58, 86

• Q •
quadrilaterals, 87–88
quantum mechanics theory, 

214

• R •
radians, 25–26, 37
ramps, 186, 196–197
rectangles, centroid of, 138
regions

continuous regions, 137, 
142–146

discrete regions, 136–139, 
142

subregions, 137
trapezoidal regions, 

141–142
relocating

forces, 166, 204–205
moments, 206

resolving a vector, 97
restraints to motion, 177–178
resultants

calculating magnitude and 
direction, 81, 94

defi ned, 13, 79–80
depiction of, 80
direction, 81, 94
distributed loads, 127–133
exams, 349
geometric methods for 

constructing, 81, 85–91
graphical methods for 

constructing, 81, 83–85
head-to-tail construction, 

81–82
line of action, 84
magnitude, 80–81
orientation, 80
point of application, 81
principles, 80–81
sense, 81
vector equation methods 

for constructing, 81, 
92–94

right angles, 26–27
right-hand rules

moments of force, 154–155
using left hand instead of 

right hand, 155
right triangles, 26, 86
rigid bodies, 110, 199–200
roller supports, 178, 222, 

294, 342
rolling, 150, 212
roofs, 244
room capacities of people, 

127
ropes

axial force, 114–117
forces, 114–117

rotation axis
Cartesian axis, 151, 212
defi ned, 150
depicting in two 

dimensions, 211
double-headed arrow 

notation, 47
reference point, 211–212

rotational behaviors
couples, 152
creating, 151–153
defi ned, 150, 212
developing, 151–153
doors, 151–152
one force and one 

distance, 151–152
orbiting, 150
pinwheels, 149
pivoting, 150
two parallel forces and a 

distance, 152–153
vectors, 11

rotational equilibrium
defi ned, 210–212
three-dimensional 

problems, 215, 232
trusses, 253
two-dimensional 

problems, 215–216
rotational equilibrium 

equation, 225
rough surfaces, and 

friction, 322
rounding, 18
rule of Sarrus, 162

• S •
sag in cable systems

calculating, 297
catenary cable systems, 

303–305
concentrated load 

systems, 295, 298–299
defi ned, 294
parabolic cable systems, 

300–303
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Sarrus, 162
scalar equilibrium equations

exams, 349
Newton’s laws of motion, 

212–214
notation, 222
rotational, 222, 225–226
three-dimensional 

problems, 215–216, 230, 
346

translational, 222–225
two-dimensional 

problems, 215, 346
unknown reactions, 

226–227
scalars, defi ned, 42
scale in Cartesian 

coordinate system, 52
scientifi c notation, 19–20
second law of motion, 213
sections of trusses, 14, 

251–253
self weight

cable systems, 294
catenary cable systems, 

294
continuum, 172
dams, 316
defi ned, 119–121, 185
distributed loads, 135
fi xed vectors, 48
fl uids, 310, 312–313, 315
free-body diagrams, 170, 

183, 222
lumped mass, 172
problem-solving, 342

sense
calculating, 323–324
defi ned, 43
distributed forces, 173
moment vectors, 150
moments, 150, 154–155
resultant vectors, 81

shafts, 153
shapes in trusses, 243–244
shear diagrams, 271–275, 

350–351

shear force
bending members, 260
defi ned, 113
direction, 345
sign convention, 263

SI/metric system, 32
sigma notation, 22–23
sign convention, 262–263
sign of the magnitude, 43
signifi cant digit, 18
simple (pinned) supports, 

178–179, 294, 342
simplifi cation techniques 

for free-body diagrams, 
13, 199–206

simultaneous events, 73
sine, 26–27
sines, 87
single-headed arrows 

(vector drawings), 
45–46

sketches, 341
slider, 182
sliding, 15, 332–334, 346
sliding vectors, 48–49, 89
slope, 21–22
slotted holes, 292
smooth and continuous 

polynomials, 29
SOHCAHTOA anagram, 27
space potato analogy, 

204–205
spatial support reactions, 

177
specifi c gravity, 120
specifi c weight, 127
spinning

defi ned, 150, 212
orbiting, 150
pinwheels, 149
pivoting, 150
vectors, 11

springs
axial force, 117–119
deformation, 118
forces, 117–119
line of action, 117

spring constant, 118
stretch, 118–119

squares, centroid of, 138
stamping machine, 290
start point of a distributed 

load, 124
static determinancy, 

280–281, 343
static fl uids, 310
static friction, 323
static indeterminancy, 343
statics

actions, 12
defi ned, 9–10, 214
real-word application, 14

statics exams
assessing answers, 351
basic steps for problem-

solving, 348
showing your work, 351
tips for success, 347–351

stating assumptions, 347–348
steering wheels, 152–153
steps for problem-solving, 

348
stickiness of materials, 322
strength of materials, 10
stretch of springs, 118–119
structural systems. See 

cable systems; frames; 
machines; trusses

submerged surfaces
defi ned, 15
fl uid pressure, 309
problems, 343, 350

subregions, 137
subtracting vectors, 71–72
subtraction, 18
sum of forces, 222
sum of moments, 222, 

227–228
summation notation, 22–23
summing vectors, 69–71
superposition, 13, 199–201
support reactions

ball-and-socket 
connection, 181

calculating, 220–225
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support reactions (continued)

collar assembly, 182
defi ned, 13, 113
fi xed supports, 179–180, 

342
free-body diagrams, 170, 

177–182, 186–187, 222
inclined supports, 180, 186
line of symmetry, 202
pinned supports, 178–179, 

294, 342
planar support reactions, 

177–180
problem-solving, 342–343
restraints to motion, 

177–178
roller supports, 178, 222, 

294, 342
slider, 182
spatial support reactions, 

177
three-dimensional 

problems, 230–236
three-dimensional support 

reactions, 181–182
trusses, 244–245

supports
fi xed supports, 342
pinned supports, 294, 342
roller supports, 222, 294, 

342
surface distributed loads, 

125–127
surface pressures, 125–127
suspension bridges, 15, 294
symmetry, 144, 146, 202–203

• T •
tangent, 26–27
telephone lines, 294
10’s multiplier, 19
tensile forces, 114
tension

axial force, 345
cable systems, 298–305
internal forces, 345

textbooks, limitations of, 1
theory of relativity, 214
third law of motion, 213–214
three-dimensional 

problems
basic steps, 220
equilibrium equations, 

230–231, 236–240, 346
free-body diagrams, 230, 

233–236
rotational equilibrium, 

215, 232
scalar equilibrium 

equations, 215–216, 
230, 346

starting point, 229
support reactions, 230–236
translational equilibrium, 

215, 231–232
vectors, 230–231

three-dimensional support 
reactions, 181–182

tipping, 15, 330–334, 346
tipping point

dams, 317
locating, 330

torque, 153–154
torsional moments, 262
total equilibrium, 212
translating, 149
translational equilibrium

defi ned, 12, 210–211
three-dimensional 

problems, 215, 231–232
trusses, 252–253
two-dimensional 

problems, 215
transmissibility, 49, 122
transmission of moments, 

153
trapezoidal regions, 141–142
trigonometry, 23, 26–27
truss problems, 343, 349
trusses

angles, 246–247
cutting, 251–252
defi ned, 14, 243

end connections, 244
equilibrium equations, 

248–249
free-body diagrams, 

244–248
Gambrel trusses, 254–255
instantaneous center, 

254–256
internal forces, 244–247
joints, 14, 244–250
load locations, 244
Mansard trusses, 255
method of joints, 14, 

244–250
method of sections, 14, 

250–253
proportion triangles, 

246–247
roofs, 244
rotational equilibrium, 253
sections, 14, 250–253
shapes, 243–244
support reactions, 244–245
translational equilibrium, 

252–253
twisting moments, 262
two-dimensional couples, 

158–159
two-dimensional problems

basic steps, 219–220
equilibrium equations, 346
rotational equilibrium, 

215–216
translational equilibrium, 

215
two parallel forces and a 

distance, 152

• U •
uniformly distributed loads, 

125
uniformly loaded cable 

systems, 294, 296
unit systems

International System of 
Units, 32
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metric system, 32–34
mixing, 35–36
U.S. customary units, 34–36

unit vectors, 11, 59–67, 70
unit width, 311–312
unknown variables, 22
U.S. customary units, 34–36

• V •
values, 29–30
variables, unknown, 22
vector equation methods 

for constructing 
resultants, 81, 92–94

vectors
adding, 69–71, 93–94
axis of rotation, 47
calculations, 2–3
Cartesian components, 

97–102
Cartesian vector notation, 

60–62
combined vectors, 11
combining, 81
components, 95–106
cross products, 75–77
defi ned, 10–11, 41–42
direction, 11
dividing, 74
dot products, 74–75
double-headed arrows, 47
drawing, 45–47
example, 43–44

external vectors, 43
fi xed vectors, 48
force vectors, 42, 110, 188
free vectors, 48–49, 206
head-to-tail construction, 

72, 81
internal vectors, 43
labels, 45–46
line of action, 43
line vectors, 49
magnetic fi eld behavior, 42
magnitude, 42–43, 56–58
moment vectors, 150, 

161–163, 206
moving head to tail, 72–73
multiplying, 74
names, 2
negative vector, 71–72
non-Cartesian 

components, 97–98, 
102–106

order of selection, 82
orders of operation, 78
point of application, 43
position vector, 11, 53–58, 

67–68
principle of 

transmissibility, 122
projection, 74–75
purpose of, 11
resolving, 97
resultant vectors, 13, 

79–94, 127–133, 349
sense, 43

single-headed arrows, 
45–46

sliding vectors, 48–49, 89
subtracting, 71–72
summing, 69–71
three-dimensional 

problems, 230–231
types of, 48
unit vector, 11, 59–67, 70
variables, 2
velocity vector, 41

velocity vector, 41
volumetric distributed 

loads, 127
volumetric effects, 38

• W •
wedges, 335–337
weight. See also mass; self 

weight
distributed loads, 133–134
measurements, 134
non-prismatic objects, 

133–134
prismatic objects, 133

• Z •
zero displacement, 199
zero-force members, 

256–258
zero pressure, 311
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