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PREFACE

Statics and Dynamics Dewystified is written for anyone who needs help learning
the basic concepts and definitions of statics and dynamics. Although geared

hat for students taking engi ing mechanics courses, this book is useful
for a broad audience. Students who are taking freshman calculus-based physics
which is mostly about statics and dynamics, will find this book useful although
there are some tapics here and there that are more advanced than whatis covered
in that course. Physics students will also find the book useful as a supplement or
book to brush up with when 1aking undergraduate or level mechanies classes,
The last chapter briefly introduces advanced methods like the Lagrangian and
Hamiltonian that physics students will find helpful.

The purpose of the book is not to be all encompassing or thorough but
instead the idea is to help the reader build a basic foundation for the subject.
Therefoere. each chapter introduces a few key concepts you will find on a statics
and dynamics syllabus. Then example problems are solved. Again, we are not
trying to be exhaustively therough but are instead trving to help students grasp
the basic concepts. So, only a few select problems are solved to illustrate the
methods used with cach type of problem. Chapters are relatively short (compared
to what you might find in your textbook) and the end of each chapter has a quiz.
For the most part each quiz duplicates the types of problems solved in the text
50 you can test vour knowledge and gain confidence by repeaung something
wvou've already seen.

Adter a review of veetor calculus, the book covers basic concepts on forces,
gravity, moment of inertig, and friction, This is followed by a study ol dynamics
which begins with the basic kinematics of particles. Then after a detailed look at
Newton's second law, the book examines rotation and circular motion, energy.
waork and power, and waves and vibrational motion. The book concludes with an
introduction to Lagrangian and Hamiltoman methods. Itis hoped that engineer-
ing students who may not have seen these topics (depending on their particular
university) will come away with some new ideas on approaching mechanics.

The book is relatively self-contained, so if vou have a modest math back-
ground in caleulus and differential equations, the book should be useful for
self-study.

Navembir 3, 2006
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CHAPTER 1

A Review of Vector
Calculus

Introduction

A vector is a directed line segment between two points P and . Vectors have
magnitude and direcnon, and graphically, we represent a vector by an arrow
(see Fig. 1-1).

Vectors are represented abstractly by letters. For example, a common vector
seen in the study of dvnamics 1s which is d d by the letter p.
In this book, we will denote vectors by boldface type or by placing an arrow on
top of the letter used to represent the vector. So A, B, and ¢ are vectors, while
a and & represent ordinary numbers which are sometimes called sealars. We
can perform many familiar algebraic opemtions on vectors. For instance, we
can add two vectors together, to obtain a third vector. Graphically, 1o add two
vectors A and B to obtain a third vector C, we place the tail of B at the head of
A, and then draw a new arrow from the il of A 1o the head of B (see Fig. 1-2),

13



Pl S0
MHBDG2-0] MeMahon  MHETRG2-MoMahon-v2.eli PRINTER: To Come  Newensher 1, 20606

L Statics and Dynamics Demystified

/

Fig. I-1 A vector represented as an arrow.

In order to do ealeulations, it will be necessary to examine vectors within a
particular coordi system. The camy of a vector are the projections of
1he vector aloug}hg dj!‘f'erent coordinate axes. In Cartesian coordinales, we use
the unit vectors £, £, & that point along the x, p, and = axes respectively. 1f we
represent the projections of a vector A along these axes us {a,. a,, a:}, then we
write A as:

A= a.x: t a_._:: 1 a;-@

The numbers {a,.a,, .} are called the companems of A with respect to the
basisi. . k. [na different coordinate system, we will use a different set of basis
veetors, and the components of the vector will be different. For now we will
stick with the Cartesian coordinate ayslcm and adopt the following notation.
We write the unit vectors i, Js kasi, 7.2 and thus:

A=adtaf+al

Basic Operations on Vectors

The following operations are defined for vectors:

1. Addition
We add two veetors by adding their components. [

A=af +a, ¥ +ai and B=bi +hy+hz

C L

/

A

Fig. 1-2  The addition ol two vectors.

13
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CHAPTER 1 A Review of Vector Calculus 3 v
Then:

C= A48 =ta, +b)f+(a, + b )5 +{a. +b.)3

Subtraction is defined in an analogous way.

Multiplication by a scalar

Let e be a real number, Then a8 is a vector with components defined
by:

[

alf = alb, @ +h G+ b2 =abd +ab,j+ab2

The vector aff is a vector whose length is |a| times the length of B fa
is positive, then a points in the same direction as B, while if a is
negative, aff points in the opposite direction as /3,

3. There exists a zero vector 0 such that:

A+0=4 forany vector A
4. There exists an additive inverse of A, denoted by — A4, such that:
A+(—Ay =0
Multiplication of a vector by another vector is a bit more complicated. In fact,
there are two different ways of doing vector multiplication we will consider, the

dot or sealar product that allows us to form the product of two vectors to form
a number, and the cross product which forms a new vector,

The Dot Product

The dot product between two veetors 4 and 8 is a number and is defined by:
A-B= | 4118 cos @

where | A| is the length of A, | 8| is the length of the vector B, and & is the angle
between the two vectors, taken to be the angle directed from A to &. The dot
p_mducl can be computed u:iing components in the following way. Again letting
A=ad+ad+aiand 8 =bx+by+bi then:

A-B =a.b, +ab, +azh:

13
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Looking at the angular formula for the dot product. notice that if:
& =x/2, then cosd=0

& =10, then cosé =1

This tells us that if .4 is perpendicular to &, and therefore the angle between the
two vectors is @ = /2, their dot product is zero.

The dot product can be used 1w find the length of a vector by taking the dot
product of a given vector with itself. In other words:

A d =4 cosi0) = |4}
This tells us how to find the length of a vector from its components:
A -Ad=a’+ aitalt, = |,"I|=\."{U‘2 +a,+a?

The dot produet is a lincar operation:

EXAMPLE 1-1 )
Let A=3i — 20 +Zand B=4i +20.
(a) Find the length of A4 and the length pl'ﬁ. .
{b) Compute the dot product between A and B,
(c}) What is the angle between these two vectors?
SOLUTION 1-1
(a) The length of a vector is found by taking the dot product of the vector
with itself, Therefore we find:

A A=+ (== + (1) =14
= (Al =14
B B=(4)4)+2)2)=20

= |8 =10

13
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(b) Using the component method, we find:
A-B=3#+ (-2 =12-4=8§
{c) Using the formula:

A B=|A)||B|cosé

A-B
0 =cos| ——
|A118]

Using the previous results, we have:

we find that:

i-B 8 - 045
J418] ~ yTavzm
And so;

= cos”{0.48) = 61°

The Vector Cross Product

The second way to form the product between two vectors is 1o compute the
cross product. The result of the cross product is another vector. In Cartesian
coordinates, the cross product is computed from the 3 x 3 determinant:

L i oy o, @ @, a: a, a,
=la, a, a.|=3% 0 §
Ax 8 hl bl " X b, b o, b + b b

= Stayh: — a:h, ) — Plagbh. — awb )+ 2ah, —a, by
Geometrically, the cross product is given by:

A% B=[A||8sind i

13
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Fig. 1-3 A parallelogram construgted from the ¢ross product of two vectors,
where /7 is a unit vector that points out of the plane formed by A and B. The
dircction of this unit vector is found from the right hand rule:

1) Point the fingers of your right hand in the direction of A.

2) Curl your fingers from Ato B along the direction of the smallest angle
between the two vectors.

3 Your thumb will be pointing in the direction of i.
The cross product has the following properties:

1) The cross product is distributive:
A x(1_3+{:,]=.i ® f?+.—?x(:
2 Itis ot commutative, In fact:
Ax B=—(f % ;i}
3) The cross product of any vector 4 with itself is zero:
AxA=0

Nulitic that we can construct a parallelogram in the plane from two vectors A
and B (see Fig. 1-3). o

The magnitude of the cross product, | A4 x 8|, 1s the area of this parallzlogram.

Vector Triple Products

The so-called triple products are formed by combining the dot and scalar prod-
ucts in different ways among three vectors. For example, we can form the dot

13
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product between a vector A and the cross product B x C. The following iden-
fities hald:

A (BxCy=(A=B)-C
A (BxCy=B-(Cx4)

We can also form a triple product by taking the cross product among three
vectors, This results in the “bac-cab™ rule;

Ax(BxCy=B(A-C)=Cii B

The Cylindrical and Spherical
Coordinate Systems

In many problems in electrodynamics. we encounter spherical and cylindrical
symmetry. Tn these cases itis much easier to work in the eylindrical and spherical
coordinate systems, respectively.

The cylindrical coordinates are (r.2.z). They are related 1o Carlesian coor-
dinates in the following way:

x=rcosg, y=rsing, and z==z

p=tn"'(y/x), z=:

where 0 < < 2. Note that in addition to the coordinates themselves, in
cylindrical coordinares we work with new basis vectors [, ¢, 2 ) that are related
to the basis veetors in Cartesian coordinates in the following way:

I =cos@Er —sing¢

V=singr+ coseg

The basis vectars in cylindrical coordinates can be written in terms of £, 7, 2
using the following relations:

=cosp i+ sing ¥

P
@ = —singx + cosg P

13



Pl S0
MHBDG2-0] MeMahon  MHETRG2-MoMahon-v2.eli PRINTER: To Come  Newensher 1, 20606

£ - Statics and Dynamics Demystified

Spherical coordinates are related to Cartesian coordinates by:
x=rsindcosy, y—rsindsing, z—rcos#

r=yxi+yiezl, #=tan” (—\“-_l _1-.). ge=tan '(r/x)

The basis vectors are related in the following way:
F=sinfcospr +cosdcospt —sing g
P =sin@singF +cosfsing A+ cosp

= cosfF —sind i

F=sinfcospi +sindsing § + cosh 2
#=cosHeosEt — cosfsing ¥ —sind 2
¢ = —singicosgl

The Position Vector

The position vector r is a vector that points from the origin (0,0,0) to some point
(x,¥

xxX 4 vy+zz

We can construct a unit vector that points radially outward from the origin by
dividing this vector by its magnitude:

In electrodynamics, it will often be necessary 1o consider two points in a
prablem. We may need 1o consider a point r where the electric or magnetic field
is to be measured. as well as a “source point™ ¢ where a source, such as a charge
distribution, is located. In such problems we will need to work with a vector
that is formed by the difference of these two quantities, Let us denote such a
vector by R:

R=F-F

13
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The unit vector in this direction is given by:

atl

k=

=
=i

EXAMPLE 1-2

Let a source point be located at Py =(2,—3,7) and a field point be located at
P35 =(3.3,3). Describe the vector that points from the source point to the field
point.

SOLUTION 1-2
In this case we have the following vectors:
F=31 4353 F=20 =307

Therefore we have:

R=i—F=(-Di+[3—(=3li+0G-Ni
=36 — 42

The magnitude of this vector is;

IRl = 12462+ (4 = VT4 36+ 16 =53

‘T'he unit vector that points from the source point 1o the field point is:

o B _i+6i
|E| NES

The Gradient

The gradient of a scalar function /" maps this function to a vector that we denote
by the symbol V. The magmitude of this vector at a given point # is the larzest
directional derivative of f at 7. We can make this notion more precise with an
example. Let a function Tix. .z} denote the temperature in a metal plate. The
gradient of this function, VT, tells us in which direction the temperature in the
plate increases most rapidly. In Cartesian coordinates, the gradient of a function
s given by:

13
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In many electrodynamics problems it will be necessary to compute the gra-
dient in cylindrical or spherical coordinates. The gradient takes the following
form:

e B, 1@ . A .
G M Y e tindrical coordinates)
ar rig dz
LA, laf- [T ) )
Vi = —'r; + _'—ffr+ =g (spherical coordinates)

B rag | rsingag
EXAMPLE 1-3
The temperature in a solid picce of metal is described by the function
Tix,v.z)=e"sinycosz
In what direction does the temperature increase most rapidly at the point
P=(0,0,007

SOLUTION 1-3
First, we compute the partial derivatives of I” with respect to each of the coor-
dinates, x, v, and 2

8T 8 .

— = —{e'sinycossp=e'sinycosz
it i

ar @

— = —(e'sinyeosz)=¢"cos yoosz
ay oy

T a o, . .
— = —(e*sinycosz)= —¢'sinysinz
itz iz ) :

= VI =¢'sinycosz i +e'cosycoss j —e'siny si
AP = (0.0.0), we have:

VI =e'sinveoszy +e'cosyeoss ¥ —e'sinysing 2, o=

= ¢"sin (0) cos (0)F + e“cos (0) cos (0)F — e"sin (0) sin(0)Z

=3

And so, at the point /| the temperature is increasing most rapidly in the y
direction.

13
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EXAMPLE 1-4
Compute the gradients of:

{a) fiv,y.z)=tanixy)+ COS X sin ye*

(b) fir, it @) =1{r"cos®+ 2r)sinfi sin g in spherical coordinates
(5r+ 17 o .

i€} firnp.z)= %: + 2 sing in eylindrical coordinates

SOLUTION 1-4
{a} We compute the partial derivatives of / in the x, v, and = directions:

af @ L 3 o
— = —(lanxy + cosx sinye) = vsecay — sinxsin pe’
ax  fx
df o . R 3 -
? = (tanxy -+ cosx sinye’) = xsec” Xy + Cosx cos pe
ay ay
af 4 . - . N
a‘— = —(tanxy + cosx sin pe’) = cos.y sin ye”

r4 az

Putting these results together with the form of the gradient in Cartesian
coordinates. we obtain:

= (psec’xy — sinx sinye ) + (x sec’xy + cosx cos ye' )
+ (cos x sin ye© )2
(b} In spherical coordinates, the gradient takes the form:

. ar ar. ar
Cf_r':.'ﬂ.‘-._liﬂﬁ _] f_'rqn

dr roi rsind i

Computng the partial derivative with respect to r, we obtain:

af P
—r"f = 2rcosf sin# sing + br-sinfsing
-

To compute the derivative with respect to &, recall the product rule which
tells us that:

Y =fetes

13
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Therefore:
af

0= —rsin? dsing +r ?msz{isinw + 2!"‘cnsﬂsin(p
= rlsingicos’ & — sin® 0) + 2 cosfsing

We can simplify this by noting the half-angle identities:

: 14 cos28 . 1 —cos28
cosﬂ:T. 310) ”_f
3 cao 1 cos28 1 cos2B 5
= cos # — sin fJ_vi.--z——i+-T-—cus.ﬂ

And so, we have:
ar . 3o ol
T =r-cos 2esing + 2rocos #sing
Finally, the last denvative is:
af

3 =rcosdsinfcosg + 2risinBeos g
@

Putting these results together. we obtain the gradient:

- i Pitf - 1 i
V_’;'ﬁi;.+_iﬁ| . i
dr ol rsind g
= 2rsinfsing (cos# + 3r}F +rsing (cos 26 + 2r cosfd
+reosglcosd +2rlg
(c) We compute each of the derivatives with respect to the cylindrical eoor-
dinates, (r.¢.z):

a8 e+ nt )
—=—| ———:z42sing
ardr i

a fise 41 1 s 20(5r 41
=—\——:z| = |z |55 i ———
ar( 3 ) (?)f MEr+ 1)z 3 z

13
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The formula for the gradient in spherical coordinates divides the ¢
derivative by , and so we compute:

Jeosg
>

Lar 1a [(se+ 25
——=-—|———:3+121sng|=
rilg  rdg 7 sng

Finally. for the z-derivative we have:

FE

af a5+ 1) ) (5r+ 1y
=— T z4+21sing | = 7

The gradient is then found to be:

= df. laf. af.
V= —fF+ - —z
4 Urr i'aw‘P iz
005 +10° . Zeosyp . (S0,
= zr+4 @ Z
7 r 7

In the next example. we demonstrate the product rule for the gradient, which
states that:

Vifg)= [ Vigl+g Vif)

EXAMPLE 1-5
Verify the product rule for the gradient for the two functions:

Slx,yd=2cosxsiny, glx,yl=x7siny

SOLUTION 1-5
First, we compute the gradient of the produet fi:

fo = 2¢"cosx sin’y,
Zon i 2 NP 2 N
= Vifo= T[l\" COEX SN Vv + T{lr'cos.r Sy Y
ity iy

= (4x cosx sin’y — 2u’sinx sin®y)F + (dx’cosx cosy siny)f

13
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Now, the first term in the product rule for the gradient is:

F(Ve) = 2cosxsiny (

=Zcosxsiny(2xsinyi+xcosy )

=4y cosx sin’y & +2r cosx cosysiny §

For the other term, we find:

= . af af .
VN =gl X+ o=y
ay
=x%siny (-~ 2sinxsinyi +2cosx cosy )
= —2¢sing sinl_vi' +2x%cosx COS ¥ Sin Y §
Therefore the product rule for gradients gives:
F(Vg)+g(V ) = {dx cosx sin’y — 2x” sinx sin*v)§
4+ (2x7 cos x cos ysin y 4 257 cosx cos y siny)y
= (4x cosx sin®y — 2x7 sinx sin®y )i

+(4x? cos.x cos v sin y) P

The V Operator and Divergence

[n Cartesian coordinates, we write the gradient as:

We can think of this as applying the operator ¥ to the function /. This way,
we can think of V as an operator that can stand on its own:

V=i—+i—+

ax y

Sometimes this is referred 1o as the “del” operator,
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We now have an operator can be thought of as a vector. Let’s take the dot
product of this operator with some vector function:

F=Fi+FitFi =

- i
F= (x— +3
ix

aF,
ax

Eall

AP+ Fj+ Fd)

We now have a second way 10 compute a derivative, this time by forming
a scalar out of a vector ficld. The quantity ¥V - F is called the divergence of
F. If the divergence is non zero in a given region, this tells us that the region
cohtaing sources or sinks of the vector field. A source corresponds 1o a positive
divergence, while a sink corresponds to a negative divergence.

In cylindrical coordinates, the divergence is:

where we have taken F = F,7 + Fy 4 F.2 o be avector [unction in eylindrical
coordinates. In spherical coordinates, for a function F= F.7 { Fufl 4 F ¢ the
divergence is given by:

I 1,
Pt inaae SME I+ CoS Ay

EXAMPLE 1-6 _

Find the divergence of F =x%y i+ 2r i — 2%
SOLUTION 1-6

For this vector function we have:

Fo=xly, Fo=2y, F=-2

And so:

i, i i, &

L, _r—[.r‘v =2xv. r—' —(2¥) =

Lk dr : iy dy

aF. i

—E = (=Y = =37

iz iz

Therefore the divergence is:

13
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EXAMPLE 1-7
In spherical coordinates, find the divergence of:

Fersindf +rsing+r cos;-{;é

SOLUTION 1-7
Let’s begin by reminding ourselves the form that the divergence takes in spher-
ical coordinates:

- Ia . 1
V F=—=—irf1+——
r reimi

L ar,
rsing dg

a
—i(sind F,
; HU( )+

Now we take the appropriate denvatives found in each term:

@, i ) .
;[!"F,! = ;(r*sm{)] = 4rtsingt
P (§in Fa) = - (rsin® 8) = 2r sincas
s ) = —(r — 2
T sin 7 0 n"f) s o

a i T
—(Fp) = —{rcos’w) = =drcos’ gsing
iy oy

= = 1 . 1 .
= V. F = —dr'sind)+ —— ( 2rsinécosf)
r rsind

1 .
+ m[—sr COSzgﬁslrlrpl

Icos® gsi
= drsing +2cosa — — P
sin

We can also form the dot product in the reverse order between a vector and the
del operator, producing a new operator:

G =G5+ 06,7 +6G.5,

= G-V=(G.8+G,F+G.3) -

) 3
=G, — 4+ G, —+
dx o law

13
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= sinxsinyE —eTcos v+ 20000,

If we had G
then

- Lo X . . 3
(G- V‘}.’-'=1’x‘]T[smx sinyx — e cosyy b 2xz o)
RS

i A . .
+2yz a—ls'm xsiny i —e"cosy i+ 2072
i)

d R . 3_4-
—cosz—(sinx siny & —e* cosy §+2x77)
z

= x*cosxsiny § —e® cosy P+ 6x7YE)
4 2pz(siny cos p e siny ) —cos28x’s'F)

=ix
— {2

05X 51NV + 202 Siny Cos yiE

cosy — 2vze® siny)p — (602 + Btz eos 2)F

The Curl

The curl of a vector field is found by taking the cross product ol the del operator
with the vector function. In Cartesian coordinates this is:

X ¥ 2
xF i i '
e Ay
e F
. (aF_. SF,.) . (3}'7: HF,) . (H.ﬂ 3F,]
=i|l—-—]-F—- +:—-
ay a4 \ax o= ax Ay

The curl of a vector field is another vector field. Some important identities
involving the curl are:

1. The divergence of any curl is zero:
T (VxF)=0
2. The curl of a gradicnt is zero:

VxVi=0

13
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Physically. the curl tells us how much a vector field “swirls” around a given
point.
In cylindrical coordinates, the curl is given by:

% F_(IJF,. UF'_)AI (GF, B\F_-).
= rodg dz ! iz or ¥

and, in spherical coordinates:

- 3 | a afy] . 1 1 ar, a x
VxF:_—[—isinHF‘.J— :|a'+—|:— ——t!'F,]]:‘?
rsin# | df dy r [ sm# dg ar

V3 g 3]
FlEr e

EXAMPLE 1-8
Find the curl of the vector field

Fee'sinz§+20° § —3z¢052 3
SOLUTION 1-8
L. aF,  BF, dFz  BF, aF, @k,
9k o (U B (08 5 (U005
ay iz ix az or ay

i 3 i (26) i (-3 ) it sinz)
=F|—(—3zcosz)— — 2y | <—={~3zcosz) — —(e"sinz
ay ¢ ! iz C JM G X iz {

it . i . -
+z [—(2_:-"] — — (&' sin :}] =c'cosz v
ix ity

The Laplacian

The Laplacian is formed by applying the del operator twice. We can act the
Laplacian operator on a scalar function or a vector function. The divergence
of the gradient of a scalar function gives us a new scalar function, which we

13
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compute using second derivatives:

B 88
V=St
xs  dys gz

[n cylindrical and spherical coordinates, the Laplacian is given by:

) a 3 P
Vo = l— (ri) + l,ﬂ + d—{ (eylindrical)
v i i ilz?

NS B BT [ B A T) 2 )
vip= S (2 ) e = (ing L) - L (spherical
I=a% (' ;h-) " Tsind 80 (“" ao) et gt (SPherical)

The Laplacian operator can also be applied to a vector field, The result is
a new vector field, the Laplacian is applied to each individual component. In
Cartesian coordinates:

VA=V, i 4 VIF, P4 VIR 2

EXAMPLE 1-9
Find the Laplacian of:
{a) flx,y)=3xy —sinx cosy
(b) glr, @, 2)=rsing — 2% %
SOLUTION 1-9
{a) Computing the first and second derivatives of the function, we find:

af af

“—=fry —cosrcosy, ——=3x"+ sinxsiny
ax : ay .

wf

Pyl by 4 sinx cos y. = sinx cos y
x? 2

And so the Laplacian is:

T . .
V= ! + _—{:o_r+sm.r COSY + Sinx cos ¥
- v

=

=6y +2sinx cosy
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(b) In cylindrical coordinates the Laplacian is:

A
e A

dp*

Applying this formula to g(r, ¢, 2} =r sing — e~ ¥ we find:

. . N g i, .
- sing + 2%, £ COs . - T
ar Ay iz

Therefore, the Laplacian of g is:

1a 3 1 . p
Vg = —T[rsimﬁ+ 2% )+ — (—rsing) — bze™
ror e

2r

sin )
)= TP oo
-

(I .
= —(sing + 2% = 42
-

22t
=T eV — e

r

Vector Identities

We now state several vector identities involving the del operator.

1

= V=0

AV xF)=0

Vx(VxF)=V(V.F)-VF

Vifz)= fiVg) +2(V )

T GV =(F- DG +(G W+ Fx (VG146 = (V= F)
VoigF)=F - (Ve)+ eV F)
%x[gf::gl\?xfl—ﬁxif’gl

Vx(FxG)=(G-V)\F —(F- WG+ F(V.G) -GV F)

<] =g

Let r be a vector from the origin to some point (x.y,z). Then:

13



Pl 080
MHBDG2-0]

MeMahon  MHEDO62-McMahon-vIeli PRINTER: To Come  Nowember |, 2006

CHAPTER 1 A Review of Vector Calculus 21 I-o

EXAMPLE 1-10
Show that ¥

SOLUTION 1-1
F

= dry o, dr. dx Ay oz
Vof=—+—+ — +
dx by dz

— =1+1+1=3
[ 1 +

For the curl we find:

x Al
. i o
Vxr=|— —
iy iy
x V

Line Integrals

A fine fntegral is an integral of a vector function along a curve that is weirten

as:
“_ —
fF-dI

where a and & are given points in space, The differential line element is given by
the following expressions in Cartesian, cylindrical, and sphercal coordinates
(see Table 1-1),

Ifthe point ¢ = b, then we have an integral around a closed loop. Tn that case
the line integral is written using the following notation:

jﬁf-..u'

Table 1-1  Line elements for familiar coordinate systems

Coardinate System Differential Line Element

Cartazian il o= dx 3 4 dy §
Cylindrcal df = dr ¥ + rdp g e dz s

Spherical il = dr P o rdit i 4o s
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1f the integral depends only on the endpoints of the curve, then itis indepen-
dent of the path used to move froma to b, When this is true we say that the vector
field that we are integrating is conservarive. When integrating a conservative
veetor field along a closed curve, the following relation holds:

% Fodl =0 (for conservative fields)

EXAMPLE 1-11
Let two points in the (x,v) plane be:
a={0,0)

b={1,1)

A vector field is given by:

Find f:’ Fodi along the curves:
{a) the ling y = x
(b} the parabola v = x*

SOLUTION 1-11
In Cartesian coordinates we have:

di=dxi+dyj+dzz

The basis vectors are orthonormal. This means that:

and all other dot products between basis vectors are zero. Therefore we have:
Fodi = (xp%% 4 x20) - (dxi +dvi + dz5) = xy dx + xdy

(a) Along the line vy =x, we have dy =dx and so

b b I I
f F.dl = f xyidx 4 x%dy = f xielx 4 x7dx f iy
o o L a

al 1

.1
3 x

} = —
L vodx n

.-"3
+
3

4

i}
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{b) Along the parabola v = x?, dy =2x dx and we have:
Fodl = xvidy + x%dv = x(x7 ) dx + ¥ (2xdx)
= x¥dy + 20 =ix + 20yl
And so we obtain:

1 1
f F-d!:f (xF+ 26N )dx =

EXAMPLE 1-12
Let F=x?v* 8 — 2oy . Find the line integral of this vector function from the
pointe =(1, 1010 b =(2,3,0%:

{a) Using the curve that goes from (1,100 w0 (2, 1,00, then 1o (2.3,0).

(b) Going directly along the line from ( 1.1,0) to (2.3.0).

SOLUTION 1-12
{a) First we calculate:

Fodi = (x5 = 2ep §) (de & +dy i +de )
= av'dy — 2xpdy
There are two paths along the curve deseribed in Fig, 1-4.
In part {a), we will integrate along Path 1 and Path 2. Along Path 1,

which goes from (1,1,0110(2.1,0), ¥ = | does not change (and so dy = ()
and therefore we have:

b 2
Fodl = xldx, —>f Fodi —f xldx
w 1

= x

1
3

12300
Fath 3
Path 2
[FRN
(100 Parh 1 210

%

Fig, 1-4  Integration paths for Example 1-12,
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On Path 2, v = 2 1s a constant, therefore dx = 0. And so we obtain:

Fodi = =2xpdy = —dpdy,
b . . 3 3
=>f F-:.’!=—f udy=—2y" =—1842=—16
. 1 1

The total answer is found by adding the results obtained on both paths:
1]
- = 7 748 41
'[rqu_i 6=3-3=-3

Going directly from (1.1,0) 1o (2,30}, which is Path 3 in the diagram,
we sce that this 1s a straight line path and therefore is desenbed by
some equation of the form ¥ =mx + & Atx =1, y =2, and so we find
that:

2=m-+ b
While at x =2, v =3, and this gives:
I=2m+h
Subtracting the first equation from the second gives a solution for m;
m=1
Substitution of this into the first equation gives:
2=1+h
therefore, b= 1 as well. This allows us to write y in terms of x as;
y=x+1

From this equation we deduce thatdy = dx. Making these substitutions
we have:
Fodl = xyidx = 2xydy = x%x + 1Pdx — 2xix + Lydx
=20+ 3T+ 3 Dl — 2007 + )y

=t 3t 37 - 2t = 2e)dr
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We can do the integration in x, and we find that:

b 2
f Fdi= f 3t 3t — k7 = 20y
.f l

I.n ].5 3 4 ! k] .z:

Xﬁ.\ +5.l +4.r 3.\ X .
_ﬁ4+‘36+43 3 n 1 3 !+I+]
T6 5 4} 6 3 4 3

Bl 93 43 7 211
= mt—_=——3 =

e st I A &0

Conservative Vector Fields

A vector field is conservative if:

fﬂ'-d?—u

for every curve in the region where F is defined. [f F is conservative, then a
consequence is that:

V=0
However, the converse 1s not true in general. [f this 15 true. and since

Vx {\? f1=10, this tells us that we can write a conservative vector field in
terms of the gradient of some scalar function, i.e..

F=Nf
Furthermore, the following is satisfied:
L - -
f Nf - dl = fib) — fla}

While in general ¥ % F =0 does not imply that the vector hcld F is conser-
vative, if the vector field is defined throughout all space, then V x F =0 does
imply that F is conservative.
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EXAMPLE 1-13
Determine whether or not the vector function:

F=2xpi+x%
is conservative. 1f so, find a scalar function f such that F = V.

SOLUTION 1-13 .

< is defined everywhere, Therefore we can show F is conservative by
2 it has zero curl. This vector function has no z-component, and the x
and y compaonents do nat depend on =, so the curl 1s simple to evaluate:

.. (B, B\ B, @ .
Vel =[—- = —i{x7) = —(2xy) |z
iy iy ax ay

0

=(2x — 2x0)3

Since the curl of F is zero, and it is defined everywhere, itis conservative. Now
we compute the anti-derivatives of the x and v components of /' in order to find
the sealar function that satisfies /= V[

= .tz_l' + gl¥)

= .\’2_1' + fi(x)

Therefore we determine that:
S =xiv+C
where C is a constant.
EXAMPLE 1-14
Let T'{x, y)=x’y" — 2y, Construct a vector fizld from 7 and show that

b
f VT - dl=Tih) — Tia)

Fora =(0,0,0) and b =(3,1,00,
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SOLUTION 1-14
First, we compute the gradient of T, The partial derivatives of 7 with respect
to x and y are:

L/ 5
e ﬁ(.r!_v‘ —2yy=2xy"
i ow o
m = ;Tfrzlfj — 2=y =2

Now we construct a vector figld from T by writing down the gradient:

Y m AT T 1e 23 -
P=WVT = —i+4 —i=200% + (3% — 25
ax iy . :

Now we construct the line integral of this function:
b . b
f VT -di = f [@xy*)E + GBa’y® = 20§ - [dx & 4 dy §]

5
= f l!,r_l-‘jlu‘.\‘ + t3.\r:_|-: —dy

w

For the path of integration, we choose the straight line from (0,0,00 w(3,1,0),
Therefore we have:

F=(1/3x, and dyv=(1/3)dx
We can invert these relationships and mtegrate along y from 0 to 1:
x=3y,dx=3dy

This gives us:

b 1 1 1
f 2eydx +f (3xfy? = 2)dy = [ 23y )7 3dy) + f 33157 = 2y
- “ 0

di

[ ] 1
= ISf _\'*d_\'-l-?_?f iy =2 f dv
) o ol

v 1
= 45'? =2y =9-2=7

0 Q
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Now we wish to verify that:

&
f ST - dl=T(b) - Tia)

"

for Tix. y)=x"v" = 2y,
Ata=(0,0,0), T =0. At b=(3,1,0), we have:

T(3.,00= 371 - 2(1)=9-2=7

And so the theorem is verified in this case,

Surface Integrals

We now consider the notion of an integral over a surface. Given a vector field
F. the surface integral over a surface § of I is an expression of the form:

ff_-'-&da

kS

where da is a differentizl element of area and 4 is a unit vector that is normal
to the surface. Over a closed surface, we write this as:

fﬁ-:}d’u
5

Typically, we take this to be the outward normal. In Cartesian coordinates
we will consider surfaces in the x-y. v-z. and x-z planes. Table 1-2 shows how
1o choose the differential element of area and unit normal when performing
surface integrals in Cartesian coordinates:

In spherical coordinates, in most cases we will encounter in electrodynamics
we will be considering the integration over a sphere at some fixed radius r. In
that case 15 fixed while the angles ¢ and # will vary. In this case we take the

Table 1-2  Dnfferential surface elements in Cartesian coordinates

Iniegration Surface Dilfevential Element of Area Unit Normal
-z plane (v s fixed ) dy iz i
xey plane i 2 15 fxedy iy dr r
v plane {1 is fixed) d iz 3
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‘Table 1-3  Difterential surface elements in spherical coordinates
Integration Surface Differential Element of Arva Unit Normal
Surface of sphere (fixed £1 #aint) 40 dy ;
Fived § rdr i i
Fixed g #hsind dedi &

radial vector # o be the unit normal, Table 1-3 illustrates the choices used for
surface integrals in sphencal coordinates.

For surface integration in cylindrical coordinates, we have Table 1-4.

We now consider examples for each of these coordinate systems.

EXAMPLE 1-15
Let F=x%z8+2pz i — 272, Find the surface integral of this function over a
unit cube with corner at the origin.ie, 0 =x =1, 0=p=1.0=z= 1.

SOLUTION 1-15
For a cube, there are six surfaces to consider. For the unit cube with a corner at

the origin, these are:
I x=+1
2y x =10
3 y=+1
4 y=0
5) z=+1
6y z=10

To obtain the surface integral over the entire cube, we integrate over cach
of these six surfaces individually and then add up the result. Starting with
surface 1, we have:

x =l dr =0, da=dydz, and i =x

And so;
Froa=(xlzf+2p2f -2z =xlz=z(forx=1)
Table 1-4  Differential surface elements in cylindrical coordinates
Integration Surface Differential Element ol Area Unit Normal
Fixed radius » g ds i
Fined = rdr dyg g
Fixed ¢ dr d= F

PRINTER: To Come  Nowember |, 2006
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Therefore the integral over this surface is:

. (] [
fF-aida:]:j::f{rd.=L 0
5

Next, at surtace 2, we have:

1 1

1 [
dy=- 1 dv=
o 2t

i=—%, howeverx=0, = F-fi=—x'z=0

So the integral over this surface vanishes, Next, we consider surface 3. On this
surface,

v=+41l,dy =0 da=dxdz, andit =
And:

Foa=(xzi+2vzp -2 p=2yz=2z (forp=1)

Setting up the integral, we obtain:

On surface 4, we have:

v=0,dy=0, de=dxdz, andn= —¥
And:

Foas(rzi42p:5—2"2) =3 = =2y =0(for y=0)

Therefore the integral over this surface is zero. Next we consider surface 5, for
which:

z=1,dz=0, da=dxdv, andit =2
With these conditions we obtain:

rit2yz i — %) F =2 =—l{forz=1)
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The integral over this surface is found 1o be:

[ '
]‘F‘ - da = —f f dxdy = —f X
1] 1) il
&
! 1
= —f dy = —J'|”— =1
o

On the last surface, we have z =0, As we found with surfaces 2 and 4, the
integral over this surface is zero because the integrand contains =, The final
answer is found by adding up the results:

%f’-ﬁda_ff-fr{ff-ﬁlfﬁ-ﬁ:-fﬁ-f!{ff‘-ﬁ
5 ke 5 5 5

¥
= . 1 1
+f='--ir=5+1—1=5

Sy

I
dy

]

EXAMPLE 1-16

Let ¥ =x i + v?§ -+ = 2. Compute the surface integral of this function over the
surface of o sphere of radius a.

SOLUTION 1-16

First, we rewrite the function in spherical coordinates:

Fe=xi+y i+z2
= (rsind cosg)(sind cos g i + cos cosgd — sing §)
+ (P sin® 0 sin® @)(sin @ sing i + cosf sing 6+ cose @)
+ (rcos@)(cos B # —sing d)
= (rsin’ ¢ cos® g +rsin’ 0 sin® @ +r cos )P

4 (rsin® cos? cos” 4+ rlsin’ @ cosd sin® g — rcos 0 sin0) @
2

(r sinfl cos psing — ¥ sin® 6 sin® @ cos ) ¢
= r(sin® # cos® g + r sin’ & sin® @ + cos® )7
+ reos@sindicos’ g +rsinfsin’ g — DA

+ rsinf cos g sinplrsindsing — 1)
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Referring to the table. for sphenical coordinates when performing a surface
integral at fixed = & we take:

da=a’sin0didyg. A=F
And so we have:

o= I =r'[sin:-9c0&2c,o 4+ r sin’ Psin"r,o + cos® 6)

The surface imegral then takes the following form:

f F i da
= f_f [a{};in]f!'cos}qa +rsin3Hsinsn,c-— cos:ﬁ}]azsinﬁdﬂdw
0 Jo
—a‘[ f sin® @ cos*pd @ dg + a‘f [ sin' @ sin’ g d0 dy
Ju Jo o Jo

2y px
+a-‘f f cos” 8 sin@dodg = (1) +(2)+(3)
0 o

We consider each term individually, beginning with (1):

17 px ] r
a‘f f sin' @ ros:go dddp =a ‘f sin’0di f cnszwdp
1 o 0 ]

k] mlr 1+ o 2 -
- f sin*ade ] e
o o 2

£ ul . s
a‘f sin’ 0 déh (; angc)
] -

i
.
=ﬂ-‘f sin® 848 ()

Now we use the trig identity cos® 8 4 sin” @ = | to rewrite the integrand:

b4 E
u’nf sin' 6 de = usf siné sin’ & o8
n

a

x
alr [ sinf(1 — cos® #)dp
Jo

= u’nf sin 6 dt —:.r“::f sindl cos™ ¢ dff
11 o
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The first integral can be done immediately:

I‘. sinBdth = —msﬂ[; =—cosT+ cosl=1+1=2

S0

For the second integral, we make the substitution v = cos#. Then du =
—sin# df and we have:

F N ] " ul 1
f siné cos™ 0 dit = —] wdn=——| = —
[ - 3 =1

Putting these results together, we find that:

] b3

T o ’ 27
a’.—rf sind dél —n‘xf sinfcos’ B8 = a'2m —a® =
L] o i
dra*
T3

For the second integral (2) we have:

mpx 27 r
at f ] sin' @ sin’p ddp = f sin'p dy f sin’ #do
1 0 (1] 0

This integral vanishes. Using the previous result:

> n =
f sin‘pdy = f sing dyg f cos’ gsing de
f o o
20
= —cosy| = —cosly 4 cosll= —14+1=10
0

To see why _f: 0s? @ sin g dyp vanishes, note that if we make the substitution
uw = cos g, the limitat ¢ = 0 gives w = + 1, and the limit ¢ = 27 also gives
u = +1, and so we have:
]
[ wdu =
1

13
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Finally, for (3):

:n‘f dy [ cos’ Bsind dd
L Rty

x
f cos* A sin @ df
L ALl

.
o f cos” Bsin 0 o

(]

(3} =asf f cos” Bsin 6t dodyp
L] o

=
H

Using the same substitution we did previously, we sel u = cos#, then du =
—sin@da. At

8 =0, =cos(l}= 41

0 =mu=cosim)=—1

And so the integral becomes:

(3= 2:mlf cos” ¢ siné do
n
-1 .
= —2.vm1f wdn
1

1
= Z:me widu
-1

Adding up (1) +(2)+ (3) gives the final result:

dra’ dma®  Bma’

){.F-'-&aa =)+ 2} +(3) =

13
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Quiz

. Let A =f+47+52and B = 2§ +25.
{a) Find the length of A and the length ¢ of B
(b) Compute the dot product between A and i
{¢) What is the angle between these two vectors?

5

. For the vmum A=di—2f+iand B = —F+55+75 compute
A4 B, A~ B, |4 and|B).

. For the vectors A = 4f — 25+ and B = —& + 5§ + 72 compute
A - B, Are these vectors perpendicular?

.

. Write the vector A = 4% — 2§ + % in spherical polar coordinates,
The temperature in a solid piece of metal is described by the function

i

o
Ti{x, v,2) = xe" sinh v cos =

T what direction does the temperature increase most rapidly at the

point £ ={1,1,1)?
Evaluate
[ s
[ [f (f 3 cos? Ud:)d’:‘]d{t
Jo o 3
. The posi}ion ol;:ln abject of mass m with ime is described by
= 477 — 37, What is the momentum 57
&. Determine whether or not the vector function:

o

-

F=3xtvi 4 2%

3

is conservative, If so, find a sealar function f such that F = V7.
9, Let T'(x, y) =Sy’ = 2oy, Construct a veetor field from ¥ and show
that
b . .
f VT -dl=T(by— T{a)
a

Fora = (0,0,0) and b = (3,1,0).

¢+ 2y ¥ 4 4z £ Compute the surface integral of this
function over the surface of a sphere of tadius a.

L ]
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CHAPTER 2

Particles and Forces

Motion occurs in the universe because forces act on particles causing them 1o
accelerate. We will study motion, in the guise of kinematics and dynamics in
more detail later. In this chapter, we will lay out some basic properties of forces,

Characterizing Motion

Before we start, let’s think about a few basic ways we can charactenze how a
body or particle is moving. The firstis the position of the body. Inone dimension,
the position will be a coordinate x thatis a function of time

X =xit) (2.1

If the particle is moving in two dimensions, it will be describad by the coor-
dinates in the plane x (¢} and yir). Actually, we can describe the motion of the
particle along some path by a position vector that we denote by r{r)

wlep = x4 virj (2.2)

This 15 a vector that points from the erigin to the position of the particle along
the path, as illustrated in Fig, 2-1.

36
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-

Ry

wle) = sl ey AY

Fip. 2-1 The position vector for the path of a particle.

For the moment, let’s stick o one-dimensional motion. The next property
we might consider when examining the motion of the particle is how fast is it
maoving? More precisely, how does the position of the particle vary with time?
We compute the derivative of x(7) to answer this question. In one dimension

vit) = — (2.3)

In multiple dimensions, velocity is a vector that not only tells us how fast the
particle 1s geing, but also indicates the divection of the velocity. The magnitude
of velocity vector is called speed.

1T the particle or body in question has mass i, then (he momeantem g is mass
times veloeity

dx
Py =mvil) =m— (2.4)
dt

The rate of change of velocity is the acceleration of the particle

d{f} el Ji - d-.r

= — 2.5)
dt dr ¢

Keep in mind that in general each of these quantities can be a vector. We will
review these items again when we study dynamics in more detail.

Newton’s First Law

Isaae Newlon got physics started in the mid to late 16005 when he discovered
his three famous laws. The first of these describes what happens to a particle
when no forces act on iL.

R2%
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38 Statics and Dynamics Demystified

Common sense tells you that things that aren’t being pushed or pulled just sit
there, This is basically what the ancients thought—that a body needed a force
to be impressed on it in order for it to attain some velocity. But the ancients
didn’t know much about gravity and fricuonal forces.

Newton did, and he used this to figure out his first law. Basically the first law
says

+ Ifa body is not acted on by a force, it will remain at rest or in a state of
uniform motion,

The difference between Newton and the ancients is the last part of that
statement—that a body that isn’t being acted on by forces and is moving will
continue to do so. Think about something floating aboutin the vacuum of space
as an example.

1f a body is not being acted on by a force, we can say two maore things
about it

= The body will have zero acceleraiion.
+ 1fit’s in motion, it will move on a straight line.

This tells us that if a body is moving on a curved path, there is a hint that it
is under the influence of some force and is therefore accelerating. Conversely,
if you know a body is accelerating. then you know it is under the influence ofa
force. We can find what the force is using Newton's second law.

Newton’s Second Law

Newlon's second law, which we will investigate in detail in Chapter 9, tells us
how to relate foree to acceleration. [t has a relatively simple form

F=ma (2.6)

We have indicated that force and acceleration are vectors in this equation, Using
what we know about acceleration and mass, we can write force in some other
wiys. Focusing on one-dimensional motion so that we can forget about vectors
for a minute, we can also write Newton's second law as the rate of change of
maomentum

o

= 2.7)
dt ¢

PRINTER: To Come  Nowember |, 2006
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Orwe can write it in terms of the second derivative of position

dx

F=m2Z
di?

(2.8}

In this form, given the situation, we can write down differential equations
that can be solved to obtain any useful information about the particle we need.

Newton’s Third Law

Newton's third law is perhaps the most famous, for it has become part of the
common language. This law states that if a body exerts a force on another body,
the second body will exert a force on the first that is equal in magnitude but
opposite in direction, To every force there is an equal but opposite reaction, It
is important to note that the third law does not always apply, so it's not really a
law after all.

Couple

Newton's third law leads to a concept in engineering called a couple. A couple
is two forces that are parallel, with the same magnitude, but with opposit
dircctions.

Deriving Newton's First Law

In fact, the entire content of Newton's laws is really in the second law, Let's say
that the force acting on the particle in (2.8) is zero. [n this case we solve the
differential equation

We immediately have that the acceleration is zero. Integrating once gives us
an equation for the velocity. We call the constamt of integration v, giving

dx
dt

R2%
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This tells us that if the particle is at rest, i.e.. vg = 0, it will remain at rest. [f
vy 2 0, this equation tells us that the particle will continue to move at the speed
vy at all times. What about the path of the particle? We integrate again calling
the second constant of integration xy

X(th = vt + xg

This is the path of the particle—and noticing that it has the form of y =
mx + B its nothing more than a straight line with slope vy, and intercept x,.

Thus little exercise has shown us that Newton's first law 15 actually contained
in the second law for the special ease of = 0, in fact we are able to denive the
first law from the second mathematically, showing that particles with no forces
acting on them move in straight lines and have constant velogity.,

We wall examine Newton's second law in detail throughout the book, but let’s
do a couple of examples now to illustrate the process. First, we go one step up
from no force to one that is constant.

EXAMPLE 2-1

A particle is moving in one di ion under the i of a force given
by Fix) =« where o is a constant, Find the position and aceeleration of the
particle. The particle stants from rest.

SOLUTION 2-1

Newton's second law in the two forms (2.6) and (2.8) tells us that we can
cquate

a

d*x

dit

F=m
With the given form of / this equation becomes

dr e

At om
[ntegrating once we obtain

1
el @9
di m

We are tald that the particle starts from rest. Therefore vy = 0. We can write
down the velocity and momentum of the particle from this expression

)= (1) =
i I, [ T
(! " Iy o
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Before tinding the position of the particle, let's stop for a moment and think
about the constant . What are the units? Looking at the velocity, we have

o
vity = —1,=
it

[vir}] = [%r]

where we have enclosed each quantity in brackets 1 indicate we are considering
the units or dimensions of each quantity, On the left side

()] = length

time

On the right side

[24] = 1) [l} (1 = (o) 22
m i mass

We can find the dimensions for the constant by equating these two terms

length time
= o] —
time mass
massy f length ass-lel
= = — —_— s —_—
[o] ( timc) ( time ) 1

[ 51 units, this is nothing but the force in Newtons

_ mass-length  kg-m

[a] N

time® 52

This isn't 50 surprising of course, since we defined the force to be this con-
stant value. But its an illustration of how you can check your dimensions
and units when in doubt. Continuing, we return o (2,9). [ntegrating a second
time, we find the path of a particle which is under the influence of a constant
force a

L
X = —1 + vt + 3
2m

R2%
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We've tound that the motion of a particle under the influence of a constant force
is a parabala. Since we are told the particle starts from rest, this means that

vo = 0 and in this ease ¥(r) = —17 + x.
2m

EXAMPLE 2-2

Suppose now that a particle is moving in one dimension under the influence
of a force that varies with time. The foree is given by Fix) = e where o is a
constant. Find the position of the particle. The particle starts from rest.

SOLUTION 2-2
Newton's second law in this case becomes
d’x o

dit m

Integrating, we obtain an expression for the velocity, Since the particle starts
from rest we ignore the constant of integration

dx a .

dr Im

Integrating a second time gives us the position of the particle
vy = = + X
L = Xn

where x; is the initial position of the partcle.

EXAMPLE 2-3
A particle is moving with a velocity v = 3 m/s. It is not under the influence of
any forces. What is the velocity of the particle 2 min later?

SOLUTION 2-3
Newton's first law tells us that the velocity is unchanged. so 2 min later v =
3 mfs.

EXAMPLE 2-4

A particle with mass m =1 kg is moving with an initial velocity v =3 m/s. It
starts from the ongin, under the influence of a constant force F =35 N. What
are the position and velocity of the particle afler 10 57
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SOLUTION 2-4
The motion of the particle was derived in Example 2-1 where we found that

LA
XY= —" + vpl + 3y
2nt
With the parameters given in the problem, this becomes
5, 3
x(y ==t 43t
{ 2
After 10 5, the particle is found at
50
x= EUU}“ + 3(10) = 250 + 30 = 280m
InExample 2-2, we found the velocity of the particle is given by the expression
o
Vit = —1+w,
m

which in this case is

viiy=3543
Hence the speed of the particle at 10 s is
v=3(10)+3=33Im’s

Line of Action

The line of action ot action fine of a force is an imaginary line that corr
1o the force. The line is infinitely long and the vector representing the foree can
be thought of as a segment of that line.

Forces and Moments

Now that we have introduced some basic ideas, we take a detour to consider
moments. We have seen that a force tends to distort the path of a particle from
a straight line. A moment characterizes the tendency of a foree 1o rotate a body

R2%
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about an axis that passes through the origin. In short 2 moment is just rorgue.
We denote the moment with respect 1o the origin by M and define it by
M=rxF (2.10)
The position vector from the origin is given by
r=xit+yj+:ck
A general foree in three dimensions is
F=Fi+Fj+hk (2.1n

Then the moment is given by

M=rxF=

In this context r is called the moment arm. Since moment is the product of
position and foree, using SI the units of moment are Newton-meters or N-m.
The components of the moment are

(2.13)

The moment of a couple is found by adding up the moments of each force.
Recalling that in a couple, the two forces are the same but oppositely directed.
Therefore if Fy = F then

Fi = —F (2.14)
While the farces in a couple are parallel, the position vectors to each force will
not, in general, be parallel. Denoting these vectors by vy and ry, the moment of
force Fy = Fis
My=m=xFi=r=F

Meanwhile the moment of the second force is

Miy=r; xFp=-r:=F

PRINTER: To Come  Nowember |, 2006
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Fig. 2-2 A couple and the distance vector between them.

The moment of the couple is denoted by € and 15 the sum of the individual
moments

C=Mi+Mi=nxF-nxF=(rn-nxF (2.15)

Mysteriously, the difference between the position vectors (ry — rp)is denoted
by a, this might be confusing making you think about acceleration. But keep in
mind this is just a pasition vector. [t points from the second position vector to
the first, as illustrated in Fig, 2-2,

EXAMPLE 2-5
A force with a magnitude of 100 N is directed from the origin to (3.2,2}). Find
the scalar moments of this force about the x, v, and = axes.

SOLUTION 2-5
Each component of the foree is found by its projection on each of the three axes.
The length of the diagonal from the origin to (3.2.2) is

d=yxl 4y =242 = O F v a=VT

Then

x 3
Fr==F=—=(l00N) = 728N
d V17

And the » and = components of the force are

. ¥ 2
F, = J;- =75
"=LIIUUNI=4H.SN
V1T

(100N} = 485N

R2%
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The moment can then be found from the cross product. Since we are asked
for the scalar moments of this force about the x. v, and = axes, we can just
examine the components (2.13). We have

My =yF, —zF, = (2){48.5) — (2)(48.5) = 0
o= X = {2)(72.8) = (3)(48.5) = 0.1 N-m
M. =xF, —yF, =(3)(48,5) = (2)(72.8) = =0.1 N-m

The Moment vector is then

M =0.1j— 0.1k N-m

EXAMPLE 2-6

A force with a magnitude of 75 N is directed from (1.2,1) to (7,3.5). Find the
moment of this force acting through the point (2,3,4) with respect to the line
passing from (1,—1,—1) to (42,3}

SOLUTION 2-6
We can find the components of the moment in two steps. First, we need to find
the compenents of the force. The lengths along each axis are

x: 7T —1=6m
y:3—-2=1m
i85 —1=4m

Now, the force lies along a diagonal which conneets the two points. The
length of the diagonal 15

d = Jlaxy + (Ay)F +{az2) = V6l + 12+ 42 = VAl

The companents of the force are

Ax &

F,= —F = —(73N})=T0L3N
d NET
Ay 1

F,=—F = —(15N)=I1.7N
o \.l'4|: !

4
VT

(TN} =46.9N
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To find the moment arm we can use a vector that goes from either point on
the line t a point which lies on the action line of the force. Let’s pick (1,2,1)
as the point on the action line of the force. Then using (1,—1.—1). we construct
the moment arm by taking the difference of these two po

r=tl = DI+ 2= (=401 —(-1)k=3+2k
Then, the components of the moment are

M, = yF. = 2F, = (3){46.9) = (2)(11.7) = 1173 N-m
My =zF, — xF. = (2)(70.3) — (0){46.9) = 140.6 N-m
M, = xF, — yF, = {0)(11.7) — (3)(70.3) = —210.9 N-m

The Moment vector s then

M= 117314+ 1406 j — 2109k N-m

Free Body Diagrams

A free bady diagram is a way to graphically represent the forces on a body.
This can serve as an aid in working out how forces add up. The idea is to draw
the foree vectors acting in different directions, For example, suppose a body is
being acted on by two forces N and W as shown in Fig. 2-3, Il we also know
that the body is not accelerating in the vertical direction, the diagram shows us
that

N-W=10

Fig. 2-3 A sample free body diagram,
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On the other hand. if the body is accelerating upward. then Newton's second

Statics and Dynamics Demystified

law tells us

When solving a problem, start by simply drawing the body and little arrows
that represent the forces acting on it, Point the arrows in the direction that the

N-W=uma

forces are acting.

Quiz

ra

P

wn

=

=

. A body under the influence of no forces is moving with speed v = 2 m/s.

What is the speed of the body 2 s larer?

. A body is moving under the influence of a constant force =3 N,

Initially, the body is moving at 1 m's. What is the speed of the body 55
later?

. Wnite down Newton's second law in terms of acceleration.
. A particle is moving in one dimension under the influence of a force

given by # cos e where £ is a constant. What equation results from
Newton's second law?

. Ifa particle is acted on by a force given by F = —&x in one dimension,

what is the form of the position, x (7)?

. A force with a magnitude of 83 N is directed from the ongin to (1.2,3).

What are the x, y, and = components of the force?

. Find the scalar moments of the force in Problem 6 about the x, v, and =

axes.

PRINTER: To Come  Nowember |, 2006
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CHAPTER 3

Resultants, Equilibrium,
and Statics

[n this chapter we go beyond Newton's first law and learn a bit about forces. We
begin by applying what we did in Chapter 2 with moments to see how moments
Can canse a system to move via a resultant force. Then, we examine systems
in equilibrium and consider static situations, that 15, situations where although
forces may be present they balance and cancel each other out so that no mation
acurs.

Resultants

The resultant R is simply the sum of all the forces that act on a body in the
plane. If we denote the # forces acting on a body by F, whered = 1,...,n then

the resultant is
R=)F (3.0

49
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The magnitude and direction of a resultant are charactenzed as follows. We
caleulate the comp of the Ttant by ing up the x comy
and the y components of the forces that act on the body, respectively. In other
waords,

R, =ZF, and R, =ZF,.

We can then write the resultant vector as
R—Z};i——z.ﬂj (3.2)
The magnitude of the resultant is then

k= (2 F

The angle used to characterize the resultant is the angle that the resultant makes
with the x axis. This is

{3.3)

fanfl, = = !‘_" 34
YF
The action line § of the resultant is caleulated
. YM .
== 1.5
a R {

where 3" M is the sum of the moments acting on the system, [T you want a
resultant to cause 4 net moment, you can calculate where the line of action
should be, as we will sec in the following examples.

EXAMPLE 3-1
Let the following forces act on a body
Fy=3i-2j
Fy=Si+j
Fy=Ti+4j
Find the resultant and the angle it makes with the x axis. Force is measured in
Newtons,

R29
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SOLUTION 3-1
We begin by summing the forces

YFR=31+5+7=15N
YR ==-2+1+4=3N
The magnitude of the resultant vector is
f
R=y(15)" +(37 =153N

The angle it makes with the x axis i3
3
#, = tan"! _) =11
(IS

R=150i413j

The resultant vector is

EXAMPLE 3-2
Several forces act on a beam as shown in Fig. 3-1. Find the resultant.

SOLUTION 3-2
The resultantis the sum of the forces. We choose forces acting upward as positive
and forees acting down as negative. Then

R =Zr=zon— 150 + 700 = 4750 N
EXAMPLE 3-3

For the forces in Fig. 3-1, where should the line of force be placed so that the
result is an upward moment about 7

150N
dm
17l |
3 i
2m | . |
im
20N TN

Fig. 3-1 The forces acting on a heam in Examples 3-2 and 3-3,
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52 Statics and Dynamics Demystified

SOLUTION 3-3
First we sum the moments, The moment arm for each force is the distance in
meters of the force from the point £, We find

ZM =22 20047 = 700 — 4 x 150 = 4700 N-m
The action line is
M 4T00N-m
R

= Tmon Coim

a=

Equilibrium

Equilibrium is attained by meeting two general conditions. To see what these
are, we start with Newton's second law

F =ma

When considering several forces that act on a body, we compute their vector
sum and Newton's law becomes

ZI-‘:ma

Ifthere is an acceleration induced in the body, then motion will occur, Therefore,
we see that the first condition for staties 15 that the veetor sum of the forces must

vanish
S FE=0 (3.6)

In order to attain static equilibrium, what we really need to have is that the net
vector components of the force must vanish. In other words, the sum of all the
components must vanish individually, Therefore (3.6) actually contains three
separate conditions within it

YAa=0 (37
Y F =0 (3.8)
Y F=0 (3.9)
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In addition to forces, there may be torques {moments) acting on the system.
Therefore, a second condition for static equilibrium is that there can be no ner
torques or moments that act on the system. The sum of all the moments must
vanish

Y M=0 (3.10)

Since a moment is a vector, we again require that the sum of the components
in all directions must vanish individually. This gives us three more conditions
for static equilibrium

Z.m:u (210
Z,u‘.:o (3.12)
oM = (3.13)

When the vector sum of all the forces and all the moments is zero, we say that
the system is balanced or is in equilibrium, One simple example is to considera
mass over a pulley. Neglecting friction, there is a downward foree due 1o gravity
which is given by W = mg where g is the acceleration due to gravity. If there
are 1o other forees involved, the mass will slide downward.

However, if we exert a tension T in the chord supporting the mass such that
it is pointed in the upward direction and

T —mg =
Then the mass will not move. Equilibrium has been attained in this case.

EXAMPLE 3-4

A boom which is 10 m in length supports a mass M = 900 kg. The mass is
connected 10 a chord which is in turn fastened on a wall 5 m away (see Fig. 3-2).
Find the tension in the chord and the foree on the boom.

SOLUTION 3-4

The system is in equilibrium, therefore the tension in the chord and the force
on the boom will be such as to cancel the force of gravity on the mass,
First we set up a coordinate system and draw a free body diagram, shown in
Fig. 3-3,

PRINTER: To Come  Nowember |, 2006
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Fig. 3-2 Boom-mass sysiem analyzed in Example 3-4.

The sum of the forces and the torques must sum up to zero in each direction.
The force on the mass, caused by gravitation, only acts in the » direetion.
Therefore the v component of the force on the boom must cancel this force.
First. we need to find the angle # indicated in the figure. As indicated in Fig.
3-4, this is the same angle made between the boom and the wall. We can find
the angle if we know the side length of the wall, which is denoted w.We know
the length of the boom (10 m—which we take to be the hypotenuse) and the
length of the chord, and so the length along the wall is

w= 10— (57 =87m
The angle is then defined by

[ 87 0.87
cosé = — =10.
10

Fig, 3-3  Coordinate system and forces acting in Example 34,
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Fig. 3-4 Resolving the force components of the force on the boom.

Wow the force due to gravity on the mass is
W= —mg = —(900kg}(9.81 mis’) = —8829N

We add the minus sign because given our chosen coordinate system, the force
points downward. The condition that must be met is

Y Fe=0

Now the ¥ component of the foree on the boom, which must point upward to

cancel W, can be found by simple trigonometry. This is indicated in Fig. 3-4.
The side adjacent to the angle is the y component of the boom force. The side

opposite the angle is the ¥ component of the force on the boom. The hypotenuse

ol the tnangle is defined by the foree on the boom Fg. Since

adjacent cing = appoesite

cosfl = —— -
hypotenuse hypotenuse

We have
F, = Fysin®
F, = Fycosd

To meet the condition 3 F, = 0, the following must be satisfied

0= —Mg+ Fpcosft

F Mg 8520
= fp= =

BT cosh 087

N= 10,148 N

L ]
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The force on the boom has to be larger than the force exerted by the weight of
the mass because some of the force on the boom is distributed in the x direction.
To find out how much, let's calculate the angle explictly

8.7
f=cos ' [ =] =130°
(%)

The component of the force on the boom is then
Fyo= Fysing = {10,148)sin 30 = 5074 N

Now we have everything we need to calculate the force on the chord. We can
do it two ways, The easy way is to satisfy

Y F=0
Therefore the force on the chord must satisfy
Fot F, =0,
= F+5074=0 or F=3074N

To be a bit instructive, lets consider the moments in the problem. The sum of
the moments on the system are

3 M= Fav —(Mg) L

where £ is the length of the chord. For equilibrium, the system has to satisfy

> M=0

So we obtain the following equation for the force on the chord

0= Z M= Fw— (Mgl

= F8.7m) — (BE2F N5 m)
=»

_ (BEIY N} (5 m)

= 5074 N
8.7m

R29
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d=3m

Fig. 3-5 Ladder in Example 3-5,

EXAMPLE 3-5

A ladder is resting with one end on the ground and one end against a wall (see
Fig. 3-5). The length ofthe ladder is 7 = 10 m, while the distance o of the bottom
end of the ladder from the wall is 3 m. The ladder has a mass m; = 30 kg.
11 there is a honzontal frictional Toree between the ground and the ladder is
£, =2 N but there is no fiiction between the ladder and the wall, can the
ladder support an adult man who ¢rawls up to the midpoint of the ladder?

SOLUTION 3-5
A free body diagram of the forces acting in the problem 15 shown in Fig. 3-6.

First we use simple wigonometry to determine the height & of the upper part
of the ladder. This is

h=VE—d = (10 =(3F =9.5m

Fo = force by wall on ladder

| Fy, = fosee by ground om badider u y ‘

v 4| direetion
H'I

| F, = Poree by ground on ladder is 1 disection

Fig, 3-6  Forces in Example 3-5,

L ]
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Next, we determine the angle between the ladder and the ground.

0.5
L LR ' I
hyp 10

a9 =sin~'(0.95) = 72°

sinf =

With the angle in hand, we can find the upward force of the ground on the
ladder. We are told that the borizontal frictional force between the ground and
the ladder is 2 N. The components of the frictional force satisfy

Foy
2= pan#
Fox
Therefore the y component of this force is
Foo= Fytan® = (2Njtan72° = 6.2 N
The sum of the forees in the x direction must balance for equilibrium. Therefore
3 E =02
Fo—Fop =0
From which we conclude the foree of the wall on the top of the ladder is 2

N, pointing 1o the right in Fig. 3-5. To have equilibrium, the sum of the forces
in the v direction must also be zero

Y F=0
This means that
Foe — W —Wy=0

The weight of the ladder is Wy = myg = (30 ke)(9.81 m/s’) = 294 N. From
which we find that the weight of the man must satisfy

Wy =W, —F,, =294 -6.2 =288 N

R29
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Fig. 3-7 Beam and forces for problems 3-5.

There are about 4.45 N in a pound, so the maximum weight the ladder can
support in pounds withoul shipping is

288 N
" 445 N/1b

Wy

=65 lb

Under these conditions, the ladder can only support a child, and if an adult
man chimbed on the ladder the assembly would slip and come tumbling down,

Quiz

1. Given two forces Fy = 4i + 6] and F; = 3i + 2j find the magmitude of
the resultant,

2. Forthe forces in problem 1, what angle does the resultant make with the
X axis?
Several forces act on a beam as shown in Fig. 3-7,

am M
o |
— K
Im | s |
0N 0N

Fig, 3-8  Forces on beam for Problem 3-6.
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. What is the resultant?

. What is the sum of the moments?

. Where should the resultant be 5o as to yield a positive upward moment?
. Consider the system in Fig. 3-8, By considering both the moments and

the forces, what mass Af must be placed on the beam to keep the system
static? Assume the weight of the beam is 20 N.

R29
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CHAPTER 4

The force of graviry is one of the most familiar forces. It has been at the heart
of science since the birth of physics in the 17th century. Einstein revolutionized
the view of gravity with his theory of relativity, but even weday gravity remains a
subject of intense interest os scientists try to unify gravity with the other known
physical forces.

In this chapter we give an overview of Newtonian gravity.

The Gravitational Force

T about the mid-1660s a wave of plague hit England. Newton, who was studying
at Cambridge at that time, went to his family farm to escape. While there he
was a bit bored and looking for things to do, so he invented calculus, most of
mechanics, and the universal law of gravitation, among other things.

To write down the universal law of gravitation we consider two bodies with
masses A and m respectively. The force of gravity between the bodies is directed

61
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along a line between them and can be written as

M.
F= G2 (4.1)

G = 6.658 x 107"

N
e (4.2)
Omne ol the most important insights that Newton had about the force of gravity,
something that was eluding other great minds of the era such as Halley and
Hooke, was that the mass of a body looks as though its all concentrated at ils
center. This important insight allowed Newton to derive the universal law of
gravitation and is known as the shell theorem. This theorem states that

+ To an outside observer, a uniform shell of mass behaves gravitationally
as if'all of its mass were concentrated at a point that lies at its center,

Since we are outside the sun. we can treat the sun as if it were a single point
with all of its mass concentrated atits center, This is because we can think of the
sun or any other body as a series of concentrie shells and apply the theorem at
any point. So the gist of the shell theorem is when doing gravitational problems,
treat the body as a point mass,

EXAMPLE 4-1

In polar coordinates the acceleration vector is given by a = (F — rd)F |
(rdh + 27h) &, Use the universal law of gravitation to say something about the
equations of motion of a mass m which is under the infiuence of the gravitational
force of a mass M but experiences no other forces,

SOLUTION 4-1

The gravitational force is given by (4.1). Using Newton’s second law F = ma
We can write

Mm

ma=F=—0 i

s

Using the expression forthe
both sides by the mass m gives

vector in polar coordinates and dividing

i P M
= rd" I+ (rf + 2id)p = —G—=
;

1Cone Otubier 20, 206
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Vector components must be equal, giving us two equations
ré +2id =0 (4.3)
Ferpi=—-G= (4.4)
2

We can say something by examining (4.3) by noticing that
42y = 2wid 11
d" ¥ = arr r

And so
I d
ot
Therefiore (4.3} tells us that

(i) = 2id + 1
Id ..
——frg)=10
rdt e
Multiplying by r
d 4.
d_r“ Pr=0
Which means that r2¢ is a constant, call it C. Itean be shown that this constant is

proportional 1o the differential area swept out by the radial vector which points
1o the particle as it orbits around the mass M

1 6 A
il o=
2 dt

That is the change in area with time % is a constant. This is Kepler's law that

the radial vector of a body in orbit sweeps out equal areps in equal times,
The path that the particle actually follows in its orbit can be found by solving
(4.4). This is easier o do if we make a change of variables
1 dr 1
=== —=-=
T du u?
The variation of ¥ with time can then be written as

dr  drdu  drda 1 du

dr " didu  dudi | uldl
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Going a step further

1 du dudd 1 dudg

whdt T owldede T wtdg dt
Retwrning to what we Tound earlier, that !'Jnii is a constant we call O, we have
b 1 ) ,
reg=—¢=0C=¢==Cu
u*

So we have arrived at the result

Pdwdg  Ldu Ldu

-5 - =
u?de dt n® dip " dep
Also
1
P2 2‘_‘
¥ u Frs

Putting everything together gives a differential eq

du

—(':u:‘Mz — Nt = —G Mt
Which simplifies 1o
d? a
dq:; u=GM/C?

We try a solution v = A cosgh + B where A and B are constants to be deter-
mined. Then

i d*
%— rfsl‘llr)f’:mdﬁ— Acosd
Sut into our diff ial equation gives

—Acosgp + Acosg + B = GMC?

11:58
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d >

Fig. 4-1 Parameters in a gravitational orbit.

From which we immediately conclude that 8 = G Af/C2, The motion of the
mass is described by

1 N
- =u=Adcos¢ + GMC
In Fig. 4-1, we lay out some parameters in the orbit.
The eccentricity is defined 10 be
»
r = 4.5)
¢ d —rcosg {

If e = 0, the orbit is circular. Real planetary orbits are nearly, but not quite
circular. Planets orbit the sun on elliptical paths, which are defined by 0 < e < L.
[fe = 1, the orbit is a hyperbala. This is an orbit where the body comes in and
approaches the central mass, then skips out never to return again. The values ¢
and o satisfy

ot
ed = ——
GM
Giving a solution of the constant ¢
O =~ Med {4.6)

Gravitational Acceleration

Near the surface of the earth, the acceleration due to the force of gravity is
denoted by g which is a constant with the value

2 =9k1mis 4.7)

11:58



Pl PIC

MHBDGZ-04  McMahon  MHEDO6Z-McMahon-vd.cli

'y

66 Statics and Dynamics Demystified

in SI units, In U.S, units g = 32.2 fu's*. More generally, the acceleration due
to gravity is a vector which is dependent on the radius of the particle from the
center of the attracting mass M

i
GM, (4.8)

=

ri

The weight of a body is the mass m of the body times the acceleration due to
gravity, In magnitude

M
2

W=mg=0 4.9

In other words, weight is just the gravitational force that acts on the body.
Therefore itis a vector, but in most cases we can just worry about the magnitude
sinceitis purely radial. We can quickly derive (4.7) knowing the radius and mass
of the earth, The radius of the earth is r = 6.37 x 10° m and the mass of the
carthis M = 5.98 x 10* kg, and so

Iy 5 M
“J—_m) 5.98 % 107 kg - 0.8] ms

g= (ﬁ.ﬁﬁx w g
2 ) (6.37 % 100 my?

ke

EXAMPLE 4-2
What is the acceleration due to gravity on the moon? The mass of the moon is
M = 7.36 x 107 kg and the radius of the moon is r = 1.74 = 10" m,

SOLUTION 4-2
Following the example used to find the acceleration due to gravity near the
surface of the earth

o (6.658 x 10! L“) J0x107ke o e

kg™ /(1.74 % 10° m)*

EXAMPLE 4-3
A body weighs 170 1b on earth. What 1s the weight of the body on the moon?
Note that 1 b = 445N,

SOLUTION 4-3
Converting the weight of the body to Newtons

(170 Ib) (4.45 N/Ib) = 757 N

PRINTER: To Come  Oxtuber 20, 26
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The mass of the body is
¥ 7Tk
m=s —=—=
T T T om £
On the moon, this body weighs
Winson = MZaans = (77 kg (9.81 m/s”) = 125N

This is about 28 Ib, a level of weight loss Jenny Craig can only dream of.

EXAMPLE 4-4

What is the force of gravity between a rock weighing 20 kg and another rock
weighing 11 kg that are | m apan?

SOLUTION 4-4

The force of gravity is

7 Mm
=
_ (6:67 x 107" N-mkg’)
B (0 my
=147 % 10°%N

This is a very small force indeed.

The Law of Periods

The law of periods relates the peniod of an orbit to the height or radius of the
orbit
. 4Rt

= r_ur3 (4104

1f a satellite is orbiting earth at height & and we denote the radius of the earth
by R, then the law of periods 15

o dm? 3
I"=—I(R+h
(}M( +&)

where T is the period of the satellite’s orbit in seconds i FSI units are being used.

11:58
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EXAMPLE 4-5
A satellite takes 94 min 10 orbit the earth, What height is it above the earihs
surface?

SOLUTION 4-5
The peried of the orbit in seconds is

ol s
(94 min) (—’) = 56405
min
Rearranging the equation for the period. we have

GMm
b= -
(4,73 ! ) k

(mm x 1071 N-m?/kg”)(5.98 » 10™ kg)
- 4m?

13
(3640 s]:) —{6.37 x 10" m)

= 480 km

The Gravitational Potential

The acceleration due 1o gravity which is in general a vector

M
g=-U=f (4.11)
v
This vector is called the gravitational field vector. It can be written in
terms of the gradient of a scalar potential. We call this potential the gravi-
tational potential ¢, and the relationship b it and the acceleration due 10
eravity 1s

g=—Vop (4.12)

The gravitational ficld vector is entirely radial. Theretore the gradient given in
(4.12) must be entirely radial also. Since

de
= —F

4.13
ar ( )

Ve

11:58



Fl1= PIC
MHBD-04

MeMahon  MHEDO62-McMahon-vd.cli PRINTER: To Come Otuber 20, 206

CHAPTER 4 Gravity s T®

in this case, as a result of Newton's law of gravitation, we arrive at a simple
differential equation. This equation is

a M
@@ _ oM

= 4.14)
dr r? ;

We can solve this equation to obtain an explicit form for the potential of a
point mass. Cross multiplication gives

M
dp = G—dr
=

Integrating, we obtain the functional form of the potential which is

M

oilr)=— (4.15)
r
The di ions of the gravitational 1 are
force-length
[9] = €T
mass
I ST units, we have
N-m
[#] 'E'

The potential energy of a mass m in a gravitational ficld with potential ¢ is
Vo=mp (4.16)

EXAMPLE 4-6
Find the escape velocity at the surface of the earth,

SOLUTION 4-6
Letm be the mass of the particle. ITthe particle is moving at speed v, then the
kinetic energy which we denote as I is given by
o,
T= Em\'
The potential energy can be written using (4.13)

Mm
V=—G
"R

11:58
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where M is the mass of the earth and £ is the radius of the earth. Conservation
ol energy dictates that

T+¥V=0
Hence

I . GMm

ST =
2

Notice the mass of the particle cancels. The escape velocity is then found to be

26 [2(6.67 % 10-1)(5.98 % 103
v= — =
Vo or y 6.37 % 109

= [1.2 km/s

1f the mass density of a body is p then the gravitational potential is found by
adding up or integrating over the entire body. That is, it is given by the volume
integral

¢——fo:.w (417
.
J

Finally, Poisson’s equation is 2 difTerential equation that can be used w relate
the potential to the mass density at a point,

Vi =dxGp (4.18)

EXAMPLE 4-7

Suppose a mass m is located on axis a height z above a thin disk with radius .
A total mass M is contained on the disk and is disinbuted uniformly. Find the
gravitational potential a1 the height 2.

SOLUTION 4-7
In differential form, (4.17) can be written as

Lem

dgp = G —
"

In this case, we don’t need to do a volume integral, because we will just be
integrating over the surface. Since it's a disk, we take a basic prece of area to be
small ring of width o, The area of the ring is

2rxdy

PRINTER: To Come  Oxtuber 20, 26
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We can use this to obtain the differential element of mass. Let the surface
density of mass be 7. Since we are told the mass 15 distributed uniformly. this is
a constant. Then we have dm = 2xoxdy. Now the distance from an arbitrary
point on the disk to a point = on the central axis is

1o
R

We ger the answer by adding up all of the lintle disks, that is, by integrating
over the entire radius 0 = x =< K. We have

" ‘,f' Inox
= —(
0

¢ = =2xa(iyxl4z

EXAMPLE 4-8
Find the force on the particle deseribed in Example 4-7.

SOLUTION 4-8
The force is related to potental energy via

F=-NVV
In the case of gravity we saw earlier (4.16) that
Vo= mé

And so
F=—-mVy

Faor the present example, the gradient is only along the = direction. Some
tedious calculation shows that

d z
F= —md—f =2zma(i [— - !]

11:58
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Quiz

b2

L

.

. What is the acccleration duc to gravity ncar the surface of the sun?
. A fashion model weighs 120 1b in New York City, How much would she

weigh near the surface of the sun?

. What 15 the gravitational force between two rocks each weighing 8.5 ke

and 0.5 m apart?

. What s the escape velocity at the surface of the sun?

11:58
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CHAPTER 5

Moments of Inerti

Moment

Consider a mass m placed on a beam supported by some type of balance that is
free to rotate, as shown in Fig, 5-1. The mass 15 being acted on by the force of
gravity which will tend to cause the beam to rotate toward the ground. We place
the filerum, or the point about which the beam will rotate, at the origin, Then
we define the moment M as the value of the mass multiplied by the distance of
the mass from the fulcrum

M = mx (5.1}
As the system is currently defined. 1f a mass is placed to the left of the fulerum,
then its moment is negative since m = 0 and v < (. Therefore

moment left of origin = —mx

Now consider placing two masses m, and #1; on a beam, as shown in Fig. 5-2,
Notice that mass m,. which s situated to the left of the fulerum, will cause the
beam to rotate in the connter-clockwise direction. Meanwhile, mass mz, which

1
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g

Fig. 5-1 A body placed en a lever arm, The moment is the distance of the body from
the origin multiplied by its mass,

is placed to the ight of the origin, will causc the beam to rotate in the clockwise
direction.

Given that the two masses are tending to rotate the beam in different direc-
tions, under what conditions will the beam not rolate? We call this condition
balance. For two masses on a balance beam, the condition for balance is

mxy + maxy =0 {5.2)
When there are several masses in the system, we can calculate the total
moment of the system by summing up cach of the individual moments

"

Mrow = mx; (5.3)

i=1

Henee, if we place n masses on the beam, the condition for balance is

z mx; =0 (5.4
i=1

In summary, when the total moment of a system is zero, the masses balance
and the beam will not rotate.

EXAMPLE 5-1

Two masses my = 30 kg and mz = 50 kg are placed on a balance beam as shown
in Fig. 5-2. The mass #1; is 2 m to the nght of the fulerum. Where should we
place mass my so that the system is balanced?

Fig, -2 Two masses placed on a balance,

1
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SOLUTION 5-1
For the system to be balanced, (5.2) must be satisfied. We have

mxy A mex: =10

Therefore. mass my should be placed at

2 30 2) 131
x|_——.\~——ﬁl.. =-333m

Arbitrary Fulcrum and Center of Mass

[fthe fulcrum is not located at the origin butis instead at some arbitrary position
x =X, then the condition for balance is

Zm, (x, - X)=0 {5.5)
=r}

EXAMPLE 5-2

Three masses, my = 10 kg, m: = Tke, and py = 19 kg, are placed on a balance
beam as shown in Fig. 5-3. The positions of the masses are x; =0, x; =2, and
x3 = Il respectively, where distances are measured in meters. Where should the
fulcrum be placed so that the system is balanced?

SOLUTION 5-2
From (5.5} we have

ey — Xyl — Xh+mlxy — X1 =0

With oy = 10kg, m =Tkg, and oz =19 kg and vy =0, x; =2, and x3 =1
this becomes

0=1000-X)+T2-X)+ 19011 - X)
=—10X + 14— TX +209— 19X
=223 - 36X

Fig. 5-3  The system described in Example 5-2,

1
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Therefore the fulerum should be placed at

223
=62m
=36

In Example 5-3, we were really solving for a quantity called the center af
mass. Let’s formalize the definition. Rewniting (5.5), we can isolate the total
mass m in the system

Zm. (x, - X)1= Zm,.\', —mX = Z X — Z m X
=1 =1 i=1 i=1
We are free to pull the constant value .Y outside of the summation to give
Z mx; = Zm, X= E iy, — X Zm.
=1 =1 = =

"
The sum 3w is the total mass of the system. Looking back at (5.5) we recall

iml
that when the system is in balance, the moment will vanish, Therefore we can
write this as

im,m - X im, =0,=
fml iml
u “
Z miv; =X Z "y
i=1 i=1

Solving for X, which is the center of mass, we find

3o
i=l

XY= (5.6)
om
i=1
Therefore to calculate the center of mass for a system consisting of a set of paint
IMASSEs

+ Caleulate the moment about x = 0
+ Divide by the total mass in the system.

1
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EXAMPLE 5-3

Four masses nny = 3 kg, mz = Skg. my = Tkg, and my = 5kg are located at
the positions x; = lm.x: = 3Im.x; = 3m,andxy = 10m respectively.
Where is the center of mass located for this system?

SOLUTION 5-3
The moment about the origin is given by

"

M= z X,

i=t
For the data given in this problem, the moment is
M= (3 (1) + (B)(3) 4+ (1)(4) + (53(10)
=34+244+44350
= £l
Notice that the units of M are kg-m. The total mass of the system is

s
m=3 m=3+8+1+5=1Tkg

i=1
Therefore the center of mass is located at

M Bl kg-m

4.8
mr 17m ™

Next, we consider the center of mass for a system of point masses in three
dimensions.
The center of mass or eentroid in three dimensions has coordinates ¥, v, and

“ " »v
3 Yoy 3oz
- il L iml - iml
== y F= + = (3.7}
S Yo Som
i= = i=1

EXAMPLE 5-4

Three masses, my = 2, my = 4, and my = 6 where masses are given in kg are
located at points (x,v.2) = (1, 1,2}, (1,0.0), and {0,2,0) respectively, where
position is measured in meters. What are the coordinates of the center of mass?

1
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SOLUTION 5-4
First we calculate the total mass of the system. We abtain
Domp=244+6=12ke
i=l
Now
1
3" mixs = 1)+ 1)+ (6)(0) = 6
iml

3
3y = 21—+ (@) (0) + (6)(2) = 10

i=1

3
3wz =(2)(2) H A0+ (6)(0) = 4
qml

Therefore. the center of mass coordinates are

. 0 |
F=—==
12 2
5
fom o=
12 6
L4 1
T3

Continuous Systems

The formulas we have looked at so far are readily gencralized to continuous
systems. We simply replace the summations by integrals, and so the coordinates
of the center of mass become

Sxdm  _ fvdm  _  [zdm
- » =, I==
Jdm : fdm Jdm

(3.8)

From the center of mass coordinates, we can define the first moments with
respect to the vy vz, and az planes, These are

O =mi, Qu=uf, O, =mF (5.9)

PRINTER: To Come  Nowember |, 2006
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Foraregion & in the x-y plane, wherea < x = band ¢ = vy =  we can define
the centrond (¥, 7) as
j::’ xdd fl"' vid

fi=—"——0 Jj= (5.100
A A

where 4 is the area of the region . The moment of & about the y axis is given
by

1)
0, :f xdA (510

while the moment of R about the v axis is given by

of
0, =f ydd (5.12

EXAMPLE 5-5
Find the first moments for the area of the x-» plane bounded by v = ax? v = 0,
andx = .

SOLUTION 5-5

The area in question is illustrated in Fig. 5-4,
The first that we will calculate for this problem are

g, = ]_1' dd
0, = j.c dA

In the first case, the area 1s calculated from a small herizental strip with a
height given by di. The area of the strip is then dd = (b — x)dy. as illustrated in
Fig. 5-5.

\\ -

Fig. 54 Inarea used in Example 5-5,

1
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At iy
Fig. 5-5 A horizontal stmp of differential area.

With y = ax?, at x = 0 we have v = 0, while at x = b we have y = ab’,
Therefore the first moment is

ab? et I
o, = f_h-‘u‘/]‘ = f (h = x)pdy = f (h = '—)_r dy
i " Y Va
e o g
= jr; by dy — —-= [ Wy =5

o

allk’  2a%t ot
2 ERT]

To calculate the other moment, we consider a vertical strip of width ox, This is
illustrated in Fig. 3-6.

T

Fig. 56 Differential strip of widih dy used to calculate 0, = f v ald.

1
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(0,00

120}

Fig.5-7 A region & defined by a triangle.

In this case, the differential area is justdd = vidx = axdx, with) = x < b,

Therefore
[ A
Q, = f.\' dA =f ax’dy =a—| =
1] 4 1] 4

ab?

EXAMPLE 5-6

Consider the region & defined by a triangle in the x-y plane with vertices at
(0,00, {12,0), and (12.4), as shown in Fig. 5-7. Calculate the centroid of this
region.

SOLUTION 5-6

The first step is 1o find a relationship between x and y. This can be done by
considering the line that passes through the points (0.0) and (12.4). Since this
is just a straight line we find that

X
y==
. 3

The area of R is the area of the riangle 254, which in this case is

1
A= S22 =24

The moment about the » axis is

(E R L o2
o, —L X(E)‘“_ ;L xodx = ?‘n =192

The x coordinate of the centroid is found by dividing the moment by the area

o m
== = _..s
SRR ¥

1
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Now inverting the relationship on the line that passes through the points {(0,0)
and (12,4) we have
r =13y
And
dA = (12 = x)dy = (12 = 3v)dy

Therefore the moment about the x axis is

4 4 4
0, = f w12 =3p)dy = f 12y —3dy =6’ — ' =96 —64 =16
i 0 0
Hence the y coordinate of the centroid is
Oy 162
R TR

Second Moments, Moment of Inertia
of an Area

The second moment or the axial monent of inertiv 1 of an element of arca o4
about an axisin the plane is the product of the area and the square of the distance
from the given axis. In the xy plane
di, = ydA
(5.13}
dl, = x*dA4

And so the axial moment of inertia, which is caleulated by integrating

(5.13) is
L= f VA

i= fﬁm (5.14)

EXAMPLE 5-7
Determine the axial moment of inertia of a rectangle with base & and height #
about the x axis. The rectangle is placed as shown in Fig. 5-8.

SOLUTION 5-7
To determine the differential area, we take a small stip running parallel to the
x axis. This is shown in Fig. 59,

1
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I
>
-~ *

Fig. 3-8 The rectangular region used in Example 5-7.

The area of a linle sinp paralle] to the x axis is
dAd = bdy

We can find the axial moment of inertia by adding up all the little strips from
v =0to v =k Therefore we find

= f yhdd
it
:f v ibdy)
i

-~ x

Fig. 5-9 Take a swrip of diferential area. This is a linle rectangle {the size is
exaggerated) with area equal 10 118 base times its height, which is by,
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Moment of Inertia for Mass

The moment of incrtia for an clement of mass about an axis is the product of
the mass element i and the square of the distance of that mass element from
the given axis. In general, if that distance is » then

I= fr’arm (5.15)

In three dimensions, if we use Cartesian coordinates then the moments of
inertia about the three axes are

1, =f[_‘-‘—:*mm (5.16)
I = [1_\-1 21y dm (5.17)

(5.18)

,
1]
—
=
+
By

To consider calculation of moments of inertia in multiple dimensions, we
start with a simpler case. Imagine a distribution of mass over some surface S.
Let the mass density be o where

total mass m
o= = (5.19)
surface areca A

The moment of inertia about the 7 axis is

+yads (5.20)

We make this notion more concrete with an example,

EXAMPLE 5-8§
Find the moment ofinertia about the z axis for a spherical shell of radius @ and
total mass m.
SOLUTION 5-8
The surface area of a sphere of radius @ is 47a®. Therefore, the mass density in
this case is

m

BNTTE
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To do the integral, we will need to use spherical polar coerdinates. To integrate
over the surface of a sphere, the differential element of surface area is

d8 = o® sinOdidg
The coordinates x and v are given by

x =asinfcosg, v =asimnfsind

Therefore we have

27437 = a’sin® B eosT ¢ + a'sin? Bsin’ ¢ = a’sin® @

Hence, in this case (5.20) becomes

T plrpx
ma’ .

I. = ;f [ sin'é do i
R TN

a’ T
—— 2=} [ sin” Ol
4x i

2 ox
s N
= f smﬂil—cus}HJd’H
2y
2 x 2 £
= g] sind di — "%f sin o (cos” @) 6
- (i} o

s ma® 2mat

EXAMPLE 5-9
Find the moment of inertia about the v axis for a bar of length { and mass m
laid along the x axis.

SOLUTION 5-9

Since the bar is laid along the x axis, the distance » of a mass element from the
axis is x. Hence we can write {5.15) as

I = f Edm

1
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Now amass element g is the mass per unit length times an infinitesimal amaount
ol distance which in this case is dx. So

dm = ?d’.\'

Therefore the moment of inertia is

2 m
F=j:m.\'“(j—)d.r

" 2
= = dx
P a2
ir2
n
==x!
) 142

EXAMPLE 5-10
Find the moment of inertia about the x axis for a right circular cylinder of height
i and radivs a.

SOLUTION 5-10
This time we use the volume density o caleulate dm. The volume of a right
circular cylinder of radius a and height & is
v =math
In spherical coordinates, the differential element of volume is

dV =rdrdod:z

Therefore the differential element of mass is

n

dm = ,;dl’ =

= rdrdidz

The cylinder is shown in Fig. 3-10. The moment of inertia can be calculated

using
= f[_\'l —-z’jdm

1
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Fig. 510 In Example 5-10, we find the moment of inertia of a nght circular eylinder.

wherex = rcosé, ¥ = rsin#, and = = = are the relationships between Carte-
sian and cylindrical coordinates. With lh:at transformations in mind. the mo-
ment of ingrtia is

n 3
I, = — (r? sin® @ 4 2y rdr did:z
Tath J_yn
2
= { 'z of ez
Tnz.fr w[ f Ysin? 0 dr db dz g . 1]; f rdrdidz

hf2

= "'“'f j sin’ 0 dodz + —— j 2dod:
dab Sz to 2k Jonpa o

ma® L
= sin® 6 do it
4 fy M Jy

ma®  mht om
= —t — = —(3a
T ( a’ + ity

EXAMPLE 5-11
Find the moment of inertia {, for a sphere with total mass s and radius a.

SOLUTION 5-11
The volume of a sphere of radius a is

V= -nd’
3

The differential element of volume 1s

dV = r*sinfidr d6 d
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Therefore the differential element of mass is

3
dm =l = 2 2 sindr d0 dg
¥ Ara?

Cartesian coordinates are related to sphenical polar coordinates via

x =rsindcosd

P =rsin#sing

I =reosé

The integral we need to calculate is
Iy = f{.\'! + 2%y dm

2t 4 2t = #lsin? Occs:q‘b +r¥cast o

Now

Theretore the moment of inertia is given by

3 mprpa 2 CUUNE PR
I, = i fff (7 8in™ 6 cos™ ¢ + r”cos” Hrsinfdr db dig
[ o Jo

" dma’

Let’s do each piece separately, The lefi piece is

I TR .
< f (r? sin® @ cos® &’ sin fhdr divd
dmat Jy Jo So

1 It pr ope .
—— f ] f [r-"sin"ﬂcos'tp}da'dﬁdl‘p
dra* fy Jo Ju

Integrating over the radial coordinate, this becomes

3 2 n x "
e f f sin’ @ cos? ¢ a8 dip
0 i}

20

Recalling the trig identity
| + cosle

cos = ,‘

1
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The integral over the ¢ coordinate gives

f:!n ('I +cus'.2¢) A = 2 + sind.'r‘.q.'!
0

b 4

m

2 2
- - 0

So, for the left piece we are left with

Ima® 7, 3Ima’ (7 2
sin” B = sinf 1 — cos”d) df
0 j; 20 L )

Now

, x ¥
f siné(l — cos” @) dé = [ siné d@ _f sint cos® 6 dé
(1] o 0

P

+

] =

b

4

14 5
ﬂ =2——=_
3 3 3

= —cosf

1}

Putting everything together, the left piece becomes

3ma® T Ima® £ 4 i
gl = -] =—
20 ]; s 20 (3) 5

To get the moment of inertia, we need to add the nght side of the integral which
was

I oprpa

3m o 2 3 .
— (rcos” d)r-sinddrdide
dmat Jo fodo

An exercise in tedious caleulation shows this also comes out to

3 Topwpa s
- f f f (r=cos® @) r= sinfidr dif dep = e
dra Sy Jo s 3

Adding the two pieces gives the moment of inertia for the sphere (see Fig. 5-11)

2, 3
5= 2ina
5

1
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Fig. 5-11 In Example 5-11. we calculate the moment of incrtia for a sphere of mass m
and radius a.

Radius of Gyration

Asifthe calculation of moment ofinertia was not enough torture, we forge ahead.
Now we turn to a subject dear to the heart of Elvis, the radius of gyraiion. This
quantity is simply calculated by taking the square root of the moment of inertia
divided by the mass. Denoted by the letter &, the radius of gyration is

(5.21)

More specifically,
i
k=

Vo
gives the distance &, of the radius of gyration from the x axis, and similarly for
4, and /.. Atthe distance given by k, we can view the equivalent mass as a point
mass that has an equivalent moment of inertia.
EXAMPLE 5-12
Find the radius of gyration for [, as calculated for a sphere of mass m and
radius a.
SOLUTION 5-12
In Example 5-11, we found that
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2a°

Parallel Axis Theorem

Let fop be the moment of inertia about an axis that passes through the center
of mass of a body. Then the moment of inertia about a parallel axis that is a
distance » from the axis passing through the center of mass is

T
=
[

by =l + mr?

Quiz

. Two masses my — 75 kg and my — 15 kg are placed on a balance beam
with the fulerum located at the origin. IF the first mass is located at

x = =T m, where should the second mass be placed so that the beam is
balanced?

2. Ifmasses iy = 7 kg.ma = 4 kgoand my = 8 kg are located st xy =
2m,x: = —2m,and x3 = 5 m, find the center of mass of the
system.

3. Two masses sy = 10 kg and my = 3 kg are located at (x, y. z) =

(1,0, Iyand (1,2, 3) respectively. Where is the center of mass?

Find (2, and @, for the region bounded by y* = ax,y = 0, andx = b.
Find the centroid of a triangle defined by the vertices (0.0), (5.0). and
(5,0

. Find the moment of inertia [, for a right circular cylinder of mass mr,
height fi. and radius R.

>

y-

-3

1
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7. Find the meoment of inertia /. for a sphere of mass m and radivs £,

o

. Find the moment of inertia [, for a right circular cone of height & and
base of radius & where the axis of the cone is placed along the x axis,
and the tip of the cone is at the orgin,

o

. For the cylinder in problem 6, find the radius of gymtion.
. For the cone in problem 8, find the radius of gyration.

=

1
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CHAPTER 6

[n this chapter we extend the look we took at staties and equilibrium in Cha-
pter 3 by considering a special case. a brief study of cables.

Cables

Consider a loaded cable. That is, a cable suspended at both ends that supports
some weight such as a bridge. The cable carries a load of f given in N/m or [b/ft
and it sags a distance & below the horizontal drawn between the two supports,
as shown in Fig, 6-1. The distance covered by the bridge below is called the
span, which we denote by 5.

The tension at the midpoint of the cable can be found from the load, the sag,
and the span of the bridge as follows

Ty="— 6.1
M o (6.1
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Fig, 6-1 Basic layout of a hanging cable,

EXAMPLE 6-1

A suspension bridge with a span of 140 m is supported by two cables, cach of
which carnies a load of 10220 N/m. Ifthe sag of cach cable is 10 m, what is the
tension at the madpoimt of the cable?

SOLUTION 6-1
The tension at the midpoint can be found from a steaightforward application
of (6.1}

_ st (10220 N/m) (140 m)*

,
MT d 8(10m)

=25MN

Endpoint Tension in Cables

The tension [} in the supports of the cable can be found from the same param-
eters, In this case

I f 52
1 s "
T. 2..’-“'1' 1+ T6d® (6.2)

EXAMPLE 6-2

Each cable in a suspension bridge with a 700-1i span and a 47-f1 sag carries a
load of 920 Ib/fL. What is the tension at the midpoint of the cable and what is
the tension at the supports found on each end?

SOLUTION 6-2
The tension at the midpoint, using (6.1} 1

_ (9201 (700 iy

- = 1,198,936 1b
“ [YERE

BT
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The tension at the supports can be found using {6.2) which gives

1 2 920)(700) | 700)°
Tomspsfte = = D200 Gy U9 a3
27N 1647 2y T led7p

Length of a Suspension Cable
The actual linear length of a suspension cable can be accurately estimated

knowing only the span s of the cable and the sag &. This is done with a series
expansion. If we denote the length of the cable by / then

2 4 i
;z,[.+§(£) SR +} ©3)
3 5 ] 5 ‘.l' 5

Given that the sag is usually much less than the span of the cable, the ratio £
quickly goes 1o zero. In most cases

EXAMPLE 6-3
How long is the cable used in Example 6-27

SOLUTION 6-3
The ratio of the sag to the span is

The square of this term is a measly 0.0045, so terms in the series expansion of
{ rapidly go to zero with increasing power. Therefore we take

=[]

And find that £ is about 831 1t long,

BT
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Catenary Cables

A catenaryis a cable that carries the load along the cable instead of horizontally.
The curve is described by hyperbolic functions. See your favorite caleulus book
if you're interested. we're just going to wrte them down. The basic dea is
that they give a parabolic shape like a hanging cable. An example is shown in
Fig. 6-2, which is just a plot of the hyperbolic cosine funetion,

Once again, we assume that the cable is hanging over a span s and that it
sags a distance «. The 1o1al length of the cable is surprisingly denoted by [,
and we continue to denote the load carried by the cable by /. Things are more
complicated this tme around, S0 we start with some preliminaries. 1 the cable
carries a lead / and the tension at the midpoint of the cable is /f, then

i
= —

!

With this parameter ¢ in hand, we can relate the x coordinate of a point on
the cable, which denotes its position along the span using the usual Cartesian
coordinates to the height v of the point using

(0.4

v =eccoshix/c) {6.5)
The sag and span satisfy
o4 df = ceoshi(s/2e) {6.6)
The tension in the cable at any point v is
T=fy (6.7)
The total length of the cable is
§ = 2esinh(s/2c) (6.8)

Fig. -1 A catenary.
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Another relation for the length is

j_
c+dP =ct4+= {6.9)
4
The maximum ension in the cable is

Tuax = fle +d} (6.10)

EXAMPLE 6-4

A cable carrving a load of 2 1b/fl is suspended between two posts that are 320 it
apart. The sag on the cable is 45 t. What is the maximum tension in the cable?
What is the tension at the midpoint of the cable?

SOLUTION 6-4
To find the maximum tension, we must determine ¢. This can be done using
(6.9)

e+ =4 Poe I (3207

r il =i 1 =7 3

(c+dy =c*+ 2ed + d*

Equating both sides

= 25,600t =

2ed + d* = M
1

=2551

(25,6007 — %) (25,600 — (45 1))
= =
24 2(45 1)

Then
Tuax = fie +d) = 2125511 + 40 it} = 600 1b
To find the tension at the midpoint, we apply (6.4)
o= fe= (21255 ) = 5101b

Quiz
1. A suspension bridge is held up by two cables. The span of the bridge is

8010 ft and each cable, which sags by 70 fi, carnies a honizontal load of
850 Ih/ft. What is the tension in the midpoint of the cable?

BT



Fl1= PIC
MHBD2-06

MeMahon  MHEDO62-McMahon-vd.cli

'y

98

™

.

PRINTER: To Come  Oxtuber 20, 26

Statics and Dynamics Demystified

The tension at the endpoint of a suspension bridge with a span of 300 fi
i5 950,000 Ib. If the load carried by each cable is 820 Ib/fit, how far down
does the center of the support cable sag?

. A cable sags a distance of 2 ft. The span of the cable is 10 i, If the cable

were taken down and streiched straight out on the ground, how long
would it be?

. A cable carrying a load of 92 N/m is suspended berween two towers that

are 36 m apart. The sag on the cable is 5 m. What is the maximum
tension in the cable? What is the tension at the midpoint of the cable?

BT
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Friction

The force of friction is one of the most familiar forces in daily lite. Friction is
responsible for some of the resistance you feel when trying to start an object
moving. For example, consider sliding a book across a wooden able. To start
the book shding, you have to apply some force to get it going. You can sense
that something is there resisting your attempt o initiale motion, it might be
colloquially deseribed as the roughness of the table surface. Formally, we say
that static fifetion between the book and the table is comributing 1o the resistance
of the book when we try to initiate motion.

Once the book starts moving, after a time 1t begins to slow down and comes
ta a stop. This behavior is also due to friction, but when a body is in motion we
say that there is a foree of kinetic fiiction bevween the body and the surface itis
in comtact with,

The fact that friction opposes motion tells us something about hew we can
ch rize it h ically. Since it resists motion, a frictional force will
point in the opposite direction to that of an applied force, as shown in Fig. 7-1,

As can be scen in the figure, the fiictional force acts tangentially. Let’s char-
acterize the two types of frictional forces formally. These are

99

Re32
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Direction of motion

‘-

Foroe due 1o frocton

Fig. 7-1 The force due to rction paims in the opposite direction of the motion of a
body.

+ Static [riction: This type of friction resists the initiation of movement.
That is why you feel some resistance when trying to get a book or other
abject to slide across a table.

+ Kinetic friction: This type of friction is the force that opposes the
direction of moton and tends o slow down and stop a moving body.

The frce due 1o friction is related 1o the wormal force on a body, As its name
implies, this force is mormal or perpendicular to the surface that the body 15 1n
contact with. Furthermaore, It is proportional to the body’s weight, which is just
the mass of the body times the acceleration due to gravity. If the body is on a
flat surface the constant of proportionality is one and the normal force is

N =mg {7.1)

This is shown in Fig. 7-2.

The weight of a body always points down toward the center of the earth. but
the normal force always paints in a direction that is normal 10 the surface the
body is in contact with. Therefore if the body is on a surface which is at an
angle with respect to the horizontal, we must reselve the body’s weight into
components that are normal and tangential to the surface. This can be done
using simple trigonometry. As shown in Fig. 7-3, the weight can be resolved
into a component that is perpendicular 1o the surface given by mgcosd and a

Fig. 7-2  The normal foree on a body,
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g s tF

g sin @

Fig. 7-3 For a body on an inclined surface, we resolve the weight into components that
are perpendicular and tangential 10 the surface. The normal Torce is equal 1o the
perpendicular component of the weight,

component that is tangential to the surface given by mgsin 8. The normal force
equal to the perpendicular component. that is

N =mgcost (7.2}

Frictional forces are proportional to the normal force, and we call the constam

of proportionality the coefficient of friction. This coefficient is denoted by the

Cireek lewer je which is the ratio between the force due o fiction and the normal
lvad on the body

(7.3)

Since it is the ratio of two forces, the coefficient of friction is dimensionless,

There will be a different coefficient of friction for each pair of materials.
For example, the friction an your average highway is pretty substantial, i.c., the
surface is rough. There will be a different coefficient of friction between your
favorite pair of tennis shoes and the surface of the road and the tires of your car
and the surface of the road. Now if you visit your nearby ice skating rink, there
will be vet again another cocfficient of friction between your tenmis shoes and
the surface of the ice. As you might guess, since the surface of the ice is smooth
and slippery. the cocflicient of friction between your shoes and the ice 1s going
1o be quite a bit smaller than the coeficient of friction between vour shoes and
the road, This reflects the fact that the frictional forces on the ice which resist
metion are quite a bit smaller than those on the road.

A further distinetion can be made. Aswe alluded to earlier, there are two types
of friction, static and kinetic. Therefore, we must alse specify a cogjficient of
static friction and a cogfficient of kinetic friction between each pair of materials,
Often these are given in a statement of a problem or we can deduce their values
by a study of the forces that act on the body,

PRINTER: To Come  Nowember |, 2006
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EXAMPLE 7-1

The coefficiem of friction between a lat road and the tires on Bob's sports car
is g = 0,62, 1f Bob is traveling at 60 miles per hour and hits the brakes, what is
his stopping distance in feet? The acceleration due to gravity is g = 32.2 fu's®,
Assume that the deceleration of the car is constant,

SOLUTION 7-1

We can solve this type of problem using the basic equations of kinematics that
you should be familiar with from freshman physics. We will cover these in detail
in the next chapter, where we will find that velocity, distance, and acceleration,
when the acceleration of the body 15 constant, are related by (sce equation 8.9)

vi= vl 4 2a(x = x) {74)

Here v 15 the final velocity of the body, vq is the initial velocity of the body, a is
its acceleration, and x — xy is the distance traveled. The initial velocity is given
in the problem statement, the fiest step is 10 convert it into feet per second

(60 mih) (1 h/36005) (5280 ft/mi) = 88 fis

The car comes to a complete stop, so we take the final velocity v = 0. Using
(7.4) we find the stopping distance is

v
X=Xy 7 (1.5)
The road that Bob is driving on is flar, therefore the normal force on Beb’s car
is just equal to the weight of the car

N =mg
The force due 1w friction is proportional to the normal force
S =nN=pmg

This is the only force acting on the car. Recalling Newton's second law this is
just F = ma. Since the frictional force points in the opposite direction to the car’s
maotion, it will be negative. Therefore using /7 = ma with F = — [ = —jung
we have

—pmg = Mg, = a = —pg
Now we use (7.5) to find the stopping distance

vi_ovio_ o @BRsF e

r=Xp=—-—"= = — =
20 2pg 2(0.62)(32.214tsh)
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Steel plate

R Wood block

\

Y Copper plate

Fig. T4 The sctup of Example 7-2.

EXAMPLE 7-2

A board 15 fastencd in between two metal plates with a clamp. The top plate
is steel, and the coefficient of friction between steel and the board is 0.3, The
bottom plate is made of copper, and the coefficient of friction between the copper
and the board is 0.27. M the normal foree exerted by the clamp is 250 N and a
force & is applied to pull the board out of the assembly, what is the value of £
just before motion impends?

SOLUTION 7-2

The assembly is shown in Fig. 7-4. Since the board is sandwiched in between
two metal plates, we must add up the frictional forces due to each plate when
summing up the forces in the problem. The frictional force is proportional to
the normal force as

Futewt = procal N
Seapper = feuppes N
Just before motion impends, the system is in equilibium and we have the sum
of the forces equal to zero 3" F = 0. That is

F = fua — fampr = F — tasa N = paogpaa¥ = 0

We use negative signs for the frictional forces between the block and cach
plate because the frictional force points in an opposite direction to that of the
applied force used to try and pull the block out of the clamp assembly. Solving
for I we find that just before motion impends

F={0.3)250 +(0.27)250 = 143N
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Fig. 7-5 A free body dingram for the ladder in Example 7-3,

EXAMPLE 7-3

A ladder that weighs 27 Ik is resting against a wall such that the angle between
the ladder and the floor is # = 537 What is the coefficient of friction if the
ladder is 8 ft long?

SOLUTION 7-3
Since the ladder is atrest, it is in equilibrium. First we draw a free body diagram
for the ladder. This is shown in Fig, 7-5.

As shown in the figure, there are normal and frictional forces acting on the
ladder at the points of contact with the wall and with the Hoor. We denote
the normal and frictional forces acting at the point of contact with the wall
by Ny and fiw and the normal and frictional forces acting at the point of
contact with the floor by Neand f;. Remember, normal forces act in a direction
that is perpendicular 1o the surface the body 15 in contact with, and frictional
forces act in a direetion that is tangential to the surface the body is in contact
with,

Since the body is in equilibrium, this tells us that the sum of the forces
and moments in each direction will vanish, We use the usual x-y Cartesian
coordinate system. Loaking at Fig. 7-5, the sum of the forces in the x dircction
are given hy

DoF = Nu— fi= 0, N = fy (7.6)

Now we sum the moments about the point of contact with the wall. Again, since
the ladder is in equilibrium, the sum must vanish. We denote the length of the
ladder by !

wi
2 Mw = === c0s6 + Nyl cos — uNel siné = 0 (1.7

PRINTER: To Come  Nowember |, 2006
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CHAPTER 7  Friction 105 %

Finally, the sum of the forces in the v direction also vanish since the system is
in equilibrium

S E = New N - W =0 (1.8)
Substitution of Ny = {7 into (7.8) allows us to write
W= Ne+ pNw = N+ jufe

Recalling that a frictenal foree is proportional 1o the normal force according
to [ = @ this becomes

W

5

W = N+ p?Nr,= Np= ——
1+ p-

Now we substitute for Ny in the equation for the moments {7.7). This gives

wi )
Z My =0= —costi+ Nelcos® — uNilsing

Rearranging terms we have

2 1+ p?

Wicosd ~ Wicost — e Wising

Cross multiplying by W1 cos# — @ Wi sin@ and doing some algebra we obtain
an equation for the coefficient of friction

4 2ptand — 1 =10

WNaotice that the length of the ladder has canceled. We can solve this by using the
quadratic formula

—bt b —dac  ~2und £ VaanTo + 4
2a - 2

Zand =2@an 53 =27
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N
[y

!
=
Waind
— 1
Wiops i

]

Fig. 7-6  Forces on the brick in Example 7-4.

So we find that
-27+34
="

We discard the root with the minus sign because coefficiems of friction are
positive. Therefore we find that g = 0.35.
EXAMPLE 7-4
A brick is resting on a plastic surface. The cocfficient of static friction between
the brick and the surface is y¢ — .35, [f the surface is tilted, at what angle @
will the brick begin to slide down the surface?
SOLUTION 7-4
The forces involved in this problem are shown in Fig. 7-6. The forces acting on
the brick are the normal force, the weight of the brick, and the frictional force.

Summing the forces in cach dircction, which will vanish in equilibrium, the
normal foree is

N = Wcost = mgcost
Along the angential direction, the forces are
F=Wsin# =0, = /= Wsin# = mgsind

Using the fact that the frictional force is proportional to the normal force via
f= N, we arrive at the following equation

mgsinf = jung cosf

Rearranging terms we find
jto=ané

Given that i = (.33, the brick will begin to slide when the surface is at an angle
& with respect to the horizontal which is

#=tan"'p =1an"' 035 =197

PRINTER: To Come  Nowember |, 2006
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EXAMPLE 7-5

A block is sliding down an incling plane, The acceleration of the block is
a = 5.41 m/'s” and the plane is atan angle = 51° with respect to the horizontal.
What is the coefficient of kinetic friction?

SOLUTION 7-5
The forces an the block are the same as those shown in Fig. 7-6. Therefore once
again the normal force is
N = Wcos# = mgceosd
The frictional force is given in terms of the normal force as
J =N = pympcosé

Since the block is in motion, the sum of the forces on the block will be equal
to mass imes acceleration according to Newton's second law

Z F=ma

Besides friction, the only other force acting on the block is the component of
the weight along the direction of the motion, This foree points in a downward
dircction, in the same direction as the motion of the block. Therefore we take
this as the positive direction, The frictional force points in the opposite way to
the dircction of motion, so we take it to be negative. Putting cverything together
3 F = ma gives us

mgsing — jy mg cost = ma

where mgsiné is the component of the block's weight alang its direction of
motion. Dividing through by the mass and rearranging terms we find that the
coefficient of kinetic friction is

_gsinf—a  (9.81m/s7)sin 51 — S.AIms® 036
gcos (9.81 mis®)eos 51° -

Belt Friction

You have probably spent a great deal of time solving problems involving a rope,
cord, or belt looped around a pulley. In such cases it might be desirable to find
the tensions in each end of the rope, say.

We now consider a belt looped over a pulley, but this time we consider the
case where the pulley and belt are rough so that there is a coefficient of friction
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N
N

Feasam T= 30N

Fig. 7-7 Dingram representing a belt wrapped around a pulley as described in
Example 7-6.

between them. A question of interest is what are the tenstons in both ends of
the belt when slippage is about to oceur. The tensiens on each side of the pulley
are related by a nice little formula

Ty = Tyt (7.9
where Ty = 7> and @ is the angle of wrap of the belt around the pulley in radians.
This formula enly helds when a slip is about to occur.

EXAMPLE 7-6
A beltis wrapped around a pulley as shown in Fig. 7-7. On the slack side, the
tension is 190 N while the tension in the tight side is 300 N, Find the coeficient
of friction between the belt and the pulley.
SOLUTION 7-6
The situation 15 shown in Fig. 7-7. Looking at (7.9), we have
Ty =300N,Ty = 190N
Loaoking at the figure, we see that the belt is wrapped around the diameter of
the pulley, in other words
o = 180° = ~radians

Let’s rewnite (7.9) so that we can solve the coefficient of friction. Rearranging
terms we have

n

A

— gt

Solving for the coeflicient of foction we obtain

El Ty
l“_ﬂ‘“(]rz
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Putting in the numbers given in the problem, we find that

1 300)
=L (22 S oas
t=z "(190

Rolling Resistance

Atone time or another, you might have gotten the wheels of your car stuck ina
depression in a dirt road, To get out, you had to apply just the right amount of
gas so that the wheels of the car didn’t slip but instead just managed to climb
oul of the depression, This situation is a case of relling resistance, For a wheel
with radius r we illustrate the situation in Fig. 7-8,

When maotion is about to occur and the wheel will get out of the depression,
we call the distance a indicated in Fig. 7-8 the rolling resisrance. 1t 1s related to
the load B on the wheel. the radius » of the wheel, and the applied force F in
the following way

I~
a=q5r (7.100
Notice that the coefficient of rolling resistance is a distance.

EXAMPLE 7-7

A cart has wheels that are 13 inches in diameter. A wheel carrying a load of
SO0 Ib is stuck in a depression, and it is found that a force of 300 |b is required
to roll the cart out. What is the coefticient of rolling resistance?

SOLUTION 7-7
Applying (7.10) we find
{300)(6.5)
a=— "

00 - 1.9inches

EXAMPLE 7-8
On a test rail track at a top-secret facility, which cannot be named. a rail car has
a wheel with a 700 mm diameter that carties a 750 N load. The coeflicient of

o

' \J ¥
7S

Fig. 7-8  Rolling resistance,
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rolling resistance between the wheel and the track is 0.41 mm. What force is
required such that the wheel will begin to roll on the wack?

SOLUTION 7-8
Rearranging terms in (7.10), we have
_ Wa _ (T50)(0.41)

F =——— = 088N
r (350

Quiz

1. A block that weighs 210 Tb is being pulled with a force F on a fla
surface. Just before motion ensues, what is the force being applied to the
block if the cocfficient of static friction between the block and the floor is
0.387

b

- A block is secured between two copper plates with a clamp. The
coeflicient of friction between the block and copperis g = 0.28. [fa
force is applied to pull the block out of the assembly, what is the strengih
of that force if the normal force exerted by the clamp is 113 N7

t

. A block is sliding down a surface which is at an angle # = 677 with the
hornizomal. If the coefficient of kinetic friction 15 py, = 0.25, what is the
acceleration of the block in S1 units?

=

A belt is wrapped around a pulley such that the tension on the tight side
of the beltis 150 N and the angle of wrap is 5= /2. The coefficient of
friction between the belt and the pulley is 0,32, Find the tension in the
slack side of the belt just before the belt slips.

i

. If the coeflicient of rolling resistance is 0.29 mm, what force must be
applied 10 set a wheel rolling on a track ifit carries a 3000 N load and
the diameter of the wheel is 800 mm?
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Particle Kinematics

We now turn our attention 1o the study of motion, A full study of motion, which
relates the forces ona particle to its acceleration via Newton's second law, forms
the basis of the science of dinamics. In this chapter, however, we are going to
start with a simple analysis of some one- and two-dimensional cases of motion
that does nat explicitly involve forces. This type of study of motion is known as
kinemarics. We begin with the simplest type of motion possible. motion along
a straight line.

Rectilinear Particle Motion

Let’s consider motion along a swaight line. We denote the position along this
line by x. If a particle is moving along a straight ling, the first question we
can ask is how fast is the particle moving, Speed or velocity (we will be more
precise about the distinction between speed and velocity later) is nothing but
distance traveled in a given ime interval. So if a particle moves between points
xy and x;between times ¢ and 15, then the average velocity is given by

. (8.1)

-0

111

1Cone Otubier 20, 206
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As we will see in a moment, we will use the denvative to write down a
precise definition of velocity, We can see how to approach this definition by
considering the average velocity in the following way. That is, the average
velocity of a particle moving from the point xto the point x + Ax in the time
interval £ 1o+ + Az, then the average veloeity can be writien as

_ x4 Ar-—x Ax
f=————=— (8.2)
t+ A=t At
With this definition in hand, we are ready to consider the notion of instantancous
vedociy. To obtain the instantaneous velocity, we let the time interval shrink 1o
zero. That is

v= lim — (5.3)

Velacity is position per time, so we might measure velocity in ft's or if we are
using 51 units, m/s where distance is measured in meters. Now we have the 1ools
in hand to characterize the particle’s motion in terms of position and velocity.
We can go a step further—as you might have guessed there is one important
piece of data missing—the eccelerarion of the particle. Acceleration tells us how
rapidly the velocity of the particle 1s changing. Following the procedure used
to define velocity, we can define the average acceleration and the instantaneous
acceleration, The average velocity is given in terms of the velocities vy and vy
measured at times 1 and 12 as

g=27" (8.4)
1

Or, a better definition of average acceleration is
Av
i=— 8
i=4 {8.5)

Now let’s take the limitas Ar — 0. This gives us the instantancous acceleration

a = lim E = d—‘ {8.6)
Ar—0 At dt

Now, since aceeleration is the time rate of change of velocity and velocity is the
time rate of change of position, we can write acceleration in terms of positi

PRINTER: To Come  Oxtuber 20, 26
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by considering the second derivative. That is

d*x

(8.7
it

From (8.6) we can guess at the units. There is one dimension of time in the
denominator, while the numerstor has dimensions of distance/time, There-
fore acceleration has dimensions of distance/time squared. In U.S. units, when
we are measuring distance in feet and time in seconds, we measure acceler-
ation in ft's>, In S1 units acceleration is given in meters per second squared
or mis®.

Constant Acceleration

We have already created a simple situation by restricting ourselves to motion
along one dimension. Now we're going to keep things easy by going one maore
step and only considering the special case of constant acceleration, Let x, and
vy denate the initial position and velocity of the particle, respectively. Then the
following equations hold so long as the acceleration @ is constant

v =vy+ai (8.8)
v =g b 2a (x — xo) (8.9
X —Xg = vl 4 %ai: (8.10)
X =X = ;[v+v..:: (E.11)

These equations can be derived using Newton's laws, but it's not necessary to
worry about that ight now, We will just accept them as given and use them to
solve kinematics problems. The tnck to solving these types of problems is to
look at what infarmation you're given, what information is missing. and what
information you want to find out, That simply means being careful and judicious
about picking the nght equations from (8.8) to (8.11) to work with.

EXAMPLE §-1

A rocket sled is moving along a straight track. Its position is known to increase
with time according to x (1) = 317 — 2¢ where time is measured in seconds and
position is measured in feet. Find the velocity and acceleration of the sled at
t=35s

1Cone Otubier 20, 206
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SOLUTION 8-1
We use (8.3) to find the velocity of the sled and (8.6) to find the acceleration.
First, we compute the derivative of x(7) to obtain the functional form of the
velocity

dx o

vy = — =

3 = Up=6r -2
it a‘rt )

Attt =35 s, the velocity is vit) = 6(5) = 2 = 28 fus. To find the acceleration,
we take the derivative of v(i)

dv d 4
=— = —{br — 2} = 615"
“ dt d:‘ y s

EXAMPLE 8-2

A red sports car driven by a balding middlc-aged man is speeding down a rural
highway. Fearing the impending presence of a police officer, he breaks to slow
from 90 miles per hour to 45 miles per hour over a distance of 300 fi. How much
time does it take for the car to slow to 45 miles per hour? Find the acceleration
assuming that it’s constant.

SOLUTION §-2

Since the acceleration is constant, we can use (8.8)—{8.11). We're asked to find
the time required for the car to slow down, but it's likely this will only take
seconds but the velocities are given in miles per hour. First let’s convert the
velocines to feet per second

miles I houry 5280 fi
=19 - = 1321
' ( Uhuur) (3600s)( mile ) 1321
miles 1 houry, (5280 ft
o= (45 = 66 s
' ( hour)(JGUU s)( mile ) fots

Now, how can we find the time required to slow down. given only the velocities
and the breaking distance? Looking at the equations for constant acceleration,
it appears that (£.11) will do the job. We find

o2 — ) 20300 i)
B —  — 4§
Vot vy (132~ 66) f's

PRINTER: To Come  Oxtuber 20, 26
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To find the acceleration, we use (8.9). The acceleration is

Vil (1321us) — (66 Us)

= = = 21,8 fus®
20— 203001 s

EXAMPLE 8-3

A woman is speeding down a straight road in her BMW 10 get away from her
angry husband. Starting from rest and traveling with constant acceleration, she
passes her mother-in-law’s house traveling at 90 miles per hour. A mile later the
car is going 130 miles per hour. What is her acceleration? How long did it take
her to travel from rest to her mother-in-law's house? How long did it take her to
go the final mile?

SOLUTION 8-3
To find the acceleration, first let's write down what we know, We are told that
the car starts from rest. therefore, we know that from the starting point to the
mather in laws house
vy =10

We also know that the car is traveling at 90 miles per hour at that point, Looking
at (8.8)-(8.11). however, it seems we don't have quite enough information to
solve the problem. A possible equation we can use is (8.9), since we only need
to know two velocities and the distance raveled berween them. We are given
this information in the last part of the problem. So let’s take the mother-in-law s
house as the starting point in which case we take the initial velocity to be 90
miles per hour

vg = 90 mph = 132 {t/s

At the end of the mile, the velocity 1s 130 miles per hour. so we have
v = 130 mph = 191 ft'’s

The distance traveled between the points at which these speeds are measured is
1 mile, therefore

X —xp= 528011
Using (8.9) and solving for the acceleration, we find

Vo (191 fus) — (132 fus)®

= = 1§ fus’
2ix — xp) 25280 ft)

1Cone Otubier 20, 206
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With the acceleration in hand, we have enough information to find out the other
quantities, The time required 1o travel from rest 1o the mother-in-law’s house
can be found using (8.8)
r— v 132 fi's — 0 fif's
r= ‘”:%zﬂs
a 1.8 fi's”

Using the same equation, we find that the time required to go the last mile is

V=, 100fts = 132 ft's
==

a 1.8

=3is

92

Near the surface of the earth, the aceeleration due to gravity is constant.
Therefore we can apply the equations (8.8)-(8. 11} to problems involving falling
objects by setting the acceleration cqual to the acceleration due to gravity.
We denote this aceeleration by g. [n U.S, units, ¢ = 32.2 ft's? and in S units
g = 9.8l m's”, Typically, we denote the vertical or up-down dircction by the v
coordinate, Now remember that the acceleration in the case of free fall points
down-so we will have to modify the equations to reflect this. We can accomplish
this by putting a negative sign in front of each term involving acceleration.
Therefore the equations of free fall in a gravitational field are

v=v,—gf (8.12)
1 2
Y=o =vat — 2gf (8.13)
vie vl = =2giy = ) (.14
Vo= = lu' vyt (8.15)
s A 2 4 [} .
T,
¥ ¥o=wi+ ogit (8.16)

EXAMPLE 8-4

A man in a hot air balloon that is 95 m high and is nsing with a velocity of
2,2 m/s drops a baseball out of the balloon basket. How long does it take the
baseball to hit the ground, and what is its velocity at impact?

SOLUTION 8-4
First let’s write down what we know. At the time of release, the baseball is
traveling at the same velocity as the balloon. The balloon is rising at a velocity

1Cone Otubier 20, 206
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of 2.2 m/s, therefore the initial velocity of the baseball is
vy = +22m's

The initial height vy = 95 m. We take the ground to be the origin and therefore
¥ = Datimpact. Let's find the velocity at impact first vsing (8. 143 We have

: f 2 —
v=—\¥3 =200y — yo) = —y 22 m/sF — 2(9.81 m/s) (0 — 95)m
- /484 MY + 1864 mYs? = —/1B6R.T mUsT = —43mis

We take the negative square root because the ball is heading downward—ioward
negative v, so its velocity must be negative. With this picce of information in
hand, we can solve for the time to impact using (8.15)

_ 20y = ol _ 20— 95)m -4
T vy (—43mis+22ms)

EXAMPLE 8-5

A toutist on a lookout tower drops a camera. It strikes the ground with a speed
v = 174 fi's. How high is the lookout tower? How long did ittake for the camera
to reach the ground?

SOLUTION 8-5

We are given three pieces of information in the problem. The first is obvious
the speed v = 174 fts the camera has when it reaches the ground. We are also
told the tounst simply drops the camera—therefore we take the imtial speed to
be vy = 0, Finally we know that since the camera is traveling straight down—it
is moving with constant acceleration g.

Looking at the equations of free Tall (8.12)-(8.16), it appears that (8,14} is
the best one 1o use in order to find the distance that the camera travels, IWwe take
the upward direction to be positive y, then the distance ¥ — vy will be negative.
We will call it —f and then

Now, since we are taking downward to be negative, we need to write the velocity
as v = — 174 ils because the velocity points down. So we obtain

vi—v 00— (—1741Us)

- =470t
2g 2(32.2fus?)

h=
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In two-dimensional motion where we take r = x i+ v j. the velocity vector is
tangent o the curve, which represents the path of the particle. Such a path is a
curve y (x). The angle between the velocity vector and the x axis is

@ =tan"' ( ) =tan~' (j—:) (8.21)

Note that the acceleration vector is not necessarily tangent to the path of the
particle.

Sometimes it is helpful to analyze particle motion in terms of unit vectors
that are tangent and normal 1o the curve describing the particles path, Since
these vectors are orthogonal and form a basis, it is possible to actually write the
velocity and acceleration vectors in terms of these new unit vectors instead of
using i, j. k. We already know that the velocity veetor v is tangent to the curve,
50 this allows us to write down a unit vector tangent to the curve immediately,
This can be done by dividing the velocity vector (8.18) by its magnide or
by the speed (8.19). If we denote the unit tangent vector to the curve by T
then

(8.22)

WNow consider a curve that is parameterized by s such that v = r{s). Then it

r . .
turns out that T = e For an arbitrary curve, we can define the curvature k as
5

dT

s

|dT/dr|
ds fdi

If we invert this quantity we obtain the radius of the curve

S
fEET |ed T fed5]

This allows us to write the acceleration vector in terms of unit vectors that are
tangential and normal to the curve

s ds|?
T e

A Iv]

TE pn

kN (8.23)
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The unit vector that is normal to the curve can be calculated easily by taking
the time derivative of T and dividing by its magnitude
 dTydi
T dT e

(8.24)

EXAMPLE §-6

Suppose that a particle is on a path described by the curve x (1) = %, yit) =
37 4 21, z(t) = 7 + 3¢, Find the particle’s velocity and a unit vector tangent
Lo the curve.

SOLUTION 8-6

The velocity vector is

dr 3
= =Xitpjtik=2ri+ S+
vep=di PPk =20k (0 4 20+ 3k

The magmitude of this vector is

- —_— e - —
W=V 2 = 0 92 £ 27 +(3) = VB + 402 + 13
To abtain the unit tangent vector, we divide the velocity vector by its magnitude

Vo 2004 (97 20543k

T= =
vl VB + A0 + 13

EXAMPLE §-7
A particle is constrained to move in the x-y plane such that

X1 = Acoswt
v = Asinawr

What is the speed of the particle? What is the acceleration of this particle? Find
unit vectors that are tangent and normal o the curve that describes the particles
path,

SOLUTION 8-7
First, we write down the position vector

r= Acoswi i+ Asinas j
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The velocity vector is the time rate of change of the position vector

_dr

v=— = —wdsinot i+ wdcoswtj
dr

The speed is just the magnitude of this vector

v= v = Valdsin® wf + w? A2 cost et = wA
The acceleration vector is the time rate of change of velocity

dv_d . B .
4= i Ii—m,-l Sinat i+ @A cos it j) = —w A coswf | — A sinewt

Notice that a = w?r, a characteristic of uniform circular motion that we will
see in the next section, The magnitude of this vector is

T . A
a = [a] = v w'4? cos? wi + w' A% sin’ wt = w'A
We can construct the unit tangent vector using (8,22

T= = —sinal i+ cosan J

Wext we construct the unit normal vector using (8.24), First we have

dT

— = —ecosel | —wsinat j
dt

The magnitude of this vector is

dT

—| = ,{f’(—mcos.-urlz + [—msmml’}1 =
i

So. the normal vector is
dT
o _di
daT
di

= —cosal | —sinarj
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Projectile Motion

As a toivial special case of two-dimensional motion, we consider the cose of
a projectile being fired at some muzzle velocity vo. Acted upon by gravity, it
lands some distance R from the point where it was fired.

The first step in analyzing the kinematics of projectile motion is to resolve
the initial or muzzle velocity into xand » components. We imagine that the gun
or cannon is elevated at some angle & with respeet to the horizon. We can then
use basic tgonometry to find the desired quamities (see Fig. 8-1).

The motion of the projectile in the x andy directions is completely indepen-
dent. That is, we can analyze the kinematics of the motion with respect to x and
v directions by considering the motion in x along using what we already know
about one-dimensional motion and then considering the motion in p alone using
what we know about one-dimensional free fall. The commeon denominator is
the muzzle velocity,

Let's start then by considering the honizontal mation of the projectile. In the
x direction, when we stick 1o the simphifying case of no air resistance. there
are no forces acting and the projectile has a constant initial velocity, Now since
acceleration 15 the time rate of change of velocity—there is no acceleration
this case since the derivative of a constant vanishes. When is it valid to consider
a case of no air resistance? A general rule of thumb is that the muzzle velocity
is small.

When firing a projectile there are two pieces of data that will be of interest
when considering the horizontal motion. These are the time of flight and the
total distance that the projecnle will travel, or it’s sunge. If we consider the
case witha = 0, looking at the equations of one-dimensional kinematics (8.8)-
(8.11), we see that there is only ong equation that is of interest 1o us. Equation
(8.10)—which includes time and distance traveled—is the equation we seck.
Let’s restate it here

! 2
X =Xy = vl + Sl

by, = Wy cos it

Fig. 8-1 The components of muzzle velocity,
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If we set the acceleration to zero it becomes
X =Xy = vl

Now we make the substitution v, — vy, as described in Fig. 8-1, giving us
the equation we need

X —xg = vcosét (8.25)

Next, we consider the motion of the projectile in the vertical or » direction.
The maotion i this direction 1s governad by one force—gravity. The force of
gravity controls its motion over the entire trajectory and is what brings the
projectile back to sarth, As we saw earlier, the force of gravity makes its way
into the equattons of kinematics via the constant g in equations (8.12}-(8.16).
Since there is acceleration in the y direction, this means that the v component
of velocity must be changing with time. So we set vy — vy, = vysiné. When
considering projectile motion, the following equations are of use

v, =vosing — gt (5.26)
I,

F— o= vpsinfir — —gt® (8.27)

P ylsin® 6 - 2g(y — v (8.28)

The veloeity in the ¥ direction goes o zero at the top of the trajectory. At this
point, the veloeity is changing direction. On the upward part of the curve the
velocity points upward. At the very top of the curve it momentarily goes to zero,
and then on the downward part of the curve the velocity vector is poinung down,
Therefore to find the time at which the projectile reaches maximum height, we
setv, = 0in(8.26), Then we find the ume to maximum height is

=|‘Jsmb' (8.29)
4

Next, we want o find out what that maximum height that the projectile
reaches is. We can do this by substituting this value of ¢ into (8.27) and solving
for vy — .

A final item to consider is the total time of flight. The height of the projectile
is zeto at launch and at impact, Therefore 1o find the time to impact we can set
v — ¥o o zero in (3.27) and selve. We obtain the following relation

1
0= (L‘usinﬂ Egi).r (8.30)

1Cone Otubier 20, 206
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The multiplicative factor on the outside corresponds to the time of launch,
+ = (), Setting the term in parentheses equal to zero and solving we find the time
o impact

2y sin
fipact = % (B.31)

Of course this is exactly twice the time required for the projectile to reach its
maximum height (8,29},

Finally. we want to find the range or total horizontal distance traveled by the
projectile, The range can be found by inserting the time o impact (8,31} into
(#.25). If we set R = x — xy then

2y sind -2
R = vy €080 fppacs = Vi cosn('“—) =1 gin2e (8.32)
z

To obtain this result, we have used the relation sin 26 = 2sin# cos &, Finally,
we want to find the angle at which the range is maximum. Using simple caleulus
we have

dR

— cosle =10
dé £

Therefore, the condition for the range to be a maximum is cos 26 = 0, For
0 = & = 90°, this is true when

O = By = 45° (8.33)

EXAMPLE 8-8

An artillery piece is situated atop a mountain that is 2.4 km above the valley
below, If the gun is situated at an angle of @ = 32° above the horizontal, what
is the time of flight if' a fired projectile reaches a target 6.7 km distant?
SOLUTION 8-8

We are told that the target is 6.7 km distant, therefore

X =1y =6700m

Further we know the time of flight can be obtained from (8.23), Solving for
time we can rewrite this equation as

X =

T vgcost

1Cone Otubier 20, 206
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SOLUTION 8-9
First we write the velocity in feet per second

v =45 mph = 66 fU'sec
Wow, we can use (8.34) to find the aceeleration

(66 fs)?
T O200R

2

= 22fi's”

EXAMPLE §-10

A satellite is in orbit about the earth at a height # = 190 km above the earth’s
surface. If the orbital speed of the satellite 1s 7.9 km/s, what is the value of the
gravitational constant g at this orbit?

SOLUTION 8-10
The radius in thas problem 1s given by the sum of the height of the satellite above
the surface of the earth added to the radius of the earth itself. Then we find that

w2 (7900 m/s)? 9.6mist
B T 63T < 10 m + 190,000 my MR
Quiz
1. The position of a particle in meters is given by x (1) = 207 — 8, What

are the position, velocity, and acceleration of the particle ats = 3 5?

. The position of an oscillating particle is given by x (1) = Je™' cos 20,
What is its aceeleration as a function of time?

. A car traveling at 50 miles per hour decelerates at 15 fv/s? before coming
to a complete stop. What distance did the car travel during this time?

13

wa

.

. For the car in problem 3, how long did it take to come to a complete
stop?!

. A baseball is thrown straight up at 75 miles per hour, How high does it
go?

wn

o

. How long does it take the baseball to hit the ground?

. Retuming to Example 8-3, what distance does the car cover when
traveling from rest to the mother-in-law’s house?
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CHAPTER 9

Dynamics and Newton’'s
Second Law

The science of dynamies describes the change of the motion of a system with
time. Mathematically the heart of dynamics is desenbed by Newton’s second
law, which relates the change in the lincar momentum of a system to the forces
being impressed upon it. First, we begin with a precise definition of momentum,

Linear Momentum

The linear momentum of a particle is the product of mass m and velocity v.
Typically momentum is denoted with the symbol P however some engingering
texts denote momentum by G. Since momentum is the product of a scalar (the
mass} and a vector (velocity), momentum is a vector quantity. In this book we
will use P to denote momentum. Therefore we can write

P =mv {9.1)
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toward home plate itmakes sense to think of the baseball as a particle. [n another
case, consider the earth moving around the sun, 1f you were a sadist you could
try and caleulate the force of gravity on every rock. tree, or building on the
surface of the earth. We could also try 1o caleulate the motion of the moving
baseball, which we've tossed toward home plate with respect to the sun. Or you
could simply consider the fact that with respect to the sun, everything on the
earth moves as if it were all lumped together as a single body. Over the scale
of the solar system, it doesn't matter much, in fact it doesn’t matter at all that
the baseball has moved a few feet across the surface of the canth when we're
considering the sun at 93 million miles away. The baseball is basically a fixed
part of the earth. In fact on that scale the carth itself is just a tiny dot. So with
respect o the sun, we can consider the earth to be a “particle.”

With that in mind, we can consider the three laws of motion.

The First Law of Motion

The first law of motion tells us what happens to a particle that is at rest orin a
state of wniform metion, By uniform motion, we mean that the velocity of the
particle is constant in time, that is,

d—‘ =10

ot
for a particle m uniform motion. Newton's first law rells us that if a particle is in
a state of rest, it will remain in a state of rest ifno external forces act upon it I
the particle is in a state of uniform motion, it will remain in a state of uniform
motion 1f no forces act upon it.

The Second Law of Motion

We have used the term force without giving a formal definition. We understand
what force is intuitively, and Newtons second law gives us a precise mathemat-
ical expression that relates foree to momentum. Newton's second law 1ells us
that the ime rate of change of the momentum of a particle 15 related to the foree
acting on the particle

dP

F=
dr
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weight of the particle or body and g is the acceleration due to gravity. In this case
m is the particle’s gravitational mass, This mass determines how other bodies
or particles will respond to the gravitational foree exerted by this particle. in
addition to determining how the particle will respond to the gravitational field
of another body.

As you might expect, it has been shown through careful experimentation that
these twe masses are equivalent. A detailed discussion of this issue is beyond
the scope of this text, interested parties should consult the references at the back
of this book.

Now we state the third law of motion.

The Third Law of Motion

For a given foree there is an equal and opposite force. This is the famous saying
for every action there is an equal and opposite reaction. Numerically, if a particle
exerts a force on a second particle that we denote J’T'u, the second particle will
exerta force Fay back on the first particle that is equal in magnitude but opposite
in direction. That is, .

Fiz=—Fy {9.6)

Tn many cases, when doing basic dynamics problems involving lorces, mul-
tiple forces will be involved. We then write Newton's second law as

Z F = ma (9.7)

In other words the sum of the forces on a particle equals mass times accel-
eration. We illustrate this with an example, where there is an externally applied
force and the force of gravity acting together on an object.

EXAMPLE 9-2
A 3 Ibblock is being pulled up a plane inclined at an angle # = 257 with a force
Fey directed along the incline. Assuming that there is no friction, find
{a) The mass of the block.
(b} Find the normal force on the block and the minimal force that would have
to be applied to keep the block from shiding downward.
{¢} The acceleration of the block when Fpy = 3.3 1h.

SOLUTION 9-2
{a) We are told that a 3 Ib block is being pulled up the plane, This is the
weight of the block. The mass 15 related to the weight using

W =mg
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Fig. 9-1 The sliding block in cxample 9-2.

where g s the acceleration due to gravity, Since the problem is given
using U5, units {Tb) we set g = 32.21t/s* and find the mass in slugs,
because the units of W = myg are given by

[Ths] = [shugs][fs’]
We find the mass to be:
m = Wjg =(3)/(32.2) slugs = 0.09 slugs

(h) To tackle the next part of the problem, we begin by drawing a dia-
gram of the situation and defining a i system, This is shown in
Fig. 9-1.

The simplest way to setup the problem is to orient the coordinate axes
so that they correspond to the incline of the plane, Next we draw a free
bady diagram, which means we show the particle (in this case the box)
together with all the forces on it. This 1s shown in Fig. 9-2.

To determine the foree components in the x and v directions, we use ba-
sic trigonomerry, Remember that cos & = adj /hyp and sin#® = opp/hyp.
Now we sum up the forces in a given direction and apply Newton's second

-

\

o g e
~
Flg. 9-2 W represent the block as a “particle”™ and devw a free body diagram, showing
all the forces acting on it,

17
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On the left side we obtain
Z Fy = Foy—Weosth = 3.3 1b —(3 Ibjcos 257
=313b-272b=061b
Then the acceleration is

LR _ ey, _ (3220 o
T (F)Z“ = (=55 ) 06l = 6441t

Since Newton'’s second law is expressed in terms of acceleration, and
acceleration is the denvative with respect to ime of velocity and velocity
is the derivative with respect to time of position, we can express Newton's
second law in terms of a second order differential equation that allows us
o solve forthe pmmnn of a particle as a function of ime. For simplicity,

let’s der on ional mation dalong a d that
we surprisingly designate by x, Then the velocity is written as
v = dx
dt

As we stated above, acceleration is related to velocity by writing
_dv
a=—
di
In terms of position, acceleration is given by
dx
dr*

{9.8)

For the moment, we assume that the mass in the problem is constant. This
allows us to write Newton's second law in the alternative form

d:
Y Fr=mtt 9.9)

In some texts derivatives with respect to time are denoted with two dots
placed above the variable. and so (9.9) can be written as

S F=mi (9.10)

where it is understood that § = o’x/d1°,

17
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EXAMPLE 9-3

A block slides down a plane inchined at an angle # = 35% with respect 1o the
horizontal. If there is no fnction, find the position of the block along the plane,
the velocity of the block, and the aceeleration of the block all as functions of
time and their values at r = 0.2 5. Assume that the initial veloeity of the block is
zero and that the block starts at the top of the plane. Use S1units in this problem,

SOLUTION 9-3
As shown in Fig. 9-3, we place the ongin of our coordinate system at the top of
the plane,

Asinthe previous example, there are two forces acting on the block, the gravi-
tational force and the normal force. Using sin @ = side opposite/ypotenuse and
cos ! = side adjacent hypotenuse, the v and ¥ components of the gravitational
force are given by

In the v direction, the normal force and the v components of the gravitational
force exactly cancel—that is once again we assume that the block stays on the
inclined plane as it slides down. This means that summing the forces in the ¥
direction gives

Fo4 N =0, = N=F,cos#

Now in the x direction, we have

SR =mi

In this direction the only force that acts 1s the x component of the gravita-
tional force, that is F, = £, sin&, and so we have the following second order

Fyeusd)

> ',c
¥ n Py

Fig. 9-3 A representation of our coordinate system and forces on a block sliding down
an inclined plane. The position of the block at some arbitrary time is represented by the
black dot,
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differential equation
mi = Fysin¥ = mgsing

where we used the definition of weight to write the gravitational force as mg.
Canceling the mass gives us

i =gsind

Therefore the acceleration, which is the second derivative of position with re-
spect 1o lime, is a constant. With @ = 35% we find that

i = gsin35° = (9.81 m'sT)sin 357 = 5.6mis”
For the velocity, we have

dv

¢ '
— = gsinf, = dv = sinfdt
ar = # L fu #

We have chosen t as a dummy integration variable. Integrating both sides gives
us

vt = gsindr + v (0) = gsinbr

We made the last siep b the problem says the block starts from
rest. At = 0.2 5, the veloeity is

v(r) = (9.81 m/s)sin(35°)(0.25) = 1.12 mis

Finally, we can integrate once more ta obtain the position as a function of ime.
We have

oy sindr, = x() £sin H’z
= gsin#, xith=
dt 8 2

Remember the block starts at the top of the plane, where we have put the origin

of our coordinate system. Therefore x(0) = 0. Ats = 0.2 5, we find the position
to be

(9.81 m/s%) sin(357)
r= —

3 0.25° = 0.112m

PRINTER: To Come  Nowember |, 2006
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Integrating a second time, we obtain the x coordinate as a function of time.
We have placed the origin of the coordinate system at the initial position of the
particle. therefore we can throw away the constant of integration, giving

X1y = v, t = vgcosiit (9.13)
Now, in the y direction, things are a little more complicated since we need 10
take into account the gravitational force on the projectile. In this case
2

dsy
F,= = 9.14
S F=-mg=m an (9.14)

The minus sign is present because the gravitational force points downward
relative to the coordinate system we have chosen. Noting that the mass terms
cancel, mtegration gives us the velocity in the v direction

dy .
— = —gt +v,, = —gl +vosingd (9.15)
dr
Integration a sccond time gives us the v position of the projectile as a function
ol time. Again, the initial position of the projectile is at the origin, so we can
throw away the constant of integration in this case. So we find that

' .
yin = —Q'T:—rr,smm (S.16)

The speed of the particle is the magnitude of its velocity vector. The x and v
components of the velocity vector are given by (9.12) and (9.15), respectively.
Therefore the speed is

ey N
= J0EE) () = vicos?o 4 visin® e 4 g2
vit) \'(dr) ({”) Y vgeost @4 visin @+ gl

= \,"11-,] + gl (9.17)

To find the ume when the projectile strikes the ground, se can simply solve
(9.16) when y{(r) = 0, We have

” 1 )
0= ,’JT b v sindr —:( % + 1'n51n0)

PRINTER: To Come  Nowember |, 2006
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a constant. If we call the constant of proportionality o then we can write the air
resistance as av. Air resistance for a projectile that is falling in the y direction
is a positive upward force. The sum of the forces in the v direction is then

Z F,=—mg —av (%18)
Applying Newton's second law we find that
mi = —mg — av (.19

Since the right hand side is a function of the projectile’s velocity, let’s use the
relation ¥ = dv/dt to write this as an equation involving only the velocity

dv o
—_—=—g - - 9.20
dr L ¢ y

where we have divided through by m. Now we rearrange terms giving
dv
—— =t
g+ =v
m
[ntegration gives
o
In(_s; + —1') =—1+C
n

Now we exponentiate both sides

a
g+ —v="Ce"'
E

This allows us to solve for the velocity as a function of time

) = (”’r)p . A (9.21)

[ o

Setting r = {0 and using the initial velocity v(0) = 5 allows us to solve for the
constant of integration. We have

c ”
\-m:—.s—(i)—ﬂ, =24y
o o m

17
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So we can write the velocity as
m m
i1y = (x + —8)s>" —g— (9.22)
o o

The terminal velocity occurs as + — oc. In (9.22) the first term vanishes under
these conditions, so the terminal velocity is just —g =, The negative sign indi-
cates that the velocity is pointing down, as we might expect. Now we can use
9.22) to solve for the projectiles position as a function of ime, We have

dy mg m
v[rl—;—(n'+—f"— —
dr o ) ga

Integrating between ¢ = 0 and ¢ we obtain

yl_!}:(x-l—ﬁ)i]—f‘ ‘J—gE:+h
w o

Dynamics and Kinetic Friction

As we desenbed in Chapter 7, kinetic friction is a tangential force between a
body in mation with respect to some surface. This force is proportional to the
normal force on the body via the relation

Fiin = NV (9,23}

where the constant of proportionality g is called the coefficient of kinetic
friction. The direction of this foree is opposite to that of the direction of motion
of the body. For example, if a box is being pushed across a floor to the right, the
kinetic friction force points to the left.

EXAMPLE 9-0

A box is placed on a conveyer belt inclined at 157 with respect to the horizontal,
The conveyer belt is moving with a velocity of 2.44 m/s and the box is initially
atrest, Ifthe coefficient of kinetic friction between the box and the conveyer belt
is gy = 5716, find the time required for the box to come o rest on the conveyer
belr,

SOLUTION 9-6
The scenario is depicted in Fig. 9-7. When the box 1s placed on the conveyer
belt, it will slip backward until the foree of kinetic friction stops its motion,
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Fig, 9-7 A box sliding on a moving conveyer belt

Therefore, the dircction of the foree of kinetie friction is along the positive x
axis that we have chosen in the figure.

We begin by recalling the kinematic relation between velocity, acceleration,
and time

v =+ al

This equation will be applied to the motion of the box. Te solve this problem,
we need to find the time at which the velocity of box matches the velocity of the
conveyer belt, The inital veloeity of the box 1s vy = 0 m/'s and so the equation
we ean use 1o find the time at which the box comes to rest on the moving conveyer
beltis

; v 244 mis

= (9.24)
a a

In order to find the acceleration @ of the box, we will apply Newton's second
law. In the direction perpendicular o the motion of the box, which we have
designated the y direction, the acceleration is zero since we are making the
assumption that the box stays on the conveyer belt and there 15 no vertical
movement. Therefore, we have

Z Fy=0=N —mgcosé,
= N = mgcost}

Along the direction of motion of the conveyer belt, we must take into account
the force due to friction as well as due 1o the weight of the bex, Using (9.23)
Newton's second law gives us the following equation of motion

Z Fo=ma = Fy, ~ mgsiné = iy N —~ mg st
Therefore the acceleration can be found using

a="XN — gsind = jugeosh — gsind
mn
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Fig. 3-8 Two masses on an inclined plane connected by a rope.

friction between each mass and the plane are 1/3 and 175, respectively. 1T the
masses are released from rest find the tension T in the rope.

SOLUTION 9-8

First we consider the lower block with mass 12 kg. Let’s denote the forces along
the normal to the plane as perpendicular forces /) and the forces along the
direction of motion along the plane as parallel forces F). The weight of the
block 1s

W =mg = (12kgN9.81 m's®) = 117.7N

The tension T is a force that will point up woward the 5 kg mass, Therefore, the
equations of motion for the 12 kg block are

3R =1775in30° — Ny — T = 124
S P =N - 117.7c0s30° = 0
We immediately find that ¥y = 117.7 cos 30° = 102 N, Putting in 1/5 for the
coefficient of kinetic friction and substituting the normal force into the equation
for the parallel forees we find

12 =385-T (9.27)

where the units are in Newtons. Following a similar procedure for the second
block, we obtain the following equations of motion

3 F =49.05i030° — Ny + T = Sa
D OF, =Ny - 49.1c0s30° = 0
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the force as

dF
Fix)= Flil)+x (—' )
dx |.\ i

We can make one more approximation. Consider the leading term which is
a constant. A little thought tells us that this constant must be zero. If F(0) # 0.

then the mass would feel a constant force that would push it 1o the right if

F{0) = 0 or constantly pull it to the left if #{0) - 0. This contradicts our pre-
mise that the mass has a resting equilibrium position, as you can see the mass
would feel a force even without any displacement. Therefore it is clear that we
must set F(0) = 0. Now, if we denote the first derivative of the force evaluated

atx =0 by
("_F ) -
dx |,y

Then we obtain the familiar Hooke's law

Fixy= —kx (9.29)

This is in fact the correct foree law that describes the restoring force of a
spring. The constant & 15 known as the spring constant. We have added the
i sign 1o indicate that this is a restoring foree—that is, it is a force that
tends to return the mass to the origin, which means it is moving in the negative
x direction, Now we can use Newlon's second law to write

F=—kx =mua

Or, using @ = ¥ = d”x/di” and dividing through by the mass m, we obtain

dx ok
—+—x=0 (9.30)
di=  m
This is the equation of a simple harmonic oscillator. The frequency of the
oseillator is given by
2 k
= — (9.31)
mr

This allows us to write (9.30) in the familiar form

? + mgx =10 (9.32)
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You can check in a differential equations” book that it is possible to write the
solution of this equation in the form

A1y = Acoswnd + B sinwy (9.33)

To see that (9.32} is satisfied, we compute the first derivative of this expression

dx

@ = —ag A sineogt 4+ o B Cos eyt
i

So the second derivative is
d*x s .
T e A €08 ot — wi B sin gl
ar-

and (9.32} is satisfied. The constants 4 and B arc determined using the initial
conditions for the position and velocity of the mass.

EXAMPLE 9-9

Consider a mass-spring system, Atz = (), the mass is located at x = 1 foot and
the velocity of the mass is v(0) = 0. Determine the displacement and kinetic
energy of the mass as a function of time,

SOLUTION 9-9
Using (9.33), we take x(s) = Acosewyr + Bsinwgt. Since cos(0) = land
sin(0) =0, atr = 0 we have

M=1=4

The velocity of the mass is found by computing the time derivative of x(r) =
Aeoseyt + B sinwgt

Vi) = —eg A sinand + gl COS wpt (9.34)

Therefore vill}) = wy 8. Using the initial condition v(0) = O we conclude that
B = 0. Therefore the displacement of the mass is

x(1) = coswr ft
The velocity is obtained from (9.34) by setting 4 = 1 and B = 0. This gives

vil) = —ewn SNt
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To find the kinetic enerzy. we use the basic definition

1 3
?':Emu

In this problem, the kinetic energy, using vir) = —y $in ol turns out to be
1 PO
T = S sin” wt

EXAMPLE 2-10
What is the potential energy of a simple harmonic oscillator?

SOLUTION 9-10
We start with Hooke’s law (9.29)

Fix) = —kx

Recalling that force is minus the gradient of the potential, or (9.26) in one
dimension, we have
dir
o
dx *

We can integrate this equation from 0 o some arbitrary position x. This gives
the form of the potential energy for the simple harmonic oscillator

1,5
Ulx) = 5!.‘.\" (9.35)
EXAMPLE 9-11
What is the total energy of the mass in example 9-87
SOLUTION 9-11

The total energy is the sum of kineric and potential energies
E=T=+1
We found that the kinetic energy was I' = EI"‘ wl sin‘wgr, Using (9.35), we

know that the potential encrgy is given by {/(x) = 14x”. In Example 9-8 we
found that x(7) = coswys and so the potential energy is

! 1 N
= EJ; cos” wgt = M w cos® mgt
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The total energy is
R S [T (N
E=T+U= 3™ @y SIN" wol + — M wj, €OS” wol = Sty

Notice that the enerzy 1s a constant— it does not change with time and 1s deter-
mined by the spring constant & and the mass m.

Damping

Imagine now that the mass in our mass—spring system is in a viscous fluid that
exerts a force that resists the motion. This type of foree is known as a damping

Jorce, because it damps down the oscillations that were described in our solution

(4.33). Damping 15 introduced into the oscillator equation via a first denvative
term such that the oscillator equation is written as

e Ldy .
AR S (9.36)
df

drt
The new frequency we have introduced can be written in terms of the mass of
the oscillator and a new damping constant ¢ in the following way
s
mf = — (9.37)
m
To find a solution of the differential equation, we try a solution of the form
{1y = Ae” where 4 and s are constants to be determined. Then

dx

— = Ase”

dr *

d*x :
= As"e"

dr? )

Substitution into (9.36) gives
Aste® + rrl;",-lw-" + aug,:h-'" =0
Dividing through by Ae™ gives us an equation we can use to determine s

2 2 7
st s oy =0
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Using the quadratc formula, we obtain

4 + 2
— & e — dauy . —
sE = —w 4+ “."wf,"-l —
Then the solution can be written in terms of two unknown constants A and 5 as

x(1) = Ae™" 4 Bo™

I 3 I 3
Q) = —m) + v wifd—wl, Q= —w—Joid—u)
The behavior of the solution is determined by the radical. First, we set it equal
to zero in which case

) 2,2 e,

= W, W = — = 2,

4 Y " N

Or, we can write ¢ = 2mawy where o is the enitical damping coefficient. The
ratio of the damping coefficient ¢ to the eritical demping coefficient is called
the damping fuctor

-
d=—, = 5—=dm
. 2m

e

The selution can be written in terms of the damping factor as

/ 2 " 3
x(ti=dA cxp(—dmt. + \,.d:«af, - wﬁr) + Bexp (—dwu - \-"f‘wrzu - mm)
(9.38)

Depending on whether the damping factor is large, small, or zero, we obtain
three possible types of solution. First, we consider the case when the damping
factoris large, i.e.,d = 1. This case is called famping. In this situation, the
radical is real and the solution 1s given in terms of two decaying exponentials.
The motion is not periedic and the mass drifis back to its equilibrium point
without any oscillations. A schematic plot of this type of solution is shown n
Fig. 9-10.
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it

Fig. 9-10 is just a decaying

Next, il o < 1, we have underdamping. In this case, the system oscillates
but the oscillation decays with time, The position x(1) behaves like a sinusoidal
function in an envelope defined by a decaying exponential. This is because
the radical is negative if f <2 1 and you obtain werms of the form ™ which
can be written in terms of sine and cosine functions, multplied by a decaying
exponential of the form ¢, This is shown schematically in Fig. 9-11.

Finally, we reach the case when ¢ = I. This case is the final possibility and
is called eritical damping, Tn this case the solution is of the form

() =14+ Beye ™

The solution also decays in this case, from a peak value of x(0) = A. This is
shown in Fig, 9-12,

Fig. 9-11  The underdamped case oscallates, but the oscillation decays in time,

17
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Fig. 9-12 A schematic plot of a eritically damped system,

As in the overdamped case, there is no periedic or oscillatory moetion. How-
ever when the system is critically damped, it returns to its equilibrium position
in the fastest time possible.

Quiz

o

Ln

=

. A bullet whose mass is m = 7 g is fired with a horizontal speed

v = 1000 m/s directly at a block of wood. Ignoring friction, what is the
mass of the block ilits final speed is known o be 4 m/s?

. A block weighs 11 Ib. What is its mass?
. A block weighs 11 N, What is its mass?
. A block weighing 5 N is being pulled up a plane inclined at an angle

@ = 35% with a force Iy, directed along the incline. Assuming that

there is no friction, find

{a) The mass of the block,

(b) Find the normal foree on the block and the minimal foree that
would have to be applicd to keep the block from sliding downward.

(¢} The acceleration ol the block when £ — 6N,

. A block of mass m 15 released from rest at the top of an inclined plane

with coefficient of kinetic friction jr,. What is the velocity of the block
as a function of time? The plane is inclined at angle @,

. How long does it take the block in problem 5 1o slide down to the

bottom of the plane if the distance along the incline is 47

. Two masses are connected by a rope in the same situation deseribed in

Example 9-8, This time suppose that the lower mass is m = 10 kg and
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the upper mass is m; = T kg with coefficients of kinetic fnction 1/8 and
1/3, respectively. Write down the equations of motion and determine
the tension in the rope.

£

. Consider a simple harmonic oscillator. If x(0) = 2 m and w(0) = 1 m/s,
what are the displacement and velocity of the mass as a function of
time?

-]

. For the system in problem 8, what is the total enernzy?

10. In which type of damping does the system return to equilibrium in the
quickest time?
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Flg. 10-1  The velocity and radial acceleration vecions for a particle in uniform circular
mtion aboul a pomnt .

Ifthe particle is moving with velocity v, then the radial acceleration is related
to the velocity and the radius of the orbit as

a = — (10.1)
-

This type of acceleration is cur first example of cemriperal aeceleration. Now
let’s consider circular motion with constant angular acceleration, The velocity
v will not be constant but will vary with time with the angafar velociy, which
we will define in a moment,

To measure the distance and speed around the circular path, we use some
basic trigonometry. Distance along the path s is given by

§=fr (10.2)

By taking the derivative of this quantity with respect to time, we can find the
angular velocity «. The radius » of the path is constant, hence

ds

o fh
= tr) = g 10.3
ot di 8r) ! ¢ y

it

The veloeity ofs/dr is just the linear velocity v. We identify the angular velocity
as o = gid'de, and so (10.3) tells us that

Vo= wr (10.4)
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This allows us to rewrite the radial acceleration defined in (10.1) in terms of
angular velocity. Simple substitution of (10.4) gives

a, = a’r (10.5)

We have written this as a,, because this is the normal component of the
acceleration of the particle. Looking at (10.4), we can differentiate with respect

to time to give
dv  dw
—_— = —r 10.6
a @ (oo

Now dvidt = a is just the radial acceleration. This equation defines new type
of acceleration called angular accelerion w. So we can write (10.6) as

a4, = ar (10.7)

This is the rangemial p of the leration vector. In polar co-
ordinates, we can denote the unit vectors as r and & respectively, and so the
acceleration vector is writlen as

a=aN+aT (10.8)

where N and T are unit vectors pointing in the normal and tangential direc-
tions of the particles path, respectively. Since the acceleration is constant, the
equations for motion with constant acceleration (3.8)(8.11) carry over in a
straightforward manner for the angular variables o and ., The relationships are
the following

= wy + ot (10.9y

w = wi 4+ 2a0 (10.10)
1 .

8 =gt + caf” (10.11)
1 5

f}—{of—iuf‘ (10.12)

I
(I:E[wu+w}r (10.13)

Note that while the angular acceleration is constant in this case, the tangential
and normal components of the particle’s acceleration vary with time since the
components depend on the angular velocity.
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EXAMPLE 10-1
A flywheel has a radius of 0.45 m. The flywheel is initially at rest, then accel-
erates to 1800 rpm in & s. What is the angular acceleration?

SOLUTION 10-1
This problem can be solved using (10.9). Rearranging terms
= iy
om0
L

Since the flywheel starts at rest

awy =10
The units of angular velocity as expressed in (10.3) are rad’s. So, we have to
comvert from revolutions per minute {rpm) to rad's

rev | min rad rad
w= (1800 ﬁ) (E T) (3:{;) =188

Therefore the acceleration is

o O _w 188 P
t ' 8§ §°

EXAMPLE 10-2

A flywheel accelerates from rest to 3200 rpm. [f this takes 24 s, how many
revolutions does the flywheel make in thar time?

SOLUTION 10-2

Following the procedure used in Example 10-1, we start by wnting the angular
velocity in rad's

rev L min rad rad
w= (3200 —}| —— ) | 27— ) =335 —
’ ( min)(bﬂ § )( Yrcv) ]
Next, we need to find out how many radians are covered in this time. This can

be done using (10.13). Once again, the fywheel starts [rom rest so wq = 0 and
we have

) 335 radfs) (24 s
0 Mg by = @ O3S dSIRAS
2 2 2
The wtal number of revolutions is found by dividing this quantity by 27 rad/rev
4020 rad

= e = 340 rev
2 radirev

Y30
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SOLUTION 10-5
First we calculate the angular acceleration using (10.9), The flywheel starts from
rest and reaches the stated rpm in 4 5, therefore wy = 0 and we find

w—ewy w220 rad

i t 4 T8

Recalling that the acceleration is constant, we can now use it to find various
quantities at different times. We agam apply (10.9), this ime using 1t to solve
for the velocity at an arbitrary time ¢. We have

rad
s

w_wu+uf_0+(55 =

) (0.158) = 8.25rad’s

The linear velocity is
v =wr = {825 rad's) (065 m) = 5.4 mis

The radial acceleration from the angular acceleration can be caleulated using
a =ar,

a, = or = [Sirnd-'s?J(U.bj m) = 36ms’
The aceeleration vector is given by (10.8), The normal component of the accel-
eration vector, given by (10.5) is

a, = w'r = (8.25)7(0.65) = 44 s’

The magnitude of the acceleration vector is

B
a =it ai = Viddmis

o+ (36msi) = 5Tmis?

EXAMPLE 10-6
What angle does the acceleration vector in Example 10-5 make with the radial
veetor of the particle?

SOLUTION 10-6
The angle is given by

# = tan '("—’) {10.14)

[

Y30
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And the normal component of the acceleration is
ay = w'r = (68)(0.7) = 3237 ms’

The angle thar the acceleration vector makes with the radial vector {which points
to the center) is

Kinetic Energy of Rotation

The kinctic energy of a rigid body in rotation is defined in terms of the moment
of inertia 7. If the body is moving on a circular path with angular velocity w,
then the kinetic energy is

7=zl (10.15)

1] —

EXAMPLE 10-8

Two bodies with mass m are connected by a thin rod of length £.. The mass of
the rod m, < m. Find the kinetic energy of rotation if one of the bodi
at the center while the ather rotates about it at angular velocity w, The s
is depicted in Fig. 10-3.

SOLUTION 10-8

Since the mass of the rod sansfies mr, < m, we can neglect it. We can find the
moment of inertia using the parallel axis theorem (5.22), which we restate here

5= Iyn 4 mr?

- Axis of rolation

Thix mass is rolating sheut the
canter, which i the ather mass.

Fig. 10-3  One mass rotates about a similar fixed mass with angular velocity o,

Y30
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First we calculate the moment of inertia about the center of mass. The center
of mass is at the center of the rod and therefore each particle is at a distance
L {2, The moment of inertia is simply the discrete analog of (5.14), we replace
the integral by a sum

3

lem = Zm,rf = m (%)- + m (;?)' = mg

To apply the parallel axis theorem, we set r equal to the distance of the center
of mass from the point of rotation. This 1s half the length of the rod. The mass
in the parallel axis theorem is the total mass in the system, which in this case
is the sum of the masses or 2m. Using the parallel axis theorem, we find the
moment of inertia to be

L2 Ly? N
= Jom o+ Mt = — 4 {Zm}(—) =mi’
2 2

Therefore the kinetic enargy is

r— lfw“ _ ml e’
2 2

Angular Momentum and Torque

Suppose that a mass m 5 in circular motion about some point £. We denote
P as the origin of our coordinate system and let r be the radial vector from
the origin to the particle, The angular momentum L is a vector and defined by
taking the cross product of v with the linear momentum vector for the particle

L=rxp=rxmy (10.16)

Some jargon happy engineering protessors refer to angular momentum as “mao-
ment of momentum™ and denote it by H,. We will stick to the proper name
of angular momentum, but just keep in mind these are the same thing. Since
angular momentum s the cross product of two vectors in the plane of motion
of the particle, it is perpendicular to that plane. This is illustrated in Fig, 10-4.

If the angle between the position vector v and the momentum vector of the
particle is &, then the magnitude of the angular momentum vector is

L = |L| = rmv sinft (10.17)

Y30
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Since the radius of a particle in circular motion is constant,

e _d
TEr G TP

In general, we can summarize this with an “angular Newton's law” This tells
us that the sum of the torques or moments about a fixed point on a particle is
equal to the time rate of change of the angular momentum

dL
T=— (10.21)
dt

When no torques act on the body, (10.211 becomes

dL
dt

This tells us that if no torques act on a body, then angular momentum is
conserved. [tis possible to choose a coordinate system such that the torque is
zero, by placing the ongin of the coordinate system on the resultant of the forces
acting on the body. For a system consisting of several bodies, the total angular
momentum of the system is just the sum total of the angular momentum acting
on each body

Lo = ) Ly (10.22)
The anguilar impulse Ly is the change in angular momentum from one point 1o

another, We measure the angular momentum and velocity of the body at points
1 and 2. For a body in rotation about a fixed point

AL = Ly = [ {wy —ay) (10.23)
where [ is the moment of inertia of the body about the axis of rotati 205 the

angular veloeity at the second point and e is the angular velocity of the body
at the first point,

EXAMPLE 10-9
A flywheel with total mass m =1450 kg and radius of gyration 1.1 m is accel-
erated from rest to 2000 rpm in 300 5, What is the momem?

PRINTER: To Come  Nowember |, 2006
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SOLUTION 10-9
In this case the angular velocities are

W= (znun rﬂ) (L M) (2,-.- E) ~ 200 ™
min/ \ 60 s rev s

rad

w =10 -
We are given the radius of gyration, If we call it &, the radius of gyration is
related to the moment of inertia via (5.21)
in

=V
Squaring both sides and rearranging terms,

I =mk’
In this case

I=mk? = (1450 kg) (1.1 m)* = 1755 kg-m®
Using {10.23), we have
AL = Hay — wy) = (1755 kg-m*) (209 rad/s) = 366,795 kg-m?/s

Tao get the moment, we divide by the ume elapsed

_ 366,795 kg-m®/s

M= - = 1223 N-m
300 s

EXAMPLE 10-10
A panticle is in orbit about a peint 0. Atsome time 1, the velocity vector of the
particle is given by

v = 2.8i — 3j + 2.3k

Where velocity is measured in m/s. At this time the particle is located at
(x,v.2) =12, —=1.3). I position is measured in meters, what is the magni-
tude of the angular momentum vector at this time? The mass of the particle is
2 kg

Y30
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SOLUTION 10-10
From the problem statement we see that S1 units are being used so the units of
angular momentum will be N-m-s. The position vector is

r=2i-j+3k
The cross product r x vis

i i k
rav=|2 I 3 | =67i+3.8-3.2K
28 -3 23
To obtain the angular momentum vector, we multiply by the mass
L=amirxv)=2b6Ti+38) 3.2k = 134i 4 7.6] — 6.4k
The magnitude of this vector is

L = /(1347 + (7.6F + (6.4)F = 16.7 N-m-s

EXAMPLE 10-11

For the angular momentum, position and position vectors given in Example
10-10, what is the angle between the position vector and the velocity vector?
SOLUTION 10-11

We can do this problem using { 10.17). The magnitude of the position vector is

PV F IR 3P =3Tm
The magnitde of the velocity vector is
V= \’m =47 m's
Now
L 16.7 N-m-s

_— = )48
ey (3.7 m)2 kgh4.7 m's)

Note that this quanuty is dimensionless, as it should be since it the sine of
an angle. Recall that a Newton is a kg-m™/s to see this. The angle between the

position and velocity vectors is the inverse sine of this quantity

7 = sin™'(0.48) = 28.5"
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EXAMPLE 10-12
A 3 kg mass ot time ¢ is being acted upon by a force F = —3.7k N, Position is
measured in meters and the particle is located at r = 3.5i — 2j. If the velocity
in m's is given by v = 3i -+ j, what torque is acting on the particle and what is
the angular momentum about the origin?

SOLUTION 10-12
The torque is

k
=2 0 | =74+ 130§

The angular momentum is

I kK
L=mirzxvi=3|335 =2 0|=-735k
3 I 0

.
Quiz
1. A fywheel accelerates from rest 10 2200 rpm in 17 5, What is the
angular acceleration?
. How many revolutions are made by the ywheel in problem 17

- A Nywheel accelerates from rest to 2100 rpmin 4 s, The diameter of
the fiywheel is 1.3 m. What are the linear velocity and the radial
aceeleration at ¢ = 0.3 57

L k2

.

. A wheel with an angular velocity of 900 rpm and a diameter of 250 mm
coasts to a stop in 400 s. What is the angular deceleration? What is the
linear velocity at 289 7 What is the normal acceleration at this time?

. A particle in circular motion has tangential and normal accelerations
given by @, = 7.8 m/s* and @, = 18 m/s”. What angle does the
acceleration vector make with the radial veclor?

. A rod, which initially stands upright, is pinned to the floor a1 the bottom
end, but is free to rotate. The rod falls to the ground. If the rod is 2 m
long. find its angular velocity by calculating the moment of inertia and
considering the kinetic energy of the rod (/iini; consider the potential
energy of a point on the rod and use conservation of energy).

.
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. A 5 kg mass at time 7 is being acted upon by a force F = 2.4

Statics and Dynamics Demystified

. A flywheel with mass 2750 kg and radius of gyration 1.3 m is brought

to rest from an angular speed of 175 rpm in 150 s, What moment is
necessary?

. A particle of mass 2 ki s in orbit about a point (2. At some time ¢, the

velocity vector of the particle is given by
v = Bl — 13
where velocity is measured inm/s, At this time the particle is located at

(x,v.z} = (3,4,5). If position is measured in meters, what is the
magnitude of the angular momentum vector at this tme?

. What is the angle between the position and velocity vectors for the

particle in problem §7

Position is measured in meters and the particle is located at r = 50 + J.
1f the veloeity in m/s is given by v = 2i -+ 2j, what torque is acting on
the particle and what is the angular momentum about the origin?
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172 Statics and Dynamics Demystified

Notice that each term on the right hand side of (11.1) is positive. This tells us
that kinetic energy is always positive.

The SI unit of energy is the Soule. Looking at (11,1}, we can see that the units
are

(7] = [m)le] = kgm'is®
= ljoule = | kg-m?/s’

[n LS. units, energy is measured in foot-pounds. A simple relation exists which
can be used to convert energy between S1 and U.S. units, This s

I joule = 0.738 fi-1b (11.2)

Typically. we abbreviate fonle with a capital ), so 1 joule = 1 ). Another unit
of energy, the electron valr, is convenient to use when dealing with atomic and
subatomic systems, This is becanse the quantities of energy are much smaller.
An clectron volt is the amount of energy an electron picks up when falling
through a potential of 1 volt and is given the abbreviation ¢V, An electron volt
can be converted into joules and vice versa using

leV=16x 107" (1.3)

EXAMPLE 11-1
A car weighing 2000 Ib is traveling at 83 miles per hour. What is its kinetic
energy? Give the answer in U.S. and ST units.

SOLUTION 11-1
First, we convert the velocity into feet per second

(85 mi/h) (5280 M/mi) (1/3600 h's) = 125 fi's

Next we need the mass of the car in order to use (11.1). The weight is the mass
times the gravitational acceleration, so

o= W g = (20001b)/(32.2 fUs®) = 62 slugs
The kinetic energy is then
[ | 2
T'=gmv’ = Z(62)(125)° = 484375 fi-Ib
We can find the kinetic energy in joules using (11.2)

T = 484375 fi-lb = (484375 M-1b) (1 170,738 fi-Ib) = 6.6 » 107 ]

PRINTER: To Come  Oxtuber 20, 26
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EXAMPLE 11-2

Find the kinetic energy of the planet Jupiter if the mean radius of Jupiter's orbit
is 7.78 x 10" m and the period of Jupiter's orbit is 11.94 years. The mass of
Jupiter is 1.9 x 1077 kg,

SOLUTION 11-2
We convert the period of lupiter’s orbit into seconds

P = (11.94 yrj(365 days'yr)(24 hiday) (3600sh} = 3.8 » 10%s
The veloeity is the circumference of the orbit divided by the period

_2ar 2x(7.78 x 10M m)

—e— — = ]2 !
v 7 18 % 10°s 12,857 m/s

Using (11.1), the kinetic energy is
N B - '
T = Fm = (1.9 % 107 kg) (12,857 mis) = 1.6 x 107

We'll see in a moment that there is another kind of energy called potenrial
energy, but first we need to define work.

Forces and Work

Now let’s consider the concept of wark. By definition, work is just force mul-
tiplied by the distance over which that force is applied. That is. if we apply a
force £ overa distance & then the work {7 that is done is

U= Fd (11.4)
We see immediately from this definition that the units of work are Newton-
meters il we are using the ST system, while the units of work are foot-pounds if

we are using LLS_ units. If the force is applied at an angle & with respect to the
line at which the object moves, then the work done is

{7 = Fd cos@? (11.5)
Maore formally, for a particle moving on some path, defined such that the

particle is Tocated at point Py at time 4 and it's located at point F; at time 5,
then the work done on the particle can be calculated using

{.':fF-dr (11.6)
LS
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The dr in the mtegrand is the infinitesimal position vector
dr=drvitdvj+dzk (11.7)
In Cartesian coordinates then, (11.6) can be written as

U= f Fodx + Fody + Fodz (11.8)
.

If we know the components of the particles velocity, then we can caleulate the
work by integration from time 1y to 1,

L v d=
E-’=f (F.ﬂ-:—,r,.‘iu-“_.'—)m (1.9)
n i de i

When there is rotation and the applied force constitutes a couple M, then the
work done is

U= f Mo (1110

Some facts 1o keep in mind about work
» Notice that the units of work are the same as the units for energy.

« [Ifthe applied force acis in the same direction as the motion, then the
work 15 positive.

1f the applied force acts in the opposite direction as the motion. then the
work is negative.

+ To calculate the work done by multiple forces acting on a body. find the
resultant and then caleulate the work as ifa single force equal to the
resultant were acting on the body.

+ Work, ke mass, is a scalar.

A force which has no component in the direction of motion of a particle
does no work,

We are now in a position to define potential energy. Given the symbol ¥,
potential energy is the negative of the work done as a particle moves on a given
path. That is

I’:—fl-"-dr ALt
A
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In short the potential energy is the negative of the work done by the force to
bring the particle to that point.

EXAMPLE 11-3

What is the potential energy of a mass m found at a height i above the earth’s
surface?

SOLUTION 11-3

Since potential energy is the negative of the work done, we Jook to (11.4) for an
answer. The gravitational foree is just F, = mg, therefore the potential energy
is just

Vo= mgh

EXAMPLE 114
A 40 Tb weight is raised 20 fi. What is the potential energy of the weight at that
height?

SOLUTION 11-4
Using the results of the last example, the potential energy is

W
V=mgh = (—) gh = Wi = (40 [b1(20 fiy = 800 fi-1b
&

This 15 equivalent to about a thousand joules.

EXAMPLE 11-5
A spring with spring constant & = 11 Ib/in is compressed from 7 inches to
4 inches. How mueh work was done on the spring?

SOLUTION 11-5
We use the v coordinate to measure distance along the spring. First, we note
that the force on a spring is given by

F=—kx

With only the x direction to worry about, (11.6) becomes
H'_f';-‘[x:d_r (1112}
In our case

4 ELT o1
W =f (—kx)dx = x| = —(49 = 16} = 182in-Ib = 15 fi-Ib.
: T, 2

PRINTER: To Come  Oxtuber 20, 26

L ]

11:43



Pl PIC
MHBEDG2-11

MeMahon  MHEDO62-McMahon-vd.cli

'y

176 Statics and Dynamics Demystified

EXAMPLE 11-6
A spring with spring constant & = 18 Ib/in is compressed from 11 inches 1o
7 inches. What additional work is required to press it to 4 inches?

SOLUTION 11-6

The total compression from [ 1 inches to 4 inches is 7 inches. The spring is then

compressed an additional 4inches. We can caleulate the work by finding the work

done to compress the spring 7 inches from the relaxed state and then subtracting

the work required to compress the spring 4 inches from the relaxed state.
First, let’s calculate the work required to compress the spring from rest by

Tinches. This is

7 L 18
iy = f (kx)de = x°| = ?[49I =44} in-lb = 37 fi-Ib
(1} -

0
Now we calculate the work required to compress the spring from rest by

4 inches, which is

1

ko
{.-',:f(k,'}t"= -
2= *)ds = ox

The work done compressing the spring from 11 inches o 7 inches and then
from 7 inches to 4 inches is the difference of these quantities

1
= ;[16! = I4din-lb = 12 fi-lb

o

U=t = U =37 fi-lb — 12 ft-lb = 25 fi-lb

The Work-Energy Theorem

The work-energy theorem tells us that the work done on a particle in motion is
given by the change in the particle’s kinetic energy. This can be written simply as

U=T, =T = AT (11.13)

[n words, we say that the change in the Kinetic energy of a particle is equal 10
the work done by all forces acting on that particle.

EXAMPLE 11-7

A ladder with mass m and length { is standing vertically. If falls 1o the floor.
What is the angular velocity of the ladder when it hits the floor? Suppose that
the ladder is 10 fi long and weighs 50 |b.

PRINTER: To Come  Oxtuber 20, 26
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SOLUTION 11-7
From the work-energy theorem, we know that the work is equal to the change
in kinetic energy. Initially, the ladder is at rest therefore its velocity is zero. So
(11.13) gives us

=17y

The moment of inertia can be taken to be that of a rod, so we have

1
I= EmJ'?

And we take the kinetic energy to be T = L Jw? where w is the angular velocity
of the ladder. Now, what is the work done? 1t's force times distance. The work
is done by the gravitational force, and this 1s just mass times the gravitational
aceeleration times the height covered. The distance we are interested inis the
distance that the center of mass travels. [t travels from the midpoint of the ladder
standing upright which is i = %f to the floor where we take i = 0. So the work
done is

I
= Emgf

Setting this equal o the final kinetic energy by the work—cenergy theorem, we
have

1 I e
Emg.f = ng‘m‘
Solving, we find an expression for the angular velocity

3z
w=. ==
Vi

EXAMPLE 11-8
Atthe gym a trainer lifis a 50 [b dumbbell 4 fi 10 place it in a storage bin. How
much work does the trainer do on the dumbbell? How much work does the force
ol gravity do on the dumbbell? Assume that the trainer lilis the weight carefully
enough so that it does not accelerate.

SOLUTION 11-8

Since the weight isn’t accelerated, its in cquilibrium and the sum of the forces
acting on the weight are zero, The forces acting on the weight are the force of
eravity, which points down and the force exerted by the rainer. Since the sum
of the forces is zero, the force exerted by the trainer is equal in magnitude but

1Cone Otubier 20, 206
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Fig. 11-1  The horizontal component of the foree applied to the rope is what does the
work, since it i3 along the direction of the displacement vector.

Energy and Momentum

Looking at the formula for kinetic energy ( 11.1) itshould be apparent that we can
ecasily rewrite the expression for kinetic energy in terms of momentum. Recall
that momentum at nonrelativistic velocities is written as p = mv orjust p = mv
for motien in one dimension. For simplicity we consider the one-dimensional
case. Then

2

! P
T:Emv = . (11,14}

EXAMPLE 11-10

The mass of the neutron is 1.67 » 107°7 kg, A neutron is moving through a
laboratory and its energy is found to be 6.1 = 107" joules. Find the momentum
and velocity of the neutron,

SOLUTION 11-10
Solving for momentum using (11.14), we have

p o= £ 2Imi

There is not enough information given in the problem to determine the direc-
tion of the momentum, so we will just solve for the magnitude of the momentum
and ignore the sign. We find

p =T = V2167 x 10-7) (6.1 % 10-19) = 4.5 x 1072 kg
5

The velocity of the neutron 13

11:43
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The kinetic energy is

oy 1 1. 3
= ST = -(T8)127F = 6.1 = 107 fi-lb

T2
The only force acting in the direction of the cars motion 1s the frichonal force,
which is

=N = W= (0.6)(2500) = 1500 Ib

The force generated by the caris equal to this value. While the frictional force
points in the opposite direction of the car's motion and is therefore at an angle
@ = 180" with the velocity vector, the force generated by the car is parallel to
the velocity vector. Therefore the angle between the force generated by the car
is @ = 07, Using (11.16), we find the power to be

s fi-lb
P = |F|lv[costt = (1500)(127) = 1.9 x I[)'—I
5

In horsepower, this is
fi-lb
P= (I 9 x Iﬂ"—)/[:‘ﬁﬂ ft-Ib/hip) = 346 hp
s

EXAMPLE 11-12
An experimental rocket car is pulled down a track with a foree of 67 kKN, The
speed of the car is 247 km'h. How much power is being developed?

SOLUTION 11-12
First, we convert the speed into meters per second

km m 1h m
2 =
(-47 ) )(mus)(mos) 68.6°

When the ferce acts along the direction of motion, power is just foree times
velogity

P = Fv = (67,000 N) ((18.6 ) =asmw
5
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Basic Conservation Laws

Conservation laws are at the heart of physics and stand as fundamental “truths”
as 1o how the physical world operates. Two key conservation laws that are im-
portant in dynamics are conservation of energy and conservation of mamentum.

Inorder to apply a conservation law to a system, that system has to be isolated.
What we mean by this is that the system is completely free of outside influenees,
No system can be truly isolated, however we can consider a system isolated for
practical purposes. For example, you might want to study the temperature of
some process. You can consider it isolated by thermally insulating it from the
outside world so that little heat enengy enters or leaves the system. A eriterion
you could use to determine whether the system is isolated is the following. s
the insulation good enough so that the heat entering the system from the outside
world is significantly smaller than the temperatures you are trying to measure?
If the answer is ves then the system can be considered isolated and you can
apply conservation laws to analyze the system.

The key aspeet of conservation laws is that some measured quantity M re-
mains constant. That is if

M = constant

then we say that M is conserved. The quantity of interest remains constant for
the everall system, butit may redistribute itself in different ways througihout the
system. In a mechanical system, kinetic energy might be converted into heat.
[f the system is well insulated and the heat is not allowed o escape, the wtal
energy in the system would be the same but it has been redistributed, with some
of the kinetic energy now heat energy.

A quintessential example often used is the redistribution of kinetic and po-
tential energy in a mass spring system. What we are about to describe is not a
realistic system. it is a thought experiment to get the concept of energy conser-
vation across, We imagine that the system is totally isolated and is ideal so that
enengy 15 not dissipated eventually bringing the spring to rest.

Imagine that the total energy in the system is £. The total energy in a system
is the sum of kinetic and potential energies

E=T+V (11.21)

We take the x coordinate such that x vanishes when the spring is completely at
rest, This 1s shown in Fig. 11-2.

At different pomts x in the motion of the mass, energy will be distributed
among kinetic and potential energy in different ways, For example, the mass will

11:43
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At all times, £ is a fixed constant value if energy 15 conserved. We can use
the relation £ = T + 17 to find out how the energy is distributed among kinetic
and potential energy.

EXAMPLE 11-15

A ball rolls down a hill that 15 70 m above level ground. and rolls up onto a
shorter hill. There is no friction between the ball and the ground. When the ball
reaches the smaller hill, its velocity is 7 m/s. What is the height of the smaller
hill?

SOLUTION 11-15

We can apply conservanon of energy in this case in the following way. If we
assume that the energy is constant, which we can do because there is no friction,
then the sum of the change in kinetic energy and the change in potential energy
is zero, that is since at some point

-

E= 3™ vy mgy
While at another point in time

E L :

= Eml: + mgye
The change AFE = 0 and we can wrte

0=AT+ AV (11.22)

where T and ¥ are the kinetic and potential energies, respectively.

At the tap of the first hill, the velocity of the ball is zero and the energy of the
ball is all potential energy. The potential energy of a mass m in a gravitational
field at a height y is

¥ =—mgy (11.23)
The change in potential energy is the final potential energy, which is at the
unknown height & of the smaller hill. minus the potential energy at the initial
point

AV = —mgh = [=mg(T0)] = mg (70 - #)

The initial kinetic energy 15 zero since the velocity of the ball is zero at the start,
eit’s Lmv® atthe top of the smaller hill, We apply conservation of energy

PRINTER: To Come  Oxtuber 20, 26
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and equate kinetic and potential encrgies
1 .,
Emv‘ = mg (70 — i)
Canceling the mass we obtain
L2 = g0 )
—v = o (TO—
3 &

Solving for i gives

When a system is isolated, the total momentum in the system is alse conserved.
This means that

;= constant (11.24)

EXAMPLE 11-16

A bullet with a mass m = 7.2 gis fired with a speed v = 1500 m/s into a wood
block with a mass 4f = 13 kg resting on a frictionless surface. What is the
velocity of the block after the bullet becomes lodged in it?

SOLUTION 11-16
Let the subscript b denote the bullet and the subsenpt B denote the block.
[nitially the total momentum is

o= mvy+ Myg

The velacity of the black 15 zero initially, s0 g = mpvy. At the final point, the
block and the bullet form one system, so the final momentum is

pr=Am - M
Conservation of momentum requires that py = p; so we have

myvy, ={m4+ M)v, =

LI 10.8 kg ?

P = = - = (.8 m/s
{m 4+ M) ( 7.2 ke + 13 kg)

1000
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Quiz

(=]

S

Ln

=

-1

. The kinetic energy of an electron in an aluminum wire is 5 x 107

. Tind the kinetic energy of the planet Mars if the mean radius of its orbit

i§ 2.3 x 10" m and the period of Mars® orbit is 1.88 years, The mass of
Mars is 6.4 % 107 ke

. A man is nding a horse at 30 miles per hour. The man weighs 170 [b and

the horse weighs 1500 Ib. What is their kinetic energy in Joules?

. A 50 Ib weight is raised 35 ft. What is the potential energy of the weight

at that height?

. What is the work done compressing a spring from its relaxed state by

6 inches if the spring constant is 20 [b/in?

. A worker is pulling a crate with a mass m = 50 kg across a fnctionless

surface. He is using a rope over his shoulder which is at an angle

= 35° with respect to the honzontal. What is the mimimum force he
must apply to keep the crate moving? How much work is required to pull
the crate a distance o = 20 m?

18 1.

What is the electron’s velocity? The mass of an electron is 9.11 x
10-3 kg,

. The kinetic energy of a proton is 5 x 107'% ], What is the momentum of

the proton? What is its velocity? The mass of the proton is 1.67 x
10777 kg

. A train car is pulled down a track with a force of 37 kN. The speed of the

caris 17 knvh. How much power is being developed?

. The power indicated for a certain engine is 300 k'W. A test measures the

power output as 260 kW. What is the efficiency of the engine?

. A secret fab in Geneva has a test slide used to accelerate weapons. The

slide is 45 m above level ground. A ball, initially at rest, rolls down
without friction. What is the speed of the ball when it reaches the bottom
of the slide?
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Waves and Vibrations

It this chapter, we will study the mechanical behavior of waves and vibrations.
We begin with some general remarks on mechanical waves. focusing on the
basic but fundamental type of wave deseribed by a sinusoidal oscillation. Then
we consider some properties of vibrating mechanical systems.

Basic Wave Motion

A wave is a disturbance that propagates through space. Many waves, such as
water waves, require a mechanical medium to propagate through, Another ex-
ample, one of the most familiar examples of a mechanical wave in daily life, is
sound waves which require air for propagation. Not all waves require a material
medium to propagate through, however. For example, electromagnetic radiation
including light and radio waves can propagate through a vacuum. Electromag-
netic waves are not a mechanical disturbance of any kind, although they share
many of the general properties of waves that we will discuss in this chapter.

A great deal can be learned about waves by focusing on a simple vibrating
string, We imagine that at one end of the string a person shakes the siring up

188
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Fig. 12-1 Following the niion of a point on a vibrating string.

and down, causing a wave to propagate across it. We pick a pomt P at some
point along the string at a given time during its motion, as shown in Fig. 12-1.

The position or height of the point P is a function of the position x and time
¢ as the string moves up and down. Functionally, we can write

v=ylx.) (12.1y
There are two quantities of interest that we can use to describe the string. The

first s the slope at any given time. The slope is given by the partial derivative
of y with respect to x

slope = ‘:hl (12.2)
i
The velocity of the height of the point is
ay
o= o (2.3
Generally speaking. any function that can be written in the form
Sy = jix —vrd (12.4)

modulo some constants multiplying the argument descnbes a traveling wave,
More specifically, a wave with argument of the form (12.4) is one that is traveling
to the right, or towards more positive ¥. A wave that is traveling in the opposite
direction, toward the left or towards more negative x, is of the form

gix ) =gix 4w (12.5)

These ideas are illustrated in Fig. 12-2 and Fig, 12-3,
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Fig. 12-2 A wave traveling to the right has the functional form f(x — v1). As time
increases, the wave travels 1o the right,

Sinusoidal Waves

A waveform you are probably already familiar with is the sinusoidal wave. This
is a basic waveform that arises frequently in the study of engineering mechanics,
electromagnetics, and physics. A sin wave is shown in Fig, 12-4,

The functional form of a sin wave traveling to the right is, using (12.4) as a

guide

flx) = Asinthx — wi) (12.6)

The argument of the sin function, ¢ = kx — wi, 1s called the phase of the wave.
The phase is constant, which will be important later.

&

ZiT e+

e
v

Fig. 12-3 A wave traveling 1o the left has the functional form gix, 1) = g {x + ve) As
timve increases, the wave travels to the Teft

’I
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7 1\/
VARVARY.

The multiphicative constant 4 is called the amplitude of the wave. This is the
maximum value that the wave can attain since

~1 =sing =1

The amplitude has dimension of length, in STunits we can measure the amplitude
in meters, although different units may be convenient depending on the type of
wave. The amplitude of the wave is basically the maximum height of the wave
above the ongin. This is shown in Fig. 12-5.

Returning to the phase, let’s determine the units of the multiplicative con-
stants, The phase is
¢ = kx — ot

ANAN

The amplitude of a sin wave is the max height above the origin,

Fig. 125
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Simy

-
] P

Fig. 12-6  The wavelength is the shortest distance covered by the pattern of the wave,
which repeats iself at regular intervals,

Since the phase is just the argument of the sin function. it is measured in
radians, So, we need to cancel the dimensions of length and time seen in the
functional form of the phase. The dimensions of & are

W=
[¥]  length

TFwe are using S units, then the units of & will be radians per meter. The con-
stant k is called the wave mumber; [Uis related w another quantity denoted by the
mysterions Greek symbol 2 that seientists call the wavelengih. The relationship
between the two is given by

(1.7

Inn ST units, wavelengih is measured in meters. The wavelength & is the shon-
est distance over which the form or pattern of the wave repeats itself. This is
illustrated in Fig. 12-6.

The period T is the tme imterval required for one pattern of the wave 1o pass
a fixed point. Or another way to say this is that it is the time interval required
for the wave 1o repeat itself. Mathematically, this is the time required to pass
such that the functional form of the wave assumes the same value

flx)= fixe 47 (12.8)

The S1 unit for period is the second. Inverting the period gives us a familiar
measure of the properties of the wave, the fiequency. First, we define the angular

1Cone Otubier 20, 206
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Sfreguency as
27
w = — radis (12.9)
« 7 /
A more familiar form is the plain old freguency. Denotad by another myste-

rious Greek symbaol v, frequency is the number of cycles made by the wave per
unit time at a given point. Frequency is just the inverse of the period

(12,100

1
==
T

The units of frequency are cycles per second. Formally, this is called the fersz
1 hertz = | cyeleis (12110

As can be seen by comparing (12.9) and (12.10), frequency (plain Jane) is
related to angular frequency via

(12.12)

The propagation of a wave is governed by the wave eguarion. The wave
equation is a partial differential equation relating spatial and temporal variations
of the wave. In one dimension, i the wave is propagating along the x direction,
1he wave equation is

LT

axt vt

(12.13)
How fast is the wave moving? We can find the phase velociy of the wave by

setting the phase equal 1o some constant C and then ditferentiating. First, let’s
remind ourselves that the phase is constam

@P=kx —wt =0C

Taking the time denvative, we have
k% —w=10
Solving for the velocity v = dv/dr we find

w
p=— 12.14)
L % {
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Now w = 0 and & = {), therefore the velocity dx /dr = (. That tells us that the
wave is traveling 1o the night, or towards more positive x. This is consistent with
what we stated earlier about a wave with argument x — vr.

Dispersion
Unfortunately things don’t always stay simple in the physical world. One ex-
ample is the pl of dispersion. Someti waves with different fre-

quencies travel at dilferent speeds. A good example is an electromagnetic wave
passing through some kind of medium. This basically means that a group of
waves that was initially traveling together disperses, with each frequency com-
ponent teaveling with a different speed. The most common example of this is
white light passing through a prism that splits the light out into the ditferent
primary colors.

In such a case the passing wave can be desenibed by a wave packet, which is
a packer with an overall shape which is filled with individual waves made up of
the different frequency components (see Fig. 12-7). Each of these is moving at
a different phase velocity o/ k.,

The packet, meanwhile, has a relationship between angular frequency and
wave number that is a functional form w = w (k) called a dispersion rela-
tion, The motion of the packet as a whole is descnbed the group velocity,
which is

vy = — (12.15)

Fig. 12-7 A simple example of a wave packet,
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When you hear about expenments with light where seemingly anomalous
behavior occurs, such as components of the wave wraveling “faster than the
speed of light,” you are hearing an example of differences between group and
phase velocity, In these cases, the phase velocity can exceed the speed of ight,
but it makes no difference because the waves only ravel at the phase velocity
inside the wave packet. For you, the observer, you can only detect the leading
edge of the wave packet which is moving at the group velecity. It turns out that
the group velocity travels at the speed of light.

EXAMPLE 12-1

A wave is described by fix.¢) = 0.02sin(150x — 3.81). What are the ampli-
tude, wavelength, and period of the wave? What is the frequency? What is the
speed of the wave? Which direction 15 the wave wraveling?

SOLUTION 12-1

Comparison with{12,6) tells us that the amplitude of the wave is A = 0.02 m =
2 em. The wave numberis & = 150 and the angular frequency is w = 3.8 radis.
Using (12.7), we find the wavelength 1o be

27
h=—=0MIm=42cm
150
We can find the period from the angular frequency using (12.9). Rewriting this
formula gives
2s
=TT s

i

'.|;f

wa
e

The frequency is

]_
T 1.7%

= (.61 Hz

The velocity of the wave can be calculated from (12.14), from which we find

w 3.8 .03 mis = 30
= — = —— = (.03 m's = 30 emis
ko150
EXAMPLE 12-2
In quantum mechanics, the energy and momentum of a free particle of mass
m, which is described by a wave packet. are related to the angular frequency
and wave number via the relations £ = fiw and p = Ak, Show that the phase
veloeity of the wave packet does not give the correct velocity of the particle but
that the group velocity does,
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The mass density is a finear mass density. and so the units are mass per unit
length.

EXAMPLE 12-3

A climber who weighs 175 Ib and his friend are at a cliff that is 34 m above
the valley below. The climber is hanging off the cliff with a rope that is 32 m
in length, while his friend waits a1 the top of the cliff. The friend, thinking he
is funny, shakes the rope vigorously. If the mass density of the rope is 820 g/m,
how long does it take for the disturbance to travel down to the climber, causing
him to lose his grip. falling to the valley below and breaking his ankle?

SOLUTION 12-3
First, let's convert the weight of the climber inta SI units. Since | Ib is about
4.45 N, the climber's weight is

(175 1b){4.45 N/Iby = 779 N

This corresponds to a mass of about 79.4 ka. [s the body mass index of the
climber wo high? There is not enough information in the problem to tell,
Nonetheless. the tension is just equal to the weight of the climber, and so

T _ ??‘)N. — 950 m:
a  0.82kg/'m 5°

The velocity of the disturbance traveling through the rope is

[T
v == = V050 = 30.8 mis
\‘H

Henee, the time required for the disturbance to reach the climber is

Superposition and Interference

Waves have a special property. When two waves pass cach other or collide, they
add up to form a new wave, This ability to add two waves together and obtain a
new third wave is called superposition. As an example. imagine two water waves
that meet and then form a new wave that may have different characteristics than

144
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the waves that went together to form it. Sometimes if things are just right the
waves completely cancel and there is no wave that results,

For sinusoidal waves, it is easy to characterize the properties of the new wave
that is formed by the superposition. For simplicity we will stick to waves that
have the same amplitude and consider adding together two waves, Recalling the

trig identity
A+B) Os(.d—ﬂ‘)
cos| =2
2 2

Ifwelet f(x.r) = Asinthk)x — exyrhand fr(x, 1) = Asin{k;x — wyt) then the
sum or superposition 5 = f = 3 15 described by

{ky + K2} (T ]
e

(hy— k2) {0y — cia}
X COos TI TI

Notice that the amplitude of the combined wave is exactly twice that of the
amplitudes of the original waves—but we considered the special case of adding
two waves that had the same amplitudes.

sinA+sinH=23in( (12.17)

Jsle, 0y =24sin [

(12.18)

EXAMPLE 12-4
Two waves fix,0) = 0.04sin{70x — 3r)and fHix, £ = 0.04sin{67x — 5t)in-
terfere. Describe the resulting wave.

SOLUTION 12-4
The amplitude of the wave that results from superposition is

A=2{(004) m=0.08m =8 cm

We have
Ky ka0 67 A
5 = — =083
ky— k3 70— 67
L 15
2 2
And
wy ey _ 345 4
2 2
wy—wy 3—35

144



Pl PIC
MHBDOGZ-12 MeMahon  MHBDOG2-MeMshon-vd.cls PRINTER: To Come  Oktober 20, 2006 11:44

CHAPTER 12  Waves and Vibrations 199 @

004 ¢

Fig. 12-8 A plotof fite, 1) = 0.045in(70x — 3r) at time ¢ = 0. Dimensions
are in meters.

So the resulting wave is

Silx.0) = 0.08sin[68.5x — 4]cos[1.5x +¢]
In Figs. 12-8 and 12-9, we show the two individual waves prior to interference,
while in Fig.12-10 we show the wave that results from interference at time

+ = (. Notice that the two waves, when added together, produce a region where
they completely cancel atx = 1 m.

Energy and Power in Waves

To find the kinetic energy of a wave, we again consider a wave traveling along a
string. In this section, we call the kinetic energy K so we don’t confuse it with

i

:

AN
e

—0i4

Fig. 1229 A plotof f2(x,0) = 0.04sin(67x — Sryars =0,
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04675
008

nas |
Hl

028 :

-003 1

o075 |

Fig. 12-10 A plot of the superposition 3 (x.¢) = 0L0Bsin[68.5x — 4rJcos[L3x +¢]
atr =0, showing how n regi e w dd together producing a wave of
higher amplitude, but that there is a region where the two waves cancel,

the tension that may be in the siring. The kinetic encrgy of some point 7 on the
string which consists of a small mass element dim is given by (see Fig. 12-1)

1 3
dK = E(f.rm'}

The veloeity in this equation v, is the vertical or y-directed velocity of the point
P.In(12.3), we stated that this is the derivative of the function describing the
wave with respect to time. 1f we consider the special case of a sinusoidal wave
Silx. ) = Asin(ky — wr) then

v, = —wd cos{ky — wt)

A differential mass elementin the string is equal to the mass density = multiplied
by a small length dx of string. Therefore we can write the differential of kinetic
Energy as

o 5
dK = —dva? A% cos” (kx — wr)

Dividing by ¢t we have

K _odr 247 cos® (k 1)
—_— = 5 L = (.
dr 2 t

To find the average rate at which the wave carries energy. we can take the time
average of this expression, First, we note that the time average of the square of
a sinusoidal is

2 ]
[cos® thx — wi)) = 3

144
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The density of the string is
7
=_-= 35 e'm = 00035 kg'm

The velocity of the disturbance is

T e
== = 69 v
"=V e TVooess MR

The time required for the disturbance w travel the length of the string is

2m
= = 0.0295 = 29 ms
G4 s § :

The average power carried by the disturbance is

1 5.2 | N
(P) = sove’d® = E:u_:}n,?ﬁ}mquzmznnf (.01 =019 W

Vibrations

We now consider an elastic system with masses, We have already had a taste
of this kind of system when we considered a mass-spring system, and when
wou think of vibrations vou can think of a mass-spring system. Basically, this
invalves the small motion of @ mass about an equilibrium position—we call this
motion a mechanical vibration, Many of the concepts already covered in this
chapter such as amplitude, period, cycle, and frequency carry over from wave
motion, However, we also consider the following concepts.

Natural Frequency: This s the frequency of a vibrating system i the
absence of any external forcing. Vibrations that occur in this case are
called free vibrations.

+ [orced Vibrations: These are vibrations caused by the influence of an
external force.

.

Transient Vibrations: These are short-term vibrations in the system that
dic out quickly.

Steacly Stare Vilbwations: These are vibrations that continue in a system
long after the transient vibrations die out.

+ Resonance: Resonance oceurs when the frequency of a forced vibration
matches the natural lrequency of the system.

1Cone Otubier 20, 206
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For a mass spring system with mass m and spring constant & the natural fre-
quency is
T
w=/= (12.22)
Vo
EXAMPLE 12-6
A mass m = 2 kg is hanging down from a spring with spring constant £ =
(.8 N/m. 1f the mass is pulled down by | ¢m and released from rest, find the
position and velocity of the mass as functions of time and the natural frequency
of the systam.

SOLUTION 12-6
We take the resting position of the mass to be at the origin of the coordinate
system, which we call x (see Fig. 12-12).

A mass spring system with mass m and spring constant & and no external
forcing is described by the differential equation

Pk
Ziaix=0 (12.23)
dr m

The solution of this equation is of the form
Xy = Acoset + B sinet (12.24)
The velocity is the time derivative of this expression
vty = —wdsiner + w8 cos ol (12.25)
Att =0, we are told that the mass is pulled down 1 ¢cm, Therefore

= —001=4

Fig. 12-12  The coordinate system wsed in Example 12-6,
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The frequency of vibration is

[132 i) (32.2 ws)
30 b

T
—

eV = L5cps

f=

The period of vibration is

1 1
F=—=— =067
T 13 675

EXAMPLE 12-8

A barrel with radius K is sitting upright in a peol of o1l with mass densiry p. The
batrel is pushed straight down into the oil by a distance x. What is the natural
frequency of oscillation for the barrel if we ignore the damping effects of the
oil?

SOLUTION 12-8

The cross-sectional area of the barrel is 78>, A height x of the barrel, which is
just a cylinder, has a velume equal to Rz, The amount of il displaced by the
barrel is equal to this volume. IT the barrel is pushed down, it will be acted on
by the buoyant force of this amount of liquid, which is the volume of a eylinder
of the liguid multiplied by the mass density. The wotal mass of oil displaced by
the barrel is

o= p{zhx
The only force acting is gravity, and since the barrel is pushed down we add a
negative sign

F=ma=—p(xR g
By Newton's second law, this iz equal to

dp dv d*x
- =m—=m—
di dt dre?

Therefore, we have the following differential equation

2

2 o
—piaR g =m—sr
pla R g r!rd‘“‘
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Dividing by m and then moving all terms to one side, we obtain an equation for
a simple harmonic oscillator

& plakhe
— ———x =0
dr? m
The equation for a simple harmonic oscillator is
dx
dr?

Therefore we deduce that the natural frequency of this system is

\
+ 'y =10

TolnR?
w = \‘HM rad/s

m

The frequency of oscillation is

f=

EXAMPLE 12-9
A mass spring system with a mass m = 2 kg and spring constant & = 3000 N/m
is subjected 1o a force

F=3cosampt N

Compare the amplitude of vibration il ew; = 20 rad’s and if w; = 38 rad/s.
SOLUTION 12-9

The differential equation for this system can be found by applying Newton’s
second [aw

e

x
m—— = —kx + Jcosw;t
di? !
Rearranging terms
dx ok 3
==+ —X = — (05t
dt? m m

The solution 1o this equation is

Xy = Acosmpl

1Cone Otubier 20, 206
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The derivatives of this function are

dx .

— = —wpd sinwgt
dt

d’x 2

— = —wid coswypt
dr? i

[nserting this into the differential equation, we find the following

3 k 3
wipdeosal + —A 08wt = —cosw
m m

Canceling the common factor cos w,t, we find an cquation for the amplitude of

vibration

whd f —A = =
/ n n

For & = 3000 N/m, m = 2 kg and @, = 20 rad/s

3 3
,1=7=E.4x10'm

A::%:D.ﬂlm

1500
—— —38)°
(5 ow)

The ratio of the forcing frequencies is

With s = 38 rad’s

18
i 1.9

But the ratio of the amplitudes of oscillation is 10 times as large

A 03
_'=—UU' =19
A 1Ax 10
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Next, we calculate the derivative of the Lagrangian with respect to ¥, giving

Locking at (13.2), we see that we need to take the time derivative of'this quantity

dal d .
= = —(mi)=mi
o dr(n.\’l mx

Now we equate the terms we have to give the equations of motion
mi = —ky
Or, moving all terms to one side
mi+ky =10

In the first example we derived the equation for a simple harmonic oscillator
by looking at the energy in the system. This result is not particularly illum-
nating since the equations of motion are easy to write down. The utility of the
Lagrangian methods is that there will be times when it's a simple matter to write
down the energy, but it's not so simple to write down the cquations of maotion.
By calculating the Lagrangian and the Euler-Lagrange equations, however, the
equations of motion can be obtained.

EXAMPLE 13-2

T thig example, we vse Lagrangian methods w denve some of the equations of
kinematics used in Chapter &. Find the equations of motion for a particle in free
fall from a height v,

SOLUTION 13-2
The kinetic energy of the particle is just 7 = $m %, The potential energy is

V =mgy
The Lagrangian is
L
L=T-V=qcmi~—mgy
M £)
Using a procedure identical to that in the last example, we find

daL d P
@ a_l" = ar myl=my

RET)
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We also find that

ﬂ = —3ax?

iy

Writing the Euler-Lagrange equations as

daL AL

deii i
We find that the equations of motion for this system are

mi+Jaxt =0

PRINTER: To Come  Nowember |, 2006
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Systems in Multiple Dimensions

When a particle is moving in more than one dimension, the Euler-Lagrange
equations constitute a set. To cach independent coordinate, there will correspond
an Euler Lagrange equation. In three dimensions. if we symbaolically denote
cach coordinate by a subscript v, , whered = 1, 2, 3 thenwe can write the Euler—
Lagrange equations as

~ =0 (13.3)

Confused? Let’s make things worse with an example,

EXAMPLE 134
Derive the equations of motion for a projectile with no air resistance.

SOLUTION 13-4
This 1s a standard example of two-dimensional motion, and we analyzed pro-
jectile motion in Chapters & and 9. First, we compute the kinetic energy of the
system. Using the standard Cartesian coordinates in the plane, there will be
maotion in both the x and v dircetions. Therefore the kinetic energy is the sum
of the kinetic energies in each direetion,

The potential energy acting in this problem is due 1o gravity. At a height y, the
potential energy of the projectile is

¥ =mgy

RET)
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The Lagrangian is therefore given by
R ST B
L=T-V= FmE + gy —mey

To derive the equations of motion, we consider the x and v components sepa-
rately, writing down the Euler-Lagrange equation for each. First, we consider
x. We have

il d ( |, . 1, ) 0
— = — | zmxT b omyt gy | =
e A A2 2 &

And so

Application of { 13.3) for the x coordinate gives us
i=0
where we were able to throw away the mass since we have a single term set equal

to zero, so it cancels. Integrating once gives us the velocity of the projectile in
the v direction

X =y, = vy

We have found thar the velocity is a constant, consistent with our earlier work
on this problem. Integrating again to obtain the position

x{1) = vof + xp
Now we turn our attention to the v coordinate. First, notice that
ETA a1 e [ .
—_= — [ —=m) =My = mgy | = =n
dy  dv \2 2" & “

Next, we find that

[ .
Eoamyt mgy ) = my

PRINTER: To Come  Nowember |, 2006
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The kinetic energy is similar to that in the projectile motion example. That is

1,
T = -mi®+ —mp?
2 2
However in this problem, cur concern is the change of the angle & with time.
Using the chain rule, we find

dv e .
¥ = — = — (Isin#) = {— cos & = Id cosd)
* dr e ) et

dx o dft .
= — = — [ — #) = {—3sind = [Fsin#
¥ n d.r' {cosd) !d; sin {t sin

Now we can write the kinetic energy of the system as

LI
T =—mi® 4 —mi?
2 2-

] | T 1 . 2 .2 | I,
= Em!'b" cos# 4 ;m!'ri' sinfh = ;m.r?ﬁ"l’cun' f +sin” ) = Smi“6°

The potential energy is just the gravitational potential energy for the pendulum
bob at height y. This is

V=mgy = =magl cosd
This allows us to write down the Lagrangian for the system
L=7T-FV= ;m!lﬂi] + mgi cos @
Wow we proceed 1o find an equation of motion Tor the angular coordinate, First,

we find

L A Jeosd )5ing
% = 38 L™ +mglcos@ | = —mglsin

Next,

al

LI n
—_— e | =P = “
25 = 3 (sz ( melcos ﬂ) i

RET)
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And so

d ol

—_—— = [H

dt ag

The Euler-Lagrange equation gives us the equation of motion

o dl dal o .
—— — — =ml*t + mglsinf =0
dia meomUTmE

Canceling the mass and dividing by [ gives us the pendulum equation
4 =sinf =0
!

EXAMPLE 13-6

Now consider a driven plane pendulum. The pendulum is attached to an oscil-
lating suppaort that oscillates ot frequency w with amplitude k. Find the equation
of motien for the angle the pendolum makes with the vertical.

SOLUTION 13-6
The situation is shown in Fig. 13-2.

This example is similar to the last one, except the y coordinate in this problem
is lengthened by an amount determined by A1) = i cos wi. We have

x =1sinf
v = —lcost — frcoswl

Fig. 13-2 A driven pendulum,
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Then
& d . i N
= d_\ = —({sin#) :.fi cos# = 6 cosé

di i dt

v d do

gz (—leos® — hcosemt) = — siné + wh sin

drdi dt

= 16 sinf + wh sinwi
Therefore

T

1 1

.z -z
—miT | —my
3 | 7™M

1 . ) | TR 1 . .
;mflﬂl Cos™# 4 Em.f'f}' sinTH + ;mmz-‘rz sin® ef + nrlash® sin# sin wr

| P, 2 L2 1 2,2 .2 . .
= Enﬂ"é}‘ (cos? & 4 sin® #) + —ma’ b7 sin® wt - mlwhd sin 6 sinwt

= Emlzél - %mro:f’!: sin’ awr 4 miewlhi sin 0 sin wt
The potential energy is again mgy. In this case
V = —mgyv = —mgifcosf + lcosei)
The Lagrangian is
L=Fr-V
1

PP | . s . . .
= ;m!"’{)z | imw"h"‘smzw: + mfewh®) sind sineof 4 mg ({ cos € + h coswt)

Now we calculate the terms required for the Euler—Lagrange equation, First, we

have
al. 5 . .
— = w6 + mhwh sin @ sin e
it
Therefore
= mi?H + mlew h sin @ cos wt + mlwh# cosH sin ot
And

At .
2= mlwht cos B sinet — mglsind
i

RET)
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The Euler-Lagrange equation (13.3) gives
w6+ mlw i sin® cos wt + milahf cos 6 sinwt — miehit cos @ sinwt
+mglsint = mi*0 + mlw’h sind cos wt + mglsing =0
Canceling the mass gives
P8+ T b sind cos i + plsing =0
Now we divide by the length squared (the lzading coefticient)

- wihsing )
g — coswt + gsing =0

The Hamiltonian

[t twrns out we can go a step further in the analysis of a system via energy
for systems where the potential enerzy does not depend on velocity, We now
consider the total energy of a system as expressed by a quantity called the
Hamiltonian. While the Lagrangian is a function of position, velocity, and time,
the Hamiltonian is a function of position, momentun:, and time. To begin, we
need 1o use a formal procedure w obtain the momentum of a system which
is described by a Lagrangian. This is done by calculating the derivative of the
Lagrangian with respect o velocity
oL

= 13.4
r dax ¢ )

The Hamiltonian /7 can be construcied by writing
I =pi-1F (13.5)

If motion eccurs in more than one dimension, we can label the coordinates with
a subscript and then
Al
= —
i iy
And then the Hamiltonian is given by

H= Z;a;.\’; —L (13.6)

RET)
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Once the Hamiltonian is in hand, the problem can be solved using Hamilton's
equations of motion

i
= 2 (13.7)
itp;
i i
;= ——— 13.8
12 s ( )

While the Hamiltonian method seems like mathematical overkill, it turns out 1o
be extremely useful in many situations. For example, in atwmic and subatomic
physics the Hamiltonian is extremely important, and plays a central role
quantum theory, To illustrate the techniques, we will redo an example.
EXAMPLE 13-7

Redo Example 13-4, where the equations of motion were found for projectile
maotion by considering the Hamiltonian.

SOLUTION 13-7

[n Example 13-4, we found that the Lagrangian is

VU ST N
L=T-V= 5m;c' + im_v' —mgy

With two coordinates, we need to find two The [S
to the x coordinate is

{1l _:+] 2 o
= me 2’“‘1 mg.\) = mx

The €

yugate to the v coordi is

i L LT N
PRl E"“ +Enr5 —mgy | =mjy

We can then rewnite & and ¥ in terms of the momentum conjugate to each
coordinate,

P
m
Py
m

This allows us 1o rewrite the Lagrangian in terms of momentum. Using these
substitutions
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Now we have

, . oo
Zp,x; =pX+py= o + =
- mm

The Hamiltonian can be writien down using (13.6). We find

=3 pi—L

An tmportant point to notice is that the Hamiltonian we've derived 15 the sum
of the kinetic and potential energies of the system. Now we can use Hamilton's
equations {13.7) and (13.8) to write down the equations of motion. Considering
the x coordinate first, we have

dc @ @ (pf ;i

- = = L tmgy | =
dr dpe dpe \2mo 2 &l )

Next, we have

d i afpr o op
Pa_—_—_—_— p—‘—-!—'+mg_|' =10

dr oy dx \2m  2m

This tells us the momentum in the x direction is a constanr. Therefore

dx e e
—=—=xtl=—t+x
dr " "

Now for the v direction

Iy il El rop? .
ay ot _ o (et mp o N_p
ot apy dpy \2m Im m
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29. Four masses my = 2 kg, m> = | kg, ms = 3 kg, and my = 5 kg are

30,
il
iz

19

40.
41.
42.
43

44,

46.

located at the positions vy = 1m, x; = 3m, x3 = 3 m, and

x4 = 10 m, respectively. Where is the center of mass located for this
system?

What is the moment of inertia for a continuous system?

Define the radius of gyration.

A suspension bndge with a span of 211 m is supported by two cables,
each of which carries a load of 12000 N/m. If the sag of cach cable is
18 m, what is the tension at the midpoint of the cable?

Each cable in a suspension bridge with a 400 ft span and a 22 fit sag
carries a load of 720 Ib/ft. What is the tension at the midpoint of the
cable and what is the tension at the supports found on each end?

A cable spans 200 fi and sags by 34 ft. How long 15 the cable?
What function most closely desenbes the curve known as a catenary?

. The load in a parabolic cable is supported in what direction?

A catenary cable is deseribed by ¢ = 18 11, has maximum tension of
550 1b, and carries a load equal to 3 Ib/ft. What is the sag?

A catenary cable 15 described by ¢ = 118 (i, has maximum tension of
550 1b, and carries a load equal to 3 1b/fl. What is the tension at the
midpoint of the cable?

With respect to the direction of motion, where does the frictional
Torce point?

What does static friction resist?

What is the formula for the normal foree?

Given a normal force N, what is the frictional force?

A beltis about o slip. How are the tensions on the two sides of the
belt related?

A beltis wrapped around a pulley. On the slack side. the tension is
350N while the tension in the tight side is 400 N, Find the coefficient
of friction between the belt and the pulley.

A cart has wheels that are 16 in in diameter. A wheel carrying a load
of 350 [b is stuck in a depression, and it is found that a force of 210 Ib
is required to roll the cart out. What is the coefficient of rolling
resistance?

Define acceleration,

17:3%
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63, An artillery picce is situated atop a mountain that is 1.2 krn above the
valley below. Tf the gun is situated at an angle of @ = 377 above the
horizontal. and the projectile travels 6.7 km, what is rhe muzzle
velocity?

6,

iy,

67.
68.
6%,

Th.
71

72.

73,

T4

75,

T6.

77.

T8,

An artillery piece is situated atop a mountain that is 1.2 km above the
valley below. [T the gun is situated at an angle of & = 37° above the
horizontal, and the projectile travels 6.7 km. What is the time of
Mlight?

A manin a NASA super G Force test center is moving about a radius
of & m with an acceleration of 2 g. What is his speed?

A satellite orbits a newly discovered planet hiding behind Jupiter. It
orbits at a height of 210 km with a velocity of 8.3 km/s, What is the
acceleration of gravity at this height above planet mysterio?

The velocity of a 2 kg body is 17 m/s. What is its momentum?

What does conservation of momentum mean?

How is conservation of momentum expressed in terms of Newton's
laws?

Describe uniform motion mathematically.

What is a Newton in terms of the fundamental units of mass, length,
and time?

What is the force of kinetie friction?

A body is moving in a potential {7 = 2r%e~", What is the force on the
particle?

A particle which starts at the ongm is under the influence of a
potential given by I7(x) = ex®. What is the velocity of the particle
up to a constant?

A mass spring system is moving such that the force on the mass is
7N when the mass is 2 m 1o the left of the origin, What is the spring
constant?

What is the fundamental frequency of a mass—spring system with
mass m and spring constant &7

Consider 2 mass-spring system. Att = 0, the mass is located a1

x = 2 frand the velocity of the mass is v (0) = 0. Determine the
kingtic energy of the mass as a function of time.

The spring constant for a mass—spring system is 0.2 N/m. What is the
potential when the mass is located at x = 2 em?

17:3%
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T4

a0,
&1

82,

83,

84,

£S5,
86.

87.

88.

89,
9.

91

92.

93,

o4,

Statics and Dynamics Demystified

What 1s the differential equation for a mass-spring system with
damping?

What is the best way to describe overdamping?

How does an underdamped system differ from a critically damped
system?

In uniform circular motion, in what direction does the acceleration
vector point?

A flywheel has a radius of (145 m. The flywheel is initially at rest,
then accelerates to 1800 rpmoan 12 5. What is the angular
acceleration?

A flywheel accelerates from rest to 3200 rpm. If this takes 14 5, how
many revolutions does the flywheel make in that time?

What is the kinetic energy of rotation?

A flywheel with total mass m = 1450 kg and radius of gyeation 1.1 m
is aceelerated from rest to 2000 rpm in 75 5. What is the moment?
A particle has an angular momentum L = 3051+ 7t j — cos ¢ k. What
is the moment on the particle?

A 3 kg mass al time 1 is being acted upon by a force F = 4k N,
Position is measured in meters and the particle is located at

r = 2.0i 4 2.0j. If the velocity in m/s is given by v = 3i 4 j, what
torque is acting on the particle?

Haow many joules are in an electron volt?

A car weighing 2500 Ib is traveling at 95 miles per hour. What 15 its
kinetic energy?

A force of 122 N is applied to move a box horizontally 3 m. How
much work was done?

If the applied force acts in the same direction as the motion, then the
work is

(a} Negative,

(b} Positive.

(¢} Forces parallel to motion do no work.

What is the efficiency of an engine that puts out 322 Watts if the
input power is 480 Warts?

The dispersion relation for a certain medium is w (k) = 4&%, What is
the group velocity?

17:3%
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95, The dispersion relation for a certain medium is « (k) = 9%°, What is
the phase velocity?

96. The Lagrangian for a system is L = mi® — 3x®. What is the equation
of motion?

97. A particle is moving in a region where the potentialis F = fix. What
is the Lagrangian?
08, What are the equations of motion for the potential in problem 977

99. For some system, the Lagrangian is L = fmi’ + ai — ga’. What is
the conjugate momentum?

100. What is the Hamiltonian when £ = tnré? + o — g0
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Quiz Solutions

Chapter 1
I. (a) 6528
(by 10
(c) 57°

2. A+ B=3F+30 485 A-B=5i—77 -6
|4l =21, 1Bl =77

3,04 8=-7m0
4 r=yIL =11 ¢=-27, A=337 -03d-09¢
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5. VIl 1, 1) = 5.2% + 2.3y — 2.7, most rapidly increasing
inx direction
T84x
3
8. V x /' =0, is conservative,
9, VT -dl = (5% = 2yMdx + (15037 — 20)dy
10, Use did = a’ sin0dodg

1 op= Smi i — 3::1.}

Chapter 2
1. 2m/s 2. l6m's i F=ma
d*x
4 Feosowt =m——
COS e m df:

& R
5. x{r)=Acos|,/—r )+ Bsin|,/—¢
Vom Vm

6. 224N 445N 673N
7. =314.8 N-m. —0.1 N-m, 22.5 N-m

Chapter 3
1. 1haN 253 3 3TN
4. 135N-m 5. 42m 6. M = 830N

Chapter 4
1. 274 msst 2. 335210b
3193 % 10°%N 4. 618 kmvs

Chapter 5

I. 35m
30E. D) =(T/13,16/13,19/13)

;3 2!‘1.3
50 = g JBVE 5. (1073, 173)

i 3

ta

. 2d4m

17:34
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2,
T 1= ;?HR .

] S
9 k= (3R + A7
J:E'f !

Chapter 6

1. 971,429 1b 2 28H

3. Justabout 11 fi 4 Tuax = [9.688N, /1 = 19.228N
Chapter 7

1. 79.81b 2. 633N 3 80 mst

4. 28N 5 22N
Chapter 8

Lox(3) =30m, v(3) = 46 m's, a(3) = 36 m's*

20 afe)y=3e "(dsin2t — 3cos2e)

ILoa7eri 4. 49s 5. 188 fi

6. 68s 7. 479 fi 8. 20s5204m

9 T- —2sin2ri+ 3cosdrj+ 2k

VAsin® 21 + 9cos? I + 402

10, v={(cost —ssint) i+ (sins+scose) j+ 2k,
a=—(2sini —rcost) i+ (2cost —isini} j+ 2Kk
v=+1+52

_deoss—tsint) i+ (sint +fcost) j+ 2k

V1T +35°

1. yix) = xtand — x° (.L,)
2vlcos?e

r
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Chapter 9
I 175 kg 2. 034 slugs IoLI2kg

()05l kg, ()N =29N, Fp=4IN, () 3.7m5s’

Lovlt) = —gisintd + g cosdht

. f 2d
Y e —
V gising + pycosd)

T=359N
1

oty =2cosed + —sined,  v{i}= =2 sined 4 08wl
o

E = cos? et(2k + mj2) + sin® @tk 2a® + 2Zmw?)

+coswif SN2k /e — 2mew)

Critically damped

Chapter 10

1. 13.5 rad’s’ 20306 3107 mfs, 177 mis®
4. —042mdis’, 7.0 mis, 199 mis’ 5 23.4°
6. 3B rad's 7. —568 N-m
8. 986 N-m-s 9. 59°
10, r=24i 1205, L =40k
Chapter 11
1 1.9 x10%2) 2, BdS5kl 301750 fi-lb
4. 30 fi-lb 5 ookl 6. 3.3 x 10" mis
7. L3 1072 kgmis, 7.7 = 10 m's
3 0LITMW 9, BT percent 10, —29.7 m's
Chapter 12
I. 5m 3l4m, 0025 2ovp =kt fovy =2ak + 8
3 49 mis 4. 0135 5 2Zm

17:34
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Chapter 13

6.

Final Exam Answers

3l
34

Ioa 0 s
mi+Ir =1 L L=omii +r#)—re
2
M6 —mrd? =0 4 7= ghne
mref 4 2mesd 0 =0 2
mRY s
0"+ Q27sin" ) — mgR (1 - cos )
fi+sinflg/R — P cos) =0
H= ﬁ — mglcostl
3 2. V& 3.8
A+ B=28—ap+32 5. VT =cosy§—xsiny
151 kg 7. 36mis 8§ M=rxF
187 N, 37N, 112N 10. 1 N-m
M
. TN 12, Directed up 13, a = ZT
. 30N 15 13N 16. 50 N-m
. 38m 15, YF=0 19. ¥M=0
W =191Ib 21 25x 107N 22, 1600 km
26 M ficos
2 g=-4 ( el sinr) P
r r
26, M=mx 270 mx 4 maxy =0
20 582m 30 = [!'2(1'::1
T )
k= — 320 4MN 33 670,198 b

2151 35, Hyperbolic cosine 36, Horizontal

17:34
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7. 65ft 38 354 1b 39. In the opposite
direction,
40, The initation of 41, N =mg 42, f=uN
movemnent,
43, T, = hete 44, 0.04 45. 4.8in
46, a=t 47. 255 48. 3Tmis
di?
49, 3353 S0 =23 fis® 510 11491t
82, E5s 53, r=xi+yjtzk
54, v=—sinii—costj | 2tk
35 a= —costi+sintj+2k 56 3m's
dT |dT/dt|
o k=|—|= S8 v=~6ri+2
e v=>6+2)
5 T=————iri+=2j) o0 495
V36 + 4 !
61, 188 m
62, The angle of elevation should be # = 0, = 45°,
63, 233 mfs 64, 365 65 125m's 66 105m/s
67. 34 kg-m's 68. P = aconstant (for an isolated system)
dp di
69, — =0, = Feau =10 T, — =0
’ dt Z ! dr
71, IN=1 5555 72, Fis = juN
T3 F(F) = =V = 2re~'(r — )i
— —
14 vty =%l 2% 75, 3.5 N/m 6. o=k
Vom m Y m
77, T = 2mw}sin® ant 78, 4% 107 joules
d&*x il 3
79. d—‘: + m;‘j—r +ap=0 80. A decaying exponential.
i? di
§1. The underdamped case oscillates, but the oscillation decays in time.
82. Toward the center. 83, 157 m—.d B4, 373
=
1 .
85, T =-to’ 86, 4891 N-m
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