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Preface

Shell-like structures are widely used in engineering as basic structural elements.
Such structures are also used in other branches of science as a model of analysis,
e.g., in medicine, biology, nanotechnology, etc. New applications are primarily
related to new materials—for example, instead of steel or concrete, now one has to
analyze laminates, foams, functionally graded materials, shape memory thin films,
fullerenes, nanofilms, biological membranes, soft tissues, etc. The new trends in
applications demand the improvements of the theoretical foundations of shell the-
ory, since new effects must be taken into account. For example, in the case of
small-size shell-like structures (thin films, multi-walled nanotubes), the surface
effect plays an important role in the mechanical analysis of these structural ele-
ments. On the other hand, the theoretical achievements must be supplemented with
the development of consistent numerical tool.

The aim of the CISM course, Shell-like Structures—Advanced Theories and
Applications, was to present together mathematical aspects of the theory of plates
and shells, applications in civil, aerospace and mechanical engineering, as well as
other areas. The focus of the course relates to the following problems:

• comprehensive review of the most popular theories of plates and shells;
• relation between 3D and 2D theories;
• presentation of recently developed new refined plates and shells theories such as

for example, micropolar theory, or gradient-type theories;
• applications in modeling of complex structures (multi-folded, branching and/or

self-intersecting shells, plates and shells made of foams, functionally graded
materials, etc.);

• modeling of coupled effects in shells and plates related to electromagnetic and
temperature fields, phase transitions, diffusion, etc.;

• applications in modeling of non-classical objects as thin- and nanofilms, nan-
otubes, and nanoparticles, and biological membranes;

• presentation of actual numerical tools based on finite elements approach.

v



• During the course the following lectures were presented:
• Holm Altenbach: Thin-walled Structural Elements—Classification, Classical

and Advanced Theories, New Applications;
• Victor Eremeyev: Mechanics and Thermodynamics of Micropolar Shells;
• Gennady Mikhasev: Non-Classical Problems on Localized Vibrations and

Waves in Thin Shells;
• Paolo Podio-Guidugli: How to Deduce Structure Theories from 3D Elasticity;
• Karam Sab: The Bending-Gradient Theory for Heterogeneous In-Plane Periodic

Plates;
• Krzysztof Wisniewski: Selected Topics on Finite Elements for Finite Rotation

Shells

In this sense the course was an overview about the theories of plate and shells,
the history, and some new developments. In the following chapters the basic
material of the course was slightly changed. The chapter names are not always the
same like the lecture names.

Finally, the authors of these proceedings acknowledge Prof. Paolo Serafini and
Mrs. Silvia Schilgerius from Springer-Austria for supporting the publication and
last but not least, Mrs. Paola Agnola from the CISM Secretariat fulfilling all
organizing duties.

Magdeburg, Germany Holm Altenbach
Rzeszów, Poland Victor Eremeyev

vi Preface
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Thin-Walled Structural Elements:
Classification, Classical and Advanced
Theories, New Applications

Holm Altenbach and Victor Eremeyev

Abstract Thin structures were existing from the ancient time. From observations of
the nature the people understood that thinner means lighter, but stiffness and stability
problems arose. This was the starting point for the elaboration of theories analyzing
these structures.At that time applicationswere limited to civil engineering.At present
they are used in aerospace engineering as basic elements. Such structures are applied
as a model of analysis in other branches too, e.g. mechanical engineering. With
the necessity to substitute classical material by new (advanced) materials—instead
of steel or concrete, now laminates, foams, nano-films, biological membranes, etc.
are used. The new trends in applications demand improvements of the theoretical
foundations of the plate and shell theories, since new effects (for example, transverse
shear or surface effects) must be taken into account. This contribution is mainly
an introduction to the CISM-Course SHELL-LIKE STRUCTURES: ADVANCED
THEORIES AND APPLICATIONS. After some introduction to the history some
examples concerning new applications are discussed. After that main directions in
the theory of plates and shells are presented. Finally, various advanced theories are
briefly introduced. Other advanced theories are presented in the following chapter.
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Fig. 1 First (simplest) beam theory: a Daniel Bernoulli, b Leonhard Euler

1 Introduction: Historical Remarks

The starting point for the development of any plate or shell analysis was given by two
mathematicians: Daniel Bernoulli1 and Leonhard Euler2 (Fig. 1). They presented
a beam theory containing all necessary elements: kinematics, reaction to external
loadings and equilibrium statements based on the balances of momentum and of
moment of momentum. At the same time they introduce two crucial items

– geometrical linearization and kinematical hypotheses and
– independence of forces and moments (both are the stress resultants) resulting in
the independence of the above mentioned balance equations.3

By this way the first engineering theory was formulated. This is an approximate
theory and application bounds are not clear. But at the same time the resulting beam
equation or the set of coupled equations allows analytical solutions.

Any mechanical theory is related also to some experimental investigations. In the
case of plates and shells the studies of Ernst Florens Friedrich Chladni4 (Fig. 2) were

1∗January 29 (jul.)/February 8 (greg.) 1700 in Groningen, †March 17, 1782 in Basel.
2∗April 15, 1707 in Basel, †September 18, 1783 in St. Petersburg.
3This was analyzed by Clifford Abmbrose Truesdell III (∗February 18, 1919, †January 14, 2000)
in Truesdell 1964.
4∗November 30, 1756 in Wittenberg, †April 3, 1827 Breslau.
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Fig. 2 Music and mechanics: a Ernst Florens Friedrich Chladni, b Chladni’s patterns of a guitar
backplate

related to the verification of the theory. At the same time they had relations to the
practice. Chladni was a physicist and musician. It was well-known that the sound
music results in vibrations. For thin bodies this are mainly deflections. The patterns
are the lines of vanishing deflections.

The theory for the analysis of thin plates was not ready when Chladni obtained
his results. Only Sophie Germain5 (Fig. 3a) had presented the first closed theory.
In her paper Recherches sur la théorie des surfaces élastique submitted to the Paris
Academy of Sciences she offered the first vibration equation for a thin plate

N 2

(
∂4z

∂x4
+ ∂4z

∂x2∂y2
+ ∂4z

∂y4

)
+ ∂2z

∂t2
= 0 (1)

The submission was checked by the members of the Academy and Joseph-Louis
Lagrange6 had indicated an error. After improving Sophie Germain was elected as
the first female prize winner from the Paris Academy of Sciences (8 January 1816).

The analysis of plates is a part of the general structural analysis the founder of
which was Claude Louis Marie Henri Navier7 (Fig. 4a). He introduced not only a
special type of elastic solutions, but also was able to specify the meaning of N
in Germain’s equation (1) establishing in 1826 the elastic modulus as a property of
materials independent of the second moment of area (with other words he introduced
the bending stiffness). At that time it was obvious that any theory of thin bodies is
a theory of two coordinates. In 1828 Navier and Siméon-Denis Poisson8 (Fig. 4b)
were the first who performed a mathematical reduction of three- to two-dimensional
equations using power series representations. By this way they deduced equations

5∗April 1, 1776 in Paris, †June 27, 1831 in Paris.
6∗January 25, 1736 in Turin as Giuseppe Lodovico Lagrangia or Giuseppe Luigi Lagrangia, †April
10, 1813 in Paris.
7∗February 10, 1785 in Dijon, †August 21, 1836 in Paris.
8∗June 21, 1781, †April 25, 1840.
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Fig. 3 Beginning of the plate theory in the Paris Academy of Sciences: a Sophie German,
b Joseph-Louis Lagrange

Fig. 4 Bending stiffness and power series: a Claude Louis Marie Henri Navier, b Siméon-Denis
Poisson
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Fig. 5 First plate theory and approximate solution: a Gustav Robert Kirchhoff, b John William
Strutt, 3rd Baron Rayleigh

of equilibrium and free vibrations. From that time we had the scientific dispute
concerning Poisson’s boundary conditions (see, for example, Todhunter and Pearson
1960; Zhilin 1992).

The first complete plate theory was proposed by the German physicist Gustav
Robert Kirchhoff9 (Fig. 5a). He contributes a lot fundamental understanding to dif-
ferent branches of physics like

• electrical circuits,
• spectroscopy, and
• emission of black-body radiation.

The Kirchhoff’s plate theory (Kirchhoff 1850) was based on a few basic hypotheses
allowing the reduction of the three-dimensional equations to two-dimensional. These
hypotheses are usually formulated that a straight line orthogonal to the undeformed
midplane of the plate will be after the deformation straight and orthogonal to the
deformed midplane and during the deformation the length of the straight line is
unchanged. These simple assumptions result in

��w = q

D
with D = Eh3

12(1 − ν2)

9∗March 12, 1824 in Königsberg, East Prussia, †October 17, 1887 in Berlin.
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Fig. 6 “Founders” of the FEM: a Walter Ritz, b Boris Grigor’evic Galërkin

Here � is the two-dimensional Laplace operator, w denotes the deflection which
depends only on the midplane coordinates and q is the transverse surface load. The
results for many practical problems agreed with experimental measurements in a
satisfying manner. But the Kirchhoff’s theory yields in a governing 4th order partial
differential equation and on in each boundary only two boundary conditions can be
satisfied. This is not enough in some situationswhen the transverse force, the bending
moment and the torque are given. For this case Kirchhoff introduced a mechanical
equivalent force (named Ersatzkraft) which is the combination of the transverse force
and the torque at the boundary.

John William Strutt, 3rd Baron Rayleigh10 (Fig. 5b) was English physicist and
Nobel Prizewinner (1904). One of his research topicswas the theory of sounds (Strutt
1877). He introduced a direct method to find an approximate solution for boundary
value problems which is now named Rayleigh-Ritz method. The Swiss mathemati-
cian Walter Ritz11 (Fig. 6a) suggested a generalization in 1908 (Ritz 1908). The
Ritz’ method together with the approach developed by Boris Grigor’evic Galërkin12

(Fig. 6b) belong to the basics of the finite element method.
The Kirchhoff’s theory started with an undeformed plane midsurface. In practice

one has also two-dimensional bearing structureswhich are curved. The first extension

10∗November 12, 1842, Langford Grove, Maldon, †June 30, 1919, Terlins Place near Witham.
11∗February 22, 1878, Sion, † July 7, 1909, Göttingen.
12∗March 4, 1871, Polozk, † July 12, 1945, Leningrad.
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Fig. 7 Simplest shell theory: a Hermann Aron, b Augustus Edward Hough Love

of the Kirchhoff’s theory to this case was given by Hermann Aron13 (Fig. 7a). He
was a German physician and businessman. As a scientist he discussed problems
of the shell theory (Aron 1874), but also of electrical engineering. Later Augustus
Edward Hough Love14 (Fig. 7b) suggested a shell theory by analogy to Kirchhoff’s
theory which in our days is named Kirchhoff-Love shell theory. Love was an English
mathematician making a lot of contributions to the mathematical theory of elasticity,
see, for example, Love (1906).

Any plate or shell theory, which is presented by two-dimensional partial dif-
ferential equation, is approximate and based on some assumptions, for example,
kinematical hypotheses. Improvements of the approximations can be made introduc-
ing new assumption. Stephen (Stepan) Timoshenko15 (Fig. 8a) introduced a kine-
matical hypotheses for beams (Timoshenko 1921) allowing to take into account the
transverse shear (and rotational inertia effects). This approach can be easily extended
to plates and shells. Timoshenko was also the founder of the modern engineering
education in the U.S. universities and wrote a lot of textbooks in mechanics, for
example Timoshenko and Woinowsky-Krieger (1985).

Another approach was suggested by Theodore von Kármán16 (Fig. 8b). With
respect to the thinness of the plate he assumed that the deflection can huge and this

13∗October 1, 1845, Kempen (Kȩpno), †August 29, 1913, Charlottenburg.
14∗April 17, 1863, Weston-super-Mare, †June 5, 1940, Oxford.
15∗December 22, 1878, Shpotivka, Russia, †May 29, 1972, Wuppertal.
16∗Mai 11, 1881, Budapest, Austria-Hungary, †May 6, 1963, Aachen.
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Fig. 8 Improvements of the kinematical assumptions: a Stephen (Stepan) Timoshenko, bTheodore
von Kármán

Fig. 9 Improvements of the shell theory: a Lloyd Hamilton Donnell, b Khamid Mushtari

results partly in nonlinear strains. At first this idea was published in von Kármán
(1910).

The development of the nonlinear shell theory was connected with the demands
from the aircraft industries. For example, Lloyd Hamilton Donnell17 (Fig. 9a) and
Khamid Mushtari18 (Fig. 9b) developed refined theories for aerospace applications.

17∗May 20, 1895, Kent’s Hill, Maine, †November 7, 1997, Palo Alto, Texas.
18∗July 22, 1900, Orenburg, Russia, †January 23, 1981, Kazan, Soviet Union.
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Fig. 10 Theoretical and engineering approaches to the shell theory: a Anatoly Isakovich Lurie,
b Vasily Zakharovich Vlasov

In addition, Donnel suggestedmonocoques (structures that supports loads through an
object’s external skin, similar to an egg shell) for air planes and cars. He summarized
his main results in Donnel (1976). At the same time he was the founding editor of
journal “Applied Mechanics Reviews”. The Tatarian scientist Mushtari mostly pub-
lished in Russian, but one book was translated into English (Mushtari and Galimov
1961).

Anatoly Isakovich Lurie19 (Fig. 10a) was the founder of the plate and shell theory
school at the Leningrad Polytechnic Institute. He worked in the field of theoretical
and applied mechanics and control theory. He published the first monograph devoted
to the shell theory authored by a Russian scientist (Lurie 1947). One of the main
results was also published in English (Lurie 1961). Vasily Zakharovich Vlasov20

(Fig. 10b) was a Soviet civil engineer, mathematician and mechanician. His main
contributions to the theory of thin-walled structures were presented in Vlasov (1949),
which was later translated into German (Wlassow 1958) and English (1964).

Aleksey L’vovich Gol’denveizer21 (Fig. 11a) was a Russian/Soviet mechanician
working in the field theory of shells. He applied the asymptotic integration method
(Gol’denveizer 1962, 1963) for the formulation of plate and shell theories. The
staring point is the appropriate scaling of the coordinates. The components of the

19∗July 19, 1901, Mogilev, Russia, †February 12, 1980, Leningrad.
20∗February 24, 1906, Kareevo, Russia, †August 7, 1958, Moscow.
21∗January 12, 1911, Moscow, †January 12, 2003, Moscow.
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Fig. 11 Shell theories of different parameters: a Aleksey L’vovich Gol’denveizer, b Eric Reissner
(Max Erich Reissner)

stress tensor and the displacement vector are obtained as asymptotic power series of
a characteristic small parameter. Introducing these expansions into the equilibrium
equations and boundary conditions of the theory of elasticity, and collecting terms
with the same powers of the small parameter, one obtains sets of two-dimensional
equations and boundary conditions which do not contain the small parameter and
which can be solved much easier in comparison with the three-dimensional problem
(van der Heijden 1976).

Eric Reissner22 (Fig. 11b) was a civil engineer and mechanician. In 1944/5 he
improved the classical plate theory introducing hypotheses different fromKirchhoff’s
one as the starting point. By this way he obtained partial differential equations of 6th
order (instead of 4th order in the Kirchhoff theory) allowing to satisfy three boundary
conditions on each boundary. The basic ideas and some principal reference were
presented in Reissner (1985).

Raymond David Mindlin23 (Fig. 12a) has made a lot of fundamental contribu-
tions to various branches of mechanics. Among them there were publications to the
micropolar theory which is based on the Cosserat model in continuum mechanics.
His approach to the improvement of the Kirchhoff plate theory was different from

22∗January 5, 1913, Aachen, †November 1, 1996, La Jolla, California.
23∗September 17, 1906, New York, †November 12, 1987, Hanover, New Hampshire.
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Fig. 12 Various formulation principles: a Raymond David Mindlin, b Ilia Nestorovich Vekua

Reissner’s papers. His starting point was a dynamic problem (Mindlin 1951), in the
case ofReissner the starting pointwas statics.With respect to this the formulated theo-
ries are different and the shear correction factor introduced by both takes different val-
ues (which are in the engineering sense are very close).With respect to the similarities
of both theories especially in the finite element references the term “Reissner-Mindlin
theory” is used. The Georgian mathematician Ilia Nestorovich Vekua24 (Fig. 12b)
formulated lower-dimensional theories from the three-dimensional theory of elastic-
ity using a displacement ansatz with truncated series expansion of Legendre poly-
nomials (Vekua 1955, 1985).

Valentin Valentinovich Novozhilov25 (Fig. 13a) was a Russian scientist working
mostly in Solid Mechanics, but at the end of his life he investigated also Fluid
Mechanics problems. Since 1945, he has been a professor in the subdepartment
of the theory of elasticity, department of mathematics and mechanics, Leningrad
University. He published in 1951 a book on thin shells which was translated into
English (Novozhilov 1959).

Warner Tjardus Koiter26 (Fig. 13b) was a mechanical engineer and the Profes-
sor of Applied Mechanics at Delft University of Technology in the Netherlands
from 1949 to 1979. Koiter is primarily known for his asymptotic theory of initial

24∗April 23, 1907, Sheshelety, †December 2, 1977, Tbilisi.
25∗May 18, 1910, Lublin, †June 14, 1987, Leningrad.
26∗June 16, 1914, Amsterdam, †September 2, 1997, Delft.
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Fig. 13 Love’s approach is enough: aValentin Valentinovich Novozhilov, bWarner Tjardus Koiter

post-buckling stability. Other contributions are in linear and non-linear thin shell the-
ory. For one of his contributions on the “best” linear thin shell theory he paraphrased
the Beatle’s song title All you need is Love.

Sergei Alexandrovich Ambarcumyan27 (Fig. 14a) is a Armanian scientists work-
ing in the field of Solid Mechanics. He makes his own proposal for a kinematical
hypothesis in the theory of plates. His famous book on the theory of anisotropic
plates was translated into English (Ambarcumyan 1991).

Paul Mansur Naghdi28 (Fig. 14b) was an Iranian-American civil engineer and
professor at the University of Berkeley. Naghdi’s work on Continuum Mechanics
extended over a period of more than forty years. Various aspects of the mechanical
behavior of solids and fluids were in his focus. His contributions to the shell theory
were based on a new approach—the Cosserat surface. His main contributions in this
field were published in a review article (Naghdi 1972).

RichardHugoGallagher29 (Fig. 15a)was anAmerican civil engineerwith research
focus on structuremechanics.Hewas one of the founders of the finite elementmethod
(FEM), an engineering computation technique for solving coupled systems of partial
differential equations. This method is now widely used and well established in the
analysis of plate- or shell-like structures.

27∗March 17, 1922, Gumry.
28∗March 24, 1924, Teheran, †July 9, 1994, Berkeley, California.
29∗November 17, 1927, Manhattan, New York, †September 30, 1997, Tuscon, Arizona.
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Fig. 14 Love’s approach is enough: a Sergei Alexandrovich Ambarcumyan, b PaulMansur Naghdi

Fig. 15 Finite Element Method: a Richard Hugo Gallagher, b John Hadji Argyris
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Fig. 16 Hypotheses versus direct approach: a Pavel Andreievich Zhilin, b Junutula Narasinha
Reddy

John Hadji Argyris30 (Fig. 15b) was a pioneer of computer applications in science
and engineering and among the creators of the finite element method (FEM). He pio-
neered computer mechanics and established in the early 1950s the matrix structural
theory introducing the first finite elements concepts including effects of material and
geometrical nonlinearities

PavelAndreievichZhilin31 (Fig. 16a)was a professor of RationalMechanics at the
Leningrad Polytechnical Institute (now St. Petersburg State Polytechnical University
“Peter the Great”). He delivered various interesting results to ContinuumMechanics,
among them

• formulation of the fundamental laws of mechanics,
• direct tensor calculus,
• rigid body dynamics,
• nonlinear rod and shell theory,
• general theory of inelastic media.

He applied the direct approach in the formulation of the rod or shell theory (see, for
example, Zhilin 1976).

Junutula Narasinha Reddy32 (Fig. 16b) is an Indian/American scientist in the field
of theoretical and computational mechanics. He established a class of third- and
higher-order theories (Reddy 1984). In addition, he published some fundamental
books on plates and shells (Reddy 2004, 2007; Wang et al. 2000)

30∗August 19, 1913, Volos, Greece, †April 2, 2004, Stuttgart, Germany.
31∗February 8, 1942, Velikiy Ustyug (Vologda region), Soviet Union, †December 4, 2005, St.
Petersburg, Russia.
32∗August 12, 1945, Warangal, Andhra Pradesh.
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This short review of the history of the theory of plates is not complete. More infor-
mation one can get, for example, from Altenbach (1988); Altenbach et al. (2010b);
Becchi et al. (2003);Grigolyuk andSeleznev (1973);Kurrer (2008);Léwinski (1987);
Lo et al. (1977);Maugin (2013);Naghdi (1972); Panc (1975);Reddy (2004);Reissner
(1985); Timoshenko (1953); Todhunter andPearson (1960). The recent developments
in the theory of shells and plates are reported in Altenbach and Eremeyev (2011);
Jaiani and Podio-Guidugli (2008); Kienzler et al. (2003); Altenbach and Mikhasev
(2014).

2 Some Examples of New Applications

Thin-walled structures as plates and shells have a lot of applications. One of the first
were related to the aerospace developments—airplanes and rockets can be modelled
as shell-like structures—another possibility to model such structures are thin-walled
beam models. Two examples of space launching systems are shown in Fig. 17. The
US space station “Skylab” was launched on a Saturn V rocket (Fig. 17a) with a height
of 85m, a diameter of 6.6m and a launching mass of 2934.8 t. For the Soviet/Russian
ProtonM rocket (Fig. 17b) the following data are valid: height of 53 m, a diameter of
7.4 m and a launchingmass of 712.8 t. It is obvious that in both cases also thin-walled
beam structure models can be used.

The next examples of thin-walled shell-like structures are two modern air-
planes (Fig. 18). The length of the Airbus A 380 (Fig. 18a) is 73 m, the diameter
7.14 m × 8.40 m, the span 80 m and the launch weight 590 t. For the Boing 787
Dreamliner (Fig. 18b) the parameters are: length 69 m, diameter 5.74 m, span 60 m
and the launch weight 250 t. It should be mentioned that both airplanes are produced

Fig. 17 Space launching system: a Saturn V, b Proton M
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Fig. 18 Modern airplanes: a Airbus A 380, b Boing 787 Dreamliner

Fig. 19 Sydney opera house

using a huge amount of composites. The Dreamliner has an airframe comprising
nearly 50% carbon fiber reinforced plastic and other composites.

Another field of shell-like structures is related to Civil Engineering. The first
example is shown in Fig. 19. This building features a modern expressionist design,
with a series of large precast concrete “shells”, each composed of sections of a sphere
of 75.2 m radius, forming the roofs of the structure, set on a monumental podium.
The roof structure is commonly referred to as “shells”, but they are precast concrete
panels supported by precast concrete ribs. Such structures are not shells in the sense
of the common definitions (Başar and Krätzig 1985; Gol’denveizer 1962; Naghdi
1972; Novozhilov 1959; Timoshenko and Woinowsky-Krieger 1985).

The design of cooling towers (Fig. 20) has a great influence on the theory of
shells. The reason for that were some spectacular disasters based on in-complete
mechanical analysis of such shell-like structures. In addition, it should be mentioned
that the cooling towers are hyperboloid shells. Hyperbolic structures have a negative
Gaussian curvature.

The next example from Civil Engineering is the so-called hyperbolic paraboloid
shell structure (Fig. 21). Hyperbolic paraboloid geometry is often used in saddle roof
constructions.
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Fig. 20 Cooling towers: a Didcot Power Station (UK), b Kharkiv Power Station

Fig. 21 Hyperbolic paraboloid shell structure: a Exhibition hall in Magdeburg (Germany), b
Restaurant in Warnemünde (Germany), c Railway station Warszawa-Ochota (Poland), d design
principle

Sandwich structures belongs to the plate- and shell-like structural elements
(Fig. 22). Honeycomb has the highest strength to weight ratio (in a sandwich form)
of any known material. In modern applications the core layer is composed by short
fibre reinforced composites (Fig. 23) or foams.

Many biological systems can bemodeled as thin-walled structures. Two examples
are given in Fig. 24.

In the recent year a new application field for plate- or shell-like structures
was established. With the increasing miniaturization nanoplates and nanoshells are
applied in special applications. One example is shown in Fig. 25.



18 H. Altenbach and V. Eremeyev

Fig. 22 Honeycomb sandwich plate

Short fibre
reinforced
composites

Automotive

Sports

Civil engineering

Sanitary applications

Fig. 23 Short fibre composites applications

Fig. 24 Biological shell structures: a Femur, b Human skull
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Fig. 25 Lattice structures

3 Main Directions in the Theory of Plates and Shells

Let us introduce at first some requirements to a plate or shell theory. In general such
theory should take into account

• the thinness hypothesis which allows to present the approximate theory using only
two coordinates,

• different types of deformability, for example, shear-rigid or shear-deformable,
• geometrical nonlinearities,
• physical nonlinearities,
• etc.

In general, we distinguish the following formulation concepts in the theory of plates
and shells:

• the engineering approach (based on hypotheses about the stress state and/or the
kinematics),

• the direct approach,
• the consistent approach, and
• the asymptotic approach.

The first two and the fourth approach were widely discussed in the 70th of the
last century (see, for example, Grigolyuk and Seleznev 1973; Naghdi 1972; Rothert
1973), the third one was introduced only some years ago (Kienzler 2002; Kienzler
and Schneider 2016; Schneider and Kienzler 2011; Schneider et al. 2014).

In dependence from the introduced kinematical assumption below, three classical
variants of the plate theory are briefly discussed: the Kirchhoff theory, the Mindlin
theory and the von Kármán theory. The three mentioned theories are a brief descrip-
tion of some basic statements. For more details see Altenbach et al. (2016).

3.1 Kirchhoff Theory

In the case of the Kirchhoff theory (Kirchhoff 1850, 1883) for the thickness h we
assume that h � L , where L is a characteristic length (for example, in the case of
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rectangular plates the minimum of the side length L1, L2 or in the case of circular
plates the radius R).

Let us assume for the further discussions that we have only rectangular plates.
They can be presented in the Cartesian coordinate system x1, x2, z. x1, x2 are the
in-plane coordinates. z is the coordinate in the thickness direction. The plate has
the following dimensions: 0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2 and |z| ≤ h/2. The Kirchhoff
theory is based on the following assumptions:

• The plate is made of a homogeneous, isotropic, linear-elastic material. The
generalized Hooke’s law is assumed.

• Kinematical assumptions

– The mid surface of the plate is, in the case of bending, the neutral plane. The
points of the midsurface have the displacements

u1(x1, x2, 0) = 0, u2(x1, x2, 0) = 0, u3(x1, x2, 0) = w �= 0

The deflectionsw are assumed to be smallw � h. The derivatives of the deflec-
tions w.r.t. x1 and x2 (angle of slope of the surface in the case of bending) is so
small that the squares can be neglected in comparison with 1. The curvatures of
the surface can be linearized

κ11 = −w,11

[1 + (w,1)2]3/2 ≈ −w,11, κ22 = −w,22

[1 + (w,2)2]3/2 ≈ −w,22

Here (. . .),i denotes the derivative w.r.t. xi , i = 1, 2, This is the kinematical
model of a shear-rigid plate.

– All points of the normal to the undeformed midsurface are points of the normal
to the deformed midsurface (generalization of the Bernoulli hypothesis in the
beam theory). In the thickness direction the plate is rigid (no normal strains).
Then we have the following displacements

u1(x1, x2, x3) = x3ψ1(x1, x2),

u2(x1, x2, x3) = x3ψ2(x1, x2),

u3(x1, x2, x3) = w(x1, x2)

ψ1 and ψ2 are the rotations of the cross-sections of the plate w.r.t. to the x2-
and x1-Axis, respectively. From the strain-displacement equations it follows:
ε33 = 0, and γ13, γ23 are independent from x3. In addition, one has ψ1 = −w,1,
ψ2 = −w,2 and γ13 = γ23 = 0.

• Static hypothesis

– The normal stress σ33 much smaller in comparison with σ11 and σ22

σ33 � σ11,σ22



Thin-Walled Structural Elements: Classification, Classical … 21

In the classical plate theory it is assumed σ33 ≈ 0 (static hypothesis). This
contradict to the case of localized loading with high intensity since this results
in significant contact stresses σ33.

• Kinematic hypothesis

– The kinematic hypothesis ε33 = 0 following from u3 = w and the static hypoth-
esis σ33 = 0 are incompatible within the theory of elasticity. For thin plates the
error is small. The shear stresses σ13 and σ23 should be non equal to zero (equi-
librium conditions). Because of the kinematic hypothesis γ13 = γ23 = 0 this
results in G → ∞ (shear-rigid plate).

From the static and kinematic hypothesis follows that in the classical plate theory
the plane stress state can be assumed: the Hooke’s law contains only the stresses
σ11,σ22,σ12, the shear stresses σ13 and σ23 can be computed with the help of the
equilibrium conditions. The stresses σ33,σ13 and σ23 does not influence the strain
energy of the shear-rigid plate, where G is the shear modulus.

Remark 3.1 The original Kirchhoff theory was developed for the bending problem
only. That means the plate exhibit only deflections w, in-plane displacements are
disregarded.

The Kirchhoff theory is for small deflections valid. In this case we get the following
approximations

cosϕ1 ≈ cosϕ2 ≈ 1,

sinϕ1 ≈ ϕ1 ≈ tanϕ1 = w,1,

sinϕ2 ≈ ϕ2 ≈ tanϕ2 = w,2

The displacements can be computed as follows

u1(x1, x2, x3) = −x3w,1(x1, x2),
u2(x1, x2, x3) = −x3w,2(x1, x2),
u3(x1, x2, x3) = w(x1, x2),

and finally we obtain the strain-displacement equations

ε11 = u1,1 = −x3w,11 = x3κ11,

ε22 = u2,2 = −x3w,22 = x3κ22,

γ12 = u1,2 + u2,1 = −2x3w,12 = 2x3κ12,

γ21 = u2,1 + u1,2 = −2x3w,21 = 2x3κ21

The stress resultants are integrals over the plate thickness. The in-plane stress
resultants follow as
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h/2∫
−h/2

σ11dz = n11,

h/2∫
−h/2

σ22dz = n22,

h/2∫
−h/2

σ12dz = n12,

h/2∫
−h/2

σ21dz = n21,

the out-of-plane stress resultants as

h/2∫
−h/2

σ11x3dz = m11(x1, x2),

h/2∫
−h/2

σ22x3dz = m22(x1, x2),

h/2∫
−h/2

σ12x3dz = m12(x1, x2),

h/2∫
−h/2

σ21x3dz = m21(x1, x2),

h/2∫
−h/2

σ13dz = q1(x1, x2),

h/2∫
−h/2

σ23dz = q2(x1, x2)

These formal definitions are valid since the stress distributions are not specified. In
the above mentioned equations σi j , i = 1, 2, j = 1, 2, 3 are the components of the
stress tensor. n11, n22 are the in-plane tension forces, n12, n21 are the in-plane shear
forces, m11, m22 are the bending moments, m12, m21 are the torsion moments and
q1, q2 denotes the shear forces. If we assume a classical (Cauchy) continuum the
following constrain is valid: σ12 = σ21. From this follow: n12 = n21 and m12 = m21.
The further discussions are related to the classical continuum only.

Remark 3.2 Even in the case of the classical continuum this simplification for shells
is not valid in the general case since the shell curvatures are included in the stress
resultants. Only if the both principal curvatures are the same (and they coincide with
the coordinate system) or the contribution from the curvatures can be neglected w.r.t.
1, the symmetry conditions for the stress resultants can be used also for shells.

If we assume constant plane stress state, then the out-of-plane resultants are van-
ishing. If we assume linear stress state, then the in-plane resultants are vanishing.
The further discussion concerning the Kirchhoff and the Mindlin theories will be
restricted to the out-of-plane behaviour, that means

h/2∫
−h/2

σ11dz = n11 = 0,

h/2∫
−h/2

σ22dz = n22 = 0,

h/2∫
−h/2

σ12dz = n12 = n21 = 0

The equilibrium equations can be established as follows

• force equilibrium in z-direction

q1,1 + q2,2 + q = 0,
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• moments equilibrium around x1-axis

−m22,2 − m12,1 + q2 = 0,

• moments equilibrium around x2-axis

−m11,1 − m21,2 + q1 = 0

Note that m12 = m21.

This is a system of three equations with five unknowns. Expressing the shear forces
as

q2 = m12,1 + m22,2, q1 = m11,1 + m21,2

one gets from the first equilibrium equation

m11,11 + 2m12,12 + m22,22 = −q

This is one equation with three unknowns. It is obvious that the Kirchhoff equilib-
rium equations result in a statically indeterminate problem. That means for solving
boundary value problems additional equations should be introduced.

Remark 3.3 The simplest way to get dynamic equations (equations of motion) is the
use of the d’Alambert principle which means that the static equilibrium equations
are added by inertia terms.

Let us introduce the following constitutive equations

ε11 = 1

E
(σ11 − νσ22) or σ11 = E

1 − ν2
(ε11 + νε22),

ε22 = 1

E
(σ22 − νσ11) or σ22 = E

1 − ν2
(ε22 + νε11),

γ12 = 2(1 + ν)

E
σ12 or σ12 = E

2(1 + ν)
γ12,

where E, ν denotes Young’s modulus and Poisson’s ration. Both are assumed to be
constant w.r.t. the thickness coordinate. Substituting the strains

σ11(x1, x2, x3) = − Ex3
1 − ν2

(w,11 + νw,22),

σ22(x1, x2, x3) = − Ex3
1 − ν2

(w,22 + νw,11),

σ12(x1, x2, x3) = − Ex3
1 + ν

w,12 = −(1 − ν)
Ex3

1 − ν2
w,12
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the following constitutive equations for the stress resultants can be computed

m11(x1, x2) = − Eh3

12(1 − ν2)
(w,11 + νw,22) = −K (w,11 + νw,22),

m22(x1, x2) = − Eh3

12(1 − ν2)
(w,22 + νw,11) = −K (w,22 + νw,11),

m12(x1, x2) = −(1 − ν)
Eh3

12(1 − ν2)
w,12 = −K (1 − ν)w,12

K denotes the classical Kirchhoff’s bending stiffness which is presented in standard
textbooks (see Timoshenko and Woinowsky-Krieger 1985, among others)

K = Eh3

12(1 − ν2)

As any stiffness the bending stiffness contains information on the geometry of the
structure (here thickness) and the material behavior.

The shear forces cannot be estimated by constitutive equations since in the case
of the Kirchhoff theory the transverse shear rigidity is assumed (no transverse shear
strains results assuming isotropic material behavior in zero shear stresses). The shear
forces follow from the equilibrium equations

q1(x1, x2) = m11,1 + m21,2 =− ∂

∂x1
[K (w,11 + νw,22)]− ∂

∂x2
[K (1 − ν)w,12],

q2(x1, x2) = m22,2 + m12,1 =− ∂

∂x2
[K (w,22 + νw,11)]− ∂

∂x1
[K (1 − ν)w,12]

if the deflections are known.
Finally, if the thickness is constant and material behavior is homogeneous the

following set of governing equations is valid

��w(x1, x2) = q(x1, x2)

K
,

m11(x1, x2) = −K [w,11(x1, x2) + νw,22(x1, x2)],
m22(x1, x2) = −K [w,22(x1, x2) + νw,11(x1, x2)],
m12(x1, x2) = −K (1 − ν)w,12(x1, x2),
q1(x1, x2) = −K [�w(x1, x2)],1,
q2(x1, x2) = −K [�w(x1, x2)],2

For the rectangular plate with constant bending stiffness it is easy to get some special
cases

• Bending equation for simply supported plate

K��w(x1, x2) = q(x1, x2)
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• Bending equation for elastically supported plate

K��w(x1, x2) = q(x1, x2) − cw(x1, x2)

• Bending vibration equation for simply supported plate

K��w(x1, x2, t) + ρhẅ(x1, x2, t) = q(x1, x2, t)

• Bending vibration equation for elastically supported plate

K��w(x1, x2, t) + ρhẅ(x1, x2, t) = q(x1, x2, t) − cw(x1, x2, t)

˙(. . .) denotes the time (t) derivative.

3.2 Mindlin Plate Theory

The Mindlin theory is a shear deformable plate theory (Mindlin 1951). The material
is assumed again to be homogeneous and isotropic. The midplane is in the case of
bending the “neutral plane” that means we have the following displacements

u1(x1, x2, 0) = 0, u2(x1, x2, 0) = 0, u3(x1, x2, 0) = w(x1, x2) �= 0

The displacements are small in comparison to the plate thickness and the curvatures
are linearized of the bending surface

κ11 ≈ ψ1,1, κ22 ≈ ψ2,2, κ12 ≈ ψ1,2 + ψ2,1

ψ1 and ψ2 are the rotations of the cross-sections. They are independent variables and
each point of the midsurface of the Mindlin plate has five degrees of freedom. The
following assumptions are valid

• All point of the line element are orthogonal to the undeformed midsurface and the
line elements are inextensible (ε33 ≈ 0)

u1(x1, x2, x3) ≈ x3ψ1(x1, x2),
u2(x1, x2, x3) ≈ x3ψ2(x1, x2),
u3(x1, x2, x3) ≈ w(x1, x2)

• The normal stresses σ33 � Max(σ11,σ22) can be neglected even for the shear-
deformable plate that means σ33 ≈ 0. In the theory of elasticity one gets from
the assumption σ33 = 0 the plane stress state. From ε33 = 0 one gets the plane
strain state. Both assumptions results like in the case of the classical plate in
inconsistable conditions. In many applications the error from this inconsistency is
relatively small.
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Considering these assumptions the kinematic and equilibrium equations can be based
on the following approximations of the displacements

u1(x1, x2, x3) ≈ x3ψ1(x1, x2),
u2(x1, x2, x3) ≈ x3ψ2(x1, x2),
u3(x1, x2, x3) ≈ w(x1, x2)

The strain-displacement/rotation equations are

ε11 = u1,1 = x3ψ1,1, γ12 = u1,2 + u2,1 = x3(ψ1,2 + ψ2,1),

ε22 = u2,2 = x3ψ2,2, γ31 = w,1 + u1,3 = w,1 + ψ1,

ε33 = w,3 = 0, γ23 = u2,3 + w,2 = ψ2 + w,2

The equilibrium equations are the same like in the case of the Kirchhoff theory

q1,1 + q2,2 + q = 0,
m12,1 + m22,2 − q2 = 0 or q2 = m12,1 + m22,2,

m11,1 + m21,2 − q1 = 0 or q1 = m11,1 + m21,2

This is a system of three equations with five unknowns. That means we need again
constitutive equations. With σ33 = 0 one gets from the generalized Hookean law

ε11 = 1

E
(σ11 − νσ22), σ11 = E

1 − ν2
(ε11 + νε22),

ε22 = 1

E
(σ22 − νσ11), σ22 = E

1 − ν2
(ε22 + νε11),

γ12 = 1

G
σ12 = 2(1 + ν)

E
σ12, σ12 = Gγ12 = E

2(1 + ν)
γ12,

γ23 = 1

G
σ23 = 2(1 + ν)

E
σ23, σ23 = Gγ23 = E

2(1 + ν)
γ23,

γ31 = 1

G
σ31 = 2(1 + ν)

E
σ31, σ31 = Gγ31 = E

2(1 + ν)
γ31

With the strain-displacement and the constitutive equations

σ11 = Ex3
1 − ν2

(ψ1,1 + νψ2,2), σ23 = E

2(1 + ν)
(ψ2 + w,2),

σ22 = Ex3
1 − ν2

(ψ2,2 + νψ1,1), σ31 = E

2(1 + ν)
(ψ1 + w,1),

σ12 = Ex3
2(1 + ν)

(ψ1,2 + ψ2,1)

the constitutive equations for the stress resultants can be established
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m11 = K (ψ1,1 + νψ2,2), m22 = K (ψ2,2 + νψ1,1),

m12 = 1 − ν

2
K (ψ1,2 + ψ2,1),

q1 = Ghs(ψ1 + w,1), q2 = Ghs(ψ2 + w,2)

The constitutive equations for the shear forces should be corrected. This can be done
by introducing shear correction. The complementary strain energy W ∗

f based on the
parabolic shear stress distribution

σ23(x3) = q2S(x3)

I
, S(x3) = 1

2

[(
h

2

)2

− x2
3

]
, I = h3

12

and W ∗
f2 with a constant distribution σ23 = q2/h modified by shear stress factor ks

can be expressed as it follows

W ∗
f1 = 1

2

h/2∫
−h/2

σ2
23(x3)

G
dx3 = 1

2

q2
2

Gh

6

5
, W ∗

f2 = 1

2

h/2∫
−h/2

q2
2

ksh2G
dx3 = 1

2

q2
2

ksGh

With W ∗
f1 = W ∗

f2

1

ks
= 6

5
, that means ks = 5

6
or hs = ksh = h

1, 2
.

This shear correction corresponds to Reissner’s estimate (Reissner 1944). Other
estimates of shear correction factors are discussed in Mindlin (1951); Vlachoutsis
(1992).

Let us develop a suitable set of governing equations in kinematical variables. At
first, we introduce the abbreviations

ψ1,1 + ψ2,2 = Φ(x1, x2), ψ2,1 − ψ1,2 = Ψ (x1, x2)

With
m11,11 + 2m12,12 + m22,22 = −q

and
m11 = K (ψ1,1 + νψ2,2), m22 = K (ψ2,2 + νψ1,1),

m12 = 1 − ν

2
K (ψ1,2 + ψ2,1)

one gets

K [ψ1,111 + νψ2,112 + (1 − ν)(ψ2,112 + ψ1,122) + ψ2,222 + νψ1,122] = −q
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and finally
K�(ψ1,1 + ψ2,2) = −q or K�Φ = −q

The constitutive equations for the stress resultants and the equilibrium equations
results in

w,1 = −ψ1 + K

Ghs

(
Φ,1 − 1 − ν

2
Ψ,2

)
,

w,2 = −ψ2 + K

Ghs

(
Φ,2 + 1 − ν

2
Ψ,1

)

With w,11 + w,22 = �w and w,12 − w,21 = 0 follows

�w = −Φ + K

Ghs
�Φ, Ψ − K

Ghs

1 − ν

2
�Ψ = 0

Finally, we obtain the plate equations for shear deformable plates

K�Φ = −q, �w = −Φ + K

Ghs
�Φ,

1 − ν

2

K

Ghs
�Ψ − Ψ = 0

The special case of the shear-rigid plate follows from Ghs → ∞. Then
K�Φ = −q,�w = −Φ and Ψ = 0 and

K��w = q

In addition, with Ghs → ∞

ψ1 = −w,1, ψ2 = −w,2.

These are for the Kirchhoff plate the kinematic hypotheses.
Introducing w̃

w̃ = w − K

Ghs
Φ,

the equations can be decoupled. From K�Φ = −q and

�w − K

Ghs
�Φ = �w̃ = −Φ

one gets one differential equation of fourth order

��w̃ = −�Φ = q

K

and one of second order
1 − ν

2

K

Ghs
�Ψ − Ψ = 0
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Now the boundary conditions are

• clamped edge

w = 0,ψn = −w̃,n − K

Ghs

1 − ν

2
Ψ,t = 0,

ψt = −w̃,t − K

Ghs

1 − ν

2
Ψ,n = 0

• free edge

mnn = K (ψn,n + νψt,t )

= −K

(
w̃,nn + νw̃,t t + K

Ghs

1 − ν2

2
Ψ,nt

)
= 0,

mnt = 1 − ν

2
K (ψt,n + ψn,t )

= −K

[
(1 − ν)w̃,nt − K

Ghs

(1 − ν)2

4
(Ψ,nn + Ψ,t t )

]
= 0,

qn = Ghs(ψn + w,n) = −K

[
(�w̃),n + 1 − ν

2
Ψ,t

]
= 0

The dynamicMindlin plate equations (equations ofmotion) can be introduced adding
the inertia terms to the equilibrium equations

q1,1(x1, x2, t) + q2,2(x1, x2, t) + q(x1, x2, t) = ρhẅ(x1, x2, t),

m11,1(x1, x2, t) + m12,2(x1, x2, t) − q1(x1, x2, t) = ρh3

12
ψ̈1(x1, x2, t),

m12,1(x1, x2, t) + m22,2(x1, x2, t) − q2(x1, x2, t) = ρh3

12
ψ̈2(x1, x2, t)

With the stress resultants

Ghs(ψ1,1 + w,11 + ψ2,2 + w,22) + q = ρhẅ,

K

(
ψ1,11+ 1 − ν

2
ψ1,22+ 1 + ν

2
ψ2,12

)
−Ghs(ψ1+w,1) = ρh3

12
ψ̈1,

K

(
1 + ν

2
ψ1,12+ 1 − ν

2
ψ2,11+ψ2,22

)
−Ghs(ψ2+w,2) = ρh3

12
ψ̈2

With Φ = ψ1,1 + ψ2,2 we obtain
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Ghs(�w + Φ) + q = ρhẅ,

K

2
[(1 − ν)�ψ1 + (1 + ν)Φ,1] − Ghs(ψ1 + w,1) = ρh3

12
ψ̈1,

K

2
[(1 − ν)�ψ2 + (1 + ν)Φ,2] − Ghs(ψ2 + w,2) = ρh3

12
ψ̈2

The initial conditions are

w(x1, x2, t = 0) = w0,ψ1(x1, x2, t = 0) = ψ10,ψ2(x1, x2, t = 0) = ψ20,

ẇ(x1, x2, t = 0) = ẇ0, ψ̇1(x1, x2, t = 0) = ψ̇10, ψ̇2(x1, x2, t = 0) = ψ̇20

After eliminating ψ1 and ψ2 we have

(
K� − Ghs − ρh3

12

∂2

∂t2

)
Φ = Ghs�w

After some manipulations Φ can be eliminated and the Mindlin equation for the
deflections can be written
(
�− ρh

GhS

∂2

∂t2

)(
K�− ρh3

12

∂2

∂t2

)
w +ρh

∂2w

∂t2
=

(
1− K

GhS
�+ ρh3

12GhS

∂2

∂t2

)
= q

The following special cases can be assumed:

• Neglecting the rotational inertia (ρh3 −→ 0)

K

(
� − ρh

GhS

∂2

∂t2

)
�w + ρh

∂2w

∂t2
=

(
1 − K

GhS
�

)
= q

• Neglecting the shear stiffness (GhS −→ ∞)

(
K� − ρh3

12

∂2

∂t2

)
�w + ρh

∂2w

∂t2
= q

• Neglecting both the rotational inertia and the shear stiffness

K��w + ρh
∂2w

∂t2
= q.

3.3 Reissner Plate Theory

The starting point are the equilibrium equations (like in the classical theory)
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q1,1 + q2,2 + q = 0,

m12,1 + m22,2 − q2 = 0 or q2 = m12,1 + m22,2,

m11,1 + m21,2 − q1 = 0 or q1 = m11,1 + m21,2

Stress distributions are like in the classical theory (linear for the moments, parabolic
for the shear forces)

σ11 = 6

h2
m11

2x3
h

, σ22 = 6

h2
m22

2x3
h

,

τ12 = 3

h2
m12

2x3
h

= τ21,

τ32 = 3

2h
q2

[
1 −

(
2x3
h

)2
]

, τ31 = 3

2h
q1

[
1 −

(
2x3
h

)2
]

In addition, the normal stress distribution follows from the three-dimensional equi-
librium state

σ33 = −
∫

∂τ31

∂x1
dx3 −

∫
∂τ32

∂x2
dx3 + φ(x1, x2)

With the expressions for τ31 and τ32

σ33 = − 3

2h

[
∂q1

∂x1
+ ∂q2

∂x2

] ∫ [
1 −

(
2x3
h

)2
]
dx3 + φ(x1, x2)

and w.r.t. the third equilibrium equation for the resultants one has

σ33 = 3

4
p
2x3
h

− 1

4

(
2x3
h

)3

p + φ(x1, x2)

The boundary conditions are

σ33(−h/2) = −p(x1, x2), σ33(h/2) = 0

The solution is

φ(x1, x2) = −1

2
p ⇒ σ33 = 3

4
p

[
2x3
h

− 1

3

(
2x3
h

)3

− 2

3

]

With the estimated stresses σ11,σ22,σ33, τ12, τ23, τ13 the following strains can be
computed
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ε11 = ∂u1

∂x1
= 1

E
[σ11 − ν(σ22 + σ33)],

ε22 = ∂u2

∂x1
= 1

E
[σ22 − ν(σ11 + σ33)],

γ12 = ∂u1

∂x2
+ ∂u2

∂x1
= 1

G
τ12,

γ23 = ∂u2

∂x3
+ ∂u3

∂x2
= 1

G
τ23,

γ13 = ∂u1

∂x3
+ ∂u3

∂x1
= 1

G
τ13

Performing the following averaging procedure

+h/2∫
−h/2

τ13u3dx3 = q1w ⇒ w = 3

2h

+h/2∫
−h/2

u3

[
1 −

(
2x3
h

)2
]
dx3,

+h/2∫
−h/2

σ11u1dx3 = m11ψ1 ⇒ ψ1 = 6

h2

+h/2∫
−h/2

u1
2x3
h

dx3,

+h/2∫
−h/2

τ12u2dx3 = m12ψ2 ⇒ ψ2 = 6

h2

+h/2∫
−h/2

u2
2x3
h

dx3

This approximation is not the same like in Mindlin’s theory: instead of a plane
inextensible, not normal cross-section, now a curved inextensible cross-section can
assumed. The governing equations consist of a coupled system of partial differential
equations w.r.t. q1, q2, w:

K��w = p − h2

10

2 − ν

1 − ν
�p,

q1 = −D
∂�w

∂x1
+ h2

10
�q1 − h2

10

1

1 − ν

∂ p

∂x1
,

q2 = −D
∂�w

∂x2
+ h2

10
�q2 − h2

10

1

1 − ν

∂ p

∂x2

The decoupled system follows again after some manipulations

K��

(
1 − h2

10
�

)
w =

[(
h2

10

)2 2 − ν

1 − ν
�� − h2

10

3 − 2ν

1 − ν
� + 1

]
p,
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��

(
1 − h2

10
�

)
q1 = − ∂

∂x1
�

(
1 − h2

10
�

)
p,

��

(
1 − h2

10
�

)
q2 = − ∂

∂x2
�

(
1 − h2

10
�

)
p.

3.4 Reddy Plate Theory

In the Reddy theory (Reddy 1984, 2007) the kinematics is given as the following
displacement approximation

u1(x1, x2, x3) ≈ u(x1, x2) + x3ψ1(x1, x2) − 4x3
3

3h2

(
ψ1(x1, x2) + ∂w(x1, x2)

∂x1

)
,

u2(x1, x2, x3) ≈ v(x1, x2) + x3ψ2(x1, x2) − 4x3
3

3h2

(
ψ1(x1, x2) + ∂w(x1, x2)

∂x1

)
,

u3(x1, x2, x3) ≈ w(x1, x2)

ψ1 and ψ2 are the slopes of the transverse normal at x3 = 0

ψ1 = ∂u1

∂x1
, ψ2 = ∂u2

∂x2

Stress-free boundary conditions are assumed

σ13

(
x1, x2,±h

2

)
= σ23

(
x1, x2,±h

2

)
= 0

The theory is characterized by

• no shear correction factor,
• higher order stress resultants,
• higher order “moments of area”.

Remark 3.4 Since the physical meaning of higher order moments is not clear the
formulation of physically motivated boundary conditions is not trivial and the ques-
tion of the consistency of the approximation is not clear.

The last question is discussed with respect of other plate theories in Kienzler (2002).

3.5 Föppl-von Kármán Plate Theory

Let us introduce the following assumptions

• thin linear-isotropic elastic shear-rigid plates,
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• infinite strains, but finite deflections,
• in-plane and out-of-plane behavior cannot be decoupled, and
• h/Min(l1, l2) < 0, 1; 0, 2 ≤ w/h ≤ 5.

Further details are in Föppl (1907); von Kármán (1910); Meenen and Altenbach
(2001).

The nonlinear kinematics ui = ui (x1, x2, x3), i = 1, 2, 3 can presented by

ε11(x1, x2, x3) = u1,1+1

2

(
u2
1,1 + u2

2,1 + u2
3,1

)
,

ε22(x1, x2, x3) = u2,2+1

2

(
u2
1,2 + u2

2,2 + u2
3,2

)
,

ε33(x1, x2, x3) = u3,3+1

2

(
u2
1,3 + u2

2,3 + u2
3,3

)
,

γ12(x1, x2, x3) = u1,2 + u2,1+u1,1u1,2 + u2,1u2,2 + u3,1u3,2,

γ23(x1, x2, x3) = u2,3 + u3,2+u1,2u1,3 + u2,2u2,3 + u3,2u3,3,

γ31(x1, x2, x3) = u3,1 + u1,3+u1,3u1,1 + u2,3u2,1 + u3,3u3,1

The underlined terms are the contributions from the geometrical nonlinearity. In
addition, some terms are small with respect to the different order of u1, u2, u3:
u1, u2 � u3 and no derivative with respect to x3: u3(x1, x2, x3) ≈ w(x1, x2). The
classical assumptions: ε33 ≈ 0, γ23 ≈ 0, γ31 ≈ 0 are valid.

The kinematical approximations are

• in-plane displacements u1, u2 are much smaller in comparison with the deflections
u3

u2
1,1, u2

2,1 � u2
3,1, u2

1,2, u2
2,2 � u2

3,2,

u1,1u1,2, u2,1u2,2 � u3,1u3,2,

• rotations of the normal are very small

ψ2
1,ψ

2
2 � 1,

which results in

sinψ1 ≈ ψ1, cosψ1 ≈ 1, ψ1 ≈ −w,1,

sinψ2 ≈ ψ2, cosψ2 ≈ 1, ψ2 ≈ −w,2,

• displacements
u1(x1, x2, x3) = u(x1, x2) − x3w,1(x1, x2),
u2(x1, x2, x3) = v(x1, x2) − x3w,2(x1, x2),
u3(x1, x2, x3) ≈ w(x1, x2),
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• strains

ε11(x1, x2, x3) = u,1(x1, x2) + 1

2
w2

,1(x1, x2) + x3κ11(x1, x2),

ε22(x1, x2, x3) = v,2(x1, x2) + 1

2
w2

,2(x1, x2) + x3κ22(x1, x2),

γ12(x1, x2, x3) = u,2(x1, x2) + v,1(x1, x2) + w,1(x1, x2)w,2(x1, x2)

+ 2x3κ12(x1, x2)

with

κ11 = −w,11, κ22 = −w,22, κ12 = −w,12

• strains in the midsurface

ε11(x1, x2) = u,1(x1, x2) + 1

2
w2

,1(x1, x2),

ε22(x1, x2) = v,2(x1, x2) + 1

2
w2

,2(x1, x2),

2ε12(x1, x2) = u,2(x1, x2) + v,1(x1, x2) + w,1(x1, x2)w,2(x1, x2),

• strains in the distance x3 from the midsurfaces

ε11(x1, x2, x3) = ε11(x1, x2) + x3κ11(x1, x2),
ε22(x1, x2, x3) = ε22(x1, x2) + x3κ22(x1, x2),
γ12(x1, x2, x3) = 2ε12(x1, x2) + 2x3κ12(x1, x2),

• compatibility conditions

ε11,22 + ε22,11 − 2ε12,12 = (w,12)
2 − w,11w,22

Now the equilibrium equations will be formulated for the deformed configuration
(in all previous cases this was performed for the undeformed configuration):

• equilibrium of forces in x3-direction assuming the smallness of higher order terms,
w,12 = w,21

q1,1 + q2,2 + (n11w,1 + n12w,2),1 + (n21w,1 + n22w,2),2 + q = 0,

• equilibrium of forces in x1- and x2-direction

n11,1 + n12,2 = 0, n12,1 + n22,2 = 0,

• taking into account the last equation we get the simplified equilibrium equations
for the forces in x3-direction (the underlined terms are related to the extensions of



36 H. Altenbach and V. Eremeyev

the Kirchhoff theory)

q1,1 + q2,2 + n11w,11 + n22w,22 + 2n12w,12 + q = 0,

• equilibrium of the moments

m12,1 + m22,2 − q2 = 0, m11,1 + m21,2 − q1 = 0

The constitutive equations are assuming plane stress state

σ11 = E

1 − ν2
[ε11 + νε22 + x3(κ11 + νκ22)],

σ22 = E

1 − ν2
[ε22 + νε11 + x3(κ22 + νκ11)],

σ12 = E

1 + ν
(ε12 + x3κ12)

From this follow the constitutive equations in stress resultants

n11 = D(ε11 + νε22),
n22 = D(ε22 + νε11),
n12 = D(1 − ν)ε12,
m11 = K (κ11 + νκ22),

m22 = K (κ22 + νκ11),

m12 = K (1 − ν)κ12

Let us introduce the governing equations in displacements. From the two equilibrium
equations of the in-plane forces

u,11 + 1 − ν

2
u,22 + 1 + ν

2
v,12 + w,1w,11 + 1 − ν

2
w,1w,22 + 1 + ν

2
w,2w,12 = 0,

v,22 + 1 − ν

2
v,11 + 1 + ν

2
u,12 + w,2w,22 + 1 − ν

2
w,2w,11 + 1 + ν

2
w,1w,12 = 0

The derivation of the third equation is based the other three equilibrium equations

m11,11 + 2m12,12 + m22,22 + n11w,11 + n22w,22 + 2n12w,12 + q = 0

With the constitutive equations

−K��w + Eh

1 − ν2

(
u,1w,11 + 1

2
w2

,1w,11 + v,2w,22 + 1

2
w2

,2w,22

+νv,2w,11 + 1

2
νw2

,2w,11 + 1

2
νw2

,1w,22 + νu,1w,22

)

+ Eh

1 + ν

(
u,2w,12 + v,1w,12 + w,1w,2w,12

) + q = 0
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we obtain the final set of governing equations in displacements. The smallness of
w2

,1w,11, w2
,2w,22, w2

,2w,11, w2
,1w,22 and w,1w,12w,2 results in

u,11 + 1 − ν

2
u,22 + 1 + ν

2
v,12 = −w,1w,11 − 1 − ν

2
w,1w,22 − 1 + ν

2
w,2w,12,

v,22 + 1 − ν

2
v,11 + 1 + ν

2
u,12 = −w,2w,22 − 1 − ν

2
w,2w,11 − 1 + ν

2
w,1w,12,

��w= q

K
+ 12

h2
[u,1w,11+v,2w,22+(1−ν)(u,2+v,1)w,12+ν(v,2w,11+u,1w,22)]

The following boundary conditions can be established

• in displacements

u|Γ = ū, v|Γ = v̄, w|Γ = w̄, w,n|Γ = w̄,n

• in-plane forces

n11|Γ cosα + n12|Γ sinα = n̄1, n21|Γ cosα + n22|Γ sinα = n̄2

with

n11 = Eh

1 − ν2

[
u,1 + νv,2 + 1

2
(w2

,1 + νw2
,2)

]
,

n22 = Eh

1 − ν2

[
v,2 + νu,1 + 1

2
(w2

,2 + νw2
,1)

]
,

n12 = Eh

2(1 + ν)
(u,2 + v,1 + w,1w,2)

For arbitrary boundaries we obtain the following boundary conditions

• shear forces:

q∗
n |Γ + (n11|Γ cosα + n12|Γ sinα)w,1|Γ + (n21|Γ cosα + n22|Γ sinα)w,2|Γ = q̄∗

n

or

q∗
n |Γ + nnn|Γ w,n|Γ + nnt |Γ w,t |Γ = q̄∗

• moments

mnn|Γ = m̄

• kinematical conditions

– clamped boundary: u = 0, v = 0, w = 0, w,1 = 0
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– support: u = 0, v = 0, w = 0, m11 = 0

– free boundary: n11 = 0, n12 = 0, q∗
1 = 0, m11 = 0

Finally we introduce the governing equations in mixed form. With the Airy’s stress
function Φ

n11 = Φ,22, n22 = Φ,11, n12 = −Φ,12

the in-plane equilibrium is satisfied. The constitutive equations

ε11 = 1

Eh
(n11 − νn22) = 1

Eh
(Φ,22 − νΦ,11),

ε22 = 1

Eh
(n22 − νn11) = 1

Eh
(Φ,11 − νΦ,22),

ε12 = 1 + ν

Eh
n12 = −1 + ν

Eh
Φ,12

and the compatibility condition results in

1

Eh
��Φ = (w,12)

2 − w,11w,22

From the equilibrium for the shear forces and moments

K��w = q + Φ,22w,11 + Φ,11w,22 − 2Φ,12w,12

Finally we get
K��w = L(w,Φ) + q,
1

Eh
��Φ = −1

2
L(w,w)

with
L( f, g) = f,11g,22 + f,22g,11 − 2 f,12g,12

The boundary conditions are

Φ,22 cosα − Φ,12 cosα = n̄1,

−Φ,12 cosα + Φ,11 cosα = n̄2

or
Φ,nn = n̄nn, −Φ,nt = n̄nt

Remark 3.5 Extension to shear deformable behavior is possible.
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Remark 3.6 Ciarlet’s statement (Ciarlet 1990) that the von Kármán theory cannot
be derived from the non-linear continuum mechanics, may be, should be corrected
(Meenen and Altenbach 2001; Podio-Guidugli 2003)

Remark 3.7 While the Föppl-von Kármán equations are of interest from a purely
mathematical point of view, the physical validity of these equations is questionable.

Remark 3.8 (Ciarlet) The two-dimensional von Kármán equations for plates, origi-
nally proposed by von Kármán (1910), play a mythical role in applied mathematics.
While they have been abundantly, and satisfactorily, studied from the mathematical
standpoint, as regards notably various questions of existence, regularity, and bifurca-
tion, of their solutions, their physical soundness has been often seriously questioned.

Remark 3.9 (Truesdell 1978) An analyst may regard that theory [v. Kármán’s theory
of plates] as handed out by some higher power (a Hungarian wizard, say) and study
it as a matter of pure analysis. To do so for v. Kármán theory is particularly tempting
because nobody can make sense out of the ‘derivations’ …

Remark 3.10 (Antman) Reasons for trouble include the facts that

1. the theory depends on an approximate geometry which is not clearly defined
2. a given variation of stress over a cross-section is assumed arbitrarily
3. a linear constitutive relation is used that does not correspond to a known relation

between well defined measures of stress and strain
4. some components of strain are arbitrarily ignored
5. there is a confusion between reference and deformed configurations which makes

the theory inapplicable to the large deformations for which it was apparently
devised.

Conditions under which these equations are actually applicable and will give rea-
sonable results when solved are discussed by Ciarlet (1980, 1990).

4 Direct Approach to the Theory of Shells

The Direct Approach in the theories of plates and shells first time was discussed
in the monograph of Cosserat and Cosserat (1909). Here we are following Zhilin
(1976). Let us introduce the following definition.

Definition 4.1 (Simple shell) A simple shell is a two-dimensional continuum in
which the interaction between neighboring parts is due to forces and moments.

In this sense the shell is modeled as a deformable surface with material points for
which we can prescribe physical properties. The definition is valid for homogeneous
and inhomogeneous in the thickness direction shells. Below we are discussing the
simplest case: each material point of the surface is an infinitesimal body with 5
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degrees of freedom (three translations and two rotations) which means that we have
a Timoshenko-Reissner-Mindlin-type theory.

Let us introduce briefly the material independent equations. Below the direct ten-
sor notation will used (for further details see Lebedev et al. 2010, among others) The
kinematical model will be given in two configurations. In the reference configuration
(undeformed state) we have

{r(q1, q2); dk(q
1, q2)}, dk ··· dm = δkm

r(q1, q2) is the position vector, dk(q1, q2) are orthonormal vectors. Then for the
actual configuration (deformed state) one has

{R(q1, q2, t); Dk(q
1, q2, t)}, Dk ··· Dm = δkm

The capital letters denote the same quantities as in the reference configuration. The
motion of the directed surface is defined by

R(q, t), P(q, t) ≡ Dk(q, t) ⊗ dk(q)

P(q, t) ≡ P(q1, q2, t) denotes a rotation tensor with Det P = +1. The linear and
angular velocities v(q, t),ωωω(q, t) can be presented by

v = Ṙ, Ṗ = ωωω × P, P(q1, q2, 0) = P0, ḟ ≡ d f

dt

With the help of these quantities local equation of motion are given as follows

• First Euler equation of motion

∇̃∇∇ ··· T + ρF∗ = ρ(v + ���T
1 ··· ωωω)···

T = Rα ⊗ Tα is the force tensor, F∗ is mass density of the external forces, ρ, ρ���1

are the density and the first tensor of inertia, ∇̃∇∇ ≡ Rα(q1, q2, t) ∂
∂qα denotes the

Nabla operator
• Second Euler equation of motion

∇̃∇∇ ··· M + T× + ρL = ρ(���1 ··· v + ���2 ··· ωωω)··· + ρv × ���T
1 ··· ωωω

M = Rα ⊗ Mα is the moment tensor, T× ≡ Rα × Tα, L is the mass density of
the external moments, ρ���2 is the second tensor of inertia

The local form of the balance of energy can be presented as

ρU̇ = TT ······ ∇̃∇∇v − T× ··· ωωω − MT ······ ∇̃∇∇ωωω
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U is the mass density of the internal energy. Introducing the energetic tensors (Lurie
2005)

Te = (∇̃∇∇r)T ··· T ··· P, Me = (∇̃∇∇r)T ··· M ··· P

we obtain another form of the balance of energy

ρU̇ = TT
e ······ Ė + MT

e ······ Ḟ

E, F are the first and the second deformation tensors

E = ∇∇∇R ··· P − a, F = (ΦΦΦα ··· Dk)rα ⊗ dk

with ∂αP = ΦΦΦα × P ⇒ 2ΦΦΦα = −[∂αP ··· PT]×. The strain energy U = U(E,F)

contains 12 scalar arguments. The number of arguments can be reduced due to some
restrictions:

• simple shells of constant thickness
• non-polar materials

The following restrictions are valid

L ··· D3 = 0, M ··· D3 = 0, MT
e ·················· [(F − b ··· c) ··· c] + TT

e ·················· [(E + a) ··· c] = 0

The specific energy U must satisfy

(
∂U

∂E

)T

······ [(E + a) ··· c] +
(

∂U

∂F

)T

······ [(F − b · c) ··· c] = 0,
∂ρU

∂(F ··· n)
= 0

The characteristic system of the first equation is a system of 12th order

d

ds
E = (E + a) ··· c, d

ds
F = (F − b ··· c) ··· c,

having 11 independent integrals. The independent integrals are the strain measures.
Four strain measures can be established

EEE = 1

2

[
(E + a) ··· a ··· (E + a)T − a

]
,

ΦΦΦ = (F − b ··· c) ··· a ··· (E + a)T + b ··· c ···EEE + b ··· c,
γγγ = E ··· n,

γγγ∗ = F ··· n

• The arbitrary function U(EEE,ΦΦΦ,γγγ,γγγ∗) satisfies the first equation of the character-
istic system.

• From the second equation follows that U does not depend on γγγ∗.
• Tensors EEE,ΦΦΦ,γγγ are called the reduced deformation tensors.
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• EEE denote plane tensile and shear strains, ΦΦΦ denotes the bending and torsional
strains and γγγ denotes the transverse shear.

The introduced equations containmore unknown than equations.Additional equa-
tions are the constitutive equations presenting the individual response of the given
material. Lets start with the strain energy of the simple shells. For a shell made
from an elastic material we can assume that the strains are relatively small while
the displacements and rotations can be relatively large. In such a case the following
quadratic approximation takes place

2ρ0U = 2T0 ······EEE + 2MT
0 ······ ΦΦΦ + 2N0 ··· γγγ

+ EEE ······ (4)C1 ······EEE + 2EEE ······ (4)C2 ······ ΦΦΦ + 2ΦΦΦ ······ (4)C3 ······ ΦΦΦ
+ γγγ ··· ΓΓΓ ··· γγγ + 2γγγ··· (3)ΓΓΓ 1 ······EEE + (3)ΓΓΓ 2 ······ ΦΦΦ)

T0,M0,N0, (4)C1,
(4) C2,

(4) C3, (3)ΓΓΓ 1,
(3) ΓΓΓ 2,ΓΓΓ are stiffness tensors of different rank.

They express the effective elastic properties of the simple shell. The differences
between various classes of simple shells are connected with different expressions of
the stiffness tensors. The stiffness tensors do not depend on the deformations. Thus
they may be found from tests based on the linear shell theory.

After the formulation of the governing equations there exists one open question—
the identification of the effective properties (stiffness, etc.). Various solutions of this
problem are existing in the literature (Altenbach 2000; Zhilin 1976). To find the
general structure of stiffness tensors the theory of symmetry must be applied Nye
(2000). The classical theory of symmetry is not sufficient because it is valid for
Euclidean tensors only. In the shell theory non-Euclidean tensors are involved. The
following types of tensors in the shell theory used.

• Polar tensors ρ,U,W,u, u.,E, T, a, ρ���2, T0,
(4)C1,

(4)C3,ΓΓΓ

• Axial tensors ρ���1,ϕϕϕ,ωωω,F,ΦΦΦ,b ··· c,M0,
(4)C2

• Polar n-oriented tensors b,B,γγγ,Q = T ··· n, (3)ΓΓΓ 1,N0

• Axial n-oriented tensors c = −a × n, (3)ΓΓΓ 2

For the orthogonal transformations of an arbitrary tensor of rank p is valid

⊗p
1Q ··· (p)S ≡ Si1...i pQ ··· gi1 ⊗ Q ··· gi2 ⊗ . . . ⊗ Q ··· gi p ,

(p)S′ ≡ (n ··· Q ··· n)β(DetQ)α ⊗p
1 Q ··· (p)S,

For polar tensors α = 0,β = 0, axial tensors α = 1,β = 0, polar n-oriented tensors
α = 0,β = 1, axial n-oriented tensors α = 1,β = 1. Symmetries can be described
in terms of the geometric operations which produce identical configurations. The
set of symmetry operations and results of their combinations define a mathematical
structure called a group. The symmetry operations which involve only rotations,
reflections and inversion define the point group. The symmetries are described by
orthogonal tensors
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• Reflection (n is the unit normal to the mirror plane)

Q = I − 2n ⊗ n, detQ = −1

• Rotation (m represents the axis and ψ is the angle of rotation)

Q(ψm) = m ⊗ m + cosψ(I − m ⊗ m) + sinψm × I,
−π < ψ < π, detQ = 1,

• Inversion
−I

How do the symmetries of the microstructure affect the physical properties? The
answer follows from Curie-Neumann’s principle in the physics of crystals:

• Any type of symmetry exhibited by the point group of a crystal is possessed by
every physical property of the crystal.

• For amaterial element and for any of its physical properties, everymaterial symme-
try transformation of the material element is a physical symmetry transformation
of the physical property.

• The symmetry group of the reason belongs to the symmetry group of the
consequence.

The reasons in the case of simple shells are the intersection of:

• symmetry of the material of the shell (fibre-reinforced material, rolled sheets),
• symmetry of the surface shape (shell or plate), and
• symmetry of the internal structure of the shell (laminated plates—symmetry of the
layer structure with respect to the mid-surface

The identification is based on some relations between two- and three-dimensional
properties:

• forces and moments with stress tensor of the classical theory of elasticity

T = 〈μ−1 ··· σσσ〉, M = 〈μ−1 ··· σσσ ··· cz〉,

• displacements and rotations with the three-dimensional displacement vector

ρ0(u. + ���T
1 ··· ϕϕϕ). = 〈ρ∗

0u
.
∗〉, ρ0(���1 ··· u. + ���T

2 ··· ϕϕϕ.) = 〈ρ∗
0u

.
∗ ··· cz〉

• external force and moment

ρ0F∗ = 〈ρ∗
0F

∗〉 + μ+σσσ+
n + μ−σσσ−

n ,

ρ0L = n × 〈ρ∗
0F

∗z〉 + (h/2)n × (μ+σσσ+
n − μ−σσσ−

n )
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μ+(−) = 1 − (+)h H + (h2/4)G, σσσ+(−)
n are stress vectors on the upper and lower

face surfaces of the shell.
Let us assume orthotropic material behavior and a plane mid-surface

((4)C1 = AAA, (4)C2 = BBB, (4)C3 = CCC)

AAA = A11aaa1aaa1 + A12(aaa1aaa2 + aaa2aaa1) + A22aaa2aaa2 + A44aaa4aaa4,

BBB = B13aaa1aaa3 + B14aaa1aaa4 + B23aaa2aaa3 + BBB24aaa2aaa4 + B42aaa4aaa2,

CCC = C22aaa2aaa2 + C33aaa3aaa3 + C34(aaa3aaa4 + aaa4aaa3) + C44aaa4aaa4,

ΓΓΓ = Γ1aaa1 + Γ2aaa2, ΓΓΓ 1 = 000, ΓΓΓ 2 = 000

with
aaa1 = aaa = eee1eee1 + eee2eee2, aaa2 = eee1eee1 − eee2eee2,

aaa3 = ccc = eee1eee2 − eee2eee1, aaa4 = eee1eee2 + eee2eee1

eee1,eee2 are unit basic vectors. In addition, one obtains the orthogonality condition for
aaai (i = 1, 2, 3, 4)

1

2
aaai ······ aaa j = δi j , δi j =

{
1, i = j,
0, i �= j

The elastic orthotropic law is valid in the following cases:

Case 1: Homogeneous plates—all properties are constant (no dependency from z).
Case 2: Inhomogeneous plates (sandwich, multilayered, functionally graded)—all

properties are functions of z, e.g., Ei = Ei (z).

The identification of the effective properties can be performed with the help of static
boundary value problems (two-dimensional, three-dimensional) and the comparison
of the forces and moments (in the sense of averaged stresses or stress resultants)

TTT =< a · σa · σa · σ >, MMM =< a · σa · σa · σz ··· ccc >

σσσ is the stress tensor, < (. . .) >=
h/2∫

−h/2

(. . .)dz. With the help of three problems

(tension and bending, plane shear and torsion) the effective stiffness tensors can
be computed
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A11 = 1

4
〈 E1 + E2 + 2E1ν21

1 − ν12ν21
〉, A12 = 1

4
〈 E1 − E2

1 − ν12ν21
〉,

A22 = 1

4
〈 E1 + E2 − 2E1ν21

1 − ν12ν21
〉,

B13 = −1

4
〈 E1 + E2 + 2E1ν21

1 − ν12ν21
z〉, −B23 = B14 = 1

4
〈 E1 − E2

1 − ν12ν21
z〉,

B24 = 1

4
〈 E1 + E2 − 2E1ν21

1 − ν12ν21
z〉,

C33 = 1

4
〈 E1 + E2 + 2E1ν21

1 − ν12ν21
z2〉, C34 = −1

4
〈 E1 − E2

1 − ν12ν21
z2〉,

C44 = 1

4
〈 E1 + E2 − 2E1ν21

1 − ν12ν21
z2〉

A44 =< G12 >, B42 = − < G12z >, C22 =< G12z2 >

Γ1 = 1

2
(λ2 + η2)

A44C22 − B2
42

A44
, Γ2 = 1

2
(η2 − λ2)

A44C22 − B2
42

A44
,

where λ follows from two Sturm-Liouville problems

d

dz

(
G2n

dZ

dz

)
+ λ2

∗G12Z = 0,
dZ

dz

∣∣∣∣
|z|= h

2

= 0

and

d

dz

(
G1n

dZ∗

dz

)
+ η2G12Z∗ = 0,

dZ∗

dz

∣∣∣∣
|z|= h

2

= 0

The details are given in Altenbach (2000). The classical stiffness tensors for homoge-
neous plates (the basic geometrical property is the thickness h, the plate is symmetri-
cally with respect to the mid-plane which results in BBB ≡ 0 and the following material
data—Young’s modulus E , shear modulus G = E/2(1 + ν), Poisson’s ratio ν, all
material properties are constant)

A11 = Eh

2(1 − ν)
, A22 = Eh

2(1 + ν)
= A44 = Gh,

C33 = Eh3

24(1 − ν)
, C44 = Eh3

24(1 + ν)
= C22 = Gh3

12

The classical plate (bending) stiffness (Timoshenko and Woinowsky-Krieger 1985)
follows as

C33 + C44 = Eh3

12(1 − ν2)
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The transverse shear stiffness for the homogeneous plate follows from

Γ = λ2C22 with
d2Z

dz2
+ λ2Z = 0,

dZ

dz

∣∣∣∣
|z|= h

2

= 0

Thee λ value can be computed analytically. From cosλz = 0 yields the smallest
eigenvalue

λ = π

h

and finally we have

Γ = π2

h2

Gh3

12
= π2

12
Gh

π2/12 is similar to the shear correction factor first presented in Mindlin (1951). The
estimate of Reissner (1944) slightly differs (5/6).

Summarizing the presented results here:

• The classical stiffness tensors are in all approaches the same.
• Mindlin’s estimate of the transverse shear stiffness coincide with our estimate. But
Mindlin used a dynamic problem, we have a static problem for the computing of
the transverse shear stiffness.

• Reissner’s static approach coincide with our approach in the case of sandwich
structures.

• For functionally graded materials we can make the following conclusions:
Reissner’s solution gives understated values of the transverse stiffness when the
difference between elastic moduli is big enough. On the other hand, Reissner’s
solution gives overstated values when the elastic moduli do not differ.

5 Examples of Advanced Theories

5.1 Nanoeffects

Let discuss at first the formulation of theories for nano-plates and -shells.

• The development of nanotechnologies extends the field of application of the clas-
sical or non-classical theories of plates and shells towards the new thin-walled
structures.

• In general, modern nanomaterials have physical properties which are different
from the bulk material.

• The classical linear elasticity can be extended to the nanoscale by implementation
of the theory of elasticity taking into account the surface stresses.
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• In particular, the surface stresses are responsible for the size-effect, that means
the material properties of a specimen depend on its size. For example, Young’s
modulus of a cylindrical specimen increases significantly, when the cylinder diam-
eter becomes very small.

• The surface stresses are the generalization of the scalar surface tension which is
well-known phenomenon in the theory of capillarity.

Previous investigations

• were related to investigations of the surface phenomena which were initiated by
Gibbs (1928); Laplace (1805, 1806); Young (1805).

• resulted in several reviews by Duan et al. (2008); Finn (1986); Orowan (1970);
Podstrigach and Povstenko (1985); Rusanov (2005a, b), …

• taking into account surface stresses: Gurtin and Murdoch (1975a, b); Podstrigach
and Povstenko (1985); Steigmann and Ogden (1999),

• applied the theory of elasticity with surface stresses to the modifications of the
two-dimensional theories of nanosized plates in Altenbach and Eremeyev (2011);
Altenbach et al. (2009, 2010a, 2012); Eremeyev et al. (2009); Huang (2008); Lu
et al. (2006).

Various theories of plates are formulated. The approaches can be classified, for
example, by the starting point of the derivation. This can be the well-known three-
dimensional continuummechanics equations. In contrast, one can introduce à priory
a two-dimensional deformable surface which is the basis for a more natural formu-
lation of the two-dimensional governing equations. This so-called direct approach
should be supplemented by the theoretical or experimental determination of the
material parameters included in the constitutive equations.

Here we use the general theory of shells presented in

• Libai and Simmonds (1998) and
• Chróścielewski et al. (2004)

for the modification of the constitutive equations taking into account the surface
stresses.

We show that both the stress and the couple stress resultant tensors may be repre-
sented as a sum of two terms. The first term is the volume stress resultant while the
second one determined by the surface stresses and the shell geometry. In the linear
case this modification reduces to the addition of new terms to the elastic stiffness
parameters. The influence of these terms on the bending stiffness of a shell is dis-
cussed. We show that the surface elasticity makes a shell more stiffer in comparison
with the shell without surface stresses.

The strain energy function can be presented as

W = W(F,Q,∇Q), F
�= ∇r, Q

�= Dk ⊗ dk ,

∇(. . .)
�= Rα ⊗ ∂(. . .)/∂qα , α,β = 1, 2 ,

Rα · Rβ = δα
β , Rα · N = 0, Rα = ∂R

∂qα
,

(2)
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where Q is an orthogonal tensor which is named the microrotation tensor, and N is
the unit normal to the surface Ω in the reference configuration. After application of
the principle of the frame indifference W takes the form

W = W(E,K),

E
�= F · QT , K

�= 1

2
Rα ⊗

(
∂Q
∂qα

· QT

)
×

(3)

The Lagrangian equilibrium equations are

∇ · D + q = 0, ∇ · H + [
FT · D]

× + c = 0,

D
�= ∂W/∂E · Q, H

�= ∂W/∂K · Q .
(4)

Here D andH the surface stress resultant and stress couple tensors of the first Piola-
Kirchhoff type, while q and c are the external surface force and moment vectors,
respectively. The strain measuresE andK are work-conjugate to the respective stress
measures D and H.

For three-dimensional shell-like body we have if taking into account surface
stresses (Gurtin and Murdoch 1975a, b)

∇x · P + ρf = 0 , (n± · P − ∇± · S±)|Ω± = t± ,

u|Ωu
= 0 , n · P|Ω f

= t. (5)

Here P is the first Piola-Kirchhoff stress tensor, S± is the surface stress tensors of the
first Piola-Kirchhoff type acting on the surfaces Ω±, u = x − X is the displacement
vector, f and t±, t are the body force and surface loads vectors, respectively, ρ is the
density. We assume that the part of body surfaceΩu is fixed, while onΩ f the surface
stresses are absent. In the theory of (Gurtin andMurdoch 1975a, b) the tensors S± are
similar to the membrane stress resultants. S± = ∂U±/∂F, where U± are the surface
strain energy densities. The reduction from 3D to 2D is performed in the sense of
Chróścielewski et al. (2004); Libai and Simmonds (1998): for the nonlinear elastic
body without surface stresses, i.e. when S± = 0, this technique gives the following
relations between D, H, and P:

D =
∫

G · P dζ ,

H = −
∫

G · P × z dζ
(6)

where z is the base reference deviation, ζ ∈ [−h/2, h/2] and G the geometrical
tensor defined by Libai and Simmonds (1998).

The surface loads q and c in (4) are also determined by the through-the-thickness
integration procedure. The boundary value problem (5) is linear with respect to
the surface stresses S±. The through-the-thickness integration procedure is linear
too. This means that the stress resultants for the shell with surface stresses can be
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represented as a sum of two terms

D∗ = D + DS H∗ = H + MS (7)

D,H is the classical stress and couple stress resultant tensors (6),DS ,HS are resultant
tensors induced by S±

DS = G+∇ · S+ + G−∇ · S−
MS = −h/2

[
G+(∇ · S+) × z+ − G−(∇ · S−) × z−

]
.

(8)

Here G is the geometric scale factor, and G± = G
∣∣
ζ=±h/2. It may be shown that

the tensors DS and HS have a structure of the constitutive equations of nonlinear
Kirchhoff-Love-type theory. Further we restrict ourself assuming the linear theory.

Let us assume isotropic elastic material behavior. The theory is simplified in the
case of plates and infinitesimal strains. The surface strain energy density is given by

2W = α1tr2E‖ + α3tr
(
E‖ · ET

‖
) + α4N · ET · E · N

+ β1tr2K‖ + β3tr
(
K‖ · KT

‖
) + β4N · KT · K · N.

(9)

E‖ = E · A, K‖ = K · A, A = I − N ⊗ N, αi , βi are the elastic constants

α1 = Cν, α3 = C(1 − ν), α4 = αsC(1 − ν) ,

β1 = Dν, β3 = D(1 − ν), β4 = αtD(1 − ν),

C = Eh

1 − ν2
, D = Eh3

12(1 − ν2)

(10)

E , ν are Young’s modulus and Poisson’s ratio of the bulk material, αs, αt are dimen-
sionless coefficients, h is the shell thickness, αs is similar to the shear correction
factor introduced by Reissner (1944) (αs = 5/6) and Mindlin (1951) (αs = π2/12).
The value αt = 0.7 was proposed by Pietraszkiewicz (1979).

The surface stress tensors S± can be introduced following Duan et al. (2008);
Gurtin and Murdoch (1975a, b)

S± = λ±
S Atre± + 2μ±

S e± ,

2e± = ∇u± · A + A · (∇u±)T ,
(11)

u± = u
∣∣
ζ=±h/2, λ

±
S , μ

±
S —“surface Lamé’s constants”. For the sake of simplicity let

us assume the symmetric case: λ±
S = λS and μ±

S = μS .
Taking into account (11)

α1 = Cν + 2λS , α3 = C(1 − ν) + 4μS ,

β1 = Dν + h2λS/2 , β3 = D(1 − ν) + h2μS ,

C∗ = C + 4μS + 2λS,

D∗ = D + h2μS + h2λS/2 .

(12)
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C∗ and D∗ are the effective in-plane and bending stiffness of the plate with surface
stresses. C∗ > C and D∗ > D, i.e. the plate with surface stresses is stiffer. α4, β4 do
not depend on λS and μS .

5.2 Direct Approach to Viscoelastic Plates

Since the direct approach is a natural way to describe the behavior of plates (the stress
resultants which are used in most of plate theories can be interpreted as forces and
moments) a two-dimensional plate theory which allows to model homogeneous and
inhomogeneous plates can be presented also for the viscoelastic case. The equations
of motions are the same as in the elastic case:

• balance of momentum

∇ · T∇ · T∇ · T + qqq = ρüuu + ρ���1 ··· ϕ̈ϕϕ

• balance of moment of momentum

∇ · M∇ · M∇ · M + TTT × + mmm = ρ���T
1 ··· üuu + ρ���2 ··· ϕ̈ϕϕ

TTT ,MMM are tensors of forces andmoments,qqq ,mmm are surface loads (forces andmoments),
uuu,ϕϕϕ are displacements and rotations,���1,���2 are first and second tensor of inertia, ρ
is the density (effective property of the deformable surface). In addition, kinematical
relationsμμμ = (∇u · a∇u · a∇u · a)sym, γγγ = ∇u · n∇u · n∇u · n + c · ϕc · ϕc · ϕ, κκκ = ∇ϕ∇ϕ∇ϕ,μμμ,γγγ andκκκ are strain
tensors and initial/boundary conditions. The boundary conditions are

• static and kinematic conditions

ννν · TTT = fff , ννν · MMM = lll (lll · nnn = 0) or uuu = uuu0, ϕϕϕ = ϕϕϕ0 along S

Here fff and lll are external force and moment vectors acting along the boundary S
of the plate, while uuu0 andϕϕϕ0 are given functions describing the displacements and
rotations of the plate boundary, respectively. ννν is the unit outer normal vector to
the boundary S (ννν · nnn = 0).

• boundary conditions corresponding to a hinge

ννν · MMM · τττ = 0, uuu = 000, ϕϕϕ · τττ = 0.

Here τττ is the unit tangent vector in the tangential plane to the boundary S
(τττ · nnn = τττ · ννν = 0).



Thin-Walled Structural Elements: Classification, Classical … 51

The constitutive behavior can be presented as follow

• in-plane forces

T · aT · aT · a = Aμμμ + Bκκκ ≡
∫ t

−∞
AAA(t − τ ) ······ μ̇μμ(τ ) dτ +

∫ t

−∞
BBB(t − τ ) ······ κ̇κκ(τ ) dτ ,

• transverse shear forces

T · nT · nT · n = Gγγγ ≡ Γ (t − τ ) ··· γ̇γγ(τ ) dτ ,

• moments

MMMT = B̂μμμ + Cκκκ ≡
∫ t

−∞
μ̇μμ(τ ) ······ BBB(t − τ ) dτ +

∫ t

−∞
CCC(t − τ ) ······ κ̇κκ(τ ) dτ

A, B, B̂, C, G are linear viscoelastic operators, AAA(t), BBB(t),CCC(t) are 4th rank tensors,
ΓΓΓ (t) is a 2nd rank tensor. The effective stiffness properties (relaxation functions
for the plate) can be compute like in the elastic case. They depend on the material
properties and the cross-section geometry

AAA = A11aaa1aaa1 + A12(aaa1aaa2 + aaa2aaa1) + A22aaa2aaa2 + A44aaa4aaa4,

BBB = B13aaa1aaa3 + B14aaa1aaa4 + B23aaa2aaa3 + BBB24aaa2aaa4 + B42aaa4aaa2,

CCC = C22aaa2aaa2 + C33aaa3aaa3 + C34(aaa3aaa4 + aaa4aaa3) + C44aaa4aaa4,

ΓΓΓ = Γ1aaa1 + Γ2aaa2,

aaa1 = aaa = eee1eee1 + eee2eee2, aaa2 = eee1eee1 − eee2eee2,

aaa3 = ccc = eee1eee2 − eee2eee1, aaa4 = eee1eee2 + eee2eee1

Isotropic and symmetric over the thickness plates

AAA = A11aaa1aaa1 + A22(aaa2aaa2 + aaa4aaa4), CCC = C22(aaa2aaa2 + aaa4aaa4) + C33aaa3aaa3,

ΓΓΓ = Γ aaa

The viscoelastic orthotropic law is valid in the following cases:

Case 1: Homogeneous plates—all properties are constant (no dependency from z).
Case 2: Inhomogeneous plates (sandwich, multilayered, functionally graded)—all

properties are functions of z.

The identification of the effective properties can be performed with the help of
quasi-static boundary value problems (two-dimensional, three-dimensional) and the
comparison of the forces and moments (in the sense of averaged stresses or stress
resultants).



52 H. Altenbach and V. Eremeyev

TTT =< a · σa · σa · σ >, MMM =< a · σa · σa · σz ··· ccc >

σσσ is the stress tensor,< (. . .) >=
h/2∫

−h/2

(. . .)dz. The three-dimensional viscoelasticity

is presented by

σσσ =
t∫

−∞
RRR(t − τ ) ······ ε̇εε(τ ) dτ or εεε =

t∫
−∞

JJJ (t − τ ) ······ σ̇σσ dτ ,

RRR(t) and JJJ (t) are 4th rank tensors of relaxation and creep functions.
Let us consider that all properties are functions of the thickness coordinate z:

RRR = RRR(z, t), JJJ = JJJ (z, t)

The density depends only on the thickness coordinate ρ0 = ρ0(z)
With the help of the Laplace transform

f (s) =
∞∫
0

f (t)e−stdt ⇒ σσσ = sRRR(s) ······ εεε or εεε = sJJJ (s) ······ σσσ

one can perform the identification. Applying the correspondence principle one can
use the identification procedure presented in Altenbach (1988). There are again basic
test problems:

• tension/compression with superposed bending,
• in-plan shear, and
• torsion at the plate boundaries

The on-zero components of the stiffness tensors are for the isotropic case

A11 = 1

2
〈 E

1 − ν
〉, A22 = 1

2
〈 E

1 + ν
〉 = A44 =< μ >,

B13 = −1

2
〈 E

1 − ν
z〉, B24 = 1

2
〈 E

1 + ν
z〉 = −B42 =< μz >,

C33 = 1

2
〈 E

1 − ν
z2〉, C44 = 1

2
〈 E

1 + ν
z2〉 = C22 =< μz2 >,

Γ 1 = Γ = λ2 A44C22 − B
2
42

A44
,
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λ is again the minimal nonzero eigen-value of a Sturm-Liouville problem

d

dz

(
μ
dZ

dz

)
+ λ2μZ = 0,

dZ

dz

∣∣∣∣
|z|= h

2

= 0

The relaxation functions for the case of orthotropic material behavior are

A11 = 1

4
〈 E1 + E2 + 2E1ν21

1 − ν12ν21
〉, A12 = 1

4
〈 E1 − E2

1 − ν12ν21
〉,

A22 = 1

4
〈 E1 + E2 − 2E1ν21

1 − ν12ν21
〉, A44 =< G12 >,

B13 = −1

4
〈 E1 + E2 + 2E1ν21

1 − ν12ν21
z〉, −B23 = B14 = 1

4
〈 E1 − E2

1 − ν12ν21
z〉,

B24 = 1

4
〈 E1 + E2 − 2E1ν21

1 − ν12ν21
z〉, B42 = − < G12z >,

C33 = 1

4
〈 E1 + E2 + 2E1ν21

1 − ν12ν21
z2〉, C34 = −1

4
〈 E1 − E2

1 − ν12ν21
z2〉,

C44 = 1

4
〈 E1 + E2 − 2E1ν21

1 − ν12ν21
z2〉, C22 =< G12z2 >,

Γ 1 = 1

2
(λ2 + η2)

A44C22 − B
2
42

A44
, Γ 2 = 1

2
(η2 − λ2)

A44C22 − B
2
42

A44

where λ and η are minimal non-zero eigen-values of the problems

d

dz

(
G2n

dZ

dz

)
+ λ2G12Z = 0,

dZ

dz

∣∣∣∣
|z|= h

2

= 0,

d

dz

(
G1n

d Z̃

dz

)
+ η2G12 Z̃ = 0,

d Z̃

dz

∣∣∣∣
|z|= h

2

= 0

The following conclusions can be given:

• For a plate which is symmetrically to the midplane the relation BBB = 000 holds true.
• The relaxation functions of the isotropic viscoelastic plate with symmetric cross-
section were considered in Altenbach and Eremeyev (2008).

• For isotropic viscoelastic material we introduced three functions E(s), μ(s) and
ν(s). They are interlinked by

E = 2μ(1 + ν)

This is the definition of the Poisson’s ratio for the viscoelastic material (Lakes and
Wineman 2006).
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• In the theory of viscoelasticity of solids the assumption ν(t) = ν = const is
often used. It is fulfilled in many applications (Christensen 1971; Drozdov 1996)
concerning ν(t) ≈ const), for example, ν = 1/2 for an incompressible viscoelastic
material.

• In the general case, ν is a function of t . ν(t) was considered as an increasing
function (Tschoegl 1989) or non-monotonous function (Lakes 1992) of t . The
latter case may be realized for cellular materials or foams.

• Further we investigate the influence of ν(t) on the deflexion of a viscoelastic plate
and its effective relaxation functions.

In the case of homogeneous plates with the assumption ν(t) = ν = const we get
E(t) = 2μ(t)(1 + ν). In addition, we obtain

A11(t) = E(t)h

2(1 − ν)
, A22(t) = E(t)h

2(1 + ν)
= μ(t)h,

C33(t) = E(t)h3

24(1 − ν)
, C22(t) = E(t)h3

24(1 + ν)
= μ(t)h3

12

and the bending “stiffness”

D(t) = E(t)h3

12(1 − ν2)

The density and the rotation inertia are

ρ = ρ0h, � = ρ0h3

12
(13)

For the Sturm-Liouville problem we obtain λ = π/h and finally we have

Γ (t) = λ2C22 = π2

h2

μ(t)h3

12
= π2

12
μ(t)h (14)

For ν = ν(t) we get

D = Eh3

12(1 − ν2)

and

D(t) =
t∫

−∞

E(t − τ )h3

12[1 − ν2(τ )] dτ

Using formulas f (0) = lim
s→∞ s f (s) and lim

t→∞ f (t) = lim
s→o

s f (s), we obtain
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D(0) = E(0)h3

12(1 − ν2
0 )

, D(∞) = E(∞)h3

12(1 − ν2∞)
,

where

ν0 = E(0)

2μ(0)
− 1, ν∞ = E(∞)

2μ(∞)
− 1, f (∞) = lim

t→∞ f (t)

In the case of the standard viscoelastic body we have

E(t) = E∞ + (E0 − E∞)e−t/τE , μ(t) = μ∞ + (μ0 − μ∞)e−t/τμ ,

E∞ < E0, μ∞ < μ0, τE, and τμ are the material constants. The transformed values
are

E = E∞
s

+ E0 − E∞
s + τE

, μ = μ∞
s

+ μ0 − μ∞
s + τμ

, E∞ < E0, μ∞ < μ0

ν = (s + τμ)(E∞τE + E0s)

2(s + τE)(μ∞τμ + μ0s)
− 1

If ν = const we get E∞/E0 = μ∞/μ0, τE = τμ. The bending “stiffness” can be
computed as

D = μ2h3

3(4μ − E)
=

(
μ∞ + μ0τμs

)2
h3

s2
(
sτμ + 1

)2 [
12 μ∞+μ0τμs

s(sτμ+1)
− 3 E∞+E0τEs

s(sτE+1)

] ,

which results in

D(0) = E0h3

12(1 − ν2
0 )

, D(∞) = E∞h3

12(1 − ν2∞)
,

and

ν0 = E0

2μ0
− 1, ν∞ = E∞

2μ∞
− 1

For the panel made from a porous polymer foam the distribution of the pores over
the thickness can be inhomogeneous. Let us introduce h as the thickness of the panel,
ρs as the density of the bulk material and ρp as the minimum value of the density of
the foam. For the description of the symmetric distribution of the porosity we assume
the power law

V (z) = α + (1 − α)

∣∣∣∣2z

h

∣∣∣∣
n

,
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whereα = ρp/ρs is theminimal relative density, n is the power. n = 0 corresponds to
the homogeneous plate described in the previous paragraph. For the polymer foam
the modification of the standard linear viscoelastic solid is proposed (Gibson and
Ashby 1997)

σ̇ + τEσ = κ(z) [E∞τEε + E0ε̇]

For open-cell foams
κ(z) = C1V (z)2,

for closed-cell foams

κ(z) = C2
[
φ2V (z)2 + (1 − φ)V (z)

]

C1 ≈ 1, C2 ≈ 1, φ describes the relative volume of the solid polymer concentrated
near the cell ribs. Usually, φ = 0.6 . . . 0.7. E∞, E0, τE are material constants of the
polymer used in manufacturing of the foam. The corresponding relaxation function
are

E = E(z, t) = E(t)κ(z), E(t) = E∞ + (E0 − E∞)e−t/τE ,

Here E∞ and E0 are the equilibrium and the short-time Young’s moduli (E∞ < E0),
while τE is the relaxation time for tension.

By analogy the following relation can be established for the shear relaxation
function

μ = μ(z, t) = μ(t)m(z)

These equations have the meaning that the viscoelastic properties of the foam, for
example, the time of relaxation, do not depend on the porosity distribution. Note
that the representations are only rough approximation for spatial nonhomogeneous
foams.

Further approximations can be given using experimental data of Ashby et al.
(2000). One can assume ν = const:

A11 = 1 + ν

1 − ν
A22, C33 = 1 + ν

1 − ν
C22,

{A22, C22, Γ } = {A◦
22, C◦

22,λ
2C◦

22}μ(t)

For the closed-cell foam A◦
22 and C◦

22 we obtain

A◦
22 = h

{
φ2

[
α2 + 2α(1 − α)

n + 1
+ (1 − α)2

2n + 1

]
+ (1 − φ)

[
α + 1 − α

n + 1

]}
,

C◦
22 = h3

12

{
φ2

[
α2 + 6α(1 − α)

n + 3
+ 3(1 − α)2

2n + 3

]
+(1 − φ)

[
α + 3(1 − α)

n + 3

]}
,
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while for the open-cell foam φ = 1. Here we assume that C1 = 1, C2 = 1, and that
φ does not depend on z. Let us summarize the results:

• It is easy to see that the classical relaxation functions differ only by factors from
the shear relaxation function.

• Note that one can easily extend the suggested equation to the case of general
constitutive equations.

• Thus, using assumption that ν = const, one can calculate the classical effec-
tive stiffness relaxation functions for general viscoelastic constitutive equations
multiplying the shear relaxation function with the corresponding factor.

• In themore general situationwithν = ν(t)or taking into account other viscoelastic
phenomena, for example, the filtration of a fluid in the saturated foam, the effective
stiffness relaxation functionsmay bemore complex then for the pure solid polymer
discussed here.

• Finally, we should mention that in the case of constant Poisson’s ratio and with
the introduced assumption the determination of the effective in-plane, bending
and transverse shear stiffness tensors of a symmetric viscoelastic plate made of a
polymer foam can be realized by the same method as for elastic plates.

• The relaxation functions for viscoelastic plates can be found from the values of
the corresponding effective stiffness of an elastic plate by multiplication with the
normalized shear relaxation function of the polymer solid.

Let us consider a bending of viscoelastic plate with simple-support boundary
conditions

s Deff��w = qn−
Deff

Γ
�qn,

where Deff = C22 + C33 is Laplace transformof the effective bending stiffness relax-
ation function. Note that here Deff = D0

effμ(s), so we obtain that
Deff = (C◦

22 + C◦
33)μ(t). Using the assumption that ν = const we get the relation

Deff

Γ
= 2

λ2(1 − ν)
. We are looking for the solution in the form

w =
∞∑

k=1

ck(t)wk(x, y),

wherewk are eigen-functions satisfying of the equation��wk = ω2
k wk with simple-

support boundary conditions, while ck are unknown functions, we obtain that

ck(s) = 1

s Deffω
2
k

(
qn − 2

λ2(1 − ν)
�qn, wk

)
, ( f, g) =

∫∫
f g dxdy
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This solution differs from the case of viscoelastic Kirchhoff plate (underlined terms).
For the case of rectangular plate, it was shown that the maximal deflection may be
on 20% larger than in the case of Kirchhoff plate. The deflection of a homogeneous
rectangular plate is

wmax(t)= Q0
12(1 − ν2)

h3η4

[
1 − 2h2

(
1
a2 + 1

b2

)
1 − ν

] [
1

E0
+

(
1

E0
− 1

E∞

)
e−t E0/(E∞τE)

]

The deflection of a FGM rectangular plate can be computed as

w = K

η4h4

Q

sμ(s)
sin

πhx

a
sin

πhy

b
, K = 1 + 2η2

1 − ν

1

λ2

K = KK ≡ 1, K = KM ≡ 1 + 2η

1 − ν

1

π2

The bounds are

1 + 2η

1 − ν

L2m2
min

π2h2
≤ K ≤ 1 + 2η

1 − ν

L2m2
max

π2h2

For example, if ν = 0.3, a = b, h = 0.05a, α = 0.9 it follows that λ = 0.83/h for
n = 2, and λ = 0.82/h for n = 5. Then

KM ≈ 1.014, K ≈ 1.20 (n = 2), K ≈ 1.21 (n = 5)

For detailed analysis we refer to Altenbach and Eremeyev (2009).

References

Altenbach, H. (1988). Eine direkt formulierte lineare Theorie für viskoelastische Platten und
Schalen. Ing.-Arch., 58, 215–228.

Altenbach, H. (2000). An alternative determination of transverse shear stiffnesses for sandwich and
laminated plates. International Journal of Solid and Structure, 37(25), 3503–3520.

Altenbach, H., & Eremeyev, V. A. (2008). Analysis of the viscoelastic behavior of plates made of
functionally graded materials. ZAMM, 88(5), 332–341.

Altenbach, H., & Eremeyev, V. A. (2009). On the bending of viscoelastic plates made of polymer
foams. Acta Mechanica, 204(3–4), 137–154.

Altenbach, H., & Eremeyev, V. A. (2011). Shell-like Structures: Non-classical Theories and Appli-
cations., Advanced StructuredMaterials Berlin, Heidelberg: Springer Science&BusinessMedia.

Altenbach, H., & Mikhasev, G. (2014). Shell and Membrane Theories in Mechanics and Biology:
From Macro- to Nanoscale Structures., Advanced Structured Materials Cham: Springer.

Altenbach, H., Eremeyev, V.A.,&Morozov, N. F. (2009). Linear theory of shells taking into account
surface stresses. Doklady Physics, 54(12), 531–535.



Thin-Walled Structural Elements: Classification, Classical … 59

Altenbach, H., Eremeev, V. A., & Morozov, N. F. (2010a). On equations of the linear theory of
shells with surface stresses taken into account. Mechanics of Solids, 45(3), 331–342.

Altenbach,H., Eremeyev,V.A.,&Morozov,N. F. (2012). Surface viscoelasticity and effective prop-
erties of thin-walled structures at the nanoscale. International Journal of Engineering Science,
59, 83–89.

Altenbach, H., Altenbach, J., & Naumenko, K. (2016). Ebene Flächentragwerke (2nd ed.). Cham:
Springer.

Altenbach, J., Altenbach, H., & Eremeyev, V. A. (2010b). On generalized Cosserat-type theories of
plates and shells: a short review and bibliography. Archive of Applied Mechanics, 80(1), 73–92.

Ambarcumyan, S. A. (1991). Theory of Anisotropic Plates: Strength, Stability, and Vibrations.
Washington: Hemispher Publishing.

Aron, H. (1874). Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig
gekrümmten elastischen Schale. Journal für die reine und angewandte Mathematik, 78, 136–
174.

Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., & Gibson, L. J. (2000).
Metal Foams: A Design Guide. Boston: Butterworth-Heinemann.
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Basics of Mechanics of Micropolar Shells

Victor Eremeyev and Holm Altenbach

Abstract The chapter is devoted to the introduction to the nonlinear theory of
micropolar shells called also six-parametric shell theory. Within the theory a shell
is described as a deformable directed material surface each point of which has six
degrees of freedom (DOF), i.e. three translational and three rotational DOF. In other
words the shell kinematics coincides with the kinematics of a two-dimensional (2D)
micropolar or Cosserat body. Here we present the basic equations of the micropolar
shell theory including variational statements, compatibility conditions, etc.

1 Introduction

Theory of plates and shells is one of the oldest branches of mechanics. First scientific
publications in the field belong to Euler who published paper in 1767, to the paper by
J. Bernoulli in 1789, see the bibliography collected by Jemielita (2001) and the first
chapter in this book. Nowadays there are theories of plates and shells related with the
names byKirchhoff, Love,Cosserat, Timoshenko,Reissner,Mindlin,Koiter,Naghdi,
Donnell, Vekua and many others. So, many models may be considered as refinement
or extension of the classical Kirchhoff-Love theory of shells. Nowadays, various
refined 2D theories are implemented in commercial FEM software and widely used
in contemporary engineering practice. Nevertheless, the refinement of plate and shell
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theories are still required in various directions, see brief discussion by Eremeyev
and Pietraszkiewicz (2014). In particular, the following directions in the field of
thin-walled structures are very actual:

• refinement of 2D governing relations for better accuracy;
• application to modelling of new materials and phenomena;
• development of efficient numerical tools.

For various methods of derivations of plates and shells equations we refer to Ambart-
sumyan (1970), Naghdi (1972), Goldenveizer (1976), Reissner (1985), Novozhilov
et al. (1991), Libai and Simmonds (1998), Ciarlet (1997, 2000), Wang et al. (2000),
Tovstik and Smirnov (2001), Kabrits et al. (2002), Reddy (2003), Kreja (2007),
Amabili (2008), Carrera et al. (2011), Jaiani (2011). The current state of the art in
the field can be found in recent paper collections and reviews (Pietraszkiewicz and
Szymczak 2005; Jaiani and Podio-Guidugli 2008; Pietraszkiewicz and Kreja 2010;
Altenbach and Eremeyev 2011c; Altenbach andMikhasev 2014; Alijani andAmabili
2014; Pietraszkiewicz and Górski 2014).

In this chapter we discuss the nonlinear micropolar shell theory using the direct
approach and its applications. Within the direct approach the basic governing equa-
tions are derived for a 2D continuum. The discussed model coincides kinematically
with the general resultant nonlinear six-parameter theory of shells derived using the
through-the-thickness integrations of the motion equations of the nonlinear elastic-
ity. The basics of this theory is presented in Libai and Simmonds (1983, 1998),
Chróścielewski et al. (2004a), Eremeyev and Zubov (2008), Lebedev et al. (2010),
Eremeyev et al. (2013), Altenbach and Eremeyev (2013b), Pietraszkiewicz (2015).
Within the micropolar shell theory the kinematics of the shell is determined by two
kinematically independent fields of translations and rotations. The surface stress and
couple stress tensors are introduced in the theory. Each point of the micropolar shell
base surface has six degrees of freedom as in rigid body dynamics. This means
that the drilling moment is taken in account. The advantage of the six-parameter
shell model is the correct description of multifolded shells, of interaction of a shell
with a rigid body, etc., see Konopińska and Pietraszkiewicz (2007), Pietraszkiewicz
and Konopińska (2011), Pietraszkiewicz and Konopińska (2015) and the references
therein. The full micropolar kinematics may be important for proper modelling of
piezoelectric or piezomagnetic shells since electromagnetics fields produce forces
and moments including the drilling ones, see Eringen and Maugin (1990), Maugin
(1988). In addition, this gives the possibility of description of the contact interaction
of shells with distributed on its surface nano-objects Eremeyev (2005a), Eremeyev
et al. (2015a) or sensors, actuators, absorbers, etc., see Koç et al. (2005), Akay et al.
(2005), Carcaterra et al. (2012), Andreaus et al. (2004), Vidoli and dell’Isola (2001),
dell’Isola and Vidoli (1998), dell’Isola et al. (2003), Maurini et al. (2004).

This chapter is almost based on recent works by Altenbach and Eremeyev (2013a,
2014a, b), Eremeyev et al. (2013, 2015b), Eremeyev and Zubov (2007). In what
follows we use the direct tensor calculus as in (Lebedev et al. 2010; Eremeyev et al.
2013). Here vectors and tensors are denoted by semi-bold font shape.
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2 On Rigid Body Dynamics

In this section we recall basic notions of rigid body dynamics such as the moments,
the inertia tensors, the kinetic energy and others which are also used in continuum
mechanics andmechanics of structures. For details we can refer to various textbooks,
see e.g. Lurie (2001).

The rigid body P can be considered as a collection of mass points (material
particles) and can be defined as follows.

Definition 2.1 A set of material points for which the mutual distances between the
points remain unchanged in motion, is called rigid body.

The kinematics of the rigid body is determined by six parameters, by three trans-
lations of an arbitrary point of the rigid body and by three rotations. Let o ∈ P
be a point of the body called the pole and r0(t) is its position vector at instant t .
This vector describes translations of the rigid body. For description of rotations we
consider embedded the coordinate trihedron with unit vectors d1(t), d2(t), d3(t),
di · d j = δi j , see Fig. 1, here δi j is the Kronecker symbol. Using r0(t) and dk(t) the
position of any point z ∈ P is determined by

r(t) = r0(t) + z(t), z(t) = zidi (t). (1)

For the body, we fix an initial configuration κ. For example, we can take the body
position at instant t = 0 as the initial configuration. The position of the pole o, the
point z and the embedded trihedron of the coordinate axes that are R0, R = R0 + Z,
D1,D3,D3, respectively, in the initial configuration, define the body position uniquely
at any instant. As the body is rigid, Z = ziDi .

To describe the body rotation, instead of vectors di we can introduce a proper
orthogonal tensor Q = di ⊗ Di , where ⊗ is the tensor product. Then Eq. (1) takes

i1

i2

i3

O

o
o

R

r(t)R0

r0(t)

Z

z(t)

d1(t)
d2(t)

d3(t)

D1

D2
D3

VP
vP

Fig. 1 Rigid body motion
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the form
r(t) = R0 + u(t) + Q(t) · Z. (2)

Hence the rigid body motion is determined by two quantities, one of which is the
translation vector of point o, i.e. u(t) = r0(t) − R0, and another is the rotation tensor
Q(t). To describe the motion, we also can use Rodrigues’s finite rotation vector θ,
cf. Lurie (2001) that we see in the representation of the proper orthogonal tensor

Q = 1

(4 + θ2)

[
(4 − θ2)I + 2θ⊗ θ− 4I × θ] , θ2 = θ·θ. (3)

Here × stands for the cross product while centered dot · denotes the scalar (inner)
product.

The other knownvectorial parameterizations of an orthogonal tensor are presented
by Pietraszkiewicz and Eremeyev (2009b), Bauchau and Trainelli (2003), Bauchau
(2010), Wiśniewski (2010). By Eq. (3), vector θ is determined by proper orthogonal
tensor Q as follows

θ = 2(1 + tr Q)−1Q×, (4)

where tr Q is the trace of the second-order tensor, and we introduced the vector
invariant Q× by the formula

Q× = (Qmnem ⊗ en)×
�= Qmnem × en (5)

for any base vectors ek . In particular, for a dyad a ⊗ b we have

(a ⊗ b)× = a × b.

Differentiating (2) we find the velocity

ṙ(t) = u̇(t) + Q̇(t) · Z. (6)

Hereinafter, the overdot denotes the derivative with respect to time. Q is orthogo-
nal so tensor Q̇ · QT is skew-symmetric. As any skew-symmetric tensor, it can be
represented in the form

Q̇ · QT = ω× I, (7)

where ω is called the angular velocity of P . Vector ω can be determined from (7) as
follows

ω = −1

2
(Q̇ · QT )×, (8)

Thus the velocity vector of a body point takes the form

v(t) = u̇(t) + ω(t) × Z, (9)
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The rigid body can be considered as a system of mass-points and so we introduce
the following definitions.

Definition 2.2 The momentum and the moment of momentum with respect to the
pole o for a rigid body are the quantities

PPP =
∫∫∫
vP

ρv dv, MMM =
∫∫∫
vP

ρ(r − r0) × v dv,

respectively.

Here ρ is the mass density of P so its mass m is given by the integral over the
domain vP ⊂ R

3 taken by the body in the space,

m(P) =
∫∫∫
vP

ρ dv.

Let us take as a pole the body mass center, that is the point whose radius vector
r0 satisfies the relation ∫∫∫

vP

ρ(r − r0) dv = 0.

Then the momentum and the moment of momentum of the rigid body take the form

PPP = mv0, MMM =
∫∫∫
vP

ρz × ż dv =
∫∫∫
vP

ρz × (ω× z) dv = J · ω, (10)

where v0 = u̇ and J is the inertia tensor:

J
�=
∫∫∫
vP

ρ[(z · z)I − z ⊗ z] dv. (11)

It is seen that J possesses the following property

J = Q · J0 · QT , J0
�=
∫∫∫

VP

ρ[(Z · Z)I − Z ⊗ Z] dv, (12)

where the volume integral is taken over VP in the initial body configuration. The
constant tensor J0 can be called the inertia tensor in the initial configuration. For
example, for a solid homogeneous sphere of radius a, J is a spherical tensor

J = 2

5
ma2 I = J0.
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If the directors dk are unit vectors along the principle axes of the inertia tensor, we
see that J and J0 are diagonal

J = J1d1 ⊗ d1 + J2d2 ⊗ d2 + J3d3 ⊗ d3,

J0 = J1D1 ⊗ D1 + J2D2 ⊗ D2 + J3D3 ⊗ D3,

where J1, J2, J3 are moments of inertia with respect to the principal axes.
With regard to (7) and (12) it can be shown that the derivative of J satisfies the

relation
J̇ = ω× J − J × ω. (13)

Taking the mass center as a pole we can rewrite the kinetic energy of the rigid
body as follows

K
�= 1

2

∫∫∫
vP

ρv · v dv = 1

2
mv0 · v0 + 1

2
ω · J · ω. (14)

The following identities are valid

PPP = ∂K

∂v0
, MMM = ∂K

∂ω
. (15)

To a rigid body we can apply the forces and torques (couples or moments). The
forces relates with the translation of the body whereas the torques involve body
rotation.

The rigid body motion is described by two Euler’s laws of motion.
1. The time rate of the rigid body momentum is equal to the resultant vector of

forces FFF, acting on the body:

d

dt
PPP = FFF, FFF

�=
∫∫∫
vP

ρf dv. (16)

2. The time rate of the rigid body moment of momentum with respect to pole o
is equal to the resultant moment of all forces with respect to the pole and the body
moments:

d

dt
MMM = CCC, CCC

�=
∫∫∫
vP

ρ[(r − r0) × f + m] dv. (17)

Here f and m are the densities of the forces and the moments acting on the body,
respectively.
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In equilibrium, these laws reduce to the equality to zero of the resultant vector of
the forces and the resultant moment:

FFF = 0, CCC = 0. (18)

Substituting (10) to (17) and taking account (13), we get the motion equations of the
rigid body

mv̇0 = FFF, J · ω̇+ ω× J · ω = CCC. (19)

In mechanics, Eqs. (16) and (17) constitute the foundation of classic mechanics as
well as of continuum mechanics. For example, in equilibrium state of a deformable
media Eqs. (18) should be fulfilled for ant part of the media.

3 Kinematics of a Micropolar Shell

In what follows we consider a shell as a material surface and apply Euler’s motion
laws to an arbitrary part of the shell. Each point (particle) of the shell is consid-
ered as infinitesimal rigid body with six degrees of freedom. The deformation of
the shell is described by a mapping from a fixed reference configuration into an
actual configuration. In other words, we consider a mapping between two directed
surfaces including rotations of their particles. Let � be a base surface of the microp-
olar shell in the reference configuration κ, qα (α = 1, 2) Gaussian coordinates on
�, and Ρ(q1, q2) the position vector of the points of �, see Fig. 2. Usually but not
necessary, one uses undeformed shell state as a initial configuration. In the actual,
deformed, configuration χ the base surface is denoted by σ, and the position of
its material points (infinitesimal point-bodies) is given by vector ρ(q1, q2, t). The
point-body orientation is described by the microrotation tensor Q(q1, q2, t) that is
a proper orthogonal tensor. Introducing three orthonormal vectors Dk (k = 1, 2, 3)
describing the orientation in the reference configuration, and three orthonormal vec-
tors dk determining the orientation in the actual configuration, we get tensor Q in
the formQ = dk ⊗ Dk . Thus the micropolar shell is described by two kinematically
independent fields

ρ = ρ(qα, t) and Q = Q(qα, t). (20)

Instead ofQ one can use vectorial representation (3) ofQ or other vectorial represen-
tations of a rotation tensor, see Pietraszkiewicz and Eremeyev (2009b), Wiśniewski
(2010).



70 V. Eremeyev and H. Altenbach

i1
i2

i3

d1

d2

d3

D1 D

P

2

D3

σ

Σ

(q1, q2, t)

P(q1, q2)

x1

x2

x3

q1

q1

q2

q2
n

N

1

P2

1

2

ρ

ρ

ρ

Fig. 2 Kinematics of a micropolar shell

4 Euler’s Motion Laws of a Micropolar Shell

The shell motion equations can be introduced using two-dimensional analogues of
Euler’s motion laws. Here we use the referential (Lagrangian) description, so we
introduce quantities using the reference configuration. Let us define the momentum
PPP and moment of momentumMMM of an arbitrary shell part P as follows

PPP(P)
�=
∫∫
�P

ρK1 d�, MMM(P)
�=
∫∫
�P

ρ {(ρ− ρ0) × K1 + K2} d�, (21)

where K1 and K2 are defined by formulae

K1
�=∂K

∂v
= v +ΘT

1 ·ω, K2
�= ∂K

∂ω
= Θ1·v +Θ2·ω, (22)

K (v,ω) = 1

2
v·v + ω·Θ1·v + 1

2
ω·Θ2·ω, (23)

�P ⊂ � is the part of � corresponding to P in the reference configuration, see
Fig. 3.

Here

v = dρ
dt

, ω = 1

2

(
QT · dQ

dt

)
×
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are the linear and angular velocities, respectively, ρ is the surface mass density in
the reference configuration, ρK is the surface density of the kinetic energy, and ρΘ1,
ρΘ2 are the rotatory inertia tensors (ΘT

2 = Θ2). We assume that K is a quadratic
form of velocities v and ω.

Equations (22) are called the kinetic constitutive equations of the micropolar
shell. A more general form of the kinetic constitutive equations is discussed by
Pietraszkiewicz (2011). Presented here definitions of momentum and moment of
momentum for a part of the shell are straightforward generalizations of momentum
and moment of momentum of a rigid body.

In a similar way, Euler’s motion laws for the shell are analogues of Eqs. (16) and
(17), they are formulated as follows:

1. Balance of momentum. First Euler’s law of motion of the shell. The time
rate of change of the momentum of an arbitrary shell part P is equal to the total
force acting on P:

d

dt
PPP(P) = FFF, FFF

�=
∫∫
�P

f d� +
∫

ωP

t dω. (24)

Here f is the surface force density distributed on �P and t is the linear density of
forces distributed along corresponding parts of the contour ωP , respectively.
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2. Balance of moment of momentum. Second Euler’s law of motion of the
shell. The time rate of change of the moment of momentum of an arbitrary shell part
P about a fixed point ρ0 is equal to the total moment about ρ0 acting on P:

d

dt
MMM(P) = CCC, (25)

CCC
�=
∫∫
�P

{(ρ− ρ0) × f + m} d� +
∫

ωP

{(ρ− ρ0) × t + μ} dω.

The quantitiesm and μ introduced here are the surface and linear densities of couples
distributed along corresponding parts of �P and ωP , respectively.

So, here as in the case of rigid body dynamics we have forces and couples as basic
loadingparameters.Unlike a rigid body for a shellwehave surface and linear densities
of forces and couples. In other words, we assume that the interaction between shell
and its environment or between shell parts is described only by forces and couples
(moments).

As for 3D Cosserat continuum (Eremeyev et al. 2013), using (24) and (25) we
can prove two-dimensional analogues to the Cauchy lemma and Cauchy theorem and
afterwards introduce the surface stress measures and derive the motion equations of a
micropolar shell. As the result we introduce the nonsymmetric second-order tensors
D and G which relate to t and μ by formulas

t = ν·D, μ = ν·G,

where ν is the external unit normal to the boundary curve ωP such that ν·N = 0.
D and G are the surface stress and couple stress tensors of the 1st Piola-Kirchhoff
type.

The following relations are valid:

N·D = 0 = N·G. (26)

In what follows we use the divergence theorem on the surface

∫∫
�

(∇s · T + 2HN · T) d� =
∫

∂�

ν · T ds, (27)

where T is an arbitrary tensor field, ∇s is the surface nabla-operator on � defined
by the formula

∇s = Ρα ∂

∂qα
, Ρ1 = ∂Ρ

∂q1
, Ρ2 = ∂Ρ

∂q2
, Ρα · Ρβ = δβ

α (α,β = 1, 2).

ν is the unit external normal to contour ∂�, lying in the tangent plane to �, that is
ν · N = 0, N is the normal to the surface �, and H is the mean curvature of �.
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From (24) and (25) we obtain the Lagrangian motion equations of the micropolar
shell

∇s·D + f = ρ
dK1

dt
, (28)

∇s·G + [FT ·D]× + m = ρ

(
dK2

dt
+ v ×ΘT

1 ·ω
)

.

HereF = ∇sρ is the surface deformation gradient. These equations are presented also
by Chróścielewski et al. (2004b), Eremeyev and Zubov (2008), Libai and Simmonds
(1998).

5 Strain Energy Density and Strain Measures

For a micropolar hyper-elastic shell we can introduce a strain energy density W .
With regard for the local action principle by Truesdell and Noll (1965), W takes the
form

W = W (ρ,∇sρ,Q,∇sQ).

Here we recall that

∇sψ
�= Ρα ⊗ ∂ψ

∂qα
(α,β = 1, 2), Ρα·Ρβ = δα

β , Ρα·N = 0, Ρβ = ∂Ρ
∂qβ

.

Here vectors Ρβ and Ρα denote the natural and reciprocal bases on � respectively, N
is the unit normal to �, ∇s is the surface nabla operator on �, and ψ is an arbitrary
differentiable tensor field given on �.

From the principle of material frame-indifference by Truesdell and Noll (1965)
we can deduce that W depends on two surface strain measures E and K of Cosserat
type:

W = W (E,K),

where

E = F·QT − A, K = 1

2
Ρα ⊗

(
∂Q
∂qα

·QT

)
×

, F = ∇sρ. (29)

Here F is the surface deformation gradient, A � I − N ⊗ N, and I is the 3D unit
tensor.

The proper orthogonal tensor describing the rotation about axis e for angle ϕ can
be represented with use of the Gibbs’s formula

Q = (I − e ⊗ e) cosϕ + e ⊗ e − e × I sinϕ, (30)

where ϕ is the rotation angle about the axis with the unit vector e.
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Introducing the finite rotation vector θ = 2e tanϕ/2 we get a representation ofQ
in the form (3) that does not contain trigonometric functions. By Eq. (3), a proper
orthogonal tensor Q defines uniquely vector θ

θ = 2(1 + tr Q)−1Q×. (31)

Using the finite rotation vector θ we can express K as follows

K = Ρα ⊗ Lα = 4

4 + θ2
∇sθ·

(
I + 1

2
I × θ

)
. (32)

The strain measures E and K are two-dimensional analogues of the strain measures
used in 3D Cosserat continuum, see Pietraszkiewicz and Eremeyev (2009a, b).

6 Constitutive Equations of an Elastic Isotropic Shell

For an elastic shell, the constitutive equations are defined by the surface strain energy
density as the function of two strain measures. An example we present the model of
a physically linear isotropic shell, see Chróścielewski et al. (2004b), Eremeyev and
Pietraszkiewicz (2006), Eremeyev and Zubov (2008), whose energy is given by the
quadratic form

2W = α1tr 2E‖ + α2tr E2
‖ + α3tr

(
E‖·ET

‖
)+ α4N·ET ·E·N

+ β1tr 2K‖ + β2tr K2
‖ + β3tr

(
K‖·KT

‖
)+ β4N·KT ·K·N,

(33)

where E‖ � E·A,K‖ � K·A. In Eq. (33) there is no term that is bilinear in E andK,
it is a consequence of the fact that the surface wryness tensorK is a axial tensor that
changes the sign on a space mirror reflection. Discussion on axial and polar tensors
can be found for example in Eremeyev et al. (2013). Note the constitutive equations
contain 8 parameters, αk , βk k = 1, 2, 3, 4.

With respect to Eq. (33) P1 and P2 have the form

P1 = α1(tr E‖)A + α2ET
‖ + α3E‖ + α4(E · N) ⊗ N, (34)

P2 = β1(tr K‖)A + β2KT
‖ + β3K‖ + β4(K · N) ⊗ N. (35)

Introducing the fourth-order tensors C1 and C2 by the formulae

C1 = α1A ⊗ A + α2Ρα ⊗ A ⊗ Ρα + α4Ρα ⊗ N ⊗ Ρα ⊗ N,

C2 = β1A ⊗ A + β2Ρα ⊗ A ⊗ ΡαΡβ + β4Ρα ⊗ N ⊗ Ρα ⊗ N

we re-write (34) and (35) in a more compact form
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P1 = C1 : E, P2 = C2 : K, (36)

where “:” denotes the inner product in the space of second-order tensors, for example

(a ⊗ b ⊗ c ⊗ d) : (x ⊗ y) = (c·x)(d·y)a ⊗ b.

For the elastic moduli in Eq. (33) Chróścielewski et al. (2004b) proposed the
relations:

α1 = Cν, α2 = 0, α3 = C(1 − ν), α4 = αsC(1 − ν),

C = Eh

1 − ν2
,

β1 = Dν, β2 = 0, β3 = D(1 − ν), β4 = αt D(1 − ν),

D = Eh3

12(1 − ν2)
,

where E is the Youngmodulus, ν is the Poisson ratio of the bulkmaterial, and h is the
shell thickness. Parameter αs is the dimensionless shear correction factor. Reissner
(1944) used αs = 5/6 in his plate theory, by Mindlin (1951) αs = π2/12. For the
couple stresses parameter αt plays a role similar to αs for the stresses. The value
αt = 0.7 was proposed by Pietraszkiewicz (1979a, b), also see Chróścielewski et al.
(2010). In Chróścielewski et al. (2004b), Chróścielewski and Witkowski (2010),
Chróścielewski et al. (2010) the influence of αs and αt on the solution is investigated
numerically for several boundary value problems.

For some types of anisotropy, other representations of shell energy density W
were constructed by Eremeyev and Pietraszkiewicz (2006) using material symmetry
groups. Let us note that the definition of the material symmetry group for shells is
more complex than in the case of simple materials (Truesdell 1984) and even for
micropolar elastic materials (Eremeyev and Pietraszkiewicz 2012, 2016).

7 The Virtual Work Principle and Formulation
of Boundary Value Problems

Another way of derivation of motion and equilibrium equation is based on the virtual
work principle. For formulations of the principle of virtual power for media with
microstructure we refer to the landmark papers by Sedov (1968) and by Germain
(1973a, b) see also Berdichevsky (2009). Lagrangian equilibrium equations for a
micropolar shell can be derived from the virtual work principle

δ

∫∫
�

W d� = δ′ A, (37)
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where

δ′ A =
∫∫
�

(
f·δρ+ m·δ′ψ

)
d� +

∫
ω2

t·δρ ds +
∫
ω4

μ·δ′ψ ds,

I × δ′ψ = −QT ·δQ.

In Eq. (37), δ is the symbol of variation, δ′ψ the virtual rotation vector, f and m the
surface force density and the surface couple density distributed on �, respectively,
t force distributed along ω2 ⊂ ∂�, and μ the couples distributed on ω4 ⊂ ∂�. Here
we used the symbol δ′ to underline that δ′ A and δ′ψ are not variations, in general.

Using the formulae suggested in Eremeyev and Zubov (2008),

δW = ∂W

∂E
: δE + ∂W

∂K
: δK,

δE = (∇sδρ)·QT + F·δQT , δK = (∇sδ
′ψ)·QT ,

δ′ψ = 4

4 + θ2

(
δθ+ 1

2
θ× δθ

)

and Eq. (37), we obtain the Lagrangian shell equations:

∇s·D + f = 0, ∇s·G + [FT ·D]× + m = 0, (38)

D = P1·Q, G = P2·Q, P1 = ∂W

∂E
, P2 = ∂W

∂K
. (39)

They are supplemented by the boundary conditions:

on ω1 : ρ = ρ0(s), on ω2 : ν·D = t(s),
on ω3 : Q = h(s), h·hT = I, on ω4 : ν·G = μ(s). (40)

Here ρ0(s), h(s) are given vector and tensor functions, and ν is the external unit
normal to the boundary curve ω (ν·N = 0). Equations (38) are the equilibrium equa-
tions for the linear momentum and angular momentum at any shell point. The stress
measures P1 and P2 in Eqs. (38) are the referential stress and couple stress tensors,
respectively, N·P1 = N·P2 = 0. The strain measures E and K are work-conjugate
to the 1st Piola-Kirchhoff stress measures D andG. The boundary ω of � is divided
into two parts in such a way that ω = ω1 ∪ ω2 = ω3 ∪ ω4.

The equilibrium equations (38) may be transformed to the Eulerian form using
the surface analogue of the Piola transformation

∇̃s·T + J−1f = 0, ∇̃s·M + T× + J−1m = 0, (41)

where

∇̃s·ψ �= ρα· ∂ψ
∂qα

, ρα·ρβ = δα
β , ρα·n = 0, ρβ = ∂ρ

∂qβ
,
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T = J−1FT ·D, M = J−1FT ·G, (42)

J =
√
1

2

{[
tr
(
F·FT

)]2 − tr
[(
F·FT

)2]}
.

Here T and M are Cauchy-type surface stress and couple stress tensors, ∇̃s is the
surface nabla operator on σ related with ∇s by the formula

∇s = F·∇̃s,

and n is the unit normal to σ.

Under some natural restrictions, the equilibrium problem for a micropolar shell
can be transformed to the system with respect to the strain measures:

∇s·P1 − (PT
1 · K)× + f∗ = 0; (43)

∇s·P2 − (PT
2 · K + PT

1 · E)× + m∗ = 0, (44)

ω2 : ν · P1 = t∗, ω4 : ν · P2 = μ∗, (45)

f∗ �= f · QT , m∗ �= m · QT , t∗ �= t · QT , μ∗ �= μ · QT .

Let the vectors f∗, m∗, and t∗, μ∗ be given as some functions of coordinates q1, q2,
and s. From the physical point of view, it means that the shell is loaded by tracking
forces and couples. ThenEqs. (43)–(45) depend onE,K that are the only independent
fields.

For the dynamic problem (28), the initial conditions are

ρ
∣∣
t=0 = ρ◦, v

∣∣
t=0 = v◦, Q

∣∣
t=0 = Q◦, ω

∣∣
t=0 = ω◦,

with given initial values ρ◦, v◦, Q◦, ω◦.

8 Compatibility Conditions

Let us consider how to determine the position-vector ρ(q1, q2) of σ from the surface
stretch tensor E and micro-rotation tensor Q, which are assumed to be given as
continuously differentiable functions on �. By using the equation

F = (E + A) · Q (46)

the problem is reduced to
∇sρ = F. (47)
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The necessary and sufficient condition for solvability of Eq. (47) is given by the
relation

div (e · F) = 0, e
�= −I × N, (48)

which we call the compatibility condition for the distortion tensor F. Here e is the
skew-symmetric discriminant tensor on the surface�. For a simply-connected region
�, if the condition (48) is satisfied, the vector field ρ may be deduced from Eq. (47)
only up to an additive vector.

Let us consider a more complex problem of determination of both the translations
and rotations of the micropolar shell from the given fields of E andK. At first, let us
deduce the fieldQ(q1, q2) by using the system of equations following from definition
(29) of K

∂Q
∂qα

= −Kα × Q, Kα
�= Ρα · K. (49)

The integrability conditions for the system (49) are given by the relation

∂Kα

∂qβ
− ∂Kβ

∂qα
= Kα × Kβ (α,β = 1, 2). (50)

Equations (50)were obtainedbyPietraszkiewicz (1979a, 1989),Libai andSimmonds
(1983) as the conditions of existence of the rotation field of the shell. They may be
written in the following coordinate-free form

div (e · K) + K⊥ · n = 0, (51)

where

K⊥ �= 1

2

(
Kα × Kβ

)⊗ (Ρα × Ρβ
) = K2 − Ktr K + 1

2

(
tr 2K − tr K2

)
I.

Using Eqs. (46) and (29) we transform the compatibility condition (48) into the
coordinate-free form

div (e · E) + [(E + A)T · e · K]× = 0. (52)

Two coordinate-free vector equations (51) and (52) are the compatibility conditions
for the nonlinear micropolar shell. These conditions and the system of equations
(43)–(45) constitute the complete boundary-value problem of statics of micropolar
shells expressed entirely in terms of the surface strain measures E and K.
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9 Variational Statements

The presented above static and dynamic boundary-value problems of the micropolar
shell theory have corresponding variational statements. Some of them for statics and
for dynamics are presented below.

9.1 Lagrange-Type Principle

Let us assume that the external forces and couples are conservative. In the Lagrange-
type variational principle

δE1 = 0

we use the total energy functional

E1[ρ,Q] =
∫∫
�

W d� − A[ρ,Q], (53)

where A is the potential of the external loads.
Here the translations and the rotations have to satisfy the kinematic boundary con-

ditions (40)1 and (40)3 on ω1 and ω3, respectively. The stationarity of E1 is equivalent
to the equilibrium equations (38), (39) and the static boundary conditions (40)2 and
(40)4 on ω2 and ω4.

9.2 Hu-Washizu-Type Principle

For this principle the functional is given by

E2[ρ,Q,E,K,D,P2] =
∫∫
�

{
W (E,K) − D : (E · Q − ∇sρ)

− P2 :
[
K − 1

2
Ρα ⊗

(
∂Q
∂qα

· QT

)
×

]}
d�

−
∫
ω1

ν · D · (ρ− ρ0) ds − A[ρ,Q].

From the condition δE2 = 0 the equilibrium equations (38) and (39), the constitu-
tive equations, and the relations (29) can be deduced. For this principle the natural
boundary conditions are given by the relations (40)1, (40)2 and (40)4, respectively.

Several other variational statements are given in Eremeyev and Zubov (2008).
Mixed variational functionals are constructed in Chróścielewski et al. (2004b). They
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are used for the development of a family of finite elements with six degrees of
freedom in each node. A number of nonlinear simulations of complex multifold
shell structures were performed on the base of these elements Chróścielewski et al.
(2004b, 2010), Chróścielewski and Witkowski (2010).

9.3 Hamilton-Type Principle

The kinetic energy of micropolar shells can be expressed as

K =
∫∫
�

ρK (v,ω) d�. (54)

It is obvious thatwe should assume the kinetic energy to be a positive definite function
that imposes some restriction on the form of the inertia tensors.

The Hamilton principle is a variational principle of dynamics. In real motion, the
functional

E3[ρ,Q] =
t1∫

t0

(K − E1) dt (55)

takes a stationary value on the set of all possible shell motions that at the range t0,
t1 take given values of the real motion values and satisfy the kinematic boundary
values. In other words, its first variation on a real motion is zero. From condition
δE3 = 0, Eqs. (28) can be established.

10 Linear Theory of Micropolar Shells

For small strains the shell equations can be simplified significantly. In geometrically
linear version, Eulerian and Lagrangian shell descriptions do not differ as the differ-
ence between σ and � is considered to be infinitesimal. Here we do not distinguish
the operators ∇̃s and ∇s as well as the types of stress and couple stress tensors in
different configurations.

Let us introduce the vector of infinitesimal translations u and the vector of infin-
itesimal rotations 	 such that

ρ ≈ Ρ+ u, Q ≈ I − I × 	. (56)

The formula for Q follows from the representation of a proper orthogonal tensor
through the finite rotation vector (3) for |θ| � 1.
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The stretch measure E and the wryness tensorK can be expressed in terms of the
linear stretch tensor ε and the linear wryness tensor κ up to a linear addendum:

E ≈ I + ε, K ≈ �, ε = ∇su + A × 	, � = ∇s	. (57)

ε and � are used in the linear theory of micropolar shells, cf. Chróścielewski et al.
(2004b), Eremeyev and Zubov (2008), Lebedev et al. (2010), Zhilin (1976), Zubov
(1997). As a consequence of (57) in the linear shell theory, the stress tensors D, P1,
and T coincide, the couple tensors G, P2, M do not differ as well. In what follows,
we will denote the stress tensor by T and the couple stress tensor by M.

For a linearly elastic shell, the constitutive equations can be represented through
the strain energy density W = W (ε, �) as it follows

T = ∂W

∂ε
, M = ∂W

∂�
. (58)

The equilibrium equations in the linear theory are

∇s·T + f = 0, ∇s·M + T× + m = 0, (59)

whereas the boundary conditions transform to

on ω1 : u = u0(s), on ω2 : ν · T = t(s),
on ω3 : 	 = 	0(s), on ω4 : ν · M = μ(s), (60)

where u0(s) and 	0(s) are given functions of the arclength s; the conditions define
the translations and rotations on contour parts ωk .

For small strains, an example of constitutive equations is defined by the following
quadratic form

2W = α1tr
2ε‖ + α2tr ε2‖ + α3tr

(
ε‖·εT‖

)+ α4N·εT ·ε·N (61)

+β1tr
2�‖ + β2tr �2‖ + β3tr

(
�‖·�T

‖
)+ β4N·�T ·�·N

that describes a linear isotropic shell. Here αk and βk , k = 1, 2, 3, 4, are elastic

constants, and ε‖
�= ε·A, �‖

�= �·A.

By Eqs. (58) and (61), the stress tensor and the couple stress tensor are

T = α1Atr ε‖ + α2εT‖ + α3ε‖ + α4ε · N ⊗ N, (62)

M = β1Atr �‖ + β2�T
‖ + β3�‖ + β4� · N ⊗ N. (63)

Supplemented with Eqs. (59) and (60), the linear constitutive equations (62) and
(63) constitute the setup of the linear boundary value problem with respect to the
fields of translations and rotations. It describes micropolar shell equilibrium when
the strains are infinitesimal.
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11 Linearized Boundary-Value Problems

Let ρ0 andQ0 are the known static solution of (28) and (40). The corresponding state
of the shell wewill call the basic actual configuration and denote it byχ0. In addition,
let us consider the actual configuration χ∗, which differs from χ0 by infinitesimal
deformation, and derive the linearized boundary-value problem. Denoting quantities
related to χ∗ by the lower index ∗ we have

ρ∗ = ρ0 + δρ, Q∗ = Q0 + δQ,

where we use the symbol δ for infinitesimal increments of corresponding quantities.
Since Q is an orthogonal tensor, the tensor QT · δQ is a skew-symmetric tensor and
can be represented as follows

QT ·δQ = −I × ψ,

where ψ is the infinitesimal rotation vector. It can be expressed by the increment of
the finite rotation vector as follows

ψ = 4

4 + θ2

(
δθ+ 1

2
θ× δθ

)
.

The increments of the strain measures are given by the formulae (Eremeyev and
Zubov 2008)

δE =(∇sδρ)·QT
0 + F0·δQT = F0 · ε · QT

0 , (64)

δK =(∇sψ)·QT = F0 · � · QT
0 , (65)

where ε and � are the linear strain measures given by

ε = ∇χw + A × ψ, � = ∇χψ, (66)

w = δρ and F0 = ∇κρ0. Here ∇χ is the surface nabla-operator in the basic actual
configuration χ0. Assuming that δf = 0 and δm = 0 the linearization leads to the
Lagrangian linearized equations of motion

∇s·δD = ρ
d2w
dt2

, (67)

∇s·δG + [(∇sw)T ·D + FT
0 ·δD

]
× = ργ

d2ψ
dt2

. (68)

Here for simplicity we assume that Θ1 = 0 and Θ2 = γI.
The increments of the stress and couple stress tensors are calculated by the rela-

tions
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δD = δP1 · Q0 + P1 · δQ = δP1 · Q0 − D × ψ, (69)

δG = δP2 · Q0 + P2 · δQ = δP2 · Q0 − G × ψ, (70)

δP1 = ∂2W

∂E∂E
: δE + ∂2W

∂E∂K
: δK, (71)

δP2 = ∂2W

∂K∂E
: δE + ∂2W

∂K∂K
: δK. (72)

Using (36) for the physically linear shell we have

δP1 = C1 : δE = D1 : ε, δP2 = C2 : δK = D2 : �,

where D1 and D2 are fourth-order tensors given by

D1 = α1A ⊗ FT
0 · Ρα ⊗ QT

0 · Ρα + α2Ρα ⊗ Ρβ ⊗ FT
0 · Ρβ ⊗ QT

0 · Ρα

+ α3Ρα ⊗ Ρβ ⊗ FT
0 · Ρα ⊗ QT

0 · Ρβ + α4Ρα ⊗ N ⊗ FT
0 · Ρα ⊗ QT

0 · N,

D2 = β1A ⊗ FT
0 · Ρα ⊗ QT

0 · Ρα + β2Ρα ⊗ Ρβ ⊗ FT
0 · Ρβ ⊗ QT

0 · Ρα

+ β3Ρα ⊗ Ρβ ⊗ FT
0 · Ρα ⊗ QT

0 · Ρβ + β4Ρα ⊗ N ⊗ FT
0 · Ρα ⊗ QT

0 · N.

Assuming that δt = 0, δμ = 0, δr0 = 0, and δh = 0,weobtain the linearized bound-
ary conditions

on ω1 : w = 0, on ω2 : ν·δD = 0,
on ω3 : ψ = 0, on ω4 : ν·δG = 0.

(73)

Introducing the tensors

Φ1 = J−1
0 FT

0 ·δD, Φ2 = J−1
0 FT

0 ·δG, (74)

where J0 = J (F0), we transform Eqs. (67) and (68) into the linearized equations of
motion in the actual configuration χ0

∇χ·Φ1 = ρ
d2w
dt2

, (75)

∇χ·Φ2 + [(∇χw)T ·T +Φ1
]
× = ργ

d2ψ
dt2

. (76)

For the physically linear isotropic micropolar shellΦ1 andΦ2 are given by relations

Φ1 = H1 : ε− T × ψ, Φ1 = H2 : �− M × ψ,

H1 = J−1
0 FT

0 ·D̃1, H2 = J−1
0 FT

0 ·D̃2,



84 V. Eremeyev and H. Altenbach

where

D̃1 = α1Ρα ⊗ QT
0 · Ρα ⊗ FT

0 · Ρβ ⊗ QT
0 · Ρβ

+ α2Ρα ⊗ QT
0 · Ρβ ⊗ FT

0 · Ρβ ⊗ QT
0 · Ρα

+ α3Ρα ⊗ QT
0 · Ρβ ⊗ FT

0 · Ρα ⊗ QT
0 · Ρβ

+ α4Ρα ⊗ QT
0 · N ⊗ FT

0 · Ρα ⊗ QT
0 · N,

D̃2 = β1Ρα ⊗ QT
0 · Ρα ⊗ FT

0 · Ρβ ⊗ QT
0 · Ρβ

+ β2Ρα ⊗ QT
0 · Ρβ ⊗ FT

0 · Ρβ ⊗ QT
0 · Ρα

+ β3Ρα ⊗ QT
0 · Ρβ ⊗ FT

0 · Ρα ⊗ QT
0 · Ρβ

+ β4Ρα ⊗ QT
0 · N ⊗ FT

0 · Ρα ⊗ QT
0 · N.

The fourth-order tensors H1 and H2 are tangent stiffness tensors in the non-linear
theory of shells which have the same properties as in the three-dimensional non-
linear elasticity, see Fu and Ogden (1999), Ogden (1997), Lurie (1990), Altenbach
and Eremeyev (2010). The components ofH1 andH2 depend on initial deformations
and, as a result, have symmetry properties which are different from ones of C1 and
C2, in general.

The linearized Eulerian boundary conditions are

on �1 : w = 0, on �2 : η·Φ1 = 0,
on �3 : ψ = 0, on �4 : η·Φ2 = 0.

(77)

Here η is the unit vector normal to the shell contour � = ∂σ, η·n = 0, � = �1 ∪ �2 =
�3 ∪ �4, �1, �2, �3, and �4 are the parts of the shell contour in the actual configuration
corresponding to ω1, ω2, ω3, and ω4, respectively.

The boundary-value problems (67), (68), (73), and (75)–(77) describe the motion
of the prestressed micropolar shell. For χ0 = κ we have

F0 = A, Q0 = I.

Assuming in addition the absence of initial stresses

T = M = 0

the linearized boundary-value problems coincide with the equations of motion of
linear isotropic micropolar shells discussed in Chróścielewski et al. (2004b),
Eremeyev and Zubov (2008), Lebedev et al. (2010), Eremeyev and Lebedev (2011),
Eremeyev et al. (2015b).
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12 Eigen-Vibrations of Prestressed Micropolar Shells

Let us consider eigen-vibrations of a prestressed shell. By linearity, eigen-solutions
are proportional to ei�t :

w = W(q1, q2)ei�t , ψ = �(q1, q2)ei�t .

Substituting the latter relations into (75) and (77) we obtain the boundary-value
problem for the physically linear isotropic prestressed micropolar shell

∇χ·Φ1 = −ρ�2W, (78)

∇χ·Φ2 + [(∇χw)T ·T +Φ1
]
× = −ργ�2�, (79)

on �1 : W = 0, on �2 : η·Φ1 = 0,
on �3 : � = 0, on �4 : η·Φ2 = 0,

(80)

where

Φ1 = H1 : ε− T × �, Φ1 = H2 : �− M × �, (81)

ε = ∇χW + A × �, � = ∇χ�.

Additionally we consider the linear boundary-value problem of the micropolar
shell without initial deformation, that is when χ0 = κ, which is given by

∇χ·Φ0
1 = −ρ�2W, ∇χ·Φ0

2 +Φ0
1× = −ργ�2�, (82)

on �1 : W = 0, on �2 : η·Φ0
1 = 0,

on �3 : � = 0, on �4 : η·Φ0
2 = 0,

(83)

Φ0
1 = C1 : ε, Φ0

1 = C2 : �. (84)

The comparison of Φ0
1 and Φ1, Φ0

2 and Φ2 shows that difference between these
boundary-value problems consists of

1. the difference between the elastic moduli tensors Cα and Hα, α = 1, 2, and
2. the existence of initial stress tensors T and M inΦ1 andΦ2.

In what follows we show the influence on eigen-frequencies of the prestressed shell
using the variational approach.

12.1 Rayleigh Principle

In the linear and linearized shell theories presented above there is a variational princi-
ple for eigen-vibrations called the Rayleigh variational principle. To formulate it we
consider the second variation of the functional of the total energy of the micropolar
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shell. Suppose that m = μ = 0 and the external forces are “dead”. This means that
f and t do not depend on u and Q. Thus the functional of the total potential energy
of the shell is

� =
∫∫
�

W d� −
∫∫
�

f·u d� −
∫
ω2

t·u ds.

The first variation of � is given by

δ� =
∫∫
�

[
tr
(
DT ·∇sw

)+ tr
(
DT ·F0 × ψ)+ tr

(
GT ·∇sψ

)]
d� (85)

−
∫∫
�

f·w d� −
∫
ω2

t·w ds.

Since ρ0 and Q0 are assumed to satisfy equilibrium equations and boundary condi-
tions (40), the first variation of the energy vanishes

δ� = 0.

The second variation of the energy takes the form

δ2� =
∫∫
�

{
tr
(
δDT ·∇sw

)+ tr
(
δDT · F0 × ψ)+ tr

[
DT ·(∇sw) × ψ]

+ tr
(
δGT ·∇sψ

)}
d�.

Using identities ∇χ = F · ∇s , dσ = J d�, and (74), we transform δ2� to

δ2� =
∫∫
σ

{
Φ1 : (∇χw + A × ψ)+Φ1 : ∇χψ

+ tr
[
TT · (∇χw) × ψ]} dσ

=
∫∫
σ

{Φ1 : ε+Φ2 : �

+ tr
[
TT · (∇χw) × ψ]} dσ.

Finally, with Eqs. (81), the second energy variation takes the form

δ2� = 2
∫∫
σ

w dσ, w = w1 + w2, (86)
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where

w1(ε, �) = 1

2
ε : H1 : ε+ 1

2
� : H2 : �,

w2(ψ, ε, �) = tr
(
ψ× TT ·ε)− 1

2
tr
(
ψ× TT × ψ)+ 1

2
tr
(
ψ× MT ·�) . (87)

Let us note that w is the increment of the elastic energy density of the initially
prestressed shell under additional infinitesimal deformations. By Eqs. (86) and (87),
w splits into two terms. The first term, w1, is similar to the strain energy density of
the linear shell. w1 is the quadratic form of ε and � with the elastic moduli tensors
H1 andH2.w2 is also a quadratic form but depending onψ, ε and �. The coefficients
in the quadratic form w2 are expressed in terms of the initial stress and couple stress
tensors only, they do not depend on the properties of shell material.

If χ0 = κ, that is T = M = 0, then the energy density w is a quadratic form of
tensors ε and � having the form

w = w0 ≡ 1

2
ε : C1 : ε+ 1

2
� : C2 : �.

Here w0 is the strain energy density of an isotropic linear micropolar shell under
infinitesimal deformations, see Chróścielewski et al. (2004b), Eremeyev and Zubov
(2008), Eremeyev et al. (2013), Eremeyev and Lebedev (2011).

Now the Rayleigh variational principle can be formulated as follows. The modes
of shell eigen-oscillations are stationary points of the energy functional

E[W,�] =
∫∫
σ

[w1(ε, �) + w2(�, ε, �)] dσ, (88)

where
ε = ∇χW + A × �, � = ∇χ�,

on the set of functions that satisfy the kinematic boundary conditions

on �1 : W = 0 and on �3 : � = 0 (89)

and the restriction

K(W,�) ≡ 1

2

∫∫
σ

ρ (W · W + γ� · �) dσ = 1. (90)

Here the functions W, � are the oscillation amplitudes for the translations and
rotations, respectively.

The Rayleigh variational principle is equivalent to the stationary principle for the
Rayleigh quotient
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R[W,�] = E[W,�]
K(W,�)

, (91)

that is defined on kinematically admissible functions W, �.
The proof of the principle in the case of a prestressed shell is standard and mimics

one which can be found for example in Berdichevsky (2009) or in the case of the
micropolar shell theory in Eremeyev and Lebedev (2011). For comparison purposes
we introduce the Rayleigh quotient of the shell without initial stresses

R0[W,�] = E0[W,�]
K(W,�)

, E0[W,�] =
∫∫
σ

w0(ε, �) dσ. (92)

Note that the least squared eigenfrequencies of the shell correspond to theminimal
values of R and R0

�2
min = infR[W,�], �0

2
min = infR0[W,�]

onW,� that satisfy (89). By the Courant minimax principle, see Courant andHilbert
(1991), Berdichevsky (2009), the Rayleigh quotient (91) allows us to estimate the
values of higher eigen-frequencies. For this we should consider R on the set of
functions that are orthogonal to the previous modes of eigen-oscillations in some
functional energy space.

12.2 Influence of Initial (Residual) Stresses

To analyze the influence of initial (residual) stresses we compare the functionals R
andR0 that is equivalent to comparison of E and E0. It is obvious that the difference
between E and E0 consist of two terms: the difference in elastic moduli, that is the
difference between C1 and H1, C2 and H2, and the term w2 depending on initial
stress and couple stress tensors.

Let us consider first w1 and w0. In the linear theory of shell it is assumed that w0

is a positive definite quadratic form of ε and �. We also assume that w1(ε, �) is a
positive definite quadratic form. This means thatw1 satisfies the following inequality

w1(ε, �) ≥ c1‖ε‖2 + c2‖�‖2

with positive constants c1 and c2 depending on the shell geometry. This restriction
plays the same role as the generalized Coleman-Noll inequality used in the non-linear
elasticity, see Eremeyev and Zubov (2007). This case is similar to the dependence
of the eigen-frequency of a spring on its stiffness: the increase of stiffness leads to
the increase of eigen-frequency.
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To analyze the influence ofw2 let us assume thatC1 = H1,C2 = H2. This means
that we neglect in influence of initial strains on the elastic moduli of the shell. Here
we have w − w0 = w2. It is obvious that w2 is not a positive definite function, in
general. Indeed, let us consider as an example the uniform stretching of the shell
with T = TA, M = 0, T is the uniform tension. We have

w2(�, ε, �) = T tr (� × A·ε) − T

2
tr (� × A × �)

= T tr
(
� × ∇χW

)+ T

2
tr (� × A × �)

= T tr
(
� × ∇χW

)+ T

2
[� · � + (� · N)2].

Assuming ∇χW = 0 we obtain

w2 = T

2
[� · � + (� · N)2].

Thus, the sign of w2 coincides with the sign of T . As a result we have

E[0,�] − E0[0,�] = T

2

∫∫
σ

[� · � + (� · N)2] dσ.

Positive values of T leads to an increase of �. This case is similar to the depen-
dence of eigen-frequency of a string on tension (Courant andHilbert 1991): stretching
(T > 0) leads to the increase while compression (T < 0) leads to the decrease of the
eigen-frequencies in comparison with the unstressed shell. Moreover, since initial
stresses and couple stresses may lead to instability of the shell that is when δ2�
becomes non-positive their influence on eigen-oscillations is more important than
the change of elastic moduli tensors.

A few examples showing the influence of initial stresses on the least eigen-
frequencies of a prestressed six-parameter shell are given by Altenbach and Ere-
meyev (2014a). Eremeyev et al. (2015b) presented extension of the eigen-frequencies
analysis for higher eigen-frequencies using the Courant variational principle.

13 Constitutive Restrictions for Micropolar Shells

As in 3D elasticity, in the theory of micropolar shells we should supplement the
equilibrium/motion equations with constitutive restrictions. We will do that in the
frame of general nonlinear shell theory similarly to what was done in 3D elasticity.
Following Eremeyev and Zubov (2007) we will formulate the generalized Coleman-
Noll inequality (GCN-condition), the strong ellipticity condition for the equilibrium
equations and the Hadamard inequality. The inequalities impose some restrictions
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on constitutive equations of elastic shells under finite deformation. We also will
prove that the Coleman-Noll inequality implies strong ellipticity of shell equilibrium
equations. We begin with the linear theory.

13.1 Linear Theory of Micropolar Shell

Suppose that specific strain energy W (ε, �) is positive definite. W is a quadratic form
depending on the linear strain tensor and linear bending strain tensor. For an isotropic
shell, W takes the form (61). Positivity of the quadratic form (61) with respect to ε
and � is equivalent to the following set of inequalities

2α1 + α2 + α3 > 0, α2 + α3 > 0, α3 − α2 > 0, α4 > 0, (93)

2β1 + β2 + β3 > 0, β2 + β3 > 0, β3 − β2 > 0, β4 > 0.

The inequality
W (ε, �) > 0, ∀ ε, � �= 0

and the inequalities for elastic constants of isotropic material (93) that are its conse-
quences, present the simplest example of additional inequalities in the shell theory. If
the inequalities fail this leads to a number of pathological consequences. For example
boundary value problems of linear shell theory can have few solutions or can have no
solution for some loads. Next, the propagation of waves in some directions becomes
impossible that is not natural from the physical point of view. Note that for finite
strains, the positive definiteness of specific energy W (E,K) is not a warranty that
the desired properties of boundary value problems or wave propagation hold, here
we should introduce some additional restrictions.

13.2 Coleman-Noll Inequality for Elastic Shells

Suppose a solution of equilibrium problem for a nonlinear elastic shell of Cosserat
type is known. Let us call it the initial or basic stressed state. The state is defined
by vector field ρ(qα) and tensor field Q(qα). Now we consider some equilibrium
shell state that perturbs the basic state. If the difference between the state is infini-
tesimal we can linearize the equations with respect to the quantities characterizing
the difference between the states. Let us denote the small increment of various quan-
tities characterizing the perturbed equilibrium with the dot superscript like D·. This
quantity can be calculated by the formula:

D· = d

dτ
D
[∇s(ρ+ τu,Q − τQ × θ,∇s(Q − τQ × θ))]

∣∣∣∣
τ=0

, (94)
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where u is the vector of additional infinitesimal translation and θ is the vector of
additional infinitesimal rotation characterizing the small rotation with respect to the
initial stressed state. The following relations are valid

ρ· = u, Q· = −Q × θ, E· = F·ε·QT , K· = F·κ·QT , (95)

ε = ∇su + A × θ, κ = ∇sθ, (96)

where ε and κ are the linear stretch tensor and linear wryness tensor introduced in
(57).

As a reference configuration it can be chosen any stressed shell state. To avoid
awkward expressions and to simplify the calculations, we assume the reference con-
figuration to be the initial (basic) stressed state of the shell. This means that in
the reference configuration F = E = I − N ⊗ N, Q = I, K = 0. Under this choice,
using Eqs. (39), (42), (94)–(96) we have

D· = ∂2W

∂E∂E
: ε+ ∂2W

∂E∂K
: κ− T × θ, (97)

G· = ∂2W

∂K∂E
: ε+ ∂2W

∂K∂K
: κ− M × θ.

Suppose that in the initial and perturbed stressed shell states the external couples
are zero m = μ = 0 and the external forces are “dead”. Then the total potential
energy of the shell is

� =
∫∫
�

W d� −
∫∫
�

f·(ρ− Ρ) d� −
∫
ω2

t·(ρ− Ρ) ds.

Let us consider the energy increment for the perturbed equilibrium state with respect
to the initial energy taking into account themembers of the second order of smallness

� − �0 = τ

(
d�

dτ

)
τ=0

+ 1

2
τ 2

(
d2�

dτ 2

)
τ=0

+ ...

By the constitutive relations (39) and Eqs. (95), (96), we get

d�

dτ
=
∫∫
�

[
tr
(
DT ·∇su

)+ tr
(
DT ·F × θ)+ tr

(
GT ·∇sθ

)]
d� (98)

−
∫∫
�

f·u d� −
∫
ω2

ϕ·u ds.

We recall that the basic stressed shell state is the reference configuration of the shell.
Differentiating Eq. (98) with respect to parameter τ and using Eqs. (95) we obtain
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d2�

dτ 2

∣∣∣∣
τ=0

=
∫∫
�

[
tr
(
D·T ·∇su

)+ tr
(
D·T × θ)

+ tr
(
TT ·(∇su) × θ)+ tr

(
G·T ·κ)] d�.

As we have chosen equilibrium of shell as the basic state, with use of Eqs. (38) and
(40) we get that the first variation of the energy vanishes

d�

dτ

∣∣∣∣
τ=0

= 0.

By Eqs. (96) and (97), the second energy variation takes the form

d2�

dτ 2

∣∣∣∣
τ=0

= 2
∫∫
�

w d�, w = w′ + w′′, (99)

where

w′ = 1

2
ε : ∂2W

∂E∂E
: ε+ ε : ∂2W

∂E∂K
: κ+ 1

2
κ : ∂2W

∂K∂K
: κ,

w′′ = tr
(
θ× TT ·ε)− 1

2
tr
(
θ× TT × θ)+ 1

2
tr
(
θ× MT ·κ) . (100)

w is the increment of the elastic energy of the initially prestressed shell under addi-
tional infinitesimal deformations. By Eqs. (99) and (100), this incremental energy
splits into two parts: the pure strain energy, w′, and the energy of rotations w′′. The
coefficients in the quadratic form w′′ are expressed in terms of the stress and couple
stress tensors of the initially prestressed state, they do not depend on the properties
of shell material. If the basic stressed state of the shell is natural, that is T = M = 0,
then w = w′ and the energy is a quadratic form of tensors ε and κ. It is easily seen
that the decomposition (86) and Eqs. (87) coincide with the corresponding quantities
for the increment of the strain energy density of 3D micropolar body (Eremeyev and
Zubov 1994) up to the notation.

The Coleman-Noll constitutive inequality is one of well-known in nonlinear elas-
ticity (Truesdell and Noll 1965; Truesdell 1977, 1984). Its differential form, a so-
called GCN-condition, expresses the property that for any reference configuration,
the increment of the elastic energy density for arbitrary infinitesimal non-zero strains
should be positive. Note that the Coleman–Noll inequality in 3D elasticity does not
restrict the constitutive equations with respect to the rotations.

Taking into account the decomposition (86) of the energy we obtain an analogue
of the Coleman-Noll inequality for micropolar elastic shells

w′(ε,κ) > 0 ∀ ε �= 0, κ �= 0. (101)
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Using Eqs. (87) we rewrite (101) in the equivalent form

d2

dτ 2
W (E + τε,K + τκ)

∣∣∣∣
τ=0

> 0 ∀ ε �= 0, κ �= 0. (102)

Condition (102) satisfies the principle of material frame-indifference, it can serve as
a constitutive inequality for elastic shells.

13.3 Strong Ellipticity and Hadamard Inequality

In nonlinear elasticity, the strong ellipticity condition and its weak form, the Hada-
mard inequality, are other known constitutive restrictions. Following the partial
differential equations theory (PDE) (Lions and Magenes 1968; Fichera 1972; Hör-
mander 1976) we formulate the strong ellipticity condition of the equilibrium equa-
tions (38). For dead loads, the linearized equilibrium equations are

∇s·D· = 0, ∇s·G· + [FT ·D· + (∇su)T ·D]× = 0, (103)

where D· and G· are defined by the formulae similar to (94). Equations (103)
constitute a system of linear PDE of second order with respect to u and θ. The
second order parts of the differential operators in Eqs. (103) are

∇s·
{[

∂2W

∂E∂E
: ((∇su)·QT

)+ ∂2W

∂E∂K
: ((∇sθ)·QT

)] ·Q
}

,

∇s·
{[

∂2W

∂K∂E
: ((∇su)·QT

)+ ∂2W

∂K∂K
: ((∇sθ)·QT

)] ·Q
}

.

Now we can formulate the condition of strong ellipticity for system (103). Fol-
lowing a formal procedure from Fichera (1972), we replace the differential operators
∇s by the unit vector ν tangential to surface � and vector fields u and θ by vectors
a and b, respectively. Thus, we get the algebraic expressions

ν·
{[

∂2W

∂E∂E
: (ν⊗ a·QT

)+ ∂2W

∂E∂K
: (ν⊗ b·QT

)] ·Q
}

,

ν·
{[

∂2W

∂K∂E
: (ν⊗ a·QT

)+ ∂2W

∂K∂K
: (ν⊗ b·QT

)] ·Q
}

.

Multiply the first equation by vector a, the second equation by b and add the
results. Then we get the strong ellipticity condition of Eqs. (103):
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ν·
{[

∂2W

∂E∂E
: (ν⊗ a·QT

)+ ∂2W

∂E∂K
: (ν⊗ b·QT

)] ·Q
}
·a

+ ν·
{[

∂2W

∂K∂E
: (ν⊗ a·QT

)+ ∂2W

∂K∂K
: (ν⊗ b·QT

)] ·Q
}
·b > 0,

∀ a,b �= 0.

Replacing dot product by the operation “:”, we transform the inequality into a
symmetric form

(
ν⊗ a·QT

) : ∂2W

∂E∂E
: (ν⊗ a·QT

)+ 2
(
ν⊗ a·QT

) : ∂2W

∂E∂K
: (ν⊗ b·QT

)

+ (ν⊗ b·QT
) : ∂2W

∂K∂K
: (ν⊗ b·QT

)
> 0, ∀ a,b �= 0.

In matrix notations, we rewrite this in a compact form

ξ·AAA(ν)·ξ > 0, ∀ ν �= 0, ν·N = 0, ∀ ξ ∈ IR6, ξ �= 0, (104)

where ξ = (a′,b′) ∈ IR6, a′ = a·QT , b′ = b·QT , and matrix AAA(ν) is

AAA(ν)
�=

⎡
⎢⎢⎢⎣

∂2W

∂E∂E
{ν} ∂2W

∂E∂K
{ν}

∂2W

∂K∂E
{ν} ∂2W

∂K∂K
{ν}

⎤
⎥⎥⎥⎦ ,

where for any fourth-order tensor K and vector ν we denote

K{ν} �= Kklmnνkνm il ⊗ in.

Inequality (104) is the strong ellipticity condition of the equilibrium equations
(38) for the elastic shell. A weak form of inequality (104) is an analogue of the
Hadamard inequality. These inequalities are examples of possible restrictions of the
constitutive equations of elastic shells under finite deformations. As for the theory of
simplematerials, a failure in inequality (104) can lead to the existence of non-smooth
solutions to equilibrium equations (38), see Lurie (1990).

The strong ellipticity condition can be written in the equivalent form

d2

dτ 2
W
(
E + τν⊗ a′,K + τν⊗ b′)∣∣∣∣

τ=0

> 0 ∀ ν, a′, b′ �= 0. (105)

Comparing the strong ellipticity condition (105) and the Coleman-Noll inequality
(102) one can see that the latter implies the former. Indeed, inequality (102) holds
for any tensors ε and κ. Note that ε and κ may be nonsymmetric tensors, in general.
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Substituting relations ε = ν⊗ a′ andκ = ν⊗ b′ to inequality (102), we immediately
obtain inequality (105). Thus, the strong ellipticity condition is a particular case of the
Coleman–Noll inequality. We watch an essential difference between the micropolar
shell theory and the theory of simple elastic materials (Truesdell and Noll 1965;
Truesdell 1977): in the latter these two properties are independent in the sense that
neither of them implies the other.

In the shell theory, the following particular constitutive relation is widely used

W (E,K) = W1(E) + W2(K). (106)

For example, Eq. (33) has the form of (106). Now condition (104) is equivalent to
two simpler inequalities

a· ∂2W1

∂E∂E
{ν}·a > 0, b· ∂2W2

∂K∂K
{ν}·b > 0.

As an example, let us consider consequences of conditions (104) for constitutive
equation (33). In this case we have

∂2W1

∂E∂E
{ν} = α3A + (α1 + α2)ν⊗ ν+ α4N ⊗ N, (107)

∂2W2

∂K∂K
{ν} = β3A + (β1 + β2)ν⊗ ν+ β4N ⊗ N.

Now inequality (104) is valid under the following conditions

α3 > 0, α1 + α2 + α3 > 0, α4 > 0, (108)

β3 > 0, β1 + β2 + β3 > 0, β4 > 0.

For a linear isotropic shell, inequalities (108) provide the strong ellipticity of equi-
librium equation (59), they are weaker than the conditions of positive definiteness
(93). Considering the constitutive equations of an isotropic micropolar shell (33) we
have reduced inequality (104) to the inequalities (108).

13.4 Strong Ellipticity Condition and Acceleration Waves

Using the approach of Eremeyev (2005b), Eremeyev and Zubov (2007), Altenbach
et al. (2010b), we will show that inequality (104) coincides with the conditions of
the propagation of acceleration waves in a shell. We consider a motion when on a
smooth curve C(t) ⊂ � called singular (Fig. 4), continuous kinematic and dynamic
quantities can jump. We assume that the limit values of these quantities exist on C
being different from the opposite sides of C in general. The jump of quantity ψ on
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Fig. 4 Shell with a singular curve

C will be denoted by the double brackets: [[ψ]] = ψ+ − ψ−, where ψ± are one-side
limits of ψ.

An acceleration wave (aweak-discontinuity wave or second-order singular curve)
is a moving singular curve C on which the second derivatives of the radius-vector ρ
and the microrotation tensor Q with respect to the spatial coordinates and time are
discontinuous, while ρ, Q and their first derivatives are continuous that means that
on C

[[F]] = 0, [[∇sQ]] = 0, [[v]] = 0, [[ω]] = 0. (109)

By Eqs. (29), the stretch measure E and the wryness tensor K are continuous on C.
By constitutive equations (39), the jumps of tensorsD andG are absent. Applying the
Maxwell theorem formulated by Truesdell (1977) to continuous fields of velocities
v and ω, surface stress tensor D, and the surface couple stress tensorG, we deduce a
system of equations that relates the jumps of the derivatives of these quantities with
respect to the spatial coordinates and time

[[
dv
dt

]]
= −V a, [[∇sv]] = ν⊗ a,

[[
dω
dt

]]
= −Vb, [[∇sω]] = ν⊗ b, (110)

V [[∇s·D]] = −ν·
[[

dD
dt

]]
, V [[∇s·G]] = −ν·

[[
dG
dt

]]
.

Here a and b are the vectorial amplitudes of the jumps of the linear and angular
accelerations, respectively, ν is the unit normal vector to C such thatN·ν = 0, and V
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is the velocity of the surface C in the direction ν. If the external forces and couples
are continuous, the relations

[[∇s·D]] = ρ

[[
dK1

dt

]]
, [[∇s·G]] = ρ

[[
dK2

dt

]]

follow immediately from the motion equations (28).
Differentiating constitutive equations (39) and using Eqs. (109) and (110), we

express the last relations in terms of vector amplitudes a and b

ν· ∂2W

∂E∂E
: (ν⊗ a·QT

)+ ν· ∂2W

∂E∂K
: (ν⊗ b·QT

)
= ρV 2

[
a·QT + (

Q·ΘT
1 ·QT

) · (b·QT
)]

,

ν· ∂2W

∂K∂E
: (ν⊗ a·QT

)+ ν· ∂2W

∂K∂K
: (ν⊗ b·QT

)
= ρV 2

[(
Q·Θ1·QT

) · (a·QT
) + (Q·Θ2·QT

) · (b·QT
)]

.

Hence the strong ellipticity condition can be written in a compact form

AAA(ν)·ξ = ρV 2
BBB·ξ, BBB =

⎡
⎣ I Q·ΘT

1 ·QT

Q·Θ1·QT Q·Θ2·QT

⎤
⎦ . (111)

Thus, the problem of propagation of an acceleration wave in a shell is reduced
to the spectral problem given by algebraic Eqs. (111). Existence of potential-energy
function W implies thatAAA(ν) is symmetric. MatrixBBB is also symmetric and positive
definite. This enables us to formulate an analogue of the Fresnel–Hadamard–Duhem
theorem for the elastic shell:

Theorem 13.1 In an elastic shell, for any propagation direction specified by vector
ν, the squared velocities of a second order singular curve (the acceleration wave)
are real.

Note that positive definiteness ofAAA(ν), which is necessary and sufficient for the wave
velocity V to be real, coincides with the strong ellipticity inequality (104).

For a physically linear shell, we present an example of solution of the problem
(111). Let Θ1 be zero and Θ2 be a spherical part of tensor (ball tensor), that is
Θ2 = j I, where j is the rotatory inertia measure. Let the inequalities (108) hold.
Then the solutions of Eq. (111) are

V1 =
√

α3

ρ
, ξ1 = (τ, 0), V2 =

√
α1 + α2 + α3

ρ
, ξ2 = (ν, 0), (112)
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V3 =
√

α4

ρ
, ξ3 = (N, 0), V4 =

√
β3

ρ j
, ξ4 = (0, τ),

V5 =
√

β1 + β2 + β3

ρ j
, ξ5 = (0, ν), V6 =

√
β4

ρ j
, ξ6 = (0,N).

The solutions (112) are similar to the 3D case Eremeyev (2005b), Altenbach et al.
(2010b) and describe the transverse and longitudinal acceleration waves and trans-
verse and longitudinal acceleration waves of microrotation, respectively.

13.5 Ordinary Ellipticity

If the equilibrium equations are not elliptic the continuity of solutions can fail. Let
us consider this in more detail. We will assume the singular curves to be time-
independent. Suppose on the shell surface � there exists a curve C on which there
happen a jump in the values of second derivatives of position vectorρ ormicrorotation
tensor Q. Such a jump will be called the weak discontinuity. As the curvature of �

is determined through second derivatives of ρ, such discontinuity can be exhibited
as wrinkling of the shell surface.

From the equilibriumequations it follows [[∇s·D]] = 0, [[∇s·G]] = 0.Repeating
the transformations of the previous section, we transform these to

AAA(ν)·ξ = 0, ξ = (a′,b′) ∈ IR6. (113)

Existence of nontrivial solutions of Eq. (113) means that the weak discontinuities
arise. The nontrivial solutions exist if the determinant of matrix AAA(ν) is zero. If

detAAA(ν) �= 0, (114)

the weak discontinuities are impossible.
For the constitutive relation W = W1(E) + W2(K), condition (114) splits into

two conditions

det
∂2W1

∂E∂E
{ν} �= 0, det

∂2W2

∂K∂K
{ν} �= 0. (115)

As an example, we consider conditions (115) for the constitutive relations of a
physically linear shell (33). Using Eqs. (107) we can show that conditions (115)
reduce to the inequalities

α3 �= 0, α1 + α2 + α3 �= 0, α4 �= 0, β3 �= 0, β1 + β2 + β3 �= 0, β4 �= 0.

Condition (114) is the ellipticity condition of the equilibriumequations of shell theory
(ellipticity in the Petrovsky sense). The condition follows from the general definition
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of ellipticity in PDE theory (Agranovich 1997; Hörmander 1976; Nirenberg 2001).
Condition (114) is also called the ordinary ellipticity condition, it is weaker than the
strong ellipticity condition (104).

14 Applications

The recent progress in material technology of materials extends the field of appli-
cation of classical and non-classical theories of plates and shells towards the new
phenomena which should be taken into account. In this section we discuss some
applications and extensions of the presented above theory.

14.1 Surface Stresses

One example of phenomena which are significant at the micro- and nanoscales is
the surface effects. For example, nanomaterials have physical properties which are
different from the bulk material. The classical elasticity can be extended to the
nanoscale by taking into account the surface stresses, cf. Duan et al. (2008), Wang
et al. (2010, 2011), Javili et al. (2012), Altenbach and Morozov (2013). In particu-
lar, the surface stresses are responsible for the size-effect, that means the apparent
material properties of a specimen depend on its size. For example, Young’s modulus
of a rod-like specimen increases significantly, when the cross-section area becomes
very small. The surface stresses are the generalization of the scalar surface tension
which is a well-known phenomenon in the theory of capillarity. The investigations
of the surface phenomena were initiated by Laplace, Young and Gibbs within the
sharp interface model, see original papers Laplace (1805), Laplace (1806), Young
(1805), Longley and Name (1928), and extended by van derWaals (1893), Korteweg
(1901) using the second-gradient models, see also Rowlinson and Widom (2003),
Finn (1986), de Gennes et al. (2004), Javili et al. (2013). Rational mechanics of
nonlinear elastic solids with surface stresses is developed in Gurtin and Murdoch
(1975), Steigmann and Ogden (1999). The theory of elasticity with surface stresses
is applied to the modifications of the two-dimensional theories of nanosized plates,
see, for example, Altenbach and Eremeyev (2011b), Altenbach et al. (2012b) and
the reference therein.

Using six-parameter theory of shells themodification of the constitutive equations
taking into account surface stresses is proposed in Altenbach and Eremeyev (2011b).
It is shown that both the stress resultant and the couple stress tensors are represented
as a sum of two terms as follows

T∗ = T + TS M∗ = M + MS , (116)

where T and M are the classical stress resultant tensors presented for example in
Lebedev et al. (2010), Libai and Simmonds (1998), whileTS andMS are the resultant
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tensors induced by the surface stresses

TS = G+S+ + G−S− , (117)

MS = −h/2
[
G+S+ × z+ − G−S− × z−

]
. (118)

HereS± are the tensors of surface stresses acting on the shell faces, z± andG = detG
are the deviation and the geometric scale factor defined in Libai and Simmonds
(1998), and (. . .)± = (. . .)

∣∣±h/2.

The first term in Eqs. (116) is the volume stress resultant while the second one
determined by the surface stresses and the shell geometry. In the linear case this
modification reduces to the addition of new terms to the elastic stiffness parameters,
see Eremeyev et al. (2009), Altenbach et al. (2009, 2010a)

α1 = Cν + 2λS , α3 = C(1 − ν) + 4μS ,

α4 = αsC(1 − ν) ,

β1 = Dν + h2λS/2 , β3 = D(1 − ν) + h2μS ,

β4 = αtD(1 − ν) ,

C∗ = C + 4μS + 2λS,

D∗ = D + h2μS + h2λS/2 .

Here λS and μS are the surface elastic moduli, C∗ and D∗ are the effective in-plane
and bending stiffness of the plate with surface stresses. It is clear that C∗ > C and
D∗ > D, i.e. the plate with surface stresses is stiffer. The elastic moduli α4 and β4

do not depend on the surface stresses.
The model of plates and shells with the surface elasticity was extended for the

case of surface viscoelasticity by Altenbach et al. (2012b).

14.2 Thin-Walled Structures Made of Micropolar Materials

The interest to the theory of thin-walled structures made of a micropolar material
is based on prospective applications of this theory to mechanics of plates and shells
made of materials with complex inner structure, such as, for example, cellular mate-
rials and foams, see Lakes (1986), Diebels and Steeb (2003), Bigoni and Drugan
(2007), Goda et al. (2012), Reda et al. (2016), Eremeyev et al. (2013). In the liter-
ature theories of plates and shells and theories based on the reduction of the three-
dimensional equations of the micropolar continuum are also known, see Eringen
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(1967a), Eringen (1999), Reissner (1977), Altenbach and Eremeyev (2009c), Zubov
(2009), Sargsyan (2011), Steinberg and Kvasov (2013) and the review Altenbach
et al. (2010c), where various averaging procedures in the thickness direction together
with the approximation of the displacements and rotations or the stresses and couple
stresses in the thickness direction are discussed. As it is shown by Altenbach and
Eremeyev (2009c) the 3D to 2D reduction procedure leads to Eqs. (58) and (59)
with modified stiffness parameters αk and βk . The nonlinear case is considered by
Zubov (2009). On the other hand there reduction procedure leading to the more com-
plicated structure of governing equations, than the presented in this paper, see for
example, Eringen (1967a), Sargsyan (2011). The model of micropolar shells can be
used for modelling of thin structures made of certain composites, see dell’Isola et al.
(2016a, b), Giorgio et al. (2015).

14.3 Thin-Walled Structures Made of Viscoelastic Materials

The two-dimensional constitutive equations for resultant force and couple stress
tensors are derived from the constitutive equations of three-dimensional viscoelastic
Cosserat continuum. For the linear theory of viscoelasticity given in Eringen (1967b)
the application of the correspondence principle gives the possibility to derive the
theory of viscoelasticity in the case of thin-walled structures such as plates and
shells. The presented here results demonstrate how the viscoelastic properties of
three-dimensional continuum inherit in the constitutive equations for plates and
shells. Within framework of the linear micropolar viscoelasticity with the consti-
tutive equations of differential type it is shown that 2D relaxation functions of shells
havemore complicated structures then the relaxation function of the bulkmaterial. In
particular, even for homogeneous shells the spectrum of relaxation time do not coin-
cidewith the spectrum of the bulkmaterial. For nonhomogeneous shells the spectrum
may depend also on the structure of the shell in the thickness direction and its curva-
ture. The basics of such a theory considering general linear viscoelastic behavior are
given by Altenbach and Eremeyev (2008, 2009a, b, 2011a) within the framework
of five-parameter theory of shells and by Altenbach and Eremeyev (2015) for the
six-parameter theory of shells. It is shown how the effective viscoelastic properties
reflect the properties in the thickness direction.

14.4 Shells and Plates with Phase Transitions (PT)

The interest to thin-walled structures undergoing PT grows recently with perspec-
tive applications of martensite films in engineering, see e.g. Miyazaki et al. (2009).
The major known theories of PT in deformable solids relate to the three-dimensional
thermoelasticity, see Bhattacharya (2003), Abeyaratne and Knowles (2006),
Berezovski et al. (2008) and references cited there.
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Fig. 5 Two-phase shell with phase interface in reference and actual configurations

Thefirst two-dimensional (2D)mechanicalmodels of PT in thinfilms are proposed
by Bhattacharya and James (1999), James and Rizzoni (2000), see also Bhattacharya
(2003), Miyazaki et al. (2009). Alternative 2D models of PT with applications to
biomembrane modeling are suggested by Boulbitch (1999), Agrawal and Steigmann
(2008), Elliott and Stinner (2010). The model of shell with PT discussed by Shkutin
(2007) relates with phase-field models in the continuum mechanics.

The non-linear equilibrium conditions of elastic shells undergoing PT of marten-
sitic type are formulated by Eremeyev and Pietraszkiewicz (2004) and extended in
Pietraszkiewicz et al. (2007) taking into account the line tension energy. By analogy
to the 3D case, the two-phase shell is regarded as a Cosserat surface consisting of
two material phases divided by a sufficiently smooth surface singular curve (phase
interface). The existence of such a curve is confirmed by several experiments on
thin-walled samples, see e.g. He and Sun (2009, 2010) and the discission in Ere-
meyev and Pietraszkiewicz (2011). The quasistatic behavior of two-phase shells is
analyzed by Eremeyev and Pietraszkiewicz (2009, 2010, 2011). It is assumed that
in the actual configuration of the shell consists of different material phases occupy-
ing different complementary subregions separated by the curvilinear phase interface
D ∈ σ (Fig. 5). For a piecewise differentiable mappingχ : � → σ one can introduce
on � a singular image curve C = χ−1(D). The a priori unknown curvesD and C are
called phase interfaces in the reference and actual configurations, respectively.

The two-dimensional local laws of shell thermomechanics can be derived by direct
and exact through-the-thickness integration of global three-dimensional
balances of forces, moments, energy and the entropy inequality, see Eremeyev
and Pietraszkiewicz (2009, 2011) for details. After appropriate transformations the
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resulting 2D local Lagrangian laws contain also the surface temperature deviation,
the extra surface heat flux, and dual entropy-type quantities in addition to the mean
surface temperature and entropy fields. Other versions of the thermodynamics of
shells and two-dimensional structures can be found in Green and Naghdi (1970),
Green and Naghdi (1979), Murdoch (1976a, b), Zhilin (1976), Simmonds (1984,
2005, 2011), Makowski and Pietraszkiewicz (2002), Steinmann and Häsner (2005).

There are two types of phase interfaces: the coherent in rotations phase interface
and the incoherent in rotations one (Eremeyev and Pietraszkiewicz 2004). Using the
integral balance laws, the local balance equations along the coherent and incoherent
phase interfacesC, i.e. Lagrangian dynamic compatibility conditions, the local energy
balance equation, and the local entropy inequality, the kinetic equation describing
motion of the phase interface for all quasistatic processes, is formulated in the form

V = −F (ννν · [[C]] · ννν) , (119)

where V is the velocity of the phase interface, the double brackets stand for the jump
of C across C, F is the non-negative definite kinetic function depending on the jump
ofC at C, i.e.F(x) ≥ 0 for x > 0, andC is the Eshelby tensor in the non-linear shell
theory introduced by Eremeyev and Pietraszkiewicz (2004). For the coherent phase
interface C is given by the formula

C = Cc ≡ WA − T · FT − M · KT ,

and for the phase interface incoherent in rotations by

C = Ci ≡ WA − T · FT .

For the sake of simplicity these formulas are restricted by pure mechanical theory.
After Berezovski et al. (2008) F(x) is assumed in the form

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(x − ς0)

1 + a(x − ς0)
x ≥ ς0,

0 −ς0 < x < ς0,
k(x + ς0)

1 − a(x + ς0)
x ≤ −ς0.

(120)

Here ς0 describes the effects associated with nucleation of the new phase, a is a
parameter describing the limit value of PT, and k is a positive kinetic factor.

Equation (120) with the appropriate boundary conditions and constitutive equa-
tions constitute the non-linear boundary-value problem for a shell with PT with
respect to unknown surface fields, as well as the position of the phase interface C.
Considering the model s one observes the existence of hysteresis loop characteristic
to the behaviour of phase transitions in martensitic materials. The size of the loop
depends upon the values of several loading and material parameters.
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14.5 Beams and Rods

The presented here direct approach based on Cosserat models can be easily trans-
formed for more technically simple cases of beams and rods. For this purposes we
refer to Altenbach et al. (2012a, 2013), Bîrsan et al. (2012) and the reference therein.

15 Conclusions

We presented here the basic equations of the micropolar shell theory using the
concept of deformable directed surfaces as a model of a shell. The model coincides
kinematically with the general six-parameter resultant shell theory. The presented
theory is full analogues to the three-dimensional Cosserat or micropolar theory of
elastic solids. Themain peculiarity of themodel that the interaction between the parts
of the shell is determined only by the force and moment tensors including drilling
moment. As the consequence the translations and the rotations of the material points
of the deformable surface are kinematically independent.
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The Bending-Gradient Theory
for Laminates and In-Plane
Periodic Plates

Arthur Lebée and Karam Sab

Abstract In a recent work, a new plate theory for thick plates was suggested where
the static unknowns are those of the Kirchhoff-Love theory, to which six components
are added representing the gradient of the bending moment (Lebée and Sab, Int J
Solids Struct, 48(20):2878-2888, 2011a). This theory, called the Bending-Gradient
theory, is the extension to multilayered plates and to in-plane periodic plates of the
Reissner-Mindlin theory which appears as a special case when the plate is homoge-
neous. The Bending-Gradient theory was derived following the ideas from Reissner,
J Appl Mech, 12(2):69-77, (1945). However, it is also possible to derive it through
asymptotic expansions. In this lecture, the latter are applied one order higher than
the leading order to a laminated plate following monoclinic symmetry. Using vari-
ational arguments, it is possible to derive the Bending-Gradient theory. Then, some
applications are presented and the theory is finally extended to in-plane periodic
plates.

1 Introduction

The classical theory of plates, known also as Kirchhoff-Love plate theory is based
on the assumption that the normal to the mid-plane of the plate remains normal
after transformation. This theory is also the first order of the asymptotic expansion
with respect to the thickness (Ciarlet and Destuynder 1979). Thus, it presents a
good theoretical justification and was soundly extended to the case of periodic plates
(Caillerie 1984; Kohn and Vogelius 1984). It enables to have a first-order estimate of
the macroscopic deflection as well as local stress fields. In most applications the first-
order deflection is accurate enough. However, this theory does not capture the local
effect of shear forces on the microstructure because shear forces are one higher-order
derivative of the bending moment in equilibrium equations (Qα = Mαβ,β).
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Because shear forces are part of the macroscopic equilibrium of the plate, their
effect is also of great interest for engineers when designing structures. However,
modeling properly the action of shear forces is still a controversial issue. Reissner
(1945) suggested amodel for homogeneous plates based on a parabolic distribution of
transverse shear stress through the thickness (Reissner-Mindlin theory). This model
performs well for homogeneous plates and gives more natural boundary conditions
than those of Kirchhoff-Love theory. Thus, it is appreciated by engineers and broadly
used in applied mechanics. However, the direct extension of this model to laminated
plates raised many difficulties.

Two main path were followed for deriving models suitable for laminated plates:
axiomatic approaches and asymptotic approaches.

In asymptotic approaches, a plate model is derived directly from the full three-
dimensional formulation of the problem, assuming the thickness of the plate goes to
zero. In these approaches, the asymptotic expansion method plays a central role. As
already mentioned, the leading order leads to Kirchhoff-Love plate theory (Ciarlet
and Destuynder 1979; Caillerie 1984; Kohn and Vogelius 1984). Hence one needs to
seek higher orders for bringing out the effect of shear forces. However, in the cases
of laminated plates, this procedure does not lead to Reissner-Mindlin plate theory
Lewiński (1991), Sutyrin and Hodges (1996).

In axiomatic approaches, 3D fields are assumed a priori and a plate theory is
derived using integration through the thickness and variational tools. The reader
can refer to the following reviews (Reddy 1989; Altenbach 1998; Noor and Malik
2000; Carrera 2002). Most suggestions leading to Reissner-Mindlin-like theories
show discontinuous transverse shear stress through the thickness or are limited to
some geometric configurations (orthotropy or cylindrical bending for instance). In
this field, these limitations even led to the suggestion of “layerwise” models which
give more satisfying results but are much more numerically intense than Reissner-
Mindlin theory (Carrera 2002;DiazDiaz 2001). Finally, let us point out that the theory
suggested by Reissner (1945) is usually considered as an axiomatic approach since
the parabolic transverse shear stress distribution of the stress was derived without
asymptotic arguments. Consequently, some work took literally this distribution and
applied it to laminated plates. Like in many unsuccessful axiomatic approaches this
led to discontinuous displacement fields and raised an unjustified suspicion over the
original work.

Revisiting the approach from Reissner (1945) directly with laminated plates,
Lebée and Sab (2011a, b) showed that the transverse shear static variables which
come out when the plate is heterogeneous are not shear forces Qα but the full
gradient of the bendingmoment Rαβγ = Mαβ,γ . Using conventional variational tools,
they derived a new plate theory—called Bending-Gradient theory—which is actually
turned into Reissner-Mindlin theory when the plate is homogeneous. This new plate
theory is seen by the authors as an extension of Reissner’s theory to heterogeneous
plates which preserves most of its simplicity. It was applied to the cylindrical bend-
ing of carbon fibers laminated plates and compared to exact solutions in Lebée and
Sab (2011b). Very good agreement for the transverse shear distribution as well as
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in-plane displacement was pointed out and convergence with the slenderness was
observed.

Originally designed for laminated plates, the Bending-Gradient theory was also
extended to in-plane periodic plates using averaging considerations such as Hill-
Mandel principle and successfully applied to sandwich panels (Lebée and Sab
2012a, b) as well as space frames Lebée and Sab (2013a).

Because the initial derivation of the Bending-Gradient theory followed the ideas
from Reissner (1945), one can argue that it is basically an axiomatic approach.
However, it is the intention of the present lecture to demonstrate that there is a
close link between the derivation of the Bending-Gradient theory and the asymptotic
expansionmethod (Lebée and Sab 2013b). Since the Bending-Gradient is turned into
the Reissner-Mindlin theory when the plate is homogeneous, this link will be also
demonstrated for the original work from Reissner (1945).

In order to derive the Bending-Gradient theory through asymptotic expansions,
we first set in Sect. 2 the 3D problem, its symmetries and the asymptotic expan-
sions framework. For the sake of simplicity we choose the constitutive material and
the loadings of the plate such that the bending moment is fully uncoupled with the
membrane stress. Then in Sect. 3 we perform the standard resolution of the auxil-
iary problems and conclude that bringing out transverse shear effects through this
approach is not satisfying. Then, in Sect. 4 we derive the Bending-Gradient theory
using variational considerations. In Sect. 5, the Bending-Gradient theory is applied
to laminates under cylinder bending and its predictions are compared to closed-
form solutions. Finally, Sect. 6 is dedicated to the extension of the theory to in-plane
periodic plates.

2 The Asymptotic Expansion Framework

In this section, the asymptotic expansion framework is set in the special case of
a laminated plate. This procedure was established by Sanchez-Palencia (1980) for
linear dynamics of 3D continuum. It starts with the definition of the 3D problem
of the laminated plate which is under consideration. Then this problem is scaled in
order to separate the in-plane and the out-of-plane variables and we assume that the
fields follow an expansion depending on a small parameter: the inverse of the plate
slenderness. Finally, the equations are gathered for each order of this parameter.

2.1 Notations

Vectors and higher-order tensors, up to sixth order, are used in the following. When
using short notation, several underlining styles are used: vectors are straight under-
lined, u−. Second order tensors are underlined with a tilde: M∼ and K∼ . Third order
tensors are underlined with a parenthesis: R

�
and �

�
. Fourth order tensors are are
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doubly underlined with a tilde: D∼∼ and s∼∼
. Sixth order tensors are doubly underlined

with a parenthesis: h
��
and I

��
. The full notationwith indices is also used. Thenwe follow

Einstein’s notation on repeated indices. Furthermore, Greek indicesα,β, δ, γ = 1, 2
denotes in-plane dimensions and Latin indices i, j, k, l = 1, 2, 3, all three dimen-
sions.

The transpose operation T• is applied to any order tensors as follows:

(
Ta
)
αβ...ψω

= aωψ...βα.

Three contraction products are defined, the usual dot product (a− · b− = aibi ), the
double contraction product (a∼ : b∼ = ai j b ji ) and a triple contraction product (a� ... a

�
=

aαβγaγβα). The derivation operator∇− is also formally represented as a vector: a∼ · ∇− =
ai j∇ j = ai j, j is the divergence and a∼ ⊗∇− = ai j∇k = ai j,k is the gradient. Here ⊗ is
the dyadic product.

2.2 The 3D Problem

The laminated plate occupies a domain �t = ωL×] − t
2 ,

t
2 [ where ωL is the middle

surface of the plate (its typical size is L) and t its thickness (Fig. 1). The boundary
of the plate, ∂�t , is decomposed into three parts:

∂�t = ∂�lat ∪ ∂�+
3 ∪ ∂�−

3

with ∂�lat = ∂ωL×] − t

2
,
t

2
[ and ∂�±

3 = ωL ×
{
± t

2

}
.

(1)

The plate is fully clamped on its lateral boundary, ∂�lat, and is submitted to the
same distributed and purely transverse force f− = f3(x1, x2)e−3 both on its upper and

lower boundaries ∂�+
3 and ∂�−

3 .

Fig. 1 The 3D plate problem

C∼∼
(x3): even

Ω
T−

+

T−
−

ω+
ω ω−

∂ω

e− 3

e− 2
e− 1
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The fourth-order stiffness tensorC∼∼
t (x3) characterizing the elastic properties of the

constituent material at every point x− = (x1, x2, x3) of �t is introduced. We assume
the following monoclinic symmetry: C t

3αβγ = C t
α333 = 0. In addition, C∼∼

t does not
depend on (x1, x2) and is an even function of x3 to ensure full uncoupling between
in-plane and out-of-plane problems. Thus, the constitutive equation writes as:

σ∼
t
(
x−
) = C∼∼

t (x3) : ε∼
t
(
x−
)

(2)

where σ∼
t =
(
σt
i j

(
x−
))

is the stress tensor and ε∼
t =
(
εt
i j

(
x−
))

is the strain tensor at

point x−. The tensor C∼∼
t follows the classical symmetries of linear elasticity and is

positive definite. Its inverse, noted S∼∼
t , is the compliance tensor and it has the same

properties.
The full 3D elastic problem, P3D , is to find in �t a displacement vector field

u−
t , a strain tensor field ε∼

t and a stress tensor field σ∼
t such that the static conditions

(SC3D,t):

SC3D,t :
{

σ∼
t · ∇− = 0 on �t (3a)

σ∼
t · (±e−3

) = f− on ∂�±
3 , (3b)

the kinematic conditions (KC3D,t):

KC3D,t :
{

ε∼
t = u−

t ⊗s∇− on �t (4a)

u−
t = 0 on ∂�lat (4b)

and the constitutive law (2) are satisfied. Here,
(
e−1, e−2, e−3

)
is the orthonormal basis

associated with coordinates (x1, x2, x3) and • ⊗s∇− denotes the symmetric part of the
gradient operator.

Variational Formulation of the 3D Problem The strain and stress energy density
w3D and w∗3D are respectively given by:

w3D
(
ε∼
) = 1

2
ε∼ : C∼∼

t : ε∼, w∗3D (σ∼ ) = 1

2
σ∼ : S∼∼

t : σ∼ (5)

They are related by the following Legendre-Fenchel transform:

w∗3D (σ∼ ) = sup
ε∼

{
σ∼ : ε∼ − w3D

(
ε∼
)}

(6)

The kinematic variational approach states that the strain solution ε∼
t of P3D is the

one that minimizes P3D among all kinematically compatible strain fields:

P3D
(
ε∼

t
) = min

ε∼∈KC3D,t

{
P3D

(
ε∼
)}

(7)



118 A. Lebée and K. Sab

where P3D is the potential energy given by:

P3D
(
ε∼
) =

∫
�t

w3D
(
ε∼
)
d�t −

∫
ωL

f− · u−
+ + f− · u−

−dωL (8)

and u−
± = u−(x1, x2,±t/2) are the 3D displacement fields on the upper and lower

faces of the plate.
The static variational approach states that the stress solution σ∼

t of P3D is the one
that minimizes P∗3D among all statically compatible stress fields:

P∗3D (σ∼ t
) = min

σ∼ ∈SC3D,t

{
P∗3D (σ∼ )} (9)

where P∗3D is the complementary potential energy given by:

P∗3D (σ∼ ) =
∫
�t

w∗3D (σ∼ ) d�t (10)

Symmetries For the sake of simplicity, we chose the 3D plate problem such that
only flexural part is involved and no membranal part.

The 3D problem P3D is skew-symmetric through a planar symmetry with respect
to the mid-plane of the plate (known also as “mirror symmetry” in laminates
engineering) because C∼∼

t is an even function of only x3. This means that, when
applying the transformation x3 → −x3 the problem remains unchanged but the
applied external loading in (3b) changes its sign. Consequently the in-plane dis-
placement ut

α (x1, x2, x3) is an odd function of x3 and the out-of-plane displacement
ut
3 (x1, x2, x3) is an even function of x3. Similarly, the in-plane stress σt

αβ (x1, x2, x3)
and transverse compression σt

33 (x1, x2, x3) are odd functions of x3 and the transverse
shear stress σt

α3 (x1, x2, x3) is an even function of x3.
In terms of resultants and averaged displacements, the integration through the

thickness of ut
α and σt

αβ vanish and then the plate problem will be purely flexural.
Of course, this result affects also the asymptotic expansion procedure and enables
many simplifications.

2.3 Scaling

Once the 3D problem is set, we scale it for clearly separating the in-plane variables
(which are related to macroscopic problems) and the out-of-plane variable (which is
related to microscopic perturbations). Hence, L is the typical scale of the in-plane
variables (e.g. the span and also the wavelength of the loadings). We introduce the
following change of variable Yα = L−1xα for the in-plane variable where Yα ∈ ω.
The domain ω is the scaled mid-plane of the plate. Moreover we define z = t−1x3 for
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the out-of-plane variable, z ∈] − 1
2 ,

1
2 [. Consequently, we define the small parameter

as: η = t/L .
Based on this change of variables, the fourth-order elasticity tensor can be rewrit-

ten as:
C∼∼

t (x3) = C∼∼
(
t−1x3

) = C∼∼
(z) (11)

whereC∼∼
is a function of z. In the following, double-stroke fonts denote fields which

are only function of the local variable z (i.e. localization fields).
The distributed forces are classically scaled in the following way as shown in

Ciarlet and Destuynder (1979), Caillerie (1984), Dallot and Sab (2008):

f− (x1, x2) = η
2 F3 (Y1,Y2)

2
e−3 (12)

Similarly, in the following, fields with capital letters are only function of (Y1,Y2)
(i.e. macroscopic fields).

Furthermore, from the fields of the 3D problem (u−
t, ε∼

t,σ∼
t) we define the non-

dimensional fields (u−, ε∼,σ∼ ) as follows:

⎧⎨
⎩

u−
t (x1, x2, x3) = L u− (x1/L , x2/L , x3/t) = L u− (Y1,Y2, z)

ε∼
t (x1, x2, x3) = ε∼ (x1/L , x2/L , x3/t) = ε∼ (Y1,Y2, z)

σ∼
t (x1, x2, x3) = σ∼ (x1/L , x2/L , x3/t) = σ∼ (Y1,Y2, z)

(13)

The derivation rule for those functions is:

∇− =
(

d

dx1
,

d

dx2
,

d

dx3

)

= L−1

(
∂

∂Y1
,

∂

∂Y2
, 0

)
+ t−1

(
0, 0,

∂

∂z

)
= L−1∇− Y

+ t−1∇− z
.

(14)

We will also use the variational formulation of the 3D problem. Hence we provide
here the scaled variational formulation. The set of statically compatible fields can be
rewritten as:

SC3D :

⎧⎪⎪⎨
⎪⎪⎩

σ∼ · ∇− η
(Y,z)

= 0 on � = ω×] − 1

2
,+1

2
[, (15a)

σ∼ · (±e−3
) = η

2

2
F3e−3 on ∂�±

3 , (15b)

where ∇− η
(Y,z) = ∇− Y

+ 1
η

∇− z
. The kinematically compatible fields becomes (KC3D):

KC3D :
⎧⎨
⎩

ε∼ = u− ⊗s∇− η
(Y,z)

on �, (16a)

u− = 0 on ∂ω×] − 1

2
,+1

2
[ (16b)
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Then the potential energy can be rewritten as:

P3D
(
ε∼
) = t L2

∫
ω

(〈
w3D

(
ε∼
)〉− η

u+
3 + u−

3

2
F3

)
dω (17)

where 〈•〉 is the integration through the thickness:

〈•〉 =
1
2∫

− 1
2

• dz.

The complementary energy becomes also:

P∗3D (σ∼ ) = t L2
∫
ω

〈
w∗3D (σ∼ )〉 dω (18)

Moreover, the non dimensional plate balance equation can be derived as follows.
The bending moment and the shear force are defined as:

Mαβ (Y1,Y2) = 〈zσαβ

〉
, and Qα (Y1,Y2) = η

−1 〈σ3α〉 . (19)

Moment balance equations are:

〈
z
(
σαβ,β + η

−1σα3,3
)〉 = 0 = Mαβ,β − Qα or M∼ · ∇− Y

− Q− = 0 (20)

And the out-of-plane balance equation writes:

η
−1 〈σ3α,α + η

−1σ33,3
〉 = 0 = Qα,α + F3 or Q− · ∇− Y

+ F3 = 0 (21)

Finally, we have the non dimensional plate balance equation:

Mαβ,βα + F3 = 0 or M∼ : (∇− Y
⊗∇− Y

)+ F3 = 0 (22)

Now,C∼∼
,ω and F3 being fixed, is to find a consistent approximation of the solution

of the 3D problem P3D (2-3-4) assuming η is small.

2.4 Properties of the Non-Dimensional Solution

For given
(
ω,C∼∼

, F3, η

)
where C∼∼

is monoclinic and even in z, and under some

regularity conditions, the solution of the non-dimensional problem is unique.
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Obviously, due the change of variables x3 → z,

• u3 and σα3 are even in z
• uα, σαβ and σ33 are odd in z

We will establish the following knew properties

• u3 and σα3 are odd in η

• uα, σαβ and σ33 are even in η

Indeed, let z′ = − x3
t be a new change of variable for the out-of-plane variable.

The new non-dimensional fields (u−
′, ε∼

′,σ∼
′) are defined by:

⎧⎨
⎩

u−
t (x1, x2, x3) = L u−

′ (x1/L , x2/L ,−x3/t) = L u−
′ (Y1,Y2, z′)

ε∼
t (x1, x2, x3) = ε∼

′ (x1/L , x2/L ,−x3/t) = ε∼
′ (Y1,Y2, z′)

σ∼
t (x1, x2, x3) = σ∼

′ (x1/L , x2/L ,−x3/t) = σ∼
′ (Y1,Y2, z′) (23)

The new derivation rule for these fields is:

∇− =
(

d

dx1
,

d

dx2
,

d

dx3

)

= L−1

(
∂

∂Y1
,

∂

∂Y2
, 0

)
− t−1

(
0, 0,

∂

∂z′

)
= L−1∇− Y

− t−1∇− z′

= L−1∇− −η
(Y,z′)

(24)

where

∇− −η
(Y,z′) = ∇− Y

− 1

η
∇− z′ (25)

The new equations are:

SC3D′ :

⎧⎪⎪⎨
⎪⎪⎩

σ∼
′ · ∇− −η

(Y,z′) = 0 on � = ω×] − 1

2
,+1

2
[, (26a)

σ∼
′ · (±e−3

) = − η
2

2
F3e−3 on ω± (26b)

KC3D′ :
⎧⎨
⎩

ε∼
′ = u−

′ ⊗s∇− −η
(Y,z′) on �, (27a)

u−
′ = 0 on ∂ω×] − 1

2
,+1

2
[ (27b)

σ∼
′ (Y1,Y2, z′) = C∼∼

(
z′) : ε∼

′ (Y1,Y2, z′) (28)
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Therefore, the new non-dimensional fields (u−
′, ε∼

′,σ∼
′) are solutions of the same

equations as for (u−, ε∼,σ∼ ) where F3 → −F3 and η → −η:

(u−
′, ε∼

′,σ∼
′)
(
Y1,Y2, z

′) = (u−, ε∼,σ∼ )(−F3,−η)
(
Y1,Y2, z

′) (29)

Moreover, by definition, the new non-dimensional fields coincide with the initial
ones with z = −z′:

(u−
′, ε∼

′,σ∼
′)
(
Y1,Y2, z

′) = (u−, ε∼,σ∼ )(F3,η)
(
Y1,Y2,−z′) (30)

Hence, we have:

(u−, ε∼,σ∼ )(−η) (Y1,Y2, z) = −(u−, ε∼,σ∼ )(η) (Y1,Y2,−z) (31)

This means that even components in z are odd in η and odd components in z are even
in η.

2.5 Expansion

The asymptotic expansion method which is presented, for example, in Sanchez-
Palencia (1980), Sanchez-Hubert and Sanchez-Palencia (1992) will be used to
provide a formal justification of the Bending-Gradient theory. The starting point
of the method is to assume that the solution to (2-3-4) can be written as a series in
power of η in the following form:

⎧⎨
⎩

u− = η
−1u−

−1 + η
0u−

0 + η
1u−

1 + · · ·
ε∼ = η

0ε∼
0 + η

1ε∼
1 + · · ·

σ∼ = η
0σ∼

0 + η
1σ∼

1 + · · ·
(32)

where u−
p, ε∼

p and σ∼
p, p = −1, 0, 1, 2..., are functions of (Y1,Y2, z) which have the

following properties:

• up

3 and σ p

α3 are null for even p and even in z for odd p.
• up

α, σ
p

αβ and σ p

33 are null for odd p and odd in z for even p.

The series are started from the order η
0 forσ∼ and ε∼, and from the order η

−1 for u−. Then,
the expansion (32)—taking into account the change of variable—must be inserted
in the equations (2-3-4) and all the terms of the same order η

p must be identified.

Statically Admissible Fields The normalized 3D equilibrium equation becomes:

σ∼ · ∇− η
(Y,z)

= η
−1
(
σ∼

0 · ∇− z

)
+ η

0
(
σ∼

0 · ∇− Y
+ σ∼

1 · ∇− z

)
+ · · · = 0. (33)
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Identifying all the terms of the above series to be zero, we find:

σ0
i3,3 = 0 (34)

for the order η
−1 and

σ p

iα,α + σ p+1

i3,3 = 0 (35)

for the order η
p with p ≥ 0. The derivation •,i is performed without ambiguity with

respect to (Y1,Y2, z). The static boundary conditions on ω± writes:

σ p

i3

(
Y1,Y2,±1

2

)
= 0 (36)

for the order p ≥ 0 and p = 2. When p = 2 we have:

σ2
α3

(
Y1,Y2,±1

2

)
= 0 and σ2

33

(
Y1,Y2,±1

2

)
= ±1

2
F3 (Y1,Y2) (37)

Kinematically Compatible Fields The non-dimensional displacement field is:

u− = η
−1u−

−1 + η
0u−

0 + η
1u−

1 + · · · (38)

The non-dimensional strain field is:

ε∼ = u− ⊗s∇− η
(Y,z)

= η
−2ε∼

−2 + η
−1ε∼

−1 + η
0ε∼

0 + · · · (39)

with:
ε∼

−2 = u−
−1 ⊗s∇− z

and ε∼
p = u−

p+1 ⊗s∇− z
+ u−

p ⊗s∇− Y
, p ≥ −1 (40)

In components:

ε−2

αβ = 0, ε−2
α3 = 1

2
u−1

α,3 and ε−2
33 = u−1

3,3 (41)

and for all p ≥ −1:

εp

αβ = 1

2

(
up

α,β + up

β,α

)
, εp

α3 = 1

2

(
up+1

α,3 + up

3,α

)
and εp

33 = up+1

3,3 (42)

The kinematic condition on the lateral boundary leads to:

∀p ≥ −1 and ∀ (Y1,Y2) ∈ ∂ω, u−
p (Y1,Y2) = 0. (43)
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3 Explicit or Cascade Resolution

Now that the asymptotic expansion framework is set, we detail the explicit resolu-
tion which is classically performed (see Caillerie 1984; Lewinski 1991 for instance).
Basically it starts with the derivation of low order displacements which do not gen-
erate local strain but are related to purely macroscopic displacement fields. Then the
zeroth-order equations are gathered. They enable the definition of the first auxiliary
problem and the construction of the well-known Kirchhoff-Love macroscopic plate
model. Then the first-order is solved the same way. Of course it would be possible
to carry on the process any order higher.

3.1 Low Order Displacement Fields

The assumption (32) provides the following equations:

ε∼
−2 = 0, (44)

and
ε∼

−1 = 0, (45)

From (44) it is deduced that u−
−1 is a function of (Y1,Y2). Moreover, u−1

α being null,
we write:

u−
−1 = U−1

3 (Y1,Y2) e−3. (46)

Using (45), the boundary conditions (43) and the fact that u0
3 is null, it can be

found that u−
0 has the following form:

u−
0 = −zU−1

3 ⊗∇− Y
=
⎛
⎝−zU−1

3,1
−zU−1

3,2
0

⎞
⎠ , (47)

with the boundary conditions:

U−1
3 = U−1

3,αnα = 0 ∀ (Y1,Y2) ∈ ∂ω. (48)

where n− is the outer normal to ∂ω. Note that, sinceU−1
3 is null over ∂ω, its tangential

derivativewill be also null over∂ω, hence only the normal gradientU−1
3,αnα is required

to be explicitly set to zero in this boundary condition.
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3.2 Zeroth-Order Plate Model (Kirchhoff-Love)

Zeroth-Order Auxiliary Problem Gathering equilibrium equation for order −1,
compatibility equation, boundary conditions and constitutive equations of order 0
we get the zeroth-order auxiliary problem for z ∈ [− 1

2 ,
1
2 ]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ0
i3,3 = 0 (49a)

σ0
i j = Ci jklε

0
kl (49b)

ε0
αβ = zK −1

αβ, ε0
α3 = 1

2u
1
α,3 and ε0

33 = u1
3,3 (49c)

σ0
i3

(
z = ± 1

2

) = 0 (49d)

where we define the lowest-order curvature as:

K −1

αβ = −U−1

3,αβ (50)

Solving this problem does not raise difficulty. Using short notation, the displacement
field writes as:

u−
1 = u∼−

K : K∼
−1 +U 1

3e−3 =
⎛
⎝ 0

0
uK
3αβK

−1

βα +U 1
3

⎞
⎠ (51)

where the displacement localization tensor u∼−
K (z) related to the curvature is given

by:

uK
3αβ = −

⎡
⎢⎣

z∫

− 1
2

y
C33αβ

C3333
dy

⎤
⎥⎦

∗

and uK
αβγ = 0 (52)

where [•]∗ denotes the averaged-out distribution: [•]∗ = • − 〈•〉. Finally,U 1
3 appears

as an integration constant which will load the next auxiliary problem. The stress
localization writes as:

σ∼
0 = s∼∼

K : K∼
−1 (53)

where the fourth-order stress localization tensor is:

sKαβγδ = zCσ

αβγδ and sKi3γδ = 0 (54)

and Cσ

αβγδ = Cαβγδ − Cαβ33C33γδ/C3333 denotes the plane-stress elasticity tensor.
Hence the plate is under pure plane-stress at this order.

The strain is derived using the local constitutive equation:

ε0
αβ = zK −1

αβ, ε0
α3 = 0 and ε0

33 = − zC33αβ

C3333
K −1

αβ (55)



126 A. Lebée and K. Sab

This confirms Kirchhoff’s assumption regarding the in-plane strain. The reader’s
attention is drawn to the fact that the out-of-plane strain is not zero, as already
mentioned in several works (Ciarlet and Destuynder 1979; Caillerie 1984) in contrast
to the original assumption from Kirchhoff.

Hence, for given macroscopic fieldU−1
3 and its derivatives, the microscopic strain

and stress are fully determined at this order. However, we also needU 1
3 for estimating

the displacement field. This requires solving higher-order problems.
At this order, there remains to derive the macroscopic problem which enables the

determination of U−1
3 .

Zeroth-Order Macroscopic Problem The macroscopic equilibrium is derived inte-
grating the first two components of z × (35) for p = 0. This gives after integrating
by parts over z:

M 0
αβ,β − Q1

α = 0 (56)

where the zeroth-order bending moment is defined as:

M 0
αβ (Y1,Y2) = 〈zσ0

αβ

〉
, (57)

and the first-order shear force is:

Q1
α (Y1,Y2) = 〈σ1

3α

〉
. (58)

It can be easily established that
〈
σ0
3α

〉 = 0 because of the equilibrium (34) and the
boundary condition (36). Therefore, averaging the third component of (35) for p = 0
leads to a trivial equation. Using the second order boundary condition (37) for p = 2
and averaging the third component of the first-order equilibrium equation (35) for
p = 1 gives:

Q1
α,α + F3 = 0. (59)

Weobtain also the constitutive equation by plugging the local stress derived in (53)
into the definition of M∼

0. This leads to the well-known Kirchhoff-Love constitutive
equation:

M∼
0 = D∼∼ : K∼

−1 where: D∼∼ =
〈
z2 C∼∼

σ

〉
(60)

Gathering the preceding results leads to the definition of the Kirchhoff-Love plate
problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∼
0 : (∇− Y

⊗∇− Y

)+ F3 = 0, on ω (61a)

M∼
0 = D∼∼ : K∼

−1, on ω (61b)

K∼
−1 = U−1

3 ∇− Y
⊗∇− Y

, on ω (61c)

U−1
3 = 0 and

(
U−1

3 ⊗∇− Y

) · n− = 0 on ∂ω (61d)
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Finally, solving this macroscopic problem enables the derivation of the macro-
scopic displacement fields U−1

3 . However, U 1
3 remains unknown.

Thewell-known limitation of Kirchhoff-Love plate model is that it does not incor-
porate the effect of shear forces. In order to bring out the contribution of transverse
shear, we need to go further in the expansion.

3.3 Higher-Order Analysis

First-Order Auxiliary Problem Gathering equilibrium equation for order 0,
compatibility equation, boundary conditions and constitutive equations of order 1
we get the first-order auxiliary problem for z ∈ [− 1

2 ,
1
2 ]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ0
iα,α + σ1

i3,3 = 0 (62a)

σ1
i j = Ci jklε

1
kl (62b)

ε1
αβ = 1

2

(
u1

α,β + u1
β,α

)
= 0, ε1

α3 = 1
2

(
u2

α,3 + u1
3,α

)
, ε1

33 = u2
3,3 = 0 (62c)

σ1
i3

(
z = ± 1

2

) = 0 (62d)

In this auxiliary problem, the displacement field u−
1 (51) and the stress field σ∼

0 (53)
are local fields which depend linearly on K∼

−1 and U 1
3. Hence, the displacement field

u−
2 solution to the above problem (as well as ε∼

1 and σ∼
1) will be a linear superposition

of localization fields which depend on the gradient of those macroscopic fields.
Taking into account the parity properties, the displacement field solution of this

problem writes as:

u−
2 = u

�−
K∇ ...

(
K∼

−1 ⊗∇− Y

)− zU 1
3 ⊗∇− Y

=
⎛
⎝−zU 1

3,1 + uK∇
1βγδK

−1

δγ,β

−zU 1
3,2 + uK∇

2βγδK
−1

δγ,β

0

⎞
⎠ (63)

where the displacement localization tensoru
�−

K∇ (z) related to the curvature gradient
writes as:

uK∇
αβγδ = −

⎡
⎢⎣

z∫

− 1
2

⎛
⎜⎝4Sα3η3

y∫

− 1
2

vCσ

ηβγδ dv + δαβu
K
3γδ

⎞
⎟⎠ dy

⎤
⎥⎦

∗

and uK∇
3βγδ = 0

(64)
The first order stress writes as:

σ∼
1 = s

�∼
K∇ ...

(
K∼

−1 ⊗∇− Y

)
(65)
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where we defined the fifth-order localization tensor s
�∼
K∇ (z) as:

sK∇
αβγδη = 0, sK∇

α3βγδ = −
z∫

− 1
2

yCσ

αβγδ dy and sK∇
33βγδ = 0 (66)

Hence, this order involves only transverse shear effects.
Note that U 0

3 = 0 because of parity considerations and

M∼
1 = (〈zσ1

αβ

〉) = 0 (67)

Thus, if we want to capture U 1
3, we have to go one order higher. However, this will

require the derivation of the second gradient of the curvature K∼
−1 and consequently

the fourth derivative of U−1
3 = 0 which raises an issue in terms of physical meaning

of this variable as well as of numerical implementation.
In contrast, it is remarkable that transverse shear effects are included in the local-

ization field already at this order.Hencewe suggest to stop at this order the asymptotic
expansion and switch to variational arguments for deriving the Bending-Gradient
theory.

Additional Remarks on the Asymptotic Expansion Approach Before going
further in the derivation of the Bending-Gradient theory, let us point out some useful
remarks regarding the asymptotic expansion procedure.

In the present paper, we performed the asymptotic expansion up to the very
next order after the classical homogenization procedure. However, this formalism
has already been studied up to “infinite order” in other elasticity problems (see
Smyshlyaev and Cherednichenko (2000) for instance) and convergence results were
derived (Bakhvalov and Panasenko 1989). Those works show that the fully recon-
structed field u− is actually a double sum: a sum over orders, as expected because of
the expansion, but also over degrees of derivative of the macroscopic displacement
field. This is also the case in the present plate problem. If we gather all the fields
derived in the cascade resolution we get the following:

u− =
(
U−1

3

η
+ ηU 1

3 + η
3U 3

3 + . . .

)
e−3 − z

(
U−1

3 + η
2U 1

3 + . . .
)

⊗∇− Y

+ η

(
u∼−

K : (K∼ −1 + η
2K∼

1 + . . .
))+ η

2
(
u
�−

K∇ ...
(
K∼

−1 ⊗∇− Y
+ . . .

))+ . . .

(68)

Assuming that this double sum converges, it is legitimate to define:

U3 =
∞∑

p=−1

η
p+1U p

3 (69)
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and rewrite the total displacement field as:

u− = U3

η
e−3 − zU3 ⊗∇− Y

+ η u∼−
K : K∼ + η

2 u
�−

K∇ ... K∼ ⊗∇− Y
+ . . . (70)

where K∼ = U3∇− Y
⊗∇− Y

. This was suggested by Boutin (1996) and further justified in
Smyshlyaev and Cherednichenko (2000). We have also for the stress field:

σ∼ = s∼∼
K : K∼ + η s

�∼
K∇ ... K∼ ⊗∇− Y

+ . . . (71)

Hence, it seems that going higher-order in the asymptotic expansion only involves
higher gradients of the displacement inside the constitutive equation. However, as
already pointed out in these papers, the problem remains ill-posed as it stands here.
Some caution must be taken when considering the constitutive equation as well as
the boundary conditions if one wants to derive a mathematically sound problem.

First, in order to derive the constitutive equation it seems straightforward to take
directly the elastic energy of the infinite order stress or strain (71) and to truncate
this energy up to a given order afterward. However, this will lead to a non-positive
quadratic form and makes the higher-order problem unstable. Hence, as pointed out
by Smyshlyaev and Cherednichenko (2000) it is critical to truncate the expansion of
the stress or strain before taking the related energy to ensure positivity.

Second, whereas the boundary conditions are set at each order in the cascade
resolution of the asymptotic expansion (here Eq. (61d) at each order), in the format
presented here, it is not possible to make distinction between orders and then the
problem is not well-posed anymore. Here, variational tools will enable the derivation
of consistent boundary conditionswith the choice ofmacroscopic degrees of freedom.

4 The Bending-Gradient Theory

Keeping in mind the difficulties mentioned regarding the asymptotic expansion, the
Bending-Gradient theory is derived as follows. The starting point is the exact balance
equation (22) on the bending moment

(
Mαβ

) = (〈zσαβ

〉)
. The Bending-Gradient

theory is based on the following two main ideas:
The first idea is that he stress field can be accurately approximated by:

σ∼
BG = s∼∼

K : χ
∼

+ η s
�∼
K∇ ... χ

∼
⊗∇− Y

(72)

where χ
∼

= (χαβ

)
(Y1,Y2) is an unknown symmetric second-order tensor field.

The second idea is to find the best possible choice of χ
∼
by optimizing

P∗3D (σ∼ BG
) = t L2

∫
ω

〈
w∗3D (σ∼ BG

)〉
dω (73)
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over all χ
∼
such that the balance equation on the bending moment M∼

BG associated to

σ∼
BG holds true. Actually, we have:

M∼
BG = D∼∼ : χ

∼
where D∼∼ =

〈
z2 C∼∼

σ

〉
and d∼∼

= D∼∼
−1 (74)

Its gradient is:

R
�

= M∼
BG ⊗∇− Y

or Rαβγ = MBG
αβ,γ with Rαβγ = Rβαγ (75)

It is possible to rewrite σ∼
BG in terms of M∼

BG and R
�
:

σ∼
BG = s∼∼

K :
(

d∼∼
: M∼

BG
)

+ η s
�∼
K∇ ...

(
d∼∼

: M∼
BG
)

⊗∇− Y
(76)

and
σ∼

BG = s∼∼
M : M∼

BG + η s
�∼
R ... R

� (77)

where the localizations tensors are given by:

s∼∼
M = s∼∼

K : d∼∼
, s

�∼
R = s

�∼
K∇ : d∼∼

(78)

It is easy to check that if M∼
BG satisfies balance equation (22), then the stress field

σ∼
BG defined by (77) will satisfy the 3D equilibrium equation (15), as well as the

z = ±1/2 face boundary conditions, up to the order η
1. Hence, even if the set of such

σ∼
BG does not define properly a restriction of SC3D , it remains a good approximation in

the sense of the asymptotic expansion. Let us introduce the following set of statically
compatible fields for the Bending-Gradient theory:

SCBG :
⎧⎨
⎩

R
�

= M∼
BG ⊗∇− Y

or Rαβγ = MBG
αβ,γ (79a)(

i∼∼
... R

�

)
· ∇− Y

+ F3 = 0 or Rαββ,α + F3 = 0 (79b)

where the shear forces were substituted and we used the following relation:

i∼∼
... R

�
= M∼

BG · ∇− Y
= Q−

BG or Rαββ = MBG
αβ,β = QBG

α (80)

where iαβγδ = 1
2

(
δαγδβδ + δαδδβγ

)
is the identity for in-plane fourth-order tensors

following the symmetries of linear elasticity.
Plugging σ∼

BG into the complementary energy of the full 3D problem leads to the
following functional:

P∗BG (M∼ BG, R
�

) =
∫
ω

w∗KL (M∼ BG
)+ η

2w∗BG (R
�

)
dω (81)
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where the stress elastic energies are defined as:

w∗KL (M∼ BG
) = 1

2
M∼

BG : d∼∼
: M∼

BG and w∗BG (R
�

) = 1

2
TR
�

... h
��

... R
�

(82)

with:
h
��

=
〈
T
s
�∼
R : S∼∼ : s

�∼
R
〉

(83)

This sixth-order tensor is the compliance related to the transverse shear of the plate.
It is strictly identical to the one derived in Lebée and Sab (2011a). Let us recall here
that it is positive, symmetric, but not definite in the general case. More details about
h
��
properties were discussed in Lebée and Sab (2011a).

NB: There is no uncoupling in the complementary energy (81) between M∼
BG

and R
�
because of the monoclinic symmetry of the local constitutive equation. In the

auxiliary problems, this symmetry enforces the localization related to M∼ to be purely
in-plane and the one related to R

�
to be pure transverse shear. Hence the cross terms

in the 3D elastic energy vanish.
Now we define the generalized strains as:

χ
∼

= ∂w∗KL

∂M∼
BG and �

�
= ∂w∗BG

∂ R
�

(84)

which leads to the following constitutive equations:

{
χ
∼

= d∼∼
: M∼

BG (85a)

�
�

= h
��

... R
�

(85b)

Introducing respectively �αβγ , UBG
3 as Lagrange multipliers of Eqs. (79a), (79b)

and taking the variations with respect to the static variables leads to the following
definition for the strains:

KCBG :
{

χ
∼

= �
�

· ∇− Y
(86a)

η
2�

�
= �

�
+ i∼∼

· ∇− Y
U BG

3 (86b)

where both �
�

and �
�
are third-order tensors which follows the same index sym-

metry as R
�
. Setting η

2 = 0 in those definitions leads exactly to Kirchhoff-Love
strains. Hence, the Bending-Gradient curvature is slightly different from the one
of the asymptotic expansion and Eq. (86a) rewrites:

χ
∼

= K∼
BG + η

2�
�

· ∇− Y
where K∼

BG = −UBG
3 ∇− Y

⊗∇− Y
(87)

Namely it is the sum of the conventional curvature and a small correction termwhich
relaxes this compatibility relation.
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Considering the variations of the Lagrangian on the edges leads also to the fol-
lowing clamped boundary conditions:

UBG
3 = 0 and �

�
· n− = 0 on ∂ω (88)

Finally we have a well-posed plate theory.
Once the exact solution of the macroscopic problem is derived, it is possible to

reconstruct the local displacement field. We suggest the following 3D displacement
field where UBG

3 , �
�
are the fields solution of the plate problem:

u−
BG = UBG

3

η
e−3 − zU BG

3 ⊗∇− Y
+ η u∼−

K : χ
∼

+ η
2 u

�−
K∇ ...

(
χ
∼

⊗∇− Y

)
(89)

Defining the strain as
ε∼
BG = S∼∼

: σ∼
BG (90)

it is possible to check that:

ε
(
u−
BG
)
(Y,z)

− ε∼
BG = η

2
((

δ∼ ⊗su
�−

K∇
)

::
(
χ
∼

⊗∇− 2
Y

)
+ z�

�
· ∇− Y

)
(91)

which shows that the compatibility equation between the reconstructed displacement
field u−

BG and strain localization ε∼
BG is satisfied up to the η

2 order.

The Original Work of Reissner for Homogeneous Plates Originally, Reissner
started from the assumption that the in-plane stress distribution related to the bending
moment is linearly distributed through the thickness for a homogeneous and isotropic
plate. Then, integrating successively the in-plane and the out of plane equilibrium
equations he built a statically admissible 3D stress field. It turns out that this field
has exactly the form of σ∼

BG except for the σ33 component.
Indeed, for a homogeneous plate, we have1: D∼∼ = 1

12C∼∼
σ. Hence, we have:

σ∼
BG =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σBG
αβ = zCσ

αβγδχδγ = 12zMBG
αβ

σBG
α3 = −η

z∫

− 1
2

yCσ

αβγδ dyχδγ,β = η
3

2

(
1 − 4z2

)
QBG

α

σBG
33 = 0

(92)

which is a function of M∼
BG and Q−

BG = i∼∼
... R

�
instead of the whole R

�
. In the above

expression, the equilibrium equation (79b) were used to define the shear forces as:

1 D∼∼
t = t3

12 C∼∼
t,σ in physical variables.
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QBG
α = MBG

αβ,β . It should be mentioned that in its original work, Reissner used the

following expression σ33 = η
2
3z

2

(
1 − 4z2

3

)
F3 for the out-of-plane traction instead

of σBG
33 = 0 in order to ensure the statical compatibility of the stress field. Therefore,

σ∼
BG coincideswith the stress proposed byReissner up to the first order in η.Moreover,

since shear stresses are only functions of shear forceswhen the plate is homogeneous,
then theBending-Gradient part of the stress elastic energy is actually a quadratic form
of these shear forces:

w∗BG (R
�

) = 1

2
TR
�

... h
��

... R
�

= 1

2
Q−

BG · h∼
RM · Q−

BG (93)

with:
h
��

= i∼∼
· h∼

RM · i∼∼
(94)

and

hRM
αβ = 6

5
Sα3β3 (95)

is Reissner’s shear forces stiffness (when the plate is isotropic one retrieve:
hRM

αβ = 6
5G δαβ with G the shear modulus).

Inserting the above expression for h
��
in the constitutive equation (85b) gives:

�
�

= h
��

... R
�

= i∼∼
· γ− (96)

with
γ− = h∼ · Q−

BG (97)

Using the kinematic compatibility (86b), we find that �
�
is also of the form:

�
�

= i∼∼
· ϕ− (98)

where ϕ− is the classical rotation vector of the Reissner theory.
In summary, when the plate is homogeneous and according to the Bending-

Gradient theory, the kinematic unknowns are UBG
3 and ϕ− , the generalized strains

and the constitutive equations are:

{
χ
∼

= ϕ− ⊗s∇− Y
= d∼∼

: M∼
BG

η
2γ− = ϕ− +UBG

3 ⊗∇− Y
= η

2h∼ · Q−
BG (99)
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and finally, the balance equations are:

{
M∼

BG · ∇− Y
− Q−

BG = 0 on ω (100a)

Q−
BG · ∇− Y

+ F3 = 0 on ω (100b)

Thismeans that theBending-Gradient theory completely coincides for homogeneous
plates with the Reissner-Mindlin model. It is interesting to note that the Reissner-
Mindlin curvature may be rewritten as the sum of the geometrically exact curvature
and a correction term related to transverse shear effectswhich relaxesKirchhoff-Love
theory compatibility equation:

χ
∼

= −UBG
3 ∇− Y

⊗∇− Y
+ η

2γ− ⊗s∇− Y
(101)

In summary, we derived a plate model which enables the full description of local
3D fields (u−

BG , ε∼
BG and σ∼

BG) including the effects of transverse shear. Compared
to the classical theory from Reissner (1945), we just add four macroscopic variables
included into the generalized rotation �

�
and which are related to transverse shear

warping. Contrary to the asymptotic expansions approach or the approach suggested
in Smyshlyaev andCherednichenko (2000), our theory does not require the derivation
of the first or even the second gradient of the curvature. Actually, when looking at the
definition of strains in Eq. (86), only the first derivatives ofUBG

3 and �
�
are involved.

Having low-order interpolation is a serious advantage compared to “strain-gradient-
like” approaches given in Lewiński (1991), Smyshlyaev andCherednichenko (2000).

Now, let us recall that the derivation of the Bending-Gradient theory through
asymptotic expansions was purely formal. The small parameter η was essentially
used for discriminating between orders. More precisely, the 3D local fields chosen
for the Bending-Gradient theory satisfy the 3D compatibility equation and the 3D
equilibrium equation one order higher than the Kirchhoff-Love fields. However, this
is not a proof of convergence even if the good results in Lebée and Sab (2011b) are
clearly encouraging. Especially, it is broadly acknowledged that the boundary have a
critical role on that matter when going in higher orders. This question raises already
with asymptotic expansions: it was demonstrated that the approximation which is
derived in the bulk is not compatible with the actual 3D boundary condition and can
only be fulfilled weakly (see Berdichevsky (1979), Buannic and Cartraud (2001a, b)
for a clear illustration in the case of beams). In the case of the Bending-Gradient
theory the boundary conditions are different from the asymptotic expansions and
requires further analysis which is out of the scope of this lecture.
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5 Application of the Bending-Gradient Theory
to Laminates

The purpose of this Section is to derive closed-form solutions for the Bending-
Gradient model in the case of cylindrical bending and compare them to the exact
solutions from Pagano (1969, 1970a, b). In what follows, for simplicity, we drop the
exponent term BG in the notation of the mechanical fields of the Bending-Gradient
model.

5.1 Voigt Notations

In this subsection, we introduce Voigt notation in order to turn contraction products
into conventional matrix products. Brackets

[•∼] are used to denote that a tensor
is considered in a matrix form. Thus

[•∼] is a linear operator, reallocating tensor
components.

For instance, the bending moment is reallocated in a vector form:

[
M∼
] =

⎛
⎝ M11

M22√
2M12

⎞
⎠ (102)

as well asχ
∼
, and the fourth-order compliance tensor d∼∼

is reallocated in a matrix form
so that constitutive equation (85a) becomes a vector-matrix product:

[
d∼∼

]
=
⎛
⎝ d1111 d2211

√
2d1211

d2211 d2222
√
2d1222√

2d1211
√
2d1222 2d1212

⎞
⎠ (103)

as well as the stiffness tensor D∼∼ . This is also done to the plane-stress stiffness tensor
C∼∼

σ.
The same procedure is applied to shear variables and the corresponding constitu-

tive equation. Shear static unknowns are reallocated in a vector form,

[
R
�

] =

⎛
⎜⎜⎜⎜⎜⎜⎝

R111

R221√
2R121

R112

R222√
2R122

⎞
⎟⎟⎟⎟⎟⎟⎠

(104)
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as well as �
�
and �

�
; and the constitutive sixth-order tensor is turned into a 6 × 6

matrix:

[
h
��

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h111111 h111122
√
2h111121 h111211 h111222

√
2h111221

h221111 h221122
√
2h221121 h221211 h221222

√
2h221221√

2h121111
√
2h121122 2h121121

√
2h121211

√
2h121222 2h121221

h112111 h112122
√
2h112121 h112211 h112222

√
2h112221

h222111 h222122
√
2h222121 h222211 h222222

√
2h222221√

2h122111
√
2h122122 2h122121

√
2h122211

√
2h122222 2h122221

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(105)

Finally, when using Voigt matrices components, the same typeface is used. The
number of indexes indicates unambiguously whether it is the tensor component or
the matrix component: h222221 is the tensor component of h

��
and h56 = √

2h222221 is

the matrix component of
[

h
��

]
.

5.2 Closed-Form Solution for Pagano’s Configuration

Pagano (1969) gives an exact solution for cylindrical bending of simply supported
composite laminates. We choose the same configuration for the Bending-Gradient
model. The plate is invariant and infinite in x2 direction. The span is L = 1. Hence,
Yα = xα and η coincides with the plate’s thickness t . The plate is out-of-plane loaded
with F3(x1) = −F0 sin κx1 in (12)whereλ = 1/κ = L

nπ
, n ∈ N

+∗ is thewavelength
of the loading (Fig. 2).

The plate is simply supported at x1 = 0 and x1 = L with traction free edges:

U3 (0) = 0, U3 (L) = 0, M∼ (0) = 0∼, M∼ (L) = 0∼. (106)

Fig. 2 Laminated plate configuration for Pagano’s cylindrical bending exact solution
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In these boundary conditions, M22 (0) = M22 (L) = 0 is the additional boundary
condition compared to the Reissner-Mindlin plate model. This boundary condition
is very similar to the one which applies to the bimoment on a free subsection in
Vlasov (1961) beam theory. This additional boundary condition takes into account
free edge effects similar to those described in Lebée and Sab (2010) for periodically
layered laminate.

The solution is obtained as follows: First, the x2-invariance leads to several sim-
plifications and some unknowns vanish. Second, relevant equations and unknowns
are gathered into a differential system and the closed-form solution is derived.
Curvatures Curvatures are defined by Eq. (86a):χαβ = �αβγ,γ . Taking into account
x2 invariance leads to:

[
χ
∼

]
=
⎛
⎝ χ11

χ22√
2χ12

⎞
⎠ =

⎛
⎝ �111,1

�221,1√
2�121,1

⎞
⎠ =

⎛
⎝�1,1

�2,1

�3,1

⎞
⎠ (107)

Bending Constitutive Equation Bending constitutive Eqs. (85a) are written with
Voigt notation as: [

χ
∼

]
=
[

d∼∼

]
· [M∼ ] (108)

Equilibrium The x2 invariance in the bending gradient equilibrium equation (79a)
enforces: ⎛

⎜⎜⎜⎜⎜⎜⎝

R1

R2

R3

R4

R5

R6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

M11,1

M22,1√
2M12,1

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(109)

and transverse loading equilibrium equation (79b) becomes:

M11,11 = −F3(x1) (110)

Shear Constitutive Equation Taking into account R4 = R5 = R6 = 0, U3,2 = 0
and generalized shear strain definition (86b), Shear constitutive equation (85b) is
rewritten in two parts.

A first part with unknowns involving active boundary conditions:

⎛
⎝�1

�2

�3

⎞
⎠ = η

2

⎛
⎝ h11 h12 h13
h12 h22 h23
h13 h23 h33

⎞
⎠ ·
⎛
⎝ M11,1

M22,1√
2M12,1

⎞
⎠−

⎛
⎝U3,1

0
0

⎞
⎠ (111)
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and a second part which enables the derivation of �4, �5, �6 on which no boundary
condition applies:

⎛
⎝�4

�5

�6

⎞
⎠ = η

2

⎛
⎝ h41 h42 h43
h51 h52 h53
h61 h62 h63

⎞
⎠ ·
⎛
⎝ M11,1

M22,1√
2M12,1

⎞
⎠−

⎛
⎝ 0

0
U3,1/

√
2

⎞
⎠ (112)

Final System Finally, combining Eqs. (106), (107), (110) and (111), leads to the
following set of equations which fully determines the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M11,11 = F0 sin κx1 (113a)

[
d∼∼

]
· [M∼ ]− η

2 ĥ∼ · [M∼ ],11 =
⎛
⎝U3,11

0
0

⎞
⎠ (113b)

[
M∼
] = 0 for x1 = 0 and x1 = L (113c)

U3 = 0 for x1 = 0 and x1 = L (113d)

where for convenience, ĥ∼ is the 3 × 3 submatrix of
[

h
��

]
:

ĥ∼ =
⎛
⎝ h11 h12 h13
h12 h22 h23
h13 h23 h33

⎞
⎠

Once
[
M∼
]
is derived, the non-zero unknowns are derived using Eqs. (109) and (112).

Solution Since ĥ∼ is positive and
[

d∼∼

]
is positive definite, the differential system (113)

is well-posed and the solution is the sum of a particular solution and hyperbolic
solutions of the homogeneous equation. Boundary conditions applied to M∼ vanish
hyperbolic solutions. There remains the particular solution:

[
M∼
] =

( −1
g
∼

−1 · g−

)
F0λ

2 sin κx1 and U3 = −F0λ
4
(
g11 − Tg− · g

∼
−1 · g−

)
sin κx1

(114)
where

ĝ
∼

=
[

d∼∼

]
+ κ2

η
2 f̂

∼
, g

∼
=
(
ĝ22 ĝ23
ĝ23 ĝ33

)
, g− =

(
ĝ12
ĝ13

)
. (115)

The matrix ĝ
∼
appears to be the effective flexural stiffness for cylindrical bending,

corrected with shear effects. When κη → 0, ĝ
∼

=
[

d∼∼

]
which yields exactly the

Kirchhoff-Love solution.

Localization Once the generalized stresses are derived, it is possible to reconstruct
local 3D fields, using Eqs. (77), (90) and (89).



The Bending-Gradient Theory for Laminates and In-Plane Periodic Plates 139

5.3 Numerical Applications

Plate Configuration We consider angle-ply laminates. Each ply is made of unidi-
rectional fiber-reinforced material oriented at θ relative to the bending direction x1.
All plies have the same thickness and are perfectly bounded. A laminate is denoted
between brackets by the successive ply-orientations along the thickness. For instance
[0◦, 90◦] denotes a 2-ply laminate where the lower ply fibers are oriented in the bend-
ing direction. When the laminate follows mirror symmetry, only half of the stack is
given and the subscript s is added. Thus [30◦,−30◦]s means [30◦,−30◦,−30◦, 30◦].

The constitutive behavior of a ply is assumed to be transversely isotropic along
the direction of the fibers and engineering constants are chosen similar to those of
Pagano (1969):

EL = 25 × 106 psi, ET = EN = 1 × 106 psi, GLT = GLN = 0.5 × 106 psi,

GNT = ET

2(1 + νNT )
= 0.4 × 106 psi, νLT = νLN = νNT = 0.25

where GNT has been changed to preserve transversely isotropic symmetry. L is the
longitudinal direction oriented in the (x1, x2) plane at θ with respect to e−1, T is the
transverse direction and N is the normal direction coinciding with e−3.

Localization FieldsShear forces are related to the bending gradient as follows: Q1 =
R111 + R122 and Q2 = R121 + R222. Thus we suggests the following signification for
the bending gradient components:

R111 – R1: Cylindrical Bending part of Q1

R221 – R2: Pure warping
R121 – R3: Torsional part of Q2

R112 – R4: Pure warping
R222 – R5: Cylindrical Bending part of Q2

R122 – R6: Torsional part of Q1

In Fig. 3 are plotted localization shear stress distributions corresponding to each
components of R

�
in both directions for a quasi-isotropic laminate [0◦,−45◦, 90◦,

45◦]s . All stress distributions are continuous and fulfill traction free boundary con-
ditions on the upper and lower faces of the plate. For each direction there are four
self-equilibrated stress distribution (〈σα3〉 = 0) associated to R2, R3, R4 and R5 for
Direction 1 and R1, R2, R4 and R6 for Direction 2. This explains the suggested sig-
nification for shear variables. We draw the reader’s attention to the fact that, even
if there are self-equilibrated stress distributions, all distributions have comparable
amplitude and none can be neglected at this stage. Moreover, it is clear that tor-
sion generates different distributions than pure cylindrical bending, except in the
homogeneous case.

Results In Fig. 4 are plotted the transverse distributions of all stress fields for the
exact solution from Pagano, the Kirchhoff-Love and the Bending-Gradient solutions
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Fig. 3 Localization transverse shear distributions for each components of the bending gradient
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Fig. 4 Comparison of stress distributions under cylindrical bending for a [−30◦, 30◦]s ply and
L/t = 2.71

after relocalization. The ply under consideration is a [−30◦, 30◦]s for a slenderness
L/t = 2.71. Even for this very low slenderness, the field reconstruction is quite
good for the Bending-Gradient theory. The Kirchhoff-Love theory gives also a good
estimate of in-plane stress field but does not enable the reconstruction of transverse
shear stress. In Fig. 5 are plotted the transverse distributions of the displacement
fields for the same configuration. The out-of plane deflection of theBending-Gradient
theory matches already extremely well the exact one whereas the Kirchhoff-Love
deflection is not large enough. This because transverse shear effects are not included
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Fig. 5 Comparison of displacement distributions under cylindrical bending for a [−30◦, 30◦]s ply
and L/t = 2.71
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Fig. 6 Comparison of stress distributions under cylindrical bending for a [−30◦, 30◦]s ply and
L/t = 20

in this theory whereas they are dominating for such slenderness. The displacement u1
illustrate clearly the “rotation of the section”. ForKirchhoff-Love the section remains
straightwhereas shearwarping is allowedwith theBending-Gradientmodel. Because
the plate is not orthotropic, there is also a displacement in Direction 2.

In Figs. 6 and 7, the slenderness was simply turned to L/t = 20. One can clearly
observe the convergence of the fields between the exact and the approximated solu-
tions. However, even at this rather larger slenderness, the Kirchhoff-Love deflection
is still to stiff (about 8%) compared to the Bending-Gradient deflection.
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Fig. 7 Comparison of displacement distributions under cylindrical bending for a [−30◦, 30◦]s ply
and L/t = 20

Distance Between the Reissner-Mindlin and the Bending-Gradient Model We
introduce the relative distance between the Bending-Gradient model and a Reissner-
Mindlin model, �RM/BG :

�RM/BG = ‖h
��

W‖
‖h

��
‖ (116)

where

‖h
��
‖ =

√
T[

h
��

]
:
[

h
��

]
(117)

is the norm for Bending-Gradient compliance tensors and h
��

W is the pure warping
part of h

��
: [

h
��

]W =
[

h
��

]
− 4

9
T�i∼∼

� · �i∼∼
� ·
[

h
��

]
· T�i∼∼

� · �i∼∼
� (118)

�RM/BG gives an estimate of the pure warping fraction of the shear stress energy.
When the plate constitutive equation is restricted to a Reissner-Mindlin one we have
exactly �RM/BG = 0.

In Table1, are given the values of �RM/BG for the laminates considered in this
work. For a single ply, the criterion is zero since we demonstrated that the Bending-
Gradient model is exactly a Reissner-Mindlin model in this case. However, when
there are several plies, the distance can be greater than 10%. Thus with these lami-
nates, the shear constitutive equation cannot be reduced to a Reissner-Mindlin behav-
ior.

Table 1 The criterion �RM/BG for several laminates

Stack [0◦] [30◦,−30◦]s [0◦,−45◦, 90◦, 45◦]s
�RM/BG 0 16.0% 12.4%
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6 Periodic Plates

The derivation of the Bending-Gradient plate model can be extended to periodic
plates. For these plates, the 3D problem is still the same but the fourth-order elas-
ticity tensor is now a function of x− = (x1, x2, x3) which is periodic in the two first
coordinates (x1, x2) (Fig. 8). It is assumed that the in-plane size of the period is com-
parable to its thickness, t , and that t is small with respect to L , the typical length of
the in-plane variables (the span of the plate and the wavelength of the loadings). The
change of variable Yα = L−1xα where Yα ∈ ω is still the same for the macroscopic
global (in-plane) variables. Moreover, we introduce the microscopic local variables
as z− = (z1, z2, z3) = t−1x− = (t−1x1, t−1x2, t−1x3

)
. The normalized unit cell is noted

Z , the small parameter of the asymptotic expansion is still η = t/L and the external
loading is still given by (61d).

Based on this change of variables, the fourth-order elasticity tensor can be rewrit-
ten as:

C∼∼
t
(
x−
) = C∼∼

(
t−1x−

) = C∼∼

(
z−

)
(119)

where C∼∼
is a function of z− which is Z -periodic in the two first coordinates. In the

following, double-stroke fonts denote fields which are only Z -periodic functions of
the local variables z−.

Following the asymptotic expansion method, it is assumed that that the solution
to the 3D problem can be written as a series in power of η in the following form:

⎧⎨
⎩

u−
t = L(η−1u−

−1 + η
0u−

0 + η
1u−

1 + · · · )
ε∼

t = η
0ε∼

0 + η
1ε∼

1 + · · ·
σ∼

t = η
0σ∼

0 + η
1σ∼

1 + · · ·
(120)

Fig. 8 The periodic plate and its unit-cell
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where p = −1, 0, 1, 2... and u−
p, ε∼

p andσ∼
p are functions of (Y1,Y2, z1, z2, z3)which

are Z -periodic in the (z1, z2) coordinates. The derivation rule for these functions is:

∇− =
(

d

dx1
,

d

dx2
,

d

dx3

)

= L−1

(
∂

∂Y1
,

∂

∂Y2
, 0

)
+ t−1

(
∂

∂z1
,

∂

∂z2
,

∂

∂z3

)
= L−1∇− Y

+ t−1∇− z
.

(121)

Using this derivation rule in the compatibility condition ε∼
t = u−

t ⊗s∇− and identifying
all the terms of the same order η

p, it is found from boundary conditions (43) and Eqs.
(44), (45) that u−

−1 and u−
0 have the following form where fields with capital letters

(like U ,K ,E ,...) are only function of the macroscopic global variables (Y1,Y2):

u−
−1 = U−1

3 e−3. (122)

and

u−
0 = −z3U

−1
3 ⊗∇− Y

+ U−
0 =

⎛
⎝U 0

1 − z3U
−1
3,1

U 0
2 − z3U

−1
3,2

U 0
3

⎞
⎠ , (123)

with the boundary conditions:

U−1
3 = U−1

3,αnα = U 0
j = 0 ∀ (Y1,Y2) ∈ ∂ω (124)

where n− is the outer normal to ∂ω.
Moreover, the zeroth-order strain is given by:

ε∼
0 = E∼

0 + z3K∼
−1 + v−

1 ⊗s∇− z
(125)

where
E∼

0 = (U 0
α

)
⊗s∇− Y

and K∼
−1 = U−1

3 ∇− Y
⊗∇− Y

(126)

or equivalently in components:

E 0
αβ = 1

2

(
U 0

α,β +U 0
β,α

)
, E 0

i3 = 0, (127)

K −1

αβ = −U−1

3,αβ, K −1
i3 = 0, (128)

and v−
1 is the Z -periodic displacement field function of (Y1,Y2, z1, z2, z3) defined by:

v−
1 = u−

1 + z3U
0
3 ⊗∇− Y

=
⎛
⎝u1

1 + z3U 0
3,1

u1
2 + z3U 0

3,2
u1
3

⎞
⎠ (129)
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Inserting the asymptotic expansion of the stress field into the 3D equilibrium equa-
tion, σ∼

t · ∇− = 0 on �t , and identifying to zero the terms of this series in η
p gives:

σ∼
0 · ∇− z

= 0 (130)

for p = −1, and
σ∼

p · ∇− Y
+ σ∼

p+1 · ∇− z
= 0 (131)

for p ≥ 0. The boundary condition,σ∼
t · e−3 = ± f− on ∂�±

3 , gives the following equa-
tions:

σ p

i3

(
Y1,Y2, z1, z2,±1

2

)
= 0 (132)

for the order p ≥ 0 and p = 2. When p = 2 we have:

σ2
α3

(
Y1,Y2, z1, z2,±1

2

)
= 0 and σ2

33

(
Y1,Y2, z1, z2,±1

2

)
= ±1

2
F3 (Y1,Y2)

(133)
For given E∼

0 and K∼
−1, the zeroth-order auxiliary elasticity problem on the unit cell

Z is to find Z -periodic stress field σ∼
0 satisfying the local balance equation (130) and

the constitutive law σ0
i j = Ci jklε

0
kl where ε∼

0 is given by (125). The solution of this
problem is linearly dependent on E∼

0 and K∼
−1, and v−

1 is uniquely determined in terms
of E∼

0 and K∼
−1 up to a macroscopic field U−

1 only function of (Y1,Y2). Therefore, we
can write:

u−
1 = u∼−

E : E∼
0 + u∼−

K : K∼
−1 − z3U

0
3 ⊗∇− Y

+ U−
1 (134)

where u∼−
E and u∼−

K are third-order localisation tensors depending only on the local
variable z−, and

σ∼
0 = s∼∼

E : E∼
0 + s∼∼

K : K∼
−1 (135)

where s∼∼
E and s∼∼

K are fourth-order localisation tensors depending only on the local
variable z−.

Except for the case of laminates, the determination of these localisation
tensors should be numerically performed by solving at most 6 auxiliary zeroth-order
problems on the unit cell (3 components for E∼

0 and 3 components for K∼
−1). The

zeroth-order normal stress tensor and moment tensor are respectively defined by:

N 0
αβ (Y1,Y2) = 〈σ0

αβ

〉
, M 0

αβ (Y1,Y2) = 〈z3σ0
αβ

〉
, (136)

where 〈•〉 is the volume-average over the unit cell Z : 〈•〉 = 1
|Z |
∫
z−

• dz1dz2dz3.

Using Eq. (135) and the above definitions, the Love-Kirchhoff constitutive equa-
tion is derived:
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N∼
0 = A∼∼ : E∼

0 + B∼∼ : K∼
−1

M∼
0 = G∼∼

: E∼
0 + D∼∼ : K∼

−1 (137)

with:

Aαβγδ = 〈sEαβγδ

〉
Bαβγδ = 〈sKαβγδ

〉
Gαβγδ = 〈z3sEαβγδ

〉
Dαβγδ = 〈z3sKαβγδ

〉
(138)

It can be shown that G∼∼
is the transpose tensor of B∼∼ in the sense Gαβγδ = Bγδαβ and

that these two tensors are null if the unit cell Z is centro-symmetric, that is:

C∼∼

(
z−

)
= C∼∼

(
−z−

)
∀z− (139)

In this case, the in-plane (stretching) and the out-of-plane (bending) behaviors of the
plate are uncoupled. The centro-symmetric property of the unit cell will be assumed
in the sequel. As for the laminates, the local balance equations (130) and (131) for
p = 1 and the boundary conditions can be used to derive the macroscopic balance
equations. We end up with the same bending Love-Kirchhoff plate problem (61) as
for laminates to which the following in-plate Love-Kirchhoff must be added:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∼
0.∇− Y

= 0, on ω (140a)

N∼
0 = A∼∼ : E∼

0, on ω (140b)

E∼
0 = (U 0

α

)
⊗s∇− Y

, on ω (140c)

U 0
α = 0 on ∂ω (140d)

Note that there is no (in-plane) loading in this problem. Therefore, its solution is
null: U 0

α = N 0
αβ = E 0

αβ = 0.
Gathering equilibrium equation for order 0, compatibility equation, boundary

conditions and constitutive equations of order 1 we get the first-order auxiliary prob-
lem on the unit cell Z :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ∼
0 · ∇− Y

+ σ∼
1 · ∇− z

= 0 (141a)

σ∼
1 = C∼∼

: ε∼
1 (141b)

ε∼
1 = u−

1 ⊗s∇− Y
+ u−

2 ⊗s∇− z
(141c)

σ1
i3

(
z = ± 1

2

) = 0 (141d)

In this auxiliary problem, the zeroth-order displacement field u−
1 (134) and stress

field σ∼
0 (135) are local fields which depend linearly on K∼

−1, U 0
3,α and U−

1. Hence,
the first-order solution ε∼

1, σ∼
1 and u−

2 will be a linear superposition of localization
fields which depend on the gradient of those macroscopic fields. We can write with
obvious notations:

u−
2 = u

�−
K∇ ...

(
K∼

−1 ⊗∇− Y

)+ u∼−
E : E∼

1 + u∼−
K : K∼

0 − z3U
1
3 ⊗∇− Y

+ U−
2 (142)
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and
σ∼

1 = s
�∼
K∇ ...

(
K∼

−1 ⊗∇− Y

)+ s∼∼
E : E∼

1 + s∼∼
K : K∼

0 (143)

where the third-order localization tensor u
�−

K∇ ... and the fifth-order localization ten-

sor s
�∼
K∇ ... have to be computed by solving the above described first-order auxiliary

problem on the unit cell Z .
It can be proved that if the unit cell Z is π-invariant along direction 3 (i.e. with

respect to a rotation of 180◦ around axis 3), then the first-order normal and moment
tensor fields are not coupled with K∼

−1 ⊗∇− Y
. We have again:

N∼
1 = (〈σ1

αβ

〉) = A∼∼ : E∼
1, M∼

1 = (〈z3σ1
αβ

〉) = D∼∼ : K∼
0 (144)

Similarly to the case of laminates, the first-order macroscopic (plate) problem that
determines N∼

1 and M∼
1 is unloaded which means that these fields are null as well as

the displacement fields U 1
α and U 0

3.
In conclusion, if we assume both centro-symmetry and π-invariance along direc-

tion 3 of the unit cell Z , the asymptotic expansion of the 3D solution has exactly the
same structure for periodic plates as for laminates. Therefore, all the equations of
the Bending-Gradient theory described in Sect. 4 remain valid except that the local-
ization tensors s∼∼

K and s
�∼
K∇ ... are Z -periodic functions which must be computed by

solving auxiliary problems on the unit cell Z , and that the definition of the plate
elastic tensors D∼∼ , d∼∼

and h
��
involves volume-averaging on the unit cell instead of inte-

gration over z3 for laminates. The Bending-Gradient theory was successfully applied
to sandwich panels (Lebée and Sab 2012a, b) as well as space frames Lebée and Sab
(2013a).

References

Altenbach, H. (1998). Theories for laminated and sandwich plates.Mechanics of Composite Mate-
rials, 34(3), 243–252.

Bakhvalov, N. S., & Panasenko, G. P. (1989). Homogenization: Averaging processes in periodic
media. Dordrecht-Boston-London: Kluwer Academic Publishers.

Berdichevsky, V. L. (1979). Variational-asymptotic method of constructing a theory of shells. Jour-
nal of Applied Mathematics and Mechanics, 43(4), 711–736.

Boutin, C. (1996). Microstructural effects in elastic composites. International Journal of Solids and
Structures, 33(7), 1023–1051.

Buannic, N., & Cartraud, P. (2001a). Higher-order effective modeling of periodic heterogeneous
beams. I. Asymptotic expansion method. International Journal of Solids and Structures, 38(40–
41), 7139–7161.

Buannic, N., & Cartraud, P. (2001b). Higher-order effective modeling of periodic heterogeneous
beams. II. Derivation of the proper boundary conditions for the interior asymptotic solution.
International Journal of Solids and Structures, 38(40–41), 7163–7180.

Caillerie, D. (1984). Thin elastic and periodic plates.MathematicalMethods in theApplied Sciences,
6(1), 159–191.



148 A. Lebée and K. Sab

Carrera, E. (2002). Theories and finite elements for multilayered, anisotropic, composite plates and
shells. Archives of Computational Methods in Engineering, 9(2), 87–140.

Ciarlet, P.G.,&Destuynder, P. (1979). Justification of the 2-Dimensional linear platemodel. Journal
de Mecanique, 18(2), 315–344.

Dallot, J., & Sab, K. (2008). Limit analysis of multi-layered plates. Part I: The homogenized
Kirchhoff-Love model. Journal of the Mechanics and Physics of Solids, 56(2), 561–580.

Diaz Diaz, A. (2001). Un modèle de stratifiés. Comptes Rendus de l’Académie des Sciences - Series
IIB - Mechanics, 329(12), 873–879.

Kohn, R. V., & Vogelius, M. (1984). A new model for thin plates with rapidly varying thickness.
International Journal of Solids and Structures, 20(4), 333–350.

Lebée, A., & Sab, K. (2010). A Cosserat multiparticle model for periodically layered materials.
Mechanics Research Communications, 37(3), 293–297.

Lebée, A., & Sab, K. (2011a). A Bending-Gradient model for thick plates. Part I: Theory. Interna-
tional Journal of Solids and Structures, 48(20), 2878–2888.

Lebée, A., & Sab, K. (2011b). A Bending-Gradient model for thick plates, Part II: Closed-form
solutions for cylindrical bending of laminates. International Journal of Solids and Structures,
48(20), 2889–2901.

Lebée, A., & Sab, K. (2012a). Homogenization of thick periodic plates: Application of the Bending-
Gradient plate theory to a folded core sandwich panel. International Journal of Solids and Struc-
tures, 49(19–20), 2778–2792.

Lebée, A., & Sab, K. (2012b). Homogenization of cellular sandwich panels. Comptes Rendus
Mécanique, 340(4–5), 320–337.

Lebée, A., & Sab, K. (2013a). Homogenization of a space frame as a thick plate: Application of
the Bending-Gradient theory to a beam lattice. Computers & Structures, 127, 88–101.

Lebée, A., & Sab, K. (2013b). Justification of the bending-gradient plate model through asymptotic
expansions. In H. Altenbach, S. Forest, & A. Krivtsov (Eds.), Generalized continua as models
for materials (pp. 217–236). Berlin, Heidelberg: Springer-Verlag.
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Some Problems on Localized Vibrations
and Waves in Thin Shells

Gennadi Mikhasev

Abstract Some problems on localized vibrations and waves in thin isotropic and
laminated cylindrical shells are considered in this Chapter. To study vibrations of
thin laminated shells, the equivalent single layer model for the whole packet of a
sandwich is proposed. The basic goal of this paper is to demonstrate two asymptotic
approaches for studying localized vibrations of thin shells. At first, the asymptotic
method of Tovstik is applied to study free stationary vibrations localized in a neigh-
bourhood of a fixed generatrix or parallel called the weakest one. As an interesting
example, free localized vibrations of a laminated cylindrical shell containing polar-
ized magnetorheological elastomer and affected by an external magnetic field are
analyzed. Then the asymptotic method for investigation of running localized waves
(wave packets) in thin shells is stated. The solution of governing equations is con-
structed in the form of a superposition of wave packets running in a thin non-circular
prestressed cylinder in the circumferential direction. The influence of non-uniform
stationary and dynamic pressures on running wave packets is briefly studied.

1 Introduction

Localization of vibrations in thin-walled structures is undesirable phenomenon
because it results in a concentration of destructive stresses and may lead to the
damage accumulation in a structure. That is why, when designing and calculating
a shell-like structure experiencing external dynamic loads, it is very important to
establish the reasons inducing localization of vibrations and waves, find out the
spots where natural modes may concentrate, and predict dynamic behavior of the
shell in a neighbourhood of some lines or points.

The factors resulting in localization of eigenmodes may be subdivided into the
following three groups:
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• variable geometrical parameters (curvature, thickness, initial imperfections, gen-
erator length);

• inhomogeneity of the prestressed state caused by a nonuniform or combined load;
• variable physical characteristics (Young’s modulus, density, temperature).

For instance, low-frequency free vibrations of a thin medium-length cylindrical
shell with a slanted edge are concentrated near the longest generatrix (Tovstik 1983a),
and a thin laminated cylinder being under action of nonuniformaxial forces has eigen-
modes localized in a vicinity of the most compressed generatrix (Korchevskaya and
Mikhasev 2006). Another interesting example considered in the recently published
paper (Mikhasev et al. 2014) concerns the influenceof amagnetic field on eigenmodes
of a laminated cylindrical shell containing magnetorheological elastomer (MRE): an
applied magnetic field may cause the inhomogeneity in mechanical and rheological
properties of the MRE composing a sandwich and, as a result, lead to the strong
distortion of eigenmodes some of which are found to be localized in places where
shears reach their extremum values.

By definition of Tovstik (Tovstik 1983a; Tovstik and Smirnov 2001), the line
in a neighbourhood of which buckling or vibration modes are localized is called
the “weakest” one. Wave processes in shells with the weakest lines are, as a rule,
very complicated and have the transitional character. As shown in papers (Mikhasev
1998a, 2002), the dynamic response of a cylindrical shell on the initial localized
perturbations is the family of localized bending and tangential waves running in the
circumferential and/or axial directions. If a shell has the weakest generatrix, then
non-stationary localized vibrations in the form of wave packets (WPs) trend to run
to the region containing this generatrix. The running WPs having small energy may
be reflected from some generatrix, these reflections being accompanied by focusing
and growing wave amplitudes (Mikhasev 2002).

The problems mentioned above are very complicated because the differential
equations governing a localizedmotion of a shell do not admit solutions in the explicit
form. The effective mathematical tool for studying similar problems is the asymp-
totic method called the WKB one (for instance, see Fröman and Fröman 1965).
This name comes from the first letters of the authors’ names: Wentzel, Kramers
and Brillouin, who first applied this approach to problems of quantum mechanics.
The WKB approximation is also used in mechanics of solids, acoustics, diffraction
problems for studying high-frequency vibrations or short waves, and often called
as short-wave asymptotics (Babich and Buldyrev 1991). The significant contribu-
tion to the further development of this method has been made by Maslov (1977)
and Babich et al. (1985) who have constructed stationary and non-stationary solu-
tions exponentially decreasing far from fixed or moving points. The new method
has become known as the complex WKB method, and in acoustics, non-stationary
solutions localized in a vicinity of a space-time ray were named as “quasiphotons”.
It should be noticed that similar solutions (Maslov 1977; Babich et al. 1985) were
mainly found for unbounded mediums. Studying stationary problems on localized
buckling and free vibrations of thin shells, Tovstik (1983a) has proposed another
variant of the complex WKB approach taking into account boundary conditions.
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The method of Tovstik permits one to reduce the 2D boundary-value problem into
a sequence of the 1D problems at the weakest (fixed) generatrix at the surface of a
cylindrical or conical shell. Afterwards, this method has been generalized for study-
ing non-stationary localized waves in shells (Mikhasev 2002). The basic concepts
of this modification lie in introducing the center of the running wave packet and a
local coordinate system connected with this center. According to the new approach,
the phase function in the complex WKB expansion is sought in an explicit form and
the initial 2D problem is reduced to the system of the 1D boundary-value problems
at the moving generatrix.

The basic goals of this article are:

• the introduction to the asymptotic method of Tovstik for studying localized free
(stationary) vibrations of thin shells;

• the introduction to the asymptotic approach which permits one to study non-
stationary running localized vibrations (wave packets) in thin shells;

• to consider the series of problems (called non-classical ones here) on highly local-
ized free vibrations and running wave packets in thin isotropic and composite
laminated shells.

Because some of problems to be studied below are related to thin sandwich struc-
tures, Sect. 2 will be devoted to the principle hypothesis and governing equations
for thin laminated shells. In Sects. 3–6, using the asymptotic method of Tovstik, the
stationary vibrations localized near the weakest generatrix and parallel in medium-
length and infinitely long cylindrical shells will be studied. Herewith, the asymptotic
method details are considered in Sect. 3. And Sects. 4–5 concern problems on free
vibrations of laminated viscoelastic and elastic shells. In particular, Sect. 4 demon-
strates an interesting effect of the influence of an applied magnetic field on eigen-
modes of a sandwich cylinder with MRE-core. Finally, the new asymptotic approach
for studying running WPs in thin shells is stated in Sect. 7.

2 The Equivalent Single Layer Model for Thin
Laminated Shells

2.1 Different Approaches in Modelling of Laminated Shells

Bynow, there exist a lot of different theories andmodels for studying dynamics of thin
laminated shells. Basic available approaches for modelling of sandwich structures
may be found in the survey articles of Quat et al. (2010, 2013). These theories can
be subdivided into the following basic approaches. The first one is based on stress
analysis and rigid-body motions (for instance, see Kulikov and Plotnikova 2013)
and rather complicated when presented in curvilinear shell coordinates. New high
accurate layer-wise theories developed by Bolotin and Novichkov (1980), Carrera
(1999, 2002, 2003), Ferreira et al. (2011) and others (see in the survey articles, Qatu
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et al. 2010; Qu et al. 2013) presuppose a satisfaction of boundary conditions on the
interface surfaces. And if a sandwich is assembled from a large number of layers,
these approaches become rather sophisticated in the theoretical formulations and
numerical computations, thus preventing their general use inmodeling practical shell
vibration problems. In our opinion, the equivalent single layer (ESL)models aremore
perspective for dynamic simulation of thin multi-layered shells and, particularly, for
tunable laminated thin-walled structures containing smart materials. Survey articles
and monographs devoted to ESL theories are, e.g., (Grigolyuk and Kulikov 1988;
Toorani and Lakis 2000; Carrera 2002; Reddy 2003; Qatu 2004; Qatu et al. 2010).

The attempt to apply one of ESL models for the dynamic analysis of a thin lami-
nated shells containing smart viscoelastic material has been recently done byMikha-
sev et al. (2011). Based on the assumptions of the generalized kinematic hypothesis
of Timoshenko for the whole sandwich, the governing equations derived earlier
(Grigolyuk and Kulikov 1988) were adapted to the description of dynamics of an
adaptive sandwich cylindrical shell with magnetorheological layers. The principle
equations of this ESL model will be considered in this Section and used later in
Sects. 3 and 4 for studying localized vibrations of composite laminated shells.

2.2 Sandwich Structure

Consider a thin non-circular cylindrical sandwich shell (see Fig. 1) consisting of
N transversely isotropic layers characterized by length L, thickness hk , density ρk ,
Young’s modulus Ek , and Poisson’s ratio νk , where k = 1, 2, . . . ,N . The middle sur-
face of any fixed layer is taken as the original surface. The coordinate system α1,α2

is illustrated in Fig. 1, where α1,α2 are the axial and circumferential coordinates,
respectively. The radius of curvature of the middle surface is R2 = R/k(ϕ), where R
is the characteristic dimension of the shell surface. The shell is bounded by the two
not necessary plane edges

L1(α2) ≤ α1 ≤ L2(α2).

If every layer is made of elastic and homogeneous material, the parameters Ek as
well as the shearmoduliGk are real constants for any k.When the sandwich is formed
by embedding viscoelasticmaterials between elastic layers, some of these parameters
corresponding to the viscoelastic lamina with adaptive rheological properties are
assumed to be complex functions

Ek = E′
k + iE′′

k , Gk = G′
k + iG′′

k , i = √−1. (1)

2.3 Basic Hypotheses

We introduce some additional notations. Let δk be the distance between the origi-
nal surface and the upper bound of the kth layer, ui and w the tangential and normal
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Fig. 1 Laminated
cylindrical shell with a
curvilinear coordinate
system

displacements of the original surface points, respectively, u(k)
i the tangential displace-

ments of points of the kth layer, σi3 the transverse shear stresses, θi the angles of rota-
tion of the normal n about the vector ei (see Fig. 1). Here i = 1, 2; k = 1, 2, . . . ,N .

The following hypothesis of the laminated shell theory (Grigolyuk and Kulikov
1988) are assumed here:

• The distribution law of the transverse tangent stresses across the thickness of the
kth layer is assumed to be in the form of

σi3 = f0(z)μ
(0)
i (α1,α2) + fk(z)μ

(k)
i (α1,α2) ,

where continuous functions f0(z), fk(z) are introduced as follows

f0(z) = 1

h2
(z − δ0)(δN − z),

fk(z) = 1

h2k
(z − δk−1)(δk − z).

• Normal stresses acting on the element area parallel to the original one are negligible
with respect to the other components of the stress tensor.

• The normal deflection w does not depend on the coordinate z.
• The tangential displacements are distributed across thickness of the layer packet
according to the generalised kinematic hypothesis of Timoshenko:

u(k)
i (α1,α2, z) = ui(α1,α2) + zθi(α1,α2) + g(z)ψi(α1,α2). (2)

where

g(z) =
z∫

0

f0(x)dx.
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The functions μ(0)
i ,μ(k)

i may be found in paper of Grigolyuk and Kulikov (1988).
It should be noted that μ(0)

i ,μ(k)
i depend on the elements of the matrix characterizing

the transverse shifted pliability of the kth layer.
Hypothesis (2) describes the non-linear dependence of the tangential displace-

ments on the z coordinate; at g ≡ 0 it turns into the classical Kirchhoff-Love hypoth-
esis.

2.4 Governing Equations

In the case when Ek,Gk,R2 are constant, the system of five differential equations
with respect to ui, w,ψi, based on the stated above hypotheses, has been derived
by Grigolyuk and Kulikov (1988). In paper (Mikhasev et al. 2011) these equations
have been generalized for the more common case when Ek,Gk are dependent on
curvilinear coordinates and time. If vibrations occur with formation of large number
of waves although in one direction at shell surface, these equationsmay be essentially
simplified. Introducing functions ψi appearing in (2) by

ψ1 = a, 1 + φ, 2, ψ2 = a, 2 − φ, 1, (3)

where a,φ are the shear functions defined from equations

a = −η2

η1

h2

β
�χ (4)

and
1 − ν

2

h2

β
�φ = φ, (5)

the following compact system is reduced in study (Grigolyuk and Kulikov 1988)

Eh3η3
12(1 − ν2)

(
1 − θh2

β
�

)
�2χ + 1

R2(α2)

∂2�

∂α2
1

+ ρh
∂2

∂t2

(
1 − h2

β
�

)
χ = 0,

�2� − Eh

R2(α2)

∂2

∂α2
1

(
1 − h2

β
�

)
χ = 0

(6)

with respect to the displacement and stress functions χ and �, respectively. Here χ
is linked with the normal displacement w by the equation

w =
(
1 − h2

β
�

)
χ, (7)
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and the function � permits to find the specific membrane stress resultants

Tij = δij�� − �, ij, (8)

where� = ∂2/∂α2
1 + ∂2/∂α2

2 is the Laplace operator in the curvilinear co-ordinates
α1,α2, and δij is Kronecker’s symbol (δii = 1; δij = 0, i �= j). In (8), Tij are the
reduced stress resultants for the sandwich which are expressed in the standard way as

Tij =
N∑

k=1

δk∫
δk−1

σij dz.

In Eqs. (6), t is time, E, ν, ρ are the reduced modulus of elasticity, Poisson’s ratio
and density respectively, and the last parameters η3, θ,β characterize the reduced
shear stiffness of the sandwich. All the reduced parameters appearing in Eqs. (6) are
calculated as follows

ν =
N∑

k=1

Ekhkνk
1 − ν2

k

(
N∑

k=1

Ekhk
1 − ν2

k

)−1

,E = 1 − ν2

h

N∑
k=1

Ekhk
1 − ν2

k

, ρ =
N∑

k=1

ρkξk,

β = 12(1 − ν2)

Ehη1
q44, q44 =

[
N∑

k=1

(
λk − λ2

ko
λkk

)]2

N∑
k=1

(
λk − λ2

ko
λkk

)
G−1

k

+
N∑

k=1

λ2
k0

λkk
Gk,

λkk =
δk∫

δk−1

f 20 (z)dz, λkn =
δk∫

δk−1

fk(z)fn(z)dz, θ = 1 − η2
2/(η1η3),

η1 =
N∑

k=1

ξ−1
k π1kγk − 3c212, η2 =

N∑
k=1

ξ−1
k π2kγk − 3c12c13,

η3 = 4
N∑

k=1

(ξ2k + 3ζk−1ζk)γk − 3c213, hξk = hk, hζn = δn (n = 0, k),

1

12
h2π1k =

δk∫
δk−1

g2(z) dz,
1

12
h2π2k =

δk∫
δk−1

z g(z) dz,

1

12
h2π3k =

δk∫
δk−1

g(z) dz, c13 =
N∑

k=1

(ζk−1 + ζk)γk, c12 =
N∑

k=1

ξ−1
k π3kγk,

γk = Ekhk
1 − ν2

k

(
N∑

k=1

Ekhk
1 − ν2

k

)−1

.

(9)
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Remark 1 Equations (5), (6) have been derived (Grigolyuk and Kulikov 1988) for
elastic laminated shells with constant parameters E, ν, θ,β, ηk . However, at some
assumptions with respect to unknown functions χ,� and moduli Ek,Gk these equa-
tions may be used for prediction of vibrations of laminated viscoelastic shells with
variable physical characteristics (Mikhasev et al. 2011). Let h∗ = h/R be a natural
small parameter characterizing the shell thinness and y(αj, t) any of the unknown
functions χ,�.

Let the following conditions

R
∂

∂αj
(Ek, Gk) ∼ (Ek,Gk),

R
∂

∂α1
(χ, �) ∼ (χ, �), R

∂

∂α2
(χ, �) ∼ h−1/4

∗ (χ, �)

be valid at h∗ → 0. Then solutions of Eqs. (5), (6) will satisfy the full system of
differential equations with respect to ui, w,ψi (Grigolyuk and Kulikov 1988) up to
values of the order h1/2∗ (Mikhasev et al. 2011).

Let the shell edges be simply supported. In terms of the displacement, stress and
shear functions, the appropriate boundary conditions will be as follows (Grigolyuk
and Kulikov 1988)

χ = �χ = �2χ = � = �� = 0,
∂φ

∂α1
= 0 at α1 = Li(α2). (10)

It may be seen from Eqs. (5), (6), (10) that the function φ is defined independently
from χ and �. It has the sense of the edge integral which decreases rapidly far
from the edges. So, in approximated calculations Eq. (5) may be eliminated, and the
function φ should be set equal zero.

If 1/β → 0, then Eqs. (6) are reduced to the known equations

Eh3

12(1 − ν2)
�2w + 1

R2(α2)

∂2�

∂α2
1

+ ρh
∂2w

∂t2
= 0,

�2� − Eh

R2(α2)

∂2w

∂α2
1

= 0

(11)

based on the classical Kirchhoff-Love hypotheses.
Equations (6) and (11) will be used in what follows for studying localized station-

ary and not-stationary vibrations of thin laminated and single layer shells, respec-
tively.
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3 Free Localized Vibrations of Thin Cylindrical Shells:
Asymptotic Approach

The objective of this Section is to demonstrate the asymptotic method of Tovstik
for studying free localized vibrations of thin elastic shells of the zeroth Gaussian
curvature (Tovstik 1983a). As opposed to the complex WKB method or Maslov-
WKB method (Maslov 1977) developed earlier for constructing localized solutions
of the quantummechanics equations, this approach is based on the presentation of the
phase function in the WKB approximation in an explicit form and reduction of the
initial two-dimensional boundary-value problem to a sequence of one-dimensional
problems being considered at a fixed generatrix called the weakest one.

3.1 Statement of a Problem

We consider an elastic one-layered thin non-circular medium length cylindrical shell
of thickness h. Let ρ be the density, E Young’s modulus, and ν Poisson ratio of the
material. A dimensionless coordinates s = α1/R,ϕ = α2/R as illustrated in Fig. 2
are chosen at the middle surface of the cylinder. The radius of curvature is R2 =
R/k(ϕ), where R is the characteristic dimension of the shell surface.

Up to values of the order h∗, low frequency free vibrations of the medium-length
thin cylindermaybegovernedbyEqs. (11). In the dimensionless form these equations
are rewritten as follows:

ε4�2W + k(ϕ)�,ss − λW = 0,

ε4�2� − k(ϕ)W,ss = 0.
(12)

Fig. 2 Neutral surface of
thin cylindrical shell with
non-plane edges and
coordinate system
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where � = ( ),ϕϕ + ( ),ss, ε = {
h2/[12R2(1 − ν2)]}1/8 is a small parameter, λ =

R3ρ(Eh)−1[(12(1 − ν2))]1/2ω2 is the frequency parameter,ω is the natural frequency,
and W = w/R,� = F/(ε4R2Eh) are the dimensionless magnitudes.

We will consider two variants of boundary conditions at both edges, namely:

W = W,ss = 0 for the joint supported edges s = sj(ϕ),

W = W,s = 0 for the rigid clamped edges s = sj(ϕ),
(13)

where sj(ϕ) = Lj(α2/R), j = 1, 2.
The problem is to find positive values of λ for which the boundary-value problem

(12), (13) has nontrivial solutions. It may be seen that in the common case this
problem does not admit an explicit form of a solution. To solve it we will follow the
idea stated by Tovstik (1983a).

Let ϕ = ϕ0 be the weakest generator which is the center of more extensive local-
ized vibrations. The position of this line on the shell surface is unknown.

We change the periodic conditions in the circumferential direction ϕ for the fol-
lowing ones

|W |, |�| → 0 as |ϕ − ϕ0| → ∞. (14)

3.2 Asymptotic Method of Tovstik

The formal asymptotic solution of the boundary-value problem (12)–(14) is assumed
to be in the form of (Tovstik 1983a)

W (s,ϕ, ε) ∼= w∗ exp{i[ε−1/2pξ + (1/2)bξ2]},

i = √−1, w∗ =
∞∑
j=0

εj/2wj(s, ξ),

λ = λ0 + ελ1 + ε2λ2 + . . . ,

ξ = ε−1/2(ϕ − ϕ0), λj, p, |b|, |wj| ∼ 1, Imb > 0.

(15)

where wj(s, ξ) are polynomials in ξ, the value of parameter p which determines the
number of waves in the direction of ϕ is real, and a parameter b characterizes the rate
of decrease of the wave amplitudes when going away from the weakest generatrix
ϕ = ϕ0. The function � is sought in the same form as (15), where W, w∗, wj are
replaced by �,�∗,�j, respectively.

Otherwise, solutions of type (15) are called the complex WKB approximations.
To determine unknown functionswj,�j and parameters p, b,ϕ0,λj, we substitute

ansatz (15) into system (12) and equalize the coefficients by the same powers of ε1/2.
All the coefficients of Eqs. (12) and functions sj depending on ϕ are expended in a
power series of ϕ − ϕ0 = ε1/2ξ.
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First, it is convenient to express �∗ through w∗ by virtue of second Eq. (12):

�∗ = −�s

[
w∗
p4

− 4ε1/2

p5

(
bξw∗ − i

∂w∗
∂ξ

)

+ 10ε

p6

(
b2ξ2w∗ − 2ibξ

∂w∗
∂ξ

− ibw∗ − ∂2w∗
∂ξ2

)]
+ O

(
ε3/2

)

with

�s = s3
∂2

∂s2
.

Now, taking into account the foregoing equation, the first equation of (12) gives
the sequence of differential equations with respect to wj, which may be written in
the form

L0w0 = 0, L0w1 + L1w0 = 0, L0w2 + L1w1 + L2w0 = 0, . . . (16)

where

L0z = k2(ϕ0)

p4
d4z

ds4
+ (p4 − λ0)z = 0,

L1z =
(
b
∂L0

∂p
+ ∂L0

∂ϕ0

)
ξz − i

∂L0

∂p

∂z

∂ξ
,

L2z = 1

2

(
b2

∂2L0

∂p2
+ 2b

∂2L0

∂p∂ϕ0
+ ∂2L0

∂ϕ2
0

)
ξ2z − 1

2

∂2L0

∂p∂ϕ0
z

−1

2

∂2L0

∂p2

(
iz + ∂2z

∂ξ2

)
− i

(
b
∂2L0

∂p2
+ ∂2L0

∂p∂ϕ0

)
ξ
∂z

∂ξ
+ Nz

(17)

with
N = −λ1.

The substitution of ansatz (15) into the boundary conditions produces the sequence
of the boundary conditions for wj. For instance, for the simply supported edges
s = sj(ϕ0), it is as follows:

w0 = 0,
∂2w0

∂s2
= 0,

w1 + ξs′i
∂w0

∂s
= 0,

∂2w1

∂s2
+ ξs′i

∂3w0

∂s3
= 0,

w2 + ξs′i
∂w1

∂s
+ 1

2
ξ2
(
s′′i

∂w0

∂s
+ s′i

2 ∂3w0

∂s3

)
= 0,

∂2w2

∂s2
+ ξs′i

∂3w1

∂s3
+ 1

2
ξ2
(
s′′i

∂3w0

∂s3
+ s′i

2 ∂4w0

∂s4

)
− 4is′i

p

∂3w0

∂s3
= 0, . . .

(18)
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The prime ( )′ means differentiation of si(ϕ) with respect to ϕ.
Note that Eqs. (18) guarantee a realization of the boundary conditions merely in

the small vicinity of the weakest generator s = si(ϕ0). However, there is no sense to
satisfy the boundary conditions on the entire surface of the shell.

The sequence of one-dimensional boundary-value problems (16), (18) serves to
determine unknown functionswj(s, ξ) and parameters λj, p, b. The details of seeking
these magnitudes are omitted here (see Tovstik 1983a; Mikhasev and Tovstik 2009).
We will outline here only principle equations.

Let us consider the boundary-value problems (16), (18) step-by-step for j =
0, 1, 2, . . .. We will call these problems as BVP0, BVP1, BVP2, ….

Zeroth order approximation (BVP0). In the zeroth order approximation, one has
the homogeneous equation

L0w0 ≡ k2(ϕ0)

p4
d4w0

ds4
+ (p4 − λ0)w0 = 0 (19)

with the homogeneous boundary conditions

w0 = 0,
d2w0

ds2
= 0 at s = si(ϕ0). (20)

Its solution may be presented in the form

w0(s, ξ) = P(ξ)w◦(s,ϕ0; p), (21)

where w◦ is any solution of Eq. (19), and P(ξ) is an unknown polynomial in ξ.
Substituting Eq. (21) into Eq. (19) results in the relation for the parameter

λ0 = f (p,ϕ0,m) ≡ p4 + 2δ4m4k2(ϕ0)

p4l4(ϕ0)
, (22)

where l(ϕ0) = s2(ϕ0) − s1(ϕ0), andm is a natural number. The parameter δ depends
on the variant of boundary conditions. For instance, if both edges are simply sup-
ported, then δ = π, and for the clamped edges δ = 4.730.

We will study low-frequency vibrations. Then m ∼ 1, and m = 1 corresponds to
the minimum eigenfrequency. Minimizing function (22), one gets

λ◦
0 = min

p,ϕ0,m
f (p,ϕ0,m) = f (p◦,ϕ◦

0, 1) = 2δ4k(ϕ◦
0)

l2(ϕ◦
0)

, (23)

where the parameter p◦ = 4
√

λ◦
0/2 and the weakest line ϕ = ϕ◦

0 are found from the
following equations

∂λ0

∂p
= 0,

∂λ0

∂ϕ0
= 0. (24)
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The last equation in (24) is reduced to

[
k(ϕ0)

l2(ϕ0)

]′
= 0.

Thenw0 = P0(ξ)w
◦(s,ϕ◦

0; p◦) in what follows, where the polynomial P0(ξ) remains
unknown in this approximation.

First order approximation (BVP1). In the first order approximation, one has the
non-homogeneous differential Eq. (16). Taking into account the solution of the
boundary-value problem in the previous step, this equation is as follows

L0w1 + G1 = 0,

G1 = [bξP0(ξ) − iP′
0(ξ)]

∂L0

∂p
w◦ + ξP0(ξ)

∂L0

∂ϕ0
w◦.

(25)

The appropriate boundary conditions at s = si(ϕ0) are

w1 + ξP0(ξ)s
′
i(ϕ

◦
0)
dw◦

ds
= 0,

d2w1

ds2
+ ξP0(ξ)s

′
i(ϕ

◦
0)
d3w◦

ds3
= 0. (26)

We have got the non-homogeneous boundary-value problem BVP1 (25), (26) “on
spectrum”. Taking into account the self-conjugancy of the BVP0, the equality

s2∫
s1

w◦G1ds = 0 (27)

serves as the condition for existence of a solution of the BVP1.
The function G1 is defined by the operators ∂L0

∂p , ∂L0
∂ϕ0

(see Eq. (17)). To define
these operators, the BVP0 should be differentiated over the parameters p,ϕ0. For
example,

L0wp + ∂L0

∂p
w◦ − ∂λ0

∂p
w◦ = 0,

wp = ∂2wp

∂s2
= 0 at s = sj(ϕ0).

(28)

Taking into account the self-conjugancy of the BVP0, one has

s2∫
s1

w◦L0wpds =
s2∫

s1

wpL0w
◦ds = 0,

s2∫
s1

w◦L0wϕds =
s2∫

s1

wϕL0w
◦ds = 0.

(29)
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Then, due to Eqs. (25), (28) and (29), condition (27) may be rewritten as follows:

{[
bξP0(ξ) − iP′

0(ξ)
] ∂λ0

∂p
+ ξP0(ξ)

∂λ0

∂ϕ0

} s2∫
s1

(w◦)2 ds = 0. (30)

Because
s2∫

s1

(w◦)2 ds �= 0

and P0(ξ) is a polynomial in ξ, Eq. 30 implies the known conditions (24) derived
above.

Now, the solution of the BVP1 may be written as follows:

w1 = P1(ξ)w
◦ + ξP0(ξ)(bwp + wϕ) − iP′

0(ξ)wp,

wherewp, wϕ are solutions of the boundary-value problem (28) and similar problem
for wϕ, and P1(ξ) is an unknown polynomial in ξ.

Second order approximation (BVP2). In the second order approximation, the non-
homogeneous boundary-value problem (16), (18) arises again. The compatibility
conditions for this problem may be deduced from the equation

s2∫
s1

w◦ {L1
[
P1(ξ)w

◦ + ξP0(ξ)(bwp + wϕ) − iP′
0(ξ)wp

]

+ L2P0w
◦} ds = 0. (31)

Omitting details for calculation of operators

∂2L0

∂p2
,
∂2L0

∂ϕ2
,

∂2L0

∂p∂ϕ

appearing in L2, we reduce relation (31) to the following differential equation with
respect to the polynomial P0(ξ):

LP0 ≡ −1

2
fppP

′′
0 − i(bfpp + fpϕ)

(
ξP′

0 + 1

2
P0

)
− λ1P0 + cξ2P0 = 0, (32)

where
2c = b2fpp + 2bfpϕ + fϕϕ.
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Condition c = 0 is necessary for the existence of a polynomial form solution of
Eq. (32). From the square equation c = 0 we find the unique value of b such that
Imb > 0:

b = (−fpϕ + ir)/fpp, r = √
d, d = fppfϕϕ − (fpϕ)2. (33)

It may be seen from Eq. (33) that inequality Imb > 0 is valid if inequalities fpp > 0
and d > 0 hold simultaneously.

For c = 0 and

λ1 = λ(n)
1 =

(
n + 1

2

)
r, n = 0, 1, 2, . . . (34)

Eq. (32) has the solution

P0(ξ) = Hn(ζ), ζ =
√

r

fpp
ξ, (35)

where Hn are nth degree Hermite polynomials.

Higher approximations. The following approximations may be constructed in a
similar way. We note that wj(s, ξ) are either even or odd polynomials in ξ. The
existence conditions for w2j+2 give

LP2j + λjP0 + F2j(ξ) = 0, j > 0, (36)

where L is the operator in the left side of Eq. (32) at c = 0, and F2j(ξ) is expressed
in terms of the polynomials P2j−1,P2j−2, . . . found in the previous steps.

The value λj is found from the existence conditions for polynomial form solution
of (36). If the polynomials Pj are even, then the polynomials Pj+1 and Fk+1 are odd
and vice-versa.

In fact, the values of λj(j ≥ 2) are not found here because they depend on the
terms which were omitted in the governing equations for cylindrical shells.

Natural frequencies and modes. Finally, the asymptotic equation for the set of the
eigenvalues is obtained as follows

λ(m,n) = λ(m)
0 + εr

(
n + 1

2

)
+ O(ε2), n = 0, 1, 2, . . . (37)

where m is the number of semi-waves in the axial direction, and n is the degree of
Hermite polynomial Hn.
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Separating the real and imaginary parts in (15) we find that each eigenvalue (37)
is asymptotically double. One of the natural modes has the form

w = w∗ cos z exp
{
−1

2
Imbξ2

}
,

w∗(s, ξ; ε) =
{
Hn

[√
rf −1
pp ξ

]
w◦(s) + O

(
ε1/2

)}
,

z = ε−1/2p◦ξ + 1

2
Rebξ2 + �, ξ = ε−1/2(ϕ − ϕ0),

(38)

where � is the initial phase. The method used here does not permit the determination
of � = const which is equal to 0 ≤ �1, �2 < 2π.

3.3 Examples

Example 3.3.1 We consider a circular cylindrical shell with a slanted edge (see
Fig. 3). Here

k = 1, s1 = 0, s2(ϕ) = l0 + (cosϕ − 1) tan β.

Then the longest generatrix ϕ = ϕ◦
0 = 0 will be the weakest one.

Let both edges be simply supported. Then the calculations give the formula for the
first set (with one semi-wavem = 1 in the axial direction) of the natural frequencies:

(
ω(n)

)2 = π2Eh

ρRL2
√
3(1 − ν2)

[
1 + 4ε

(
n + 1

2

)√
2 sin β

π
+ O(ε2)

]
.

The pattern of the even (with respect to the lineϕ = 0) eigenmode is shown in Fig. 4.

Example 3.3.2 Consider a non-circular cylindrical shell of the constant generatrix
length having the elliptic cross-sectionwith semi-axesa0 andb0(a0 < b0) (seeFig. 5).
The ellipse curvature is the function

Fig. 3 Circular cylindrical
shell with slanted edge

s

s2( )
l0
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Fig. 4 Pattern of even eigenmode

ab Lx

Fig. 5 Elliptic cylindrical shell

k(x) = dx

dϕ
= e−2(sin x2 + e2 cos x2)3/2, e = b0

a0
.

Here, there are two the weakest lines x = π/2 and x = 3π/2 where the curvature
k(x) has the minimum value. In this case the naturel frequencies are asymptotically
fourfold. Let the shell edges s = 0,L be simply supported. Then, for these close
frequencies the following common asymptotic formula is valid:

λ(n) = 2

e2

[
1 + ε0

√
48(e2 − 1)

e3

(
n + 1

2

)
+ O(ε20)

]
, n = 0, 1, 2, . . . ,

where

ε80 = h2L4

12(1 − ν2)a60

is a new small parameter.

Similar problems on free low-frequency localized vibrations of a thin medium-
length cylindrical shell taking into account viscoelastic properties have been studied
in paper (Mikhasev 1992).



166 G. Mikhasev

4 On Localized Eigenmodes of Thin Laminated Shell
Containing Magnetorheological Elastomer

4.1 Motivation

Thin composite laminated shells have a wide range of applications in many engineer-
ing structures (airborne/spaceborne vehicles, underwater objects, cars, etc.) Apply-
ing materials with different properties one can design sandwich structures fulfilling
many requirements. One of up-to-date requirements is the noiselessness of similar
structures. The vibroprotection is of great practical interest for mechanical engi-
neers developing and modeling thin-walled vehicles. The appearance of new multi-
functional composite materials with active and adaptive properties (so-called smart
materials) opens new possibilities (Deng and Gong 2008; Gibson 2010). Some of
them are magnetorheological (MR) composites and, particularly, magnetorheologi-
cal elastomers (MREs). They belong to the group of active materials which physical
properties such as viscosity and shear modulus can vary when subjected to different
magnetic field levels (Ginder et al. 2001; Farshad and Benine 2004; Sorokin et al.
2014). It is expected that MREs embedded between elastic layers will provide for a
sandwich a wide range of rheological properties which may be controlled rapidly by
the application of an external magnetic field (Yancheng et al. 2014).

What is the MRE? This is a composite material composed of magnetizable par-
ticles molded in either rubbery polymers or deformed inorganic polymer matrices
(Farshad and Benine 2004). The properties of MREs depend on its components. The
optimum weight/density ratio of magnetic particles, carrier viscous liquid and poly-
mer determines shear modulus and viscosity of smart materials (Ginder et al. 2001;
Korobko et al. 2012). The basic ones, revealed in above and many other papers,
are the following: increasing the magnetic field intensity leads to the ordering of
magnetic particles in the matrix and finally results in increasing both the storage and
the loss moduli, G′

MR and G′′
MR (the real and imaginary parts of the complex shear

modulus GMR, respectively).
Properties of MRE show also a strong dependence on the manufacturing tech-

nology. If samples are embedded into sandwich mold and cooled down to room
temperature without acting magnetic field, one gets a sandwich without preferred
orientation (the iron particles are distributed in a chaotic manner). On the contrary,
if the polymerization reaction is carried out in an external homogeneous magnetic
field, then MRE becomes highly polarized (Korobko et al. 2009) and has anisotropic
properties (Stepanov et al. 2007). In polarized MREs, the magnetizable particles
align into the directions of the force lines of a magnetic field. Experimental research
by Boczkowska et al. (2012) has revealed a specific property of polarized MREs:
the maximum increase in the storage modulus G′

MR under homogeneous magnetic
field action strongly depends on the particles arrangement within the matrix with
respect to the magnetic field. So, studying the urethane MRE consisting of carbonyl-
iron particles in a polyurethane matrix, it was found out (Boczkowska et al. 2012)
that the maximum value of the modulus G′

MR = 0.5 MPa corresponded to samples
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with particles orientated at 30◦ with respect to the lines of magnetic field, whereas
the minimum magnitude G′

MR = 0.1 MPa did to samples with angle 90◦ between
the magnetic force lines and the particle alignment. Thus, even through the mag-
netic field is uniform, its impact on different parts of the polarized MRE may differ
considerably.

Recently, based on properties of polarized MREs, we have analysed (Mikha-
sev et al. 2014) the influence of a magnetic field on eigenmodes of thin laminated
cylindrical shells containing a polarized MRE. Motivated by these study, we aim to
demonstrate in this Section that an applied magnetic field may lead to localization
of eigenmodes in a thin cylindrical sandwich containing the MRE-core.

4.2 Setting a Problem

We consider a thin non-circular laminated cylindrical shell consisting of N trans-
versely isotropic layers, where N is an odd number (see Fig. 1). All notations of the
geometrical and physical parameters are the same as in Sect. 2. Let the layers with the
odd numbers be made of elastic material which is not affected by external magnetic
field, and the layers with the even numbers be fabricated from a MRE. For elastic
layers the Young’s and shear moduli Ek and Gk are real constants for any k, and for
the viscoelastic layers made fromMRE these parameters are assumed to be complex
functions (1) depending on the magnetic field induction B.

In our study we consider the polarized MRE consisting of a deformed polymer
matrix prepared from bentonite clay and synthetic oil, and carbonyl iron particles
having a size about 20μm. The properties of this elastomer at different levels of
applied magnetic field have been described by Korobko et al. (2012). As shown in
paper (Mikhasev et al. 2011), in the pre-yield regime at B < 200mT, the following
linear approximations

E′
MR = 13.230 + 45.040B, E′′

MR = 50.000 + 10.920B,

G′
MR = 4.500 + 14.978B, G′′

MR = 17.000 + 3.680B
(39)

are valid for this MRE with νMR = 0.4.
Let the shell be under action of the uniform magnetic field whose the force lines

have different angels with the alignment of magnetic particles in the polarized MRE.
Then, as follows from experimental research byBoczkowska et al. (2012), the impact
of the magnetic field on different parts of the MRE-based layer will be distinct. In
this case it is necessary to introduce the relation between the moduli GMR,EMR and
the circumferential coordinate α2 on the sandwich.
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We consider Eqs. (6) as the governing ones, where all magneto-sensitive com-
plex magnitudes ν, η3,E, θ,β are assumed to be functions of the circumferential
coordinate α2. Let us introduce a small parameter

ε8 = h2∗η
(0)
3r

12[1 − (ν(0)
r )2] , (40)

and consider sufficiently thin shells for which parameter h∗ is a quantity of the order
∼0.01 or less. In Eq. (40) and below, the superscript (0) means that an appropriate
parameter is calculated at B = 0. Here, η3r = Re η3, νr = Re ν, ν(0)

r ≈ 0.4. It is
assumed that the total thickness of the MR layers is not less then 70% from the total
thickness h of the sandwich. Then, as shown in paper (Mikhasev et al. 2014), the
following asymptotic estimations

ν = ν(0)
r [1 + ε4δν(ϕ)], θr ∼ ε3, θi ∼ ε4,

η3 = η(0)
3r [1 + ε2δη3(ϕ)], η(0)

3r = π−4η(0)
r [1 − (ν(0)

r )2],
Er = E(0)

r d(ϕ) = E(0)
r [1 + εd1(ϕ)], Ei/E

(0)
r ∼ ε4,

h2∗β
−1 = ε2κ(ϕ) = ε2[κ0(ϕ) + iεκ1(ϕ)] (41)

are valid at ε → 0. In Eqs. (41), δν, δη3 and d1,κ0,κ1 are complex and real functions
of an angle ϕ = α2/R, respectively, so that their absolute magnitudes are quantities
of the order O(1) at ε → 0. For any geometrical parameters (chosen in such away
that the above assumptions for the total thickness of the MR layers and h∗ hold) and
a fixed value of the induction B, these functions are easily calculated by Eqs. (9).

The solution of Eqs. (6) describing free vibrations are assumed to be of the form

χ = ε−4Rχ∗(s,ϕ) exp (i�t), � = E(0)
r hR2�∗(s,ϕ) exp (ı�t), (42)

where s = α1/R is the dimensionless axial coordinate, � is an unknown complex
natural frequency, and χ∗,�∗ are dimensionless displacement and stress functions.

The substitution of Eqs. (42) into Eqs. (6) results in the differential equations

ε4d(ϕ)�2χ∗ + k(ϕ)
∂2�∗

∂s2
− λ[1 − ε2κ(ϕ)�]χ∗ = 0,

ε4�2�∗ − k(ϕ)
∂2

∂s2
[1 − ε2κ(ϕ)�]χ∗ = 0 (43)

written in the dimensionless form, where k(ϕ) = R/R2 is the variable dimension-
less curvature, and λ = ρR2�2/(ε4E(0)

r ) is the dimensionless frequency parameter.
When deriving Eqs. (43) from Eqs. (6), we have omitted the operator �3χ because
of smallness of the coefficient θh2β−1 and disregarded by very small dimension-
less parameters ε4δν, ε2δη3,Ei/E(0)

r . It should be noticed that when studying low-
frequency eigenmodes this simplification leads to an error of the order h∗ which is
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comparable with the error of Eqs. (6). In Eqs. (43), κ = κ0(ϕ) + εiκ1(ϕ) is the prin-
ciple complex shear parameter depending on both a coordinate ϕ and the magnetic
field induction B.

Let the shell will be simply supported. Then appropriate boundary conditions are
as follows

χ∗ = �χ∗ = �2χ∗ = �∗ = ��∗ = 0 at s = 0, l, (44)

where l = L/R.
We aim to study low-frequency free vibrations. Then the problem will be to find

the minimum eigenvalue Reλ for the boundary value problem (43), (44).

4.3 Asymptotic Solution

Due to the variability of both the parameters κ(ϕ), d(ϕ) and the curvature k(ϕ), the
boundary value problem (43), (44) does not admit a solution in the explicit form. Let
y be any of the foregoing parameters depending onϕ. It is assumed that dy/dϕ ∼ y at
ε → 0. Then, under some additional conditions for the functions κ0(ϕ), k(ϕ) (which
will be specified below), the boundary value problem (43), (44) may have a solution
localized in the neighbourhood of some generatrix ϕ = ϕ0. Following the approach
stated in Sect. 3, we will seek the solution of the boundary value problem (43), (44)
in the following form

χ∗ = sin
πns

l

∞∑
j=0

εj/2χj(ξ) exp
{
i
(
ε−1/2pξ + 1/2bξ2

)}
,

�∗ = sin
πns

l

∞∑
j=0

εj/2�j(ξ) exp
{
i
(
ε−1/2pξ + 1/2bξ2

)}
, (45)

λ = λ0 + ελ1 + . . . ,

where ξ = ε−1/2(ϕ − ϕ0), p is the real wave parameter, b is the imaginary parameter
so that Im b > 0, and χj,�j are polynomials in ξ.

The functions κ0(ϕ),κ1(ϕ), k(ϕ), d1(ϕ) are expanded into series in a neighbour-
hood of the generator ϕ = ϕ0.

The procedure for seeking all unknownparameters and functions appearing in (45)
are as stated in Sect. 3. Omitting its details, we outline only the principal equations
here. The substitution of (45) into (43) produces the sequence of algebraic equations

ς∑
j=0

LjXT
ς−j, ς = 0, 1, 2, . . . , (46)
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where Xj = (χj,�j) are two-dimensional vectors, the superscript T denotes a trans-
position, and L0 is the 2 × 2 matrix with the elements

l11 = p4 − λ0[1 + κ0(ϕ0)p
2], l12 = −k(ϕ0)π

2n2l−2,

l21 = k(ϕ0)[1 + κ0(ϕ0)p
2]π2n2l−2, l22 = p4,

and the matrix operators Lj for j ≥ 1 are expressed by the matrix L0 by Eqs. (17),
where

N = λ1 + iλ0
κ1(ϕ0)p2

1 + κ0(ϕ0)p2
− d1(ϕ0)p

4.

Considering the homogeneous system (46) at ς = 0, one obtains

�0 = −g
1/2
n (ϕ0)

p4
[1 + p2κ0(ϕ0)], (47)

λ0 = f (p,ϕ0) = gn(ϕ0)

p4
+ p4

1 + κ0(ϕ0)p2
, (48)

where gn(ϕ0) = π4n4l−4k2(ϕ0). It may be seen from (47) that p �= 0. The compati-
bility condition for system (46) at ς = 1 implies the equations

fp = 0, fϕ = 0, (49)

which may be rewritten as follows

κ0(ϕ0)p
10 + 2p8 − 2gn(ϕ0)κ

2
0p

4 − 4gn(ϕ0)κ0p
2 − 2gn(ϕ0) = 0, (50)

g′
n(ϕ0)[1 + κ0(ϕ0)p

2] − p10κ′
0(ϕ0) = 0, (51)

where the subscripts p,ϕ denote the partial derivatives of the function with respect
to the corresponding variables p,ϕ0, and the prime (′) means differentiation with
respect to ϕ0. These equations allow to find the wave number p◦ and the weakest
generator ϕ0 = ϕ◦

0. Finally, the compatibility condition for system (46) at ς = 2
yields the following equations

fppb
2 + 2fpϕb + fϕϕ = 0, (52)

λ1 = −i(m + 1/2)(fppb + fpϕ) − ıλ0
p2κ1(ϕ0)

1 + κ0(ϕ0)p2
+ p4d1(ϕ0), (53)

χ0 = Hm(z), z = [fϕϕf
−1
pp − fpϕf

−1
pp ]1/4ζ, (54)

where Hm(z) is the Hermitian polynomial of the mth degree. In Eqs. (52)–(54), the
second derivatives of f with respect to p and ϕ0 are calculated at p = p◦, ϕ0 = ϕ◦

0.
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Equation (52) is used for definition of b. It may be seen that the inequality Imb > 0
holds if the second differential of the function f at point p = p◦, ϕ0 = ϕ◦

0 is a positive
definite quadratic form, i.e.

d2f = f ◦
ppdp

2 + 2f ◦
pϕdpdϕ0 + f ◦

ϕϕdϕ
2
0 > 0. (55)

The superscribe ◦ denotes that the function f and its partial derivatives are calcu-
lated at p = p◦,ϕ0 = ϕ◦

0. The conditions (49), (55) indicate that only eigenmodes
corresponding to the lowest spectrum are considered here.

In Eq. (53), the second term containing parameter κ1 is the frequency correction
taking into account viscoelastic properties of MRE at different levels of magnetic
field. For the inequality (55) to be hold, a solution of Eq. (50) should be chosen in
such a way that f ◦

pp = fpp(p◦,ϕ◦
0) > 0.

4.4 Circular Cylinder with Nonuniform Physical Properties
of the MR Layer

Now we consider an example that demonstrates how magnetic field can skew eigen-
modes of a shell consisting the MR layers. Let all geometrical parameters of the
cylindrical shell to be constant, but the magnetorheological properties of the MRE
composing the sandwich are nonuniform in the circumferential direction.Here k ≡ 1,
and κ0,κ1, d1 are functions ofϕ. Similar inhomogeneity of the elastic and viscoelas-
tic parameters may be observed if the magnetic field is spatially nonuniform or/and
the MRE embedded in between the elastic layers is polarized and the angle between
the magnetic force lines and the alignment of magnetic particles depends on a coor-
dinate ϕ.

Here, as follows from Eqs. (51), (55), the weakest generator ϕ = ϕ◦
0 is the one at

which the reduced shear parameter κ0 approaches the maximum:

κ′
0(ϕ

◦
0) = 0, κ′′

0(ϕ
◦
0) < 0.

Then Eqs. (48), (52), (53) result in the following equations for the natural fre-
quency, damping ratio and parameter b◦:

ω = Re� = ωc ω∗, α = Im� = ωc α∗,

ω∗ = (f ◦)1/2 + ε

2(f ◦)1/2

⎡
⎣ (1 + 2m)(p◦)3

√
−f ◦

ppκ
′′
0(ϕ

◦
0)

2[1 + (p◦)2κ0(ϕ
◦
0)]

+ d1(ϕ
◦
0)(p

◦)4
⎤
⎦ ,

α∗ = −ε(f ◦)1/2κ1(ϕ
◦
0)(p

◦)2

2[1 + κ0(ϕ
◦
0)(p

◦)2] , b◦ = i (p◦)3

1 + (p◦)2κ0(ϕ
◦
0)

√
−κ′′

0(ϕ
◦
0)

f ◦
pp

,

(56)

where ωc = ε2R−1(Er(0)r/ρ)1/2 is the characteristic frequency.
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Tables1 and 2 show the dependence of the parameters p◦, ω∗
0 , ω

∗,α∗ and Im b◦
on the induction B for the three-layered cylinder with the external layers made of
ABS-plastic SD-0170 and the internal layer fabricated of MRE. The calculations
have been performed at n = 1 for the parameters R = 1m, L = 1.5m, h1 = h3 =
0.5mm and thicknesses h2 = 8; 11mm of the MR layer. The parameter κ′′

0(ϕ
◦
0)

characterizing the variability of the reduced shear modulus in a neighborhood of
the weakest generator ϕ = ϕ◦

0 has been taken as κ′′
0 = −1.5 for both cases. This is

the approximate magnitude estimated proceeding from the experimental data from
(Boczkowska et al., 2012). The parameters κ0(ϕ

◦
0),κ1(ϕ

◦
0), d1(ϕ

◦
0) were found from

Eqs. (41), (9). When comparing the third and fourth columns (the parameters ω∗
0 and

ω∗) in both tables, one concludes that accounting inhomogeneity of the reduced shear
parameter K may result in increasing the natural frequency up to 20%. Increasing
the level of the magnetic field from B = 0 to B = 200 mT leads to increasing the
natural frequency ω∗ up to 9% (from 3.304ωc at B = 0 mT to 3.606ωc at B = 200
mT) and minor decreasing the number of waves in the circumferential direction (the
parameter p◦). The dependence of the damping ratio α∗ upon the induction is more

Table 1 Parameters p◦, ω∗
0 , ω∗, α∗, Im b◦ for the circular cylinder with nonuniform physical

properties versus the magnetic induction B at h2 = 8mm, ε = 0.231,ωc = 13.828 Hz

B, mT p◦ ω∗
0 ω∗ α∗ Im b◦

0 1.479 2.876 3.438 0.0025 0.498

25 1.471 2.898 3.472 0.0091 0.487

50 1.466 2.911 3.494 0.0107 0.480

75 1.463 2.919 3.511 0.0108 0.475

100 1.461 2.925 3.523 0.0104 0.472

125 1.459 2.930 3.534 0.0098 0.470

150 1.458 2.934 3.543 0.0093 0.468

175 1.457 2.936 3.552 0.0087 0.466

200 1.456 2.939 3.559 0.0082 0.465

Table 2 Parameters p◦, ω∗
0 , ω∗, α∗, Im b◦ for the circular cylinder with nonuniform physical

properties versus the magnetic induction B at h2 = 11mm, ε = 0.248,ωc = 13.704 Hz

B, mT p◦ ω∗
0 ω∗ α∗ Im b◦

0 1.532 2.745 3.304 0.0133 0.573

25 1.494 2.837 3.436 0.0291 0.519

50 1.480 2.875 3.493 0.0266 0.499

75 1.472 2.895 3.527 0.0231 0.488

100 1.467 2.907 3.550 0.0201 0.481

125 1.464 2.916 3.568 0.0177 0.477

150 1.462 2.922 3.582 0.0157 0.474

175 1.460 2.927 3.595 0.0142 0.471

200 1.459 2.931 3.606 0.0129 0.469
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complicated and appreciable. It is also influenced by the thickness h2 of the MR
layer. In our cases, for h2 = 8 mm and h2 = 11 mm, the best passive suppression of
the eigenmodes takes place at B = 75 mT and B = 25 mT respectively. In particular,
applying themagneticfield of the intensityB = 75mT(ath2 = 8mm)gives the three-
fold increase in the damping ratio. Decreasing the parameter Im b◦ when increasing
the induction B indicates that applying the strong magnetic field results in some
spreading of localized modes over the shell surface.

5 Localized Eigenmodes of a Sandwich Cylindrical Shell
Prestressed by Axial Forces

5.1 Setting a Problem

In this Section, we will study free localized vibrations of a thin, axially prestressed,
circular cylindrical sandwich shell consisting of N transversely isotropic layers. The
geometrical and physical characteristics of both the shell and layers are the same
as in Sect. 2 (see Fig. 1). Let s = α1/R,ϕ = α2/R be dimensionless coordinates at
the neutral surface of the sandwich as shown in Fig. 6, where R is the radius of the
middle surface. It is assumed that the simply supported edges are under action of the
nonuniform axial forces N0(α2) (see Fig. 6).

To describe free vibrations of the axially prestressed laminated cylindrical shell,
the following system of differential equations may be used:

Eh3η3
12(1 − ν2)

(
1 − θh2

β
�

)
�2χ + 1

R

∂2�

∂α2
1

+ T ◦
1 (α2)

∂2w

∂α2
1

+ ρh
∂2

∂t2

(
1 − h2

β
�

)
χ = 0,

�2� − Eh

R

∂2

∂α2
1

(
1 − h2

β
�

)
χ = 0, w =

(
1 − h2

β
�

)
χ.

(57)

Fig. 6 Neutral surface of
laminated cylinder and
nonuniform axial forces
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Here χ and � are the displacement and stress functions, respectively, h is the total
thickness of the cylinder, E, ν are the reduced Young’s modules and Poisson ratio for
the whole sandwich, and θ,β, η3 are parameters taking into account the transverse
shears (see in Sect. 2).When comparingEqs. (6) fromSect. 2 and the above equations,
the first equation in (57) contains the additional term due to the axial stress resultant
T ◦
1 = N0(α2)/R.
In terms of the displacement and stress functions, the boundary conditions for

simply supported edges are as follows:

χ = �χ = �2χ = � = �� = 0. (58)

To take into account the influence of shear parameters in the zeroth order approx-
imation, we assume the following relations

K

π2
= μ2κ,

Kθ

π2
= μ3τ , κ, τ ∼ 1 as μ → 0,

which are valid for sufficiently thin shell (Korchevskaya and Mikhasev 2006). Here

K = π2h2

R2β
, μ4 = h2η3

12R2(1 − ν2)

Unknown functions χ and � are sought in the form

χ = Rχ̂(s,ϕ) sinωt,

� = μ2EhR�̂(s,ϕ) sinωt.

Then Eqs. (57) can be rewritten as follows

μ4(1 − μ3τ�)�2χ̂ + μ2 ∂2�̂

∂s2
+ μ2t1(ϕ)

∂2

∂s2
(1 − μ2κ�)χ̂

−�(1 − μ2κ�)χ̂ = 0,

μ2�2�̂ − ∂2

∂s2
(1 − μ2κ�)χ̂ = 0,

(59)

where

l = L

R
, t1(ϕ) = T ◦

1 (Rϕ)

μ2Eh
, � = R2ρ

E
ω2,

and the boundary conditions for functions χ̂, �̂ will be:

χ̂ = �χ̂ = �2χ̂ = �̂ = ��̂ = 0. (60)
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The problem is to find a positive value of � for which the system of Eqs. (59) has
a nontrivial solution satisfying the boundary conditions (60). Due to the presence
of the function t1(ϕ), this boundary-value problem does not have a solution in the
explicit form. However, at some assumptions for the axial stress resultant, there exist
eigenmodes which will be localized in a neighborhood of some generatrix.

5.2 Asymptotic Solution

A formal asymptotic solution of the boundary-value problem (59), (60) is constructed
in the following form:

χ̂ = sin
rms

μ
χm(ξ,μ), (61)

χm =
∞∑
j=0

μj/2χmj(ξ) exp
[
i
(
μ−1/2pξ + 1

2bξ
2
)]

,

� = �0 + μ�1 + μ2�2 + . . . .

(62)

where (χ̂ ⇒ �̂,χm ⇒ �m,χmj ⇒ �mj,)

ξ = μ−1/2(ϕ − ϕ0), Imb > 0,

|χmj|, |�mj|, �j, p, |b|, rm = μπm
l ∼ 1 as μ → 0,

(63)

and χmj(ξ),�mj(ξ) are polynomials in ξ. Here ϕ = ϕ0 is a weakest generatrix which
is unknown. Function (62) approximates the eigenmode localized in a vicinity of the
line ϕ = ϕ0.

The substitution of Eqs. (61), (62), (63) into the governing Eqs. (59) produces the
sequence of algebraic equations:

j∑
k=0

LkXj−k = 0, j = 0, 1, 2, . . . (64)

where Xj = (ξmj,�mj)
T, and L0 is the 2 × 2 matrix with the elements

l11 = (r2m + p2)2 − [1 + κ(r2m + p2)][r2mt1(ϕ0) + �0],
l12 = −r2m, l21 = r2m[1 + κ(r2m + p2)], l22 = (r2m + p2)2,



176 G. Mikhasev

and the matrix operators Lj for j ≥ 1 are expressed by the matrix L0 in the same way
as in Sect. 2 (see Eqs. (17)), but now the operator N is 2 × 2 matrix with the unique
nonzero element (n12 = n21 = n22 = 0):

n11 = τ (r2m + p2)3 − �1[1 + κ(r2m + p2)].

The sequence of Eqs. (64) serves to determine all unknown functions and para-
meters appearing in (62), (63). Because the procedure for seeking these magnitudes
are the same as in Sect. 2, we will omit transitional calculations and give here only
the principle equations.

Considering the homogeneous system of algebraic Eqs. (64) for j = 0, one obtains
the zeroth approximation for the frequency parameter:

�0 = f (p, rm,ϕ0) = (r2m + p2)2

[1 + κ(r2m + p2)] + r4m
(r2m + p2)2

− t1(ϕ0)r
2
m. (65)

Holding a number m (and so, a parameter rm) fixed, we will minimize the func-
tion (65) over p and ϕ. We have the following equations

∂f

∂p
= 0,

∂f

∂ϕ0
= 0 (66)

which serve for a determination of p◦ and ϕ◦
0.

When solving Eqs. (66), three different cases appear:

• rm > z0 (caseA)

• rm < z0 (case B)

• rm ≈ z0, (case C)

were z0 is a root of the algebraic equation

− 2(1 + κrmz)
2 + z4(2 + κrmz) = 0 (67)

with respect to z.
Equation (67) contains a parameter κ which takes into account shears in the

sandwich. If shears are disregarded (κ = 0), this root z0 = 1.
At first we consider cases (A) and (B). For rm > z0 (case A), we derive

�◦
0 = min

p,ϕ0

f (p, rm,ϕ0) = 1 − t1(ϕ
◦
0)r

2
m + r4m

1 + κr2m
, p◦ = 0, (68)

and for rm < z0 (case B), one has

�◦
0 = min

p,ϕ0

f (p, rm,ϕ0) = z20r
2
m

1 + κrmz0
+ r2m

z20
− t1(ϕ

◦
0)r

2
m,

p◦ = √
rm(z0 − rm). (69)
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Note that Eqs. (68), (69) are identical at rm = z0. For both cases theweakest generatrix
ϕ = ϕ◦

0 is determined from the following conditions:

t′1(ϕ
◦
0) = 0, t′′1 (ϕ

◦
0) < 0.

Now, a solution of the homogeneous system of Eqs. (64) at j = 0may bewritten as

X0 = P0(ξ)Y0,

where P0(ξ) is an unknown polynomial in ξ, and Y0 = (1,−l11/l12) is the vector.
In the first order approximation (j = 1), one has the nonhomogeneous system of

Eqs. (64). When taking Eqs. (66) into account, these system turns into identities.
Consider the nonhomogeneous system of Eqs. (64) in the second order approxi-

mation (j = 2). The compatibility condition for this system generates the formula

b = i
√
fϕϕ/fpp

and the equation for P0:

d2P0

dξ2
+ ib

(
2ξ

dP0

dxi

)
+ 2�1

fpp
P0 + IA(B) = 0,

where

IA = 2τr6m
fpp(1 + κr2m)

P0 at rm > z0 (case A)

IB = 2τr3mz
3
0

fpp(1 + κrmz))
P0 at rm < z0 (case B)

If rm = z0, then IA = IB. For both cases

P0(ξ) = Hn

(√
fϕϕ/fppξ

)
.

Now we can calculate the complex parameter b characterizing the rate of the
amplitude decrement far from the generatrix ϕ = ϕ◦

0.
If rm > z0 (case A), then

b = i

√
r4m(1 + κr2m)2[−t′′1 (ϕ◦

0)]
2r4m(2 + κr2m) − 4(1 + κr2m)2

,
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and for rm > z0 (case B), one obtains

b = i

√
rm(1 + κr2m)3[−t′′1 (ϕ◦

0)]
4(z0 − rm)[8 + 9κrmz0 + 3(κrmz0)2] .

It may be seen that limrm→z0 |b| = +∞ for both cases (A) and (B). Thus, require-
ment (63) for b does not hold if a root rm is close to z0.

We will not consider higher order approximations because system (59) is not
sufficiently accurate since it does not contain some terms which effect the third and
subsequent approximations.

Now we can write equations for the set of eigenvalues. If rm > z0, we derive

�(n,m) = 1 − t1(ϕ
◦
0)r

2
m + r4m

1 + κr2m

+μ

{
(1 + 2n)

√−2t′′(ϕ◦
0)[r4m(2 + κr2m) − 2(1 + κr2m)2]
2(1 + κr2m)

+ τr6m
1 + κr2m

}
+ O(μ2),

(70)

and for rm < z0, one has

�(n,m) = z20r
2
m

1 + κrmz0
+ r2m

z20
− t1(ϕ

◦
0)r

2
m

+μ

{
(1 + 2n)

√−t′′(ϕ◦
0)r

3
m(z0 − rm)[8 + 9κrmz0 + 3(κrmz0)2]

(1 + κr2m)3

+ τr3mz
3
0

1 + κr2m

}
+ O(μ2).

(71)

The corresponding eigenmodes will be the following: if rm > z0, then

χ(n,m) = sin
rms

μ
exp

{
ib(ϕ − ϕ◦

0)
2

2μ

}{
Hn

[√
ib

μ
(ϕ − ϕ◦

0)

]

+O(μ1/2)

}
,

(72)

and for rm < z0, one obtains

χ(n,m) = sin
rms

μ
exp

{
i

μ

[√
rm(z0 − rm)(ϕ − ϕ◦

0)
]}

× exp

{
ib(ϕ − ϕ◦

0)
2

2μ

}{
Hn

[√
ib

μ
(ϕ − ϕ◦

0)

]
+ O(μ1/2)

}
.

(73)
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It may be seen that eigenmodes (72) and (73) are different for the cases (A) and
(B). If rm > z0 (case A), the eigenfunctions decay exponentially without oscillations
(p◦ = 0), and for rm < z0 (case B) the localized eigenmodes have a large number (of
the order μ−1) of waves.

If rm is close to z0, then Eqs. (72) and (73) are not applicable. The case (C) when
rm � z0 deserves the special consideration.

5.3 Reconstruction of Asymptotic Expansions

Let parameter rm be close to a root z0 of Eq. (67). In this case a solution of the
boundary-value problem (59), (60) is found again in form (61). The substitution of
(61) into Eqs. (59) results in the following system of ordinary differential equations:

(1 − μτ�m)�2
mχm − rm�m − (t1r2m + �)(1 − κ�m)χm − � = 0,

�2
m�m + r2m(1 − κ�m)χm = 0,

(74)

where

�m = μ2 d2

dϕ2
− r2m

is the differential operator.
Consider Eq. (67) again. At rm = z0 it is reduced to the following algebraic equa-

tion
κr6m + 2r4m − 2(1 + κr2m)2 = 0.

Let rm = r∗ be its root. We introduce the following estimations:

rm = r∗ + μ̃r′, � = �∗ + μ̃2�′, ϕ − ϕ◦
0 = μ̃η,

t1(ϕ) = t1(ϕ◦
0) + 1

2 μ̃
2t′′1 (ϕ◦

0)η
2 + . . .

(75)

where r′,�′ ∼ 1 as μ̃ → 0, and

μ̃ = μ2/3 =
[

h2η3
12R2(1 − ν2)

]1/6

is a new small parameter.
We will seek a solution of Eqs. (74) in the form of series

χm =
∞∑
k=0

μ̃kχ(k)
m (η), �m =

∞∑
k=0

μ̃k�(k)
m (η), (76)
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where
χ(k)
m ,�(k)

m ∼ 1, and χ(k)
m ,�(k)

m → 0 as η → ±∞.

In the zeroth and first order approximations, Eqs. (74) turn into identities if the
following condition holds:

�∗ = 1 − t1(ϕ
◦
0)r

2
∗ + r4∗

1 + κr2∗
. (77)

Note that Eq. (77) coincides with Eqs. (68) and (69) at rm = r∗ = z0.
Equation (77) gives the zero approximation for the eigenvalue �. The eigenfunc-

tions χ(0)
m and �(0)

m remain undefined at this step.
Let us consider the second order approximation. When taking Eq. (77) into con-

sideration, one gets the following equation with respect to χ(0)
m :

a4
d4χ(0)

m

dη4
+ a2(r

′)
d2χ(0)

m

dη2
+ [a0(r′) − aηη

2 − �′aλ]χ(0)
m = 0, (78)

where

a4 = 1 + κ

r2∗
+ 3

r4∗
, a2(r

′) = −4r∗r′ + 2κr∗r′ − 4r′

r∗
,

a0(r
′) = (r′)2

[
6r2∗ − 1 − κr2∗

(
5 + r2∗

1 + κr2∗

)]
,

aη = 1

2
r2∗(1 + κr2∗)t

′′
1 (ϕ

◦
0), aλ = (1 + κr2∗).

Theproblem is tofind suchvalues of r′,�′(r′) as to satisfy the following condition:

χ(0)
m → 0 as η → ±∞.

Applying Fourier transform

χ(0)
m (η) = 1√

2π

+∞∫
−∞

χF(ω̃) exp (iω̃η)dω̃.

we come to a second order equation for function χF :

d2χF

dx2
+
{
�̃ − [x4 + 2γx2 + γ2Q(κ)]

}
χF = 0, (79)
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where

x = ω̃

α(κ)
, γ = C(κ)r′,

�̃ = �′
{

1 + κr2∗
(r4∗ + κr2∗ + 3)[−t′′1 (ϕ◦

0)]1/2
}1/3

,

α(κ) =
[
− t′′1 (ϕ◦

0)r
6∗(1 + κr2∗)

2(r4∗ + κr2∗ + 3)

]1/6
,

C(κ) = 2 + 2r4∗ − κr4∗
r∗
[− 1

2 t
′′
1 (ϕ

◦
0)(1 + κr2∗)(r4∗ + κr2∗ + 3)2

]1/3 ,

Q(κ) = 1 + 2A(κ)α2(κ)

C2(κ)t′′1 (ϕ◦
0)r

2∗(1 + κr2∗)
,

A(κ) = 1 − (1 − κ)r2∗(6 + 5κr2∗)
1 + κr2∗

+ (2 + 2r4∗ − κr4∗)2

r2∗(r4∗ + κr2∗ + 3)
.

(80)

For each γ there exists the countable set of values �̃j(j = 0, 1, . . .) of �̃, for which
there exist non-trivial solutions of Eq. (79) such that:

χF → 0 as x → ±∞.

It may be seen from Eqs. (79), (80) that eigenvalues �̃j depend on both the fixed
value of the shear parameter κ and the axis stress resultant t1.

In Fig. 7, the first two eigenvalues �̃0, �̃1 versus a parameter γ are presented for
κ = 0.5 and t1(ϕ) = 0.5(1 + cosϕ).

Fig. 7 First two eigenvalues
�̃0, �̃1 versus parameter γ
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Table 3 Minimum eigenvalue � versus κ at rm ≈ z0
κ rm z0 �∗ �′ �min

0.037 0.993 1.014 0.990 0.590 1.005

0.100 1.017 1.039 0.972 0.586 0.986

0.250 1.077 1.102 0.917 0.575 0.931

0.400 1.142 1.171 0.843 0.563 0.857

0.500 1.186 1.220 0.782 0.553 0.796

0.600 1.229 1.271 0.710 0.539 0.723

As seen from Fig. 7, for parameters accepted above the function �̃ has the mini-
mum value �̃0 ≈ 0.924 at γ ≈ −0.380. Here r∗ ≈ 1.220,�∗ ≈ 0.782, and not com-
plicated calculations by Eqs. (80) give �′

min ≈ 0.553, r′ ≈ −0.217. Then the wave
parameter rm from Eq. (61) and the minimum eigenvalue � will be as follows (see
Eqs. (75)):

rm ≈ 1.22 − 0.217ε2/3, �min ≈ 0.782 + 0.553ε4/3.

Table3 shows parameters rm, z0,�∗,�′ and �min versus κ for the case (C) when
rm ≈ z0. It may be seen that increasing the shear parameter κ leads to decreasing the
minimum natural frequency of the laminated cylindrical shell.

5.4 Examples

Example 5.4.1 We consider the three-layered cylinder of the radius R = 150mm
and length L = 450mm. The first and third layers have the same thickness h1 = h3 =
0.3mmandmadeof aluminiumwith theYoung’smodulusE1 = E3 = 70,300N/mm2,
Poisson’s ratio ν1 = ν3 = 0.345 and density ρ1 = ρ3 = 2.7 · 10−6 kg/mm3, and the
second one is an apoxy matrix with h2 = 0.8 mm, E2 = 3450 N/mm2, ν2 = 0.3,
ρ2 = 1.2 · 10−6 kg/mm3.

The dimensionless axial membrane stress resultant is assumed as follows:

t1(ϕ) = 1

2
(1 + � cosϕ).

Then the generatrix ϕ = ϕ◦
0 = 0 will be the weakest one.

Figure8 shows the dependence of the zero approximation of the eigenvalue �0

upon both the shear parameter κ and parameter � at m = 20(rm = 1.3). In this case
rm > z0 and all calculationswere performedby equations corresponding to the variant
(A). It may be seen that the eigenvalue �0 is the monotonically decreasing function
of both the axial force (in a neighbourhood of the weakest generatrix) and the shear
parameter κ.
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Fig. 8 Zero approximation �0 of the eigenvalue � versus the shear parameter κ for various
� = 0.8, 1, 1.2 (curves 1, 2 and 3, respectively)

Fig. 9 Normalized correction �1/�0 versus the shear parameter κ for various � = 0.8, 1, 1.2
(curves 1, 2 and 3, respectively)

Figure9 demonstrates the nonlinear behavior of the relative correction �1/�0

for the eigenvalue � at varying the shear parameter κ for different values of �.
As accepted, the increase in parameter � characterizing inhomogeneity of loading
involves the increase in the correction�1/�0 for any fixedκ. But for any fixed � there
exists themaximumof�1/�0 being the function ofκ. Approximately atκ > 0.65 the
influence of inhomogeneity in loading on the natural frequencies becomes negligible.

Example 5.4.2 Let us consider again the three-layered cylinder with the same geo-
metrical and physical parameters as in the previous Example. In Table4, the depen-
dence of the parameters Reb, �0 (or �∗ at rm ≈ z0) and �1/�0 (or �′/�∗ for
rm ≈ z0) on the wave parameter rm found by two different asymptotic approaches
is presented. The calculations have been performed at κ = 0.5 for the nonuniform
dimensionless stress resultant t1(ϕ) = 0.5(1 + cosϕ). It may be seen that �1/�0

decreases and Imb increases as rm → z0 = 1.077.
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Table 4 Parameters Reb, �0 (or �∗), �1/�0 (or �′/�∗) versus rm
Cases (A, B or C) rm Imb �0(�∗) �1/�0(�′/�∗)
B 0.844 0.285 0.575 1.117

B 0.909 0.347 0.656 0.942

B 0.974 0.448 0.741 0.752

C 1.077 – 0.917 0.627

A 1.360 1.588 1.490 0.552

A 1.490 1.026 1.949 0.564

6 Eiegenmodes Localized Near Parallel in Long Axially
Prestressed Cylindrical Shells

6.1 Setting a Problem

Consider a long thin one-layered isotropic cylindrical shell of the radius R with
variable thickness h(x), Young’s modulus E(x), Poisson’s ratio ν(x), and density
ρ(x), where x is the axial coordinate at the shell surface.

The shell is assumed to be embedded in non-homogeneouse elastic medium with
the spring constant(Winkler foundation modulus) cf (x) and prestressed by the mem-
brane stress resultants T ◦

1 ,T ◦
2 .

We aim to study free axisymmetric vibrations localized in a neighbourhood of
some parallel x = x0 (see Fig. 10).

We consider the Flügge type equations (Flügge 1962) as the governing ones:

∂T1
∂x

+ T ◦
1
∂2u1
∂x2

− ρh
∂2u1
∂t2∗

= 0,

∂2M1

∂x2
+ 1

R
T2 + T ◦

1
∂2u3
∂x2

− 1

R2
T ◦
2 u3 + cf u3 + ρh

∂2u3
∂t2∗

= 0.

(81)

where u1 and u3 are the longitudinal and normal displacements, T1,T2 and M1 are
the additional stress resultants and bending moment, respectively, and t∗ is time.

Fig. 10 Pattern of an
eigenmode localized in a
vicinity of the weakest
parallel
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For axisymmetric vibrations of isotropic shell the following stress-displacement
relations are assumed:

T1 = Eh

1 − ν2

(
∂u1
∂x

+ ν

R
u3

)
,

T2 = Eh

1 − ν2

(
ν

∂u1
∂x

+ 1

R
u3

)
, (82)

M1 = Eh

12(1 − ν2)

∂2u3
∂x2

.

We introduce the dimensionless magnitudes as follows:

s = x

R
, d(s) = Eh3

E0h30(1 − ν2)
, g(s) = Eh

E0h0(1 − ν2)
,

γ(s) = ρh

ρ0h0
, c(s) = R2cf

E0h0
, λ = ρ0R2

E0
ω2,

T ◦
1 = μ2

1E0h0t1, T ◦
2 = E0h0t2, μ4

1 = h20
12R2

,

where h0,E0, ρ0 are the characteristic values of h,E, ρ, andω is the natural frequency.
It is assumed that

t2 ≤ 0, t1 < t∗1 ≡ 2√
1 − ν2

,
L2

R2
<

π2
√
3(1 − ν2)

2

R

h0
, (83)

where t∗1 is the critical value of the axial force resulting in a buckling of a very long
thin cylinder (Tovstik and Smirnov 2001), and conditions (83) guarantee a subcritical
stress state in the shell. The first inequality in (83) means that the shell may be
prestressed by only stretching hoop stresses, and the second inequality points out
that the shell may experience a compressing axial load which is less then the critical
one.

We seek the displacements in the form:

u1 = RU(s) cosωt∗, u3 = RW (s) cosωt∗.

Then the governing equations may be rewritten as follows:

d

ds

[
g(s)

(
dU

ds
νW

)]
+ μ2

1t1
d2U

ds2
+ λγ(s)U = 0,

μ4
1
d2

ds2

[
d(s)

d2W

ds2

]
+ νg(s)

dU

ds

+[g(s) − t2 + c(s)]W + μ2
1t1

d2W

ds2
− λγ(s)W = 0.

(84)
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It is assumed that among all possible solutions of Eqs. (84) there are such eigen-
modes which satisfy the following conditions

|U|, |W | → 0 as |s − s0| → +∞, (85)

where s = s0 is an unknown weakest parallel at the cylinder surface.

6.2 Asymptotic Solution

For small axisymmetric flexural vibrations of a long cylindrical shell the following
asymptotic estimations are valid (Mikhasev 1998a)

W = w ∼ 1, U = μ1u,
d

ds
∼ μ−1

1 , where u ∼ 1.

The formal asymptotic solution of Eqs. (84) with conditions (85) is assumed to be
in the form of (Mikhasev and Tovstik 2009)

X(s,μ1) =
∞∑
k=0

μ
k/2
1 Xk(ξ) exp

[
i

(
μ

−1/2
1 pξ + 1

2
bξ2
)]

, (86)

ξ = μ
−1/2
1 (s − s0), λ = λ0 + μ1λ1 + . . . , Imb > 0,

where s = s0 is theweakest parallel,X = (u, w), Xk = (uk, wk) are two-dimensional
vectors, and uk, wk are polynomials in ξ with complex coefficients.

The substitution of Eq. (86) into Eqs. (84) yields the sequence of algebraic equa-
tions:

j∑
k=0

LkXj−k = 0, j = 0, 1, 2, . . . , (87)

where L0 is the 2 × 2 matrix with the elements

l11 = −g(s0)p
2, l12 = iν(s0)g(s0)p,

l21 = l12, l22 = d(s0)p
4 + g(s0) − t2 + c − t1p

2 − λ0γ(s0),

and the matrix operators Lj at j ≥ 1 are defined by Eqs. (17).
Considering the homogeneous system of algebraic Eqs. (87) in the zeroth approx-

imation (j = 0), one derives

u0 = i
ν(s0)

p
w0(ξ), (88)
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and

λ0 = f (p, s0) = γ−1(s0)
{
d(s0)p

4 + [1 − ν2(s0)]g(s0) + c(s0) − t2 − t1p
2
}
. (89)

The existence condition for a solution of the nonhomogeneous system (87) in the
first approximation (j = 1) results in the formula for the wave parameter

p◦ =
√

t1
2d(s◦0)

(90)

and the equation

γ

[
d′

4d2
t21 + c′ − (ν2g)′

]
− γ′

[
91 − ν2)g + c − t2 − t21

4d

]
= 0,

which is used to determine the weakest parallel s = s◦0.
It may be seen from (88) that p◦ �= 0. Then, as follows from Eq. (90), t1 > 0.

Thus, a localization of eigenmodes in a neighbourhood of a parallel in an infinity
cylindrical shell is possible if and only if the shell is prestressed by axial compressive
forces.

When the parameter p◦ and the generatrix s = s◦0 are determined, one can calculate
the zero approximation for the eigenvalue:

λ◦
0 = 1

γ(s◦0)

{
[1 − ν2(s◦0)]g(s◦0) − t21

4d(s◦0)
+ c(s◦0) − t2

}
.

In the second approximation (j = 2) we have again the nonhomogeneous sys-
tem (87). The existence condition for a solution of this system implies the quadratic
equation

f ◦
ppb

2 + 2f ◦
psb + f ◦

ss = 0,

the correction

λ(n)
1 = −i

(
n + 1

2

)
(f ◦
ppb

◦ + f ◦
ps) + η, η = 2d′(s◦0)(p◦)3

γ(s◦0)
.

for the eigenvalue λ, and the eigenfunction

w0 = Hn(rξ), r =
[
f ◦
ss

f ◦
pp

−
(
f ◦
ps

f ◦
pp

)]
,

whereHn are nth degree Hermite polynomials, and the superscript ◦ means that the
second derivatives of the function f are calculated at s = s◦0, p = p◦.
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6.3 Examples

In the following examples we evaluate both the parameter b and the natural frequency
ω with an accuracy up to values O

(
μ2
1

)
for some particular cases.

Example 6.3.1 Let h(s) = h0(1 + as2/2) be the function, and all other characteris-
tics are constant parameters. Then s = s◦0 ≡ 0 is the weak parallel, and the inequality
Imb > 0 is equivalent to the following one

a[t2 − c + (1 − ν2)t21 ] > 0.

It may be seen that there exist two different cases:

1. If c < t2 + (1 − ν2)t21 (small stiffness of the foundation), then a > 0, that is, free
vibrations are localized near the parallel at which the shell thickness isminimum.

2. When the inequality c > t2 + (1 − ν2)t21 is valid (large stiffness of the founda-
tion), then a < 0 and localization takes place in a vicinity of the line where a
thickness is maximum.

For both cases we obtain the following equations:

b = i

2

√
a[t2 − c + (1 − ν2)t21 ]

t1
,

ω2 = E

R2ρ

{[
1 − t2 + c − 1

4
(1 − ν2)t21

]

+ 2μ1

(
n + 1

2

)√
a[t2 − c + (1 − ν2)t1]t1 + O

(
μ2
1

)}
,

where n = 0, 1, 2, . . .

Example 6.3.2 It is assumed that E(s) = E0(1 + es2/2) is variable, and all other
characteristics are constant parameters. Here a localization is possible if and only if
e > 0, that is, the weakest parallel is the line s = 0 where themodulusE is minimum.
Then we obtain

b = i

2

√
e[4 + (1 − ν2)t21

6t1
,

ω2 = E

R2ρ

{[
1 − t2 + c − 1

4
(1 − ν2)t21

]

+ 3μ1 (n + 1/2)
√

(1/6)e[4 + (1 − ν2)t21 ]t1 + O
(
μ2
1

)}
.
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As seen from this example, both the parameter b and the correction to the natural
frequency (due to inhomogeneity of the modulus E) are not influenced by the hoop
stress resultant t2 and the spring constant c as well.

Example 6.3.3 Let theWinkler foundation modulus c(s) = c0 + c1s2/2 be the func-
tion, and all other characteristics are constant parameters. In this case the localization
takes the place in a vicinity of the parallel s = 0 at which the Winkler foundation
modulus has the minimum value. Then

b = i

2

√
c1
t1

,

ω2 = E

R2ρ

{[
1 − t2 + c − 1

4
(1 − ν2)t21

]

+ 2μ1(n + 1/2)
√
c1t1 + O

(
μ2
1

)}
.

(91)

The first equation in (91) shows that increasing the rate of inhomogeneity of a
surrounding medium (parameter c1) leads to increasing the rate of localization of
eigenmodes.

The examples considered above showed that inhomogeneity in either thickness or
Young’s modulus of a shell or the Winkler foundation spring constant may result in
localization of eigenmodes in a vicinity of some parallel in an infinitely long cylin-
drical shell. We note that localized eigenmodes in the form of (86) exist if and only
if the shell is compressed by axial forces. When axial forces are absent or tensile, the
stated asymptotic method does not reveal similar modes in macro-scaled cylindri-
cal shells (Mikhasev and Tovstik 2009). The recent study (Mikhasev 2014) on free
vibrations of a single-walled carbone nanotube (presented by a nanoscale cylindrical
shell) embedded in a nonhomogeneous elastic medium showed that introducing the
internal nanoscale parameter into the continuummodel of a nanotube permitted us to
reveal the eigenmodes like (86) even through a nanoshell was tensile by axial forces.

7 Wave Packets in Thin Cylindrical Shells

7.1 Localized Stationary and Quasi-Stationary Vibrations

Free vibrations considered above are characterized by the localization of eigenmodes
in a vicinity of a fixed line (generatrix or parallel) called the weakest one. Another
peculiarity of the constructed complex WKB solutions is that all parameters and
functions appearing in an ansatz (for instance, in (15)) are independent of time.
According to the classification introduced in Sect. 1, similar vibrations are called
localized stationary ones.

Another type of quasi-stationary vibrations localized near a fixed generatrix with
constant parameters p, b in expansion (15) and slowly varying in time amplitude
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functionswj were investigated in studies (Mikhasev 1997;Mikhasev and Kuntsevich
2002). For instance, a non-uniform periodical axial load (Mikhasev 1997) applied to
a non-circular cylindrical shell may result in parametric instability a shell in a vicinity
of the weakest generatrix. And the paper (Mikhasev and Kuntsevich 2002) shows
that the response of a non-circular conical shell to a non-uniform pulsing pressure
may be also quasi-stationary vibrations localized near the fixed generatrix.

In this Section, non-stationary localized vibrations running over the shell surface
will be considered. As opposed to problems considered in the previous Sections and
papers (Mikhasev 1997; Mikhasev and Kuntsevich 2002), running vibrations called
herewave packets (WPs) are assumed to be localized in a neighbourhood of amoving
generatrix being the WP center (Mikhasev 2002). We propose the non-stationary
variant of the complexWKBapproximation (Mikhasev 1998a;Mikhasev andTovstik
2009). According to this approach, magnitudes p, b and amplitude functions wj in
an ansatz (for instance, in Eq. (15)) are considered to be functions of time.

7.2 Setting a Problem

Considering an elastic single layer thin non-circular medium-length cylindrical shell.
Let h be the shell thickness, ρ density, E Young’s modulus, and ν Poisson ratio. A
coordinate system s,ϕ as illustrated in Fig. 2 is chosen. The radius of curvature is
R2 = R/k(ϕ), where R is the characteristic dimension of the shell surface. The shell
is bounded by the two not necessary plane edges

s1(ϕ) ≤ s ≤ s2(ϕ).

Let the shell be under the external non-uniform dynamic load Q∗. It is assumed
thatQ∗ is slowly varying vector function with respect to both space coordinates and
time so that the dynamic stress state of the shell due to the load may be specified
only by the axial, hoop and shear stress resultants

T∗
j = −Ehε6Tj(s,ϕ, t)

for j = 1, 2, 3, respectively. Here, ε = {
h2/[12R2(1 − ν2)]}1/8 is a small parameter,

and t = t∗/tc, t∗c = √
R2ρ/(Eε6) are dimensionless and characteristic times, respec-

tively.
It is assumed that all functions are infinitely differentiable ones with respect to ϕ,

and T1(s,ϕ, t),T3(s,ϕ, t) are twice differentiable with respect to s and t so that

k, si,
∂mk

∂ϕm
,

∂msi
∂ϕm

= O(1),

∂mTj
∂ϕm

,
∂nTς

∂sn
,

∂nTς

∂tn
= O(1),

where m = 1, 2, . . . ; i, n = 1, 2; ς = 1, 3; j = 1, 2, 3.
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Governing equations in dimensionless form, including the effect of the initial
stresses, are as follows

ε4�2W + k(ϕ)
∂2�

∂s2
+ ε2�TW + ε2

∂2W

∂t2
= 0,

ε4�2� − k(ϕ)
∂2W

∂s2
= 0.

(92)

Here

� = ∂2

∂s2
+ ∂2

∂ϕ2
,

�TW = ∂

∂ϕ

(
T2

∂W

∂ϕ

)
+ ∂

∂s

(
T3

∂W

∂ϕ

)
+ ∂

∂ϕ

(
T3

∂W

∂s

)
+ ∂

∂s

(
T1

∂W

∂s

)
,

W = W ∗/R, � = �∗/(ε4R2hE).

The dynamic stress state of the shell consists of the basic dynamic stress state
and the dynamic edge-effect integrals describing the shell behavior in a small neigh-
borhood of each edge (Gol’denveizer 1961). To study the basic state on each edge,
one only needs to satisfy two basic conditions. Apart from terms of the order ε2

these conditions have the form (13) for the joint supported and rigid clamped edges,
respectively.

Let us consider the following initial displacements and velocities

W |t=0 = W ◦(s,ϕ; ε) exp
{
iε−1S◦(ϕ)

}
,

Ẇ |t=0 = iε−1V ◦(s,ϕ; ε) exp
{
iε−1S◦(ϕ)

}
,

(93)

where

i = √−1, S◦(ϕ) = a◦ϕ + 1
2b

◦ϕ2, a◦ > 0, Imb◦ > 0,

a◦, |b◦|, |W ◦|, |V ◦|, |∂W ◦/∂s|, |∂V ◦/∂s| = O(1) as ε → 0.

The real and imaginary parts of Eq. (93) define the two initial WPs localized near
the line ϕ = 0.

7.3 Asymptotic Approach

Splitting of the initial WP. Let y1(s,ϕ), y2(s,ϕ), . . . , yn(s,ϕ), . . . be an infinite
orthonormal system of eigenfunctions of the equation

d4y

ds4
− λy = 0 (94)
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with one of the two variants of boundary conditions

y = d2y

ds2
= 0 at s = si(ϕ),

y = dy

ds
= 0 at s = si(ϕ),

(95)

and λ1(ϕ),λ2(ϕ), . . . ,λn(ϕ), . . . be a corresponding sequence of eigenvalues. For
instance, for the joint supported edges

yn(s,ϕ) = sin
πn[s − s1(ϕ)]

l(ϕ)
, λn(ϕ) =

[
πn

l(ϕ)

]4
.

where l(ϕ) = s2(ϕ) − s1(ϕ).
Suppose that the functions W ◦, V ◦ appearing in the initial conditions (93) satisfy

the boundary conditions (13). Then

W ◦ =
∞∑
n=1

w◦
n(ϕ; ε)yn(s,ϕ),

V ◦ =
∞∑
n=1

v◦
n(ϕ; ε)yn(s,ϕ),

(96)

where

w◦
n =

s2(ϕ)∫
s1(ϕ)

W ◦(s,ϕ; ε)yn(s,ϕ)ds,

v◦
n =

s2(ϕ)∫
s1(ϕ)

V ◦(s,ϕ; ε)yn(s,ϕ)ds (97)

are assumed to be polynomials in ζ = ε−1/2ϕwhose coefficients are regular functions
of ε.

Running WP and its center. Taking into account the linearity of the governing
equations and expansions (96) as well, the solution of the boundary-value problem
(13), (92), (93) may be presented in the form

W =
∞∑
n=1

W̃n(s,ϕ, t; ε), � =
∞∑
n=1

�̃n(s,ϕ, t; ε),

where W̃n, �̃n(n = 1, 2, 3, . . .) are the required functions localized in aneighborhood
of a generatrix ϕ = qn(t).
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Here qn(t) is a twice differential function such that

qn(0) = 0. (98)

The pair W̃n, �̃n will be called the nth WP with the center ϕ = qn(t) running in the
circumferential direction.

Boundary-value problem in the local coordinate system. We hold the number n
fixed and study the behavior of the nth WP. It is convenient to go over to a local
moving coordinate system

ϕ = qn(t) + ε1/2ξn

with the center ϕ = qn(t).
Here parameters ξn, s define the position of a point on the shell surfacewith respect

to the moving generatrix ϕ = qn(t).
Then the governing equations may be rewritten in the new coordinate system as

follows:

ε2
∂4W̃n

∂ξ4n
+ 2ε3

∂4W̃n

∂ξ2n∂s
2

+ ε4
∂4W̃n

∂s4
+ k

∂2�̃n

∂s2
+ ε

∂

∂ξn

(
T2

∂W̃n

∂ξn

)

+ ε3/2
∂

∂s

(
T3

∂W̃n

∂ξn

)
+ ε3/2

∂

∂ξn

(
T3

∂W̃n

∂s

)
+ ε2

∂

∂s

(
T1

∂W̃n

∂s

)

+ ε2
∂2W̃n

∂t2
− ε3/2q̇n

∂2W̃n

∂ξn∂t
+ εq̇2n

∂2W̃n

∂ξ2n
− ε3/2q̈n

∂W̃n

∂ξn
= 0,

ε2
∂4�̃n

∂ξ4n
+ 2ε3

∂4�̃n

∂ξ2n∂s
2

+ ε4
∂4�̃n

∂s4
− k

∂2W̃n

∂s2
= 0,

(99)

where the dots(·) denote differentiation with respect to the dimensionless time t.
The initial conditions for the nth WP take the form

W̃n|t=0 = w◦
n(ϕ, ε)yn(s,ϕ) exp [iε−1S◦(ϕ)],

˙̃Wn|t=0 = iε−1v◦
n(ϕ, ε)yn(s,ϕ) exp [iε−1S◦(ϕ)],

(100)

and the boundary conditions for the simply supported and clamped edges are defined
by Eqs. (95), where y should be replaced by W̃n.

The functions k(ϕ), si(ϕ),Tj(ϕ), yn(s,ϕ),λn(ϕ) are expanded into a series in a
neighborhood of the moving center q(t). In particular,

T2(ϕ, t) = T2[qn(t), t] + ε1/2T ′
2[qn(t), t]ξn + 1

2
εT ′′

2 [qn(t), t]ξ2n + . . .

To avoid inconvenience the subscript n is omitted in what follows.
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Ansatz for thenthWP. The formal asymptotic solution of the initial-boundary-value
problem (99), (100), (95) for the nth WP is assumed to be in the form of (Mikhasev
2002)

W̃ ∼=
∞∑
m=0

εm/2wm(s, ξ, t) exp [iε−1S(ξ, t, ε)],

�̃ ∼=
∞∑
m=0

εm/2fm(s, ξ, t) exp [iε−1S(ξ, t, ε)],

S =
t∫
0

ω(τ )dτ + ε1/2p(t)ξ + 1
2εb(t)ξ

2,

(101)

where
Imb(t) > 0 for any t ≥ 0, (102)

wm, fm are polynomials in ξ with complex coefficients being functions of t and s, |ω|
is the momentary frequency of the shell in a neighbourhood of the center ϕ = q(t),
p(t) is the wave number determining the variability of waves in the circumferential
direction, and the function b(t) characterizing the width of the nth wave packet.
Inequality (102) guarantees attenuation of wave amplitudes far from the WP center.

It may be seen that in the case when q = 0, and ω, p, b, wm, fm are independent of
time t, expansions (102) are degenerated into the stationary WP (15) describing free
localized vibrations in a vicinity of the fixed (weakest) generatrix (Tovstik 1983a).

Sequence of boundary-value problems. The substitution of expansions (101) into
Eqs. (99) results in the sequence of differential equations

m∑
j=0

Ljwm−j = 0, m = 0, 1, 2, . . . (103)

where

L0z = k2[q(t)]
p4(t)

∂4z

∂s4
+ {

p4(t) − T2[q(t), t]p2(t) − [ω(t) − q̇(t)p(t)]2} z,
L1 = (

bLp + Lq + ṗLω

)
ξ − iLp

∂

∂ξ
,

L2 = (
b2Lpp + 2bLpq + Lqq + ṗ2Lωω + 2ṗLωq

+ 2ṗbLωp + ḃLω

)
ξ2 − 1

2
Lpp

∂2

∂ξ2

−i
(
bLpp + Lpq + ṗLωp

)
ξ

∂

∂ξ
− iLω

∂

∂t

−i

(
1

2
bLpp + 1

2
ω̇Lωω + ṗLωp + q̈p + N

)
, . . . ,

(104)
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N = −4k[q(t)]k′[q(t)]
p5(t)

∂4

∂s4
− 2p(t)

{
T3[s, q(t), t] ∂

∂s

∂T3
∂s

[s, q(t), t]
}

.

Substituting Eqs. (101) into (95), where y is replaced byw, produces the sequence
of boundary conditions forwm. For instance, for the simply supported edges they are
defined by Eqs. (18), but considered at s = si[q(t)], i = 1, 2.

Note that Eqs. (18) at s = si[q(t)] guarantee a realization of the boundary con-
ditions merely in a small vicinity of the moving center ϕ = q(t). There is no sense
to satisfy the boundary conditions on the whole segment 0 ≤ ϕ < π because of the
exponential decay of the wave amplitude far from the line ϕ = q(t).

The sequence of one-dimensional boundary-value problems (103), (18) is used
for the determination of unknown time-dependent functions p(t), q(t), ω(t), b(t) and
polynomials wj(s, ξ, t). As in Sect. 2, we will call these problems as BVP0, BVP1,
BVP2, …, respectively. Let us consider them step-by-step for j = 0, 1, 2, . . ..

Zeroth order approximation (BVP0). In the zeroth order approximation
(m = 0), one has the homogeneous ordinary differential equation

L0w0 ≡ k2[q(t)]
p4(t)

∂4w0

∂s4
+ {

p4(t) − T2[q(t), t]p2(t) − [ω(t) − q̇(t)p(t)]2}w0 = 0.

(105)
with the homogeneous boundary conditions

w0 = 0,
d2w0

ds2
= 0, at s = si[q(t)]. (106)

Its solution may be presented in the form

w0(s, ξ) = P0(ξ, t)y[s, q(t)], (107)

where P0(ξ, t) is an unknown polynomial in ξ with coefficients being smooth func-
tions of time t. Then f0 = P0k(q)p−4∂2y/∂s2.

Substituting Eq. (107) into Eq. (105) yields the relation

ω = q̇(t)p(t) − H±[p(t), q(t)], (108)

linking the momentary frequency ω(t) to the wave parameter p(t) and the grope
velocity v(t) = q̇(t) of the nth WP, where

H±(p, q, t) = ±
√
p4 + λ(q)k2(q)

p4
− T2(q, t)p4 (109)

are Hamilton functions.
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The signs ± in Eqs. (109) indicate the availability of two branches (positive and
negative) of the solutions corresponding to the functionsH±. These signs are omitted
in what follows, and all further constructions are fulfilled for the function H+.

In this approximation, the polynomial P0(ξ, t) remains unknown.

Fist order approximation (BVP1). In the first order approximation (m = 1), the
non-homogeneous differential equation

L0w1 = −L1w0 (110)

with the non-homogeneous boundary conditions

w1 + ξs′i
∂w0

∂s
= 0,

∂2w1

∂s2
+ ξs′i

∂3w0

∂s3
= 0, (111)

are derived.
Its solution is presented in the form of

w1 = P1(ξ, t)y[s, q(t)] + w
(p)
1 (s, ξ, t), (112)

whereP1(ξ, t) is a new unknown polynomial in ξ, andw
(p)
1 (s, ξ, t) is a partial solution

of Eq. (110).
Taking into account the self-conjugacy of the BVP1, we derive the equality

s2[q(t)]∫
s1[q(t)]

y(L0w1 + L1P0y)ds = 0 (113)

which serves as the condition for existence of a solution of the BVP1.
The operator L1 is defined by the operators Lp and Lq (see Eq. (104)). To define

these operators, the BVP0 should be differentiated over the parameters p and q:

L0wp + Lpw0 + 2H(q̇ − Hp)w0 = 0,

wp = 0,
∂2wp

∂s2
= 0 for s = si[q(t)];

L0wq + Lqw0 − 2HHqw0 = 0,

wq + s′i
∂w0

∂s
,

∂2wq

∂s2
= 0,

∂2wq

∂s2
+ s′i

∂3w0

∂s3
= 0.

(114)

Now Eq. (113) can be rewritten as the differential one

b(q̇ − Hp)ξP0 + (ṗ + Hq)ξP0 − i(q̇ − Hp)
∂P0

∂ξ
= 0 (115)

with respect to P0.
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It may be seen from (115) that P0 is the polynomial in ξ, if the functions p(t), q(t)
satisfy the Hamiltonian system

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
or q̇ = −∂H

∂p
, ṗ = +∂H

∂q
. (116)

In (116), the first and second systems correspond to the positive and negative branches
of the solution, respectively.

Comparison of Eqs. (93) and (101), with Eq. (98) in mind, gives the initial con-
ditions

p(0) = a◦, q(0) = 0. (117)

When taking Eqs. (116) into account, the operator L1 in (110) will be simplified:

L1 = (
Lq + ṗLω

)
ξ.

Then the solution of the BVP1 may be written as follows

w1 = P1(ξ, t)y[s, q(t)] + ξP0(ξ, t)
∂y

∂q
, (118)

where the polynomials P0,P1 remain undefined.
Second order approximation (BVP2). In the second order approximation, the

non-homogeneous differential equation

L0w2 = −L1w1 − L2w0 (119)

with the non-homogeneous boundary conditions

w2 + ξs′i
∂w1

∂s
+ 1

2
ξ2
(
s′′i

∂w0

∂s
+ s′i

2 ∂3w0

∂s3

)
= 0,

∂2w2

∂s2
+ ξs′i

∂3w1

∂s3
+ 1

2
ξ2
(
s′′i

∂3w0

∂s3
+ s′i

2 ∂4w0

∂s4

)
− 4is′i

p

∂3w0

∂s3
= 0,

(120)

at s = si[q(t)] arises again. The compatibility conditions for this boundary-value
problem may be derived from the equation

s2[q(t)]∫
s1[q(t)]

y[L0w2 + L1(P1y + ξP0yq) + L2P0y]ds = 0. (121)

To define operators Lpp,Lpq,Lqq being the part of L2 in Eq. (121), it is necessary
to differentiate the boundary-value problems (114) with respect to the parameters p
and q once more. For instance, one gets the non-homogeneous differential equation
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L0wqq + 2Lqwq − 2LωHqwq + Lqqw0 − 2LωqHqw0

+LωωH2
qw0 − LωHqqw0 = 0

with respect to the function wqq and the non-homogeneous boundary conditions

wqq + 2s′i
∂wq

∂s
+ s′′i

∂w0

∂s
+ s′i

2 ∂2w0

∂s2
= 0,

∂wqq

∂s2
+ 2s′i

∂3wq

∂s3
+ s′′i

∂3w0

∂s3
+ s′i

2 ∂4w0

∂s4
= 0 at s = si[q(t)].

Other two supplementary problems for functions wpp, wqp are not written out here.
The substitution of Lppw0,Lpqw0,Lqqw0 into the compatibility condition (121)

results in the differential equation for P0:

(ξ2Db − 2Dξt)P0 = 0, (122)

where

Db = ḃ + Hppb
2 + 2Hpqb + Hqq,

Dξt = h0
∂2

∂ξ2
+ h1ξ

∂

∂ξ
+ h2

∂

∂t
+ h3,

h0(t) = 1

2
Hpp, h1(t) = i(bHpp + Hpq), h2 = i,

h3(t) = i

2H

⎧⎨
⎩bHHpp − ω̇ − 2HqHp + q̈p + 1

η

s2∫
s1

Lω ẏyds + �

⎫⎬
⎭ ,

�(t) = −4k[q(t)]k′[q(t)]λ[q(t)]
p5(t)

− p(t)
∂T2
∂ϕ

[q(t)]

−p(t)

η(t)
T3[s, q(t), t]y2|s2s1 , η(t) =

s2∫
s1

y2ds.

Equation (122) has a solution of polynomial form if and only if the function b(t)
satisfies the Riccati equation

ḃ + Hppb
2 + 2Hpqb + Hqq = 0. (123)

The comparison of the initial conditions (100) and ansatz (101) gives the initial
condition

b(0) = b◦ (124)

for the Riccati equation.
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When taking the Riccati equation into account, Eq. (122) is reduced to the fol-
lowing equation

DξtP0 = h0
∂2P0

∂ξ2
+ h1ξ

∂P0

∂ξ
+ h2

∂P0

∂t
+ h3P0 = 0 (125)

called as the amplitude one. A solution of this equation may be presented in the
following form (Mikhasev 2002):

P0 = �m(t)Hm(x), (126)

where Hm(x) is the Hermite polynomials in x of the mth degree, and

x = �(t)ξ, �(t) =
exp

[
− ∫ h1(t)dt

h2(t)

]
√
4
∫ h0(t)

h2(t)
exp

[
−2
∫ h1(t)dt

h2(t)

]
dt

,

�m(t) =
{
4
∫
(h0/h2) exp

[−2
∫
(h1/h2)dt

]
dt
}m/2

exp
[∫

(h3/h2)dt
] .

(127)

It is evident that the polynomial

P0(ξ, t; cm) =
M∑

m=0

cm�m(t)Hm[�(t)ξ] (128)

of theMth degree is also the solution of the amplitude Eq. (125). Arbitrary constants
cm are found from the initial conditions.

Remark 2 The procedure for constructing the functionswm, fm appearing in (101) at
m ≥ 1 may be formally continued. It should be however noticed that higher approx-
imations become asymptotically incorrect for m ≥ 4 because the correction intro-
duced by the boundary-value problem into the general solution (101) at the sixth
step is of the order ε2 at the shell edges, which is the same as the errors of both the
original boundary conditions (13) and governing Eqs. (92).

The function

W̃ = [
w0(s, ξ, t) + O

(
ε1/2

)]
exp

[
iε−1S(s, ξ, t; ε)

]
(129)

found from the first three approximations is the main term in the asymptotic expan-
sion (101).
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Determination of constants. Taking into account the availability of positive and
negative branches of solution (1.30), we denote by

p±, q±, ω±, b±, P±
0 , w±

0 , �±, �±

the appropriate functions corresponding to the Hamiltonians H+ and H−.
Consider the superposition

W̃ = W̃+ + W̃−, (130)

where

W̃± = {
P±
0 (ξ±, t; c±

m)y[s, q±(t)] + O
(
ε1/2

)}
exp

[
iε−1S±(s, ξ±, t; ε)

]
,

S± =
t∫

0

ω±(τ )dτ + ε1/2p±(t)ξ± + 1

2
εb±(t)ξ±2

,

ξ± = ε−1/2[ϕ − q±(t)].

(131)

Function (130) contains 2(M + 1) constants c± (see Eq. (128)).
Substituting Eqs. (130), (131) into the initial conditions (100) for the nth WP

results in the following formulas for constants:

c±
m = 1

2m+1m!√π�±
m(0)

+∞∫
−∞

e−ζ2Hm
[
�±(0)ζ

] [
w◦

0(ζ) ∓ v◦
0(ζ)

H◦

]
,

where
ζ = ε−1/2ϕ, H◦ = H(a◦, 0, 0),

and w◦
0(ζ), v◦

0(ζ) are the polynomials in ζ from Eqs. (96).

Remark 3 Solution (130), (131) is correct in the asymptotic seance at some segment
0 ≤ t ≤ t′, where the following conditions hold:

Imb±(t) > 0,

ω±, p±, b±, ω̇±, ṗ±, ḃ±, q̇±, w±
j , f ±

j ,
∂w±

j

∂x
,
∂f ±

j

∂x
= O(1) at ε → 0.

(132)

In (132), x denotes any of the variables s, ξ, t.

http://dx.doi.org/10.1007/978-3-319-42277-0_1
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7.4 Examples

Example 7.4.1 Consider the joint-supported circular cylindrical shell, for which k =
1, s1 = 0, s2 = l,λ = (πn/l)4, being under the non-uniform hoop stresses

T2(ϕ) = �(1 + δ cosϕ), 0 < δ < 1, � > 0.

(a)

(b)

Fig. 11 Parameters p+ (a) and centers q+ (b) of running WP versus dimensionless time t for
various δ: curve 0 (δ = 0), curve 1 (δ = 0.05), curve 2 (δ = 0.5), curve 3 (δ = 1)
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Such stresses are caused by the external “wind” normal pressure. Here the generator
ϕ = 0 is the weakest one. We assume that the center of the initial WP coincides
with this line. We performed computations for l = 1, n = 1, a◦ = 2, b◦ = i, w◦

1 =
1, v◦

1 = 0 (see Eq. (97)), � = 2 and for various values of a parameter δ. Figure11
shows the solutions of the Hamiltonian system. It may be seen that, in the cases of
uniform and non-uniform pressure with the low non-homogeneity(δ = 0, 0.05), the
1+st packet runs in the direction of pressure diminution without obstacles, whereas
for δ = 0.5, 1 there are the effects of reflection of the 1+st packet from the gener-
ators ϕ = q+

r = 0.16 and ϕ = q+
r = 0.48, respectively. Figure12 demonstrates the

manner in which the dimensionless momentary frequency ω+ and the group velocity
v+

g = q̇+ of the running WP vary with the course of time, for the uniform pressure
these magnitudes staying constant. In Fig. 13, the parameter Imb+ and the maximum
amplitude w+

max of waves in the 1+st WP are plotted as functions of time t. When
analyzing the behaviour of these functions, one can conclude: for small parameters
δ characterizing the pressure non-homogeneity, the running WPs become dissolved,
and for large parameters δ the effects of reflecting packets are accompanied by focus-
ing and growing amplitudes aswell;moreover, the larger the parameter δ is, the higher
the power of focusing is and greater the magnitude of maximum amplitude becomes.

Example 7.4.2 Now,we consider the simply supported circular cylindrical shell with
the sloping edge as shown in Fig. 3. Here

(a) (b)

Fig. 12 Dimensionless frequenciesω+ (a) and group velocities v+
g = q̇+ (b) of runningWP versus

dimensionless time t for various δ: curve 1 (δ = 0), curve 1 (δ = 0.05), curve 2 (δ = 0.5), curve 3
(δ = 1)
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(a)

(b)

Fig. 13 Parameters Imb+ (a) and maximum amplitudes w+
max (b) of running WP versus dimen-

sionless time t for various δ: curve 1 (δ = 0), curve 1 (δ = 0.05), curve 2 (δ = 0.5), curve 3 (δ = 1)

k = 1, s1 = 0, s2(ϕ) = l0 + (cosϕ − 1) tan β,

λn(ϕ) = π4n4/s42(ϕ), yn(s,ϕ) = sin [πns/s2(ϕ)]

and the longest generator ϕ = 0 will be the weakest one.
It is assumed that the shell is under the action of the slowly increasing normal

pressure Q∗
3 = ε6R−1Ehc∗

t t
∗, where c∗

t = ct/t∗c , ct ∼ 1, t∗c is the characteristic time
introduced earlier. Then the dimensionless hoop stress-resultant T2 = �(t) = ctt is
also increasing function of time.
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Let the initial WP (93) coincide with one of eigenmodes (38), where a◦ = p◦ =√
πn/l0, b◦ = i

√
Hqq/Hpp, w◦

0 = H0 = 1, v◦
0 = 0.

Graphs of the functions p±(t), q±(t),ω±(t), Imb±(t), w±
max(t) are shown in

Figs. 14, 15 and 16. Calculations were performed at l0 = 2,β = 30◦, n = 1 and
different values of a parameter ct . In the case of an external pressure (ct > 0)
computations were conducted at the segment 0 < t < tb, where the inequality
�(t) < �b is valid, with �b corresponding to the external buckling pressure

(a)

(b)

Fig. 14 Parameters Imb+ (a) and maximum amplitudes w+
max (b) of running WP versus dimen-

sionless time t for various δ: curve 1 (δ = 0), curve 1 (δ = 0.05), curve 2 (δ = 0.5), curve 3 (δ = 1)
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(a)

(b)

Fig. 15 Parameters Imb+ (a) and maximum amplitudes w+
max (b) of running WP versus dimen-

sionless time t for various δ: curve 1 (δ = 0), curve 1 (δ = 0.05), curve 2 (δ = 0.5), curve 3 (δ = 1)

(Tovstik 1983b; Tovstik and Smirnov 2001). Here tb ≈ 1.833 and tb ≈ 1.020 for
ct = 1.5 and ct = 2.5, respectively.

It may be seen fromfigures that growing pressure (both internal and external ones)
leads to splitting the initial WP into the pair of the non-stationary WPs which run in
the opposite directions. But for all that, the character of wave processes under inter-
nal and external pressures are different. So, under internal pressure, one observes
the multiple reflections of the WPs from certain generatrix, these reflections being
accompanied by strong focusing of the WPs and slight creasing the wave ampli-
tudes. If the pressure is external, the reflection of the WPs are also possible, but in
this case, running localized vibrations are accompanied by the very quick increase
of the functions |ω±(t)|, |v±

g (t)|, |w±
max(t)| as t → tb. It should be noted however that

the unlimited growth of these functions contradicts conditions (132). Thus, solu-
tion (130), (131) should be considered at some interval 0 ≤ t < tb as long as the
asymptotic correlations (132) are valid.
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(a)

(b)

Fig. 16 Parameters Imb+ (a) and maximum amplitudes w+
max (b) of running WP versus dimen-

sionless time t for various δ: curve 1 (δ = 0), curve 1 (δ = 0.05), curve 2 (δ = 0.5), curve 3 (δ = 1)

The examples considered above have revealed the following mechanical effects:

• The presence of the weakest generatrix on the shell surface due to variable gen-
eratrix length or pressure non-homogeneity may result in strong localization of
the running packets of bending waves and their reflections from some generatrix
which are accompanied by strong focusing and growing amplitudes.

• The initial local perturbations of the cylindrical shell having the weakest line and
being under action of increasing external pressure may lead to very quick growing
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amplitudes of the running WPs, and as a result, to dynamic buckling at the value
of pressure which is lower than the critical static pressure.

At the end of the section, we refer to other papers, (Mikhasev 1996, 1998a, b;
Avdoshka and Mikhasev 2001) devoted to propagation of WPs in thin shells. So,
in paper of Avdoshka and Mikhasev (2001), the influence of nonuniform axial sta-
tionary and dynamic forces on WPs travelling in the circumferential direction of
a thin elastic cylindrical shell was analyzed. Solutions for infinitely long cylindri-
cal shells (Mikhasev 1998a) and shells of revolution (Mikhasev 1996) as well were
constructed in the form of superposition of packets of bending, longitudinal and tor-
sional waves running in the axial direction. And finally, two-dimensional WPs with
centers in points running over the shell surface of an arbitrary shape were studied in
reference (Mikhasev 1998b).

8 Conclusions

The scope of this Chapter on vibrations of thin shells demonstrates the variety of
factors resulting in localization of eigenmodes. The differential equations governing
the localized motion of shells do not admit, as a rule, a solution in an explicit form.
The more effective approach for studying similar non-classical problems may be the
complex WKB method. As shown, the asymptotic method of Tovstik permits one to
examine highly localized vibrations in a vicinity of a fixed lines (called the weakest
ones) at the shell surface. And the generalized variants of this approach (Mikhasev
2002; Mikhasev and Tovstik 2009) proved to be an effective mathematical tool for
investigation of unsteady localized wave processes. In particular, the non-stationary
complexWKB approximation permits one to study suchmechanical effects as reflec-
tions of runningwave packets, their strong focusing and increasing amplitudes which
are difficult to be revealed by numerical methods.
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Six Lectures in the Mechanics of Elastic
Structures
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Abstract This document consists of six sections, one for each of my lectures. All
lectures but the fourth consisted in slide presentations; in each section, the subsec-
tion sequence reproduces the slide sequence. The blackboard-and-chalk delivery of
Lecture 4 is here accounted for in standard written form. The contents of all lectures
were largely based on some papers of mine, mostly published, quoted in the open-
ing lines of the sections; the interested reader is urged to consult the reference lists
therein, let alone to find more complete and detailed expositions of the matters.
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1.1 Prologue

“Thin Elastic Structures”: what are they?Toanswer this question,we should agree
on what is meant by ‘structure’ and on what adscititious characters make a structure
‘elastic’ and ‘thin’. But this is not all: assuming that ‘mathematical simulationmodel’
is an acceptation of ‘theory’ appropriate to our context, we should also agree on what
do we mean by ‘validating a theory’.
Structures, elastic or not, thin or not. ‘Structure’ is a word of manifold uses with
manifold meanings. To a modelist, mass points and rigid bodies are structures, as
much as strings, beams, arches, plates, shells, …, because both mass points and rigid
bodies compose classes of continuous material bodies characterized by especially
simple descriptions of their inertial and kinematical properties; that is, both mass
points and rigid bodies are structures.

Neither mass points nor rigid bodies are elastic, although they all can be in some
sense thin. It would seem that ‘thinness’ and ‘elasticity’ should be regarded as inde-
pendent properties. This leads me to make an attempt to
Disentangling thinness from elasticity. Unfortunately, both the classical theories
of beams and plates and their modern variational counterparts are formulated in such
a way as to make it impossible to separate thinness from elasticity.

There is more to thinness than marked slenderness in the case of beams or modest
thickness in the case of plates: in fact, thinness is a mixed property, both geometrical
and constitutive in nature. The adopted notion of thinness is at the conceptual core
of any structure theory, so much so that to assess the validity of a structure theory
amounts to judge whether it is based on a convincing thinness notion.

1.2 Generalities on Theory Validation

Uncertainty assessment. Assessing Uncertainty (UA) is “…crucial for natural haz-
ard risk management, facilitating risk communication and informing strategies to
successfully mitigate our society’s vulnerability to natural disasters”.1 UA decreases
when either accuracy or precision increase. But, its aim is to evaluate the outcome
of a complex phenomenon, whose ingredients are mostly stochastic: having to deal
with deterministic theories, we can forget about it.
Validation versus verification. Here is what one finds on browsing the computer
version of a standard English dictionary:

1See, e.g.,

– C.A. Schenk and G. I. Schuëller, Uncertainty Assessment of Large Finite Element Systems.
Springer (2005).
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• validate
check or prove the validity or accuracy of something (these estimates have been
validated by periodic surveys).

– demonstrate or support the truth or value of
– make or declare legally valid.

• verify
make sure or demonstrate that something is true, accurate, or justified (his con-
clusions have been verified by later experiments).

NOTE For mathematical theories, ‘verification’ seems more apt a procedure than
‘validation’. Curiously enough, K. Popper proposed ‘falsification’ (or rather, ‘fal-
sifiability’) as a basic criterion for verification. Yet, science philosophers seem to
prefer ‘validation’ to ‘verification’, when they take up ‘simulation models’, such as,
in particular, mathematical theories.

1.3 Validation Methodologies

There are two extreme approaches, namely, objectivism (aka foundationalism, jus-
tificationism) and relativism (aka anti-foundationalism, anti-justificationism), and
various intermediate declinations, among which we pick: instrumentalism.2

According to this last approach, the validation criteria to be used are esthetic
value, simplicity, and predictive success. Says M. Friedman:

– a simulation model of a real system is “…to serve as a filing system for organizing
empirical material.”

– “Only factual evidence can show whether [a simulation model] is ‘right’ or
‘wrong’, or better, tentatively ‘accepted’ as valid or ‘rejected.’ ”

– “…the only relevant test of the validity of a hypothesis is comparison of its pre-
dictions with experience.”

Would you regard your favorite plate theory as “a filing system for organizing
empirical material”?

I doubt it, for a number of reasons: because the same body of empirical evi-
dences can be ‘filed’ according to many plate theories; because more than one theory

2See, e.g.,

– Kleindorfer, G.B., O’Neill, L, and Ganeshan, R., Validation in simulation: various positions in
the philosophy of science. Management Sci., 44 (8), 1087–1099 (1998).

– Friedman, M., The Methodology of Positive Economics. Essays in Positive Economics. Univer-
sity of Chicago Press, Chicago, II, 3–43 (1953).
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can come out ‘right’−if one prefers to go for a cavalier either/or decision−or be
‘accepted’ as valid; and because predictive success is not the same as predictive
power.

I maintain that the axiomatic format of a simulation model (≡ mathematical
theory) should be judged on the basis of

– its esthetic value: simplicity, elegance, whatever is at bottom a matter of taste
counts; at times, even ethic value counts;

– its predictive power, i.e., its ability to give “…guidance to the gaps that sometimes
analogy and imagination leave open in the process of generalizing an existing
branch of the theory, or creating a new one.”3

Ultimately, for me, the physical content of an axiomatic scheme resides in its
discovery potential, and is measured by its persistence in form when a broader or
new theory is aimed at.

1.4 Computational Validation

I call a theory approximate when it is meant to be a simplified version of another
accepted theory, but it is not a special case of it. Commonly, an approximate theory
is validated when the discrepancy between its predictions and those of the accepted
theory is found conveniently small.

Oftentimes, discrepancy is measured by comparing computational outcomes.
When this is the case, validation of approximate theories depends on reliableness of
numerical schemes and computer codes. Since such schemes and codes are indeed
more and more reliable, the interest for explicit solutions, which simpler theories are
more likely to allow for, is progressively evaporating. My reasons to believe that this
trend should be resisted are listed here below.

1.5 Breaking a Lance for Simple Model Theories

My first and most important reason is that “…explicit solutions not only find a
quantitative use, in that they allow for computing specific unknowns, but also a
qualitative use, in that they help to interpret certain experimental findings in the
light of the theory within which they were derived. Often, …there is not a clear-cut
distinction between quantitative and qualitative uses: for example, benchmarking of
algorithms and codes entails a not purely quantitative use of explicit solutions.”4

3This quote is taken from the second of the papers listed in the beginning of this section.
4This quote and all the other to follow are taken from the third paper listed in the beginning of this
section.



Six Lectures in the Mechanics of Elastic Structures 215

As a matter of fact, “…much current work in structure theory consists of com-
putational developments, at times pertaining more to numerical analysis than to
mechanics …a relatively new discipline, Computational Mechanics, has acquired
identity and dignity.” CM complements the program implicit in a Hadamard-like
well-posedness cliché, by constructing solutions pointwise, with arbitrary precision,
for each pointwise assignment of boundary data.”

Should we fear, with S.S. Antman, that “…a day will come when rod and shell
theories will loose their distinctive identities within CM and be subsumed under a
general theory for the numerical treatment of three–dimensional problems, endowed
with useful error estimates”?

My answer to [this] question parallels Antman’s, and is definitely negative: “rather
than furnishing approximations useful in applications–something that CM does
better–structural mechanics should pose and study classes of meaningful problems
amenable to qualitative analysis–something that is out of the scope of CM.”

“CM cannot treat at one time classes of shapes, loads, and materials: for example,
in the case of Saint-Venant Problem …, CM can compute with great precision the
solution for one cylinder, one system of end loads, one material; but it cannot treat
at one time a class of shapes (e.g., strictly speaking, it cannot predict what happens
when a cylinder of given cross section becomes slender and slender), let alone treating
classes of loads and classes of materials. Neither CM can establish the position of a
given structure theory with respect to a parent, more general mechanical theory.”

2 Validation via Variational Convergence

This lecture was based on

• R. Paroni and P. Podio-Guidugli, On variational dimension reduction in structure
mechanics. J. Elasticity, 118:1–13, 2015.

• P. Podio-Guidugli, On the validation of theories of thin elastic structures. Mecca-
nica, 49(6):1343–1352, 2014.

2.1 Dimension-Reduction Methods

A Dimension-Reduction Method (DRM) is a method to show that, given a real
problem Pr and a (3 − n)D approximate problem Pa (n ∈ {1, 2, 3}), Pa can be
induced from Pr . A Variational DRM (VDRM) is a DRM where both problems Pr

and Pa admit a variational formulation, and where a variational argument is used.
Here, in the interest of time and definiteness, we take n = 1 and we let Pr con-

cern a linearly elastic plate-like body; moreover, we choose Pa to be a plate problem,
Kirchhoff-Love’s or Reissner-Mindlin’s. We briefly recall the kinematical assump-
tions at the base of those two classic 2D theories. In this connection, I find appropriate
to offer a word of advice: make good use of the intuition of modelers of that caliber!
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The K-L and R-M Ansätze both specify how fibers transversal to the mid surface
of a plate-like body deform. In both cases,

(a) transversal fibers preserve their length;

in addition,

(b) transversal fibers remain orthogonal to mid surface (K-L);
(c) transversal fibers remain straight (R-M).

Mechanical DRMs. We mention two such methods:

– according to the method of internal constraints, the K-L and R-M Ansätze are
regarded as restrictions on admissible strain fields, enforced by suitable reactive
stress fields5;

– when the scaling method is adopted, the following steps are taken:

(i) data (≡ domain, elastic moduli, applied forces) and solution are scaled in terms
of integer powers of a thickness parameters ε;

(ii) sets of scaling exponents are chosen, on the basis of one requirement: that the
scaled total-energy functional stay finite when ε → 0 ;

(iii) backward-scaling of limit functionals yields K-L and R-M functionals (and
many others!).6

Analytical DRMs. Once again we mention two methods of this type.
One is the method of asymptotic expansions, which is expounded with rigor and

detail in

– P.G. Ciarlet, Mathematical elasticity. Vol. II. North-Holland Publishing Co., Ams-
terdam, 1997.

The other method is �–convergence; we distinguish it in standard and improved.
For the standard method, a couple of relevant references are:

– G. Anzellotti, S. Baldo, and D. Percivale, Dimension reduction in variational prob-
lems, asymptotic development in �–convergence and thin structures in elasticity.
Asymptotic Anal., 9(1):61–100 (1994).

– F. Bourquin, P.G. Ciarlet, G. Geymonat, and A. Raoult, �–convergence et analyse
asymptotique des plaquesminces. C.R.Acad. Sci. Paris Sér. IMath., 315(9):1017–
1024 (1992).

The improved �–convergence method to be soon delineated has been proposed in
the first paper quoted at the beginning of this lecture.

5This idea was first put forward and exploited in

– P. Podio-Guidugli, An exact derivation of the thin plate equation. J. Elasticity, 22:121–133 (1989).

See also the third paper quoted in the beginning of the previous section.
6See
– B. Miara and P. Podio-Guidugli, Deduction by scaling: a unified approach to classic plate and

rod theories. Asymptotic Anal., 51(2):113–131 (2007).
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2.2 Standard �–Convergence, Stripped to the Bone

Given a family {Pε} of minimum problems:

Pε : find uε = argmin
u∈Xε

Fε(u),

it may happen that a minimum problem P0 is found:

P0 : find u0 = argmin
u∈X

F0(u),

such that problem convergence implies solution convergence:

{Pε} → P0 ⇒ {uε} → u0.

Under these circumstances, one says that the family of problems Pε (functionals
Fε) �–converges to the limit problem P0 (functional F0).

NOTE Standard �–convergence is more a method to justify and validate a given
structure model than a method to deduce it, and even less to propose a new one.

2.3 Standard �–Convergence Validation of an Approximate
Problem

Let a 3D real problem Pr and a 2D approximate problem Pa be given. Then, problem
Pa is regarded as a valid approximation of problem Pr whenever, for ε the thickness
parameter,

(i) an ε−family Fε of 3D functionals, such that Fr = Fεr is found, and
(ii) it can be shown that the family Fε �–converges to a limit functional F0 being

in tight kinship (in a sense that needs to be made explicit) with the approximate
functional Fa .

We now give an example of successful validation by way of this procedure. One
begins by choosing
Problem Pr to be the equilibrium problem of a 3D plate-like body

• with square mid-section ωr of side lr and of thickness 2hr :

�r = ωr × (−hr ,+hr ), εr = hr/ lr ;

• clamped on the Dirichlet part ∂D�r = ∂Dωr × (−hr ,+hr ) of its boundary;
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• subject to null contact loads on the Neumann part and to a distance-force field br

over �r ;
• comprised of a linearly elastic material, with elasticity tensor Cr .

Next, one chooses
Functionals Fr andFε to be, respectively,

• the total-energy functional of classic 3D elasticity:

Fr (v) :=
∫

�r

(1
2
C

r [E(v)] · E(v) − br · v
)

dx,

defined over the space

H 1
D(�r ;R3) := {v ∈ H 1(�r ;R3) : v = 0 on ∂D�r };

• the �–convergent sequence of functionals:

Fε(v) :=
∫

�ε

(1
2
C

r [E(v)] · E(v) − bε · v
)

dx,

defined over the space

H 1
D(�ε;R3), for �ε = ωr × ε(−hr ,+hr ), ε ∈ (0, 1].

Finally, as to
Functional Fa , one picks the Kirchhoff-Love functional:

Fa(w) :=
∫

ωr

(1
2

(
D̄a(�w)2 − d̄a

(
w,11w,22 − (w,12)

2
)

− b̄aw
)

dx,

D̄a = Da(hr )3, d̄a = da(hr )3, b̄a :=
∫ +hr

−hr

br (x1, x2, x3)dx3,

defined over the space

H 2
0 (ωr ;R) := {w ∈ H 2(ωr ;R) : w = 0 and w,n = 0 on ∂ωr } .

So far so good. Now,

can the R-M functional too be squeezed out of 3D elasticity by standard �–
convergence?

Many have tried, but nobody succeeded.

“Therefore, R-M’s must be an invalid model”, says the lazy variationalist.
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“Not quite!”, his friend the astute mechanicist tells him, “You have to pick up the
‘right’ Fr and {Fε} ”. To do so, he continues, “the internal-constraints approach
shows that you may

• either add in a bit of second-gradient energy, as is done in

– R. Paroni, G. Tomassetti, and P. Podio-Guidugli, A justification of the Reissner-
Mindlin plate theory throughvariational convergence.Anal.Appl. 5(2):165–182
(2007).

• or develop a notion of fiberwise constraint, as is done in

– D. Percivale and P. Podio-Guidugli, A general linear theory of elastic plates and
its variational validation. Boll. Un. Mat. Ital. (9), 2(2):321–341 (2009).

Alternatively, you can make use of an improved problem sequence.”
Here is how this, and much more, can be done.

2.4 Improved �–Convergence Validation of an Approximate
Problem

Given a real problem Pr , we look for a problem P0

– easier to solve than Pr ,
– whose solution u0 is ‘close’ in some reasonable sense to the solution ur of problem

Pr ,
– which can be obtained via variational convergence.

Here is a two-step sequence of operations that open the way to achieving this goal.

Step 1. Choose a sequence of domains �ε such that

(i) �ε approaches ωr as ε goes to zero;
(ii) �εr = �r .

Step 2. Choose a sequence of problems Pε defined over �ε, such that

(i) {Pε} variationally converges;
(ii) Pεr = Pr .

It is for the analyst and the modelist together to exploit efficiently the noticeable
amount of remaining freedom in the choices of both domain and problem sequence:
we give two examples of such improved �–convergence validation set-ups (both
examples are taken from the first of the two papers quoted at the onset of this lecture,
where a complete derivation of the results quoted here below can be found).

One domain sequence, two energy sequences: Kirchhoff-Love and Reissner-
Mindlin plates. Consider a plate-like body of thickness 2hr and mid cross-section
ωr = (−�r ,+�r ) × (−�r ,+�r ), and identify the body point-wise with the region
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�r = ωr × (−hr ,+hr ) it occupies in a reference configuration. Moreover, let�r be
clamped on the Dirichlet part ∂D�r = ∂Dωr × (−hr ,+hr ) of its boundary, subject
to null contact loads on the complementary Neumann part, the only applied load
being a distance-force field br over �r . Finally, let �r be comprised of a linearly
elastic isotropic material.

We formulate the real problem

Pr : find ur = argmin
u∈H 1

D(�r ;R3)

∫
�r

(
W r (E(u)) − br · u

)
dx,

W r (E) = μ|E |2 + λ

2
(tr E)2.

Next, we take
Step 1. (choice of a domain sequence):

�ε = ωr × ε

εr
(−hr ,+hr ), ε ∈ (0, εr ].

Step 2. (choice of a problem sequence):
(a) we observe that W r can be re-written as follows:

W r (E) = 2μ + λ

2
(E11 + E22)

2 − 2μ(E11E22 − E2
12)

+ 2μ + λ

2
E2
33 + λ(E11 + E22)E33 + 2μ(E2

13 + E2
23);

(b) for κ ≥ 0, we define

Wε(u;κ) := 2μ + λ

2
(E11 + E22)

2 − 2μ(E11E22 − E2
12)

+ 2μ + λ

2

(
1 − κ + κ

(
εr

ε

)2
)

E2
33

+ λ

(
1 − κ + κ

(
εr

ε

))
(E11 + E22)E33 + 2μ(E2

13 + E2
23)

+ κ

(
εr − ε

ε

)2(
(u1,33)

2 + (u2,33)
2
);

(c) we set

Pε(κ) : find uε = argmin
u∈H 1

D(�ε;R3)

1

ε

∫
�ε

(
Wε(u;κ) − bε · u

)
dx .

It is then not too difficult to show that
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Fig. 1 Slender beam

– for κ = 0, the setting of the standard �–convergence validation is recovered; in
fact, problem sequence {Pε(0)} leads to Kirchhoff-Love plate theory, and the limit
displacement u0 belongs to the space of Kirchoff-Love displacements:

u0 ∈ KL := {wae3 + va − x3∇wa :
va ∈ H 1

D(ωr ;R2), wa ∈ H 2(ωr ), wa = wa
,n = 0 on ∂Dωr }.

– for κ > 0, problem sequence {Pε(κ)} leads to a theory of shearable plates, and the
limit displacement u0 belongs to the space of Reissner-Mindlin displacements:

u0 ∈ RM := {wae3 + va + x3ϕ
a: va,ϕa ∈ H 1

D(ωr ;R2), wa ∈ H 1
D(ωr )}.

Two domain sequences, one energy sequence: Bernoulli-Navier and Vlassov
beams. As to the real problem, consider a slender beam with “double-T” cross-
section (item (i) of Fig. 1; the dimensions shown are those of a IPE200 steel beam),
and let it be 4m long, say, so that

εr =
√

(1002 + 2002)/4000 ≈ 0.056.

Note that, on accepting the implicit and quite standard slenderness notion, a beam
with a rectangular 100 × 200 cross-section would be considered equally slender.

Two domain sequences can be considered: the first (item (i i) of the figure) reflects
the standard slenderness notion; the second (item (i i i)) takes into account the higher-
order thinness of both flanges and web. Were the beam in question bent, the first
notion would be appropriate, in that the shape of the cross-section would make
very little difference in the relevant stiffness; not so if it were twisted. Interestingly,
choosing the second domain sequence leads to the Vlassov theory, which accurately
accommodates both bending and twisting, whereas the other sequence yields the
cruder Bernoully-Navier theory for essentially bent beams.

These examples prompt me to jot down the following

Take-Home Message: In its improved version, �–convergence is a powerful vali-
dation tool, but it takes knowledgeable modelers to use it well.
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3 The Virtual Power Principle

This lecture was meant to show that the Virtual Power Principle (the VPP) is for the
theoreticalmechanist kind of a SwissArmy knife, in that it hasmany blades andmany
accessories one canmake good use of. In this connection, it seemed tome appropriate
to begin by stating what the VPP is not. I decided to give no references: there are
too many (discussable anticipations of the VPP can be traced in certain fragments of
Aristotle’s), and the contents to be expounded are all rather well-known in continuum
and structure mechanics circles.

3.1 The VPP is not a Variational Statement

When recourse is made to the VPP, there is no energy functional to minimize in
order to find equilibria. As a matter of fact, the VPP is much more general a tool than
Euler-Lagrange equation, because

– it neither obscures nor precludes the contribution of dissipative forces,

and because

– once constitutive choices singling out inertia forces aremade, the balances it yields
take the form of evolution equations for the relevant kinematical fields.

3.2 The Standard VPP

Let B denote a so-called simple (or Cauchy’s) continuous body, which we identify
point-wise with a domain in EN , with nice boundary ∂B), acted upon by exter-
nal distance forces do at its interior points and by external contact forces co at its
boundary points, where a stress field S is induced by the loads at equilibrium. More-
over, let Virt denote the space of test (≡ virtual) velocities δu, a collection of
fields over B including all realizable velocities and being closed under translational
observer changes.

The Standard Virtual Power Principle amounts to the following statement:

for each δu ∈ Virt,

δ�i (B)[δu] =:
∫

B
S · ∇δu =

∫
B

do · δu +
∫

∂B
co · δu := δ�e(B)[δu] , (1)

i.e., the internal and external virtual power expenditures δ�i (B) and δ�e(B) should
be equal for whatever virtual velocity field δu.
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As is well-known, via test invariance this global statement has two point-wise
consequences, the balance equation:

DivS + do = 0 in B, (2)

and the boundary condition:
Sn = co in ∂B. (3)

Thus, the Standard VPP is basically nothing but a balance statement in a weak form.

NOTE Translation invariance of (1) implies a global condition on the load data that
is necessary for equilibrium, namely,

∫
B

do +
∫

∂B
co = 0 ;

needless to say, this condition can be deduced from (2) and (3).

3.3 A Strenghtened Version of the VPP

The basic mechanical structure of simple continua can be introduced under form of
a part-wise VPP; here is how.

Forces can be formally introduced as dual of velocities, and stresses as dual
of velocity gradients, by laying down two linear, continuous and bounded power-
expenditure functionals:

δ�e(P)[δu] :=
∫

P
d · δu +

∫
∂P

c · δu ,

δ�i (P)[δu] :=
∫

P
S · ∇δu ,

(4)

defined for all body parts P ⊂ B and for all δu ∈ Virt. In so doing, the only primitive
object is Virt, forces and stresses are secondary notions; specification of the two
Riesz-duality relations (4) may be regarded as the ‘degré zero’ of the constitutive
theory of simple bodies.

The mutual consistency of the stress and contact-force fields is a consequence of
postulating the following Strengthened Virtual PowerPrinciple:

for each P ⊂ B and for each δu ∈ Virt,

δ�i (P)[δu] = δ�e(P)[δu] . (5)

Note the twofold quantification: asking that (5) holds for each body part makes
(5) much stronger a requirement than (1), which holds for the whole body. This
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additional strength connects the values taken by S and c at all points of B, and not
only at its boundary points, as (3) does. Indeed, beside (3) and the point-wise balance
(2)—which, as we know, both follow from (1) test invariance—via part invariance
we can arrive from (5) at the representation formulae

c = ĉ(p, n) := Ŝ(p)n, Ŝ(p) :=
3∑

i=1

ĉ(p, n(i)) ⊗ n(i), (p, n) ∈ B × U ,7

from7 which we can conclude that contact interactions and stress convey the same
information.

3.4 The PVP as a Dimension-Reduction Tool

We now want to show how the balance equations of both beam and plate theories
can be derived from the Standard VPP, provided the specialty in shape of the body
classes in question is exploited.8

In an attempt to avoid unnecessary technical complications so as to let the essential
conceptual features emerge, we consider the right cylinder shown in Fig. 2, for which,
on taking all contact loads null for simplicity, the Standard VPP reads:

∫
S×(0,l)

S · ∇δu =
∫

S×(0,l)
d · δu, for all test fields δu. (6)

From 3D to 1D: Beam Theory. Pick the test fields

δuR = v(z)e2 + (w(z) + y ϕ(z))e3,

and restrict attention to load fields of the form

d = p̃(x, y, z)e2 + q̃(x, y, z)e3.

Then, (6) reduces to the following 1D Standard VPP:

for all scalar test fields v,w, and ϕ,

∫ l

0

(
T v′ + T̃ ϕ + Nw′ + Mϕ′) =

∫ l

0
(pv + qw + cϕ),

7Here U is the collection of all unit vectors.
8See pp. 214–215 of
– P. Podio-Guidugli, Lezioni di Scienza delle Costruzioni. II edizione, corretta, riveduta e ampliata.
Aracne, Roma (2009).
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Fig. 2 Cylindrical body

where

T :=
∫

S
S23, T̃ :=

∫
S

S32, N :=
∫

S
S33, and M :=

∫
S

y S33,

are called, respectively, the shear forces T, T̃ , the normal force N , and the bending
moment M , and where

p :=
∫

S
p̃, q :=

∫
S

q̃, and
∫

S
yq̃,

are the transverse load, the axial load, and the bending couple, per unit length.
Test invariance of this statement yields both the balance equations prevailing at

each point z ∈ (0, l):

−T ′ = p , −N ′ = q , −M ′ + T̃ = c

and the boundary conditions at z = 0 and z = l, which consist of assignments of

either

⎧⎨
⎩

shear force T
normal force N

bending moment M

⎫⎬
⎭ or

⎧⎨
⎩
vertical displacement
axial displacement
rotation about e1

⎫⎬
⎭ .

NOTE Our standard version of the 1D VPP is not powerful enough to imply that the
shear forces T and T̃ are equal, just as the standard 3D VPP does not imply that the
stress field is symmetric.
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From 3D to 2D: Plate Theory. This time, all one has to do is:

(i) to pick the test fields

δuP = w(x, y)e3 + z ϕ(x, y), ϕ ⊥ e3

and the load fields:
d = q̃(x, y, z)e3;

(ii) to insert these fields into (6);
(iii) to exploit the inherent test-field quantification.

NOTE Needless to say, the plate test-fields δuP are ‘Reissner-Mindlin inspired’, just
as the beam-test field δuR are ‘Timoshenko inspired’.

4 A Modicum of Continuum Mechanics

This section offers an enlarged account of the contents of Lecture 4; in particular,
Sects. 4.1 and 4.2 are based on material taken, respectively, from

• P. Podio-Guidugli, Sparse Notes in Continuum and Statistical Thermodynamics.
In preparation, 2006.

• P. Podio-Guidugli, A Primer in Elasticity. Kluwer, 2000.

4.1 Kinematics

Space-time structure, deformations, motions. We observe a body against the
background of a chosen space-time structure. We presume to be able to observe
a body ‘atomwise’—that is to say, material point by material point—and that mate-
rial points can be persistently labelled once and for all.

Space Structure. The first mathematical objects we need are a three-dimensional
Euclidean point space E , with typical point x , and a three-dimensional vector space
V , with typical vector v, endowed with an inner product. We think of both E and V
as counterclockwise oriented; hence, in particular, the operation of vector product
is unambiguously defined.9 The orientation-preserving isometries of E onto itself
consist of translations:

x → x ′ = x + v, v ∈ V,

9Provided we specify what type of analogic watch we use!
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and rotations about a chosen origin o:

x → x ′ = o + R(x − o), o ∈ E, R ∈ Rot .

Here Rot denotes the group of all proper orthogonal elements of Lin, the linear space
of all (second-order) tensors, i.e., of all linear transformations of V into itself.10 We
identify V with the collection of all translations, and call it the translation space of
E .
Time Structure. By time t we mean a point in a one-dimensional time manifold

that we identify with the oriented real line
−→
IR .

Deformations. To study body deformations, we need two copies of the pair (E,V),
namely, the referential pair (E,V)re f and the current pair (E,V)cur . The referential
pair serves the purpose of labelling material points by means of the space points
they occupy in Ere f and, in addition, of identifying material fibers (x, e) ∈ Ere f ×
Vre f , |e| = 1. The current pair provides the background against which the images
of a body and its material fibers are observed at the current time t .

By image of a material body B ⊂ Ere f under a deformation—that is, the restriction
to B of a smooth invertible mapping

ft : x → y = ft (x)

from Ere f into Ecur—we mean the set Bt = ft (B) ⊂ Ecur . By image of a material
fiber (x, e) we mean a pair (y, f), where y = ft (x) and f = ∂e ft (x) is the derivative
of ft in the direction e, evaluated at x , that is to say,

∂e ft (x) := lim
ε→0

ft (x + εe) − ft (x)

ε
. (7)

The notion of material fiber is central to a local analysis of deformation and strain.

Motions. A body motion is a one-parameter family of deformations of the form

{ ft | ft = a deformation, t ∈ IR}.

To observe body motions, a one-parameter family of copies of (E,V) is needed; note
that the referential pair may but need not be a member of this family.
Deformation gradient. The notion of deformation gradient is best introduced as
follows:

∂e ft (x) =: F(x, t)e for all unit vectors e. (8)

10Let 1 denote the unit element of Lin, that is, the identical transformation of V . The orthogonal
elements of Lin form the group Orth; each element Q ∈ Orth either is an element of Rot or has the
representations Q = IR = RI, with R ∈ Rot and I := −1 the central inversion of V .
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This definition makes evident that, at the present time t , the deformation gradient
F(x, t) at a point x ∈ B ⊂ Ere f is a linear mapping from the unit sphere of Vre f into
Vcur . This explains why the tensor-like object F was once upon a time customarily
called a double vector. This nomenclature is also suggested by the dyadic represen-
tation of F, that we now introduce; as a necessary premiss, we recall the notions of
dyadic product and curvilinear coordinates.

Dyadic Product. Given two inner-product vector spaces Vα(α = 1, 2), the dyadic
product of vectors a ∈ V2 and b ∈ V1 is a linear transformation a ⊗ b of V1 into V2,
which is defined as follows:

(a ⊗ b)[c] := (b · c)a for all c ∈ V1.

Now, for A a linear transformation of V1 into V2, the transpose AT of A is defined
by the following condition:

Ab · a =: b · AT a for all a ∈ V2 and for all b ∈ V1.

This definition establishes AT as a linear transformation of V2 into V1; in particular,
it allows to show that11

(a ⊗ b)T = b ⊗ a .

Curvilinear Coordinates. A triplet of real numbers ζ i (i = 1, 2, 3) is a set of
curvilinear coordinates for a typical point x ∈ Ere f if it so happens that

(ζ1, ζ2, ζ3) → x = x̂(ζ1, ζ2, ζ3), x → ζ i = ζ̂ i (x) (i = 1, 2, 3),

with
x̂(ζ̂1(x), ζ̂2(x), ζ̂3(x)) = x .

For each given deformation ft , we may consider the mapping ft ◦ x̂ , and write
the deformation gradient as:

F = hi ⊗ gi , hi := ∂ζ i y gi := ∂xζ
i , (9)

where the vectors gi compose the so-called contravariant base in the reference
placement and the vectors hi compose the covariant base in the current placement.
For gi the referential covariant base vectors, it is easy to see that

gi · g j =
{
0 if i �= j
1 if i = j

11Note that, to formulate the definition of transpose, both the inner-product ofV1 andV2 are needed,
and that, with slight notational abuse, they both have been denoted by a centered dot.
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(and similarly for the vectors of the current covariant and contravariant bases).
Hence,

Fgi = hi , (10)

so that F transforms the covariant base in Vre f into the covariant base in Vcur . As
anticipated, formula (9) offers another perhaps more explicit way of seeing why F
is called a double vector (as is FT , that has the dyadic representation

FT = gi ⊗ hi (11)

and maps linearly Vcur into Vre f ). We also have that

F−1 = gi ⊗ hi , (12)

whence
F−T = hi ⊗ gi , (13)

FF−1 = 1cur = hi ⊗ hi = F−T FT , F−1F = gi ⊗ gi = 1re f , (14)

where 1cur and 1re f are the metric tensors in the spaces Ecur and Ere f .12 Thus, for
any given material fiber (x, e),

Fe = (hi ⊗ gi )e = (gi · e)hi ,

F−T e = (hi ⊗ gi )e = (gi · e)hi .
(15)

In that both Ere f and Ecur are copies of one and the same oriented Euclidean space,
a deformation must preserve local orientation, in the sense that

det F > 0 everywhere in B;

the relation
h1 × h2 · h3 =: (det F) g1 × g2 · g3,

where × denotes the vector-product operation, conveniently defines det F.
Displacement, displacement gradient. The field

u(x, t) := ft (x) − x

12Metric tensors specify the outcome of inner products between elements of a given vector space.
For example, for a, b ∈ Vre f ,

a · b = ai gi · b j g j = ai bi = (a · gi )(b · gi ) = a ⊗ b · gi ⊗ gi ,

a relation that displays the necessary consistency between the inner products in Vre f and Linre f .
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is the displacement induced by the motion ft . In that ft (x) is a point of Ecur and x
of Ere f , the classification of displacement as a vector field requires an identification
of Vre f and Vcur which is usually left tacit.

The displacement gradient H := ∂x u satisfies:

F = H + 1re f ;

the following representation holds:

H = u,i ⊗gi , u,i = ∂ζ i u .

Strain measures. In the local analysis of a deformation, various F-based constructs
are encountered whose nature is fully tensorial.

Direct applications of definition (8)2 yield that the left Cauchy-Green strain mea-
sure B := FFT is an element of Lincur , and that the right Cauchy-Green strain mea-
sure C := FT F is an element of Linre f . With the use of (9), we find that:

B = FFT = (gi · g j )hi ⊗ h j , C = FT F = (hi · h j )gi ⊗ g j ; (16)

these formulae confirm that B (C) is a linear transformation of Vcur (Vre f ) in itself.
The strain measures are so called because they tell us how the local measures of

length, area, and volume, are changed by a deformation, and how the mutual angle
of material fibers is changed. To exemplify the role of C, let (x, e) and (x, ē) be two
noncollinear material fibers through a point x ∈ B, and let (x, f) and (x, f̄) be their
images under a deformation ft . Then,

δl(x, e) := |f | − 1 = |Fe| − 1 = (C · e ⊗ e)1/2 − 1 (17)

measures the deformation-induced length change in the direction e; likewise,

δa(x, e, ē): = arccos(e · ē) − arccos
(|f |−1|f̄|−1f · f̄

)
= arccos(e · ē) − arccos

C · e ⊗ ē
(C · e ⊗ e)1/2(C · ē ⊗ ē)1/2

(18)

measures the deformation-induced angle change of twomaterial fibers directed along
e and ē.

A deformation is regarded as small in a first-order neighborhood of a given mate-
rial point when the displacement gradient is, in the following sense:

ε := |H · H|1/2 � 1 . (19)

In this case, strain is measured by the tensor

E := 1

2
(H + HT ).
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It so happens that

E = 1

2
(C − 1re f ) − 1

2
HT H; (20)

thus, E approximates the exact strain measure

Ẽ := 1

2
(C − 1re f ) (21)

to within a term of order ε2.

4.2 Internal Constraints

In continuummechanics the standard notion of an internal constraint, i.e., of a restric-
tion on possible strains, is modelled on the notion of a bilateral, perfect and friction-
less positional constraint in mass–point mechanics; we recapitulate the latter, as is
done in the second reference given at the beginning of this section.

Positional Constraints in Mass–Point Mechanics. Let M be a surface in
E (Fig. 3), viewed as the locus of zeroes of a smooth scalar mapping x → μ(x) on
E . We say that a mass point X , of mass m > 0, is constrained to move onM, or that
M is a (bilateral, positional) constraint manifold for X , if all possible trajectories
τ → x(τ ) in E of X must lie inM:

μ
(
x(τ )

) = 0. (22)

Differentiating (22) with respect to τ we have

∇μ
(
x(τ )

) · x.(τ ) = 0, (23)

Fig. 3 A constraint
manifold and its tangent
plane
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where x := x − o denotes the position vector of a point x ∈ Mwith respect to a fixed
origin o; thus, as a direct kinematical consequence of a bilateral positional constraint,
we see that, at a point x(τ ) ∈ M, the possible velocities x.(τ ) are orthogonal to the
gradient ∇μ evaluated at x(τ ), and therefore lie in the tangent plane TM(x(τ )) to
M at x(τ ).

In addition to such a kinematical implication, the imposition that a mass point
move on a prescribed surface is usually accompanied by the following dynamical
stipulations:

1. the total force f acting on X splits into a reactive and an active part:

f = f (R) + f (A); (24)

2. the reactive part (briefly, the reaction) has the representation

f (R) = ϕ(R)n, with ϕ(R)(x) ∈ IR,

n(x) := ∇μ(x)
|∇μ(x)| for x ∈ M,

(25)

the scalar multiplier ϕ(R) being indeterminate, in the sense that it is not the object
of a specific constitutive prescription;

3. the active part at (x, τ , v) ∈ M × IR × TM(x) is given by a vector-valued map-
ping

(x, τ , v) → f (A)(x, τ , v). (26)

The constraint we just described is termed bilateral, because the reaction multiplier
ϕ(R) may have any sign; perfect, because the modulus ofϕ(R) can take any value may
serve to satisfy the motion equations; and frictionless, because the reactive force
expends no power in any admissible motion:

f (R)(x) · v = 0, for all x ∈ M and v ∈ TM(x). (27)

In that it restricts the set of possiblemotions and specifies to some extent the forces
that may accompany them, the assignment of a constraint is constitutive by nature.
The associated evolution problem has peculiarities that make it different from the
unconstrained problem (strictly speaking, the latter may be regarded as an important,
but special, case of the former). From the motion equation

f (R) + f (A) = (mx.). (28)

and the initial conditions, one seeks to determine the trajectory of X , a curve onM,
and the reaction force as X travels along its trajectory. The two problems are solved
in series: firstly, the “pure” (reaction-free) motion equation

Nf (A) = N(mx.)., N(x) := I − n(x) ⊗ n(x), (29)
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obtained by projecting (28) onto the current tangent plane, is used to find the trajec-
tory; with this, (28) yields the reaction:

f (R) = (I − N)
[
(mx.). − f (A)

] = {
n · [

(mx.). − f (A)
]}

n. (30)

In (30), the constitutive prescription (26) is used to determine the active force at each
point x(τ ) of the trajectory:

f (A) = f (A)(x(τ ), τ , x.(τ )).

Thus, in particular, the reaction multiplier has the following expression:

ϕ(R)(x(τ )) = n(x(τ )) · [(mx.(τ ))
. − f (A)(x(τ ), τ , x.(τ ))].

Constraint Manifolds.A constraint manifold is a connected C1-manifoldM ⊂
Lin+ such that
(i) 1 ∈ M;
(ii) if F ∈ M and R ∈ Rot , then RF ∈ M.

Constraint manifolds are studied in detail in the booklet quoted at the beginning
of this section; those of interest have dim(M) ≤ 8; of the following well-known
examples of unidimensional constraint manifold, the first play a relevant role in fluid
mechanics, the other two in structure mechanics.

• Incompressibility:
M = {F ∈ Lin+ | det F = 1};

accordingly, an incompressible material can only perform isochoric (volume-
preserving) motions. In this case, TM(F) = {Ḟ | Ḟ · F−T = 0}; consequently,
P (R) = π(R)F−T . The momentum balance equation:

DivP + +d = 0,

where P is Piola’s stress and d is the distance force per unit referential volume,
becomes:

∇π(R) + DivP(A) + d = 0 ; (31)

its ‘pure’ consequence is:

Curl (DivP(A) + d) = 0. (32)

• Inextensibility in the direction e:

M = {F ∈ Lin+| |Fe| = 1};
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accordingly, whatever x ∈ B, material fibers (x, e) cannot possibly change their
length. In this case, TM(F) = {Ḟ | Ḟ · (Fe ⊗ e) = 0}; consequently, P(R) =
λ(R)Fe ⊗ e.

• Orthogonality preserving in the orthogonal directions e, ē:

M = {F ∈ Lin+ |Fe · Fē = 0};

accordingly, whatever x ∈ B, material fibers (x, e), (x, ē) must stay orthogonal in
all possible deformations. In this case, TM(F) = {Ḟ | Ḟ · F(e ⊗ ē + ē ⊗ e) = 0};
consequently, P(R) = δ(R)F(e ⊗ ē + ē ⊗ e).

The following combined constraint is of importance to arrive to interesting general-
izations of the Föppl-von Kármán plate theory and to study of buckling instabilities
of von Kármán type:

• inextensibility in the direction e coupled with preservation of orthogonality of e
and all directions ē orthogonal to e:

M = {F ∈ Lin+ | Fe = F−T }. (33)

It is not difficult to check that (33) implies both extensibility in the direction e
(because Fe · Fe = Fe · F−T e = 1) and preservation of orthogonality for direc-
tions e and ē (because Fē · Fe = Fē · F−T e = 0).

NOTE This internal constraint takes an especially simple form in terms of the exact
strain measure Ẽ defined in (21); this expression is:

Ẽe = 0.13 (34)

Linearization13 of (34) with respect to the smallness parameter introduced in (19)
yields the well-known constraint that, as we shall see, leads to the Kirchhoff-Love
theory of plates, namely,

Ee = 0. (35)

In both its exact and linearized versions, e is the direction orthogonal to the mid
plane of the plate.

5 Plate Buckling, à la von Kármán, But Not Quite

This lecture was based on

• P. Podio-Guidugli, A new quasilinear model for plate buckling. J. Elasticity, Vol.
71, pp. 157–182 (2003).

13Indeed,
Ee = 0 ⇔ FT Fe − e = 0 ⇔ Fe = F−T e.
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5.1 The 3D Buckling Problem

Consider a plate-like body C(ε) of constant thickness, that is, a right cylinder of
axis z and cross-section P , and identify it pointwise with the set P × (−ε,+ε),
with 2ε � diam(P) (the mid cross-section of C(ε) is depicted in Fig. 4). Let C(ε)
be weakly clamped along its lateral boundary (see Fig. 5), and subject to in-plane
compressive loads.

When the load attains a critical value, the plate ‘buckles’, that is, ceases to stay flat
and assumes a bent shape. Although modelling the post-buckling behaviour is often
of importance, the first and mostly wanted piece of information an engineer looks
for is the buckling load, that is, the load value at the onset of buckling. This value
is efficiently computed by solving a system of equations put together by Th. von
Kármán in 1910. Instead of solving a rather formidable three-dimensional problem
in nonlinear elasticity, he was able to devise a set of approximating assumptions,
whose successful outcome convinced many for a long long while to trade intuitive
plausibility for a rational justification.

Fig. 4 Mid cross-section of a plate-like body

Fig. 5 Weakly-clamped boundary conditions



236 P. Podio-Guidugli

5.2 The 2D von Kármán Model

Let two scalar-valued fieldsϕo,ϕ1 over ∂P be given. One is due to find a real number
λ and two scalar-valued fields ϕ, w over P ∪ ∂P such that

• in P ,

��ϕ − 1

2
[w,w]=0, κ ��w − [ϕ, w]=0;

• in ∂P ,
ϕ = λϕ0, ∂nϕ=λϕ1, w = 0, ∂nw=0.

Here,

• the semilinear problem to solve is governed by a system of two PDEs with bihar-
monic principal part;

• nonlinearity is brought in via the Monge-Ampère differential “crochet”:

[a, b] := a,11 b,22 +a,22 b,11 −2a,12 b,12 ;

• ϕ is an Airy-type stress function;
• w(x)c is transverse displacement of x ∈ P ∪ ∂P;
• κ > 0 is a stiffness constant, λ is a load multiplier.

We recall that a nonlinear differential problem is semilinearwhen its principal part
(i.e., the collection of higher-order derivatives) is linear, with nonlinearity carried in
through terms involving lower-order derivatives; and is quasilinear when its principal
part is nonlinear. As a rule, semilinear problems are noticeably easier than quasilinear
ones. Remarkably, given that the 3D problem is quasilinear, vonKármán’smodelling
has suppressed a mathematically relevant difficulty.

We observe that the principal part of the second of von Kármán’s equations coin-
cides with the operator of the classic linear theory of Kirchhoff-Love plates, sug-
gesting an interpretation as an equilibrium equation under null transverse loads; an
interpretation for the first von Kármán’s equation will be given in Sect. 5.4.

5.3 Back to the 3D Buckling Problem

We wish to put together an approximate 2D model that preserve the main mathe-
matical character of the 3D problem, reduce to von Kármán’s in a mathematically
explicit limit, and whose governing equations have a transparent interpretation. With
a view toward this goal, we perform three preliminary steps.
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i. Constrained Kinematics. We stipulate that material fibers parallel to z stay
straight, do not change their length, and remain orthogonal to fibers orthogonal
to z:

Ẽz = 0 in C(ε) (36)

(recall (34)), where

Ẽ = 1

2

(
(∇ f )T ∇ f − 1re f

)
.

Just as per (35), this is nonlinear counterpart of Kirchhoff-Love constraint:

Ez = 0,

a linear system of PDEs whose general solution is

uK L(x, ζ) = v(x) + w(x)z − ζ∇w(x), v(x) · z = 0. (37)

Now, it turns out that that nonlinear PDE system (36) is solved by:

f (x, ζ) = g(x) + ζm(x), (x, ζ) ∈ P × (−ε,+ε), (38)

where the point-valued function g ≡ f |P delivers the deformed cross section, whose
unit normal m is computable in terms of g itself by a well-known formula from
surface geometry. Note that the displacement field corresponding to (38) is:

uvK (x, ζ) = f (x, ζ) − x = g(x) − x + ζm(x);

with slight abuse of notation, we set:

g(x) − x = v(x) + w(x)c).

Note also that the Kirchhoff-Love kinematics is recovered whenever

mα � −w,α and m3 � 1.

ii. Constrained Elastic Response. We assume that the kinematical constraint (34) is
maintained by a powerless reactive Cosserat stress field. In linewith this assumption,
we split the Cosserat stress S additively:

S = S(A) + S(R), S(A) · S(R) = 0.

Given that
Ẽc = 0 ⇔ Ẽ · (a ⊗ c + c ⊗ a = 0,
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S we set
R := span{a ⊗ c + c ⊗ a} ∀ a ⊥ c, (39)

and stipulate that
S(R) ∈ R, Ẽ, S(A) ∈ A := R⊥. (40)

As to the active stress S(A), we choose a z-transversely isotropic St. Venant-Kirchhoff
response:

S(A) = E

1 + ν

(
Ẽ + ν

1 − ν
(trẼ)1

)
, (41)

or rather, equivalently,

Ẽ = 1 + ν

E

(
S(A) − ν

1 + ν
(trS(A))1

)
.

iii. Boundary Conditions. The stress boundary conditions are expressed in terms of
Piola’s stress. Given the relationship between Piola’s and Cosserat’s stress measures:

S = F−1P,

we have:

• top and bottom of C(ε):

Pz = 0 ⇔ S(R)c = 0;

• lateral mantel of C(ε):

Pn = −λn ⇔ S(R)n = 0 & S(A)n = −λF−1n;

• weak-clamping condition:

w = 0 & m = z ⇔ w = 0 & ∂nw = 0 in ∂P.

We are now in a position to derive an exact 2D antecedent for each of the two
v. Kármán’s equations. The interested reader is referred to the quoted paper for their
rather complex derivation.

5.4 Compatibility and v. K’s 1st Equation

It can be shown that the following PDE, which is an exact consequence of St. Venant-
Beltrami compatibility conditions, must hold in P:
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��ϕ − 1

2
[w,w] + 1

2

(
[vα, vα] + 1

3
ε2[mi , mi ]

)
= 0. (42)

This compatibility condition insures, roughly speaking, that a suitably defined plane
strain field allows for the construction of a displacement field consistent with the
internal constraint (36).

Recall now v. K.’s 1st Equation:

��ϕ − 1

2
[w,w] = 0. (43)

The obvious scaling
wε = εw, vε = ε2v, ϕε = ε2ϕ,

permits us to conclude that (42) is indeed an exact 2D antecedent of (43).

5.5 Equilibrium and v. K’s 2nd Equation

At equilibrium, at each point of C(ε),

DivP = 0,

which can also be written in the form:

(Pcα),α +(Pz),ζ = 0. (44)

Combining (44) with (39) and (40) yields:

(S(A)

βα hβ),α ·hγ + P (R)
γ3 ,ζ = 0,

(hβ,α ·m)S(A)

βα + ((hα · hβ)P (R)

β3 ),α +P (R)
33 ,ζ = 0,

where hα, hβ are, respectively, the covariant and contravariant base vectors associ-
ated with the deformed shape of C(ε). From this system, a ‘pure’ (≡ reaction-free;
recall the developments in Sect. 4.2) equation holding in P can be deduced, namely,

.

∫ +ε

−ε

(
(hα · hβ)

∫ ζ

−ε

(S(A)

δγ hδ),γ · hβ dτ
)
,α dζ −

∫ +ε

−ε

(hβ,α ·m) S(A)

βα dζ = 0

Combination with relation (41) specifying the active stress response yields a 4th-
order quasilinear PDE, whose principal part is:

p.p.(ε;w, v)) = E

1 − ν2
(m · c) Bαδ(ε;w, v)(�w),δα ;
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That equation is an exact antecedent of v. K’s 2nd equation:

κ ��w − [ϕ, w] = 0,

whose

p.p.(ε;w) = κ(ε)��w, κ(ε) = Eε2

3(1 − ν2)
;

when coupled with (42), it can be casted under form of a nonlinear bifurcation
problem, whose analysis is, at the moment of this writing, still wanted.

6 Mechanical Scaling

This lecture was based on

• B.Miara andP. Podio-Guidugli,Deduction by scaling: a unified approach to classic
plate and rod theories. Asymptotic Analysis, Vol. 51 (2), pp. 113–131 (2007).

6.1 The Scaling Procedure in Summary

Just as we did in the previous lecture, we consider a body under form of a right
cylinder of constant cross-section but, at variance with what we did there, we do not
presume that the cylinder’s length is much smaller than the diameter of its cross-
section.

We begin by listing the sequence of steps of our deductive procedure:

• data (≡ domain, elastic moduli, applied forces) and solution are scaled in terms
of integer powers of a parameter ε;

• the total (elastic + load) energy functional:

�(u, ε) = �(u, ε) − �(u, ε),

where

�(u, ε) :=
∫
C(ε)

1

2
Si j (E(u))Ei j (u),

�(u, ε) :=
∫
C(ε)

b · u +
∫
P(ε)

c± · u±,

is scaled (here, C(ε) = P(ε)×]−εh,+εh[, as a consequence of domain scaling;
moreover, (c+, u+) ((c−, u−)) denote the (applied load, displacement) pair at the
top (bottom) end of C(ε));
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• sets of scaling exponents are chosen, by requiring that the scaled total-energy
functional stays finite when ε → 0 ;

• backward-scaling of limit functionals yields K-L and R-M functionals (and many
others!).

6.2 Preparatory Scalings

Firstly, for each ε fixed in the half-open interval ]0, 1], we scale the domain:

xα = εp x̄α (α = 1, 2), x3 = εq x̄3

and the displacement:

uα = εmūα (α = 1, 2), u3 = εnū3,

whence the strain scaling:

E = εα1 Ēαβ sym (cα ⊗ cβ) + εα2 Ēα3 sym (cα ⊗ c3) + εα3 Ē33c3 ⊗ c3
α1 = −p + m, α2 = −p + n, α3 = −q + n.

NOTE To derive plate equations either by asymptotic analysis or by variational
convergence, the standard (domain, displacement) scaling is:

m = 1, n = 0, p = 0, q = 1.

Secondly, we choose the material response to be that of a linearly elastic material,
transversely isotropic with respect to the axial direction:

Sαβ = 2μEαβ + (λ(E11 + E22) + τ2E33)δαβ,

S3α = 2γE3α,

S33 = τ1E33 + τ2(E11 + E22)

μ > 0, γ > 0, τ1 > 0, τ1(λ + μ) − τ 2
2 > 0;

and we scale the material moduli as follows:

λ̄ = ε−rλ, μ̄ = ε−rμ, γ̄ = ε−uγ, τ̄1 = ε−vτ1, τ̄2 = ε−zτ2 .
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6.3 The Scaled Load Potential

In principle, we wish to keep track of all pieces of the load functional

�(u, ε) :=
∫
C(ε)

b · u +
∫
P(ε)

c± · u±,

Accordingly, we scale the loads as follows:

distance loads: b̄α = ε−sbα, b̄3 = ε−t b3;
contact loads: c̄±

α = ε−yc±
α , c̄±

3 = ε−wc±
3 ,

with
s + q = y, t + q = w.

We find:
�̂(ū, ε; δ̂1, δ̂2) = εδ̂1�1(ū) + εδ̂2�2(ū),

with

�1(ū) =
∫
C(1)

b̄αūα +
∫
P(1)

c̄±
α ū±

α , �2(ū) =
∫
C(1)

b̄3ū3 +
∫
P(1)

c̄±
3 ū±

3 ,

δ̂1 = m + 2p + q + s, δ̂2 = n + 2p + q + t.

6.4 The Scaled Total-Energy Functional

At the end of the day, the total (elastic + load) energy functional:

�(u, ε) = �(u, ε) − �(u, ε)

turns out to be scaled as follows:

�̂(ū, ε; α̂, . . . , δ̂2) = �̂(ū, ε; α̂, β̂1, β̂2, γ̂) − �̂(û, ε; δ̂1, δ̂2)

= εα̂A(ū) + εβ̂1B1(ū) + εβ̂2B2(ū) + εγ̂�(ū) − εδ̂1�1(ū) − εδ̂2�2(ū),

where
α̂ = −m + 3n + p + v, β̂1 = m + n + p + u,

β̂2 = m + n + p + z, γ̂ = 3m − n + p + 2z − v,

δ̂1 = 2m − n + 3p + s, δ̂2 = m + 3p + t,
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with the consistency condition:

α̂ − 2β̂2 + γ̂ = 0.

6.5 A Mechanical Principle of Convergence in Energy

We stipulate that

energy exponents be such that the scaled energy functional stay bounded above under
the scaling group action:

lim
ε→0+ �̂(ū, ε; �̂) = �̂(ū, 0; �̂) < +∞,

at whatever field ū keeps each of the integrals in �̂ finite.

This finiteness requirement acts as a selection criterion, because

– whenever anyone of the energy exponents α̂, β̂1, . . . , δ̂2 in

�̂(ū, ε; α̂, . . . , δ̂2)

= εα̂A(ū) + εβ̂1B1(ū) + εβ̂2B2(ū) + εγ̂�(ū) − εδ̂1�1(ū) − εδ̂2�2(ū),

is positive [null], then the corresponding functional A,B1, . . . , �̂2 is eliminated
from [remains in] the limit functional �̂(ū, 0; �̂), and hence is eliminated from
[remains in] the related version of the energy functional �(u, ε), which is arrived
at after inverse scaling;

– whenever any one of the energy exponents α̂, β̂1, γ̂ is negative, then the corre-
sponding functional A,B1, � must be made to vanish identically: since each of
those functionals is positive definite, this can only be achieved by restricting the
class of functions on which the energy functional � is defined; hence, a corre-
sponding internal constraint must be imposed.

6.6 Taxonomy of Energy Functionals

For simplicity, we take δ̂1 = δ̂2 = 0; in addition, to concentrate on shearable struc-
tures, we take β̂1 = 0.

• (in-plane stretching and flexure of plate-like cylinders)
for α̂ < 0, γ̂ = 0, the scaled elastic potential takes the form:

�̂P(ū, ε; β̂1, γ̂) = εβ̂1B1(ū) + εγ̂�(ū),
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and hence the relative energy functional is

�P(u, ε) =
∫
C(ε)

2γ
(
E2
13(u) + E2

23(u)
)

+
∫
C(ε)

1

2

(
(λ + 2μ)

(
E11(u) + E22(u)

)2 − 4μ
(
E11(u)E22(u) − E2

12(u)
))

,

defined over displacement class u3 = û3(x1, x2).

• (axial stretching and flexure of rod-like cylinders)
for α̂ = 0, γ̂ < 0,

�̂R(ū, ε; α̂, β̂1) = εα̂A(ū) + εβ̂1B1(ū);

the associated energy functional reads:

�R(u, ε) = �R(u, ε) − �(u, ε),

where

�R(u, ε) =
∫
C(ε)

1

2
τ1E2

33(u) +
∫
C(ε)

2γ
(
E2
13(u) + E2

23(u)
)
.

and is defined over the displacement class

u1 = v̂1(x3) − x2ψ̂3(x3), u2 = v̂2(x3) + x1ψ̂3(x3).

We list three more problems in the theory of linearly elastic structures, all ruled
by one and the same elastic potential:

�AST (u, ε) =
∫
C(ε)

2γ
(
E2
13(u) + E2

23(u)
)
,

defined over three different function classes:

• (antiplane shear)

α̂ < 0, γ̂ < 0;
u1 = v̂1(x3) − x2ψ̂3(x3), u2 = v̂2(x3) + x1ψ̂3(x3), u3 = û3(x1, x2);

• (torsion of plate-like cylinders)

α̂ < 0, γ̂ > 0; u3 = û3(x1, x2);
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• (torsion of rod-like cylinders)

α̂ > 0, γ̂ < 0; u1 = v̂1(x3) − x2ψ̂3(x3), u2 = v̂2(x3) + x1ψ̂3(x3).

6.7 Reissner-Mindlin’s Plates

The functional

�P(u, ε) =
∫
C(ε)

2γ
(
E2
13(u) + E2

23(u)
)

+
∫
C(ε)

1

2

(
(λ + 2μ)

(
E11(u) + E22(u)

)2 − 4μ
(
E11(u)E22(u) − E2

12(u)
))

,

generalizes the Reissner-Mindlin plate functional, because it is defined over the
displacement class

uα = ûα(x1, x2, x3), u3 = û3(x1, x2),

that is, over the collection of all solutions of

u3,3 = 0, uα,33 = 0,

whereas Reissner-Mindlin’s is the restriction of �P to the subclass:

uα = v̂α(x1, x2) + x3ϕ̂α(x1, x2), u3 = û3(x1, x2).

Now, both PDEs
u3,3 = 0 and uα,33 = 0

are interpretable as internal constraints. We know the first-order constraint well; the
second-order one can be set in the form:

uα,33 = 0 ⇔ ∇(2)u · (
eα ⊗ z ⊗ z

) = 0.

Suppose you do the following

– you include in the energy functional a term (say,
1

2

∫
C(ε)

τP(uα,33 )2, with τP > 0)

adding in elastic energy associated with the second-order displacement gradient;
– you insist in enforcing the mechanical principle of convergence in energy.

Do it, and you go home with your Reissner-Mindlin plate theory.
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1 Introduction

The aim of these lecture notes is to provide an introduction to mixed/ enhanced shell
finite elements with drilling rotations. We consider shell equations derived from the
Cauchy (non-polar) continuum by application of the Reissner-Mindlin kinematical
hypothesis. For this class of shells, the strain energy depends on three types of
strain: membrane, bending/twisting and transverse shear strains, which, in turn, are
expressed in terms of displacements and 2-parameter rotations of a reference surface.
The notes are based on several recent works which are cited in the sequel.

1.1 Drilling Rotation

Thedrilling rotation is defined as an elementary rotation about the vector normal to the
reference surface, and it does not appear in shell equations for the Reissner-Mindlin
kinematical hypothesis. This rotation is not necessary to describe the deformation
of a shell when the shell reference surface is flat, but it is needed for curved or non-
smooth (multi-branch) shells. So, it is needed in the general purpose shell elements,
in which one of the following two strategies can be applied:

1. We can use 2 rotational parameters in smooth parts of a shell and 3 rotational
parameters at intersections of shells, but then a complication arises with handling
rotations, because:

(a) it must be automatically determined whether 2 or 3 rotational components
are needed,

(b) additional transformations are required between bases, and
(c) different update schemes are applied at various nodes.

Nonetheless, many of the existing FE codes use this strategy.
2. We can use 3 rotational parameters, including the drilling rotation, at all nodes. It

allows us to use three-parameter representations of rotations for an increment and
to treat all rotational dofs in the same way. Then the intersections of multi-branch
shells are naturally handled but we need to eliminate a singularity of the tangent
matrix arising for co-planar elements. The simplest methods to fix this problem
are as follows:

(a) to detect a singular equation and eliminate it,
(b) to provide an additional stiffness associated only with the drilling rotation

dof, which is not coupled to in-plane displacements.

In both these methods, a physically meaningful value of the drilling rotation can
be obtained only by an additional post-processing of the solution.
Other methods must be used when we expect the drilling rotation obtained as a
solution to have a physical significance:
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(a) Using the so-called Allman shape functions, which interpolate the element’s
displacements in terms of nodal displacements uI and nodal drilling rotations
ωI . The Allman shape functions were first applied to 2D triangles in Allman
(1984), Bergan and Felippa (1985) and subsequently to 2D quadrilaterals in
Cook (1986), where a procedure of transforming an eight-node serendipity
element to a four-node element with nodal drilling rotations was proposed.
The classicalAllman shape functions are valid only for small drilling rotations
or for the rate-form equations; the version suitable for finite rotations and
Automatic Differentiation was developed in Wisniewski and Turska (2006).
The reader is referred to this paper for a review of earlier papers on this
subject.

(b) Using the drilling Rotation Constraint (RC) equation and standard bilinear
shape functions. The scalar drilling RC equation is obtained as the (12) com-
ponent of the three-dimensional RC equation, skew(QTF) = 0. The imple-
mentation of the drilling RC is a challenging task, involving several difficul-
ties:
i. The equal-order bi-linear interpolations of displacements and the drilling

rotation render that the drilling RC equation is incorrectly approximated,
which must be rectified. This, in turn, implies an additional zero eigen-
value of the tangent matrix, which needs a stabilization. We undertake
this problem in Wisniewski (2010a) and provide a rectified solution in
Wisniewski and Turska (2012).

ii. There is a question about the best method to incorporate the drilling RC
equation into the governing functional, such as the Potential Energy, the
Hellinger-Reissner and the Hu-Washizu functionals. A survey of such
methods as the direct method, the penalty method, Lagrange Multiplier
method and the Perturbed Lagrange Multiplier method, and our tests of
them, are provided in Wisniewski (2010b, Sect. 12). We implemented
and tested several methods of treatment of the drilling RC in order to
select the one providing the best performance.
If the penalty method is used then a question comes up about the suitable
value of the regularization parameter. In Hughes and Brezzi (1989), the
theoretical value equal to the shear modulus is derived, but it seems to be
too large when the element’s shape is irregular (or when it is warped) and
the penalty method is used. We show that using the Perturbed Lagrange
Multiplier method, the theoretical value of the regularization parameter
can be used.

iii. Pivotal to a good performance of elements with drilling rotation is the
use of a proper type of an enhancement, namely the enhancement of the
deformation gradient (EADG), because it affects also the drilling RC
equation.

Chronologically, the approach based on the Allman shape functions was first,
but our tests indicate that the elements based on the drilling RC equation perform
better, i.e. yieldmore accurate solutions, are less cumbersomewhen the element is
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warped, and can be also used to derive elements with a larger number of nodes, as,
e.g., the nine-node elements with 6 dofs/node in Panasz and Wisniewski (2008).

Finally, we note that some of the above questions (for the shell equations derived from
the Cauchy continuum) pertain also to the shell equations derived from the Cosserat
(polar) media. The drilling rotation is naturally present in them but they require much
more complicated constitutive equations, for details see, e.g., Altenbach et al. (2010),
Eremeyev et al. (2012), Chróścielewski et al. (2011) Chróścielewski and Witkowski
(2011).

1.2 Enhanced and Mixed/Enhanced Shell Elements

Regarding four-node shell elements, two classes of formulations are most popular:

1. Enhanced Assumed Strain shell elements, which use one of the three methods of
enhancement of the element’s kinematics:

(a) the Incompatible Displacement (ID) method,
(b) the Enhanced Assumed Strain (EAS) method, or
(c) the Enhanced Assumed Displacement Gradient (EADG) method.

This class is currently a standard but still some improvements are possible, espe-
cially for formulations with additional constraints.

2. Mixed/Enhanced shell elements, which are based on multi-field functionals,
such as the two-field Hellinger-Reissner (HR) functional and the three-field Hu-
Washizu (HW) functional. These functionals can be additionally enhanced using
one of the above methods of enhancement.
Currently, the most promising seem to be the shell elements based on the Hu-
Washizu (HW) functional. This is partly caused by the papers Wagner and
Gruttmann (2005), Gruttmann and Wagner (2006), in which a new four-node
shell HW element without the drilling rotation is derived, which shows signifi-
cantly better convergence properties than the EAS shell element. The next reason
is the progress in accuracy and robustness of the two-dimensional HW elements
reported in Wisniewski and Turska (2009), Wisniewski et al. (2010). These two
factors provided us the motivation for developing the HW shell elements with the
drilling rotation, which have the following features:

(a) The drilling rotation is introduced using the drilling RC, so an additional
implementation related to this constraint is needed. Besides, different ‘opti-
mal’ representations of the assumed stresses and strains must be selected.
In particular, the 5-parameter stress representation of Pian-Sumihara, which
was used in Wagner and Gruttmann (2005), Gruttmann and Wagner (2006),
is not ‘optimal’ any longer.

(b) Besides the full enhanced HW functional also the partial (incomplete) HW
functionals, in which some strains are represented by the strain energy
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functional, are tested. The purpose is to reduce the number of additional
(elemental) parameters but still to retain the favorite convergence proper-
ties. The membrane part of a shell is treated by the HW functional, but we
scrutinize the bending/twisting and the transverse shear strain energy.

(c) In all these formulations, the parameters of the assumed fields (stresses,
strains and Lagrange multipliers) are local (elemental) and discontinuous
across the element’s boundaries, and are eliminated (condensed out) on the
element’s level. Hence, externally, the HW elements have the same form as
standard elements and no changes in the FE code are needed.

1.3 Algorithmic Treatment of Finite Rotations

The topic of finite rotations is very important in practice and often undertaken in
the works on rigid-body dynamics, see Rosenberg (1977), Goldstein (1980) and on
multi-body dynamics of rigid and flexible bodies, see Wittenburg (1977), Ange-
les (1988), Cardona and Geradin (1988), Geradin and Rixen (1995), Geradin and
Cardona (2001), Atluri and Cazzani (1995). There are also mathematical works on
rotations, such as, e.g., Stuelpnagel (1964), Cartan (1981), Altman (1986). This sub-
ject is also covered in the works on the Cosserat continuum and on the structures
with rotational degrees of freedom, such as shells and 3D beams.

The rotations are described by a proper orthogonal tensor and its basic properties
are presented first. However, in numerical implementations, we have to use some
rotational parameters; for these lecture notes, we selected the canonical rotation
vector.

2 Shell Kinematics and Drilling Rotation

In the case of Cosserat shells, the rotations are naturally present in the governing
equations, but for the shells derived from the non-polarCauchy continuum the drilling
rotation is missing. Therefore, we define an extended configuration space, which
uses an additional tensorial equation to introduce rotations; one of its equations is
associated with the drilling rotation and is used for shells.

2.1 Extended Configuration Space

The classical configuration space of the non-polar Cauchy continuum is defined as:
C .= {χ : B → R3}, where χ is the deformation function defined on the reference
configuration of the body B. In the present work, we consider an extended configu-
ration space, which is defined as
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Fig. 1 Local Cartesian basis at a shell cross-section for initial configuration

Cext .= {(χ,Q) : B → R3 × SO(3) | χ ∈ C}, (1)

where χ is required to belong to the classical C, see, e.g., Badur and Pietraszkiewicz
(1986). The rotations Q ∈ SO(3) are constrained by the Rotation Constraint (RC)
equation

skew(QTF) = 0, (2)

whereF .= ∇χ is the deformation gradient. The use of the RC equationwas proposed
in Simo et al. (1992) in conjunction with the potential energy functional, but, as
we show in the present work, it can be used with the Hu-Washizu functional as
well. Various forms of governing functionals modified by the RC are presented in
Wisniewski (2010b).1 The advantage of such a formulation is that it avoids the use
of non-symmetric stresses, which was typical in the earlier papers, and currently
are used in the so-called Cosserat-type approach, in which the rotations remain
unconstrained, see, e.g., Chróścielewski et al. (1992).

2.2 Reissner-Mindlin Shell Kinematics

The position vector of an arbitrary point of a shell in the initial configuration is
expressed as y(ζ) = y0 + ζ t3, where y0 is a position of the reference surface and t3 is
the shell director, normal to the reference surface (Fig. 1).Besides, ζ ∈ [−h/2,+h/2]
is the coordinate in the direction normal to the reference surface, where h denotes the
initial shell thickness. In the deformed configuration, the position vector is expressed
by the Reissner-Mindlin’s kinematical hypothesis,

1Note that the RC equation can also be used to constrain parameters of the 2nd order kinematics of
shells, see Wisniewski and Turska (2000, 2001, 2002).
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x(ζ) = x0 + ζ Q0t3, (3)

where x0 is a position of the reference surface and Q0 ∈ SO(3) is a rotation tensor.
The rotation tensor, which is constant over ζ, can be parameterized by the canonical
rotation vector ψ; more details on the algorithmic treatment of rotations is given in
Sect. 4. Note that all the vectors and tensors used above are functions of the natural
coordinates ξ, η ∈ [−1,+1], which parameterize the reference surface locallywithin
a single finite element.

The deformation function χ : x = χ(y) maps the reference configuration of the
shell onto the current (deformed) one, and the deformation gradient is obtained as

F .= ∂x
∂y

=
[

∂x
∂ξk

] [
∂y
∂ξk

]−1

, k = 1, 2, 3, (4)

where the natural coordinates are defined as ξ1
.= ξ, ξ2

.= η, ξ3 = 2ζ/h, and ξk ∈
[−1,+1]. Besides, y is the position vector in the initial configuration.

The 3D Green strain can be transformed from the global reference basis to the
local Cartesian basis at the element’s center {tck},

E .= 1

2
(RT

0c F
TF R0c − I), (5)

where R0c ∈ SO(3) describes the orientation of the vectors tck , i.e. at the element’s
center. We can split the deformation gradient F into the constant and linear parts in
ζ as follows: F = F0 + ζF1. Then

FTF = FT
0 F0︸ ︷︷ ︸
to ε

+ ζ (FT
0 F1 + FT

1 F0)︸ ︷︷ ︸
to κ

+ ..., (6)

and the Green strain can be expressed as a sum of the 0th order and the 1st order
shell strains,

E(ζ) ≈ ε + ζκ. (7)

The 0th order strain ε includes the membrane and transverse shear components,
while the 1st order strain κ, the bending and twisting components. The transverse
κα3 (α = 1, 2) components are neglected.

2.3 Drilling Rotation Constraint

The drilling rotation ω is defined as the rotation about the vector normal to the
reference surface t3, see Fig. 2, so the (canonical) drilling rotation vector isψ

.= ωt3.
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Fig. 2 Drilling rotation: the
axis of rotation is
perpendicular to the
reference surface

t3

Fig. 3 Deformation of a pair
of vectors t1 and t2

t2

t*2

t1

t*1

A magnitude of the drilling rotation is determined by the equation linking it to
displacements. We consider the (12)-component of the RC of Eq. (2), which yields

c
.= 1

2
[(Ft2) · a1 − (Ft1) · a2] = 0, (8)

where aα
.= Q0(ω)tα (α = 1, 2) and tα are the initial tangent vectors. This equation

is designated as the drilling Rotation Constraint (drilling RC).
A physical 2D interpretation of the drilling rotation ω can be established by

considering, for simplicity, a planar deformation of a pair of ortho-normal vectors,
tα. Each of these vectors is rotated and stretched,

t∗1 = F t1 = λ1 Q1(β1) t1, t∗2 = F t2 = λ2 Q2(β2) t2, (9)

where λ1, λ2 > 0 are scalar stretch parameters, and Q1, Q2 are rotation tensors,
each depending on one rotation angle, βα, see Fig. 3.

Using Eq. (9) and the drilling RC equation, we obtain

ω ≈ 1

2
(β1 + β2) + kπ, k = 0, . . . , K , (10)

for cosω �= 0, λ1c1 + λ2c2 �= 0 and λα ≈ 1, where sα
.= sin βα and cα

.= cosβα.
Hence, the drilling angle ω is an average of rotations of vectors tα, and this holds
also for finite rotation angles. This interpretation is valid for shells when ω is a
rotation about the director t3 and tα are the vectors tangent to the reference surface,
for details see Wisniewski and Turska (2006, Appendix).
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3 Shell Hu-Washizu Functional with Rotations

3.1 3D HW Functional with Rotations

Our formulation is based on the 2nd Piola-Kirchhoff stress S and the Green strain

E .= 1

2
(FTF − I).

The standard Hu-Washizu (HW) functional is mixed by definition and, besides the
compatible displacements, it involves two additional independent fields, strains and
stresses, where the latter play the role of the Lagrange multipliers. Consider the
classical form of the three-field HW functional,

FHW(u,S∗,E∗) .=
∫
V

{W(E∗) + S∗ · [
E(∇u) − E∗]} dV − Fext, (11)

where W(E∗) is the strain energy expressed by the independent strain E∗, and the
independent stressS∗ plays the role of the Lagrangemultiplier of the relation between
the independent strain E∗ and the Green strain E(∇u). The strain energy densityW
is a function of the independent strain E∗. Fext is the potential of the external loads,
the body force, and the displacement boundary conditions. V is the volume of the
3D body.

To incorporate the rotations into a 3D formulation, we constrain the governing
HW functional of Eq. (11) by the weak form of the Rotation Constraint of Eq. (2)
using the Lagrange multiplier method

F̃5(u,Q,S∗,E∗,T∗) .=
∫
V

{W(E∗) + S∗ · [
E(∇u) − E∗] + FRC

}
dV − Fext,

(12)
where the term related to theRotationConstraint ofEq. (2) has the so-calledPerturbed
Lagrange (PL) form,

FRC(u,Q,T∗) .= T∗ · skew(QTF) − 1

2γ
T∗ · T∗. (13)

Here, T∗ is the skew-symmetric Lagrange multiplier for the RC equation and γ ∈
(0,∞) is the regularization parameter. The perturbation term in the above formula
is underlined.
Penalty form of the RC term. Taking a variation of this functional w.r.t. T∗, we
obtain the Euler-Lagrange equation, from which we can calculate T∗ and eliminate
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it from the formulation. This yields the four-field functional F̃4(u,Q,S∗,E∗), where
the Rotation Constraint term has the penalty (P) form,

FRC(u,Q)
.= γ

2
skew(QTF) · skew(QTF). (14)

However, we prefer the PL form to the P form because the corresponding formulation
is less sensitive to the element’s distortions and implies a larger radius of convergence
in non-linear problems.

3.2 Complete (Pure) HW Functional for Shells

To derive the HW functional for shells, we use the functional (12), approximate
the strain as E(ζ) ≈ ε + ζκ, which is a result of the Reissner-Mindlin kinematical
hypothesis and a linearization in ζ, see Eq. (7). Let us define the shell strain energy
as

W sh(ε,κ)
.=

+h/2∫
−h/2

W(E) μdζ, (15)

where μ
.= detZ ≈ 1, and Z is the shifter tensor, see (Wisniewski 2010b, p. 54).

For a particular case of the linear Saint Venant-Kirchhoff material, we obtain the
well-known form,

Wsh(h, ε,κ) = h W(ε) + h3

12
W(κ). (16)

However, Wsh can be much more complicated and, e.g., for the composites with a
nonsymmetric layer stacking sequence, it also depends on the position of the refer-
ence surface. For non-symmetric cross-sections, the contributions of ε and κ cannot
be separated in the strain energy and in constitutive equations.

Let us assume that the independent strain has the form: E∗(ζ)
.= ε∗ + ζκ∗. By

integration of the three-field HW functional of Eq. (11) over the shell thickness, we
obtain its shell counterpart,

F sh
HW(u,Q,N∗,M∗, ε∗,κ∗) .=

∫
A

{Wsh(ε∗,κ∗)

+N∗ · [
ε(u,Q) − ε∗] + M∗ · [

κ(u,Q) − κ∗]} dA − F sh
ext, (17)

where

N∗ .=
+h/2∫

−h/2

S∗μdζ, M∗ .=
+h/2∫

−h/2

ζS∗μdζ. (18)
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The independent cross-sectional force N∗ plays the role of the Lagrange multiplier
for the relation between the independent strain ε∗ and the shell 0th order compatible
strain ε(u,Q). Similarly, the independent cross-sectional coupleM∗ is the Lagrange
multiplier for the relation between the independent strain κ∗ and the 1st order com-
patible strain κ(u,Q). Besides, A is the area of the shell reference surface.

We note that the functional (17) involves the rotation Q, but not the elementary
rotation about the normal vector, the drilling rotation. To include the drilling rotation,
we append the (12)-component of the Rotation Constraint of Eq. (2) to the functional
of Eq. (17) using the Lagrange multiplier method. Then we obtain the seven-field
functional,

F̃ sh
7 (u,Q, N∗,M∗, ε∗,κ∗, T ∗) .= F sh

HW + Fdrill
RC , (19)

where the drilling rotation term has the Perturbed Lagrange (PL) form,

Fdrill
RC (u,Q, T ∗) .=

∫
A

{T ∗[skew(QTF)]12 − 1

2γ
(T ∗)2}dA, (20)

where T ∗ is the Lagrange multiplier, and the (12)-component of the RC is specified
by Eq. (8). Note that an analogous procedure was applied to the 3D case to obtain
Eq. (12) fromEq. (11). Comparing the shell functional of Eq. (19) to the 3D functional
of Eq. (12), we see the following correspondence between them:

ε∗,κ∗ ↔ E∗, N∗,M∗ ↔ S∗, T∗ ↔ T ∗. (21)

3.3 Incomplete (Partial) HW Functionals for Shells

The derivation of Eq. (17) fromEq. (12) is restricted because the shell HW functional
must be constructed for all strain components, which is not necessarily optimal.
Below, we describe another method, which provides more flexibility, as the HW
functional can be constructed for selected strain components; such a functional is
called the incomplete (partial) HW functional.

Let us start the derivation from the 3D potential energy functional,

FPE(u)
.=

∫
V

W(E(∇u))dV − Fext, (22)

which, by the Reissner-Mindlin hypothesis and the integration over the thickness,
yields the shell potential energy functional

F sh
PE(u,Q)

.=
∫
A

Wsh(ε,κ)dA − F sh
ext, (23)
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where Wsh is defined by Eq. (15). Using F sh
PE, we can construct the shell HW func-

tional for a selected strain type only while still using the potential energy functional
for the other type. For example, the incomplete (partial) HW functional for the 0th
order shell strain only is

F sh
HW(u,Q,N∗, ε∗) .=

∫
A

{Wsh(ε∗,κ) + N∗ · [
ε(u,Q) − ε∗]} dA − F sh

ext, (24)

where N∗ is the Lagrange multiplier.2 The above incomplete HW functional uses
only 4 fields, compared to 6 fields in Eq. (17). The so-derived functionals can be
used to develop finite elements with a reduced number of additional parameters,
but still having good numerical properties. To obtain the shell HW functional with
the drilling rotation, we proceed in the same way as when deriving Eq. (19) from
Eq. (17).

Using the above described methodology, several HW functionals for shells were
derived in Wisniewski and Turska (2012). For instance, the functionals which were
used to develop the HW47 and HW29 elements were as follows:

1. The complete (pure) HW functional, which is used for the HW47 element,

F̃ sh
HW

.=
∫
A

{Wsh(ε∗
αβ, ε∗

α3,κ
∗
αβ)

+N ∗
αβ · [

εαβ − ε∗
αβ

] + M∗
αβ · [

καβ − κ∗
αβ

]
+N ∗

α3 · [
εα3 − ε∗

α3

]}
dA − F sh

ext + Fdrill
RC . (25)

2. The incomplete (partial) HW functional, which is used for the HW29 element,

F̃ sh
HW

.=
∫
A

{Wsh(ε∗
αβ, ε∗

α3,καβ) + N ∗
αβ · [

εαβ − ε∗
αβ

]

+N ∗
α3 · [

εα3 − ε∗
α3

]}
dA − F sh

ext + Fdrill
RC , (26)

where the strain energy functional is used for καβ , while the HW functional is
used for all the other strain components.

In the above functionals, the tangent (in-plane) αβ components (α, β = 1, 2) and
the transverse α3 components are distinguished. The transverse components κα3 are
neglected in the developed finite elements.

2Note that the definition of Eq. (18) is not valid for the N∗ used here!
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4 Finite Rotations: Simple Algorithmic Treatment

In this section, we describe the basic questions related to properties, parametrization
and the algorithmic treatment of rotations.

4.1 Basic Definitions

Rotation Tensor Let us denote by R the rotation tensor belonging to the special
orthogonal group defined as follows

SO(3) := {R : IR3 → IR3 is linear | RTR = I and detR = +1}. (27)

The orthogonality condition RTR = I renders that preserved are:

(i) the angle between two rotated vectors and
(ii) the length of a rotated vector.

The condition detR = +1 ensures the handedness of a rotated triad of vectors. The
eigenvalues ofR are:λ1 = +1 andλ2,3 = cosω ± i sinω. Note that forλ1 = +1, the
eigenequation (R − λI)v = 0 becomes Rv = v. As the eigenvector v is unaffected
by R so it defines the axis of rotation, which we designate by e.

Canonical Parametrization of Rotation TensorConsider a classical elementary
problem of a rotation of a vector v about the unit axis e. The result can be written as
v′ = Rv, where

R .= I + sinωS + (1 − cosω)S2. (28)

Here, S .= e × I ∈ so(3), where so(3) is a linear space of skew-symmetric tensors
such that

so(3) := {S : IR3 → IR3 is linear | ST = −S}. (29)

The basic properties of R and S are defined in Wisniewski (2010b, p. 131). The
above form of R involves 4 parameters {ω, e}, which must be supplemented by the
constraint ‖e‖ = 1.

We have to assume some form (or parametrization) of R to be used in shell
equations; several such forms exist, see the survey inWisniewski (2010b, Chap.8.2),
but these involving more than 3 parameters require additional constraints to ensure
that R is proper orthogonal, see Table1.

The three parameters, forming the so-called rotation pseudo-vectors, do not
require any additional constraints, which is very convenient. Several rotation pseudo-
vectors were proposed in the literature; they all have the direction of the axis of
rotation e but differ in length. The basic relations, which are common to all these
rotation vectors, are
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Table 1 Number of constraints for various parameterizations

Number of rotation parameters 9 6 5 4 3

Number of orthogonality constraints 7 3 2 1 0

ψ̃ = ψ × I, ψ = 1

2
(I × ψ̃), ‖ψ‖ = √

ψ · ψ, e = ψ

‖ψ‖ , (30)

where the tilde denotes the skew-symmetric tensor associatedwith the rotation vector
and the cross-product of a vector and a tensor is defined as in deBoer (1982, p. 74).

Let us define the canonical rotation vector as ψ
.= ω e, for which we have:

ψ̃ = ωS, ψ̃2 = ω2S2, ψ · ψ = 1
2 ψ̃ · ψ̃ = ω2. The rotation tensor, Eq. (28), can be

rewritten in terms of ψ, as follows

R .= I + c1 ψ̃ + c2 ψ̃2, (31)

where the scalar coefficients are

c1
.= sin ‖ψ‖

‖ψ‖ , c2
.= 1 − cos ‖ψ‖

‖ψ‖2 . (32)

The representation (31) is a periodic function of ‖ψ‖, so we can restrict its range to
ω ≤ 2π by shortening the rotation vector. Note, however, that such an operation is
incorrect for the tangent operator T(ψ), see Eq. (48), which is not periodic.

In numerical calculations involving (31), we encounter two problems:

1. Only c1 converges correctly for ‖ψ‖ → 0, while c2 does not due to round-off
errors. Using the identity 1 − cos ‖ψ‖ = 2 sin2(‖ψ‖/2), we obtain

c2
.= 1 − cos ‖ψ‖

‖ψ‖2 = 1

2

[
sin(‖ψ‖/2)
(‖ψ‖/2)

]2

, (33)

which ensures a correct behavior for a wider range of ‖ψ‖ → 0.
2. At exactly ‖ψ‖ = 0, both coefficients are indeterminate,

c1 = sin ‖ψ‖
‖ψ‖

∣∣∣∣‖ψ‖=0

= 0

0
, c2 = 1

2

[
sin(‖ψ‖/2)
(‖ψ‖/2)

]2
∣∣∣∣∣‖ψ‖=0

= 0

0
, (34)

which indicates that ‖ψ‖ = 0 does not belong to their domains. However,

lim
‖ψ‖→0

c1 = 1, lim
‖ψ‖→0

c2 = 1

2
, (35)

which are finite, so we can define these coefficients as the limit values.
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Nonetheless, then still remains the problem of derivatives of R at ‖ψ‖ = 0, for
which we also obtain indeterminate expressions. Two simple remedies can be used
at ‖ψ‖ = 0:

1. the perturbation of ‖ψ‖, i.e. the use ‖ψ‖ = √
ψ · ψ + τ , where τ = 10−8 in

calculations in double precision, or
2. the Taylor expansion of ‖ψ‖.
By the first method, the values of derivatives are equal to the limits of derivatives,
see Wisniewski (2010b, pp.149–150).

Euler Parameters (Quaternions) The set of four parameters {ω, e} of Eq. (28)
can be replaced by the so-called Euler parameters (or quaternions), Altman (1986),
Spring (1986), defined as follows:

q0
.= cos(ω/2), q .= sin(ω/2) e. (36)

The rotation tensor of Eq. (28), in terms of {q0,q} is expressed as

R .= (2q2
0 − 1)I + 2q0q × I + 2q ⊗ q, (37)

or, by using the skew-symmetric q̃ .= q × I = sin(ω/2)S, as

R .= I + 2q0q̃ + 2q̃2, (38)

and both these forms are never singular. The parameters {q0,q} must satisfy the
constraint equation, q2

0 + q · q = 1, to form a unit quaternion. If we try to eliminate
this constraint equation, e.g. by calculating q0 = √

1 − q · q and inserting it into
Eq. (37) or (39), then the expression for R contains the square root, which causes a
failure of the Newton method when solving the equilibrium equations.
Composition of quaternions. The quaternions are a very convenient tool to compose
rotations. For the product of rotation tensors R2 R1, where

R1(r0, r)
.= (2r20 − 1)I + 2r0r × I + 2r ⊗ r,

R2(p0,p)
.= (2p20 − 1)I + 2p0p × I + 2p ⊗ p, (39)

the composition of the associated quaternions is defined as follows:

{p0,p} ◦ {r0, r} .= {p0r0 − p · r, p0r + r0p + p × r}. (40)

Another advantage of a quaternion is that it can be easily re-normalized,

q0 = q0/
√
q2
0 + q · q, q = q/

√
q2
0 + q · q, (41)

which is more convenient than in the case of rotation matrices, the
re-orthogonalization of which is complicated.
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Using the quaternion of Eq. (37), the rotated shell director of Eq. (3) can be
expressed as

a3
.= Q0t3 = (2q2

0 − 1) t3 + 2q0q × t3 + 2(q · t3)q, (42)

where only the operations on scalars and vectors are performed.
Relations Between Quaternion and Canonical Rotation Vector. Canonical

rotation vector for given quaternion. Having the quaternion {q0,q}, we can extract
the axis of rotation and the rotation angle as follows

e = q√
q · q ,

ω = 2 arcsin
√
q · q, τ <

√
q · q ≤ 1,

and
ω = 2

√
q · q, 0 ≤ √

q · q ≤ τ ,

(43)

where the second formula for ω is a one-term Taylor series of the first formula and τ
is a small value. To avoid arguments of the arcsin function greater than 1 (caused by
round off errors), min (

√
q · q, 1) is used instead of

√
q · q. As the argument of the

arcsin function is non-negative hence 0 ≤ ω ≤ π, which limits the step size when an
algorithm uses the extraction of a rotation vector from a quaternion. Finally, we can
calculate ψ

.= ω e.
Quaternion for given canonical rotation vector.Having the canonical rotation vector
ψ, we can calculate ω = ‖ψ‖, e = ψ/‖ψ‖ = ψ/ω, and, then, the quaternion is
obtained as follows:

q0
.= cos(ω/2), q .= sin(ω/2) e = 1

2

sin(ω/2)

(ω/2)
ψ. (44)

To avoid indeterminate expressions, we treat ‖ψ‖ similarly to the derivatives of R
at ‖ψ‖ = 0.

4.2 Variations of Rotation Tensor

Increments of Rotation Vectors in Various Tangent Planes We consider the tan-
gent planes at two different rotations, RA andRB , and establish the relation between
the infinitesimal rotation vectors belonging to these spaces using the left composition
rule. The tangent operators T and χT are defined, and used in the first and second
variations of the rotation tensor for the canonical parametrization.
Tangent plane. The set of all infinitesimal rotations θ̃ superposed onto the finite
rotation R is referred to as the plane tangent to SO(3) at R, and denoted by
TRSO(3)

.= {θ̃R | for θ̃ ∈ so(3)}. At R = I, we have the initial tangent plane,
TISO(3)

.= {θ̃ | for θ̃ ∈ so(3)}.3

3The tilde denotes the skew-symmetric tensor associated with the rotation vector, i.e. θ̃
.= θ × I.



Selected Topics on Mixed/Enhanced Four-Node Shell Elements… 263

Fig. 4 Scheme of
increments of rotations for
the left composition rule

RB RARC

R ( )1R ( )2 B

R( ) R(= )A

4.3 Operator T

We associate the tangent operator T with the left composition rule, see Fig. 4; note
that in some papers this tangent operator is defined differently, see the comparison
in Wisniewski (2010b, p. 179). The perturbed rotation RC can be related either to
RA or to RB ,

RC = R(ψε)RA, RC = R2(εθB)RB, (45)

whereψε
.= ψ + εθA and ε is a scalar parameter. Besides,θA andθB are infinitesimal

rotation vectors, and

ψ̃ε RA =
(
ψ̃ + εθ̃A

)
RA ∈ TRA SO(3), εθ̃B RB ∈ TRB SO(3), (46)

i.e. the perturbations εθ̃A and εθ̃B belong to different tangent planes. Because both
relations (45) must yield the same RC , we obtain

R2(εθB)RB = R(ψε)RA,

which, by using RB = R1(ψ)RA, is reduced to

R2(εθB) = R(ψε)R
T
1 (ψ). (47)

This is a non-linear equation of θA and θB , from which we can find the relation
between them using the condition that the differentials of both sides must be equal.
Then we obtain

θB = T(ψ)θA, T .= ∂θB

∂θA
, (48)

where the tangent operator for the canonical rotation vectors is as follows

T(ψ) = I + c2 ψ̃ + c3 ψ̃2, (49)

where c3
.= (1 − c1) /‖ψ‖2, while c1, c2 were used in the definition of R, see

Eqs. (32) and (33). The operator T has the following properties:
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1. At ‖ψ‖ = 0, the coefficients of T are numerically indeterminate, so we replace
c1 and c2 by the limit values given in Eq. (35), while for c3 we use the limit value
lim‖ψ‖→0 c3 = 1/6. In consequence of such modifications, T(‖ψ‖ = 0) = I.

2. T(ψ) is singular at ‖ψ‖ = 2kπ, (k = 1, 2, ...), at which the determinant detT =
2(1 − cos ‖ψ‖)/‖ψ‖2 is equal to zero. This is not a problem in computation of
shells as the step size always is < 2π.

3. T(ψ) is not a periodic function of ‖ψ‖, so we cannot shorten ψ.
4. T(ψ) is singular for ‖ψ‖ → ∞, as thenT(ψ) → e ⊗ e. Hence, it is not advisable

to use very long rotation vectors.

Several other properties are discussed in Wisniewski (2010b, pp. 184–185).

4.4 Differential χT

The directional derivative of the tangent operator T is defined as follows

χT .= DT(ψ) · θ+, (50)

for ψ̃+ = ψ̃ + ε θ̃+ ∈ TISO(3), and is needed in calculations of the second variation
of the rotation tensor. For the operator T of Eq. (49), we obtain

χT(ψ,θ+) = a1 (e · θ+) I + a2 (θ+ ⊗ e + e ⊗ θ+)

+ a3 (e · θ+)(e ⊗ e) + a4 (e · θ+)ψ̃ + a5 θ̃+, (51)

where the scalar coefficients are

a1 = b2 − b1, a2 = b3 − b1,

a3 = 3b1 − b2 − 2b3, a4 = −b3b4 + b1, a5 = 1

2
b4,

b1 = sinω

ω2
, b2 = cosω

ω
, b3 = 1

ω
, b4 =

[
sin(ω/2)

(ω/2)

]2

. (52)

We see that the coefficients bi (i = 1, . . . , 4) are numerically indeterminate atω = 0.
For ψ → 0, χT → 1

2 θ̃
+ ∈ so(3). Correctness of Eq. (51) can be verified approxi-

mately using the difference formula

DT · θ+ ≈ T(ψ + θ+) − T(ψ).
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4.5 First Variation of Rotation Tensor for Canonical
Parametrization

Below we derive the formulae for the variation of the rotation tensor using either the
additive composition or the multiplicative (left) composition.

A. For the additive composition of the rotation parameters,

ψ̃ε = ψ̃ + εθ̃A ∈ TISO(3),

we define the variation as the following directional derivative:

δθ̃θθA
R(ψ)

.= DR(ψ) · θ̃A = d

dε
[R(ψε)]ε=0, (53)

where ε is a scalar parameter. This derivative can be calculated directly using
a symbolic algebra program, such as Mathematica or Maple, but more concise
formulas can be obtained using method B described below.

B. For the left multiplicative composition rule, the perturbed rotation is defined as
RBε

.= R2(εθ̃B)RB , where θ̃B ∈ so(3). The variation of RB w.r.t. θ̃B is defined
as the derivative of RB in the direction θ̃B ,

δθ̃θθB
RB

.= DRB · θ̃B = d

dε
[R2(εθ̃B)RB]ε=0 = d

dε
[R2(εθ̃B)]ε=0 RB, (54)

where
d

dε
[R2(εθ̃B)]ε=0 = θ̃B, (55)

on use of the exponential representation

RBε = exp(εθ̃B) = I + εθ̃B + ... + 1

n! (εθ̃B)n + . . .

Note that at RB = I, we obtain δθ̃θθB
RB = θ̃B .

Relations Between Variations for Various Composition RulesWe can rewrite
Eq. (47) as R(ψε) = R2(εθB)R1(ψ), and, by using

ψε = ψ + εθA

and R1(ψ)
.= R(ψ), we obtain

R (ψ + εθA)︸ ︷︷ ︸
additive

= R2(εθ̃B)R(ψ)︸ ︷︷ ︸
multiplicative, left

, (56)
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where the infinitesimal rotation vectors θA and θB are shown in Fig. 4. We can
calculate the derivative of Eq. (56) in the direction θ̃A ∈ TISO(3) in a standard
manner and the derivatives of both sides of it are as follows:

(a) For the additive composition, R(ψ + εθA), the variation δθ̃θθA
R(ψ) is defined as

the directional derivative of Eq. (53).
(b) For the left multiplicative composition, R2(εθ̃B)R(ψ), we have

δθ̃θθA

[
R2(εθ̃B)R(ψ)

]
= d

dε

[
R2(εθ̃B)R(ψ)

]
ε=0

, (57)

in which we must express θ̃B as a function of θ̃A. Using θB = T(ψ) θA, where
T is defined in Eq. (49), we obtain

δθ̃θθA

[
R2(εθ̃B)R(ψ)

]
= {[T(ψ)θA] × I}︸ ︷︷ ︸

skew-symm.

R(ψ). (58)

The above both derivatives can be written together as follows:

δθ̃θθA
R(ψ) = {[T(ψ)θA] × I}R(ψ), (59)

where the r.h.s. has a concise form indeed.

Remark 4.1 When the above variation is multiplied by a vector, e.g. by the shell
director t3, then θA can be separated as follows:

δa3 = δθ̃θθA
R(ψ) t3 = {[T(ψ)θA] × I}R(ψ) t3 = [T(ψ)θA] × a3

= −a3 × [T(ψ)θA] = − (a3 × I)T(ψ)︸ ︷︷ ︸
3×3 matrix

θA, (60)

where a3
.= R(ψ) t3 was used. This form is more suitable for numerical implemen-

tations, as it involves a product of the matrix and the vector θA.

Second Variation of Rotation Tensor for Canonical Parametrization The first
variation is defined as the following directional derivative:

δR .= DR(ψ̃) · θ̃− = d

dε
[R(ψ̃−)]ε=0, (61)

where ψ̃− = ψ̃ + ε θ̃
− ∈ TISO(3), while the second variation is defined as the direc-

tional derivative of the first variation

χδR .= D [δR] · θ̃+ = d

dε
[δR(ψ̃+)]ε=0, (62)
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where ψ̃+ = ψ̃ + ε θ̃+ ∈ TISO(3). Note that we extended the notation used earlier,
and, instead of θA, we use θ− and θ+, and, instead ofψε, we useψ− andψ+. Besides,
the variations “δ” and “χ” are associated with θ̃− and θ̃+, respectively. The above
directional derivatives can be calculated using a symbolic manipulation program, or
obtained by the multiplicative composition of rotation tensors.

For the multiplicative composition of the rotation parameters, we have Eq. (59),
which, in the current notation, can be rewritten as follows:

δR = {[T(ψ)θ−] × I}R(ψ), (63)

while the second differential of R is defined as the directional derivative of the first
variation of Eq. (63) in direction θ+,

χ(δR)
.= d

dε

{[T(ψ + εθ+) θ−] × I
}
R(ψ + εθ+)

∣∣∣∣
ε=0

. (64)

By the formula for the derivative of a cross-product of a vector and a tensor with
respect to the scalar ε, the second derivative becomes

χ(δR) = {(χTθ−) × I}R + {(Tθ−) × I} χR. (65)

For χR = [(Tθ+) × I]R, this becomes

χ(δR) = {[(χTθ−) × I] + [(Tθ−) × I][(Tθ+) × I]} R, (66)

where R is factored out of the braces. The second component of this formula can be
directly evaluated. Regarding the first component, the differential χT is defined in
Eq. (51), and we can calculate the product

χT(ψ,θ+)θ− = a1 (e · θ+)θ− + a2 (e · θ−)θ+ + a2 (θ+ · θ−) e

+ a3 (e · θ+)(e · θ−) e + a4 (e · θ+) ψ̃ θ− + a5 (θ+ × θ−). (67)

The term (χTθ−) × I is the associated skew-symmetric tensor, and we see that
only two terms (third and fourth) are symmetric with respect to θ− and θ+. The
symmetry of the tangent operator (stiffness matrix) for the Newton method affects
the speed of computations; this issue was considered, e.g., in Simo and Vu-Quoc
(1986), Cardona and Geradin (1988), Simo (1992), Buechter and Ramm (1992),
Makowski and Stumpf (1995).
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4.6 Simple Algorithm for Treating Finite Rotations

In this section we focus our attention on the simple scheme of treating finite rota-
tions, which corresponds to the Updated Lagrangian description in computational
mechanics.

We assume that the Newton method is used to solve the non-linear equilibrium
equations of shells. The updates of rotational parameters are performed after each
iteration and after each load step of the Newton method. Several update schemes
can be considered and the question which one is optimal is not easy to answer
theoretically; numerical tests indicate that they do not perform identically. Especially
when the solution has bifurcation points then different branches of the solution can
be followed for various update schemes.

Note that a good testing ground for the algorithmic issues related to finite rotations
provide the equations of a 3D beam, which are much simpler than the shell equations
yet they involve 3-parameter rotations. Similarly, the equations for the angularmotion
of a rigid body are relatively simple, although the questions of conservation of the
angular momentum and the kinetic energy by a dynamic algorithm by no means are
trivial, see Simo and Wong (1991). Dynamics, however, remains beyond the scope
of this work.

Below we present a simple additive/multiplicative update algorithm based on the
left composition rule of rotations, see Fig. 5. It is formulated in the plane tangent to
SO(3) atRA, whereRA = Rn is the converged solution in the previous step n. Using
the notation of Eq. (45), the total rotation RC is related to the rotation for the current
step as follows:

RC = R(�ψ) R(ψ)︸ ︷︷ ︸
current step

RA. (68)

TRref

RB R =RA n R=IRC

Current
iteration

{q0 q

multiplicative

multiplicative
additive/

Xn

Fig. 5 Two schemes of treating finite rotations; the second one is described in this paper
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Table 2 Additive/multiplicative scheme for rotations

Initialize X ← total quaternion
Loop of Newton method
Xn = X
ψ = 0
Iteration loop
Form equilibrium equations using (X,ψ), solve for �ψ
Update

ψ = ψ + �ψ ← for increment (additive update)
End of Iteration loop

Calculate quaternion for step
ψ → q

Update
Xn+1 = {q0,q} ◦ Xn ← total (multiplicative update)
X = Xn+1

End of Loop of Newton method

Weuse the canonical rotation vectorψ associatedwith the step of theNewtonmethod,
(related toRA) as the rotational unknown. In a numerical implementation, we do not
use rotationmatrices but quaternions, because they require less storage and are easily
re-normalized. The canonical rotation vectors and quaternions can be used together,
as we can transform between them using Eqs. (43) and (44).

In the notation traditionally used in computational mechanics, the variations of
the rotation tensorQ0 (which was used in the shell kinematical hypothesis of Eq. (3))
can be expressed as follows:

δQ0 = Skew[T(ψ) δψ]Q0, �Q0 = Skew[T(ψ)�ψ]Q0, (69)

�δQ0 = {Skew[χT(ψ,�ψ) δψ] + Skew[T(ψ) δψ] Skew[T(ψ)�ψ]}Q0,

where Eqs. (63) and (66) were used. Besides, Q0
.= Q0(ψ) is associated with the

rotation vectorψ for the current step. Skew[v] .= v × I is the skew-symmetricmatrix
associated with the axial vector v, previously designated as ṽ, see, e.g., Eq. (30).

The simple additive/multiplicative update algorithm is shown in Table2, and it
has the following features:

1. Within the load step, we keep the total quaternion X unchanged, where X cor-
responds to RA = Rn . However, in each iteration, we update the rotation vector
accumulating additively the increments of rotation vector,

ψ = ψ + �ψ, (70)
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where �ψ is the increment for iteration. Note that at the beginning of the load
step ψ = 0.

2. When iterations of theNewtonmethod for the step have converged thenwe convert
ψ into the quaternion for the step {q0,q} using Eq. (44). Then wemultiplicatively
compose the total quaternionX and the quaternion for step {q0,q} using Eq. (40).
The whole sequence of operations is as follows:

ψ → q → Xn+1 = {q0,q} ◦ Xn. (71)

We must be aware that the composition rule for (finite) canonical rotation vectors, is
not additive, in general, so Eq. (70) is only approximate! A more correct approach
is to convert �ψ into a quaternion and compose it with the quaternion for the step
in each iteration; such an algorithm is described as Scheme 2 in Wisniewski (2010b,
p.205).

The simple algorithm of Table2 has several advantages:

1. As the ψ for a step is stored anyhow by FE codes, additionally only 1 quater-
nion/node needs to be stored.

2. It conformswith a typical solution strategy implemented in incremental FE codes,
in which a convergence within a step is controlled using vector quantities, e.g.,
in Taylor (2014).

We have verified on numerous examples that this simple algorithm performs very
well in non-linear statics of shells.

5 Enhanced/Mixed HW Shell Elements

In this section, we characterize the basic features of our 4-node HW shell elements,
and we describe the treatment of independent fields in the shell HW functional.
The standard bi-linear approximations are applied to compatible displacements and
compatible rotational parameters. The assumed fields are expressed in terms of the
skew coordinates.

5.1 Skew Coordinates

Defining the assumed representations of stress and strain in the 4-nodeHWelements,
we use the skew coordinates instead of the natural ones coordinates. It is in accord
with the results of Wisniewski and Turska (2008, 2009), where it is shown that this
modification improves accuracy of mixed elements and renders that the homogenous
equilibrium equations and the compatibility condition are satisfied pointwise for
arbitrary shape of elements.
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Fig. 6 Natural basis at the
element’s center and the
‘fictitious’ parallelogram
(dotted line) obtained for
ȳ = ξ gc1 + η gc2

g1
c

g2
c

c(0,0)

A(1,1)

Natural Basis at Element’s Center The position vector of a 4-node element in
the initial configuration is approximated as follows:

y(ξ, η) =
4∑

I=1

NI (ξ, η) yI , NI (ξ, η)
.= 1

4
(1 + ξI , ξ) (1 + ηI η), (72)

where NI are the standard bi-linear shape functions, ξ, η ∈ [−1,+1] are the natural
coordinates and {ξI , ηI } are the coordinates of nodes I = 1, . . . , 4.

The vectors of the natural basis are defined as

g1(ξ, η)
.= ∂y(ξ, η)

∂ξ
, g2(ξ, η)

.= ∂y(ξ, η)

∂η
. (73)

At the element’s center, gc1
.= g1|ξ,η=0 and gc2

.= g2|ξ,η=0. In general, gc1 and gc2 are
neither unit nor mutually orthogonal, see Fig. 6.

In the reference Cartesian basis {i1, i2}, the position vector is expressed as y =
x i1 + yi2. The Jacobian matrix is defined as

J .=
⎡
⎢⎣

∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

⎤
⎥⎦ =

[
g1 · i1 g2 · i1
g1 · i2 g2 · i2

]
, (74)

and, at the element’s center, Jc
.= J|ξ,η=0.

Skew Coordinates It is a common belief that the natural coordinates ξ, η ∈
[−1,+1] are associated with the natural basis at the element’s center {gc1, gc2}, see
Fig. 6. This, however, is true only for parallelograms but not for irregular (trape-
zoidal) shapes. The coordinates which are associated with {gc1, gc2} are designated
as “skew” and can be derived as shown below.

Consider the position vector relative to the element’s center, and express it the
basis {gc1, gc2} as

ȳ .= y − yc = xS gc1 + yS gc2, (75)
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where xS, yS are the just-introduced skew coordinates. We see that these coordinates
are defined similarly to the contravariant components of the position vector, but the
elemental natural basis gc1, g

c
2 is used instead of the local natural basis g1, g2. Using

Eq. (75), we can express the skew coordinates in terms of the natural coordinates in
the following way.

First, we find the relation between the skew coordinates and the coordinates {x, y}
associated with the Cartesian reference basis {i1, i2}. The position vector can be
written in the two basis as follows:

x̄ i1 + ȳ i2 = xS gc1 + yS gc2. (76)

Taking a scalar product of this equation with the vectors i1 and i2, we obtain two
equations, which are solved for the skew coordinates,

[
xS
yS

]
= J−1

c

[
x̄
ȳ

]
, (77)

where Jc is the Jacobian of Eq. (74) at the element’s center.
Next, we find the relation between the skew coordinates and the natural coor-

dinates. By approximations of Eq. (72), used in Eq. (77), we obtain the mapping
between these two types of coordinates

[
xS
yS

]
=

[
ξ + A ξη
η + B ξη

]
, (78)

where A and B are functions of ai , bi . Alternatively, they can be expressed in
terms of the determinant of the Jacobian J of Eq. (74), the determinant of which can
be expanded as det J = jc + ( j,ξ)c ξ + ( j,η)c η, where jc = a1b2 − a2b1, ( j,ξ)c =
a1b3 − a3b1, and ( j,η)c = a3b2 − a2b3. It can be verified that

A = ( j,η)c
jc

, B = ( j,ξ)c
jc

, (79)

see Wisniewski and Turska (2008) for details. Hence, the skew coordinates are
expressed in terms of the natural coordinates by Eqs. (78) and (79). Note that for
parallelograms, ( j,ξ)c = ( j,η)c = 0, so A = B = 0, and then the skew coordinates
are equal to the natural coordinates.

If we define the position of an irregular trapezoidal element using the formula
with the natural coordinates, i.e. ȳ = ξ gc1 + η gc2, then the ’fictitious’ parallelogram
shown in Fig. 6 is obtained. On the other hand, ȳ = xS gc1 + yS gc2 reproduces the
element’s shape exactly.

Finally, the skew coordinates are used to define the assumed fields (stresses and
strains) only, while for the compatible displacements/rotational parameters, the stan-
dard natural coordinates are used.
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5.2 Assumed Stress or Couple Resultants and Assumed Shell
Strains

Let us take the shell HW functional of Eq. (19) as a starting point. All the fields
marked by the asterisk in this functional will be treated as the assumed fields, which
is indicated by the superscript “a”,

N∗ → Na, M∗ → Ma, ε∗ → εa, κ∗ → κa . (80)

Let us denote the shell stress/couple resultants as σa ∈ {Na,Ma} and the shell
strains as εa ∈ {εa,κa}. The assumed σa and εa are defined in the natural basis at
the element’s center {gck},

σa = σkl gck ⊗ gcl , εa = εkl gck ⊗ gcl , k, l = 1, 2, (81)

where σkl and εkl are the contravariant components of shell stress and strains, respec-
tively. Denote the matrices of assumed components as σξ .= [σkl] and εξ .= [εkl].
They are transformed to the Cartesian reference basis using the transformation rule
for contravariant components,

σre f = Jc σξ JTc , εre f = Jc εξ JTc , (82)

where Jc is the Jacobian matrix J of Eq. (74) at the element’s center. Note that we
use the contravariant rule for stress and strains, but inWisniewski and Turska (2009),
Wisniewski et al. (2010) also other combinations of rules are tested.

In the current paper, the following representations are used for the shell
stress/couple resultants σa and the shell strains εa .

1. For the assumed stress/couple resultants, we use the 7-parameter representation,

σξ .=
[
q1 + q2 yS q5 + q6 xS + q7 yS

sym. q3 + q4 xS

]
. (83)

Compared to the well-known 5-parameter representation of Pian and Sumihara
(1984):

(1) the skew coordinates are used instead of the natural ones, and
(2) the off-diagonal terms are not constant but linear in xS, yS .

In Wisniewski and Turska (2008), the linking transformations for several forms
of another 7-parameter representation existing in the literature are given but our
tests indicate that the representation of Eq. (83) is more accurate for the elements
with drilling rotation.
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2. For the assumed shell strains, we use the 9-parameter representation:

εξ .=
[
q1 + q2 yS + q3 xS q7 + q8 xS + q9 yS

sym. q4 + q5 xS + q6 yS

]
, (84)

in which all components are linear in the skew coordinates xS, yS .

Remark 5.1 The assumed representations can be verified symbolically as follows.

1. For the assumed representations of stress, we check whether they satisfy the
homogenous equilibrium equations

∂σxx

∂x
+ ∂σxy

∂y
= 0,

∂σxy

∂x
+ ∂σyy

∂y
= 0. (85)

2. For the assumed representations of strain, we check whether they satisfy the
compatibility condition,

∂2εxx

∂y2
+ ∂2εyy

∂x2
= 2

∂2εxy

∂x ∂y
. (86)

For the representations assumed in skew coordinates, these equations are satisfied
pointwise, even for irregular trapezoidal shapes of an element. If we use the same rep-
resentations but in the natural coordinates then these equations are satisfied pointwise
only for parallelograms, for details see Wisniewski and Turska (2008, 2009).

5.3 Enhanced Assumed Displacement Gradient (EADG)
Method

For elements with the drilling rotation we should enhance the displacement gradient
rather than the strain, because the former enhancement affects also the drilling RC.
The Enhanced Assumed Displacement Gradient (EADG) method is a generalization
of the Incompatible Displacement (ID) method of Wilson et al. (1973), Taylor et al.
(1976), and was proposed for 2D elements in Simo and Armero (1992). We find it
particularly beneficial for the 2D elements with the drilling rotation. For shells, we
further modify this method as described is the sequel.

In the Incompatible Displacement method, the assumed incompatible displace-
ments uinc are added to the compatible displacements uc, so the enhanced dis-
placements are defined as u .= uc + uinc. Then the enhanced deformation gradient
becomes

F = Fc + H̃, (87)
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where the compatible deformation gradientFc is defined byEq. (4) and the enhancing
matrix is constructed as follows:

H̃ .=
[
∂uinc

∂ξk

]
J−1 ≈

[
∂uinc

∂ξk

]
J−1
c

(
jc
j

)
. (88)

Note that the 2 × 2-point Gauss integration of J−1
c ( jc/j) yields exactly the result of

the 1-point integration of J−1.
Let us define the incompatible displacements in the natural basis at the element’s

center {gc1, gc2} of Fig. 6,

uinc(ξ, η)
.= gc1 u

inc(ξ, η) + gc2 vinc(ξ, η), (89)

which can be rewritten as [
uincC
vinc
C

]
= Jc

[
uinc

vinc

]
, (90)

where Jc is the Jacobian matrix of Eq. (74) at the element’s center, and uincC , vinc
C are

the components in the Cartesian basis {ik}. Then

H̃ = Jc

⎡
⎢⎢⎣

∂uinc

∂ξ

∂uinc

∂η
∂vinc

∂ξ

∂vinc

∂η

⎤
⎥⎥⎦ J−1

c

(
jc
j

)
. (91)

In themethod ofEnhanced AssumedDisplacement Gradient (EADG), we replace
the matrix of derivatives by the matrix G, and directly assume its form, without
resorting to the concept of incompatible displacements and without differentiation,

H̃ .= Jc G J−1
c

(
jc
j

)
. (92)

We use the above formula for 2D problems, but for shells, the EADGmethod can
be modified as follows. Define the natural basis in the deformed (current) configu-
ration,

g∗
1(ξ, η)

.= ∂x(ξ, η)

∂ξ
, g∗

2(ξ, η)
.= ∂x(ξ, η)

∂η
, (93)

where x(ξ, η) is the current position vector. At the element’s center, g∗c
1

.= g∗
1

∣∣
ξ,η=0

and g∗c
2

.= g∗
2

∣∣
ξ,η=0, where, in general, these vectors are neither unit nor mutually

orthogonal.
These basis vectors can be used to define the incompatible displacements, and

then, instead of Eq. (89), we have

uinc(ξ, η)
.= g∗c

1 uinc(ξ, η) + g∗c
2 vinc(ξ, η), (94)
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which can be rewritten as [
uincC
vinc
C

]
= J∗

c

[
uinc

vinc

]
, (95)

where J∗
c

.= ∂x/∂ξk
∣∣
ξ,η=0 is the Jacobian matrix for the deformed (current) config-

uration. Proceeding as previously, we obtain

H̃ = J∗
c

⎡
⎢⎢⎣

∂uinc

∂ξ

∂uinc

∂η
∂vinc

∂ξ

∂vinc

∂η

⎤
⎥⎥⎦ J−1

c

(
jc
j

)
. (96)

As previously, when constructing the EADGmethod, we replace the matrix of deriv-
atives by the matrix G, to obtain

H̃ .= J∗
c G J−1

c

(
jc
j

)
. (97)

This formula used in our enhanced HW and EADG shell elements because, as we
verified on benchmarks, for this formula the performancewas better than for Eq. (92).
On the other hand, the two-dimensional EADG elements perform identically for both
Eqs. (92) and (97).

Finally, let us define the matrix G, which must correspond to the selected repre-
sentation of the assumed stress/couple resultants. For the 7-parameter representation
of stresses of Eq. (83), the 2-parameter representation is as follows:

G .=
[

0 yS q1
xS q2 0

]
. (98)

Besides, we also use the 4-parameter representation, which is a sum of the EADG2
enhancement plus an analogous enhancement dependingon the through-the-thickness
coordinate ζ ∈ [−h/2,+h/2],

G .=
[

0 yS (q1 + ζq2)
xS (q3 + ζq4) 0

]
. (99)

5.4 Approximation of Drilling RC

For the equal-order bi-linear interpolations of the displacement components and the
drilling rotation, the drilling RC is incorrectly approximated; this issuewas discussed
in Wisniewski (2010a), Wisniewski and Turska (2012).

For simplicity, we consider a 2D problem with drilling rotation. The linearized
form of the drilling RC for a bi-unit square element is as follows:
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c
.= ω + 1

2
(u,η − v,ξ) = 0,

where u,η
.= u1,2 and v,ξ

.= u2,1, and, for the equal-order bilinear interpolations, we
obtain

c
.=

[
ω0 + 1

2
(u2 − v1)

]
+

[
ω1 + 1

2
u3

]
ξ +

[
ω2 − 1

2
v3

]
η + ω3 ξη = 0,

(100)
where the coefficients of the bilinear shape function of the displacements and the
drilling rotation are ui , vi , ωi (i = 0, . . . , 3). These coefficients are functions of the
nodal values of the respective components.

We see that the ξη-term (underlined) contains only the rotational parameter ω3

but no displacement parameters, which is incorrect, as these two types of parameters
should be linked.

For this reason, we omit this term using either a linear expansion of the drilling RC
at the element’s center, or sampling at mid-side points of element’s edges, see Wis-
niewski (2010b, p.318). Either one of these methods can be used when the drilling
RC is imposed using the penalty method. For the Perturbed Lagrange method of
Eq. (19), the same can be achieved by omitting the bi-linear term in the representa-
tion of the Lagrange multiplier, see Eq. (102). Then, one additional zero-eigenvalue
appears in the tangent matrix and must be stabilized.

Approximation of Lagrange Multiplier for Drilling RC The Lagrange mul-
tiplier of the functional FRC of Eq. (13) is assumed in the elemental natural basis
{gck} and transformed to the Cartesian basis {tck}, both at the element center, using the
transformation rule for contravariant components

Ta = JLc

[
0 T a

−T a 0

]
JTLc, (101)

where JLc is the local Jacobian at element’s center, and the assumed representation
for the Lagrange multiplier, is as follows:

T a(ξ, η)
.= q15 + ξ q16 + η q17, (102)

We selected this representation in Wisniewski (2010a) as optimal for non-linear
in-plane bending when the element is flat. For a warped element, we proposed in
Wisniewski and Turska (2012) to modify this representation as follows:

T a(ξ, η)
.= q15 + 1

c
(ξ q16 + η q17). (103)

where c ∈ (0,∞) is a large number. Hence, effectively, the constant representation
T a(ξ, η)

.= q15 is used for warped elements, which is sufficient to provide a correct
rank of the tangent matrix.



278 K. Wisniewski and E. Turska

Fig. 7 Spurious mode �2
for drilling rotation

+1

+1-1

-1

Mode 2

Stabilization of the Spurious Mode Due to the omission of the ξη-term in
Eq. (100), the tangent matrix for the drilling RC has one spurious zero eigenvalue,
which can be eliminated using the stabilization function in the penalty form,

P2 = 10−3 G V �2
2, �2

.= 1

4
(ω1 − ω2 + ω3 − ω4), (104)

where V is the element volume, and �2 is the mode shown in Fig. 7. This form
of the stabilization function was proposed in MacNeal and Harder (1988) for the
Allman-type quadrilaterals, and it yields a stabilization matrix which has 1 non-zero
eigenvalue.

This simple stabilization is sufficient for rectangular elements but not for irregular
ones, as, e.g., it negatively affects the solution of the Cook’s membrane test, com-
pared to the solution for a non-stabilized element. Hence, we propose to improve the
stabilization as follows. Let us re-write the spurious mode as

�2
.= 1

4
hTω I , (105)

where ω I
.= [ω1,ω2,ω3,ω4]T are the nodal drilling rotations, and

h .= [1,−1, 1,−1]T is the hourglass vector. Then, instead of 1
4h, we can use the

γ-vector, which was proposed to stabilize one-integration point elements in Flana-
gan and Belytschko (1981), and refined in numerous papers afterwards. Using the
γ-vector, the �2 mode is re-defined as

�2
.= γTω I , (106)

where

γ
.= 1

4

[
h − (hTS1) b1 − (hTS2) b2

]
, (107)

b1
.= 1

4A

[
(ηTS2) ξ − (ξTS2) η

]
, b2

.= 1

4A

[ −(ηTS1) ξ + (ξTS1) η
]
,

ξ
.= [−1, 1, 1,−1]T , η

.= [−1,−1, 1, 1]T .
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Besides, S1 and S2 are the vectors of projections of the nodal relative position vectors
on t1 and t2, and A = 4 jc. The above modification is relatively simple to implement
and clearly improves performance for irregular (skew, trapezoidal) shapes of the
element.

6 Numerical Tests

In this section, we describe numerical tests of two four-node shell elements with 6
dofs/node listed in Table3. They are based on the Green strain and are developed
from the incremental form of the enhanced HW functionals of Eqs. (25)–(26). The
assumed representations of stresses and strains are in terms of skew coordinates, see
Sect. 5.2.

Both the testedHWelements have an identicalmembrane part (whichwas selected
as ‘optimal’ in tests of the 2D+drill HW elements) and a transverse shear part. The
differences are in the bending/twisting part, and they are as follows:

1. TheHW47element has the bending/twisting part fully analogous to themembrane
part, see Sect. 3.2. It is a very good element but uses a considerable number of
parameters.

2. TheHW29element has thebending/twistingpart derived from the (non-enhanced)
potential energy, see Sect. 3.2, otherwise it is identical to the HW47 element. This
element has a reduced number of parameters and is faster than HW47.

In both these elements, the transverse shear part is treated by the HW functional with
8 (4 stress and 4 strain) parameters.

For the compatible transverse shear strain, we use the ANS method of Bathe
and Dvorkin (1985). The related part of HW functional is constructed with the 2-
parameter representations of the assumed stress and strain for each component, totally
8 parameters.

Regarding the drilling rotation part, it has the following features:

1. the perturbedLagrange (PL)method is usedwith 3-parameter Lagrangemultiplier
T, and

2. a stabilization based on the γ-vector is applied to eliminate 1 spurious mode, see
Sect. 5.4. The regularization parameter γ = G is used in both elements.

Table 3 Characteristics of the tested HW shell elements

Element Assumed stresses Assumed strains Enhancement

Na
αβ Ma

αβ Na
α3 εaαβ κa

αβ εaα3

HW47 7p 7p 4p 9p 9p 4p 4p, Eq. (99)

HW29 7p – 4p 9p – 4p 2p, Eq. (98)

Drilling RC by PL with γ = G. “p” stands for “parameters”
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The multipliers qi of additional modes are eliminated on the element’s level and
updated by the scheme U2, seeWisniewski (2010b). In all elements, the 2 × 2 Gauss
integration is used.

The elements are derived using the automatic differentiation program AceGen
developed by Korelc (2002), and are tested within the finite element program FEAP
developed by Taylor (2014), Zienkiewicz and Taylor (1989).4

All our elements have a correct number of zero eigenvalues and pass the constant
strain patch tests, also with the drilling rotations unconstrained at boundary nodes,
see Wisniewski and Turska (2006). Their performance is presented and compared
with the enhanced EADG elements in Wisniewski and Turska (2012), where the
following examples are presented:

(1) Cook’s membrane,
(2) Pinched hemisphere with hole,
(3) Twisted beam,
(4) Short C-beam,
(5) Pinched spherical shell,
(6) Long C-beam and
(7) L-shaped plate.

Two additional examples for the HW29 shell element are provided in Wisniewski
and Turska (2014), and they are:

(1) two one-element tests for non-zero drilling rotation, and
(2) ring twisted by drilling rotations.

Below are presented two new examples:

(1) the intersection of two perpendicular elements test, and
(2) the cylindrical shell under wind load.

We also present additional results for the example of the long C-beam.

6.1 Intersection of Two Perpendicular Elements

Two square elements of the size 1 × 1 intersect at the right angle. The element 1 is
clamped while two forces, P = 1, are applied at the free edge of the element 2, see
Fig. 8. The forces are perpendicular to the element 2. The data is as follows: E =
1.2 × 107, ν = 0.3, and the thickness h = 0.05. The displacement in the direction
of force P and the rotation at node A about the horizontal edge are monitored.

The linear analysis is performed, and the results at nodeA are presented in Table4.
Three our elements, the mixed/enhanced HW47, HW29 and the enhanced element
EADG5A are compared to the element of Taylor (2014), which is the linear element
(without the transverse shear) with 6 dofs/node described in Taylor (1988) and to the
element S4 of N.N. (2013).

4The use of these programs is gratefully acknowledged.
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Fig. 8 Intersection of two
perpendicular elements.
Initial geometry and load

P

P
A

intersection

#1

#2

Table 4 Intersection of two perpendicular elements

Element Displacement Rotation

u2 × 102 ψ1 × 102

HW47 1.9985 2.2548

HW29 1.9953 2.2488

EADG5A 1.9880 2.2415

FEAP 6 dofs/n 2.0515 2.3158

S4 ABAQUS 1.8760 2.2658

Linear solutions at A

6.2 Cylindrical Shell Under Wind Load

A vertical cylindrical shell is clamped at the bottom and has a free top edge. The data
is as follows: E = 3 × 107, ν = 0.3, the length L = 120, the radius R = 40 and the
thickness h = 0.1064. The wind pressure is constant in the axial direction but varies
in the circumferential direction as follows:

q(φ) = p0

6∑
n=0

an cos nφ, (108)

where p0 is the load multiplier and the coefficients an have the values:
{−0.220,−0.338,−0.533,−0.471,−0.166,0.066, 0.055}. Thedistributionof pres-
sure is shown by a broken line in Fig. 9, and the maximum q = 1.607p0 is at φ = 0◦.
Due to symmetry of loads and the shell, one half of the shell can be analyzed.

This example was computed in Brendel and Ramm (1980), where a non-uniform
mesh of 4 × 8 shell elements S16 was used.5 We use our 4-node shell element HW29
and uniform meshes of m × 2m elements, where m = 8, 16, 24, 32, 40.6

5S16 is the 16-node shell element based on bi-cubic Lagrangian shape functions.
62m is used in the circumferential direction.
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Fig. 9 Cylindrical shell under wind load. Pressure distribution
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Fig. 10 Cylindrical shell under wind load. Mesh convergence

The arc-length method is used to compute the solution, and the results are pre-
sented in Fig. 10, where the plot of the radial displacement u1/h (at top edge and
φ = 0◦) versus p/pcl is shown.

Note that pcl = 2.03 is a buckling load for a cylinder under uniform external
pressure, see Brendel and Ramm (1980, p. 554). We see in Fig. 10 that the curves for
m = 24, 32, 40 are close, which indicates the mesh convergence; therefore, we can
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Fig. 11 Cylindrical shell under wind load. Nonlinear solution for large load increments

use m = 24 in further computations. The maximum pressure is 1.30, which is lower
than 1.58 obtained in the cited paper.

To demonstrate very good convergence properties of the element HW29, we re-
computed this example for large load increments p0 = 1.6, and the convergence in
the first 3 steps was achieved in 7, 11, and 8 iterations. The subsequent solution
points are shown in Fig. 11.

The solutions in Figs. 10 and 11 were obtained for the so-called dead pressure (of
a fixed direction and intensity) but we also tested the pressure acting in the direction
of the current normal vector to the shell and of the intensity defined per current area
of the shell. The virtual work of such a configuration-dependent pressure is

δF
.=

∫
A

q n · δx0dA, (109)

where the current normal vector n and the relation between the current area and
initial area, dA and dA0, are defined as follows:

n .= x0,1 × x0,2
‖x0,1 × x0,2‖ , dA = ‖x0,1 × x0,2‖

‖y0,1 × y0,2‖dA0. (110)
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Here x0, y0 are the position vectors of the reference surface for the deformed and
non-deformed configurations, respectively. The linearization of Eq. (110) yields, in
general, a nonsymmetric load tangent matrix, symmetrization of which is acceptable
only when the free edge effects can be neglected and for a uniform pressure.

We re-computed this example for the so-defined configuration-dependent pres-
sure, and the maximum load was only slightly lower than 1.30.

6.3 Long C-Beam

This test was proposed in Wagner and Gruttmann (2005). A long C-beam is fully
clamped at one end and loaded by a vertical force P at the other end, see Fig. 12a. The
material data is as follows: E = 21000, ν = 0.3. Each flange is modeled by 36 × 2
elements and the web by 36 × 6 elements, totally 360 elements. At the clamped end,
displacements and rotations are constrained.

(a)

(b)

1 2

3P

1.6

1

900

30

10

1 2

3P

P

Fig. 12 Long C-beam. a Initial geometry and load. b Deformed configuration at P = 20
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Fig. 13 Long C-beam. Non-linear solutions

The beam is slender and its response is mostly global, see Fig. 12b. The non-
linear solution obtained by the arc-length method is shown in Fig. 13. The vertical
displacement at the point where the force is applied is monitored. Only 5 steps
are performed for the initial load increment �P = 11 and the requested number
of iterations per step Ireq = 20. The HW29 element needed 53 iterations while the
enhanced EADG5A element 77 iterations. Besides, for the HW29 element, the steps
are longer and the final load is much higher than for the enhanced element. The
solution for the element HW47 coincides with the solution for the HW29 element.

7 Final Remarks

These lecture notes describe several features of our mixed/enhanced four-node Hu-
Washizu (HW) shell element with the drilling rotation.

1. In our HW29 element, which was developed in Wisniewski and Turska (2012),
we applied the so-called incomplete (partial) HW functional, which reduces the
number of elemental parameters from 47 to 29. The membrane part and the
transverse shear part are treated by the HW functional, but the bending/twisting
part is standard, i.e. derived from the strain energy. HW29 element is almost
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equally accurate and has similar convergence properties to our reference element
HW47, which is derived from the complete (pure) HW functional, but is faster.

2. For the membrane part, we selected the assumed fields which are different than
the assumed fields of the HW elements without the drilling rotation. Besides, the
representations of the assumed stresses and strains are in terms of the so-called
skew coordinates and the EADG enhancement is applied, which affects positively
also the drillingRC. These threemodifications improved the accuracy of solutions
for distorted meshes.

3. The drilling rotation is incorporated using the drilling part of the Rotation Con-
straint, and, in numerical implementation, we use the Perturbed Lagrange method
and the 3-parameter (linear) interpolation of the multiplier field, which increases
the radius of convergence. This, however, yields one spurious mode, which is
identical to the �2-mode of the Allman/Cook’s quadrilaterals of MacNeal and
Harder (1988), where also a simple stabilization was proposed. This stabiliza-
tion works correctly only for rectangular elements and we proposed to use the
γ-stabilization, which is suitable for distorted meshes.

Concluding, the developed shell element with drilling rotation HW29, has an
improved accuracy for coarse distorted meshes and superior convergence proper-
ties in non-linear problems, compared to the enhanced elements.
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