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Preface

Functional imaging and modeling constitute important research approaches to
gaining insights into the physiology and pathophysiology of the human heart.
Applications of these approaches are promising to support clinical diagnosis and
therapy of cardiac diseases, which are the most common cause of death in the
western world and a major health problem in Asia.

The series of international conferences on “Functional Imaging and Modeling
of the Heart”(FIMH) aims at integrating the research and development efforts in
the field of cardiovascular imaging, image analysis and modeling. The main goal
is to encourage collaboration between scientists in signal and image processing,
imaging, applied mathematics, biophysics, biomedical engineering and computer
science, and experts in cardiology, radiology, biology and physiology.

Previous FIMH conferences were held in Helsinki (2001), Lyon (2003), and
Barcelona (2005). The 4th FIMH conference was the first outside Europe and
took place at the University of Utah, Salt Lake City, USA, on June 7–9, 2007.

These proceedings present peer-reviewed contributions to the FIMH 2007
conference from Asian, European, North American and New Zealandian research
groups. Their contributions cover topics of imaging and image analysis, electro-
physiology, electro- and magnetocardiography, structure mechanics, and anatom-
ical modeling. The contributions describe both experimental and computational
studies. Several contributions are closely related to the clinical application of
imaging and modeling approaches.

We would like to thank all authors for their excellent contributions to the
FIMH proceedings, all members of the scientific committee for their invaluable
efforts during the review process, and all members of FIMH steering committee
for their outstanding scientific and organizational guidance.

June 2007 Frank B. Sachse
Gunnar Seemann
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Local Wall-Motion Classification in
Echocardiograms Using Shape Models and

Orthomax Rotations

K.Y. Esther Leung and Johan G. Bosch

Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
k.leung@erasmusmc.nl

http://www.erasmusmc.nl/ThoraxcenterBME

Abstract. Automating the analysis of left ventricular (LV) wall mo-
tion can improve objective prediction of coronary artery disease. A new
method for classifying LV wall motion using shape models with local-
ized variations was developed for this purpose. These sparse shape mod-
els were built from four-chamber and two-chamber echocardiographic
sequences using principal component analysis and orthomax rotations.
The resulting shape parameters were then used to classify wall-motion
abnormalities of LV segments. Compared with the shape model before
rotation, higher classification correctness was achieved using significantly
less shape parameters. The local variations exhibited by these shape pa-
rameters correlated reasonably with the location of the segments.

1 Introduction

Coronary artery diseases are a major cause of death in the western world. Detec-
tion of wall-motion abnormalities of the left ventricle (LV), widely accepted as
predictors for these diseases, is therefore of great clinical importance. To improve
the diagnostic quality of the detection, current visual analysis methods should
be automated. The goal of this study is to evaluate a new automated classifica-
tion approach to detect local wall-motion abnormalities, using point-distribution
models with localized variations.

Point-distribution models, or shape models, are parametric representations
of a set of shapes. First applied to face analysis, these models have since then
been used in various medical image processing contexts, especially segmentation
[1],[2]. Shape models are often built using Principal Component Analysis (PCA),
which maximizes the variance of the input data. This results in models with
global variations. In our previous work, PCA shape models of the LV endocardial
borders were used to classify wall-motion abnormalities [3]. Clear correlations
were found with respect to global clinical parameters (e.g. LV volume), as well
as to local parameters (e.g. visual wall-motion scores). However, relatively many
shape modes were needed to classify these local wall-motion scores, because global
shape parameters were used. We therefore hypothesize that models with local
variations should be able to predict local wall motion using less shape modes.

F.B. Sachse and G. Seemann (Eds.): FIMH 2007, LNCS 4466, pp. 1–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 K.Y.E. Leung and J.G. Bosch

Several methods for building more localized shape models have been proposed,
including independent component analysis [4] and various sparse PCA methods
[5],[6]. Recently, Stegmann et al. [7] suggested a method using orthomax ro-
tations, which is particularly attractive due to its computational feasibility in
high-dimensional spaces. The applicability for localized classification was men-
tioned in that paper, but has not yet been investigated.

To determine whether localized shape models can improve classification of lo-
cal wall-motion abnormalities of the left ventricle, shape models were constructed
using PCA and rotated according to the orthomax criterion. Classification cor-
rectness, the number of shape modes needed, and cluster representation were
studied, for different proportions of retained variance. The position of the local
variations exhibited by the shape modes was compared with the location of the
classified segment.

2 Methods

2.1 Shape Modeling

Shape models of the LV endocardial contours were constructed using full-cycle
2D+time (2D+T) echocardiograms. By modeling the complete cardiac cycle,
typical motion patterns associated with certain pathologies were included. More
details of the model can be found in our previous work [8].

Each 2D+T shape was represented as a vector x, consisting of landmark
coordinates in a number of cardiac phases. Shape models describing the main
variations in a patient population were built using PCA:

x = x̄ + Φb , (1)

where x̄ denoted the average shape, Φ = (φ1| . . . |φp) the n × p matrix of or-
thogonal shape eigenvectors or modes, and b a vector of shape coefficients. Each
shape could be seen as a point b in a p-dimensional parameter space spanned
by the p orthogonal eigenvectors. Any new shape could be approximated in this
PCA space using the pseudoinverse (Φ−1) of the eigenvector matrix:

b ≈ Φ−1(x − x̄) . (2)

To obtain a more compact model, k eigenvectors with the largest eigenvalues
λi were kept, so that only a proportion f of the total variance V =

∑p
i=1 λi was

retained:
k∑

i=1

λi ≥ fV . (3)

2.2 Orthomax Rotations

Orthomax rotations were applied to the PCA shape models to produce models
with localized spatial variations [7],[9]. Orthomax rotations are reparameteriza-
tions of the PCA space so that the resulting Orthomax PCA (OPCA) space has
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a simple basis. The orthonormal orthomax rotation matrix R is calculated by
maximizing the criterion ξ:

ξ = {
k∑

j=1

n∑

i=1

G4
ij − γ

n

k∑

j=1

[
n∑

i=1

G2
ij ]

2}/n , (4)

where Gij denotes the scalar element in the ith row and jth column in the rotated
eigenvector matrix G = ΦR, and γ is determined by the orthomax type. The
shape coefficients after rotation bR can be found with bR = R−1b. Common
orthomax types include varimax (γ = 1), quartimax (γ = 0), and parsimax
(γ = n(k − 1)/(n + k − 2)) [9]. In this study, the varimax criterion [10] was
investigated, although the other criteria gave similar sparse representations in
our initial experiments.

Interestingly, the orthogonal orthomax criterion is equivalent to the Crawford-
Ferguson criterion, which is a weighted sum of row and column complexity of
the eigenvector matrix [11]. Therefore, orthomax rotations can be interpreted as
a redistribution of the factor loadings of the eigenvector matrix so that each row
or column has a minimum number of nonzero elements, i.e. columns or rows are
as sparse as possible. When applied to a shape eigenvector matrix, the variation
for a certain mode is emphasized in certain spatial regions of the shape, whereas
the variation is suppressed in other regions (see Fig. 1).

An important property to consider is the number of modes k. PCA gener-
ates global modes which are ordered according to the variance of the input set.
Therefore, PCA modes with low eigenvalues generally contain noise. Eliminat-
ing some of these modes may lead to more representative local variations in the
OPCA shape model. However, if too many modes are removed, important infor-
mation needed for classification may be lost. Also, a lower k generally results in
less localized shape variations, because each mode must capture more variations
(see Fig. 1).

PCA, f = 99.9%

(k = 63)

OPCA, f = 99.9%

(k = 63)

f = 95%

(k = 25)

lan
d

m
ark

s

shape modes

f = 98%

(k = 40)

+

–

0

Fig. 1. Top row: eigenvector matrices of PCA and rotated PCA shape model of the
four-chamber. Bottom row: end-diastolic shape variations of the fifth mode, showing
more localization for higher proportions of retained variance in the shape model.
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2.3 Data Description

The effect of orthomax rotations was demonstrated on dobutamine stress echo
data from 129 unselected infarct patients participating in a clinical trial [3],[12].
Myocardial wall motion in these images was evaluated visually by consensus of
two expert readers. The whole LV was subdivided into 13 segments (see Fig. 2),
and all segments were given a motion score according to the four-point system
(0 = normokinesia, 1 = hypokinesia, 2 = akinesia, 3 = dyskinesia) [12].
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Septal
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Fig. 2. Coronary territories (LAD = left anterior descending artery, LCX = left cir-
cumflex artery, RCA = right coronary artery) and LV wall segments

The transthoracic apical four-chamber and two-chamber sequences from the
rest stage were available for shape modeling. Each time sequence was phase-
normalized to 16 frames, where the first and last frame corresponded to end-
diastole (ED) and the ninth frame to end-systole (ES). Endocardial borders
were delineated using a semi-automated tracing program (ECHO-CMS system
[13]), independent of the visual wall motion scoring. The contour in each frame
was modeled by 37 landmark points.

The total data set was split randomly into a training set (TRN) of 65 patients
and a testing set (TST) of 64 patients. Shape models of the four-chamber and
two-chamber were built with the training set. Shape coefficients b and bR were
calculated for all data sets and used as the shape parameters in the classification.
Different numbers of shape modes k were investigated (eq. 3): f = 95%, 98%,
99% and 99.9% corresponding with k = 27, 40, 48, and 63 shape coefficients in
the four-chamber model, and k = 25, 38, 46, and 62 shape coefficients in the
two-chamber model.

2.4 Wall-Motion Classification

Linear discriminant analysis was performed to find an optimal classification of
visual wall motion scores from a minimal number of shape parameters. According
to our hypothesis, less shape parameters should be needed in the OPCA space
than in the original PCA space.

Two classification experiments were performed, representing an ‘ideal’ situa-
tion and a ‘worst-case’ situation. In both cases, the shape model was trained on
the TRN set. In the ‘ideal’ case, the classifier was trained on the TRN set using
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a leave-one-out approach and tested on the TRN set only. In the ‘worst-case’
situation, the classifier was trained on the whole TRN set and then tested on all
TST cases. This resembled classification in the real-world: both shape model and
classifier were trained from a limited training set and tested on completely ‘new’
shapes. Wall-motion scores of each of the nine segments in the four-chamber and
two-chamber views were grouped into two classes, representing normal (score =
0) and abnormal (score > 0) motion, before classification; this resulted in rea-
sonably balanced classes in most cases.

To assess the classification in the PCA and OPCA space, cluster measure-
ments were computed. The subset q of the k shape parameters used by the
classifier was selected. Each shape could be seen as a point in this reduced q-
dimensional classification space; ideally, points of a class should form a compact
cluster, completely separated from the point-cluster of the other class. Measures
of class compactness and class separation are the within-class scatter matrix SW

and the between-class scatter matrix SB [14]. Since SW and SB are related to
the variance of the point-cluster in each direction, a better measure of cluster
quality is the ratio J of the trace of the two scatter matrices ([15], p. 311):
J = tr(SB)

tr(SW ) .

2.5 Categorizing Orthomax Shape Modes

Once the classifier had selected the subset of the OPCA shape modes for clas-
sifying each LV segment, we investigated whether these modes indeed exhib-
ited the most prominent variation in that segment. Since this information did
not directly result from the orthomax rotation, and manually categorizing all
parameters would be a very time-consuming job, we applied an adapted ver-
sion of the geometry-based sorting method proposed by Suinesiaputra et al. [14]
(see Fig. 3).
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shape variation, ED
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local variation

N
C

C

ς

Local Response:

septal basal & 

septal mid

di
(j)

Fig. 3. Categorizing local variation into LV segments using Gaussian templates and
normalized cross-correlation (NCC)
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The goal of this method was to determine the position and spread of the
most prominent local (spatial) variation, i.e. the local response, for each shape
mode. The local variation d

(j)
i of shape mode i was defined as the displacement

perpendicular to the average contour caused by the shape variation bi = ei,
where ei was a vector with element

√
λi at the ith position and zero otherwise.

For a slightly easier interpretation, the average d̄i of d
(j)
i was calculated across

the time dimension. Next, normalized cross-correlation (NCC) was performed
between d̄i and Gaussian shape templates with different kernel sizes σ. The
Gaussian template giving the maximum NCC for each shape mode represented
the position and spread of the most prominent local variation. We attributed
the shape mode to a wall segment if that segment fell within the full-width at
half-maximum (FWHM = 2

√
2 ln 2σ) of the Gaussian template. This method

could also detect noise modes with no prominent local variation, corresponding
to a wide Gaussian template [14]. In that case, the shape mode was defined as
having no local response.

In summary, the q shape modes used for classifying a certain LV segment were
categorized and examined to see whether their local responses were related to
the segment being classified. We checked whether the local responses were in the
same or adjacent segment, and whether they were in the segments perfused by
the same coronary artery, since correlations are expected between wall-motion
scores in the same coronary territory (see Fig. 2).

3 Results

Varimax rotations were applied to four-chamber and two-chamber 2D+T shape
models. The implementation in Matlab (v. 7.0.4 (R14), 2005), based on singular
value decomposition, was used. Whereas PCA shape modes are ordered accord-
ing to variance, thus exhibiting global variations in the first modes, OPCA modes
show local variations in most modes (see Fig. 4).

Shape parameters were used to predict the presence of wall motion abnormal-
ities per segment. Classification was performed using the Linear Discriminant
Analysis option in statistical package SPSS (v. 11.0.1, 2001). Shape parame-
ters were added using the ‘stepwise’ option. For shape models with f = 99.9%
retained variance, varimax rotations reduced the number of parameters in seg-
mental wall-motion classification, from 8.0 to 5.1 (see Table 1). Equal or better
classification correctness was achieved with significantly less shape parameters
for f ≥ 99% (see Table 2). Cluster quality J (section 2.4) shows better cluster
separation (larger J) in the OPCA space than the PCA space in most cases.

The local responses of the OCPA shape modes used in the classification were
calculated (see section 2.5). The proportions of shape modes directly correlating
with the classified segments are given in Table 3. For example, for f = 99.9%,
63.0% of the modes used in classification gave a response in the same or adjacent
segment, 28.3% of the modes gave a response in an other segment, and 8.7% of
the modes were noise modes.
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Fig. 4. PCA and varimax rotated modes. Absolute displacements of the landmarks
due to ±3 SD model-variation are shown in color on the average 2D+T shape. PCA
modes are ordered according to variance; OPCA modes are unordered.

Table 1. Classification correctness versus the number of PCA and OPCA shape pa-
rameters used, and the proportion of abnormal cases, for nine segments

PCA f = 99.9% OPCA f = 99.9%
Classification # para- Classification # para-
correctness meters correctness meters

View Segment TRN L-1-O TST TRN L-1-O TST
4C+2C Apical 93.8% 81.3% 7 95.4% 85.9% 6
4C Septal Basal 86.6% 70.3% 10 90.8% 64.1% 5
4C Septal Mid 92.3% 73.4% 12 92.3% 73.4% 11
4C Lateral Basal 86.2% 64.1% 8 90.8% 82.8% 2
4C Lateral Mid 76.9% 69.8% 6 81.5% 71.4% 2
2C Anterior Basal 95.4% 95.3% 3 96.9% 96.9% 2
2C Anterior Mid 93.8% 74.6% 11 93.8% 76.2% 9
2C Inferior Basal 84.6% 71.9% 5 90.8% 71.9% 5
2C Inferior Mid 90.8% 65.6% 10 87.7% 65.6% 4

mean 88.9% 74.0% 8.0 91.1% 76.5% 5.1
SD 5.9% 9.4% 3.0 4.5% 10.5% 3.2
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Table 2. Classification correctness versus the number of PCA and OPCA shape modes
used (mean±SD), for different proportions of retained variance f in the shape models.
* denotes significantly (p < 0.05, paired t-test) less shape parameters than PCA.

Classification correctness #parameters
f TRN L-1-O TST .

PCA 99.9% 88.9 ± 5.9% 74.0±9.4% 8.0 ± 3.0
OPCA 99.9% 91.1 ± 4.5% 76.5±10.5% 5.1 ± 3.2*

99% 88.9 ± 5.9% 76.0±8.7% 5.7 ± 3.3*
98% 87.7 ± 7.0% 75.8±9.5% 6.4 ± 3.5
95% 86.3 ± 6.1% 76.3±9.0% 6.6 ± 3.7

Table 3. Categorizing shape parameters used in the classification according to their
local responses

Retained variance f 99.9% 99% 98% 95%
same or adjacent segment 63.0% 60.8% 55.2% 66.1%
other segment 28.3% 31.4% 37.9% 25.4%
noise 8.7% 7.8 % 6.9% 8.5%
RCA territory (3 segments) 50.0% 41.2% 35.3% 42.1%
LAD territory (4 segments) 53.6% 53.3% 45.5% 63.6%
LCX territory (2 segments) 50.0% 50.0% 50.0% 42.9%
coronary territory, mean of 9 segments 52.2% 49.0% 43.1% 54.2%
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4 Discussion and Conclusions

In this study, we showed that localized shape models of the left ventricle can be
generated with varimax rotations. Using these localized shape models, the num-
ber of parameters needed for classifying segmental wall motion abnormalities in
2D echocardiographic sequences was reduced significantly, without compromis-
ing classification correctness. The relatively large improvement in the lateral seg-
ment may be due to the combination of the varimax rotation and the variations
in the TRN set, which by chance produced a sparser parameter representation
for those segments.

Furthermore, the normal and abnormal wall motion classes were better sepa-
rated in the OPCA parameter space than in the original PCA space. Although
the data set is too small to determine a clear relationship between the improve-
ment in classification correctness, the number of shape modes used, and cluster
quality, classification is generally expected to be better in a well-defined pa-
rameter space. However, the cluster measurements revealed that there is still a
reasonable amount of overlap of the classes, suggesting that better classification
might be achieved with a nonlinear discriminant function. More advanced fea-
ture selection methods and nonlinear classifiers, such as support vector machines,
might lead to a better class discrimination.

The local shape modes used in the classification correlated reasonably with
the most prominent local variation, although other uncorrelated modes were
used as well. The latter could partly be due to the categorization method, which
only detected the location of the most prominent variation and not residual
variations in other segments. Another reason may be the high variability of
visual wall motion scoring. Regrettably, this variability could not be determined
for this data set because the scoring was performed by consensus. In the future,
we would like to use a more objective measure such as quantitative coronary
angiography, to demonstrate the relationship between local shape variations and
functional consequences of coronary lesions more precisely.

Although regional variation is important in analyzing wall motion, global
shape changes may add valuable information, especially in the case of cardiac
pathology. Therefore, classification using local variations, supplemented with a
limited set of global variations, could lead to better results. In this context, the
fact that the orthomax criterion also allows rotations of subsets of the shape
model [16] is worth mentioning. This is a subject of further investigation.

Finally, since pathologies are typically spatially localized, we anticipate many
medical applications where sparse representations are preferred to the conven-
tional PCA approach. The orthomax criterion is shown to be suitable for build-
ing these sparse representations with relative ease. Although not explored in
this study, sparse texture models can be constructed in a very similar manner
[7]. The direct cardiac application would be to examine myocardial thickening,
which might also be a predictor of coronary disease. In the future, we would like
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to extend the method to coupled shape models of rest and stress stage cardiac
contours, to investigate local differences in wall-motion.
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Abstract. This paper presents an enhanced version of our previous algorithm 
for point-wise tracking and analysis of cardiac motion based on 3D active mesh 
model. In the present software, a new 3D active surface model based on curve 
evolution techniques and level sets is used for automatizing the segmentation of 
endocardial boundary in the left ventricle in the first phase of cardiac cycle. 
Furthermore, cardiac muscle anisotropy is modeled and included in the tracking 
algorithm. Additionally, the tracking algorithm is improved in order to track the 
left ventriclular wall instead of left ventricular cavity in the previous version. 
Finally, a quantitative analysis of myocardial strain is performed using the 
motion estimation obtained by the tracking software. Experiments were 
performed on cardiac MRI images for tracking the left ventricle myocardium. 
The results of evaluation on a set of Gradient-Echo images reported in this 
paper clearly demonstrate the effectiveness of our algorithm for extracting 
motion parameters. 

Keywords: deformable surface, three dimensional active mesh, strain mapping, 
cardiac MRI.  

1   Introduction 

Fundamental goal of many efforts in cardiac imaging is to assess the regional function 
of the left ventricle (LV) of the heart. The general consensus is that the analysis of 
heart wall dynamics (motion, thickening, strain, etc.) provides quantitative estimates 
of the location and extent of ischemic myocardial injury. However, imaging-based 
clinical analysis of regional LV function, usually from SPECT and echocardiography, 
often results in overestimation of the true myocardial infarction. More sophisticated 
quantitative analysis of myocardial dynamics may improve the accuracy in the 
estimation of myocardial injury [1].  

Various models have been introduced previously to study heart wall dynamics. A 
2.5 dimensional active contour model has been used for volume representation of the 
heart in a cardiac cycle in [2,7]. However, these models are not able to do point-wise 
tracking. Alternatively, mesh based algorithms were introduced to segment and track 
3D structures in MRI cardiac images [1,3,8,14]. The mesh based tracking methods 



 A Fully 3D System for Cardiac Wall Deformation Analysis in MRI Data 13 

previously introduced were presented in 2 or 2.5 dimensional space. However, heart is 
a non rigid moving object which deforms in 3D space. Hence, motion estimation 
using 2D image sequences do not measure the true movement of the heart. To solve 
these problems, we previously developed a fully 3D active mesh model based on a 
finite-element deformable volume to achieve efficient representation of global and 
local deformations of the left ventricle using cardiac MRI images [4]. Our model is 
advantagous with respect to 3D motion analysis of the cardiac muscle using tagged 
MRI [14] from other points of view. For example, our algorithm is able to track the 
motion in voxel resolution, while the resolution of tags in tagged MRI is considerably 
less than the image resolution. 

For automatizing the developed tracking software, an accurate and efficient 3D 
segmentation algorithm was needed to automatically segment the left ventricle in the 
first phase of cardiac cycle. Primary works on automatic segmentation of cardiac 
images were based on simple techniques such as thresholding or region growing [5]. 
Some more elaborated approaches were probabilistic or statistical [6]. A disadvantage 
of probabilistic models is that they require a learning database to adapt themselves 
with the pathology. Therefore, this image database should be relatively large. A recent 
segmentation model is level set [7]. The level set model is problematic in including a 
priori information and also is computationally intensive for 3D+T cardiac data sets. 
Deformable models or active contours [8] and snake models rely on the edge-
function, depending on the image gradient to stop the curve evolution. Chan and Vese 
proposed a different active contour model which was not based on the gradient of the 
image for the stopping process [9]. Their model could detect contours either with or 
without gradient. However, their model was presented in the two dimensional space 
[9]. In this paper, we have extended the model presented in [9] to three dimensions 
and used it for the segmentation of endocardial boundary in the left ventricle. By 
applying the segmentation algorithm to MRI cardiac images, the left ventricle was 
extracted and then filtered to eliminate noisy parts corresponding to papillary 
muscles. The extracted surface was used by the tracking algorithm. 

For enhancing the tracking software, the cardiac muscle anisotropy was modeled 
and also the algorithm was adapted to track the left ventricular wall instead of 
endocardial wall motion in the left ventricle. Furthermore, since it has been shown 
that a comprehensive quantitative analysis of myocardial strain can more accurately 
identify ischemic injury than simple analysis of endocardial wall motion [1], we 
calculated the myocardial strain using the obtained motion estimation. 

This paper is structured as follows. In section 2, we describe the 3D object 
segmentation model. In section 3, the enhanced tracking algorithm is introduced. In 
section 4, we formulate the strain calculation. Finally in section 5, the experimental 
results are presented and in section 6, conclusions are drawn. 

2   Segmentation 

Let I  be a 3D image and B  be an object located in I .We propose a 3D model for 
active contours to detect object B  based on techniques of curve evolution. For this 
purpose, we consider the initial surface as a sphere which could be anywhere in I . 
The initial sphere starts deforming until it stops on the desired boundary. 



14 F.J. Dinan et al. 

Let Ω be a bounded open subset of 3R , with Ω∂  its boundary and 0u  be a given 

3D image, RΩu →:0 .Let us define the evolving Surface S  in Ω , as the boundary 

of an open subset of ω  (i.e. ΩS ⊂  and ωS ∂=  ). In what follows, inside S  denotes 
the regionω  , and outside denotes the region ωΩ − .Consider a simple case where the 
3D image 0u  is formed by two regions of piecewise constant intensity. 

Denote the intensity values by ou0  and iu0 .Furthermore, assume that the object to be 

detected has a region whose boundary is 0S  and its intensity is iu0 . Then, consider the 
following “fitting” term: 

( ) ( ) ( )
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The constants 1c  and 2c  are the averages of 0u  inside and outside S , respectively. If 

the surface S  is outside the object, ( ) 01 ≈SF and ( ) 02 >SF . In case that S  is inside 

the object then, ( ) 01 >SF and ( ) 02 ≈SF . If S  is both inside and outside of the object 

then, ( ) 01 >SF  and ( ) 02 >SF . Finally, the fitting energy is minimized if 0SS = , i.e. 

if the surface S  is the boundary of the object: 
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In our 3D active contour model, we will minimize the above fitting term and will add 
some regularizing terms to (1) to introduce the energy functional ( )SccF ,, 21  , defined 
by: 
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Where 01 >λ , 02 >λ , 0≥ν  and 0≥μ  are fixed parameters. 

Now we want to find the values of 1c , 2c and S  so that ( )SccF ,, 21  is minimized. 

This problem can be formulated using level sets as follows. The evolving surface S  
can be represented by the zero level set of the signed distance function (Lipschitz 
function) 3: R→Ωϕ as in (4). 
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In (4), d  is the distance of ),,( zyx  with boundary surface ω∂  in 0=t . Therefore, 
we replace the unknown variable S  by ϕ . Now consider the Heaviside function H , 

and the Dirac measureδ : 
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We can rewrite the lateral surface 0=ϕ  and the inside regions 0=ϕ with these 
functions. As H  is positive inside the boundary surface and is zero in other regions, 
the volume of the inside regions will be the integral of )(ϕH . The gradient of H  
defines the boundary surface. So summation of it on the assumed region defines the 
outside boundary surface, mathematically: 
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===
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Similarly, we can rewrite the previous energy equations so that they are defined over 
the entire domain Ω  rather than separated into inside ( S ): 0≥ϕ and outside ( S ) : 

0<ϕ  Then, the energy ( )SccF ,, 21  can be written as: 
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The constants 1c  and 2c  are the average of 0u  in 0>ϕ  and 0<ϕ , respectively. So 
they are easily computed as: 
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Keeping 1c and 2c  fixed, and minimizing F  with respect toϕ , we can deduce the 
Euler–Lagrange partial differential equation from (7). We parameterize the descent 
direction by 0>t , so the equation ( )zyx ,,0ϕ  is: 
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For solving the above equation, )(),( zzH δ should be defined. Chan and Vese [9] 
propose: 
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Chan and Vese [9] give the discretization and linearization of (9) as (11), where the 

forward differences of n
kjh ,,ϕ  are calculated according to (12). 
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The procedure of segmentation comprises the following steps: 

1) In 3D image sequences the “Volume of Interest” is defined. 
2) We define  the initial  surface 0ϕ in 0ϕ and also 0=n .Then ( )nc ϕ1  and ( )nc ϕ2   are   

obtained from (8) and 1+nϕ  is computed from (11). 
3) If the result is acceptable, we go to the next step, else n=n+1 and we repeat step 2  
4) Segmentation of the external cardiac wall is done manually by the operator. 
5) The segmented image is filtered to eliminate noisy regions of the surface, for    

example the regions which correspond to papillary muscles  
6) Linear interpolation is used to convert the voxels to cubic elements. 
7) The segmentation result of the first frame is used for the active mesh software. 

In Fig. 1-Left, we have shown the segmentation of the first phase of 4D gradient-echo 
images. In Fig. 1-Right, epicardial and endocardial contours of these images are 
shown. 

   

Fig. 1. Left: Segmentation of gradient-echo images Right: Epicardial and endocardial contours 

3   Tracking 

Let ,...2,1 , =tI t  be a sequence of 3D images. For obtaining the deformations of the 

moving object, the boundary surface of the object is extracted from the first frame. 
We used the method introduced in section 2 for this purpose. Then the obtained face 
is approximated by a polyhedron. The vertices of the polyhedron are fed to a 3D 
Delaunay triangulation algorithm, which outputs a list of vertices and a list of 
tetrahedra. Let { }FVT ,= be a tetrahedral defined over the object region, where F is a 

set of tetrahedra and V is a set of tetrahedral vertices. To every vertex ( ) VzyxP iiii ∈,,  

an elementary deformation vector ),,( iiii dzdydxD =  is assigned. For a point P in the 

tetrahedron
nmlk PPPPΔ , the deformation function ( )zyxd ,,  is calculated by linear 

interpolation from neighboring elementary deformation vectors using [4]: 
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( )⋅V , is the volume calculation function. The 3D object is then modeled as a 3D 

elastic membrane (plate) which deforms with the virtual forces. From finite element 
theory [10], the strain energy associated with a thin plate is given by (15).  

KUU T

2

1=ε  , [ ] NidzdydxU iii ,...2,1 ,  ....|....|.... ==  (15) 

where U is a vector of elementary deformations, N  is the number of vertices and K  
is the stiffness matrix. The stiffness matrix (similar to the stiffness constant of a 
spring) may be assembled from elementary stiffness matrices associated with each 
tetrahedral element [10]. The stiffness matrix is then given by:  

∑=
fe

KeK
ε

 ,  DBBVK T
ee =  (16) 

where F is the set of tetrahedral elements and eK  is the element stiffness matrix and 

eV  is the volume of the element and is a constant value. B is a 6×12 matrix with 

constant elements defined by the coordination of the vertices of tetrahedra. D is a 
6×12 matrix defined by the material properties of the deforming body. The simplest 
model is the isotropic linear elastic model used widely in the image analysis literature. 
We have used his model for blood and the liquid inside:   
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In (17), E is Young modulus or shear modulus which controls the stiffness of the 
material, ν is Poisson’s ratio and controls strain-stress properties of the material. In 
this paper the left ventricle is specifically modeled as a transversely elastic material to 
account for the preferential stiffness in the fiber direction. This is an extension of the 
isotropic linear elastic model which allows for one of the three material axes to have a 
different stiffness from the other two. The matrix D takes the form [11]: 
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(18) 

where fE is fiber stiffness and pE is cross fiber stiffness and 
fpp νν ,  are the 

corresponding Poisson’s ratios of them and 
fG  is the shear modulus across fiber 

( )( )( )fpff vEG +≈ 12 . The fiber stiffness was set to be 3.5 times greater than cross 
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fiber stiffness. Poisson’s ratio was set .4 for both. By choosing fE =.05, pE and 
fG  

were calculated.  
By estimation of the displacement of some points of the image in next frame using 

a similarity criterion, the elementary deformations U may be estimated using the least 
squares approach. ( )iiii zyx δδδδ ,,=  is the estimation of displacement of point ( )iii zyx ˆ,ˆ,ˆ . 
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Using (13), the above minimization is seen to be equivalent to the minimization 
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The solution to (19) is (22), which gives the displacement of all vertices of the 
mesh. By linear interpolation, the deformation vector (13) will be obtained for all 
pixels of the image. 

( ) BAKAAU TT 1ˆ −+=  (22) 

4   Strain Calculation 

Abnormalities in the myocardial strain are detectable before first symptoms of a heart 
attack occur [12], so that measuring and visualizing the strain might represent a useful 
diagnosis tool. Generation of strain maps from the displacement is a fairly simple 
procedure. The Lagrangian strain tensor is defined as: 
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Using the less obscure matrix notation, Eij can be written as: 

( ) TFFC and 
2

1 =−= ICE  
(24) 

where C is the Cauchy-Green deformation tensor and I is the identity matrix. The 
Cauchy-Green deformation tensor is defined as the inner product of the deformation 
gradient tensor F by itself, and thus becomes a symmetric tensor [13]. C being 
symmetric and I diagonal, it follows that E is a symmetric tensor as well. This can 
also be deducted directly from the definition in equation (23). Consequently, E can be 
expressed as: 

( )IFFE T −=
2

1  (25) 
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where gradient tensor F is: 
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(26) 

5   Results 

Experiments were performed on cardiac MRI images for tracking the left ventricle 
myocardium. The result of evaluation on one set of Gradient-Echo images is given in 
this section. MR imaging was performed on a Symphony Siemens 1.5 Tesla scanner. 
Short-axis images through the left ventricle were obtained with the gradient echo cine 
technique using the following parameters: TR = 43.44ms, TE = 1.59ms, flip angle = 
53°, slice thickness = 4mm, field of view = 84.3750cm. The data set contained 6 
frames per cardiac cycle, each frame containing 10 images with an in-plane resolution 
of 1.5mm×1.5mm for a 256×256 matrix and a resolution of 6mm perpendicular to the 
imaging plane. By interpolation, the image voxels were converted to cubic voxels of 
size 1.5mm×1.5mm×1.5mm. In Fig 2-Left, the MRI cardiac data is shown. In these 
images, the region containing the left ventricle is selected hence the size of image 
matrices is reduced to 128×128. In Fig. 2-Right, the result of segmentation of the left 
ventricle wall for the first phase of cardiac cycle is shown. In Fig. 3, the result of 
tracking the left ventricular wall by active mesh algorithm is shown. The results show  
 

                        

Fig. 2. Left: 4D Gradient-Echo MRI cardiac images, Right: The segmentation results of the left 
ventricle wall for the first phase of cardiac cycle 

 
 

Fig. 3. The results of tracking the left ventricle wall in cardiac cycle by active mesh algorithm 
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that the algorithm can track the cardiac motion in all 3 dimensions with acceptable 
accuracy. 

For quantitative evaluation of the algorithm performance in tracking the left 
ventricular wall, the tracked surfaces obtained by the algorithm and the surfaces 
extracted by segmentation software were compared. The comparison was done by 
finding the similarity index (SI) between the two surfaces and then the error was 
defined as 1-SI [4]. The obtained errors are indicated in Table 1. In Fig. 4 the radial, 
longitudinal and circumferential calculated strains are shown in End Systole. 

Table 1. The tracking algorithm error  

Frame 2 3 4 5 6 7 

Error(%) 4.3 4.71 5.15 4.71 4.27 4.1

 

Fig. 4. The derived strains. a: End Diastole Strain. b: End Systole, circumferential strain. c: End 
Systole, longitudinal strain d: End Systole, radial strain. 

6   Conclusion 

We have enhanced and automatized our previously developed 3D active mesh model 
for motion tracking in a point-wise manner. Automatization was achieved by 
automatic segmentation of endocardial boundary in the first frame. For this purpose, 
we developed a novel 3D segmentation algorithm based on curve evolution technique 
and level set. Further enhancement to the tracking software was achieved by 
considering the cardiac muscle anisotropy. Moreover, we extended our model in order 
to track the left ventricular wall. Finally, we generated the strain maps from the 
displacements achieved by the tracking algorithm. Further improvements of the 
tracking software are foreseen. Some works are in progress to integrate cardiac 
muscle nonlinearity into our model. In addition, we plan to replace the present 
correlation-based search method with shape-based tracking method which seems to be 
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better choice for perpendicular and tangential motion estimation. Finally, a 
regularization term can be added to energy functional for reducing the computational 
cost as well as obtaining a more robust estimation of deformation fields. 
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Abstract. Tagged Magnetic Resonance Imaging (tagged MRI or tMRI)
provides a means of directly and noninvasively displaying the motion of
the myocardium. Reconstruction of the motion field is needed for quantita-
tive analysis of important clinical information, e.g., the myocardial strain.
In this paper, we present a two-step method for this task. First, we use
a Gabor filter bank to generate a corresponding phase map of tMRI im-
ages. Second, deformable models are initialized at the discontinuities in
the wrapped phase map, and are deformed under the influence of the image
gradient to track the motion of tags. Unlike previous approaches, a Robust
Point Matching (RPM) module has been integrated into the model evolu-
tion to avoid false tracking results caused by 1) through-plane motion, and
2) small tag spacing. The method has been tested on a numeric phantom,
as well as in vivo heart data. The experimental results show that the new
method has a good performance on both synthetic and real data, and has
the potential to be used in clinical applications.

Keywords: Tagged MRI, Gabor Filter, Motion Tracking, Deformable
Model, Robust Point Matching.

1 Introduction

Magnetic Resonance Imaging (MRI) with magnetization tagging provides a
means of directly and noninvasively displaying the motion of the myocardium,
as the tagged regions are visible in MR images, and move exactly like the under-
lying (and otherwise featureless) tissue [1], [2]. Thus the deformation of tag lines
reflects the deformation of the underlying heart wall. However, efficient means
of analyzing the tagged images are needed for practical quantitative study of
regional heart functions. While several methods have been proposed for tagged
image analysis, currently the most popular automated method is the Harmonic
Phase (HARP) analysis technique [3]. HARP is essentially phase analysis of a
single side band demodulation of the tags, carried out in the Fourier domain.

Gabor filters [4] are sinusoidally modulated Gaussians that can be convolved
with an image to extract the local periodic ”stripe” content. They provide an al-
ternative method for automated tag analysis that has some formal relationship

F.B. Sachse and G. Seemann (Eds.): FIMH 2007, LNCS 4466, pp. 22–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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to, but is distinct from, HARP. The Gabor filter is a natural match to the tag
pattern and can be used to optimally localize tags in both the image domain and
the frequency domain. One potential advantage of Gabor filters against HARP
is that the parameters of the Gabor filter can be adjusted corresponding to dif-
ferent tag spacing and orientation. Note that when heart is contracting, the local
tag spacing and orientation are different from region to region, due to the defor-
mation. Unlike HARP, which assumes there is no change in the tag spacing and
orientation during the cardiac cycle, the Gabor filter can adjust to the local image
configuration by changing its parameters, so that it can avoid some errors such as
the false bifurcations of tags in the phase output that may be seen with HARP in
large deformations. In [5] we introduce the use of the Gabor filter bank. At each
myocardial pixel, the response to a group of filters with different tag spacing and
orientation are calculated, and the local orientation and tag spacing are computed
from the weighted summation of three filters with the largest responses. Using the
result, we can compute the local phase information, and then derive the displace-
ment and the strain. However, the error in the displacement calculated from the
Gabor filter bank still increases as the deformation in the myocardium increases,
possibly because the Gaussian kernel in the Gabor filter blurs local features dur-
ing the computation. When the tag line has a high curvature, the phase calculated
from the Gabor filter may not match the local deformation in magnitude.

Both HARP and Gabor filters are based on the use of frequency domain anal-
ysis. Other tag tracking methods, such as the active contours (snakes) [6] and
spline models [7], work in the image domain. Usually, a parameterized model of
the tag line (an active contour, or a B-spline) is deformed under the influence
of the image gradient. However, one major shortcoming of the gradient-driven
methods is that the model may converge to a false tag line or the myocardial
surfaces instead of the tag it is supposed to converge to. Two reasons for such
errors are 1) the through-plane motion may cause sudden appear and/or dis-
appear of tags close to the myocardial surfaces; and 2), as the heart contracts,
the tag spacing becomes smaller and the myocardium deformation increases, so
that the deformation can be larger than the tag spacing in magnitude. This can
cause the model to ”jump” to a false tag.

Robust Point Matching (RPM) [8] is a computer vision technique for finding
the correspondence between two sets of points. It has been widely implemented
to solve rigid and nonrigid registration problems. By using a simulated anneal-
ing scheme [9], it can find the the correspondence between two point sets with
different numbers of points.

In this paper, we introduce a novel tag tracking method integrating Gabor
filters, the RPM, and deformable models. First, the phase map is generated by
the Gabor filter bank. Then RPM is used to match landmark points in two
images to be tracked. The matching result guides the gradient fitting so that
there will be no mismatch between models and tags. The deformable model
provides the RPM with a realistic underlying transformation function, so that
there will be no mismatch between landmarks at two time phases in the cardiac
cycle caused by over smoothness.
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The rest of the paper is organized as follows. Section Two provides background
information on the Gabor filter and the Gabor filter bank. In Section Three we
introduce our new tag tracking method. We present experimental results on a
numeric phantom as well as in vivo heart data in Section Four. Also in Section
Four, we evaluate the method by comparing it against the ”ground truth” and
other tag tracking methods. We have a brief discussion and draw our conclusions
in Section Five.

Fig. 1. The real and imaginary components of a Gabor filter in the Fourier domain

2 Gabor Filter and Gabor Filters Bank

A Gabor filter [2] is a sinusoidally modulated Gaussian that can be convolved
with an image to extract the local periodic ”stripe” content. It is simply ex-
pressed as a Gaussian multiplied by a complex sinusoid in the image domain, as
shown below:

h(x, y) = g(x′, y′) · exp[−i2π(u0x + v0y)] (1)

with center frequency (u0, v0) and the spatial coordinate (x′, y′) = (x cos(θ) +
y sin(θ), −x sin(θ) + y cos(θ)) rotated by θ with respect to the x axis. g(x′, y′) =

1
2πσx′ σy′

exp(−
( x′

σ
x′ )2+( y′

σ
y′ )2

2 ) is a Gaussian filter with the spatial standard de-
viations σx′ , σy′ . This complex function h(x, y) can be split into its real and
imaginary components hR and hI (even and odd functions, respectively):

hR(x, y) = g(x′, y′) cos(−2π(u0x + v0y)) (2)

hI(x, y) = g(x′, y′) sin(−2π(u0x + v0y)) (3)

After the heart starts to contract, the local tag spacing and orientation may
change. The response to a pair of Gabor filters with sine and cosine modulations
can be used to find the local tag phase. The filtering operation can be efficiently
carried out in the Fourier domain. The Fourier transform of the real (2) and
imaginary (3) components of a Gabor filter as shown in Fig. 1, is given by:

HR(u, v) =
1
2
(G(u − u0, v − v0) + G(u + u0, v + v0)) (4)

HI(u, v) =
i

2
(G(u − u0, v − v0) − G(u + u0, v + v0)) (5)
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where G(u, v) = F (g(x, y)) and F (·) denotes the Fourier transform. As we can see
in (4) and (5), real and imaginary filters are the sum of two Gaussian functions
in the Fourier domain centered at the frequencies (u0, v0) and (−u0, −v0). The
final form of a 2D Gabor filter in the Fourier domain is:

H(u, v) = HR(u, v) + iHI(u, v) (6)

Fig. 2. (a) A cardiac MRI image with grid tags. (b) The magnitude of the Fourier
transform of the tagged MR image. Peaks inside red circles correspond to vertical tags
and green circles to horizontal tags. (c) A bank of Gabor filters in the Fourier domain
with parameters ν, θ and σ. The red dots represent centers of Gabor filters in the
Gabor filter bank. The value of the horizontal axis is ν

νini
in the Fourier domain.

Our analysis is based on the Fourier transformation of tagged MRI images.
Fig. 2 shows an end-diastolic grid-tagged short axis image of a normal volunteer
Fig. 2(a) and its transform in the Fourier domain Fig. 2(b). There are 4 first
harmonic peaks in Fig. 2(b). A pair of red peaks correspond to vertical tags and
a pair of green peaks correspond to horizontal tags. From these peaks, we can
find the initial frequencies (uini, vini) of vertical and horizontal tags. Here, let
us focus on vertical tags first for easier explanation. A similar process can be
derived for horizontal tags. For a 2D Gabor filter in the Fourier domain, we need
to set up three parameters: frequency ν, orientation θ and the filter size σ.The
tag spacing dtag for vertical tags in the image domain is:

dtag =
1
ν

(7)

Note that frequency ν is equivalent to the distance between (uini, vini) and the
DC peak in the Fourier domain (see Fig. 2(b)). Equation (7) shows that when
the tag spacing changes, the distance between the corresponding harmonic peak
and the DC peak also changes reciprocally in the Fourier domain. That is, if
dtag is decreasing, then ν is increasing and vice versa. With the location of the
DC peak stable, the harmonic peaks move as the tag spacing changes and so
should the corresponding Gabor filter. Fig. 2(c) shows the corresponding loca-
tions of the centers of Gabor filters (red dots) in the Fourier domain when dtag is
changed by one pixel steps in the image domain. The orientation θ is determined
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Fig. 3. (a) a deformed grid tag image, (b) the magnitude output of Gabor filters bank,
(c) 2D phase map generated by Gabor filters bank, and (d) tag lines (red) automatically
recovered from phase

by φ = φini +n ·Δφ, where n = 0, ±1, ±2, . . . and φini = 0 for vertical tags, π/2
for horizontal tags. The parameter σ determines the size of the Gaussian filter
in the Fourier domain. It is chosen proportional to the frequency position, i.e.,
σ = k · ν, where k > 0 (See circles in Fig. 2(c)).

We calculate the response to a bank of Gabor filters with different spacing and
orientation. Responses are different for different parameter-sets, and is maximal
when the parameter-set is close to the local tag spacing and orientation in the
image. To minimize the error, an interpolation of the parameters of the three top
responding filters at a given location is used to estimate the local tag spacing
and orientation, and the responses of these three filters are combined to compute
the local phase information using (6). The phase corresponding to the local tag
pattern is a material tissue property and calculated in the range [−π, π) from
the output of the Gabor filter bank (See Fig. 3(c)). We can generate the tag line
locating at the corresponding discontinuities in the wrapped phase map. This is
a completely automatic process (see Fig. 3(d)).

From the response to the filter bank, we can estimate the local position (phase)
relative to the tag pattern, and acquire a Lagrangian description of the motion.
However, the calculated displacement map may not fully capture large deforma-
tions in the myocardium, as shown in Fig. 4.

Fig. 4. Left: a grid tagged phantom image and the recovered tag locations (red) from
the phase distribution. Right: a magnified image of blue area in the left image. Blue
dots show the correct corresponding tag positions.
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3 Tag Tracking Method

3.1 Robust Point Matching

Suppose we are tracking the motion of tags from the ith image (denote as Ii)
to the i + 1th image (denote as Ii+1) in one image sequence. We can discretize
tags in each image into a group of 2D or 3D points (image pixels). Usually these
two point-sets are closely correlated, but without a one-to-one correspondence
because 1) a material point in the image plane at time ti may move out of
the image plane at ti+1 due to the through plane motion, and 2) we can only
discretize tags into entities as small as image pixels. Therefore, during the cardiac
cycle, more than one pixel in the ith image may map to one pixel in the i+1 image
as the heart contracts (the partial volume effect). However, for some subsets of
these two point-sets, e.g., the intersection points in grid tag images, the multi-
to one correspondence can be neglected, and RPM can handle the through-plane
motion by mapping points with no correspondence to an outlier. In our tracking
method, for simplicity, we choose to match a subset of the intersection points
of tags and the epicardial surface, denoted as P = {pj, j = 1, 2, . . . , M} and
Q = {qk, k = 1, 2, . . . , N} for Ii and Ii+1, respectively.

Given a Gabor-filter-built phase map with no local ambiguities such as false
bifurcations, the correspondence between P and Q is dense enough for us to
match discontinuities in the two phase maps, as shown in Fig. 6. Assume that
from Ii to Ii+1, the underlying motion field can be expressed as a non-rigid
transformation function f . A point pj ∈ P in Ii is mapped to its new location
p′j = f(pj) in Ii+1. Thus the matching problem is equivalent to the minimization
of the energy function EZ,f :

min
Z,f

E(Z, f) = min
Z,f

M∑

j=1

N∑

k=1

zjk‖qk − f(pj)‖2 + λ‖∇ · (∇f)‖2 − ζ

M∑

j=1

N∑

k=1

zjk (8)

where Z = zjk is the binary correspondence matrix, zjk ∈ 0, 1 for j = 1, 2, . . . ,
M + 1 and k = 1, 2, . . . , N + 1. For points without a correspondent, we set
the location of outliers for both point-sets to be the centroid of the segmented
myocardium mask. The matrix is subject to the constraints

∑M+1
j=1 zjk = 1 for

k = 1, 2, . . . , N and
∑N+1

k=1 zjk = 1 for j = 1, 2, . . . , M . λ and ζ are both positive
weights for terms in the energy function. The term λ‖∇· (∇f)‖2 is a smoothness
constraint on the transformation function. ζ

∑M
j=1

∑N
k=1 zjk is used to minimize

the existence of outliers in the final matching result.
To accommodate the nonrigid point matching in our tag tracking problem,

we use the fuzzy correspondence matrix Y to replace Z in (8). Thus the energy
function changes to:

E(Y, f) =
M∑

j=1

N∑

k=1

yjk‖qk − f(pj)‖2 + λ‖f‖2 + T
M∑

j=1

N∑

k=1

yjk log yjk − ζ
M∑

j=1

N∑

k=1

yjk

(9)
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where yjk = 1
T exp(

−‖qk−p′
j‖2

2T ) still satisfies
∑M+1

j=1 yjk = 1 for k = 1, 2, . . . , N

and
∑N+1

k=1 yjk = 1 for j = 1, 2, . . . , M with yjk ∈ [0, 1]. Also, an entropy term
T

∑M
j=1

∑N
k=1 yjk log yjk is added to the energy function, according to deter-

ministic annealing [9]. The temperature parameter T is higher at the start of
the tracking process so that the energy function favors fuzzy correspondence to
maintain its convexity, and gradually decreases to zero during the tracking for
a global binary solution of Y .

The transformation function f is defined as a combination of the image gra-
dient flow and the minimization of the square distance between point-sets. It
seeks to minimize the following energy function:

Etrans = λ1

M∑

j=1

I(p′j) + λ2

M∑

j=1

N∑

k=1

‖p′j − qk‖yjk (10)

where λ1 and λ2 are weights for the image gradient and the point distance,
respectively.

3.2 Deformable Model

After the point matching, we derive the correspondence between the discontinu-
ities in two phase maps (produced by the Gabor filter bank). We then initialize a
group of deformable contours at these discontinuities, each corresponding to one
segment of tags in the tMRI image. The contours move under the influence of
the external force fext and the phase constraint fphase, following the Lagrangian
equation:

ḋ + Kd = fext + fphase (11)

where K is the stiffness matrix that controls the smoothness of the deformable
contour, d is the displacement, and ḋ is the speed of the deformation.

The external force is derived from the tagged MRI image, in the form of
gradient flow:

fext = −∇(g · I)) (12)

where g is the Gaussian operator, and I is the original image. The external
force alone cannot guarantee an accurate convergence of the deformable contour
and the corresponding tag because 1) the local noise and imaging artifacts may
produce erroneous gradient information, and 2) a small tag spacing may cause
the deformable contour to move to other edges in the image instead of converging
to the corresponding tag. Therefore we design a supplementary phase force field,
which is derived from the output of the Gabor filter bank, to constrain the
movement of deformable contours. Given the wrapped phase output R of the
Gabor filter bank, the phase constraint at pixel x ∈ Ii+1 has the following form:

fphase(x) = −|U(Ri(x) − Ri+1(x))|−1 · ∇(π − |R(x)|) (13)

where U(·) is an unwrapping operator. The magnitude of the phase constraint
is inversely proportional to the local phase change so that the phase influence
decreases when the local deformation increases, and vice versa.
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4 Experiments

First we tested our method on a numerical phantom. An annulus overlaid with
grid tags deforms following an underlying 2D displacement field, which is the
”ground truth” in the validation of our method. We compared the displacement
maps generated by our method against those generated using the HARP method.
The results show that our method has a better performance (with smaller error
magnitude, and more smooth distribution). We also quantitatively validated the
method by calculating the root mean square (RMS) error between output of our
method and the ”ground truth” displacements. the result is shown in Tab. 1.
Except for the first and last image in the sequence, where displacements in both
directions are small, the error rate is underneath 5%. The result demonstrated
the robustness of our motion tracking method.

Fig. 5. (a) matching points (red ”o”) and tags (”green dots”)in an undeformed image,
(b) matching points (red ”+”)and tags in a deformed image, (c) and (d), the x− and
y− displacement map generated by HARP, (e) and (f), the x− and y− displacement
map generated using Gabor filters bank, RPM, and deformable models

We also tested the strength of our method on in vivo heart data. In Fig. 6
we present the tag tracking results for a healthy volunteer and a patient. In
both cases, tags have been tracked accurately despite large deformations and
the through-plane motion. The tag tracking results are used to generate the 2D
Lagrangian displacement map. We used the method that has been proposed in
[10] to generate dense displacement maps.

After generating the displacement map, we derived the in plane myocardial
strain map for the healthy volunteer and the patient, respectively. The results
are shown in Fig. 7. The overall process takes less than one minute for an image

Table 1. The comparison between the RMS error and the mean magnitude of dis-
placements (in pixels)

phase 2 3 4 5 6 7 8 9 10
Mean x Disp. .0973 .2049 .3337 .408 .4419 .404 .3297 .203 .1014

RMS error in x Disp. .0058 .0088 .0103 .0111 .0112 .0104 .0094 .0079 .0076
Error ratio in x Disp. (%) 5.96 4.29 3.09 2.72 2.53 2.57 2.85 3.89 7.5

Mean y Disp. .0968 .2059 .3361 .422 .4614 .4274 .3555 .2322 .1312
RMS error in y Disp. .0068 .0085 .01 .0111 .0115 .011 .0107 .0105 .0109

Error ratio in y Disp. (%) 7.02 4.13 2.98 2.63 2.49 2.57 3.01 4.52 8.31
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Fig. 6. Left: tag tracking in the myocardium of a healthy volunteer. Right: tag tracking
in the myocardium of a patient with hypertrophic cardiomyopathy. In each group, the
left upper image is the tracking of horizontal tags, left lower image is the tracking
of vertical tags, right upper image is the distribution of the displacement component
parallel to the y-axis, and right lower image is the displacement distribution for the
x-axis component. Green lines are the tags, the epi- and endo- cardial surface have
been segmented using a semi-automated segmentation tool.

Fig. 7. Left: strain distribution in the healthy heart. Right: strain distribution in pa-
tient’s heart. Notice that the magnitude of the principal strain in patient’s heart is
much less than that of the healthy volunteer.

sequence of size 100 by 100 pixels by 10 phases on a desktop PC with 2.66GHz
Dual 2 Core CPU, and the reconstructed strain maps indicate differences be-
tween the healthy subject and the patient, which may be of clinical importance.

5 Discussions and Conclusions

In this paper, we have presented a novel tag tracking technique, which integrates
the Gabor filters, the RPM, and the deformable models. The method has a robust
performance on tagged numerical phantoms and in vivo tagged MRI images,
especially in myocardial regions with large deformation. It has the following
advantages: First, the phase map created by Gabor filters is used as the input
for RPM. The underlying phase map provides a natural formulation for the
transformation function in the RPM energy so that tags in two different images
can be matched with each other rapidly and robustly. Second, the RPM provides
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a smooth and relatively accurate initialization for the deformable models, so that
we reduce the chance of false assignment in the tag tracking. And third, the phase
map generated by the Gabor filters also acts as a natural constraint during the
evolution of deformable models. These three methods are tightly integrated in
order to achieve the best performance in tag tracking. Experimental results show
a better tracking performance against an other tracking technique, HARP, and
its timing performance is acceptable for clinical applications.

In the future, we can improve the method by extending it into a 3D method.
More experiments and validation, especially for in vivo pathological data, are
needed to fully evaluate the performance of the method, and to build potential
clinical applications.
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Abstract. The objective of this study was to validate a deformable image 
registration technique, termed Hyperelastic Warping, for left ventricular strain 
measurement during the systole using cine-gated nontagged MRI with strains 
measured from tagged MRI.  Tagged and non-tagged cine images were 
obtained on a 1.5 T Siemens Avanto clinical scanner with a TrueFISP imaging 
sequence.  The Hyperelastic Warping solution was evolved using a series of 
non-tagged images in 10 phases from end-diastole to end-systole.  The solution 
may be considered as ten separate Warping problems with multiple Templates 
and Targets.  At each stage, an active contraction was initially applied to the FE 
model, and then Warping penalty forces were utilized to generate the final 
registration.  Warping results for circumferential strain were correlated (R2 
=0.59) with results obtain from tagged MR images analyzed with a HARP 
algorithm.  Results for fiber stretch, LV twist, and transmural strain distribution 
were similar to values in the literature.  Hyperelastic Warping represents a 
novel approach for quantifying 3-D regional strains within the myocardium 
with a high resolution. 

1   Introduction 

Left ventricular function is typically considered representative of overall cardiac 
performance, since the left ventricle (LV) controls systemic perfusion and 
corresponds to the oxygenation and nutrition supply of the entire body.  The most 
commonly used global measure of left ventricular performance is ejection fraction. 
However, localized measures such as wall deformation, strain, or fiber stretch are 
actual measures of myocardial contractile function. 

Invasive approaches for measuring cardiac deformation include the use of 
implanted markers and sonomicrometers.  These studies have typically been carried 
out in animal models [1, 2], although strain measurements using surgically implanted 
markers in humans have also been reported [3].  Advances in medical imaging 
technology have made it possible to perform non-invasive measurement of strain in 
the heart.  Non-invasive methods of measuring strain in the left ventricle include MR 
tagging [4], 2-D echocardiography [5], and radionuclide ventriculography [6].   



 Strain Measurement in the LV During Systole with Deformable Image Registration 33 

Algorithms for deformable image registration [7-9] have become a viable option 
for myocardial strain measurement due to the availability of images with high spatial 
and temporal resolution with techniques such as cine-magnetic resonance imaging 
[10].  Deformable image registration is used to determine a deformation map that 
aligns the features of one image with the corresponding features in another image [8]. 
If these image pairs represent distinct states of deformation, it is possible to determine 
the strain in the tissue from the deformation map that aligns the image datasets.  
However, regularizing functions and a priori data are typically necessary to en- 
sure physically-reasonable predictions. Our laboratory has developed and applied 
Hyperelastic Warping [7, 9, 11, 12], a specific algorithm for deformable image 
registration, to measure strain directly from medical image data.  Hyperelastic 
Warping combines an image-based energy calculated from the intensity fields of the 
image pairs with a hyperelastic regularization of the underlying deformation field.  An 
initial template image is chosen to represent the material in the reference 
configuration, while a target image is chosen to represent the same material after 
deformation.  A spatially-varying body force is produced to deform the discretized 
template image into the target image by minimizing an energy functional.   

Hyperelastic Warping has been previously validated during diastole using an initial 
cine-MR image dataset from a normal human subject and a forward FE model of 
diastolic filling.  However, the use of deformable image registration to determine 
strain during systole is considerably more challenging since the forces acting on the 
myocardium are generated by myofiber contraction within the ventricular wall rather 
than the passive mechanics associated with diastolic filling, and MR image data does 
not typically provide image texture within the wall to guide registration transmurally.  
The purpose of this study was to develop a methodology for measuring left 
ventricular deformation during systole with Hyperelastic Warping using cine-MR 
images by combining deformable image registration with a realistic model of systolic 
contraction directly in the image regularization term. 

2   Methods 

Image Acquisition. A normal volunteer with no history of cardiac pathology (male, 
age 30) was imaged using cine-gated MRI images of the left ventricle, acquired with a 
TrueFISP sequence, during the entire systolic phase of the cardiac cycle.  Images 
were obtained on a 1.5 T Siemens Avanto scanner with a prototype 32 channel 
cardiac coil from InVivo (Gainesville, FL).  For non-tagged images, TR = 50.0 ms, 
TE = 1.19 ms, flip angle = 57 degrees, resolution = 1.7 mm x 1.7 mm, slice thickness 
= 4 mm.  Before Hyperelastic Warping analysis, pixel size was halved in each 
direction and the images were cropped to focus on the left ventricle.  The processed 
images were 120 pixels (100 mm) x 120 pixels (100 mm) x 46 slices (2 mm 
thickness).  A short axis mid-ventricular slice is depicted at 10 intermediate phases of 
systole (Figure 1).  Horizontal and vertical tagged images were also obtained in 9 
short-axis slices of the LV during the same acquisition session for validation. The 
spacing between the tags was 6 mm and each slice was 4 mm thick.  For the tagged 
imaging sequence, TR = 58ms, TE = 4.6ms, flip angle = 14 degrees, and resolution = 
1.7 mm x 1.7 mm. 
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S Y S T O L E

 

Fig. 1. Cardiac contraction depicted at a mid-ventricular short axis slice with 10 phases through 
systole used as multiple Templates/Targets for Hyperelastic Warping.  The image at the first 
phase was used as initial Template at end-diastole and the image at final phase was used as a 
final Target at end-systole. 

Surface Reconstruction and FE Mesh Generation. The epicardial and endocardial 
surfaces were manually segmented from the MR images at end-diastole.  Cross-
sectional contours of the left ventricle were extracted from the MRI dataset 
(SurfDriver, Kailua, HI) (Figure 2A).  Both triangulated myocardial surfaces were 
imported into a FE preprocessing software (TrueGrid, XYZ Scientific, Livermore, 
CA) and a hexahedral FE mesh was created by projecting to the surfaces (Figure 2B) 
[13, 14].   The FE model consisted of 10,304 elements.  Elements were 2-4 mm in 
size.   

A B
 

Fig. 2. (A) Epicardial and endocardial contours at sample basal slice.  (B) Hexahedral finite 
element (FE) mesh used for Hyperelastic Warping analysis. 

Constitutive Model. A transversely isotropic hyperelastic constitutive model was used 
to represent the myocardium, with the fiber direction varying from -90 degrees at the 
epicardial surface to +90 degrees at the endocardial surface for the basal level.[12]  In 
addition, the inner and outer layers were varied in a helical pattern, such that the inner 
layer varied from +90 degrees to 0 degrees from the basal level to the apical level and 
the outer layer varied from + 90 degrees to 0 degrees from the basal level to the apical 
level. 

The constitutive model represented fibers embedded in an isotropic matrix: 

   2
1 2( 3) ( ) [ln( )]

2

K
W I F Jμ λ= − + + .   (1) 
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Here, 1I  is the first deviatoric invariant of the right Cauchy-Green deformation tensor 

C [15],  0 0λ = ⋅ ⋅a C a  is the deviatoric fiber stretch along the local direction a0, μ is 

the shear modulus of the matrix, J is the Jacobian of the deformation, and K is the 
bulk modulus.  The fiber stress-stretch behavior was represented as exponential, with 
no resistance to compressive load: 

 

( )( )

2

2
3 4

0, 1,

exp 1 1 , 1.

F

F
C C

λ λ
λ

λ λ λ
λ

∂ = <
∂
∂ ⎡ ⎤= − − ≥⎣ ⎦∂

   (2) 

Here, C3 scales the stresses and C4 defines the fiber uncrimping rate.  A description of 
the constitutive model and its FE implementation can be found in Weiss et al [16].  
Material coefficients were determined by a nonlinear least squares fit of the 
constitutive equation to published equibiaxial stress/strain curves [17] (μ = 2.50 KPa, 
C3 = 0.27 KPa, and C4 =21.0) [18].  A bulk modulus K = 210 KPa (two orders of 
magnitude higher than the shear modulus) was chosen to ensure near-incompressible 
material behavior. 

Computational Solution. The Hyperelastic Warping algorithm has been integrated 
into the nonlinear FE code NIKE3D [19].  The formulation for the Warping solution 
is detailed in our previous publications [8, 12].  A series of 10 multiple 
templates/targets was used for Warping analysis of the left ventricle from end-diastole 
to end-systole.  At each stage of registration, an active contraction was initially 
applied to the FE model, and then image-based Warping penalty forces were utilized 
to generate the decisive registration.  The FE mesh was unconstrained in all six 
degrees-of–freedom during deformation.   

A detailed description of the active contraction  model and the material parameters 
for active contraction can be found in Guccione et al. [20, 21] and the description of 
its implementation may be found in  Veress et al. [18].  The total Cauchy stress T  in 
the fiber direction is defined as the sum of the active stress tensor and the passive 
stress tensor 

     ( ) ( )p aT T T= + ,     (3) 
where a is the deformed fiber vector (unit length), defined by 0Fλ = ⋅a a . The time-

varying elastance model is a modification of the standard Hill equation that scales the 

standard equation by the variable tC which governs the shape of the activation curve. 

The active fiber stress ( )aT is defined as 
2
0( )

max 2 2
0 50

a
t

Ca
T T C

Ca ECa
=

+
.    (4) 

where maxT =  135.7 KPa is the isometric tension under maximal activation at the peak 

intracellular calcium concentration of 0Ca = 4.35 μM. The length dependent calcium 

sensitivity is governed by the following equation: 

0 max
50

0

( )

exp[ ( )] 1

Ca
ECa

B l l
=

− −
.    (5) 



36 N.S. Phatak et al. 

Warping Circumferential Strains
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Fig. 3. Correlation plot for Warping circumferential strains vs. HARP circumferential strains.  
Results are comparisons of the average circumferential strain value at apical, mid-cavity, and 
basal slices from end-diastole through end-systole. 
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Fig. 4. Hyperelastic Warping circumferential strains (dashed lines) vs. HARP – measured 
strains (solid lines).  Results are separated for apical slice (light gray), basal slice (dark gray), 
and mid-cavity slice (black).  Error bars represent one standard deviation. 

where 0 max( )Ca = 4.35 μM is the maximum peak intracellular calcium 

concentration, B =  4.75 μm-1 governs the shape of the peak isometric tension-

sarcomere length, 0l = 1.58 μm is the sarcomere length at which no active tension 

develops, and is the sarcomere length which is the product of the fiber stretch 
(deformed length/reference length) and the sarcomere unloaded length.   In the FE 
implementation, the active contraction is governed by the product (an active 
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contraction stress) in (4) which was used to define a „load curve,‰ specifying the 
degree of contraction and subsequent relaxation during the cardiac cycle. 

Validation of the Hyperelastic Warping model was performed by comparing 
circumferential strain predictions developed through systole at basal, mid-cavity, and 
apical slices with those measured from tagged MR images.  Tagged images were 
analyzed using a HARP (Harmonic Phase) algorithm implemented in Matlab, which 
parallels the technique introduced by Osman et. al.[22]  

All values for fiber stretch, circumferential strain and radial strain are reported with 
the reference configuration defined at end-diastole.  The Hyperelastic Warping 
analysis and HARP validation both progressed through end-systole.  The tagged 
images had 5 phases through systole, while non-tagged images used for Hyperelastic 
Warping had 10 phases through systole.  Circumferential strains from Hyperelastic 
Warping were compared directly with tagged MR strains measured with HARP 
analysis for apical, basal, and mid-cavity regions with 5 phases from end-diastole 
through end-systole.   

3   Results 

Computational Model.  Hyperelastic Warping analysis of the left ventricle was 
performed on 4 processors of an SGI Origin 3800 (IP35 processors) and required 
approximately 40 minutes of wall clock time. 

Validation of Circumferential Strains.  The coefficient of determination for overall 
correlation between Hyperelastic Warping strains versus HARP tagging strains was 
R2=0.59. (Fig.3).  Results were plotted  with circumferential strain developed from 
end-diastole to end-systole (Fig. 4)  Fiber stretch is illustrated with the reference 
configuration at end-diastole (Fig. 5A) defined with a fiber stretch of 1.0, and 
stretches at mid-systole (Fig. 5B) and end-systole (Fig. 5C) shown for apical, mid-
ventricular and basal slices. Fig. 6 shows strains for an apical slice sorted by wall 
position, from the endocardium to the epicardium. 

4   Discussion  

Values for left ventricular strain measures predicted by Hyperelastic Warping were in 
reasonable agreement with data from the literature.  Mid-cavity LV fiber stretch 
during systole (0.88 μ 0.03, Fig. 5C) corresponds well with the values of mean 
systolic fiber stretch reported by Tseng et al. (0.88 μ 0.01). [23]  Circumferential 
strains through the wall thickness (epicardial, -0.41μ0.07; midwall, -0.18μ0.11; 
endocardial, -0.15μ0.08, Fig. 6C). were similar to Clark et al. who also reported a 
transmural gradient of circumferential shortening (epicardial, 44μ6%; midwall, 
30μ6%, endocardial, 22μ5%) [24].  Estimates of peak LV twist (9μ3 degrees) 
measured from the deformation of the FE mesh grid-lines at end-systole (Fig. 5C) 
were similar to values reported by Takeuchi et al (7.7μ3.5 degrees) [25]. 

The primary advantage of Hyperelastic Warping is the ability to measure 3-D 
strains throughout the myocardium with a high resolution.  This may have significant 
clinical value, since the localization of myocardial strains is indicative of regional 
function.  While the resolution of strain measurements from tagging is limited by the  
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Fig. 5. LV fiber stretch during systole, with the development of the Hyperelastic Warping 
solution depicted at (A) End-diastole (B) Mid-systole and (C) End-systole.  The deformed mesh 
is shown at apical, mid-cavity, and basal slices. 

spacing of the applied tags, Hyperelastic Warping strains are limited by thickness of 
the pixel and the image content itself.  A disadvantage of the Hyperelastic Warping 
technique is that, relative to MRI tagging analysis, it is computationally expensive.  
Future implementations of the technique will require automation of key steps of the 
procedure.  In addition, mapping of detailed cardiac fiber orientation may be aided by 
diffusion tensor MRI.  Advances in desktop processor speeds combined with high 
resolution cardiac imaging will make it feasible to measure cardiac strains with much 
greater accuracy, precision and speed. 
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Fig. 6. Transmural strain results of Hyperelastic Warping analysis from end-diastole through 
end-systole for an apical slice location.  (A) Fiber stretch (B) circumferential strain (C) radial 
strain plotted as a position of wall thickness with 0% as the endocardial wall 100% as the 
epicardial wall. 
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Abstract. In this paper we extend the Frangi filter[1] to recognize edges and do
not enhance them. We give a theoretical framework for optimal scale selection
and choice of the free parameters. We discuss discretization details concerning
especially the discrete kernel used for building the scale-space and the choice
of discrete scales. We present several experiments on phantom data to objec-
tively and quantitatively compare and judge the filters. Experiments on real coro-
nary angiograms enhance the improvement reached by the integration of the edge
indicator.

Keywords: Vessel enhancement, multiscale analysis, phantom evaluation.

1 Introduction

In 2D coronary angiograms, vessels appear as curvilinear tubular structures having dif-
ferent widths. To recover the geometric structure, it is common to analyze the local
partial derivatives of second order and build differential operators based on the sign and
values of eigenvalues[1,2,3]. To recover the different widths, it is necessary to build op-
erator answers at different levels of scales and to combine them[4]. The goal of vessel en-
hancement is to enhance Just the vessels and reduce noise especially in the background.
It is important that the operations performed preserve the quantitative measures such as
width of the vessel, and that the points with strongest response lie on the centerlines.

In this paper we extend the method proposed by Frangi et. al[1] to recognize edges
and do not enhance them. Furthermore we perform a theoretical multiscale analysis
to give theoretical values or bounds for the filter free parameters. Section 2 presents
the new method. Section 3 discusses discretization details to get a proper realization.
Section 4 presents experimental results, also on a phantom image. Finally Section 5
concludes this work.

2 Method

Given a continuous two-dimensional image I(x̄ ) (x̄ ∈ IR2 ) that is observed at a scale
t ∈ IR, the Frangi et al. enhancement operator for bright vessels [1] is conceived as a
filter with filter response:

r(x̄ , t, β1, β2) =

{
0 if λ2(x̄ , t) > 0,

exp(−RB
2(x̄ ,t)

2β2
1

)(1 − exp(−S2(x̄ ,t)
2β2

2
)),

(1)
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where λ1(x̄ , t) and λ2(x̄ , t) are the eigenvalues of the local Hessian computed at x̄ at
scale t, such that |λ1(x̄ , t)| < |λ2(x̄ , t)|. The blobness measure RB(x̄ , t) = λ1(x̄ ,t)

λ2(x̄ ,t)
measures the deviation from a blob by accounting for the eccentricity of the second
order ellipse. RB(x̄ , t) cannot distinguish between a line and an edge. The structureness
measure S(x̄ , t) =

√
λ2

1(x̄ , t) + λ2
2(x̄ , t) is the norm of the Hessian and is computed

to distinguish between background and vessels. The parameters β1 and β2 tune the
sensitivity of the filter to deviations in RB(x̄ , t) and S(x̄ , t).

In order to distinguish between line and edge structures we propose to additionally
integrate an edge indicator. Lorenz [3] proposed the following – here slightly modified
– indicator:

E(x̄ , t) =
|∇L(x̄ , t)|√

tλ2(x̄ , t)
(2)

where |∇L(x̄ , t)| is the local gradient magnitude at a point x̄ observed at scale t. At an
edge both the gradient and λ2 will be strong in magnitude. Within a vessel, just λ2 will
be big in magnitude. So it is expected that the value of E decreases within a vessel. We
integrate the edge indicator within the Frangi filter as in eq. 3

r(x̄ , t, β1, β2) =

{
0 if λ2 > 0,

exp(−RB
2(x̄ ,t)

2β2
1

)(1 − exp(−S2(x̄ ,t)
2β2

2
))exp(−|E(x̄ , t)|) (3)

The continuous image observed at scale t �= 0 is given by the convolution 4

L(x̄ , t) = I(x̄ ) ∗ G(x̄ , t), (4)

where G(x̄ , t) is the Gaussian kernel with standard deviation σ =
√

t. Both the first
order and the second order derivatives are computed by convolving the image I(x̄ ) with
respectively the first and second derivatives of the Gaussian. The scale t is continuous
and positive. L(x̄ , t) is called the scale-space of the image I(x̄ ) [4].

As vessels appear in images with different widths, the application of filter 3 at differ-
ent scales is necessary. Lindeberg proposed to use γ-parameterized normalized Gaussian

derivatives:
(

∂G(x̄ ,t)
∂x̄

)γ−norm
= t

γ
2

∂G(x̄ ,t)
∂x̄ , to get filter answers which are comparable

for different scales. Using these operators, it can be easily shown that the normalization
is directly transfused on the eigenvalues: λγ−norm(x̄ , t) = t

γ
2 λ(x̄ , t). Both the blobness

measure RBγ−norm(x̄ , t) and the edge indicator Eγ−norm(x̄ , t) do not change. Just the
structureness measure Sγ−norm(x̄ , t) = t

γ
2 S should be normalized. The normalized

filter response is then given by eq. 5:

rγ−norm(x̄ , t, β1, β2, γ)=

{
0 if λ2 > 0,

exp(−RB
2(x̄ ,t)

2β2
1

)(1 − exp(− tγS2(x̄ ,t)
2β2

2
))exp(−|E(x̄ , t)|)

(5)
where RB(x̄ , t), S(x̄ , t) and E(x̄ , t) are computed based on the non-normalized Gaus-
sian derivatives.

The multi-scale responses are combined by maximization:

R(x̄ , β1, β2, γ) = max
t

(
rγ−norm(x̄ , t, β1, β2, γ)

)
(6)
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Optimal Scale Selection and Choice of γ: In order to specify γ we assume a simple
mathematical model for a 2D vessel with Gaussian profile, which is centered in the

origin and parallel to the y-axis: I0(x̄ ) = G(x̄ , t0) = 1√
2πt0

exp
(

−x2

2t0

)
= G(x, t0).

The scale-space of I0(x̄ ) is L(x̄ , t) = I0(x̄ ) ∗ G(x̄ , t) = G(x, t0 + t) for each value

of y. The eigenvalues of the Hessian are λ1(x̄ , t) = 0 and λ2(x̄ , t) = ∂2L(x̄ ,t)
∂x2 . Within

the vessel we have |x| <
√

t0, i.e λ2 is negative. It follows |λ1(x̄ , t)| < |λ2(x̄ , t)|. The
blobness measure RB(x̄ , t) = 0. The structureness measure S(x̄ , t) = |λ2(x̄ , t)| and
the edge indicator E(x̄ , t) = |−x|(t+t0)√

t(x2−(t+t0))
.

The maximal filter response is expected in the middle of the vessel. At x = 0 we have
S(0, t) = − 1√

2π(t+t0)
3
2

and E(0, t) = 0. The normalized filter response becomes:

rγ−norm(0, t, β1, β2, γ) = 1 − exp
(

− tγ

4πβ2
2(t + t0)3

)
(7)

The scale for which this entity is maximal is given by:

∂rγ−norm(0, topt, β1, β2, γ)
∂t

!= 0 −→ topt =
γ

3 − γ
t0 (8)

If we want to have topt = t0 we choose γ = 3
2 .

It should be mentioned that a different ideal model could lead to another value of γ.
The factor γ defines a proportionality between the optimal scale and the characteristic
parameter of the assumed model. The later is here assumed to be the standard deviation.
The real physical length of the corresponding vessel will be approximately six times
greater. As real vessels are corrupted by noise, they will not perfectly overlap with the
ideal model. So in the presence of noise the optimal scale is just a measure, where the
structure of interest could have been best enhanced.

Choice of β2: In general the value of β2 depends on the strength of the noise and
background structures in the image. It should be large in order to prevent enhancement
of spurious low contrast data [5]. Based on the assumed ideal vessel model we will
compute an upper bound for β2 in the absence of noise. From eq. 5 it can be easily
observed that the values of the filter answer rγ−norm(x̄ , t, β1, β2, γ) are bound within
the interval [0, 1]. At x = 0, the filter answer of eq. 7 should be maximal for the optimal
scale topt = t0 and γ = 3

2 ; i.e the response rγ−norm(0, topt = t0, β1, β2,
3
2 ) = 1 −

exp
(

− 1

8πβ2
2t

3
2
0

)
!=1. We define a desired precision ε << 0 for the exponential to be

assumed equal to zero. We get therefore the upper bound for β2

β2 ≤
√

− 1
8πln(ε)

√
t0

3
2 . (9)

This upper bound depends on the standard deviation of the assumed model
√

t0. As a
fixed value for β2 is required for all considered scales, we get concrete values for β2 by
considering the maximal scale value. The bound given by eq 9 represents the part of β2
which depends on the geometrical structure of the line model. It is to be understood as
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an indication of the order of magnitude of β2 in the ideal case. In real images β2 should
still be tuned heuristically, to count for the gray levels in the background at hand.

Choice of β1: The value of β1 should be small in order to distinguish between line-like
and blob-like structures. If bifurcations or very tortuous vessels are not enhanced prop-
erly, increasing β1 resolves that at the expense of also enhancing non-vessel background
structures [5]. As |λ1(x̄ , t)| < |λ2(x̄ , t)| and due to the symmetry of the exponential
function we can compute the blobness based on the absolute values of the λ’s. The
values of RBγ−norm(x̄ , t) are then bound between [0, 1], It is one when the structure
is a blob and it is near zero if the structure is a line or an edge. A value β1 = 0.33
discards all blob similar structures. Greater values (≤ 1 ) are less discriminative, but
more tolerant to deviations from the ideal model.

3 Discretization and Numerical Implementation

Two questions arise when we are given a discrete 2D image. First: How to get a discrete
scale-space of the image? Second: How to discretize the scale parameter t?

Discrete Scale-Space: A straightforward discretization of eq 4 is accomplished by per-
forming the discrete convolution of the image with the discrete Gaussian kernel, while
keeping the scale parameter t continuous. The discretization of the Gaussian kernel can
be performed in several ways. The most known are by directly computing the contin-
uous Gaussian function at discrete locations (the sampled Gaussian kernel) or by inte-
grating the continuous kernel over each pixel support region (the integrated Gaussian
kernel). The sampled Gaussian kernel has the problem, that for small values of t the
central coefficient of the sampled Gaussian can become very large and the sum of the
corresponding filter coefficients will exceed one[4]. The integrated Gaussian kernel can
be regarded as giving a more true approximation than the first method, especially at fine
scales. The resulting approximation formula corresponds to discrete convolution with

the kernel g(n, t) =
∫ n+ 1

2
n− 1

2

1√
2πt

exp− ξ2

2t dξ. This choice of filter coefficients is equiv-

alent to the continuous formulation 4 if we let the continuous image be a piecewise
constant function [4,6]. The kernel coefficients for the Gaussian, and its derivatives are
computed as given in[6]. The mask sizes are computed automatically depending on the
given σ such that the approximation error is set to a certain εg . At borders the gray
values are mirrored.

Discrete Scales: In practice we need to choose a certain number of scales that best
approximate the characteristic parameters in the image at hand. The maximum and
minimum values of σ =

√
t should be determined on the basis of the width range of the

vessels of interest. In [2] the minimum number of scale was automatically determined
based on certain response specific criteria. The set of discrete scales σi is computed
according to σi = σls

i width s > 1 a scaling factor, i = 0, 1, · · · , n − 1 and n the
number of scales such that σls

n−2 < σh ≤ σls
n−1. It follows that

n <
ln(σh

σl
)

ln(s)
+ 2 ≤ n + 1 (10)
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We took the smallest nearest integer value of eq. 10 for n. We get thus a logarithmic
progressing of scales and an automatic determination of their number.

4 Experiments

4.1 Experiments on Phantom Data

Fig. 1. Phantom image

We generated a phantom image (420 × 420 × 8) contain-
ing line structures having Gaussian profiles of different
widths: A vertical line with σ0 = 1, a horizontal line with
σ0 = 5 and a circular structure with σ0 = 3 and radius
r = 100. (see fig. 1). The vertical line crosses the circle
along its middle axis. The horizontal line is shifted to the
bottom by 30 pixels. The positioning of the lines aims to
show the behavior of the filter on straight line, curvilinear
structure as well as at crossings or bifurcations.

By taking the ideal Gaussian profile I0(x̄ ) of sec. 2,
lines with smaller width will be assigned brighter gray
values. In real angiographic images the opposite be-
havior is rather observed. To simulate this phenomenon
we inverted the proportionality with respect to σ. The underlying Gaussian pro-

files used for generating the phantom are σ0√
2π

exp
(

−x2

2σ2
0

)
for the straight lines and

σ0√
2π

exp(− (r−
√

x2+y2)2

2σ2
0

) for the circular profile. To be able to assess the enhancement
effect we assigned a gray value of 15 to the maximum value of the line with the smallest
width. Based on this, the gray level mapping function is linear. Background color was
set to one. When two lines cross the maximal value in the overlapping area is taken.

We performed multiscale analysis with maximization of normalized responses. We
used β1 = 0.33, which is the most restrictive value. The maximal width in the image
is σ = 5 and by choosing ε = 10−8 in eq. 9, we became a value of β2 = 0.52.
The normalization factor is γ = 1.5. We chose σl = 1, σh = 5. By setting the
scaling factor of eq. 10 to s = 1.5 five scales were automatically computed σ ∈

Fig. 2. Multiscale results with filter 5 (left) and filter 1 (right).β2 = 0.52, β1 = 0.33, γ =
1.5,σl = 1,σh = 5.
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Fig. 3. Multiscale results with filter 5(left) and normalized Frangi filter 1(right). β2 = 2.0.

{1, 1.5, 2.25, 3.375, 5.0625}. The results for filter 5 and normalized filter 1 are shown
in figure 2. Tuning β2 results in fig. 3.

The effect of both vessel enhancement filters can be quantitatively compared accord-
ing to three factors: First which filter better increases the local contrast between vessel
and background. Second which filter better preserves the original line width. And third
which filter better enhances the centerlines of the vessels. Due to the symmetry of the
phantom used we computed these values along one cross section for each of the three
lines and excluded thus crossings since they do not have line properties. The local contrast
was measured by the mean value of mean gray levels within the lines in the original and
enhanced images. The width was computed by the mean value of the number of pixels
whose gray levels are different from background. And the enhancement of the centerline
was measured by computing the ratio of gray levels along the cross section of the lines
and the gray value of the centerline. Tables 1 and 2 summarizes the quantitative results.

Table 1. Quantitative comparison between normalized Frangi filter 1 and extended filter 5: Com-
parison of local contrast and preservation of line width. Mean values over three line sizes are
reported.

image local contrast width
original 21.025 15.66

β2 = 0.52 Fig 2 normalized Frangi eq. 1 151.37 9.66
extended filter eq. 5 77.467 9

β2 = 2.0 Fig 3 normalized Frangi eq. 1 119.13 9
extended filter eq. 5 69.321 8.66

By observing figures 2 and 3 both filters show very week responses in regions where
two lines cross, i.e. where no line properties are present. This appears as a discontinuity.
Normalization of the filters leads to comparable values along different scales. Especially
great scales become higher responses. Both filters enhance the local contrast compared
with the original one (table 1). The extended filter 5 results in lower local contrast since
the additional edge indicator term in eq 3 is always within [0, 1]. The behavior of both
filters is comparable with respect to preservation of the width of lines. It is basically
reduced, especially for wide lines (see Also curves in table 2). This may be due to the
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Table 2. Quantitative comparison between normalized Frangi filter 1 and extended filter 5: com-
parison of centerline enhancement. Top β2 = 0.52; from left to right σ = 1, 3, 5 respectively.
Bottom β2 = 2.0; from left to right σ = 1, 3, 5 respectively. Original line: dot line, Frangi filter:
dashed line, extended filter: continuous line. Cross section values are reported.
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weak slope of wider lines. The gain from adding the edge indicator becomes clear by
observing the curves of enhancement of the centerlines in table 2. The normalized fil-
ter 1 enhances the borders of the lines without particularly enhancing centerlines. The
values accorded to the centerlines by filter 5 are more discriminative and facilitates fur-
ther processing such as centerline extraction. Increasing β2 increases the discriminative
power –especially of the normalized Frangi filter–, decreases the local contrast and tends
to reduce the resulting width of lines.

4.2 Experiments on Real Data

We apply vessel enhancement on real coronary angiograms (512 × 512 × 8) captured
by a monoplane Siemens AXIOM Artis system (rotational angiography). The images

Fig. 4. From left to right: original image, filter 5, normalized filter 1 with same parameters
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Fig. 5. Less Background noise. Left: filter 5 with β2 = 1.0. Right: filter 1 with β2 = 1.0.

have a black border, which is not considered in treatment. We set β1 = 0.5, γ = 1.5
and s = 1.5. By choosing σh = 4 we become a value of β2 = 0.38. For σl = 1
and σh = 4 five scales are automatically computed σ ∈ {1, 1.5, 2.25, 3.375, 5.0625}.
Fig. 4 shows a typical image, its corresponding preprocessed images with both filters 5
and 1. Figure 5 shows two preprocessed images with variation of β2 leading to less
Background noise.

With the theoretical discussed values for the free parameters the filters 5 and 1 were
able to enhance the interesting structure and also a lot of Background. Increasing β2
eliminates background structures (fig. 5) and better reflects the real widths of vessels,
as it was already observed in the phantom image. With real images we observe the poor
discriminative performance of the responses of the Frangi filter 1 between centerlines
and borders. Another consequence of non-distinction between edges and line structures

Fig. 6. Magnification of bifurcations, crossings and a tortuous vessel. Top: results of filter 5.
Bottom: results of normalized filter 1.
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is the enhancement of the diaphragm with the Frangi filter (fig. 4, right); as it is consid-
ered as an edge.

Both filters were able to recognize fine vessels and also fine ramifications, thanks to
the multi-scale response. Problems arise with very tortuous vessels and at bifurcations
or crossings, where the eigenvalues have comparable values and so no line properties
can be detected (increasing β1 does not ameliorate the result). Fig. 6 show magnified
regions of different images where this effect is observed. At this magnified scale the
improvement reached by integrating the edge indicator is again enhanced by the smooth
responses and preservation of the vessel trajectory.

5 Conclusion

In this paper we extended the Frangi filter [1] for 2D-vessel enhancement to better
differentiate between edges and line structures. We integrated the normalization of
Gaussian derivatives in the filter response. We performed an optimal scale selection
by assuming an ideal model and gave theoretical values or bounds for the filter free pa-
rameters. We presented experiments on phantom data to objectively and quantitatively
compare and judge the filters in the ideal case. The performed extension lead mainly
to stronger discrimination of the centerlines after enhancement. Experiments on real
angiographic data showed this improvement under real conditions. This contribution
is to be understood as preprocessing for further steps such as centerline extraction or
temporal tracking of vessels for 3D heart motion recovery [7].
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Effect of Noise and Slice Profile on Strain
Quantifications of Strain Encoding (SENC) MRI
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Abstract. SENC is a new technique for imaging tissue deformation,
such as the strain of cardiac tissue due to contraction. SENC strain quan-
tifications are limited to one direction, the through-plane direction. How-
ever, this is sufficient to image circumferential and longitudinal strain in
the long- and short-axis views, respectively. The factors that affect the
accuracy of SENC strain mesurements are the slice profile and the signal-
to-noise ratio (SNR). In this work, these factors are analyzed in order to
optimize the SENC method for strain quantifications.

Introduction

MRI is an excellent modality for imaging the motion of moving tissues and
tissue deformations including those of the heart. MRI is valuable in measuring
cardiac wall motion. Methods such as tagging and phase contrast were able to
noninvasively and accurately measure myocardial motion [1,2,3,4,5].Using such
techniques, MR is considered the “gold standard” for assessment and measuring
cardiac function [6].

Strain encoding (SENC) is a technique that has been developed to measure
regional strain in a direct and straight forward way, i.e., with no need for sophis-
ticated postprocessing [7,8]. The measured strain component is limited, however,
to the through-plane direction. This is not a serious limitation as the choice of
the imaging planes determines the type of strain component, and, fortunately,
the typical strain components (circumferential and longitudinal strain) can be
viewed from conventional long- and short-axis views. SENC technique results
were validated in comparison with other well established techniques like tagging
and delayed enhancement [9]. While much work has been developed and pub-
lished on the SENC technique, a thorough analysis of the accuracy of SENC,
as well as its sensitivity to many crucial factors, has been lacking. For example,
SENC relies on the slice profile of the excited slab to measure strain, which
makes the computations of strain sensitive to the exact shape of the slice profile.
Although the original work on SENC assumed a rectangular slice profile, it is
important to understand the impact of changes in slice profile on the accuracy
of the technique. Moreover, there has been no thorough analysis of the effect of
noise on strain quantifications. In this work, we study those effects in order to
optimize the selection of imaging parameters and minimize quantification error.
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First, we will describe the basics of the SENC technique in section 1.1. Ex-
ample for a typical SENC experiment with its results is given in section 1.2.
In section 1.3, we analyze the relation between the computed and actual strain
values for different slice profiles, assuming no noise. Then, in section 1.4, we
describe how to design the SENC experiment parameters. Finally, the effect of
noise is studied in Section 1.5. Numerical simulations and phantom experiments
are preformed to validate the theoretical analysis.

1 Theory

1.1 The SENC Method

The SENC pulse sequence can be regarded as a variation of the 1-1 SPAMM
tagging pulse sequence where the tagging gradient is along the slice-selection
direction. First, the tagging pulses are applied, causing the tissue magnetization
to be modulated by a sinusoidal pattern with tag surfaces parallel to the imag-
ing plane. This sinusoidal pattern (tags) has a spatial frequency (ω0). that is
proportional to the zeroth moment of the tagging gradient. After a short period
of time, during which tissue deformation might occur, changes in the local tag-
ging frequency of this sinusoidal pattern will occur. It has been demonstrated
in [7] that the spatial frequency change is proportional to the local strain in the
direction orthogonal to the imaging plane.

The acquired images are modified by adding a gradient moment in the slice-
selection direction to cause demodulation with a specific spatial frequency, which
is called the tuning frequency. As a result, the signal intensity of a pixel in the
resulting images varies depending on two factors: the slice profile and the tuning
frequency. Mathematically, an image acquired at a specific tuning frequency can
be described by:

I (y; t; ωT ) = ρ (y, t)S (ωT − ω (y; t)) , (1)

where I (y; t; ωT ) refers to the signal intensity of a pixel located at a location
y, with time t, ρ (y, t) the proton density at that location, and S(.) the Fourier
transform of the slice profile—which is related to the envelope of the slice se-
lection RF pulse [7]. The tuning frequency ωT is, therefore, computed from the
tuning gradient using:

ωT = γ

∫
GT (t) dt (2)

where γ is the gyromagnetic ratio. The spatial frequency ω (y; t) is a function of
the local frequency of the tag pattern at that pixel, which, in turn, depends on
local tissue deformation and strain.

In order to measure local strain, two images are acquired at two different
tuning frequencies, a low-tuning image (IL) with the tuning frequency ωL, and
a high tuning image (IH) with the tuning frequency ωH . Figure (1) illustrates
the change of the low and high tuning image with different shifts in harmonic
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Fig. 1. Effect of Harmonic Shift on IL and IH . In case of negative strains (shortening
of compression of tissue), the harmonic peak shifts toward a higher frequency. The
signal at ωL is decreasing while the signal at ωH is increasing.

peaks due to changes in the local spatial frequency of tags caused by tissue
deformation. It shows that IL is directly proportional to local stretching while
IH is directly proportional to local contraction.

By acquiring these two images, the actual spatial frequency can be estimated
at any given pixel using the center of mass method (as described in [7]):

ω (y; t) =
ωLI (y; t; ωL) + ωHI (y; t; ωH)

I (y; t; ωL) + I (y; t; ωH)
. (3)

Then, the local strain at this pixel location can be estimated from this frequency
shift using:

ε (y; t) =
�ω (y; t)
ω (y; t)

=
(

ω0

ω (y; t)
− 1

)
. (4)

These relations are valid as long as the the profile peak doesn’t move outside
the frequency range between ωL and ωH (i.e. the strain range should be within
a specific range which is given apriori).

1.2 Example of Strain Measurement

Fig. 2 shows an example of SENC raw images (low and high tunings) and the
resulting strain map. The images are for a four-chamber view of the heart of a
normal subject imaged on a clinical 3T MR whole-body system(Gyroscan Intera,
Philips Medical System, Best, The Netherlands). Images were acquired with
FOV = 350*350mm, slice thickness = 8mm, matrix size 256*256. Acquisition
was synchronized after the R-wave with temporal resolution = 22msec. Low and
high tuning frequencies were adjusted so as to capture deformation strain ranges
from 0% to -30% because it is a four -chamber view, the strain map shows the
circumferential strain since it is the through plane strain components. Notice
that difference in strain values between the endocardium and epicardium, as
expected.
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Fig. 2. Sample of SENC images. The vertical axis represents, from top to bottom, the
low tuning, high tuning, and function images (strain maps registered on the anatomy
images), the horizontal axis represents the time frames, from left to right, at 36, 216,
and 418msec. The color map ranges from blue (for maximum stretching, 0%) to red
(for maximum shortening, -30%). Through time, the myocardium starts to appear in
the high tuning images while disappearing from the low tuning images.

1.3 Effect of Slice Profile on SENC Computations

The accuracy of the strain estimation depends on a number of factors in addition
to the slice profile. In [10], it has been proved that the actual strain value (ε)
and the estimated value (ε), using equation (4), are exactly the same for the
triangular and rectangular slice profiles. However, this is not necessarily true
for all other profiles (see Fig. 3). Also, even for the triangular and rectangular
profiles, the actual profile that is generated on the scanners is not perfect, either
due RF pulses optimization (which may results in adding ripples to the profile)
or due to the slightly field inhomogentiy that may occur.

Therefore, a mapping function is needed to correct measured strain due to
inaccuracies in the slice profile. The correction in strain quantification from the
estimated strain can be written as

ε = F (ε) , (5)

whereF (.) can be determined for the exact slice profile in a calibration step prior to
imaging. This calibration steps need not be frequently repeated. During this step,
we aim to build the actual slice profile for a specific experiment then build the map-
ping function from this measured profile. More details is given in section 2.

1.4 SENC Parameters Design

It can be seen from (1.1) that the selection of ω0, ωL, and ωH affects the dy-
namic strain range—i.e., the strain range in which the strain can be accurately
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Fig. 3. Strain curves for different slice profiles. While triangle and sinc profiles show a
simple first-order (linear) relation between the actual and estimated strain, the Gaus-
sian slice profile results in a higher order relation. Note that the two curves are saturated
at the same value for all the profiles, since saturation depends only on slice thickness
and the assumed strain range but not on the profile.
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Fig. 4. Error in measured strain values for different slice profiles. Within a specific
range of strain, triangular and sinc peaks have perfectly zero error, while the Gaussian
peak has a strain-dependent error. However, the error becomes the same for all the
profiles outside the required range, since the error becomes dependent on the slice
thickness.

measured. It is important, then, to be able to design these parameters for a
specific strain range, which is given apriori, bounded by maximum stretching
(εmax−stretching ≥ 0) and maximum shortening (εmax−shortening ≤ 0). This is
usually an accepted assumption in most of the strain quantification experiments
like in cardiac application, which has nominal strain range from 0% to -30%,
especially if the operator can adjust these bounds on-site if the actual range
differs from the expected one (this will appear as a saturation in the strain
quatifications as will be discussed in the next section).

Determining ωL and ωH . In case of stretching, the slice peak shifts to a
lower frequency; however, in order to obtain signal from the high tuning, the
right tail of the profile should not exceed ωH . This means that the center of the
peak should be greater than or equal to the difference of ωH − B, where B is
the profile half-width. Since ωH − B is the minimum frequency value that the
peak can attain without the loss of the signal at ωH , we can assign this value to
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correspond to the maximum allowable stretching. Using Eq (4), we can derive
the relation:

εmax−stretching =
ω0

ωH − B
− 1, (6)

or
ωH =

ω0

εmax−stretching + 1
+ B. (7)

If the measured strain falls below the assumed εmax−stretching, the peak right
tail will be totally below ωH and the measured signal at ωH will go to zero.
This forces the value of the estimated peak shift in (3) to be exactly equal to ωL

independant of what the real value is. Then the result strain will be saturated
at the value of εmax−stretching (see the saturation effect in figure 3). Following
the same line of reasoning, the relation between the maximium shortening and
the low tuning frequency can written as:

ωL =
ω0

εmax−shortening + 1
− B. (8)

Thus, for a given ω0, B, and the required strain range, the tuning frequencies
can be computed. Notice that B depends on the slice thickness, and, in case of
rectangular slices,

B =
1

SliceThickness
. (9)

Hence, the only remaining parameter is ω0.

Determining ω0. The frequency ω0 can be determined by considering a third
constraint on the shifts of the slice profile. In order for Eq. (3) to be accurate,
the lowest frequency (ωL) should not be too low or it will detect signal from the
untagged component of the tissue, i.e., the DC component [11]. This means that
ωL should not pass the half-width of the slice profile, i.e.,

ωL ≥ B. (10)

Using Eqs. (8) and (10), we can determine a lower bound for the tagging
frequency:

ω0 ≥ 2B (1 + εmax−shortening) (11)

Because ω0 should always be between ωL and ωH ; therefore

ω0 ≤ ωH , (12)

which, when combined with (8) and (7) provides an upper limit for the tagging
frequency of

ω0 ≤ 2B

(
(1 + εmax−shortening) (1 + εmax−stretching)

εmax−shortening − εmax−stretching

)
. (13)

From (11) and (13), the exact choice of ω0 will be a trade-off. The exact selec-
tion of ω0will address the strain sensitivity and noise immunity, which will be
discussed in the next section.
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1.5 Noise Effect on Strain Quantification

Assume that the white Gaussian noise components, nL and nH , are added to the
signal components, IL and IH , respectively. Now, equation (3) can be re-written
as

ωn (y; t) =
ωL (IL + nL) + ωH (IH + nH)

(IL + nL + IH + nH)
which can be re-arranged into:

ωn (y; t) =
ωLIL + ωHIH

(IL + IH + nL + nH)
+

ωLnL + ωHnH

(IL + IH + nL + nH)
. (14)

Then the expected value of the new shifted frequency ωn (y; t) can be given
as:

E (ωn (y; t)) = E

(
ωLIL + ωHIH

IL + IH

)
E

(
IL + IH

IL + IH + nL + nH

)
+

E

(
ωLnL

IL + IH + nL + nH

)
+ E

(
ωHnH

IL + IH + nL + nH

)
. (15)

To analyze equation (15) more, let’s consider the different cases in which
the ratio between the noise and signal components highly differs. In the high
stretching strain values, the harmonic peak is shifted towards ωL so the ac-
quired intensity at ωL has a very high SNR while the one acquired at ωH has
a lower SNR (i.e. E (IL) � E (nL) and E (IH) � E (nL) � E (nH)). The situ-
ation is very similar on the other side (for the high compression strain values).
In the middle strain values between maximum stretching and maximum com-
pression, the intenisties acquired at both ωL and ωH have relatively high SNR
(i.e. E (IL) > E (nL) and E (IH) > E (nH)). Noting also that the ωL and ωH

are normally < 1 since the tag spacing is normally > 1 (a nominal values set for
cardiac Imaging is ωL = 0.25, ω0 = 0.26 and ωH = 0.38 for 8mm slice thickness
and to capture strain values from 5% to -30%) , so the third and forth terms of
equation (14) can be neglected and equation (15) can be written as:

E (ωn (y; t)) � ΔE (ω (y; t)) , (16)

where

Δ = E

(
IL + IH

IL + IH + nL + nH

)
.

Where, following the same reasoning in the SNR regions previous discussion,
� is usually higher in the middle strain values region than the both the high
compression and high stretching regions. By substituting Eq. (16) for (4), we
obtain

εn =
( ω0

ω.Δ
− 1

)
=

ε

Δ
+ Δ

′
, (17)

where Δ
′

= (1 − Δ)/Δ. Thus, the noise affects the strain curve (estimated vs.
actual) in two ways: changing the slope to 1

� , and adding a bias �′
.
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2 Experiments and Results

2.1 Generating the Strain Mapping Function

In order to build strain mapping function, needed in section 1.4, the actual slice
profile along the kz direction is required. A stationary phantom was imaged using
the same protocol for the SENC technique with tagging frequency ω0 = 0.3 and
slice thickness =10mm. However, instead of just imaging at only two tuning
frequencies (ωL and ωH) as in SENC, the frequency values were spanned before
and after the tagging frequency value where we expect the profile harmonic to
appear (i.e. from ω = 0 to ω = 0.7 with a resolution �ω = 0.01). The ROI in
the image is manually identified then the intensities values inside the ROI were
averaged for each tuning image then normalized to build the profile. Then, for
different strain values, the profile is shifted and the actual strain is calculated
using the intensities at exactly the same tuning values that will be used in the
actual SENC experiment. Then, the strain mapping function can be build from
these corresponded values. The same methods can be used to generated the
strain maps for any simulated silce profile.

2.2 Numerical Simulations

To simulate the noise effect, we assumed that the slice profile was rectangular
(i.e. a sinc profile in the frequency domain along the kz direction) and the strain
inside a voxel ranges from maximum stretching strain to maximum shortening.
So, sinc profile was simulated for a specific slice thickness. Then, white Gaussian
noise was added to the profile and the magnitude values are calculated. SENC
parameters (ω0, ωL and ωH) were selected given the strain range and the slice
thickness as in section 1.4. Then, the strain range values were spanned as follows:
for each strain value, the shift in the harmonic peak is calculated and then the
new profile values at ωL and ωH resulted from this shift are used to calculate
the corresponding estimated strain using equations (3) and (4). This process was
repeated for a large number of times then the average is calculated. Then, the
whole process is repeated for different levels of the Gaussian noise corresponding
to different levels of signal-to-noise (SNR) ratio.

3 Results

Figure (5) shows the ideal and the actual measured slice profile across Kz. Slight
difference can be seen between the two curves. These differences may affect
the strain computation. So, the strain mapping for such profiles is needed for
accurate strain quantifications.

Figure (6) shows the effect of different levels of SNR on the slice profile in the
frequency domain. Figure (7) shows the strain curve for different SNR values in
the simulated data. As can be seen, as the SNR deteriorates, the slope of the
strain curve decreases and the measurable strain range shrinks.
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Fig. 5. Ideal and actual measured slice profile. Note the slight difference in the profile
zero crossings which may result from slight field inhomogenity.

Fig. 6. Sinc peak for different SNR levels (a. SNR=∞, b. SNR = 4, c. SNR=2). As SNR
decreases, the lower intensity values of the peak are hided with the noise components.
α1, α2 represents the shrinkage of the available peak shift due to this noise effect.
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Fig. 7. Strain curves (estimated vs. actual) for different SNR (10, 8, 4 and 2). As SNR
decreases, the slope of the strain curve decreases, which lowers the resolution of the
measured strain. In addition, the curves start to saturate faster (at lower strain values).
Note also that strain bias (at zero strain) increases as the SNR gets lower.

4 Discussion

The first effect of a low SNR appears in Figure (6), where the low intensity values
(as in the profile sides) are more affected by noise than are higher intensity values.
This creates a non-zero mean noise level that would hide low intensity values—
which can hardly be distinguished. This results in shrinking the allowable range
within which the peak can be shifted, and hence, shrinking the allowable strain
range. The second effect, which is derived from Eq. (17), appears in Figure (7)
in which the slope of the ε − ε curve decreases as the SNR gets lower. Besides,
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a bias appears in the estimated strain values. While both the bias and slope
can be solved (by a mapping table, for example), the resolution of the acquired
strain values has already been lowered.

5 Conclusion

The effects of slice profile and signal-to-noise ratio (SNR)on the SENC technique
quantifications are analyzed. The slice profile effect can be easily compensated
for with non-rectagular profiles via a look-up table that can map the measured
strain values into the actual one. The SNR level is shown to affect the strain
measurments, by introducing a slope-change and a bias to the strain curve. These
effects can be compensated for by a calibration scan to determine the SNR map,
which can then be used to correct the strain quantifications.
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Abstract. We present a system that reconstructs the 3D motion of the
left ventricle (LV) for a full cardiac cycle using a deformable model built
from tagged MR images. Two sets of cues are drawn from tagged MRI.
The intersections of the three tagging planes, and the intersections of
the LV boundary and the tagging planes, are interpolated onto the mesh
vertices. We implement a deformable model to track the LV motion,
utilizing Finite Element Methods (FEM) to keep the general shape and
topology of the LV. This volumetric deformable model speeds up the
FEM and facilitates the medical analysis. The LV motion reconstruction
provides information for further analysis of cardiac mechanisms.

1 Introduction

Cardiac Tagged Magnetic Resonance Imaging (MRI) facilitates estimation of
the detailed myocardial motion and the deformation of the left ventricle(LV) in
vivo during the cardiac cycle. It provides information for the early diagnosis of
cardiac disorders and quantitative analysis of cardiac diseases. Tagged MRI is
an image with a set of parallel tagging planes orthogonal to the image plane,
projecting onto the comparably brighter myocardium as a set of parallel dark
lines. Reconstructing the 3D LV motion from tagged MRI can assist doctors to
diagnose cardiac diseases earlier, and can be used for 3D strain analysis of the
myocardium [1].

Finite Element Methods and quadric models have been widely used for the
LV motion reconstruction. There has been a lot of work on 3D cardiac shape and
motion analysis such as [2,3,4,5,6,7,8]. (Park 1995) [3] used parameter functions
extended from [9] to estimate the 3D LV motion. The extended parametric de-
formable model is also used on the right ventricle(RV) for the diagnosis and anal-
ysis of the RV related cardiac diseases [4,5,6]. A Boundary Element Model(BEM)
is used to extract local shape properties with high computational efficiency [7].
Deformable biomechanics models introduced in [8] considered the biomechanical
material properties of cardiac muscles and yielded realistic strain fields. In this
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paper, we introduce a 3D LV motion recovery system based on deformable mod-
els, which can achieve a faster convergence compared to methods using FEM
only. FEM keeps the shape of an object by passing stress forces to neighboring
vertices. In a detailed LV mesh with thousands of points, this procedure requires
tremendous time before reaching the equilibrium. In our model, global defor-
mations are intergraded seamlessly with local deformations to compute the real
locations of mesh vertices. Global deformations can be quickly recovered for the
whole objects, faster compared to local propagations. Local deformations are
computed using FEM with linear elasticity, and the Lamé constants are com-
puted for different anatomical regions. Finally we compute the strain and other
deformation parameters on the total model displacements.

The rest of this paper is organized as follows. Section 2 introduces the pro-
cedure of reconstructing 3D motion of LV, and the methods in different steps.
Section 3 presents the motion estimation results and analysis. Section 4 con-
cludes this paper and proposes the future work.

2 Methods

This section describes the methods we used in reconstructing the 3D motion in
several steps. First, LV boundaries and tagging line information are obtained
from tagged MRI using Gabor Filters [10], Metamorphs [11] and spline models
[12]. The intersections of the three tagging planes are calculated, as well as the
intersections of the LV boundary and the tagging planes. These intersections
can be used as material markers in LV motion tracking. Then we register a
generic heart mesh to the image data by affine registration and non-rigid thin
plate spline local fitting. The LV motion is reconstructed with a volumetric
deformable model [3,9], which can recover the deformations like contractions
and twists during systole.

2.1 Segmentation of the LV Boundaries

Since accurate contour segmentation is difficult to achieve without removing
the tagging lines, a bank of Gabor filters are used to detect tagging lines in
different orientations [10]. As a band-pass filter, the Gabor filter can eliminate
the frequency of the tagging lines.

After removing tagging lines, the images are segmented by Metamorphs [11],
a class of deformable models integrating both shape priors and interior texture.
The model deformations are parameterized using the cubic B-spline based Free
Form Deformation. Metamorphs can accurately segment both the epicardium
and the endocardium of the LV.

The tagging lines are then tracked by active contour models, and are refined
by spline models only using the tag information between the epicardium and
the endocardium. The splines are separated to several portions to avoid the
influence of the noise outside of the myocardium, which results in an accurate
fitting [12]. With the above methods, the LV contours and the tagging lines can
be automatically segmented and tracked.
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2.2 Model Initialization and Registration

The generic model of the LV is built from MR images obtained from a healthy
volunteer. The image information is obtained by manual segmentation with val-
idation by an expert. The surface mesh was build by a Delaunay triangulation
using geodesic distances, to preserve the topology of the object better [13]. This
generic mesh provides an anatomically plausible model for the whole tracking
procedure.

P1

P2

P7P5

P6
P4 P3

P8

(a) (b)

Fig. 1. (a) Landmarks on the contour (b) Registered model with landmarks on LV,
RV endocardium and epicardium

To register the model with the image data, we use a set of landmarks, 50 land-
marks per slice and 350 landmarks in total, on the contours defined by different
curvatures [14]. The landmarks are calculated both on the image contours and
on the corresponding slices of the model. We place the model on the image data
location by an affine transformation including translation, rotation and isotropic
scaling, and then use thin plate splines to fit the model locally.

2.3 Tag Line Incorporation

The intersections of the three tagging planes are material markers in the my-
ocardium. A tagging surface can be reconstructed by tagging lines in MR images
using thin plate splines. Because there is no analytic solution for calculating the
intersections of three thin plate splines, and high complexity of the projection
method proposed in [15], we turn the calculation of the intersections of three
interpolated tagging planes into a simpler implementation with equivalent re-
sults. We calculate the intersections of horizontal and vertical tagging lines in
SA images first. These intersection points are along the intersection lines of the
two tagging planes which are orthogonal to the SA images. The intersection
lines intersect with the third tagging plane, which is orthogonal to the LA image
plane. This implementation avoids full interpolation of all three tagging surfaces,
and simplifies the problem to that of calculating the intersections of lines and a
surface.
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(a) (b) (c)

Fig. 2. (a) Intersections of tagging lines (b) Intersections of horizontal tagging lines
and contours (c) Intersections of vertical tagging lines and contours

(a) (b)

Fig. 3. (a) Calculate the intersection of a curve and a surface (b) The intersection
curves intersect with the tagging surfaces orthogonal to the LA images

Calculating the intersections of curves and surfaces can be viewed as calculating
intersections of lines and planes in the small neighborhood of the intersections. The
interpolated curve can be represented by a set of points and short lines connecting
these points. We find the short line that intersects with the surface first. Then we
project the two ends of the line P , Q to the surface as P ′, Q′, as in Figure 3 (a).
Since the curve is almost normal to the surface, the projection points are located
very close to the intersection O. And a small area of the surface is close to a plane.
Thus the intersection of PQ and P ′Q′, denoted as O′, is very close to the real
intersection O. The location of O′ is taken as the location of O in this paper.

We calculate the intersections of all tagging surfaces in the three orthogonal
directions. Only the intersections in the myocardium are material points, and
the other intersections in the blood or outside the LV are not valid for motion
estimation.

2.4 Fast Motion Reconstruction Using Deformable Models

Using Lagrangian dynamics, we reconstruct the motion and deformation of the
LV. We use the generated mesh to remove the intersections outside of the LV
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(a) (b)

Fig. 4. Intersections within the myocardium (a) Viewed from the side (b) Viewed from
base to apex

boundary. The intersections inside the LV boundary driving mid-systole are
shown in Figure 4.

The positions of points on our deformable model relative to an inertial frame Φ
of reference in space are given by a vector-valued, time-varying function x(q, t) =
(x1(q, t), x2(q, t), x3(q, t))T . The transformation from the model-centered coor-
dinate system to the world coordinate system is x = c+Rp, where c is the origin
of the model-centered coordinate system φ in Φ and R is the rotation matrix de-
scribing the orientation of φ. p can be further decomposed to two parts p = s+d,
to incorporate global and local deformation.

A deformable model can be controlled by a set of parameters defined as q =
(qT

c , qT
θ , qT

s , qT
d ), with qc = c and qθ = θ, where θ is the rotation quaternion

of the model. Our model is composed of multiple layers, and are defined in
the same polar coordinates s = (u, v), where −π

2 ≤ u ≤ π
5 runs from apex to

the base of the LV, −π ≤ v < π is horizontal, starts and ends at the place
where the septum is located. The global deformation is determined by qs =
(a0, a1, a2, a3, τ), including scale a0, radiuses in three directions a1, a2, a3, and
a twisting factor τ . The shape is defined as s = T (e). For the kth ellipsoid,
1 ≤ k ≤ w, the geometric primitive e is defined as

e = a0(k)

⎛
⎝

a1(k)cos(u)cos(v)
a2(k)cos(u)sin(v)

a3(k)sin(u)

⎞
⎠ (1)

The shape represented by e is subject to the deformation T, which is the twist
of the LV,

s =

⎛
⎝

e1cos(ϕ) − e2sin(ϕ)
e1sin(ϕ) + e2cos(ϕ)

e3

⎞
⎠ (2)

where ϕ = πτsin(u).
The local displacements d can describe arbitrary deformations making the

point deviate from s. We can express the displacements d as a linear combina-
tion of a set of basis function d = ΣiSiqdi , where the diagonal matrix Si is formed
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from the basis function and qdi are local degrees of freedom. In our approach,
qd = (d1, d2, ..., dn) since each vertex of the LV model has 3 degrees of freedom.

The velocity of a point on the model is given by

ẋ = ċ + Ṙp + Rṗ (3)
= ċ + Bθ̇ + Rṡ + RSq̇d (4)

where B = ∂(Rp)/∂θi and ṡ = [∂s/∂qs]q̇s = Jq̇s. J is the Jacobian of the reference
shape with respect to the global deformation parameters. In the model expressed
in equation 1 and 2, ∂s/∂qs = (∂s/∂a, ∂s/∂τ) = ((∂s/∂e)(∂e/∂a), ∂s/∂τ),where
qs = (a, τ) and a = (a0, a1, a2, a3).

∂s/∂e=

⎛
⎝

cos(ϕ) −sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

⎞
⎠ ; ∂s/∂τ =

⎛
⎝

πsin(u)(e1(−sin(ϕ)) − e2cos(ϕ))
πsin(u)(e1cos(ϕ) + e2(−sin(ϕ)))

0

⎞
⎠

(5)

∂e/∂a =

⎛
⎝

a1cos(u)cos(v) a0cos(u)cos(v) 0 0
a2cos(u)sin(v) 0 a0cos(u)sin(v) 0

a3sin(u) 0 0 a0sin(u)

⎞
⎠ (6)

Equation 4 can be written as

ẋ = [I B RJ RS]q̇ = Lq̇, J = (J1, ..., Jw), qs = (qs1 , ..., qsw ). (7)

We use lagrangian dynamics, coupling with Newton’s second law and hooke’s
law of the string. The equation is

Dq̇ + Kq = F (t) (8)

where q is the displacement of a structure and q̇ is the velocity. D is the damping
matrix, and in this paper it is diagonal and constant over time. K is the stiffness
matrix. Equation 8 can be solved by

qt+1 = qt + (F (t) − Kqt)dt (9)

To do dynamic analysis on a complex structure, Finite element analysis a stan-
dard tool to break the structure into parts. The stiffness matrix on (qT

c , qT
θ , qT

s )
is set to zero. The details of the stiffness matrix Kdd on local deformation are
described in [16]. Except for the qd, all other parameters derivatives need to be
intergraded over the ellipsoid surfaces.

q̇ = fT
q = (

∫
fT [I B RJ]du, fT

d − Kddq
T
d ) (10)

We interpolate the image forces onto the vertices of the deformable model
to avoid ill conditioning tetrahedra caused by irregular local forces. The motion
reconstruction algorithm is described in the following,



66 X. Wang et al.

Algorithm:

1. Given source markers S and target markers T :
2. Initialize current markers C = S;
3. Iterate until distance(C,T ) < Threshold:
4. Calculate forces as vector field T − C;
5. Interpolate forces to the mesh vertices (V , fV );
6. Calculate the q̇ and update q;
7. Interpolate C from the new mesh.

Fig. 5. The algorithm to calculate meshes in different time slots

2.5 Strain Analysis Based on the LV Motion

We calculated the strain of the whole LV in the Cartesian coordinate system
to provide further information. The strain field of each element with respect to
their reference shapes are computed using the Lagrangian Green St. Venant,
approach[17]. Within an element, a linear deformation is assumed. Given the
reference shape and the deformed shape of an element, the deformation tensor
T is computed as

TA = A′, (11)

where the reference shape tensor A and the deformed shape tensor A′ are defined
as

A =
(
x01 x02 x03

)
, x0i = xi − x0 (12)

and A′ =
(
x′

01 x′
02 x′

03
)
, x′

0i = x′
i − x′

0. (13)

as shown in Figure 6
Note A is invertible as long as the reference shape is not degenerated. A−1

can be pre-computed and reused for each time frame. Given T = A′A−1, the
Green St. Venant strain tensor E is computed as

E = T T T − I =

⎛
⎝

ε11 ε12 ε13
ε22 ε23

ε33

⎞
⎠ (14)

Fig. 6. An element on a reference frame and a deformed frame
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The calculated strain is rotation invariant. Strains computed for a mid-LV
slice is visualized in Figure 8.

3 Results on Motion Reconstruction and Strain Analysis

We construct the LV motion from the a set of MR images with seven SA slices
and two LA slices. The registered generic LV model has 3076 vertices and 11328
tetrahedral elements. It takes about 3 minutes for the deformable model to
converge on each frame on Intel Xeon 3.00GHz CPU, compared to 40 minutes
taken by FEM. The results are shown in Figure 7. From the reconstructed LV
motion sequence, we can identify the systole and the diastole. The myocardium
twists clockwise while the LV contracts and counter-clockwise while the LV relax.
The principle strains recovered by deformable models are shown in Figure 8.
From 30 frames showing a full cardiac cycle, we analyze the first 20 frames.
Figure 8 (a) shows that elongation strain on the septum is only 80% of that

(a1) (a3) (a5) (a8)

(b1) (b3) (b5) (b8)

(a11) (a14) (a17) (a19)

(b11) (b14) (b17) (b19)

Fig. 7. From 30 time frames taken from a whole heart beating cycle, the selected few
frames showing the motion are presented here. Row (a) images are viewed from side,
and row (b) images are viewed from base, e.g.(a1) means frame 1 side view.
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Fig. 8. Principle strains at the end systole (a) Magnitude of the elongation strain
(minimum is black and maximum is white); (b) Elongation strain projected to the SA
plane; (c) Three slices in (d) and (e); (d)Elongation strain over time (e)Contraction
strain over time

on the free wall. Figure 8 (b) shows that most elongation strains are in radial
direction. Figure 8 (d) and (e) shows how the strain changes through the cardiac
cycle. Both elongation strain and contraction strain are larger in the apex than
in the base.

4 Conclusions and Future Work

We describe a complete procedure of reconstructing 3D motion of the LV my-
ocardium with tagged MR images. The motion is recovered by deformable models
with high time efficiency, by integrating the motion trend of all vertices. In the
mean time, deformable models achieve spacial accuracy by incorporating local
deformations. The general shape of the generic model are maintained by FEM
during the systole and the diastole. Strain computations are performed on each
tetrahedron element of the LV to measure the deformation with respect to the
initial frame. In the future, for computation of the detailed strain field with an
element, a meshless approach may be able to be used.
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Abstract. A computer aided reconstruction and motion analysis method of mi-
tral annulus is presented in this paper. To begin with, the boundary points on 
mitral annulus are marked by doctors interactively. Since these points are not 
distributed uniformly and sequentially, secondly, it is necessary to re-arrange 
these points into a set of series points on a contour, the saddle-shaped mitral an-
nulus. Thirdly, in order to analyze 3D mitral annulus motion, the mitral annulus 
is modeled by 3D non-uniform rational B-spline (NURBS). Fourthly, the  
dynamic parameters of the mitral annulus throughout the cardiac cycle are com-
puted in a 3D Cartesian coordinate system. The experiments prove that the dy-
namic mitral annulus reconstruction and analysis program using computer aided 
method is provided a possible and convenient tool to diagnose and analyze the 
malfunction of mitral annulus. 

Keywords: mitral annulus, reconstruction, analysis, dynamic model,  
echocardiography. 

1   Introduction 

Three-dimensional echocardiography offers a powerful tool for directly visualizing 
the spatial relation of cardiac structures. Although three-dimensional images easily 
demonstrate the configuration and dynamics of the entire mitral annulus during a 
cardiac cycle, it is difficult to recognize the non-planarity of the ring by original 3-
dimensional imaging [1]. Therefore a 3D reconstruction system is required to extract 
and analyze mitral annulus from image data sets. 

Extracting boundary points of mitral annulus in echocardiography images is a nec-
essary first step to reconstruct mitral annulus. There are some extracting methods such 
as those based on snake model, geodesic active contour, the others based on prior 
knowledge [2, 3, 4]. Unfortunately, full-automated extracting the mitral annulus is a 
difficult task due to the poor spatial and contrast resolutions of 3D echo images [5]. In 
order to extract the mitral annulus reliably and correctly, interactive and computer 
aided method is adapted in our work. 



 Computer Aided Reconstruction and Motion Analysis of 3D Mitral Annulus 71 

Many researches presented the work on the dynamic behavior of mitral annulus. 
An early study performed by Ormiston et al. measured the cyclic changes in annular 
area and circumference throughout the cardiac cycle in eleven normal subjects [6]. 
Levine et al. addressed the three dimensional nature of mitral annulus structure and 
modeled as a hyperbolic, parabolic or saddle-shape [7]. In [8, 9], Powell et al recon-
structed mitral annulus from 2D echocardiographic images and analyze the mitral 
valve. These studies provided the framework for three-dimensional analysis of annu-
lar geometry in clinical pathologies and the basis for understanding how annular  
geometry relates to normal physiological function. In [10-12], Kamp and Valocik 
defined three parameters to describe the size and motion of mitral annulus throughout 
the cardiac cycle, i.e. the distance between the highest and lowest points (dis-

tance h lD − ), the distance between two high points (distance h hD − ) and the distance 

between two low points (distance l lD − ) of saddle-shaped mitral annulus.  

In this paper, a computer aided system which study the shape of the mitral annulus 
using 3D real time echocardiographic images is introduced. Three parameters sug-
gested by Kamp and Valocik are measured in each frame during the cardiac cycle to 
examine the motion of mitral annulus. 

2   Proposed Method 

2.1   Extracting Mitral Annulus 

In order to extract 3-dimensional curve of the mitral annulus, multiple long axis, 
cross-sectional views are shown sequentially and allow the doctor to mark the points 

interactively, denoted by iP , on the mitral annulus. On the cross-sectional views, the 

boundary points of mitral annulus are easily recognized and traced for each frame 
(See Figure 1). 

  

Fig. 1. Schematic diagram of extracted real time 3-dimensional reconstruction of the mitral 
annulus 

In order to describe 3D mitral annulus, we establish a 3D Cartesian coordinate sys-
tem, in which the XOY plane is superposed on level surface and Z axis is taken to 
direct for up. The points pointed by doctor are shown in this coordinate system in 
Figure 1(c). 
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In the process of extracting, the number of boundary points should be compro-
mised to an appropriate value. Excessive points may increase the procedure complex-
ity. On the contrary, few points could not describe shape of mitral annulus accurately. 
Therefore, 20 pointes on mitral annulus are marked for each frame in our work. 

Although the point iP on the annulus is obtained, these marked points are not  

distributed uniformly and sequentially to reconstruct close contour of mitral  
annulus. Therefore a sort step is needed to re-arrange these points as an ordered chain. 
Figure 2(a) illustrated the 20 ordered points on mitral annulus in the 3D Cartesian 
coordinate system. 

 

Fig. 2. Curve reconstruction using the Non-uniform rational B-spline algorithm 

2.2   Curve Reconstruction 

After the marked points are sorted as a sequential chain, a mathematical method for 
producing a closed three dimensional contour is needed to best represent 3D mitral 
annulus. As the non-uniform rational B-spline (NURBS) is flexible and smooth 
enough to depict a closed contour [13], we select it as our curve algorithm. Notice that 
each control point is very close to the neighboring points on the mitral annulus con-
tour depicted by NURBS, we do not distinguish the control points and the points on 
the mitral annulus contour. The NURBS is defined as  

,
0
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N
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=

=
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where ( ), , , ( 0,1,2, , )i i i ip x y z i N= … is the control point, each of which is asso-

ciated with a non-negative weight iw (i.e., ip  has weight iw >=0); N is number of 

control points, N=19 in Figure 2(a); ( )uC is the mitral annulus contour formed by 

NURBS, u is a parameter, and ,i kn  is basis functions of NURBS [13]. The basis func-

tions ,i kn  for NURBS contour are polynomials of degree ( 1)k − , where parameter 
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k can be chosen to be any integer value in the range from 2 up to the number of control 

points, n+1. The functions ,i kn are defined by the Cox recursion formulas [14]:  
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where each basis function is defined over k  subintervals of the total range of u . The 

selected set of subinterval endpoints iu  is referred to as a knot vector, and local con-

trol points for NURBS is achieved by defining the basis functions over subintervals of 
the total range of u . The parameter u  is calculated by the Riesenfeld method while k 
is equal to 5 [15]: 
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NURBS provides increased flexibility in controlling a curve shape. With unequally 
spaced intervals in the knot vector, we obtain different shape for the basis functions in 
different intervals, which can describe the deformation of the mitral annulus shapes.  

2.3   Dynamics Parameters of Mitral Annulus 

Kamp and Valocik [10, 11] investigated the geometric shape of the mitral annulus and 
the dynamic behavior of mitral annulus. They reported that the mitral annulus and 
leaflets are non-planar saddle-shaped structures which are similar to the so-called 
hyperbolic paraboloid (see Figure3(a)). There are two high points (peaks) lying ante-
rior and posterior at the aortic insertion and posterior left ventricular wall and two low 
points (troughs) closest to the apex located medially and laterally (see Figure 3(b)). 

In order to describe the non-planarity of the mitral annulus, some parameters can 
present motion of mitral annulus throughout the cardiac cycle, such as the distance 

between the highest and lowest points (distance h lD − ), the distance between two high 

points (distance h hD − ) and the distance between two low points (distance l lD − ) of the  
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Fig. 3. Hyperbolic Parabolic, Schematic Representation of the Non-planar, Saddle-shaped Mitral 
Annulus and Its Characteristic Parameters [10] 

saddle-shaped mitral annulus(see Figure 3(b)). If both the line passed through the two 
high points and the line passed through the two low points are vertical to the Z axis in 

3D Cartesian coordinate system, the distance h lD −  can be computed as  

| |h l h l h lD p p Z Z− = − = −  (4) 

where ( , , ), max( ),h h h h h ip x y z z z= ( , , ), min( );l l l l l ip x y z z z=  ( 0,1, 2,i =  

, )N… . 

2.4   Reference Plane 

As the Z axis is not always vertical to the two lines, the distance h lD −  can not be 

obtained by the difference of Z value of the high point and the low point (see Formula 
4). Therefore a new 3D Cartesian coordinate system has to be established in order to 
measure and analyze mitral annulus dynamics. Firstly, our solution is that a reference 
plane fit by least-squares to the reconstructed mitral annulus was derived. In the new 
3D Cartesian coordinate system, the Z axis is corresponding to the normal vector of 
the reference plane, the Y axis corresponding to the posterior and anterior walls, and 
the X-axis corresponding to the septal and lateral walls. Appendix A gives the details 
of how to compute the reference plane using reconstructed mitral annulus in new 3D 
Cartesian coordinate system. Once we obtained the plane equation, we can compute 
the distances by calculating the perpendicular distance from each point to the refer-
ence plane. 

2.5   Computation Parameters of Mitral Annulus 

In order to obtain dynamics parameter h lD − , firstly we compute the projection of the 

mitral annulus onto the reference plane. We draw beam which pass through those 
marked points on the mitral annulus and is vertical to the reference plane. The inter-
section points of the beam and the reference plane are projection of those points onto 

the reference plane, such as hq  is the projection of hp , and lq  is the projection of lp  

onto the reference plane. Fig. 4 below illustrates the geometry involved:  
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Fig. 4. Computation parameters of Mitral Annulus 

The point which located at the front side of the reference plane and had the longest 

distance to the plane is the highest point hp  on the mitral annulus, and the distance 

between hp and hq  is h pD − . At the same time, the lowest point which located at the 

back side of the reference plane and had the longest distance to the reference plane 

is lp , and its distance between lp and lq is p lD − . Then we can get h lD − with the 

following formula: 

h l h p p lD D D− − −= +  (5) 

Through finding the distance from all of points to the reference plane, we can ob-

tain the another high point 2hp and the other low point 2lp  above and below the ref-

erence plane besides the above two points hp and lp  respectively (see Figure4). 

Then the other two mitral annulus parameters can be obtained by the following  
formulas: 

2| |h h h hD p p− = −  (6) 

2| |l l l lD p p− = − . (7) 

3   Experiments and Results 

3.1   Study Population 

The study enrolled 15 normal healthy volunteers (Group N, 8 men, 7 women, mean 
age 1 year ± 5 months), and 12 patients with severe MR (Group S, 11 men, 1 women, 
mean age 1.5 year ± 3 months). All participants underwent real time three-
dimensional echocardiography and gave informed consent to the study, which was 
approved by the Committee for the Protection of Human Subjects in Research at 
Shanghai Children’s Medical Center. 

3.2   Data Acquisition 

The system consisted of a 2-MHz matrix array probe (Hewlett-Packard Co.) and an 
echocardiography imaging system (Hewlett-Packard SONOS 7500). These were 
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linked to a 3D reconstruction system with self-designed three-dimensional dynamics 
measure and analyses software and enable doctors to “en-face” visualize the mitral 
annulus’s movement throughout a cardiac cycle. 

The 3D echocardiography images were recorded at 10 to 18 frames per cardiac cycle. 
Then the digital images were stored into the memory, and formatted into a cubic data set 
(208*160*144). Extracted 3D shapes of mitral annulus were obtained for all study nor-
mal children and patients. Acquisition time was within 5 minutes in one case. The time 
needed to reconstruct and analyze extracted 3D mitral valves was 15 minutes. 

3.3   Dynamics of Mitral Annulus 

The distance of h lD − , h hD − and l lD −  of mitral annulus throughout the cardiac cycle 

are measured. From Fig. 5, the distance of the highest point and the lowest point of 
mitral annulus is little smaller in the group of severe MR than the normal subject. 
However, the distance between two high points and the distance between two low 
points of mitral annulus in patients group are much greater than that in healthy chil-
dren (See Fig 6). 

 

Fig. 5. The changes in the distance between the highest and lowest points on the mitral annulus 
during the cardiac cycle in 15 normal subjects (b) and 12 MR patients(c) 

 

Fig. 6. Dynamic Distance between two high points and the distance between two low points of 
the Mitral Annuls throughout the Cardiac Cycle 

4   Discussion 

A computer- aided method of reconstructing and analyzing for mitral annulus using real 
time three-dimensional echocardiography has been presented. Using our self-designed 
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software system, we successfully demonstrated the shape of mitral annulus and quanti-
fied its deformation directly from the 3D data set. The results of dynamic motion of mi-
tral annulus throughout the cardiac cycle are presented in Fig.7. By using extracted 3D 
data, we obtained similar configuration results of the mitral annulus, which have been 
previously reported [7,10,11].  

 

Fig. 7. Dynamics of the Mitral Annuls throughout the Cardiac Cycle 

The presented technique is less time consuming compared with the previously 
reported method. Furthermore, extracted 3D images visualize the mitral annulus as 
though removed from whole image. The non-planarity of the annulus is verified by 
direct visualization of the annulus in three dimensional Cartesian coordinate system 
from different angels of view (See Figure 8).  

 

Fig. 8. Visualization of Mitral Annulus from Different Angles of View 

Although the non-planarity shape observed in the group of severe MR was consis-
tent with what is observed in normal children, there are some differences in motion 
parameters between two groups. The distance of the highest point and the lowest 
point of mitral annulus is smaller in the group of severe MR than the normal subject. 
Compared with the normal children, The distance of two highest points and the dis-
tance of two lowest points of the annulus are significantly larger in the severe MR 
group Therefore mitral annulus is dilated and flattened in the group of severe MR. 3D 
echocardiography is a promising technique that can provide precise 3-D geometry, 
which is difficult to understand by conventional 2-D echocardiography. 
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As the software system used in the presented study requires identification of mitral 
annulus for the manual tracing, further investigations using 3D extracting algorithm in 
3D echocardiography image would be needed. he reference plane fit by least-squares 
algorithm provides a means for tracking annular non-planarity and computing motion 
parameters throughout a cardiac cycle. However better estimates of annular non-
planarity can be achieved by fitting a hyperbolic parabolic to the surface of the leaf-
lets which requires 3-D reconstruction of the leaflet surface which is proposed by 
Watanabe in [16]. An automated method for obtaining the outlines of the surface of 
the leaflets is currently under investigation. 

5   Conclusions 

This study demonstrates that extracted 3-dimensional data of mitral annulus by real 
time three-dimensional echocardiography providing a realistic visualization of the 3-
dimensional annulus configuration. This technique is feasible in the evaluation of 
non-planarity and distance change between the highest and lowest points ( h lD − ), the 
distance between two high points ( h hD − ) and the distance between two low points 
( l lD − ) of mitral annulus in normal and patients with MR. The results show that com-
puter aided reconstruction, measurement and analyze are feasible in the evaluation of 
configuration and dynamics of the mitral annulus. 
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Appendix: Compute Reference Plane  

Suppose the equation of the reference plane is: 

( , , ) 0f x y z z Ax By C= − − − = . (8) 

The normal vector equation is  
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This distance is either positive or negative, depending on which side of the plane 
the point is located, front side or back side of the reference plane. If the point is on the 

plane, then 0id = . The least squares solution minimizes the expression 
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From the equation (8), it can be get the A, B, and C are 
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where N  is the number of pointed points on the mitral annulus. 
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Abstract. This paper presents a volumetric cardiac analysis and move-
ment reconstruction algorithm from echocardiographic image sequences
and electrocardiography (ECG) records. The method consists of two-
dimensional (2-D) echocardiogram transformation, shape detection,
heart wall movement identification, volumetric analysis and 4-D model
construction. Although the semi-periodic behavior of the ECG and the
breath caused heart rate variance disturbs spatial and temporal recon-
struction, the presented algorithm is able to overcome these problems
in most cases for normal and ventricular beats. The obtained model
provides a tool to investigate volumetric variance of the heart and the
phenomenon of normal and abnormal heart beating that makes possible
to explore continuously the heart’s inner structure.

Keywords: echocardiography, sequence analysis, QRS clustering, volu-
metric analysis, 3-D active appearance model.

1 Introduction

The most important health problem affecting large groups of people is related
to the malfunction of the heart, usually manifested as heart attack, rhythm
disturbances and pathological degenerations. One of the main goals of health
study is to predict and avoid these kinds of tragic events, by identifying the
most endangered patients and applying a preventing therapy.

Echocardiography is the fastest, least expensive and least invasive heart imag-
ing method. Accordingly, it is one of the most commonly used techniques to
quantify the ventricular systolic function in patients. The examination is based
on visual analysis of myocardial wall motion and deformation by an experienced
and trained physiologist. This investigation is subjective, experience dependent
and the obtained results are only partially quantitative. The segmentation of the
measured image sequences focuses on finding the exact boundaries of particular
objects of interest, but it usually requires manual assistance.
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Besides their several advantages, ultrasound images have the following
drawbacks:

– They include not only the reflections from tissue transitions, but also several
interference patterns (speckle noise). Consequently, tissues can hardly be
distinguished by the intensity of their representing pixels.

– Image data highly depend on the position and angle of incidence of the
ultrasound beam.

– A wide scale of imaging artifacts are frequently present, so still-frame images
might contain only partial information.

In order to deal with these kinds of deficiencies, several automated segmen-
tation techniques have been developed and reported. Geiser et al. [12] proposed
arc filtering for boundary detection, while Brotherton et al. [6] gave a hierar-
chical fuzzy neural network solution. Dias and Leitão [9] introduced an iterative
multigrid dynamic programming technique based on Rayleigh distributed ran-
dom variables and a probabilistic model formulated within Bayesian framework.
Belohlavek et al. [2] proposed the automated segmentation using a modified self-
organizing map. Chalana et al. [7] traced the epi- and endocardial border using
active contour models. In spite of their significant merits, these methods still
neglect the following aspects:

– Sought boundaries are not always represented by the strongest edges.
– They use no a priori information concerning the allowable shapes and ranges

of the segmented object.
– Segmented boundaries should be consistent with the cardiac cycle.

In the last decade, advances have been made in the content-based retrieval of
medical images, such as extraction of boundaries of cardiac objects from echocar-
diography image sequences [10]. Montagnat et al. [20] used a two-simplex mesh-
based cylindrical deformable surface to produce time-continuous segmentation
of 3-D sequences. Angelini et al. [1] proposed a feature enhancement and noise
suppression using a wavelet-like decomposition of the spatial frequency domain.
A snake-based segmentation is carried out later on the denoised data.

Active appearance models (AAM), introduced by Cootes et al. [8], are promis-
ing image segmentation tools that may provide solutions to most pending prob-
lems of echocardiography, as they rely on both shape and appearance (intensity
and/or texture) information. Bosch et al. proposed a robust and time-continuous
delineation of 2-D endocardial contours along a full cardiac cycle, using an ex-
tended AAM, trained on phase-normalized four-chamber sequences.

To understand the physiology and patho-physiology of the heart, not only the
electrical activity and spatial distribution of its structures is important, but also
their movement during normal and abnormal cardiac cycles. The ECG signal
is measured simultaneously with echocardiography sequence recording, in order
to localize the investigated events. We developed an algorithm that reconstructs
the heart wall boundaries and motion in order to determine the spatial and
temporal cardiac activity.
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Several papers in the literature have already reported the usage of spatial
AAM [19,21]. The present work has the following contributions:

– Reported techniques classify ultrasound images only as belonging to systolic
or diastolic interval. Our approach distinguishes normal and extra beats, and
processes the corresponding images accordingly.

– ECG event classification makes possible the investigation of several patho-
logical cases (e.g. volumetric effect of a given extra beat). Comparisons were
made between normal and pathological cardiac cycles of the same patient.

2 Methods

Simultaneous echocardiography sequence recording and ECG signal measure-
ment were carried out at the County Medical Clinic of Târgu-Mureş, using a
2-D echocardiograph that produces 30 frames per second, and a 12-lead ECG
monitoring system that samples at 500 Hz frequency and 12-bit resolution. Each
image frame received a time stamp, which served for synchronization with ECG
events.

Two different series of measurements were recorded. The first series, which
served for AAM training, consisted of 35 patients (12 of whom having extra-
ventricular beats), 20 ultrasound sequences for each patient, of 10-15 seconds
length each sequence, with previously established transducer placements. Based
on these data, an a priori information database was created, which organized
the ultrasound images grouped by corresponding ECG events.

The second series of measurements, which involved 4 patients, consisted of
two stages. In the first stage, the same measurements were performed, as in the
first series, in order to provide patient-specific training data for the AAM. In the
second stage, several measurements were performed using different placements
and positions of the transducer. In this order, image sequences were recorded
at 17 parallel cross sections in horizontal and rotated (45 ◦ to the left and to
the right) positions (see Fig. 1(a), (b), (c)), with a 1 cm inter-slice distance. We
used 30 common axis planes that were placed at front, lateral and back side
of the torso, as presented in Fig. 1(d), (e). For each patient a total number of
30 × 17 × 3 = 1530, at least 2-3 second long image sequences were created.

The necessary minimal duration of the recorded image sequences was re-
stricted by the semi-periodic behavior of the ECG signal. The spatial movement
of the heart is constrained by the course of the depolarization-repolarization
cycle [23]. For example, normal and ectopic beats imply different spatial heart
movements. The studied ECG parameters, as presented in Fig. 2, were: shape of
QRS beat, QT and RR distances. These parameters characterize the nature of
a QRS complex, and were determined as presented in [22]. ECG event cluster-
ing was accomplished using Hermite functions and self-organizing maps [15,23].
Two main event clusters were created: normal and ventricular extra beats. This
latter group, because of the patient specific manifestation of ventricular extras,
had to be dealt with separately patient by patient. QRS beats not belonging to
any of these clusters were excluded from further processing, together with their
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Fig. 1. Various positions of the parallel cross sections and the orientation of the trans-
ducer: (a) horizontal plane(s), (b) left rotated plane(s), (c) right rotated plane(s).
Various positions of planes with common axis: (d) front view, (e) back view.

Fig. 2. Normal (N) QRS and extra ventricular QRS beat (V), with indicated RR and
QT distances. Dotted lines denoted by C (maximal contraction) represent the minimal
volume moment of heart during normal cardiac cycle.

Fig. 3. Schematic representation of the data recording and analyzing procedure. All
echocardiography and ECG data go through the same processing module. The AAM
is constructed from the measurements of series 1, and fine tuned afterward using the
patient specific data resulting from series 2 stage 1. Stage 2 data serve for the detailed
cardiac volumetric analysis. Reconstructed 3-D objects are finally aligned using an
iterative LMS-based algorithm.
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corresponding ultrasound sub-sequences. A further condition for normal QRS
complexes to be included was having RR distance between 700-800 ms and QT
distance between 350-400 ms.

The time-varying evolution of the cardiac volume is determined by the in-
terconnection of electrical and mechanical phenomena. In a whole cardiac cy-
cle there are two extremity values. The maximal volume can be coupled with
the starting moment of ventricular contraction. The depolarization wave nor-
mally starts from the sino-atrial node (SA) and propagates through the atrio-
ventricular node (AV) and ventricles. The moment of minimal volume shortly
precedes the termination of ventricular contraction, but is much more difficult
to identify, due to the dead time of a normal cardiac cell. This delay is caused
by the strange property of a regular cardiac cell, whose electric response is most
directly caused by the depolarization wave (fast Na+ channels), but the mechan-
ical contraction is controlled by the much slower Ca2+ channels. The calcium
channel opens at 10-20 ms after depolarization, and the maximal contraction
follows in about 80 ms [24]. Figure 2 indicates the moment of minimal volume
with a dotted line. The combination of the electrical and mechanical properties
of the heart and the usage of knowledge-base allowed us to create a performance
evaluation module that iteratively determines the most probable wall position,
as shown in Fig. 3.

Figure 3 presents an overview of the image processing and volumetric recon-
struction procedure. The first algorithmic step is noise elimination. Speckle noise
represents a major difficulty to most ultrasound imaging applications [9]. In our
case, the suppression of such phenomena was accomplished using the well-known
motion-adaptive spatial technique presented in [11].

Due to the measuring technique of traditional echocardiography, the obtained
images are distorted. In order to become suitable input for 3-D processing, they
need to go through a normalization transform. Every recorded ultrasound slice
is represented by a plane, whose spatial alignment depends on the position and
rotational angle of the transducer. The normalization process also takes into
consideration the distance of each image pixel from the transducer.

The training data of the AAM is constructed based on the spatial position
of each echocardiography slice recorded in the first measurement series, and on
the positions of the heart wall pieces that correspond to the contours manu-
ally recognized by an expert. By averaging these spatial distributions, a mean
base 4-D heart shape model is obtained, which will be the starting point of
the AAM [5,16]. Landmark points are determined using the technique proposed
by Mitchell et al. [19]. The sparse character of the obtained spatial description
model doesn’t allow the landmark points have 3-D texture information. That is
why we restricted the texture to 2-D.

Subjects have their own specific, time dependent inner structure, which cannot
be approximated properly from a population of few dozens of individuals. In
order to make further adjustments to the AAM, the base structure was adjusted
to the patient using the measurements made in the second series, first stage.
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The landmark points determined on the images recorded during the second
stage of the second measurement series allow us to create a 3-D distribution
point model, which was established according to [4,19]. Having the distribution
points established, the AAM will be enabled to adjust itself to a diversity of
biological factors like the phase of ECG and breathing. A detailed description
of the manifestation of these phenomena and the model adaptation is given in
[21]. Our algorithm acts similarly, but it treats the cardiac cycle differently: not
only systolic and diastolic phases are distinguished, but also a QRS complex
clustering is performed to give different treatment to normal and ventricular
cardiac cycles.

Spatial texture maps are determined via averaging [21]. The visual aspect of
heart and its environment, because of their mutual motion, is changing in time.
AAM models only include information on the texture situated within the model.

The time dependent representation of the ultrasound slices obtained from the
large stack of sequences enabled us to accurately determine the 4-D structure of
the heart [19]. The iterative algorithm of the AAM demands the comparison of
measured and expected shapes. The AAM was adjusted using a quadratic cost
function, until the desired accuracy was obtained [18].

3 Results

Figure 4(a) presents two series of ultrasound slices indicating the contour of the
left ventricle of the 2nd patient, detected during a ventricular contraction. The
two rows of slices show two different angle views, having 60 ◦ angle difference.
The four slices in each row represent subsequent images of the sequence, showing
the approximately 100 ms duration of the ventricular contraction. Figure 4(b)
shows two different reconstructed 3-D shapes of the left ventricle, which were
obtained using 1527 distribution points.

The evolution in time of the heart volume during a normal and an ectopic
(ventricular extra) RR period is presented by Fig. 5(a) and (b). As the depo-
larization wave in case of an ectopic beat starts from the ventricular area, the
minimal volume is obtained earlier (the delay caused by the AV-node is skipped),
and at a higher value compared to normal beats (the contraction of the heart
is not optimally synchronized). The first moment of LV volumetric calculation
(t = 0 ms) was considered at the moment of maximal positive deflection of the
ECG signal.

Figure 6 presents a sensibility analysis of the QRS recognition algorithm.
Figure 6(a) shows how the variation of the RR distances (shorter or longer
than average) influences the recognition rate: the algorithm is more sensible for
shorter RR periods. The effect of the variation of QT distances around the aver-
age value is shown in Fig. 6(b): the same absolute difference makes significantly
more damage if it occurs in positive direction. Figure 6(c) reflects the relation
between the shape of QRS complexes and recognition performance. The corre-
lation coefficient of the QRS beat with the cluster averaged shape is directly
proportional with the performance of the algorithm.
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Fig. 4. Results of shape reconstruction: (a) time varying 2-D contour of the left ven-
tricle (2nd patient), (b) reconstructed 3-D structure of the left ventricle

Fig. 5. Variation of heart volume during a normal cardiac cycle (a), and during a
ventricular extra cycle (b)

Fig. 6. Sensibility of QRS complex recognition algorithm to: (a) variations of RR
distances, (b) variations of QT distances (both with respect to their average), (c) QRS
shape correlation with average template

Table 1 presents the patient-dependent recognition rates for normal beats
(average duration 707 ms) and ventricular beats (average duration 671 ms). The
measurements were effectuated on four patients, and three of them produced
ventricular extra-systolic beats.

The measurement circumstances were selected optimal (average QRS wave
shape, average RR and QT distances) for performance values presented in
Table 1. As this table reflects, the fourth patient did not produce any ventricular
beats. We can observe a pronounced performance advantage of the algorithm for
normal beats due its higher incidence.
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Table 1. Patient-dependent recognition rate of various QRS beats in case of optimal
circumstances (average QRS shape, average RR and QT distances)

Patient Normal QRS beat Ventricular extra-systole

1st patient 99.2 % 97.6 %
2nd patient 99.4 % 92.4 %
3rd patient 98.4 % 95.2 %
4th patient 98.6 % No available data

4 Discussion

The recognition of the relation between echocardiography images and simul-
taneously recorded ECG signal is a key element in wall movement detection.
Various events, such as aspiration and expiration influence the measured heart
rate. During a whole cardiac cycle, the shape and volume of the left ventricle
changes considerably.

It is difficult to determine the performance of the reconstruction method for
the sporadically occurred ventricular extra-systolic beats. Even for patients that
produce at least five extra beats with similar shapes in each minute, that are
included in the same cluster, the reconstruction performance remains well be-
low the normal QRS cluster’s accuracy, due to the sparse distribution of the
processable slices.

The visual aspect of the heart and its environment varies in time, due to their
mutual motion. AAM models include information concerning inner texture only.
It would be beneficial to build another AAM for the modeling of the environment,
but the invisibility of the pericardium and lung tissues represents an enormous
obstacle.

As we know, the left ventricular (LV) hypertrophy has been identified as
a strong and independent predictor of various adverse cardiac events even in
patients without associated cardiovascular disease [3]. This important clinical
parameter has been subject to extensive scientific investigation [13]. The conven-
tional 2-D echocardiography is the most commonly used imaging modality that
supports LV wall mass determination. However, this method is based on geomet-
ric assumptions that do not include some possible abnormal ventricular shapes
and variability in the distribution of LV mass, that hardens the development
of an accurate, easily reproducible method for the quantification of ventricular
mass.

Evaluation of intra-cardiac anatomy from two dimensional echocardiography
image sequences requires a mental conceptualization process that is hardened
by cardiac dynamics [17]. The dynamic modeling and visualization systems can
help with the spatial interpretation of 3-D data of the heart, and make it possible
to build the 3-D model of the heart [14].

This study is an attempt to evaluate, whether a virtual modeling and visualiz-
ing method is feasible for echocardiography, and if ultrasound images in a virtual
reality can advance to a clinically useful tool in the technological process of the
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future. Unfortunately the low number of patients and the long processing time
reflect that the applicability and benefits of the presented volumetric analyzer
and heart modeling method in clinical practice is still limited.

The spatial texture around voxels belonging to a dynamic organ suffers a de-
formation during contraction. Under such circumstances a compensation mech-
anism would be necessary, which is situated beyond the scope of the present
paper.

5 Conclusions

The investigation of simultaneously recorded ECG and echocardiography images
enables us to study the relations between the electrical and mechanical phenom-
ena concerning the heart. The method presented in this paper performs correctly
in case of normal and ventricular beats, that is, we can monitor the volumetric
variance of the heart and its main components. This kind of approach of the
problem may result in deeper understanding of several pathological cases like:

– effects of ectopic beats on the heart’s pumping activity;
– risk of development of arrhythmias and fibrillation in case of pathological

LV wall thickening;
– mechanical effects of Wolff - Parkinson - White syndrome.
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Abstract. Magnetic resonance diffusion tensor imaging (DTI) has emerged as a 
convenient and reliable alternative to conventional histology for characterizing 
the fiber structure of the myocardium.  The acquisition of full data for different 
diffusion directions for a large number of slices often takes a long time and 
results in trade-offs in the number of slices and signal to noise ratios.  We 
propose a constrained reconstruction technique based on a regularization 
framework to jointly reconstruct sparse sets of cardiac DTI data. Constraints on 
spatial variation and directional variation were used in the reconstruction. The 
method was tested on sparse data undersampled in both rectilinear and 
(simulated) radial fashions and compared to reconstructions from full data.  The 
method provided reasonable reconstructions with half of the data for rectilinear 
undersampling and similar quality images with a quarter of the data if radial 
undersampling was used. 

1   Introduction 

The fiber structure of the myocardium plays a key role in determining the anisotropic 
mechanical and electrophysiological properties of the tissue.  DTI has emerged as a 
convenient and reliable alternative to conventional histology for characterizing the 
fiber structure of the myocardium [1].  A limitation of current cardiac DTI is the long 
acquisition time, which often results in tradeoffs in the number of slices and signal to 
noise ratios. Methods [2, 3] have been proposed to reduce the acquisition time by 
acquiring sparse data in k-space for each orientation and reconstructing each image 
direction separately.  The methods achieved accelerations up to a factor of two (R=2, 
using half of the data), but often require acquiring additional reference data.  Also 
these methods do not exploit the correlations in the dimension of diffusion direction.  
Typically 6-12 or more diffusion directions are measured separately. We recently 
proposed a spatio-temporal constrained reconstruction framework to reconstruct 
sparse dynamic contrast enhanced MRI data.  The method is based on regularizing the 
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data in both space and time dimensions and is applied to reconstructing dynamic 
cardiac perfusion images [4] from sparse data.  A similar framework is proposed here 
to apply instead to space and diffusion dimensions to jointly reconstruct sparse 
cardiac DTI data for all directions at the same time with appropriate constraints. 

2   Methods 

2.1   Constrained Reconstruction 

The most common technique to reconstruct cardiac MR DTI data is by applying an 
inverse 2D Fourier transform on fully acquired k-space data for each image. A 
separate image is acquired with gradients at different directions to give diffusion 
weighting at different orientations. At least six images, and a separate reference image 
without diffusion weighting, are obtained to determine the diffusion tensor and fiber 
orientations. When full data for each image direction are not acquired in k-space, 
reconstruction using the inverse Fourier transform leads to aliasing in the images.  We 
have previously shown that the aliasing due to undersampling the data can be resolved 
using a regularization framework with different constraints [4, 5, 6].  For cardiac DTI, 
we chose two constraints, one in the dimension of diffusion weighting direction and 
the other, a spatial constraint.  The constraint chosen in the dimension of diffusion 
direction is the total variation constraint.  This constraint was chosen in order to 
preserve the sharp gradients in the diffusion-weighting direction dimension for each 
pixel in the image while resolving the artifacts due to undersampling.  This constraint 
is mathematically represented in equation (1) below. 

2 2

1 1

N

d i
i

T m β
=

= ∇ +∑  (1) 

In the above equation, N is the total number of pixels in each image direction, 

d∇ represents the rate of change in the diffusion weighting direction dimension, im  is 

the vector of complex pixel values in the diffusion weighting direction dimension of 
pixel i in the estimated image space data. β is a small positive constant and 

1
represents the L1 norm. 

The spatial constraint we chose is also a total variation constraint in order to 
preserve the spatial image gradients.  The spatial constraint is shown below in 
equation (2). 
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In the above equation, M represents total number of image directions in a given 

sequence for a single slice, x∇ is the spatial gradient of the image in the x-direction, 

y∇ is the spatial gradient in the y-direction and jm represents the complex image data 

for direction  j in the given sequence. 
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Reconstruction from sparse data is performed using the constraints in equations (2) 
and (3) and preserving fidelity to the acquired sparse data.  Reconstruction is 
performed by minimizing the cost function C given in equation (3) below. 
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In the above equation (3), W represents the binary sparsifying pattern used to 

obtain sparse k-space data, d which is from the full k-space data and 
2

represents 

the L2 norm.  1α and 2α are the regularization parameters which are the weighting 

factors for the constraints.  An iterative gradient descent technique with finite forward 
differences was used to minimize the above function.  The complex image data was 
updated iteratively according to equation (4) shown below. 

1 '( );  0,1, 2...n n nm m C m nλ+ = − =  (4) 

In the above equation, n represents the iteration number, λ  is the step size of the 
gradient descent method and '( )C m  is the Euler-Lagrange derivative of the cost 

function, C in equation (3) with respect to m , which is given in equation (5) below. 
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 (5) 

2.2   Cardiac DTI Data 

To test the above method, retrospective DTI experiments were simulated from 
datasets acquired in separate studies, including (a) diffusion-weighted spin-echo 
images (128 x 64 matrix size, 3.0 cm FOV, 2.0 mm thickness) encoded in 6 directions 
and 8 gradient levels per direction (48 images total) of excised dog heart right 
ventricular specimens at 7.1 T [2], and (b) diffusion-weighted images (256 x 256 
matrix size, 10.0 cm FOV, 3.0 mm thickness) encoded in 12 directions of the left 
ventricle equatorial slice of intact sheep heart acquired at 2.0 T [3]. Two different 
undersampling schemes were used to generate sparse data from full k-space data.  
Fully acquired k-space data for each image direction was sparsified by removing 
phase encode lines in a variable density fashion in which 8 lines around the center of 
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k-space for each image direction were kept and the phase encodes away from the 
center were removed in a random fashion.  Fig. 1a shows such an undersampling 
binary mask for a single image direction in the sequence.  This sampling scheme was 
chosen as random undersampling can lead to less severe artifacts as compared to 
interleaved undersampling.  The acceleration factor was defined as the ratio of the 
number of phase encodes acquired for full data to the number of phase encodes kept 
for the reconstruction. The second undersampling scheme was radial undersampling 
in which fully acquired rectilinear k-space data was first sampled on 256 radial lines 
to simulate radial data.  Sparsification was done by removing the radial lines for each 
image direction.  The set of radial spokes for each image direction were rotated by a 
random angle for different image directions in the sequence.  Fig. 1b shows an 
example of a binary radial mask used to undersample full data in radial fashion.  
Acceleration factor was defined as the ratio of the number of radial lines in the full 
data (256) to the number of lines kept for reconstruction. 

                           
                                     (a)                                                                (b) 

Fig. 1. (a) Image showing the binary mask for a single image direction to undersample full k-
space data in variable density fashion by a factor of two.   Six lines around the center of k-space 
are sampled and the lines outside are sampled in a random fashion.  The white portion 
represents the region of k-space sampled.  The phase encoding direction is horizontal. (b) 
Image showing the binary mask for a single image direction to undersample full data in radial 
fashion.  White portion is the region of k-space sampled. 

3   Results 

3.1   Rectilinear Undersampling – Canine Heart Specimen 

The results of the above approach for variable density undersampling by a factor of 
R=2 are shown in Fig. 2.  Fig. 2a shows an image direction for a direction 
reconstructed from full k-space data using 2D inverse Fourier transform (IFT) with a 
line passing through it.  Fig. 2b shows the corresponding image direction from sparse 
data using the constrained reconstruction method.  Fig. 2c compares the 
corresponding signal intensity profiles for the images in Fig. 2a and Fig. 2b for the 
line shown in Fig. 2a. 

Three sets of diffusion tensors were computed using (i) reconstructions from full 
data, (ii) reconstructions from sparse data using constrained approach and (iii) using  
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Fig. 2. (a) Image from the canine ex vivo heart specimen showing one diffusion encoded 
direction reconstructed from full data using IFT.  A line passing through the image is also 
shown.  (b) Corresponding image reconstructed from sparse data R=2 using the constrained 
reconstruction approach.  (c) Comparison of the intensity profiles for the line shown in Fig. 2a 
for the images in Fig. 2a and Fig. 2b. 

only half the number of image directions in the full dataset, for different datasets for 
different slices. The difference angles between the primary diffusion tensor eigenvectors 
(fiber orientations) were then computed.  Fig. 3 shows the results on a single dataset, 
which shows the potential of the constrained approach.  Fig. 3a shows the difference 
angle map between full data reconstructions and sparse data reconstructions.  Fig. 3b 
shows the difference angle map between full data and using only half data.  The mean 
deviation angle for the full-sparse is 8.84 0.03± degrees while the value for full-half is 
10.44 0.03±  degrees. This implies that the sparse data reconstruction using the 
constrained approach is better at capturing DTI fiber orientation. 

 
 

(a) 
 

 

(b) 

Fig. 3. (a) Difference angle map between full data reconstructions using IFT and sparse data 
R=2 using the constrained reconstruction method.  (b) Difference angle map between full data 
reconstructions using IFT and half the number of image directions reconstructed using IFT. 
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3.2   Radial Undersampling – Canine Heart Specimen 

Results of the constrained reconstruction approach on radially undersampled data are 
shown in Fig. 4.  Fig. 4a shows an image direction for a direction reconstructed from 
full k-space data with a line passing through it.  Fig. 4b shows the corresponding 
image direction from sparse data, R=4 using the constrained reconstruction method.  
Fig. 4c compares the corresponding signal intensity profiles for the images in Fig. 4a 
and Fig. 4b for the line shown in Fig. 4a. 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

Fig. 4. (a) Image showing a diffusion weighted direction reconstructed from full k-space data.  
A line passing through the image is also shown.  (b) Corresponding image reconstructed from 
sparse data R=4 using the constrained reconstruction approach.  (c) Comparison of the intensity 
profiles for the line shown in Fig. 4a for the images in Fig. 4a and Fig. 4b. 

3.3   Rectilinear Undersampling – Sheep Heart 

The results of the constrained approach for R=2 data undersampled in variable density 
fashion for the sheep heart are presented in Fig. 5.  Fig. 5a shows a single direction 
image reconstructed from full k-space data using IFT. Fig. 5b shows the 
corresponding image reconstructed from sparse data using the current method.  The 
absolute difference image between Fig. 5a and Fig. 5b is shown in Fig. 5c.  The peak 
intensity value in the Fig. 5c was about 15% of the peak intensity value in Fig. 5a. 

 

 
(a) 

 
(b) 

 

(c) 

Fig. 5. (a) Image showing a diffusion weighted direction reconstructed from full k-space data for 
the sheep heart.  (b) Corresponding image reconstructed from sparse data R=2 using the 
constrained reconstruction approach.  (c) Absolute difference image between Fig. 5a and Fig. 5b. 
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4   Discussion 

The parameters in the reconstruction method were empirically chosen based on the 
results for different datasets.  The method was robust to small variation in the 
regularization parameters.  We also note that formal methods, like the L-surface [7] 
technique can be used to determine the regularization parameters. 

We found that the spatial and temporal constraints were almost equally helpful in 
reducing the artifacts from undersampling.  Fig. 6 compares the effects of spatial and 
temporal constraints.  Fig. 6a shows the absolute difference image between full data 
reconstruction using IFT and image reconstructed using IFT from R=2 data for a 
single image direction.  Fig. 6b shows the absolute difference image between full data 
reconstruction using IFT and image reconstructed using only the temporal constraint, 

that is 1α  set to the empirical value and 2α  is set to zero in equation (3).  Fig. 6c 

shows the absolute difference image between the image reconstructed from full data 
using IFT and the image reconstructed from R=2 data using spatial constraint only  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. (a) Image showing the absolute difference between full data reconstruction using IFT 
and R=2 data using IFT for a single image direction.  (b) Image showing the absolute 
difference between full data reconstruction using IFT and R=2 data using only the temporal 
constraint.  (c) Corresponding absolute difference image between full data reconstruction using 
IFT and R=2 data using spatial constraint only.  (d) Corresponding absolute difference image 
between full data reconstruction using IFT and R=2 data using both spatial and temporal 
constraints. 
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that is 1α  is set to zero and 2α is set to the empirical value in equation (3).  Fig 6d 

shows the corresponding absolute difference between image reconstructed using full 
data using IFT and the image reconstructed using both spatial and temporal 
constraints.  We can see that both the spatial and temporal constraints independently 
help reduce the artifacts but when combined together perform better in reducing the 
artifacts due to undersampling. 

It is expected that the joint constrained reconstruction approach will perform better 
when more diffusion-weighted directions are measured. This is because neighboring 
directions are not independent, but have correlations. These correlations are implicitly 
used in the reconstruction to give “lossless” reconstructions from less data. Early 
results show the 12 direction sheep heart dataset performed better qualitatively than 
the 6 direction canine heart specimen dataset. Further work is needed to quantify 
these differences.  

A limitation of the current study is that the results are from post-acquisition 
downsampling. Actually changing the DTI acquisition to acquire fewer phase encodes 
would be advantageous in terms of image artifacts, but could lead to either better or 
worse performance of the reconstruction method.   

It was found that radial undersampling provided higher accelerations using the 
reconstruction method as compared to rectilinear undersampling.  This could be due 
to the fact that radial undersampling leads to less severe artifacts as compared to 
rectilinear undersampling.  Note that another limitation of the study is that the radial 
k-space data was generated from rectilinear k-space measurements, so do not reflect 
the actual measurements that would be made with a radial pulse sequence. 

5   Conclusions 

A constrained approach to reconstruct sparse cardiac DTI was proposed. The method 
has the potential to improve cardiac diffusion tensor imaging by acquiring less data in 
each diffusion weighted direction while reconstructing the entire set of diffusion-
weighted images from multiple directions simultaneously. The method was tested on 
k-space data undersampled in both rectilinear and radial patterns.  The results showed 
that the diffusion-weighted images could be reconstructed with little loss in the image 
quality. 
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Abstract. Our aim is to develop a framework to validate 3-D computer models 
of cardiac electrophysiology using measurements of action potential obtained 
via optical imaging (based on voltage-sensitive fluorescence), and heart 
anatomy and fiber directions which are obtained from magnetic resonance 
imaging (MRI). In this paper we present preliminary results of this novel 
framework using a healthy porcine heart ex vivo model and the Aliev & 
Panfilov mathematical model. This experimental setup will facilitate the testing, 
validation and adjustment of computational models prior to their integration 
into clinical applications.  

Keywords: computer modelling, electrophysiology, optical imaging, MRI. 

1   Introduction 

Computer modelling is a powerful tool used in electrophysiology to predict the 
electrical activity in normal and pathologic cases. In particular, it could help us 
understand and predict the arrhythmic events associated with myocardial infarction, a 
major cause of deaths [1]. Detailed ionic models, as well as macroscopic, 
phenomenological models have been proposed in computational electrophysiology to 
solve for the action potential (AP) propagation and its duration [2-5]. The 
mathematical approach is usually chosen by the investigators based on the available 
input and desired output parameters, as well as computational resources.  

It is, however, very challenging to non-invasively obtain quantitative validation of 
these models from data close to in vivo geometry and physiology. To calculate the 
duration of the action potential, one needs the precise depolarization and 
repolarization times. Currently, monophasic action potentials (MAP) can be recorded 
in vivo via a catheter-electrode invasively inserted into the heart; however, this 
electrode records only one measurement (from the location where is positioned) [6]. 
To increase the number of simultaneous recordings, one can use an electrode-sock 
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(comprising 256 or more electrodes), but the sock records the extracellular potentials 
[7]. An alternative is given by the optical imaging technique, which has been shown 
to provide fast and accurate measurements of AP in explanted hearts prepared under 
physiological conditions close to those in vivo [8, 9]. The fluorescence dye is sensitive 
to the changes in transmembrane potential, therefore, the changes in the signal 
intensity can be recorded optically at submillimetric spatial resolution and high 
temporal resolution. To avoid erroneous estimations of the AP propagation and 
conduction velocity, a few methods have been proposed to reconstruct the 3D heart 
surface from 2D optical images [9-11]. 

Our aim is to build a validation framework for 3-D mathematical models of cardiac 
electrophysiology using measurements of action potential obtained from optical 
fluorescence images, as well as the anatomy and fiber directions obtained via MR 
imaging. The first task is to compare and adjust the predictions of the mathematical 
model with direct measurements of action potential in healthy hearts. A diagram of 
the validation framework is illustrated in Figure 1 below. 

 
 

 

Fig. 1. Framework to construct the computer model from optical and MR images of the heart 

In this paper we present preliminary results of this framework using explanted 
porcine healthy hearts and the Aliev & Panfilov monodomain model. The two-
variable model developed by Aliev & Panfilov (based on reaction-diffusion 
equations) solves for the action potential without computing ionic currents [4]. 

2   Methodology 

In this section we describe in detail the steps performed to build the validation 
framework proposed above. For simplicity, we describe these steps in the order they 
were accomplished. We first performed the optical experiment, and then used MR 
imaging to construct the computer model (i.e. the anatomy and fiber directions) of the 
same heart. The computational mesh was constructed from the anatomy scans and the 
simulations were performed with parameters that reproduced the experimental 
conditions (e.g. the position of pacing electrode, the duration of stimulus, etc). The 
initial input parameters of the model can be adjusted based on the measurements of 
action potential. 
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2.1   Optical Experiment 

The animals were anesthetized, the chests opened and the hearts exposed (in 
accordance to the animal research protocol guidelines approved at Sunnybrook Health 
Centre, Toronto, Canada). The hearts were then immediately excised after euthanasia. 
The blood was flushed out and the aorta rapidly cannulated and attached to a 
Langendorff perfusion system. Throughout the experiments, the hearts were 
constantly perfused with oxygenated Tyrodes’ solution (95%O2 & 5%CO2), 
maintained at a pH=7.0±0.3 and at a temperature of 37.0±0.5ºC. The hearts were 
paced at different constant frequencies between 1-2Hz via a bipolar stimulating 
Ag/AglCl2 electrode coated with gold at the tip to avoid polarization effects 
(GrassTelefactor, USA). The duration of the square stimulus was set to 10ms. 

A 20ml bolus of fluorescence dye solution (0.2ml di4-ANEPPS, Biotium Inc) was 
injected into the heart via the perfusion line. To avoid motion artifacts, an electro-
mechanical uncoupler (2,3-butanediome monoxime, Sigma Aldricht) was also 
injected in the perfusate solution, resulting in suppression of the heart motion. The 
dye was excited with green light (530±20nm) via 150W halogen lamps (MHF 
G150LR, Moritek Corp, Japan). To avoid photo-bleaching, the lamps were controlled 
by shutters (labeled ‘S’ in Figure 2 below). The emitted signals from the hearts were 
filtered through a high-pass filter (> 610nm) and captured by a high-speed dual-CCD 
system (MICAM02, BrainVision Inc. Japan).  
 

 

Fig. 2. Schematic of the optical experiment using a dual-camera system to record the action 
potential from the heart perfused ex vivo via a Langendorff system 

The relative changes in the intensity of the fluorescence follow the changes in 
transmembrane potential. The recorded AP waves were denoised with a spatial-cubic 
filter and further analyzed with BV-Ana software (BrainVision, Japan).  

The images recorded by the dual optical system were used to reconstruct the 3D 
surface of the heart. The details of the stereo reconstruction and calibration methods 
can be found elsewhere [11].  

In the current work, 5-7 opaque markers were glued onto the epicardium to provide 
a way to register the optical images with the surface of the model from MR images. 
We estimate the rigid transformation between the markers’ optical and MR 3D 
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coordinates by solving the least-squares difference using quaternions via a function 
implemented in the Visualization Toolkit (VTK, Kitware Inc.) libraries [12]. One 
marker was placed at the exact location of the stimulating electrode and this location 
was specified in the simulations. 

2.2   Magnetic Resonance Imaging 

At the completion of the optical experiment, the hearts were imaged using a 1.5Tesla 
Signa GE MR scanner for markers locations, anatomy, and fiber directions. For the 
markers locations we used a 3D fast spin echo (FSE) sequence using the following 
MR parameters: TE=60ms, TR=1000ms, slice thickness = 1.5 mm, a FOV and matrix 
yielding an in-plane interpolated resolution of 0.5x0.5mm. The diffusion-weighted 
imaging sequence was developed at the Laboratory of Cardiac Energetics 
(NIH/NHLBI, USA) [13] and implemented on our research scanner. We used the 
following MR parameters: TE=26ms, TR=800ms, NEX=1, b-value = 700, 7 
directions for diffusion gradients, with the same FOV/matrix as for the 3D FSE series. 
The heart anatomy was extracted from the un-weighted images (i.e. b=0) and used to 
generate the volumetric mesh for the mathematical model. 

2.3   Computer Model 

We use the model of the heart described in [14] to perform our simulations. We 
briefly detail the Aliev and Panfilov model. In the system equations given in (1-2) we 
solve for V, the action potential, and r, the recovery variable contribution:  
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The term –kV(V-a)(V-1) controls the fast processes (initiation and upstroke of 
action potential) via the threshold parameter a, while r, determines the dynamics of 
the repolarization phase. The term Istim represents the extra-stimuli (e.g. the pacing 
stimulus in the experiment). Most of the parameters (i.e. ε=0.01 a=0.1, k=8, μ1=0.01 
and μ2=0.3) were set as in [2] to reproduce the shape, duration (i.e. 350ms) and 
restitution of AP obtained from experiments in canine cardiac tissue (the only 
available data in the literature, given in [15]). The model accounts for the heart 
anisotropy via the diffusion tensor, D, which depends on tissue diffusivity d (set to 1 
for a normal/healthy conduction). The value in anisotropy ratio is set to 0.25 for an 
electrical wave propagating twice as fast along the fiber than in the transverse 
direction. The variables in the Aliev and Panfilov model are dimensionless, therefore 
they must be re-scaled to be related to physical values. For example, the normalized 
AP in the model varies between 0 and 1, which corresponds to real values of 
transmembrane potential between -90 and +20mV. 

The heart surface mesh is created from the anatomy images using classical 
segmentation algorithms (thresholding, mathematical morphology, marching cubes) 
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and then the volumetric tetrahedral mesh is generated with the GHS3D package 
(INRIA, France). 

We solve for the transmembrane potential using the Finite Element Method, with 
an explicit Euler time integration scheme. The code was written in C++ and uses 
OpenGL libraries to display the results. For the simulations presented in this study, 
we used a computational time step of 1x10-4s. The simulation time for one heart cycle 
(of 0.85s) on a mesh of approximately 41000 elements is about 10min on an Intel ® 
Pentium  4, 3.2GHz CPU, with 1Gb of RAM. 

3   Results  

The following section presents the results obtained in each step detailed in the 
methodology described above. 

3.1   Optical Recordings of Action Potential  

Figure 3.a shows a 2D image of the propagating AP acquired by one camera (with a 
0.7mm spatial resolution and 3.7ms temporal resolution) at an instance in time marked 
by the dotted lines in the AP waveforms (obtained at a pacing frequency of 1.2 Hz at 
different pixel locations). Figure 3.b illustrates examples of AP waves recorded at other 
frequencies (i.e. 1.4, 1.6, 1.8 and 2Hz). The average duration of APD50 (the action 
potential measured at 50% repolarization) can be calculated for each frequency. 

  

                               (a)                      (b) 

Fig. 3. (a) The 2D optical image at one instance in time and the AP waves recorded at a pacing 
frequency of 1.2Hz, where the red color corresponds to the depolarized phase of AP, while the 
blue corresponds to the complete repolarized phase; (b) the normalized AP waves at other 
pacing frequencies 

3.2   Three-Dimensional Stereo Reconstruction of Epicardial Surface 

Results from the 3D stereo reconstruction are presented in Figure 4. Figure 4.a  
shows the surface reconstructed with the texture mapped and the markers visible in 
Figure 4.b. For the optical imaging configuration used to generate the results shown in 
this paper, the 3D reconstruction procedure was able to measure the depth of an image 
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point to within 2mm, and it’s fronto-parallel position within 0.5mm. The action 
potential propagation, at one instance in time, was projected onto the 3D 
reconstructed surface and shown in Figure 4.c.  

  

 
 (a)       (b)       (c)          (d) 

 
Fig. 4. Results from the 3D stereo reconstruction: surface rendering (a), texture mapping (b), 
propagation of normalized AP at one instance in time, for example the blue color indicates that 
the heart was completely repolarized (c) and isochronal map mapped onto the 3D surface (d) 

The activation times can also be represented by isochrones (lines connecting pixels 
of equal activation time). Isochronal maps can be produced over one heart beat. An 
example is presented in Figure 4.d, where the isochrones were calculated with the 
BV-Ana software from the maximum and the minimum values of the transmembrane 
potential 50%(Vmax-Vmin), plotted with a 20ms interval, and mapped onto the 3D 
reconstructed surface. The 3D isochronal map can be used for comparisons with the 
output of the computer model. For this, the 3D optical surface and the 3D MR 
surfaces have to be registered via the markers (see 3.3). 

3.3   Registration of the 3D Optical Surface with 3D MR Surface  

The stimulating electrode location (encircled) and the markers locations in the 2D 
optical images are shown in Figure 5.a and 5.b, respectively. Figure 5.c shows the 
markers visible in the MR volume-rendered image.  

From the rigid transformation, the 3D positions (i.e. coordinates) of the markers 
were estimated by the optical stereo reconstruction to be within 1.2mm of their 
positions indicated in the volumetric MR scan.  

 

                                      (a)                            (b)                         (c) 
 

Fig. 5. The electrode position (a). The markers locations in fluorescence (b) and MR (c) 
images, respectively. 
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3.4   Fiber Directions 

Figure 6 shows the fiber directions (in one of the hearts) obtained from diffusion-
weighted MR images. The fiber directions can be visualized using MedINRIA1 
software (fig. 6.a.), which encodes the RGB colors for the three orthogonal directions. 
In the computational mesh, the fiber directions were specified at the baricenter of 
each tetrahedral element of the mesh (fig. 6.b). 

 
 

 
 
                  (a)                                 (b)  

Fig. 6. (a) Cross section and lateral view of one heart, with fibers reconstructed; (b) the fibers 
assigned in the computational mesh 

3.5   Computer Simulation Results 

Figure 7 displays simulation results produced with the threshold parameter a in the 
model initialized at a=0.1. The electrode location is depicted by the bright red dot in 
Figure7.a. Propagation of depolarization/repolarization wave on the heart at one 
instance in time is shown Figures 7.b and 7.c. An example of an isochronal map is 
given in Figure 7.d.  

Figure 8.a shows an example of the changes in transmembrane potential 
(normalized values) predicted before the adjustment of Aliev-Panfilov model. These 
initial simulations produced an APD50 of  350ms at 1.2Hz.  The  value  of   threshold 
parameter a in the model was adjusted from a=0.1 to a=0.12, via a trial and error 
procedure, until the simulations produced an APD50=290ms at 1.2Hz (Figure 8.b) as 
measured in experiments.  

 
 
            (a)            (b)  (c)      (d) 

Fig. 7.  Simulations results of the mathematical model obtained with the canine data from [4] 

                                                           
1 http://www-sop.inria.fr/asclepios/software/MedINRIA 
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                         (a)                                                (b)     

 

Fig. 8. The changes in transmembrane potential over one heart cycle (at 1.2Hz) before (a) and 
after (b) the adjustment of the threshold parameter a in the model 

4   Discussion and Future Work 

The validation of computer models is an important step prior to their integration into 
clinical applications involving patients (i.e. diagnosis and therapy planning). Ionic 
models are accurate, but they are computationally expensive and need experimental 
validation at the same cellular scale. Alternatively, one can use the macroscopic 
model developed by Aliev and Panfilov. This model has been recently used to build 
maps of local apparent electrical conductivity by integrating information from 
measurements obtained via an epicardial sock in a dog heart model, in vivo [7, 16].  

In the work presented here, we proposed a novel validation framework in an  
ex vivo model of healthy porcine hearts, and we have presented preliminary results. 
The AP duration and propagation is measured with high spatial (i.e. 0.7mm) and 
temporal resolution (i.e. 3.7ms) via optical imaging, which allowed us to observe the 
AP wave in detail. The computer model was then built from MR anatomy images of 
the same heart, and integrated with the structural anisotropy due to fiber directions. 
The main output of the model is the solution for transmembrane potential.  This 
output can be adjusted to yield the same AP duration as in the optical recordings. 
However, only the adjustment of the threshold parameter is insufficient since it does 
not affect the shape of AP. It can be seen (by comparing Fig.3 and Fig.8) that the 
repolarization phase appears steeper in the calculated AP compared to the optical 
recordings. This could be due either to a limitation of the Aliev-Panfilov model or to 
our simplified fitting procedure. In this respect, the work will be extended to fit all of 
the model parameters from the restitution curve of AP (from the recordings at 
different frequencies, as in [4]). We do not expect significant differences between the 
model parameters obtained in [4] from the dog data, and our pig data.  

To realistically compare the predictions with the measurements for the propagation 
of AP and the isochronal map, we proposed a 3D stereo reconstruction of the surface 
of the heart. The registration between the optical and MR surfaces performed very 
well (i.e. the markers’ position in the optical and the MRI locations corresponded 
within 1.2mm). One of the markers gave the position of the pacing electrode enabling 
us to specify precisely the stimulus location in the simulations. The current image 
acquisition was limited to only one optical angle. A rotation of the heart in front of the 
cameras could enable the propagation of the electrical wave to be recorded from other 
angles as well, and to recover the entire surface of the heart.    
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However, the depth from which the optical signals originate makes the signal 
interpretation very complex, because the signals do not originate only from several 
millimeters beneath from the recording site. Instead, the epicardial optical signals 
contain a depth-weighted average of transmembrane potential signals generated by 
the fluorescent photons from a 3D volume beneath the surface. These findings were 
validated with other electrical models (i.e. bidomain and Luo-Rudy) [17-18]. It would 
be very interesting to compare the solution of the Aliev and Panfilov model with the 
calculated transmembrane potential generated by the flux of photons during the 
process of illumination and emission.  

It was also shown that the morphology of optical AP changes with the change in 
the direction of the wave front propagation, because of the complex anisotropy of the 
myocardium [19]. However, in their study, the authors obtained the fiber orientations 
(on a 3D slab of tissue) via histology. In our model, the fiber directions are non-
invasively obtained for the entire heart from MRI. Therefore, our framework allows 
one to investigate whether the Aliev and Panfilov model predicts such changes by 
varying the position of the pacing electrode (as this location is precisely identified via 
an opaque marker in the MR images).   

Our ultimate goal is to predict the electrical propagation in pathologic cases. It is 
known that in structurally diseased hearts, the wave propagation is abnormal and 
vulnerable to reentry phenomena [1]. We plan to test the computer model by 
performing simulations to study the perturbations in the wave propagation, in the 
presence of anatomic blocks and areas of slow electrical conduction. 
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Abstract. We introduce a framework to characterize and visualize the
transverse tubular system of cardiac myocytes imaged with confocal mi-
croscopy. We imaged rabbit ventricular cells and cell segments with flu-
orescein linked to dextran. The image datasets were deconvolved with
the Richardson-Lucy algorithm using the point spread function extracted
from images of fluorescent beads. The transverse tubular system
(t-system) was segmented with the methods of digital image processing.
We reconstructed single transverse tubules and quantitatively described
these in terms of length, cross-sectional area, ellipticity and orientation.
These results should yield geometric markers for studies of protein dis-
tribution and provide insights into the function of the t-system.

1 Introduction

Three-dimensional images of living heart cells can now be obtained with scanning
confocal microscopy. This technique is usually applied with fluorescent indicator
dyes or antibodies tagged to a suitable fluophore. This permits specific labeling of
compartments and proteins. After a raw image has been obtained, it is processed
to correct, extract and quantify it.

The properties of confocal microscopic imaging systems can be characterized
with the point spread function (PSF). PSFs describe the response of an imaging
system to a point source of light. These PSFs can be obtained by imaging flu-
orescent beads. Precise knowledge of the imaging system’s PSF is essential for
accurate image restoration.

Recently, confocal microscopy and methods for digital image processing have
been used to characterize the transverse tubular system (t-system) in rat ventric-
ular cardiac myocytes [1]. The t-system supports fast propagation of electrical
excitation into the cell interior. This system is composed of transversal tubules
(t-tubules), which enter the myocyte primarily adjacent to Z disks [2]. In mam-
malian ventricular cells t-tubules occupy a large area of the sarcolemma, e.g.
42% in rabbit ventricular myocytes [3]. Morphological changes of the t-tubules
have been associated with cardiac development, hypertrophy and heart failure
[4,5].
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Fig. 1. Framework for processing confocal images of myocytes

Here, we present a framework for characterizing and visualizing the t-system of
rabbit ventricular myocytes (Fig. 1). Whole cells and cell segments were imaged
by confocal microscopy using fluorescein linked to dextran. The three-dimensional
image datasets were deconvolvedwith the Richardson-Lucyalgorithm using PSFs,
which were extracted from images of fluorescent beads suspended in agar. The t-
system was segmented and decomposed into its components. Single t-tubules were
visualized and characterized with respect to length, cross-sectional area, elliptic-
ity and orientation. These methods allow a quantitative description of t-tubule
shape, which might provide landmarks for studies of protein distributions and co-
localization. They may also provide insights into the function of the t-system.

2 Methods

2.1 Preparation of Cardiomyocytes

Ventricular myocytes were isolated from adult rabbit hearts by retrograde Lan-
gendorff perfusion with a recirculating enzyme solution containing collagenase
(1 mg/ml) and protease (0.1 mg/ml). After the isolation, myocytes were stored
at room temperature in a modified Tyrodes solution containing 0.1 mM CaCl2
and 12.5 mM KCl until they were imaged.
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2.2 Imaging of Cardiomyocytes

Images were usually obtained 4-8 h after cell isolation. Cells were superfused with
membrane impermeant dextran (MW: 3,000-10,000) conjugated to fluorescein
and then transferred to a coverslip.

We imaged cells with either a BioRad MRC-1024 laser-scanning confocal mi-
croscope (BioRad, Hercules, CA) and a 63x oil immersion objective lens (Nikon,
Tokyo, Japan) or a Zeiss LSM 5 confocal microscope (Zeiss, Jena, Germany)
together with a 60x oil immersion objective lens.

Three-dimensional image stacks with a spatial resolution of 133 x 133 x 133 nm
and 100 x 100 x 100 nm, respectively, were obtained covering whole cells or large
segments of them (Fig. 2). The dimension of the image stacks varied with cell
size and their data volume ranged from 20 to 250 million voxels.

2.3 Flicker Correction

Several image stacks showed slice-wise discontinuous signal intensities, which
might be artifacts produced by the imaging system or fluctuations of background
illumination. Datasets with significant discontinuities were rejected. Minor dis-
continuities were corrected by slice-wise scaling of intensities. The scale factor
was determined for each slice z by the ratio of expected and actual intensities.
Expected intensities were obtained by averaging mean intensities in neighboring
slices.

2.4 Deconvolution

The response g of an imaging system to given sources can be described by con-
volution of the source image f with the PSF h [6]:

g(x) = (f � h)(x) =
∞�

−∞
f(x′)h(x − x′)dx′ (1)

Here, it is assumed that the response is linear and invariant with respect to
translation.

Various methods for deconvolution of g exist including Fourier filtering, least-
square regularization and Bayesian approaches [7]. In this work, we applied the
iterative Richardson-Lucy algorithm to reconstruct the source image f [8]:

gn+1 = gn

(
g0

gn � h
⊗ h

)
(2)

with the cross-correlation operator ⊗ and go ≡ g.
We characterized the PSF h by imaging fluorescent beads in agar (Fig. 3). 10

images of single beads (� 100 nm) were extracted, aligned and averaged. The
PSF h was applied for deconvolution of imaging data (Fig. 4 a,b).
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Fig. 2. Exemplary images of ventricular myocyte. The datasets describe a hexahedral
region with a size of 102 μm x 34 μm x 20 μm by a lattice of 768 x 255 x 155 cubic
voxels. Intensity distributions are shown in the central (a) XY (b) XZ and (c) YZ plane.
(d) The histogram indicates overlapping ranges of intensities for extra- and intracellular
spaces.

2.5 Attenuation Correction

Depth-dependent attenuation of signal intensity is an inherent property of optical
imaging systems and can be described as a function of the attenuation coefficients
for the exciting and emitted light, αexc and αem, respectively:

ln
I(0)
I(z)

= (αexc + αem)z (3)

with the depth z. Commonly, wavelengths of the exciting and emitted light
differ. Typically, imaging systems provide an automated attenuation correction.
However, analysis of our datasets showed that attenuation was still significant.

Our approach for attenuation correction was a-posteriori using information
from each individual image stack: Average intensities were slice-wise calculated



114 E. Savio et al.

     0.8
     0.6
     0.4
     0.2

0    
1    

2    
3    

4    
5     0

 1
 2

 3
 4

 5
 6

 0
 0.2
 0.4
 0.6
 0.8

 1

(a)

0    
1    

2    
3    

4    
5    

6     0  2  4  6  8  10  12  14

 0

 0.2

 0.4

 0.6

 0.8

 1

(b)

0    
1    

2    
3    

4    
5    

6     0  2  4  6  8  10  12  14

 0

 0.2

 0.4

 0.6

 0.8

 1

(c)

Fig. 3. Exemplary PSF for Zeiss LSM 5 with oil-immersion objective (63x, numerical
aperture 1.4). Intensity distributions are shown in the central (a) XY (b) XZ and (c)
YZ plane.

in regions filled only with dye. A 3rd order polynomial P was fitted to the
averages by least squares. For each slice z a scaling factor s was determined by:

s =
Maxz∈[0,...,N−1]P (z)

P (z)
(4)

2.6 Segmentation of the T-System

The extracellular space was segmented with morphological operators and the
region-growing technique in the median filtered deconvolved image data
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Preprocessing of confocal images. The deconvolved images show increased image
contrast of the t-system exemplified in a central (a) XY and (b) YZ plane. (c,d) The
segmented images were created by region growing and morphological operators. The
background segment (dark) served as a mask for various steps of further processing.
(e,f) A segment containing intracellular space and the t-system was extracted applying
the mask. (g,h) A high-pass filtered image was generated, which is used to extract seed
points for region-growing of single t-tubules.

(Fig. 4 c,d) [9,10]. Subsequently, the extracellular segment was applied as a
mask to extract a segment containing the myocyte together with the t-system
(Fig. 4 e,f). All further processing was restricted to the latter segment.
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(a)

(b)

Fig. 5. Three-dimensional visualization of myocyte segment (a) from above with
mouthes of t-tubules and (b) into inside with t-system. The myocyte’s width is ≈ 20μm.

2.7 Analysis of Transversal Tubules

Single t-tubules were segmented with the region-growing technique. Seed points
for region-growing were determined by thresholding in a high-pass filtered image
(Fig. 4 g,h).

A center line was fit for each t-tubule using the least square method. Cross-
sectional intensities of the t-tubule segment and the adjacent background were
projected onto the line. Background intensities were subtracted from the t-tubule
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Fig. 6. (a) Three-dimensional visualization of exemplary t-tubule together with av-
eraged intensities projected on plane. (b) Raw and background-corrected intensity
profiles.

intensities (Fig. 6b). Our analysis of the projected intensities revealed t-tubule
length and the number of constrictions.

The t-tubule segment was sliced orthogonal to the center line. For each slice we
performed a principal component analysis yielding cross-sectional eigenvectors
e1, e3 and e3 and eigenvalues λ1, λ1 and λ3 [9]. The eigenvalues and -vectors were
applied to calculate cross-sectional eccentricity and orientation with respect to
the long axis of the myocyte cl.

Eccentricity E of the cross-section was defined by:

E =
√

1 − λ2
3/λ2

2 (5)

The function is typically used to describe the eccentricity of an ellipse and its
range is [0, 1). The eccentricity of a circle is 0. In this work, a value of 0 indicates
that the eigenvalues λ2 and λ3 in the cross-section are identical.

We calculated the orientation α from the cross-sectional minor eigenvector e3

assuming that the long axis cl corresponds to the x-axis:

α = atan(e3,y/e3,x) (6)

A function value of 0o indicates that the minor axis e3 is parallel to cl. Values
of ±90o indicate that the minor axis e3 is orthogonal to cl.
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3 Results

We applied the foregoing methods to process confocal microscopic datasets of
more than 220 ventricular myocytes. A characterization of the cellular t-system
was carried out for 10 datasets, which were selected by visual inspection and
presented only minor artifacts and high image contrast.
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Fig. 7. Analysis of single t-tubule. (a) Eccentricity E and (b) angle α between the
minor eigenvector e3 and the long axis of the cell were determined for cross-sections.

The surface of a myocyte segment is shown in Figs. 5a,b. Mouths of t-tubules
are visible in a regionally regular pattern (Fig. 5a) T-tubules mostly enter the
myocyte from its upper and lower surface (Fig. 5b).

As an example we visualized a single t-tubule with a length of ≈ 3.5μm
(Fig. 6a). Our analysis of t-tubules revealed constrictions, in which the cross-
sectional area declines to ≈ 30% (Fig. 6b). The eccentricity E ranged between
0.64 and 0.91 (Fig. 7a), which clearly demonstrates that a cross-section through
the t-tubule is not circular. The orientation α of the t-tubular cross-section
showed a rotation of ≈ 90o from mouth to tip (Fig. 7b).

4 Discussion and Conclusions

We have presented a framework for processing confocal images of isolated car-
diac myocytes together with a quantitative characterization of their t-system.
The framework can be applied to characterize and compare the morphology of
the t-system in various species. Furthermore, changes of the t-system can be
quantitatively characterized, which have been associated with cardiac develop-
ment and diseases.

The framework consists of several modules for deconvolution, reduction of ar-
tifacts, segmentation and visualization. The modules were implemented in C++,
Perl and Matlab.

With this framework we restricted the application of image processing meth-
ods to those, which are mathematically well characterized transformations. In
particular, we selected methods which preserve signal intensity. We analyzed
single t-tubules using the deconvolved images and floating point arithmetic.
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Abstract. Mathematical models were used to explore sodium (Na) current 
alterations. Markovian representations were chosen to describe the Na current 
behavior under pathological conditions, such as genetic defects (Long QT and 
Brugada syndromes) or acquired diseases (heart failure). These Na current 
formulations were subsequently introduced in an integrated model of the 
ventricular myocyte to investigate their effects on the ventricular action 
potential. This “in silico” approach is a powerful tool, providing new insights 
into arrhythmia susceptibility due to inherited and/or acquired Na 
channelopathies. 

Keywords: Na channelopathies, action potential, arrhythmias. 

1   Introduction 

The cardiac sodium (Na) channel controls cardiac excitability and the velocity of 
impulse propagation by initiating the action potential (AP). Different disorders in 
heart excitability have been related to derangements of the cardiac Na channel (Fig. 1) 
due to either genetic mutations or acquired diseases, such as heart failure (HF). These 
disorders are characterized by enhanced arrhythmia susceptibility [1]. 

A number of inherited diseases associated with mutations in SCN5A, the gene 
encoding the alpha subunit of the cardiac Na channel, have been discovered and 
linked to Long QT type 3 (LQT3) and Brugada (BrS) syndromes, conduction diseases 
and structural defects. Notably, mutations showing overlapping phenotypes have been 
characterized.  

Amino acid 1795 site in the C-terminus of SCN5A is intriguing because one human 
mutation (Y1795C) causes a gain of function and LQT3, while a different human 
mutation at this same site (Y1795H) causes loss of function and Brugada syndrome 
[2]. A 9-state Markov model of the cardiac Na current was used to investigate these 
two Na channel mutations. The Y1795C mutation exhibited a significant sustained 
current when expressed in heterologous cell lines. A small maintained current was 
also observed in Y1795H. In addition, both mutations caused a significant shift of the 
inactivation process towards negative potentials.  
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Fig. 1. Dysfunctions of the cardiac sodium channel associated to genetic mutations or acquired 
diseases have been linked to arrhythmia susceptibility. A Na channel human mutation (Asp 
insertion at 1795 in the C-terminus, 1795InsD), shows simultaneous Long QT 3-like and 
Brugada-like phenotypes in the same patients. Remarkably, 1795InsD mutant Na channels 
expressed in mammalian cells exhibit the same phenotype found for CaMKII-modified Na 

channel: leftward shift in the channel availability curve without changes in the activation curve 
(A), enhanced intermediate inactivation (B), slower recovery from inactivation (C) and 
presence of a persistent current upon prolonged depolarization (D). 

Intriguingly, a single human mutation at this site (1795InsD) in SCN5A is linked to 
simultaneous LQT3 and BrS features. This 1795InsD mutation in humans has been 
studied in expressed Na channels [3]. It exhibits increased intermediate INa 
inactivation, slowed recovery from inactivation and availability is shifted to more 
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negative potentials (Fig 1A-C), all of which would reduce INa (loss of function) and 
could explain the Brugada-like symptoms of patients at higher heart rates. In addition 
this 1795InsD mutation causes persistent INa which fails to completely inactivate 
during long duration action potential (Fig 1D). This persistent INa would produce a 
gain of function, and that could contribute to action potential prolongation and LQT 
syndrome. This would be especially pronounced at low heart rates where INa recovery 
from inactivation may be more complete (even with the mutation) and where the 
longer intrinsic action potential duration would increase the impact of persistent INa. 
Clancy and Rudy [4] showed that a theoretical action potential model could simulate 
these behaviors, but they needed to extend the Markovian Na channel model that they 
used to include a bursting mode. 

Emerging evidences now also link Na channel gating alterations to acquired 
diseases, e.g. drug-induced LQTS, cardiac ischemia and HF. In HF an enhanced 
persistent Na current contribute to a propensity to arrhythmias. Altered Na channel 
regulation may also occur in HF, causing a widespread form of acquired Na channel 
dysfunction. For example, Ca-Calmodulin dependent protein kinase II (CaMKII) is 
upregulated in HF and is more active [5]. Wagner et al. [6] recently showed that 
CaMKII regulates Na channel gating, and that upregulation of CaMKII in cardiac 
myocytes causes an extremely similar group of Na channel gating changes to those 
seen for the combined LQT/Brugada phenotype seen with 1795InsD (see Fig 1A-D). 
Again, one might expect then less Na channel availability at high heart rates, but more 
inward INa during long action potential at low heart rates.  

However, the increased levels of CaMKII seen in HF may target several myocyte 
proteins [5]. CaMKII phosphorylates Ca transport proteins such as phospholamban, 
ryanodine receptors and L-type calcium channels (Fig. 1). In addition, novel data 
suggest that other ion channels, including sarcolemmal Na and K channels, may be 
regulated by this CaMKII. 

To assess how CaMKII alters Na channel gating and how it may participate in 
arrhythmogenesis, we used a 13-state Markov model of the Na current to isolate the 
impact of altered Na channel gating on the action potential morphology and duration 
in HF. 

2   Methods 

2.1   Markov Models 

The effects of Y1795C and Y1795H were simulated with a Markov model whose 
structure was proposed by Clancy and Rudy [4] for the wild type (WT) Na channel. It 
consists of 9 states: 5 inactivation states (2 close-, 1 fast- and 2 intermediate 
inactivation states), 3 closed states and 1 conducting open state (Fig. 2). 

To simulate CaMKII-mediated alteration of the Na current, we adopted the 13-state 
model initially described by Clancy and Rudy [4] which contains two possible modes 
of gating, a background mode and a burst mode (Figure 3). The background mode 
reflects the normal sequence of activation and inactivation that most Na channels 
undergo  after activation and is identical to the 9-state model previously used, whereas 
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Fig. 2. Markov model of the cardiac Na channel used to simulate the LQT3 and BrS associated 
mutations. The channel model contains a 9-state background gating mode. Figure from [7]. 

the burst mode reflects a small population of channels that transiently fail to 
inactivate. The lower four states in Figure 3 (prefix “L”) correspond to a burst mode 
of gating of channels that lack inactivation. Voltage independent transition rates 
between upper and lower states represent a probability of transition between the two 
modes of gating. 
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Fig. 3. Markov model of the cardiac Na channel used to simulate the effects of CaMKII 
overexpression. The channel model contains a 9-state background gating mode (upper states, 
prefix U) and a 4-state burst gating mode (lower states, prefix L). Redrawn from ref. [4]. 

In both models, the macroscopic current density is given by:  

( ) NaNaNaoNaNa gGwhereEVPGI ⋅=−⋅⋅= σ  (1) 

The variable PO is the sum of all channel open probabilities, V is the membrane 
potential, and ENa is the Na reversal potential. GNa is the maximum membrane 
conductance: channel density (σ) times the unitary channel conductance (gNa). The 
changes in channel state probabilities are described by first order differential 
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equations. Assuming N discrete channel states (N=9 and 13 in the present models), 
the probability of the channel residing in a particular state Pi at any time satisfies: 
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The voltage-dependent rate constants kij describe the transition from state i to state 
j. Initial conditions are obtained by finding values for state probabilities from the 
steady-state equation: 

0=
dt

dPi  (3) 

A detailed description of model transition rates and parameter fitting procedure for 
the WT and mutant (Y1795C and Y1795H) Na current has been reported [7]. 
Similarly, we have begun to identify the parameters describing control and CaMKII-
modulated Na currents to reproduce the results of the electrophysiological characteri-
zation reported by Wagner et al. [6]. The following voltage-clamp protocols were 
simulated to facilitate parameter identification: steady-state activation, steady-state 
inactivation, intermediate inactivation, recovery from inactivation, late current and 
fast and slow time constants of current decay. The parameters of the transition rates 
that maximally influence each voltage-clamp protocol were identified with an 
automatic procedure. The Nelder-Mead simplex direct algorithm was used to find the 
parameter values minimizing the sum of the least-square errors between model 
predictions and experimental data. The values proposed by Clancy and Rudy [4] were 
chosen as initial guesses in the minimization procedure to identify the transition rate 
parameters that allowed the best fitting of control data. The identified control set was 
subsequently used as initial guess to identify the CaMKIIδC channel parameters. 
Matlab 7 and Simulink (The MathWorks Inc.- Natick, Mass) were used for all the 
numerical computations. 

2.2   Action Potential Models 

We investigated in a previous study [7] the effects of the LQT3 and BrS mutations on 
the guinea pig ventricular AP by using the dynamic Luo and Rudy model (LRd). In 
the present work, the Markov models of the WT and mutant Na currents were 
incorporated into the ten Tusscher model of the human ventricular myocyte [8] 
implemented in Simulink 5 (The MathWorks. Inc- Natick, Mass; USA). Epi- (Epi), 
endocardial (Endo) and M cells were simulated. 

As the experimental data of CaMKII overexpression were obtained in rabbit 
myocytes [6], LabHEART (implemented in Matlab 7, The MathWorks. Inc- Natick, 
Mass; USA) provided the initial basis for simulation in the rabbit ventricular AP [9]. 
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The maximal conductance GNa at 37°C was corrected with a Q10=1.5 [10]. All the 
kinetic rates were normalized to 37°C with a Q10 of 2.1 [10]. Field stimulation of the 
computer cells was performed at different pacing rates and maintained until steady 
state AP was reached. 

3   Results 

3.1   Y1795C and Y1795H 

Figure 4 shows the simulated human APs of Epi, M and Endo cells in WT and mutant 
conditions. AP duration but not morphology varied with changes in pacing frequency 
(40 up to 115 bpm).  

The simulated Y1795C APs (Fig. 4, grey lines) were longer as compared with WT 
in the three cell layers, and showed remarkable increase of APD sensitivity to heart 
rate (Fig. 4). At low pacing rate (40-70 bpm, Fig.4 left and middle panels) AP 
prolongation occurred due to Na current gain of function leading to the presence of a 
persistent component during the plateau phase. At higher pacing rate (115 bpm, Fig.4 
right panel) the effects of Y1795C on the APD were negligible.  

The Y1795H mutant channel only slightly changed the AP morphology and 
duration with respect to the WT (Fig. 4, dashed lines). The reduced Na current 
availability (loss of function) of the Y1795H channel resulted in a mild reduction of 
the AP upstroke velocity as compared to the WT. 
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Fig. 4. Y1795C mutation (grey lines) affects AP of Epi, M and Endo cells in a rate dependent 
manner. The major effect is shown at the pacing frequency of 40 bpm where a significant AP 
prolongation occurs. The Y1795H mutation (dashed lines) has no effects on the AP of any cell 
types. 
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3.2   CaMKII Overexpression 

The effects of the Na channel kinetic alterations due to CaMKII overexpession on the 
ventricular AP are shown in Figure 5 for three pacing rates: 180 (upper), 60 (middle), 
and 15 bpm (lower panel). The control AP (solid line) exhibits a characteristic spike-
and-dome morphology and durations of 180, 310 and 500 ms respectively. In contrast, 
the CaMKII APs (dashed line) show distinctive rate-dependent duration effects. At 
fast rates (180 bpm), the CaMKII is indistinguishable from the control (Figure 5, 
upper panel, APD=180 ms). At slower rates (60 and 15 bpm [Figure 5, middle and 
lower panel]), APs exhibit a significant prolongation that is enhanced at slower pacing 
(APD=370 ms at 60 bpm and APD=670 ms at 180 bpm). At low frequencies, 
impaired fast inactivation and persistent INa outweigh the slowed recovery from 
inactivation because of long lasting diastolic intervals. This favors AP prolongation. 
However, at higher heart rates, shorter recovery interval prevents complete Na 
channel recovery resulting in a reduction of Na channel availability (loss of function). 
This reduces AP peak and abolishes sustained current without affecting AP duration. 

 

−100

0

0 500 1000 1500 2000 2500 3000
 

CaMKII

Time (ms)

(mV)

−100

0(mV)

−100

0(mV)

Pacing Rate 180 bpm

Pacing Rate 60 bpm

Pacing Rate 15 bpm

Control

 

Fig. 5. CaMKII effects on Na channel gating affects AP in a rate-dependent manner. At lower 
heart rates, the enhanced late INa prolongs the AP (middle and lower panels); this effect is 
completely blunted at higher rates (upper panel). 

4   Discussion 

In this study we used two Markov models to analyze the effects of Na current 
alterations on cardiac excitability. The overall structures of these models were 
proposed by Clancy and Rudy and have been successfully used to simulate several Na 
current features both for WT and mutant channels [4,7]. 
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This approach has been widely used to examine the potential arrhythmogenic role 
of genetic defects in the Na channel. Numerical simulation showed that in Y1795C 
mutation, associated with LQT3, bradycardia accentuates the APD prolongation as a 
consequence of an increased sustained INa at slower rates (Fig. 4). In addition, we 
showed that the effect of the late INa during bradycardia was more pronounced in M 
cell. These results are in agreement with the LQT3 phenotype and with the fact that 
life-threatening events occur during sleep. On the other hand, the Y1795H mutation 
induced only negligible changes on AP morphology, in accordance with the clinical 
findings that the Brugada Syndrome phenotype was concealed in the carriers of the 
mutation and only evident upon pharmacological challenge with Flecainide [2,7]. 
Interestingly, in our previous simulations [7] using the LRd ventricular AP model 
EAD occurred in Y1795C at low pacing rate. This discrepancy might be attributed to 
the differences in the current densities between different species (e.g. IKs and IKr) or in 
the kinetic properties of the L-type Ca current inactivation. 

We expanded this strategy to a more common acquired disease, such as HF. As 
already discussed, CaMKII enhances intermediate inactivation and reduces Na 
channel availability, while at the same time impairing fast inactivation and enhancing 
persistent INa. These divergent alterations of the mutant Na channel (1795insD and 
CaMKII) cause a paradoxical phenotypic overlap of LQT3 and Brugada syndrome 
[3]. The “in silico” study performed by Clancy and Rudy [4] showed that this 
mutation disrupts fast inactivation, causing sustained Na current throughout the action 
potential plateau and prolonging cardiac repolarization at slow heart rates. At the 
same time, 1795insD augments slow inactivation, delaying recovery of Na channel 
availability between stimuli and reducing Na current at rapid heart rates. Similarly, 
the effects of CaMKII on the Na channel gating have a differential impact on the AP 
depending on the pacing rate. At low frequencies the simulations show a gain of 
function of the Na current, with the presence of a late current that prolongs the 
repolarization. This effect is much more pronounced at lower pacing rate (15 bpm), 
but it is still present at more physiological frequencies (60 bpm). The sustained 
current decreases with increasing pacing rate, where a loss of function (reduced peak 
current) is predicted. This loss of Na channel function due to the reduction in the 
channel availability would slow propagation and increase dispersion of repolarization. 
Therefore, it is conceivable that increased CaMKII activity in HF may alter Na 
channel gating thereby generating the substrate for life-threatening VT. 

Of course HF and CaMKII can alter the behaviour of many ion channels, such that 
the effects on a single ion channel can be difficult to discern (compared to 
uncompensated single amino acid genetic mutations). Determining how multiple 
channel modifications individually contribute to altered electrophysiological substrate 
is an example of how such analyses with the mathematical approaches presented here 
are suitable to clarify the understanding arrhythmogenic mechanisms associated with 
mutation-dependent or acquired channelopathies.  

5   Conclusions 

The Markov model structures presented in this study, with different assignment of 
transition rates, are able to reproduce the main electrophysiological features 
characterizing cardiac Na current alterations due to genetic defects and more common 



128 E. Grandi et al. 

acquired diseases. The simulation of these models into an integrated description of the 
ventricular AP allows the assessment of the effects of Na channelopathies on the 
cardiac cell excitability. Since CaMKII affects several target proteins (Ca, Na and K 
transporters), the present analysis provides the starting point for a more 
comprehensive study involving the broader range of effects that characterize HF. 
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Abstract. Atrial fibrillation (AF) induced electrical remodelling of ionic 
channels shortens action potential duration and reduces atrial excitability. 
Experimental data of AF-induced electrical remodelling (AFER) from two 
previous studies on human atrial myocytes were incorporated into a human 
atrial cell computer model to simulate their effects on atrial electrical 
behaviour. The dynamical behaviors of excitation scroll waves in an anatomical 
3D homogenous model of human atria were studied for control and AF 
conditions. Under control condition, scroll waves meandered in large area and 
became persistent when entrapped by anatomical obstacles. In this case, a 
mother rotor dominated atrial excitation. Action potentials from several sites 
behaved as if the atrium were paced rapidly. Under AF conditions, AFER 
increased the stability of re-entrant scroll waves by reducing meander. Scroll 
wave break up leads to wavelets underpinning sustained chronic AF. Our 
simulation results support the hypothesis that AF-induced electrical remodelling 
perpetuates and sustains AF. 

Keywords: 3D model of human atria, atrial fibrillation, electrical remodelling. 

1   Introduction 

Atrial fibrillation (AF) affects a large section of the aged population and accounts for 
about 1% of the total National Health Service expenditure in the UK alone [1] and has 
an increasing prevalence. AF is the most common sustained arrhythmia which leads 
to loss in quality of life and further fatal cardiac complications. AF is characterized by 
an erratic ECG, which is possibly associated with ectopic foci or re-entrant electrical 
propagations in the atria. Paroxysmal AF induces electrical remodeling of membrane 
ionic channels in atrial cells [2, 3] and heterogeneous gap junctional remodelling of 
atrial tissue [4]. The mechanisms by which AF becomes persistent are poorly 
understood. Recently, AF-induced electrical remodelling (AFER) has been proposed 
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Fig. 1. Simulated human atrial cell AP (A) and intracellular [Ca2+]i transient (B) under control 
(solid line), AF1 (long dash line) and AF2 (short dash line) conditions. The cell models were 
paced at a rate of 1 Hz and the 10th AP and [Ca2+]i transients were recorded. 

as one of the mechanisms underlying the persistence of AF, which can cause APD 
shortening, reduction in atrial conduction velocity (CV), and therefore a possible 
increase in the stability of re-entrant scroll waves. In addition, anatomical obstacles 
due to the orifices of blood vessels (e.g. superior vena cava (SVC) and pulmonary 
veins) may provide a secondary mechanism to sustain AF.  Atrial cells in the 
pulmonary vein regions can be auto rhythmic, which may trigger re-entry [5, 6, 7].  
Paroxysmal AF is generally treated by suitable drug therapies [8, 9]; however 
persistent AF requires surgical intervention [10, 11, 12, 13]. 

The principle mechanism underlying AF is believed to be re-entrant atrial 
excitation. In this paper, we evaluated behavior of re-entrant scroll waves under 
control and AF conditions in an anatomically detailed 3D model of human atria. We 
incorporated data on AFER from two independent experimental studies [2, 3], into a 
biophysically detailed computer model of human atrial cell [14]. We characterized the 
effects of AFER on the electrical activities in atrial cells and spatially extended atrial 
tissue. Dynamical behavior of re-entrant scroll waves in the 3D homogenous 
anatomical model were characterized [15]. Our studies have shown that AFER alone 
has a major effect on atrial conduction and scroll wave dynamics, which helps to 
sustain AF. This study provides insights to understand how AF begets AF, in which 
paroxysmal AF changes to chronic AF due to AFER. 

2   Methods 

The computer model for human atrial electrical activity developed by Courtemanche 
et al. [14] was used in all simulations. The model was modified to incorporate the 
experimental data of AFER on human atrial myocytes by Bosch et al. [2] (AF1) and 
Workman et al. [3] (AF2) to simulate AF remodelling. In brief, the ionic channel 
remodelling in AF1 was modelled as a 235% increase of IK1, 74% reduction of ICa,L, 
85% reduction of Ito, a shift of -16 mV of the Ito steady-state activation, and a -1.6 mV 
shift of sodium current (INa) steady state activation. Fast inactivation kinetics of ICa,L is 
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Fig. 2. Rate dependence of human atrial electrical activity under control (solid line), AF1 (long 
dashed) and AF2 (dotted line) conditions. A: APD restitution curve. The maximal slope for 
control was observed to be 0.91, while in AF1 and AF2 cases it was 4.63 and 1.55 respectively. 
B: ERP restitution curve. ERP at BCL = 1000 ms reduced from 381 ms in control, to 142 ms in 
AF1 and 192 ms in AF2 cases. 

slowed down, and was implemented as a 62% increase of the time constant. The ionic 
channel remodelling in AF2 was simulated by a 90% increase of the inward rectifier 
potassium current (IK1), 64% reduction of the L-type calcium current (ICa,L), 65% 
reduction of transient outward current (Ito), 12% increase of the sustained outward 
potassium current (IKsus), and a 12% reduction of the sodium potassium pump (INa,K). 

Differences in APD and calcium ([Ca2+]i) transient among control, AF1 and AF2 
were computed from the 10th stimulus after pacing the model at a basic cycle length  
(BCL) of 1 s. Changes in APD and peak [Ca2+]i transient were noted. AP restitution 
(APDr) was computed using a standard S1-S2 protocol where a premature stimulus 
(S2) was applied after 10 conditioning stimuli (S1) at a BCL of 1 s. Diastolic interval 
(DI) was defined as the time interval between 90% repolarization of the previous AP 
and the upstroke of current AP. A plot of APD against DI gave APDr. Maximal 
slopes of APDr curves were determined. Effective refractory period (ERP) was 
computed using the cell models and a modified S1-S2 protocol. ERP was defined as 
the minimum S1-S2 stimulus interval that produced an AP with peak potential over 
80% of the last S1 AP peak potential [3]. ERP was determined for values of S1 from 
100 ms to 1000 ms and ERP restitution curves were constructed by plotting ERP 
against S1-S2 interval. All stimuli were applied for 2 ms time duration with amplitude 
of 2 nA. 

The cell models were incorporated into a parabolic partial differential equation 
formulation to construct mono-domain spatial models of electrical propagation of the 
form 

ionm IvDtvC −∇=∂∂ 2/   (1) 

where Cm is cell membrane capacitance, D is the diffusion coefficient that simulates 
the electrotonic interactions between cells via gap junctional coupling, v is the 
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Fig. 3. A: Computed rate dependent intra-atrial conduction velocity for control (solid line), 
AF1 (dashed line) and AF2 (dotted line) conditions. Solitary wave conduction velocity was 
0.27 m/s for control, while decreased to 0.25 m/s in AF1 and 0.26 m/s in AF2 conditions. B: 
computed VW in control and AF conditions. 

membrane potential, and Iion is the membrane current. The value of D was taken to be 
0.03125 mm2/ms to give a conduction velocity of 0.27 m/s for a solitary wave in 
control conditions [16]. The 1D model was taken to be 10 mm in length with a spatial 
resolution of 0.1 mm. The 3D anatomically detailed geometry of human female atria 
was obtained from [15]. It consists of left atrium, right atrium (RA), pectinate 
muscles, Bachmann bundles, and the pacemaker sinus node. Spatial resolution in the 
3D anatomical model is 0.33 mm × 0.33 mm × 0.33 mm. 

The 1D model was used to compute intra-atrial conduction velocity restitution (CVr) and 
temporal vulnerability window (VW). To compute CVr, a conditioning pulse stimulus was 
applied at one end of the strand, over a length of 0.3 mm with amplitude 2 nA and duration 
of 2 ms, after which a premature S2 stimulus was applied at the same location. The CV of 
resultant second propagation was computed as a function of the S1-S2 interval. To compute 
VW, the S2 was applied in the middle of the strand rather than at the conditioning stimulus 
end. The time window during which the S2 stimulus produced uni-directional retrograde 
propagation defined the tissue’s VW. Wavelength of propagating APs was computed as the 
product of CV and APD. 

Scroll wave re-entry in the 3D homogenous model was initiated in the largest 
contiguous surface of the right atrium using a cross-field protocol similar to that used 
in 2D idealized sheets of atrial tissue [16]. 3 s electrical activity was simulated in each 
case and APs at representative locations in the atria were registered for analysis. 

Integration in time and space was carried out using an explicit Euler forward time 
step method while using central differences for spatial derivatives. The integration 
time step was taken to be 0.005 ms in the cell and 1D models. In the 3D simulations, a 
time step of 0.05 ms was seen to give solutions similar to the smaller time step of 
0.005 ms as the space step was 0.33 mm. 

Simulations were carried out on (i) Sun-Fire 880 UltraSPARC 24 CPUs shared 
memory system, and (ii) Bull Itanium2 208 CPUs distributed memory system with a 
single rail Quadrics QsNetII interconnect. The 3D simulations were carried out using 
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parallel OpenMP and MPI solvers developed in our laboratory. This allowed the 
simulations to be completed using both available resources. Due to run time limits, 
check-pointing was implemented in the MPI version where the state of the model was 
stored to allow continuation of the simulation after restart. This enabled optimal use 
of the Bull Itanium2 system. Visualization was carried out using AVS [17] and the 
local high performance visualization service in Manchester Visualization Centre. 

3   Results 

AFER [2, 3] produced a remarkable APD shortening and reduction in [Ca2+]i transient 
amplitude. The APD was reduced by 65.3 % (108.5 ms) in AF1 and 52.8 %  
(147.6 ms) in AF2 cases, as compared to 313.0 ms in control case. Such APD reduction 

 

 

Fig. 4. Scroll waves in the 3D model where transparent grey shows anatomy and solid black 
denotes excitation. Panels Ai, Aii, Aiii and Aiv show frames from control simulation, Bi, Bii, 
Biii and Biv from AF1, and Ci, Cii, Ciii and Civ from AF2. Frames were taken at times as 
shown at the top of each column. The scroll wave in control meanders out of the right atrium 
and its initial meander direction is shown by an arrow in Ai. In AF1, the induced mother rotor 
breaks up into smaller persistent spiral wavelets. In AF2, the scroll wave is stable with small 
meander. 
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was consistent with experimental observation [2, 3]. AFER also hyper-polarized AP’s 
resting membrane potential, which changed from -80.5 mV in the control to -85.2 mV 
in AF1 and -83.8 mV in AF2 cases. [Ca2+]i transient amplitude was significantly 
reduced from 0.61 µM in control to 0.30 µM in AF1 and 0.31 µM in AF2 cases. 
Resting [Ca2+]i was also reduced from 0.13 µM in control to 0.090 µM in AF1 and 
0.094 µM in AF2. Simulated AP and [Ca2+]i transient profiles are shown in Figure 1. 
APDr is shown in Figure 2A. APs were observed at much higher pacing rates than in 
the control case suggesting that AFER facilitates high frequency excitation as occurs 
during AF. At high pacing rates (i.e. small values of DI) APDr was investigated in 
detail such that it allowed an accurate estimation of the maximal slope of APDr. AF 
was seen to increase maximal slope from 0.91 in control to 4.63 in AF1 and 1.56 in 
AF2. AF reduced ERP at physiological rates of pacing (BCL of ~ 1 s) from 381.0 ms 
in control to 142.0 ms in AF1 and 192.0 ms in AF2. ERP is also reduced by AF as 
shown in Figure 2B. 

 

 

Fig. 5. Representative frames from the control simulation showing entrapment of scroll wave 
by SVC (A). After application of the re-entry inducing stimulus (B), the scroll wave quickly 
meanders away from the centre of the RA and is entrapped by the SVC (C, D). The scroll wave 
was entrapped to the SVC for the duration of simulated activity (3 s) (E - L). 
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CVr and VW were determined from the 1D model. Reduced excitability of atrial 
tissue due to AFER is reflected in the reduced CV of a solitary wave from 0.27 m/s in 
control, to 0.25 m/s in AF1 and 0.26 m/s in AF2. As shown in Figure 3A for CVr, 
atrial conduction is supported at much higher pacing rates under AF conditions as 
compared to control. When stimulus rate was 198 beats/min (S1-S2 interval < 303.5 
ms) conduction in control tissue failed. However with AFER, atrial tissue supported 
propagation up to 421 beats/min (S1-S2 interval ~ 142.7 ms) for AF1 and 325 
beats/min (S1-S2 interval ~ 184 ms) under AF2 conditions. AF reduced VW from  
 
 

    

Fig. 6. A: Locations in the 3D atrial model where AP profiles were registered. AP profiles as 
registered from location 1, 2, 3, and 4 are shown in B, C, D, and E respectively. Panel F shows 
AP profile from the AF1 case from location 4. Such high frequency activity (as compared to 
control) is typical of the AF cases and persists throughout the simulated activity period of 3 s. 
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15.4 ms in control to 14.0 ms (10% reduction) in AF1 and 14.8 ms (4% reduction) in 
AF2 cases. The wavelength reduced from 84.50 mm in control, to 27.13 mm in AF1 
and 38.38 mm in AF2. 

In the 3D simulations, re-entrant scroll waves were initially induced on the largest 
contiguous surface of the RA. This offered the maximum possible space for the scroll 
waves to meander without anatomical interference. Figure 4 shows the evolution of 
scroll waves on the right atrial surface in the 3 cases. In the control case, the scroll 
wave quickly meanders away from the point of initiation (~ 350 ms after initiation). 
Quite often in cases when 2D and 3D idealized tissue models are used, the 
meandering scroll waves terminates when its filament reaches an edge. In the AF1 
case, the scroll wave had a small wavelength, but the mother rotor degenerated into 
smaller wavelets. These wavelets continued to sustain erratic electrical activity 
throughout the homogenous model. A mother rotor was seen to emerge after about 
2100 ms. In the AF2 case, the scroll wave was persistent and it meandered in a very 
small region leading to a sustained reentrant excitation driven by mother motor with 
lifespan more than the 3000 ms of simulation duration. In the control case, however, 
when trapped by an anatomical obstacle, the meandering scroll wave could also be 
stabilized with its filament rotating around the circumference of an anatomical 
obstacle. This is shown in Figure 5, where the scroll wave was trapped to the SVC 
orifice, became highly localized and persisted throughout the simulation. In this case, 
while the mother rotor was trapped by the SVC, the arm of this scroll wave continued 
to activate atrial tissue close to the SVC at a high rate. This gave rise to alternans type 
excitations, as shown by the AP profiles registered at various locations (Figure 6). 
Alternans were not observed in the AF1 or AF2 case, however the AP profiles 
indicate excitation at a much higher rate in the AF cases as compared to control. 

4   Conclusion 

Our simulation results have shown that AFER shortened atrial APD and increased the 
maximal slopes of APDR. It reduced atrial ERP and the intra-atrial conduction 
velocity, all of which facilitated high rate atrial excitation and conduction as one 
would observe during AF. This suggested the pro-arrhythmic effects of AFER. In the 
3D simulations, scroll waves underwent a large meander in the control case. Such 
non-stationary scroll wave may self-terminate unless entrapped by anatomical 
obstacles formed by opening holes of valves. After being entrapped, the reentry 
sustained and acted as a mother motor to drive and pace atrial excitation. AFER 
stabilized reentry and reduced its meandering region. In this case, reentry became 
more stationary and persistent, though it broke up leading to multiple wavelets (in the 
AF1 case). When this occurred, atria had erratic electrical excitation activity with 
much higher rates resembling the disordered and irregular electrical activity as shown 
by ECG in AF patients. The simulated scroll waves have different dynamical 
behaviors under the AF1 and AF2 conditions, which may reflect the different stages 
of AF patients [2, 3, 20]. Further investigations are required to underpin such 
differences, though partial explanation can be related to the AFER-induced changes in 
the maximal slopes of APDr curves, which is larger in AF1 than in AF2. A large  
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APDr slop has been linked to unstable reentrant excitations [18, 19]. We concluded 
that AFER is pro-arrhythmic, helps to perpetuate and sustain re-entrant excitation in 
atria. This study provides first evidence in support of the hypothesis of AF begetting 
AF [2, 3]. 
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Abstract. In this study, we quantitatively analyze some frequently used
markers of recovery time, derived from the transmembrane action po-
tentials and from unipolar extracellular electrograms. To this end, we
performed 3D numerical simulations by using the anisotropic bidomain
model of normal cardiac tissue, coupled with the Luo-Rudy phase I mem-
brane model. We show that the extracellular markers considered are very
accurate estimates of (and very well correlated with) the transmembrane
action potential markers of the repolarization phase, irrespective of T-
wave polarity, repolarization sequence, and transmural distribution of
intrinsic properties of the cell membrane.

1 Introduction

Determining activation and repolarization times on the cardiac surface and in
the thickness of the ventricular walls is one of the main purposes of experimen-
tal and clinical cardiac electrophysiology. It has been well established that life-
threatening cardiac arrhythmias are often associated with abnormal conduction
and/or recovery times and high spatial gradients of recovery times and action
potential durations. While methods for determining activation times from elec-
trographic signals recorded directly from the heart have been firmly established
during the past century, see e.g. [13,14] and recently refined [12], there are still
uncertainties and controversies about the best method for determining recovery
times.

The assessment of local repolarization is related to some time indexes asso-
ciated to the downstroke of the transmembrane or monophasic [7] action po-
tentials. Widely used markers are the time of the minimum derivative and the
time where the potential reaches 90% of its resting value; these two markers are
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generally considered to be the best standards for evaluating other markers that
assess repolarization from extracellular unipolar recordings. In fact, transmem-
brane or monophasic action potentials can not be performed extensively in in
vivo measurements and only the unipolar extracellular electrograms are practica-
ble when studying the excitation and repolarization sequences on a large volume
of a beating heart in in vivo experiments. Therefore, it is important to validate
methods for assessing the local repolarization time from unipolar electrograms.

The most widely accepted method, based on the assumption that repolar-
ization behaves as a plane traveling wave, consists of determining the time of
occurrence of the maximum time derivative RTue during the T-wave in the unipo-
lar electrogram [17,10]. Experimental measurements and computer simulations
have confirmed that this marker is highly correlated with the minimum time
derivative RTv of the transmembrane potential. However, in 1991 Chen et al. [2]
compared the recovery times yielded by the maximum derivative method with
the time when a monophasic potential reaches 90% of the resting value during
the downstroke phase and concluded that when the unipolar T-wave was pos-
itive, a better choice was the time of minimum derivative RTChen during the
decreasing portion of the T-wave, see also [8,19]. Recent experimental work by
Coronel et al. [6] reached opposite conclusions. On the other hand, Steinhaus
[15], using a unidimensional model simulating a linear strand of heart muscle,
showed that the method of the maximum derivative could produce significant
errors in case of wave collisions and inhomogeneous membrane properties of the
individual fibers in the model. We also considered the minimum second time
derivative RTd2ue during the T-wave as an estimate of the time RT90v when
the transmembrane potential reaches 90% of the resting value during the down-
stroke phase. The applicability of these markers to experimental noisy data will
be investigated in future work.

To our knowledge, an extensive quantitative analysis of the discrepancies and
limitations of these extracellular markers of repolarization time is not available
in the literature. The goal of this work is to fully estimate the matching of trans-
membrane and extracellular potential markers by means of 3D simulations using
the bidomain model coupled with the Luo-Rudy phase I system for the ionic
membrane currents. We simulate the three-dimensional propagation of the acti-
vation and repolarization sequences taking into account: the rotating anisotropic
structure of the fibers layers; different local stimulation sites in a slab with ho-
mogeneous properties of the cell membranes; transmural heterogeneity of the
properties of the cell membranes resulting in different action potential duration
(APD). Our results show that RTue and RTd2ue are very accurate estimates of
RTv and RT90v, respectively, independently of T-wave polarity, repolarization
sequence, and transmural intrinsic properties of the cell membrane.

2 Mathematical Models and Methods

Cardiac bidomain - LR1 model. In the bidomain model, the cardiac tissue is
conceived as the superposition of two averaged continuous media, the intra and
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the extracellular medium, whose anisotropy is characterized by the conductivity
tensors Di(x) and De(x). The intra and extracellular electric potentials ui, ue are
described by a reaction-diffusion system, coupled with a system of ODEs for ionic
gating variables w ∈ RQ and for the ions concentration c ∈ Rp; in this paper,
we consider the phase I Luo-Rudy (LR1) model [9]. Denoting by v = ui − ue

the transmembrane potential then the bidomain model for an insulated cardiac
domain Ω can be written as the following reaction-diffusion system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cm∂tv − div(Di∇ui) + iion(v, w) = iiapp

−cm∂tv − div(De∇ue) − iion(v, w) = −ieapp

∂tw − R(v, w) = 0, w(x, 0) = w0(x),
∂tc − S(v, w, c) = 0, c(x, 0) = c0(x),
nT Di∇ui = 0, nT De∇ue = 0, v(x, 0) = v0(x),

where ∂t = ∂ /∂t, cm = χ∗Cm, iion = χ∗Iion, with χ the ratio of membrane area
per tissue volume, Cm the surface capacitance and Iion the ionic current of the
membrane per unit area. The conductivity tensors are given by Di,e = σi,e

l alaT
l +

σi,e
t ataT

t + σi,e
n anaT

n , where σi,e
l , σi,e

t , σi,e
n are the conductivity coefficients

measured along the corresponding directions al(x) (along fiber), at(x), an(x)
(tangent and orthogonal to the radial laminae, respectively and both transversal
to the fiber axis). We assume that the cardiac fibers rotate counterclockwise
from epicardium to endocardium and have a laminar organization; see [3].

Repolarization time markers. In Table 1 are defined the activation time
(AT), the repolarization time (RT), the activation-recovery interval (ARI) and
the action potential duration (APD) markers related to both the extracellular
waveforms ue and the transmembrane potential v. The markers based on v are
assumed to be the reference times of the cardiac cellular repolarization process.

Table 1. Definition of the AT, RT, ARI and APD markers

Transmembrane potential markers Extracellular potential markers
ATv(x) = argmax

t∈upstroke
∂tv(x, t) ATue(x) = argmin

t∈QRScomplex
∂tue(x, t)

RTv(x) = argmin
t∈downstroke

∂tv(x, t) RTue(x) = argmax
t∈Twave

∂tue(x, t)

RT90v(x) = t ∈ downstroke : v(x, t) = 0.9 vrest RTd2ue(x) = argmin
t∈Twave

∂ttue(x, t)

APD(x) = RTv(x) − ATv(x) ARI(x) = RTue(x) − ATue(x)
APD90(x) = RT90v(x) − ATv(x) ARId2(x) = RTd2ue(x) − ATue(x)

Numerical methods. The cardiac domain Ω considered is a cartesian slab
of dimensions 2 × 2 × 0.5 cm3 modeling a portion of the left ventricle. In all
computations, a structured grid of 200 · 200 · 50 hexahedral isoparametric Q1
elements of size h = 0.1 mm was used in space in order to avoid numerical
artifacts in the electrograms, see [5]. The time discretization is based on an
Euler Imex method. We used the PETSc parallel library [1] in order to ensure
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the parallelization and portability of our code, run on a Linux Cluster with 92
Xeon 2.4 GHz processors at the Math. Department of the University of Mi-
lan (www.ulisse.mat.unimi.it). Each simulation required about 21 - 24 h on 36
processors; further numerical details can be found in [3,4]. For our slab geome-
try, using the cartesian coordinate system {x1,x2,x3}, we choose at = e3 and
al(x) = e1 cosα(x3) + e2 sin α(x3), an(x) = −e1 sin α(x3) + e2 cosα(x3), where
the angle α(x3) prescribe the transmural fiber rotation, which is linear and coun-
terclockwise from epicardium (−45o) to endocardium (45o), for a total amount
of 90o. The bidomain parameters are: χ = 103 cm−1, Cm = 10−3 mF/cm2,
{σe

l , σ
i
l , σ

e
t , σ

i
t} = {2, 3, 1.35, 0.315} mΩ−1cm−1 and σe

n = σe
t /2, σi

n = σi
t/10.

These calibration parameters yields ideal plane wavefronts propagating along
al(x),at(x),an(x) with velocities 60, 25, 10 cm sec−1, respectively. The initial
conditions are at the rest and we apply an appropriate stimulus on a small area
(3 or 5 mesh points in each direction), set differently depending on the simula-
tion. The reference potential is chosen to be the average extracellular potential
on the slab volume, i.e.

∫

Ω ue(x, t)dx = 0. In each simulation, we saved the extra-
cellular and transmembrane potential waveforms ue(x, t) and v(x, t) at 36 × 11
nodes located in 6 × 6 points distributed on 11 intramural planes parallel to the
endocardial surface. We postprocess the 36 × 11 waveforms for ue and v, com-
puting all the activation, repolarization, ARI and APD markers defined above.
From this volume of data, we extract the following quantities for RTue (RTd2ue)
vs RTv (RT90v) and the related ARI vs APD: the average absolute difference
mean, the associated standard deviation std and the correlation coefficients corr
and r2 = corr2.

3 Results and Discussion

We consider three different types of transmural distribution of the intrinsic APDs
of the cells, one homogeneous (H-slab) and the other two heterogeneous (3-slab
and W-slab). The transmural intrinsic heterogeneity is assumed to be the same
along any transmural epi-endocardial straight line, i.e. in any plane parallel to
the epicardium all cells have the same intrinsic APD. In the heterogeneous slabs,
the intrinsic APD of the cells is obtained by multiplying the potassium current
IK in the LR1 model by a factor factIK , as detailed in Table 2. This modulation
factor is chosen in order to introduce a transmural APD profile with M-cell
layers as in [16] (3-slab) or as in [18, Fig. 4], [11, Fig. 5] (W-slab), to mimic their
experimental transmural APD profile; see [4] for more details.

H-slab. In case of H-slab we performed three simulations, with three different
endocardial stimulation procedures: single central stimulus (H-slab 1), single left
bottom vertex stimulus (H-slab 2) and two stimuli, one central and the other
at the vertex (H-slab 3). Fig. 1 (a) reports the ATv on the endocardial, midmy-
ocardial and epicardial intramural sections (first row), the RT90v on the same
intramural sections (second row) and the ATv and RT90v on the diagonal trans-
mural section parallel to the endocardial fiber direction, relative to the H-slab 3
simulation. Fig. 1 (b) shows the v and ue waveforms in the 6 epicardial points
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Table 2. Parameter calibration for modeling the transmural heterogeneities

slab type H-slab 3-slab W-slab
number of layers 1 3 4

endo mid epi endo sub-endo mid epi
layer thickness (cm) 0.5 0.17 0.17 0.16 0.05 0.05 0.35 0.05
fact IK 1 2.62 1.95 2.88 2.71 1.95 2.47 2.88
APD (ms) 266 235 272 225 232 272 242 225

Table 3. H-slab: comparisons RTv vs RTue and APD vs ARI over 396 exploring
sites. mean:= average absolute difference |RTv-RTue| (|APD-ARI|), std:= standard
deviation of the previous difference with respect to mean, max:= maximum of RTv-
RTue (APD-ARI), min:= minimum of RTv-RTue (APD-ARI), corr:= correlation
coefficient corr(RTv,RTue) (corr(APD,ARI)) and r2:= corr2.

simulation comparison mean std max min corr r2
RTv vs RTue 1.8585 1.1191 4.4178 -3.8153 0.9791 0.9586

H-slab 1 APD vs ARI 1.8736 1.1433 4.6678 -3.8153 0.3090 0.0955
central RT90v vs RTd2ue 1.1181 0.7732 1.0040 -3.2129 0.9931 0.9863
stim. APD90 vs ARId2 1.1153 0.7684 1.1032 -3.2129 0.8582 0.7366

RTv vs RTue 1.5982 1.3858 7.2259 -2.9846 0.9927 0.9854
H-slab 2 APD vs ARI 1.6002 1.3859 7.2259 -2.9846 0.6153 0.3785
vertex RT90v vs RTd2ue 1.2285 0.8068 1.4137 -3.7700 0.9980 0.9961
stim. APD90 vs ARId2 1.2282 0.8067 1.4137 -3.7700 0.8833 0.7802

RTv vs RTue 2.2628 1.3029 6.8048 -3.9396 0.9509 0.9042
H-slab 3 APD vs ARI 2.2606 1.3044 6.8048 -3.9896 0.5287 0.2796
2 stim. RT90v vs RTd2ue 1.3715 0.9408 2.3279 -3.9396 0.9768 0.9542

APD90 vs ARId2 1.3700 0.9388 2.3279 -3.9396 0.8631 0.7450

Table 4. 3-slab and W-slab: comparisons RTue vs RTv and ARI vs APD. Same format
as in Table 3.

simulation comparison mean std max min corr r2
RTv vs RTue 2.4708 1.5845 7.0832 -4.9774 0.9797 0.9599

3-slab APD vs ARI 2.4704 1.5845 7.0832 -4.9774 0.9159 0.8389
RT90v vs RTd2ue 1.2332 0.9803 4.9774 -3.6373 0.9898 0.9798
APD90 vs ARId2 1.2333 0.9799 4.9774 -3.6373 0.9702 0.9414
RTv vs RTue 2.2303 1.4418 6.8843 -4.4545 0.9785 0.9575

W-slab APD vs ARI 2.2294 1.4427 6.8843 -4.4545 0.9207 0.8477
RT90v vs RTd2ue 0.9341 0.6329 2.6322 -2.4297 0.9941 0.9883
APD90 vs ARId2 0.9342 0.6332 2.6322 -2.4297 0.9825 0.9654

indicated in Fig. 1 (a), showing typical performances of RTue for different T-
wave polarity. Table 3 summarizes the comparison between the recovery markers
in the three H-slab cases. The results show that, irrespective of the simulated
repolarization sequence, the average discrepancy of RTue and RTv (RTd2ue and
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Fig. 1. H-slab with 2 stimulation points



Determining Recovery Times from Transmembrane Action Potentials 145

0.11  49.71  3.00

A
C

T
I

ENDO

9.26  41.73  3.00

MID

20

25

30

35

17.89  38.60  3.00

EPI

257.18  292.92  3.00

R
E

P
O

256.49  284.39  3.00

260

270

280

290

251.50  270.06  3.00

1
2

3
4

5
6

10
20
30

0.11  38.60  3.00

A
C

T
I

TRANSMURAL SECTION

255
260
265
270

251.50  275.19  3.00

R
E

P
O

TRANSMURAL SECTION

(a) ACTI and REPO on intramural sections (first and second rows) and on the trans-
mural diagonal section perpendicular to the epicardium and passing through the sites
indicated in the REPO-EPI panel (third row). Maximum, minimum and step of the
displayed map are reported below each panel.

10 mV

40 mV

40 msec

1:  |Δ RT| = 3.85

10 mV

40 mV

40 msec

2:  |Δ RT| = 0.81

10 mV

40 mV

40 msec

3:  |Δ RT| = 2.83

10 mV

40 mV

40 msec

4:  |Δ RT| = 2.83

10 mV

40 mV

40 msec

5:  |Δ RT| = 0.61

10 mV

40 mV

40 msec

6:  |Δ RT| = 4.45

(b) Evolution in time of v (dashed) and ue (continuous) magnified by a factor 4 in the
6 epicardial points on the main diagonal indicated above in (a), REPO - EPI panel.
|ΔRT | = |RTv − RTue|.

Fig. 2. W-slab with central stimulation



146 P.C. Franzone et al.

−5

−1

|Δ RT| = 1.62,     |Δ RTd2| = 0.61

−0.1

0.3

−0.02

0.02

−80

−40

−1.5

−0.5

220 300
−0.05

0.1

−1

0

|Δ RT| = 0.81,     |Δ RTd2| = 1.01

0
0.1

−0.01

0.01

−80

−40

−1.5

−0.5

220 300
−0.05

0.1

1

5
|Δ RT| = 3.85,     |Δ RTd2| = 1.42

−0.2

0.1 

−0.04

0

−80

−40

−1.5

−0.5

220 300
−0.1

0.1

Fig. 3. T-wave zoom of ue (first row), ue time derivative (second row), ue second time
derivative (third row), v (fourth row), v time derivative (fifth row), v second time
derivative (sixth row) in points 1,2,3 of Fig. 2 at distance 0.4 cm from the epicardium
in W-slab. Point 1 (first column) has negative T-wave; point 2 (second column) has
biphasic T-wave, point 3 (third column) has positive T-Wave.

RT90v) is less than 2.3 (1.4) ms, with a std less than 1.4 (0.98) ms. The same
quantitative estimates apply to ARI and APD (ARId2 and APD90). Thus, the
two extracellular markers RTue and RTd2ue are accurate measures of RTv and
RT90v, respectively, and are highly reliable regardless of the polarity of the T-
wave (positive monophasic, biphasic, negative monophasic). Analogously, ARI
and ARId2 are accurate measures of APD and APD90, respectively, regardless
of T-wave polarity. The maximal discrepancy of about 7.5 ms for RTue and of
2.5 ms for RTd2ue occurs in an area near the stimulation site (the region repo-
larized first in H-slab) and in the front-boundary collision zones (the epicardial
breakthrough areas). Similar localized errors had been found by Steinhaus [15]
using a 1D model of propagation for estimating the influence of various factors
affecting the performance of RTue. In spite of these localized discrepancies, our
quantitative comparison validates the use of these extracellular markers to infer
with satisfactory accuracy the associated transmembrane repolarization times.

3-slab and W-slab. In both these simulations, the stimulus was applied at
the center of the endocardial surface. Table 4 contains the comparison between
the markers for both the 3-slab and W-slab cases, using the same format of
Table 3. With respect to the homogeneous H-slab, adding transmural hetero-
geneity yields a slight increase of both the average and maximum discrepancies
for the RTue marker, while for the RTd2ue marker only an increased maximum
discrepancy amounting to 5 ms is observed. The location and origin of the max-
imum discrepancies are analogous to the H-slab. The markers accuracy does not
seem to be correlated with the interaction between the fiber direction and the
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local repolarization front. Fig. 2 (a) displays the activation and repolarization
sequences and Fig. 2 (b) shows the v and ue waveforms in the 6 epicardial points
indicated in Fig. 2 (a). Fig. 3 reports T-wave zooms of ue, v and their first and
second time derivatives, showing the typical accuracy of our markers in three
sites of W-slab with positive, negative and biphasic T-wave. In addition to the
strict correlation between RT90v and RTd2ue, this figure shows that the max-
imum second time derivative of v is also strictly correlated with the previous
two markers. Fig 4 shows the linear regression fitting for RTv vs. RTue (left),
RT90v vs RTd2ue and RT90v vs RTChen (right) for W-slab. Summarizing, the
markers RTd2ueand RTue exhibit an average error, with respect to their best
reference times, less than 2.5 and 1.3 ms respectively, with std less than 1.6 and
0.98 ms. Hence, RTd2ue and RTue accurately signify RT90v and RTv, respec-
tively, with a slightly better performance of the former. We also considered a
variant RTChen of the RTue marker, proposed in Chen et al. [2], that uses the
time of minimum derivative of ue (instead of the maximum) when the T-wave is
positive. This strategy yields two different estimates of RT90v clearly visible in
Fig. 4 (right panel), separated by the regression line (continuous), having a low
global correlation coefficient. This marker produced worse estimates of RT90v

than our RTd2ue, with average discrepancy 6.26 ms and std 1.45 ms. Moreover,
the RTd2ue estimate of RT90v exhibits a high correlation, confirmed by the re-
gression line (dotted) also displayed in Fig. 4. The overall comparison shows that
RTue and RTd2ue are best estimates of RTv and RT90v, respectively, regardless
of T-wave polarity, repolarization sequence, and transmural intrinsic properties
of the cell membrane.
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In future work, we will address the performance of the extracellular markers
in abnormal conditions associated to disease states, such as ischemic regions, the
influence of more complex ionic models and of a surrounding bath.
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Abstract. Much attention has been drawn to adopt complicated and
realistic physiological models for simulating cardiac electrophysiologi-
cal activities with abundant computing resources for quite a long time.
However, to incorporate these physiological meaningful models into the
recovery/inverse framework for estimating patient-specific cardiac elec-
trophysiological activities always needs to handle excessive computa-
tional loads caused by the complexities of models. Thus, a balance should
be found between physiological meaningfulness and computational feasi-
bility for the recovery/inverse framework. In this paper, a novel numerical
scheme, combination of meshfree method and BEM (boundary element
method), is proposed to simulate intracardiac and extracardiac electro-
physiological activities, which is aimed to provide physiological mean-
ingful simulations with feasible computation for our recovery/inverse
approaches. In our simulations, intracardiac electrophysiological activ-
ities (transmembrane potentials, TMPs) are obtained by solving a mod-
ified Fitzhugh-Nagumo (FHN) model using the meshfree method, and
then extracardiac electrophysiological activities (body surface potentials,
BSPs) are calculated using BEM. Moreover, we demonstrate the ability
of our meshfree-BEM framework through favorable results.

1 Introduction

Estimation of electrophysiological activities in the heart from potentials mea-
sured on the torso surface or medical images is a very ill-posed problem. But this
inverse problem has attracted great interest in the electrophysiological commu-
nity because of immediate clinical impact, and many efforts have been developed
with fair results in the past [9,13,16,19]. Recently we proposed a model-based re-
covery framework to handle the electrophysiological inverse problem using BSPs
and image sequences, and achieved promising outcomes [18,21]. In our multi-
frame recovery framework, the physiological meaningful and computational fea-
sible model is a key issue, which should be carefully designed. In this paper,
we describe the construction of an efficient physiological framework by taking
advantages of the meshfree method and BEM to simulate TMPs and BSPs on
the feasible computational power with respect to realistic representation of my-
ocardial intrinsic structures, and torso geometry. In our work, a FHN-based
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myocardial electrical propagation is solved upon the meshfree particle represen-
tation, whereafter the potentials on the torso surface are calculated using BEM
upon the triangular mesh presentation of torso surface.

1.1 Physiological Models

In the past years, the most popular model for describing cardiac electrophys-
iological activities is the reaction-diffusion system [12,15], as well as Poisson
equation for BSPs on torso surface [12]. With well-defined mathematical forms,
the reaction-diffusion system of the excitable myocardium and Poisson equation
of BSPs can more appropriately reproduce the electrical propagation phenomena
[12,14,15] and BSPs patterns [12,15], and can properly be incorporated into the
recovery/inverse framework. Though more sophisticated cellular models, closer
to the biophysical properties of heart cells [8], are recently introduced, it is practi-
cally difficult to integrate these microscopic models into large-scale synchronous
simulations of TMPs and BSPs due to the formidable computational loads [12],
even nearly unfeasible in recovery/inverse framework currently. Thus, a physio-
logical model, which preserves physiological meaningfulness along with feasible
computation, will be a preference in the recovery/inverse framework. The mod-
ified FHN model, a simplified reaction-diffusion system, has been proved to be
able to integrate the effects of the heart’s geometrical complexity, nonuniform
anisotropy, and material inhomogeneity [14,20]. Furthermore, computation can
be reduced largely because of the polynomials used in the modified FHN model
to approximate the cellular environment. Under the assumption of quasi-static
electrical filed, Poisson equation is a proper model to describe the projections
between TMPs and BSPs. [12,15].

1.2 Numerical Methods

Many numerical schemes have been applied to the reaction-diffusion system,
including popular finite element methods (FEMs). Properly considering the geo-
metrical complexity, the fiber structures and the material inhomogeneity, FEMs
have produced fair results [11,14]. However, meshing for the heart is a very
complicated and time-consuming task in the FEMs, with additional needs for
taking care of the boundaries, material discontinuities and fiber structures. Fur-
ther, for large-scale three-dimensional simulations, the computational costs of
re-meshing for different patient-specific geometries often become prohibitively
expensive. The emerging meshfree method, which has been heavily utilized in
our previous works [18,21], represents an object by distributing sufficient sam-
pling nodes within the space bounded by the object boundary surfaces, without
the needs for mesh generation or complicated coordinate transformation. These
properties are very attractive to the large-scale simulations of electrophysiolog-
ical activities in different cardiac geometries, as well as the recovery/inverse
approaches. Element-free Garlerkin method (EFGM) is recently introduced by
T. Belytschko et al as an powerful numerical method [1,2,4]. A series of publi-
cations [2,3,7,17] have explored the numerical capabilities of EFGM, including
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Fig. 1. From left to right: meshfree representation of the heart, triangular representa-
tion of torso surface

parallelization and comparison with FEMs. In this paper, EFGM is applied to
solve the modified FHN model. Another advantage brought from EFGM is zero
natural boundary condition can be handle by Galerkin weak form naturally. But
to numerically solve Galerkin weak form with zero natural boundary condition
by EFGM, sufficient sample nodes should be arranged in the boundaries. To
solve the projections between TMPs and BSPs we choose BEM because of its
superior performance in solving Poisson equation in the quasi-static electrical
filed [12,15].

2 Methodology

2.1 Representation

In our meshfree-BEM framework, the heart is represented by a set of unstruc-
tured sample nodes, inside and in its boundaries, and torso surface is represented
by triangular meshes (Fig.(1)). The density of the nodes distribution depends on
the requirement of accuracy, and it can be easily refined through nodal addition
or reduction.

2.2 Model of Intracardiac Electrophysiological Activities

Galerkin weak form of FHN model. The differential equations of a modified
FHN model [14] are:

∂u

∂t
= f(u, v) + � · (D � u)

∂v

∂t
= b(u − dv) (1)

f(u, v) = c1u(u − a)(1 − u) − c2uv

with natural boundary condition ∂u
∂n = 0. Values of parameters are taken from

[14], which are listed in Table 1. State variable u is the excitation variable which
corresponds to the transmembrane voltage, v is the recovery current variable, n
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Table 1. Parameters of FHN Model

Parameter Value

a 0.13

b 0.013

c1 0.26

c2 0.1

d 1.0

diffuse term:
df 4.0

dcf 1.0

is the normal of the boundary, f(u, v) is the excitation term, a, b, c1, c2 and d
are parameters that define the shape of action potential. These parameters are
constant over time but not necessary in space. The changes of state variables
are determined by the excitation term f(u, v) and diffusion term � · (D � u).

Galerkin weak form incorporates differential equations in integral form by
using the weighted residual strategies so that they are satisfied over a domain in
an integral sense rather than every point. Consider the integral form of equation
(1), we have: ∫

Ω

ν
∂u

∂t
dΩ =

∫
Ω

ν∇ · (D∇u)dΩ +
∫

Ω

νf(u, v)dΩ (2)
∫

Ω

ν
∂v

∂t
dΩ =

∫
Ω

νb(u − dv)dΩ (3)

Where ν is the trial function. The exact solution of equation (1) should always
satisfy integral in equation (2) and (3). Evaluate integral in Equation (2) using
Green’s formulae:∫

Ω

ν
∂u

∂t
dΩ = −

∫
Ω

(∇νD∇udΩ) + D
∮

S
ν ∂u

∂ndS +
∫

Ω

νf(u, v)dΩ (4)

where S is the boundary of Ω and n is a vector normal to boundary. We can
enforce natural boundary condition, ∂u

∂n = 0, in equation (4) by eliminating
D

∮
S

ν ∂u
∂ndS, but sufficient meshfree sample nodes should be presented in the

boundary S to guarantee the accuracy. In Galerkin procedure trial function
could be placed by the shape function, Φ, of meshfree method here:∫

Ω

ν
∂u

∂t
dΩ = −

∫
Ω

(∇νD∇udΩ +
∫

Ω

νf(u, v)dΩ

∫
Ω

ν
∂Φv

∂t
dΩ =

∫
Ω

νb(u − dv)dΩ (5)

Integral form in equation (5) is the Galerkin weak forms of equation (1). To solve
the equation (5) we need to discrete them. Let UI and VI be the nodal value of
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Fig. 2. From left to right: horizontal and longitudinal sections of cardiac geometry,
position of the heart inside torso

field variables u and v at node set xI , and let Φ be the shape function constructed
from moving least square(MLS) approximation, which will be stated below. Then
we have: u ≈ uh = ΦUI , v ≈ vh = ΦVI . if u, v and ν are replaced with ΦUI , ΦVI

and Φ respectively, continuous forms of equation (5) can be written into discrete
forms:

∂UI

∂t

∫
Ω

ΦT ΦdΩ = −UI

∫
Ω

(∇ΦT Dtran∇Φ)dΩ + f(UI , VI)
∫

Ω

ΦT ΦdΩ

∂VI

∂t

∫
Ω

ΦT ΦdΩ = b(UI − dVI)
∫

Ω

ΦT ΦdΩ (6)

where Dtran is the diffusion tensor transformed from local coordinate. Let D be
the diffusion tensor of a point in local coordinate, which has such form:

D =

⎡
⎣df 0 0

0 dcf 0
0 0 dcf

⎤
⎦ (7)

where df and dcf are along fiber and cross fiber diffuse coefficients. Usually df

is set to 4 × dcf , which introduces anisotropic conductivities. Then we need to
transfer D to the global coordinate. Dtran of one point, with α and β defining a
rotation around the z− and y− axis of the global coordinate system according
to the fiber orientation, can be defined:

Dtran = A−1DA, A = RxzRxy

Rxy =

⎡
⎣ cosα sin α 0

− sinα cosα 0
0 0 1

⎤
⎦ , Rxz =

⎡
⎣ cosβ 0 sin β

0 1 0
− sinβ 0 cosβ

⎤
⎦

MLS approximation. In our approach, moving-least squares (MLS) [6] me-
thod is used to construct the shape functions, because of the the desired order of
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consistency and smoothness throughout the entire domain provided by MLS
approximation. In the MLS approximation, the approximation uh(x) becomes

uh(x) =
n∑

I=1

m∑
j=1

pj(x)(A−1(x)B(x))jI (8)

=
n∑

I=1

φI(x)uI (9)

= Φ(x)Us (10)

where

A(x) =
n∑

I=1

wI(x)p(xI)PT (xI), wI(x) ≡ w(x − xI) (11)

B(x) = [w1(x)p(x1), w2(x)p(x2), ..., wn(x)p(xn)] (12)
UT

s = [u1, u2, ..., un] (13)

In the above equations wI(x) is the cubic spline weight function, which is defined:

w(r) =

⎧⎨
⎩

2
3 − 4r2 + 4r3 for r ≤ 1

2
4
3 − 4r + 4r2 − 4

3r3 for 1
2 < r ≤ 1

0 for r > 1
(14)

Let r = ‖x − xI‖/dmI , where dmI is the radius of the influence domain of a
node. Rewrite equation (6) with matrices:

∂UI

∂t
= M−1KUI + f(UI , VI) (15)

∂VI

∂t
= b(UI − dVI) (16)

f(UI , VI) = c1UI(1 − UI)(UI − a) − c2UIVI (17)

Mi,j =
∫

Ω

φT
i φjdΩ (18)

Ki,j =
∫

Ω

BT
i DtranBjdΩ (19)

Bi =

⎛
⎝φi,x

φi,y

φi,z

⎞
⎠ (20)

Integration schemes. In EFGM a regular background mesh, which consists of
non-overlapping regular cells is required in performing the integration of Galerkin
weak form. Therefore, a background mesh of proper density needs to be designed
to approximate solutions of desired accuracy and handle natural boundary con-
ditions correctly. In the regular cell structures, there may exist cells that do not
entirely belong to the problem domain. Thus, a simple visibility scheme that
automatically separates the portion of the cell which lies outside of the physical
domain is employed [1,2,4].
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2.3 TMPs-BSPs Projection Model

The projection model describes the relation between TMPs and BSPs. In the
quasi-static assumption, the problem is viewed in a passive volume conductor
with the sources distributed only in the myocardium, and the governing Poisson
equation:

� ·(σ � ψ) = − � ·(σh � u) (21)

with given boundary conditions:

ψ(x) = h(x) x ∈ ΓT (22)
u(y) = g(y) y ∈ ΩH (23)

∂ψ(x)
∂n

= 0 x ∈ ΓT (24)

∂u(y)
∂n

= 0 y ∈ ΓH (25)

where ψ is BSPs, u is transmembrane voltages, σh and σ are intracardiac and
extracardiac conductivityies, ΩH and ΓH are the volume and surface of the heart,
ΓT is the torso surface. Applying BEM to equation (21) we get an equation with
both surface and volume integral:

c(ε)ψ(ε) +
∫

ΓT

ψq∗(ε, x)dΓT −
∫

ΩH

(� · (σh � u))ψ∗(ε, x)dσh = (26)
∫

ΓT

q(x)ψ∗(ε, x)dΓT

where q∗ and ψ∗ are fundamental solutions with fixed forms. Commonly, the vol-
ume integral in equation (26) is approximated with simplified distributed dipoles
[9,12]. Alternatively we attempt an innovative mesh free approximation of the
volume integral whereby 1), the use of simplified models is avoided; 2), through
integral by part, the boundary conditions in equation (22) within myocardium
can be fulfilled. To ensure unique solutions, constrains defining potential refer-
ences are added [12] and the linear transmembrane voltages-BSPs relationship
is established with Minimal Norm (MN) method:

Φ = (HT
a Ha)−1HT

a BaU = CU (27)

where Ha,Ba are augmented forms of matrices H , B, where H results from the
boundary integral with the BEM and B from volume integral with the mesh free
method with details in [18].

3 Validations and Results

We test our framework in the authentic geometry, Auckland Heart Model1 and
Utah Torso Model [10], which are shown in Fig.(2). In order to assess the
1 http://www.bioeng.auckland.ac.nz/cmiss/cmiss.php
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Fig. 3. Isochronic representation of ventricle activation. From left to right: published
measurements, simulation of our meshfree framework.

(a)

(b)

(c)

(d)

Fig. 4. Five samples of normal TMPs and BSPs during one cardiac cycle: (a) trans-
membrane potentials in the heart, (b) BSPs on the torso surface. Five samples of TMPs
and BSPs during one cardiac cycle under the condition of RBBB: (c) transmembrane
potentials in the heart, (d) BSPs on the torso surface. All the potentials are normalized
between 0 and 1 and displayed according to color mapping bar.
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accuracy and efficiency of our meshfree framework, propagation pattern of elec-
trophysiological activities in Auckland Heart Model are solved with known dif-
fusion tensors and purkinje network extremities. Since such measurements of
purkinje network are not available yet, we have to define those extremities man-
ually. From the figure (Fig.(3)2) generated from Durrer’s measurements in the
isolated human hearts, we can see that purkinje network extremities are lo-
cated on the endocardium, and then we define similar locations of extremities
in Auckland Heart Model by hand. The activation pattern in our simulation is
qualitatively close to the published measurements as we can see in Fig.(3). Since
it is reported that isolation of the heart leads to an increase in conduction ve-
locity [5], and the duration of QRS waveform in healthy individuals varies from
70ms to 80ms, we can see the temporal length of our simulation is longer than
Durrer’s measurements, closer to the true duration of QRS waveform. We also
simulate one case of heart disease, Right bundle branch block (RBBB) and its
BSPs on the torso surface, which are compared to normal TMPs and BSPs in
Fig.(4). In this comparison the differences between normal case and diseased case
have shown the ability of our framework in reproducing different phenomena of
cardiac electrophysiological activities.

4 Conclusion

We have presented a meshfree-BEM framework for simulating TMPs and BSPs
in authentic geometries, which offers an effective alternative to the popular
FEMs. Validations in heart and torso surface have demonstrated the ability
of our meshfree-BEM framework in providing a physiological meaningful and
computational feasible model for simulations and our recovery frameworks.
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Abstract. Cardiac arrhythmias can develop complex electrophysiolog-
ical patterns which complexify the planning and control of therapies,
especially in the context of radio-frequency ablation. The development
of electrophysiology models aims at testing different therapy strategies.
However, current models are computationally expensive and often too
complex to be adjusted with limited clinical data. In this paper, we
propose a real-time method to simulate cardiac electrophysiology on tri-
angular meshes. This model is based on a multi-front integration of the
Fast Marching Method. This efficient approach opens new possibilities,
including the ability to directly integrate modelling in the interventional
room.

1 Introduction

Treatment of cardiac arrhythmias has considerably changed in the last decades.
Radio-frequency ablation techniques are becoming widely available as an alter-
native to drug therapy. These procedures can be highly effective with minimal
side effects, but for some groups of patients have unsatisfactory success rates,
may entail long procedures, and may involve high x-ray radiation dose to both
patient and staff. Moreover, serious side effects can arise if the lesions extend
beyond the target area. There is a need for substantial innovation in order to
reliably achieve successful results in an acceptable time, with lower radiation
dose and reduced risk of accidental damage to adjacent structures.

The aim of this research work is to design models of the cardiac electrophys-
iology that are suited for clinical use and to propose methods to combine these
models with interventional data in order to better estimate the patient cardiac
function and help in the guidance of procedures.

2 Electrophysiology Models

Modelling the cell electrophysiology is an active research area since the semi-
nal work of Hodgkin and Huxley [4]. The precise modelling of the myocardium

F.B. Sachse and G. Seemann (Eds.): FIMH 2007, LNCS 4466, pp. 160–169, 2007.
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involves a cell membrane model embedded into a set of partial differential equa-
tions (PDE) modelling a continuum. We can divide these models into three
categories, from the more complex to the simpler (numerically):

– Biophysical models: semi-linear evolution Partial Differential Equation
(PDE) with ionic models. Up to fifty equations for ion concentrations and
channels [9,10]

– Phenomenological models: semi-linear evolution PDE with mathematical
simplification of biophysical models. Reducing to two equations representing
the intra- and extra-cellular potentials (bi-domain, mono-domain [2,11])

– Eikonal models: one static non-linear PDE for the depolarisation time de-
rived from the previous models (Eikonal-Curvature [6], Eikonal-Diffusion [3])

Solutions of the evolution PDE are very computationally demanding, due to the
space scale of the electrical propagation front being much smaller than the size
of the ventricles. The motion of the front governed by the Eikonal equation is
observed at a much larger scale, resulting in much faster computations.

For our interventional purpose, and as parameter adjustment often requires
several simulations, we want to design a very fast model. Moreover, clinical
data currently available is mainly on depolarisation times. For these reasons we
chose to base the presented work on the Eikonal models. Even if these models
are not able to precisely simulate the whole range of cardiac pathologies, they
open up possibilities for fast estimation, filtering (smoothing), interpolation and
extrapolation.

In [14], we presented an approach to simulate the Eikonal models with a Fast
Marching Method (FMM), in order to obtain very fast computations. While this
approach allowed us to take the front curvature influence into account, we could
not integrate the repolarisation in this approach. However, the repolarisation
is a very important phenomenon in many arrhythmias, for instance when the
Action Potential Duration (APD) variation creates reentry waves. Moreover, it
is often over several cycles that arrhythmias develop, and the FMM only solves
for separate cycles. Finally, this approach could not cope with the anisotropy of
the heart.

In this article we propose two important contributions in this fast model
framework. First, we propose a FMM that takes into account the anisotropy
of the medium in the computation of the propagation. Second, we introduce
the repolarisation phenomenon in order to be able to simulate multi-front
propagations.

3 The Anisotropic Fast Marching Method

3.1 The Fast Marching Method (FMM)

We first compare briefly the Eikonal approach to the PDE one. The classical
FMM [16] can be used to solve the following isotropic Eikonal equation:

F
√

∇T t∇T = 1
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where T is the arrival time and F the speed function (D is the identity ma-
trix in the isotropic case). In this method, points are separated in three sets:
UNKNOWN , TRIAL, and KNOWN , and the TRIAL set of points X is or-
dered along the increasing associated times T (X). N (X) is the neighbourhood
of X . In the initialisation step, all the points are put in UNKNOWN with a
time of +∞, starting points are put in KNOWN with a time of 0, and their
neighbours are updated. The FMM algorithm is described briefly in Algorithms 1
and 2.

Algorithm 1. Fast Marching Method
while TRIAL list is not empty do

X ← argminX∈TRIAL{T (X)}
remove X from TRIAL and add X to KNOWN
for all Xi ∈ N (X) and Xi /∈ KNOWN do

compute T (Xi) = UPDATE(Xi, X)
if Xi /∈ TRIAL then add Xi to TRIAL

end for
end while

Algorithm 2. Computation of T (Xi) = UPDATE(Xi, X) in a Triangulation
T (Xi) ← +∞
for all �(XXiY ) ∈ �X

Xi
= {�(XXiY )|Y ∈ N (Xi)} do

if Y ∈ KNOWN then
T (Xi) ← min{T (Xi), minp∈[0,1](T (X)p+T (Y )(1−p)+ [v(p)tD−1v(p)]1/2/F )}
where v(p) = −−→

XXip + −−→
Y Xi(1 − p)

else
T (Xi) ← min{T (Xi), T (X) + −−→

XXi
t
D−1−−→

XXi}
end if

end for

This implementation of the FMM is different from the original one which uses
an upwind discretisation of the gradient. We use here a closed-form solution of
the minimisation in triangles, which seems to be less sensitive to obtuse angles
than the original FMM (this has to be further studied.).

The Eikonal equation can be seen as an approximation for the computation
of the propagating front from reaction-diffusion PDEs. To better understand the
approximation, we present in Fig. 1 a comparison of the isochrones computed
by the FMM and the Aliev and Panfilov reaction-diffusion system to simulate
cardiac action potential [1]. The results from the different algorithms are pre-
sented on a triangulated square mesh with a center hole, composed of 13 000
nodes. The initialisation is in the bottom left corner. In this isotropic case, D is
the identity matrix.

In this case, the isochrones of the FMM are close to what is produced by the
PDE. One main difference is related to the boundary conditions. For the PDE,
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Fig. 1. (Left) Fast Marching on unstructured grid, (right) isochrones from the simu-
lated PDE. Red corresponds to small times, blue to large times. (Bottom) close up on
the top of the square to point out boundary condition differences effect.

these are Neumann boundary conditions, which impose the no-flux condition
at the boundary, whereas the Eikonal equation has no such constraints. This is
visible for instance at the top and right boundaries, where the PDE front is or-
thogonal to the edge and not the Eikonal one (see Fig. 1, bottom row, and around
the central hole). There are ways to introduce this in the Eikonal approach, but
this is still on going work on what are the proper boundary conditions for our
case, and whether this will impact the simulation to a great extent.

Another difference can arise from the fact that the travelling wave solution
of the PDE is only an asymptotic solution, whereas the Eikonal solution is di-
rectly in this stationnary state. This can be seen by varying the initialisation
parameters of the PDE (shape of the front at the initial time).

The travelling wave solution to the PDE is an asymptotic state (as time tends
to +∞), whose isochrones are approximately solutions to the Eikonal equation
(neglecting the effect of front curvature). Hence, part of the error between the
PDE isochrones and the Eikonal solution arises from the transient propagation
when the initial data for the PDE is chosen far from the asymptotic state.

The PDE system models a wide range of functional states (plane/spiral waves,
relations between front curvature, local APD and speed, adaptive response to a
periodic stimulation, etc), with the counterpart of complex parameter tuning and
numerical stability/cost issues. Although accounting for simpler situations, the
Eikonal model is clearly more adapted to our concern: fast computing compared
to very sparse/local measurements.

A more precise and quantitative evaluation of both the modeling and the
numerical approximation errors is on-going work.
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3.2 The Anisotropic Fast Marching

The anisotropic Eikonal equation can be written in the form of:

F
√

∇T tD∇T = 1

where D is the tensor creating anisotropy. Taking into account the anisotropy of
the propagation is important in many cases of excitable media. But introducing
this phenomenon in the FMM is not trivial. Indeed, the regular FMM uses
the collinearity between the gradient and the characteristic direction to solve
the equation very efficiently, but in the anisotropic case these directions do not
match anymore.

There have been many different ways proposed to solve such anisotropic equa-
tions using single-pass [15,7] or iterative [5,12] methods. We use here a new fast
algorithm for solving anisotropic Eikonal equation on general meshes without
increasing the neighborhood and following the characteristic direction similar
to single-pass methods [8]. The idea is to include a recursive correction scheme
taking into account the fact that, due to anisotropy, the immediate neighbor-
hood used for computation may not always contain the characteristic direction
at the time it is computed. To achieve this, an additional CHANGED list who
is also empty at the beginning and who will be used for the recursive correction
is introduced. This efficient algorithm, described in Algorithm 3, can cope with
very important anisotropies and can be applied to more general forms of static
convex Hamilton-Jacobi equations, and on Cartesian or unstructured grids. The
anisotropic FMM algorithm is not significantly longer to compute than the clas-
sical algorithm, especially in the case of non-extreme anisotropies. For instance
with a factor of three between longitudinal and transverse speeds, simulation on
the 13 000 nodes took less than one second (see Fig. 2).

Fig. 2. (Left) Classical Fast Marching on unstructured grid, (right) Anisotropic Fast
Marching (different colormap). The vertical speed is three times smaller than the hor-
izontal speed.
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Algorithm 3. Anisotropic Fast Marching
while TRIAL or CHANGED are not empty do

if CHANGED is not empty then
X ← argminX∈CHANGED{T (X)}
remove X from CHANGED

else
X ← argminX∈TRIAL{T (X)}
remove X from TRIAL and add X to KNOWN

end if
for all Xi ∈ N (X) and Xi ∈ KNOWN do

compute T (Xi) = UPDATE(Xi, X)
if T (Xi) < T (Xi) then

T (Xi) ← T (Xi)
add Xi to CHANGED list

end if
end for
for all Yi ∈ N (X) and Yi ∈ TRIAL ∪ UNKNOWN do

compute T (Yi) = UPDATE(Yi, X)
if Yi ∈ TRIAL and T (Yi) < T (Yi) then

T (Yi) ← T (Yi)
else if Yi ∈ UNKNOWN then

T (Yi) ← T (Yi)
remove Yi from UNKNOWN and add Yi to TRIAL

end if
end for

end while

4 A Multi-front Fast Marching Approach

The FMM is a static method to solve for an evolving front, in the sense that the
variable of the Eikonal equation is time. But in our simulation purpose, we can
have several fronts evolving at the same time, because points can go back to a
resting state, so they can be excited again before the first front disappeared.

The key idea is to introduce a time-stepping scheme while using the FMM
to compute the propagation during each time step. Our application context is
the Eikonal approximation of reaction-diffusion equations to simulate the prop-
agation in excitable media. In this context, the state of each point may vary
over time, for instance with a repolarisation state, when a point goes back to its
equilibrium state.

In order to achieve this, we have to introduce a refractory state, between the
excited and the equilibrium state, otherwise, any node going back to the equi-
librium would immediately be excited again by his neighbours still excited. This
is in agreement with natural phenomena, like nervous electrical action potential
propagation, where cells have this refractory period. The Multi-Front FMM is
described in algorithm 4.



166 M. Sermesant et al.

Algorithm 4. Multi-Front Fast Marching Algorithm on a period T

integratedT ime = 0.0
while integratedT ime < T do

elapsedT ime = 0.0
while TRIAL not empty and elapsedT ime < timeStep do

X ← argminX∈TRIAL{T (X)}
remove X from TRIAL and add X to KNOWN
for all Xi ∈ N (X) and Xi /∈ KNOWN do

compute T (Xi) = UPDATE(Xi, X)
if Xi /∈ TRIAL then add Xi to TRIAL
elapsedT ime = T (Xi) − integratedT ime

end for
for all X ∈ KNOWN do

if elapsedT ime − T (X) > APD(X) then
remove X from KNOWN and add X to REFRACTORY
RepolarisationT ime(X) ← T (X) + APD(X)

end if
end for
for all X ∈ REFRACTORY do

if elapsedT ime − RepolarisationT ime(X) > RefractoryPeriod(X) then
remove X from REFRACTORY and add X to UNKNOWN

end if
end for

end while
integratedT ime+ = timeStep

end while

Fig. 3. (Left) Impulse train with the Multi-Front Fast Marching (anisotropic case).
Excited vertices are in red and refractory vertices are in yellow. (Right) Corresponding
isochrones with a reduced frequency to increase visibility.

This Multi-Front FMM is able to simulate an impulse train on a piece of
excitable media (see Fig. 3, left). The visualised progressing front is not very
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smooth, because it corresponds to an isochrone still being computed, but after
the front, the resulting isochrones are smooth (see Fig. 3, right). Visualisation
work still has to be made to improve this.

The computation speed can be adjusted by choosing the frequency at which
the display must be updated (corresponding to the “time step” in this scheme).
On recent computers and with smaller meshes (1000 nodes), such surface simu-
lations could be done in “real-time”: no synchronisation was done to ensure the
timing of the simulation, but it was visually checked that with 30 frames per
cycle, the computation time was below one second (one heart cycle is a bit less
than a second).

5 Cardiac Electrophysiology Simulation

The presented algorithm was used to simulate transmembrane potential propa-
gation in cardiac tissue. The idea is to compute the depolarization time using
the Multi-Front Anisotropic FMM. Then, when a given vertex is depolarised, we
use the time-stepping to know when the vertex goes into repolarisation and then
refractory period, and when it is excitable again. We can thus show a pseudo
transmembrane potential, which is at 10 mV when the vertex is depolarised
(red), and -90 mV when it is excitable (blue).

Fig. 4. Normal propagation on the epicardium, with an apical epicardial pacing. Black
lines represent the fibre orientations. (Left) pseudo transmembrane potential. (Right)
simulated isochrones.

We compute in a continuous way the propagation of different finite states.
Compared to previous approaches in propagation simulation, it could be seen
as a kind of “continuous cellular automaton”: the states are discrete but the
propagation is continuous.

We used this algorithm to simulate epicardial propagation of the Action Po-
tential. As fibre orientation is tangential on the epicardium, and we simulate an
epicardial pacing, this surface model can be seen as an approximation of the 3D
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Fig. 5. Simulation of a scar with 10% of normal conductivity. Black lines repre-
sent the fibre orientations. (Left) pseudo transmembrane potential. (Right) simulated
isochrones.

propagation (see Fig. 4). We integrate fibre orientations from DTI measurements.
The depolarisation speed is 3 times faster along the fibre than transversally.

Low conductivity areas can also be added. For instance, a scarred area created
with a conductivity of 10% of the normal conductivity was simulated, see Fig. 5.

These are just exemplar simulations, computed on a very crude mesh (248
points). The accurate simulation of arrhythmias needs to take into account the
full 3D nature of the propagation and deal carefully with any discretisation
approximation issues. We also need a thorough comparison between measured
isochrones and simulated ones from a PDE or Fast Marching approach for patho-
logical cases in order to fully validate the behaviour of these models.

6 Conclusion

We presented a new algorithm to achieve real-time simulations of cardiac elec-
trophysiology. This model opens up possibilities for real-time filtering and inter-
polation of sparse and noisy catheter-based electrophysiology recordings, which
could provide a better evaluation of pathology and planning of the therapy. An
excellent example application is the planning of radio-frequency ablation. Such
a real-time model could be embedded in an intervention simulator to test several
ablation strategies.

Future work includes extension to volumetric propagation and reintroducing
the influence of the curvature of the front on the propagation speed. The use
of a restitution curve is quite straightforward in this framework, but having a
relative refractory period will need a more precisely described action potential.
Visualisation can be improved in order to have a smoother front by using already
computed isochrones. Validation of this model should lead to the integration
of simulated isochrones within XMR interventional data, that combine patient
anatomy and electrophysiology mapping [13].
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Abstract. Solution in simulation of cardiac excitation anisotropic propagation 
throughout the ventricular myocardium is computationally very expensive that 
demands the introduction of a high performance computing techniques. In this 
study, a canine ventricle model was constructed features a realistic anatomical 
structure, including intramural fiber rotation and a conduction system. By using 
operator-splitting scheme, adaptive time step and backward differentiation 
formulation techniques in a parallel implement, we solved mondomain equation 
successfully. The stimulation produced isochrone’s map is close to the clinical 
record that obtained from the non-contact mapping system of Ensite 3000. The 
results show that the proposed methods can successfully be used to simulate 
heart excitation anisotropic propagation in three-dimensional anatomical large 
tissue size. 

Keywords: Parallel computation, Cardiac excitation propagation, Simulation. 

1   Introduction 

Arrhythmias are electrical disorganized disturbances in the heart, which is life 
threatening in severe condition. The process of understanding these special rhythms 
must begin with a thorough comprehension of the normal spread of activation in the 
heart. Experimental techniques, including recordings with microelectrodes and 
extracellular electrodes, even non-contract mapping system can provide lots of useful 
information. However, each technique is associated with its own set of complications 
and limitations [1]. A ventricular model that can produce a correct normal activation 
sequence provides a desirable alternative tool for simulating pathological conditions, 
such as ischemia, infarction or ventricular arrhythmias [2]. Such a model must feature 
a realistic anatomical structure, including intramural fiber rotation and a conduction 
system. While it is not necessary that models completely replicate experiments, they 
must be sufficiently accurate and realistic such that, at most, their predictions can be 
used to adequately design subsequent experiments or procedures[1]. In this sense, 
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models are likely to become further integrated with experiments, providing a more 
efficient means for testing hypotheses and for investigating the impact of novel 
therapies [2]. 

Reaction-diffusion equations have been widely used to characterize myocardial 
physiological propagation and electrical behavior in several species including mouse 
[3], rabbit [4], canine [5] and human [6]. Because the bidomain equations are 
computationally very expensive, the complexity of the cardiac models demands the 
introduction of a high performance computing techniques [7]. In this study, we first 
give a brief introduction to the bidomain model, and how it may be reduced to the 
monodomain model. We then describe the numerical methods used in simulation of 
cardiac excitation propagation, and finally present simulation results and performance 
analysis.  

2   Materials and Methods 

2.1   Anatomy and Fiber/Tissue Properties  

An intact canine heart was underwent diffusion tensor magnetic resonance imaging 
(DTMRI) in a 7.1 T MRI scanner at the Duke University Medical Center for In Vivo 
Microscopy to obtain both the geometry (see Fig. 1A, B) and fiber orientation  
(see Fig. 1G, H) [8]. At each pixel of the DTMRI an average fiber orientation was 

 

 

Fig. 1. Three-dimensional view of the dog ventricle anatomical model. The left panel (A, B) 
shows 3D view of the whole ventricle scanned from DTMIR at Duke University Center 
visualized by Volview® 2.0 and the next panel C displays view of the cardiac papillary tissue 
with manual segment, the panel D displays the initial activation points (Purkinje–myocardial 
junction sites) set according to the known anatomical structure of canine heart. Panel E, F show 
the selected cardiac tissue for final simulation. The right view G, H displays the fiber angles  
(G is front view, H is right view). 
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obtained. These data were segmented into a hexahedral mesh, consisting of cardiac 
tissue and cavities (see Fig. 1E). The spatial discrete matrix size of the original data is 
256×128×128 corresponds to pixel size of 0.39 × 0.78 × 0.78mm. The data was 
manual segmented to functional modules according to the known anatomical structure 
of canine heart (see Fig. 1F) [9]. His bundle and initial activation points (Purkinje 
network–myocardial junction sites) are shown in Fig. 1D. Cardiac tissue was assumed 
to be anisotropic. Conductivities along (Gl=3.82ms/cm) and across (Gt=1.25ms/cm) 
cardiac muscle were chosen to reproduce normal canine conduction velocities, which 
were approximately 0.41m/s along fibers and 0.15m/s across fibers [10] 
physiologically. 

2.2   Modeling Cardiac Electrophysiology 

Basic ventricular cell model. In this study, the dynamic ionic model developed by 
Winslow et al. [11] is used. The model includes different ionic channel currents, 
described by the following differential equations: 

1
( )m

x app
m

dV
I I

dt C
= − +∑  

(1) 

( )x x m xI G V E= ⋅ −  ,  (2) 

where Ix is the current flow through the ion channel x, Gx is the conductance of the 
channel and Ex is the reversal potential for the channel.  

Reaction-diffusion equations. Governing equations of bidomain model applied in 
heart is formed with the parabolic (3) and elliptic (4) equations:  
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They can be simplified by the assumption of equal anisotropy (Eq.(5)), treating 
heart as homogeneous isotropic medium. 
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The resulting parabolic equation is known as the monodomain equation (6), details 
about bidomain theory can be found in Ref. [12]. In order to solve the monodomain 
equations, an initial equation (7) as well as boundary conditions (8) is required: 

( ), 0 ( )V x t V x= =  (7) 

( ), 0 0n V x t⋅ = = . (8) 
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2.3   Numerical Considerations 

The equations of monodomain model were solved numerically using operator-
splitting scheme technique in a parallel implement. Equations describing the state 
variables were updated with a fixed time step of 10μs by using backward 
differentiation formulation (BDF), which is a popular multi-step method for solving 
stiff ODEs. First, we introduce a temporal discretization of the time intervals. Let Δt 
be the global time step or the time interval between each integration process and M be 
an even number of fractional time steps. Define Δt’=Δt/M as the fractional diffusion 
time step. We set the discretization parameters as Δt =10μs, M=20, Dx=0.39mm and 
the tolerance for the ODE solver is set to 10-6, other parameters were set as follows: k 
= 3, Cm = 1 �F/cm2, � = 1000 cm-1. The equations can be solved in the following steps: 

1. Assume we know the value of xn, yn, and Vm
n at tn. 

2. Compute Vm
n+1/2 in H by solving the parabolic equation (Eq.(6)) using a step size 

Δt’ repeated M/2 times. (Eq.(9) for monodomain) 

3. Compute xn+1, yn+1 by solving the ODEs of the cell model using backward 
differentiation formulation (BDF) based on an integration package called VODE 
(Variable coefficient ODE solver) [13], in which xn+1 represents gating variables, 
yn+1 represents Iion.  

4. Compute Vm
n+1 in H by solving the parabolic equation (Eq. (6)) (Same to step 2).  

2.4   Parallelization Strategy 

Computer Architectures. All the simulations are performed on a cluster of 
networked Dell Precision WorkStation 670 System (2R) which is a distributed share 
memory systems inter-connected by a 100 Mbit/s ethernet network. Each node 
consists of two 3.0GHz Xeon® processors and 4GB of shared memory as shown in 
Fig. 2A. The implementation achieves parallelism by utilizing message-passing 
protocol for communication among nodes in a MPICH domain built by Windows 
Server 2003 running MPICH2 Parallel Environment and Compaq Visual Fortran 
v6.6.c. 

Domain Decomposition. The data parallelism paradigm is being employed where 
different processors perform the same function on different parts of the data. Be 
restricted by the memory and parallel technique, the spatial discrete geometrical 
matrix size had to be reduced from original 256×128×128 to 113×128×128 by 
sampling slice in long-axis (see Fig.  2C) along which the domain decomposition was 
performed (see Fig. 2D). The volume of the data matrix comprised 398,446 nodes 
(18.9% of the total number mesh points). Optimizing load balancing method was used 
to generate more efficient computational sub domain (see Fig. 2D). 

Parallization using MPI. Solving the diffusion term or spatial current of each 
computational grid point requires the membrane potential from its nearest neighbor at 
every iterative beginning, which forms an 18-point stencil as shown in Fig. 2B. For 
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the grid points within a sub domain, this information is available in the node shared 
memory. For the grid points on the boundary of the sub domain, the information must 
be retrieved from adjacent sub domains before iteration (see Fig. 2E). 
 

 

Fig. 2. Three-dimension view of the parallelization strategy. The panel A shows the distributed 
shared memory system consists of a set of nodes each with a main memory shared by the 
resident processors, and communication between nodes is accomplished via message-passing 
protocol. The next panel B displays view of the node points in three-dimensional, rectangular, 
equidistant mesh. The center of the sub-volume is node point xi,j,k. The mesh is applied in 
conjunction with the finite differences method for discretization of bidomain equation. After 
that panel C displays the ventricle immersed in a finite difference grid, domain decomposition 
scheme partition the volume into sub domains (panel D) and distribute these blocks of short-
axis sections to three SMP nodes for load balance (panel E). 

3   Results 

3.1   Simulations of Normal Activation of the Ventricles 

Before the simulation work beginning, a clinical non-contact mapping of left ventricle 
in canine was prepared for validation. A deflectable catheter (Biosense Webster) was 
introduced into the chamber via the right femoral artery to sweep throughout the 
canine LV to establish three-dimensional endocardial geometry. After that, the normal 
sinus activation was recorded with isochronal maps (Fig. 3C). The activation of the 
left ventricle was analyzed using a filter setting of 8 Hz; A stimulus current with 
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Fig. 3. Isochrones of simulated normal activation of the ventricles. The panel A shows 3D 
isochrones in different view of ventricle, and the panel B view displays the activation 
isochrones on slices of the tissue in the different direction. Panel C shows an isochronal map of 
left ventricle in single sinus activation mapping with EnSite 3000 System. The colors indicate 
the timing of activation, with white representing the earliest activation and purple representing 
the latest. 

magnitude 100 μA/cm2 was applied to the start of the His bundle located in the first 
layer perpendicular to the long axis of our heart model with duration of 0.5 ms to 
initiate propagation. Physiologically, these sites are cardiac cells that are first 
activated during the cardiac cycle. The Purkinje cells location was adjusted according 
to physiological conditions. This procedure was repeated until the stimulation 
produced isochrone’s maps similar to clinical mapping. Our simulation results  
(Fig. 3A, B) shown the activation begin in mid-posterior septum and then propagated 
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to close area. The posterior wall, near the mitral valve (MV), is the latest activated 
area, which is closed to the mapping isochronal map of left ventricle in single sinus 
activation.  

3.2   Performance of Parallelization Simulation 

Generally, reducing the communications to the minimum and balancing the load 
among all processors is two of the most important aspects of a successful 
parallelization. The performance of this parallel computational model was tested by 
running 50 ms of simulation with WRJ cellular electrophysiological model. 

Here, communication time (Tcomm) is defined as time spent on exchanging short axis 
sections of data between nodes. Computation time (Tcomp) accounted for all 
calculations involved in solving the monodomain equation. Efficiency and scaled 
speedup are defined as follows: 
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Fig. 4 shows the efficiency and the scaled speedup of the parallel program as N 
numbers of computational nodes were used. Both the decrease in efficiency and the 
increase in speedup have a linear relationship with the number of nodes 
approximately. The system reaches a speedup of 9.37 and 60.1% of efficiency with 16 
processors. Since the time cost of passing data between adjacent is fixed involved cost 
in top and bottom slices in each sub domain, it is independent with the number of the 
computational unit. Therefore, although the increased nodes will speedup 
computation time, the fixed cost time in communication possess a more proportion in 
total time. Thus result in a decreased efficiency which are coherent with the 
parallelization strategy employed. In this condition, the best way to hold the 
efficiency is to decrease the passing data and upgrade the bandwidth of the network 
inter-connected.  

On the other hand, as shown in Table.1, although the total time cost in simulation 
implements speedup when we used more parallel computational unit, the max load 
imbalance rate got worse. Imbalance loading may result in inefficiency as processors 
with less work have to wait idly for the others at the synchronization point. If all of 
the myocardium points could be distributed among the SMP nodes equally, a high 
degree of load balance would be achieved and the efficiency can be improved. 
However, this is very difficult in simulation implement when using geometrical 
parallelization. Matrix parallelization and matrix preconditioned method is used well 
 



 Parallel Solution in Simulation of Cardiac Excitation Anisotropic Propagation 177 

in solving the full bidomain equations [7]. In this paper, we focus on solving 
mondomain equation to simulation the excitation sequence, in which we can avoid 
solving elliptic equation, and therefore, geometrical parallelization is implemented 
more easily. 

Table 1. Efficiency and scaled speedup computed from computation, communication 

N Tcomm (s) Tcomp (s) Efficiency 
Load 

Imbalance Rate 
1 0 139492 100% 0 
2 1988 69742 97.2% 0.9843% 
4 5423 37873 88.5% 3.3209% 
6 5631 21311 79.1% 5.2193% 
8 5806 16698 75.7% 6.5355% 

10 5845 13386 69.6% 6.7563% 
12 5912 11590 66.2% 13.1072% 
16 5945 8949 60.1% 14.2037% 
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Fig. 4. Scaled speedup varies nearly linearly with increasing number of nodes 

In this test, the load imbalance rate was calculated in each condition, results show 
that load imbalance rate increased to 6.7563% when 10 nodes were used in which the 
amount of 7.25 times speedup achieved. The load imbalance rate increases with the 
node number increases as shown in Table.1. Therefore, when using geometrical 
parallelization we must survey both the communications and load imbalance rate 
together to decide the best solution. In our case, the most economical selection of the 
processors unit should be kept no more 12. In addition, Table.1 for 2 nodes  
(Dual-Core CPU) condition shown the exchange of data among processors via shared 
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memory is faster than message passing. If the network condition could be improved 
or using multiprocessor shared memory system, the larger scale of parallelization is 
preferred.  

4   Conclusion 

This paper presented a complete parallel system implementation for the simulation of 
cardiac excitation anisotropic propagation on a three dimensional ventricular cardiac 
tissue with both the actual geometry and fiber orientation. The numerical kernel of the 
simulation process is combining the advantage of operator-splitting scheme, adaptive 
time step and backward differentiation formulation to give a better scheme for solving 
reaction-diffusion parabolic equations. The simulated heart excitation anisotropic 
propagation is validated and it suggests that such method may provide a good basis 
for heart simulation research in a more physiologically way. In this sense, the model 
is likely to become further integrated with experiments, providing a more efficient 
means for testing hypotheses and for investigating the impact of novel therapies. 
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Abstract. To investigate the mechanisms underlying the initiation and
propagation of intracellularCa2+ waves,wedeveloped a three-dimensional
ventricular E-Cell (3Dv E-Cell), where cell membrane, nucleus, ryanodine
receptor clusters, Z-disk, cytoplasm are modeled as spatially distributed
structures. For the simulation of Ca2+ sparks and Ca2+ diffusion, a mod-
ified Fire-Diffuse-Fire model is used with stochastic rules for triggering
Ca2+ release. The 3Dv E-Cell is used to illustrate how stochastic proper-
ties of Ca2+ sparks can lead to complex spatio-temporal intracellular wave
processes and allows the incorporation of spatial data sets (protein distri-
bution) into the geometry.

1 Introduction

Intracellular Ca2+ is responsible for regulating diverse cellular events, such as
excitation-contraction coupling in muscle cells, gene expression, and secretion [1].
Changes in Ca2+ level can occur in microseconds (eg. ionic flow), milliseconds
(eg. channel kinetics), seconds (eg. contractions) or hours (eg. remodelling), and
can be microscoply localized, or propagate throughout cells and tissues [2]. Intra-
cellular Ca2+ is supplied through Ca2+ channels from external cellular space,
and also released from internal stores: sarcoplasmic reticulum (SR) in muscle
cells or endoplasmic reticulum (ER) in other cells. In response to changes in
membrane potential or stimulation, a variety of calcium systems are involved,
such as L-type Calcium Channels (LCCs), Ryanodine Receptors (RyRs), Na/Ca
exchange system (NCX), ATP-driven calcium pump, cytosolic calcium buffers,
Inositol 1,4,5-trisphosphate (IP3) signaling pathway. RyRs and IP3s are are non-
selective, high-conductance calcium release channels to SR or ER that contain
very high concentrations of calcium. The spatially localized distribution of RyRs
provides structural matrix for local control of calcium release units (CRUs) by
LCCs, and is a strong determinant of Ca2+ wave initiation [3].

Ca2+ induced Ca2+ release (CICR) is a phenomenon where a small elevation
in cytosolic Ca2+ leads to a larger release of Ca2+ from the internal stores, SR
or ER. Ca2+ sparks, discovered by Cheng et al via confocal microfluorimetry
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Fig. 1. Intracellular calcium dynamics and the mechanism of CICR. (a) During cell
membrane depolarization, large amount of calcium is released from internal stores
(Junctional SR, JSR) by JRyR. The cytosolic calcium diffusion is retarded by calcium
buffers and also mitochondrias. Released calcium from JSR will then be removed by
pumping back to (Network SR, NSR) by Jpump, and also be removed out of the cell by
NCX. (b) shows a more detailed illustration of CICR, where small amount of calcium
release from LCCs activated RyR subtype 2 RyR2 located at the surface of JSR, and
leads to much large amount release of calcium, JRyR.

[4], are the elementary Ca2+ release events from internal stores. They occur
spontaneously and randomly from discrete, localized Ca2+ release sites, and
summation of Ca2+ sparks give rise to the global Ca2+ transient, which activate
the contractile myofilament. The spread of Ca2+ is greatly retarded by buffers,
such as calmodulin and troponin C, therefore, CICR provides a way to amplify
the microscopic initiation events into propagating Ca2+ signals to reach other
initiation sites, such as neighboring RyRs. Ca2+ waves propagate throughout
the cell, with conduction velocity of around 100 μm/s [6]. The relation between
Ca2+ sparks and Ca2+ waves is complicated by cell structure, asymmetric spatial
distribution of RyR clusters, anisotropic diffusion of Ca2+, Ca2+ sensitivity of
CRUs, Ca2+ buffers, and strength of Ca2+ current required to generate Ca2+

sparks.
Launched in 1996, E-Cell project is aiming to model and reconstruct biolog-

ical phenomena in silico, and simulate cell behavior by numerically integrating
the differential equations described implicitly in these reaction rules [7]. Most
models of Ca2+ waves in cardiac muscles have CICR as the basic mechanism
that is integrated with stochastic Ca2+ release of RyRs and anisotropy in diffu-
sion. Simulation studies have been extended to two-dimensional (2D) space to
reproduce spatio-temporal wave patterns [6] [8] , and also 3D spaces with details
of subcellular structures [9]. However, we need to incorporate both 3D geometry
and the stochastic nature of Ca2+ wave initiation and propagation. For example,
in 2D models, calcium from SR will be released into a 2D region rather than
a 3D subspace, and potentially lead to inaccurate estimates of release current
strength [6]; besides, deterministic models use a fixed release threshold and so
do not reproduce the stochastic aspect of calcium sparks (magnitude, duration )
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[9]. In 2006, Izu et al. studied 3D interation between two neighboring z-disk of a
sarcomere [3], here we extend the study and construct a three dimensional (3D)
cardiac cell model that is coupled with stochastic intracellular Ca2+ dynamics.

We present a first generation 3D ventricular e-cell (3Dv E-Cell) with stochastic
triggering of Ca2+ release to study spatio-temporal behaviors of Ca2+ sparks
and intracellular Ca2+ waves, where the cell membrane, nucleus, cytoplasm,
Ryanodine receptor clusters, Z-disk are modelled as spatially distributed struc-
tures. A modified Fire-Diffuse-Fire (FDF) model is used to mimic the biophysical
properties of the cardiac ventricular cell.

Fig. 2. (a) Confocal microscopic images of the rat ventricular cell with Ca2+ channel
labeled by fluorescein isothiocyanate with the resolution of 0.5 μm, where the scale
bar is 10 μm. (b) trasversal section of a piece of rat ventricular tissue. (c) we idealised
the geometry of myocytes illustrated in (a) by a simple cylinder with semitransparent
membrane and nucleus. (d) the visualization of 3D spatial distribution of RyR clusters.

2 Methods

2.1 Cell Geometry

The geometry of the 3Dv E-Cell is taken as a cylinder with diameter of 16
μm and length of 100 μm with the space step of 0.2 μm, which gives a 80 by
80 by 500 3D matrix with 3.2 million grid points. Following Ye Chen-Izu et
al’s measurements [10], the resting state spacing between neighboring Z-disks is
1.87±0.18 μm. RyR clusters are represented as individual grid points irregularly
distributed on each Z-disk with the transverse spacing of 1.05±0.44 μm and the
longitudinal spacing of 0.83±0.31 μm. The peripheral spacing of RyR clusters
is 1.97±0.42 μm, in the 3Dv E-Cell we use the density of around 0.4/μm2 for
cell surface. This nucleus has a diameter of 5.0 μm and a length of 10.0 μm,
and its center is located 20.0 μm from the end, and 5.0 μm from the surface of
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the cell. The 3Dv E-Cell is segmented into cell membrane, cytoplasm, Z-disk,
RyR clusters, nucleus, and each grid point is identified by a label acorrding
to the segmentation. Grid points with the same label have same dynamics for
simulation. Preliminary studies used a 2D model with width of 28.0 μm and
height of 100.0 μm, which gives a 140 by 500 lattice with 70000 grid points, see
Fig. 3-6.

2.2 Mathmatical Model of Ca2+ Sparks and Waves

We start with the FDF model of Smith et al [11], where a wave propagates by
sequentially triggering Ca2+ sparks by diffusion. Once a RyR cluster fires, Ca2+

released diffuses to its nearest firing neighbors. A local wave may or may not
be initiated dependent on the Ca2+ release strength and duration by Calcium
Release Unit (CRU), diffusion coefficient, the cytosolic buffering system, calcium
sensitivity, and spatial distribution of RyRs. After Ca2+ release the CRU enters
refractory period. The mathematical description of Ca2+ sparks and calcium
waves is a set of reaction-diffusion equations (1)-(8), based on Izu et al [6]. This
simple model considers the exchange between the cytoplasm and the SR, and
neglects Ca2+ flux through the cellular membrane. The diffusion coefficient Dc

for free calcium is anisotropic, and we use 300 μm2/s for long axis direction
(along the cell) and 150 μm2/s for other directions (x, y). Ca2+ release from SR
is modeled as a point source, where iCa is the magnitude of a Ca2+ source that
is sharply peaked at the origin [11]. In other words, the point source represents a
calcium current iCa for a time τ , and total amount of calcium released equals to
σRyR×τ . Both the strength of Ca2+ release and duration are important in the
development of localised Ca2+ sparks or propagating waves. The standard Ca2+

release in this paper is equivalent to a 10 ms pulse (τ) with the strength of 2pA
(iCa). Ca2+ buffers, internal stores are considered to be uniformly distributed
over the geometry.

∂
[
Ca2+

]

∂t
= ∇ ·

(
Dc∇

[
Ca2+])

+ Jsum (1)

where
Jsum = JRyR + Jbuffers − Jpump + Jleak (2)

JRyR = σRyRδ (r) , σRyR =
iCa

2F
(3)

Jbuffers =
∑

n

Jn, (4)

Jpump =
vpump

[
Ca2+

]m

Km
pump + [Ca2+]m

(5)

Jleak = Jpump (c0) (6)
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with
∂ [CaBn]

∂t
= −Jn (7)

Jn = −k+
n

[
Ca2+]

([Bn]T − [CaBn]) + k−
n [CaBn] (8)

n in Equation (4)(7)(8) is the index of buffers, see Table 1.

Table 1. Ca2+ buffers

k+
n k−

n [Bn]T Kn

μM−1/s s−1 μM μM

Calmodulin 100 38 24 0.38
Troponin C 39 20 70 0.51

In our cell model, discrete RyR clusters are irregularly distributed at Z-disks,
see Figure 2(d), and their probability to fire is governed by probability function P,
based on Ca2+ concentration, and also the Ca2+ sensitivity factor Kposs. For any
given Ca2+ sensitivity factor, higher Ca2+ concentration always indicates higher
firing probability. For each timestep during simulation, a uniformly distributed
random number urand between 0 and 1 is compared with result from probability
function to decide either or not CRUs will fire. As described below, state function
S for a CRU defines the state of resting or firing, and can only either be 0 or 1.
Here, we use T M

N to define the Nth sparks at site M .

S ∈ {0, 1} (9)

P[Ca2+] =

[
Ca2+

]n

Kn
poss + [Ca2+]n

(10)

S (P ) = 1, ifP[Ca2+](rN ,t) > urand, T
M
N > T M−1

N + τR (11)

Table 2. Model parameters

Parameter Standard Value Definition
Dc 300μm2/s z, 150μm2/s x,y Ca2+ diffusion coefficient
τ 10 ms Open time of calcium release unit
iCa 2pA Amplitude of elemental Ca2+ release
F 96500 C/mol Farady’s constant
vpump 200 μM/s Maximum SR pump rate
Kpump 0.184 μM SR pump Michaelis constant
m 4.0 Pump hill coefficient
n 1.6 Hill coefficient for PCa2+

c0 0.10 μM Background calcium concentration
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2.3 Numerical Methods

Unless indicated otherwise, for all the simulations, we used a finite difference
method with the space step of 0.2 μm and time step of 10 μs. Zero-flux boundary
conditions are implemented by setting the values of Ca2+ concentration for the
gridpoints on the boundary equal to those for their immediate internal neighbors.
Simulations are performed on SunBlade 2000 workstations. The initial conditions
are set to be at rest, with calcium background concentration (c0 = 0.10 μM),
see Table 2 for all the parameters.

3 Results

3.1 Normal Cell Excitaion

In ventricular tissue driven by the normal sinus rhythm, ventricular cells are ex-
cited by currents due to the propagating action potential wavefront. Membrane
excitation triggers contraction via excitation-contraction coupling [2]. The 3D
distribution of RyR clusters is the intracellular grid for Ca2+ signals, allow-
ing coupling of localized and whole cell Ca2+ changes. A normal excitation of
the cardiac cell produces the membrane depolarization of the action potential.
Ca2+ influxes (Ca2+ current through channels) prodominantly in the T tubules
activate most of the CRUs and incur SR releases, then free cytosolic calcium
concentration arises uniformly throughout the cell. During the refractory stage,
RyR clusters remain inactivate, Ca2+ is pumped out of the cell by NCX or back
into the internal store SR by Jpump, restoring the resting state.

The magnitude of Ca2+ sparks depends on the strength and duration of Ca2+

release from internal stores, see Fig. 3(b)(c). Ca2+ sensitivity also plays a crucial
role in formation of calcium sparks and wave. In Fig. 3(d), pseudo multi linescans
of transverse section of the cell are recorded under different conditions, such
as normal excitation following membrane depolarization, spontaneous travelling
Ca2+ wave, resting cell with sparse, and localised Ca2+ sparks.

3.2 Planar Ca2+ Waves

Traveling waves are commonly observed in excitable media. Under centain condi-
tions, Ca2+ waves can propagate throughout the cell. The spatial propagation of
Ca2+ waves have been observed in a variety of cell types, and imaged by confocal
microscopy with fluorescent calcium indicators [12] [13]. When a cell becomes
overloaded with Ca2+, a wavefront of intracellular Ca2+ may be evoked, or may
develop spontaneously.

Spontaneous local Ca2+ release occurs in the 3Dv E-Cell when the Ca2+

sensitivity Kposs is high , i.e. RyR clusters have a high probability of opening,
even when the Ca2+ concentration is low. If the calcium sensitivity is low, a
spontaneous local calcium wave will only occur in the 3Dv E-Cell if calcium
concentration is high (about 50 μM), or the magnitude of iCa is high, or release
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Fig. 3. (a) Ca2+ concentration curve at 0.6μm (from the point source) during calcium
sparks with τ = 1ms, 2ms, 50ms, 10ms, 20ms, 50ms. Decay time is relatively fast
compared to previous simulation studies, which could be due to the lack of calcium
dye and different recruited buffers in this model. (b) Ca2+ concentration curve at
0.6μm during calcium sparks with iCa = 0.2pA, 0.5pA, 1pA, 2pA, 4pA, 10pA. (c)
Pseudo line scans of Ca2+ concentration on 50μm space (with transverse spacing of
RyRs) for 1 second, where (Top) iCa = 4.5pA, Kposs = 400μM, a uniformed calcium
elevation is applied at t = 100ms, (middle) iCa = 4.5pA, Kposs = 200μM, once a CRU
fires, most of the rest CRUs fires consequently and lead to a relative stable solitary
wave, (bottom)iCa = 2pA, Kposs = 800μM, only sparse, localized calcium sparks can
be observed.

Fig. 4. Simulations of planar Ca2+ waves. (a) Solitary Ca2+ wave propagates through-
out the cell,(b) Ca2+ waves initated at both ends of the cell, travel towards each other,
and finally collide and annihilate, (c) 3D simulation of solitary wave initiated in one
end with iCa = 8.0, Kposs= 1000μM. (d) Stimulus applied at both ends of the cell with
iCa = 5.0, Kposs= 800μM, waves fail to propagate due to relatively small release cur-
rent iCa. (e) Releationship between iCa and the Ca2+ planar wave conduction velocity
(CV).
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duration τ is long. To evoke calcium waves in the 3Dv E-Cell we use a low
calcium sensitivity to avoid spontaneous initiation, and a high (8pA) iCa. The
evoked calcium waves propagate without decrement, and annihilate on collision.

3.3 Microscopic Re-entrant Waves

Microscopic re-entrant Ca2+ waves have been observed inside cardiac cells [12].
Re-entrant spiral wave can be initiated in a 2D excitable medium model by a
number of methods: S1-S2 protocol, wave cutting and propagation through het-
erogeneity or around obstacles. In our simulations, due to relative long refractory
period and the geometry of the cell, although re-entrant Ca2+ waves can been
initiated, the 2DVe-cell is not large enough to sustain a free spiral. However,
nucleus does not actively participate in the CICR and has a lower diffusion co-
efficient compared to cytoplasm [8]. Such as obstacle allows the same wave to

Fig. 5. Formation of microscopic spiral waves due to the nucleus. A Ca2+ wave is
initiated close to the nucleus with iCa = 5.0pA, Kposs = 800μM, τ = 10ms, τR =
350ms. Ca2+ wave propagates along the nucleus due to the existance of the obstacle,
and then lead to a microscopic spiral wave.

Fig. 6. Stochastic calcium release with different calcium sensitivity in 2D and 3D. (a)
With high calcium sensitivity, where Kposs = 50μM, most of CRUs fire in less than
45ms, and enter the refractory period almost synchronously afterwards. The cell is back
to resting status at around 500ms. (b) with medium calcium sensitivity, where Kposs

= 400μM, at t = 50ms, there are three identified local caclium wave spontaneously
initiated, and then evoke their neighbors to fire. Most of the CRUs enter the refractory
period at around 220ms, and the cell returns to resting stage around 700ms. (c) Number
of firing CRUs against time curve with Kposs = 25μM, 200μM, 400μM in the first
200ms.
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return on other side of the nucleus, giving rise to an intracellular micro re-entry.
In Fig. 5, microscopic spiral waves are illustrated when a local calcium wave
initiated close to cell nuleus.

3.4 Calcium Sensitivity

The firing probability of the CRUs of the 3Dv E-Cell under the same free Ca2+

concentration increases with Ca2+ sensitivity Kposs. As Kposs is increased, spon-
taneous release becomes synchronised - see Fig. 6. This synchronisation can lead
to auto-oscillatory activity. As Kposs is decreased in the 3Dv E-Cell, the global
cell synchronisation breaks down into different intracellular domains. As Kposs is
decreased, it is apparent that RyR clusters on the same Z-disk tend to synchro-
nise more readiliy than between z disks, leading to a quasi-saltatory propagation
of calcium waves along the cell.

At low Kposs, localised, discrete Ca2+ sparks occur intermittently, and occa-
sionally lead to larger events - spatially restricted calcium waves that are confined
to a small microdomain. These low Kposs pheneomena model the activity of the
normal resting ventricular cell.

4 Conclusions

Here we introduce a 3D ventricular e-cell (3Dv E-Cell) implemented with stochas-
tic triggering of Ca2+ release from SR, and studied Ca2+ sparks and the initiation
of spatio temporal patterns of intracellular Ca2+ waves. When the cardiac cell has
normal Ca2+ sensitivity, the stochastic model can produce localized Ca2+ sparks,
but fail to produce local waves, even applied stimulus just above the normal thresh-
old. With high Ca2+ sensitivity, the virtual cell can demonstrate calcium oscilla-
tions, and the RyR clusters fire in concert. The nucleus can act as an obstacle, and
lead to intracellular re-entrant calcium waves.

The 3Dv E-Cell provides a platform within which local control models of Ca2+

release can be embedded, and more biophysicallly detailed representations of
CRU stochasticity, and can be coupled with current generation cellular excitation
models, eg. [14] [15].

In addition to allowing the dissection, in space and time, of the effects of
different intracellular mechanisms, the 3Dv E-Cell can be developed to interact
with experimental data from different individual cell. The constructed geometry -
say the spatial distribution of RyR clusters - can readily be replaced by importing
confocal imaging data stacks, to allow the 3Dv E-Cell to simulate data from
individual single cell experiments, and to be modified for ventricular myocytes
from different species.

Aknowledgement

P. Li is supported by ORSAS, Tetley and Lupton scholarship and CVCP IRS
(International Research Scholarship). This work was supported by the Euro-
pean Union through the Network of Excellence BioSim, Contract No. LSHB-CT-
2004-005137.



A Three Dimensional Ventricular E-Cell (3Dv E-Cell) 189

References

1. Berridge, M.J., Lipp, P., Bootman, M.D.: The versatility and universality of cal-
cium signalling. Nature Reviews Molecular Cell Biology 1, 11–21 (2000)

2. Berridge, M.J, Bootman, M.D, Roderick, H.L: Calcium signalling: dynamics, home-
ostasis and remodelling. Nature Reviews Molecular Cell Biology 4, 517–529 (2003)

3. Izu, L., Means, S., Shadid, J., Izu, Y., Balke, C.: Interplay of ryanodine receptor
distribution and calcium dynamics. Biophysical Journal 91, 95–112 (2006)

4. Cheng, H., Lederer, M., Cannell, M.: Calcium sparks: elementary events underlying
excitation-contraction coupling in heart muscle. Science 262, 740–744 (1993)

5. Lopez, J., Jovanovic, A., Terzic, A.: Spontaneous calcium waves without contrac-
tion in cardiac myocytes. Biochem. Biophys. Res. Comm. 214, 781–787 (1995)

6. Izu, L., Wier, W., Balke, C.: Evolution of cardiac calcium waves from stochastic
calcium sparks. Biophysical Journal 80, 103–120 (2001)

7. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi,
F., Saito, K., Tanida, S., Yugi, K., Venter, J., Hutchison, 3.: E-CELL: software
environment for whole-cell simulation. Bioinformatics 15(1), 72–84 (1999)

8. Dupont, G., Pontes, J., Goldbeter, A.: Modeling spiral calcium waves in single
cardiac cells role of the spiral heterogeneity created by the nucleus. Am. J. Physiol.
Cell. Physiol. 271, C1390–C1399 (1996)

9. Okada, J., Sugiura, S., Nishimura, S., Hisada, T.: Three dimensional simulation of
calcium waves and contraction in cardiomyocytes using the finite element method.
Am. J. Physiol. Cell. Physiol. 288, C510–C522 (2005)

10. Izu, Y., McCulle, S., Ward, C., Soeller, C., Allen, B., Rabang, C., Cannell, M.,
Balke, C., Izu, L.: Three dimensional distribution of ryanodine receptor clusters in
cardiac myocytes. Biophysical Journal 91, 1–13 (2006)

11. Smith, G., Keizer, J., Stern, M., Lederer, W., Cheng, H.: A simple numerical
model of calcium spark formation and detection in cardiac myocytes. Biophysical
Journal 75, 15–32 (1998)

12. Lipp, P., Niggli, E.: Microscopic spiral waves reveal positive feedback in subcellular
calcium signaling. Biophysical Journal 65, 2272–2276 (1998)

13. Orchard, C., Mustafa, M., White, E.: Oscillations and waves of intracellular calcium
in cardiac mucles cells. Chaos, Solitons and Fractals 5, 447–458 (1995)

14. Luo, C., Rudy, Y.: A Dynamic Model of the Cardiac Ventricular Action Potential -
Simulations of Ionic Currents and Concentration Changes Circulation Research 74,
1071–1097 (1994)

15. TenTusscher, K., Noble, D., Noble, P., Panfilov, A.: A model for human ventricular
tissue. American Journal of Physiology 286, H1573–H1589 (2004)



A Model for Simulation of Infant Cardiovascular
Response to Orthostatic Stress

Yutaka Nobuaki1, Akira Amano1, Takao Shimayoshi2, Jianyin Lu3,
Eun B. Shim4, and Tetsuya Matsuda1

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan
{amano,nobuaki,tetsu}@i.kyoto-u.ac.jp

2 ASTEM Research Institute of Kyoto, Kyoto, Japan
simayosi@astem.or.jp

3 Cell/Biodynamics Simulation Project, Kyoto University, Kyoto, Japan
lu@biosim.med.kyoto-u.ac.jp

4 Division of Mechanical & Biomedical Engineering, Kangwon National University,
Korea

ebshim@kangwon.ac.kr

Abstract. We developed an infant circulation model which incorporates
an accurate myocardial cell model including a beta adrenergic system.
The beta adrenergic system is essential for the response reproduction of
the baroreflex control system. The proposed model was constructed by
modifying the parameters of a human adult circulation model with the
aid of a guinea pig myocardial cell model, whose baseline heart rate is
close to that of an infant. The presented model is in good agreement
with results obtained in physiological experiments.

1 Introduction

To improve our knowledge on biological mechanisms, quantitative and integra-
tive studies of each biological element are necessary. Despite the rapid advance-
ment in the accumulation of quantitative data from biological elements, the
integrated systems are still not well analyzed. The simulation of complex biolog-
ical models is of great importance, due to its potency in the analysis of biological
functions. Biosimulation models are also expected to develop into powerful tools
for medical education.

As a consequence of their complex physiology obstetric patients, neonates,
and children often require rapid therapeutic intervention in the acute phase.
We believe that simulation models for these patients will be of significant use
in medical training. Since the cardiovascular system is one of the most essen-
tial physiological systems, we focused on constructing a baseline cardiovascular
simulation model for infants.

Goodwin et al. [1] presented an infant cardiovascular simulation model which
consists of four heart chambers and 6 compartments. The model also integrates
an autonomous nervous system, however, the heart chamber model is based on
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a time varying elastance model, for which the evaluation of the effects on elec-
trophysiological aspects of the myocardial cells is difficult. Since the myocardial
cell models are becoming increasingly accurate[2], incorporation of the same into
cardiovascular models is unquestionably desirable.

In this paper, we propose an infant cardiovascular model which incorporates
such an accurate myocardial cell model.

2 Cardiovascular Model

Since our model considers an autonomous nervous system, we used a myocar-
dial cell model which includes a beta adrenergic stimulus system. The model is
constructed from elementary models decribed in this section(Table1).

Table 1. Elementary models of proposed infant cardiovascular model

Element Model Species Reference
cardiac cell Kyoto model guinea pig [3]
left ventricle Laplace law
circulation Heldt model adult human [4]

control system Heldt model adult human [4]

2.1 Myocardial Cell and Left Ventricle Model

The Kyoto model proposed by Noma et al was used for the myocardial cell
model. The Kyoto model is an accurate cell model which incorporates most of
the known ion channels and transporters, a mitochondria as well as a contraction
model. In addition, it is the only model which incorporates a beta adrenergic
system. The contractility of the model is modified by the isoproterenol (ISP)
concentration (Fig.1). Note that the Kyoto model shows a decrease in maximum
force and increase of minimum force when the heart rate increase (Fig.2).

For the left ventricle model the Laplace law was applied. Denoting the wall
thickness with h, the radius with R, the LV pressure with Plv and the myocar-
dial cell force by Fext, the Laplace law is represented as 2Fext/R = Plv/h [5].
Through this equation, LV pressure and volume are related to the cell contrac-
tion force.

2.2 Circulation Model

In clinical tests, the head up tilt (HUT) is commonly used for both, adults
and infants, to verify the response of the baroreflex system. Likewise, in our
study, HUT was used to test the baroreflex. Accordingly, the circulation model
was considered to have several compartments, which account for posture
change. The human adult circulation model proposed by Heldt et al. [4] is
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Fig. 1. Relation between ISP concentration and maximum contraction force
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Fig. 2. Relation between RR interval and force

mathematically formulated in terms of an electric analogous model with 12 com-
partments that can represent the posture change (Fig.3). 10 compartments rep-
resenting the peripheral circulation show linear resistance (R) and capacitance
(C). The legs, splanchnic and abdominal venous compartments exhibit nonlinear
pressure-volume relations according to the following equation,

ΔV =
2 · ΔVmax

π
· arctan

(
π · C0

2 · ΔVmax
· ΔPtrans

)
. (1)

ΔV represents the compartment volume change due to change in transmural
pressure ΔPtrans. ΔVmax represents the maximal change in compartment vol-
ume and C0 the compartment compliance at baseline transmural pressure. An
additional control system built into the model maintains the blood pressure
which controls heart rate (HR), peripheral resistance (R), venous zero-pressure
filling volume (V 0) and heart contractility (Csys) [4].
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Fig. 3. Heldt circulation model. [4]

3 Construction of Infant Circulation Model

Since the species and the age of the subjects each model is based on is different
from that of the human infant, we modified the parameters and the structure of
each model.

3.1 Circulation Model Scaling

Since the baseline heart rate of infants is around 130–150(bpm), the myocardial
model was constructed by means of the Kyoto model at a baseline heart rate of
150(bpm). The only modification to the model was multiplication of the cross-
bridge sliding rate by 7.0, since the original value was determined for 25 degrees
room temperature, while the temperature of an infant is around 37 degrees.
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Fig. 4. Block diagram of control system

For the circulation model, we modified the hemodynamic parameters of the
Heldt model to fit the infant circulation parameters. Thereby, a scaling method
proposed by Goodwin et al. [1] was employed. In their study, the adult human
circulation model proposed by Beneken et al. [6] was adjusted to the circulation
of a 6 month old infant. Each resistance parameter is multiplied by 2.0, the
compliance parameter by 1/5.43 and zero-pressure filling volume by 0.13. The
same scaling factors were adopted for our model.

We used the Heldt model initial compartment pressures as initial compart-
ment pressures. From these pressure values, the initial compartment volumes
can be calculated, leading to the initial total blood volume of 783.5ml which is
slightly large compared to the physiological value of 640ml.

3.2 Control Model Modification

In the Heldt model, the heart function is controlled by its contractility and the
given heart rate. We took over the same control system without any parameter
modifications. However, in the Heldt model, heart contractility is controlled by
the maximum elastance parameter of their time varying elastance model, while
the contractility in our heart model is controlled by the ISP concentration. Thus,
the control system was modified to influence the ISP concentration. Additionally,
in the Heldt model, heart contractility is controlled independently from the heart
rate, which is in opposition to the real myocardial cell as well as the myocardial
cell model applied in our study. Consequently, deriving a transform function
between original heart contractility control signal and ISP concentration was
the first task.

An open loop control system was created using the original Heldt model and
the pressure input to the baroreceptor varied.In this way, the relation between
the heart contractility control signal and the mean blood pressure was deter-
mined. Subsequently an open loop control system using the Heldt model was



A Model for Simulation of Infant Cardiovascular Response 195

 0

 20

 40

 60

 80

 100

 0 100 200 300 400
Time(sec)

P
re

ss
u
re

(m
m

H
g
)

artery

left ventricle

pulmonary vein

Fig. 5. Pressure at left ventricle, artery and pulmonary vein in resting situation in
supine position

designed incorporating our Laplace heart model and the cell model. By chang-
ing the ISP concentration, the relation between the ISP concentration and mean
blood pressure was deduced. By deleting the mean blood pressure parameter
from these two functions, we obtained the desired transform function from heart
contractility control signal to ISP concentration.

Subsequently, a compensation function for the heart contractility which is
modified with the heart rate was derived. In the real cell, the relation between the
cell force and heart rate changes nonlinearly according to the ISP concentration.
However, in our model this relation is assumed to be independent of the ISP
concentration. The block diagram of our control system is shown in Fig.4.

4 Experimental Results

4.1 Resting Hemodynamics

Figure 5 shows the resulting pressure at the left ventricle, artery and pulmonary
vein in resting situation in supine position. Table 2 demonstrates that the hemo-
dynamic parameters of the simulation results match the physiological values
from [7][8][9].

4.2 HUT Test

Using the completed model a simulation experiment of the HUT test was con-
ducted. To simulate the tilt effect, we applied following bias pressure to the lower
three compartments in accordance with [4].

Pbias =

{
Pmax · sin(α(t)) t0 ≤ t ≤ t0 + ttilt

Pmax · sin(αmax) t > t0 + ttilt
(2)
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Table 2. Hemodynamic parameters in the supine position at rest

Variable Target Simulation results
Heart

HR(bpm) 115-145 150
LVEDV(ml) 17 27.1
LVEDP(mmHg) 5 6.08
LVESV(ml) 5 13.4
LVESP(mmHg) 82 88.0
CO(L/min) 1.2-2.0 2.0

Circulation
maxAP(mmHg) 70-110 87.1
minAP(mmHg) 50-65 54.3
CVP(mmHg) 3-12 1.8-3.2

HR: Heart rate, LVEDV: left ventricular end-diastolic volume, LVEDP: left ventricular
end-diastolic pressure, LVESV: left ventricular end-systolic volume, LVESP: left ven-
tricular end-systolic pressure, CO: cardiac output, maxAP: maximum arterial pressure,
minAP: minimum arterial pressure, CVP: central venous pressure.
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Fig. 6. Arterial pressure at HUT test

Here, t0 and ttilt denote starting and ending time of the tilt, αmax denotes the
final angle of the tilt and Pmax the maximum bias. We used 40.0, 7.0, 5.0 for
the Pmax of the renal, splanchnic and legs compartment, respectively.

In the physiological experiment with a human adult, the blood volume de-
creases by 600ml within 35 minutes [10]. This fact is modeled in the Heldt model
as follows:

Vtotal = (5700ml − ΔV ) + ΔV · 0.9
t−t0
60s (3)

ΔV = 600ml · sin(αmax) (4)
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Table 3. Comparison of transient response to HUT test with experimental data

Variables Unit Simulation experiments
(1) s 6.3 2—9
(2) s 17.6 4—30
(3) mmHg 32.7 22
(4) mmHg 23.2 17
(5) beats/min 150 132
(6) beats/min 169 150
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Fig. 7. Heart rate at HUT test

In our model, we modified the above equation to fit the total volume.

Vtotal = (783.9ml − ΔV ) + ΔV · 0.9
t−t0
60s (5)

ΔV = 78ml · sin(αmax) (6)

In the simulation, the tilt angle was increased from 0 to 70 degree in 2 seconds.
The tilt starting time was at 120 seconds. The resulting arterial pressure, heart
rate are shown in Fig.6, Fig.7. The resulting features of the hemodynamics are
shown in Table 3 in comparison with results gained in physiological experiments.
The results are in good agreement with the experimental data.

5 Discussion

By means of the experimental results presented in section 4.1, we have verified
that our simulation model is suitable to reproduce the physiological values of
infant hemodynamics.

The simulation experiments explained in section 4.2, showed good agreement
with experimental data published by Moss et al. [11](Fig.8). They reported that
the pressure decreases within 2 to 9 seconds after the start of HUT, and recovers
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Fig. 9. Heart rate of HUT test by Edner et al. [12]

within 4 to 30 seconds. The pressure pulse width changes from 22 mmHg to 17
mmHg, which equals a 23% decrease. Further, they reported that the heart rate
increases from 8 to 38 bpm which equals an 14% increase. Our simulation result
showed 29% decrease of the pressure pulse width and 14% increase of heart rate,
which is significantly close to the experimental data stated above.

Edner et al. reported the heart rate change when using a 45 degree HUT
test [12](Fig.9). Their experimental results showed that the heart rate initially
increases, but then decreases again and finally recovers. Also in this case, our
simulation results were in good agreement with the experimental results.

From the above, we conclude that our circulation model and control model is
capable to simulate the infant hemodynamics not only at resting position but
also its response in a HUT test.

6 Conclusions

We developed an infant circulation model which incorporates an accurate my-
ocardial cell model including a beta adrenergic system. The beta adrenergic
system is essential in order to reproduce the response of the baroreflex control
system. Our model showed good agreement with the physiological experiments.
This model may be used to demonstrate the essential functions of the infant
cardiovascular dynamics. Especially in clinical and medical training this could
be a valuable tool.
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Abstract. We examine the effects of cardiac geometry and architec-
ture on re-entrant scroll wave dynamics by quantifying the scroll wave
filament in two biophysically-detailed heterogeneous models of the hu-
man left ventricular free wall – a simple cuboid model and a wedge
model constructed using DT-MRI data. For any given geometry, chang-
ing the architecture results in changes to the filament meander pattern,
increases in filament length, changes to the filament curvature and local
filament twist, and increases in the maximum twist along a single fila-
ment. Changes to the geometry also affect scroll wave dynamics, mainly
due to the size of the tissue. We conclude that such differences in re-
entrant scroll wave dynamics should be taken into account when inter-
preting results from simulations that use simple cardiac geometries and
architectures.

Keywords: Cardiac arrhythmias, Re-entry, Cardiac structure, Diffusion
tensor magnetic resonance imaging.

1 Introduction

Ventricular tachycardia (VT) and fibrillation (VF) are dangerous cardiac ar-
rhythmias that are a major cause of morbidity and mortality in developed coun-
tries, yet they remain poorly understood [1]. One possible mechanism for the
transition from VT to VF is when a single re-entrant wave of excitation (a scroll
wave) that rotates around a phase singularity (a filament) with a high frequency
breaks down into multiple wavelets [2]. Thus, understanding the dynamics of
re-entrant scroll waves in the heart can help us to understand why, and under
what conditions, the transition from VT to VF occurs.

Understanding the spatio-temporal pattern of propagation in the ventricles
during arrhythmias requires direct visualisation of three-dimensional excitation
propagation processes deep within the ventricular walls of a beating, in vivo
heart. This is not yet technically feasible. Current in vitro optical mapping tech-
nologies can provide a panoramic view of ventricular surface activity [3] or of
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concurrent activity on both the endocardial and epicardial surfaces [4], and 3D
optical visualisation of intramural activity is still at the proof of concept stage
of development [5]. Computational simulations using verified models of cardiac
geometry, architecture and excitation therefore allow the study of propagation
inside the ventricular wall [6,7,8], that cannot be achieved experimentally. Scroll
wave dynamics are quantified from these simulations as measurements of, for
example, filament number, length, location, curvature and twist [9].

Previous computational studies examining scroll wave dynamics have mostly
been on simple cuboid geometries, using either qualitative or biophysical models
for excitation – see references [1,2,9] for reviews. However, the geometry and
architecture (i.e. fibre and sheet structure) of the heart is more complex than is
assumed in these simple cuboid models [10]. As tissue fibre and sheet structure
determines the diffusive spread of voltage throughout the heart, we are inter-
ested in the effects of realistic, complex tissue geometry and architecture on
propagation.

At each point in the heart there are three principal orthogonal directions of
diffusion – along the fibre axis, perpendicular to the fibre axis in the sheet plane,
and normal to the sheet plane. These vectors can be determined experimentally
using histological techniques [11], or using diffusion tensor magnetic resonance
imaging (DT-MRI) [12]. This technique has recently been developed as a non-
destructive, high-throughput method to determine the architecture of the heart:
the primary [13,14,15] and secondary or tertiary [16] eigenvectors of the diffusion
tensor have been validated as measures of fibre orientation and sheet structure,
respectively. The diffusion tensor describing the spread of voltage can be con-
structed from these eigenvectors in order to reconstruct the geometry and the
fibre and sheet architecture of the ventricles.

The aim of this study was to examine the effects of cardiac geometry and
architecture on re-entrant scroll wave dynamics by quantifying the scroll wave
filament in two biophysically-detailed heterogeneous models of the human left
ventricular free wall – a simple cuboid model and a wedge model constructed
using DT-MRI data.

2 Methods

Propagation of electrical excitation in cardiac tissue can be described by the
non-linear cable equation

∂V/∂t = ∇(D∇V ) − Iion , (1)

where V is membrane potential, t is time, ∇ is a spatial gradient operator, D
is the diffusion tensor that characterises electrotonic spread of voltage through
the tissue and Iion is the total membrane ionic current density. For Iion we
use the ten Tusscher-Noble-Noble-Panfilov (TNNP) human ventricular model
[17] that provides formulations for endocardial, midmyocardial and epicardial
cells. We constructed two heterogeneous tissue models of the left ventricular
free wall – a simple cuboid with a rule-based architecture and a wedge model
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with architecture obtained from DT-MRI – with endocardial, midmyocardial
and epicardial tissue occupying approximately equal fractions of the transmural
distance in both cases. For each model, propagation of excitation was either
isotropic, anisotropic or orthotropic.

2.1 Cuboid Model

A simple cuboid model of the ventricular wall with dimensions of 60×60×20 mm
was constructed. The fibre direction f always pointed parallel to the endocardial
and epicardial surfaces and rotated 120◦ across the ventricular wall [10] at a rate
of 6◦/mm. The sheet direction s was always perpendicular to fibre direction and
pointed in the transmural direction. By definition, the sheet normal direction
n lay perpendicular to the plane spanned by f and s. The diffusion tensor D
was constructed as described by Eqns. (5-9) in Fenton & Karma [18], where the
diffusion coefficient D‖ is diffusion along the fibre axis, D⊥1 is diffusion in the
sheet plane perpendicular to the fibre axis and D⊥2 is diffusion normal to the
sheet plane (i.e. in the orthogonal directions f , s and n respectively).

2.2 Wedge Model

The geometry and architecture of the wedge model was obtained from a DT-
MRI dataset of the human ventricles (see Fig. 1 and Acknowledgments), which
contains the scalar components of the three vectors f , s and n with respect to a
global Cartesian coordinate system. In a local coordinate system based on these
orthogonal vectors, the diffusion tensor at a particular point in space is

˜D =

⎛

⎝

D‖ 0 0
0 D⊥1 0
0 0 D⊥2

⎞

⎠ . (2)

As the three vectors f , s and n are the eigenvectors of the diffusion tensor D with
corresponding eigenvalues D‖, D⊥1 and D⊥2, then the transformation matrix of
˜D to D is an orthogonal matrix A = (f , s,n). The diffusion tensor D is therefore
given by D = A ˜DAT. Substitution then gives

D = D‖ffT + D⊥1ssT + D⊥2nnT , (3)

which can be used, along with the DT-MRI eigenvector files, to construct D
at each node throughout the geometry and, therefore, to reconstruct fibre and
sheet architecture in the tissue. The wedge dimensions are similar to those of
the cuboid.

2.3 Isotropic, Anisotropic and Orthotropic Propagation

In all cases, we set the diffusion coefficient in the fibre direction f to D‖ = 0.154
mm2ms−1 to give a conduction velocity (CV) for a solitary plane wave of 0.7
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°

Fig. 1. (A) Visualisation of the human DT-MRI dataset geometry. The shaded area
indicates the spatial extent of the wedge extracted from the left ventricular free wall.
(B) View of the wedge geometry and fibre helix (inclination) angle from an endocardial
aspect. Note the intricate structure of the endocardial surface, here shaded in grey. The
helix angle, determined from the DT-MRI primary eigenvector [10] and visualised here
on the cut surfaces of the wedge, shows a transmural rotation of approximately 120◦.

m s−1 [17]. For isotropic propagation we set the diffusion coefficients in the three
directions f , s and n the same, such that D‖ = D⊥1 = D⊥2. To introduce
fibre orientation we set the ratio D‖:D⊥1 = 4:1 with D⊥1 = D⊥2 such that
CV is twice as fast along the fibre as across it, i.e. cylindrically anisotropic. To
introduce sheet structure and orthotropic propagation, the diffusion coefficients
were set with the ratio D‖:D⊥1:D⊥2 = 36:9:1 after Colli Franzone et al. [19] to
give a CV ratio of 6:3:1 in the three directions f, s and n respectively.

2.4 Filament Tracking and Quantification

The filament location can be defined as the intersection of the isosurfaces of
activation and recovery variables. We chose the Na+ current activation gate
with a value of m = 0.98 as the the activation variable and the slow delayed
rectifier K+ current gate with a value of xs = 0.02 as the recovery variable,
which gave a unique filament location for a single re-entrant scroll wave on the
coarse DT-MRI geometry. The use of other variables such as V , dV/dt, or L-type
Ca2+ current or Na+ current inactivation gates (see reference [9] for a review)
resulted in the filament tracking algorithm identifying numerous filaments for a
single scroll wave.

The location of any filament is given by the position vector field R and the
arclength along any filament is given by s. To calculate filament curvature we
first calculated the unit vector field T = dR/ds that lies locally tangent to the
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filament. Then, from the Frenet-Serret equations, local filament curvature κ is
given by the norm of the rate of change of this vector along the filament:

κ = ‖dT/ds‖ . (4)

To calculate filament twist, we used the method described by Fenton & Karma
[18] by calculating the unit vector field N that points in the direction of the local
voltage gradient and lies locally perpendicular to T. Local twist w is then given
by the triple product

w = dN/ds × T · N . (5)

For every point in R we then calculated the angle φ by calculating the integral
of twist along the filament:

φ =
∫ s

0
w ds , (6)

which gave the twist with respect to the epicardial end of the filament. The
maximum change in this angle along any given filament, Δφ, was used as a
measure of maximum filament twist.

2.5 Integration

Equation (1) was integrated using a Forward Time Centred Space method, with
an operator splitting and adaptive time step method [20] utilising a minimum
time step of Δtmin = 0.02 ms and a maximum time step ΔT = 0.2 ms. This
method has previously been shown [20] to decrease computation time whilst
maintaining accuracy of CV and action potential duration in one dimension
(with values of ΔT up to 0.4 ms) and spiral wave cycle length in two dimen-
sions (with values of ΔT up to 0.3 ms). We assume the maintenance of accu-
racy extends to three dimensions for ΔT = 0.2 ms. Space steps in the cuboid
model were Δx = Δy = Δz = 0.33 mm. In the wedge model, space steps were
Δx = Δy = 0.425 mm and Δz = 0.5 mm as defined by the DT-MRI dataset, to
give approximately 4×105 nodes inside the tissue. Neumann boundary conditions
were imposed at the edges of each geometry by setting diffusion along the vector
normal to the local tissue surface to zero. Initial conditions for all models were an
untwisted scroll wave with a straight filament whose ends were located approx-
imately centrally on the epicardial and endocardial surfaces. This scroll wave
was obtained by stacking identical spiral waves obtained from two-dimensional
simulations using the epicardial TNNP model with isotropic diffusion. Filaments
were tracked and quantified using algorithms described in references [18,9]. The
models were coded in C and parallelised under openMP. To further decrease
computation time, voltage-dependent exponential functions were pre-calculated,
with a resolution of 0.1 mV, and stored in an array for reference. Simulations
were run locally on a Sun Fire 6800 shared memory machine utilising 24 Sun
750 MHz UltraSPARC III 64-bit processors.
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Fig. 2. Snapshots of membrane potential V and filament locations R after 2 seconds of
simulation in isotropic (top), anisotropic (middle) and orthotropic (bottom) cuboid and
wedge models. Membrane potential is colour-coded using the standard rainbow palette,
from blue/dark (−70 mV) to red/light (30 mV). For both models the snapshots are
from an epicardial aspect, with the scroll wave rotating clockwise.

3 Results

We integrated each model for 3 seconds, but for clarity only present data for
1 second of activity, between t = 1 and t = 2 s. Figure 2 shows snapshots at
t = 2 s of membrane potential on the surface of the model geometries and cor-
responding filament locations, for both models under isotropic, anisotropic and
orthotropic conditions. For the isotropic cuboid (Fig. 2, top left), the scroll wave
dies out soon after as the filament reaches the boundary. The multiple filaments
for the orthotropic cuboid (Fig. 2, bottom left) show the beginning of scroll wave
breakup – numerous wavelets form soon after and the activation patterns in the
tissue represent the complex patterns seen during VF. The analysis of this com-
plex behaviour is left for future work. Note the numerous filaments present in
the wedge model under all three conditions (Fig. 2, right). Rather than reflect-
ing a complex state of activation as in VF, the multiple filaments here belong
to a single filament that is broken by the intricate geometry of the endocardial
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Fig. 3. Filament trajectories on the epicardial surface of the cuboid (top) or wedge
(bottom) models during 1 second of simulation, under isotropic, anisotropic and or-
thotropic conditions. The asterisk on the isotropic cuboid trajectory indicates where
the filament moved off the epicardial surface of the geometry.

Fig. 4. Scroll wave filament length during 1 second of simulation in the cuboid model
(top) and the wedge model (bottom), under isotropic, anisotropic and orthotropic
conditions. Note the different scales on the ordinate for the cuboid and wedge models.
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surface, e.g. papillary muscles. Thus, the number of filaments is not a useful
measure to quantify scroll wave behaviour in the wedge model, and instead we
calculate total filament length (see below).

Filament trajectories on the epicardial surfaces of the geometries are shown
in Fig. 3. The asterisk on the isotropic cuboid trajectory indicates where the
end of the filament moved off the epicardial surface of the geometry and onto
the transmural surface – the filament then joined points on the endocardial and
transmural surfaces for a short time, before the filament end returned to the
epicardial surface in approximately the same location it had left. For the cuboid
model (Fig. 3, top), changing from isotropy through anisotropy to orthotropy has
the effect of rescaling the meander of the filament in the direction perpendicular
to the fibre axis, which on the epicardial surface is the sheet normal direction.
This is to be expected, as the diffusion coefficient in this direction is reduced for
each of the conditions. Similar effects can be seen in the wedge model (Fig. 3,
bottom) as one progresses from isotropy to orthotropy. Note also the qualitative
differences between cuboid and wedge model trajectories.

Scroll wave filament length during 1 second of simulation is shown in Fig. 4.
Note the different scales on the ordinate for the cuboid and wedge models (Fig. 4,
top and bottom respectively). For all conditions, the filament length in the
cuboid is longer than in the wedge, a result of tissue geometry (i.e. size) rather
than architecture. Note also the reduction in filament length for the isotropic
cuboid at approximately t = 1750 ms, which is due to the movement of the fila-
ment end onto the transmural surface and corresponds to the asterisk in Fig. 3.
Oscillations of filament length are evident in all simulations, a consequence of
filament twist which is due to the heterogeneous excitation kinetics in the mod-
els – see [8]. For both models, filament length increases as anisotropy and then
orthotropy are introduced. This is due to the anisotropy or orthotropy being
rotational, and so the principal direction of diffusion (i.e. the fibre axis) changes
as a function of distance across the ventricular wall in the cuboid model. In

Table 1. Means ± standard deviations of κ (mm−1) and the absolute values of w
(◦/mm) and Δφ (◦) during 1 second of simulation in the cuboid and wedge models
under isotropic, anisotropic and orthotropic conditions

κ |w| |Δφ|

isotropic 0.5 ± 0.7 1.0 ± 2.2 51.7 ± 40.3
cuboid: anisotropic 12.1 ± 59.8 3.4 ± 3.0 221.6 ± 111.1

orthotropic 3.3 ± 7.3 5.8 ± 4.5 445.1 ± 151.5

isotropic 0.8 ± 1.1 4.8 ± 3.9 64.0 ± 40.6
wedge: anisotropic 2.8 ± 3.8 5.4 ± 4.5 96.2 ± 48.6

orthotropic 3.8 ± 12.0 4.6 ± 3.8 161.4 ± 61.0
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the wedge, this change is not only a function of transmural distance but also
of base-apex distance. These rotational effects further increase the effects of the
transmural excitation heterogeneity.

Curvature and twist in the filament is quantified in Table 1, as means and
standard deviations for the 1 second period shown in Figs. 3 and 4. As twist
can be positive or negative, we take the absolute values when calculating the
means. Although curvature κ increases with anisotropy then orthotropy in the
wedge model, the same pattern is not seen in the cuboid. Conversely, twist |w|
increases with anisotropy then orthotropy in the cuboid but not in the wedge.
The maximum twist along a single filament, |Δφ|, increases in both models as
anisotropy and then orthotropy are introduced.

4 Conclusions

Using a biophysically-detailed model of cardiac excitation with spatially hetero-
geneous kinetics, we have shown that there are both qualitative and quantitative
differences in the dynamics of re-entrant scroll waves between different cardiac
geometries and architectures. We conclude that simple cuboid models with rule-
based architecture do not accurately reproduce the complex geometry and archi-
tecture of the human ventricles. For any given geometry (i.e. cuboid or wedge),
changing the architecture by introducing fibre structure to give anisotropic prop-
agation and sheet structure to give orthotropic propagation results in changes
to the filament meander pattern, increases in filament length, changes to the
filament curvature and local filament twist, and increases in the maximum twist
along a single filament. Changes to the geometry also affect scroll wave dy-
namics, mainly due to the size of the tissue, and the intricate structure of the
endocardial surface in the wedge model means that filament tracking is not triv-
ial. Thus, simulations of re-entry should take into account this complex geometry
and architecture.
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Abstract. Over the past several decades, the mouse has gained promi-
nence in the cardiac electrophysiology literature as the animal model of
choice. Using computer models of the mouse and human ECG, this paper
is a step toward understandingwhen the mouse succeeds and fails to mimic
functional changes resulting from disease states and drug interactions.

1 Introduction

The transgenic mouse has enjoyed a large share of the spotlight in the cardio-
vascular literature over the past decade, primarily due to the relative ease of
genetic manipulation [1,2,3,4,5,6,7], and miniaturization of recording techniques
[8,9,10]. These advances have enabled models of human disease to be studied in
mice at spatial scales ranging from protein channels to the whole heart. At first
glance, the mouse appears to be a scaled version of the human heart. For exam-
ple, the mouse heart rate is approximately 10 times faster than in the human,
while the Action Potential Duration (APD) and left ventricular wall thickness
are approximately 10 times smaller [7,11]. On the other hand, some measures
are comparable. At the organ level, the human and mouse fiber organization
and anisotropic conduction patterns are similar [12,13]. At the tissue level, the
resting length constants and conduction velocities [1,14,15] are similar. At the
protein level, most ion channels are conserved across species [11].

It is because some properties are similar while others are scaled that calls
into question the use of the mouse as a model of human disease. For example,
as the mouse and human length constants are similar but the ventricular wall
thicknesses are an order of magnitude different, the mouse may not supporting
the same transmural APD gradients as the human [16,17]. Furthermore, the
dominate repolarization current in the mouse is Ito and Isus while in the human
IKs and IKr rectify the transmembrane potential [11,18,19].

An ideal animal model would be similar to the human at all scales and mea-
surements. Although some animal models approach this ideal (e.g. Porcine), they
are typically costly. The second ideal animal model would be one that is per-
fectly scaled compared to the human. Some computational models may achieve
this [20], but no animal models are available. In the absence or difficulty of using
these two ideal animal models, the next option is the one that has been adopted
by the field; an animal that can be modified to mimic the human.

F.B. Sachse and G. Seemann (Eds.): FIMH 2007, LNCS 4466, pp. 210–219, 2007.
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Accepting that it is impractical to perfectly scale the mouse to the human,
it is important to understand the limitations of the mouse model. Although a
systematic study is possible using experimental models, it is more efficient to
explore the limitations in a computer model. This paper is a first step toward
creating such models. The Electrocardiogram (ECG) has been targeted because:
1) genetic mutations at the protein level can have a an impact on the ECG. 2)
simple simulations [21] may reproduce the impact of these mutations and 3) the
mouse and human ECG have noticeably different morphologies [11,17,22,23].

2 Methods

2.1 Cellular Models

The ten Tusscher et al. [19] and Pandit et al. [18] ionic current models were
used for human and mouse simulations respectively. Figure 1 is a comparison of
epicardial action potentials and ionic currents for both models.

2.2 Cable Models

Ionically heterogeneous and spatially isotropic one dimensional monodomain
(dx = 0.01cm, σ = 1mS/cm) cables were used to simulate the mouse and
human left ventricular wall. The forward Euler (dt = 2μs) method was used for
numerical integration. The profile of the human left ventricular wall was simu-
lated by a 1.65cm cable divided into epicardial (0−0.6cm), M (0.6−1.05cm) and
endocardial (1.05−1.65cm) regions [21]. The profile of the mouse left ventricular
wall was simulated in a 0.2cm cable that was divided into epicardial (0−0.1cm)
and endocardial (0.1 − 0.2cm) regions. Propagation in both cables was initiated
by ten, supra-threshold current stimuli at the endocardial end of the cable. The
pacing rate for the human was 1Hz while the mouse was 8Hz.

2.3 Computation of the Pseudo-electrocardiogram (pECG)

The pECG was computed as the extracellular potential (φe) generated by trans-
membrane currents (Im) propagating down a cable surrounded by a large volume
conductor (σe = 6mS/cm):

φe =
1

4πσe

∫
Im

r
dV

where r is the distance from the recording point to the current source Im [24] and
the reference electrode is at infinity. The current source is the sum of capacitive
and ionic currents. In both mouse and human cables, the recording electrode
was placed 1cm from the epicardium.
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Fig. 1. Human (left) and Mouse (right) epicardial action potentials and currents

Fig. 2. Human pECG (left) and Mouse pECG (right). The mouse pECG was scored
by: a) first deflection to minimum, b) minimum slope after a wave and before final
deflection c) peak (or valley) of final deflection. For reference, bottom traces show the
Vm time course of every 1mm and 200μm along the cable for the human and mouse
respectively.
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2.4 Simulation of Mutations

The maximum channel conductances were independently varied (both increased
and decreased) for all currents shared by the two species (Figure 1). As INaK and
INaCa do not play a large role in simple beat studies, we have ommitted these
currents. Brugada Syndrome was simulated by a modification of INa activation
and inactivation profiles [25]. The impact of adding a human IKs and IKr to the
mouse model was also explored.

2.5 Analysis of Results

All results were analyzed for the tenth paced beat. The normal mouse epicar-
dial and endocardial APDs were 13.5 and 26.1msec respectively while the hu-
man epi, M and endo APDs were 270, 275 and 323msec respectively (-60mV
crossings). The mouse Conduction Velocity (CV) was 41cm/s while the human
CV=40.5cm/s (delays in -60mV crossings). CVs do not significantly change un-
less noted. As scoring of the mouse ECG has not been standardized, we have
adopted the a, b, c notion (Figure 2) proposed by Danik et al. [22].

3 Results

3.1 Comparisons of Normal Mouse and Human pECG

The simulated Normal Human pECG (Figure 2) shows a narrow QRS (corre-
sponding to conduction of depolarization from endocardium to epicardium),
slight J-wave elevation (corresponding to rapid repolarization) followed by a long
isopotential (corresponding to the action potential plateau) and finally the T-
wave (due to complex repolarization timing from epicardium to endocardium and
finally the mid-wall). The simulated mouse ECG also shows a QRS-like complex
(a-wave) that like the human corresponds to depolarization across the wall from
endocardium to epicardium. As the epicardium depolarizes, the voltage gradient
reverses briefly, giving rise to the b-wave. The origin of the b-wave therefore ap-
pears to be similar to the J-wave in the human, although it may be exaggerated.
The epicardium rapidly repolarizes before the endocardium (as in the human),
giving rise to a second voltage gradient reversal and the c-wave. The orgin of the
b-wave therefore appears to be similar to the T-wave in the human.

3.2 Reduced IK1

IK1 is a primary current in determining the resting membrane potential and un-
derlies Andersen’s syndrome. Blocking IK1, raises the resting potential for both
the mouse and the human (Figure 3A). In the human, the rise in resting potential
partially inactivates Na+ channels, leading to slower conduction and a broader
QRS complex. Since all other currents are tuned to the original resting po-
tential, a hyperpolarization follows repolarization that leads to a small non-zero



214 J. Tranquillo and A. Sunkara

Fig. 3. A comparison of pECG (top) and action potentials (bottom) for human (left)
and mouse (right) simulations. Data for each modification is shown in four panel groups.
For reference, the dotted traces are the nominal pECG. Action potentials are the first
and last in the cable. The time scales for mouse and human data are indicated in the
lower right.

pECG after the T-wave. In the mouse the rise in resting potential has little im-
pact on conduction velocity and the a and b waves are only slightly altered.
The c-wave on the otherhand is significantly prolonged and broadened as a
long-lasting gradient is established between epicardium and endocardium during
repolarization.
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3.3 Reduced IbNa and INa Unmasking

Ibna is a long lasting inward current that when enhanced leads to a prolongation
of the APD and QT interval. In the clinic, this condition is referred to as LQT3
and may be difficult to diagnose because the QT prolongation is relative. To un-
mask the condition, a Na+ channel blocker (reduced INa) is given which widens
the QRS in both normal and abnormal patients, but eliminates the isopotential
and inverts the T-wave only in patients with LQT3. In our simulations, these
behavior were reproduced in the human pECG (Figure 3B). In the mouse, how-
ever, the INa block did change the a wave but did not produce a morphological
change in the b or c waves.

3.4 Reduced Ito

The transient outward current is present in both the mouse and human but the
role played in repolarization is far more significant in the mouse. In the human,
Ito is responsible for the action potential notch and has a relatively small impact
on the APD or ECG (FIgure 3C). Blocking Ito in the human results in a slight
increase in the J-wave and increase in the QT interval. The same simulated
block in the mouse leaves early repolarization in epicardial cells unchanged while
late repolarization shows a short and low voltage plateau. Endocardial cells,
other the otherhand, remain at a considerably higher voltage level throughout
repolarization. These findings have been observed experimentally by Guo et al.
[26], Barry et al. [3] and Brunner et al. [2]. Both simulated and experimental
studies show an increase in amplitude and width of the b and c waves.

3.5 ΔK1479 Mutation

A positive shift in activation or negative shift in inactivation kinetics of INa can
lead to Brugada Syndrome [25]. Similar to LQT3, the disease is unmasked in
the clinic by partially blocking INa. In simulations of the unblocked Brugada
mutation, the pECG was similar to the nominal pECG for both the human
and mouse (Figure 3D). A 70% INa block in the human mutation simulation,
however, resulted in a ”coved” T-wave similar to that observed in patients with
Brugada Syndrome. A similar 70% INa block in the mouse mutation simulation
did widen the a wave but did not change the morphology of the b or c waves.
Further reduction of INa did not lead to morphological change until conduction
was blocked.

3.6 Increased ICaL

ICaL is an inward current that counteracts repolarization. It is present in both
the mouse and the human and has been implicated in a number of interesting
phenomenon such as sustaining conduction when INa is reduced [27], modulating
restitution properties and the stability of reentry [28], the genesis of early after-
depolarizations (EAD) [29] and the source of Timothy Syndrome (LQT8) [4]. In
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the human model, a doubling of ICaL resulted in a delayed T-wave (Figure 3E).
The impact on the mouse was an increase in both epicardial and endocardial
APD, the appearance of an EAD-like deflection in epicardial cells and a drastic
amplitude increase and widening of the c-wave.

3.7 Overexpression of IKs and IKr in the Mouse

In the human, a partial block of IKs and IKr gave rise to an increased QT
interval (not shown), a finding consistent with LQT1 and LQT2 respectively.
Although IKr is present in the mouse, it plays little role in repolarization and is
not included in the Pandit et al. model. The addition of the human IKs and IKr

to the mouse ionic model had virtually no effect on the pECG. Both currents in
the human have an impact because they have long time constants that act during
the plateau. In the mouse, there is no defined plateau and the neither current
has time to play a large role in repolarization. These findings mirror Babij et
al. [30] where overexpression of IKr in the mouse did not generate arrhythmias
or ECG abnormalities typically associated with LQT2. Likewise, use of a IKs

blocker in the mouse only had an impact at slow heart rates [5].

4 Discussion

Over the past several decades, the mouse has gained prominence in the cardiac
electrophysiology literature as the animal model of choice. The purpose of this
paper was to compare normal and abnormal transmural conduction and repolar-
ization in the genesis of the ECG for the mouse and human. The overall findings
are: 1) It is possible for the mouse left ventricular wall to sustain gradients large
enough to generate the c-wave deflection, 2) The human QRS complex is similar
to the a-wave of the mouse and 3) The underlying ionic causes of the T-wave in
the human and b and c waves of the mouse are different. These studies highlight
the importance of carefully interpreting results from mouse models.

Although it is unclear how deflections in the mouse and human ECG are re-
lated, most mouse studies use the clinical PQRST notation. These simulation
studies demonstrate that, like the human, the thin mouse ventricular wall is ca-
pable of sustaining the APD gradients that give rise to deflections corresponding
to repolarization. However, the genesis of the b and c waves in the mouse are
due to different ionic currents and APD gradients. These discrepancies have led
to a wide variations in mouse ECG measurements in the literature [11,17,22]. To
avoid future confusion, the authors suggest the development of a standardized
mouse ECG scoring system that is distinct from the human scoring.

The transgenic mouse has helped to uncover some very significant biophysical
mechanisms. For example, the impact of knocking out specific connexin iso-
forms (e.g. gap junctions) [6] have been directly linked to slowed conduction. A
mouse model enabled the hypothesized depolarization associated with contact
monophasic action potential recordings to be directly measured [9]. Perhaps the
most important role for the mouse will be in systematically exploring reentry
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initiation, maintenance and breakup [10,11,15]. Although, our simulation studies
point out potential problems with studying repolarization diseases and therapies
in the mouse, experimental repolarization studies may still yield very significant
insights. Such studies can be used to unravel important molecular and cellular
level dynamics that are more easily studied in the mouse. It is also possible that
the normal mouse may be an ideal model to study human short QT syndrome.
An interesting possibility would be to ”design” a transgenic mouse in which Ito,
Iss, IKslow , ICaL or some combination is modified to achieve a plateau in the
mouse [2]. The appearance of this plateau may lead to an isopotential in the
mouse ECG and a separation between the b wave and c wave. In this situation,
the c-wave may more closely mimic the human T-wave. Therefore, the only
caution of these simulations is that the value of functional results lies in the
interpretation. The authors therefore propose that the results of mouse studies
involving repolarization not be taken at face value, but rather are interpreted
using computational or theoretical models.

Although both mouse and human pECG were morphologically similar to ex-
perimental ECG, the models presented were for isotropic one dimensional ca-
bles. This limitation could be lifted by including the impact of heterogeneous
coupling through the wall or coupling via gap junctions [21]. As a further step
toward increased realism, whole heart and torso models [31] could incorporate
fiber architecture and anatomical features that would allow direct computation
of a body surface ECG. It has been proposed [17] that the origin of the mouse
c-wave is not a transmural gradient but rather an apex-base or left-right gradi-
ent. Furthermore, there is evidence to suggest that some regions of the mouse
heart begin to repolarize before other regions have depolarized. A full model of
the mouse heart and torso could explore these possibilities. On a cellular level,
the impact of drugs and the modeling of diseases could be more accurately sim-
ulated using more complex models for Iion [32,33] and non-uniform targeting of
different cell types.

The authors anticipate that the mouse will continue to help reveal and validate
important biophysical mechanisms and that computer models should and will
be used to augment these findings.

Acknowledgments

The authors wish to thank the Bucknell University Research Program, REU
program (Grant #PHY-0552790) and Pittsburgh Supercomputing center (Grant
#IBN050003P).

References

1. Tamaddon, H.S., Vaidya, D., Simon, A.M., Paul, D.L., Morley, G.E.: High-
resolution optical mapping of the right bundel branch in connexin40 knockout mice
reveals slow conduction in the the specialized conduction system. Circ. Res. 87,
929–936 (2000)



218 J. Tranquillo and A. Sunkara

2. Brunner, M., Guo, W., Mitchell, G.F., Buckett, P.D., Nerbonne, J.M., Koren, G.:
Characterization of mice with combined suppression of Ito and IK,slow. Am. J.
Physiol Heart Circ. Physiol. 281, H1201–H1209 (2001)

3. Barry, D.M., Xu, H., Schuessler, R.B., Nerbonne, J.M.: Functional knockout of the
transient outward current, Long-QT syndrome, and cardiac remodeling in mice.
Circ. Res. 83, 560–567 (1998)

4. Salama, G., London, B.: Mouse models of long QT syndrome J Physiol. 578, 43–53
(2007)

5. Drici, M., Arrighi, I., Chouabe, C., Mann, J.R., Lazdunski, M., Romey, G.,
Barhanin, J.: Involvement of IsK-associated K+ channel heart rate control of re-
polarization in a murine engineered model of Jervell and Lange-Nielsen syndrome.
Circ. Res. 83, 95–102 (1998)

6. Morley, G.E., Vaidya, D., Samie, F.H., Lo, C., Delmar, M., Jalife, J.: Characteri-
zation of conduction in the ventricles of normal and heterozygous Cx43 knockout
mice using optical mapping. J. Cardiovasc Electrophysiol. 10, 1361–1375 (1999)

7. Doevendans, P.A., Daemen, M.J., de Muinck, E.D., Smits, J.F.: Cardiovascular
phenotyping in mice. Cardiovasc Res. 39, 34–49 (1998)

8. Berul, C.I.: Electrophysiological phenotyping in genetically engineered mice. Phys-
iol Genomics 13, 207–216 (2003)

9. Knollmann, B.C., Tranquillo, J., Sirenko, S.G., Henriquez, C., Franz, M.R.: Mi-
croelectrode study of the genesis of the monophasic action potential by contact
electrode technique. J. Cardiovasc Electrophysiol. 12, 1246–1252 (2002)

10. Vaidya, D., Morley, G.E., Samie, F.H., Jalife, J.: Reentry and fibrillation in the
mouse heart: A challenge to the critical mass hypothesis. Circ. Res. 85, 174–181
(1999)

11. Nerbonne, J.M.: Studying cardiac arrhythmias in the mouse - a reasonable model
for probing mechanisms? Trends Cardiovasc Med. 14, 83–93 (2004)

12. Jiang, Y., Pandya, K., Smithies, O., Hsu, E.W.: Three-dimensional diffusion tensor
microscopy of fixed mouse hearts. Magn Reson Med. 53, 1133–1137 (2004)

13. Punske, B.B., Taccardi, B., Steadman, B., Ershler, P.R., England, A., Valencik,
M.L., McDonald, J.A., Litwin, S.E.: Effect of fiber orientation on propagation:
electrical mapping of genetically altered mouse hearts. J. Electrocardiol. 38( 40-4),
40–44 (2005)

14. Nygren, A., Clark, R.B., Belke, D.D., Kondo, C., Giles, W.R., Witkowski, F.X.:
Voltage-sensitive dye mapping of activation and conduction in adult mouse hearts.
Annals of BME 28, 958–967 (2000)

15. Anumonwo, J.M.B., Tallini, Y.N., Vetter, F.J., Jalife, J.: Action potential char-
acteristics and arrhythmogenic properties of the cardiac conduction system of the
murine heart. Circ. Res. 89, 329–335 (2001)

16. Sampson, K.J., Henriquez, C.S.: Electrotonic influences on action potential dura-
tion dispersion in small hearts: a simulation study. Am. J. Physiol. Heart Circ.
Physiol. 289, 350–360 (2005)

17. Liu, G., Iden, J.B., Kovithavongs, K., Gulamhusein, R., Duff, H.J., Kavanagh,
K.M.: In vivo temporal and spatial distribution of depolarization and repolarization
and the illusive murine T wave. J. Physiol. 555, 267–279 (2003)

18. Pandit, S.V., Clark, R.B., Giles, W.R., Demir, S.S.: A mathematical model of
action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81,
3029–3051 (2001)

19. ten Tusscher, K.H.W.J., Nobel, D., Nobel, P.J., Panfilov, A.V.: A model for human
ventricular tissue. Am. J. Physiol Heart Circ. Physiol. 286, H1573–H1589 (2004)



Can We Trust the Transgenic Mouse? Insights from Computer Simulations 219

20. Harrild, D., Henriquez, C.: A computer model of normal conduction in the human
atria. Circ. Res. 87, E25–36 (2000)

21. Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms: A model
study. Circ. Res. 90, 889–896 (2002)

22. Danik, S., Cabo, C., Chiello, C., Kang, S., Wit, A.L., Coromilas, J.: Correlation of
repolarization of ventricular monophasic action potential with ECG in the murine
heart. Am. J. Physiol. 283, H372–H381 (2002)

23. Agduhr, E., Stenstrom, N.: The appearance of the electrocardiogram in heart le-
sions produced by cod liver oil treatment. Acta Paediatr 33, 493–588 (1929)

24. Plonsey, R.: The active fiber in a volume conductor. IEEE Trans. Biomed Eng. 5,
371–381 (1974)

25. Zhang, Z.S., Tranquillo, J., Neplioueva, V., Bursac, N., Grant, A.O.: Sodium chan-
nel kinetic changes that produce Brugada syndrome or progressive cardiac conduc-
tion system disease. Am. J. Physiol Heart Circ. Physiol. 292, H399–H407 (2007)

26. Guo, W., Li, H., London, B., Nerbonne, J.M.: Functional Consequences of elimi-
nation of Ito,f and Ito,s. Circ. Res. 87, 73–79 (2000)

27. Shaw, R.M., Rudy, Y.: Ionic mechanisms of propagation in cardiac tissue. Roles of
the sodium and L-type calcium currents during reduced excitability and decreased
gap junction coupling. Circ. Res. 81, 727–741 (1997)

28. Qu, Z., Weiss, J.N., Garfinkel, A.: Cardiac electrical restitution properties and
stability of reentry spiral waves: a simulation study. Am. J. Physiol. 276, H269–
283 (1999)

29. Viswanathan, P.C., Rudy, Y.: Pause induced early afterdepolarizations in the long
QT syndrome: a simulation study. Cardiovasc Res. 42, 530–542 (1999)

30. Babij, P., Askew, R., Nieuwenhuijsen, B., Su, C., Bridal, T.R., Jow, B., Argentieri,
T.M., Kulik, J., DeGennaro, L.J., Spinelli, W., Colatsky, T.J.: Inhibition of cardiac
delayed rectifier K+ current by overexpression of the Long-QT syndrome HERG
G628S mutation in transgenic mice. Circ. Res. 83, 668–678 (1998)

31. Tranquillo, J.V., Hlavacek, J., Henriquez, C.S.: An integrative model of mouse
cardiac electrophysiology from cell to torso. Europace 2, 56–70 (2005)

32. Bondarenko, V.E., Szigeti, G.P., Bett, G.C.L., Kim, S., Rasmusson, R.L.: Com-
puter model of action potential of mouse ventricular myocytes. Am. J. Physiol.
Heart Circ. Physiol. 287, H1378–H1403 (2004)

33. Iyer, V., Mazhari, R., Winslow, R.: A computational model of the human left-
ventricular epicardial myocyte. Biophys. J. 87, 1507–1523 (2004)



Relating Discontinuous Cardiac Electrical
Activity to Mesoscale Tissue Structures:

Detailed Image Based Modeling

Mark L. Trew1, Bruce H. Smaill1,2, and Andrew J. Pullan1,3

1 Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland
1142, New Zealand

m.trew@auckland.ac.nz
2 Department of Physiology

3 Department of Engineering Science

Abstract. We relate aspects of discontinuous cardiac activation to the
mesoscale myocardial structural feature of interlaminae clefts or cleavage
planes. Specialized numerical and computational procedures have been
developed for modeling cardiac activation which accounts for detailed
myocardial geometric structures derived from specific tissue samples.
This modeling allows both study and analysis of the effects of cleav-
age planes and other structural barriers to myocardial current flow. The
results show that mesoscale discontinuities significantly affect the forma-
tion of virtual electrodes, and can result in discontinuous activation with
midwall pacing.

1 Introduction

There is strong evidence that electrical activity in cardiac tissue is discontinuous
and is influenced by the myocardial architecture [1,2,3]. It is accepted that de-
fibrillating shocks would not produce cardioversion if the myocardium behaved
as a continuum and structural discontinuities have also been proposed to ex-
plain the response of the myocardium to high voltage shocks [4,5,6]. However,
an outstanding question remains: do the structural features of the myocardium
responsible for discontinuous activation occur at the myocyte (microscale) level
[1,2] or are larger mesoscale [5,7] or macroscale [8] structures responsible? Un-
doubtedly structural features at all scales contribute as a syncytium to what
is ultimately observed as electrical behavior that cannot be explained by con-
tinuous theory. High-resolution fluorescence imaging studies [4] and theoretical
modeling studies [9] suggest that the microscale contributions to discontinu-
ous electrical activity may be less than those of other scales. We postulate that
mesoscale structural features, in particular interlaminae clefts or cleavage planes,
are among the more significant contributors to discontinuous electrical activity.
This reflects the geometry, organization and spatial extent of these structures.

Studies in processed tissue have shown that cardiac ventricular myocytes are
arranged in sheets 4-5 cells thick, separated by cleavage planes or collagenous
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septae [10,11,12]. Data consistent with these observations has also been obtained
from diffusion tensor MRI of fresh perfused hearts [13]. The laminar structure
of myocardium has been convincingly related to mechanical function, especially
ventricular wall thickening during systole [14]. The ability of myocyte layers to
slide without significant shear stress is elucidated in support of this behavior. In
contrast there have been limited studies into the impact of the same structures
on electrical propagation [7,15,16,17].

The challenge to direct measurement of the influence of structures such as
cleavage planes on electrical activation is the combination of the scale of the
structure (∼10-100 μm [9]) and the extent over which those measurements must
be made (∼1-10 mm). Consequently, even with high resolution transmural imag-
ing studies [4,5], direct evidence of discontinuous activation linked to cleavage
planes remains experimentally difficult to achieve at the time being. Computer
modeling provides a means for addressing these limitations. This enables the con-
sideration of electrical behavior at both the fine resolution necessary to capture
the detailed structure and the gross tissue level. Developments over the last five
years in tissue imaging, numerical techniques and computational resources have
begun to enable the modeling of electrical activation using tissue-specific, dis-
continuous myocardial geometries [7,18,15,16]. Here we address two hypotheses
using tissue-specific cardiac electrical modeling: (1) that realistic discontinuities
in syncytial cellular coupling cause the wide-spread formation of virtual elec-
trodes when an extracellular electric field is applied; and (2) that some realistic
discontinuities in syncytial cellular coupling can give rise to significantly discon-
tinuous activations from midwall pacing.

2 Methods

2.1 Detailed Tissue Structure Models

Detailed tissue samples have been obtained from rat LV free wall. The tissue sam-
ples were perfused with fixative and stain, embedded in resin and automatically
milled and imaged using a confocal microscope imaging rig [11,12,16]. From the
three-dimensional reconstructed images (Figs. 1(a) and 1(b)), cleavage planes
and other myocardial discontinuities were segmented. We are currently working
with two tissue samples (denoted A and B) and two segmentation methods: one
manual (A) [7,15] and one automatic (B) [16]. The manual segmentation repre-
sents the most significant cleavage planes as finite element surfaces (Fig. 1(c)).
The automatic segmentation is performed at a user-specified resolution (sub-
sampled if necessary from the 3D image reconstruction) and non-myocardial
features such as cleavage planes or blood vessels are identified and form a tem-
plate to be used for modeling purposes (Fig. 1(d)).

2.2 Computer Modeling

Electrical behavior is represented by the bidomain model (1). The dependent
variables are the transmembrane potential, Vm, and the extracellular potential,
φe.
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(a) (b)

(c) (d)

Fig. 1. Tissue imaging and processing. (a) Tissue A. Reconstruction of 3.6 by 0.8 by
0.8 mm confocal images. (b) Tissue B. Reconstruction of 4.36 by 1.15 by 0.9 mm
confocal images. (c) Tissue A. Cleavage planes manually segmented into bilinear finite
elements. (d) Tissue B. Automatic image segmentation into myocardium and non-
myocardium regions.

AmCm
∂Vm

∂t
− ∇ · (σi∇Vm) = ∇ · (σi∇φe) − AmIion

∇ · ((σe + σi)∇φe) = −∇ · (σi∇Vm) − ie (1)

Here Am is the surface to volume ratio of the representative cell membrane
between the domains, Cm is the specific capacitance of the membrane, σi and
σe are the intra- and extra-cellular conductivity tensors, Iion is the membrane
ionic current and ie is a current injection per unit volume into the extracellular
space. The ionic current is determined using a simple cubic activation model [21]
or a defibrillation modified Beeler-Reuter model [22]. Assuming isolated tissue,
these equations are subject to the no-flux current boundary conditions given in
Eqns. (2).

∇ (Vm + φe) · (σi · n) = 0 on ΓO ∪ ΓC

∇φe · (σe · n) = 0 on ΓO (2)

ΓO are the exterior boundaries and ΓC are the internal boundaries in the intra-
cellular domain, i.e. cleavage planes and other myocardial discontinuities.

For numerical modeling of the discontinuous myocardial structure with no-flux
boundaries, methods based on the weak or integral forms of (1) are attractive,
since this allows the natural enforcing of the no-flux boundary conditions given
in Eqns. (2). An efficient finite volume based method [15] is used to discretize
Eqns. (1) and (2).
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Fig. 2. Mesh padding about the tissue sample models A and B. The mesh is graded
from the high-resolution region of interest to the lower interest exterior regions.

Studies have suggested that the conductivity of cardiac connective tissue is
around 0.2-0.5 mS/mm [17,23]. This is similar to extracellular conductivities
used by other researchers [20]. Here we use intracellular conductivities of 0.263
and 0.0263 mS/mm in the fiber and cross fiber directions. The extracellular con-
ductivities are 0.263 and 0.1087 mS/mm. These give an intracellular anisotropy
ratio of 10:1 and an extracellular ratio of 2.4:1, corresponding with those sug-
gested by [24]. Orthotropy in the intracellular conductivity is obtained by explicit
representations of cleavage planes.

The detailed geometry of tissue sample A is projected onto a finite volume
mesh of a given spatial resolution. The minimum scale of myocardial discontinu-
ity is then given by the resolution of the computational mesh. The image voxel
segmentation of tissue sample B is subsampled directly to the desired resolution
of the computational mesh.

As shown in Fig. 2 the computer model meshes of A and B are padded laterally
to remove the near-field influence of the sample boundaries. The resulting tissue
volume is similar to that of the rat ventricles. The mesh padding was graded
to reduce the number of additional unknowns that were added to the modeling
problem. In the mesh padding regions away from the detailed tissue sample
either a low sheet-normal conductivity was used (for shock simulations) or a
mesh of intracellular breaks (for unipolar or bipolar stimulations) was used to
force the intracellular current flow to be approximately radial. The low sheet-
normal conductivity was 0.008 mS/mm as suggested by [7].

3 Results and Discussion

3.1 Computational Aspects

Figure 3 highlights some of the numerical challenges inherent in detailed
mesostructural modeling. For shock based modeling using tissue sample A (and
the padding region) the virtual source distribution becomes independent of the
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Fig. 3. Variation with mesh resolution of the computed transmembrane potential along
the centerline of the structure model based on tissue sample A. A fixed 10 V/cm
extracellular electric field is applied across the tissue sample. (a) 2 ms after stimulus
application. (b) 4 ms after stimulus application.

mesh at a spatial resolution of approximately 10 μm. This translates into over 8.4
million degrees-of-freedom required to model sample A and 15.7 million degrees-
of-freedom to model the larger sample B. It is important to note that although
we are using a fine computational resolution, we are not attempting to model
electrical behavior of cardiac tissue at a 10 μm resolution. This level of mesh res-
olution denotes the minimum dimension to which the geometry of the cleavage
plane descriptions are resolved.

Problems are solved using a hyperthreaded 52 processor (Power 5, 1.9 GHz),
210 Gb shared memory IBM Regatta. For tissue sample A, simulations of length
10 ms require approximately 3-4 hours of elapsed wall time using 16 threads. The
problems parallelize well. New multigrid-based solvers have been developed that
account for discontinuous conductivities and the ill-conditioned or indefinate
system arising from the discretization of the elliptic second equation of Eqn.
(1) [25]. These developments have further enhanced solution times and problem
capacity.

3.2 Virtual Electrodes and Cleavage Planes

The virtual source strengths due to conduction anisotropy and myocardial dis-
continuities were determined for simple two-dimensional problems. A bidomain
model was used to predict the passive current density fields arising from bipo-
lar extracellular stimulation of cardiac tissue. The intracellular current density
field, J i, was used to determine the membrane current flows, i.e. im = −∇ · J i.
Fig. 4 shows the variation in im in the vicinity of the electrodes and a my-
ocardial discontinuity of varying length. These problems used the conductivity
values given in Sec. 2.2 with the fiber direction oriented horizontally along the
discontinuity. The positive membrane current flows are depolarizing and result
in virtual cathodes. The current sources per unit volume along the discontinu-
ities are approximately 75% of the cathodal current source, while the virtual



Relating Discontinuous Cardiac Electrical Activity 225

Fig. 4. Predicted virtual electrode strengths in two-dimensions arising from myocardial
discontinuity and variable anisotropy ratios. The effects of different sizes of disconti-
nuities are shown.

cathodes are 21%. However, the volume of tissue depolarised by the virtual
source is important and for a given stimulus strength the larger dimension dis-
continuity will depolarise a larger volume of tissue over the activation threshold.
In this context the definition of “larger” is related to both the shock strength and
the set of conductivities. Note also that for smaller discontinuities the volume of
tissue with a virtual cathode > 100 μA/mm2 is edge limited, but in the case of
the 2 mm discontinuity it is not. The edge limitations cease at a discontinuity
of length approximately 1 mm.

(a) (b)

Fig. 5. Distributions of transmembrane depolarizations from virtual electrodes in two
tissue models 2 ms after the application of a rectangular 10 V/cm transmural shock.
The cathode is located on the epicardium and the anode is located on the endocardium.
(a) Tissue sample A. (b) Tissue sample B.

Simulations of extracellular shock stimulation in the three-dimensional de-
tailed tissue models show intramural formation of virtual electrodes (Fig.5). In
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Fig. 6. The impact of structure geometry on extracellular potential traces. (a) A two-
dimensional test problem. (b) Line discontinuity of length 2.0 mm. (c) Circle disconti-
nuity of circumference 4.0 mm.

both models, the electrodes form on the anodal (in this case, endocardial) side
of the larger intracellular discontinuities, with the early distributions being pre-
dominantly on the endocardial side of the midwall. These results refect previous
experimental[4,5,6] and model[18,7] studies and support the hypothesis that un-
der defibrillation strength shocks, myocardial discontinuities contribute to rapid
transmural depolarization by seeding intramural virtual electrodes.

3.3 Non-uniform Activation and Cleavage Planes

When the stimulus strengths are near threshold, similar processes contribute
to passive tissue depolarization and hyperpolarization across cleavage planes.
However, the virtual electrodes are insufficiently strong to activate the tissue, al-
though the potential gradient may be strong enough to diffuse sufficient extracel-
lular current across the cleavage plane, that its consequent redistribution into the
intracellular space facilitates subsequent activation [17]. In general for the case
of near threshold stimulation it is predominantly the intracellular paths around
the obstacles that dictate the spread of activation. This spread can be markedly
discontinuous, especially from focal stimuli. Extracellular potential traces with
multiple or fractionated deflections in the downstroke of the action complex have
been observed following external stimulation in myocardium [26] and are usually
taken to be indirect evidence of non-uniform or discontinuous activation. Figure 6
shows extracellular potential traces for a two-dimensional bidomain problem
with both line and circle discontinuities. Only the line discontinuity (Fig. 6(b))
shows fractionated activation downstrokes in the vicinity of the discontinuity.
Shorter line discontinuities showed progressively less downstroke fractionation.
These results suggest that larger planar discontinuities (such as cleavage planes)
may be largely responsible for fractionated downstrokes in electrograms.

Fig. 7 shows focal and plane stimuli activations in a detailed three-dimensional
model of tissue A. The extracellular potential traces shown in Fig. 7(b) are sim-
ilar to in-vivo observations with multiple activation downstrokes for focal acti-
vation but smoother deflections in sinus rhythm [27]. The geometric features of
the relevant cleavage planes at four sample points are important in the analysis
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of these extracellular potential traces. For a midwall stimulus, the sample points
are equidistant from the stimulus point. However, 2 and 3 activate later than 1
and 4. In addition, 3 activates earlier than 2 and 1 activates earlier than 4. The
geometric model shows the large cleavage planes nearest to the recording points
impinging on the path from the stimulus site in two ways. (1) The path has a
significant component parallel to the cleavage plane, i.e. minimal non-uniform
activation, or the path has a significant component normal to the cleavage plane,
i.e. most non-uniform activation (Fig. 7(c)). (2) The dimensions of the planes.
The point with the most non-uniformity (2, Fig. 7(c)), lies adjacent to a large
cleavage plane. In contrast, the point showing lesser non-uniformity (3, Fig. 7(c))
is adjacent to multiple smaller planes. These results unify previous observations
that downstroke fractionation is dependent on the size of myocardial disconti-
nuities [9] or the recording location relative to the local myofiber orientation
[26].

(a) (b)

(c)

Fig. 7. The impact of cleavage plane structures on non-uniform activation. (a) Trans-
mural activation for bipolar midwall and endocardial stimuli. (b) Extracellular poten-
tial traces at four intramural sample points. (c) Detail of key cleavage plane structures.
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4 Conclusions

Direct modeling of myocardial cleavage planes provides new insights into the
complexities of cardiac activation. It sheds light on the efficacy of defibrillation
type shocks and assists in quantifying the impact of mesoscale structural geom-
etry on experimental results. Understanding the response of detailed cardiac
tissue models to stimuli may also be an important tool in the design of new
pacing modalities for treating and preventing arrhythmias and heart failure.

Acknowledgements

Royal Society of New Zealand Marsden Fund; Health Research Council of New
Zealand; and contributions from: Dr I.J. LeGrice (Figs. 1(a)-1(b)), Dr G.B. Sands
(Fig. 1), Dr D.A. Hooks and Mr B.J. Caldwell.

References
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Abstract. This article reviews major problems and difficulties faced by the authors 
along more than twenty years of clinical application of magnetocardiography 
(MCG) as a tool to improve the diagnosis of arrhythmogenic mechanism(s), non-
invasively. It is also emphasized that an exhaustive understanding of individual 
electrophysiology is mandatory before any intervention, which can modify the 
substrate and complicate the treatment of patients in the case of ablation failure. 
The reasons for scarce acceptance of MCG, compared with the success of recent 
methods for invasive three-dimensional electroanatomical imaging (3D-EAI), are 
discussed to provide suggestions for needed changes in R&D strategy. MCG might 
be a powerful method for non-invasive 3D-EAI, but appropriate tools for its 
clinical applicability are still lacking and need to be urgently developed, through 
serious investments and interdisciplinary cooperation. 

Keywords: Magnetocardiography, Mapping, Ablation, Cardiac Arrhythmias. 

1   Introduction 

Invasive dynamic three-dimensional electroanatomical imaging (3D-EAI) is 
increasingly used in the catheterization laboratory for precise targeting and 
appropriate ablation of focal and/or reentry arrhythmogenic substrates [1]. Since 
1995, new technologies have been also developed to visualize intracardiac mapping 
catheters without the need of fluoroscopy and to use them as a sort of intracardiac 
digitizer, which provides, sequentially or simultaneously, a drawing of endocardial 
geometry [2-5]. One of those systems, based on “magnetic” technology, is nowadays 
present in the majority of cardiac electrophysiology units and provides unrivalled 
support for interventional electrophysiology and new diagnostic capability to detect 
arrhythmogenic abnormalities in patients with cardiomyopathy [6]. Magnetic 
technology is also the base of robotic systems to navigate with high precision soft 
electrocatheters from a remote radiation-free location [7]. Alternatively, stereotactic 
navigation of amagnetic catheters under direct magnetic resonance imaging (MRI) 
control is under testing for dynamic display of the catheter position into the cardiac 
anatomy of the patient [8]. 
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Beside the progress of hardware technology, fast development of appropriate 
software tools for quick and accurate interactive reconstruction of cardiac chambers 
and dynamic imaging during interventional procedures have been the key factor 
facilitating widespread acceptance of such new methods at clinical level, in spite of 
high cost of the instrumentations and of the indispensable consumables (single use 
special catheters, electrode or coils patches, etc.).   

Simultaneous progress of three-dimensional (3D) rendering of cardiac anatomy 
from multi-detector computer tomography (MDCT) or from MRI has provided the 
basis to reach a realistic electroanatomical imaging through multimodal integration of 
invasive electrophysiological information with the patient’s true anatomy, 
preliminarily obtained with MDTC or MRI (Fig. 1). 
 

 

Fig. 1. Example of multimodal integration of three-dimensional electroanatomical imaging 
based on merging of CARTO® mapping and 3D rendering of right atrium and ventricle from 
multi-detector computer tomography 

The availability of such high-tech tools and the improving results of catheter 
ablation are rapidly changing the guidelines for the treatment of cardiac arrhythmias 
favouring the interventional approach as more resolutive compared with chronic 
conservative drug therapy.  

For an increasing number of arrhythmias catheter ablation is nowadays proposed to 
the patient as the first-line treatment. Also the “old” electrophysiologic study, which 
was carried out to investigate and understand the arrhythmogenic mechanism(s) 
underlying the individual clinical picture, is now often disregarded. In fact with the 
idea in mind that ablation will solve the problem, the exhaustive understanding of the 
electrogenic substrate is considered almost a useless time-consuming procedure. 
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During the intervention, cardiac mapping is carried out to get electro-anatomical 
landmarks, to match the patient’s true 3D anatomical images (usually MDCT images) 
and to navigate the mapping/ablation catheter at the appropriate sites. Electro-
physiological recordings are used to target the arrhythmogenic site(s) and to validate 
the efficacy of the ablation [2-5]. 

Now, if in the era of robotic electrophysiologic interventions the results of invasive 
methods are efficient and resolutive, why should we need non-invasive electro-
physiologic imaging and in particular magnetocardiography (MCG)?  

In this paper we will discuss some points of evidence, based on our clinical 
experience, which suggest that non-invasive preoperative evaluation of the patient is 
necessary to minimize the risks of ablation and/or to address pharmacological 
treatment in the case of failure. MCG might be the first choice method for non-
invasive 3D-EAI, but urgent developments are required to transform MCG systems 
from research tools into user-friendly clinically acceptable devices. 

2   Methods 

As recently reported elsewhere [9], our most recent clinical experience on MCG use 
for the study of patients with cardiac arrhythmias is based on more that 550 
recordings performed, from November 2002 to May 2006, with a 36-channel 
unshielded mapping system (CardioMag Imaging Inc, Schenectady, NY), based on 
DC-SQUID sensors coupled to second-order axial gradiometers (pick-up coil 19 mm 
and 55-70 mm baselines), with an intrinsic sensitivity of 20 fT/√Hz in the frequency 
range of clinical interest [10].  

Because the system is located in a catheterization laboratory, MCG is part of an 
exhaustive electrophysiologic investigation protocol, tailored to the diagnostic need of 
each arrhythmic patient. MCG is digitally recorded in the DC-100 Hz bandwidth (24 
bits A/D conversion, with automatic electronic noise rejection, at 1 kHz sampling 
rate), together with the 12-lead ECG, oesophageal electrograms and, when indicated, 
with intracardiac signals (CardioLab System, General Electric). Transesophageal and 
endocardial pacing are performed with a programmable cardiac stimulator (MEDICO 
TECS II, Padua, IT). High-resolution Multiple Monophasic Action Potential (Multi-
MAP) recording is performed with a single 6F amagnetic catheter, which can be 
localized by MCG, with a 3D accuracy of 2-7 mm, without the use of fluoroscopy 
[11]. MAP signals are differentially amplified, band pass filtered (DC-1 kHz) and 
digitized at the sampling frequency of 2 kHz.  

To construct individualized 3D models of the patient’s heart [12], two orthogonal 
fluoroscopic cardiac images are digitally recorded with a mobile digital fluoroscopy 
system (Sias Spa, Bologna IT), after the MCG session. Magnetocardiographic signals 
are analyzed with the system software [10] and with the UNIX-based MCG software 
developed at the Helsinki University of Technology (Neuromag, Finland) [13]. When 
required, invasive 3D-EAI is performed with the CARTO® system (Biosense Webster, 
USA) in another catheterization laboratory of our university, where catheter ablation 
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is performed. 3D “rendering” of cardiac anatomy is obtained from MDCT or MRI 
(General Electric). 

3   Results and Discussion 

The results of our investigation of specific groups of arrhythmic patients have been 
reported elsewhere [14-18]. Here we summarize some key-points of our experience 
using MCG as a non-invasive method for 3D-EAI, aiming to discuss which, in our 
opinion, are the pitfalls that have penalized MCG so far, and some suggestions for 
possible corrective interventions. 

3.1   The Risk of Present Trend to Use Ablation as the First Line of Intervention 

Along the last few years, the increasing success rate and the dramatic drop of 
interventional risk are convincing cardiologists that an aggressive policy is preferable 
to treat cardiac arrhythmias in a single-time cost-effective way.  

On the other hand, clinical experience provides also evidence that failures of 
ablation are not rare and that in some patients, after multiple relapses of the 
arrhythmia, one has to give up and come back to traditional therapy. However, it is 
often more difficult to select the appropriate pharmacological treatment after that 
ablation has modified the original arrhythmogenic substrate in an unknown way.  

For this simple reason we believe that the electrophysiologic mechanism(s) 
underlying cardiac arrhythmias should be well identified in the individual patient, 
before any ablation-induced modification of the substrate. In this view there is 
obviously still need and interest for any non-invasive diagnostic tools reliable for this 
purpose. 

3.2   Reliability and Limitations of MCG-Based 3D-EAI 

Two decades of research work have convinced us that MCG is an unrivalled non-
invasive tool for contactless cardiac mapping, providing the possibility to restudy 
arrhythmic patients multiple times, to better understand the nature of the underlying 
arrhythmogenic mechanism(s).  

Several preliminary studies have demonstrated that MCG is reliable to localize 
three-dimensionally different kinds of arrhythmogenic substrates. Beside localization 
of well-confined arrhythmogenic structures, such as a thin accessory Kent-type 
pathway [14] or focal tachycardias, MCG has been recently reported to provide also 
dynamic imaging of atrial reentry arrhythmias [19,20], which might be useful to 
classify and differentiate preoperatively patients with different types of atrial 
fibrillation. However, such results have been obtained with custom research tools, 
unavailable as commercial options and very far from the kind of imaging that are 
provided with systems for invasive cardiac mapping. This obviously might discourage 
the use of MCG in the “diagnostic cascade” of the arrhythmic patient candidate to 
ablation.  

On the other hand it is absolutely evident that preoperative MCG 3D-EAI would be 
useful to define the reproducibility and stability of the arrhythmogenic substrate, to  
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differentiate patients with apparently similar ECG pictures but different 
electrophysiologic substrates and to plan the most appropriate interventional 
approach, prior to any invasivity.  

3.3   Why MCG Has Failed Where Invasive 3D-EAI Has Been Rapidly 
Accepted? 

The intuition that MCG could be used to guide aimed electrophysiology, myocardial 
biopsy and ablation of cardiac arrhythmias was originally patented already at the end 
of the eighties [21], and probably triggered the development of the later “magnetic” 
technology for invasive 3D-EAI and for the navigation of ablation catheters [22].  

The invasive “magnetic” technology for 3D-EAI is nowadays widely accepted as 
an unrivalled support for interventional electrophysiology, whereas MCG is almost 
unknown and disregarded by clinical electrophysiologists, in spite of the capability to 
provide the same information non-invasively. 

Thus the question is: what is missing that has impeded MCG, the oldest magnetic 
method, to have the same success and clinical acceptance obtained by its younger 
invasive brother? 

In our opinion there are two major motivations: a) the lack of software 
development for appropriate imaging; b) the apparent lack of benefit for the industry 
in investing for such development. 

a. Lack of Software Development 

This point is self-explaining. In fact the development of appropriate software tools and 
user-friendly interface is mandatory. Without the appropriate software tools it is 
impossible to put MCG in the hands of the average cardiologist and pretend that they 
invest (or waste) their precious (and most often very limited or unavailable) time to 
reconstruct mentally and manually the 3D localization or the dynamic imaging of an 
arrhythmogenic substrate, which is automatic in the commercial systems for invasive 
3D-EAI. 

Which Should Be the Requirements for New Software Tools? 
If the target is to develop tools to use the information obtainable with MCG for 
clinical use, it must be taken into account what comes out from years of experience 
using MCG to improve the understanding of individual electrophysiologic patterns of 
patients with cardiac arrhythmias.  

First of all, MCG-based 3D-EAI is a complex time-consuming evaluation process, 
which requires multiple analytic iterations, frequently on a beat-to-beat basis, not only 
during spontaneous rhythm, but also during pacing or other dynamic tests. The 
diagnostic accuracy of MCG based 3D-EAI in fact can be enhanced by simultaneous 
electrophysiologic study with trans-esophageal atrial pacing [15] or pharmacologic 
tests, thus the number of situations to be analyzed might increase in individual cases. 

At the moment the 3D presentation of the electrophysiological information 
provided by MCG is almost at a medieval level. For example, if one compares the 
software tools provided with systems for interventional electroanatomical imaging 
with those of commercially available MCG systems, is immediately evident that 
automatic protocols for multimodal integration of electrophysiological imaging and 
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3D “rendering” of cardiac anatomy from MDCT or MRI are standard options in the 
former and completely missing in the latter. Instead, automatization is needed to 
speed-up the MCG diagnostic procedure and to avoid bias due to presumptions.  

The Design of New Software Is a Challenge that Deserves Interdisciplinary Work 
Accomplishing this task will require the involvement of companies, clinicians, 
scientists and engineers. In fact it has to taken into account the nature of the specific 
clinical problem(s) to be solved, but also the way the cardiologists are used to work 
with their instrumentations.  

For example, looking forward to using the 3D electroanatomical information 
preoperatively obtained with MCG to guide catheter ablation, software protocols for 
automatic or interactive imaging should follow the same rationale (i.e. use the same 
3D anatomic images, acquires with the same reference landmarks in the different 
settings). 

An appropriate understanding of the spatial relationship between MCG-based 3D-
EAI of the target and fluoroscopic imaging of the mapping/ablation catheters is still 
lacking. In fact, from our clinical experience with MCG, we have found that, even 
using the same reference landmarks during data acquisition with MCG and 
fluoroscopic imaging, a lot of thought and experience was necessary in some cases, to 
understand and correct apparent disagreements in determining the position of the 
catheter successfully in order to ablate the substrate with appropriate MCG-based 
localization of the target (Fig. 2). The implementation of novel dynamic modelling of 
the beating heart and respiring lungs will be useful to improve accuracy [23]. 

Possible Sources of Matching Disagreement Between Fluoroscopy and MCG 
Possible sources of matching disagreement can be inherent to the patient (e.g. 
respiration, “twisting” movement of the heart during contraction, skin displacement, 
torso rotations), or external (e.g. different geometry of the beds of the different 
imaging systems, slight tilt of fluoroscopy or of the MCG systems).  

By using 3D rendering from MDCT (Fig. 2A) as the common anatomic structure 
between invasive (Fig. 2B) and MCG-based (Fig. 2C) and 3D-EAI, we were able to 
understand some other possible reasons for mismatch with fluoroscopy  (Fig. 2D).  

One of them is that fluoroscopic images during catheterization are taken in a random 
way, and the position of the distal terminal of the mapping catheter may fluctuate with 
respiration even several centimeters in respect of the external (chest surface) or internal 
(e.g. transesophageal) radiopaque markers used as reference points for image fusion 
with MCG, especially if the catheter is placed at the antero-lateral wall of the right 
ventricle. ECG-gated fluoroscopic imaging and comparison with MCG at the same 
respiratory phase might minimize the mismatch. The contribution of the 
electromechanical interval can also play a role in inducing a mismatch depending on the 
timing of the localization procedure during the cardiac interval.  

On the other hand also the matching of non-invasive MCG-based 3D-EAI with that 
obtained with interventional mapping is not immediate at the moment, and there can 
be additional sources of error (i.e. if the patient moves in respect of the magnetic coils 
that are solid with the bed surface, during invasive cardiac mapping). 
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Fig. 2. Vertical mismatch (2 cm) between MCG localization (C) of a right anterior-inferior 
accessory pathway and fluoroscopic imaging (frontal view) of the catheter at the site of 
successful ablation (D). CARTO© 3D-EAI (B) and its integration with MDCT (A) confirm the 
accuracy of MCG-based imaging of the arrhythmogenic substrate (encircled). 

b.   Lack of Benefit for the Industry in Investing for Such Development 

This point is crucial. Without investments and adequate manpower there is no 
possibility to transform MCG research tools into clinical devices. Companies who 
have constructed systems for invasive cardiac mapping, electroanatomical mapping 
and even most recent technology for robotic navigation of ablation catheters have 
obviously accepted to take the risk of big investments with a perspective of covering 
the costs in a medium or even long term. However, when the invasive systems have 
become ready for clinical testing and thereafter for commercialization, the simple use 
of such devices, independently whether the intervention was clinically successful or 
not, had the potential to provide an economical profit to the company, because the 
study of each patient implies the use of single-use consumables (catheters, patches 
electrodes, etc). Thus the cost of the instrumentation could be covered by a prevision 
of a certain number of investigated patients per year. This is not the case with MCG, 
which doesn’t need electrodes, catheters or expensive consumables other than liquid 
helium not commercialized by the companies selling the instrumentation. Thus the 
high initial investment for the development of the MCG instrumentation cannot be 
damped even during the clinical testing phase with a “pay per patient” philosophy. 
On the other hand nowadays budget limitations often prevent universities and 
hospitals from buying high-cost research instrumentations or new technology, 
whenever their clinical utility has not been previously demonstrated.  This lack of 
potential market discourages investment in R&D and the situation is frozen so far in a 
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“vicious circle”, blocking the development of MCG technology at the step before that 
needed to demonstrate the clinical need and benefit of the method. 

4   Future Applications 

Beside short-term developments which are mandatory to provide MCG with the 
possibility to really enter in the diagnostic routine of arrhythmic patients, we believe 
that MCG has two additional interesting perspectives that deserve much attention to 
plan their medium-term development: a) Preoperative non-invasive programming of 
robotic systems to navigate ablation catheters, and b) Outline of cardiac anatomy 
based on current density imaging. 

a.   Preoperative Non-invasive Programming of Robotic Systems to Navigate 
Ablation Catheters 

Nowadays magnetic technology has also been used to construct robotic systems to 
navigate with high precision electrocatheters from a remote radiation-free location 
[7]. Such robotic system has been integrated with an invasive 3D-EAI system and 
with MDTC anatomic imaging to guide ablation. Such integration program is also 
foreseen to develop automatized computer-driven ablative procedures. However this 
could be also a unique opportunity also for MCG. In fact MCG capability to provide 
3D coordinates of an arrhythmogenic target and its automatic integration into 3D 
rendering of the patient’s heart obtained from cardiac MDCT or MRI, might provide 
an individualized virtual model to plan and program non-invasively the ablation 
protocol of a robotic system and to test non-invasively its efficacy before the 
intervention.  

b.   Outline of Cardiac Anatomy Based on Current Density Imaging 

Nakai et al have recently shown that, using a new space filter for visualizing the 3D 
electric current density from Bz magnetic fields, they were able to reconstruct from 
MCG, 3D outlines of patients’endocardial boundaries, corresponding to their cardiac 
MRI images [20,24]. Similarly Ogata et al [25] describe an advanced application of 
the current arrow method, aimed to provide 3D electroanatomical imaging of atrial 
and ventricular electrophysiological events, by projecting current arrow maps, 
reconstructed from frontal and posterior MCG, onto a 3D model of the heart. In spite 
of the use of a standard model as anatomical substrate, the imaging results are 
impressive and enhancing the MCG capability to provide 3D EAI without the need of 
other methods for anatomical imaging. Ogata et al have shown the interindividual 
reproducibility of current arrow patterns in visualizing both atrial and ventricular 
activation currents, with a reasonable spatial resolution. The next step needed is a 
combination of the Nakai and Ogata methods (i.e. a tailoring of the standard cardiac 
model to match the outline of the individual endocardial boundaries calculated with 
space filtering) and a more focused spatial separation of local electrophysiological, to 
detect local arrhythmogenic conduction and/or repolarization abnormalities.  
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5   Conclusions 

MCG imaging of cardiac electrophysiology might be used as a non-invasive approach 
to localize the origin and the mechanisms of cardiac arrhythmias. Successful results 
have been obtained also with body surface potential mapping [26]. A comparative 
study to evaluate the relative merits of MCG and ECG methods, validated by 
comparison with invasive electroanatomical imaging in the same patients would be 
surely desirable, however such data are not available yet. 
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Abstract. We present preliminary results of the numerical simulation
of electrocardiograms (ECG). We consider the bidomain equations to
model the electrical activity of the heart and a Laplace equation for the
torso. The ionic activity is modeled with a Mitchell-Schaeffer dynamics.
We use adaptive semi-implicit BDF schemes for the time discretization
and a Neumann-Robin domain decomposition algorithm for the space
discretization. The obtained ECGs, although not completely satisfactory,
are promising. They allow to discuss various modelling assumptions, for
example the relevance of cells heterogeneity, the fiber orientation and the
coupling conditions with the torso.

1 Introduction

We address the numerical simulation of electrocardiograms (ECG), namely the
direct problem of cardiac electrophysiology. Our basic equations are the so-called
bidomain model for the heart [4,16] coupled to a simple model for the torso.

The complexity of the electrical activity of the heart raise many modelling
issues: strong nonlinearity due to the ionic currents, stiffness due to very different
time scales, heterogeneity of cells, anisotropy due to the fibers, etc. Moreover,
the modelling of many aspects of the problem is not yet well-established. In [20],
more than 28 models of cardiac cells are reported, some of them including more
than 50 parameters. The coupling conditions between the heart and the torso
are also subject to controversy [11].

We have to face two opposite viewpoints: on the one hand, we would like to
model as accurately as possible the physical phenomena described in the litera-
ture; on the other hand, we would like to keep as low as possible the complexity
of the model, both in terms of computational effort and in terms of number of
parameters. Our purpose is to obtain ECGs, and we propose to address, with the
help of numerical simulations, what could be the “minimum requirements” of the
model to reach this goal. For example, is a bidomain model necessary? what is
the effect of the heart movement? how sensitive are the results to the anisotropy
induced by fibers or the cells heterogeneity? is it really useful to strongly cou-
ple the heart with the torso? what should be the coupling conditions? how to
handle the His bundle and the Purkinje fibers? etc. We do not address all these

F.B. Sachse and G. Seemann (Eds.): FIMH 2007, LNCS 4466, pp. 240–249, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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questions in this paper. The point is mainly to present preliminary results and
to draw some perspectives.

2 Modelling

We denote by ΩH the total domain occupied by the heart. In the microscopic
scale, the cardiac tissue is assumed to be composed of two distinct media:
the intracellular media, made of the cardiac cells, and the extracellular media,
composed of the remainder of the heart. After an homogenization process, the
intra- and extracellular domains are superimposed and occupy the whole domain
ΩH [16,4]. We denote by ji, je and ui, ue the intra- and extracellular densities
of current and electric potentials respectively. The homogenized equation asso-
ciated to the electrical charge conservation is:

div(j i + je) = 0, in ΩH. (2.1)

The homogenized equation governing the electrical activity of the cell membranes
is given by

Am

(
Cm

∂Vm

∂t
+ Iion(Vm, w)

)
+ div(j i) = AmIapp, in ΩH, (2.2)

where Am is a constant representing the average rate of membrane surface per
unit of volume, the function Iion represents the current due to the ionic ex-
changes, Iapp is a given stimulation current, Cm is a capacity per unit of area of
the membrane, Vm is the transmembrane potential defined by

Vm = ui − ue, (2.3)

and the vector function w is solution to a system of ordinary differential
equations:

∂w

∂t
+ g(Vm, w) = 0. (2.4)

The precise definition of g and Iion depends on the cell model. We can use a
physiological ionic model (e.g. [13] or [6]) or a phenomenological one (e.g. [7]
or [15]). In this paper, we consider the phenomenological model proposed by
Mitchell and Schaeffer [15]:

Iion(Vm, w) = − w

τin
V 2

m(1 − Vm) +
Vm

τout
, (2.5)

.

g(Vm, w) =

⎧⎪⎪⎨
⎪⎪⎩

w − 1
τopen

if Vm < Vgate,

w

τclose
if Vm > Vgate,

(2.6)

where τin, τout, τopen, τclose and Vgate are given parameters. Note that this model
is close to the model proposed in [24].
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The current densities are linked to the electric potentials through the Ohm’s
law ji = −σi∇ui, je = −σe∇ue, where σi and σe are the intra- and extracel-
lular conductivity tensors. The system of equations within the heart therefore
reads [12,17,18]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Am

(
Cm

∂Vm

∂t
+ Iion(Vm, w)

)
− div(σi∇ui) = AmIapp, in ΩH,

div(σe∇ue) = − div(σi∇ui), in ΩH,

∂tw + g(Vm, w) = 0, in ΩH.

(2.7)

This model is often studied when the heart is isolated (cf. for example [2,3,4]).
We are interested in coupling it with a simplified model of the electrical activity
of the surrounding tissues (as done for example in [5,18] or [23]). The boundary
∂ΩH of the domain ΩH, i.e. the interface between the heart and the extracardiac
region is divided into two parts: the endocardium Γendo and the epicardium Γepi.
It is generally admitted (cf. [17,23]) that the intracellular current ji does not
propagate outside the heart. Consequently, on the heart boundary Γepi ∪ Γendo
we impose σi∇ui · n = 0. The torso domain is denoted by ΩT and the potential
in ΩT by uT . The torso is seen as a passive conductor, thus uT satisfies a Laplace
equation:

div(σT∇uT ) = 0, in ΩT, (2.8)

where σT represents the conductivity tensor of the torso. The boundary of the
torso is divided into two parts: one internal Γepi, in contact with the heart,
and Γext representing the external surface of the torso. The boundary Γext is
supposed to be insulated, thus we impose σT∇uT · nT = 0 where nT is the
outward unit normal on Γext.

On Γepi, the following conditions are generally adopted in the literature:{
ue = uT , on Γepi,

σe∇ue · n = σT∇uT · n, on Γepi.
(2.9)

They are formally obtained in [11] by an homogenization procedure. They cor-
respond to a perfect electrical coupling between the heart and the torso. Nev-
ertheless, the heart is separated from the torso by the pericardium which is a
double-walled sac containing a serous fluid. Thus, it seems reasonable to assume
the more general coupling conditions:⎧⎨

⎩
Rpσe∇ue · n = RpCp

∂(uT − ue)
∂t

+ (uT − ue), on Γepi,

σe∇ue · n = σT∇uT · n, on Γepi,

(2.10)

which takes into account a possible capacitive (Cp) and resistive (Rp) effect of
the pericardium. To the best of our knowledge, this effect is not documented in
the literature. The influence of Rp and Cp will be investigated through numerical
simulations in a forthcoming work. Of course the classical relations (2.9) can be
recovered from (2.10) by setting Rp = 0.
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3 Numerical Methods

We define the open set Ω as the interior of ΩH ∪ ΩT. Eliminating the unknown
ui in the previous system using (2.3), the above problem is equivalent to finding
ue, uT, Vm and w such that (2.10)1 and (2.4) are satisfied, and

Am

∫
ΩH

(
Cm

∂Vm

∂t
+ Iion(Vm, w)

)
φ +

∫
ΩH

σi∇(Vm + ue) · ∇φ =
∫

ΩH

Iappφ,

(3.11)
∫

ΩH

(σi + σe)∇ue · ∇φ +
∫

ΩH

σi∇Vm · ∇φ +
∫

ΩT

σT∇uT · ∇φ = 0, (3.12)

for all φ ∈ H1(Ω). Note that this variational formulation takes into account
very conveniently the coupling condition (2.10)2. Under technical assumptions
on the functions Iion and g, and for Rp = 0, we have proved in [1] that this
system admits a unique solution. This system is discretized in space using the
Lagrangian P1 finite elements and in time using a semi-implicit scheme based
on the BDF (Backward Differentiation Formula) methods. The heart and torso
domains are solved iteratively with a Neumann/Robin domain decomposition
method. We denote by Δt the time step and we assume that the solution is known
until time tn. Here is the procedure used to compute (V n+1

m , un+1
e , un+1

T , wn+1).
The first step is to solve the ionic current, namely the equation (2.4) which is

usually very stiff. We chose to use the cvode solver1 which uses adaptivity, both in
time and in order, and solves the implicit part of the equations with a Newton algo-
rithm. For practical reason, it is convenient to uncouple this step from the solution
of the bidomain equation. To this purpose, we extrapolate the unknown Vm. More
precisely, wn+1 is obtained by wn+1 =

∑p
j=0 aj,pw

n−j −Δtb−1,pg(Ṽm
n+1

, wn+1),

where Ṽm
n+1

=
∑q

j=0 αj,qV
n−j
m is the extrapolation of order q of the previously

computed Vm, q being the order in time of the scheme used to compute Vm (see
below), and αj,q, aj,p and b−1,p are the constants of the BDF methods [19].

The second step is to solve the bidomain-torso problem. We use a domain de-
composition algorithm: assuming that un+1,k

T is given, we compute V n+1,k+1
m and

un+1,k+1
e solving a Neumann problem in ΩH with a q-order BDF time scheme:

for all φ in the basis of the finite element space⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Am

∫
ΩH

CmV n+1,k+1
m φ + Δtb−1,q

∫
ΩH

σi∇(V n+1,k+1
m + un+1,k+1

e ) · ∇φ =

Am

∫
ΩH

(
Cm

q∑
j=0

aj,qV
n−j
m + Δtb−1,qIion(Ṽm

n+1
, wn+1)

)
φ + Δtb−1,q

∫
ΩH

Iappφ,

∫
ΩH

(σi + σe)∇un+1,k+1
e · ∇φ

+
∫

ΩH

σi∇V n+1,k+1
m · ∇φ =

∫
Γepi

σT∇un+1,k
T · nTφ.

(3.13)
1 Sundials library, http://www.llnl.gov/casc/sundials/
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Next, the potential un+1,k+1
e being known, we compute un+1

T solving the fol-
lowing problem in the torso ΩT:

b−1,q

∫
ΩT

σn+1
T ∇un+1,k+1

T · ∇φ +
∫

Γepi

(
b−1,q

Rp
+

Cp

Δt

)
un+1,k+1

T φ

=
∫

Γepi

(
b−1,q

Rp
+

Cp

Δt

)
un+1,k+1

e φ +
Cp

Δt

∫
Γepi

q∑
j=0

aj,q(u
n−j
T − un−j

e )φ.

(3.14)

To enforce a “strong coupling” (namely the transmission conditions (2.10)), we
have to iterate in k between (3.13) and (3.14) until convergence, at each time
step. We can also perform a “weak coupling” by performing only one iteration in
k, or even by replacing condition (2.9)2 by σe∇ue · n = 0. This approximation
will be considered in § 4.2.

4 Numerical Results

The torso geometry includes the lungs and the skeleton2 (see Fig. 1). The heart
geometry is simplified – based on intersecting ellipsoids – so that the fibers
orientation can be given in terms of analytical functions (see Fig. 1). We refer
to [22] for the details of the geometrical definition of the heart. Note that this
simplified geometry only includes the ventricles. We therefore cannot simulate
P-waves. The finite element meshes of the heart (61 512 tetrahedra) and the
torso (311 117 tetrahedra) have been realized with YAMS [8] and GHS3D[9,10].

The conductivity tensors σi and σe are given by σi,e(x) = σt
i,eI + (σl

i,e −
σt

i,e)a(x) ⊗ a(x), where a(x) is a unit vector parallel to the local fiber direction
(Fig. 1, Left) and σl

i,e and σt
i,e are respectively the conductivity

coefficients in the intra- and extra-cellular media measured along the fibers di-
rection and in the transverse direction. Experiments show that σl

i,e and σt
i,e

have different values, which means that intra- and extra-cellular media are
anisotropic. We have taken into account this anisotropy. It is also established
that they are spatially dependent. In particular, the conductivity is larger in
the His bundle and the Purkinje fibers. Nevertheless, this space dependence
is not considered in our simulations. The fact that the Purkinje fibers con-
ducts very quickly the electrical signal is roughly modeled by taking an uni-
form initial stimulation on the endocardium. All the numerical experiments
have been obtained with a very small value of Rp. This amounts to consid-
ering the standard transmission conditions (2.9). In the following section, the
ECG are plotted according to the standard 12-leads ECG definition (see [14],
for instance): DI = uT(L)−uT(R), DII = uT(F )−uT(R), DIII = uT(F )−uT(L),
aVR = 3

2 (uT(R) − uW ), aVL = 3
2 (uT(L) − uW ), aVF = 3

2 (uT(F ) − uW ), Vi =
uT(Vi) − uW , for i = 1, .., 6, where the points L, R, F , (Vi)i=1..6 are indicated
in Fig. 1, and where uW = (uT(L) + uT(R) + uT(F ))/3.

2 This geometry comes from Zygote Media Group, Inc. http://www.zygote.com/
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R L

F

V1 V2

V3 V4V5 V6

Fig. 1. Computational domains: torso and ECG leads (Left), heart with fibers (Right)

4.1 A Reference Simulation
We start from a “reference simulation”, in which we take into account the
anisotropy (σl

i,e �= σt
i,e) and a cells heterogeneity across the wall of the left

ventricule (see [21] for instance). This heterogeneity is achieved by taking a
coefficient τclose in (2.6) varying across the thickness direction. The initial stim-
ulation is given by a volume current which acts on the whole endocardium (both
left and right parts). The simulated ECG is reported in Fig. 2. Compared to a
real ECG, we can notice that the waves have a correct orientation in each of
the 12 leads. Some points have still to be improved, in particular the amplitude
of the T-wave and the length of the QRS-complex. In the sequel, we play with
various modelling assumptions and compare the results with this solution.

4.2 Weak Coupling with Torso

In order to reduce the computational cost of the heart-torso coupling, we can
relax the coupling condition (2.9) to

ue = uT , and σe∇ue · n = 0, on Γepi. (4.15)

The resulting system (2.7) and (4.15)2 can be solved independently of the torso.
Then, the ECG signals can be recovered in a second step by solving (2.8) with
(4.15)1. The results are reported in Fig. 3 (for the sake of conciseness we only
report the DI, aVr, V1 and V4 leads). A comparison with Fig. 2 shows that the
amplitude of the waves is slightly larger with the weak coupling. Nevertheless,
the solutions are qualitatively similar. The following experiments will be done
with (4.15).
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Fig. 2. Reference simulation: 12-leads ECG signals obtained by a strong coupling with
the torso, including anisotropy and APD inhomogeneity. The units on the x-axis is
milliseconds. The normalization on the y-axis is arbitrary, but the same on all the
results of this paper.
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Fig. 3. Results obtained with a weak coupling with the torso (compare with Fig. 2)

4.3 Impact of Fibers

We now investigate the influence of the anisotropy of the conductivity tensors
σi, σe on the ECG signals.

We consider the numerical experiment described in §4.1 but now we consider
isotropic conductivities by setting σl

e = σt
e, σl

i = σt
i . Fig. 4 shows the corre-

sponding ECG signals. We observe that the QRS-complex has a larger duration
than in the anisotropic case (Fig. 2, Top). In addition, the T-wave is inverted
in the the first Einthoven limb lead. The influence of anisotropy is much more
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Fig. 4. ECG signals: isotropic conductivities
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Fig. 5. Anisotropic (top) and isotropic (bottom) conductivities in a “pathological” case
(right bundle-branch block). The sensitivity to the anisotropy is striking.
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Fig. 6. ECG signals: with an homogeneous action potential duration the T-wave has
the wrong sign on the first lead (compare with Figure 2)

striking when dealing with pathological stimulations. For instance, in Fig. 5 we
have reported, the simulated ECG signals for a pathological stimulation (a right
bundle-branch block) with anisotropic (top) and isotropic (bottom) conductivi-
ties. As expected, both results show a longer QRS complex compared to Fig. 2.
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4.4 Impact of Cell Heterogeneity

We now investigate the role of the action potential duration (APD) heterogeneity
on the ECG signals. For the sake of simplicity we restrict ourselves to a trans-
mural heterogeneity, playing with the τclose coefficient as mentioned in § 4.1.

In Fig. 6 we have depicted the ECG signals corresponding to an homogeneous
APD (τclose constant in (2.6)). In the first lead (Fig. 6, Left), we observe that
the T-wave is inverted compared to the reference case (Fig. 2, Left-Top) and to
what is usually observed in real ECGs.

5 Conclusion

We have presented a mathematical model for the electrical activity of the heart
coupled to the torso. We started from a reference numerical simulation based
on the Mitchell-Schaeffer dynamics, where we took into account the heart-torso
coupling, the anisotropy due to the fibers, a simple heterogeneity along the left
ventricle wall thickness. The resulting ECG is acceptable on the 12 standard
leads. Then, we have shown that cell homogeneity yields inverted T-wave. We
have also shown that a strong coupling with the torso has only a small influence
on the ECG whereas anisotropy due to fibers orientation has to be taken into
account in general. Further computations have to be carried out to confirm
these results and to assess other points, like for example the relevance of the
transmission conditions (2.10).
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4. Colli Franzone, P., Savaré, G.: Degenerate evolution systems modeling the cardiac
electric field at micro- and macroscopic level. evolution equations, semigroups and
functional analysis. Progr. Nonlin. Diff. Eq. Appl. 1(50), 49–78 (2002)

5. Coudière, Y., Pierre, C., Turpault, R.: Solving the fully coupled heart and torso
problems of electrocardiology with a 3d discrete duality finite volume method.
submitted (2006)

3 http://www.inria.fr/CardioSense3D



Towards the Numerical Simulation of Electrocardiograms 249

6. Djabella, K., Sorine, M.: Differential model of the excitation-contraction coupling
in a cardiac cell for multicycle simulations. In: EMBEC’05, vol. 11, pp. 4185–4190,
Prague (2005)

7. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve mem-
brane. Biophys. J. (1), 445–465 (1961)

8. Frey, P.: Yams: A fully automatic adaptive isotropic surface remeshing procedure.
Technical report 0252, Inria, Rocquencourt, France (November 2001)

9. George, P.L.: Improvement on delaunay based 3d automatic mesh generator. Finite
Elements in Analysis and Design 25(3-4), 297–317 (1997)

10. George, P.L., Borouchaki, H.: ultimate robustness in meshing an arbitrary polyhe-
dron. Int. J. Numer. Meth. Engng. 58(7), 1061–1089 (2002)

11. Krassowska, W., Neu, J.C.: Effective boundary conditions for syncitial tissues.
IEEE Trans. Biomed. Eng. 2(41), 137–199 (1994)

12. Lines, G.: Simulating the electrical activity in the heart. PhD thesis, Department
of Informatics, University of Olso (1999)

13. Luo, C.H., Rudy, Y.: A model of the ventricular cardiac action ptentiel. depolari-
sation, repolarisation, and their interaction. Cir. Res. (68),1071–1096 (1994)

14. Malmivuo, J., Plonsey, R.: Bioelectromagnetism. principles and applications of
bioelectric and biomagnetic fields. Oxford University Press, New York (1995)

15. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac
membrane. Bulletin Math. Bio. (65),767–793 (2003)

16. Neu, J.C., Krassowska, W.: Homogenization of syncytial tissues. Crit. Rev. Biomed.
Eng. 21(2), 137–199 (1993)

17. Page, E.: Cat heart muscle in vitro. part iii. the extracellular space. J. Gen.
Physio. 1(46), 201–213 (1962)

18. Pierre, C.: Modélisation et simulation de l’activité électrique du cœur dans le tho-
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Abstract. The time of the minimum time derivative of the extracellular
potentials (Φ∧) is a marker for the instant of activation when the depo-
larizing sodium current reaches its maximum rate of increase. This study
examined the normalized averaged value of Φ∧, Φ∧

na, as an index of elec-
trical activity under metabolic and hypoxic stresses. Electrical mapping
was performed using a 64-electrode cage array on Langendorff perfused
isolated mouse hearts at three different glucose and insulin levels during
hypoxia. The lower levels of glucose and/or insulin resulted in the largest
decrease of Φ∧

na during hypoxia. A significant decrease in Φ∧
na was a pre-

dictor of increased total activation time and propagation pattern change,
and irreversible damage was predicted by a 60% decrease of Φ∧

na. These
results supported Φ∧

na as an potentially useful index of electrical activity.

1 Introduction

The essence of the propagation of cardiac activation is the transmembrane cur-
rent (Im), which is the sum of ion currents (Iion) and capacitive currents (Ic).
Im is governed by the cable equation for one-dimensional propagation along a
uniform structure given in Eq. (1):

Im = Iion + Ic =
∑

i

(Vm − Ei)Gi + Cm
∂Vm

∂t
, (1)

where Vm is the transmembrane potential, Ei is the Nernst voltage, Gi is the
membrane conductance, and Cm is the membrane capacity.

The cardiac action potential propagates by chain reaction between the ion and
capacitive currents. Sodium ions rush into a myocyte driven by the potential and
chemical concentration differences across the plasma membrane at the opening
of sodium ion channels. This inward ion current depolarizes transmembrane
voltage of the myocyte, and part of the ions redirect to downstream resting

F.B. Sachse and G. Seemann (Eds.): FIMH 2007, LNCS 4466, pp. 250–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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myocytes, inducing capacitive transmembrane current. This outward capacitive
current increases the transmembrane voltage of the resting myocytes over the
activation threshold of the sodium ion channels, which, in turn, leads to ion
currents. In addition, the total amount of the outward current at the leading
edge of propagation is directly proportional to the propagation velocity [1].

The distribution of Im over the plasma membrane gives rise to the extracel-
lular potential (Φ), which, in a volume conductor of homogeneous extracellular
conductivity σe, is given by Eq. (2):

Φ(P, t) =
1

4πσe

∫

V olume of Tissue

Im

r
dV , (2)

where r is the distance from the observation point, P , to the transmembrane
current source [1,2].

As shown in equation (2), the extracellular potential is influenced by the
transmembrane current distribution with the weight of 1/r, and in many cases
Φ has a waveform with a biphasic deflection around the moment of activation. Φ
increases slowly as the wave front of activation, with outward capacitive current,
approaches, drops rapidly as the sodium ion channels immediately beneath the
point P open, and returns to baseline values as the activation wave front moves
down stream. The extracellular potentials have been used mostly to detect acti-
vation time for the propagation sequence, in virtue of the fact that the minimum
time derivative, which occurs during the sodium ion influx, coincides in time with
the maximum increase rate of GNa and INa, as well as, the maximum slope of
the transmembrane potential [3,4].

The peak-to-peak amplitude of the deflection of the Φ waveform at activa-
tion decreases as the position P moves away from the current source. Spach et
al. [3] showed by computer simulations that the peak-to-peak amplitude of Φ
decreases slower than the magnitude of the minimum derivative of Φ when r
increases. Thus the magnitude of the minimum derivative of Φ, when compared
to the peak-to-peak amplitude of Φ, is more influenced by local currents but less
influenced by more distant currents. Based on the theory described above, we
assumed that the magnitude of the minimum time derivative of Φ during the
QRS is related to the maximum rate of change and hence total amount of trans-
membrane current at a given time during activation, therefore, we hypothesized
that this parameter can be a useful qualitative measure of electrical activity.

Fatty acids are the major source for cardiac energy production in general,
but glucose becomes the predominant fuel during anaerobic conditions due to
its ability to produce ATP in the absence of oxygen via glycolysis [5]. Insulin, as
well as anaerobic stimulation, enhances glucose transport through the membrane
by translocation of glucose transporters to the cell membrane [6]. Morgan et al.
[7] tested the effects of insulin on glucose transport and phosphorylation in the
isolated and perfused heart of rats and showed that, in the absence of insulin,
glucose transport is the rate limiting step for glucose uptake over phosphoryla-
tion in the physiological range of blood glucose concentration. Runnman et al.
[8] also showed that removal of insulin causes a lower total glycolytic flux during
hypoxia in the presence of 5 mM glucose. It is well known that under anaerobic



252 K. Sohn et al.

conditions, KATP channels on the sarcolemma open due to low ATP levels and
this causes changes such as an increase in transmembrane voltage and a decrease
in conduction velocity that affects the overall electrical activity.

The purpose of this experiment was to examine the normalized averaged value
of Φ∧ (Φ∧

na) as an index of electrical activity by comparing it with other indices
like propagation pattern and total activation time under metabolic and hypoxic
stresses that varied glucose and insulin levels.

2 Methods

The Institutional Animal Care and Use Committee of the University of Utah
reviewed and approved the experimental protocol for this study. C57BL/6 male
mice (7-8 weeks) were injected with heparin and sodium pentobarbital in se-
quence at 10-minute intervals. After a deep plane of anesthesia was reached, the
heart was rapidly excised and Langendorff perfused via the aorta with a modified
Krebs solution. A custom made 64-electrode “cage” electrode array was slipped
over the heart making contact with the ventricular free wall directly for some
electrodes or via perfusate flowing between the heart and cage for other ones
(Fig. 1). The heart then was positioned inside a custom-made heated chamber
to maintain the surrounding temperature at 37◦C, and was allowed to stabilize
for 30 minutes prior to data acquisition. Extracellular potentials were measured
during 30 minutes of oxygenation, 30 minutes of hypoxia, and 30 minutes of
reoxygenation. The perfusate was bubbled with 95% O2 and 5% CO2 all the
time except during hypoxia when it was bubbled with 95% N2 and 5% CO2.

The Krebs solution was composed of (in mM) NaCl 118, NaHCO3 25, KCl
4.1, CaCl2 2.5, MgSO4 1.2, EDTA 0.5, KH2PO4 1.2 and contained three dif-
ferent combinations of glucose and insulin for each heart. The first heart was
perfused with 10 mM glucose and 2 units/� insulin (g10i2), the second heart
was perfused with 5 mM glucose and 2 units/� insulin (g5i2), and the last heart
was perfused with 5 mM glucose without insulin (g5i0). The perfusate was main-
tained at 37◦C and a pH of 7.4. The aortic pressure was maintained between 60
and 75 mmHg and the flow rate remained between 1.5 and 2.5 m�/min.

The custom-made cylindrical electrode array was fabricated in our laboratory
from 0.007 in. diameter silver wire. The cage was formed from a rectangular
mesh and the wires were attached to the mesh. Five electrodes were arranged
in each column with 1.29 mm interelectrode distance, and 13 columns were ar-
ranged circumferentially with 1.94 mm interelectrode spacing (Fig. 1). So the
electrode array formed a cylinder 8.03 mm in diameter and 5.16 mm in length,
which normally covered about 85% of lower part of the epicardial ventricular sur-
face. Sixty-four unipolar electrograms were simultaneously recorded for 5 seconds
from the electrode array, amplified and digitized at 4 kHz frequency and 12 bit
resolution and stored on a Macintosh computer.

Recorded signals were calibrated and baselined between consecutive TP inter-
vals. Activation time was computed as the time of the minimum time derivative
during QRS intervals for each electrode [1,3]. The total activation time (TAT)
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Fig. 1. The 64-electrode “cage” array. (a) Photo of the electrode array covering the
heart. (b) The triangulated mesh geometry of the electrode array in three dimensions.
(c) Two-dimensional triangulated mesh of the electrode array centered over the anterior
midline of the heart with electrode numbers indicated.

over the measured area was computed as the time difference between the latest
and the earliest activation. TAT values were normalized (TATn) by the TAT
determined during baseline conditions, TATb. Changes in the propagation se-
quence during hypoxia were assessed by correlating all 64 activation times of a
given beat with those obtained from a beat during baseline conditions (Ract).

As a surrogate measure of the relative magnitude of the transmembrane cur-
rent during activation over the measured area during hypoxia and reoxygenation,
the normalized minimum derivative of extracellular potential was introduced.
The normalized averaged values of the minimum derivative were computed using
Eq. (3),

Φ∧
na(t) =

Φ∧
a (t)
Φ∧

a,b

, (3)

where Φ∧(t) is the minimum time derivative of an extracellular potential of a
beat measured at time t, Φ∧

a (t) is Φ∧(t) averaged over 64 electrodes and Φ∧
a,b is

Φ∧
a averaged from values obtained during baseline conditions.

3 Results

Fig. 2 shows that for case g10i2, hearts were affected only slightly by hypoxia.
The propagation pattern was conserved throughout hypoxia (panel a) and a slight
increase in TAT was observed during hypoxia, but recovered during reoxygena-
tion (panel b). Φ∧

na was also constant except a small decrease at the beginning
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of reoxygenation (panel c). In contrast to case g10i2, for case g5i0 hearts were
severely influenced by hypoxic conditions. The propagation pattern was altered
(panel a) and TAT increased three fold over control values immediately at the
onset of hypoxia, and these changes did not recover during reoxygenation (panel
b). Φ∧

na dropped by 60% right at the onset of hypoxia and did not recover during
reoxygenation (panel c). For the case of g5i2, hypoxia increased TAT two fold,
but it finally recovered during reoxygenation (panel b). The propagation pattern
remained relatively constant until changing after 17 minutes of hypoxia, but re-
covered immediately upon reoxygenation (panel a). Φ∧

na decreased by 40% during
hypoxia but recovered during reoxygenation (panel c).

Fig. 2. a) Correlation coefficient, Ract, b) Normalized total activation time, 1/TATn,
and c) Normalized minimum time derivative, Φ∧

na, as a function of time for the three
different combinations of glucose and insulin. Gray shaded region indicates hypoxia.

The changes in the activation sequence as quantified by the correlation coeffi-
cent Ract in Fig. 2a are demonstrated in Fig. 3 as series of isochronal maps during
normal conditions, 10 and 30 minutes of hypoxia and after 30 minutes of reper-
fusion for each case of varied insulin and glucose. For the case of g10i2, (Fig. 3a)
the maps show almost no changes in the activation sequence throughout the inter-
vention. Fig. 3b, for the case of g5i2, shows the dramatic change in the activation
sequence that has occurred at 30 minutes of hypoxia, reflected in the Ract value
of -0.54. The greatest change in activation sequence occurs for the case of g5i0
(Fig. 3c). After only 10 minutes of hypoxia, the Ract value has decreased to -0.23,
as reflected in the dramatic change in the sequence of activation.
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Fig. 3. Series of isochronal maps during control conditions, at 10 and 30 minutes of
hypoxia, and after 30 minutes of reperfusion for a) 10 mM glucose and 2 units/� insulin
(g10i2), b) 5 mM glucose and 2 units/� insulin (g5i2), and c) 5 mM glucose without
insulin (g5i10). Activation propagates from white to black region.

Fig. 4 shows diverse responses of Φ∧ at different electrode locations. For ex-
ample, in case g5i2 during hypoxia where the propagation pattern is altered, Φ∧

increased at electrode #2 and decreased at electrode #22 (panel a). In g5i0, Φ∧

at electrode #7 remained relatively constant while the majority of other elec-
trode sites experienced a large decrease in Φ∧ at the onset of hypoxia (panel b).
Fig.5 displays the magnitude of Φ∧ from the second electrode in each electrode

column at the conclusion of oxygenation, hypoxia and reoxygenation. For both
cases, g5i2 (panel a) and g5i0 (panel b), Φ∧ values from the left ventricle (LV),
electrodes 2–32, were normally larger than ones from the right ventricle (RV),
electrodes 37–62, but decreased more during hypoxia. A summary of the changes
in Φ∧ that occurred on the LV and RV are shown in Fig. 6. Φ∧ from electrodes
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Fig. 4. The magnitude of Φ∧ as a function of time at various electrode sites indicated
by electrode number in the legend for a) 5 mM glucose and 2 units/� insulin (g5i2),
and b) 5 mM glucose without insulin (g5i0). Gray shaded region indicates hypoxia.

Fig. 5. Φ∧ as a function of individual electrode sites during control conditions, hypoxia
and reperfusion for a) 5 mM glucose and 2 units/� insulin (g5i2), and b) 5 mM glucose
without insulin (g5i0). Electrodes 2–32 located on the left ventricle and 37–62 located
on the right ventricle.

Fig. 6. Magnitude of Φ∧ averaged from electrodes 1–35 on the right and 36–64 on the
left ventricles (RV and LV in legends) as a function of time for a) 5 mM glucose and 2
units/� insulin (g5i2), and b) 5 mM glucose without insulin (g5i0). Gray shaded region
indicates hypoxia.
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1–35 covering the RV and 36–64 on the LV were averaged, and displayed as a
function of time during the interventions. For case g5i2 (panel a), the LV showed
a larger decrease and greater recovery of Φ∧ during hypoxia and reoxygenation.
Case g5i0 also showed larger decrease of Φ∧ on the LV without recovery during
reperfusion.

4 Discussion

Transmembrane current is the origin of the action potential, but directly measur-
ing current with high resolution over the entire heart is not technically feasible.
However, extracellular potentials, generated by transmembrane current, are eas-
ily measured. The inward flux of sodium ions initiates activation, and the time
of the maximum increase rate of Na+ current is coincident with the time of
the minimum time derivative of Φ [3,4]. For this reason, extracellular potentials
have been principally used for the detection of activation time. But there may
be more potentially useful information available from these measures. It would
be reasonable to assume that the magnitude of Φ∧ is closely related to the max-
imum increase rate of Na+ current, because the two events are coincident. This
experiment examined the potential usefulness of the normalized averaged value
of Φ∧, as a qualitative measure of electrical activation which may be closely re-
lated to the transmembrane current at activation by comparing its values with
those of other measures of propagation under hypoxic conditions.

Hearts suffer from a lack of readily available energy during hypoxia, and KATP

channels open in response to decreased levels of ATP. This increases transmem-
brane voltage contributing to the inactivation of Na+ channels [9]. The decrease in
Φ∧

na for cases g5i2 and g5i0 in Fig. 2c at the onset of hypoxia was likely a reflection
of reduced Na+ current by inactivation of a portion of the available Na+ channels
as a consequence of insufficient glucose transport. Clow et al. [10] showed glucose
transport becomes the rate-limiting condition for glycolysis over phosphorylation
during hypoxia, and Runnman et al. [8] showed that during hypoxia higher extra-
cellular glucose levels were beneficial to cardiac function and removal of insulin
was detrimental. According to their studies, case g5i0, with low glucose levels
and without insulin, provides the worst conditions for glucose transport during
hypoxia. Consistent with their findings, in our studies, case g5i0 resulted in the
largest changes in Ract, TATn and Φ∧

na. The propagation speed decreased, which
would be a consequence of reduced Na+ current. Heterogeneous inactivation of
Na+ channels may change the propagation pattern and more severe inactivation
may even block conduction, consequences reflected in the Ract values and maps of
activation sequence. Case g10i2, with high concentrations of glucose and insulin,
provides the best opportunity for extracellular glucose utilization, and did not
exhibit any significant changes in the parameters measured in this study during
hypoxia. For the case of g5i2, we would expect less impact to the Na+ current than
g5i0 because of the insulin supply. Decrease of Φ∧

na and an increase in TATn for
case g5i2 were less than for case g5i0, and the propagation pattern did not change
significantly until after 17 minutes. More importantly, propagation changes for
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the case of g5i2 recovered during reoxygenation unlike g5i0, which implies that
the conditions for the case g5i0 caused irreversible damage to the heart during
hypoxia. Values of Φ∧

na also tracked this irreversibility.
As explained above, the response of Φ∧

na was similar to the physiologically
expected response of Na+ transmembrane current to the metabolic stresses and
demonstrated similar responses as the other measures of propagation. However,
individual Φ∧ values from any one electrode frequently were poor indicators
of the overall state of the heart, because extracellular potentials at different
locations may show different responses to hypoxia. Extracellular potentials may
be affected by the geometry of the heart, the activation pattern, and especially
by the distance between the electrode and the cardiac surface. Higher Φ∧ values
during oxygenation and a more sensitive response to hypoxia from the LV might
be attributed to the thicker wall of the LV.

The long term goal of this research is to understand the relationship between
electrical and metabolic changes in the heart during ischemic stress that leads
to an increased cardiac risk, particularly in the setting of diabetes. There are
specific challenges with the use of a mouse model to study electrical responses in
the heart for understanding human disease, primarily the differences in cardiac
ion currents and also the technical challenges with the extremely small size of
the heart. However, these challenges are worth addressing in order to benefit
from the availability of genetically altered mouse models that target specific
physiologic aspects of diabetes and the metabolic syndrome.

In summary, this study showed that decreases in Φ∧
na was a predictor of

changes in other electrical markers such as total activation time, activation prop-
agation pattern, and irreversible damage, and these results supported Φ∧

na as an
potentially useful index of electrical activity which might be closely related to
the amount of available sodium current at the time of activation.

Acknowledgments

This research was supported by grants from the Nora Eccles Treadwell Foundation
and the Richard A. and Nora Eccles Harrison Fund for Cardiovascular Research.
The authors wish to acknowledge Mr. Bruce Steadman and Dr. Philip Ershler for
the design and development of the data acquisition hardware and software and
Mr. Ted Dustman for his efforts in designing our data processing software.

References

1. Spach, MS., Miller 3rd, WT., Miller-Jones, E., Warren, RB., Barr, RC.: Extracel-
lular potential related to intracellular action potentials during impulse conduction
in anisotropic canine cardiac muscle. Circ Res. 42, 188–204 (1979)

2. Plonsey, R.: Bioelectric phenomena, pp. 221–275. McGrawHill, New York (1969)
3. Spach, MS., Dolber, PC.: Relating extracellular potentials and their derivatives to

anisotropic propagation at a microscopic level in human cardiac muscle. Evidence
for electrical uncoupling of side-to-side fiber connections with increasing age. Circ.
Res. 58, 356–371 (1986)



Experimental Measures of the Minimum Time Derivative 259

4. Spach, MS., Kootsey, JM.: Relating the sodium current and conductance to the
shape of transmembrane and extracellular potentials by simulation: effects of prop-
agation boundaries. IEEE Trans Biomed Eng. 32, 743–755 (1985)

5. Depre, C., Vanoverschelde, JL., Taegtmeyer, H.: Glucose for the heart. Circula-
tion 99, 578–588 (1999)

6. Davey, KA., Garlick, PB., Warley, A., Southworth, R.: An immunogold labeling
study of the distribution of GLUT 1 & GLUT 4 in cardiac tissue following stim-
ulation by insulin or ischemia. Am. J. Physiol. Heart Circ. Physiol. Accepted on
(December 11 2006)

7. Morgan, HE., Henderson, MJ., Regen, DM., Park, CR.: Regulation of glucose
uptake in muscle. I. The effects of insulin and anoxia on glucose transport and
phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem. 236,
253–261 (1961)

8. Runnman, E.M., Lamp, S.T., Weiss, J.N.: Enhanced utilization of exogeneous glu-
cose improves cardiac function in hypoxic rabbit ventricle without increasing total
glycolytic flux. J. Clin. Invest. 86, 1222–1233 (1990)

9. Cascio, WE., Johnson, TA., Gettes, LS.: Electrophysiologic changes in ischemic
ventricular myocardium: I. Influence of ionic, metabolic, and energetic changes. J.
Cardiovasc Electrophysiol. 6, 1039–1062 (1995)

10. Clow, KA., Rodnick, KJ., MacCormack, TJ., Driedzic, WR.: The regulation and
importance of glucose uptake in the isolated Atlantic cod heart: rate-limiting steps
and effects of hypoxia. J. Exp. Biol. 207, 1865–1874 (2004)



Experimental Epicardial Potential Mapping in
Mouse Ventricles: Effects of Fiber Architecture

David R. Sutherland, Qiansheng Liang, Kwanghyun Sohn, Bruno Taccardi,
and Bonnie B. Punske

Nora Eccles Harrison Cardiovascular Research and Training Institute and
Department of Bioengineering

University of Utah, Salt Lake City, UT 84112-5000, USA
punske@cvrti.utah.edu

Abstract. The purpose of this study is to introduce unique experimen-
tal measurements of extracellular potentials mapped from the epicardial
surface of mouse hearts that reflect the same structural features seen
in larger mammalian hearts. The measurements obtained in this study
provide an important tool for studying the impacts of structural changes
on propagation in genetically modified mouse models of cardiac disease.
Unipolar electrograms were recorded using a high-resolution electrode
array to map the epicardial surface of mouse hearts during atrial drive
and at increasing transmural pacing depths. The extracellular potential
maps revealed the underlying fiber structure of the mouse heart that is
shown to be similar to those previously published from other species.
This imaging technique, when integrated with computer models and dif-
fusion tensor imaging can substantially contribute to our understanding
of innovative genetic mouse models being used in the study of human
cardiac disease.

1 Introduction

Normal cardiac function depends on the normal conduction of electrical im-
pulses throughout the heart. Electrical propagation in the heart is affected by
the structure of the heart muscle, including the Purkinje conduction system,
anisotropy, cell-to-cell coupling systems, fiber rotation, and imbrication. Pre-
vious experimental studies showed that these structural features are reflected
in larger mammalian hearts from the epicardial surface potentials as measured
during ventricular pacing [1,2]. From the epicardial surface potentials we can
obtain information about the local fiber orientation, the amount of transmural
fiber rotation, and in which direction the wave front is traveling transmurally
through the wall. The potential field as measured from the epicardium provides
the unique ability to study the fundamental electrical activity and directly relate
it to changes in the structure of the tissue volume.

Recent advancements in genetics and molecular biology have enabled the pro-
duction of transgenic mice that exhibit highly specific modifications of the car-
diac physiology. Recent work from our laboratory has studied different mouse
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models with modifications that impact propagation through impairment of ionic
transport and structural changes [3,4]. Interestingly, even changes in physiology
that are seemingly not related to the known determinants of cardiac electric po-
tentials have resulted in modified electrograms suggesting some type electrical
impact [5]. Because the mouse heart is increasingly being used as a model for
human cardiac disease, it is becoming imperative to characterize the structure
and electrical activity of these hearts so meaningful inferences about human
physiology and disease can be made.

In light of these needs, recent work has been done to describe the fiber struc-
ture of mouse hearts in three dimensions using magnetic resonance diffusion
tensor imaging (DTI) [6]. These studies revealed that mouse hearts exhibit a
linearly counterclockwise rotation of the myocardial fibers from the epicardium
to the endocardium [6] similar to that reported for larger hearts [7]. By incorpo-
rating the three dimensional structure of the heart provided by DTI, a computer
model describing propagation in a mouse heart has also been implemented [8].
This computer model integrates anatomic structure, tissue properties, and ionic
activity to produce realistic maps of the spread of excitation. These types of com-
puter simulations are indispensable in predicting outcomes and understanding
the physiology of transgenic models.

The purpose of this study is to provide experimental measurements of ex-
tracellular potentials mapped from an electrode array closely surrounding the
entire epicardial surface of mouse hearts. The techniques for making these mea-
surements will provide an important tool for studying the impacts of structural
changes on propagation in new genetically modified mouse models. In addition,
the results can be compared with previously published results from other species
to better understand the physiology and structure of the mouse heart. Finally,
these results will provide measurements for verification and comparison with
previously published computer simulations and results from DTI.

2 Methods

The University of Utah institutional animal care and use committee approved all
experimental procedures performed in these studies. C57 Blk/6 male mice were
administered heparin (3 Units/g) and anesthetized with sodium pentobarbital
(100 mg/kg). A medial sternotomy was performed and the heart rapidly excised
and perfused with Krebs-Henseleit solution (in mM: 118.5 NaCl, 25 NaHCO3,
4.7 KCl, 1.2 MgSO4, 0.5 EDTA, 1.2 KH2PO4, 2.5 CaCl2, and 11 glucose) bub-
bled with 95% O2 and 5% CO2 in a modified Langendorff procedure. Perfusion
temperature was maintained at 37◦C. Perfusion pressure and flow rate were con-
trolled by a gravity-fed system and maintained at 60 mmHg and greater than 1
mL/min respectively.

2.1 Electrode Array

The hearts were placed inside a 184-electrode “cage” array as shown in Fig. 1A
[4]. The electrode array was fabricated by attaching 0.0762 mm diameter silver
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wires to the intersections of a medical-grade mesh formed into the shape of
a cylinder (see Fig. 1B). The mesh provided uniform 1 mm spacing with 23
columns and 8 rows of electrodes, measuring 7.32 mm in diameter and 7 mm
in height. The exposed silver sites were chlorided to form Ag/AgCl electrodes.
The array slipped tightly over the heart making contact with the ventricular
freewalls directly and via perfusion fluid at the apex of the heart. Although this
configuration allowed the heart to move within the array during contraction, the
measurements of interest were obtained during excitation prior to contraction.
A small acrylic chamber with an electrical heating element was closed around
the isolated heart to maintain the temperature of the air surrounding the heart
at 37◦C.

Fig. 1. (A) Photograph of the “cage” electrode array surrounding a mouse heart. (B)
Triangulated mesh of the electrode 184 sites in 3 dimensions.

Two Ag/AgCl hooks made from 0.127 mm diameter wire were attached to
the right atrium for bipolar pacing. A plunge needle electrode made from the
tip of a 0.127 mm diameter stainless steel wire housed in 22-gauge (0.6438 mm
diameter) needle was inserted into the heart via a micromanipulator. The tip of
the electrode was advanced to increasing transmural depths for unipolar pacing
with respect to another wire placed at the aortic root of the heart.

2.2 Data Acquisition and Processing

Unipolar electrograms were recorded from the ventricular surface during sinus
rhythm and atrial and ventricular pacing via biphasic current injection at cur-
rent levels just above the stimulation threshold and lasting 2 ms per phase.
Recordings were referenced to a remote electrode placed at the aortic root. All
184 signals were simultaneously recorded at 8 kHz, digitized in 16-bit resolu-
tion and stored directly to a computer. Individual signals were calibrated and
baselined using consecutive T-P intervals. Isopotential and isochronal maps were
visualized in the form of linearly interpolated contour maps using Map3d soft-
ware (http://www.sci.utah.edu/map3d) [9]. Activation time was determined as
the time of the minimum value of the derivative during the downstroke of the
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electrogram as measured from the earliest activation time. Isopotential maps are
time-referenced to the time of the middle of the stimulus artifact.

3 Results

Fig. 2 shows an example of an activation time map recorded from an isolated
mouse heart following atrial stimulation. The darker areas, indicating earlier
activation breakthroughs, occur on both the right ventricle (RV) and the left
ventricle (LV), with late areas of activation indicated by lighter shades occur-
ring between the LV and RV breakthrough sites. Similar patterns of activation
during atrial stimulation have been observed from multiple mouse hearts in our
laboratory. The total epicardial activation time in the example shown in Fig. 2
is 2.64 ms. Similar measures from 4 additional hearts showed that the average

Fig. 2. An isochronal map of the normal ventricular sequence of activation in the
mouse heart following atrial stimulation. Dark shades indicate early activation and
lighter shades indicate late activation times. Each contour represents 0.364 ms.

ventricular activation time during normal sequences is 2.66 ± 0.5 ms. Maps of
the normal sequence of activation give insight into the structure and influence
of the specialized Purkinje conduction system.

Fig. 3 is an isopotential map recorded immediately following epicardial stim-
ulation. This figure provides a classic example of the indication of the local un-
derlying fiber direction revealed by ventricular point stimulation from a mouse
heart. The elliptical shape of the dense band of negative (dark, dashed) isopoten-
tial lines shows the newly initiated wave front traveling faster along the direction
of the myocardial fibers with the long axis of the ellipse aligned with the longitu-
dinal fiber direction. At the basal end of the ellipse is a potential maximum that
falls along the line drawn through the pacing site and along the long axis. This
maximum, paired with a weak area of positivity found at the apical end of the
elliptical wave front forms the classical linear quadrapole pattern of propagation
previously described in other species [1,2].

Fig. 4 demonstrates the ability to capture the transmural rotation of the
tissue fiber direction with the epicardial potential distribution. Fig. 4B shows
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Fig. 3. Epicardial isopotential map immediately following epicardial point stimulation.
The dark, dashed, dense band of isopotential lines indicates the presence of the activa-
tion wave front. Light solid lines indicate potential maxima aligned with the long axis
of the elliptical wave front. The heavy dashed line along the main axis of the activation
wave front ellipse represents the epicardial fiber direction.

Fig. 4. The orientation of the heart (A) as shown in maps of epicardial potentials at
5.875 ms post pacing after advancing micromanipulator (B) 0.0mm, (C) 0.5mm, (D)
1.0mm, (E) 1.5mm, and (F) 2.0mm

an isopotential map recorded at 5.875 ms after the middle of the epicardial
pacing artifact on the posterior LV. In this figure, the expansion of the potential
maxima (shown by the arrows) is progressing in a counterclockwise direction as
the wave front encounters counterclockwise fiber rotation as it propagates toward
the endocardium. Figs. 4C–F show additional isopotential maps referenced to
the same time after pacing at the same location but at increasing transmural
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depths. Ventricular stimulation from the midmyocardial region of the freewall
produces expansion and rotation of the potential maxima in both the clockwise
and counterclockwise directions as the wave front encounters fiber rotation from
the midwall to the endocardium and epicardium, respectively (see panels C–E).
Similarly, endocardial stimulation (see Fig. 4F) produces clockwise rotation of
the potential maxima as the wave front encounters only clockwise fiber rotation
as it travels from the endocardium to the epicardium.

4 Discussion

The preliminary data presented here are highly consistent with previously re-
ported potential distributions of fiber architecture in dog and rat [1,2]. From the
presented examples, the isopotential lines immediately following pacing can give
an indication of the local fiber direction and the elliptical shape of the isopoten-
tial lines can provide measures of the anisotropic ratio of conduction. In previous
work the elliptical wave front is flanked on the long axis by two potential max-
ima. In our studies to date the apical maximum is much weaker than the basal
maximum or in some cases hardly detectable. The work of Taccardi et al. [10]
shows that the presence of a weaker maximum was attributed to the obliqueness
of the fibers, the fact that the fibers are not parallel to the epicardial surface,
but form a so-called “imbrication” angle with the surface. This tipping of the
fibers will cause one maximum to be farther from the surface then the other
contributing to the differences in amplitude. The example of these differences in
the amplitudes of the potential maxima as shown in Fig. 3 may be related to
this idea of obliqueness of the fibers, but is more likely attributed to the fact
that as the curvature of the heart increases, from base to apex, the surface of
the heart becomes farther from the electrodes measuring the potentials. This is
a drawback in the cylindrical design of the array causing a decreased amplitude
in some recordings closer to the apex. Other technical limitations of this imaging
technique involve reducing the magnitude and duration of the stimulus artifact
during pacing to eliminate overlap with the potentials of early activation, and
improving the alignment of the array with the heart for reproducibility from
study to study. In addition, our ability to accurately measure the true depth
of the pacing needle is limited due to the compliance and resistance of the wall
to the advancement of the micromanipulator. Resolving these technical issues is
the focus of current studies in our laboratory.

The rotation and expansion of the potential maxima as seen in Fig. 4 are also
very similar to those reported by other studies [1,2]. The potential maxima rotate
with time in the counterclockwise direction following epicardial stimulation. As
the wave front spreads in the transmural direction toward the endocardium and
encounters the counterclockwise rotation of the fibers as described by Jiang et al.
[6], the positive maxima will rotate to reflect the positivity along fibers ahead
of the wave front at increasing depths. This rotation can be observed on the
epicardial surface as an expansion and rotation of the positivity flanking the
wave front.
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Qualitative comparisons of our experimental results with the published work
of Henriquez et al. [8] reveals that the experimental data are well represented by
the model. The model data show the potential maxima flanking the excitation
wave front that spreads from the point of stimulation on the epicardial surface
along the direction of the underlying fibers [8]. In addition, the potential maps
produced by the model also suggest an expansion and rotation of the potential
maxima in the counterclockwise direction following epicardial stimulation.

The predominant method for experimental studies of propagation in small
hearts, particularly mouse heart, is optical mapping [3,11]. This technique uses
voltage sensitive dyes bound to the cell membranes of myocytes that upon ex-
citation, emit light signals corresponding to the local membrane voltage in the
form of action potentials. One advantage of using this technique is that it allows
a large number of measurements with high spatial resolution without making
contact with the surface of the heart. Results from optical mapping studies pro-
vide isochronal patterns of propagation, action potential duration and measures
of conduction velocities. Some of these results have been compared qualitatively
with results of computer simulations in mouse myocardium [8,12]. However, op-
tical mapping does not provide a measure of the potential field like conventional
electrical mapping does and therefore, cannot provide data that will reflect the
three-dimensional anisotropy and transmural fiber architecture of the heart seen
in diffusion tensor imaging [6] nor directly relate to the potential values gener-
ated by computer simulations [8].

Our studies can complement and extend the previous comparisons of com-
puter simulation results with published optical mapping data. While optical
mapping provides an important imaging modality for studying propagation in
small hearts, our preliminary results stress the advantages of also performing
conventional electrical imaging to enable the underlying structure to be revealed
via the characteristics of the potential field. Innovative electrode fabrication of-
fers the advantage of imaging electrical propagation in three dimensions, instead
of two, giving a more complete three-dimensional surface representation of the
spread of excitation covering both ventricles. Electrical imaging also eliminates
the need for infusing toxic fluorescent dyes and more importantly eliminates the
need to prevent contraction through the use of mechanical uncoupling drugs or
applied pressure that can interfere directly with local propagation. For studies
involving the effects of metabolic changes on electrical activity where normal
contraction of the heart is essential, electrical imaging provides an appropriate
method for studying propagation.

DTI results show that the fiber structure of the mouse heart is qualitativley
similar to that seen in larger hearts although the measured degree of transmural
fiber rotation in mouse was found to change approximately 150◦ from epicardium
to endocardium [6]. While our preliminary electrical measurements reflect some
degree of rotation, currently, our experimental technique has not been able to
quantitatively reproduce this result. One possibility is that the potential maxima
reflected on the epicardial surface following endocardial stimulation are not of
sufficient magnitude in the mouse heart to measure reliably with the available
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gain and signal-to-noise ratio. Another factor contributing to difficulties in deter-
mining the degree of rotation lies with the accurate determination of the pacing
depth and location as previously mentioned. Thus, a reliable measure of the full
rotation of the transmural fibers using the alignment of the potential maxima is
the focus of current experiments.

In summary, this study provides high-resolution electrical images from mouse
epicardium with detailed information of the propagation characteristics as well
as of the local fiber architecture. This imaging technique, when integrated with
computer models and diffusion tensor imaging, can substantially contribute to
our understanding of innovative genetic mouse models of cardiac disease.
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Abstract. Computing the epicardial potentials from the body surface potentials 
constitutes one form of the ill-posed inverse problem of electrocardiography 
(ECG). In this paper, we employ hybrid methods combining the least square 
QR (LSQR) with truncated singular-value decomposition (TSVD) to solve the 
inverse problem of ECG. Hybrid methods are based on the Lanczos process, 
which yields a sequence of small bidiagonal systems approximating the original 
ill-posed problem, and on another additional direct regularization (the truncated 
SVD method is used in the present investigation), which is used to stabilize the 
iteration. The results show that determining of regularization parameters based 
on the final projected problem rather than on the original discretization one has 
firmer justification and it takes much less computational cost. The computation 
time could be reduced by several tenfolds typically, while the performance of 
the hybrid method is maintained well compared with TSVD, LSQR and GMRes 
methods. In addition, comparing with LSQR method, the hybrid method can 
obtain the inverse solutions without facing the “semi-convergence” problem.  

1   Introduction 

To describe the ECG inverse problem mathematically, we can use the cardiac sources 
in terms of epicardial surface potentials, and solve a generalized Laplace’s equation 
with Cauchy boundary conditions [1]: 

0

0      T E E

T T

in

n on find on

on

δ
δ
∇ ⋅ ∇Φ =      Ω⎧

⎪  ∇Φ ⋅ =       Γ   Φ Γ⎨
⎪      Φ = Φ        Γ⎩

 
(1) 

where Φ are the electrostatic potentials, ΦE and ΦT is the potential on the epicardial 
surface and body surface respectively, δ is the conductivity tensor, ΓT and Ω represent 
the surface and the volume of the thorax, and ΓE is the surface of epicedium. Body 
surface potentials (ΦT) are related to epicardial potentials (ΦE) through the linear 
system of equations: 

E TAΦ = Φ  
(2) 
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where A is the geometry and conductivity transfer matrix reflecting the properties of 
the volume conductor between the epicardial surface and body surface, and the 
transfer matrix A can be obtained by the boundary element method (BEM)[2]. 
However, the matrix A is ill-posed in that small measurement errors in the surface 
potentials, or any geometry error in the volume conductor model used in the inversion 
procedure, lead to large perturbations in the epicardial distributions. The inverse 
problem of ECG is a linear least-square problem: 

2
( ) minφ Φ − Φ= E TAM  

(3) 

where symbol ||⋅ ||2 denotes the Euclidean norm of vector space. Techniques of 
regularization must be used when solving ill-posed problems to minimize the effects 
of the inevitable error by imposing constraints on the solution.  

Some researchers have used the direct regularization techniques, such as Tikhonov 
regularization, Truncated Singular-value Decomposition (TSVD) [3]. Solving ill-
posed problems can be impractical if the condition number n is large, but fortunately, 
regularization can be achieved through projecting A onto a k-dimensional subspace. 
The projection is often achieved through the use of iterative methods such as 
conjugate gradients (CG), GMRES, LSQR, and other Krylov subspace methods 
[4,5,6]. Krylov subspace algorithms tend to produce, at early iterations, solutions that 
resemble the reality more than later iterates which is the “semi-convergence” 
phenomenon of Krylov subspace. Therefore, the choice of the regularization 
parameter k, the stopping point for the iteration and the dimension of the subspace, is 
very important. Rudy et al used the GMRes method to reconstruct epicardial 
potentials without adding any constraints, and results showed that the accuracy of 
GMRes solutions was similar to that of Tikhonov regularization [7]. Another 
important family of regularization methods, termed hybrid methods [8], was 
introduced by O’Leary and Simmons [9]. These methods combine a projection 
method with a direct regularization method such as TSVD. Since the dimension k of 
the project problem is usually small relative to n, regularization of the restricted 
problem is much less expensive, but the end results can be very similar to those 
achieved by applying the same direct regularization technique to the original problem. 
In the inverse ECG problem, the regularization method based on the hybrid methods 
has been less touched on, and some researchers just use iteration regularization 
methods or direct regularization methods individually. In this paper, a hybrid method 
to solve the inverse ECG problem is introduced, and it’s performance is compared 
with those of the direct method (TSVD) and iterative methods (LSQR and GMRes) 
afterwards. 

2   Methods 

2.1   Lanczos Bidiagonalization 

In this section, an approach to regularize the projected problem of Krylov methods is 
introduced. Many Krylov methods have been proposed so far, here we focus on just 
one of them: the LSQR algorithm of Paige and Saunders [10]. 
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For a rectangle m×n matrix A, the Lanczos bidiagonalization computes a sequence 

of Lanczos vectors m
j IRμ ∈  and n

j IRν ∈  and scalars α j  and β j , which meets 

T
kU AV B= , kB  is the lower bidiagonal matrix: 
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In exact arithmetic, the Lanczos vectors are orthonormal such that 
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The Lanczos bidiagonalization algorithm is given in Table 1. 

Table 1. The Lanczos bidiagonalization algorithm 
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After k iterations, it has effectively computed three matrices: a lower-bidiagonal 
matrix Bk and two matrices Uk+1 and Vk, related by 

1 1 1 1 1    T ku U eβ β +Φ = =  (7) 

1  k k kAV U B+=  (8) 

1 1 1 1
T T T

k k k k k kA U V B v eα+ + + += +  (9) 

where ei denotes the ith unit vector. 
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The quantities generated from A and TΦ  by Lanczos bidiagonalization can now 

be used to solve the least -squares problem: 

2
m in   

E
TS EA

Φ ∈
Φ − Φ  (10) 

where S denotes the k-dimensional subspace spanned by the first k vectors vi. 
The solution we seek is of the form: 

( ) ( )k k
E kv yΦ =  (11) 

where ( )ky  is the vector with length k. And define ( ) ( )k k
T Er A= Φ − Φ  to be the 

corresponding residual and observe that 

( ) ( ) ( )
1 1 1 1 1( )   k k k

k k kr u AV y U e B yβ β+= − = −  (12) 

Here, we define ( )
1 1 1

k
k kt e B yβ+ = − . Since Uk+1 has, in exact arithmetic, orthonormal 

columns, this immediately suggests choosing y(k)  to minimize 1kt + . Hence we are led 

naturally to the least-squares problem 

( )
1 1 2

min  k
ke B yβ −  (13) 

which forms the basis for LSQR. Computationally, it is advantageous to solve (13) 
using the standard QR factorization of Bk. Solving this minimization problem is 
mathematically equivalent to solve the normal equations involving the bidiagonal 
matrix: 

( )
1 1β∗ ∗=k

k k kB B y B e  (14) 

The matrix Bk may be ill-conditioned because some of its singular values 
approximate some of the small singular values of A. Therefore, solving the projected 
problem might not yield a good solution y(k), but we can use any of the direct 
regularization methods to regularize this projected problem. In this paper, TSVD is 
used to solve the projected problem. 

2.2   Truncated Singular Value Decomposition (TSVD) 

Let TUSV denote the singular value decomposition (SVD) of A, where the columns of 
U and V are the singular vectors, and the singular values are ordered as σ1 ≥ σ2 ≥…≥ 
σn. Then the solution (3) is given by 

1

φφ
σ=

=∑
Tn
i b

E i
i i

u
v  (15) 

In practice, due to noise (i.e., measurement noise in ΦB, geometry error in 
determining the matrix A, as well as numerical discretization errors in the 
computations), independent components of ΦE fewer than n can be estimated reliably. 
Accordingly, to ensure solution stability in the presence of noise, the dimensionality 
of the solution space is further restricted to k< n and the smaller singular values from 
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σk+1 to σn are also assumed to be zero. The solution is then given by Eq. (16) again, 
but with the matrices U, V and S truncated after the first k. Truncated SVD essentially 
involves a judicious choice of the regularization parameter k so as to result in a stable, 
low-residual solution.  

1

φφ
σ=

= ∑T S V D

Tk
i b

E i
i i

u
v  (16) 

There exist different ways of choosing the regularization parameter. Here we 
employ the generalized cross-validation (GCV) technique [11], in which the 
regularization parameter is chosen as the index k that minimizes the GCV function: 
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where Ekφ is a TSVD solution, †
kA is the pseudo inverse of the closest rank-k 

approximation of A, and tr (A) denotes the trace of A. The choice has the advantage 
that no priori information on the noise level is required, and it works well in practice. 

2.3   Simulation Protocol  

The simulation protocol was based on the realistic heart-torso model, as has been 
described in the references [12-14]. Fig.1 (A) shows the lung, epicardial and torso 
geometries. The epicardial geometry, however, was not the whole heart surface, just 
 

     
                    (A)                                    (B)                                         (C)    

                             
(D)       (E)               

Fig. 1. The realistic heart and torso geometry model and the epicardial and torso potential 
distribution with a radial dipole in heart. (A) the realistic heart and torso geometry model, (B) 
the anterior view of the epicardial potentials distribution, (C) the posterior view of the 
epicardial potentials distribution, (D) the anterior view of the computed torso potentials 
distribution, (E) the posterior view of the computed torso potentials distribution. 
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included the ventricular part, which comprised 279 nodes and 531 triangles. The 
lungs comprised 297 nodes and 586 triangles. The torso model was made up of 412 
nodes and 820 triangles. One radial current dipole located in the epicardial geometry 
and infinite-medium potential equations were used to approximate the epicardial 
potential distribution at the 279 epicardial node points, as shown in Fig.1 (B) (C). 
Torso potentials at its 412 surface node were computed from these 279 epicardial 
potentials using 412×279 matrix, determined by the boundary element method, as 
shown in Fig.1 (D) (E). In the inverse direction, potentials were only sought at 154 
uniformly distributed epicardial points, to be computed from 220 torso sites 
distributed in the nearby of heart, as shown in Fig.1 (A), where * represent the 
electrode sites used in the clinical body surface mapping. Thus a 220×154 matrix was 
recomputed for the inverse solutions. This reduced 220×154 matrix was obtained by 
first computing a 412×154 matrix and then extracting rows corresponding to electrode 
position on the body surface, and the condition number is 1.3004e+011. Guassian 
measurement noises, with signal noise ratio (SNR) =50 dB, were added to the 220 
torso potentials to mimic the real measurement. In addition, some geometry noises 
were added by offsetting the heart 1cm in each of two diametrically opposite 
directions, one inward toward the torso center and the other outward toward the 
anterior torso surface [15]. 

Since the epicaridal potentials are known in advance by forward calculation, the 
accuracy of inverse-recovered epicardial potentials can be evaluated by either the 
relative error (RE),  

( ) C E

E

RE λ
Φ − Φ

=
Φ

 (18) 

or the correlation coefficient (CC), given by 
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[( ) ][( ) ]
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where 
EΦ  denotes the known epicardial distribution, and 

CΦ  the computed one. The 

quantities 
EΦ  and CΦ  are, respectively, the mean values of 

EΦ  and CΦ , over the n 

epicardial sites. 

3   Results 

Table 2 shows that after 55 iterations or more iterations projection we can get the 
relative error and correlation coefficient approximate to that of the original problem by 
using the TSVD regularization methods, but with less computation expense. The 
computation cost of TSVD methods and GCV parameter determination method are 
O(mn2) and O(m) respectively. Now, we compute an approximate solution by projecting 
the discrete problem (m×n) onto an even smaller dimensional space((k+1)×k), via 
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iterative methods based on Krylov subspaces. So, the computation cost decreases from 
O (m n2) + O (m)  to  O( (k+1)×k

 2)+O (k)[4]. In this simulation, the computation cost 
lessen from  O (220*1502) + O (220) to O (56*552) + O (55) after 55 iterations, that is, 
the computation cost of the project problem is 30 times less than that of the original 
problem. 

Table 2. Comparison of RE and CC for TSVD regularization method on the original problem 
with 60 iterations project problem. The regularization parameters are selected by GCV method. 

Problem Regularization parameter RE CC 
original problem 23 0.3289 0.9439 

60 iterations project problem  56 0.3316 0.9433 

 

Fig. 2. RE and CC of the solution obtained by the hybrid method and GCV parameter selection 
with the iteration number 

The RE and CC of the solution obtained by the hybrid method and GCV parameter 
selection method is consistent with that of the original problem by using the TSVD 
regularization methods after 57 iterations, as shown in Fig. 2. So, we just need 57 
iterations or more to solve the ill-posed problem, and then use the direct 
regularization method to solve the project problem. The computation expensiveness 
can lessen to the least in such a way. 

Fig.3 shows the epicardial potential distribution recovered inversely from the body 
surface potentials. TSVD, LSQR method (see in [6] for details), GMRes method (see 
in [7] for details) and hybrid methods were employed for comparison. The noises are 
supposed to be Gaussian white noise with signal noise ratio (SNR) =50 dB. The 
results show that approximate solutions were obtained by those four kind methods. 

Fig.4 compares the RE and CC of the hybrid schemes with those of the 
corresponding LSQR iteration. As shown in Fig.4, the optimal solutions of hybrid 
method are similar to those of the LSQR method, while the LSQR get the optimal 
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solutions with less iteration. As expected, the hybrid scheme “regularizes” the ill-
posed project problem maintaining the error at the optimal level when the LSQR 
iteration starts to diverge. 

 

           
(A) RE: 0.3289   CC: 0.9439 

      
(B) RE: 0.3206   CC: 0.9458 

           
(C) RE: 0.3265  CC: 0.9442 

         
(D) RE: 0.3316  CC: 0.9433 

Fig. 3. Epicardial potential distributions reconstructed from body surface potentials with the 
measurement noise of SNR=50dB. The left panel is the anterior view, and the right is the 
posterior view. (A) The inverse solutions by the TSVD method. (B) The inverse solutions by 
LSQR method. (C) The inverse solutions by GMRes method. (D) The inverse solutions by 
hybrid method. The CC and RE of each method is indicated at the below of each figure. 

The performances of three regularization methods are summarized in Table3. In 
addition to the 50dB Gaussian measurement noise added to the torso potentials, two 
kind of geometry noise was also considered, the first with heart offset 1cm inwards, 
and the second with the heart offset 1cm outwards toward the anterior torso surface. 
As shown in Table 3, the hybrid method always leads to similar RE and CC compared 
with those of TSVD, LSQR and GMRes methods in different geometry noise levels. 
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Fig. 4. Comparing the RE and CC of the hybrid schemes with those of the LSQR by using the 
same iterations 

Table 3. Performance comparison of TSVD regularization , LSQR method and hybrid method 
in solving the ECG inverse problem (SNR=50 dB) 

Heart offset Regularization method RE CC 
TSVD 0.3289 0.9439 
LSQR 0.3206 0.9458 

GMRes 0.3265 0.9442 
Without heart offset 

hybrid 0.3316 0.9433 
TSVD 0.6521 0.7741 
LSQR 0.6320 0.7914 

GMRes 0.6325 0.7835 
heart offset 1cm outward 

hybrid 0.6558 0.7726 
TSVD 0.7495 0.8488 
LSQR 0.7350 0.8563 

GMRes 0.7424 0.8532 
heart offset 1cm inward 

hybrid 0.7512 0.8426 

4   Discussions and Conclusion 

Regularization is the key step in solving inverse problems. The common direct 
regularization techniques, such as Tikhonov method and TSVD method, try various 
ways to lessen the contribution of noises. Solving ill-posed problems can be 
impractical if the condition number n is large by using direct regularization methods. 
Due to the “semi-convergence” of iterative methods, the choice of iteration number 
has significant effect on the performances. The selection of stopping parameter, 
however, is not an easy task.  

We apply the hybrid methods, which are based on the Lanczos process and TSVD 
regularization in terms of projection methods, to solve the ill-posed inverse problem 
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of ECG. The results show that the regularized solution obtained by project problem 
plus TSVD is almost similar to those of TSVD, LSQR and GMRes methods for the 
original problem. The computation cost of the proposed method, however, is much 
less than that of the direct methods, the computation time could be reduced by several 
tenfolds typically. In addition, by comparing the hybrid methods with LSQR method, 
the result shows that the hybrid methods can provide more stable solutions than 
LSQR method with iterations increasing. After some iteration number, the solutions 
of hybrid method keep optimal, so the determination of iteration number is not so 
critical. This research suggests that the proposed hybrid method may provide a useful 
tool for ECG inverse problem studies. 
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Abstract. In the efforts towards noninvasive imaging of cardiac elec-
trophysiology from body surface potential recordings, it is of particular
clinical interests to identify patient specific arrhythmogenesis and ar-
rhythmic patterns. Since cardiac arrhythmias always involve intramural
focal activities or transmural propagations, 3D cardiac transmembrane
potential (TMP) mapping exhibits considerable potential utility. We
have developed a general model-constrained Bayesian framework for non-
invasive 3D TMP imaging from body surface potential maps (BSPMs).
In this paper, it is adapted to imaging various cardiac arrhythmias, with
proper specifications in accordance to different arrhythmogenic mech-
anisms under study. Representative phantom experiments are studied,
with a focus on 1), demonstrating the benefits of 3D TMP imaging in
cardiac arrhythmias; and 2), exploring the capability of the BSPM-based
and general-model-constrained paradigm in complicate pathological con-
ditions. In-depth post-analysis not only demonstrates the applicability
of the framework in imaging cardiac arrhythmias and localizing intra-
mural ectopic foci, but also indicate its merits and limitations for further
improvements.

Keywords: noninvasive 3D imaging of cardiac electrophysiology, cardiac
arrhythmias, Bayesian framework, data assimilation.

1 Introduction

Cardiac arrhythmias account for one-half of the deaths in patients with heart
failures. With various arrhythmogenic mechanisms, its severity ranges from en-
tirely benign to immediately life-threatening. Knowledge about individual pa-
tients, including the arrhythmogenesis location and the arrhythmic patterns,
is thus critical for the preventative diagnosis, intervention and treatment of
related heart diseases. In clinical practices, body surface recordings, such as
body surface potential maps (BSPMs) and electrocardiograms (ECGs), are pri-
mary noninvasive diagnostic tools based on pattern-recognition/-matching and
database localization [1]. As remote and integrative measurements of the entire
cardiac electrical activity, however, ECGs/BSPMs lack the volumetric cardiac
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information for accurate arrhythmogenesis location or regional arrhythmic ac-
tivities. Alternative invasive cardiac mappings, though capable of providing such
in-depth information, involve challenges such as complicate clinical procedures,
myocardial irritation and susceptibility to electrical/motion artifacts [2].

Noninvasive imaging of cardiac electrophysiology from ECG/BSPMs,while still
in its infancy, has taken on increasing clinical significance [3,4,5,6,7,8]. For decades,
most relevant efforts are confined to reconstructions of equivalent physical sources
[3,4] or transmembrane potentials (TMPs) on heart surfaces [5,6], failing to ac-
count for the anisotropic, inhomogeneous structure of the 3D myocardium. How-
ever, cardiac arrhythmias always involve intramural focal activities or transmural
propagations. While these efforts could provide characterization of 3D cardiac
pathophysiology, expert interpretation is required to deduce the arrhythmogenic
mechanisms, arrhythmic patterns and arrhythmogenesis locations [9].

When the interests comes to noninvasive 3D cardiac electrophysiological imag-
ing, the a priori physiological knowledge has been recognized as essential and
recent efforts revolve around the physiological-model-based approaches to fully
utilize such knowledge [7,8]. In practice, both the a priori physiological models
and patient specific data are indispensable but imperfectly reliable. To address
this issue, we have developed a model-constrained Bayesian framework to image
the spatiotemporal evolution of 3D TMPs from BSPMs, given patient heart and
torso structures from tomographic medical images [8].

Aiming towards noninvasive 3D imaging of cardiac arrhythmias, our current
work adapts the general framework in accordance to specific arrhythmogenic
mechanisms of interests. As initial efforts, this paper focuses on pathologies ex-
hibiting volumetric abnormality, such as the transmural conduction disorders
or intramural focal events. Post analysis on recovered arrhythmic activities, in-
cluding the localization of the ectopic foci, not only indicates applicable frame-
work setups in different arrhythmias, but also provides in-depth insights into the
strengthes and limitations of the framework.

2 Methodology

2.1 3D Imaging of Cardiac Electrophysiology: The General
Model-Constrained Bayesian Framework

The ultimate rationale of this model-constrained Bayesian framework is that
the combination of a priori physiological knowledge and patient specific obser-
vations, with allowance for their respective uncertainties, is a necessary paradigm
for the inverse electrocardiography (IECG) [8]. For an integral understanding,
the essential architecture of this framework is outlined in Fig. 1 and briefly
reviewed in the following.

Stochastic Cardiac Electrophysiological System. The cardiac electrophys-
iology is modeled as a stochastic nonlinear dynamic system in order to 1), in-
corporate a priori physiological knowledge to constrain the inverse solution, and
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Fig. 1. The general framework for noninvasive imaging of 3D cardiac electrical patho-
physiology (primary architecture is contained within the dotted frame): solid line in-
dicates previous efforts, while dashed line represents developments in current work

establish physical-based TMP-BSP relationship; and 2), explicitly accounts for
complicate model and data uncertainties in practice.

The constraining cardiac electrophysiological system, customized to patient
heart-torso model derived from tomographic images, consists of the 3D TMP
evolution model (1) for system dynamics, and the TMP-BSP projection model
(2) for system observation:

{
∂U
∂t = −M−1KU + f1(U,V)
∂V
∂t = f2(U,V)

(1)

Φ = HU (2)

where (1) represents Fitzhugh-Nagumo-like (FHN) reaction-diffusion equations
[10,11] and (2) is derived following the quasi-static electromagnetism. U, V and
Φ are vectors of TMPs, repolarization variables and BSPs. M and K, con-
structed based on the meshfree method, account for the intercellular coupling
of electrical propagation, while H is obtained via a boundary element integral
with embedded meshfree approximation [8]. The structures of patient heart and
torso, including myocardial inhomogeneity and anisotropy, are encoded in these
matrices. f1(U,V) and f2(U,V), general descriptors of cellular TMP dynamics,
are to be specified in accordance to different applications.

Concerned with model deficiencies and observation errors in practice, a sto-
chastic state space representation of (1,2) is formulated:

Xk = F̃ (Xk−1) + ωk (3)
Yk = H̃Xk + νk (4)

where the state vector Xk consists of unknown variables under study and varies
in different applications. In pure TMP estimation, for instance, Xk = [UT

k VT
k ]T .

The observation vector Yk = Φk. F̃ (·) and H̃ are transformed from (1) and
(2) respectively1. ωk, νk correspond to independent, additive random errors
(Gaussian) with zero means and covariances Qωk

, Rνk
.

1 The fourth-order Runge-Kutta solver is embedded in the inversion to implicitly
discretize the dynamic model (1), so F̃ (·) does not possess an explicit form.
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Sequential Data Assimilation. Given patient specific BSPMs, sequential
data assimilation is then performed on the constraining system to map patient
specific TMPs from BSPMs. In brief, the prediction of the nonlinear TMP dy-
namics, following the TMP dynamic model (1), is firstly carried out by the
unscented transform (UT) [12]. With the arrival of new BSPM data, the prior
TMP predictions are subsequently corrected according to the TMP-BSP pro-
jection model (2), via the standard KF update. With common physiological
knowledge, this sequential prediction-correction algorithm is initialized with the
prior probabilistic distribution of X0 and iterates to convergence 2.

2.2 Noninvasive 3D Imaging of Cardiac Arrhythmias

The model-constrained Bayesian framework provides a rather general paradigm
for the 3D imaging of cardiac electrophysiology. Towards the 3D imaging of
cardiac arrhythmias, such general framework should be adapted in accordance
to specific arrhythmogenic mechanisms under study.

Framework Specification. The foremost step during the specification involves
the selection of appropriate TMP evolution models (1), primarily determined by
the characteristic pathophysiological phenomena of interests and the preference
of efficiency versus accuracy in practice. Then, the degree of model uncertainties
is imposed in accordance to inevitable model-data mismatch. When necessary,
higher degrees of uncertainties are introduced to reduce over-constraining and
enhance patient specificity. Currently this is achieved by using free parameters
which controls primary electrical properties. As such, we could focus on electrical
behaviors rather than physiological changes in tissues, and ensure the tractability
and feasibility of the inverse process. Based on these specifications, suitable
data assimilation techniques, such as pure state estimation or joint/dual state-
parameter estimation, could be chosen. Expert examinations on BSPMs/ECGs
provide reliable guidance for this specification process, and exemplary framework
setups in different cardiac arrhythmias will be given in section 3.

Nevertheless, note that the constraining models will not involve any a pri-
ori knowledge about the pathology under study, and the data assimilation is
initialized with normal physiological knowledge. It gives a rigorous test on the
performance of normal constraining models in pathological conditions.

Post-analysis. After obtaining estimated TMP dynamics, its difference from
normal TMP dynamics is measured on each material point (particles in mesh-
free representation of the heart model), through the correlation coefficient (CC)
and the relative mean squared error (RMSE). Such simple local TMPs analysis
provides a brief pathophysiology assessment.

For arrhythmogenesis localization, two different post-processings are employed.
From the most negative 5-point derivative of individual TMP waveforms, the elec-
trical activation time is generated to reflect possible intramural focal activities.

2 Mathematical details are omitted due to the limited space.
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Fig. 2. Left: specific heart-torso model used in current study. The isotropic and ho-
mogeneous torso model is represented by triangular elements. The anisotropic and
inhomogeneous heart model is composed of meshfree particles and embedded into the
torso via a coarse registration according to the proper position, size and orientation of
the heart. Right: representative input BSPM sequences.

In simultaneous state-parameter recovery, mixture-model-based clustering [13] is
carried out on estimated parameters. Firstly, the parameter set is modeled by a
finite normal mixture distribution, wherein each probability distribution corre-
sponds to a group of parameters in the same pathophysiological conditions. The
well-known EM algorithm is then performed to classify different groups of para-
meters and accordingly identify the arrhythmogenesis with abnormal-valued elec-
trical properties.

The post-analysis can provide feedback to the framework for refined esti-
mation (Fig. 1). Besides, it provides valuable insights into the strengthes and
limitations of current framework, indicating applicable setups for different ar-
rhythmias and directions for future improvements.

3 Results and Discussions

In the following, physically meaningful phantom experiments are carried out on a
specific heart-torso model with geometry provided by [14] and [15] (Fig. 2 (left)).
In order to demonstrate the benefits of 3D rather than heart-surface-based TMP
imaging, current studies focus on typical cardiac arrhythmias with volumetric
abnormality. Simulated BSPMs and TMP reference data for different pathologi-
cal patterns are used as the ground truth, which can hardly be known for specific
patients. Noise-corrupted BSPMs are used as framework inputs (Fig. 2 (right)).
These initial computational experiments can give straightforward assessment of
the applicability of this novel framework.

Brunch Bundle Blocks (BBB). BBB is a relatively frequent occurrence in a
variety of medical conditions and usually have different clinical significance re-
quiring different medical measures. Manifested as transmural conduction disor-
ders, this type of pathology would be more closely understood by 3D rather than
heart-surface-based TMP imaging. Since responsible mechanisms for BBBs are
relatively straightforward, no particular requirements are imposed on the spec-
ification of the general Bayesian framework. In current studies, the normally
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Table 1. RMSE, CC and maximum local errors of the estimates against ground truth
for BBB conditions, in terms of mean ± deviance at the presence of 20dB WGN. The
TMP values are normalized between 0 and 1.

Error Metric RBBB LBBB posterior hemiblock anterior hemiblock
RMSE 0.0179±0.0071 0.0493±0.0216 0.0615±0.0217 0.0645±0.0272

CC 0.9998±1.4e-004 0.9986±0.0012 0.9980±0.0015 0.9977±0.0023
Max.error 0.0408±0.0268 0.1085±0.0775 0.1269±0.1048 0.1428±0.1326

Fig. 3. 3D ventricular activation ischrones. Left to right: normal pattern, true RBBB
pattern and estimated pattern computed from 3D TMP recovery in current framework.
The color bar encodes the values of activation time. The black contour indicates the
activation time ischrones.

parameterized FHN-type model [11] and pure state estimation is used to carry
out a series of tests on different BBB conditions, including blockages in right
brunch bundle (RBBB), left brunch bundle (LBBB) and left anterior / posterior
fascicle (hemiblock). Table 1 summarizes the recovery errors at the presence of
20dB white Gaussian noises (WGN) in BSPMs, indicating the consistent accu-
racy of the results. For reference, the true 3D myocardial activation ischrone of
RBBB is illustrated in Fig. 3 with its normal counterpart. Instead of normal
simultaneous propagation in both ventricles, RBBB shows obvious abnormal se-
quential electrical propagation from the left to the right ventricle. The activation
duration (encoded by the color bar) is also distinctly prolonged. Current frame-
work closely recover the abnormality (Fig. 3), except for the initial period of the
cardiac cycle due to the false a priori knowledge. These observations demon-
strates the strength of the Bayesian framework in dealing with pathologies with
BBB-type mechanisms.

Intramural Focal-Arrhythmia. Focal-arrhythmias, depending on the nature
of the ectopic foci, might manifest either as occasional premature beats or serious
ventricular tachycardia (VT) even ventricular fibrillation (VF). Due to the com-
mon existence of intramural focal activities, the potential of 3D TMP imaging
for accurate localization of arrhythmogenesis is of considerable clinical utility,
especially for guiding nonpharmacological clinical approaches (e.g. ablation).
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(a) Normal TMP dynamics

(b) Arrhythmic TMP dynamics

(c) Recovered TMP dynamics

Fig. 4. Anterior view of 3D ventricular TMPs in focal-arrhythmia caused by premature
excitations. Left to right: depolarization at 28, 31, 35ms; repolarization at 270, 273,
231ms. The color bar encodes the normalized TMP values, while the black contour
indicates the isochrones.

Case descriptions. A specific region on the endo-/subendo-cardium is picked as
the ectopic foci. Case I involves intramural premature excitation, which is in-
duced by partially suppressing normal sinus rhythm and stimulating the ectopic
foci at around 7ms after electrical pulses arrive at ventricles. This premature
excitation takes control of ventricular excitation and replaces ordinary activa-
tion sequence (Fig. 4 (a)(b)). Case II represent VT caused by fast pacemakers or
ventricular pacing, where the same foci is set with automatic rhythm faster than
SA node. As a result, an abnormal second depolarization takes place within a
cardiac cycle (Fig. 5 (a)).

Framework specification. To allow the influence of the refractoriness on the de-
velopment of focal-arrhythmias, and capture the pathophysiological character
without involving ambiguous physiological conditions underlying ectopic foci,
the FHN-type model: {

∂u
∂t = u(u − a)(1 − u) − v
∂v
∂t = b(u − dv)

(5)

with excitability controlled by a [10] is utilized. b, d, parameters controlling other
electrical properties, are normal-valued in current study.

In case I, a involves time-variant even transient errors, thus pure state esti-
mation is employed. In case II, the abnormal automaticity is related to physical
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(a) Arrhythmic TMP dynamics

(b) Recovered TMP dynamics

Fig. 5. Volumetric TMP evolutions in focal-arrhythmia induced by fast pacemakers or
ventricular pacing, showing the second depolarization sequence within a cardiac cycle
( normally, TMPs are at resting values during this period). Left to right: abnormal
depolarization at 296, 303, 310, 317ms. The same color bar as Fig. 4 is used.

conditions of the underlying tissues and gives persistent errors in a, hence both
state estimation and dual state-parameter estimation are studied to enable the
comparison between different framework setups.

Experiment results and discussions. The following studies are made on results
from 20dB-WGN-corrupted BSPMs. In Case I, quality of the recovery generally
falls into 2 groups. For premature excitations, consistent recovery is achieved
with CC = 0.97 ± 0.0053 and RMSE = 0.19 ± 0.0707 in regions surrounding
the ectopic foci, while the timely and accurate capture of the ectopic foci is not
ensured. For delayed excitations, the framework fails near the assumed earliest
excited tissues while farther away, it again provides satisfactory recovery with
CC = 0.97 ± 0.0070 and RMSE = 0.16 ± 0.0813. The recovered 3D arrhythmic
TMP maps are presented in Fig. 4 (c) and representative local TMP waveforms
in Fig. 6. The electrical activation map is then generated on the results to detect
the foci with descending likelihood, showing a 66.7% accuracy in capturing the
true foci among the most likely suspects.

In Case II, by state estimation only, the abnormal second activation sequence
is mostly captured with relatively correct temporal location except failures in
assumed earliest excited tissues. Similarly, the farther away from those tissues
the better is the result (CC = 0.98 ± 3e-004, RMSE = 0.07 ± 0.0245), while the
nearer, the more it tends to be only of qualitative consistency (Fig. 6). Recovered
second activation sequence is shown in Fig. 5 (b). Alternatively, dual estimation
without prior knowledge on the foci (a on all material points are uniformly
initialized with normal value 0.1) results in TMP estimates in similar quality,
but the parameter clustering accurately identify the foci with abnormal values
(a = -0.433 ± 0.0245) out of other normal tissues (a = 0.096 ± 0.0234).

Some interesting conclusions can be made from these experiments. For abnor-
mality occurring near the beginning of the cardiac cycle, the performance in dif-
ferent regions heavily depends on their distances to the assumed earliest excited
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Fig. 6. TMP waveforms representative of different pathophysiological phenomena (x-
axis: filtering steps, y-axis: TMP values). Left to right: delayed excitation farther
from (first) and around (second) assumed earliest excited tissues, premature excitation
(third) and faster excitation near prior earliest excited tissues (fourth). Comparisons
are among the true arrhythmia (red), estimates (blue) and normal dynamics (green).

tissues. It can be naturally explained: at initial steps far away from algorithm
convergence, the estimates are more inclined to the false prior information than
patient data. For abnormality occurring later in the cardiac cycle, therefore, the
accuracy improves along with the convergence of the algorithm.

As illustrated, the strength of the framework in consistently recovering ab-
normal excitations provides the possibility of approximate foci localization. For
cases involving premature excitations, state estimation with electrical activa-
tion mapping is able to approximately locate the arrhythmogenesis. For those
related to fast pacemakers, dual estimation can provide more accurate local-
ization. These results are expected to be fed back to the framework to further
improve recovery quality.

4 Conclusions

In this paper, we further develop the general Bayesian framework [8] and adapt
it to specific cardiac arrhythmias with volumetric abnormality, so as to demon-
strate the benefits and clinical significance of 3D TMP imaging. At current stage,
the framework can not provide as accurate arrhythmogenesis localizations as the
state-of-art electrophysiological study (EPS), nor is it able to produce highly re-
alistic description of cardiac arrythmic dynamics. However, its ability to extract
volumetric and patient specific information in a noninvasive manner, including
approximate location of intramural focal activity, is encouraging for its potential
clinical/research significance.

As shown in this study, the lose of volumetric information in BSPMs largely
impedes the 3D TMP imaging. While model-constrained paradigm appears as a
solution, its performance in pathological conditions is degraded by the regional
and time-variant model deficiencies. The incorporation of complementary, vol-
umetric cardiac information into the BSPM-based recovery framework, we be-
lieve, would be necessary. Tomographic medical image sequences, which contain
temporally sparse but spatially dense cardiac information, become ideal data
sources to compensate these limitations. Therefore, we are seeking to improve
the Bayesian framework to integrate the functional (BSPMs) and structural
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images (tomographic image sequences) for 3D TMP mapping, wherein tomo-
graphic image sequences not only provide patient geometry but also dynamically
complement BSPMs by offering volumetric and dynamic cardiac electrophysio-
logical information.
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Abstract. The construction of geometry models of heart-torso is critical for 
solving the forward and inverse problems of magneto- and electro-cardiography 
(MCG/ECG). Boundary element method (BEM) is a commonly used numerical 
approach for the solution of these problems and it requires the modeling of 
interfaces between various tissue regions. In this study, a new BEM (h-adaptive 
type) has been applied to the ECG forward/inverse problems. Compared with 
those traditional BEMs, the adaptive BEM can self-adjust the number and size 
of the boundary element (BE) meshes according to an error indicator, and thus 
can save a lot of computational time and also improve the accuracy of the 
forward and inverse solutions. In this paper, the procedure of the adaptive 
triangular mesh generation is detailed and the algorithm is tested using a 
concentric sphere model and a realistic heart-torso model. For the realistic torso 
model, to improve the numerical accuracy, a number of new nodes are added on 
the basis of initial torso BE meshes, and the corresponding node coordinates are 
determined using an approach called Parametric Fourier Representation (PFR) 
of closed polygons. The simulation results show that the adaptive BEM is more 
accurate and efficient than traditional BEMs and therefore it is a very promising 
numerical scheme for ECG forward/inverse problems. 

Keywords: h-adaptive BEM, ECG, Forward Problem, Inverse problem. 

1   Introduction 

The main task of Electrocardiography (ECG) is to interpret the electrical activities of 
the heart from the recorded body surface potentials (BSPs), which involves the so-
called “forward” and “inverse” problems [1]. The former deals with the modeling of 
the potential distribution on the body surface from equivalent cardiac sources or  
epicardial potentials (EPs), and the latter estimates  the cardiac equivalent sources or 
reconstructs the EP distribution, myocardial activation sequences, etc.[1,2]. Similar to 
the electromagnetic imaging simulation study for electro- and magneto-
encephalography (EEG/MEG) [3], the ECG forward/inverse problems require the 
construction of geometry models including torso, heart, and lung, etc. Once the 
geometry models are available, a numerical approach is required to solve the involved 
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field problem. The widely used numerical methods for electromagnetic problem can 
be classified into two categories [4]: 

1. Volume approach, it is based on differential equations techniques, and typical 
algorithms include finite element method (FEM) [5, 6], finite difference method 
(FDM) [7] and finite volume method (FVM) [8].  

2. Surface approach, it is based on integral function technique and the typical 
algorithm is the boundary element method (BEM) [5, 9, 10, 11]. 

For the surface approach, the interfaces of different conductivity regions are merely 
required for modeling. Therefore this approach can significantly reduce the number of 
unknown variables, however, it is very difficult to handle anisotropic regions; while the 
volume approach is very suitable to model the inhomogeneous volume conductor 
problems but it will lead to a large amount of unknown variables. These two approaches 
have their own advantages and can be applied to different problems. Seger [4] and 
Martin [12] even integrated these two methods for ECG field calculation. 

In the BEM, the BE mesh is critical and directly influences the solution accuracy. 
In the field of computational bio-electromagnetic field, previous research on BEM 
can be summarized into two classes: construction of the realistic BE mesh model 
using a number of elements [13, 14], or sparse mesh model using higher-order 
elements [9, 11].  For ECG problem, to our knowledge, the adaptive method has only 
been used in FEM modeling of cardiac field [6]. In this study, we employ the adaptive 
BEM for this problem and attempt to find an accurate and efficient numerical scheme 
for forward/inverse solution.  

Since the introduction of the adaptive BEM in the 1980s, it has been applied in 
various fields [15, 16]. In this paper, we used the h-adaptive BEM, in which the 
number of element increases by adding new nodes and the order of interpolation 
function is unchanged during refinement. In the h-adaptive BEM, it is important to 
determine the coordinates of those new added nodes. For regular model such as 
sphere, it is very easy to find the coordinates. For realistic torso model, it will be 
obtained indirectly, for example, through medical image reconstruction methods [17, 
18]. In this study, the Parametric Fourier Representations (PFR) [18] of closed 
polygon is applied to estimate both the in-slices and inter-slices nodes. 

In this paper, we firstly describe the modeling process of h-adaptive BEM for ECG 
problem, and then test the proposed algorithm with a concentric sphere model and a 
realistic human model. The inverse solutions using initial BE meshes and adaptive BE 
meshes are also compared.  

2   Adaptive BEM Analysis for ECG Forward Problem 

2.1   The Forward Problem 

In terms of the EPs, the ECG forward problem can be formulated as Laplace’s 
equation with Cauchy boundary conditions [1]: 

0σ∇ ⋅ ∇Φ =        in Ω  (1) 

0Φ = Φ      on  T⊆ Γ∑    and  0nσ∇Φ ⋅ =    on  TΓ  (2) 
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where Φ is the quasi-electrostatic potentials, σ is the conductivity tensor, ΓT  and Ω 
represent the surface and volume of the thorax, respectively. 

2.2   Boundary Integral Equation 

Using the Green second identity 

2 2( ) ( )
S V

A B B A ndS A B B A d∇ − ∇ ⋅ = ∇ − ∇ Ω∫ ∫  (3) 

and taking the fundamental solution u＊ which satisfies  

2 0u δ∗∇ + =  (4) 

where δ denotes Dirac’s delta function, we have 

( ) ( ) ( ) 0
S

c p p u q dS∗ ∗Φ − ∇Φ − Φ ⋅ =∫  (5) 

where p is an arbitrary field point, q＊ denotes 1

r
∇ ,  while r is the distance between 

the source point and field point p, and c(p) depends on the location of p: c(p)=4π 
when p is inside Ω; c(p)=0 when p is outside Ω; c(p)=2π when p is on the smooth 
boundary. 

2.3   Discretization Error and Residual 

After the discretization of the boundary S with M triangles and defining q as the 
charge and displace ▽Φ in Eq. (5), we have  

1

( ) ( ) ( ) 0
m

M

i i S
m

c p p u q q d∗ ∗

=

Φ − −Φ ⋅ Γ =∑∫  (6) 

The potential and flux charge values on the jth element are approximated by a 
linear combination of their nodal values and the interpolation functions are as follows. 

( ) ( )j i j i
i

p N pΦ = ⋅Φ∑    and  ( ) ( )j i j i
i

q p N p q= ⋅∑  (7) 

The approximated solutions of Φ and q are Φ̂  and q̂ , respectively, and the errors 

of potential and charge, Φe  and qe , are 

ˆeΦ = Φ − Φ ,  ˆqe q q= −  (8) 

In Eq. (6),  if we substitute Φ̂  and q̂  for Φ and q, Eq. (6) is not satisfied perfectly 

and therefore, the residual R is 
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1

ˆ ˆˆ( ) ( ) ( ) ( )
m

M

j j j S
m

R p c p p u q q d∗ ∗

=
= Φ − − Φ ⋅ Γ∑∫  (9) 

In the collocation formulation, R is forced to be zero when the boundary points are 
taken as the collocation points.  

Finally, the system equation with matrix-form can be written as   

Ax b=  (10) 

where A is the transfer matrix, x and b are the potential vectors on epicardial surface 
and body surface. 

2.4   The Error Indicator from the Boundary Integral Equation  

In the adaptive BEM, the error estimation is the most important component, which is 
the factor to determine the accuracy of the approximated solutions and drives the 
whole discrete meshes’ adaptive refinement procedure. The error estimation schemes 
are classified into the residual-type, the integral equation-type, the node sensitivity-
type and the solution difference type [15]. In this paper, we used residual-type [16]. 

The approximated solution by BEM does not necessarily satisfy Eq. (5) at 
positions other than collocation nodes. In this work, the square of residual is used as 
the error indicator (see Eq. (11)). Since the collocation node is positioned at each end 
of the line element and the maximum discrepancy between the interpolated boundary 
potential and the value obtained by Eq. (5) can be expected at the points furthest from 
these nodes, i.e., at the centroid of that triangle element. The local error indicator at 
the element center is used directly as the error indicator for the entire element. In 
order to reduce the computational effort, the boundary element error indicator is 
obtained from the weighted summation of local error indicators (see Eq. (12)). 

2 2

1

ˆ ˆ ˆˆ( ) ( ( ) ( ) ( ) )
m

M

j j j S
m

R p c p p u q q d∗ ∗

=
= Φ − − Φ ⋅ Γ∑∫  (11) 

2 2ˆ ˆ ( )
m

j j
j

R R pω
Γ

= ⋅∑     and  ˆ ˆ
m

m

R R mΓ Γ=∑  (12) 

where ωj is the weight and is used to compute the element error indicator, ˆ
m

RΓ  is the 

error indicator of the elementΓm and R̂Γ  is the mean error indicator of the whole 

element. The selection of ωj and pj is the same as that in Bächtold’s [16]. 

2.5   h-Adaptive BE Mesh Generation 

The flowchart of adaptive mesh generation is shown in Fig. 1. The calculation of 
electric potential starts from an initial triangular mesh and the triangular mesh is 
partially divided into small triangles by a refinement procedure and new node is 
 



294 G. Shou et al. 

 

 

Fig. 1. A. The flowchart of the adaptive triangular mesh generator. B. The process of refine-
ment for a specific element. 

added on the center point of the refined element. Then the triangles are rearranged 
using the joint quality factors of triangular pair [19]. The criterion for the mesh 
refinement is an error indicator expressed in Eq. (13). In this equation, the parameter 
k  is a constant which controls the degree of refinement in each iterative procedure. 
The iteration is stopped when the error estimation R̂Γ

 is less than a predetermined 

value (See Fig.1 (A)).  

ˆ ˆ
m

R k RΓ Γ≥ ×  (13) 

3   The Parametric Fourier Representation of Realistic Torso 
Model 

In the h-adaptive BEM described above, new nodes need to be added to the initial 
mesh. For the regular geometry model such as sphere, it is very easy to find the 
parameter function. However, additional efforts have to be taken to determine the 
nodes in the realistic torso model and we use PFR for this problem [18]. In general, 
there are very sparse nodes in an initial torso model; with PFR approach [18], dense 
nodes can be obtained not only in in-slices but also within inter-slices. Here, the 
approximation quality can be easily controlled by the alternation of number of 
harmonics.  

At first, the PFR for each closed polygon is determined. In the next step, a new set 
of equiangular points is generated by PFR for each closed polygon. For the realistic 
torso model, two PFR sets are used. The first set is for the transversal slice and it can 
generate more nodes in one slice. After the nodes in each transversal slice are 
determined, a closed curve in the sagittal direction is then formed. The second set of 
PFR is for the closed curve in the sagittal direction. The dense nodes can be gotten 
determined from the second set. Fig.2 shows the meshing results for a human torso 
using the above described PFR method. In this case, the number of harmonics is 10, 
and the nodes of the torso boundary are 412(A), 1322(B) and 5402(C), respectively. 
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4   The Inverse Calculation of the ECG Problem 

The geometry model generated by the proposed h-adaptive BEM is used for the ECG  
inverse calculation. The ECG inverse problem is ill-posed and it requires the 
regularized numerical procedure [1, 2]. In the paper, the zero-order Tikhonov 
regularization and the GCV are applied [20, 21]. With respect to assumed ‘exact’ 
solution from forward simulation, the inverse solution is evaluated using relative error 
(RE) and correlation coefficient (CC).      

5   Results 

Two simulation protocols with increased complexity are used to validate the proposed 
h-adaptive BEM for ECG problem. The first one is the concentric sphere heart-torso 
model which is often used in ECG simulation, with known analytical BSP distribution 
induced by a limited number of dipoles placed within the inner sphere. In this model, 
the radii of the two spheres are 4 and 10 centimeter, respectively. The number of 
nodes and elements of ‘heart’ sphere are 122 and 240, and the ‘torso’ sphere is 38 and 
72. The second one is the realistic heart and torso geometry models based on CT 
images with less nodes on the torso compared with previous application [22]. The 
initial numbers of nodes and elements are 165 and 315 for the heart, and 210 and 416 
for the torso, respectively. 

 

Fig. 2. The BE model of a realistic torso. A, the initial torso model (412 nodes); B, the torso 
model generated with PFR for transversal slices (1322 nodes); C, the torso model using PFR 
for both the transversal slices and sagittal direction (5402 nodes).  

 
(A)                                        (B) 

Fig. 3. The refined results of sphere mesh for torso.  (A) Model I, dipole orientation: zero 
degree. (B) Model II, dipole orientation: 30 degrees. 
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In this study, we only refine the torso meshes and keep BE meshes of the heart 
model unchanged. For the sphere model, two different dipole orientations are used for 
the forward ECG calculations, i.e., the single dipole is located at the center of the 
sphere with a zero degree of azimuth angle in the first simulation (Model I), and with 
a 30 degree of azimuth angle in the second one (Model II). In the realistic torso-heart 
model based simulation, a single dipole is located inside the heart model and its 
orientagtion: both altitude and azimuth angles are 100 degree. 

For the concentric sphere model, the BE meshes are generated with two-iteration 
refinement. Fig.3 shows the mesh profile and Fig.3 (A) is for the Model I and Fig.3 
(B) is for Model II. It is noted that for the first-iteration refinement, the mesh results 
of these two models are quite similar to each other, while for the second-iteration the 
forward calculation of BSPs modify the mesh profiles. The RE and CC of those 
forward calculated BSPs using different meshes are summarized in Table 1. From this 
table, it can be seen that the RE of forward calculation is decreased while the CC is 
increased after mesh refinement.  

 

 
                                               A                                    B 

Fig. 4. The refinement of the realistic torso model. A. The initial mesh; B. The refined mesh. 

 

 
(A)                                                       (B) 

Fig. 5. Epicardial and body surface potential (BSP) distributions. A. Eepicardial potential 
distribution; B. BSP distribution simulated using initial BE meshes; C. BSP distribution 
simuated using refined BE meshes. 

Fig.4 shows the results for the realistic heart-torso BEM model and Fig.4 (A) is the 
initial mesh model and (B) is the refined mesh model. For the realistic torso model, 
single-iteration refinement is enough and the parameter k is 0.3 (see Eq.15). The 
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corresponding BSP distributions in the realistic-model based simulation are shown in 
Fig.5. From this figure, it can be seen that the potential distribution is much smoother 
using the refined meshes.  

For all these three models with various meshes, the EPs are inversely calculated. 
Fig.6 shows the EP distribution and Fig.6 (A) is the ‘exact’ solution obtained from 
forward modeling, Fig.6(B) and (C) are the inverse solutions using initial and refined 
torso meshes. RE and CC of the inverse calculations are summarized in Table.1. From 
this table, it can be seen that the RE and CC values in Model I and Model II are not 
constant, the RE in Model I increases and CC in Model I decreases, and the RE in 
Model II decreases and CC increases. These variations in the inverse solutions 
implied that the dense mesh structure might not provide the improved solution for 
ECG problem. In the realistic torso-heart model, the RE decreases almost 10% and 
the CC increases as well, this demonstrates that the h-adaptive BEM provide high-
quality BE meshes and leads to better solution. This is clearer in Fig.6, in which the 
inversely  recovered EP distribution using the refined torso meshes is more similar to 
the ‘exact’ profile, especially in the back part of the heart model. Therefore, the 
application of the h-adaptive BEM can improve the ECG inverse solution. 

 

 

Fig. 6. The ‘exact’ (forward solution) and the inversely calculated EPs using the initial and 
refined torso mesh models. Left panel: ‘exact’ solution; Middle panel: inverse solution using 
initial mesh; Right panel: inverse solution using refined mesh model. 

Table 1. CC and RE results of the application of h-adaptive BEM in three simulations 

 Iteration nod
e 

mes
h 

CC 
forward 

RE 
forward 

CC 
inverse 

RE 
inverse 

0 38 72 0.9998 0.1872 0.9994 0.0345 
1 110 216 1.0000 0.0776 / / 

Model 
 I 

2 326 648 1.0000 0.0471 0.9988 0.0501 
0 38 72 0.9968 0.1670 0.9995 0.0316 
1 110 216 0.9971 0.0874 / / 

Model 
 II 

2 304 604 0.9974 0.0743 1.0000 0.0026 
0 210 416 / / 0.9769 0.2001 Realistic 

model 1 421 838 / / 0.9901 0.1296 
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6   Discussion and Conclusion 

This study describes an adaptive BEM implementation and an approach for creating a 
more detailed realistic BEM models from the initial coarse torso meshes. The 
proposed algorithm is tested with a concentric sphere model and realistic human data 
model with a dipole source inside the heart model. Compared to the standard BEM, 
the accuracy of the forward and inverse solution for this specific ECG problem is 
improved by using the new adaptive BEM. For example, for the concentric sphere 
model, the RE of the forward solution is decreased by near 10%; for the realistic 
human torso model, the RE of the inverse solution is also decreased by 10%. 
Interestingly, the results show that denser mesh structure does not always lead to 
better numerical solution. From the sphere model simulation, it is found that the 
dipole orientation influences the accuracy of the adaptive BEM solution. Therefore, to 
obtain robust and accurate inverse solution, more work need be done for the realistic 
model, in which the dipole orientations can be varied constantly during the activation 
course.  

In conclusion, the application of adaptive BEM in the ECG problem can avoid 
complicated mesh construction procedure and thus save a lot of computational time. 
Using this adaptive technique, for patient-specific ECG/EEG studies, it is feasible to 
build BEM models with automatic mesh generation. 
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Abstract. Experimental and inverse approaches have been applied in studying 
the contributions of different parts of the myocardium to the ECG 
measurements. Also optimal electrode locations for different clinical purposes 
have been studied by applying body surface maps. It is valuable to know where 
the measured ECG is actually generated. Thus the measurements can be 
designed to be most optimal to measure certain myocardial sources. Here we 
assess the contributions of 12 left ventricular segments to the potentials of 117 
surface leads. The study is based on the numerical lead field analysis combined 
with the cardiac activation modeling. We analyzed the contributions of the 
signals generated by different segments to the total signal generated by the left 
ventricle. It was found that anterior segments have high contributions to the 
leads on the lower left thorax and inferior segments on the leads on the lower 
left back. These results were expected based on the previous clinical studies. 

1   Introduction 

Today various electrode systems are applied in measuring the electrical activity of 
myocardium. The properties and benefits of these electrocardiography (ECG) lead 
systems, such as multielectrode systems with 24 to 190 electrodes or standard 12-lead 
ECG have been studied widely. All the studies have tried to answer, one way or 
another the questions; How many leads are needed for different measurement 
purposes and where they should be located. Trägårdh and colleagues [1] have recently 
published a good review of these clinical studies. In the present paper we study the 
contributions of 12 left ventricular segments to the body surface potentials measured 
in 117 leads, i.e. which source locations within the left ventricular myocardium are 
actually measured by each lead. The analysis is based on the sensitivity distributions 
of surface electrodes and simulated cardiac activation.  

The past body surface potential map (BSPMs) studies have suggested optimal 
electrode locations for different clinical cases such as detection of infarctions and 
ischemia [2-4]. Many of these studies suggest electrode locations which are specific 
to measure and indicate changes in the activation of different parts of myocardium 
such as anterior segments of left ventricle. The studies of optimal measurement leads 
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to detect different cardiac abnormalities have been mainly conducted by statistical 
data analysis of measured BSMPs [5-7]. The statistical methods and BSPMs are very 
applicable when surface measurements are studied and evaluated. Despite of their 
efficiency these methods might be impractical or even unuseful when designing and 
optimizing new measurements and devices such as implantable ECG monitors.  

The true origins of the electrophysiological phenomena measured are of interest in 
many cases. Inverse problems and experimental setups have been applied in studying 
the effects of spatial and temporal characteristics of cardiac activation on the body 
surface potentials [8-12]. For example MacLeod and colleagues found in [8] that 
some locations of infarcts are more visible in some body surface potentials than in 
others and there exist so called silent changes in cardiac activation which are not 
projected to the body surface. These studies suggest that there are electrode locations 
which are sensitive to activation arisen in certain areas of myocardium. 

When designing novel measurement devices and setups it would be beneficial to 
know where to locate the electrodes to measure the target signals and monitor their 
source regions as efficiently as possible. One might also desire to concentrate the 
measurement in a certain area of the cardiac muscle, like in a segment of the left 
ventricle. Thus the electrodes should be located in such places that the measurement 
is most specific to the activation arising in this region of interest. This is especially of 
interest when monitoring different cardiac arrhythmias or changes in activation of 
certain segment of myocardium after infarctions. Also designing of active cardiac 
devices such as implantable defibrillators and pacemakers could benefit of such 
approach where the measurement and stimulating lead configurations could be 
studied by modeling approach.  

Modeling of measurements and their sensitivity distributions together with 
simulation of cardiac activity serves time and cost effective approach to study the 
properties of measurements. In the past only few methods have been applied in 
analyzing the sensitivity distributions of measurement setups. Thus the possibilities of 
sensitivity distribution analysis have not been utilized as efficiently as possible. The 
lead field and reciprocity approaches provide effective tools to analyze the sensitivity 
distributions. In this paper we apply the lately developed method which combines the 
lead field approach with dynamic source model of cardiac activation in studying the 
origins of the body surface potentials. The sensitivity distributions were calculated in 
a realistic model of human thorax by applying finite difference method (FDM). We 
simulated the dynamic source distribution in left ventricular myocardium and 
calculated the lead fields of 117 body surface leads. Signals in these leads can be 
solved by combining the lead fields and source distributions. In [13] we have 
presented a method to analyze the contribution of certain source volume to the 
measured signal by estimating the mean square difference (MSD) between signal 
generated by these sources and the signal generated by the whole source volume. 
Here we studied the contributions of 12 segments of left ventricle to the source 
volume which generates signal having 10 % MSD

 
when compared to the signal 

generated by whole source volume. This analysis was applied to all leads and thus we 
can estimate which electrode location is most optimal to measure different segments 
of left ventricular myocardium with the applied activation model. 
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2   Material and Methods 

2.1   Finite Difference Method 

In the FDM the segmented volume data, e.g. from an MRI dataset, are divided into 
cubic elements forming a resistive network. In short the resistances of the elements 
correspond to the tissue resistivities and the dimensions of the elements correspond to 
the resolution of the dataset. The network can be described as a set of linear equations 
which present the potentials and currents in the model. The FDM is based on the 
Poisson’s equation that can be used to describe the bioelectric quasistatic source-field 
problems [14]. FDM models are discrete and thus continuous Poisson’s functions 
have to be discretized to form linear equations. A potential distribution within the 
model for a specific source configuration is solved with these linear equations with 
iterative methods  [15]. The use of FDM method in modeling sensitivity distributions 
is validated in [16]. 

Realistic model of human anatomy 
The FDM allows the implementation of complex anatomic geometries from the image 
data, and the resulting potentials and currents can be calculated within the whole 
volume conductor model [15]. In the present study we applied a FDM model of the 
3D male thorax based on the Visible Human Man dataset (VHM) [17, 18]. The 
applied dataset represents data on 95 segmented slices where resolution in the slices 
close to the heart was 1.67 mm x 1.67 mm x 4 mm and elsewhere 1.67 mm x 1.67 mm 
x 8 mm. Model contains altogether 2.7 million nodes with 2.6 million elements. The 
model applied contains over 20 different organ and tissue types with corresponding 
resistivities which are listed in Table 1 [16]. Figure 1 illustrates the model with 117 
electrode locations applied in the study.  

Table 1. Resistivity values in the model. Blood masses include atrium, ventricles, aortic arch, 
ascending aorta, descending aorta, superior vena cava, inferior vena cava, carotid artery, jugular 
vein, pulmonary artery, pulmonary vein and other blood. 

Organ/tissue Resistivity 
(Ωcm) Organ/tissue Resistivity 

(Ωcm) 

Air 1010 Kidney 600 

Skeletal muscle 400 Liver 600 

Fat 2000 Heart muscle 450 

Bone 2000 Heart fat 2000 

Lungs 1325 Blood masses* 150 

Stomach 400 
Other tissues and 
organs on thorax 

460 
 

2.2   Lead Field and Reciprocity  

The sensitivity distribution of the measurement configurations can be illustrated and 
analyzed with lead fields. Lead fields are thus applied to describe and study the 
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Fig. 1. 3D model of torso containing 117 electrode locations 

measurement of the electric fields in the volume conductor. Lead current density 
vectors define the relationship between the measured potential in the lead and the 
current sources in the volume conductor following Equation 1. The measured lead 
voltage is dependent on the magnitudes of the lead and source current vectors as well 
as the angle between these vectors [14]. 

1 1
[ ] [ ]

i
L

rV

z n J J n
Iσ

= •∑  
(1) 

Where z[n] is the lead voltage as a function of time n, 
L

J  is the lead current density 

vector [A/cm2] , Ir is the applied reciprocal current [A], [ ]
i

nJ
  is the current source 

density vector [A/cm2] as a function of time, σ is the conductivity [1/Ωcm] of the 
source location in the volume conductor  and V is the source volume.  

The lead field in the volume conductor can be established by applying the principle 
of reciprocity. In [14] it is stated that the current field in the volume conductor raised 
by the reciprocal unit current (Ir=1 A) applied to the measurement electrodes 
corresponds to the lead current density and hence to the lead field.  The essential 
benefit of this method is that the sensitivity of a measurement lead at all source 
locations in the volume conductor can be calculated with a single calculation.  

2.3   Cardiac Activation Model 

In our implementation we opted for a state machine approach defined previously in 
[19]. This model of cardiac electric activity reproduces electric restitution of both 
action potential duration (APD) and conduction velocity (CV), as well as curvature 
effects. Cardiac tissue is modeled as a grid of discrete elements characterized by three 
discrete states, namely, Rest, Refractory1 and Refractory2, and transitions among 
them. The excitation of an element, i.e. the transition from Rest to Refractory1 is 
interpreted as a probabilistic event, depending on the amount of excitation in its 
neighborhood, and the excitability of the element, that can be accessed through the 
restitution curve of CV. Transitions from Refractory1 to Rest through Refractory2 
depend on the current of APD. Additionally, a membrane voltage is assigned at every 
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time instant. Finally, non-conservative sources at each time n and location i, [ ]i
J n , are 

solved based on the voltage differences and conductivities between neighboring 
elements. 

2.4   Mean Square Difference Estimating Contribution of the Sources to the 
Signal 

In [13] we introduced a method to analyze the contributions of the sources to the 
measured signal. The contribution of certain sources to the measured signal is defined 
by the mean square difference (MSD) between the signal generated by these sources 
and signal generated by whole source volume. Let V be the total source volume and 
Vo

 
be subset of the sources within the V. Based on (1), we define that the ECG signal 

z[n] is generated by V and zo[n] is generated by the source in Vo. If we measure the 
similarity between z[n] and zo[n] based on MSD, we obtain: 

2{ } ( [ ] [ ])o oMSD V E z n z n⎡ ⎤= −⎣ ⎦  (2) 

Furthermore, by normalizing MSD by the mean power of whole source volume 
z[n], Pzz, we can obtain a more convenient measurement of similarity relative to the 
mean power of z[n]: 

{ }
{ } o

n o
zz

MSD V
MSD V

P
=  

(3) 

2.5   Calculations 

We calculated the sensitivity distributions, the lead fields, in a realistic model of the 
male thorax by applying the principle of reciprocity. The lead fields were calculated 
for standard 117 body surface electrode leads illustrated in Figure 2. The same lead 
arrangement has been adopted for example by Kornreich and colleagues [4, 20]. The 
current distribution corresponding to the lead field current density was generated into 
the volume conductor by applying the unit currents to the electrode pairs. The 
calculations were executed with bioelectric field software which applies the 
Incomplete Cholesky Preconditioner and Conjugate Gradient for solution [21]. 

Here we study the contributions of the sources of left ventricular segments to the 
signals measured with 117 leads. The left ventricle was divided into 12 segments 
based on the standard 12 segment left ventricular subdivision recommended by the 
Committee on Nomenclature of Myocardial Wall Segments of the International 
Society of Computerized Electrocardiography [22, 23] illustrated in Figure 3.  

We solved source distribution [ ]i
J n  for the activation starting on the apex and 

conducting through the left ventricle over one second. The source distribution was 
combined with the sensitivity distributions to solve the measured potentials in the 
surface leads as described by (1). For each lead we evaluated the source volume Vo 

within the left ventricle which generates signal with 10 % MSDn compared to the 
signal generated by whole left ventricle. Further we observed the proportions of the 
12 segments in Vo and studied which segments have the largest influence on  
the signals measured with surface leads.  
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Fig. 2. 117 body surface electrode leads 

 

Fig. 3. The standard 12-segment left ventricular subdivision. Segments 1-3 anteroseptal, 4-6 
anterosuperior, 7-9 inferior and 10-12 posterolateral. 

3   Results 

Figure 4 presents for 117 leads the proportions of the 12 left ventricular segments to 
the source volume which produces signal having 10 % MSDn when compared to the 
total signal generated by the left ventricle.  

From the results we may observe the segments of the left ventricle which have the 
highest proportions of the sources measured with surface leads. Thus these leads are 
most optimal to measure activation generated within the segments. As an example 
over 30 percent of the sources that produce the signal with 10 % MSDn in the lead 93 
are within the segment 8. Further Segments 8 and 9 have together over 60 % of the 
sources which produce the signal having 10 % MSDn

 
in the lead 93.  

There are leads that are most optimal to measure different segments. For example 
approximately 50 % of the sources producing signal with 10 % MSDn in leads on the 
mid left thorax are in segments 1, 4 and 5 and fewer than 10 % of the sources are 
within the segments 8, 9 and 12. Thus these leads are most optimal to measure the 
signal originating from anterior segments. Leads in lower left back are mainly 
 



306 J. Väisänen et al. 

 

Fig. 4. For 117 leads the proportions of the 12 left ventricular segments in the volume 
generating signal with 10% MSDn compare to the signal generated by whole left ventricle. The 
larger the proportion the higher is the contribution of the segment into the signal measured on 
the lead and more likely changes in measured signal are originating from the corresponding 
segment. 

measuring the activation of segments 8 and 9 because these segments have 
approximately 60 % share of the sources measured with these leads. 

4   Discussion 

Realistic and highly accurate models of the human anatomy are needed to carry out 
efficient modeling and simulation of the measurements leads. The FDM enables 
effective use of the models and thus leads to a more accurate modeling of 
measurements. Nevertheless the accuracy of the results can be affected by the 
resolution of the model and the number of conductivities modeled. These factors can 
affect the potential distribution within volume conductor and further the current 
density vectors which correspond to the sensitivity vectors. The higher the resolution 
of FDM grid the lower is the numerical error produced by discretization of 
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conductivities and thus more accurate current density vectors are achieved. Numerical 
approach applied here takes into account double sided differences of potentials in 
calculation of sensitivities and thus decreases the numerical error produced by the 
discretization of conductivities. 

The resolution of the FDM model defines the time needed for the calculation. A 
calculation of sensitivity distribution of a lead in this study took approximately 15 
minutes with AMD 3000+ 64Bit, 2 GB RAM. Solving the one second of cardiac 
activation in left ventricle took less than 3 seconds with Intel P4 2,4GHz and 1.5 GB 
RAM. Models with higher resolution can be applied in studies with high 
computational resources without excessive computation times.  

Although the model utilized possesses high anatomical accuracy, it has certain 
other shortcomings. In the present study we applied the finite difference model with a 
network of resistances featuring the tissue impedance. The human tissues also have 
capacitive characteristics possibly affecting the current distribution on the thorax. 
However, it has been recognized that the ratios between conductivities and 
permittivities of the human tissues on the frequency range of ECG are such that the 
dielectric behavior of tissues is mainly resistive [24]. Thus the model containing only 
resistive properties is relevant for our purposes.  

Furthermore, the model applied in the present study is isotropic. Anisotropic 
conductivities, especially of the cardiac muscle would improve the simulations. The 
model was based on the anatomy of a single human subject and the segmentation of 
the tissues might also have some shortcomings. In the future we will apply other 
thorax models to study the effect of model on the results. Also the resolution and 
segmentation of models will be enhanced.  

The MSD was found to be an efficient approach when the contributions of 
different segments were observed. In the present study we decided to observe the 10% 
difference but in future studies also other difference should be considered when the 
contributions of sources are observed. It would be valuable to investigate if the 
proportions are the same with the larger differences. Also other statistical properties 
of signals such as standard deviation and correlation will be included in the analysis 
in future studies. 

Kornreich and colleagues have studied which are the most optimal leads to detect 
anterior and inferior myocardial infarctions. The anterior infarction volume contains 
segments 1-7, 10 and 11 which are supplied by left descending artery or its branches 
[23]. The inferior infarction volume contains segments 8 and 9 supplied by inferior 
descending artery or its proximate coronary [23]. Kornreich and colleagues found in 
[4] that the optimal leads to detect anterior infarction are located in the left thorax 
around leads 50 and 69. They also found that the inferior infarction is most optimally 
detected from the leads on the left lower back. The same conclusions can be obtained 
from our results because segments involved in anterior infarction have high 
contributions to the signals measured with leads on the mid-left thoracic region and 
segments involved in the inferior infarction have high contributions to the leads on 
lower left back.  

Although the model and segmentation of left ventricle to 12-segments are quite 
coarse the study shows that there are locations which are more specific to measure 
individual segment and locations which are sensitive for number of segments. It is 
also shown that the modeling and the analyzing methods presented here provide 
excellent tools when studying the contribution of myocardial sources to the measured 
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body surface potentials. In the present study only one type of activation model was 
applied. The activation model has impact on the results and in the future we will thus 
apply multiple activation models to study e.g. the effect of starting point of ectopic 
beat on the sensitivities of the leads. In the future this method will be also applied in 
studying and designing of implantable ECG monitors as well as analyzing the origins 
of signals measured with implantable cardiac defibrillators and pacemakers.  
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Abstract. Non-invasive electrocardiographic (ECG) techniques for as-
sessing the electrical activity of selected regions within the cardiac muscle
can benefit from suitable positioning of surface electrodes. This position-
ing is usually guided heuristically and complemented by clinical and ex-
perimental studies, but there is a lack of general methods to characterize
quantitatively the ability of a given electrode configuration to focus on
selected regions of the heart. In this study we explore an approach to
the characterization of the resolution of surface ECG systems based on
the concept of Resolution Mass (RM). By integrating bioelectric signal
modeling and numerical methods, we explore, in an application exam-
ple, the location and size of the RM for a multielectrode ECG system.
The concept of RM combined with bioelectric signal modeling and nu-
merical methods constitutes a powerful tool to investigate the resolution
properties of surface ECG systems.

1 Introduction

Surface electrocardiogram (ECG) is one of the most common diagnostic meth-
ods for cardiac diseases. In many diseases, such as ischemia and infarction, the
diagnosis involves an estimation of the localization and extension of an abnor-
mal region within the heart. This region is usually determined by detecting well
known anomalies in the morphology of conventional 12-lead ECG signals. Diag-
nostic methods based on ECG techniques can be further refined by an adequate
choice of the position and configuration of surface electrodes [1] [2]. From the
general principles of Bioelectromagnetism, it is expected that each electrode
configuration focuses on different regions of the heart. Therefore, electrode con-
figurations show distinctive intrinsic resolution properties that can provide us
with valuable insight into regional information. Usually, the positioning of sur-
face electrodes is guided heuristically and complemented by means of studies in
which extended multielectrode systems are used [3] [4] [5]. Nevertheless, a widely
accepted quantitative approach to the study of the resolution properties of elec-
trode configurations is still lacking. As a consequence, there is limited agreement
on the nature of these resolution properties.

F.B. Sachse and G. Seemann (Eds.): FIMH 2007, LNCS 4466, pp. 310–319, 2007.
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The aim of this study is to explore the notion of resolution of surface ECG
systems using the concept of Resolution Mass (RM). The RM is defined as the
myocardial mass that contributes the most in power terms to the ECG signal.
Considering that the heart is the object of our investigation, and that we can
only access its state indirectly through ECG signals, we form our approach from
two starting points. On the one hand, in order to place the notion of resolu-
tion in a quantitative framework, we define a measurement over ECG signals,
since they are the only observations. Conventional mean power is a meaningful
candidate due to its clear physical meaning. On the other hand, we link ECG
signals to the electrical activity of the heart, so that any statement from the
previously defined measurement over ECG signals can be extended to the heart
itself. This implies modeling ECG signals based on Bioelectromagnetism Theory,
according to which bioelectric phenomena arise as a result of the interplay of
source and conducting elements in the body [6]. In the context of lead systems,
Lead Field Theory is a convenient mathematical formulation from which we
can benefit both conceptually and computationally. From these starting points,
we approach the notion of resolution by asking what the contribution in power
terms of a certain myocardial mass within the heart is to a given ECG signal.
We propose to answer it by determining the similarity in mean power between
the signals generated by the myocardial mass under investigation and by the
whole myocardium, respectively. The knowledge of the contributions of different
myocardial masses will, in turn, allow us to decide which one of them can be
established as the RM. Since this procedure is not feasible in experimental set-
tings and classical analytical techniques fail in this scenario, numerical analysis
will be crucial to this study, by constituting the basic tool to carry what has
come to be widely known as experiments in silico.

In the following sections, we firstly introduce our implementation of the model
of ECG signals in terms of the dynamics of the heart and the lead fields associated
to the electrode configuration, i.e., in terms of source and conducting elements.
Secondly, we provide a definition of RM, and we propose a numerical procedure
to estimate it. Thirdly, we investigate, as an example, the resolution properties
of an ECG system over the ventricles. Finally, we summarize our results and
propose future applications of the concept of RM.

2 Bioelectric Signal Modeling

In the electric characterization of the human body, two simultaneous features are
described, namely its behavior as a source volume and as a conductor volume [6].
A source volume is a tissue that can generate non-conservative electric currents,
whereas a conductor volume allows source elements to induce electric potentials
in other regions of the body. When such electric potentials are recorded on
the skin, a surface ECG signal is obtained. Consequently, any model of ECG
signals in terms of the electrical properties of the human body will consist of
a description in terms of both cardiac sources and conducting properties of the
body.
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2.1 Modeling the Cardiac Tissue as a Bioelectric Source

In our implementation we opted for a state machine formulation for the elec-
tric activity of cardiac tissue defined previously [7]. This formulation is able to
reproduce the electric restitution of both action potential duration (APD) and
conduction velocity (CV), as well as curvature effects. Cardiac tissue is modeled
as a grid of discrete elements characterized by three discrete states, namely, Rest,
Refractory1 and Refractory2, and three transitions among them. The excita-
tion of an element, i.e. the transition from Rest to Refractory1, is interpreted as
a probabilistic event depending on the amount of excitation in its neighborhood
and the excitability of the element, which is accessible through the current value
of CV. Transitions from Refractory1 to Rest through Refractory2 depend on
the current value of APD. Both APD and CV values are updated at every new
diastolic interval (DI) based on the curves of electric restitution. Transitions
among states, at every time instant n, are defined as follows:

Rest → Refractory1 : P j
exc ∝ CV · Qj

exc (1)
Refractory1 → Refractory2 : n − nj

desp ≥ F · APD

Refractory2 → Rest : n − nj
desp ≥ APD ,

where j identifies an excitable element in the grid, P j
exc is the probability of

excitation of j, Qj
exc is the amount of excitation within a neighborhood around

j, nj
desp is the instant of depolarization of j, and F is a scalar representing the

fraction of APD that j spends at Refractory1 while depolarized. Additionally,
a membrane voltage is assigned at every time instant. Its value is the usual
rest voltage during Rest state, and a standard version of an action potential
temporarily scaled by the APD during Refractory1 and Refractory2. Finally,
source elements are computed from the voltage differences and conductivities
between neighboring elements.

2.2 Modeling the Body as a Bioelectric Conductor

Based on the conducting properties of the body, the solution of the forward
problem allows us to obtain the electric potential induced by a source element
at every location of the body. From the principle of superposition, given a dis-
tribution of source elements within the body, the total electric potential can
be expressed as the superposition of the electric potentials generated individu-
ally by every source element. Nevertheless, when studying signals recorded by
lead systems, we are only interested in the electric potentials induced at a fi-
nite number of locations in the body. Furthermore, a formulation that explicitly
includes the measurement sensitivity distribution of the lead system could be
conceptually more powerful. In this context, Lead Field Theory provides an ad-
equate formulation that is equivalent to the forward solution. It has conceptual
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advantages, since it includes in its definition the measurement sensitivity distri-
bution of the lead system, and, if implemented numerically, it is computationally
less demanding. According to Lead Field Theory, the signal recorded by a lead
system, z[n], can be expressed as a linear combination of source elements in the
source volume V as follows:

z[n] =
∑

V

1
σ

1
Ir

JL · J i[n] . (2)

In this discretized formulation, Ir is the reciprocal current, JL is the lead
current density and constitutes the measurement sensitivity distribution, J i[n]
denotes the source elements in V , and σ is the conductivity. Conceptually, this
approach allows us to interpret the dynamics of z[n] in terms of the dynamics
of those regions of V where the sensitivity of the lead system is highest. Com-
putationally, when simulating z[n], it overcomes the need of solving the forward
problem for every source element J i[n] at every time instant n. Instead, by virtue
of the Reciprocity Theorem, JL is obtained by solving the forward problem once
and for all for a reciprocal current applied to the surface electrode, and then, at
every time instant n, z[n] is readily calculated from (2).

3 Measuring the Resolution

Let Vo and Vc be two disjoint subsets of the source volume V such that V =
Vo ∪ Vc. From (2), we can express the ECG signal z[n] generated by V as the
sum of the signals zo[n] and zc[n] induced, respectively, by Vo and Vc:

z[n] =
∑

V

1
σ

1
Ir

JL · J i[n] (3)

=
∑

Vo

1
σ

1
Ir

JL · J i[n] +
∑

Vc

1
σ

1
Ir

JL · J i[n]

= zo[n] + zc[n] .

If we measure the similarity between z[n] and zo[n] based on Mean Square
Difference (MSD), we obtain:

MSD {Vo} = E
[
(z[n] − zo[n])2

]
(4)

= E
[
(zc[n])2

]

= Pzczc ,

where E denotes statistical mean. Thus, MSD {Vo} is a measurement of the
error involved when approximating ECG signal z[n] to zo[n]. If we normalize
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MSD {Vo} by the mean power of z[n], Pzz = E
[
(z[n])2

]
, we can obtain a more

convenient measurement of similarity relative to the mean power of z[n]:

MSDn {Vo} =
MSD {Vo}

Pzz
(5)

=
Pzczc

Pzz
.

We define the RM at level α, RMα, of a surface ECG as the smallest region Vo

within the heart that involves a MSDn less than α when approximating at the
recording site the electric potential generated by the whole heart to the electric
potential generated by the RM, i.e.,

RMα = arg min
Vo

{Size (Vo)} , ∀Vo/MSDn {Vo} ≤ α . (6)

In other words, we are measuring the resolution properties of an ECG system
in terms of the power of the component zc of the ECG signal generated in the
region excluded from the RM, Vc. The RM has, thus, a clear physical meaning
and it is suitable to carry out fair comparisons between electrode systems, since
it is obtained from a measurement defined over the ECG signal. In this study, we
investigate two properties of the RM, namely, its mass center and its size. The
mass center of a RM allows us to determine the location of the RM within the
whole source volume. The size is a meaningful parameter to describe the scope
of the RM, since it informs us of the ability of the electrode system to focus on
selected regions of a given size within the source volume.

We used numerical methods to estimate RMα in two ways. On the one hand,
we obtained the lead field based on Finite Difference Methods (FDM) featuring
the Visible Human Man model (VHM), by calculating the electric potential gen-
erated by a reciprocal current applied to the surface electrodes [8]. According to
the Reciprocity Theorem, generated lead current fields (JL) raised by the recip-
rocal current (Ir) corresponds to the lead field. On the other hand, we generated
implicitly the dynamics of J i[n] using a computer, i.e., through numerical sim-
ulations. Then, by implementing the model of cardiac tissue as defined earlier,
we simulated J i[n] and, for different choices of Vo, from (3) we generated zo[n],
zc[n] and z[n]. Subsequently, from (4) and (5), we estimated MSDn {Vo} and,
finally, for every α we determined RMα according to (6).

4 Example

The characterization of the resolution properties of a surface ECG system based
on the determination of RMα is exemplified here for a 117 unipolar electrode
ECG system. From this system, a total of 18 unipolar electrodes distributed
around the thorax on the cross section located at the fourth intercostal space
were investigated (Figure 1); among them, electrodes numbered 22 and 37 cor-
respond respectively, to precordial leads V1 and V2 in conventional 12-lead ECG.
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Fig. 1. Thorax model as described by the VHM dataset. Studied surface electrodes are
positioned around the thorax on a cross section located at the fourth intercostal space.

We studied RMα within the ventricles (Figure 2) as a function of α and the
position of the electrodes. For this purpose, we calculated numerically JL as
described earlier. Then, we programmed the state machine of electric activity
of cardiac tissue, and we simulated the stimulation of the ventricular apex at
60 beats per minute during 8 seconds. Progressively larger source volumes Vo

were chosen to synthesize signals z[n], zo[n] and zc[n], from which corresponding
MSDn {Vo} were obtained. Finally, for several values of α, RMα was determined
according to (6).

Figure 3 shows estimated RMα for electrode 37 (precordial lead V1 in 12-lead
ECG) and three values of α: 0.1, 0.2 and 0.5. As it is expected, larger α values
lead to a smaller size of RMα, since α measures the MSDn involved when ap-
proximating the signal induced by the ventricles to the signal induced by RMα.
Furthermore, we can observe that RM0.1, RM0.2 and RM0.5 are geometrically
close to the position of electrode 37, which agrees with the fact that the measure-
ment sensitivity decreases with the distance to the electrode. This observation
was confirmed for every electrode.

In Table 1, the sizes of RM0.1, RM0.2 and RM0.5 relative to the size of the
ventricles can be explored for every electrode. Apart from the decrease in size for
larger values of α that was noted earlier, two qualitatively different sets of results
are relevant, depending on whether electrodes are positioned on the anterior or
the posterior chest. In general, RMα for anterior electrodes is comparatively
smaller than for posterior electrodes. These results can be explained by the fact
that distances from the skin surface to the ventricles are greater on the posterior
than on the anterior chest (see Figure 1). For example, while the size of RM0.5
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Fig. 2. Superior view of the ventricular myocardial mass as described by the VHM
dataset. Right ventricle (RM) and left ventricle (LV) are, respectively, the masses
below and above the dashed line.

(a) α = 0.1 (b) α = 0.2 (c) α = 0.5

Fig. 3. Superior view of the ventricles (light gray) in the VHM model and estimated
RMα (dark gray) of electrode 37 (precordial lead V1 in 12-lead ECG) for different
values of α. We can observe that larger α values lead to smaller RMα.

for electrode 84 is roughly 83% of the size of the ventricles, for electrode 37 it
is 13%. Therefore, the ability of unipolar electrodes on the posterior chest to
focus on small regions of the ventricles will be, in general, poorer than that of
electrodes on the anterior chest. It is equally remarkable that the amount of
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Table 1. Size of RMα (relative to the size of the ventricles), for α: 0.1, 0.2 and 0.5

Electrode 1 8 15 22 30 37 44 51 58 65 69 73 78 84 92 100 108 114
RM0.1 (%) 55 84 85 73 63 65 64 63 58 54 52 57 87 90 84 69 54 47
RM0.2 (%) 25 75 73 53 32 47 44 43 40 38 37 47 85 89 79 58 43 35
RM0.5 (%) 10 10 13 2 1 13 22 22 19 17 16 21 75 83 67 28 16 11

Table 2. Decrease of the size of RMα (relative to the size of the ventricles)

Electrode 1 8 15 22 30 37 44 51 58 65 69 73 78 84 92 100 108 114
RM0.1 − RM0.2(%) 30 9 12 20 31 18 20 20 18 16 15 10 2 1 5 9 11 47
RM0.2 − RM0.5(%) 15 65 60 51 31 34 22 21 21 21 21 26 10 6 12 12 27 24

Fig. 4. Locations of the centers of RM0.5 in the ventricles for every electrode

variation of the size of RMα for increasing α is, in general, larger for electrodes
positioned on the anterior chest, as shown in Table 2. If we compare once again
electrode 84 to electrode 37, RM0.1 − RM0.2 is for the former 1% whereas for
the latter is 18%.

The locations of the centers of the RM0.5 for every electrode are shown in
Figure 4. Not surprisingly, they are distributed following the locations around
the thorax of the corresponding electrodes. These results confirm, therefore, that



318 J. Requena-Carrión et al.

electrodes on the anterior (posterior) chest focus on anterior (posterior) walls of
the ventricles. Noticeably, the centers of electrodes on the anterior chest are closer
to the periphery of the ventricles. Again, this observation can be explained by the
relatively smaller size of RM0.5 due to the distance separating skin positioning
from the ventricles.

5 Discussion

The elucidation of the resolution properties of surface ECG systems can provide
us with valuable clinical information, since it allows us to map patterns observed
in ECG signals to the regions within the heart that generate them. In this study
we combined bioelectric signal modeling and numerical methods to explore the
notion of resolution, as expressed in the concept of RM. We defined the RM
in terms of the MSDn resulting from approximating at the recording site, the
signal induced by the whole source to the signal induced by the RM. It is, thus,
a measurement that has a clear physical meaning and, since it is defined over
recorded ECG signals, it is suitable to carry out fair comparisons of the resolution
properties of different surface ECG systems.

Numerical methods proved to be the best choice to study the RM, as compared
to experimental settings and other analytical techniques. Numerical approaches
have, however, general limitations. Since an underlying model is assumed, the
significance and generality of the results depend considerably on the ability of
the model to describe the physical phenomena under investigation. In this study
we have described the conducting properties of the body based on the VHM
dataset, and the electrical activity of the heart based on a state machine model.
Besides, the dynamics of the sources elements have been generated by simulating
the stimulation of the apex at 60 beats per minute. In order to investigate the
impact of the choice of the signal model on the scope of the results, in the
future we will implement different thorax models and simulate cardiac electrical
activity based on other descriptions and stimulation protocols.

In an application example, we showed that the RM in the ventricles depends
on the positioning of surface electrodes. Specifically, we showed that both the
location and the size of the RM depend on the proximity of the electrodes to the
ventricles and on their angular coordinate around the thorax. Our results confirm
that, by appropriately positioning the electrodes we can increase the amount of
signal from a region of interest within the heart, although there are limits to
the ability of an electrode to focus on selected regions smaller than the RM.
By placing the notion of resolution in a quantitative framework, this approach
complements other experimental and clinical settings intending to establish the
limits of the electrocardiography [9]. The determination of the resolution prop-
erties of electrode systems can allow us to assess the convenience of standard
electrode positioning and to explore new positioning for extracting the maxi-
mum amount of physiological information from the ECG. Thus, a quantitative
definition of optimal electrode placement can be achieved based on the concept
of RM.
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In summary, the combination of bioelectric signal modeling and numerical
simulations constitute a powerful method to study the resolution properties of
ECG systems. Firstly, they provide the formulation needed to estimate the RM.
Key features of the RM include its location and its size, from which we can estab-
lish limits to the ability of the electrode system to focus on selected regions within
the heart. Secondly, it forms a framework to assess, by implementing different
anatomical models, the influence on the resolution properties, of factors often
regarded as sources of variability, such as the shape of the body, the proportion
of tissues or the size of the heart. Thirdly, complete multielectrode systems and
varied electrode configurations can be systematically studied and compared, in
order to determine optimal electrode placements. Numerical approaches to the
resolution can complement other experimental and clinical settings, both as a
means of explanation and of future experimental design.
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model of cardiac electrical activity based on a cellular automata system. Rev. Esp.
Cardiol. 58(1), 41–47 (2005)

8. Kauppinen, P., Hyttinen, J., Heinonen, T., Malmivuo, J.: Detailed model of the
thorax as a volume conductor based on the visible human man data. J. Med. Eng.
Technol. 22(3), 126–133 (1998)

9. MacLeod, R., Kornreich, F., van Oosterom, A., Rautaharju, P., Selverster, R., Wag-
ner, G., Zywietz, C.: Report of the first visualization of the reconstructed electro-
cardiographic display symposium. J. Electrocardiol. 38, 385–399 (2005)



Simultaneous High-Resolution Electrical
Imaging of Endocardial, Epicardial and

Torso-Tank Surfaces Under Varying Cardiac
Metabolic Load and Coronary Flow

Shibaji Shome1,2 and Rob Macleod1,2,3

1 Nora Eccles Harrison Cardiovascular Research and Training Institute,
University of Utah, UT, USA
http://www.cvrti.utah.edu

2 Department of Bioengineering,
University of Utah, UT, USA
http://www.bioen.utah.edu

3 Scientific Computing and Imaging Institute,
University of Utah, UT, USA
macleod@cvrti.utah.edu
http://www.sci.utah.edu

Abstract. We present an experimental preparation that allows simulta-
neous, high resolution mapping of endocardial, epicardial and torso tank
surfaces from an isolated canine heart. The preparation additionally per-
mits control over blood flow rate through a targeted region of the car-
diac tissue, the heart rate and the mechanical load on the left ventricle.
Adjustment of heart rate and left-ventricular load through a fluid-filled
balloon inserted into the left ventricle allow control of metabolic demand.
Cardiac potential measurements occur by means of flexible sock-mounted
electrode arrays applied to the epicardium and the intraventricular bal-
loon. A preliminary study using this preparation suggests the existence of
a heterogenous response of the myocardium to ischemia. Such an exper-
imental model is a useful testbed for many studies, including validation
of forward and inverse solutions.

1 Introduction

Cardiac ischemia results from a reduction in blood supply, an uncompensated
increase in metabolic demand, or some combination of the two. Understanding of
the electrocardiographic markers for all these conditions is necessary to achieve
accurate differential diagnosis and monitoring of ischemia and infarction.

In a previous study, we showed that the electrocardiographic responses to is-
chemia brought about through reduction in blood supply need not have similar
characteristics as that induced by uncompensated increases in demand despite
assumptions to the contrary by classical ischemia theory[1]. However, our pre-
vious experimental setup induced changes in metabolic load by means of only
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Fig. 1. Schematic of the experimental setup

changes in heart rate. It is well known that pacing rate itself influences cardiac
repolarization and we therefore sought to separate the rate effect from that of
metabolic load in characterizing the electrocardiographic response to demand
ischemia. Moreover, this preparation employed retrograde perfusion by means of
the aorta so that the left ventricle contracted around an empty chamber without
preload or afterload. Therefore, we sought to retain the Langendorff perfusion
method and introduce control over metabolic load by having the left ventricular
chamber of the isolated heart pump against a vertical water-filled column. In
this study we detail the experimental setup designed to achieve these goals and
present results from an exemplary investigation. Some aspects of this study have
been presented previously in preliminary form[2].

2 Methods

2.1 Experimental Setup

The experimental setup consisted of a canine heart suspended in a human torso
shaped tank, the construction of which has been described previously[1,3] and
shown in Fig. 1.

Briefly, the basis preparation employed Langendorff retrograde perfusion by
means of cannula inserted in the aorta and the right ventricles. Perfusion was
by means of blood supplied from a second, support dog, which was cannulated
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to provide arterial blood to perfuse the isolated heart. The right ventricular
cannula extracted venous blood that returned through the coronary sinus and
the right atrium of the isolated heart and pumped it back to the support dog
via a blood pump and a cannula in the jugular vein. In order to control the
perfusion to a region of the myocardium, we cannulated a segment of the left
anterior descending artery (LAD) and perfused it via a digital rotary pump with
blood from the support dog, which allowed for precise control of the coronary
flow rate. The temperature of the blood from the support dog was monitored
and maintained at physiological levels by means of heated water jackets.

A latex balloon was secured to the end of a rigid tube, the other end of which
was connected to a flexible tube of a larger lumen suspended vertically. A ’T’
in the rigid tube allowed for the placement of a pressure transducer probe. The
balloon was then inserted into a 64-electrode endocardial sock which was held
in place by silk ties. This formed the endocardial balloon-sock apparatus that
we inserted by means of an incision in the left atrial appendage. Altering the
pressure in the balloon forced the heart to work against pressure from the fluid
column and also allowed the measurement of potentials from the endocardial
region.

The isolated, perfused heart was then suspended in a human torso shaped tank
which was filled with an electrolyte of conductivity of 500 Ω-cm. To control the
heart rate we applied a bipolar pacing clip to the right atrial appendage. To
control the metabolic load we manually adjusted the height of water in the fluid
column guided by the readings from the pressure transducer.

The support dog was ventilated with room air and maintained under anaes-
thesia by means of sodium pentobarbital infusions at regular intervals. Regular
monitoring of the blood gases ensured that perfusion and ventilation were ade-
quate so that the pH remained stable throughout the course of the experiment.

2.2 Protocol

We performed two different interventions in the experiment protocol as enumer-
ated below:

1. Varied Load: The heart rate and the coronary flow were maintained at control
levels while the metabolic load was progressively increased.

2. Varied Load under Reduced Perfusion: Coronary flow was reduced to ≈30
% of normal and then metabolic load increased as in intervention 1 above.

Each parameter change was maintained for 2 minutes.

2.3 Signal Acquisition, Processing and Visualization

Epicardial signals were measured from both ventricles using a 490 electrode
sock[1]. The construction of the endocardial sock was similar to that of the
epicardial sock in that each electrode consisted of a knot of 0.3 mm silver wire
tied into a nylon stocking and the electrodes were spaced about 5 mm apart.
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Fig. 2. Panels A, B and C depict the geometric meshes on which the data were visual-
ized. The actual orientation of each mesh with respect to the others is shown in Panels
D and E.

The nylon stocking material allowed the electrode array to flex and conform to
the shape of the endocardial balloon located inside the sock.

The electrolytic torso tank contained 372 electrodes and the potential ref-
erence for all unipolar time signals was a Wilson Central Terminal constructed
from separate electrodes in the tank. The signals from all 926 electrodes were ac-
quired simultaneously at a sampling rate of 1000 Hz. Each recorded data segment
was 5 s in duration out of which a representative beat was selected for further
analysis. At the end of the experiment, a three-dimensional mechanical digitizer
(Microscribe from Immersion Corp.) was used to locate landmarks marked on
the tank and electrode array, which then provided the reference points for proper
orientation of the sock geometry within the torso tank.

Signal post processing consisted of gain adjustment, windowing of represen-
tative beats, and baseline correction. In the case of inadequate signal quality of
the original recording, Wave Equation Based interpolation[4] was used to recon-
struct epicardial electrograms. In this study we present the data as the ST-80
potential, which is the mean potential computed over a 9-ms window centered at
80 ms beyond the J-point in each electrogram. All signal processing steps were
carried out using customized software. The data was visualized using map3d [5]
by mapping the electrograms acquired during the experiment onto the represen-
tative geometry for each electrode set. The geometric meshes for each electrode
set are shown in Panels A,B and C of Fig. 2.

The orientations of the meshes in Fig. 2 are the same as those presented in
the results section. However, the relative positions of each mesh with respect to
the others are shown in Panels D and E in Fig. 2. The rightmost edge and the
leftmost edge of the endocardial sock as seen in Panel C are aligned with the left



324 S. Shome and R. Macleod

anterior free wall section of the epicardial sock and the left antero-septal region
of the epicardial sock, respectively. Similarly, the locations of the marker (star)
in Panel B and again in Panel D show that the lateral right ventricle region of
the epicardial sock is closest to the anterior torso surface. Because the effects of
ischemia were predominantly in the left ventricle, Panel A (and the torso results
shown below) shows the posterior view of the torso mesh.

3 Results

We focus here on two results that illustrate one aspect of the interaction between
coronary flow and metabolic (mechanical) load on the heart. In both cases, the
load increased from control to 2.5 and then 4 times control but in the first case,
coronary perfusion was at control levels while in the second case, coronary flow
was less that half the level at control.

Varying Load with Normal Coronary Flow. The results for variation in
left ventricular load on heart and torso potentials under normal perfusion levels
are shown in Fig. 3. Panel A shows the ST-80 potentials computed on the torso,
epi- and endocardial surfaces with heart rate set to 125 bpm, normal coronary
flow, and load at control levels (16 mmHg). Panel B shows potentials recorded
with the load set to 2.5 times the control level. We note that on the anterior
epicardium, the maximal ST-elevation is at 1.52 mV in both the normal case
and with load at 2.5 times the normal. Moreover, we observe that the potentials
on the endocardial surface shift towards less negative values when the load is
increased to 2.5 times the normal load. In Panel C, with load set to 4 times
the control level, we observed a larger region of elevated ST-potentials on all 3
surfaces. The magnitude of the maximal ST-elevation on the epicardial surface
is 3.11 mV. Similarly, the maximal ST-elevation on the endocardial surface was
2.08 mV and the elevated region spanned the antero-septal aspects of the left
ventricular endocardium, larger than the extent during the load of 2.5 times the
normal. Further, this region on the endocardium aligned with the region of ST
elevation on the epicardium.

Varying Load Under Reduced Coronary Flow. The results following in-
creases in left ventricular load under reduced coronary flow conditions with nor-
mal heart rate are shown in Fig. 4. Panel A shows the ST-80 potentials computed
on the torso, epi- and endocardial surfaces with coronary flow reduced by 66%
to 10 ml/min, load at the normal level, and heart rate at 125 bpm. Panel B
shows potentials with load increased to 2.5 times the normal load and Panel
C, with 4 times the normal load, always with the same, reduced coronary flow
and normal heart rate. In contrast to the case in Fig. 3, the reduced coronary
flow resulted in a much more focused region of elevated potential that had lower
maximum amplitude on the torso and epicardial surfaces, as illustrated by the
dense grouping of isocontour lines in the maps. Moreover, potentials bordering
the region of elevation became more negative (ST-segment depression) as load
increased. Endocardial potentials were all negative and became progressively less
negative as load increased but without any pronounced focal areas.
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Fig. 3. Torso, epicardial and endocardial ST-80 potentials are shown under conditions
of varying metabolic load with heart rate at 125 bpm and coronary flow at normal flow
of 37 ml/min. The color map used to represent potentials shown for each mesh is at
the bottom of the figure and is common across all 3 panels for each mesh. Panel A:
Load at normal. Panel B: Load at 2.5 times normal load. Panel C: Load at 4 times
normal load.

4 Discussion

In a previous study we presented an experimental and computer simulation
framework developed by our group for the investigation of electrocardiographic
characteristics of ischemia[6,2]. In this study, we present an experimental prepa-
ration that augments, supports, and provides new directions for these simulation
studies. The simulations differed from these experiments in that they assigned
reduced transmembrane potentials to predetermined ischemic regions, whereas
the experiments examined the role of metabolic load and coronary flow condi-
tions on ischemic stress in an isolated canine heart.

Previous studies have shown that variable reduction in coronary perfusion
can lead to both ST-segment depression and elevation on or directly adjacent
to the ischemic region, depending on the extent of the flow reduction[1,2,7].
The proposed mechanism for such variations was the variable extent of ischemia



326 S. Shome and R. Macleod

-3 -0.06-1.4-1.9 -0.6-2.4-1.4 -0.6 2.21.0 3.010.19-0.3 -0.2 0.0 0.16 0.41 0.57
mV mV mV

TORSO TANK EPICARDIAL SOCK ENDOCARDIAL SOCK

A

B

C

Fig. 4. Torso, epicardial and endocardial ST-80 potentials are shown under conditions
of varying metabolic load with heart rate at 125 bpm and coronary flow at 1/3 rd of
normal flow. The color map used to represent potentials shown for each mesh is at the
bottom of the figure and is common across all 3 panels for each mesh. Panel A: Load
at normal. Panel B: Load at 2.5 times normal load. Panel C: Load at 4 times normal
load.

from sub-endocardial to transmural, combined with anisotropic conductance of
the myocardium, an idea first clearly demonstrated by simulation studies [8].
The reason ischemia initially affects the endocardium preferentially lies in the
observation that the sub-endocardial region has a higher myocardial oxygen
demand than the rest of the heart [9]. Therefore, with increased wall tension
and metabolic load, the myocardial oxygen demand would increase in the sub-
endocardium, and lead to vasodilation of the arterioles [9].

In the first set of results presented here, perfusion through the LAD was main-
tained at normal levels while load was progressively increased. The resulting
epicardial potentials showed an initially modest ST elevation, which then grew
sharply and formed a focussed region at maximum load levels. The endocardial
potentials showed a similar but slightly more diffuse pattern in the anterosep-
tal aspect, forming a vertical band of elevated potentials under maximum load
conditions. One possible explanation for this response is that the increase in
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load caused an initial reduction in endocardial/septal perfusion which became
transmural in extent, either because the entire transmural myocardium segment
was underperfused, or through some steal behavior that robbed the epicardium
of blood in order to attempt to sustain endocardial function.

Another possible explanation for these results is that the compressive effects
of the water filled balloon on the endocardium led to injury currents not di-
rectly related to ischemia. This response cannot be ruled out, however, such a
response would likely result in uniform ST-elevation over the all regions of the
endocardium in contact with the balloon, a result we did not observe. One might
also postulate that only certain parts of the balloon were in contact with the
endocardium and that these generated focal pressure points. However, we mea-
sured consistent electrogram amplitude all over the balloon, suggesting a fairly
uniform contact on all aspects.

The findings in Fig. 4 differ substantially from those in Fig 3, even though the
variable stressor in both cases was the same, i.e., an increase in mechanical load
in the left ventricle. In this case, the focal elevation visible on the epicardium
only at full load during normal perfusion was apparent under normal load and
reduced perfusion, with an additional slight downward shift in location. (We
note parenthetically that this shift in location could well arise from movement
of the recording sock over the course of the experiment and is thus unlikely to
be significant.) More unexpected was the finding that the peak amplitude of
the elevated ST potentials actually decreased slightly with increased mechani-
cal load, even as the regions peripheral to the presumed perfusion bed of the
cannulated artery showed a growing depression with load. The endocardial po-
tentials showed a trend of increasingly positive potentials on the septal aspect
even though the values were negative over the entire surface.

One possible mechanisms for these findings is that the subepicardial region
experienced increased demand and/or reduced perfusion and hence showed ST
elevation even as the endocardium remained negative. Such an imbalance is
contrary to conventional ideas about the transmural differences in demand the
perfusion described above. Another possible mechanism for these differences is
an extension of a finding shown by Antzelevich et al. [10] that the response
to physiological challenges by cells in the midmyocardial region of the heart is
larger than that for any other part of the heart. Under this scenario, the suppres-
sion of potential would be largest in the midmyocardium, slightly smaller in the
epicardium, and smallest in the endocardium, with a net extracellular current
flow from the endocardium to epicardium. As in the case of load changes under
full perfusion, the increase in mechanical load would exacerbate the demand on
the subendocardium, thus leading to a progressive elevation of the endocardial
surface and depression of the epicardial surface. This is a classic response to
subendocardial ischemia [11] and is an additative component in the net electro-
cardiographic field that we measured.

A substantial challenge in this study was to establish the locations of all the
sock electrodes, both epicardial and endocardial, with respect to the same torso-
tank based coordinate system. For the epicardial sock, we digitized reference



328 S. Shome and R. Macleod

locations marked on the sock and then used this information to align a previously
measured standard geometry for this sock. The standard sock geometry was
based on the mold over which the sock was applied during fabrication; consistent
electrode location therefore depended both on the consistency of shape and size
of the hearts in each study and our ability to place the sock in the same relative
orientation on the heart. Determining the endocardial sock geometry was even
more challenging. As with the epicardial sock, a mold created from a sample heart
was the basis of the endocardial sock fabrication. However, placing the sock,
stretched over the endocardial balloon, into consistent location and orientation
in the beating heart is difficult. At the end of each experiment, we opened the
left ventricular freewall, observed the placement of the sock experiment, and
selected for analysis only those experiments in which the sock appeared to deploy
properly. To orient the endocardial and epicardial socks in the same coordinate
system, we carried out stimulations of the heart by means of electrodes on one
sock and observed the resulting potential fields on the other. From these data
we determined nearest neighbor relationships between the socks, then aligned
based on these nearest neighbors.

The variations in torso tank potentials following ischemia are, at best, sim-
plified versions of what one might expect to observe from clinical electrocar-
diography. The presence of inhomogeneous regions of the thorax will certainly
alter the signals in unpredictable ways so that extending these results to the
clinical setting is challenging. The point of the study was not to demonstrate
clinical impact of the varied response to different forms of ischemic stress but
rather to illustrate the fundamental observation that ischemia is a diverse phe-
nomenon worthy of more detailed experiment study, especially before assuming
that traditional clinical markers are the most useful metrics of acute ischemia.

The preliminary results from these experiments suggest that ST-segment po-
tentials may not match those predicted by conventional theory alone. In order
to explain the myocardial response to demand ischemia, the behavior of the
mid-myocardial layers to metabolic stress under reduced flow conditions needs
to be characterized. A robust computer model that contains a description of
the transmural electrophysiological behavior along with accurate tissue struc-
ture and anisotropy (currently under development in our lab) could explain
experimental observations of potential pattern distributions. An experimental
approach that can provide the necessary information about intramural varia-
tions in the response to ischemia is multielectrode plunge needles; experiments
using this approach are currently underway in our lab as is detailed magnetic
imaging of the myocardium in order to construct subject specific models against
which to compare measurements and explore the role of structure and the spatial
organization of the ischemic zone.
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Abstract 

Background: Myocardial ischemia in the left ventricular (LV) myocardium 
introduces non-uniform and pathological strain patterns. Total passive segments 
lengthen when pressure increases during early systole and shorten when 
pressure drops at the end of ejection. Moderately ischemic segments typically 
lengthen during isovolumic contraction, start shortening during ejection and 
continue shortening, usually at an increased rate, after aortic valve closure. 

Aim: The aim of this study was to investigate possible mechanisms for the 
characteristic strain patterns in moderately ischemic regions using a simulation 
model of the LV wall. 

Methods: A thick-walled truncated ellipsoidal finite element model was used to 
represent the LV geometry. The model included mathematical descriptions of 
fiber orientation, passive elastic properties, and actively generated fiber stress. 
A severely ischemic region and a moderately ischemic border zone were 
incorporated in the model. The severely ischemic region was made stiffer and 
generated no active fiber stress during systole. The border zone was made 
slightly stiffer, active fiber stress was reduced and generated at a slower rate 
while the relaxation rate was slower than in the normal regions. The cardiac 
cycle was simulated by applying physiological pressure-volume boundary 
conditions. 

Results: The strain pattern in the severely ischemic region resembled the 
pressure curve with lengthening during pressure rise and shortening during 
pressure decrease, while the border zone started shortening after an initial early 
systolic lengthening and continued shortening during isovolumic relaxation at 
an increased rate. 

Conclusion: The characteristic moderately ischemic strain pattern may be 
caused by slower mechanical activation and relaxation rates.  

1   Introduction 

Regional myocardial ischemia impairs contractile performance of affected myofibers 
and introduces a non-uniform deformation pattern during the cardiac cycle. A 
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severely ischemic region typically exhibits a total passive behavior where the 
segments stretch when the pressure increases during early systole and shorten as 
pressure decreases during late systole/early diastole. Thus, their deformation pattern 
has a shape similar to the cavity pressure curve. The resulting pressure-segment 
length loops are narrow and run clockwise due to viscoelastic properties of the 
myocardium and the loop area reflects work performed on the passive segment by 
actively contracting segments. The loop follows the typical nonlinear shape of the 
stress-strain characteristic of passive soft elastic tissue (Fig. 1, left). The typical 
deformation sequence of moderately ischemic segments starts with early systolic 
stretching during isovolumic contraction, subsequent shortening during ejection and 
continued shortening after aortic valve closure, often at an increased shortening rate, 
followed by lengthening during diastole. Moderately ischemic segments have a 
counter-clockwise pressure-segment length loop as they perform some work (Fig. 1, 
middle), however, the loop area is smaller than for healthy segments which shorten 
during systole at high pressures and lengthen during diastole at low pressure and thus 
perform more work (Fig. 1, right). [1] 

 

Fig. 1. The figure shows typical recordings from an infarcted dog heart (data material from 
Lyseggen et al. [1]). Traces from a total passive, a moderately ischemic, and an intact segment 
are shown on the left, in the middle, and on the right respectively. The circle indicates the time 
of aortic valve closure. The arrows indicate the direction of the pressure-segment length loops.  

The passive behavior of infarcted and severely ischemic segments is due to the 
inability of myofibers to produce active force. However, the etiology of the 
deformation pattern of moderately ischemic segments is not clear. Some previous 
studies [2, 3] have investigated the deformation in ischemic LV models but have not 
investigated the mechanisms behind the characteristic shape of the deformation trace 
of moderately ischemic segments. We hypothesize that early systolic lengthening of a 
moderately ischemic region is caused by a reduced and slower generation of active 
fiber stress in this region and thus it is stretched by normal regions that start 
contracting earlier. We further hypothesize that pronounced post-systolic shortening 
of a moderately ischemic region is caused by a prolonged active contraction due to a 
slower relaxation rate of active fiber stress in this region compared to a more rapid 
decline in normal regions. During isovolumic conditions, following aortic valve 
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closure, the slower relaxing moderately ischemic segments will shorten as they win 
the ‘tug of war’ with the normal segments which lengthen. The aim of this study was 
to investigate our proposed hypothesis and other possible mechanisms using a finite 
element model of the left ventricular myocardium. We investigated the deformation 
pattern in the simulation model where the border zone between a severely ischemic 
region and the normal region was made moderately ischemic. The active fiber stress 
in the border zone was reduced throughout systole and was generated at a slower rate 
during early systole and relaxed at a slower rate during late systole compared to the 
normal region. Other simulation cases were also carried out for comparison. These 
included a baseline simulation with all regions given normal properties, a simulation 
case where there was a mixture of only severely ischemic and normal myofibers, and 
a simulation case with no severely ischemic region but with only a normal and a 
moderately ischemic region. 

2   Methods 

Finite Element Model 

The finite element modeling principles used in this study have been described in 
detail by Nash and Hunter [4]. A briefer explanation follows below. 

The LV myocardium was represented by a truncated elliptically shaped finite 
element model with 48 elements (four elements in the circumferential and 
longitudinal directions, and three in the transmural direction) using rectangular 
Cartesian coordinates and cubic Hermite basis functions. The myofiber angle with 
respect to the circumferential direction was set to vary linearly in the transmural 
direction from 90° at the endocardial nodes to -65° at the epicardial nodes.  

The myocardial passive elastic properties were modeled by the pole-zero law [4] 
and considered incompressible. The pole-zero strain energy function W is shown in 
Eq. (1) where index f refers to the fiber-axis, s to the sheet-axis and n the sheet-
normal-axis. The material parameters are shown in Table 1.  
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Active tension was added along the fiber direction during systole. Eq. (2) shows 
the steady state formula used to calculate active tension (Ta) where actn is a time 
varying mechanical activation parameter related to the intracellular Ca2+ concentration 
and λ is the myofiber stretch ratio [5].  
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Eq. (3) shows the calculation of the components of the second Piola-Kirchhoff 
stress tensor referred to the microstructural coordinates υα, where α ∈ (f, s, n); Eαβ the 
components of the Cauchy-Green strain tensor; p the intramural hydrostatic pressure 



 Characteristic Strain Pattern of Moderately Ischemic Myocardium Investigated 333 

field which is included to maintain incompressibility; Vα = undeformed 

microstructural coordinate; υα = deformed microstructural coordinate; and ( )
αβ
νa  the 

contravariant metric tensor with respect to the deformed microstructural coordinates. 

( )
ff

a

VV
Tpa

E

W

E

W
T

νν
βααβ

ν
βααβ

αβ

∂
∂

∂
∂+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂+

∂
∂=

2

1
 (3) 

Table 1. Passive material properties for the pole-zero constitutive law 

Type Axial properties Shear properties 
Coefficients kff 3.0 kPa kfs 3.0 kPa 
 kss 3.0 kPa kfn 3.0 kPa 
 knn 3.0 kPa ksn 3.0 kPa 
Poles aff 0.5 afs 0.8 
 ass 0.8 afn 0.8 
 ann 0.8 asn 0.8 
Curvature bff 1.5 bfs 1.2 
 bss 1.3 bfn 1.2 
 bnn 1.3 bsn 1.2 

 
As described in detail below, the ventricular cycle was simulated by applying 

physiological pressure-volume conditions during the different phases of the cycle. 
This was achieved by controlling the activation parameter and the applied pressure on 
the endocardial surface in conjunction with the resulting cavity volume. The 
activation parameter was varied regionally to account for the propagation of electro-
mechanical activation in the endocardium-epicardium direction and apex-base 
direction [6]. This was implemented by initially scaling down the activation 
parameter in the later activated regions compared to the earliest activated regions. 

The basal nodes were fixed in the x-direction (longitudinal direction), in addition, 
the endocardial nodes on the z-axis were fixed in the y-direction and vice versa. 

Simulating the phases of the ventricular cycle 

Passive inflation 
Simulations were started with a passive inflation that occurs during diastasis and atrial 
contraction. At the start of diastasis it is assumed that the LV wall is in its resting 
configuration, i.e. the stresses are approximately 0. A pressure was incrementally 
applied on the endocardial surface elements from 0 to 10 mmHg. The pressure-
volume loop through the cardiac cycle is shown in Fig. 2 where the passive inflation 
phase is labeled ‘A’. 

Mitral valve closure 
Following passive inflation, the activation parameter was increased from 0 to produce 
an active fiber tension and fiber shortening. We believe an initial contraction of the 
wall closes the mitral valve leaflets and move them in the direction of the left atrium 
(LA) until they are stopped by the chordae tendinae and papillary muscles.  
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Fig. 2. Applied endocardial pressure and resulting cavity volume from the simulation of 
baseline conditions. The labeled phases are: A – passive inflation, B – mitral valve closure, C – 
isovolumic contraction, D – ejection, E – isovolumic relaxation, and F – rapid filling. 

Consequently, the cavity volume encapsulated by the contracting wall is reduced as 
some blood moves up with the mitral valve leaflets [7]. Thus, the activation parameter 
was increased together with the cavity pressure so that the volume encapsulated by 
the wall region was reduced by 5% in an approximately linear fashion with a 14 
mmHg increase of pressure. This phase is labeled ‘B’ in Fig. 2.  

Isovolumic contraction (IVC) 
After final closure of the mitral valve the volume was kept constant for each 
increment of the activation parameter by increasing the cavity pressure. When the 
pressure exceeded 75 mmHg IVC was ended. This phase is labeled ‘C’ in Fig. 2. 

Ejection 
Measurements of the LV pressure-volume relationship during ejection from 10 dogs 
[7] were averaged and used as an input to the model. The cavity pressure was adjusted 
to follow the average measured pressure trace for each load step while the activation 
parameter was adjusted to obtain the corresponding desired volume. This phase is 
labeled ‘D’ in Fig. 2. The small volume increase at the end of the ejection phase 
corresponds to the volume pushed into the ventricle by the closing aortic valve [7]. 

Isovolumic relaxation (IVR) 
After aortic valve closure the volume was kept constant for each decrement of the 
activation parameter by decreasing the cavity pressure. When the pressure fell below 
8 mmHg IVR was ended. This phase is labeled ‘E’ in Fig. 2. 

Rapid filling 
The rapid filling phase was split in two linear pressure-volume relationships as the 
pressure and activation parameter was gradually reduced to 0. During the first part, 
the pressure was decreased at a quicker rate with respect to the volume as opposed to 
the second part. The rapid filling phase is labeled with ‘F’ in Fig. 2. 

Severely and moderately ischemic regions 

Occlusion of the left anterior descending (LAD) coronary artery normally results in 
an infarct region in the anterio-septal apical region of the LV wall. A severely 
ischemic region, labeled ‘X’ in Fig. 3, and a moderately ischemic border zone, labeled 
‘B’ were incorporated in the model, resembling effects that may be caused by an LAD 
occlusion. The remote, healthy region was labeled ‘R’. Severely ischemic properties 
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were defined as no generation of active fiber stress (activation parameter set to 0 in 
Eq. (2)) and the passive elastic parameters in Eq. (1) were made stiffer by setting kij = 
9 kPa (i, j ∈ (f, s, n)) as even acutely ischemic myocardium may stiffen due to cross-
bridges being stuck in a rigor state. Moderately ischemic properties were defined as 
50% reduction of the activation parameter during increasing active fiber stress 
development. This effectively caused a reduced rate of active fiber stress development 
in addition to a general decreased active fiber stress level. Prolonged relaxation of the 
moderately ischemic region was obtained by gradually changing the scaling of the 
activation parameter from initially 0.5 at peak (50% of that in the normal region) to 
1.0 at the end of relaxation (i.e. becoming similar to the level in the normal region at 
the end of IVR and rapid filling). The passive elastic properties were made slightly 
stiffer in the moderately ischemic region by setting kij = 5.5 kPa (i, j ∈ (f, s, n)). 

Simulation cases 

Four different simulation cases were performed as outlined below. For the baseline 
simulation the ejection fraction (EF) was set to 50%, while in the other three ischemic 
simulation cases EF was set to 35%. Ventricular pressure was not changed during 
ischemia due to compensatory mechanisms that help to maintain pressure. 

Baseline simulation 
Initially, the cardiac cycle was simulated with normal, healthy properties in all 
regions of the LV model. This included normal activation parameter values and 
normal passive stiffness parameters.  

Simulation with a severely ischemic region and a moderately ischemic border zone 
The central ischemic region marked with ‘X’ in Fig. 3 was given severely ischemic 
properties. The border zone marked with ‘B’ was given moderately ischemic 
properties. The remote region was given normal properties.  

Simulation with a mixture of severely ischemic and normal myofibers 
The region marked with ‘X’ in Fig. 3 was given severely ischemic properties. In 
addition, 40% of the region between the two mid-ventricular circles in the figure was 
also given severely ischemic properties. The remaining 60% of this region was given 
the same properties as in the normal region. The other regions labeled ‘B’ were also 
given normal properties; hence, there were no moderately ischemic myofibers in this 
simulation case.  

Simulation with a moderately ischemic region and a normal region 
In this simulation case there was no severely ischemic region. The apical region that 
was previously made severely ischemic, labeled ‘X’ in Fig. 3, was given normal 
active and passive properties. The region labeled ‘B’ between the two mid-ventricular 
circles was given moderately ischemic properties. The other regions labeled ‘B’ were 
given normal properties. 

Analysis of data 

From each simulation case the deformation was calculated as the myocardial segment 
length between the 4 marked points in Fig. 3. This mimics segment lengths measured  
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Fig. 3. Short- and long-axis schematic of the LV model. The solid lines indicate the element 
borders and the dashed line through the short-axis slice indicates the location of the long-axis 
slice and vice versa. The letters label regions that were assigned different properties for 
different simulation cases. For the second simulation case these were: X - severely ischemic 
properties, B - border zone with moderately ischemic properties, and R – remote region with 
normal properties. Myocardial segment lengths were extracted between the 4 circular points in 
the long axis slice. For the second simulation case the segment length between the two most 
apical circles are located in the severely ischemic region, the segment length between the two 
mid-ventricular circles are located in the border zone, and the segment length between the two 
most basal circles are in the remote, healthy region. 

by sonomicrometry in experimental studies similar to the measurements shown in  
Fig. 1. The three extracted segment lengths were located in the apical region (which 
was severely ischemic in simulation case 2 and 3), in the mid-ventricular level 
(moderately ischemic in case 2 and 4), and in the basal, normal region, respectively. 
The active myofiber stress was extracted for each of these three locations, averaged 
over each region. A differentiation of the active myofiber stress with respect to time 
was performed to find the rate of mechanical activation and relaxation in these three 
regions. 

3   Results 

The baseline simulation resulted in relative uniform behavior of the three different 
regions with respect to segment length, active fiber stress and active fiber stress rate 
as shown in the top row of Fig. 4. 

The second simulation case with a severely ischemic region and a moderately 
ischemic border zone resulted in an early systolic stretching of the mid-ventricular 
border zone, shortening during ejection and continued shortening after aortic valve 
closure at a more rapid rate. The active fiber stress in the border zone increased at a 
slower rate during early systole and decreased at a slower rate during relaxation  
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Fig. 4. Results from the four simulation cases are shown in the four rows. The three traces in 
each plot is from the basal region (dotted line), the mid-ventricular region (solid line), and the 
apical region (dashed line), see Fig. 3 for locations. The left column shows segment length 
extension ratios that are normalized with respect to end diastolic length. The second column 
shows the regionally averaged active fiber stress. The third column shows the rate of active 
stress changes. The labeled phases are: A – passive inflation, B – mitral valve closure, C – 
isovolumic contraction, D – ejection, E – isovolumic relaxation, and F – rapid filling. 

compared to that in the normal region. The result from this simulation case is shown 
in the second row of Fig. 4. 

The third simulation case with a mixture of severely ischemic and normal 
myofibers in the mid-ventricular region resulted in slight early systolic stretching of 
this region, shortening during ejection and a small post-systolic shortening. The result 
from this simulation case is shown in the third row of Fig. 4. 

The fourth simulation case with only a moderately ischemic region at the mid-
ventricular level and the rest of the wall given normal properties showed that the 
moderately ischemic region exhibited early systolic stretching and a rapid post-
systolic shortening similar to the second simulation case. The fourth simulation case 
is shown in the bottom row of Fig. 4. 

4   Discussion 

In this study we have investigated possible mechanisms of the early systolic 
stretching and post-systolic shortening that is seen in moderately ischemic regions in 
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the ischemic left ventricle. Our simulation model reproduced this characteristic 
pattern in a region where active fiber stress was increased at a slower rate during early 
systole and was reduced at a slower rate during relaxation compared to the normal 
region. During beginning of systole the normal region became stronger earlier and 
pulled on the weaker moderately ischemic region which was stretched. The pull one 
region exerts on a neighboring region is the sum of passive and active forces. 
Stretching increases the passive forces and vice versa. Weaker regions stretch and 
increase the passive pull to match the active pull of stronger regions. In addition, 
increased sarcomere stretch increases the generation of active fiber stress (see Eq. 2). 
The rate of active fiber stress generation became more equal between the normal and 
moderately ischemic region at about 0.3-0.4 s, see second or fourth row of Fig. 4. 
Thus, the active fiber stress contribution to the pull increased at approximately similar 
rates in the two regions, causing a more matching active pull development. The 
moderately ischemic segment was able to shorten during ejection as the difference in 
active pull stopped increasing. Following aortic valve closure, the isovolumic 
conditions during IVR make the balance of forces between the regions evident: The 
global dimension must remain constant and an inhomogeneous relaxation results in 
regional stretching that is compensated by shortening of another region. Thus, quicker 
decrease of active fiber stress in the normal region and slower decrease in the 
moderately ischemic region caused lengthening and shortening in the two regions, 
respectively. 

Segment length measurements over a region with a mixture of normal and severely 
ischemic myofibers (simulation case 3) may also exhibit early systolic stretching and 
shortening during IVR. However, post-systolic shortening below resting length, 
which is often seen in measurements and simulation cases 2 and 4, may indicate that 
this is an active contraction, not just a passive rebound. This implies that post-systolic 
contraction below resting length may be caused by a prolonged active contraction due 
to an impaired relaxation rate in the moderately ischemic region. A 0.5 scaling of the 
activation parameter would in itself reduce the relaxation rate, however to obtain the 
pronounced post-systolic shortening pattern we increased this scaling during 
relaxation, effectively maintaining (the reduced) activation longer in this region. 

Limited blood supply causes a region to become ischemic. Reduced and slower 
generation of active fiber stress in this region is probably the result of reduced oxygen 
availability which in turn reduces ATP generation and impairs Ca2+ exchanger 
activities. Impaired reuptake of Ca2+ into the sarcoplasmic reticulum may cause 
prolonged contraction and a slower relaxation rate. 

Limitations 

The relatively simple model we applied for generation of active fiber stress in our 
current model, did not incorporate the details of cell metabolism and Ca2+ transients. 
The activation parameter in Eq. 2 may be viewed as a pooled effect of metabolism 
and Ca2+ transient. The model had a simplified geometry, fiber orientation, and 
boundary conditions. Despite these limitations, we believe the model provides 
qualitative insight into the deformation of the LV wall and may be used to investigate 
possible mechanisms of deformation and interaction between different regions in the 
normal and ischemic case as in our study. 
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Conclusion 

The results supported our hypothesis that early systolic lengthening of a moderately 
ischemic region may be caused by a slower mechanical activation rate in this region 
compared to normal regions. Similarly, the post-systolic shortening of a moderately 
ischemic region may be caused by a slower relaxation rate of active fiber stress in this 
region compared to normal regions. 
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Abstract. Long term responses of the heart to e.g. infarction or surgi-
cal intervention are related to response of the tissue to changes in the
mechanical environment. The tissue response is likely to involve (local)
change of mass. Implementation of the associated inhomogeneous change
in volume for a complex geometry is cumbersome. In the present study,
we propose a computational framework for finite volumetric growth. The
local stimulus for growth is determined from a simulation of beat to beat
cardiac mechanics, assuming the tissue to be incompressible. The related
local volumetric growth is translated in a global change of cardiac shape
through a simulation of long term cardiac mechanics, assuming the tissue
to be compressible.

We illustrate the model by simulating growth in response to a devia-
tion of end-diastolic sarcomeric strain from a set optimal value assumed
to be preferred by the tissue. Inhomogeneity in the stimulus was reduced
after inhomogeneous growth of up to 25%. The transmural redistribu-
tion of mass due to growth was found to alter an initially unphysiological
linear transmural course in myofiber orientations to a more physiolog-
ical course. We conclude that the model enables simulation of locally
inhomogeneous growth in a realistic left ventricular geometry.

1 Introduction

Like many biological tissues, cardiac tissue is able to adapt to changes in me-
chanical load through growth (change in mass) and remodeling (change in tissue
properties) [6,9,13,14]. Mathematical models can be used to study hypotheses
on the relation between input and output of the adaptation process leading to
the maintenance of cardiac tissue structure, or changes therein in response to
altered mechanical load as caused by disease or intervention.

In a mathematical model proposed by Arts et al. (1994), left ventricular cav-
ity volume, wall volume and internal fiber architecture were locally adapted in
response to several stimuli, such as early systolic fiber stretch, fiber shortening
during ejection, and contractility [1]. The model predicted a cardiac structure
that was both stable and in agreement with physiological observations. Though
this model indicated the physiological relevance of mechanical load induced tis-
sue growth and remodeling, it had the drawback that it was restricted to discrete
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radial variations in mechanics and tissue properties. Furthermore, the model was
geometrically representative for the equatorial region of the left ventricle only.

Rodriguez et al. (1994) presented a continuum model for volumetric growth
that was based on earlier work of Skalak et al. (1982) [9,11]. In their model, tissue
expansion due to growth is described kinematically by a growth stretch tensor
Ug. The growth stretch tensor was chosen to be a function of a mechanical load
stimulus [9,14]. In response to growth of adjacent tissue, tissue parts exhibit an
extra rigid body rotation Rg, such that the complete growth is described by the
growth deformation gradient F g = Rg · Ug. In general, the extra rotation Rg

will partly relieve the incompatibility of the displacement field of neighboring
tissue parts related to Ug. Still, an extra isochoric elastic deformation F e is
needed to render the overall growth deformation compatible [9,11,12]. The stress
related to F e has generally been considered to account for the residual stresses
experimentally observed in the tissue [8,12]. However, this strict coupling of
incompatible volumetric growth and residual stress is under debate [6].

The above formulation of volumetric growth has been applied almost exclu-
sively to simple geometries such as cubes or cylinders [9,11,14]. In such simple
geometries, analytical methods may be used to derive expressions for F e and
F g. Finite element (FE) models allow for a more general description of both
geometrical and material properties. However, determination of F e and F g such
that growth is compatible in more complex geometries, is cumbersome.

In the present study, we propose a new model for volumetric growth that can
easily be employed in a FE environment. In this model, the change in volume
is prescribed by a relative volume change Jg, rather than a growth tensor Ug.
Volume change Jg is related to tissue loads determined from a FE simulation of
beat to beat mechanics in which passive tissue is assumed incompressible and
anisotropic. Cardiac change in shape due to Jg is determined from a simulation
of long term cardiac mechanics, in which the tissue is assumed compressible and
isotropic. In contradiction to the formulation by Rodriguez et al. (1994), growth
induced residual stresses are neglected; residual stresses are considered to be
generated via a process different from volumetric growth. The grown geometry
is adopted as the new unloaded, internally un-stressed, geometry in the FE
simulation of tissue mechanics during loading.

As an example, we simulated volumetric growth in an ellipsoidally shaped car-
diac left ventricle. The load stimulus is taken to be the end-diastolic sarcomeric
strain determined from a model of cardiac mechanics during loading developed
in our group [2,7,15].

2 Method

Figure 2 shows a schematic description of the model of load induced cardiac
tissue growth. Below the models are described for the simulation of mechanics
of tissue loading, for the translation of tissue mechanics to growth stimulus J t

g

and for the simulation of mechanics of tissue growth.
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Unloaded stress-free
reference tissue

geometry Ω0

Loaded tissue
geometry Ω

Unloaded grown
geometry Ωg

Mechanics model of
cardiac tissue loading

Mechanics model of
cardiac tissue growth

Translation of tissue
load to growth
parameter Jt

g

Update of unloaded
stress-free reference
geometry (Ω0 = Ωg)

Fig. 1. Schematic view of the growth cycle. Tissue load, determined with a model of
cardiac tissue mechanics during loading of the unloaded stress-free geometry Ω0, is
translated in a growth parameter Jt

g . Using this parameter in a mechanics model of
growth results in grown geometry Ωg. The grown geometry is subsequently used as the
new unloaded stress-free geometry Ω0.

2.1 Mechanics Model of Cardiac Tissue Loading

In the present study, only passive filling of the cardiac left ventricle is considered.
Passive Cauchy tissue stresses σ are related to deformation via a strain energy
density function W :

σ =
1
J

F · ∂W

∂E
· F T ; J = det (F ) (1)

Deformation is quantified by the Green-Lagrangian strain tensor E which is
related to the displacements �u via the deformation gradient F according to:

E =
1
2

(
F T · F − I

)
; F = I +

(
�∇0�u

)T

(2)

The strain energy density W is given by [7]:

W = a0

(
ea1(I2

E+2IIE) − 1
)

+ a2

(
ea3E2

ff − 1
)

+ a4
(
J2 − 1

)2
(3)

where a0 through a4 are material parameters determining tissue behavior during
loading. Furthermore:

IE = tr (E) ; IIE =
1
2

(
tr(E2) − tr (E)2

)
; Eff = �ef · E · �ef (4)
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where �ef is the myofiber direction vector and Eff the Green-Lagrangian my-
ofiber strain. Figure 2a shows the helix angle αh, which is used to quantify the
myofiber direction with respect to the circumferential direction �eφ and base-to-
apex direction �eθ:

�ef = cos(αh)�eφ + sin(αh)�eθ (5)

In (3), the value of a4 is set such that tissue behaves virtually incompressible.
With the model, myocardial wall stresses and strains due to a prescribed pressure
plv in the normal direction �n on endocardial surface Γen are computed from
equilibrium of linear momentum. Epicardial surface Γep is assumed to be free of
traction: ⎧

⎨
⎩

�∇ · σ = �0 on Ω
�n · σ · �n = −plv on Γen

�n · σ · �n = 0 on Γep

(6)

2.2 The Growth Stimulus

Growth is defined as a change in mass m over time. The load measure s assumed
to induce growth is determined with the model of cardiac tissue loading. It is
assumed that the tissue prefers the load to be equal to sopt. A deviation of s
from the optimal value will trigger the tissue to either increase or decrease in
mass. The relation between growth and the mechanical load s is given by:

dm

dt
= βm (s − sopt) (7)

where β represents the relative rate of growth. In this study, linear sarcomere
strain at end-diastole is taken as stimulus:

s =
ls,ed − ls,0

ls,0
=

√
2Eff + 1 − 1 (8)

with ls,0 and ls,ed the sarcomere length in the unloaded reference geometry and
end-diastole geometry, respectively.

2.3 Mechanics Model of Growth

Tissue mass density ρ is considered to remain constant in time. Consequently,
growth is related to the change in tissue volume V in time via:

dm

dt
= ρ

dV

dt
(9)

Theoretically, local increase in volume from a starting volume V0 to a grown
volume Vg in a time interval Δt is described with the relative volume change J t

g:

J t
g =

Vg

V0
≈ 1 +

1
V0

dV

dt
Δt ≈ 1 + β(s − sopt)Δt (10)
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Due to mechanical interaction of the tissue with its environment, the realized
volume change Jg may deviate from the theoretical value J t

g. The realized change
Jg is determined from a growth mechanics computation, in which the tissue is
described by a compressible (Neo-Hookean) constitutive model. Growth stresses
σg are split into deviatoric and volumetric stresses:

σg =
b0

Jg
B̃g

d
+ b1Jg(J2

g − J t
g
2)I (11)

where b0 and b1 are material parameters determining tissue behavior during
growth. Change in tissue shape as a result of growth is described by the deviatoric
Finger strain tensor B̃g

d
:

B̃g
d

= B̃g − 1
3
tr(B̃g)I ; B̃g = BgJ

− 2
3

g ; Bg = F g · F g
T (12)

The realized volume change Jg is related to the realized growth deformation
gradient F g and the tissue displacement �ug according to.

F g = I +
(

�∇0�ug

)T

; Jg = det (F g) (13)

F g is computed from solving mechanical equilibrium in the tissue, subject to
zero external force along the tissue surface Γg and an internal force related to
the stimulus J t

g: {
�∇ · σg = �0 on Ωg

�n · σg · �n = 0 on Γg
(14)

Finally, the position �x0 of the material in the grown unloaded geometry at t+Δt
is computed from that at t according to:

�x0(t + Δt) = �x0(t) + �ug (15)

The growth induced residual stresses σg are neglected.

2.4 Simulation Parameters

Initial left ventricular geometry in the unloaded reference state is represented by
a truncated ellipsoid [2,7]. The initial helix angle αh, varied linearly from +60o

at the endocardium to -60o at the epicardium. Sarcomere length ls,0 within the
myofibers is 1.9 μm. Material parameters a0 through a4 in the constitutive model
for cardiac tissue during loading are listed in table 1. At the end of diastole, the
left ventricle was loaded by an internal cavity pressure plv of 1 kPa.

In the translation of the mechanical stimulus to growth, βΔt is set to 0.25.
The optimal load value sopt is set to 0.12. Material parameters b0 and b1 in the
constitutive model for cardiac tissue growth are listed in table 1. A total of 20
growth cycles were performed. After each growth cycle, sarcomere length in the
new unloaded reference geometry was set to 1.9 μm.
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2.5 Numerical Implementation

To solve (6) and (14), a Galerkin-type finite element method was used, as im-
plemented in the finite element package Sepran. The left ventricle is divided
into 252 elements with a total of 6885 degrees of freedom. In the 27-noded
hexahedral elements, displacements were interpolated quadratically. A Newton-
Raphson method was employed to solve the non-linear system of equations. For
numerical integration a Newton-Cotes scheme was used.

αh

�eφ

�eθ

�ef

a) b)

Fig. 2. a) The left ventricle is represented by
a truncated ellipsoid. Myofiber orientation is
quantified by helix angle αh. b) The geometry is
divided into 252, 27-noded hexahedral elements.

Table 1. Parameter settings for
the constitutive model of cardiac
tissue during loading and growth

Model Parameters
a0 a1 a2 a3 a4

Loading kPa - kPa - kPa
0.5 3.0 0.01 60.0 55.0
b0 b1

Growth kPa kPa
0.1 10

3 Results

Passive inflation of the initial left ventricle to a cavity pressure of 1 kPa resulted
in an inhomogeneous distribution of end-diastolic myofiber strain s (figure 3a).

In accordance with the transmural inhomogeneity in strain s, growth was
found to be inhomogeneous as well. Figure 3c shows that, after 20 growth cycles,
volumetric growth ranged from about +25% in regions with high strain (suben-
docardium) to -15% in regions with low strain (subepicardium). Figure 3b shows
the grown geometry with the associated distribution of end-diastolic strain s. It
is clear that the strain has not yet reached to optimal value of sopt = 0.12.

Figure 4a and b show the total amount of growth and the load before and after
growth in more detail at three longitudinal levels in the wall. Figure 4c shows the
relative redistribution in mass within the wall, along with the resulting change in
the transmural course in fiber angle αh from linear to a more parabolic shape. In
regions with positive growth, the transmural gradient in fiber angle αh decreased,
whereas a negative growth resulted in an increase in the transmural gradient
in αh.
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Fig. 3. End-diastolic myofiber strain s resulting from filling of the cavity to a pressure
of 1 kPa using a) initial unloaded geometry and b) grown unloaded geometry after 20
growth cycles. c) Total amount volumetric growth after 20 growth cycles.

4 Discussion

In this paper, we have proposed a method to simulate load induced inhomoge-
neous volumetric growth in a complex tissue geometry. The stimulus for growth
is determined from equilibrium of linear momentum under external load using
a compressible constitutive law relating tissue stresses to tissue deformation.
At maximum inflation, relative volume change J averaged over all nodes was
0.999±0.005 (mean ± std), with maximum and minimum values of 1.015 and
0.975, respectively. From the tissue load a theoretical volume change J t

g is de-
termined. During growth we assume the tissue to be compressible. The actual
change in volume Jg is calculated from the same equilibrium of linear momen-
tum as used for the load computation, but now in absence of external loading. A
strength of this approach is that within the same computational framework (such
the finite element method) one can easily switch between computation of load
or growth by simply changing the constitutive equation and adding/removing
external load.

The growth model was initially tested in the simple case of uniaxial com-
pression a homogeneous cube of cardiac tissue material. Strain along the fiber
direction, which was parallel to the force vector, was used as stimulus for growth.
After several loading and growth cycles, fiber strain reached the preferred value,
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Fig. 4. Transmural variations in the left ventricular wall due to growth. a) Total amount
of growth. b) Change in end-diastolic strain s c) Change in transmural course of the
helix fiber angle. In b) and c) the dashed lines correspond to the initial geometry and
the solid lines to the final (grown) geometry.

at cube dimensions that satisfied the analytical solution. Subsequently, volumet-
ric growth of cardiac tissue in an ellipsoidal representation the left ventricle was
chosen as a more complex test case. We were able to simulate growth to at least
25% (see figure 3). Assuming myofiber orientation was fixed to the tissue, growth
caused the initially, unphysiological, linear course in fiber angle to transform in
a more realistic parabolic shape. It is noted that the same effect was obtained
by optimization of fiber orientation for homogeneous fiber strain at begin and
during ejection [10]. Possibly, in reality, remodeling of fiber architecture and
growth take place simultaneously, together altering transmural distribution of
myofiber orientation. However, the focus of this study was restricted to volu-
metric growth. Also, within our framework the load stimulus is not restricted to
strain. Other frequently used stimuli such as stress or strain rate are available
within the framework and can easily be used as well. However, whether the used
load measure , the optimal level of the load or the relation between load and
growth are realistic, is beyond the scope of this study.

The constitutive relation used for the growth model was isotropic meaning
that local deposition or resorption by the cell was assumed to be distributed
equally over all directions. However, the increase in myofiber diameter in con-
centric hypertrophy and the increase in myofiber length in eccentric hypertrophy
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suggests growth may be anisotropic. Anisotropy in growth can easily be simu-
lated by adding anisotropy to the currently used constitutive law for growth.

Cardiovascular tissue has been shown to carry residual stresses in absence of
external loading [8]. Generally, these stresses have been related to the elastic de-
formation F e, needed to ’mould’ incompatible grown tissue parts into one contin-
uous geometry [9,11,12,13]. If the tissue is assumed to behave elastic, i.e. no stress
relaxation or creep is considered, these residual stresses will persist in the tissue af-
ter growth. However, myocardial tissue behaves viscoelastic [3]. On the time scale
of a cardiac cycle, by good approximation, the viscous effects within the cardiac
tissue (e.g. stress relaxation) may be neglected and the tissue may be considered
elastic. However, on the much larger time scale at which growth occurs, this ap-
proximation may no longer be valid and stress relaxation is likely to occur. In ad-
dition, cardiomyocytes and the surrounding extra-cellular matrix are subject to
continuous metabolic turnover. As a consequence of turnover, in time, tissue con-
stituents bearing the growth induced residual stresses may no longer be present
and stress relaxation occurs. The consequence of visco-elasticity and metabolic
turnover is that residual stresses induced by growth will disappear in time. To ac-
count for the experimentally observed residual stresses within cardiovascular tis-
sue Humphrey et al. (2002) and Watton et al. (2004) suggested that newly formed
constituents may be deposited within the existing tissue under pre-stretch. This
pre-stretch may be translated into the residual stress/strain when external load is
absent [6,16]. The formation of new, pre-stretched, constituents occurs during con-
tinuous turnover which is not restricted to growth alone. We consider our model,
in which growth induced stresses are assumed to become zero (and thus are ne-
glected), and models in which growth induced stresses are assumed to persist as
limit cases of the real physiological situation.

As a next step, the growth model will be extended with a remodeling part, to
simulate changes in tissue composition and fiber orientation. Then, the complete
model will be tested for its ability to simulate empirical observations of growth and
remodeling, e.g. structural remodeling assessed with diffusion tensor MRI [4,5].

5 Conclusion

We presented a method capable of simulating load induced inhomogeneous vol-
umetric growth in a complex tissue geometry. In a test case, in which volumetric
growth of the cardiac left ventricle was driven by deviation of end-diastolic fiber
strain from a preset optimum, we were able to simulate growth to at least 25%.
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Abstract. Clinical trials evaluating cardiac resynchronization therapy (CRT) 
have demonstrated that 30% of patients with heart failure and wide QRS do not 
respond to CRT (especially patients with myocardial infarcts). We have devel-
oped 3D numerical models of failing hearts, with and without chronic infarcts in 
different regions of the left ventricle. The hearts were coupled to a closed circu-
lation, and the model included effects of the pericardium. The hearts were either 
paced at the right ventricular apex (RVA) or left ventricular free wall (LVFW). 
In normal and failing hearts, LV pump function was moderately better for 
LVFW pacing. In the normal heart model, heterogeneity of ejection strain was 
similar for RVA and LVFW pacing. However, in the failing heart model, LVFW 
pacing was associated with 44% less heterogeneity of ejection strain. This may 
be an important factor in the remodeling process associated with pacing. 

Keywords: mechanics, hemodynamics, 3D electromechanics, ventricular pacing. 

1   Introduction 

Cardiac resynchronization therapy (CRT) is an increasingly popular strategy for im-
proving pump function in heart failure patients with QRS widening. However, 30-
50% of patients receiving this therapy appear to demonstrate little if any improve-
ment. Those patients with prior myocardial infarcts appear to represent a majority of 
patients with a poor response [1]. There is also evidence that some patients without 
QRS widening may benefit from CRT. Recent work has shown that patients with me-
chanical dyssynchrony exhibit significant improvement in cardiac function following 
CRT. However, a clear understanding regarding the discrepancy between electrical 
and mechanical dyssynchrony is lacking. Studies in patients and animals cannot  
obtain complete 3D information on regional electrical activation and mechanical 
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function in the same heart. Anatomically detailed computational models of cardiac 
electromechanics have been shown to predict the effects of ventricular pacing on the 
mechanics and hemodynamics of normal and failing hearts [8, 14]. 

The goal of this study was to use 3D computational models of ventricular electro-
mechanics in the dog heart to investigate the effects of single site pacing (right  
ventricular apex, RVA; and left ventricular free wall, LVFW) and infarct location  
(anterior, inferior, posterolateral, diffuse ischemia) in failing hearts on global and re-
gional function and – in the long term – to use these findings to suggest new ap-
proaches to ventricular pacing therapy. 

2   Methods 

The cardiovascular model consisted of a 3D model of the canine ventricles (including 
passive and active mechanics) coupled to a closed circulation. The effects of the peri-
cardium were included as pressure acting on the epicardium. The geometries used ei-
ther represented a normal dog heart or a dilated heart. These hearts were either paced 
at the right ventricular apex (RVA), representing left bundle branch block, or left ven-
tricular free wall (LVFW). The latter was chosen since pacing the LV alone has been 
shown to produce responses similar to those with bi-ventricular pacing. Active me-
chanical properties for a failing heart were included for the dilated hearts (lower peak 
active stress and longer twitch). In these failing hearts, chronic infarcts were included 
at several regions.  

2.1   Cardiovascular Model 

The 3D finite element model of the canine ventricles was coupled to a lumped-
parameter systems model of the systemic and pulmonary circulations (Fig. 1A) [9]. 
The finite element model included left and right ventricular geometry and a 3D myo-
fiber angle distribution. Passive stress was modeled using a strain energy function for 
exponential transversely isotropic material. Active stress was dependent on time,  
sarcomere length and intracellular calcium concentration. Active stress generated 
transverse to the myofiber was about 40% of active stress generated in the myofiber 
direction [13].  

The systemic and pulmonary circulations were each modeled with two lumped 
windkessel compartments in series, one compartment for arterial and capillary blood 
and one for venous blood (Fig. 1A).  The atria were represented with time-varying 
elastance models. 

A total of eleven models were designed with different properties: three contained a 
normal heart and eight contained dilated failing hearts (Fig. 1C). In the three simula-
tions with the normal heart, one represented a heart paced at the right atrium (RA), 
one was paced at the right ventricular apex (RVA), and one was paced at the left ven-
tricular free wall (LVFW) (Fig. 1D). Of the failing hearts, one was free of infarct and 
three had infarct locations; anterior, posterolateral, and inferior (all chronic, Fig. 1E). 
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Fig. 1. Overview of the cardiovascular model. A) Electric analog schematic of the circulatory 
model with the ventricular finite element model embedded. Cap compliance of pulmonic arteries 
and capillaries; Cvp compliance of pulmonic veins; Cas compliance of systemic arteries and  
capillaries; Cvs compliance of systemic veins; Rap resistance of pulmonic arteries and capillar-
ies; Rvp resistance of pulmonic veins; Ras resistance of systemic arteries and capillaries; Rvs re-
sistance of systemic veins; Ela left atrial time-varying elastance; Era right atrial time-varying 
elastance; Rmitral mitral valve resistance; Rtricus tricuspid valve resistance; Rao aortic valve im-
pedance; Rpa pulmonic artery impedance. Note that aortic pressure is in fact mean pressure over 
the aorta, arteries and capillaries. The same applies for pulmonary artery pressure. B) Volumes 
contributing to the total volume in the pericardium model. See Table 1 for an explanation of the 
parameters. C) The geometries of the normal and dilated heart without an infarct. D) Electrical 
activation times for pacing at the right ventricular apex (RVA) and left ventricular free wall 
(LVFW) in the failing heart. E) Top views (top) and side views (middle) of the locations and 
thickness (bottom) of the three transmural infarcts, shown here at the LV endocardium. The 
thickness was based on measured values from literature [3] and is given as a percentage of the 
wall thickness in the dilated heart without an infarct. 
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2.2   Heart Geometry and Myofiber Orientation 

Two different geometries were used in the models: the normal heart had a LV cavity 
to wall volume ratio of 0.27, while those of the dilated hearts ranged from 0.57 to 
0.77 (Fig. 1C). The normal geometry has been used before [9], while the dilated ones 
were created by inflating the normal geometry to the desired cavity to wall volume  
ratio, and defining that state as the undeformed one. The same realistic myofiber ar-
chitecture was included in both geometries, since the myofiber distribution in normal 
and dilated hearts is not significantly different [6]. However, because of the thinner 
walls in the dilated heart, the transmural fiber gradient is larger in this heart, as noted 
by Helm et al [6]. 

2.3   Mechanical Material Properties 

The normal heart included canine passive and active material properties as modeled 
previously [9]. In the dilated hearts, passive properties of the non-infarcted tissue 
were the same as in the normal heart. The passive properties of the infarct were based 
on a 22 week old infarct as determined by Walker et al [16], being about 15 times 
stiffer and less anisotropic as compared to healthy tissue. The active properties of the 
failing non-infarcted tissue were scaled from human data [12], in which the peak 
force was 27% lower than in healthy tissue, and the force twitch duration was 17% 
longer. 

2.4   Pericardium 

The pericardium plays an important role in direct ventricular interaction, and as sug-
gested by Bleasdale et al [2], direct ventricular interaction plays an important role 
during LV pacing of failing hearts. We therefore included a pericardium. The effect  
of the pericardium was modeled by pericardial pressure acting on the ventricular 
epicardium, and was added to the atrial cavity pressures. Pericardial pressure pperi was 
exponentially dependent on total volume Vtot encompassed by the pericardium [5], 
normalized to a reference volume Vtot,0: 

))1)1((exp(
0,

−−=
tot

tot
peri V

V
p βα  (1) 

where 

restrestrestresttot

tot
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++++++=
++++++=

0,

 (2) 

See Fig. 1B and Table 1 for explanation of the volume components and the effect 
of scaling the PV-relation. In this pericardium model, Vlv, Vrv, Vla, Vra are vari-
ables, determined from the cardiovascular model, while the other components are  
parameters. The difference in the pericardial PV relation between normal and dilated 
hearts, as determined by Freeman and Lewinter [4], was included in the analysis. 
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Table 1. Parameters and values of the pericardium model for the normal and failing hearts and 
infarct size. Parameters α and β were adopted from Freeman et al [5]. Note that these 
parameters are the same for both the normal and dilated hearts, since after scaling with 
unloaded volumes (the approach used in the model), the scaled PV relation for normal and 
remodeled pericardia are very similar [4]. 

Parameter Description Nor-
mal 
heart 

Failing 
heart 
no in-
farct 

Failing 
heart 
anterior 
infarct 

Failing 
heart 
postlat 
infarct 

Failing 
heart in-
ferior 
infarct 

α [mmHg] pressure scaling factor 0.031 0.031 0.031 0.031 0.031 
β [-] exponential shape factor 6.76 6.76 6.76 6.76 6.76 
Vaw [ml] atrial wall volume 5.94 5.94 5.94 5.94 5.94 
Vvw [ml]  ventricular wall volume 132 119 117 109 112 
Vperi [ml] pericardial fluid volume 10.0 15.0 15.0 15.0 15.0 
Vlarest [ml] unloaded left atrial cavity 

volume 
14.0 14.0 14.0 14.0 14.0 

Vrarest [ml] unloaded right atrial cav-
ity volume 

14.0 14.0 14.0 14.0 14.0 

Vlvrest [ml] unloaded left ventricular 
cavity volume 

26.1 45.6 47.4 54.9 56.8 

Vrvrest [ml] unloaded right ventricular 
cavity volume 

22.3 30.0 30.1 30.5 25.6 

Infarcted tis-
sue [%] 

Volume percentage of LV 
affected by infarct 

0 0 11 26 34 

2.5   Activation Sequences 

The activation sequences for pacing at the RVA (QRS width 126 ms) and LVFW 
(QRS width 139 ms) (Fig. 1D) in the failing heart were calculated previously by solv-
ing modified Fitz-Hugh-Nagumo equations in a monodomain setting [14]. The QRS 
width for pacing at the RVA and LVFW in the normal hearts was 86 and 107 ms, 
 respectively. The activation times served as input to the mechanics model, in which 
myofiber contraction was initiated with an 8 ms delay after the local electrical  
activation. 

2.6   Simulations and Data Analysis 

For every simulation, steady state values were obtained. Steady state was defined as 
the state in which the LV and RV stroke volume difference, normalized to LV stroke 
volume, was less than 2%. Hemodynamic data were obtained every 4 ms. Deformed 
ventricular geometries were obtained every 8 ms. LV dp/dtmax, dp/dtmin, maximum 
pressure, stroke volume SV, ejection fraction EF, stroke work SW, potential energy 
PE, and efficiency (=SW/(SW+PE)*100) were calculated for every heartbeat.  

2.7   Numerical Solutions 

The FE anatomic model of the canine heart was discretized into 48 tricubic Hermite 
elements, with 1968 degrees of freedom. 
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The nonlinear FE model was solved with a modified Newton iteration scheme. In-
tegration was performed with 3x3x3 Gaussian quadrature points. Convergence was 
reached when both the maximal incremental displacement solution and the maximal 
value of the residuals were lower than 10-5. The Jacobian was calculated and factor-
ized in the first iteration of a new time step and when the solution was diverging. The 
system of linear equations was solved with SuperLU, a direct solver optimized for 
sparse matrices. The circulatory model was integrated in time with the Radau5 solver. 
Absolute and relative tolerances were set at 10-4. The initial guess for the step size 
was set at 10-3. 

The combined multi-scale model was solved with the Continuity 6.3 package 
(http://www.continuity.ucsd.edu). All simulations were solved on a 105 node Dell™ 
Rocks Linux cluster with 3.2 GHz 64 bit Xeon® processors (11 simulations, one for 
each processor) and 2 GB of RAM. On average, it took 2.1 minutes to solve one time 
step, resulting in a simulation time of 5.5 hours per cardiac cycle. However, recently 
we have parallelized the code for Jacobian and residual vector assembly, which 
brought down the simulation time to 36 minutes per cardiac cycle on 13 processors 
running in parallel. Maximum total RAM needed was about 200 MB per simulation. 

3   Results 

3.1   Steady State Values 

The normal heart (synchronous, LVFW and RVA pacing) functioned at lower dia-
stolic pressures and volumes than the failing hearts (Table 2). The highest hemody-
namic performance was seen in the synchronously stimulated normal heart. The PV 
loops of the failing hearts were shifted more to the right (Fig. 2). This rightward shift 
was larger for the LV than for the RV. Also, the larger the infarct, the higher were the 
end-diastolic pressures. In all simulations with the failing hearts, LV hemodynamic 
performance was slightly improved for LVFW pacing than RVA pacing, while RV 
hemodynamic performance improved when the RVA was paced. Results for the nor-
mal and failing heart without an infarct were qualitatively similar to previously pub-
lished experimental results (Table 3). 

The patterns of strain during pacing (shortening in early activated regions and 
stretching in late activated regions) were similar to those in experiments [17] (Fig. 
3A). In the normal hearts, mean LV ejection strain was most negative for the RVA 
paced heart, while it was less negative for the LVFW paced heart (Fig. 3B). In both 
the RVA and LVFW paced normal hearts, LV ejection strain was respectively 66 and 
69% more heterogeneous than in the synchronously stimulated heart (as determined 
by the standard deviation). RV ejection strain was most negative in the LVFW paced 
normal heart, but also most heterogeneous. In the failing hearts, LV ejection strain 
was less negative in all LVFW paced hearts, but less heterogeneous than in the RVA 
paced hearts. In the failing heart without an infarct, LVFW pacing decreased hetero-
geneity of LV ejection strain by 44% (vs. RVA pacing). RV ejection strain was most 
negative in all LVFW paced hearts, while RV ejection strain heterogeneity was simi-
lar in RVA and LVFW paced hearts. 
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Table 2. Left and right (L and R, resp) steady-state hemodynamic results from the simulations 
for the normal and failing hearts. RAp right atrial paced; RVp paced at right ventricle; LVp 
paced at left ventricle; dp/dtmax Maximum pressure increase; dp/dtmin Minimum pressure de-
crease; EF Ejection fraction; PE Potential energy; pmax Peak pressure; Qout,max Maximum ven-
tricular outflow; SV Stroke volume; SW Stroke work. 

Normal Heart Failing, 
No Infarct 

Failing, 
Anterior  
Infarct 

Failing, 
Posterolat. 
Infarct 

Failing, 
Inferior  
Infarct 

 

RAp RVp LVp RVp LVp RVp LVp RVp LVp RVp LVp 

L 1630 1440 1479 635 713 576 665 511 567 462 528 dp/dtmax 
[mmHg/
sec] 

R 463 406 314 236 217 245 231 251 252 264 251 

L 101.0 97.4 100.2 88.4 89.7 83.3 84.5 65.1 65.8 69.3 70.6 pmax 
[mmHg] R 27.7 26.2 25.1 24.6 24.0 25.9 25.3 23.4 23.0 29.7 28.8 

L 19.7 18.7 19.3 18.3 18.4 17.3 17.5 14.9 15.1 13.7 13.9 SV 
[ml] R 19.5 18.7 19.2 18.6 18.5 17.5 17.4 15.1 15.3 14.0 14.0 

L 43.8 42.3 43.1 22.0 22.4 21.0 21.4 17.0 17.3 15.8 16.1 EF 
[%] R 51.5 50.4 50.7 40.4 39.9 37.6 37.1 31.9 32.1 33.2 33.0 

L 1662 1523 1619 1314 1361 1133 1178 680 701 644 674 SW 
[mmHg⋅ 
ml] 

R 370 324 325 324 308 327 307 250 235 299 275 

L 501 493 503 1494 1459 1344 1308 1145 1137 1051 1037 PE 
[mmHg⋅ 
ml] 

R 124 130 125 139 147 155 167 197 207 207 223 

L 76.8 75.5 76.3 46.8 48.3 45.7 47.4 37.3 38.1 38.0 39.4 Effi-
ciency 
[%] 

R 74.9 71.4 72.1 70.0 67.7 67.8 64.7 56.0 53.1 59.1 55.2 

Table 3. Comparison with experimentally obtained hemodynamic data. RVp(%) represents 
percentage change with respect to RAp and LVp(%) represents percentage change with respect 
to RVp. See Table 2 for further explanation of abbreviations. 

  Normal Heart Failing, 
No Infarct 

 Experiment/Simulation RAp (abs) RVp (%) LVp (%) RVp (abs) LVp (%) 

Liu et al [11] 1162±106.1 -28.5 8.5   
Verbeek et al [15] 1627±644 -17.3    
Leclercq et al [10]    1048±242 24.9 

dp/dtmax 

[mmHg/ 
sec] 

Simulation 1630 -11.7 2.7 635 12.3 
Liu et al [11] 94.5±4.7 -7.9 12.8   
Verbeek et al [15] 98.8±12.0 -6.7    
Leclercq et al [10]    86.6±7.7 5.9 

pmax 
[mmHg] 

Simulation 101 -3.6 2.9 88.4 1.5 
Leclercq et al [10]    23±12.7 21.7 EF 

[%] Simulation 43.8 -1.6 1.9 22 1.8 
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Fig. 2. A) Steady state LV (black) and RV (gray) PV-loops, and B) left ventricular flows (aortic 
flow is positive; mitral flow is negative). In all simulations: the normal synchronously stimu-
lated heart, dashed lines; RVA paced, solid lines; LVFW paced, dash-dotted lines. 

 

Fig. 3. A) Myofiber natural strain at a location in the equatorial midwall in the LVFW (black 
lines) and equatorial midwall in the septum (gray lines) for a full cardiac cycle paced synchro-
nously (top left panel) or at RVA (solid lines) and LVFW (dash-dotted lines) in the other pan-
els. For the posterolateral infarct simulation, the strain at the LVFW (black) was in the infarct. 
Circles denote phase B) mean LV and RV myofiber strain during ejection (± sd) in steady state. 

4   Discussion 

We have developed a number of computational models of the ventricularly paced fail-
ing heart with and without chronic infarcts, and a pericardium. Results on global func-
tion were qualitatively similar to previously published experimental results. 
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LVFW pacing was always associated with improvements in LV stroke work and 
dp/dtmax under all conditions (Table 2). The improvements in stroke work and dp/dtmax 
were associated with lower EDP, suggesting that LVFW improved diastolic function 
with small improvements in global contractile function.  

However, in the failing LVFW paced heart, improvements in regional contractile 
function were large, compared with RVA pacing, which has also been shown experi-
mentally [7]. Changes in regional loading have been shown to contribute to the dis-
ease process observed with abnormal conduction. Although mean LV ejection strain 
was slightly less negative with LVFW pacing, as compared with RVA pacing, it was 
less heterogeneous, especially in the failing hearts with no and anterior infarct. Inter-
estingly, with LVFW pacing, there was no change in heterogeneity of LV ejection 
strain in the normal hearts, compared to RVA pacing, whereas LVFW pacing  
decreased heterogeneity in the failing hearts. The smallest differences in regional 
function, comparing LVFW with RVA pacing, were seen in the failing heart with a 
posterolateral infarct.  

A more thorough comparison is needed between computational and experimental 
results, especially for the failing hearts with infarcts. This will be subject in future 
studies. 

4.1   Limitations 

Several physiological responses (baroreflex) and pathophysiologies (mitral regurgita-
tion) affecting hemodynamics were not included in the models of heart failure. For 
example, a drop in aortic pressure due to decreased cardiac function will result in a 
baroreflex mediated increase in the resistance of the peripheral circulation by vaso-
constriction. Also, mitral regurgitation has been shown to develop in patients and 
animals with LBBB and dyssynchrony, which might develop dilated atria. Inclusion 
of these mechanisms in the model would be interesting directions for future study. 

The depolarization wave was not affected by the infarcted regions. In reality, depo-
larization travels around and/or slowly through infarcts. This might have a larger ef-
fect on the results for a pacing location close to an infarct (LVFW) than those remote 
(RVA). This could explain the relative small differences in global hemodynamics be-
tween the LVFW and RVA paced failing hearts with an infarct. This will also be ad-
dressed in a future study. 

5   Conclusions 

Computational assessment of cardiac global and regional function to understand the 
impact of pacing site in the normal and failing heart is feasible. In the normal heart 
model, heterogeneity of ejection strain was similar for RVA and LVFW pacing. 
However, in the failing heart model, while global function was moderately better for 
LVFW pacing, compared with RVA pacing, LVFW pacing was associated with 44% 
less heterogeneity of ejection strain. This may be an important factor in the remodel-
ing process associated with RVA pacing. 
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Abstract. We present a novel strategy to perform estimation for a me-
chanical system defined to feature the same essential characteristics as a
heart model, using measurements of a type that is available in medical
imaging. We adopt a sequential approach, and the joint state-parameter
estimation procedure is constructed based on a robust and effective state
estimator inspired from collocated feedback control. The convergence of
the resulting joint estimator can be mathematically established, and we
demonstrate its effectiveness by identifying localized contractility and
stiffness parameters in a test problem representative of cardiac behavior
and using synthetic – albeit realistic – measurements.

1 Introduction

The challenges represented by estimation in distributed mechanical systems have
been recently renewed and extended – in particular – by the rapidly developing
applications of biomechanics in medicine [14,2,15]. Indeed, the physical parame-
ters considered in a biomechanical model are generally very difficult to determine
a priori by experimentations, as living materials display very different behaviours
when taken in vivo on the one hand, and post-mortem or even in vitro on the
other hand. Moreover, for diagnosis purposes in medicine, estimation can be
envisaged as a methodology to assess the condition of a patient’s living organ,
such as the heart.

In order to develop an estimation procedure of unknown quantities character-
istic of the heart behavior – such as stiffness and contractility parameters for the
tissue – we must rely on available imaging modalities and an accurate model.
Therefore, conceptual difficulties arise from various scientific fields: image pro-
cessing, modeling and estimation. In this paper we focus on estimation, hence we
resort to synthetic measurements and simplified models, both being designed to
retain the essential features – of cardiac behavior and the corresponding imag-
ing modalities – that are of primary concern for estimation purposes. For more
complex and realistic modeling approaches see in particular [8,14] and references
therein. The specific objective we pursue here is to formulate an effective and ro-
bust estimation methodology inspired from filtering procedures and specifically
adapted to the difficulties and essential characteristics of the cardiac framework.

2 Problem Statement

We start by introducing the fundamental challenges that must be confronted in
estimation, before presenting the model and measurements considered.

F.B. Sachse and G. Seemann (Eds.): FIMH 2007, LNCS 4466, pp. 361–372, 2007.
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2.1 Estimation Fundamentals and Challenges

Basic Definitions and Objectives
We consider a dynamical system written in the general formalism

ẋ = A(x), with x(0) = x0 + ζx, (1)

where x is the state vector and A denotes a differential operator. The uncertainty
on the state is only contained in the initial condition as represented by ζx.
Hence, the basic objective of estimation theory consists in identifying ζx using
the available measurements Z represented by an observation operator H with
additive noise χ

Z = H(x) + χ, (2)

This means that without measurements we can only perform direct simulations
of the above system with ζx = 0, which generates a persistent error between the
real and simulated systems. Using measurements allows to reduce this error by
creating a new system called the state estimator.

Classical Methodologies
Estimation methodologies fall into two major categories:

– Sequential approaches (see [1]) in which the state estimator is given by a
dynamical system of the form

˙̂x = A(x̂) + K(Z − H(x̂)), with x̂(0) = x0, (3)

where K is called the gain operator. When A and H are linear the optimal
gain is given by the well-known Kalman filter from [9].

– Variational approaches in which the state estimator is the result of a the
minimization algorithm based on measurement-specific criteria. The most
classical one is

J (ζx) =
∫ T

0
‖Z − H(x)‖2

χ + ‖ζx‖2
ζx

, (4)

where the norms are chosen with respect to the characteristics of the mea-
surement noise χ and the indetermination ζx.

In the case of linear operators A and H, the variational approach based on the
criterion (4) and the sequential Kalman approach can be shown to be equivalent
[4], which – indeed – proves the optimality of the Kalman filter.

As regards complexity considerations, variational approaches typically require
the computation of an adjoint state in order to compute the gradient of the cri-
terion. This means that – at each minimization step – a double time integration
must be performed (forward and backward in time for the direct and adjoint
states, respectively) with a finite element problem solved at each time step for
both states. This induces heavy computations, together with extensive storage
because the direct state is needed at all time steps to solve for the adjoint state.
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On the other hand, classical sequential approaches are intractable when dealing
with distributed systems, because they necessitate the use – hence the compu-
tation, storage and various manipulations – of covariance matrices that have the
size of the state vector (typically at least 10000 degrees of freedom) and have
full profile. In this paper, we focus on the design of a sequential algorithm that
retains the algorithmic simplicity of filtering without requiring the computation
of this covariance matrix.

Parameter Estimation
In fact, as mentioned before we are primarily interested in parameter estima-
tion, rather than in state estimation. Let θ denote the vector containing all the
parameters that we wish to identify. We can rewrite the state dynamics as

ẋ = A(x, θ), with x(0) = x0 + ζx, θ = θ0 + ζθ, (5)

where ζθ represents the unknown deviation with respect to a mean value θ0. It
is then very easy to reformulate the previous two approaches considering θ as a
part of an augmented state vector xe such that

ẋe = Ae(xe), with xe(0) = xe
0 + ζe, (6)

where

xe =
(

x
θ

)
, Ae =

(
A
0

)
, xe

0 =
(

x0
θ

)
, ζe =

(
ζx

ζθ

)
. (7)

Thus we are concerned with joint state-parameter estimation. We emphasize that
parameter estimation cannot be considered by itself and must be performed
indissolubly from the state estimation, since errors in the state induce wrong
inferences on the parameters.

Observability Issues
Observability and identifiability – as regards parameter estimation more specif-
ically – are issues whose complexity lies much beyond the scope of this paper.
Nevertheless, our objective in our simplified modeling is to formulate a test
problem that features the same essential difficulties in this respect, without the
unnecessary computational complexity associated with more “realistic” mod-
els. Namely, the parameters that we primarily want to estimate correspond to
stiffness and contractility quantities – to account for the variations of such pa-
rameters due to various cardiac pathologies – and these parameters have an
influence only in certain phases of the behavior, such as systole for contractility.

2.2 Physical Modeling

Our simplified mechanical model is based on a general variational formulation
of the type

∫
Ω

ρÿ · δy dΩ +
∫

Ω

Σ
(
y, ẏ

)
: δe dΩ =

∫
Ω

f · δy dΩ, ∀δy, (8)
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where the main unknown is the displacement y between the reference position
and the current position at time t. In addition, Ω represents the geometrical
domain of the system, ρ the mass per unit volume, Σ the second Piola-Kirchhoff
stress tensor, δy an arbitrary test function in the displacement space with δe the
corresponding infinitesimal variation of the Green-Lagrange strain tensor, and f
the applied loading (taken here as a 3D distributed field to fix the ideas). This
equation is fundamentally a second order equation in time, but can be put into a
first order form by introducing the state vector x = (y ẏ)T . Assuming that Σ is
a linear function of x – which corresponds to the classical “small displacement”
assumption – we thus obtain a linear form of System (1) where we decompose
the operator into

A(x) = Ax + R, (9)

with A the linear (infinite dimensional) semi-group generator and R the re-
mainder corresponding to the mechanical loading. In the sequel we will consider
estimation problems where either A or R depend on the parameter vector θ.

This infinite dimensional system, however, cannot be used in the practical es-
timation process. Hence we introduce a discretized version of this model. Namely,
we approximate x by xh where xh can be represented by a finite dimensional
state vector X . Note that – in the whole paper – capital letters will denote finite
dimensional quantities. The resulting finite dimensional system can be written
in the following formalism:

Ẋ = AX + R, with X(0) = X0 + ζX , (10)

where the initial condition expresses that xh(0) is the interpolation (or projec-
tion) of x(0) in the finite dimensional subspace of the state space. As for the
continuous formulation, this dynamical system represents the state space form
of a variational – here discrete – formulation, typically derived from (8) by using
a finite element discretization. Denoting by Y the vector of degrees of freedom
(dofs) corresponding to the discrete displacement field, in the linear case the
variational formulation yields a matrix equation of the type

MŸ + CẎ + KY = F, (11)

where M , C and K respectively denote the mass, damping and stiffness matrices,
and F the load vector. Recalling that X =

(
Y Ẏ

)T , we thus have the following
expressions for A and R in (10):

A =
(

0 I
−M−1K −M−1C

)
, R =

(
0

M−1F

)
. (12)

As a natural norm in the state space, we will use the energy norm, ‖X‖2
E =

1
2 Ẏ T MẎ + 1

2Y T KY.
In practice, the geometry of our simplified ventricle is depicted in Figure 1,

and the characteristic dimensions of this object are – indeed – comparable to
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those of a human left ventricle. The system is clamped over the planar surface at
the base, and activated by a planar wave of prestress w – representing electrical
activation – traveling from apex to base at wave speed c = 0.5 m.s−1. The
resulting prestress state is assumed to be isotropic and gives an external virtual
work defined by

δWPS =
∑

1≤i≤17

∫
ΩAHA

i

θiσ0w(x3 − ct)� : δe dΩ, (13)

where the subdvision of the solid domain into 17 subregions is similar to the
subdivision of the left ventricle advocated by the American Heart Association,
see Fig. 1. In the above expression σ0 denotes a constant contractility parameter,
and θi a multiplicative coefficient that may take a different value in the range
[0, 1] within each AHA region to represent pathological contraction. Namely,
setting θi < 1 in a given region corresponds to a simplified model of infarcted
tissue in that area, hence the parameters (θi)1≤i≤17 represent the quantities to
be estimated for diagnosis purposes. In our reference simulations we take all
these parameters to be 1 (healthy value) except for

θ14 = 0.5, (14)

Note that we can substitute n ⊗ n for � in (13) to account for fiber directions
associated with a vector field n. Our simulations will correspond to an isotropic
viscoelastic material in linear analysis, with material parameters

Ei = 12.6 103 Pa, νi = 0.3, ηi = 0.227 s ∀i ∈ {1, . . . , 17}, (15)

and respectively denoting Young’s modulus, the Poisson ratio and a viscoelastic
coefficient associated with the Rayleigh damping Ci = ηiKi. Also, volumic mass
is set as ρ = 103 kg · m−3, a standard value for biological tissues.

Apex

Base

Boundary
Conditions

45 mm

40 mm

100 mm

AHA
Region 14

Fig. 1. Model geometry, reference mesh and measurement cells
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2.3 Measurements

As regards measurements also, our objective is to retain the essential character-
istics of available modalities in term of data contents and associated noise. In
this paper we aim at representing the features of data such as tagged-MRI, or 3D
ultrasound combined with optical flow. We point out that both modalities, after
adequate processing, can provide incremental displacements between frames, a
type of measurement directly related to the state variables of the above model –
whether it be displacements or velocities.

In the present case, the modeled measurements are assumed to be given by

Z = Hx + χ,

where H is here a linear operator and χ is described in more details below. More
specifically, in the whole paper we will use velocities measured in a subpart Ωm

of the domain Ω and sampled by using weight functions (si)
q
i=1 defined on q

non-overlapping “measurement cells” within Ωm. Namely, Hx = (0 Hv)(y ẏ)T

consists of the q three-dimensional vectors given by
∫

Ωm

si ẏ dΩ,

with normalized sampling functions. The additive measurement perturbation χ
is taken as a white noise of diagonal covariance matrix W . Assuming a 10%
error for a sampling rate of 50 ms in the data, we point out that – when rescaled
according to white noise rules – this gives a 70% standard deviation for the
computational time step considered.

In practice, since we do not have access to the real system, the measurements
used in the estimation procedures will be provided by a “reference model” given
by a rather fine finite element discretization of the above object. The correspond-
ing mesh is displayed in Fig.1 and features nearly 40000 dofs. The observer itself
will be based on a coarser discretization of nearly 6000 dofs. In all our simula-
tions we used the energy-conserving Newmark algorithm for time discretization,
with time step Δt = 1 ms in adequacy with the activation wave velocity. Note
that – unless otherwise stated – all physical units correspond to the SI system.
We also show in Fig.1 the measurement cells defined here by subdividing a (rect-
angular) box enclosing the geometry into 10×10×15 smaller (rectangular) cells
of equal sizes. The weight functions are then simply defined by scaled indicator
functions of the cells. This resolution is comparable to that of standard tagged
MRI images, and inferior to 3D echography.

3 State Estimation Using Collocated Damping

We now introduce the finite dimensional state estimator

˙̄X = AX̄ + R + KX(Z − HX̄), with X̄(0) = X0 (16)
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In essence, the filter KX that we want to use corresponds to a force proportional
and opposed to the measured velocity, namely a “direct velocity feedback” (DVF)
stabilization strategy, see [13,5]. In our case, the available measurements are
weighted velocities within cells, hence inside each cell we apply a “filtering force”
given by

−γsi

∫
Ωm

si ẏ dΩ.

We infer that KX is simply given by

KX = (0 γHvM−1)T .

Let us define the error X̌ = X − X̄ between (10) et (16). We have

˙̌X = (A − KXH)X̌ − KX(εh + χ), with X̌(0) = ζX . (17)

Therefore, we are concerned with the properties – and more particularly the sta-
bility – of the dynamical system governed by (A−KXH), namely, the discretized
form of a mechanical system with dissipative feedback. Note that the variational
form corresponding to the filtering force is −γ

∫
Ωm

si ẏ dΩ
∫

Ωm
si δy dΩ, which

ensures that we have a dissipative mechanical operator. Moreover, we can intrin-
sically and quantitatively justify the exponential stability of this type of system,
see [10,3] and [6], respectively.

The performance of the state estimator is demonstrated in Fig.2, where we
display the state convergence, both in the energy norm and using the volume in-
dicator, and we can see that convergence is very fast, namely, excellent accuracy
is obtained after about 0.1s. In [11] we also investigate the effect of changing the
mesh size in the estimator, and we show that accuracy only – not stability – is
changed.
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4 Joint State-Parameter Estimation: The Linear Case

In this section, we consider the estimation of parameters only included in the
right-hand side of the dynamical equation, and with a linear dependence on the
parameter vector θ. Hence, we can write the following linear state-parameter
system:

ẋ = Ax + Bθ + R, with x(0) = x0 + ζx, θ = θ0 + ζθ. (18)

4.1 Construction and Analysis of the Estimation Procedure

Since applying classical filtering techniques to perform state estimation – and a
fortiori joint state-parameter estimation – is intractable, we propose to build a
new estimator based on the above collocated observer. Namely, instead of using
a standard Kalman filter on the augmented state itself, we apply the filtering
procedure on the state observer X̄ which is tracking the real state. Therefore,
in this system the uncertain part to be estimated corresponds to the parameter
vector only since the initial condition on X̄ is fixed, see (16). In other words, the
dynamical system considered for the (augmented) state observer X̄e = (X̄ θ)T

is
˙̄Xe = AeX̄e + Re + Ke

X(Z − HeX̄e), with X̄e(0) = Xe
0 + ζe

θ , (19)

where

Xe
0 =

(
X0
θ

)
, ζe

θ =
(

0
ζθ

)
,

Ae =
(

A B
0 0

)
, Re =

(
R
0

)
, Ke

X =
(

KX

0

)
, He = (H 0).

Here we point out that X̄e only depends on the initial condition ζθ. Hence we
can define X̄e(ξ) for an arbitrary initial condition θ(0) = θ0 + ξ.

We then define X̂e as the Kalman observer for this system. The error covari-
ance of this observer, namely,

P e = E((X̄e − X̂e)(X̄e − X̂e)T |Z), (20)

is such that

P e(0) =
(

0 0
0 E(ζθζ

T
θ )

)
. (21)

Neglecting the modeling error introduced by the fact that Z is not the observa-
tion corresponding to X̄ but to x, we are then in a position to apply Kalman
filtering to a system with reduced rank covariance error. As shown in [12] the
covariance matrix at every time remains of constant rank r, namely, the size of
the parameter vector. This leads to the so-called “Singular Evolutive Extended
Kalman” (SEEK) algorithm in which the evolution equation of P e is:

⎧⎪⎨
⎪⎩

P e = LeT U−1Le

L̇e = (Ae − Ke
XH)Le, with Le(0) = (0 Ir)T

U̇ = LeT HeT W−1HeLe, with U(0) =
(
E(ζθ .ζ

T
θ )

)−1
(22)
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If we decompose the equation describing Le as Le = (LX Lθ)T we find that
∀t, Lθ = Ir and we finally obtain the following observer equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂
X = AX̂ + Bθ̂ + R + KX(Z − HX̂) + LX

˙̂
θ, with X̂(0) = X0

˙̂
θ = U−1LT

XHT W−1(Z − HX̂), with θ̂(0) = θ0

L̇X = (A − KXH)LX + B, with LX(0) = 0
U̇ = LT

XHT W−1HLX , with U(0) =
(
E(ζθ .ζ

T
θ )

)−1

(23)

and we note that we only need to manipulate a matrix of size r (namely, U),
instead of a covariance matrix with the size of the extended state. Furthermore,
the SEEK algorithm, as other Kalman filter, gives an optimality result in a
variational context. In our case we have proven in [11] that the solution exactly
corresponds to the minimum of the criterion

JT (ξ) =
1
2
ξT U(0)ξ +

1
2

∫ T

0
(Z − HeX̄e(ξ))T W−1(Z − HeX̄e(ξ)) dt, (24)

which gives a relevant solution only if the collocated estimator X̄e(ξ) tracks Xe

fast enough in order for HeX̄e(ξ) to closely approximate the measurement Z. As
in the state estimation case, we can prove the convergence of the estimator by
analyzing the dynamics of the error system. To do so, we introduce X̃ = X − X̂,
θ̃ = θ − θ̂ and – as in [16] – the change of variables η = X̃ + LX θ̃. We can verify
that the system governing the error (η, θ̃) is

{
η̇ = (A − KXH)η − KX(εh + χ), with η(0) = ζX

˙̃θ = −U−1LT
XHT W−1(Hη + HLX θ̃ + εh + χ), with θ̃(0) = ζθ

(25)

Hence the convergence of our estimator again relies on the exponential stability
of the operator (A − KXH), and detailed error estimates can be obtained for
the estimator, see [11].

Figure 3 shows the convergence results of parameter estimation, while state
estimation provides results very similar to those shown in Fig.2. We note that
the estimated parameters do not depart from their initial values until activation
of the tissue occurs, which is as expected from identifiability considerations.
Convergence is then accurately achieved.

5 Joint State and Parameter Bilinear Estimation

In the previous sections we have dealt with the estimation of prestress param-
eters, and this problem led to a linear dynamical system in the combined state
and parameter variables. However, this linearity only holds when the parameters
appear in the “right-hand side” of the dynamical system. When considering the
estimation of other mechanical parameters – and typically that of constitutive
parameters – the resulting augmented system is in general non-linear, even if
the mechanical system by itself obeys linear dynamics.
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Fig. 3. Parameter convergence: in 4 individual regions (left), and globally for the 17
regions (right)

In this framework, let us consider that we want to determine unknown varia-
tions of Young’s modulus with respect to a reference value. Keeping our above
subdivision of Ω in 17 regions where the parameters are assumed to be constant,
we can write the following bilinear augmented state-parameter system

Ẋ = (A + ΔA.θ)X + R, with X(0) = X0 + ζX , θ = θ0 + ζθ, (26)

and where ΔA can be decomposed into ΔA.θ =
∑17

i=1 ΔAiθi.
Since the mechanical system by itself is linear, the above-described state es-

timator is applicable, and we can directly focus on extending our results on
parameter estimation in the augmented system. In our case, in order to extend
our estimator we note that the quantity LX , defined in the linear framework
in (23), can be interpreted as the sensitivity of the state estimator X̄ – recall
(16) – with respect to θ, i.e. LX = dX̄

dθ . From this interpretation, introducing
ΛX = ∂θ([ΔAX ]θ), we can devise an observator in the bilinear case in the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂
X = AX̂ + ΔA.θ̂X̂ + R + KX(Z − HX̂) + LX

˙̂
θ, with X̂(0) = X0

˙̂
θ = U−1LT

XHT W−1(Z − HX̂), with θ̂(0) = θ0

L̇X = (A + ΔA.θ̂ − KXH)LX + ΛX̂, with LX(0) = 0
U̇ = LT

XHT W−1HLX , with U(0) =
(
E(ζθ.ζ

T
θ )

)−1

(27)

Let us now analyse the convergence of this algorithm. We still rewrite the
system satisfied by the error (X̃, θ̃) using the change of variables into (η, θ̃). A
straightforward computation leads to
{

η̇ = (A + ΔAθ − KXH)η + ΔAθ̃LX θ̃ + KX(εh + χ), with η(0) = ζX

˙̃
θ = −U−1LT

XHT W−1(Hη + HLX θ̃ + εh + χ), with θ̃(0) = ζθ

(28)

This error system is no longer linear, but the associated tangent system in
(η, θ̃) = (0, 0) is still exactly System (25), which is stable as discussed above.
From the classical theory of stability of non linear systems, we infer that there
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exists a neighborhood of (η, θ̃) = (0, 0) – hence of (X̃, θ̃) = (0, 0) – such that
System (28) remains stable. As a consequence, we expect to accurately achieve
our joint estimation if the undeterminations ζX et ζθ are “small”.

We have tested our observer in a configuration quite similar to the one de-
scribed in the linear case, and we used the same measurement operator. In the
14th AHA region we set θ14 = 0.3, while we let θ = 0 in the other regions,
which means that the infarct produces an increase of the stiffness in the region
concerned. In practice, in order to improve the convergence of the joint estima-
tor, we found that it is best to slightly delay the start of parameter estimation,
to let the robust state observer achieve a sufficiently accurate pre-estimation.
This modified procedure can be easily implemented, and we display the corre-
sponding numerical results in Fig. 4. The delay parameter was set as ts = 0.1 s,
and the stiffness parameter covariance was taken as 0.04 in Region 14 and the
adjacent parts, and very small in all other regions to represent an approximate
“a priori prediction” of the infarcted area, and to enhance identifiability. In this
case again, state estimation behaves as in Fig.2. Parameter convergence is not
as accurate as in the linear estimation problem, albeit still adequate.
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Fig. 4. Parameter convergence in the bilinear case

6 Concluding Remarks

We haveproposed a joint state-parameter estimation procedure specifically adapt-
ed to the class of physical models of interest to represent cardiac behavior, and
to the fundamental features of available imaging modalities. This estimator was
built based on an effective and robust state estimation sequential strategy, namely,
collocated feedback, which provides an estimation at the same computational cost
as the simulation of the system itself.

We have demonstrated the performance of this procedure to estimate pa-
rameters of primary interest in cardiology, namely contractility and stiffness
quantities. For the stiffness estimation problem we had to consider a non-linear
dynamical system, which required an extension of the methodology and an adap-
tation of the parameter estimation dynamics with the introduction of a startup
delay. This necessary adaptation confirms that parameter estimation cannot be
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considered independently of state estimation, hence that a robust and effective
state estimation procedure is an essential prerequisite.

Further work is being performed to evaluate the effectiveness of the proposed
methodology when using real imaging measurements [7]. Of course, when this
is achieved modeling difficulties may remain, but the estimation procedure can
also be used as a tool to assess model validity, since its success would then only
depend on model adequacy.
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Abstract. Placement of Implantable Cardiac Defibrillator (ICD) leads in 
children and some adults is challenging due to anatomical factors. As a result, 
novel ad hoc non-transvenous implant techniques have been employed 
clinically. We describe an open-source subject-specific, image-based finite 
element modeling software environment whose long term goal is determining 
optimal electrode placement in special populations of adults and children 
Segmented image-based finite element models of two children and one adult 
were created from CT scans and appropriate tissue conductivities were 
assigned. The environment incorporates an interactive electrode placement 
system with a library of clinically-based, user-configurable electrodes. Finite 
element models are created from the electrode poses within the torsos and the 
resulting electric fields, current, and voltages computed and visualized.  

1   Introduction 

Implantable cardiac defibrillators (ICDs) are widely used in patients at risk of fatal 
cardiac arrhythmias, and indications for their use continue to expand[6], [8], [9], [22].  
Although ICDs are routinely implanted in adult patients using a transvenous system, 
there is a growing population of pediatric and adult patients in whom transvenous ICD 
systems cannot or should not be implanted[19].  These include very small patients and 
those with intracardiac shunts or anatomical obstruction to lead placement[6], [7], [10]. 

In these groups, several novel, non-transvenous approaches to ICD implantation 
have been reported (Figure 1)[7], [10], [18], [23], [24].  Such approaches have consisted of ad 
hoc adaptations of existing ICD systems, with the goals of minimizing system 
invasiveness, adapting to complex anatomy, and achieving low defibrillation 
thresholds.[7], [12], [24].  These approaches assume efficacy by extrapolation from limited 
animal research, and post-implantation assessment of defibrillation thresholds 
(DFTs)[7].  Although defibrillation research has elucidated reasonably accurate 
relations between distribution of myocardial voltage gradient and both defibrillation 
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efficacy and myocardial injury, no reports currently describe the effects of 
interactions between variations in body size and novel ICD geometries on these 
fields[4], [25], [27]. 

Animal models of defibrillation have shown defibrillation with subcutaneous 
electrodes to be feasible, but little is known about ideal placement or the resulting 
electric fields[7], [25], [27].  In the past, insertable electrodes have been used to map the 
epicardium and measure electric fields transmurally in animals but these techniques 
are expensive, time consuming and not necessarily applicable to human anatomy.   
Furthermore they do not provide detailed descriptions of the electric field throughout 
the entire myocardium and can perturb the measured fields. 

Finite element modeling (FEM) of defibrillation has been shown to correlate well 
with clinically observed DFTs in laboriously constructed conductivity models of the 
adult torso[3], [11], [14], [15], [20], [21].  These studies have shown the utility of realistic 
models to accurately predict threshold voltages, currents, and impedances, as well as 
the electric fields and voltages at known measurement locations. They also may be 
used to compare the relative efficacy of electrode orientations in a given torso 
model[3], [11]. 

The demands of extending these studies to highly variable electrode design and 
placement, not to mention body size, habitus and possible gross anatomical 
variability, mean that such simulation systems need to allow more automatic model 
creation, interactive electrode placement, a wide variety of electrodes, interactive 
execution of the simulations, and visualization of the results.  In this study, we 
describe the creation of an open-source subject-specific, image-based finite element 
modeling software environment with the goal of enabling determination of optimal 
electrode placement in special populations of adults and children. 

2   Methods 

2.1   Image Acquisition, Segmentation 

Images were constructed by segmenting normal or trivially abnormal 64-detector CT 
scans with 1.25mm slices obtained from a radiology trauma database with appropriate 
IRB approvals.  Of more than 50 studies examined, three patients were selected for 
this study based on 1) good tissue contrast, 2) minimal cardiac motion artifact, and 3) 
diversity of body size and habitus: a 12 kg, 2 year old female, a 32 kg, 10 year old 
male, and a 75 kg, 29 year old male.  Torsos were segmented into 10 tissue 
compartments using 3D Slicer (Table 1)[1].  Various techniques were used for 
segmentation including thresholding, confidence connected component analysis, and 
level sets. The individual label maps were hierarchically combined into one label map 
using the unu command line tool, part of the Teem toolkit[17].  Each combined label 
map was imported into SCIRun/BioPSE, to solve the bioelectric field problem.[2] 

2.2   Electrode Visualization and Placement 

In order to allow interactive electrode placement inside a segmented 3D volume we 
created new functionality in the SCIRun/BIOPSE software package.  We designed  
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new modules which allow the user to interactively insert realistically shaped electrode 
wires and electrode cans into rendered images of the segmented volume.   The shape 
model of the electrode can was generated by creating a triangular surface from the 2-
D scanned images of the electrode and meshing the interior with tetrahedral elements 
based on the device's known thickness.  The shape of the wire electrodes was 
determined interactively by specifying the length and diameter of the contact areas 
separately so the model was constrained to the desired shape of electrode. The 3 
dimensional path of these “wires” was defined by a set of 5 user-movable spheres 
through which a cubic spline was fit and updated in real time. This interface proved to 
be sufficient for placing the wire electrodes into realistic clinical positions. A 3D 
tetrahedral model of the specified diameter and length was then created over the path 
defined by the spheres. The resulting shape of both electrodes could be adapted to 
closely resemble those used clinically and all could be moved interactively by the user 
in real time. 

In order to support proper placement of electrodes, we expanded the visualization 
capabilities of SCIRun to render transparent  3D images of the separating surfaces 
between different tissue types and added in support to display three dimensional 
labels. We altered the way the user can interact with multiple simultaneous 
visualizations of the same the electrode placement so that one can look at the same 
situation from multiple view points. 

2.3   Meshing and Finite Element Calculation 

New modules were created in SCIRun/BioPSE to support local mesh refinement of 
hexahedral elements as well as finite element calculations on the resultant meshes.of 
varying element density.  

Table 1. Comparison of conductivies used in this and prior FEM studies[3], [11], [14], [15], [21] 

 
In order to create an electrical model of the torso, we combined the label maps and 

the electrode models described previously in a full hexahedral mesh. A regular mesh 
of hexahedral elements with a user adjustable spacing was created in the same space 
as the label map. Elements contained in a bounding box 1.5 times the 3D volume of  
 

Tissue type 
Current 

study (S/m) 
Jorgenson

(S/m) 
DeJongh 
(S/m) 

Mocanu
(S/m) 

Aguel 
(S/m) 

Gabriel 
(S/m) 

Bowel gas 0.0020 0.0020     

Connective Tissue 0.2200  0.2220    

Liver 0.1500 0.1486    0.3300 

Kidney 0.0700     0.0700 
Skeletal Muscle 0.2500 0.1429 0.2500 0.2500   

Fat 0.0500 0.0459  0.0500   

Bone 0.0060 0.0063  0.0100   

Lung 0.0670 0.0667 0.0780 0.0700 0.0500  

Blood 0.7000 0.6494 0.6670 0.8000 0.7700  

Myocardium 0.2500 0.2381 0.2500 0.2500 0.6000  
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the electrode were automatically selected and each of these elements was split into 27 
smaller elements to allow for a higher local mesh density around the electrodes[26].  
Using a lookup table with conductivity values (Table 1), the segmented label map was 
transformed into a conductivity map of the torso, whose values were projected onto 
the computational mesh by sampling the conductivities delineated by the label map 
segmentation.  We assumed the electrical properties of the torso to be defined by one 
conductivity value per element. The resulting finite element model created by the 
SCIRun software resulted in a set of equations similar to those used in previous 
defibrillation studies[3], [11], [14].  In our implementation we assumed a linear, piecewise 
constant and isotropic volume conductor model, with negligible capacitance and 
inductance.  We used the Galerkin finite element formulation with tri-linear 
interpolation. Electrodes were assigned a constant potential over their surface. The 
mesh size and spacing was interactively adjusted until additional refinements did not 
alter the results of the defibrillation threshold parameter by more than 1 percent.  We 
used a representative selection of electrode positions to evaluate adequate node 
spacing subsequently used for each model. This resulted in a basic torso mesh that 
was wrapped into a grid of 100 by 100 by 150 nodes in the x, y, and z-direction, with 
further refinement around the electrodes as noted. 

2.4   Solution Calculation, Defibrillation Metrics, and Data Analysis 

After the potential distribution was solved using the finite element method, the 
gradients of the potential field were evaluated for the full thorax assuming a tri-linear 
interpolation. As the electrical field scales linearly with the potential difference 
applied to the defibrillation electrodes, effective electrode defibrillation potentials can 
be computed by linear scaling.  The critical mass hypothesis was used to define 
successful defibrillation[12], [28].  This hypothesis proposes that defibrillation depends 
on rendering a critical mass of the myocardium inexcitable.  A shock is predicted to 
be successful if it produces a threshold voltage gradient over a “large” fraction portion 
of the myocardial mass.  Empirically determined values for these thresholds vary 
somewhat.  The criteria used in this study of a voltage gradient of 5 V/cm generated 
over 95% of the myocardium has been accepted in the literature as a reasonable 
predictor of successful defibrillation.  

Calculated metrics included the voltage, voltage gradient, current, impedance, and 
energy threshold (E) for defibrillation (defibrillation threshold, DFT).  The DFT in 
this study was calculated by the energy relation E = ½ CV2, where C is the 
capacitance of a typical pulse generator, and V is the potential difference between 
electrodes required to produce a voltage gradient of 3 and 5 V/cm in 95% of the 
myocardium. We also calculated the percentage of myocardium above 30V/cm and 
60V/cm at these thresholds, to predict possible areas of myocardial damage. We 
utilized a capacitance of 130uF for these estimates, based on conversations with 
contacts in industry. SCIRun was utilized to visualize voltage, voltage gradients, and 
current density.  In addition the percentage of myocardium above the defibrillation 
threshold was calculated and visualized by projecting a color scale onto the 
myocardial elements. 



 Open-Source Environment for Interactive Finite Element Modeling 377 

3   Results 

We utilized our newly developed functionality in SCIRun for importing segmented 
data, which was subsequently used in SCIRun's dataflow environment to create a 
computational model of the distribution of the electrical field, as shown in Figure 
1(left).  These dataflow networks were used for interactive placement of electrodes, 
remeshing of volumes around the active electrodes, calculation of FEM solutions, and 
presentation of data in graphs with a summary of important numerical values, as 
shown in figure 1(right). 

 

Fig. 1. SCIRUN Network:  Example SCIRun Network (left) and of automatically generated 
numerical metrics for defibrillation (right) for a standard adult transvenous electrode 
configuration with a shock of 500V as well as scaled metrics 

 

Fig. 2. Subcutaneous Electrode placement:  Left: Chest x-ray of subcutaneous electrode 
placement in child.  Middle:  Example of subcutaneous electrode placement in 2-yr old model.  
Right:  Moveable cutting planes to examine detail. Blue spheres are user moveable handles. 

 



378 M. Jolley et al. 

 

Fig. 3. Transvenous Electrode Placement:  Standard adult placement with left subclavian 
can, 8cm coil in superior vena cava (green) and 5 cm coil in right ventricle(red) shown with 
(left) and without (right) rendering of blood within the 29 year old torso shown with three 
moveable cutting planes 

 

Fig. 4. Visualization of defibrillation: 2 year old child with left thoracic subcutaneous 
electrode and right abdominal can.  Left:  Electrode positions and heart within torso.  Middle:  
Visualization of voltage gradients within the heart with three moveable cutting planes for 
exploration.  Right:  Visualization of absolute voltages on torso of model, note increased mesh 
density around electrodes. 

Graphical representations of sample FEM solutions are shown in Figure 4 
demonstrating the ability to visualize voltage gradient distribution within the 
myocardium as well as compute voltage and energy parameters necessary to meet the 
criteria of the critical mass hypothesis. 

To validate our model, we compared the DFTs obtained in our 75kg adult-sized 
torso with standard, transvenous electrode placement to previously published adult 
FEM models of defibrillation[3], [11].  The calculated DFT values for our torso using 
standard electrode orientation are in close agreement with these models [8-12 joules, 
5V/cm metric] as well as empiric clinical values. 
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In order to explore the clinical relevance of this newly created functionality for 
novel non-transvenous orientations we analyzed several exemplary situations.  
Clinicians have begun to use scenarios with an abdominal can and single 
subcutaneous 25cm electrode coil as suggested in figure 4.  The best positioning of 
this combination and effect of small changes in electrode movement is unknown.  To 
explore the utility of the newly created environment utilized the 2year-12kg torso and 
the can in the left abdomen at the level of thoracic vertebrae 12.  We then extended 
the 25cm subcutaneous electrode to the left from the can to different locations, 
placing it at the level of thoracic vertebrae 6, 8, and 10 respectively.  The voltage 
difference required to achieve 3V/cm varied from 335 volts to 654 volts, 
corresponding to a change in work from 7.29 joules to 27.8 joules, with the electrodes 
placed caudally at T6 achieving the lowest defibrillation threshold.  Thus, very small 
changes in electrode placement in these novel configurations are predicted to have 
significant effect on clinical DFTs. 

To compare the efficiency of the best subcutaneous orientation to a standard 
transvenous orientation in the 2 year old torso model we placed the can in the right 
and left abdomen, as well as  the right and left subclavian positions, and placed a 
single 5cm long transvenous electrode with a diameter of 3mm in the right ventricle.  
The required voltage varied from 58.6 volts to 172 volts, corresponding to 0.22 and 
1.92 Joules respectively, with the left subclavian can being the most efficient.  In 
situations where it is anatomically viable and safe, standard transvenous placement of 
electrodes is more efficient than most subcutaneous electrode placement. 

To explore the effect of body size and growth we compared the single retrocardiac 
electrode with an abdominal can, another orientation utilized clinically in small 
children, to assess the efficacy of this orientation with growth.  A right abdominal can 
with a 5 cm electrode placed in the posterior epicardial region approximately centered 
in relation to the heart  required 266V, 850V, and 1690V in the 2year-12kg, 10year-
32kg, and 29 year-75kg torsos respectively.  This corresponds to a range of 
approximately 3 to 185 joules expected with growth, suggesting orientations practical 
in one age group might fail with time. 

4   Discussion 

Utilization of ICD therapy in pediatric and congenital heart populations has risen, as 
the numbers of patients who may benefit have increased while apparent risks have 
decreased.  Transvenous implantation often cannot be performed in children due to 
patient size, lack of vascular access and increased risk of embolic phenomena due to 
intracardiac shunts[16], [19].  Children with ICDs have high rates both of lead failure and 
of vascular occlusion[5], [6] and long life expectancy, resulting in the anticipated need 
for repeated lead extraction and reimplantation with their attendant risks.  There is 
also growing interest in the development of extracardiac ICDs for the adult 
population, both to avoid lead related complications and for patients with vascular 
access problems or other contraindications to transvenous implant.  We have utilized 
existing open-source tools and developed new, interactive functionality in 
SCIRun/BioPSE to study this problem using subject-specific FEMs and demonstrated 
its application. 
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We utilized the interactive electrode placement system to explore several clinical 
situations and analyze the effect of electrode placement in a given torso.  A four rib 
change in subcutaneous electrode position is predicted to triple the DFT in Joules in a 
two year old torso.  Transvenous electrode placement is predicted to be more efficient 
than subcutaneous placements, suggesting these orientation should be utilized in 
patients with suitable anatomy.  Retrocardiac placement of a single electrode to an 
abdominal can is a reasonable orientation in a small child, but not in a older child or 
adult as the resulting DFTs are in excess of what current devices can deliver.  
Together these examples suggest that the rapidly adaptable environment we have 
created will be potentially useful in designing optimal electrode placements in 
children and adults with unique anatomy and other technical requirements. 

Previous publications have shown that FEM can closely correlate with clinically 
observed results[3], [11], [13], [15].  Although this is reassuring, both the current and prior 
models do not incorporate many factors known to affect defibrillation.  These include 
patient specific differences in conductivity, myocardial tissue structure, capacitive 
effects, the complexities of fibrillation wavefront behavior, and the effects of biphasic 
waveforms on membrane repolarization.  Although results predicted by the critical 
mass hypothesis compare favorably to clinical observation, it is a gross model that 
largely ignores cellular level effects and does not account for variability in 
susceptibility of a given patient’s myocardium. We expect these models to provide a 
platform for reasonable comparison of relative efficacies of electrode position for a 
given torso, and as such can serve as a useful tool for comparing novel configurations 
to proven electrode positions as well as general trends in comparison of different torso 
models.  Practical application of this approach is limited at present by the availability 
of high resolution CT and MRI scans of children.  As such scans obtained for clinical 
reasons will provide opportunity for further development of trends across age groups 
and anatomy.  We plan to utilize the system to systematically explore various 
parameters and orientations in children and adults to better guide practitioners in 
situations when novel implantations are needed.  We have also begun to utilize the 
system in a case specific manner with dedicated scans in patients with highly 
complicated congenital heart disease and other congenital anomalies to assess the 
utility of determining optimal orientations on a case by case basis.  

We hope to continue to improve the tools in this open-source pipeline.  
Segmentation remains time intensive despite improvements in segmentation 
algorithms and we are actively working to create atlas based segmentation systems 
such that imaging can be rapidly converted to highly accurate torso models with 
minimal user input.  The newly developed functionality in SCIRun will be improved. 
to be more efficient and incorporate other physically relevant parameters, and a 
broader library of electodes.  SCIRun also has powerful visualization capabilities, and 
we are further exploring optimal parameters for improved perception of visual and 
numerical data.  Once optimized the platform may be wrapped into a stand alone open 
source program once we are satisfied with visualization and simulation performance.   

5   Conclusion 

We have developed an interactive computational and visualization tool that can be 
used to assess the relative efficiency of non-standard ICD electrode placement in 
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torso models of various sizes.  In patients with contraindications to standard 
approaches to ICD implantation, the ability to interactively assess the relative efficacy 
of different electrode orientations may provide insight into which orientation might be 
optimal in a specific patient.  This image-based approach may also be of value in the 
design and development of extracardiac defibrillation strategies. 
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Abstract. Rhythm disturbances and mechanical function suppression proper to 
the acute heart failure in the case of cardiomyocyte calcium overload are 
simulated in a mathematical model of cardiomyocyte electromechanical 
activity. Particular attention is paid to the overload caused by diminished 
activity of the Na+-K+ pump. It is shown in the framework of the model that 
myocardium mechanics may promote arrhythmias in these conditions. In 
particular, cooperative influence of the attached crossbridges on the calcium- 
troponin kinetics is shown to contribute to the initiation of spontaneous action 
potentials. Numerical experiments showed that the recovery of the normal Na+-
K+ pump activity during the heart failure attack did not always led to the normal 
electromechanical function recovery in the failed cardiomyocyte. Alternative 
approaches were suggested in the model and compared to each other for 
recovery of the myocardium electrical and mechanical performance in the 
simulated case of the acute heart failure. 

Keywords: Active myocardium mechanics – Mechano-electric feedback – 
Heart rhythm – Extrasystole – Arrhythmia. 

1   Introduction 

Rhythm disturbances are prevalent and potentially lethal complications of heart 
diseases. Given the complexity of intracellular mechanisms underlying arrhyth-
mogenesis, detailed mathematical models can help to reveal causal chains of events 
and to identify possible targets for therapeutic interventions. 

Calcium overloading of cardiomyocytes is one of the principal factors inducing 
rhythm disturbances on the cellular level. For example, Ca2+ accumulation in 
cardiomyocytes during heart failure is fraught with a risk of triggered activity and 
fibrillation, as a consequence of spontaneous Ca2+ releases induced by sarcoplasmic 
reticulum (SR) overload [1, 2]. It is well known that Na+-K+ pumping decrease may 
cause cardiomyocyte calcium overload [3]. Previous research has focused on 
mathematical modeling of rhythm disturbances caused by calcium overload [3-5], 
including the case of reduced Na+-K+ pump activity [3].  

Nevertheless, those studies dealt with the electrical activity of cardiomyocytes, 
while not considering simultaneous disturbances of the mechanical function and 
possible role of the mechano-electric feedback (MEF) in the modelled arrhythmias.  
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We try to address the lack of such analysis with the help of our ‘Ekaterinburg-
Oxford’ mathematical model developed earlier [6] and combining description of both 
the electrical and mechanical cardiomyocyte activity.  

When Na+-K+ pump activity is reduced in the model, calcium overload developed 
gradually during a series of isometric contractions generated by regular pacing. We 
found that, if mechanics expelled from the model, only almost complete block of the 
Na+-K+ pump produced extrasystoles. This observation is fully consistent with the 
results of the simulation performed by Noble and Varghese [3]. However, effects of  
the mechanical activity of cardiomyocytes on both their Ca2+ handling and electrical 
activity proved in the ‘Ekaterinburg-Oxford’ model to increase significantly 
vulnerability for triggered activity in the case of moderately decreased Na+-K+ pump 
[7]. Now, using our mathematical model, we focus on the theoretical analysis of 
possible approaches to the recovery of the electromechanical function of the 
cardiomyocytes in these pathological conditions.  

2   Cardiac MEF in the ‘Ekaterinburg-Oxford’ Mathematical 
Model 

‘Ekaterinburg-Oxford’ mathematical model of mechano-electric interactions in 
ventricular cardiomyocytes has been developed earlier [6], which inherits the 
description of the electrical activity from the Noble’98 ventricular cell model [8] and 
the description of cellular Ca

2+
 kinetics and mechanical activity from the Ekaterinburg 

model family. Now we use the most recent version of the mechanical model described 
in detail elsewhere [9]. The combined model realistically simulates mechanical and 
electrical activity of cardiomyocytes during isometric and afterloaded contractions.  

The model includes mechano-dependent cooperativity of the kinetics of Ca
2+

 - 
troponin C (CaTnC) binding. This is a principal link between cardiac mechanics and 
Ca

2+
 handling in cardiomyocytes. Three types of experimentally-established 

cooperativity of Ca
2+

 activation [10] are taken into account in the model [11]. Namely, 
the affinity of TnC for Ca

2+
 increases with the increasing of: (i) concentration of 

strongly-bound crossbridges (Xb) and (ii) concentration of CaTnC complexes; while, 
(iii) availability of actin sites for myosin heads increases due to the end-to-end 
interaction between tropomyosins.  

These mechanisms underlie in the model a wide range of experimentally observed 
phenomena, such as the effects of mechanical load on muscle relaxation and 
mechano-Ca

2+
 coupling (e.g. length- and load-dependence of Ca

2+
 transients). In 

addition, mechanical modulation of Ca
2+

 transients (due to mechano-dependent 
CaTnC kinetics) links through to mechanical and electrical activity, via Ca

2+
-

dependent ionic currents. The model reproduces the effects of mechano-electrical 
coupling as an influence of muscle length on action potential (AP) duration during 
isometric contractions, the AP duration (APD) dependence on the muscle load during 
afterloaded contractions, and certain APD changes caused by passive deformations 
[6]. The cooperativity of the first type (Xb-CaTnC cooperativity) proves to be of  
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special importance in this study. It is specified in the model by an exponential 
function 

A(N )π  in the differential equation describing CaTnC kinetics [9]: 

2
on tot i off A A

dA a (A A) [ Ca ] a exp(-k A) (N ) Adt  

Here A is CaTnC concentration, AN   is an average fraction of attached cross-bridges 

per CaTnC complex. A(N )π decreases with the AN  increase. 
In this work Ca2+ overload was reached in the model via attenuation of the Na+-K+ 

pump activity (other ways of the overload were also simulated and produced similar 

results). The pump current pi is described in the model as follows [8]. 

o i
p p

o m ,K i m ,Na

[ K ] [ Na ]ˆi i
[ K ] K [ Na ] K

+ +

+ += ⋅ ⋅
+ +

 

Here i[ Na ]+ and o[ K ]+ are concentrations of the intracellular sodium and 

extracellular potassium respectively. m ,KK  and m ,NaK are corresponding Michaelis 

constants of the pump. Reduction of the pump activity was simulated with an increase 
in m ,NaK . The normal value of this parameter (Km,Na = 24.2 mM) [7] was used as a 

reference magnitude in our study. 

3   Role of MEF in the Arrhythmias Induced by Decreased Na+-K+ 
Pump Activity 

We have earlier published elsewhere [7] our model analysis of the MEF contribution 
to the arrhythmias in cardiomyocytes overloaded with Са2+. Here we only summarize 
those results briefly as a background for describing approaches to the rhythm 
recovery suggested in Section 4.  

Essentially new aspect of that our study [7], in addition to previous works of other 
authors [3-5, 12] was its focus on the mechanical contribution to inducing arrhythmias 
in conditions where the calcium overload of cardiomyocytes was not sufficiently large 
to cause the rhythm disturbances by itself. In particular, Figures 1 and 2 demonstrate 
an extrasystolic attack followed by the force alternans in a case of such moderate 
calcium overload.  

We showed that the following mechanical factors proved to be potentially 
arrhythmogenic in cardiomyocytes moderately overloaded with Са2+:  

- cross-bridge kinetics during the cardiomyocyte relaxation and effects of the 
kinetics on the CaTnC dissociation via the Xb-CaTnC cooperativity mechanism; 

- cardiomyocyte length during contraction-relaxation cycles; 
- mechanical loads (as these influence both current lengths and contraction 

velocities); 
- mechanical interaction of cardiomyocytes with different degree of Na+-K+ pump 

inhibition. 
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We found in the model two mechanisms of the mechanical factor contribution to 
the arrhythmia in cardiomyocytes moderately overloaded with Са2+. Both 
mechanisms are analyzed in detail elsewhere [7]. Briefly they are as follows. 

First, during any isometric/isotonic twitch following a regular pacing, there are 
dynamic cooperative interactions between Xb and CaTnC kinetics. The interactions 
support a high rate of the CaTnC decay during the final relaxation stage of the twitch, 
and thus provide the cytosol with a small surplus of [Са2+]i at the end of this stage. When 
cardiomyocytes are moderately overloaded with Са2+, the background diastolic level of 
the cytosol calcium is also higher than the normal one. Therefore the surplus turns out to 
provide a critical increment in the diastolic [Са2+]i to trigger spontaneous Са2+ release 
from the SR. The release, in its turn, activates inward depolarizing current via the 
forward mode of the Na+-Са2+ exchanger and the following extrasystolic AP. Thus, the 
described is a mechanism of the Xb-CaTnC-induced spontaneous AP generation. 

Second, mechanical conditions (a decrease in the initial length and/or 
cardiomyocyte dynamic shortening) may intensify gradual (beat-to-beat) Са2+ storage 
in the SR due to the length dependence of the same Xb-CaTnC-cooperativity [7]. This 
mechanism may additionally contribute to the cell Са2+ overloading and thus promote 
overcoming the arrhythmogenic threshold of the SR calcium concentration. 

 

Fig. 1. Contractions of a single virtual cardiomyocyte with moderately reduced activity of the 
Na+-K+ pump (P-sample; see the text, where the sample is defined). L=0.90 Lmax (Lmax 
corresponds to the sample length where it develops a maximum active isometric tension); 
pacing rate: 75 stimuli/m. The panel demonstrates active tension peaks (F – arbitrary units). 
The magnifying lens indicates the time interval represented in detail in Fig.2. The band under 
the panel indicates phases of the process where P-sample distinctly responds to the recovery of 
the normal Na+-K+ pump (see Sec. 4 for details). The data shows that, unlike the stimulation 
rate of 60 stimuli/min, where no rhythm disturbances observed in the P-sample, a faster pacing 
equal to 75 stimuli/min (or higher – not shown here) at decreased Na +-K+ pump activity 
resulted in the following events. A brief increase in the force amplitudes turned into a very 
gradual decrease that was suddenly disrupted by the drop in force accompanied by extrasystoles 
(see Fig. 2 for more detail). Then a transient force alternans arose (see also Fig. 2) transferring 
to steady-state contractions with very low force amplitudes. 
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Fig. 2. Time course of the tension development (F), calcium transients ([Ca2+]i) and membrane 
potential (E) in the P-sample during 137 ÷ 160 s indicated with the magnifying lens in Fig.1. 
Scores under the time axis show the moments of the regular stimuli (each 0.8 s). 

In general, these two mechanisms allow us to consider 3 characteristic ranges of 
Na+-K+ pump attenuation in respect with the mechanical contribution to the 
arrhythmogenesis. The ranges are as follows. 

(1) Km,Na ≥ 110 mM (while the normal Km,Na is 24.2 mM) – extrasystoles arise 
independently of the mechanics. 

(2) 40 mM ≤ Km,Na < 110 mM - extrasystoles also arise in any mechanical 
conditions, but only due to the above mechanism of the Xb-CaTnC-induced 
spontaneous AP generation. Figures 1, 2 demonstrate an example of the rhythm 
disturbances revealed in the model for Km,Na= 40 mM (where all the other parameter 
values are the same as in the norm). This virtual cardiomyocyte is named in our work 
as P-sample (pathological sample).  

The behaviour of the P-sample shown in Fig. 1 and 2 reminds sudden force fall, 
arrhythmia and pulsus alternans observed during the acute heart failure development. 
Similar disturbances arose in the P-sample not only at the length equal to 0.90 Lmax 
represented here, but for any lengths ≤ 0.95 Lmax. 

(3) 37 mM ≤ Km,Na < 40 mM - extrasystoles arise only due to the direct 
mechanical impacts (length or load diminution) via the mechanism of the 
mechanically modulated calcium overloading. 

The latter range represents a border zone. When Km,Na lied below this zone, 
extrasystoles did not arise in the model in any mechanical conditions. 
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The first Na+-K+ pump inhibition range (Km,Na≥ 110 mM) has many things in 
common with findings obtained by Noble and Varghese [3], who studied effects of 
the almost blocked pump in the Earm-Hilgeman-Noble model of the cardiomyocyte 
ionic currents [13, 14]. In particular, they observed autorhythmic activity which arose 
in response to a single stimulus under strongly reduced Na+-K+ pump function. As 
they showed, the autorhythmic activity in that case resulted from the spontaneous 
Са2+ release from the SR that in turn activated inward current via the Na+-Са2+ 
exchanger. The same processes underlie rhythm disturbances in our simulations for 
Km,Na≥ 110 mM.  Reduction of Na+-K+ pump activity in the second (40 mM ≤ Km,Na < 
110 mM) and the third (37 mM ≤ Km,Na < 40 mM) ranges in our experiments was much 
more moderate than they simulated. Respectively, diastolic [Ca2+]i also increased 
much less and thus could not cause by itself the spontaneous Са2+ release from the SR 
without assistance of the additional MEF mechanisms we found in the model.  

It is important that the predicted mechanism of the Xb-CaTnC-induced 
spontaneous AP generation may be verified in real experiments with a muscle sample.  
First, arrhythmia may be induced in the sample via a cardiac glycoside overdose. 
Then crossbridge attachment may be eliminated in the sample. This may be done 
using BDM (2,3-butanedione 2-monoxime) that prevents actomyosin formation [15]. 
The model predicts that spontaneous APs will vanish after BDM application. 
Moreover, the vanish is predicted to be valid for a significant range of cardiac 
glycoside concentrations inducing rhythm disturbances (corresponding to the found in 
the model range (2) of Na+-K+ pump attenuation: 40 mM ≤ Km,Na < 110 mM). 

4   Arrhythmia Suppression and Contractile Function Recovery  

Here we use the model of the acute heart failure associated with the calcium overload 
to simulate suppression of the rhythm disturbances and restoration of stable 
contractions with amplitudes close to the normal ones. Figure 3 and Table 1 illustrate 
results of several “therapeutic” approaches applied to the P-sample.    

First, it turned out to be quite unexpectedly that reestablishment of the normal Na+-
K+ ATP-ase state did not always provide the recovery of the normal contractions. In 
this case the result substantially depended on the phases of the “acute heart failure” 
development, in which the reestablishment (i.e. the normal value of Km,Na) was done. 

The band under the time axis in Fig. 1 shows such phases for the P-sample: white 
parts of the band indicate the phases where reestablishment of the normal Km,Na 
resulted in the total recovery of both the normal rhythm and normal contraction 
pattern. However, results of the normal Km,Na reestablishment was not so successful 
and stable during the shaded part of the band. Particularly, the reestablishment was 
tested (a) during the extrasystolic sub-phase indicated with the horizontal square 
bracket under Fig. 3; (b) after each low (odd) contraction during the transitional 
alternans sub-phase that succeeded extrasystolic one; (c) after each high (even) 
contraction during the alternans sub-phase. An example of (b) is indicated with the 
vertical arrow under Fig. 3A, and that of (c) – with the double-arrow. The tests 
showed that the normal electromechanical activity recovered totally only in the case 
(c) (see Fig. 3C). In the case (b) the reestablishment of the normal Na+-K+ pump 
resulted in one more transitional extrasystolic phase that passed into the steady-state 
alternans (Fig. 3B). The pattern similar to the latter one arose also in the case (a).  
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Interestingly that, unlike the above data obtained at the sample length equal 0.90 

Lmax, all the rhythm disturbances in the same P-sample at the length equal 0.95 Lmax 
were suppressed as soon as the normal sodium-potassium pump activity (normal 
Km,Na) was recovered, whenever the recovery was imposed during the development of 
the “acute heart failure”.  

It is important that in all the listed above cases (a), (b), (c) the normal 
electromechanical function totally recovered in any mechanical conditions, if the 
pump activity slightly overcame the control level (i.e. to the initial normal state of the 
pump). For instance, the additional increase of the pump activity (via the 5% decrease 
in Km,Na as compared to the reference value) turned out to be sufficient for such a total 
recovery of the P-sample electromechanical behaviour, whenever during the failure 
development the intervention was performed.  

These data suggest that results of drug applications during development of the 
acute heart failure may depend on the mechanical conditions of heart contractions and 
on phases of the heart failure. Moreover, an “over-improvement” of some intracellular 
process may be necessary to approach a stable effect.   

At present time there are practically no drugs which would specifically improve 
only the reduced Na+-K+ pump function. This significantly constricts possibilities of 
the normal pump reestablishment in patients. Therefore in the framework of the  
 

 

Fig. 3. Effects of recovery of the Na+-K+ pump activity at different instants. Panel A: enlarged 
fragment of Fig.1 demonstrating active force of the P-sample during the acute heart failure 
attack at the length 0.90 Lmax with the pacing of 75 stimuli/min. Horizontal square bracket under 
the panel shows a phase where extrasystoles arise spontaneously between the regular 
contractions. This phase is succeeded by the transitional pulsus alternans at the right-hand part 
of the panel where two vertical arrows (the single one and the double-arrow) indicate the 
instants of recovery of the control (normal) Na+-K+ pump state. Namely, the pump was 
recovered alternatively after either the odd or the even contraction during the force alternans. 
Panels B and C successively represent results of both cases of the pump recovery. 
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model we studied various alternative ways to modulate (amplify or attenuate) other 
intracellular mechanisms that may lead to some reduction of the cardiomyocyte Ca2+ 
loading and thus to the recovery of both the normal rhythm and satisfactory 
mechanical characteristics of the contractions without intensifying Na+-K+ pump 
activity. Particularly, such alternative interventions applied to the P-sample gave the 
following results. 

A desired anti-arrhythmic effect resulted from a decrease in the rate of calcium 
uptake by the SR Ca2+ pump, even if the Na+-K+ pump function was not recovered. 
For example, 13% decrease in the rate of the SR calcium uptake suppressed rhythm 
disturbances in the P-sample at 0.95 Lmax, while extrasystoles still arose for the smaller 
cardiomyocyte lengths. Total ‘curing’ of the cardiomyocyte for all the lengths ensued 
from 18% SR Ca2+ uptake rate decrease. The mechanism of the ‘curing’ is as follows. 
Redistribution between SR Ca2+ uptake and Ca2+ removal from the cytosol via the 
Na+-Ca2+ exchange current shifted in favour of the Ca2+ removal from the cell due to 
the slowing down of the SR uptake. Thanks to this shift, the total level of Ca2+ in both 
the SR and cytosol remained lower than the arrhythmogenic thresholds. 

Alternatively, the arrhythmia was suppressed with a decrease in the L-type Ca2+ 
current, iCaL, via respective decrease in the Ca2+ permeability of the L-type channels. 
For example, when it was decreased by 15%, extrasystoles vanished in the P-sample 
at 0.95 Lmax, but they still arose at the smaller lengths. The total ‘curing’ for all the 
lengths was observed with the 20% decrease in iCaL. 

Antiarrhythmic effects were also obtained at all lengths in the case of the Na+-Ca2+ 
exchange acceleration (20% increase in its turnover rate as compared to the normal 
value) or of the 20% decrease in sensitivity of the SR calcium release to [Ca2+]i.  

When the “antiarrhythmic treatment” using one of the above parameters was 
applied after the first extrasystole, the arrhythmia disappeared immediately. However, 
the time for the recovery of steady-state force amplitudes varied depending on each 
particular parameter change within the range of 100÷160 s.  

Finally, the combined effect of simultaneous SR Ca pump activity attenuation and 
a decrease in the L-type Ca2+ current was considered. It is a case of a special 
importance, as in a real heart both effects may result simultaneously from the same 
drug application (β-blockers). It turned out that 11% simultaneous decrease in both 
parameters suppressed the rhythm disturbances at all lengths (compared to the ~20% 
decrease which was necessary in the case of the individual interventions aimed at 
either SR pumping decrease or iCaL decrease). 

Table 1 demonstrates how the SR Ca2+ load ([Ca2+]SR) as well as 2 mechanical 
characteristics of contraction-relaxation (inotropic one: Fm – the peak active force 
during the steady-state contractions, and loositropic one: t30 – relaxation time to 30% 
of Fm) changed in comparison with the control due to the simulated interventions at 
0.90 Lmax. The data for the table were obtained when the steady-state contractions set 
in after the respective intervention.  

Summarizing the suggested “therapeutic” approaches, it may be concluded that all 
of them are aimed at the unloading of the cardiomyocytes overloaded with Ca2+. The 
interventions considered either promote the beat-to-beat calcium removal from the 
cell or slow down calcium beat-to-beat influx into the cytosol. All these methods of 
calcium unloading proved to be palliatives, because Ca2+ level in the SR in all these 
cases remained essentially higher than in norm. As applied to clinical practice, this  
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Table 1. Results of different “treatments” of the P-sample 

SR pump
rate

18%

L-type Ca2+

current

20%

Na+-Ca2+

current

20%

2+ sensitivity
of the SR 2+

release

20%

SR pump rate
& L-type Ca2+

current

11% (both)
Fm 88.5% 95.7% 99.2% 119.7% 94.4%
t30 101.8% 104.1% 108.8% 138.2% 105.3%
[Ca2+]SR 122.9% 122.7% 135.1% 134.2% 119.2%

 
The top row of the table indicates parameter changes as compared to the P-sample. Arrows 
mean an increase (↑) and a decrease (↓) in the parameter values. [Ca2+]SR, Fm and t30 are given 
as a percentage of the corresponding values in the normal cardiomyocyte.  

might be interpreted as follows. If the prime cause of calcium overload is 
unavoidable, the drug application is to be used permanently. Drugs in this situation 
are, in a certain sense, molecular ‘prosthetic tools’ aimed to support impaired native 
mechanisms of calcium homeostasis. Our modeling confirms that β-blockers are 
highly effective drugs for the correction of cardiac electromechanical function, when 
cardiomyocytes are overloaded with calcium. 

[Ca2+]SR values in the table reveal that each particular intervention partially 
relieved SR of Ca2+ as compared with the threshold [Ca2+]SR = 142% (of the norm) in 
the P-sample achieved just before the beginning of the “acute heart failure” attack. 

5   Conclusion 

A mathematical model of the acute heart failure development has been created. The 
model simulates cardiomyocyte electrical and mechanical functions and deals with 
the heart failure associated with the Ca2+ overload. The model suggests that both 
cardiomyocyte mechanical properties (crossbridge attachment/detachment kinetics 
that in turn influence CaTnC kinetics) and mechanical conditions of contractions 
(length, load) may significantly affect a risk of the acute heart failure attack in 
cardiomyocytes moderately overloaded with Ca2+. 

We analyzed in the model a few alternative “therapeutic” approaches aimed to 
decrease calcium loading of cardiomyocytes, and thus to prevent from the “heart 
failure” development. The model predicts that simultaneous decrease in both L-type 
Ca2+ current and SR Ca2+ pumping seems to be the most relevant ‘therapy’ among the 
analyzed approaches. Just similar double action is typical for the effect of β-blockers. 

The model shows that response of a cardiomyocyte to a prompt change of its state 
during alternating contractions may differ principally depending on which particular 
contraction (even or odd) precedes the impact. In the modelled case the impact was an 
instant recovery of the normal Na+-K+ pump activity. Meantime, there are real 
experimental data [16] revealing that another impact (a single extrastimulus) led to 
altering restitution curves depending on even or odd beat preceded the extrastimulus.  
It might be hypothesized that some intrinsic mechanisms underlie different cases of 
such altering responses. This hypothesis may be a subject of a future study.  
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Abstract. We recently introduced a continuous state space parametric
model of spatio-temporal transformations and an algorithm, based on
Kalman filtering, to represent motion in an image sequence describing a
periodic phenomena. One advantage of this method is to simultaneously
take into account all the sequence frames to robustly estimate the pa-
rameters of a unique spatial and periodic-temporal model. However, in
3D+time, a large number of parameters is required. In this paper, we
propose a criterion based on motion energy to locally adapt the trajec-
tory model and thus the temporal complexity of the model. The influence
of the model order is illustrated on true 2D+time Magnetic Resonance
Images (MRI) of the heart in order to motivate the proposed adaptative
criteria. Quantitative results of the proposed adapted spatio-temporal
motion model are given on synthetic 2D+time MRI sequences. Prelim-
inary experiments show a significant impact notably regarding the pa-
rameter saving while preserving the accuracy of the motion estimates.

1 Introduction

Cardiac motion estimation and modeling is particularly helpful for myocardial
function analysis. The last two decades are marked by an important progress
of image acquisition devices making possible to better explore the dynamics
of moving organs. Magnetic Resonance Imaging (MRI) and Multiple Detector
Computed Tomography (MDCT) provide meaningful information about the 3D
anatomy and contractile function of the heart. 3D+time segmentation and mo-
tion estimation from cardiac images are recognized as a difficult pre-requisite
tasks for quantitative analysis of cardiac function. Most of the published works
does not explicitly take into account the time dimension and proceeds itera-
tively from one time point to the next. This results in inconsistent material
point trajectories. However, it is clear, especially for cardiac motion recovery
purpose, that introducing some realistic temporal constraints will greatly im-
prove the estimated motion pattern [1]. In cardiac motion analysis, some recent
works are extension of 2D/3D image registration methods to 2D+time/3D+time
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[2,3]. Time axis is here considered as a supplementary axis which is not quali-
tatively different from the other spatial axes. In a similar way, in [4], the track-
ing of the left ventricle is performed with a 4D B-Spline model whose knots
fit extracted features from Tagged MRI. In a previous paper [5], we intro-
duced a framework based on state-space formulation and Kalman filtering by
imposing a temporal consistency of the estimated motion over the whole im-
age sequence and the whole image space. The periodicity and continuity of
the motion is therefore insured but one of the main drawbacks of the method
might be the number of involved parameters for motion description. This par-
ticular point makes difficult to process a full 3D+time sequence with standard
computers. In this paper, we propose to locally adapt the complexity of the
trajectories according to the magnitude of the underlying motion in order to
focus on the description of the motion in regions which contain the meaning-
ful information. The paper is organized as follows: in the method section, we
briefly recall the model and algorithm proposed in [5] and introduce a criteria
and a new method to locally adapt the complexity of the motion description.
The next section illustrates the influence of the harmonic decomposition or-
der with real 2D+time MRI and give quantitative results about parameters
profit and accuracy of the motion estimation with synthetic 2D+time MRI
sequences.

2 Method

Our method relies on the temporal modeling of free form deformations with a
harmonic decomposition of the control point trajectories. After briefly recalling
the principle, we focus on the proposal of this paper which consists in adapting
the decomposition order of the model according to relevant information present
in the image sequence.

2.1 Spatio-temporal Model

Let consider a periodized image sequence I = {Ij , j = 0..J} (Fig. 1) where
j ∈ Z

+ refers to the discrete time axis and where each image Ij belongs to R
d

and corresponds to the discrete time point tj . This sequence results from the
observation of cardiac motion with tomographic imaging modalities like cardiac
cine-MRI or MDCT.

A Lagragian formulation of the motion consists in describing the path of each
material point P during the motion. The time-dependent coordinates x(t) of P
is expressed according to the reference coordinates x0 at reference time t0. The
spatio-temporal transformation ϕ is a one to one continuous mapping defined
by: R

d ×R → R
d ; x(t) = ϕ(x0, t). In our work, the non-rigid continuous spatial

transformation ϕ is modeled by Free Form Deformations (FFD) [6,7]. It warps
an image by moving an underlying set of control points (CP) distributed over
a regular grid. Instead of considering the displacement of each CP, we are looking
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Fig. 1. Periodization of the image sequence to provide a pseudo infinite set of
observations

for the whole trajectories they have to follow to fully describe the periodical
spatio-temporal cardiac motion under study:

ϕ(x0, t) = x0 + u(x0, t)

ϕ(x0, t) = x0 +
∑

k∈Kinf (x0)

ξk(t)βk(x0). (1)

The displacement u(x0, t) of point P at time t is modeled by a linear combina-
tion of a tensor product of interpolating functions βk (cubic B-Spline functions
in our case) and the position ξk(t) at time t of the CPs. k stands for CP index
and Kinf is the subset of the CPs which influence the motion of P . Thus, the
transformation is continuous, smooth and semi-local.

ξk(t) is a time dependent function representing the d-dimensional path of
CP with index k. In [5], we proposed to express it as a finite sum of periodic
harmonic functions (or truncated Fourier series):

Sξk
(t) = a0

k +
N∑

n=1

[an
k cos(2πnft) + bn

k sin(2πnft)] , (2)

where f is the frequency of the motion to be estimated and N the decomposition
order. The truncation to the first N coefficients of the decomposition is equivalent
to apply a low-pass filter to the trajectory signal. Small values of N result in
very smooth CP trajectories while higher values increase the complexity of the
trajectories. The periodicity property of such a decomposition is very interesting
for the beating heart analysis. Furthermore, velocity and acceleration can be
directly derived and exploited.
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2.2 Parameters Estimation

Spatio-temporal motion estimation for the whole image sequence is performed
by estimating the coefficients of the Fourier series for all the CPs (size = K).
All the parameters are considered as stochastic signals and stored into the state
vector X (eq.(3)) of a state-space formulation (eq.(4)):

Xt =
[
a0

0 a1
0 ... aN

0 b1
0 ... bN

0 | ... | a0
K−1 a1

K−1 ... aN
K−1 b1

K−1 ... bN
K−1

]
. (3)

Xj+1 = AjXj + Γvj

Zj = CjXj + wj (4)

The state vector is not directly measurable but it can be recursively estimated
according to a set of successive measurements Zj . Kalman filter [8] allows to take
into account the whole sequence in a recursive way so that we only need results
of a previous estimation to perform the next Kalman filter iteration. The image
sequence I is periodized ( I|I|I|I..., Fig.(1)) to give a pseudo infinite set of
observations. At each innovation step, the new measurement Zj is computed
from non rigid FFD based registration between image Ij and reference image
I0. The Kalman filter provides a useful prediction of the state to initialize the
registration at each time point.

The registration similarity criterion must be chosen according to the expected
relation between the images to be registered. In the monomodal case, we can
assume that the photometric level of material points remains almost constant
during motion. The sum of squared differences (SSD) measure has therefore been
chosen:

SSDj(I0, Ij , ξ(tj)) =
∑

x∈Ω

(I0(x0) − Ij(ϕ(x0, tj)))2 (5)

with Ω the image overlapping domain. Optimization of the criterion is performed
through a gradient descent algorithm. The obtained value for ξ(tj) stands for
the new measurement Zj to be introduced in the Kalman filter.

The registration algorithm relies on two multi-level pyramidal representa-
tions. A first multiresolution pyramid P1 decomposes the successive observations
within the image sequence I, applying a low-pass Gaussian filter to each image
Ik independently and then, decimating the number of pixels (or voxels). The sec-
ond pyramid P2 allows for the multiscale decomposition of the spatio-temporal
FFD transformation [9,10,3] (see [5] for more details).

2.3 Harmonic Order Adaptation

The total number of parameters increases with the number of CPs and with the
order of decomposition of their trajectories. Let consider a R

d space, a warping
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grid of size M and a harmonic decomposition order N . The transformation is
thus defined by (2N + 1) × d × Md parameters.

We observed that for meaningful areas in the image sequence, a decomposition
order of N = 4 (i.e. 9 parameters to describe a CP trajectory path for d = 2)
is largely sufficient to recover the spatio-temporal motion. The model described
in section 2.1 implies that the number of parameters is the same for each CP
whatever the region it influences. Indeed, the CPs outside of the heart generally
experience a very short trajectory. An adaptation of the harmonic decomposi-
tion would avoid spending too much time for meaningless regions of the image
and, at the same time, reduce the parameter number of the spatio-temporal
model.

We propose to estimate the energy associated to the trajectory of CP with
index k through the Parseval formula:

Ek =
∣∣a0

k

∣∣2 +
1
2

N∑

n=1

(|an
k |2 + |bn

k |2) (6)

The motion estimation starts with N = 0 so that a0
k is the only parameter

to be estimated for each CP. This value corresponds to the mean position of the
kth CP all over the spatio-temporal motion. The overall algorithm (algorithm 1)
consists in alternatively increasing the transformation scale and the image reso-
lution. The algorithm starts with the lower scale of the transformation pyramid
and the lower image resolution. After convergence of the Kalman filter at this
step, a higher level of the transformation is considered. The previous state vector,
which contains the estimated parameters, is used to initialize the state vector
corresponding to the current transformation scale. The projection operation is
performed according to the following scheme:

Xl+1 =
(
↑2 Xl

)
∗ H, (7)

where ↑2 stands for the upsampling operation, l the pyramid level and where,

H =
1√
2

[
1
8

1
2

3
4

1
2

1
8

]
, (8)

is called the mirror filter [11] whose coefficients depend on the interpolating
function β.

The harmonic adaptation step occurs just before the transformation level
change. To this aim, the motion energy of each CP is computed according to
Eq(6). If Ek > μ where μ is a fixed threshold, the harmonic order Nk is in-
cremented. Until now, μ is experimentaly tuned, but some decision criteria are
being investigated.
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Data: I, configuration file and input parameters
Initializations (P1 computation, Image Gradient, Nk = 0);
while CurrentLevel < TotalCurrentLevel do

Initialize Kalman Filter;
while KalmanIteration < MaxKalmanIteration do

Prediction of the State at time k+1;
Initialize registration parameters according to the prediction;
Perform Gradient Descent Search;
Filtering step;
KalmanIteration = KalmanIteration + 1;

end
if Increase transformation level then

Locally adapt the decomposition order Nk;
Project parameters onto next transformation level;
Increase P2 level;
CurrentLevel = CurrentLevel + 1;

else
Increase P1 level;
CurrentLevel = CurrentLevel + 1;

end
end
Result: Spatio-temporal model parameters;

Algorithm 1: Flowchart of the estimation/prediction algorithm with local adapta-
tion of the trajectory complexity

3 Results

For all the tests, the level number of both the image pyramid and the transfor-
mation pyramid are set to 4. The number of cycles used for Kalman convergence
is fixed to 7 for each level of the pyramids (In general, 4 or 5 cycles are sufficient).

3.1 Harmonic Decomposition Order Influence with True 2D+time
MRI Sequences

The ability to capture coarse motion from a reduced spatio-temporal model order
will be studied on a true patient sequence. This sequence has been acquired
using a cine MRI acquisition (1.5T Siemens Magnetom Vision scanner, Helsinki
Medical imaging Center) and is composed of 28 time points covering the cardiac
cycle (Fig 2, first row). A short axis slice was selected in the middle part of the
heart, between the base and the apex. Image dimensions were 160× 160, spatial
resolution was 1mm × 1mm and temporal resolution was 30ms.

Figure 2 shows the values of Ek (Eq.(6)) at different transformation scales (FFD
grid size 5 × 5, 7 × 7, 11× 11, 19 × 19, respectively). Only the first term a0

k of the
Fourier series (i.e. model order N = 0) is considered for all CPs. This corresponds
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(a) (b) (c) (d)

Fig. 2. The first row shows four images from the true MRI sequence during systole.
The second rows illustrates the energy Ek at decomposition order N = 0 (mean term)
for all the CPs. The intensity value in images a-b-c-d) respectively corresponds to the
energy value at different scales of the transformation (one pixel per CP). The FFD grid
size is 5 × 5, 7 × 7, 11 × 11, 19 × 19, respectively. The colorbar is expressed in mm2.

(a) (b)

(c) (d)

Fig. 3. Illustration of the energy Ek with model order N = 0 (a), N = 1 (b), N = 2
(c) and N = 4 (d) for all the CPs and a transformation scale 11 × 11

to the mean CP position over the full cycle. It is clear on this figure that interesting
regions, where motion occurs, are well detected even at order N = 0.

Figure 3 illustrates Ek maps for a fixed transformation scale according to the
decomposition order. We experimentally observed that order N = 4 is enough to
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Table 1. MQE (in mm) and MAE (in degree) between the reference and the estimated
motions fields. All the 22 time-points have been considered to compute the errors. The
last column gives the number of parameters required to obtain the results.

Quadratic error Angular Error Number Of Parameters
Adaptative decomposition 0.24 ± 0.28 3.7 ± 8.0 1 830
Grid Size: 19 × 19; N = 4 0.25 ± 0.29 3.8 ± 8.7 6 498
Grid Size: 19 × 19; N = 2 0.29 ± 0.29 4.1 ± 8.6 3 610

describe the most complex trajectories in the sequence. This value corresponds
to 9 parameters to describe trajectories in each direction and for each CP. It is
a good trade-off between the smoothness of the estimated trajectories and the
number of images in the processed sequences.

3.2 Quantitative Results with Synthetic 2D+time MRI Sequences

Algorithm 1 was applied on a synthetic 2D sequence of a realistic beating heart.
This sequence was generated from an actual 2D MRI short axis slice. The
synthetic motion is defined from a spatio-temporal analytical model described
in [12]. Dimensions of the images are 160×160 pixels and spatial resolutions are
1mm × 1mm. Gaussian noise ( mean = 0, σ = 5 square intensity unit) has been
independently added to each image of the generated sequence. The theoretical
spatio-temporal motion field is used as a reference to assess the performance
of the proposed algorithm in terms of mean quadratic (MQE) and mean an-
gular errors (MAE) over the whole sequence. Because of the high number of
involved parameters, standard computer architectures (with 1Gb of RAM) fail
to converge when N is high and constant for all the CPs. In that case, there
is a trade-off to find between the final FFD grid resolution (spatial resolution)
and the decomposition order (temporal resolution). This problem is overcome
with the proposed method. The Table 1 quantitatively compares our method,

(a) (b) (c)

Fig. 4. Cartography of the harmonic order used for the final motion model a). Dark
pixels correspond to small N values and bright pixels correspond to high values. b) and
c) display the MQE map (mm) for reference and estimated motion fields, respectively.
b) corresponds to the configuration where the FFD grid size is 19 × 19 and N = 4. c)
corresponds to the map associated to the proposed algorithm.
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the case where N = 4 for all CPs of a 19 × 19 FFD grid (computed on a SGI,
64GB RAM) and an acceptable configuration for a standard computer architec-
ture (Grid Size = 19 × 19, N = 2). Results show that the parameter number
is significantly reduced with the proposed method. This important properties
allow to reach the final transformation scale while considering a decomposition
order N = 4 for some of the crucial points for the final spatio-temporal motion
model. A cartography for N is given in Fig 4.a). The accuracy is even increased
(Tab. 1), especially for meaningful areas of the processed sequence as illustrated
in Fig 4.b) c). This is because parameter reduction results in a low-pass filtering
of the background noise.

4 Conclusion

We presented a method to adapt the complexity of a spatio-temporal motion
model to the content of the image sequence. The parameters of a continuous
state space parametric model are estimated by an algorithm, based on Kalman
filtering from an image sequence describing a periodic phenomena. All the se-
quence frames are taken into account to infer the spatio-temporal model. Re-
duction of the parameter number using the proposed approach allows to obtain
a better accuracy. Complementary tests have to be conducted to evaluate the
influence of other method’s parameters. As applied to cardiac imaging, such an
approach allows for the direct determination of motion parameters that can be
exploited for clinical interpretation and diagnosis, helping for instance in the
detection of contraction abnormalities. The parameters profit with the proposed
scheme makes now possible to conduct tests with 3D image sequences.
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Abstract. It has been assumed that myocardial structure is uniform
amongst individuals of a species, and between higher mammalian species.
However, recent studies show that myolaminar structure, a critical com-
ponent in myocardial function, varies markedly between dogs. Diffu-
sion tensor magnetic resonance imaging (DT-MRI) data from 12 canine
hearts is visualised and described qualitatively and quantitatively. Large
confluent zones of primarily positive or negative sheet angles intersect
at approximately 90◦. The location of these stacks and their zones of
intersection differ between dog hearts, but their overall morphology is
consistent. As such there is no single model of adult canine heart struc-
ture; rather cardiac form belongs to a constrained distribution between
extremes of structure. This variation must be considered in the construc-
tion of averaged anatomical atlases of myocardial architecture, where a
range of maps may be required. These could be produced from DT-MRI
datasets grouped by myolaminar structure.

Keywords: Cardiac structure, Diffusion tensor magnetic resonance
imaging.

1 Introduction

Since researchers first set out to mechanistically understand (i.e. model) cardiac
function, the importance of elucidating cardiac muscle fibre architecture has been
appreciated. This architecture determines how the contraction of each individual
myocyte is combined into a single functional four-chamber pump. The linking of
myocytes by gap junctions and desmosomes respectively determine the spread
of electrical excitation and the dynamic distribution of tension throughout the
myocardium during coordinated contraction of the ventricles. The key role played
in this contraction by laminae and the cleavage planes separating them has
previously been demonstrated [2,3]. It is interesting to observe that, despite
the established importance of myocardial structure and the significant research
attention it has received, no definitive or universal schema of cardiac structure
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exists. In fact, considerable disagreement exists between proponents of different
structural models [1].

Streeter [4] synthesised evidence of the regularly coursing helical fibre orien-
tation in the dog, monkey and human, to propose a model of the left ventricle as
nested toroidal geodesics of preferentially branched myocytes. This model was
extended to both ventricles, as nested pretzel geodesics, based on data from op-
tical polarisation microscopy of the foetal human heart [5]. The three layered
ventricle model was proposed by Rushmer in 1953 [6], where the ventricles are
described as superficial, middle and deep layers, with the fibres coursing between
these layers as a continuum (sometimes known as a functional syncytial mesh).
LeGrice et al. [7] proposed a simple laminar model, were the ventricle wall con-
sists of ordered laminae separated by extensive cleavage planes running in an
approximately radial direction. Recent evidence has indicated the existence of
two laminae populations at varying transmural depth [8,9,10,11,12,13], and this
led to the proposition of our model of complex laminar structure [1]. The model
of the ventricles as distinct muscle bundles has been largely rejected, but it is
related to early descriptions of the Helical Ventricular Myocardial Band model,
although this has been developed to take account of evidence of a continuum of
myofibre structure [14].

A principal reason for the many models is the differing levels of structure
approached by different modellers [15].

Although there is still some controversy, it is becoming increasingly evident that
myolaminar architecture is organised, but highly complex [11]. With the develop-
ment of improved imaging modalities, it would seem that a complete mechanistic
model of mammalian myocardial contraction could soon be formulated. However,
DT-MRI and histological studies indicate that, despite uniformity of net myofi-
bre long axis orientation, there are large differences between species in local my-
ocardial sheet structure [8,9,10,11,12,3]. Intriguingly, in addition to this, DT-MRI
evidence shows that there are also large differences in local myocardial structure
between individual dogs [12,13,16]. When sheet orientation was analysed from se-
lected myocardial regions of seven mongrel dogs, a bimodal distribution of sheet
angles was present throughout the hearts with dual peaks at 45.5◦ and 117.6◦ [13].
In histological sheet studies, which examined a number of dogs [8], rats [3,2] and
pigs [9], similar findings were not reported. We explored the variation of cardiac
structure within canines in further detail. Twelve DT-MRI datasets are individ-
ually quantitatively described, allowing the nature of the reported bimodal dis-
tribution of sheet structure to be followed within individuals and between indi-
viduals. A detailed qualitative digital dissection and visualisation of the three di-
mensional sheet angles for the 12 hearts was carried out. Sheet angle distributions
within selected sectors are extracted and compared to the distribution of all heart
sheet angles for the same anatomical sector.

2 Methods

DT-MRI data from nine canine mongrel ex-vivo whole heart scans were ob-
tained courtesy of P. Helm and R. Winslow at the Center for Cardiovascular
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Fig. 1. (a) Diagrammatic representation of the axis fitted to the centre of the left
ventricle and of the distinct axes of the material coordinate system (A subscripts)
and the diffusion tensor (DTI subscripts). (b) Definition of the three axes which pass
through any voxel in the left ventricular wall, and the sheet angle αS. (c) Anterior,
septal, posterior and lateral sectors selected for analysis.

Bioinformatics and Modeling and E. McVeigh at the NIH, and are referred to
here by numbers. These datasets were acquired and pre-processed as described in
[16], and have been compiled into a comprehensive resource of cardiac DT-MRI
data available online at http://www.ccbm.jhu.edu/index.php. We also visualised
DT-MRI data from three mongrel dog hearts acquired from E. Hsu, then at the
Center for In Vivo Microscopy, Duke University: the acquisition of these data was
a whole-ventricle analogue of the technique described in detail previously [17].
Here these datasets are referred to by letters. Each DT-MRI dataset consists of
three orthogonal eigenvectors with corresponding eigenvalues (the diffusion ten-
sor) for each voxel of the corresponding MRI geometry data. The eigenvectors
are ordered, with the primary eigenvector having the largest eigenvalue and the
tertiary eigenvector the smallest.

In order to describe cardiac sheet structure it is necessary to establish a clear
definition of the sheet angle, as the definition of the sheet angle is different between
reports. In this study the sheet angle has been defined as the angle between the
transverse plane and the projection of the secondary eigenvector onto the radial-
longitudinal plane. Positive sheet angles rise to the heart base from endocardium
to epicardium, or LV endocardium to RV endocardium in the septum (Fig. 1b).

There is no uniformly accepted system for reporting cardiac geometrical data,
with some reports adopting a cylindrical coordinate system [18] and others a pro-
late spheroidal system [19]. These alternative coordinate systems (referred to as
material coordinate systems) have been adopted in preference to the Cartesian
system to take account of the anatomic form of the heart. In this study for sim-
plicity we use the cylindrical system (Fig. 1a). A linear apex-base axis was fitted
to the centre of the left ventricle of each heart. The intersection of this apex-base
axis with each MR imaging slice gave the slice centroid. The radial axis for each
voxel was defined as a line perpendicular to the apex-base axis connecting the
centroid and the voxel (Fig. 1b). The tangential axis for each voxel was defined as
the axis orthogonal to the apex base and radial axis. For any particular location
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within the three-dimensional space we then defined three orthogonal reference
planes: i) the transverse plane is approximately the short axis of the heart, with
the apex-base axis normal to this plane; ii) the circumferential-longitudinal plane
lies approximately tangential to the epicardial surface, with the radial axis nor-
mal to this plane; and iii) the radial-longitudinal plane, which is perpendicular
to the transverse and circumferential-longitudinal planes and passes through the
centroid and the voxel. Fibre and sheet angles were calculated with respect to
these three reference planes.

We took the secondary eigenvector to indicate the orientation of the sheet
plane. For any given sheet orientation, the secondary eigenvector can take one
of two directions, both being perpendicular to the local fibre orientation and
lying in the sheet plane but at 180◦ to each other. It was therefore necessary
to apply a polarity to the secondary eigenvector. This was done by flipping the
secondary eigenvector if the angle formed by the circumferential axis and the
projection of the secondary eigenvector onto the transverse plane was less than
180◦. Thus all secondary eigenvectors pointed to the side of the circumferen-
tial axis that was away from the centroid, approximately in an endocardial to
epicardial orientation. Secondary eigenvectors are expected to point principally
in the radial direction [7,10,21,22] and so we calculate the sheet angle as the
angle between the transverse plane and the projection of the secondary eigen-
vector onto the radial plane. This also allows comparisons to data from histo-
logical studies [7,3,19] which were generally taken from slices made in the radial
plane.

In order to demonstrate the sheet architecture in individual hearts, and the
variable distribution of sheet structure between hearts, it was necessary to choose
specific locations from which to extract data. This image segmentation was per-
formed manually using anatomical features. The equatorial slice chosen was the
most basal slice in which both LV papillary muscles are in full contact with the
ventricular walls. We chose four 15◦ wide sectors for data extraction, each sep-
arated by 90◦ (from mid sector). The lateral and septal sectors were located on
a line dividing the right and left ventricles into roughly equal halves. Anterior
and posterior sectors were located on a perpendicular through this line at the
centroid (Fig. 1c). The positioning of the sectors was so as to minimise inclusion
of papillary muscle or right ventricular free wall fusion sites. If it was necessary
to include voxels containing papillary muscle within a sector, these were later
digitally removed by visual inspection.

3 Results

3.1 Sheet Angle Distribution

Sheet angle distributions are shown in Fig. 2.

Pooled Sectors. In the pooled data, anteriorly there is an approximately normal
distribution of sheet angle centred at ∼0◦. In the septum there is a bimodal
distribution with peaks at ∼−45◦ and ∼0◦. In the posterior sector there is a
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Fig. 2. Histograms of sheet angles in 12 normal canine hearts computed using the
secondary eigenvector of diffusion in four anatomical locations. For each heart, sheet
angle distribution in the selected anterior, septal, posterior and lateral sectors of a mid-
heart slice are shown (black in plots) from left to right respectively. The distribution
of the pooled data is shown for comparison (grey in plots). The hearts are ordered so
as to demonstrate a distribution of changing sheet angle properties, from heart 9 (top)
to heart 11 (bottom). The same normalised frequency scale is used throughout each
distribution, except in cases marked by §, where tight angle distributions necessitated
rescaling. Data for numbered hearts from the same group of experimenters, data from
lettered hearts from a second group - see Methods.
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strongly skewed distribution, peaking at ∼−45◦. The lateral free wall has a
bimodal sheet angle population centred at ∼−22◦ and ∼+22◦.

Anterior Sector. The ∼0◦ centred, approximately normally distributed, pooled
anterior sheet angle overlies a much more complex patterns sheet angle distribu-
tion in the individual hearts. Three hearts (15, C, 10) have unimodal distribu-
tions, somewhat resembling the pooled distribution, peaking at ∼0◦. Five hearts
(9, 13, 8, 6, A) have unimodal distributions skewed to negative sheet angle, peak-
ing at ∼−22◦. The remaining four hearts (16, 12, B, 11) have unimodal positive
skewed sheet angle distribution peaking between ∼+22◦ and ∼+67◦. Four hearts
(15, A, C, B) have more narrow distributions of anterior sheet angle.

Septal Sector. Although the pooled distribution in the septal sector is bimodal,
only one heart (15) clearly follows this pattern. Three hearts (9, 6, B) have
unimodal ∼0◦ centred distributions, two (A, C) have negative skewed unimodal
distributions peaking at ∼−22◦. The remaining six hearts (13, 8, 16, 12, 10, 11)
have irregular sheet angle distributions, with a combination of positive and neg-
ative sheet angle across the −90◦ to +90◦ range. These may represent bimodal
distributions obscured by experimental noise. Three hearts (A, C, B) have more
narrow distributions of septal sheet angle.

Posterior Sector. The pooled distribution in the posterior sector is unimodal
with a peak at approximately ∼−45◦. A similar pattern is seen in the individual
angle distributions for eight hearts (9, 15, 13, 8, 6, 16, 12, B). A positive skewed
unimodal distribution is followed by two hearts (10, 11) and two hearts have ∼0◦

centred distributions. There is a similar spread of angle values across the distri-
butions, with no individual hearts having exceptionally narrow distributions.

Lateral Sector. The pooled distribution in the lateral sector is bimodal, but
only two individual hearts follow this pattern (15, 16). Three hearts (13, 6, B)
have unimodal negative distributions centred between ∼−45◦ and ∼−22◦. Three
hearts (A, C, 11) have positive unimodal distributions centred between ∼+22◦

and ∼+45◦ (A, C). Three hearts (9, 13, 12, 10) have sheet angle following a
unimodal distribution centred on ∼0◦. The remaining heart (12) has an irregu-
lar sheet angle distribution, with a combination of positive and negative sheet
angle across the −90◦ to +90◦ range. These may represent a bimodal distribu-
tion obscured by experimental noise. Three hearts (A, C, B) have more narrow
distributions of septal sheet angle.

Three hearts (A, C, B), all from the same data source, have a tighter distri-
bution of sheet angle in all four extracted segments.

3.2 Visualisation

All hearts were visualised in three dimensions and the sheet conformation of
the selected slices studied in detail. The sheet structure visualised on the cut
surface of a short axis slice displays regions of confluent positive or negative
sheet angulation (Fig. 3). These confluent zones of like sheet orientation often
have sharp angular change at their abutments with regions of opposite sheet
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Fig. 3. Visualisation of the sheet angle in the selected equatorial slice of Heart A. (a)
Sheet angle shaded with a grey monochrome angular scale, shown in the scale bar.
(b) White 10◦ contours showing angular change with distance are applied to a black
silhouette of the slice geometry. Regions of slow angular change with distance are black,
and individual contours can be discerned, as in box i. Regions of more rapid angular
change with distance show crowded contours, as in box ii. Regions of near instantaneous
angular change with distance are white due to crowded contours, as in box iii.

angle (visible as white zones in Fig. 3b). The regions of opposite sheet angle
often run adjacently in the circumferential direction. In other cardiac regions,
sheets merge more gently into each other. As such, positive and negative sheets
are not features of a regularly undulating continuum of sheet structure. These
confluent regions are oriented as continuous elongated stacks of like sheet angle
in three-dimensions [1].

4 Discussion

There is a striking amount of variation of sheet angle between individual hearts.
The sheet angle is predominantly positive, negative or planar (close to 0◦) within
any sector depending on individual heart chosen. As a consequence, for the equa-
torial slice selected, some pairs of hearts have similar sheet orientation and other
pairs have different or opposite sheet orientation. Hearts 9 and 15 have similar
sheet orientation in all extracted sectors. Likewise, hearts 16 and 12 have similar
sheet angle in the sectors. However, these pairs have different sheet orientation
to each other in the anterior segment (9 and 15 are negative to planar, 16 and
12 are strongly positive). Visualisation of the three dimensional distribution of
sheet angle conformation [1] shows that this variation in sheet pattern is not lim-
ited to the selected equatorial slices alone, but is a generalised feature. In fact
sheet structure can be seen to follow an inter-individual distribution, with some
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hearts having very similar structure, while other hearts have radically different
structure. Overall there is a continuum of structural form, with some whole heart
sheet conformation forms predominating over others.

Helm et al. [13] showed that sheet angles belong to two populations following
a bimodal distribution with average peaks at 45.5◦ and 117.6◦ in all cardiac
regions where eigenvector sorting was statistically valid (26 out of 30 selected
regions, note that angular scale they adopted and the reported sheet angle differ
from this study). We found bimodal distributions for the pooled values of the
septal and lateral sectors, but not of the anterior and posterior sectors. We also
found that most individual heart sheet angle distributions were unimodal, with
a minority of bimodal distributions. In the anterior and posterior wall we found
the sheet angle to belong to a single population for each individual heart, but
that in some hearts this was a positive population, and in other hearts this was
a negative population.

There are several reasons that may explain why we found less bimodal distri-
butions. The definition of sheet angle adopted by Helm et al. [13] is not the same
as used by us – their sheet angles is defined relative to the tertiary eigenvector
using the prolate spheroidal material coordinate system [19]. Additionally, the
selected regions were at different base-apex locations (apical and basal slices se-
lected rather than equatorial), and different transmural locations (septal sectors
were not studied; anterior, lateral and posterior transmural wall sectors were
subdivided into five regions).

We found a greater proportion of sheet angles to be approximately planar
(−22◦ < Sheet Angle < +22◦). This may be due in part to i) differences in the
definition of the reported angle, and ii) inclusion of hearts A, B and C in this
analysis, which have a greater proportion of planar sheet structure.

The histograms in Fig. 2 show varying smoothness (also apparent in visualisa-
tions in [1]), possibly indicating differences of tissue handling or quality of
DT-MRI imaging. This varying smoothness is also observed in extractions of fi-
bre orientation (data not shown), although the reported regular ∼120◦ change
in fibre helix angle (defined in [1]), from endocardium to epicardium, can easily
be observed in all datasets. Similarly, sheet features in the noisy datasets are less
prominent but have similar morphology to those seen in the smooth datasets. As
such, this variable noise in the data is not an important limitation to this study.

Until recently, research into cardiac structure demonstrated uniformity within
and between mammalian species, and this uniformity has been an assumption in
modelling. The results from this and cited studies suggest that cardiac structure,
although highly ordered, varies significantly between individual mongrel dogs.
The sheet angle orientation of selected regions within and between hearts has
been shown to follow a bimodal distribution [13], but the structure underlying
this phenomenon had not been described. The visualisations in Fig. 3 suggest
that cardiac structure has an intricate architecture of merging sheet popula-
tions, which meet obliquely in the short-axis cardiac circumference. The precise
location of these abutments varies from heart to heart, and some hearts have
opposite sheet polarity to others at a selected anatomical location.
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The combined quantitative and qualitative analysis of sheet angle presented
here allows examination of the variation in structure between hearts. Detail of the
spatial relationships between sheets in three dimensions, and their association
with fibre structure, can be seen in three dimensional visualisations of DT-MRI
fibre angle and sheet angle – see [1] for the canine data discussed here, [10]
for mouse, [22] for rabbit and [12,13] for dog. Further understanding of these
complex spatial relationships can be obtained from algorithmic fibre and sheet
tracking studies, reviewed in [1].

An implication of the results is that there is no single model of the adult
canine heart; rather cardiac form belongs to a constrained distribution between
extremes of structure. It is hypothesised that this variation could be a factor in
canine breed-specific developmental cardiac disease and, if this inter-individual
variation extends to man, it could be important in human myocardial disease
predisposition. Are some sheet conformations more efficient, more resistant to
myocardial failure or of different electrical conduction and arrythmogenesis po-
tential? Do inbred populations such as laboratory rats and mice have more uni-
form cardiac sheet structure, as suggested by the data [2]?

A further implication of the highly variable sheet structure between individual
hearts is that image registration methods may produce meaningless results. An
averaged sheet structure will lose the intricacy of sheet architecture and will
define a regional sheet orientation opposite in polarity to some of the individual
hearts on which it is based. If such methods are to be used, an analysis of cardiac
sheet structure should first be performed by visualisation and quantification to
select a series of hearts with broadly similar sheet architecture.
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Abstract. In this paper, a statistical atlas of DT-MRIs based on a pop-
ulation of nine ex vivo normal canine hearts is compared with a human
cardiac DT-MRI and with a synthetic model of the fibre orientation.
The aim of this paper is to perform a statistical inter-species comparison
of the cardiac fibre architecture and to assess the quality of a synthetic
description of the fibre orientation. We present the framework to build
a statistical atlas of cardiac DT-MRIs providing a mean and a covari-
ance matrix of diffusion tensors at each voxel of an average geometry.
The comparison of human and synthetic data with this atlas involves
the non-rigid registration into the average atlas geometry where voxel to
voxel comparison can be performed. For each eigenvector of the diffusion
tensors, we compute the angular difference with the average atlas and
its Mahalanobis distance to the canine population. The results show a
better consistence of the fibre orientation than the laminar sheet orien-
tation between the human and the canine heart, while the homogeneous
synthetic model appears to be too simple compared to the complexity of
real cardiac geometry and fibre architecture.

1 Introduction

The cardiac fibre architecture plays a key role in normal and pathological heart
functions. For many years, the orientation of these fibres and their arrangement
in laminar sheets have been studied with histological slices [22, 13]. Recently, the
measurements of fibre structure have been eased with diffusion tensor magnetic
imaging (DT-MRI) since a correlation between the myocardium fibre architecture
and diffusion tensors has been shown [19, 10]. The acquisition of high resolution
in vivo DT-MRI is a very challenging task due to cardiac motion [8]. Hence, mod-
eling the cardiac fibre architecture [4, 12, 18] is essential for clinical applications
such as the planning of patient-specific cardiac therapies [21]. This architecture
has been included into an electromechanical model based on a single canine DT-
MRI acquisition of an ex vivo heart [20] or a synthetic model [21] registered on the
patient data. These electromechanical models are usually limited to the cardiac
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fibre orientation whereas the laminar sheets have been shown to contribute to the
cardiac motion [3, 7, 14, 24], especially for a better electromechanical modeling of
the wall thickening and the apico-basal torsion.

We propose here to compare a statistical atlas of the complete cardiac fibre
architecture of a population of nine ex vivo canine hearts with a human heart
and a synthetic model used in [21]. The inter-species comparison of the cardiac
fibre architecture is a first step to assess the relevance of a canine statistical atlas
for clinical applications. A one-to-one comparison between the synthetic model
and the canine hearts has already been performed [23] but the quantification
of their differences was limited to the percentage of angular differences below a
given threshold. We propose here to extend these studies comparing the synthetic
model with a statistical atlas including an information about the variability of
the population. We also study the spatial distribution of their differences to
know where the synthetic model needs to be improved.

First, we present an extension of the framework for building a statistical atlas
of the cardiac fibre architecture proposed in [17]. Second, we perform an inter-
species comparison of the cardiac fibre architecture between a human heart and
a population of canine hearts. Finally, we compare the synthetic model used for
electromechanical modeling with the statistical atlas.

2 Data Acquisition

We used a DT-MRIs dataset of ex vivo fixed normal hearts (9 canine and 1
human) acquired [11] by the Center of Cardiovascular Bioinformatics and Mod-
eling (CCBM) at the Johns Hopkins University and available on the internet1.
Each heart was placed in an acrylic container filled with Fomblin, a perfluo-
ropolyether (Ausimon, Thorofare, NJ). Fomblin has a low dielectric effect and
minimal MR signal thereby increasing contrast and eliminating unwanted sus-
ceptibility artifacts near the boundaries of the heart. The long axis of the hearts
were aligned with the z-axis of the scanner. Images were acquired with a 4-
element knee phased array coil on a 1.5 T GE CV/i MRI Scanner (GE, Medical
System, Wausheka, WI) using a gradient system (from 14 to 28 gradients) with
40 mT/m maximum gradient amplitude and a 150 T/m/s slew rate. The reso-
lution of the images are around 0.3 × 0.3 × 0.9 mm3 per voxel. The acquisition
temperature was different from one heart to another in a range from 18 to 25◦C.

3 Construction of the Statistical Atlas

The construction of the statistical atlas of the cardiac fibre architecture is based
on a framework [17] using the Log-Euclidean metric [2]. We modified this frame-
work providing an average cardiac geometry that includes both atria and where
diffusion tensors are normalized to minimize the influence of acquisition param-
eters on statistics. We also relied on another reorientation strategy [1] in the
diffusion tensor registration process.
1 http://www.ccbm.jhu.edu/research/DTMRIDS.php
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Pre-Processing: First, we apply a basic threshold to the DT-MRIs based on
the Log-Euclidean norm [2] to segment the meaningful cardiac structures in
terms of cardiac fibre architecture. While our previous work [17] was focusing
on the compact myocardium of the ventricles, we extend the construction of
the atlas to the atria. To avoid any influence of the dispersion of the diffusion
rates that are not due to an intrinsic variability between hearts such as the
temperature of acquisition, we perform a global normalization of each diffusion
tensor field to equalize the average value of the histogram of the norm of diffusion
tensors of each heart. The statistical analysis of the diffusion rates can still
give an information about the spatial variability of diffusion rates. The resulting
normalized atlas is finally scaled by the average of all these normalization factors
to include realistic averaged diffusion rates.

Fig. 1. [Left ] Registration of anatomical MRIs using an iterative process averaging the
intensities (light and dark grey) and the shape (circles and squares) of the dataset
(from Guimond et al. [9]). [Right ] The iterative registration process uses the average
geometry as a reference for the next step. The deformation field T n

i is a composition
of an affine transformation S (in our case a non-uniform scaling transformation) and
a non-rigid deformation.

Registration of the Anatomical MRIs: The core of the registration algo-
rithm is exactly the same as the one we already presented [17]. First, we proceed
to a global registration based on a non-uniform similarity transformation de-
fined by three manually located landmarks: the apex and the two corner points
in the valve plane. Secondly, to find the residual non-rigid deformation we use
a hybrid intensity- and landmark-based registration algorithm [5]. With this al-
gorithm we can interactively select pairs of landmarks which will constrain the
non-rigid intensity-based registration. This hybrid algorithm can be used with
any intensity-based registration algorithm and in this case, we combine it with
a diffeomorphic registration algorithm [6] based on the mutual information.

In this framework, the geometry of the average anatomical MRI is the ge-
ometry of a chosen reference heart. We propose here to add to this framework
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an iterative process that converges to an average geometry and intensities of
anatomical MRIs. We based this modification on the brain averaging strategy
proposed by Guimond et al. [9]. We iteratively build an average geometry while
we register the dataset on it. We first register the dataset of images {Ii}i=1,...N

on the current reference image In
mean (the initial reference image I0

mean is chosen
among the dataset) according to the steps described at the beginning of this
section. The resulting deformation fields T n

i registering the initial images Ii

to the current reference image In
mean are averaged. The inverse of this average

deformation field T n
mean is applied to the current reference image In

mean which
then gets closer to a barycentric geometry of the dataset (see Fig. 1). Finally,
the intensities are averaged in this new average geometry. Therefore through
the deformation fields T n

i , the original geometry and intensities of each heart
are taken into account in the new average heart In+1

mean. One iteration can be
summarized in the following equation:

In+1
mean(x) =

1
N

N∑

i=1

Ii

(
T n

i ◦ [T n
mean]−1(x)

)

where:

x is the voxel position,
Ii is the anatomical MRI of the sample i where i = 1 · · · N (N = 9 in our case),
In

mean is the current average anatomical MRI at the step n,
T n

i is the deformation field matching the current average image In
mean to Ii,

T n
mean = 1

N

N∑

i=1

T n
i is the average deformation field at the step n.

These steps are repeated using the new average heart In+1
mean as the reference

geometry until it converges. In practice, a few iterations are sufficient to get a
stable geometry. Finally, the outputs of this process are an average geometry
and intensities of the anatomical MRIs and a dense deformation field for each
heart of the dataset.

Registration of the DT-MRIs: Since the anatomical MRIs and the DT-MRIs
are co-acquired, we can apply directly the deformation fields obtained in the pre-
vious section to the DT-MRIs. We use the Log-Euclidean metric to interpolate
diffusion tensors, and the Finite Strain (FS) reorientation strategy is preferred
to the Preservation of the Principal Direction (PPD) [1] to transform the ten-
sors. Indeed, the FS has the property to preserve the gradient of the diffusion
tensor field and thus the transmural variations of the fibre and laminar sheet
orientations known to be common features between hearts. Furthermore, this
reorientation strategy is consistent with the similarity-invariant Log-Euclidean
metric used afterwards. The statistics computed with the Log-Euclidean metric
should not depend on the reference geometry which would not be the case with
the PPD where the reorientation depends on the original tensor.

Statistics: The Log-Euclidean framework [2] provides a consistent and rigor-
ous framework to study the statistical variability of diffusion tensors. Indeed,
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Fig. 2. [Upper Left ] Average geometry of the canine hearts. [Upper Middle] Side view
of fibre tracking computed on the average DT-MRI. [Upper Right ] Fibre tracking on a
few slices of the average DT-MRI to show the transmural variation of fibre orientation.
[Down] Transmural variation of the laminar sheet orientation. Tensor visualization with
cylinders. The base of the cylinder is the plane given by the primary and secondary
eigenvectors. The height of the cylinder shows the laminar sheet orientation. The colors
describe the orientation of the primary eigenvector according to the color sphere.

in this framework the space of diffusion tensors becomes a vector space where
the statistics are consistent with the positivity constraint of the diffusion ten-
sors. We compute the Log-Euclidean mean Dlog of all the registered DT-MRIs
{Di}i=1,...N and the corresponding unbiased covariance matrix Cov of the whole
diffusion tensors [15] at each voxel x of the average geometry:

Dlog(x) = exp
(

1
N

N∑

i=1

log
(
Di(x)

))

Cov(x) = 1
N − 1

N∑

i=1

vec
(
ΔDi(x)

)
.vec

(
ΔDi(x)

)t

where:

N is the size of the dataset,
ΔDi(x) = log

(
Di(x)

)
− log

(
Dlog(x)

)
,

vec(D) = (D11,
√

2D12, D22,
√

2D31,
√

2D32, D33)t is the minimal representation [15]
of the diffusion tensor D = (Dij)i,j=1,2,3

We project this covariance matrix of diffusion tensors along specific directions
in the tangent plane at the mean diffusion tensor to extract the variances of the
eigenvalues and eigenvectors orientations [16].



418 J.-M. Peyrat et al.

Resulting Statistical Atlas: We applied this framework to the dataset of 9
canine hearts presented previously in Section 2. We obtain an average geometry
and a smooth cardiac DT-MRI atlas describing the whole cardiac fibre archi-
tecture: the fibre and laminar sheet orientations (see Fig. 2). The norm of the
covariance matrix, homogeneous to a ratio, shows a global stability of the car-
diac fibre architecture among the population of canine hearts (see Fig. 3). The
average variability of the whole diffusion tensor is around 10%. A higher norm
of the covariance matrix at the RV and LV endocardial apices and in the pap-
illary muscles reveals regions where the fibre structure is probably not as much
structured as the compact myocardium.

Fig. 3. Global variability
√

Tr(Cov) (homogeneous to a ratio and expressed as a
percentage) of the whole tensor in three different orthogonal views: a short axis and 2
long axis views

4 Comparisons of Cardiac Fibre Architectures

4.1 Comparison Measures

Any given new dataset can be registered with the atlas using the presented
methodology. Then we perform the comparison using different measures:

– the normalized Mahalanobis distance μ̃ to the atlas at each voxel, given
by the formula [15]: μ̃2(Dlog, Dheart) = 1

dvec(ΔD)t.Cov−1.vec(ΔD) where
d = 6 is the dimension of the diffusion tensors space.

– the spatial distribution of the angular difference of the primary eigenvector
(see Fig. 5).

– the histograms of the angular difference of the eigenvectors with the atlas,
for a qualitative statistical comparison (see Fig. 6, left column).

– the histograms of the Mahalanobis distance of the eigenvectors orientation
to the atlas, for a quantitative statistical comparison (see Fig. 6, right col-
umn). This gives the angular differences of the eigenvectors normalized by
the variance of the statistical atlas at each voxel. Thus, we measure the dif-
ference of the eigenvectors orientation according to its dispersion among the
population used to build the atlas.

A synthetic view of the histogram comparison is then given by the mode of the
distributions (see Table 1).
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4.2 Atlas Comparisons with a Human Heart and a Synthetic Model

We proceed to a limited inter-species comparison of the fibre architecture be-
tween human and canine hearts. Indeed, the difficulty to obtain normal human
hearts for research purpose (normal hearts are preferably used for transplanta-
tion) is the main obstacle to the building of a human atlas. In our case, only one
human heart is available in the JHU database, and the quality of this dataset
is lower than those of canine hearts. The mode of the normalized Mahalanobis
distance is 1.49 whereas it is lower than 1 for canine hearts of the dataset. Most
of the important differences are located in the right ventricular wall and part of
the septum. In Fig. 6 and Table 1, we observe that the fibre orientation of the
human heart is closer to the canine population than its laminar sheet orientation.

Fig. 4. [Left ] Geometry of the synthetic model. [Middle and Right ] Elevation angle
of the synthetic fibre orientation in short axis and long axis views (from Sermesant et
al. [21]).

Fig. 5. [Up] Angle between the primary eigenvector of the atlas and the human heart.
[Down] Angle between the primary eigenvector of the atlas and the fibre orientation of
the synthetic model. (one short axis and two long axis views).
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Fig. 6. [Left Column] Normalized histograms of the primary, secondary and tertiary
eigenvectors variations around their mean. [Right Column] Mahalanobis distance of the
primary, secondary and tertiary eigenvectors variations around their mean.

Table 1. Modes of the distributions of the angular differences of the eigenvectors and
their Mahalanobis distances (respectively in degrees and % of the variance)

Eigenvector/Heart Sum of Canine Histograms Human Hist. Synthetic Model Hist.
Primary 6.9◦ - 58% 10.1◦ - 81% 19.6◦ - 95%

Secondary 11.6◦ - 57% 36.2◦ - 115% -
Tertiary 11.4◦ - 46% 29.1◦ - 109% -

The synthetic model proposed in [21] describes the fibre orientation in an
ellipsoidal template geometry of the ventricle(see Fig. 4). The orientation differ-
ence between the primary eigenvector of the atlas and the fibre orientation of the
synthetic model has a mode of 19.6 degrees while the mode for the canine hearts
is 6.9 degrees, and respectively 0.95 and 0.58 for the mode of its Mahalanobis
distance (see Fig. 6 and Table 1). The synthetic model is clearly different from
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the population of canine hearts. For instance, we observe in the short axis view
a modeling problem at the crossing of the two ventricular walls. Indeed, the
synthetic model has an important discontinuity in this region. Furthermore, the
synthetic approach reaches its limits at the right ventricular and left ventricular
apices (see Fig. 5) where the fibre organization modeling probably needs dif-
ferent analytical laws from the compact myocardium. The ellipsoidal geometry
and the fibre orientation of the synthetic model are too simple to be realistic in
catching all the subtle variations of the fibre orientation.

5 Conclusion and Perspectives

We presented here a framework for building a statistical atlas of cardiac fibre
architecture in an average geometry. This statistical framework can be extended
to perform the comparisons between specimen or species. The resulting atlas has
been compared to a human heart and a synthetic model of the fibre orientation.
In the case of the human heart, we observed more differences on the laminar sheet
orientation than on the fibre orientation. The synthetic model seems to need
some improvements for a better description of the fibre organization, especially
adding an accurate description of the laminar sheet orientation. Having access to
canine and human heart databases of greater size should help in improving the
relevance of the statistical atlas and the inter-species comparisons. The effects
of these differences on the electromechanical behavior still remain to be studied
for a complete evaluation of the relevance to use such atlases in patient-specific
clinical applications.
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Abstract. Quantitative measurements of the coronary artery tree sub-
structures from Cardiac Multislice-CT data sets is an important goal
to improve the diagnosis and treatment of coronary artery disease. This
paper presents an algorithm based on morphological grayscale recon-
struction through 2D slice images devoted to the extraction of the 3D
coronary artery tree. The proposed procedure is conceived as a first step
prior to the segmentation and inspection of interesting substructures in
the coronaries. The correct extraction of the left coronary arteries has
been validated in 9 CT-datasets with satisfactory results, particularly
concerning speed and robustness.

1 Introduction

The conventional way of imaging coronary arteries is by using invasive coro-
nary angiography, but this technique implies invasive clinical procedures and
risks to the patient. Multislice CT (MSCT) imaging is a recent non-invasive
imaging technique that provides high resolution data of the heart anatomy. An
intravenous contrast agent is used to enhance the visibility of blood, and conse-
quently the vessels. Areas containing the contrast agent are highlighted in the
resultant output images as they have a larger Hounsfield value. Segmentation
of the coronary arteries provide a valuable tool for clinicians interested in the
detection and quantification of plaques, calcifications or stenosis. However, seg-
mentation of the coronary tree is a difficult task due to low contrast conditions,
the vicinity to the heart cavities, and its complex structure, including branching
and curvatures. On the other hand, the clinical context demands minimal user
interaction procedures, as well as fast and efficient algorithms.

In medical imaging, vessel segmentation (see a very complete review in [1])
is the core of many diagnosis systems that perfom vessel analysis and visualiza-
tion, and it may also be required in therapeutic tools such as computer-guided
surgery. However, vessel segmentation is still an open problem and many meth-
ods have been proposed depending on the imaging modality, the human interac-
tion required and many other factors. Concerning segmentation of the coronary
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tree from MSCT, in [2] the segmentation is achieved using a combination of
thresholding, region-growing, and morphological operations. Although a very
good visualization interface is provided, the segmentation algorithm uncorrectly
selects areas that do not belong to the coronary tree. In [3], a particle-based
approach to vessel segmentation is performed with interesting results, but non
principal branches are missed. Regarding other segmentations methods, we find
that level-sets are not suited for real-time applications as they are computation-
ally time-consuming; parametric cylindrical models may not be suited for the
non-linear vessel structures and region-growing techniques may be sensitive to
local conditions. Because of these difficulties for the accurate detection of the
whole coronary tree, we propose to decompose the segmentation task in two
different phases; a first phase would deal with the extraction of the coronary
tree and in a second phase the coronary substructures would be segmented and
classified into regions such as lumen, plaque or calcium. In this paper we propose
a solution to the first phase of this scheme using a fast segmentation technique
based on mathematical morphology that extracts the 3D coronary tree from an
initial seed point given by the human expert. In order not to bias the poste-
rior quantitative segmentation two important requirements for the extraction
method should be taken into account: not losing any coronary information and
maintaining the local intensity differences. On the other hand we also make the
hypothesis that the vessel is a causal structure in the sense that there is no pos-
sibility for the artery to grow backwards. It should be noted that the extraction
of the coronary tree is very useful on its own as it clearly facilitates the visual
inspection of the coronaries with minimal user interaction through longitudinal
and transversal sections or using rendering techniques.

This article is organized as follows: firstly, we present the MACTSE (Morpho-
logical algorithm for causal tubular structures extraction) algorithm used for the
coronary tree extraction giving the implementation details. Then we present and
discuss the results on 9 clinical data sets in which the correct extraction of the
left coronary arteries has been evaluated by an expert.

2 Morphological Algorithm for Causal Tubular
Structures Extraction (MACTSE)

2.1 Theorical Framework

Mathematical morphology is a nonlinear image processing technique based on
geometric analysis that allows to incorporate to the algorithms a priori knowl-
edge of shapes, such as the narrow tubular branching structures of the coronary
tree. A tutorial on the technique can be found in [4]. These techniques have
been widely used in vessel extraction with successful results [5] and also in seg-
mentation and quantification of 2D angiograms [6,7]. Morphological grayscale
reconstruction methods through 2D slice images have been previously used in
[8] for the segmentation of the airway tree with successful results. In the case
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of the coronary artery tree, the image conditions are different as there are not
as many scale changes in the coronary arteries as in bronchia and the existence
of other surrounding structures may compromise the segmentation process. In
order to solve this challenging problem we propose to use a 2D morphological
reconstruction by dilation that is propagated through the slices. A priori in-
formation of the coronary radius and the z-axis sampling is used to define the
size of the object that is being searched and the area of search in the next slice
respectively.

2.2 General Architecture

The proposed procedure can be sketched in the following steps (see fig. 1):

1. The human expert selects a seed point in the first slice where the coronary
artery is found.

2. The proposed segmentation method (detailed in section 2.3) is performed
from the seed point in the 2D slice i.

3. A set of potential seed points is automatically generated for the morpholog-
ical segmentation of the slice i + 1.

4. Steps 2 and 3 are repeated until there are no potential seeds for the prolon-
gation of the tubular structure.

Fig. 1. Scheme of the architecture of MACTSE

2.3 Implementation Details

In order to clarify nomenclature, we introduce some basic morphological opera-
tors that can be applied to an image G. The two elementary operations are dila-
tion δB(G) and erosion εB(G) and can be composed together to yield a new set of
operators given by opening γB(G) = δB[εB(G)] and closing ϕB(G) = εB[δB(G)].
Morphological openings (closings) filter out light (dark) structures from the
images according to the predefined size and shape criterion of the structuring
element.

The main morphologic al operator we use is the morphological reconstruc-
tion by dilation [9] which consists in an iterative process of geodesic dilations of
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the marker image inside the source image until stability. We denote by M the
marker image generated from the seed points. The geodesic dilation of size k
with structuring element B of the marker image M with respect to the image G
is δk

G(M) = δ1
Gδk−1

G (M), where δ1
G(M) = δB(M)∧G; δ1

G(M) indicates a dilation
of image M by the structuring element B restricted to G. The reconstruction
by dilation of image G from marker M , is denoted RB(M, G) = δk

G(M) where k
is chosen such that δk

G(M) = δk+1
G (M) (idempotence).

Hereafter we present the MACTSE algorithm (see an example in fig. 2). Let
Si be the first slice where it is possible to find a coronary artery, Mi the seed
selected by the human expert and Br is a disc structuring element of radius r.
MACTSE works as follows:

A) Segmentation of the 2D slice Si. A reconstruction by dilation is per-
formed on the original image highlighting the marked regions (Mi) (see
fig. 3). Then the top-hat opening by reconstruction is used to extract only
the bright sections of tubular-like structures (SGi).
1. (IRi) = RB1(Mi, Si)
2. (SGi) = (IRi) − RB1(γBμ1

(IRi), IRi)
B) Generation of potential seed points for the segmentation of slice

Si+1. The new seed points for the following slice segmentation will be gen-
erated searching in an area of higher probability that is obtained from the
segmentation of slice Si. We denote this region as associative field Ai and
it is created by the dilation of the binary mask of the segmentation of the slice

Si Mi IRi SGi

Si+1 (MSi) Ai Bi+1

Mi+1 IRi+1 SGi+1 Ai+1

Fig. 2. MACTSE procedure example
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Si thresholding with a value λ. Then the selected seed points correspond
to the regional maxima from the intersection of the associative field Ai and
Si+1.
3. (MSi) = Thresholdλ(SGi)
4. (Ai) = δBμ2

(MSi)
5. (Bi+1) = (Si+1) ∧ (Ai)
6. (Mi+1) = RegionalMaxima(Bi+1)

C) Stopping criterion.The process (A) and (B) are repeated until no potential
seed points for the next slices are generated.
7. If (Mi+1) = 0 then [end] else repeat steps 1 to 6 for [(Mi+1, Si+1)]

Notice that the output is not a binary segmentation, but a grey-level recon-
struction of the regions with levels of intensity in each slice corresponding to the
difference from the vessel to the background (the plateau around the vessel).

Fig. 3. Scheme of the segmentation of the vessel candidates in one slice

Prior knowledge from the image characteristics is used to adjust the algorithm
parameters μ1 and μ2(see fig. 4). These values correspond to the radius of the
structuring elements used in the steps 2 and 4. On the one hand, we define
the concept of associative field as the region where there is high probability
to find the continuation of the vessel. It is adjusted depending on the distance
between two slices, μ2 = f(ΔZslice(i),slice(i+1)). This parameter allows tracking
the tubular structure even in undersampled z-axis images where the continuation
of the tube is not so closely aligned in two consecutive slices. On the other hand,
the fact that all the cross-sections of a cylinder have at least one direction of a
size equal to the diameter is used to adjust the size parameter μ1.

Generally, the segmentation results may be mathematically described as a
function of the parameters regarding the property of ordering preservation of
morphological operators. These order relationships allow us to construct a hier-
archy of embedded segmentations with increasing segmented volume and details
by modifying μ1 ↑, μ2 ↑ or λ ↓. Regarding the dependence on the parameters we
find that if μ1 ↑ or λ ↓, smaller structures are detected: overdetections may occur
and all the small branches are tracked. If μ2 ↑, more potential vessel candidates
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Fig. 4. μ2 and μ1 are the radius of the ball structuring elements used to define re-
spectively the associative field and the tubular vessel size

are marked and consequently more details are captured. Modifying parameters
in this way allows the user to tune the algorithm easily because of these order
relationships and the small variability of each parameter.

3 Coronary Artery Segmentation from CT-Images

3.1 Data Analyzed

The reconstruction algorithm has been tested on 9 3D-MSCT data sets. The
images were acquired with a Toshiba Aquilion 16 CT scanner with a slice res-
olution of 0.5mm and a slice spacing of 0.5mm (isotropic). Five of the cases
present minimal or inexistent lesions. The other four cases present medium or
severe problems. The original data has a size of 512x512 in the horizontal plane
and between 200 and 300 slices for the z-axis. No pre-processing has been done
in the images. The number and length of visible coronary artery segments dif-
fers largely in the set of patient data particularly in the pathological cases. We
restricted the analysis to the left coronary arteries: the left anterior descending
(LAD) coronary artery and the left circumflex (LCX) coronary artery and their
branches. The coronary extraction results have been visually evaluated by an
expert.

3.2 Extraction Results and Discussion

Table 1 shows the expert evaluation of the severity of the lesions and image
quality of the 9 data sets analyzed, together with the assessment of the extraction
results. The main branches LAD and LCX are correctly extracted in all cases
but patient f . The extraction is satisfactory both for the coronaries without
lesions (see fig. 5) and for pathological cases (see fig. 6). The misdetection of
LAD in patient f is due to the low image quality, severe lesions and mainly to
the presence of a stent that make the signal to be very fuzzy in one slice.

The algorithm parameters have been manually tuned in each case in order to
achieve the best reconstruction. In all the cases the optimal choice for the three
parameters corresponds to the following range: μ1 ∈ {8, 9, 10}, μ2 ∈ {2, 3, 4},
λ ∈ {1, 2, 3}. A choice of μ1 = 8, μ2 = 3, λ = 3 provides acceptable results de-
tecting the main branches in 5 of the cases. The small range of variability of the
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Table 1. Segmentation results. Legend: (i) Severity of the pathology: no calcium(1)-
multiple lesions(4); (ii) Image quality: bad(1)-excellent(4); (iii) Main branches detec-
tion: Yes/No; (iv) Artifacts: No/Ventricular wall - W (in parenthesis the starting point
of the artifacts expressed as a proportion of the heart length)/Vein ; (v) Small branches
tracking: poor(1)-excellent(4)

Patient Severity Image quality Main branches Artifacts Small branches
a 1 3 Yes V 4
b 1 1 Yes W( 3

4 ) 1
c 1 4 Yes V 3
d 2 4 Yes No 2
e 2 4 Yes W( 2

3 ) 3
f 3,stent 2 NO LAD No 1
g 4 3 Yes No 3
h 4 3 Yes W( 1

2 ) 3
i 4,stent 3 Yes W( 3

4 ) 3

Fig. 5. Left coronary tree without lesions. Video renderings are available at
www.die.upm.es/im/videos/CT/.

parameters could be interesting for the implementation of a user interaction in-
terface in order to perform the fine tuning. The main drawback of the algorithm
is the extraction in most of the cases of regions that do not correspond to the
coronaries in the lowest half of the vessel tree. In cases b, e, h, i, these regions cor-
respond to structures located in the low ventricular wall with granulated texture
that is interpreted by the algorithm as potential bifurcations of the artery. In
cases a, c a vein that crosses very near the arteries is selected. This overdetection
could be avoided tuning the parameters, however the smaller branches wouldn’t
be detected.

The main advantages of the proposed approach in comparison to other meth-
ods, specially those who work with the 3D volume, is its independence from in-
tensity variations during the acquisition procedure. Because of the local nature
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Fig. 6. Left coronary tree with severe calcifications. The isosurfaces superimposed to
the rendering are at calcium-level intensity.

of the residues of the morphological reconstruction during the 2D slice analysis,
the algorithm is able to follow the arteries in the presence of intensity changes
between two slices (which is an important problem for the commercial stations).
The algorithm also behaves in a robust way in presence of horizontal shifts be-
tween two slices because the associative field permits to track the vessel even
if it is misaligned. Concerning computational efficiency, reconstructions are per-
formed in less than 15 seconds in a PentiumIV 3.2GHz, RAM-2GB.

4 Conclusions and Perspectives

The proposed algorithm performs an efficient extraction of the coronary tree from
a seed-point initialization. The algorithm is designed to minimize the loss of in-
teresting structures, but in some cases overdetects adjacent regions in the more
distal areas of the tree. It behaves in a robust way in the presence of intensity
variations or displacement shifts. It works well also in z subsampled volumes,
a feature that could be used either to gain speed or to reduce the radiation
dose to the patient. A larger validation process including different pathologies
should be done. Concerning MACTSE, the most interesting improvement would
be to modify the dilation that provides the associative field by deforming the
structuring element according to the direction of the vessel in previous frames.
Further developments will be devoted to assist in the diagnosis of unhealthy ar-
teries with quantitative data. Current state-of-the-art measurements in order to
obtain a quantitative estimation of stenosis or aneurysms are based on crosssec-
tional areas of vessels at different locations[10]. These measurements are strongly
dependent on the estimation of the central axis which is a sensitive task specially
in the presence of stenosis. As an alternative methodology, our future workplan
is to develop directly a three dimensional classification in the extracted coro-
nary tree based on the Hounsfield density values associated to each tissue and
to measure volumetric parameters.
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Abstract. We present an original Radial Basis Functions-based mul-
tiphase level set approach for the segmentation of cardiac structures in
echocardiography. The method relies on two main contributions. We first
describe a distribution allowing for the modeling of the radiofrequency
signal for both blood and myocardial regions. We then formulate the
problem of segmenting several cardiac regions in echocardiography using
a Maximum Likelihood framework based on the proposed distribution.
We minimize the resulting functional using a RBF-based multiphase level
set model. Results obtained on both simulation and data acquired in vivo
demonstrate the ability of our method to segment myocardial regions in
echocardiography imaging.

1 Introduction

Echocardiography represents one of the most popular modalities in the field of
cardiac imaging because it yields real-time analysis of the cardiac structures,
while being low-cost and non-invasive. Segmentation of echocardiographic im-
ages remains an important procedure to assess the heart function. However, the
segmentation of cardiac structures is particularly difficult in echocardiography
mainly due to the speckle phenomenon and low contrast. As noted in a recent
review [1], due to these difficulties most of the existing work has been devoted to
the segmentation of the endocardium, i.e. the interface that separate blood pool
and tissue border and only few studies have been proposed done for the segmen-
tation of the whole myocardium. Moreover, most of the proposed approaches are
based on the analysis of B-scan images that are constructed from the envelope of
the echo signal. With the introduction of ultrasound devices, the radiofrequency
(RF) signal has become more readily available. The interest of such signal re-
sides in the fact that it potentially contains more information than the envelope
echo. Despite of this interest, there is a very limited amount of work based on
the exploitation of the RF signal [1].

We propose in this paper an original level set model for echocardiographic
image segmentation driven by the statistics of the radiofrequency signal. Based
on the assumption that the scatterers present inside the system resolution cell
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are uniformly distributed and that their amplitude follow a K distribution, we
first propose in Section 2 a distribution well adapted to characterize the statistics
of the radiofrequency signal for both blood and myocardial regions. In Section
3 we propose to exploit this distribution in a Maximum Likelihood framework
in order to perform tissue segmentation. In this context, we derive in Section 4
a multiphase level set formulation of the segmentation functional. The ability of
the proposed method to segment cardiac structures in echocardiographic images
is evaluated in Section 5 from both simulation and data acquired in vivo.

2 Ultrasound Image Information Using the Statistics of
the Radiofrequency Signal

The K distribution has been initially designed for the envelope signal [2]. The
interest of such distribution in echocardiographic images relies on its ability to
model both fully speckle (blood pool) and partially developed speckle (tissue
area) situations. We briefly recall in this section the assumptions attached to
the K distribution and give the corresponding pdf for the RF signal (detailed
derivation can be found in [3]). The backscattered ultrasonic signal results from
the individual energy contributions of each scatterer embedded in the resolution
cell. This situation can mathematically be described as a random walk in the
complex plane [4]. From this random flight model, the analytic signal can be
expressed as a random process depending on the number of scatterers present
inside the resolution cell, their relative position and contribution. Thus, a joint
density function of the envelope and phase can be obtained by expressing both
statistical properties of the phase and amplitude of each scatterer. This results in
a K distribution when the scatterers phase is assumed to be uniformly distributed
[5] and when their amplitude is modeled as a K distribution itself [6].

2.1 Physical Model: KRF Distribution

The RF signal corresponds to the real part of the analytic signal. The pdf of the
RF signal thus corresponds to the marginal distribution obtained by integrating
the pdf corresponding to the analytic signal with respect to its imaginary part,
which yields the following expression (see [3] for details):

fX(x) =
β√

πΓ (ν)

(
β |x|

2

)ν−0.5

Kν−0.5 (β |x|) (1)

where Γ is the Gamma function and Kν−0.5 is the modified Bessel function of
the second kind of order ν − 0.5. This expression is completely specified by its
two parameters ν and β, such that ν controls the shape and β the scale of the
pdf.

The corresponding distribution is called KRF . This pdf may thus provide
the basis for segmentation of echocardiographic images by separating regions
corresponding to fully speckle (blood pool) and partially developed speckle
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(tissue area). KRF distribution however has two main drawbacks. Indeed nu-
merical simulations show that the consistency of the KRF parameters decreases
rapidly as the shape parameter of the distribution increases, yielding unreliable
estimates in blood regions [3]. Moreover, the expression of the distribution is
complex, increasing the computational cost of a segmentation approach.

2.2 Modeling RF Signal Statistics Using Generalized Gaussian

From the observation that fully speckle situations correspond to a Gaussian pdf
and non-fully speckle situations yields Laplacian-like distribution, we showed in
[7] that the Generalized Gaussian distribution (G.G.) is a good candidate for
approximating (1). G.G. has the following expression:

gX(x) =
b

2aΓ (1/b)
exp

(
−

(
|x|
a

)b
)

(2)

b and a are the two parameters of the distribution where b controls the shape
and a the scale of the pdf. The G.G. pdf corresponds to a Gaussian distribution
when b = 2 and to a Laplace distribution when b = 1.

(a) (b)

Fig. 1. Fits of the proposed distributions to the RF data from a Parasternal long axis
view in the myocardial tissue. The resulting KS associated to the KRF , Generalized
Gaussian and the Gaussian is respectively 0.0194, 0.0132 and 0.0885.

This distribution has the advantage to have a simple expression with ro-
bust parameters estimation. In Figure 1, an example of the fit obtained for a
Parasternal long axis view in the myocardial tissue is given. This example illus-
trates qualitatively how the KRF and Generalized Gaussian distributions better
fits the data than the conventional Gaussian. The ability of the proposed dis-
tributions to model the RF data has also been evaluated quantitatively through
the Kolmogornov-Smirnov measure (KS). The results shown in Figure 1 yields a
lower KS for the KRF (0.0194) and the Generalized Gaussian (0.0132) than the
Gaussian (0.0885). KRF and Generalized Gaussian distributions are so closed
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that it is difficult to distinguish in Figure 1. The ability of the G.G. to model
cardiac RF data observed on the example given in Figure 1 has been validated
on a set of ultrasound cardiac images including the principal orientations used
in clinical practice [7].

3 A Variational Framework for Ultrasound Image
Segmentation

The framework we use for segmentation is based on the approach initially de-
scribed by Zhu & Yuille [8]. Let Ω ⊂ R

2 denote the image plane and let
f : Ω×R→R be a given ultrasound radiofrequency image. Under the assumption
that the image is composed of a set of regions following a Generalized Gaussian
distribution with different parameters values, the Maximum-Likelihood function
corresponding to this image can be written as:

ML (f(x)) =
n∏

i=1

( ∏
x∈Ri

p (f(x)/ζi)

)
(3)

where n corresponds to the number of regions present in the image and p(.)
corresponds to the Generalized Gaussian distribution with parameters vector
ζi = {ai, bi} . Maximizing criterion (3) is equivalent to minimize its negative
logarithm, which is given (up to a constant) by the following energy functional:

E (C, {ζi}) =
n∑

i=1

(∫
Ri

−log [p (f(x/ζi))] dx
)

(4)

where C is a closed subset in Ω, made up of the regions boundaries. For brevity
sake, we will note p (f(x/ζi)) as pi in the remainder of the paper.

4 A RBF-Based Multiphase Level Set Method

In order to minimize the functional (4), we need to specify an appropriate rep-
resentation for the boundary C. In this paper, we choose an implicit RBF-based
level set representation of the boundary [9]. In contrast to the conventional finite
difference narrow band implementations, the RBF-based level set scheme allows
an overall control of the level set (i.e. over the whole computational domain of
the level set) with a reasonable computational cost and allows to avoid the usual
reinitialization step of the level set. In this formalism, the implicit function φ is
modeled using a RBF decomposition according to the following inner product:

φ(x) = Ψ(x) · α (5)

with {
Ψ(x) = [ϕ(‖x − x1‖), · · · , ϕ(‖x − xP ‖)] (6)

α = [μ1, · · · , μP ]T (7)
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where ϕ is a RBF, {xj} corresponds to the RBF centers and {μj} corresponds to
RBF coefficients. Our implementation is build upon Wendland’s C2 compactly
supported RBFs, which allows reducing the computational complexity of the
algorithm [9].

Based on the work of Chan and Vese [10], we first present a two-phase level
set model derived from the functional (4) with a single level set function φ. This
model is subsequently extended to a multiphase model with a vector-valued level
set function.

4.1 The Two Phase Model

In this subsection, we restrict the class of permissible segmented region to two-
phase solutions. Let the boundary C in the functional (4) be represented as the
zero level set of a function φ. Using the Heaviside step function

H (φ) =
{

1 if φ ≥ 0,

0 if φ < 0 (8)

we can embed the Maximum-Likelihood energy (4) in the following two-phase
functional :

E (φ, ζ1, ζ2) =
∫

Ω

− log(p1) H (φ) dx +
∫

Ω

− log(p2) (1 − H (φ)) dx (9)

where p1 (respectively p2) corresponds to the Generalized Gaussian distribution
whose parameter vector ζ1 (respectively ζ2) is computed inside (respectively
outside) the zero level set. This functional is now simultaneously minimized with
respect to the parameter vectors ζ1 and ζ2, and with respect to the embedding
level set function φ. To this end, we alternate two fractional steps. The first
step is computed using the Maximum-Likelihood estimator of the Generalized
Gaussian parameters described in [11]. Then for fixed parameter vectors, the
gradient descent on the functional (9) for the level set function φ allows to
derive the following expression:

∂φ

∂τ
= δε (φ)

[
log

(
p1

p2

)]
(10)

where δε (.) is a regularized version of the Dirac function [12].

4.2 The General Multiphase Model

The above approach based on the evolution of one level set permits to segment
only two structures in an ultrasound image. This limitation can be overcome
by using multiple level set functions. We follow for this purpose the approach
described by Chan & Vese in [10], who introduced a compact representation of
up to n phases which needs only m = log2(n) level set functions. This approach
has the main advantage to generate a partition of the image plane and therefore
does not suffer from overlap or vacuum formation.
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Let φ = (φ1, · · · , φm) be a vector level set function, with φi : Ω → R.
Let H (φ(x) = (H (φ1(x)) , · · · , H (φm(x)))) be the associated vector Heaviside
function. This function maps each point x ∈ Ω to a binary vector and therefore
permits to encode a set of n = 2m phases Ri defined by:

R = {x ∈ Ω | H (φ(x)) = constant } (11)

We thus propose to replace the functional (4) by the following multiphase
functional:

E (φ, {ζi}) =
n∑

i=1

(∫
Ω

− log(pi) χi (φ) dx
)

(12)

where χi denotes the indicator function for the region Ri.
Because in ultrasound imaging there is a limited number of structures to

be segmented, it seems reasonable to assume that n should be small. We thus
explicitly give in this part the functional for the case of n = 4 phases. The
corresponding expression is:

E ({ζi} , φ) =
∫

Ω

− log(p11) H (φ1) H (φ2) dx

+
∫

Ω

− log(p10) H (φ1) (1 − H (φ2)) dx

+
∫

Ω

− log(p01) (1 − H (φ1)) H (φ2) dx

+
∫

Ω

− log(p00) (1 − H (φ1)) (1 − H (φ2)) dx (13)

where pij corresponds to the Generalized Gaussian distribution with parameters
ζij given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζ11 = ML estimate of ζ in {φ1 ≥ 0, φ2 ≥ 0} (14)
ζ10 = ML estimate of ζ in {φ1 ≥ 0, φ2 < 0} (15)
ζ01 = ML estimate of ζ in {φ1 < 0, φ2 ≥ 0} (16)
ζ00 = ML estimate of ζ in {φ1 < 0, φ2 < 0} (17)

ML corresponds to the Maximum-Likelihood estimator of the Generalized Gaus-
sian parameters described in [11].

Using Euler-Lagrange equations, the minimization of (13) with respect to φ
(for fixed parameters values {ζij}) yields to the following evolution equations:

⎧⎪⎪⎨
⎪⎪⎩

∂φ1

∂τ
= δε (φ1)

[
log

(
p11

p01

)
H (φ2) + log

(
p10

p00

)
(1 − H (φ2))

]
(18)

∂φ2

∂τ
= δε (φ2)

[
log

(
p11

p10

)
H (φ1) + log

(
p01

p00

)
(1 − H (φ1))

]
(19)
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5 Experiments

5.1 Simulated Data

The proposed method has been tested on a simulated image given in figure 2.
This image consists of three regions generated using a Generalized Gaussian
distribution with different parameters. These parameters have been chosen from
real data (in parasternal long axis orientation) and correspond to the three main
tissues usually present in the cardiac image, i.e. pericardium (brighter region),
myocardium and blood (the darker regions). The results presented on figure
2(b) and (c) show how the multiphase level set allows to properly segment these
different regions based on their statistics.

(a) (b) (c)

Fig. 2. Segmentation of a simulated image using two level set functions. (a) initializa-
tion. (b) segmentation result. (c) obtained regions.

5.2 In Vivo Data

The ability of the proposed method to segment myocardium region from RF image
was tested on ultrasound cardiac images acquired in vivo. Data were acquired us-
ing Toshiba Powervision 6000 equipped with an RF interface for research purposes
and a 3.75 MHz-probe. The RF sample frequency was fixed to 25 MHz.

We first illustrate on Figure 3 the segmentation obtained by using the two phase
model (equation (10)) on an apical four chambers view with a narrowangle focused
on the septum. This image has indeed only two regions with different statistics
(blood pool and septum region). These results show that the energy functional
stabilizes to a minimum value as the variation of the RBF coefficients tends to
zero. This illustrates the fact that the level set globally converges to a solution.

Figure 4 shows the result obtained for a parasternal long axis view using
again the two phase model. In contrast with the example used in Figure 3, this
image has three statistically different regions corresponding to the blood pool,
the myocardium and pericardium. Figure 4(a) shows the initialization of the
level set inside myocardial and figure 4(b) and (c) show the result obtained at
convergence. From this example, it can be observed that the model yields proper
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(a) (b)

(c) (d)

Fig. 3. Segmentation of an apical four chambers view using a single level set function.
(a) initialization. (b) segmentation result. (c) variation of RBF coefficient. (d) variation
of the energy functional (9).

(a) (b) (c)

Fig. 4. Segmentation of a parasternal long axis view using a single level set function.
(a) initialization. (b) segmentation result. (c) obtained regions.

segmentation of all the blood/tissue interfaces in the image. However, because
there are more than 2 statistical regions present in the lower part of the image,
the method can not separate the myocardium from the pericardium.
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(a) (b) (c)

Fig. 5. Segmentation of a Parasternal long axis view using two level set functions. (a)
initialization. (b) segmentation result. (c) obtained regions.

Figure 5 shows the result obtained for the same parasternal image using the
four phase level set described in Section 4. Figure 5(a) shows the initialization
of the two level sets and Figure 5(b) and (c) show the result obtained at conver-
gence. In contrast with the previous example, the four phase model allows proper
segmentation of the three different regions. In particular, the tissue regions cor-
responding to the myocardium and the pericardium are clearly separated.

6 Conclusions

We have presented in this paper a method for the segmentation of myocardial
region in echocardiographic images using the statistics of the radiofrequency
signal. The problem of segmentation is formulated in a Maximum Likelihood
framework using the Generalized Gaussian distribution as an a priori model
of the statistics. We minimize this functional using a RBF-based multiphase
level set model. This formulation allows segmenting echocardiographic images
into several homogeneous regions from a statistical point of view. Simulation
results show that our model is well suited to segment several regions distributed
according to a Generalized Gaussian distribution. In contrast with previously
described approaches, results obtained from in vivo echocardiographic data ac-
quired in parasternal long axis view show that the proposed method yields proper
segmentation of the myocardial tissue.
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Abstract. This article proposes a hyperelastic 3D deformable template
for the segmentation of soft structures. It relies on a template, which is a
topological, geometrical and material model of the structure to segment.
The template is modeled as an elastic body which is deformed by forces
derived from the image. The proposed model is based on the nonlinear
three-dimensional elasticity problem with a boundary condition of pure
traction. In addition, the applied forces depend on the displacements.
For computations, a convergent algorithm is proposed to minimize the
global energy of template deformation. A discrete algorithm using the
finite element method is presented and illustrated on MR images of mice.

1 Introduction

Most recent medical imaging systems can provide a great amount of data explain-
ing the anatomy and function of a patient’s organs. However, the development of
efficient tools for automatic processing is mandatory to fully exploit the wealth
of information obtained by medical imaging systems and to provide quantified
parameters. The context of this paper is related to the extraction of the heart’s
anatomy and motion from temporal image sequences, more precisely Magnetic
Resonance Imaging (MRI) sequences. Currently, a clinical examination results in
a stack of slices covering the whole heart at successive time points over the car-
diac cycle. These imaging data constitute the input of the segmentation tracking
approach proposed in this paper. The methodology we follow for the segmenta-
tion is based on the deformable model principle and, as such, relies on a a priori
model of the structure to be segmented [12]. In the great variety of deformable
models, our approach uses a volumetric tetrahedral mesh of the heart with elas-
tic properties. We call it Deformable Elastic Template (DET). The linear DET
model has been previously introduced in [14], [15] for the segmentation of the
heart ventricles. In this paper, we introduce the new nonlinear DET model,
which is less sensible to initialization, along with several improvements towards
the automatic segmentation of cardiac structures in MR images.
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2 Related Work

Segmentation and motion estimation of the cardiac structures is one of the most
popular applications in medical image analysis. Numerous segmentation tech-
niques have been tested in this context from basic thresholding and low-level
methods to more sophisticated modeling and learning approaches [6]. The used
methodology and the results depend on the imaging modalities and the number
of dimensions (2D, 3D, 2D+time, 3D+time). Up to now, Magnetic Resonance
Imaging and Ultrasounds have been mainly addressed for both static and dy-
namic segmentation. However, the inherent difficulties (image artifacts, noise
and motion) are such that no generic method has truly emerged yet for routine
practice. It is clear that prior knowledge needs to be taken into account to bet-
ter constrain the segmentation. Therefore, methods based on a priori models of
the heart geometry, known as deformable models, have retained attention and
obtained a certain success in practice. The final segmentation results from the
minimization of a global energy functional which establishes the balance between
an internal energy, constraining the structure’s shape, and an external energy,
representing the action of image data onto the model. Contour and surface mod-
els have been extensively studied for segmenting soft structures. Their extension
to shape tracking through 2D or 3D image sequences has generally come to the
use of the result at time point t as an initialization for the segmentation at
time point t + 1 with some temporal smoothness constraints [8]. The extraction
of both endocardial and epicardial cardiac surfaces is considered either as the
coupled segmentation of two surfaces [8] or through the introduction of more
complex volumetric models [14]. These latter models involve a volumetric repre-
sentation of the heart associated to behavioral laws, such as elasticity. Level set
methods, which can be closely linked with the previous deformable models, have
also been investigated in this context [13]. In this particular approach, however,
the shape topology is allowed to change during the optimization process which
is not always desirable. Another popular approach is based on prior learning or
cardiac atlases. The prior model is a summary representation of the manual seg-
mentation of a (great, as big as possible) number of patient data sets. One of the
main difficulties is to be able to establish a unique correspondence between all
the segmentations to build up the model [6,9]. This statistical model then con-
strains the segmentation of the new data set through active shape (shape only)[7]
or active appearance models (taking into account image grey levels) [11]. Such
approaches are very interesting but face the problem of representativity of the
database (defined by the number of individuals). It is however clear that prior
models of anatomical structures can greatly improve the segmentation. The volu-
metric deformable model proposed here incorporates both geometry and physics
of the cardiac structures.

3 Hyperelastic Model for Soft Structure Segmentation

A geometric template represents the object’s interfaces as well as its interior and
the properties assigned to it. The template is first placed within the image close
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to the structure to be extracted. It is then deformed iteratively by applying
a force field so that its edges stick to the borders of the targeted structure.
Segmentation through template deformation is achieved by the minimization
of a global energy (or functional). The global energy is generally composed of
two terms. The first term is computed from the image data. Its role is to guide
the deformation towards the border of the targeted object. The second term
introduces a regularity constraint on the desired deformations. It also ensures
that the problem is expressed in a suitable functional space.

The initial Deformable Elastic Template introduced in [14] relied on lin-
ear elasticity to deform the template. In this article, the regularization term
comes from nonlinear elasticity and allows for large deformations. No part of the
geometrical model is maintained fixed during the deformation process, which
contributes to the better robustness of the segmentation against model initial-
ization. The equivalence between the minimization problem and local elasticity
equations is ensured when the material is hyperelastic and the applied forces
are conservative (i.e. derived from a potential energy) [5]. Our contribution is
the introduction and the proof of the convergence of an incremental algorithm.
To our knowledge, this is the first time that the incremental method is used in
cardiac segmentation. In [16], Rabbit et al. propose an algorithm, based on the
Taylor formula, to solve 2D registration by hyperelastic model. This algorithm
was applied to cardiac image registration in [1]. The convergence result of this
algorithm is not proven.

For the considered applications, Saint-Venant Kirchhoff material is considered
which is hyperelastic and the simplest model among all nonlinear models. The
applied forces are assumed to be conservative. Let Ω be the domain to be de-
formed (a bounded subset of R

3), let ν be the unit outward normal to ∂Ω the
boundary of Ω, u : Ω → R

3 be the displacement and E be the following strain
tensor

E(u) =
1
2
(
∇ut + ∇u + ∇ut ∇u

)
, (1)

A Saint-Venant Kirchhoff material is hyperelastic and homogeneous, thus the
strain energy is independent of a particular point x ∈ Ω̄ and defined by the
relation

W (x, E) = W (E) = λ
2 (TrE)2 + μTrE2 (2)

The internal energy is defined for the reference state Ω by

Eint(u) =
∫

Ω

W (∇(1 + u)(x)) dx (3)

while the external energy is expressed for the deformed state as:

Eext(u) = −
∫

∂Ω

Ĝ(1 + u) dσ (4)
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The function Ĝ is the potential of the applied surface forces g. In the implemen-
tation only the force field g is used to deform the mesh. The function Ĝ and g
are connected by the relations:

G(ψ) = −
∫

∂Ω

Ĝ(1 + u(x)) dσ(x) G′(φ)v =
∫

∂Ω

g(φ(x)) · v(x) dσ(x) (5)

the applied surface forces g can be computed from the norm of the image gra-
dient, an edge map obtained using a Canny operator [4] smoothed with a Gaus-
sian filter, or a distance map [2], [18]. The Gradient Vector Flow algorithm
(GVF) introduced in [21] generates a force field by an iterative diffusion pro-
cess, which is not derived from a potential. Although it is not conservative,
we observed that the force field obtained by the GVF method leads to reason-
able numerical results as compared to more conventional gradient based tech-
niques.

When the applied force field is conservative, the minimization of the global
energy

Etotal(u) = Eint(u) + Eext(u) (6)

is ”formally” equivalent to solving the following Euler equations (see [5]):

div
(
(1 + ∇u)Σ

(
E(u)

))
= 0 in Ω; (7a)

− (1 + ∇u)Σ
(
E(u)

)
· ν + g(u) = 0 on ∂Ω, (7b)

where Σ is a tensor defined by

Σ(E) = λTr(E)1 + 2μE (8)

4 Approximation of the Model Using an Incremental
Method

The problem (7) can be written as

L(u) = f(u) in Ω × ∂Ω, (9)

where

L(u) =
(

div
(
(1 + ∇u)Σ

(
E(u)

))

1 + ∇u)Σ
(
E(u)

)
· ν

)
, f(u) =

(
0

g(u)

)
.

To solve problem (9), an incremental method is proposed, which consists in
letting the forces vary by small increments from 0 to their calculated value and
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computing corresponding approximate solutions by successive linearizations. For
λ ∈ [0, 1], define u(λ) as the solution to

L(u(λ)) = λf(u(λ)) in Ω × ∂Ω (10)

After differentiating this relation with respect to λ and adding an initial condi-
tion, we obtain

u′(λ) =
(
L′(u(λ)) − λf ′(u(λ))

)−1
f(u(λ)), 0 ≤ λ ≤ 1, (11a)

u(0) = 0. (11b)

Note that, if u is a solution of the differential equation (11), by integration of this
equation, u is also solution of equation (10). Therefore, the study of the partial
differential equations (10) reduces to solving the ordinary differential equation
(11). In [17], sufficient conditions for the convergence of the Euler’s algorithm are
given for the problem (11). In next sections, this incremental method is applied
to image segmentation.

5 Finite Element Discretization

For the numerical optimization of the total energy (7) with the incremental
method presented in the previous section, the finite element method is used. Let
M be a positive number, {ψ1, · · · , ψM} a function basis for the approximation
of the displacements. The algorithm is detailed below:

Let U0 a vector containing displacement components.

– Initialization step: U0 = 0 and u0 = 0;
– Iterations

(i) Assemble the stiffness matrix at iteration n

Kn
ij =

∫

Ωh

k(un, ψi, λn) : ∇φj dx −
〈
g′(un) · ψi, ψj

〉
, 1 ≤ i, j ≤ M ;

(ii) Solve the linear system, with Un+1 as unknown

KnUn+1 = KnUn + (λn+1 − λn)F(Un);

(iii) Compute the approximate displacement at iteration n + 1

un+1 =
i=M∑

i=1

Un+1,i ψi;

(iv) If ‖un+1 − un‖ < ε stop, otherwise go to (i).
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Where F has the components:

Fj(Un) =< g(un), ψj >, 1 ≤ j ≤ M

and

k(u, w) = (1 + ∇u)Σ
(
ε(w) +

1
2
(∇ut∇w + ∇wt∇u)

)
+ ∇wΣ

(
E(u)

)
.

The scalar product < ·, · > is defined on ∂Ω for the two functions α and β by :

< α, β >=
∫

∂Ω

α(x)β(x)dσ.

The stiffness matrix Kn can be updated at each iteration, but this is quite time
consuming. The convergence of the algorithm can be accelerated by updating
the stiffness matrix Kn after several iterations instead of updating it at each
iteration. Two types of iterations are thus used: internal and external iterations.
With the external iterations, the stiffness matrix is updated, which permits large
displacements. Internal iterations do not require the computation of the matrix.
Hence, less computing time is needed for internal iterations than for external
iterations. The number of external iterations should therefore be reduced as
much as possible but depends on the problem. If only small displacements are
required it is not necessary to update the stiffness matrix. In that case, internal
iterations suffice.

6 Tests

To evaluate the method, an example with a known target object is considered.
A sphere is transformed into an ellipsoid, i. e. the template is a sphere and the
target border is an ellipsoid. The axes of the ellipsoid are chosen in such way that
the transformation demands large displacements. A force field is computed from
the image. The mesh representing the template has 15 019 tetrahedrons and 3 003
nodes and satisfies the quality conditions introduced in [3]. The segmentation
result obtained with the proposed method is shown in Fig 1-(a). The result with
the linear DET model id shown in Fig 1-(b). Note that the linear model is unable
to correctly detect the ellipsoid.

7 Simultaneous Segmentation of the Left and Right
Heart Ventricles in 3D Cine MR Images

7.1 Experimental Data

Mouse heart cine MR images were acquired with a 7 T magnetic resonance
scanner with a whole body coil for RF excitation and a 15 mm surface coil
for MR signal reception. An ECG-gated FLASH sequence was used to acquire
short-axis cine images with 25 mm2 FOV, 256×256 pixels, 1 mm slice thickness,
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Fig. 1. Nonlinear DET demonstration for the segmentation of an ellipsoid from a
spherical template (a): result obtained with nonlinear DET, (b): result obtained with
linear DET

7/3.5 ms TR/TE, 64 KHz bandwidth and 20 degrees flip-angles. Cine images (16
frames over the cardiac cycle) were acquired for 7 slice levels, covering the entire
left ventricle (LV). With a cardiac frequency of 450 b.p.m, the total acquisition
time was 20 minutes.

7.2 Image Data Preprocessing and Initial Model Placement

High resolution MR images have a relatively low SNR. Furthermore, the abun-
dance of small features in the images (papillary muscles, coronaries, etc.) can
lead to local minima of the model energy, leading to inaccurate segmentation.
Both problems need to be addressed before the image edges can be extracted.
We applied morphological operators to remove small features and noise while
preserving strong edges (see [19]).

The non rigid segmentation algorithm requires that the model be initialized
close to the targeted object, in this case the mouse heart. Various solutions
have been proposed to solve this problem. A fully automatic approach can be
used, optimizing an affine transformation to match two criteria: distance to the
closest edge, and appearance. In [10], the Powell optimization method is used to
minimize the resulting energy. Results can be further improved by repeating the
Powell optimization with several random initializations and keeping the result
with the lowest energy, thus reducing the risk of falling into a local minimum.

The fully automated method was found to yield generally good results, how-
ever it is not always robust. In order to give more reproducible results, a semi-
automatic approach was preferred here. In this approach, a medical expert selects
several fiducial points located on the heart contours, both on the heart model
and in the acquired images. This information is used to compute the best affine
registration using a least squares approach. Registration can be further refined
by adding a thin-plate spline registration step with the same fiducial points.
More details on this process can be found in [20].

7.3 Results

Four 4D MRI sequences corresponding to 4 different mice were processed using
our method. The model parameters were set to: Young modulus of 10 Pa for the
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(a) (b) (c) (d)

Fig. 2. Segmentation of 3D mouse MR data : (a) Initial positioning of the DET model,
(b) Result of affine positioning, (c) Segmentation result, and (d) 3D mesh obtained as
a result of the segmentation process

LV and 40 Pa for the right ventricle (RV), and a Poisson coefficient of 0.485 for
the whole model. Figure 2 illustrates the 3D segmentation process. Results show
that although we are still experiencing a few specific problems, our method is
able to correctly locate the heart borders in the images.

7.4 Segmentation over the Cardiac Cycle

Segmentation tracking of the heart is achieved by taking the segmentation result
at the present time frame as the initial solution for the next time frame, and re-
peating the process for all the times frames in the MRI sequence. Once the 3D
contours have been extracted, it is straightforward to compute the enclosed ven-
tricle volumes. The overall volume variation pattern is coherent. However, local-
ized problems persist during early diastole. These problems may be tackled by
incorporating temporal constraints for the tracking of the heart shape over time.

8 Discussion and Conclusions

This article presents the non linear deformable elastic template model for the
segmentation of soft structures in image sequences. One striking feature of this
model is that convergence results for the incremental method, which is used
to approximate a solution for a 3D nonlinear elastic template under successive
forces, are available. This sets a convenient framework for the segmentation of
soft structures in 3D and 3D+time images.

The proposed model has been experimented here for the segmentation of
MR image sequences of mouse hearts.The proposed method was able to retrieve
the heart contours in most cases, allowing the computation of volume variation
curves. However, manual interactions and corrections of the results would still be
needed to use the method routinely. Remaining problems include inaccuracies in
the segmentation of the pericardium due to the presence of numerous anatomical
structures close to the heart, and localized errors during the early diastolic phase
due to motion artifacts.
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Note that for the segmentation over a cardiac cycle, progressive segmenta-
tion (see section 7.4) was used. It would be interesting to include a temporal
constraint in the model by introducing non stationary equations for the segmen-
tation over the cardiac cycle. Larger scale experiments, including quantitative
evaluation of the segmentation accuracy is also be needed to fully validate the
method.
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Hänninen, H., Lauerma, K., Knuuti, J., Katila, T., Magnin, I.E.: A 3-D model-
based registration approach for the PET, MR and MCG cardiac data fusion. Med-
ical Image Analysis 7, 377–389 (2003)

11. Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., van der Geest, R.J., Reiber, J.H.C.,
Sonka, M.: 3D active appearance models: segmentation of cardiac MR and ultra-
sound images. IEEE Transactions on Medical Imaging 21(9), 1167–1178 (2002)

12. Montagnat, J., Delingette, H.: A review of deformable surfaces: topology, geometry
and deformation. Image and Vision Computing 19(14), 1023–1040 (2001)



452 Y. Rouchdy et al.

13. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: al-
gorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49
(1988)

14. Pham, Q.-C., Vincent, F., Clarysse, P., Croisille, P., Magnin, I.E.: A FEM-based
deformable model for the 3D segmentation and tracking of the heart in cardiac
MRI. In: 2nd International Symposium on Image and Signal Processing and Anal-
ysis (ISPA 2001), vol. 1, pp. 250–254, Pula, Croatia (2001)

15. Picq, M., Pousin, J., Rouchdy, Y.: A Linear 3D Elastic Segmentation Model for
Vector Fields. Application to the Heart segmentation in MRI. To be published in
Journal of Mathematical Imaging and Vision (2007)

16. Rabbitt, R., Weiss, J., Christensen, G.: Mapping of hyper-elastic deformable tem-
plates using the finite element method. In: Kučera, L. (ed.) WG 2002, LNCS
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Abstract. A novel approach to segment cardiac magnetic resonance
(CMR) images is presented in order to overcome some challenges such as
problems with papillary muscles and the non homogeneities of the cavity
due to blood flow. It consists in filtering short axis CMR images, using
connected operators (area-open and area-close filters) to homogenize the
cavity, prior to the segmentation which is performed using GVF-Snake
algorithm in two steps. Validation was performed on thirty-nine slices
by comparing resulting segmentation to the manual contours traced by
an expert. This comparison showed good results with an overall aver-
age similarity area of 90.7% and an average distance between the two
contours of 0.6 pixel.

1 Introduction

Cardiac magnetic resonance imaging is one of the essential non invasive modal-
ities for the diagnosis of cardiovascular diseases. Left ventricle performance is
a primary indicator for the diagnosis and treatment of many heart diseases. It
has been proven that its dysfunction after myocardial infarction is not neces-
sarily an irreversible process. Clinically, the distinction between reversible and
irreversible injury within the risk region is important in the follow-up of the
patient in order to select the appropriate course of action following an ischemic
event. Recent studies [1,2] have shown that CMR delayed enhancement (DE)
images acquired 15 to 20 minutes after the injection of a contrast agent, such as
chelate of gadolinium, allow the clinician to detect and localize nonviable areas
which are characterized by hyper-enhanced signal [1]. Moreover, differentiating
between the left ventricle cavity and the infarcted area in a DE image raises a
major difficulty, owing to the fact that blood and the infarcted zone have al-
most the same gray level intensity. Different algorithms for quantifying infarcted
myocardium [3] were applied using manual traced contours.

In an earlier work [4] our group explored the idea of segmenting cine images
because of their high contrast between cavity and myocardium and using this
segmentation to evaluate myocardial infarct transmurality on DE images. This
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feasibility study has shown encouraging results. Here we intend to pursue this
idea and improve the segmentation step making it more robust and automatic.

Numerous cardiac segmentation methods have been developed and used to
estimate the myocardial boundaries. A registration based model was used in
[5] and a clustering technique in [6]. However including the papillary muscles
within the endocardial delineation remains a limitation. Techniques using prior
knowledge learned from images models [7] force the act of including or excluding
papillary muscles in the endocardial surface. So results obtained from these tech-
niques depend on the model. Deformable models have also been used widely in
segmenting cardiac images [11,12,13,14,15]. Although the active contour models
have been quite successful in the segmentation of the myocardium boundaries
using CMR images, they still suffer from problems associated with flow related
signal loss and lack of clear delineation between the myocardium and adjacent
anatomic structures such as papillary muscles besides problems due to initial-
ization sensibility.

The aim of this study is to develop a method for accurate detection of the
endocardium in CMR images. For this purpose a combination of a number of
image processing techniques from the field of filtering and segmentation are used
and extended to create a segmentation pipeline that would reduce the need for
manual correction.

First the image undergoes a filtering step described in Section 2.3. GVF snake
algorithm (Section 2.4) is then used to detect the endocardium. In Section 2.5,
the two main steps of the segmentation procedure are described. Then the eval-
uation (Section 2.6) is performed comparing the obtained segmentation with
manual contours drawn by an expert. Finally segmentation results are presented
in Section 3, and discussed in Section 4.

2 Materials and Methods

2.1 Data Acquisition and Description

The CMR data were acquired at the European Hospital Georges Pompidou
(HEGP), in the cardiovascular section, service of radiology. All studies were per-
formed with the same 1.5-T MRI system (Signa LX, General Electric Medical
Systems, Waukesha, WI, USA), using a thoracic phased-array surface coil for
radiofrequency signal detection. After the injection of a first amount of the con-
trast agent (gadolinium, Gd-DTPA) using 1.5 times the conventional dose, the
first pass perfusion study was acquired. Five minutes later 0.5 times the dose was
injected and cine images were acquired using an electrocardiogram and respira-
tion gated FIESTA (fast imaging employing steady state acquisition) sequence.
DE images were acquired 15-20 minutes after the first injection. Cine images
were acquired in short axis view at the basal, middle and apical levels of the left
ventricle with the following parameters: flip angle 40◦, TE 2 ms, TR 5 ms, slice
thickness 8 mm, space between slices 12 mm, time resolution 60 ms.

Thirteen subjects were studied: five patients with a cine acquisition before
the gadolinium injection and eight patients after the injection.
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Figure 1(a) shows a cardiac image at the apical level with a non homogenous
cavity inducing the presence of small gradients that present difficulties for the
segmentation, image (b) shows a case with the papillary muscles totally included
in the cavity and in image (c) we can see the most difficult case to segment where
the papillary muscles are connected to the myocardium.

Fig. 1. CMR images, (a) non homogenous cavity, (b) papillary muscles included in the
cavity, (c) papillary muscles connected to the myocardium

2.2 Method Overview

The aim of the overall approach is to propose a robust method to extract the
Left Ventricle (LV) cavity including the papillary muscles from CMR images. The
process is summarized in Figure 2. The first step consists in filtering the original
image using alternately area-open and area-close filters (Section 2.3), in order
to include the papillary muscles into the cavity and to homogenize it. Using
the GVF snake algorithm (Section 2.4), an approximative contour is created
from an edge map image obtained by applying the Canny edge detector on the
filtered image, with one point clicked in the cavity as initialization. This first
segmentation is close to the true contour, but frequently it is interior to it with
a distance up to two or three pixels. This approximate contour is then refined in
a second step, taking it as snake initialization. This final step allows adjusting
the contour and encroaching on details of the cavity’s boundary referring to the
gradient information in the image to segment.

Fig. 2. Overview of the proposed segmentation approach
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2.3 Connected Opening and Closing

Methods for segmenting separately the papillary muscles have been proposed
in the literature [16]. Here a different approach is proposed where the papillary
muscles are handled through a filtering process.

The objective is to produce an image that consists mostly of flat and large
regions. A flat zone Lh at level h of a gray scale image I is defined as a connected
component of the set of pixels {p ∈ I/g(p) = h} where g is the gray level
function. Connected operators like area opening and closing are useful in such
cases. The area opening of an image I, with scale parameter λ, is defined as the
image containing only connected component of I of area larger than λ. The area
closing is defined by duality. In this paper an algorithm developed by Meijster
and Wilkinson is used to implement these filters on CMR images.

The filtering algorithm detailed in [17] can be summarized as follows: for each
flat zone in the image, an arbitrary element is chosen as root. At the beginning,
each pixel p is processed as a singleton set, being its own root. Then a union
procedure is called for each pixel n ∈ Np where Np represents the neighborhood
of p, to associate a root for sets containing both n and p. Figure 3 shows how
to perform an area opening using this algorithm where Sn represents the set
containing n and Rn the root of this set. The final step consists of a resolving
scan which assigns to each root pixel a unique label, and to each non root pixel
in a set the label of its root.

Fig. 3. Union procedure for area-open filter [17]

Figure 4 shows an original CMR image in (a) with respectively its area open-
ing in (b) and then the area closing of the opening image in (c) with a λ value
of 800 pixels. It appears that zones constituting the papillary muscles corre-
sponding to sets of low gray level are merged completely with the blood cavity
zone corresponding to a high gray level set. In the resulting image all connected
components are larger than λ.
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Fig. 4. (a) Original image, (b) area opening of the original image, (c) area closing of
the opening (λ = 800 pixels)

2.4 GVF Snake

The original snake model proposed by Kass et al. [8] was modified by Cohen
[9] to obtain more stable results and solve the shrinkage problem around strong
edges. Then Xu et al. [10] have proposed a new class of external forces called
Gradient Vector Flow (GVF) characterized by a non null attraction even far from
contours and this to tackle both problems of initialization and poor convergence
to boundary concavities. In this paper the GVF model framework is used to
segment CMR images. This model is described in details in [10]. A snake is a
curve X(s) = [x(s), y(s)] , s ∈ [0, 1], that evolves through the spatial domain of
an image in order to verify a force balance equation:

Fint + Fext = 0

Fint = αX ′′(s) − βX ′′′′(s) and Fext = κV (x, y) + κpP (x, y)

where α and β are weighting parameters that control respectively the elasticity of
the contour and its rigidity, and X ′′(s) and X ′′′′(s) denote the second and fourth
derivatives of X(s) with respect to s. The external force includes a pressure
force P orthogonal to the contour and a Gradient Vector Flow force defined as:
V (x, y) = [u(x, y), v(x, y)] that minimizes the energy functional

ε =
∫ ∫

μgvf (u2
x + u2

y + v2
x + v2

y) + |∇f2||V − ∇f |2dxdy

This formulation produces the effect of keeping V nearly equal to the gradient
of the edge map f when it is large, but forcing the field to be slowly-varying in
homogenous regions. μgvf is a regularization parameter governing the tradeoff
between the first and second terms in the integrand.

Five parameters control the snake deformations: α for elasticity, β for rigidity,
μgvf for GVF regularization, κ is the external force weight and κb the pressure
force weight.

2.5 Image Segmentation

First step: Images are cropped to a region of interest around the left ventricle
and then filtered using successively area-open and area-close with λ as parameter.
For each slice, a series of filtered images corresponding to a set of different



458 R. El Berbari et al.

Fig. 5. Plot of the ratio Ri in function of λ

Table 1. Snake Parameters

α β κ κp μgvf

first step 1 40 1.6 0.7 0.3
second step 1 1 1.6 0.1 0.1

values of λ is obtained. These values vary from 100 to 600 for apical level slices,
and from 500 to 1500 for the two middle and basal slices. A high value of the
rigidity parameter β in the first segmentation step (Table 1) is used to obtain a
series of approximative contours segmenting the whole cavity including papillary
muscles. For each value of λ, a ratio between the area limited by the resulting
segmentation and λ is calculated as follow:

Ri =
Si

λi
(1)

where S represents the cavity surface. The optimal value of λ and so the op-
timal contour including papillary muscles is chosen so as to have Ri minimum
(Figure 5). We should note that this minimum is always close to 1, which means
that the segmentation result approximately corresponds to one of the flat zones
of the filtered image. This constraint permits an automatic setting of λ which is
adapted to the individual patient’s morphology.

Second step: The final accurate segmentation is then obtained using the op-
timal contour as initialization with an edge map obtained by multiplying the
gradient of the original image by a mask keeping only information between the
first obtained contour and its dilation of three pixels. In this step, low values of
β, κp and μgvf (Table 1) are used, allowing to refine the contour according to
the original gradient information in the image to segment and to pick up small
details on the cavity’s boundary (Figure 6).

2.6 Segmentation Evaluation

One of the methods commonly used for assessing the validation of CMR images
segmentation is to compare the area of the segmented object in the image against
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Fig. 6. Left: superposition of the first approximate contour (red) and the manual con-
tour (green). Right: the final segmentation (red) and the manual one (green).

the reference one. Manual contours were assisted by an experienced cardiologist.
The area similarity measure Sarea [11], between the automatic segmentation Sa

and the manual one Sm, is defined as the ratio between their common part over
the area of the union.

Sarea =
|(Sa

⋂
Sm)|

|(Sa

⋃
Sm)| (2)

where Sa (respectively Sm) represents the surface limited by the automatic (re-
spectively manual) contour. |S| represents the number of pixels that belong to area
S. Besides the area similarity measure, mean and maximum distances (in pixels)
between the two contours were calculated to evaluate the obtained segmentation.

3 Results

A total of thirty nine images taken at the end-diastolic (ED) phase of the car-
diac cycle, where the images of contraction best correspond to DE images, were
analyzed. The whole set of images was processed using the same values of snake
parameters (Table 1). The segmentation illustrated in Figure 7 shows good vi-
sual results. Figure 8 shows for all analyzed slices the similarity area percentage
between manual and automatic contours (a), as well as maximum and mean
distance between the two contours (b). Almost all slices show a similarity area
percentage higher than 84%, except for the slices number thirty-first and thirty-
nine, with values respectively of 75% and 71%. These two slices are at the apical
level, and have a very low contrast between the cavity and the myocardium.
Figure 9 shows such a case.

Fig. 7. Superposition of automatic segmentation (red) and manual contour (green)
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Fig. 8. For each processed image, (a) similarity area percentage, (b) maximum (red)
and mean (blue) distance between the two contours

Fig. 9. The segmentation of the thirty-ninth slice with a maximum distance of 5 pixels
and a similarity area value of 71%
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4 Discussion and Conclusion

In this paper, a 2D segmentation approach for endocardial surface detection
in CMR images, robust to papillary muscles and the non homogeneity within
the cavity, was proposed. Although new imaging techniques tend toward 3D
acquisitions, they still are anisotropic. The processing could be adapted to 3D
data taking into account this anisotropic feature but it still encounters a major
difficulty related to the gray level variation between different level slices, due to
the blood flow. Therefore processing 2D multilevel data seems more appropriate.

Area opening and closing filters depending on gray level connectivity were
used to merge gray level zones corresponding to papillary muscles into the cav-
ity. Setting the morphological parameter λ was done automatically in such a
way that it is adapted to the individual patient’s morphology. Applying a GVF
snake algorithm to filtered images provided a rough contour in the first step
that was refined in the second one according to the gradient information of the
original image. An accurate segmentation of the cavity including the papillary
muscles is thus obtained. An important issue in the segmentation concerns the
parameters setting. In this work snake parameters were optimized and fixed at
the same values for all analyzed images. Setting the initialization was simply
done by clicking one point in the cavity, getting through the susceptibility of
snake to initialization. Therefore, applying this method to a clinical data set
was convenient and not complicated.

For evaluation, similarity area measures and distances between the resulting
segmentation and a manual tracing were computed (Figure 8). Segmentation
results exhibit very good agreement with the manual traced contours, with an
overall average value of 90.7% ± 5% for the area similarity and 0.6 ± 0.3 pixel
corresponding to 0.88±0.44 mm for the mean distance between the two contours,
to be compared with 1.28 ± 0.28 mm obtained by [7].

Most of the cine images acquisitions in this study were taken after the injec-
tion of the gadolinium contrast agent. This acquisition protocol aims to decrease
the total time of examination but it also reduces the contrast between the my-
ocardium and the cavity. Unfortunately this contrast is important for achieving
a good segmentation method. Although the proposed method deals with this
problem in some cases, the algorithm can be misled by some myocardium pixels
with high gray level that were considered as pixels belonging to the cavity.

For future work, segmenting the epicardial surface will be the next step, in or-
der to have a myocardium segmentation useful to quantify myocardial infarcted
areas on DE images. Another important topic is to extend this method to seg-
ment the right ventricle, where first tests have shown encouraging results.
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Abstract. This paper presents a first set of experiments to integrate
a realistic electro-mechanical model of a beating heart into simulated
real-time three-dimensional (RT3D) ultrasound data. A novel ultrasound
simulation framework is presented, extended from the model of Meunier
[12]. True three-dimensional transducer modeling was performed, using
RT3D acquisition design. Myocardium and blood scattering parameters
were defined in three dimensions. Ultrasound data sets were generated
for a normal case and a pathological case, simulating left bundle branch
block. Accuracy of an optical flow tracking method was evaluated on
the simulated data to measure displacements on the myocardial surfaces
and inside the myocardium over a cardiac cycle. The proposed simula-
tion framework has important motivations in a cardiac modeling context
as part of this project is focused on the design of effective parameter es-
timation methods, based on cardiac imaging.

1 Introduction

Ultrasound is the cardiac screening modality with the highest temporal resolu-
tion, but is still limited to two-dimensions in most hospitals and clinical centers.
Development of 3D echocardiography started in the 1990s [23], with real-time
3D (RT3D) ultrasound based on matrix phased arrays. A new generation of
RT3D transducers was introduced by Duke University and more recently by
Philips Medical Systems (Best, The Netherlands) with the SONOS 7500 trans-
ducer followed by the IE33 model that acquires a fully sampled cardiac volume
within four cardiac cycles. This technical advance increased the spatial resolution
and image quality, which makes 3D ultrasound techniques increasingly attrac-
tive for quantitative cardiac diagnosis on patients [2,1]. Since RT3D ultrasound
acquires volumetric ultrasound sequences with fairly high temporal resolution
using a fixed-positioned transducer, it can capture complex 3D cardiac motion
very well. Cardiac motion analysis from clinical image sequences has been an ac-
tive research area over the past decade. Previous efforts using ultrasound data for
motion analysis include intensity-based speckle tracking and optical flow (OF),
or dedicated imaging set ups such as strain-imaging, and elastography. In [16]
for example, a shape tracking approach was used to track endocardial surface
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patches in 3D echocardiography for motion analysis. In a previous study [8,7]
we developed a framework to derive several dynamic cardiac measures based on
four-dimensional optical flow using RT3D ultrasound sequences. This framework
was applied to a clinical data set from a heart transplant patient and the dy-
namic measurements, computed with this method, agreed with findings in other
cardiac biomechanics studies.

In this paper, in order to quantitatively evaluate our tracking method, we
present a framework to generate 3D simulated ultrasound data using a realis-
tic electro-mechanical model of a human heart, namely, a model that generates
displacement and deformation patterns – as well as global physiological indi-
cators such as pressures and flows – representative of clinical observations. A
numerical cardiac phantom was used to mimic realistic anatomy, along with
acoustic impedance of cardiac tissue and blood, as well as motion field of the
myocardium during a cardiac cycle. Based on this phantom, simulated linear
three-dimensional ultrasound data sets were generated, using similar transducer
parameters as in the RT3D ultrasound machine from Volumetrics (Durham, NC).
Details of the 3D ultrasound simulation framework as well as performance of our
optical flow based method in tracking myocardial tissues were explored by sim-
ulating consecutive RT3D ultrasound frames of the beating heart under known
motion fields, including translation, rotation, and thickening deformations. Our
approach also has important motivations in a cardiac modeling context. Indeed,
part of this project is focused on the design of effective parameter estimation
methods – relevant for diagnosis assistance – based on clinical measures and
simulations from a mathematical model of the beating heart [17,21]. Difficulties
encountered in such estimation fall into two main categories:

– Modeling difficulties, namely, the mathematical model must accurately rep-
resent actual phenomena observed in clinical measurements and reflect
pathologies of interest targeted in a diagnosis assistance setup; and

– Estimation difficulties, namely, the parameter estimation procedure per se
must be carefully designed in order to be effective when the model is ade-
quate, taking into account the presence of measurement errors.

Therefore, when focusing on the design of a parameter estimation strategy
for a given class of models, one crucial step consists in generating synthetic
measurements from the model for a specific choice of parameters. Indeed, by
doing so we can circumvent modeling difficulties. The parameter estimation pro-
cedure is then assessed by processing these synthetic measurements, combined
with well-chosen measurement noise components, and extracting modeling pa-
rameters to be compared with the initial values. Of course, for this assessment
to be meaningful, the generation of synthetic measurements must be carefully
designed, close to physiological conditions, while the processing of these mea-
surements must take into account the constraints and uncertainties associated
with a given modality of observation (e.g. cardiac imaging). In this context, this
paper presents a first series of experimentation integrating our cardiac model
into 3D echocardiographic data sets.
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2 Electro-mechanical Model of the Heart

2.1 Heart Anatomy

We use the “Generic Anatomical Heart Model” presented in [21], which ap-
proximates the ventricles by truncated ellipsoids This generic model could be
adapted to specific patient anatomies by fitting the model geometry to medical
image segmentation results – in particular when pursuing the above-mentioned
estimation and diagnosis goal – but this was not needed for the present study.

2.2 Bio-physical Properties of the Model

The electro-mechanical model employed to generate realistic deformation pat-
terns of the heart during a complete cycle was fully described in [17]. The un-
derlying contraction law is based on physiological considerations and satisfies
essential thermo-mechanical requirements. This law incorporates contractility
parameters that can be varied to simulate cardiac pathologies such as infarcts.
Electrical activation is modeled based on the bidomain equations [15], with ac-
tion potential propagation initiated near the apex on the endocardial surface.
Blood inside each ventricle is modeled as a simplified lumped pressure / volume
system, and cardiac cycle phases are distinguished through coupling conditions
between the internal fluid and the different compartments of the cardiovascular
system – in particular systemic and pulmonary circulations, both represented
with Windkessel models. Numerical methods – including finite element proce-
dures – used to obtain simulations of this global heart model were also described
in [17]. Simulation results are illustrated in Fig.1, where we compared simula-
tion of a normal heart (our reference) with results corresponding to a left bundle
branch block (LBBB) modeled via initiation of the electrical activation in the
right ventricle only.

Fig. 1. Electrical activation at early stage: Reference (left) and LBBB (right)

2.3 Motion Field Generation and Format

We used several numerical simulation results with the model described above
to generate rasterized 3D images of the cardiac tissue over a complete cycle,
with a spatial sampling of 1 mm3 and a temporal sampling of 5 ms, comparable
to 3D echography sampling capabilities. We recall that the rasterization of an
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Fig. 2. Myocardial mesh and corresponding rasterization during systole

object consists in computing the set of voxels enclosed within the object bound-
aries. The algorithm used is described in [20], see also [4]. In Fig. 2, we show
cross-section views of these images during systole. The 3D ultrasound simulation
procedure takes these images as an input, and optical flow tracking results can
then be assessed using the reference values of the displacements between two
subsequent images, whose exact values can be obtained for each voxel by simple
post-processing of the model simulations.

The physics of ultrasound imaging being rather well-known, accurate simu-
lations of the measurements can be obtained, including for 3D echography [9].
Hence, the remaining key point in the assessment of estimation procedures con-
cerns the processing step leading to data used as an input in the estimation,
such as the optical flow that provides displacements or velocities, for which the
corresponding errors must be accurately determined.

3 3D Ultrasound Simulation

3.1 Review of Existing Methods

Simulating ultrasonic B-scanning images can be dated back to 1980 [3]. In their
paper, Bamber et al. modeled the ultrasonic image formation process in the
far–field as a convolution of the point spread function from the transducer and
the scattered distribution of underlining tissues defined by local density and
compressibility.

Several studies have been performed since then, with more or less elaborate
models. In [14], Narayanan et al. used a very simple simulation framework for
transmitted pulses and received echo signals to study the influence of the scat-
tering cross-section and the number of scatterers per cells on the envelope signal
statistics. Their model was derived from the extensive review of first and second
order statistics of complex random signals from Wagner et al. [27]. Proposing
to model the scattering cross-section as a Gamma random variable, and setting
the number of scatterers to 7, 13 and 38 they showed strong deviation from a
Rayleigh distribution as randomness of the cross sections increased and number
of scatterers decreased.

In the field of specific cardiac applications, a study of reference in [5] demon-
strated that the K-distribution is generally more appropriate than the Rayleigh
distribution to simulate backscatters from myocardial tissue in the frequency
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range of 5-15 MHz. The K-distribution is generated by a sparse density of Pois-
son scatterers (average number of scatterers per resolution cell ρ between 9 and
12), whereas the Rayleigh distribution is generated by a dense distribution of
Poisson scatterers (ρ above 12) [25,5].

In a seminal paper [12], Meunier and Bertrand proposed a three-dimensional
inhomogeneous continuum model to mimic myocardial tissue as a collection of
acoustic cells with individual impedance. Their work was motivated by the need
to understand mean gray level changes occurring with different tissue motions.
An important assumption was made in their work, assuming small and dense
scatterers per resolution cells, leading to Rayleigh distributed amplitudes of the
envelope signals. In [13], the same authors looked at the problem of decorrelation
between tissue and speckle patterns under linear transformations (2D rotation,
translation and deformation). They identified threshold values of deformation
amplitudes to guarantee visual correlation of backscattered patterns between
two consecutive ultrasound frames.

Jensen [9] developed an extensive ultrasound simulation software called FIELD
in 1996 based on Tupholme-Stepanishen’s method, which simulates acoustic fields
generated from arbitrarily designed transducers. Modeling is based on the numer-
ical computation of a transmit excitation function (e.g. sine wave with Gaussian
envelope) with the spatial impulse response of the transducer, which is the sum of
small individual array elements, organized according to a pre-defined geometry.

A 3D extension of the model,generating 3D ultrasound image volume can also
be simulated, as shown in [11] and [30] most recently.

Regarding the three-dimensional aspect of the ultrasound simulation problem,
a first approach was proposed by [18] to simulate acoustic fields generated by
phased array transducers, with waves propagating in a uniformly lossy media.
Their approach was based on a double integral of the Huygens-Fresnel equations
to describe the spatial behavior of the wave front pressure in the acoustic field,
generated from a matrix of transducers. Later, with the introduction of the Vol-
umetrics RT3D transducer from Smith and Von Ramm, several papers [22,29,28]
were published, performing similar simulations for different geometrical designs
of the transducer matrix.

3.2 Proposed Simulation Framework

In this section, we propose a 3D ultrasound simulation framework, based on the
extension of Meunier et al. approach [12] in 3D. This model assumes that the
point spread function (PSF) H(x, y, z) of the transducer is linear and position-
independent, leading to formation of the radio-frequency (RF) signal RF (x, y, z)
via convolution of the system PSF with the impulse response T (x, y, z) of the
tissue:

RF (x, y, z) = H(x, y, z) ∗ T (x, y, z) (1)
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3.3 Image Formation Model

The far–field PSF was approximated by a cosine function combined with a 3-D
Gaussian envelope:

H(x, y, z) = exp
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z) define the size of the PSF in lateral, elevation and axial direc-

tions, respectively, and f defines the transducer spatial frequency. This model
assumes that time gain compensation was applied to correct for depth-dependent
attenuation of the echos. It is also important to note that this model neglects sev-
eral points: multiple scattering, multiple simultaneous interrogating directions,
dispersion and attenuation phenomena and velocity variations.

3.4 Scattering Modeling of the Tissues

The tissue function T (x, y, z) represents the scattering structure of the medium
and can be related to the continuum tissue structure via the Laplacian operator
applied to the compressibility distribution B(x, y, z): T (x, y, z) = Δ (B(x, y, z)).
Bamber and Dickinson in [3] proposed the following function T (x, y, z) describing
tissue echogeneity of a weakly inhomogeneous continuum in the far–field of an
ultrasound beam, formed by plane-waves propagating in the z-direction:
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)
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where ρ and β are the density and compressibility functions, with reference val-
ues ρ0 and β0. Seggie suggested in [19] to modify this model and replace the
compressibility distribution with an impedance distribution Z3D(x, y, z), argu-
ing that for weak scattering, backscattering are mainly due to fluctuation in
impedance. Pursuing this approach, Meunier et al. [12] proposed to model the
impedance function with a common kernel function C(x, y, z) and a ”echogene-
ity” parameter an, which is proportional to the number of scatterers in a pixel:

T (x, y, z) =
∂2

z2 Z3D(x, y, z), Z3D(x, y, z) =
∑

n

Zn(x, y, z),

Zn(x, y, z) = an C3D(x − xn, y − yn, z − zn)

C3D(x, y, z) = exp
(

−1
2

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

))

The parameters (σx, σy, σz) model the tissue cell dimensions and control the
modeling of tissue anisotropy while an controls the modeling of scatterer density
within scanned pixels, which depends on both the transducer and the tissue.
Because of important undersampling in the receiving mode of RT3D ultrasound
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transducers, assumption of large scatterers density (above 5 per pixel) can cer-
tainly be made in our simulation framework, leading to typical Rayleigh dis-
tributed RF signals as discussed in [12].

3.5 Model Simplification

In a 2D simulation framework, assuming that the diffraction angle in the elevation
direction y (i.e. the slice thickness) is very small, Meunier et al. in [12] further sep-
arated the transducer PSF in separated components H(x, y, z) = H(x, z)×H(y).
Combined with the approximation of the tissue function as the 2D derivative, in
the axial direction, of a 3D tissue function, they obtained a 2D RF image for-
mation model in the image plane (x, z). In this work, we did not use typical 2D
transducer parameters to set our acquisition parameters for a RT3D transducer,
as done in previous studies. Instead, we used available parameters from the com-
mercial Volumetrics machine from Duke University [26] and estimated unknown
parameters from sample RT3D ultrasound data. To approximate the actual image
resolution of commercial RT3D ultrasound transducers, we set the PSF parame-
ters to (1, 2, 0.5)mm for Full Width Half Maximum (FWHM) dimensions in axial,
lateral, and transverse directions. The corresponding PSF parameters (s2

x, s2
y, s

2
z)

can be derived using the relationship FWHM = 2.35 × standard deviation as
used in [12]. The transducer frequency was set to 3MHz (2.5-3.5 MHz can be used
with the Volumetrics transducer). The velocity of the acoustic wave in the human
body was set to the standard 1540m/s average value.

In medical ultrasound systems, H(x, y, z) is a narrowband signal. In this con-
text, the second order derivative operator in Eq.3 can be discarded since the
second derivative of a narrow-band is almost identical to the shape to the sign-
reversed signal itself. This assumption is also used to simplify the model in other
studies, explicitly in [10] or implicitly in [12,30].

3.6 Myocardium and Blood Cell Kernels Parameters Setting

We chose a 3D Gaussian to model the impedance inhomogeneities as in [12].
Thus, the general cell kernel function was expressed as a Gaussian function with
(σx, σy , σz) = (10, 10, 35) μm given the fact that myocardial cells are elongated
with dimensions around (20, 20, 70) μm. Since myocardial cells are tightly con-
nected and the myocardial fibers are parallel to each other at a scale of 100 or
1000 μm, a (1:1:3.5) ratio can be observed at the image pixel scale. Recent studies
on 2D or 3D ultrasound simulations only included modeling of the myocardium
tissue. Since in actual clinical RT3D echocardiography, both myocardium and
blood are imaged, we also built a tissue model for the blood. The average size of
the blood cells is about (10, 10, 2) μm. However, since blood cells are not tightly
connected to each others and pixel volumes are much larger than individual blood
cell volumes, the echogeneity within each blood pixel is mainly determined by
the number of cells within each pixel, a random variable with Poisson distribu-
tion. We used an = 10 or 30 to generate two volumes with different contrast
between blood and myocardium, as illustrated in Fig. 3. The simulation with
the highest density gave more satisfactory visual ultrasound data appearance.
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Fig. 3. Orthogonal views of a 3D ultrasound simulated volume of data: (top) low
density of scatterers in blood pool, (bottom) high density

4 Results and Discussion

We generated two sets of simulations for the normal and pathological (LBBB)
cases, varying the echogeneity parameters of the blood. These simulations pro-
vided very realistic volumes of images as illustrated in Fig. 3. We ran our OF
tracking algorithm on the simulated dataset with the highest blood density, to
compute the displacement vector field u on the endocardial and epicardial sur-
faces, initialized by the geometry of the first frame of the cardiac model. For
computational efficiency, challenged by the very high spatial resolution of the
simulated ultrasound data, we downsampled the point density on the myocardial
surfaces by 50(1/3) in each dimension, tracking about 500 points. Maximum dis-
placement values, from the model, between two consecutive frames was 13 mm
and rms angular displacements between consecutive frames between 10 and 75
deg. Accuracy of the motion field on the endocardial surface was computed via
magnitude and angular errors over the whole cardiac cycle, as illustrated in
Fig. 4. Epicardial tracking errors were very similar.

We also computed displacement maps from the true and estimated motion
fields between the first frame (initiation of the depolarization) and end–systole
(ES), after projection of the displacement vector field u in a cylindrical coordi-
nate system (r, θ, z), with the z axis oriented along the long axis of the ventricle.
In this coordinate system, and using the AHA 16-sectors partition of the LV, we
illustrate in Fig. 4 the circumferential component uθ, the radial component ur

and the twisting ∂uθ/∂z of the displacement vector field u of the myocardium.
Computation of these maps required tracking of the endocardial and epicardial
surfaces, spatial interpolation of the motion field with radial-basis functions as
described in [6] and correction for global translation of the myocardium between
the first frame and ES. Note that the twist values, being computed as derivatives,
need to be rescaled with respect to the sectorial height for physical values, which
averages 20mm. End–diastole corresponded to frame 4 or 5. We observed that
maximum error measurements occurred at end-systole (i.e. frame 10). We also
observed that specific displacement maps were very similar between the model
and the OF estimations on our simulated data. Motion patterns between the
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Fig. 4. Evaluation of displacements computed from optical flow (OF) on simulated
RT3D ultrasound data: (top) Angular and magnitude error measurements on the en-
docardial surface. (bottom) Dense myocardial displacement fields from OF tracking of
the myocardial surfaces.

normal and disease case were quite similar, as expected, since LBBB only incurs
delayed contractions of the LV.

Regarding motion estimation errors, in a recent study, [24], the authors evalu-
ated their OF method on simulated 2D ultrasound B-mode images, with Rayleigh
distributions, computed as the modulus of complex RF signals. Motion was sim-
ulated on a short-axis like slices, with area-preserving radial displacements and a
global translation. The overall velocity was set to a maximum of 2 pixels (versus
13 pixels for us). Results showed accuracy of angular estimates between 2.5◦

and 5◦, depending on the image SNR, and magnitude accuracy between 7% and
10%. We are below such accuracy but we remain within an average error of 2±4
pixels, despite very large displacements between consecutive frames.

5 Conclusions

Additional experiments will be performed to evaluate the accuracy of OF on
simulated data and evaluate the precision of OF displacement estimation in
additional disease cases, such as LAD, incurring local abnormal contractions.
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Regarding data assimilation perspectives, we emphasize that, once the procedure
has been validated using synthetic measurements such as described in this paper
the remaining difficulties in processing real data will focus on modeling aspects
not parameter estimation nor image processing issues.

Acknowledgments. The authors would like to thank M. Alba (INRIA) for his
contribution in generating the model simulation outputs.
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Stéphanie Clément-Guinaudeau2, Thomas Goissen2, and Jerôme Garot2
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Abstract. We propose a new automated and fast procedure to segment
the left ventricular myocardium in 4D (3D+t) cine-MRI sequences based
on discrete mathematical morphology. Thanks to the comparison with
manual segmentation performed by two cardiologists, we demonstrate
the accuracy of the proposed method. The precision of the ejection frac-
tion and myocardium mass measured from segmentations is also assessed.
Furthermore, we show that the proposed 4D procedure maintains the
temporal coherency between successive 3D segmentations.

1 Introduction

In cardiology, obtaining precise information on the size and function of the left
ventricle (LV) is essential both in clinical applications –diagnosis, prognostic,
therapeutic decisions– and in the research fields.

Thanks to 3D images acquired at different times of the heart cycle, Magnetic
Resonance (MR) permits a complete morphological LV characterization. The
precision on the measures extracted from MR images has been demonstrated to
be excellent [1] and MR imagery is a “gold standard” for LV analysis as a result.

However, due to considerable amount of data, the analysis and, in particular,
the segmentation of such images is fastidious, time consuming and error-prone
for human operators. Automated segmentation of cardiac images has been shown
to be a challenging task.

Since the 90’s, many approaches for solving this problem have been proposed,
notably in the framework of deformable models [2, 3, 4]. From a time series of
3D images of the LV, most existing methods iteratively segment each 3D image
independently [5, 6, 7]. Despite a constant improvement in the accuracy of the
produced segmentations, the temporal consistency of the resulting segmentations
–a desired feature in the case of a time series of 3D images– is not taken into
account by these approaches. Only a few methods consider the time series as
a whole 4D image. Although it uses a 4-dimensional atlas, the method in [8]
independently assigns each pixel to one of the objects and does not take into
account global properties (e.g. connectedness or presence of holes) relative to the
temporal consistency of the produced segmentations. In [9], the authors propose
a 4D deformable model with temporal constraints. Despite promising results
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on synthetic SPECT images, the resulting segmentation scheme was not fully
assessed on real cardiac images.

In order to take into account the time continuity in 4D cine-MRI, we investi-
gate a new LV segmentation scheme based on discrete mathematical morphology.
This theory [10] consists of analyzing geometrical objects through their inter-
action with predefined geometrical shapes. The notions of neighborhood and
connectivity are the basis of this framework. In particular, operators dedicated
to image segmentation are extended to 4-dimensional spaces by defining elemen-
tary 4-dimensional neighborhoods.

The main features of the LV segmentation method proposed in this paper are:
(i), accuracy assessed against manual segmentations performed by two cardiol-
ogists; (ii), resulting segmentations taking into account temporal consistency;
(iii), automated and fast; and (iv) few parameters whose setting relies on phys-
ical and anatomical facts. In this paper, the general idea of the method is de-
scribed; more details will be provided in a forthcoming extended version.

2 Segmentation Method

Segmentation schemes in mathematical morphology [11] comprise three main
steps: recognition, delineation and smoothing. Recognition is the process of de-
termining roughly the whereabouts of the object. Delineation consists in the
precise spatial localization of the object borders. Smoothing can be defined as
the process of matching the smoothness properties of the segmented object with
the a priori smoothness properties of the ground truth.

The recognition process consists in finding markers (landmarks) for each ob-
ject to be segmented. At this step, prior information can be taken into into
account in the segmentation process. This prior knowledge derives from the mod-
eling of the objects which are to be segmented. The delineation process, which is
generally performed by watershed algorithms, looks for divides, localized on the
“most contrasted areas” of the image, that separate the selected markers. Finally,
the smoothing step filters the objects obtained after the delineation process by
removing their non-significant parts, with respect to prior knowledge about the
shape of the objects. The left ventricular myocardium (LV M) is delimited by
two surfaces: the epicardial border (EpB) and the endocardial border (EnB).
We consider (Fig. 1a): (i), the left ventricular chamber (named LV C) delimited
by EnB and surrounded by LV M ; and (ii), an object called LV CM , made by
the union of the LV C and LV M , delimited by EpB and surrounded by LV B,
the Left Ventricular Background that is the complementary set of LV CM .

The LV C is a connected set whose intensity is very high and which is sur-
rounded by a significantly darker zone (see Fig. 1b). It is known, from anatomical
description, that the EnB is an irregular surface.

The left ventricular myocardium surrounds the LV C and its intensity is darker
than the one of LV C. The thickness of the LV M is not known in advance. It
can change from one patient to another and it is neither constant everywhere
around the chamber of a same patient. Nevertheless, the thickness of the LV M
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LVC

LVM

LVB

EpB EnB

(a) (b) (c)

Fig. 1. (a), Objects of interest in LV images; (b), example of Left Ventricular My-
ocardium segmentation and (c), a surface rendering

is bounded, and since we only consider live patients, it cannot be null. Contrary
to the EnB, the EpB is a smooth surface.

Last, the LV B is composed of several tissues including among other the liver,
the stomach, the right ventricle and the lungs. Some of them, such as the right
ventricle or the lungs, have characteristic intensities and can be used as land-
marks for the LV B.

The proposed segmentation method is composed of two consecutive steps
which consist of LV C segmentation, followed by LV CM segmentation. Then,
LV M is simply the set difference between them. Since endo- and epicardial
borders differ both in terms of contrast and shape, we segment them by different
strategies.

2.1 Endocardial Border Segmentation

The segmentation of the EnB is performed independently on each volume of
the sequence. The idea is, first, to find a marker for the LV C (i.e., a subset of
the LV C made of points which belong to the LV C with certainty). Then, this
marker is dilated conditionally to a second set made of points which possibly
belong to the LV C.

The LV C is made of a very light core object surrounded by a “ring” of lower
intensity (see Fig. 1). The core object Ct can be segmented, separately in each
volume, by selecting the appropriate connected component of an upper-threshold
It[s1] of the input image It at level s1, i.e., It[s1] = {x ∈ Vt | It(x) ≥ s1},
where Vt is the set of voxels of the t-th 3D-image. In our experiments, the
images are cropped such that, in each 3D volume, the center belongs to the core
of LV C. To this aim, the user selects a single point roughly located at the center
of the LV C in one of the 3D images of the sequence. Then, in each 3D image,
a box whose center is the specified point is automatically cropped. This step,
which is the only user interaction of the whole method, could be automated but
the physicians who made the evaluation prefer to keep this control point.
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Thus, in the 3D graph (induced by the classical 6-adjacency relation) corre-
sponding to the image under consideration, Ct is the connected component of
It[s1] which contains the center of the volume.

This core object is surrounded by a “ring” of lower intensity, still higher than
the intensity of the LV M , which is a partial volume effect due the presence of
both blood and muscle within the space of a single voxel. In order to get this
ring segmented, we perform a second upper threshold It[s2] of It at level s2 < s1;
It[s2] and Ct are combined together thanks to a geodesic dilation of size r1 of
Ct in It[s2] (see [10], chapter 6.1). In other words, LV Ct, the segmentation of
the LV C in the t-th volume of the 4D sequence, is the set of all points linked to
Ct by a path in It[s2] of length less than a predefined value r1 ∈ N.

2.2 Epicardial Border Segmentation

In this section, we describe LV CM segmentation. This segmentation is per-
formed after the one of the LV C. It must preserve some anatomical constraints.
Since we consider live patients, the left ventricular myocardium does not have
any hole. This leads to the constraint EpB ∩EnB = ∅. In the graph framework
assumed in this paper, it means that, in each 3D graph of the 4D-sequence, the
spatial neighborhood of LV Ct should be included in LV CMt, the segmentation
of the LV CM in the t-th image: LV M must be at least one pixel thick.

The segmentation of LV CM is performed thanks to a watershed-based pro-
cedure. Marker selection plays a primary role in the result of the watershed. In
our application, it allows, in particular, to take into account the prior knowl-
edge of the heart by imposing constraints on the markers. Since we want to get
the separation between LV CM and LV B, we need to select two markers, one
for each of these objects. In the following, mLV CM and mLV B denote these
two markers whereas wLV CM and wLV B denote the corresponding objects in
the segmentation obtained through the watershed. The recognition process, de-
scribed below, is performed independently on each volume of the 4D-sequence.
On the other hand, the watershed is applied on the 4D-graph associated to the
4D-sequence starting from the union of all the markers extracted in 3D.

mLV CM : Recognition of the LV CM . We first tackle the problem of
computing mLV CMt, for any given t. The watershed transform extends the
markers as much as possible. Thus, by definition, each marker taken as an input
of the watershed transform is included in the corresponding object obtained after
the watershed. Hence, in order to fulfill the pre-cited inclusion constraint, we
need to impose the inclusion of the spatial neighborhood of LV Ct in mLV CMt.

In order to compute this marker, the basic idea is to dilate the already known
left ventricular chamber as much as possible while ensuring that the marker
lies in the “true” LV CMt. Since we are dealing with infarcted ventricles, it
is not reasonable to use the same dilation parameter everywhere around the
chamber and for every different dataset. Thus, the dilations must be constrained
in order to fit each particular anatomy. To this aim, we introduce a definition
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of a constrained dilation, which, due to space restriction, is not provided in this
paper but will be given in a forthcoming extended version.

In our application, the goal is to find a constraining set which is able to
capture some of the features which are particular to the shape of the heart under
consideration. Therefore, this set is extracted from the images. Some bright and
dark regions (corresponding, for instance, to the right ventricle, the vascular
network or the lungs) surrounds the LV M . These regions can be classified as
non-myocardium objects and, thus, used as our constraining set. Some robust
markers of these zones can be easily extracted by upper and lower threshold of
the image: Tt = {x ∈ Vt\Nt(LV Ct) | It(x) < s3 or It(x) > s4}, where Nt(LV Ct)
denotes the dilation of size 1 of LV Ct, s3 ∈ N and s4 ∈ N. Then, mLV CMt,the
marker of the LV CM in the t-th 3D image is defined as the dilation of size
r2 of Nt(LV Ct) constrained by Tt. The constrained dilation is designed to take
into account that we deal with markers of an object rather than with its precise
segmentation. Thus, the set Tt does not need to be a precise segmentation; it is
used as a landmark for the right ventricle, the vascular network, etc. . .

mLV B: Recognition of the LV B. We now explain how to compute, in
each 3D image of the sequence, the marker for the left ventricular background
(mLV Bt). We consider the following facts: (a), the thickness of a left ventricular
myocardium cannot exceed a given threshold, denoted by r3; (b) the set Tt is
made of points which are in the background of the left ventricular chamber
and myocardium. We deduce from fact (a) that the points farther from LV Ct

than a distance of r3 have to belong to LV Bt. This set is denoted by LV Br3
t .

From fact (b), we also want Tt to be included in mLV Bt. In order to satisfy
these two requirements, the easiest way is to consider mLV Bt as the union of
LV Br3

t and Tt. We observe that this set is not necessarily connected. Using it
as a watershed marker can induce some unwanted configurations of wLV CMt,
obtained after the watershed process. In particular, wLV CMt can have some
cavities.

In order to overcome this problem, the idea is to derive mLV Bt by a topology-
preserving transformation. It is straightforward that the left ventricular back-
ground contains a unique cavity made of the left ventricular chamber and
myocardium. We remark that mLV CMt is, by construction, connected and that
it must be surrounded by LV Bt. The complementary set of mLV CMt thus con-
tains a unique cavity, and obviously, surrounds mLV CMt. Therefore, we choose
to derive mLV Bt from the complementary set of mLV CMt. The idea is to re-
duce this set while both preserving its topology and respecting facts (a) and (b).

To this aim, we use a constrained ultimate homotopic skeleton [12]. Roughly
speaking, an ultimate homotopic skeleton of a set X constrained by a set C, has
the same topology as X , contains C, and cannot be reduced (by point removal)
while keeping these two invariants. Thus, we compute mLV Bt, the marker of
the left ventricular background, as the skeleton of mLV CMt (i.e., the comple-
mentary set of mLV CMt) constrained by Tt ∪ LV Br3

t . We finally obtain a set
mLV Bt which has the desired topology and which respects facts (a) and (b).
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Delineation. The watershed transformation [11] is used as a fundamental step
in many powerful segmentation procedures. It is a graph-based method that
allows, from a gradient image, to find a “thin” separation between the com-
ponents of a given set of points called marker. In this application, we use the
watershed approach that we have developed since it has good robustness prop-
erties [13, 14]. We consider the 4D graph corresponding to the 3D+t sequence.
The neighborhood of each voxel corresponds to its 6 neighbors in 3D and the
voxels just “before” and “after” in the time sequence. In this graph, the water-
shed of the 4D gradient magnitude image is computed, starting from the two
markers made by the union of all mLV CMt and mLV Bt. As a result, we obtain,
a first segmentation of LV CM , denoted wLV CM lying on a background object
wLV B.

Smoothing. In order to obtain the final segmentation of LV CM , we use shape
filters coming from mathematical morphology. An alternating sequential filter
(ASF ) with parameters r and r′ is a sequence of intermixed openings and closings
by balls of increasing size, where r and r′ specify the radius of respectively the
smallest and largest ball (see [10], chapter 8.3). An opening of a set X by a ball
of radius r is the union of all balls of radius r which are included in X . On the
other hand, the closing of X is the complementary of the opening of X . Thus,
an ASF smoothes the object and its complementary in a balanced way while
preserving the “most significant balls” of both object and background.

The endocardial border can be modeled as the surface of a cone. Each section
(perpendicular to the height axis) of a cone is a disc. Then, we consider 2-
dimensional ASF , with parameters r4 and r5, for smoothing each 2D section of
the 3D wLV CMt.

3 Experiments

3.1 Image Acquisition

In our experiment, for each patient, the cine MRI dataset consisted of a suc-
cession of contiguous (no gap) LV short-axis 2D planes that were successively
imaged over time (2D+t). The most basal slices included in the analysis were lo-
cated just above mitral valve within LVC. To be included, the basal myocardium
had to be visible in the entire circumference at end-systole. The most apical slice
was chosen as the one with the smallest visible LVC at end-systole. The sequences
were registered to the heart-cycle, and could therefore be stacked in order to con-
struct 3D sequences. The number of 3D volumes during the entire cardiac cycle
ranged from 22 to 37, depending on heart rate (49-91). Typically, the spatial
resolution of each volume is 1, 7 × 1, 7 × 6 mm3. Before applying the segmen-
tation procedure, the images were over-sampled in order to get isotropic voxels.
When a misalignment of the different sections of a same volume was observed, a
translation-only registration procedure was possibly applied as a preprocessing
step.
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3.2 Parameters

Our method comprises two kinds of parameters. A first series is related with
the shape of a left ventricle and can be expressed by distance measures. In our
experiment, r1, r2, r3, r4 and r5 were set up to respectively 9, 5, 25, 7 and 12 mm.
These parameters are neither patient-specific nor device-specific. On the other
hand, our method comprises a series of parameters relative to the intensity of
the images. In our experiment, s1, s2, s3, s4 were set up to respectively 170, 105,
20, 170. These parameters are not patient-specific but they are device-dependent
which means that they must be re-estimated for each device.

The proposed method relies on a succession of operators. The results of each
of these operators are well specified with respect to anatomical constraint. Thus,
each of them can be tuned separately: the operators –and, thus, the parameters–
are independent. One of the two cardiologists estimated these parameters by
independently tuning each operator thanks to qualitative assessment. This choice
is the less time-consuming one since it does not require manual segmentation and
minimizes the number of tests to be performed. For instance, s1 is estimated by
interactively thresholding the image: the highest threshold such that all points
(above this threshold) connected to the center of the 3D volume belong to the
LV C with certainty is kept. We emphasize that only 3 training datasets were
enough to set up these parameters. Their complete tuning took four hours of
work for the practician. We recall that if one wish to use the proposed method
on a different device, only the parameters relative to image intensity need to be
re-calibrated. This would require less than one hour.

Furthermore, during the setting of the parameters, we noticed their robustness
with respect to small variations of typically, ± 5% for the parameters relative to
the intensity of the images and ± 10% for the shape parameters. In a forthcoming
extended version, we intend to make a systematic study of the impact of these
small variations on the resulting segmentations.

3.3 Results

Four-dimensional cardiac cine-MR images were acquired in 18 consecutive pa-
tients which were not specifically chosen for this application. Images were
processed automatically by the proposed 4D method. In Fig. 1, we show (b)
the internal border (on 3 orthogonal sections of a 3D volume) of the segmented
LV M , obtained by the 4D-method, superimposed to the corresponding sections
of the original image and (c) a surface rendering of the segmentation. For com-
parison, the dataset was also manually segmented by 2 independent experts
(cardiologists), called e1 and e2 in the sequel. For each 2D section, they manu-
ally overlaid EnB and EpB at both end-diastolic and end-systolic time.

Accuracy: Point-to-Surface Measurement. Given two surfaces ∂X and
∂Y represented by two sets of polygons, the point-to-surface measurement (P2S)
between ∂X and ∂Y estimates the mean distance between the vertices of ∂X
and ∂Y . A symmetrical measure is obtained by taking the maximum from the
P2S between ∂X and ∂Y and the P2S between ∂Y and ∂X .
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The P2S achieved by other groups for segmenting the endocardial and epicar-
dial border on their datasets are presented in Table 1a.

On our dataset, the surfaces (EnB and EpB) were extracted from the seg-
mentations by a marching cube algorithm. The P2S was computed from the
segmentations obtained by the automated method and the two experts. In order
to evaluate the inter-observer variability the P2S between the two experts is also
provided. Table 1b presents the mean and standard deviation of these measures
at end-diastolic time and end-systolic time. We note that, in all cases of Table 1b,
the P2S is less than 1 pixel. We achieved a mean P2S of 1.51mm ± 0.38 for the
endocardial border and a mean P2S of 1.81mm ± 0.43 for the epicardial border.
These results compare favorably with those obtained by other groups on their
own datasets (see Table 1b). Furthermore, the P2S between automatic and man-
ual segmentations is in the same range as the inter-observer P2S. This is a strong
indication that the automated method produces as satisfying a segmentation as
either manual one.

Table 1. (a), Point to surface measurements from the results of different cardiac
segmentation methods. (b), More details on the segmentations obtained by our method,
(mean point to surface in mm ± standard deviation).

(a) (b)
EnB EpB

[6] 2.01 ± 0.31 2.77 ± 0.49
[4] 2.75 ± 0.86 2.63 ± 0.76
[5] 2.28 ± 0.93 2.62 ± 0.75
[8] 1.88 ± 2.00 2.75 ± 2.62
[7] 1.97 ± 0.54 2.23 ± 0.46
ours 1.51 ± 0.38 1.81 ± 0.43

soft. vs. e1 soft. vs. e2 e1 vs. e2
End-diastolic time
EnB 1.52 ± 0.35 1.67 ± 0.43 1.37 ± 0.47
EpB 2.04 ± 0.35 1.68 ± 0.39 1.23 ± 0.41
End-systolic time
EnB 1.50 ± 0.41 1.35 ± 0.34 1.15 ± 0.41
EpB 1.90 ± 0.56 1.61 ± 0.41 1.31 ± 0.83

Assessment of Critical Parameters. Left ventricular ejection fraction (EF)
and left ventricular myocardium mass (MM) are critical parameters for cardiac
diagnosis and remodeling prevention. Their estimation is routinely used by car-
diologists. The EF is the amount of blood ejected during a heart cycle expressed
as a fraction of the tele-diastolic volume. In our dataset the EF (resp. MM) range
was 20-75% (resp. 94-197 g).

From the segmented images, the EF can be simply computed by (|LV Cmax |−
|LV Cmin |)/|LV Cmax |, where |LV Cmax | (resp. |LV Cmin |) is the maximal (resp.
minimal) volume of the left ventricular chamber along the heart cycle. Let Xo

p

denote the measure of the parameter X performed by operator o for patient
p, where X ∈ {EF, MM}, o ∈ {e1, e2, s}, and p ∈ [1, 18]. We take refXp =
(Xe1

p + Xe2
p )/2 as a reference value for the parameter X on patient p and we

evaluate the deviation ΔXo
p = |Xo

p−refXp|/refXp. Notice that ΔXe1
p = ΔXe2

p .
Over all 18 patients, the automated method achieved a mean deviation on the
EF (resp. MM) of 0.032 (resp. 0.050) whereas the experts achieved 0.055 (resp.
0.052). Furthermore, we observe that ΔEF s

p (resp. ΔMM s
p ) is less than ΔEF e1

p

(resp. ΔMM e1
p ) in 8 (resp. 9) of the 18 patients. In other words, the deviation on

the EF (resp. MM) achieved by the automated method is less than the deviation
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achieved by the experts in 8 (resp. 9) of the 18 patients. We conclude that
the automated tool produces reliable assessment of left ventricular functional
parameters comparable to the experts’.

Further experimental analysis, including, in particular, a qualitative assess-
ment of the method, will be provided in an extended version of this paper.

Temporal Consistency. The proposed segmentation scheme has been tested
using the 4D watershed-based procedure described above and also with a vari-
ant using only 3D watersheds (one per volume Vt). It is visible on the computer
screen that, contrary to the 3D variant, the 4D algorithm helps keeping the tem-
poral coherency between successive segmentations along the heart cycle. In order
to precisely evaluate this temporal coherency, we compute, for both methods,
the P2S between successive EpBs along the cardiac cycle. The means of these
measurements among all patients are plotted along the cardiac cycle in Fig. 2.
We observe that both curves have the same shape but that there is a nearly con-
stant difference between them. Thus, this confirms the fact that segmentations
obtained by the 4D method are more regular.
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Fig. 2. The point to surface measurements between the successive EpBs along the
cardiac cycle

The segmentation of endocardial borders is performed independently on each
3D volume of the sequence. Nevertheless, we have not noticed any regularity
problem in the EnBs produced by the automated software. This explains why
we have not developed a 4D procedure to segment the LV C.

4 Conclusion and Perspectives

In this paper, we propose a fast (worst computation time among the 18 datasets
is 4’3” on a conventional personal computer) and automated procedure to seg-
ment the left ventricular myocardium in 4D cine-MRI sequences, taking into
account temporal consistency. This procedure can be used in clinical routine.
Thanks to the comparison with manual segmentations performed by two cardi-
ologists, we demonstrated the accuracy of the proposed method and the preci-
sion of the ejection fraction and myocardium mass derived from the automated
segmentations.
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Rouchdy, Youssef 443

Sachse, Frank B. 110
Santos, A. 424
Savio, Eleonora 110
Scacchi, Simone 139
Schaerer, Joel 60, 443
Seemann, Gunnar 129
Sermesant, Maxime 100, 160, 413
Severi, Stefano 120
Shi, Pengcheng 150, 280
Shim, Eun B. 190
Shimayoshi, Takao 190
Shome, Shibaji 320
Shou, Guofa 269, 290
Smaill, Bruce H. 220
Smiseth, Otto A. 330
Sohn, Kwanghyun 250, 260
Solovyova, Olga 383
Stinstra, Jeroen 373
Sulman, Tatiana 383
Sunkara, Adhira 210
Sutherland, David R. 250, 260
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