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Introduction

We have all witnessed the revolutionary changes in recent years

brought about by the development of information technology.

These changes have been key to modernizing many disciplines

and industries, and biomedicine is no exception. The import-

ance of biomedical information technology has been widely

recognized and its application has expanded beyond the

boundary of health services, leading to the discovery of new

knowledge in life sciences and medicine. In the meantime, life

sciences and medicine are becoming an important driving

force for the further development of information technology

and related disciplines. Many emerging areas have recently

been developed, including health informatics, bioinformatics,

imaging informatics (or even medical imaging informatics; see

Chapter 13 of this book), medical biometrics, systems physi-

ology, systems biology, and biocybernetics. This book aims to

provide readers with a comprehensive and up-to-date overall

picture of information technology in biomedicine.

This book is divided into two major parts: technological

fundamentals and integrated clinical applications. The techno-

logical fundamentals cover key medical imaging systems: Elec-

tronic Medical Record (EMR) standards and systems; image

data compression; content-based medical image retrieval;

modeling and simulation; techniques for parametric imaging;

data processing and analysis; image registration and fusion;

visualization and display; data communication and transmis-

sion; security and protection for medical image data; and

biological computing. The integrated clinical applications

include picture archiving and communication systems (PACS)

and medical imaging informatics (MII) for filmless hospitals;

a knowledge-based digital library for retrieving scenario-

specific medical text documents; integrated multimedia

patient record systems; computer-aided diagnosis (CAD); clin-

ical decision support systems (CDSS); medical robotics and

computer-integrated interventional medicine; functional tech-

niques for brain magnetic resonance imaging; molecular

imaging in biology and pharmacology; the evolution of e-health

systems; and smart medical home. Most of the chapters include

over 100 references and comprehensively summarize the most

recent cutting-edge research in these areas.

This book is a well-designed research handbook instead of a

collection of research papers, and is intended for scientific and

clinical researchers and practitioners. It is also well-suited for

use as a textbook for senior undergraduate and junior post-

graduate students with exercises at the end of each chapter to

facilitate a better understanding of the comprehensive know-

ledge covered by this book. Ten chapters are contributed from

our Biomedical & Multimedia Information Technology

(BMIT) Research Group, School of Information Technologies,

University of Sydney and Centre for Multimedia Signal Pro-

cessing, Department of Electronic and Information Engineer-

ing, Hong Kong Polytechnic University, including from our

BMIT Group senior members Professor Michael Fulham, who

is an Adjunct Professor in the School of Information Tech-

nologies and Clinic Professor in the Faculty of Medicine,

University of Sydney, Director of PET and Nuclear Medicine

Departments, Royal Prince Alfred (RPA) Hospital, Clinical

Director for Medical Imaging Service Central Sydney Area

Health Services, Chairman of RPA PACS Steering Committee,

and the winner of the U.S. NIH Outstanding Performance in

Research Award and Australian Eccles Lectureship Award; and

Professor Doan B. Hoang, who is an Honorary Associate of the

School of Information Technologies, University of Sydney,

Professor of Computer Networks and Director of the ARN

Networking Research Laboratory, Faculty of Information

Technology, University of Technology, Sydney; as well as our

BMIT regular research collaborator and Chapter 3 co-author,

Professor Henry Wu, who is a Professor of Visual Communi-

cations Engineering and Discipline Head of Computer and

Network Engineering at the School of Electrical and Computer

Engineering, RMIT University, Melbourne, Australia. The fol-

lowing 13 chapters are purposely reserved for contributions

from other external international top-leading research groups

headed by the world’s authorities in their respective areas.

These international research leaders who contributed to

the remaining 13 chapters are introduced in the following

paragraphs.

Chapter 1: ‘‘Medical Imaging’’ is contributed by Professor

Andrew Webb, Director of Huck Institute Magnetic Resonance

Centre, and his team in the Department of Bioengineering at

Penn State University. Professor Webb’s main research pro-

gram is in high field applications of magnetic resonance

imaging and spectroscopy, with an emphasis on applications

to small animal imaging and microimaging. He has been a full

professor since 2003 and has published over 130 journal

articles in peer-reviewed publications. He is also the author

of a widely used textbook Introduction to Biomedical Imaging

(Wiley, 2003). Professor Webb is a Fellow of the American

Institute for Medical and Biological Engineering, as well as

having been awarded a Wolfgang Paul Prize from the

Humboldt Foundation from 2001 to 2004.

Chapter 5: ‘‘Data Modeling and Simulation’’ is contributed

by Professor Claudio Cobelli and his colleague Dr. Alessandra

Bertoldo at the Department of Information Engineering,

University of Padova, Italy. Professor Cobelli’s main research

subject, the field of modeling of endocrine-metabolic

systems, has received competitive research grants from
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MIUR-MURST, EU and the U.S. National Institutes of Health.

He has been a full professor in bioengineering since 1981, and

has published over 228 papers in well-established internation-

ally refereed journals. He has also published a number of

international leading books in his area and is co-author

of Carbohydrate Metabolism: Quantitative Physiology and

Mathematical Modeling (Wiley, 1981), The Mathematical

Modeling of Metabolic and Endocrine Systems (Wiley, 1983),

Modeling and Control of Biomedical Systems (Pergamon Press,

1989), Modeling Methodology for Physiology and Medicine

(Academic Press, 2000), Tracer Kinetics in Biomedical Research:

from Data to Model (Kluwer Academic/Plenum Publishers,

2001), etc. Professor Cobelli, Fellow of IEEE, is an active

research leader, the founding Chairman of the International

Federation of Automatic Control (IFAC), Technical Commit-

tee on Modeling and Control for Biomedical Systems (includ-

ing Biological Systems), and is currently an Associate Editor of

IEEE Transactions on Biomedical Engineering and of Mathemat-

ical Biosciences and on the Editorial Board of the American

Journal of Physiology: Endocrinology and Metabolism.

Chapter 7: ‘‘Data Processing and Analysis’’ is contributed by

Professor Yue Wang’s group and his collaborators at the Vir-

ginia Polytechnic Institute and State University, University of

Missouri, Georgetown University, and George Washington

University. Professor Wang has also worked closely with the

Johns Hopkins Medical Institutions. His research focuses on

computational bioinformatics and bio-imaging for diagnosis

and molecular analysis of human diseases, with an emphasis

on the strategic frontier between statistical machine learning

and systems biomedical science. He leads a multidisciplinary

and multi-institutional research effort to improve the outcome

for patients with cancers, muscular dystrophies, and cardio-

vascular diseases, an initiative supported by the U.S. National

Institutes of Health and Department of Defense. His work has

also advanced the broad scientific fields of pattern recognition,

signal processing, statistical information visualization, and

machine learning. Professor Wang is an elected Fellow of the

American Institute for Medical and Biological Engineering

(AIMBE), and is currently an Associate Editor for the Inter-

national Journal of Biomedical Imaging, EURASIP Journal on

Bioinformatics and Systems Biology, and IEEE Signal Processing

Letters. Professor Wang is on the ISI (Web of Knowledge) list

of highly cited authors in the Category of Engineering.

Chapter 12: ‘‘Biologic Computing’’ is contributed by Pro-

fessor Eric P. Hoffman and his team at the Research Center for

Genetic Medicine, Children’s Medical Center, Washington

D.C. Dr. Hoffman is a Professor of Pediatrics, Biochemistry

and Molecular Biology, Neuroscience, and Genetics at the

George Washington University School of Medicine and Health

Sciences, and the Director of the Research Center for Genetic

Medicine, Children’s National Medical Center, Washington

D.C. He received his Ph.D. degree in biology (genetics) from

Johns Hopkins University in 1986 and subsequently worked as a

post-doctoral research fellow at the Harvard Medical School

and Children’s Hospital for two years. His laboratory is the top

contributor of Affymetrix microarray data in the public

domain, and he has focused bioinformatics methods develop-

ments on quality control and standard operating procedures,

signal/noise balance, and public access databases, including the

popular PEPR resource (http://pepr.cnmcresearch.org). His

laboratory has enjoyed an impressive research grant track

record from NIH and Department of Defense, as well as

outstanding publication track record in the area of biological

computing in well-recognized journals, for example, Nature,

Cell, Nature Medicine, Neuron, Neurology, Brain, Journal of Cell

Biology, Journal of Biological Chemistry, and Bioinformatics.

Dr. Hoffman is among the most highly cited scientists (more

than 12,000 citations to date).

Chapter 13: ‘‘PACS and Medical Informatics for Filmless

Hospitals’’ is contributed by Professor H. K. (Bernie) Huang,

Director, and Professor Brent J. Liu, Deputy Director of In-

formatics, Department of Radiology, Keck School of Medicine,

University of Southern California. He is also the Chair Profes-

sor of Medical Informatics at Hong Kong Polytechnic Univer-

sity and an Honorary Professor at the Shanghai Institute

of Technical Physics and at the Chinese Academy of Sciences.

Professor Huang has pioneered PACS research, developed

the PACS at UCLA in 1991, and developed the hospital-inte-

grated PACS at UCSF in 1995. He has authored and co-

authored seven books, published over 200 peer-reviewed art-

icles, and received several patents. His book: PACS and Imaging

Informatics, published by John Wiley & Sons in 2004, is the

only textbook in this field. During the past 25 years, Professor

Huang has received over 21 million U.S. dollars in PACS,

medical imaging informatics, tele-imaging, and image-pro-

cessing–related research grants and contracts. He has mentored

22 Ph.D. students and over 30 post-doctoral fellows

from around the world. Professor Huang has been a consultant

for many national and international hospitals, imaging

manufacturers in the design and implementation of PAC sys-

tems, and enterprise level EPR with image distribution. He has

been a Visiting Professor in many leading universities around

the world and Board Member in leading medical imaging

manufacturers.

Chapter 14: ‘‘KMeX: A Knowledge-Based Digital Library for

Retrieving Scenario-Specific Medical Text Documents’’ is con-

tributed by Professor Welsey W. Chu and his team in the

Computer Science Department, University of California

(UCLA), Los Angeles. Professor Chu is a UCLA Distinguished

Professor and former chairman of the department. He received

his Ph.D. from Stanford University in 1966, worked with IBM

and Bell Laboratories from 1964 to 1966 and 1966 to 1969,

respectively, and has joined UCLA since 1969. During the first

two decades, he has made fundamental contributions to the

understanding of statistical multiplexing and did pioneering

work in file allocation, as well as directory design for distributed

databases and task partitioning in real-time distributive sys-

tems, for which he was elected as an IEEE Fellow. During the
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past decade, his research interests have evolved to include intel-

ligent information systems and knowledge acquisition for large

information systems. Professor Chu led the development of

CoBase, a cooperative database system for structured data,

and KMed, a knowledge-based multimedia medical image sys-

tem. CoBase has been successfully used in logistic applications

to provide approximate matching of objects. Together with the

medical school staff, the KMed project has been extended to the

development of a medical digital library, which consists of

structured data, text documents, and images. The system pro-

vides approximate content-matching and navigation and serves

as a cornerstone for future paperless hospitals. In addition,

Professor Chu conducts research on data mining of large infor-

mation sources, knowledge-based text retrieval, and extending

the relaxation methodology to XML (CoXML) for information

exchange and approximate XML query answering in the Web

environment. In recent years, he also researches in the areas of

using inference techniques for data security and privacy protec-

tion (ISP). Professor Chu has received best paper awards at the

19th International Conference on Conceptual Modeling in 2000

for his work on XML/Relational schema transformation. He

and his students have received best paper awards at the Ameri-

can Medical Information Association Congress in 2002 and

2003 for indexing and retrieval of medical free text, and have

also been awarded a Certificate of Merit for the Medical Digital

Library Demo System at the 89th Annual Meeting of the Radio-

logical Society of North America in 2003. He is also the recipient

of the IEEE Computer Society 2003 Technical Achievement

Award for his contributions to intelligent information systems.

Chapter 15: ‘‘Integrated Multimedia Patient Record Sys-

tems’’ is contributed by Dr. Ruth E. Dayhoff and her Multi-

media Medical Record group, which is part of the Office of

Information of the U.S. Department of Veterans Affairs (VA).

This organization is responsible for the software and systems

used by the clinicians and staff at 156 VA hospitals and almost

900 clinics, the largest health care network in the United States.

The VA’s software, called Veterans Health Information System

& Technology Architecture (VistA) is developed by the VA’s

Office of Information. Initial work started over 25 years ago,

and over 60 different hospital information system modules are

in use. VistA Imaging, the multimedia patient record compon-

ent, has grown and evolved over the past 16 years. Dr. Ruth

Dayhoff, M.D., is a physician and early pioneer in medical

informatics. She directs the VistA Imaging development

team. The team participates in integrating the Healthcare

Enterprise initiatives and other major health care standards.

The VistA System is undergoing a major data standardization

effort necessitated by the new capabilities to view and filter a

patient’s entire record, including information stored at remote

sites. This work involves domains such as orders, progress note

titles, problems, and imaging procedures. Another major focus

within the VA is monitoring the quality of health care that is

provided. Software plays a major role in this effort, and is

constantly enhanced to provide additional reminders to clini-

cians and monitoring tools for the organization. As a result,

the Department of Veterans Affairs has recently been recog-

nized by multiple authorities as providing the highest quality

health care in the United States.

Chapter 16: ‘‘Computer-Aided Diagnosis’’ is contributed by

Professor Maryellen L. Giger and her colleague Kenji Suzuki

at the University of Chicago. Dr. Giger is a Professor of

Radiology and resides on the Committee on Medical Physics

at the University of Chicago, is the Director of the Graduate

Programs in Medical Physics, and oversees her research lab of

12 members, including post-doctoral trainees, research asso-

ciates, and graduate students. She also serves as Chief of the

Radiological Sciences Section and Vice Chair for Basic Science

Research in the Department of Radiology, University of Chi-

cago. Dr. Giger received her Ph.D. in medical physics from

the University of Chicago in 1985. Dr. Giger is recognized as

one of the pioneers in the development of computer-aided

diagnosis. She has authored or co-authored more than 240
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Hopkins. Over the past decade, Dr. Bhujwalla’s work has
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1.1 Introduction

Medical imaging forms a key part of clinical diagnosis, and

improvements in the quality and type of information available

from such images have extended the diagnostic accuracy and

range of new applications in health care. Previously seen as the

domain of hospital radiology departments, recent techno-

logical advances have expanded medical imaging into neurol-

ogy, cardiology, and cancer centers, to name a few. The past

decade, in particular, has seen many significant advances in

each of the imaging methods covered in this chapter. Since

there are a large number of texts (see Bibliography) that deal in

great detail with the basic physics, instrumentation, and clin-

ical applications of each imaging modality, this chapter sum-

marizes these aspects in a succinct fashion and emphasizes

recent technological advances. State-of-the-art instrumenta-

tion for clinical imaging now comprises, for example, 64-slice

spiral computed tomography (CT); multi-element, multidi-

mensional phased arrays in ultrasound; combined positron

emission tomography (PET) and CT scanners; and rapid par-

allel imaging techniques in magnetic resonance imaging (MRI)

using large multidimensional coil arrays. Furthermore, on the

horizon are developments such as integrated diffuse optical

tomography (DOT)/MRI. Considered together with signifi-

cant developments in new imaging contrast agents—so-called

‘‘molecular imaging agents’’—the role of medical imaging

looks likely to continue to expand in modern-day health

care.

Dr. Xiaofeng Zhang,
Prof. Nadine Smith, and
Prof. Andrew Webb
Penn State University
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1.2 Digital Radiography

Planar X-ray imaging has traditionally been film-based and is

used for diagnosing bone breaks, lung disease, a number of

gastrointestinal (GI) diseases (fluoroscopy), and conditions of

the genitourinary tract, such as kidney stones (pyelography).

Increasingly, images are being formed and stored in digital

format for integration with picture archiving and communi-

cation systems (PACSs), ease of storage and transfer, and image

manipulation in, for example, digital subtraction angiography.

Many of the components of conventional film-based systems

(X-ray source, collimators, anti-scatter grids) are essentially

identical to those in digital radiography, the only difference

being the detector itself.

1.2.1 Formation and Characteristics of X-rays

A schematic of an X-ray source is shown in Figure 1.1 (a). A

potential difference, termed the accelerating voltage (kVp),

typically between 90 and 150 kV, is applied between a small

helical cathode coil of tungsten wire and a rotating anode

consisting of a tungsten target embedded in a rotating copper

disc. When an electric current is passed through the cathode,

electrons are emitted via thermionic emission and accelerate

toward the anode target; X-rays are then created by the inter-

action of these electrons with the target: This electron flow is

termed the tube current (mA). X-rays then pass through a

‘‘window’’ in the X-ray tube. In order to create the desired

thin X-ray beam, a negatively charged focusing cup is placed

around the cathode. A broad spectrum of X-ray energies is

emitted from the X-ray tube, as shown in Figure 1.1 (b).

Characteristic lines are produced when the accelerated elec-

trons knock out a bound electron in the K-shell of the tungsten

anode, with the resulting hole being filled by an electron from

the L-shell, and the difference in binding energy of the two

electrons being transferred to an X-ray. The broad ‘‘hump’’

component of the X-ray spectrum arises from ‘‘general radi-

ation,’’ which corresponds to an accelerated electron losing

part of its kinetic energy when it passes close to a tungsten

atom in the target and this energy being emitted as an X-ray.

Overall, the number of X-rays produced by the source is

proportional to the tube current, and the energy of the X-ray

beam is proportional to the square of the accelerating voltage.

The collimator, also termed a beam restrictor, consists of lead

sheets that can be slid over one another to restrict the beam

dimensions to match those of the area of the patient to be

imaged.

1.2.2 Scatter and Attenuation of X-rays
in Tissue

The two dominant mechanisms for the interaction of X-rays

with tissue are photoelectric absorption and Compton scatter-

ing. Photoelectric interactions in the body involve the energy

of an incident X-ray being absorbed by an atom in tissue, with

a tightly bound electron emitted from the K- or L-shell: The

incident X-ray is completely absorbed and does not reach the

detector. The probability (Pphoto) of photoelectric absorption

occurring is given by:

Pphoto /
Z3

eff

E3
, (1:1)

where Zeff is the effective atomic number, and E is the X-ray

energy. Since there is a large difference in the values of Zeff for

bone (Zeff ¼ 20 due to the presence of Ca) and soft tissue

(Zeff ¼ 7:4), photoelectric absorption produces high contrast

between bone and soft tissue.

Compton scattering involves the transfer of a fraction of an

incident X-ray’s energy to a loosely bound outer shell of an

atom in tissue. The X-ray is deflected from its original path but

typically maintains a substantial component of its original

energy. The probability of Compton scattering is essentially

independent of the effective atomic number of the tissue,

linearly proportional to the tissue electron density, and weakly
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FIGURE 1.1 (a) Schematic of an X-ray tube. (b) Typical energy spectrum from a tungsten anode

with an accelerating voltage of �100 kVp.
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dependent on the X-ray energy. Since the electron density is

very similar for bone and soft tissue, Compton-scattered

X-rays result in very little image contrast.

Attenuation of the intensity of the X-ray beam as it travels

through tissue can be expressed mathematically by:

Ix ¼ I0e� mCompton þmphotoelectricð Þx, (1:2)

where I0 is the intensity of the incident X-ray beam, Ix is the

X-ray intensity at a distance x from the source, and m_ is

the linear attenuation coefficient of tissue, measured in cm�1.

The contribution from photoelectric interactions dominates

at lower energies, whereas Compton scattering is more im-

portant at higher energies. X-ray attenuation is often charac-

terized in terms of a mass attenuation coefficient, equal to the

linear attenuation coefficient divided by the density of the

tissue. Figure 1.2 plots the mass attenuation coefficient of fat,

bone, and muscle as a function of the incident X-ray energy. At

low-incident X-ray energies, bone has by far the highest mass

attenuation coefficient. As the incident X-ray energy increases,

the probability of photoelectric interactions decreases greatly,

and the value of the mass attenuation coefficient becomes

much lower. At X-ray energies greater than about 80 keV,

Compton scattering is the dominant mechanism, and the

difference in the mass attenuation coefficients of bone and

soft tissue is less than a factor of 2. At incident X-ray energies

greater than around 120 keV, the mass attenuation coefficients

for bone and soft tissue are very similar.

In cases in which there is little contrast—for example,

between blood vessels and surrounding tissue—X-ray contrast

agents can be used. There are two basic classes of contrast

agents: those based on barium and those based on iodine.

Barium sulphate is used to investigate abnormalities such as

ulcers, polyps, tumors, or hernias in the GI tract. Since barium

has a K-edge at 37.4 keV, X-ray attenuation is much higher in

areas where the agent accumulates. Barium sulphate is admin-

istered as a relatively thick slurry. Orally, barium sulphate is

used to explore the upper GI tract, including the stomach and

esophagus (the so-called ‘‘barium meal’’). As an enema, bar-

ium sulphate can be used either as a single or ‘‘double’’ con-

trast agent. As a single agent, it fills the entire lumen of the GI

tract and can detect large abnormalities. As a double contrast

agent, barium sulphate is introduced first, followed usually by

air: The barium sulphate coats the inner surface of the GI tract,

and the air distends the lumen. This double agent approach is

used to characterize smaller disorders of the large intestine,

colon, and rectum.

Iodine-based X-ray contrast agents are used for a number of

applications, including intravenous urography, angiography,

and intravenous and intra-arterial digital subtraction angiog-

raphy. An iodine-based agent is injected into the bloodstream,

and since iodine has a K-edge at 37.4 keV, X-ray attenuation in

blood vessels is enhanced compared with the surrounding soft

tissue. This makes it possible to visualize arteries and veins

within the body. Digital subtraction angiography (DSA) is

a technique in which one image is taken before the contrast

agent is administered and a second is taken after injection of

the agent, and the difference between the two images is com-

puted. DSA gives very high contrast between the vessels and the

tissue and can produce angiograms with extremely high spatial

resolution, resolving vessels down to �100 mm in diameter.

1.2.3 Instrumentation for Digital Radiography

The detector placed on the opposite side of the patient to the

X-ray source consists of an anti-scatter grid and recording

device. The role of the anti-scatter grid is to minimize the

number of Compton-scattered X-rays that reach the detector,

since these reduce image contrast. The grid consists of thin

strips of lead spaced by aluminium for structural support. The

grid ratio, the length of the lead strips divided by the interstrip

distance, has values between 4:1 and 16:1, and the strip line

density ranges from 25 to 60 per cm.

Digital radiography has largely replaced the use of X-ray

film for recording the image. A large-area (41� 41 cm) flat-

panel detector (FPD) consists of an array of thin-film tran-

sistors (TFT). The FPD is fabricated on a single monolithic

glass substrate. A thin-film amorphous silicon transistor array

is then layered onto the glass. Each pixel of the detector

consists of a photodiode and associated TFT switch. On top

of the array is a structured thallium doped cesium iodide (CsI)

scintillator, which consists of many thin, rod-shaped crystals

(approximately 6---10 mm in diameter) aligned parallel to one

another. When an X-ray is absorbed in a CsI rod, the CsI

scintillates and produces light. The light undergoes internal

reflection within the fiber and is emitted from one end of the

fiber onto the TFT array. The light is then converted into an

electrical signal by the photodiodes in the TFT array. This

signal is amplified and converted into a digital value for each

pixel using an analog-to-digital (A/D) converter. Each pixel

typically has dimensions of 200� 200 mm.
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1.3 Computed Tomography

1.3.1 Principles of Computed Tomography

CT acquires X-ray data at different angles with respect to the

patient and then reconstructs these data into images. The basic

scanner geometry is shown in Figure 1.3. A wide X-ray ‘‘fan-

beam’’ and large number of detectors (typically between 512

and 768) rotate synchronously around the patient. The detect-

ors used are ceramic scintillators based on Gd2O2S, with

different companies adding trace amounts of various elements

to improve performance characteristics. Behind each scintilla-

tor is a silicon photodiode to convert light into current flow.

The current is amplified and then digitized. The combined

data represent a series of one-dimensional projections.

Prior to image reconstruction, the data are corrected for the

effects of beam hardening, in which the effective energy of

the X-ray beam increases as it passes through the patient due

to the greater degree of attenuation of lower X-ray energies.

Corrections are also made for imbalances in the sensitivities of

individual detectors and detector channels. Reconstructing a

2D image from a set of projections—p(r,f), acquired as a

function of r, the distance along the projection, and the rotation

angle f of the X-ray source and detector—is performed using

filtered backprojection. Each projection p(r,f) is Fourier-trans-

formed along the r-dimension to give P(k,f), and then P(k,f) is

multiplied by H(k), the Fourier transform of the filter function

h(r), to give Pfilt(k,f). The filtered projections, Pfilt(k,f), are

inverse-Fourier-transformed back into the spatial domain and

backprojected to give the final image, f̂(x,y):

f̂f (x,y) ¼
Xn

j¼1

F
�1 Pfilt k,fj

� �
dw

n o
; (1:3)

where F
�1 represents an inverse Fourier transform and n is

the number of projections. The filter is typically a lowpass

cosine or generalized Hamming function. The reconstruction

algorithm assumes that all of the projections are parallel.

However, Figure 1.3 shows that in the case of an X-ray fan-

beam, this is not the case. The backprojection algorithm is

adapted by multiplying each projection by the cosine of the

fanbeam angle, with the angle also incorporated into the filter.

After reconstruction, the image is displayed as a map of tissue

CT numbers, which are defined by:

CTo ¼ 1000
mo � mH2O

mH2O

, (1:4)

where CTo is the CT number and mo is the linear attenuation

coefficient of the tissue.

1.3.2 Spiral and Multislice Computed
Tomography

Spiral CT acquires data as the patient table is moved continu-

ously through the scanner, with the trajectory of the X-ray

beam through the patient tracing out a spiral pattern, as shown

in Figure 1.4. This technique enables very rapid scan times,

which can be used, for example, for a complete chest

and abdominal study during a single breath-hold. Full

three-dimensional vascular imaging data sets can be acquired

very shortly after injection of an iodinated contrast agent.

The instrumentation for spiral CT is very similar to that of

conventional third-generation CT scanners, but with multiple

slip-rings being used for power and signal transmission.

The spiral trajectory is defined in terms of parameters such as

the spiral pitch, (p), defined as the ratio of the table feed (d) per

rotation of the X-ray source to the collimated slice thickness (S).

Due to the spiral trajectory of the X-rays throughout the

patient, modification of the backprojection reconstruction

algorithm is necessary in order to form images that corre-

spond closely to those that would have been acquired using a

(a) (b)

FIGURE 1.3 (a) Schematic of the operation of a third-generation CT scanner. (b) Photo-

graph of a CT scanner with patient bed.
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single-slice CT scanner. Images are usually processed in a

way that results in considerable overlap between adjacent slices.

This has been shown to increase the accuracy of lesion detec-

tion, for example, since with overlapping slices there is less

chance that a significant portion of the lesion lies between slices.

The vast majority of new CT scanners are multislice scan-

ners; that is, they incorporate an array of detectors in the

direction of table motion, as shown in Figure 1.4, in addition

to spiral data acquisition. Multislice spiral CT can be used to

image larger volumes in a given time, or to image a given

volume in a shorter scan time compared with conventional

spiral CT. The collimated X-ray beam can also be made thin-

ner, giving higher-quality three-dimensional scans, with slice

thicknesses well below 1 mm. Sixty-four–slice machines are

now offered by all vendors, which allow very high resolution

images to be acquired, as shown in Figure 1.5.

1.4 Nuclear Medicine

1.4.1 Radioactive Nuclides in Nuclear Medicine

In contrast to X-ray, ultrasound, and MRI, nuclear medicine

imaging techniques do not produce an anatomical map of

the body, but instead image the spatial distribution of radio-

active materials (radiotracers) that are introduced into the

body. Nuclear medicine detects early biochemical indicators

of disease by imaging the kinetic uptake, biodistribution,

and clearance of very small amounts (typically nanograms)

of radiotracers, which enter the body via inhalation into

the lungs, direct injection into the bloodstream, or oral

administration. These radiotracers are compounds consisting

of a chemical substrate linked to a radioactive element.

Abnormal tissue distribution or an increase or decrease in

the rate at which the radiopharmaceutical accumulates in a

particular tissue is a strong indicator of disease. Radiation in

the form of g-rays is detected using an imaging device called

a gamma camera. The vast majority of nuclear medicine scans

are performed using technetium-containing radiotracers.
99mTc exists in a metastable state and is formed from 99Mo

according to the following scheme:

99
42Mo ���������!t1=2 66 hours

bþ 99m
43 Tc ���������!t1=2 6 hours

99g
43 Tcþ g:

The energy of the emitted g-ray is 140 keV, which is high

enough for a significant fraction to pass through the body

without being absorbed, and low enough not to pentrate the

Collimators

Multi-slice detectors

Continuous
table motion

X-ray source

FIGURE 1.4 Continuous motion of the patient while the X-ray

source and detectors rotate causes the X-rays to trace out a helical

trajectory through the patient. Multi-slice detectors (not shown to

scale) enable very thin slice thicknesses to be acquired.

(a) (b)

FIGURE 1.5 (a) Three-dimensional volume rendering of the cardiac surface with data from a

multislice spiral CT system. (b) Three-dimensional cardiac angiogram.
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collimator septa used in gamma cameras to reject scattered

g-rays. Tc-based radiotracers are produced from an on-site

technetium generator, which can be replenished on a weekly

basis. The generator comprises an alumina ceramic column

with radioactive 99Mo absorbed onto its surface in the form of

ammonium molybdenate. The column is housed within a lead

shield for safety considerations. 99mTc is obtained by flowing

an eluting solution of saline through the generator. The solu-

tion washes out the 99mTc, which binds very weakly to the

alumina, leaving the 99Mo behind. The 99mTc eluted from the

generator is in the form of sodium pertechnatate, NaTcO4.

The majority of radiotracers, however, are prepared by reduc-

ing the pertechnetate to ionic technetium (Tc4þ) and then

complexing it with a chemical ligand that binds to the metal

ion. Examples of ligands include diphosphonate for skeletal

imaging, diethylenetriaminepentaacetic acid (DTPA) for renal

studies, hexamethylpropyleneamineoxime (HMPAO) for brain

perfusion, and macroaggregated albumin for lung perfusion.

1.4.2 Nuclear Medicine Detectors

The gamma camera is based on a large scintillation crystal that

transduces the energy of a g-ray into light. In front of the

crystal is a lead collimator, usually of a hexagonal ‘‘honey-

comb’’ structure, which minimizes the contribution of Comp-

ton scattered g-rays, analogous to the setup described

previously for X-ray imaging. The crystal itself is made of

thallium-activated sodium iodide, NaI(Tl), which converts

the g-ray energy into light at 415 nm. The intensity of the

light is proportional to the energy of the incident g-ray. The

light emission decay constant, which is the time for the excited

states within the crystal to return to equilibrium, is 230 ns,

which means that count rates of 104---105 g-rays per second

can be recorded accurately. The linear attenuation coefficient

of NaI(Tl) is 2:22 cm�1, and so 90% of the g-rays that strike

the scintillation crystal are absorbed in a 1-cm thickness.

Approximately 13% of the energy deposited in the crystal via

g-ray absorption is emitted as visible light. The only disadvan-

tage of the NaI(Tl) crystal is that it is hygroscopic and so must

be sealed hermetically.

The light photons emitted by the crystal are detected by

hexagonal-shaped (sometimes square) photomultiplier tubes

(PMT), which are closely coupled to the scintillation crystal via

light pipes. Arrays of 61, 75, or 91 PMTs, each with a diameter

of between 25 and 30 mm, are typically used. The output

currents of the PMTs pass through a series of low-noise pre-

amplifiers and are digitized. The PMTs situated closest to

a particular scintillation event produce the largest output

current. By comparing the magnitudes of the currents from

all of the PMTs, the location of individual scintillations within

the crystal can be estimated using an Anger logic circuit

(Figure 1.6). In addition, the summed signal from all the

PMTs, termed the z-signal, is sent to a pulse-height analyzer

(PHA), which compares the z-signal with a threshold value

that corresponds to that produced by a g-ray with energy

140 keV. If the z-signal is significantly below this threshold,

it is rejected as having originated from a Compton-scattered

g-ray. A range of values of the z-signal is accepted, with the

energy resolution of the system being defined as the full-width

half maximum (FWHM) of the photopeak; typically, it is

about 14 keV (or 10%) for most gamma cameras. The nar-

rower the FWHM of the system, the better it is at discrimin-

ating between unscattered and scattered g-rays.

1.4.3 Single Photon Emission Computed
Tomography

The relationship between single photon emission CT (SPECT)

and planar nuclear medicine is exactly the same as that

between CT and planar X-ray imaging. In SPECT, two or

three gamma cameras are rotated around the patient in order

to obtain a set of projections that are then reconstructed to

produce a two-dimensional image (Figure 1.7). Adjacent slices

are produced from separate rows of PMTs in the two-dimen-

sional array. SPECT uses similar instrumentation and radio-

tracers as does planar scintigraphy, and most SPECT machines

can also be used for planar scans. Projections can be acquired

either in a ‘‘stop-and-go’’ mode or during continuous rotation

of the gamma camera. Image reconstruction can be performed

either by filtered backprojection, as in CT, or by iterative

methods. In either case, attenuation and scatter correction of

the data are required prior to image reconstruction.

Attenuation correction is performed using either of two

methods. In the first, the attenuation coefficient is assumed

to be uniform in the tissue being imaged. A patient outline is

formed by fitting an ellipse or circle from the acquired data.

This approach works well when imaging homogeneous tissues

such as the brain. However, for cardiac applications, for

example, a spatially variant correction must be applied based

Photomultiplier tubes

Scintillation crystal

Lead collimator

Anger position network

Pulse height analyzer

Preamplifiers

Z-pulse

Light pipe/optical coupling

Display
A/D converter

FIGURE 1.6 Schematic of an Anger gamma camera used for planar

nuclear medicine.
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on direct measurements of tissue attenuation using a trans-

mission scan with tubes of known concentration of radioactive

gadolinium (153Gd), which emits �100 keV g-rays, placed

around the patient. The transmission scan can be performed

with the patient in place before the actual diagnostic scan, or it

can be acquired simultaneously with the diagnostic scan. Since

the attenuation coefficient is measured for 100 keV g-rays, a

fixed multiplication factor is used to convert these numbers to

140 keV. The attenuation map is calculated from the transmis-

sion projections using filtered backprojection.

The second step in data processing is scatter correction,

which must be performed on a pixel-by-pixel basis, since the

number of scattered g-rays is not spatially uniform. The most

common method uses dual-energy window detection: One

energy window is centered at 140 keV with a fractional width

(Wm) of �20%, and a ‘‘subwindow’’ is centered at 121 keV

with a fractional width (Ws) of �7%. The main window

contains contributions from both scattered and unscattered

g-rays, but the subwindow has contributions from only scat-

tered g-rays. The true number of primary g-rays, Cprim, can be

calculated from the total count, Ctotal, in the main window and

the count, Csub, in the subwindow:

Cprim ¼ Ctotal �
CsubWm

2Ws

: (1:5)

Along with filtered backprojection, iterative reconstruction

methods are also available on commercial machines. These

iterative methods can often give better results than filtered

backprojection, since accurate attenuation corrections based

on transmission source data can be built into the iteration

process, as can the overall modulation transfer function

(MTF) of the collimator and gamma camera. Typically, the

initial estimate of the distribution of radioactivity can be

produced using filtered backprojection. Projections are then

calculated from this initial estimate and the measured attenu-

ation map, and these are compared with the projections actu-

ally acquired. The differences (errors) between these two data

sets are computed and the estimated image correspondingly

updated. This process is repeated a number of times to reach

a predetermined error threshold. The most commonly used

iterative methods are based on maximum-likelihood expect-

ation maximation (ML-EM), with the particular implementa-

tion being the ordered subset expectation maximum (OSEM)

algorithm. Potential instability in the reconstruction from

noisy data normally necessitates applying a filter, such as

a two- or three-dimensional Gaussian filter with an FWHM

comparable to the intrinsic spatial resolution of the data.

1.4.4 Positron Emission Tomography

Radionuclides used in PET scanning emit positrons, which

travel a short distance in tissue before annihilating with an

electron resulting in the formation of two g-rays, each with an

energy of 511 keV. The two g-rays travel in opposite directions

to one another and are detected by a ring of detectors placed

around the patient (Figure 1.8). The location of the two

crystals that detect the two anti-parallel g-rays defines a line

along which the annihilation occurred. This process is referred

to as annihilation coincidence detection (ACD) and forms the

basis of signal localization in PET. The spatial distribution, rate

of uptake, and rate of washout of a particular radiotracer are

all quantities that can be used to distinguish diseased from

healthy tissue. Radiotracers for PET have very short half-lives

(e.g., 11C ¼ 20:4 minutes; 15O ¼ 2:07 minutes; 13N ¼ 9:96

minutes; 18F ¼ 109:7 minutes) and must be synthesized on-

site using a cyclotron. After production, they are incorporated

via rapid chemical synthesis into structural analogues of bio-

logically active molecules, such as 18F-fluorodeoxyglucose

(FDG) and 11C-palmitate. Robotic units are available commer-

cially to synthesize 18FDG, 15O2, C15O2, C15O, and H15
2 O.

The individual scintillation crystals used in PET are either

bismuth germanate (BGO: Bi4Ge3O12) or, increasingly com-

monly, lutetium silicon oxide (LSO: Lu2SiO5: Ce). The advan-

tages of LSO are its short decay time (allowing a short

coincidence time, reducing accidental coincidences, as will

be described), a high emission intensity, and an emission

wavelength close to 400 nm, which corresponds to maximum

sensitivity for standard PMTs. Multislice capability can be

FIGURE 1.7 SPECT images of the brain.
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introduced into PET imaging, as it can for CT, by having a

number of detector rings stacked adjacent to one another. Each

ring typically consists of 16 ‘‘buckets’’ of 8� 8 blocks of scin-

tillation crystals, each block coupled to either 16 (BGO) or 4

(LSO) PMTs. The number of rings in a high-end multislice

PET scanner can be up to 48. Retractable septa (lead or tung-

sten) are positioned within each ring: These can be retracted

for imaging in three-dimensional mode.

When a g-ray interacts with a particular detector crystal, it

produces a number of photons. These photons are converted

into an amplified electrical signal, at the output of the PMT,

which is fed into a PHA. If the electrical signal is above a

certain threshold, then the PHA generates a ‘‘logic pulse,’’

which is sent to a coincidence detector. Typically, this logic

pulse is 6–10 ns long. When the next g-ray is detected, a

second logic pulse is sent to the coincidence detector, which

adds the logic pulses together and passes the summed signal

through a separate PHA. If the logic pulses overlap in time,

then the system accepts the two g-rays as having evolved from

one annihilation and records a line integral between the two

crystals. The PET system can be characterized by its ‘‘coinci-

dence resolving time,’’ which is defined as twice the length of

the logic pulse, or 12–20 ns in this case.

Prior to reconstruction, the data must undergo attenuation

correction and must have accidental and scattered coinci-

dences removed. Prior to the development of dual CT/PET

scanners (see the next section), an external ring source of

positron emitters, usually containing germanium-68, was

used for a transmission-based calibration. However, with the

advent of CT/PET scanners, anatomical information from the

CT scan, together with knowledge of tissue attenuation factors,

is used for attenuation correction. Accidental coincidences refer

to events in which the line integral formed by the detection of

the two g-rays is assigned incorrectly. These occur due to the

finite coincidence resolving time of the system, g-rays passing

through the crystal and not being detected, and the presence of

background radiation. The most common method of estimat-

ing accidental coincidences uses additional parallel timing

circuitry, which splits the logic pulse from one of the detectors

into two components. The first component is used in the

standard mode to measure the total number of coincidences.

The second component is delayed well beyond the coincidence

resolving time so that only accidental coincidences are

recorded. The accidental coincidences are then removed from

the acquired data. Image reconstruction used either filtered

backprojection or iterative methods.

Due to the detection of two g-rays, the point spread function

(PSF) in PET is essentially constant through the patient. The

PSF is limited by three factors:

1. The finite distance that the positron travels before anni-

hilation with an electron (�1 mm for 18F)

2. The statistical distribution (180+ –0.38), which charac-

terizes the relative trajectories of the two g-rays, mean-

ing that a 60-cm–diameter ring has a spatial resolution

of 1.6 mm, whereas a 100-cm–diameter ring has a reso-

lution of 2.6 mm

3. The size of the detection crystal; one-half of the crystal

diameter is often assumed

The most common clinical application of PET is in tumor

detection using 18F-FDG. In the body, the radiopharmaceutical

FDG is metabolized in exactly the same way as naturally

occurring 2-deoxyglucose. Once injected, FDG is actively

transported across the blood–brain barrier (BBB) into the

cells in brain tissue. Inside the cell, FDG is phosphorylated

(a) (b)

FIGURE 1.8 (a) Image formation using PET. Anti-parallel g-rays strike pairs of detectors that

form a line integral for filtered backprojection. (b) Abdominal PET study using FDG with hot

spots indicating the presence of small tumors.
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by glucose hexokinase to give FDG-6-phosphate. This

chemical is trapped inside the cell, since it cannot react with

G-6-phosphate dehydrogenase, which is the next step in the

glycolytic cycle. The amount of intracellular FDG is, therefore,

proportional to both the rate of initial glucose transport and

subsequent intracellular phosphorylation. Malignant cells,

in general, have higher rates of aerobic glucose metabolism

than healthy cells; and therefore, in PET scans using FDG, the

tumors show up as areas of increased signal intensity, as seen in

Figure 1.8.

Future technical advances in PET technology seem likely to

be based on time-of-flight (TOF) PET scanners, which can

potentially increase the signal-to-noise ratio significantly over

today’s scanners. If the PET detectors have good time reso-

lution, then the actual location of the annihilation can be

estimated by measuring the difference in the arrival times of

the two g-rays. In its original implementation in the early

1980s, the only scintillator that was sufficiently fast was BaF2,

which had a timing resolution of <0.8 ns, corresponding

to a blurring of + 6 mm. However, recently, LSO crystals

with much higher detection sensitivity have been used at the

detectors. Although not widespread within the clinical com-

munity, commercial products using this technology do exist,

including the Philips Gemini TF and CPS Hi-Rez systems.

1.4.5 Combined Positron Emission
Tomography/Computed Tomography
Scanners

The development of dual-modality PET/CT scanners has

evolved rapidly from the research laboratory in the late 1990s

to clinical practice today. Indeed, essentially all PET scanners

are now commercially available only as combined PET/CT

systems, and SPECT/CT systems are becoming increasingly

common. The two separate scanners are installed adjacently

and share a common patient bed. There are two major reasons

for using the combined approach:

1. The anatomical information obtained from CT is com-

plementary to the functional information from PET or

SPECT and can be used to remove false positives, as will

be described.

2. The information from CT can be used for accurate

attenuation correction algorithms for the PET or

SPECT data to allow better quantitation of the kinetics

of biodistribution of the particular agent.

In particular, CT/PET is widely used for imaging of the most

commonly used PET agent, 18FDG. Although FDG does accu-

mulate in tumors, it also distributes in regions defined by

tissue necrosis and/or inflammation, in addition to biodistri-

bution in many healthy tissues. CT provides the anatomical

information that can aid in removing false positives corre-

sponding to these cases.

1.5 Ultrasonic Imaging

Ultrasound is non-ionizing, real-time, portable, and inexpen-

sive compared with other clinical imaging modalities. How-

ever, images can be difficult to interpret, requiring expert

training. In addition, organs such as the brain located beneath

bone cannot be imaged clearly. Nevertheless, ultrasound is

particularly functional for obstetrics (fetal imaging) and quan-

tification of blood flow using Doppler measurements.

Clinical ultrasound imaging uses frequencies in the range of

1–15 MHz. Unlike X-rays, mechanical sound propagation

requires a medium to support transmission. Ultrasound is

a sinusoidal pressure wave that causes the molecules to become

displaced from their equilibrium position. A one-dimensional

representation of this interaction can be used to simplify this

description. Figure 1.9 shows one wavelength of a sinusoidal

pressure wave propagating in the x-direction. The pressure

oscillates between a maximum (compressional, Pc) and a min-

imum (rarefractional, Pr ) value about an ambient pressure as

it moves through the medium. Within the medium, molecules

move closer together due to the compressional pressure and

spread apart due to the rarefactional pressure. Wave propaga-

tion also depends on other parameters, such as density, particle

displacement, temperature, attenuation, and other variables

that will be covered in this section.

1.5.1 Fundamentals of Ultrasound

Sound waves traveling through a fluid medium cause a peri-

odic change in the density, pressure, and temperature as a

function of time. The speed at which the wave travels though

a material is given by c ¼ f l, where c is the speed of sound (in

m/s) through the medium, l is the wavelength (m) and f is the

frequency (s�1 or Hz). For water at 208C, the speed of sound is
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FIGURE 1.9 Schematic of molecular motion within tissue imposed

by the passage of an ultrasound wave.
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1,481 m/s. The speeds of sound in various tissues have values

in the range of 1,450 to 1,580, as listed in Table 1.1. The

relatively small variations among the different values are due

to differences in specific tissue constituents, such as the per-

centage of protein, collagen, fat, and water. In contrast, bone

has a much higher speed of sound. The relationship between

density and speed of sound in fluids is given by:

c ¼
ffiffiffi
B

r

s
, (1:6)

where r is the density (in kg=m
3
) and B is the adiabatic bulk

modules (Pa, Pascals or N=m
2
).

The wave equation describes the propagation of a wave in

a lossless medium and is developed from the equations of state

and motion and the continuity equation. Changes in density

related to changes in pressure are described by the equation of

state. The continuity equation is based on the conservation

of mass and describes the motion of particles that produces

a change in density. Variations in pressure are related to change

in particle displacement through the equation of motion or

Newton’s law of motion. Additionally, the density, pressure,

and temperature of a medium vary periodically when a sound

wave is passed through the fluid, thereby affecting the speed of

sound. Combining the equations of continuity and motion

gives the one-dimensional linear, lossless wave equation:

@2P

@x2
¼ 1

c2

@2P

@t2
: (1:7)

The wave equation explicitly shows the direct relationship

between the pressure wave as a function of space (distance

traveled) and time. The characteristic impedance, Z, of a

material is defined as:

Z ¼ rc, (1:8)

in which Z has units of kg=(m2s). Table 1.1 lists the character-

istic impedances for air, water, and selected tissues. Acoustic

impedance implies resistance to the propagating ultrasound

wave. As a wave travels through different layers of tissue,

it encounters different specific acoustic impedances, and there-

fore a certain fraction of the intensity of the wave is transmit-

ted, with the remainder being reflected at the interface between

the different tissues. Figure 1.10 shows an ultrasound wave

traveling through a medium with impedance Z1 to another

medium with impedance Z2. The pressure reflection coefficient

(Rp) and transmission reflection coefficient (Tp) are given by:

Rp ¼
pr

pi

¼ Z2 cos ui � Z1 cos ut

Z2 cos ui þ Z1 cos ut

,

Tp ¼
pt

pi

¼ 2Z2 cos ui

Z2 cos ui þ Z1 cos ut

, (1:9)

where pr and pi are the reflected and incident pressures, re-

spectively. Equation 1.9 shows that the reflected wave will

undergo a 1808 phase shift from the incident if the wave travels

from material of low acoustic impedance to one of high im-

pedance; that is, Z1 < Z2. Snell’s law governs the refracted

wave at the boundary of fluids:

sin ui

sin ut

¼ c1

c2

, (1:10)

where c1 and c2 are the speeds of sound in fluids 1 and 2,

respectively. In the case of a tissue/air interface, almost all of

the ultrasound energy is reflected (Rp ¼ �0:99). Clinically, this

demonstrates why lung imaging is difficult, given that almost

all of the energy is reflected at the boundary.

Attenuation of the ultrasound wave as it passes through

tissue is comprised of two effects: absorption and scattering.

The absorption mechanism consists of viscous losses, heat

conduction, and relaxation processes, while scattering occurs

when acoustic energy is deflected or redirected from its normal

propagation. Recalling that sound waves in a medium cause

expansions and contractions (Figure 1.10), we note that fluids

exhibit resistance to the distortion, which is known as viscosity

(h). Thus, the relative motion between adjacent parts of the

medium caused by expansions and compressions leads to

a viscous loss or frictional loss. Thermal losses result from

conduction of thermal energy between higher-temperature

compressions and lower-temperature rarefactions. Taking into

account both viscous and thermal conductivity losses through

the medium gives rise to the classical absorption coefficient.

Relaxation refers to the dynamics of the disturbance of the

Transmitted
wave

Reflected
wave

Incident
wave

Z1

Z2

Boundary 1
2

qi qr

qt

FIGURE 1.10 Behavior of an ultrasound beam incident upon a

boundary between two tissues with characteristic impedances Z1

and Z2.

TABLE 1.1 Acoustic properties of biological tissues and matter at

temperatures 20–258C

Value of Z � 106ðkg=½m2s�Þ Speed of Sound (m/s)

Air 0.0004 330

Blood 1.61 1550

Bone 7.8 3500

Fat 1.38 1450

Brain 1.58 1540

Muscle 1.7 1580

Liver 1.65 1570

Kidney 1.62 1560
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structure of a fluid due to a propagating wave, and different

mechanisms are characterized by different relaxation times. An

example of how a wave is attenuated and the significance of the

relaxation time is exhibited when the period of the acoustic

cycle is greater than the time required for a portion of the

compression energy of the fluid to be converted into internal

energy of molecular vibration. During the expansion cycle,

some of this energy will be delayed in its restoration, resulting

in a tendency toward pressure equalization and an attenuation

of the wave.

When a sound wave encounters a small (relative to the

ultrasound wavelength) solid obstacle, a fraction of the wave

is scattered. Scattering can be defined as the change of ampli-

tude, frequency, phase velocity, or direction of propagation as

the result of an obstacle or nonuniformity in the medium.

Different behavior is seen for a scattering volume consisting of

a single scatterer or a statistical distribution of scatterers. The

degree and directionality of scattering are affected by the

physical properties of the scatterer, such as its density, com-

pressibility, roughness, and thermal conductivity.

1.5.2 Transducers and Beam Characteristics

When polarized crystalline or ceramic materials are subjected

to mechanical stress, they produce an electrical voltage. The

converse is also true, such that an oscillating electrical voltage

causes the material to vibrate, thereby producing a pressure

wave in a medium in direct contact with the material. This

phenomenon, known as the piezoelectric effect, forms the basis

of an ultrasound transducer. Transducers are usually made

from polarized ferroelectric ceramics such as lead zirconate

titanate (PZT). The resonance frequency, fo, of the transducer

is defined as:

fo ¼
ccrystal

2t
, (1:11)

where ccrystal is the speed of sound in the piezoceramic

(� 4000 m/s for PZT) and t is the ceramic thickness

(Figure 1.11). The ceramic itself is often represented as a disk

that is electrically driven by silver-coated electrodes attached to

opposite faces of the disk. Applying a sinusoidal voltage at

frequency fo causes the disk to vibrate and produce a pressure

wave at fo. Since the spatial resolution in the axial direction is

proportional to the length of the pulse in tissue, the transducer

is mechanically damped to produce a short pulse of energy.

The radiation or spatial intensity field from a circular piston

is a complicated three-dimensional pattern (Figure 1.11).

Close to the face of the transducer, the pressure field oscillates

between a series of maxima and null points. The final oscilla-

tion is known as the last axial maximum, located at

last axial maximum ffi a2

l
: (1:12)

For a plane piston, this location also forms the boundary

between the near field (‘‘Fresnel zone’’) and the far field

(‘‘Fraunhofer zone’’) of the transducer. Beyond the far field,

the beam diverges at an angle u ¼ sin�1 (0:61l=a). Similar to a

radiating radio antenna, the off-axis field pattern also has a

series of much smaller pressure field lobes and nulls (not

shown). The null between the main lobe and the first side

lobe is at u ¼ sin�1 (0:61l=a).

Image formation (see the next section) using a single-ele-

ment transducer requires mechanical movement over the re-

gion of interest. The vast majority of transducers used in

clinical practice are transducer arrays, consisting of a large

number of much smaller elements, which can be driven inde-

pendently. These arrays can be one dimensional or two dimen-

sional, as shown in Figure 1.11.

1.5.3 Image Acquisition and Display

Single lines of pulse–echo ultrasound are termed A-mode lines.

Knowing the speed of sound in tissue, the time delay between

transmission and signal reception defines the depth of the

reflected or backscattered signal. The beam can be swept

through the region of interest by varying the excitation times

(a) (b)

P(x)

x

a2/l

t

a

1D array 2D array

FIGURE 1.11 (a) Plot of the pressure produced by a plane-piston single-element transducer

as a function of distance from the transducer. (b) Schematics of one- and two-dimensional

transducer arrays.
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of individual elements in a transducer array to form a B-mode

(brightness) image. Although array systems are electrically

complex, their overriding advantages are ease of focusing and

multidimensional image acquisition. B-mode imaging can be

used to examine stationary organs such as the kidney, breast,

and liver, or moving objects such as the beating heart or the

flow of blood in the carotid artery. Linear arrays are designed

for use in conventional high-resolution imaging of musculo-

skeletal or superficial vascular features and can also be used in

compound scanning (SonoCT) and Doppler blood velocity

determination. Two-dimensional arrays can have up to 2,400

elements and produce full-volume images for cardiology ap-

plications. Arrays are attractive because they can be used to

focus on an object or organ within the body by varying

the transmit and to receive signals (phasing) to the elements.

Three-dimensional volume imaging can be acquired by

mechanically scanning a phased-array transducer perpendic-

ular to the plane of each B-mode scan. Figure 1.12 shows

a conventional two-dimensional image of a fetus compared

with a three-dimensional volume image of a fetus.

Ultrasound images often contain ‘‘artifacts,’’ which can be

misinterpreted unless a skilled technician is interpreting the

images. In fact, these artifacts contain valuable information if

understood. Examples of image artifacts include reverber-

ations, acoustic shadows, and speckle. Reverberations are the

appearance of equally spaced repeating lines in an image,

caused by the transducer being located near a strong reflector.

Acoustic shadows occur when the sound field is transmitted

and reflected through a highly attenuating object or organ. In

the image, the shadow appears as a dark area behind the object

of interest. The appearance of light and dark spots in a homo-

geneous material such as liver is called speckle. This pattern

arises from the constructive and destructive interference of

waves as a result of scattering from small structures. One of

the most recent advances in ultrasound imaging is the use

of compound scanning (also known as SonoCT) to overcome

many of the image artifacts found in conventional scanning.

Compound imaging adjusts the phasing of the array elements

to obtain multiple image views and planes at several angles.

These tomographic images are combined in real time into a

single averaged image. The acquisition of these averaged im-

ages at multiple angles suppresses artifacts such as speckle,

noise, and shadows and reinforces real structures and organs.

Ultrasound can also be used to measure blood flow using the

well-known Doppler effect. A continuous wave (CW) Doppler

system consists of a probe with two transducer elements

(one for transmit, the other for receive) and the ultrasound

beam aligned at an angle u to the blood vessel. The change in

the ultrasound frequency, Df , or the Doppler shift frequency,

compared with the incident transmit frequency, fi , is given by:

Df ¼ fi � fr ¼
2vcosu

c
fi , (1:13)

where c is the speed of sound in blood, v is the blood flow

velocity, and fr is the frequency measured at the receive ele-

ment. In contrast, flow velocity measurements from a pulsed

Doppler system used a single transducer operating in pulse–

echo mode. Here, the transducer sends a short ultrasound

pulse that is backscattered from the moving blood, and the

signal is detected by the same tranducer. The advantage to

pulsed Doppler is that the pulse–echo signals can be gated to

acquire flow information within a specific region of interest,

defined by a minimum and maximum depth:

depthmin ¼
c td � tp

� �
2

depthmax ¼
c td þ tg

� �
2

, (1:14)

17-Week fetal profile Fetal foot in mouth

(a) (b)

FIGURE 1.12 (a) Two-dimensional B-mode ultrasound image of the fetus in utero. (b) Three-

dimensional ultrasound image.
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where tp is the duration, in seconds, of the transmitted pulse;

td is the time delay (s) between the end of the transmitted pulse

and the receiver gate being opened; and tg is the time (s)

during which the receiver gate is on to detect the return echo

from the moving blood. Compared with CW Doppler, one

disadvantage is that there is a limit to the highest blood

velocity, vmax, that the system can determine, given by

vmax ¼
c2

8fidepthmax

: (1:15)

This limit is based on the Nyquist criterion that the sampling

rate must be greater than twice the highest frequency present

in the signal.

1.6 Magnetic Resonance Imaging

MRI is a non-ionizing technique with excellent soft-tissue

contrast and high spatial resolution (�1 mm). The temporal

resolution is typically much slower than for ultrasound or CT,

with scans lasting several minutes. The cost of MRI scanners is

relatively high, and the large superconducting magnet requires

special housing in clinical environments. The major uses of

MRI are in the areas of brain disease, spinal disorders, angiog-

raphy, cardiac assessment, and musculoskeletal damage.

1.6.1 Basis of Magnetic Resonance

The first requirement for MRI is to produce a strong, tempo-

rally stable and spatially homogeneous magnetic field within

the patient. The majority of magnets use superconductor tech-

nology to produce the magnetic field. The superconducting

wire must be able to carry a large current, which limits the

material to certain alloys, particularly niobium-titanium,

which is formed into multistranded filaments within a copper

conducting matrix. This superconducting matrix is housed in

a stainless steel can containing liquid helium at a temperature

of 4.2 K. This can is surrounded by a series of radiation shields

and vacuum vessels, with an outer container of liquid nitrogen

being used to cool the outside of the vacuum chamber and the

radiation shields. The most common fields for clinical scan-

ning are 3-tesla systems, although systems operating at 7 tesla

now exist for experimental human investigations.

When protons are placed in a strong external magnetic field,

the interaction between their magnetic moments and the mag-

netic field means that they can align in two different configur-

ations, commonly termed ‘‘parallel’’ and ‘‘anti-parallel’’ states,

shown in Figure 1.13. The number of protons in each state is

given by the Boltzmann distribution:

Nanti-parallel

Nparallel

¼ exp� DE

kT

� �
¼ exp� ghBo

2pkT

� �
, (1:16)

where B0 is the strength of the magnetic field, k is Boltzmann’s

constant, h is Plank’s constant, DE is the energy gap between

the two states, and T is the temperature in Kelvin. The size of

the MRI signal is proportional to the difference in populations

between the two energy levels:

Nparallel � Nanti-parallel ¼ Ns

ghB0

4pkT
, (1:17)

where Ns is the total number of protons in the body. Despite

large static magnetic fields, Equation 1.17 shows that at an

operating magnetic field of 3 tesla, for every one million

protons, there is a population difference of only approximately

ten protons between the parallel and anti-parallel orienta-

tions. In order to stimulate transitions between energy levels,

electromagnetic energy has to be applied at a frequency (v)

corresponding to the difference between the two levels:

(a) (b) (c)

∆E

Magnetic field
present

E

Parallel

Anti-parallel

ghB0E = +
4p

ghB0E =
4p

B0

Net magnetization

x

y

z

Individual precessing
magnetic moments

x

y

z

–

FIGURE 1.13 (a) Zeeman splitting of the proton energy levels induced by application of a

static magnetic field. (b) Precession of all of the proton magnetic moments about the applied

magnetic field. (c) Net magnetic moment at equilibrium aligned in the direction of

the magnetic field.
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hv

2p
¼ DE ¼ ghB0

2p
) v ¼ gB0: (1:18)

If one considers each magnetic moment as a vector (Figure

1.13), then the equilibrium condition is characterized by the

z-component of magnetization (Mz) being M0 (the total mag-

netization of the patient), with the transverse component

(Mxy) equal to zero. After a pulse of radiofrequency (RF)

energy has been applied, the magnetization is tipped from the

z direction (Figure 1.13) into the transverse plane and precesses

around the direction of the applied magnetic field at the Lar-

mor frequency, given by v ¼ gB0. After spatial encoding using

magnetic field gradients (see next section), the signal is

detected via Faraday induction using an RF coil. Often, the

same coil is used to transmit the RF energy and to detect the

signal. There are many forms of coil, depending upon whether

the RF field produced should be homogeneous over a large

volume of the patient or only a small localized volume is to be

investigated. Since Faraday’s law states that voltage is propor-

tional to the time-dependent rate of magnetic flux, a higher B0

field gives a higher precessional frequency and hence a higher

signal voltage. Overall, therefore, the measured MRI signal is

proportional to the square of the B0 value, providing a major

impetus to the ever-increasing static magnetic fields.

Absorption of electromagnetic energy by the spin system

results in a non-Boltzmann distribution of the population

levels, equivalent to a nonequilibrium value of the Mz and

Mxy components of magnetization. The return to thermal

equilibrium is governed by two different relaxation times: T1

determines the return of Mz to M0, and T2 the return of Mxy to

zero. Different tissues have quite different values of T1 and T2,

as shown in Table 1.2, and these differences can be used to

introduce contrast into MR images.

1.6.2 Magnetic Field Gradients

In order to introduce spatial information into the MR signal

and thereby form images, magnetic field gradients are used to

make the proton precessional frequency spatially dependent.

Three separate gradient coils are required to encode the three

spatial dimensions within the body. Since only the z-compon-

ent of the magnetic field interacts with the proton magnetic

moments, it is the spatial variation in the z-component of the

magnetic field (Bz) that is important. Image reconstruction is

simplified considerably if the magnetic field gradients are

linear over the region to be imaged; that is,

@Bz

@z
¼ Gz

@Bz

@x
¼ Gx

@Bz

@y
¼ Gy: (1:19)

By convention, for human studies, the z direction lies along

the head-to-foot axis; the y-axis corresponds to the vertical

(spine to abdomen) direction, and the x-axis goes from side to

side (right to left). The magnetic field, Bz , experienced by all

nuclei with a common coordinate z, is:

Bz ¼ B0 þ zGz , (1:20)

where Gz has units of tesla per meter. The corresponding

precessional frequencies (vz) of the protons, as a function of

their position in z, are given by:

vz ¼ gBz ¼ g(B0 þ zGz): (1:21)

Analogous expressions can be obtained for the spatial

dependence of the resonant frequencies in the presence of the

x- and y-gradients. The requirements for gradient coil design

are that the gradients be as linear as possible over the region

being imaged, that they be efficient in terms of producing high

gradients per unit current, and that they be fast in switching

times for use in rapid imaging sequences. Copper is used as the

conductor, with chilled-water cooling to remove the heat gen-

erated by the current. The simplest configuration for a coil

producing a gradient in the z direction is a Maxwell pair,

shown in Figure 1.14 (a), which consists of two separate

loops of multiple turns of wire, each loop containing equal

currents flowing in opposite directions. The magnetic field

produced by this gradient coil is zero at the center of the coil

(a) (b)

z

Bz

y

I I

z

Bz

z

FIGURE 1.14 (a) Maxwell pair used to produce a linear magnetic

field in the z direction. (b) Four-element Golay coils used to produce a

linear magnetic field in the y direction.

TABLE 1.2 Tissue relaxation times at 1.5 tesla

Tissue T1 (ms) T2 (ms)

Fat 260 80

Muscle 870 45

Brain (gray matter) 900 100

Brain (white matter) 780 90

Liver 500 40

Cerebralspinal fluid 2400 160

16 I Technological Fundamentals



and is linearly dependent upon position in the z direction over

about one-third of the separation of the two loops. The x- and

y-gradient coils are completely independent of the z-gradient

coils: The usual configuration is to use four arcs of wire, as

shown in Figure 1.14 (b).

When the current in the gradient coils is switched rapidly,

eddy currents can be induced in nearby conducting surfaces,

such as the radiation shield in the magnet. These eddy

currents, in turn, produce additional unwanted gradients that

may decay only very slowly, even after the original gradients

have been switched off. All gradient coils in commercial MRI

systems are now ‘‘actively shielded’’ to reduce the effects of

eddy currents. Active shielding uses a second set of coils placed

outside the main gradient coils, the effect of which is to

minimize any stray gradient fields.

1.6.3 Fourier Imaging Techniques

Acquisition of the data required for conventional MRI com-

prises three independent components: slice selection, phase

encoding, and frequency encoding. The combination of a

frequency-selective RF pulse and the slice-select gradient excites

protons only within a thickness given by Dv=gGslice, where Dv

is the frequency bandwidth of the pulse; protons outside this

slice are not excited. Application of the phase-encoding gradient

Gphase for a time tpe prior to data acquisition imparts a spatially

dependent phase shift into the signal given by:

f Gy, tpe

� �
¼ vytpe ¼ gGyytpe, (1:22)

where y is denoted as the phase-encoding direction. During

signal acquisition, the frequency-encoding gradient Gfreq gen-

erates a spatially dependent precessional frequency in the ac-

quired signal. Overall, ignoring relaxation effects, the detected

signal is given by:

s Gy, tpe, Gx, t
� �

/
ð

slice

ð
slice

r x, yð Þe�jgGxxte�jgGyytpe dxdy, (1:23)

where r(x,y) is the proton density (that is, the number of

protons at a given (x,y) coordinate) and x is the frequency-

encoding dimension. If two variables are defined:

kx ¼
g

2p
Gxt, ky ¼

g

2p
Gytpe, (1:24)

then the acquired MRI signal can be expressed as:

S kx , ky

� �
/
ð

slice

ð
slice

r x, yð Þe�j2pkx xe�j2pky ydxdy: (1:25)

Image reconstruction is obtained by an inverse two-

dimensional Fourier transform:

r(x, y) ¼
ð1
�1

ð1
�1

S kx , ky

� �
eþj2p kx xþky yð Þdkxdky : (1:26)

The two most commonly used sequences are shown in

Figure 1.15. The gradient–echo sequence is used for rapid

imaging, whereas the spin–echo sequence has a higher intrinsic

sensitivity. Each imaging sequence is repeated Np times, with

the phase-encoding gradient incremented for each repetition.

This results in Np lines being acquired in the ky direction, and

Nr points in the kx direction. Two delays are defined and can

be altered by the operator:

. TE¼ the echo time, which is defined as the delay between

the middle of the initial RF pulse and the center of the

data acquisition time.

. TR¼ the repetition time, defined as the time between

successive applications of the sequence.

When the effects of T1 and T2 relaxation are taken into

account, it can be shown that in a gradient–echo sequence,

the image intensity I(x,y) is given by:

I x, yð Þ /
r x, yð Þ 1� e�TR=T 1

� �
e�TE=T�2 sin a

1� e�TR=T 1 cos a
, (1:27)

where T�2 is the spin–spin relaxation time, including the effects

of magnetic field inhomogeneity. For a spin-echo imaging

sequence, the corresponding expression is:

I x, yð Þ / r x, yð Þ 1� e�TR=T 1

� �
e�TE=T 2 : (1:28)

The times TR and TE within the imaging sequence can be

chosen to give different contrasts in the image. For example,

Figure 1.16 shows the effects of increasing the TE on a simple

brain scan acquired with a spin–echo sequence.

One of the most important techical developments in the

past few years has been the introduction of parallel imaging, in

which a degree of spatial encoding is performed by an array

of small RF coils. Using this type of technology, the number of

phase-encoding steps can be reduced up to a theoretical limit

of the number of RF coils, thus speeding up data acquisition

TE
TR

90
180

90RF

Gfreq

Gphase

A/D

Gslice

ao

Nr Data points

RF

Gfreq

Gphase

A/D

Gslice

Np

(a) (b)

FIGURE 1.15 (a) Gradient–echo imaging sequence. (b) Spin–echo

imaging sequence.
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considerably. Most commercial systems now offer this capabil-

ity under various acronyms, with acceleration factors up to

an order-of-magnitude having been shown in developmental

systems.

1.6.4 Magnetic Resonance Imaging Contrast
Agents

As with many imaging modalities, contrast agents can be used

to improve contrast in MR images. There are two general types

of agents used in MR:

1. ‘‘Positive’’ MR contrast agents—those that produce high

intensity on images—are extensively used in tumor diag-

nosis and MR angiography. These paramagnetic agents

are not detected per se, unlike the tracers used in nuclear

medicine, but work by reducing the T1 value of the water

protons that either transiently bind to or diffuse close to

the agent: These two mechanisms are termed ‘‘inner

sphere’’ and ‘‘outer sphere,’’ respectively. These agents

are therefore used in conjunction with so-called

T1-weighted sequences. The most commonly used

agents are gadolinium chelates, since the Gd3þ ion has

seven unpaired electrons, and these cause very efficient

T1 relaxation of neighboring protons in water molecules.

Commonly used agents are Gd-DTPA (trade name Mag-

netvist), Gd-DTPA-bis(methylamide) (Gd-DTPA-BMA,

trade name Omniscan), and (+ )-10 (2-hydroxypro-

pyl)-1,4,7,10-tetraazacyclodecane-1,4,7-triacetatogadoli-

nium[III] (Gd-HP-DO3A, trade name Prohance).

2. ‘‘Negative’’ MR contrast agents are based on small ferro-

magnetic iron particles, with various types of coating

and size distributions. Ferridex is a liver imaging agent

approved by the U.S. Food and Drug Administration

that consists of dextran-coated superparamagnetic iron

oxide (SPIO) particles with diameters in the range of

80–100 nm. These agents reduce the T2 value of the

water protons by causing inhomogeneities in the local

magnetic field and therefore producing areas of signal

void in T2-weighted sequences. Since the particles accu-

mulate in healthy regions of the reticuloendothelial sys-

tem (liver, spleen, lymph node, bone marrow),

comparisons of images before and after administration

of the agent reveal diseased regions with unchanged

signal intensity.

One of the most recent developments is the design of molecu-

lar imaging agents. These have so far been used only in animal

studies, but they hold immense promise for the future. True

molecular imaging agents can be used, for example, to detect the

presence of different types of enzymes. Figure 1.17 shows one

such example in which the contrast agent is in an ‘‘inactive state’’

(a) in the absence of the enzyme (since all the coordinate sites

around the Gd are filled). In the presence of the particular

enzyme (b), one of the coordinate sites becomes vacant, and

water can undergo very efficient inner-sphere relaxation.

1.7 Diffuse Optical Imaging

Near infrared (NIR) imaging methods are characterized by

their noninvasive nature (milliwatt-levels of energy), chemical

specificity (capable of resolving concentrations of oxy- and

deoxyhemoglobin), and good temporal resolution (typically

on the order of 10 ms per measurement). In addition, NIR

image systems are portable and inexpensive and therefore

make bedside application feasible. Despite being a relatively

‘‘young’’ imaging technique, NIR methods have already found

a number of in vivo biomedical applications, including

(a) (b)

FIGURE 1.16 Sagittal images through the human brain with less (a) and more (b) T2

weighting.
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mammography and real-time monitoring of blood oxygen-

ation levels of patients during medical procedures.

1.7.1 Propagation of Light Through Tissue

For biomedical applications, the NIR spectrum of interest

spans approximately 650 to 950 nm. The absolute concentra-

tions of blood constituents (e.g., oxy- and deoxyhemoglobin,

lipid) are of great interest. Light propagating in tissue is subject

to not only absorption but to scattering processes. Within the

window of the NIR spectrum, the absorption and scattering

properties of tissue allow a measurable amount of light to pass

through a clinically useful quantity of tissue. Below 650 nm,

the absorption of hemoglobin increases to a point that no

measurable amount of light can travel through tissue. Above

950 nm, the absorption of water is so significant that tissue

becomes practically opaque, as shown in Figure 1.18.

Light propagation in a medium of arbitrary geometry is

most commonly modeled using the Boltzmann transport

equation, alternatively known as the radiative transfer equation

(RTE). Although the RTE ignores electromagnetic wave prop-

erties such as polarization, and particle properties such as

inelastic collisions, it is generally sufficient to describe the

interaction of photons with tissue for medical imaging. The

H H
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O

O

CH2OH

Galactopyranose ring

Tetraazamacrocycle

b-galactosidase
Gd Gd

FIGURE 1.17 Schematic of the operation of a molecular imaging agent sensitive to

the presence of b-galactosidase. Activation of the contrast agent involves cleaving of the

chemical bonds to the galactopyranose ring, which opens up a coordination site for

water to interact with the central gadolinium ion.
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FIGURE 1.18 (a) Absorption coefficients of water, oxy-, and deoxyhemoglobin (Hb) in the NIR spectrum

(650–1000 nm). (b) The normalized intensity (log scale) of the ‘‘banana-shaped’’ light bundle (modulation

frequency 150 MHz) of a particular optical channel through the human head.
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RTE can be reduced to a much simpler form, known as the

diffusion equation:

1

c rð Þ
@

@t
�r � 1

3 ma rð Þ þ m0s rð Þ
� �rþ ma rð Þ

 !
F r ,tð Þ

¼ q0 r ,tð Þ, (1:29)

where F is the radiant energy fluence, ma is the absorption

coefficient, m0s is the reduced scattering coefficient, c is the

speed of light in the medium, q0 is a point light source, t is

time, and r represents position. The frequency-domain coun-

terpart of equation (1.29) is given by:

iv

c rð Þ � r �
1

3 ma rð Þ þ m0s rð Þ
� �rþ ma rð Þ

 !
F r ,vð Þ

¼ q0 r ,vð Þ: (1:30)

One can use these equations to model photon migration paths

through different tissue types. For example, Figure 1.18 shows

results from a Monte Carlo simulation of light passage through

the human brain, superimposed on a structural MRI scan.

Retaining only the first-order expansion of a perturbation

series of the diffusion equation is referred to as the Born

approximation. If only the change in the absorption coefficient

is being studied (e.g., in hemodynamic functional studies), this

results in:

dF rs ,rdð Þ ¼ �
ð

V

dma rð ÞF0 rs,rð ÞG0 r ,rdð Þd3r; (1:31)

where dF is the difference of fluence radiated from the light

source and measured by the detector; dma is the change in

absorption coefficient; and the integral kernel F0(rs ,r)G0(r ,rd)

is the product of the fluence (evaluated at r in response to a

source at rs) and Green’s function (evaluated at r in response to

a source placed at the detector position rd). The integral kernel is

evaluated using the optical properties at the resting state (base-

line). The physical significance of Equation (1.31) is that the

change in the absorption coefficient (assuming constant scatter-

ing coefficient and refractive index) is related to the change in

the optical signal (the difference between the emitted and

detected lights), given the baseline condition of the medium.

1.7.2 Measurement of Blood Oxygenation

In order to relate the measured absorption and scattering of

light to the underlying physiology, the starting point is the

modified Beer-Lambert’s law:

OD ¼ � ln
I

I0

	 

¼ «Cds þ G, (1:32)

where OD is the optical density; I0 and I are the input and

output light intensities, respectively; « is the extinction coeffi-

cient, which is a function of the type of absorbers and the

wavelength of light; C is the concentration of the absorber;

d is the optical source-detector distance; s is the differential

pathlength factor (DPF), which is a function of the wavelength

of light and the type of tissue and represents the increment of

effective pathlength of light due to scattering; and G is a factor

accounting for measurement geometry and contact loss.

Physiological changes can be measured via:

DOD ¼ � ln
Ifinal

Iinitial

	 

¼ «DCds ¼ Dmads, (1:33)

where Dma is the change in absorption coefficient. Absorption

due to different absorbers can be superimposed. Considering

only the absorption due to oxy- (HbO2) and deoxyhemoglobin

(HbR) at a given wavelength l, Equation 1.33 can be rewritten as

DOD l ¼ «l
HbO2

D HbO2½ � þ «l
HbRD HbR½ �

� �
s ld: (1:34)

In Equation 1.34, d is determined by the geometry of the

optical probe and «l
HbO2

, «l
HbR , and sl are specified by the

optical properties of tissue and the wavelength of light. For a

given system, «, s, l, and d are constants. Therefore, there are

only two variables: D[HbO2] and D[HbR], which can be de-

termined by taking measurements at two different wavelengths

D HbR½ � ¼
«l2

HbO2
Dml1

a � «l1

HbO2
Dml2

a

«l1

HbR«l2

HbO2
� «l2

HbR«l1

HbO2

� � ,

D HbO2½ � ¼ «l1

HbRDml2
a � «l2

HbRDml1
a

«l1

HbR«l2

HbO2
� «l2

HbR«l1

HbO2

� � ,

(1:35)

where Dml
a is the change in absorption coefficient at wave-

length l. In terms of other physiologically interesting param-

eters, the sum of D[HbO2] and D[HbR] is the change in total

hemoglobin concentration D[HbT], which is proportional to

the change in regional cerebral blood volume (DrCBV). In

addition, the ratio of D[HbO2] to D[HbT] or D[HbR] is a

good indicator of the change in tissue oxygenation level.

1.7.3 Image Reconstruction

If only very few optical sources and detectors are used in meas-

urements, then very limited spatial localization of the signal can

be achieved. Increasingly, systems capable of using dozens of

sources and detectors are being developed. Even with this num-

ber, the process of image reconstruction with a reasonable spa-

tial resolution represents a considerable challenge, since the

problem is mathematically underdetermined and ill-posed

and requires sophisticated mathematical treatment. Predicting

optical signals based on the knowledge of the optical sources and

detectors (such as their positions, sizes, orientations, etc.) and

the optical properties of the medium (such as the absorption

and scattering coefficients) is referred to as the forward problem.

The process of reconstructing the optical properties of the

medium, knowing the relevant parameters of the optical sources
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and detectors as well as the measured optical signals, is conse-

quently called the inverse problem.

As an example, suppose that one is measuring the change in

absorption coefficient associated with functional brain activity.

The measured optical signal is recorded as a function of time

for all source–detector combinations, or optical channels. The

time-series data acquired for each optical channel are termed a

measurement. It follows that for m measurements in a field of

view (FOV) defined by n voxels, one can formulate the image

reconstruction problem as a generalized matrix

AX ¼ b: (1:36)

The m-by-n coefficient matrix A is the so-called Jacobian

matrix, where

aij ¼ �F0 rs,rð ÞG0 r ,rdð ÞDV : (1:37)

The measurements b are represented by an m-by-one vector,

called the measurement vector, where

bi ¼ DF rs,i ,rd,ið Þ: (1:38)

The solution X is a one-by-n vector that contains all voxels in

the image, where

xj ¼ Dma rj

� �
: (1:39)

If A is a singular or near-singular matrix, the matrix is

noninvertible. If A is not a square matrix (m 6¼ n), the direct

inversion of matrix A is not well defined. Under both condi-

tions, singular value decomposition (SVD) can be used to

solve the linear equations. This produces a nonnegative diag-

onal matrix S and unitary matrices U and V, such that

A ¼ USV T ; (1:40)

and the solution is given by

X ¼ VS�1U T b: (1:41)

Since S is diagonal, its inversion is trivial. In this way, the

inversion of an ill-conditioned A is performed via simple

matrix multiplications. Variations of the SVD method have

been developed to address the problem of instability due to

singular values, which effectively amplifies the noise.

An alternative approach is to use backprojection. Backpro-

jection does not rely on any particular photon migration

model in solving the forward problem. Although diffuse op-

tical tomography (DOT) differs from CT in that tissue is

highly scattering to NIR light, the simplicity of backprojection

algorithms has gained some users in DOT, assuming that the

depth of the physiological activation can be assumed or ig-

nored. A number of linear iterative reconstruction techniques

can also be used for image reconstruction. In particular, the

simultaneous iterative reconstruction technique (SIRT) was

designed to overcome the problem of ‘‘noisy’’ image recon-

struction typical of many algebraic reconstruction techniques.

Nonlinear optimization methods, such as congugate gradients,

have also been used extensively.

In addition to the above mathematical techniques, applying

physiological and spatial a priori knowledge to constrain the

solution space is another important and effective technique

that helps to solve such ill-posed and underdetermined inverse

problems. For example, MRI can be used to provide structural

information in solving the forward problem, which is an

important incentive for developing multimodality imaging

techniques.

1.7.4 Measurement Techniques

An NIR system consists of three major modules: optical

sources, photodetectors, and the data-acquisition system.

Laser diodes (LDs) and light-emitting diodes (LEDs) are the

dominant choices for the optical sources in modern systems.

LDs have the advantages in intensity, directionality, and spec-

tral width. Nonetheless, LEDs have some attractive features,

such as simplicity of use, lower power consumption, and lower

risk to the eyes. The choices of the detectors are somewhat

more flexible: PMTs, avalanche diodes, photodiodes, and

charge-coupled devices (CCDs) can all be used. Each has its

unique advantages and characteristics. The choice of a specific

device as the photodetector is dependent on the particular

application and specific design aims. In most designs, the

optical sources (particularly if using LDs) and photodetectors

are coupled to the surface of the patient via fiber optics. It

should be noted that in some designs the sources and detectors

(e.g., using LEDs and photodiodes) can be attached to the

surface directly. The data-acquisition hardware is usually part

of the computer where data processing and image reconstruc-

tion are performed. However, not all systems are connected to

a personal computer, especially those that are designed to be

compact and highly portable.

There are three major modes of data acquisition: CW, fre-

quency domain, and time domain. In the CW method, the

intensity of light emitted from the optical sources is usually

amplitude-modulated at slightly different very low frequencies

(typically 1–10 kHz) so that different simultaneous light

sources can be distinguished. In the frequency-domain

method, the light source is amplitude-modulated at a much

higher frequency, typically 100–500 MHz, using a sinusoidal

function

S ¼ I0 þ I vð Þ sin vt þ u vð Þð Þ; (1:42)

where S is the intensity of the light, I0 is termed the direct-

current (DC) component, I is the alternating-current (AC)

component, and u is the phase. The detected light is converted

into an electrical signal via photodetectors and decomposed

into the same sinusoidal form: AC, DC, and phase signals. The

AC and DC signals are determined primarily by the absorption

coefficient, while the phase is more sensitive to the scattering

coefficient. Both the AC and phase signals are also functions of

the modulation frequency. It is worth noting that the DC
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signal is in principle equivalent to the signal measured in the

CW method. In this sense, the frequency-domain method

provides more information than the CW method. However,

the measurement signal-to-noise ratio using this method is

typically significantly lower than that using the CW method.

A representative frequency-domain system is shown in Figure

1.19. This type of instrumentation is often used in studies of

brain activation, in combination with a multisensor optical

probe, as also shown in Figure 1.19.

In the time-domain method, a very short (�50 ps) pulse is

transmitted by the optical source. The detector measures the

intensity of the light as a function of time (typical delay

0.1–1.0 ns for neuroimaging depending on the source–detector

distance and the geometry). In practice, however, because of the

limited sensitivity of the photodetector, this function is discrete

in time and is measured in terms of the numbers of accumulated

photons over short periods of time. From the point of view of

a measurement system, if one can generate a delta-pulse (i.e.,

infinitely short pulse) as the optical input and the system is

linear-time–invariant, the measured optical signal is the im-

pulse response of the system. In this sense, the time-domain

method is equivalent to taking frequency-domain measure-

ments using an infinite number of modulation frequencies. In

reality, the measurement sensitivity (number of photons cap-

tured by the photodetector within a very short period of time) is

a major limiting factor with current technology. No time-do-

main system is available commercially at the time of this writ-

ing, although there are a few providers of specialized modules,

such as Becker & Hickl (Berlin, Germany).

The most well studied and perhaps most mature application

of DOT is mammography. Optical sources and detectors are

usually positioned so that the measurement channel is across

the breast, and they are often interleaved as well to increase the

efficiency of measurement, as shown in Figure 1.20. A hand-

held scanning device has been developed as an in-home-use

self-screener for the early discovery of breast tumors. This

device uses a photodiode as the detector and a pair of modu-

lated LEDs as optical sources operating 1808 out of phase. If

the effective differential pathlength factors (DPF) of the two

channels are equal, the detected optical signal has a zero phase,

which suggests a homogeneous medium or a perfectly sym-

metric medium. By scanning the device over the breast, inho-

mogeneities larger than a certain threshold size can be detected

eventually by causing asymmetry to the DPF of the two meas-

urement channels (Figure 1.20), which triggers an alarm.

Developing DOT for clinical purposes is an active research

area. One promising application is to monitor postsurgery

recovery of brain tissue oxygenation, which is of major concern

for patients after brain surgery. DOT potentially enables early

diagnosis of tissue oxygen deprivation to minimize brain dam-

age, instead of having to wait until patients regain conscious-

ness. Another important application is the noninvasive

diagnosis of cortical areas affected by stroke, which is difficult

to diagnose using MRI or CT before permanent tissue damage

has occurred. In the case of breast cancer screening, for

example, a highly optically absorbing abnormality in the breast

suggests a highly concentrated vasculature and might be good

evidence for the physician to make a decision on a biopsy.

1.8 Biosignals

In addition to the information from the imaging modalities

described in this chapter, there are a number of other clinically

diagnostic patient measurements that are routinely acquired

and analyzed. These include electrocardiography (ECG/EKG)

and electroencephalography (EEG). The ‘‘shape,’’ timing, and

(a) (b)

FIGURE 1.19 (a) A representative frequency-domain DOT system. (b) Custom-built optical

probe for studying the primary motor cortex.
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frequency data contained in these typically one-dimensional,

time-series measurements contain information useful for diag-

nosis. These types of measurements are not spatially localized

and therefore are not referred to as imaging but as biosignals,

although one should note that high-density EEG arrays do

allow the possibility of localizing the ‘‘source’’ of the neural

activity. A very brief description of EKG and EEG signals is

presented here.

1.8.1 Electroencephalography

EEG involves measurements made on the scalp of the patient

corresponding to the electric fields produced by spontaneous

neural activity. The amplitude of the signals is approximately

100 mV, with frequency components below 50 Hz. Typically,

21 electrodes are located on the scalp surface, with the exact

positions referenced to the anatomy of the particular patient.

Additional electrodes can also be placed in intermediate posi-

tions. The electrodes can be unipolar or bipolar. The former

involves referencing the potential measured by each electrode

to either the average of all the electrodes or to a ‘‘neutral’’

electrode; the latter arrangement measures the difference in

voltage between a pair of electrodes.

The EEG signal contains components corresponding to

alpha, beta, delta, and theta waves. Alpha waves originate

from the occipital region in awake patients with eyes closed;

beta waves can be measured over the frontal and parietal lobes;

and delta and theta waves are present when the patient is

asleep. The approximate frequency ranges of the waves are:

8–13 (alpha), 13–30 (beta), 0.5–4 (delta), and 4–8 (theta).

Clinical use of EEG relates to brain injury, with abnormal

waveforms reflecting different areas of pathological disease or

injury. EEG recordings are also extensively used in epileptic

patients, where the onset and duration of an epileptic event

can be detected via hyperactivity of the electrical signal, with

severe spikes, as shown in Figure 1.21.

1.8.2 Electrocardiograms

The normal rhythmic cardiac electrical impulse originates in

pacemaking cells in the sinoatrial (SA) node, which is located

at the junction of the right atrium and superior vena cava. The

electrical pulse passes through conducting tracts to activate

first the right atrium and then the left atrium. The impulse is

delayed at the atrioventricular (AV) node before continuing to

the bundle of His, the left and right bundle branches, and the

Purkinje network.

Prior to excitation, the ventricular wall has a resting poten-

tial of –90 mV. Rapid depolarization is followed by an equally

(a) (b)

(c)

FIGURE 1.20 (a) Topology of optical sources (solid) and detectors (dotted) in a typical setup

for a mammography experiment. (b) Breast placed between two plates where the sources

and detectors are mounted (optical matching fluid can be used to improve optical contact).

(c) A DOT image (bottom) compared with an MRI mammogram (top). (S. Nioka, B. Chance,

Technology in Cancer Research and Treatment, vol. 4, pp. 497, 2005.)

Time

Voltage

FIGURE 1.21 An indication of an epileptic seizure is apparent in the

increased electrical activity of the brain as measured by EEG.
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rapid repolarization for �200–300 ms, before final repolariza-

tion restores the membrane potential to the resting state.

Measurements of the electrical activity of the heart are made

by using electrodes placed on the body surface. The measured

signal can be thought of as the sum of different spatially

localized electrical activities. Typical features are the P wave,

the QRS complex, and the T wave, as shown in Figure 1.22,

with the intervals between and durations of these features

being clinically diagnostic. The P wave corresponds to atrial

depolarization; the QRS complex is associated primarily with

ventricular depolarization; and the T wave is most associated

with ventricular repolarization. The P–R interval corresponds

to conduction delay in the AV node, and the S–T interval to

the duration of the repolarization plateau.

A number of electrodes are used for the measurements.

A typical arrangement is to have one each on the right arm, left

arm, left leg, and right leg (for grounding). A typical EKG is

shown in Figure 1.22 (a). Different diseases often display very

characteristic changes in the EKG signal. For example, in the case

of a disease in which the AV node is diseased, the AV nodal delay

is greatly increased, corresponding to a much longer P–R inter-

val. Figure 1.22 (b) shows another example, that of atrial flutter.

1.9 Appendix

A.1 Fourier Transforms

The forward Fourier transform of a time-domain signal s(t) is

given by:

S(f ) ¼
ð1
�1

s(t)e�j2pftdt: (A:1)

The inverse Fourier transform of a frequency-domain signal

S(f ) is represented by:

s(t) ¼ 1

2p

ð1
�1

S(f )eþj2pft df : (A:2)

Similarly, the forward Fourier transform of a spatial-domain

signal s(x) has the form:

S(k) ¼
ð1
�1

s(x)e�j2pkxdx: (A:3)

The corresponding inverse Fourier transform of a spatial fre-

quency-domain signal S(k) can be expressed as:

s(x) ¼
ð1
�1

S(k)eþj2pkxdk: (A:4)

Signals are often acquired in more than one dimension, and

the corresponding multidimensional Fourier transformations

are given by:

S(kx,ky ,kz) ¼
ð1
�1

ð1
�1

ð1
�1

s(x,y,z)e�j2p kx xþky yþkz zð Þdxdydz

(A:5)

s(x,y,z) ¼
ð1
�1

ð1
�1

ð1
�1

S kx,ky ,kz

� �
e
þj2p kx xþky yþkz zð Þ

dkxdkydkz :

(A:6)

A.2 Filtered Backprojection

The problem of reconstructing a two-dimensional image from

a series of one-dimensional projections, denoted by p(r,f) is

common to a number of imaging modalities. Backprojection

assigns an equal weighting to the pixels contributing to each

point in a particular projection. This process is repeated for all

of the projections, and the pixel intensities are summed to give

the reconstructed image, f̂f (x,y). Mathematically, f̂f (x,y) can be

represented as:

f̂f (x,y) ¼
Xn

j¼1

p(r ,fj)df, (A:7)

where n is the number of projections. Simple backprojection

results in a number of image artifacts and blurring, the reme-

diation of which is the rationale for using filtered backprojec-

tion. In this process, each projection p(r, f) is multiplied by a

spatial filter, h(r), prior to backprojection. Commonly used

functions are Shepp–Logan, lowpass cosine, and generalized

Hamming filters. For computational efficiency, the process is

performed in the spatial frequency domain. Each projection

S

(a)

(b)

R–R Interval

P

Q

R

T
1mV

FIGURE 1.22 (a) Standard EKG trace from a healthy patient.

(b) Trace corresponding to atrial flutter, with the source of the

pacemaker impulse traveling in a circular trajectory within the atria.
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is Fourier-transformed along the r-dimension to give P(k,f),

and then P(k,f) is multiplied by H(k), the Fourier transform

of h(r), to give P 0(k,f):

P0 k,fð Þ ¼ P k,fð ÞH kð Þ: (A:8)

The filtered projections, P 0(k,f), are inverse–Fourier-

transformed back into the spatial domain and backprojected

to give the final image, f̂f (x,y):

f̂f x,yð Þ ¼
Xn

j¼1

F
�1 P0 k,fj

� �n o
df, (A:9)

where F
�1 represents an inverse Fourier transform.

A.3 Iterative Image Reconstruction

As described previously, PET and SPECT images can be recon-

structed using analytical inversion techniques such as filtered

backprojection of the line integral signals. However, this very

simple line integral model of the data is not exact. For ex-

ample, in SPECT there is a depth-dependent point spread

function, and in PET there exist variations in different de-

tector-pair sensitivities as well as Compton scatter in the

detectors. The other major issue, not accounted for using

analytical techniques, is the statistical variability, governed by

the Poisson distribution, in the data; this is an especially

important factor when the number of counts is low.

Iterative techniques are used extensively for image recon-

struction in PET and SPECT. The goal is to estimate the spatial

dependence of the radiotracer distribution that ‘‘agrees best’’

with the acquired data. Iterative methods can model the detec-

tion process without assuming explicitly a line-integral between

source and detector. They also allow explicit consideration of

the statistical nature of the measurement noise. There are a large

number of different algorithms, which can be characterized

broadly in terms of three parameters: (1) the choice of cost

function and model for the data, (2) the optimization proced-

ure; that is, the particular algorithm used to either maximize or

minimize the cost function, and (3) the computational ‘‘cost’’ of

the algorithm; that is, its rate of convergence and stability.

One can describe the reconstruction problem as solving the

set of equations y¼Pf, where y is the measured projection

data, P is a projection matrix, and f is the unknown source

distribution. The earliest iterative method incorporating a

Poisson model was the maximum likelihood (ML) method.

Provided that detection of individual radioactive decay events

is independent, the conditional probability for y is given by:

p yj fð Þ ¼
Y

i

e��yyi
�yy

yi

i

yi!
: (A:10)

Now the ML estimate of f is computed by maximizing the

above equation (in practice the log of the likelihood estimate is

used). Use of this algorithm in PET assumes that random and

scattered coincidences have been estimated. A related general

approach to solving ML problems uses an expectation maxi-

mization (EM) algorithm.

The ML-EM method converges very slowly; hence, in prac-

tice it is implemented using the ordered subsets EM (OSEM)

method, in which the acquired data are broken up into a

number of subsets and the EM algorithm is applied sequen-

tially to each set in turn (this has obvious analogies with the

fast Fourier transform implementation of the discrete Fourier

transform algorithm). In all of these algorithms, the voxel

values are updated simultaneously during one iteration; an

alternative approach is to update the value of a single voxel

for each iteration, as in iterated coordinate-ascent methods.

It is also possible to introduce prior knowledge into the

iteration process. For example, smoothness priors are com-

monly used, with a smoothing penalty added to the likelihood

function. This allows selection between sets of equivalent

solutions. This also addresses the issue that ML methods in

PET and SPECT are inherently ill-conditioned. Alternative

approaches to the problem of ill-conditioning include post-

reconstruction filtering and stopping the iterative process

before convergence occurs using prespecified conditions.

1.10 Exercises

1. Two X-ray images of the hand are shown in the following

figure. One corresponds to an X-ray beam with an effective

energy of 140 keV, and the other to an effective energy of

50 keV. Explain which is which, and the reasons for the

differences in image contrast and signal intensity.

FIGURE 1.23 Two planar X-ray images of the hand—see Exercise 1.

2. In mammography, should the intensifying screen be placed

in front of the X-ray film or behind the film in order to

achieve the highest spatial resolution? Explain the reasons

for your answer.
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3. A SPECT scan is taken of a patient, and an area of radio-

activity is found at the position marked by the ‘‘x.’’ The

sinogram from the SPECT scan is shown in the figure.

Assuming that the radioactivity is uniform within the tar-

geted area, what is the shape of the area of radioactivity?

(For ease, assume that the 0 degree projection corresponds

to the SPECT detector being directly below the patient.)

q (degrees)

0

180

360

p(r,f)

x

FIGURE 1.24 Sinogram obtained from a SPECT scan of the biodis-

tribution of a radionuclide centered at position x—see Exercise 3.

4. Match up the following image contrast agents with their

respective clinical protocols with a one-sentence expla-

nation of why the particular agent is used.

(a) Tri-iodinated–based compounds

(b) 18F-fluorodeoxyglucose

(c) 99mTc-sulfur colloid (�2 mm diameter)

(d) Barium sulphate

(e) 133Xe gas

(i) SPECT liver imaging

(ii) PET tumor imaging

(iii) SPECT lung imaging

(iv) X-ray fluoroscopy

(v) Digital subtraction X-ray angiography
5. The schematic in the figure shows the setup for a SPECT

scan of the heart. Three areas are outlined: soft tissue (gray),

lungs (white), and the radionuclide distributed in the heart

(black). Sketch to scale the one-dimensional projections at

each detector position 1–4 in the following cases:

(a) No attenuation correction is applied to the data.

(b) A uniform attenuation coefficient equal to that of soft

tissue is assumed, and the data are correspondingly

corrected.

(c) Attenuation correction based on a transmission scan

with an external source is used.

Detector position 1

Detector position 3

Detector
position 4

Detector 
position 2

FIGURE 1.25 Schematic of the setup used for a SPECT scan of the

heart—see Exercise 5.

6. For the object shown in the figure, qualitatively sketch the B-

mode ultrasound image obtained from a 1 ms pulse of ultra-

sound. Acoustic impedances: muscle 1.61, cyst 1.52, fat 1.38,

liver 1.5 (all� 105 g=cm2s). Attenuation coefficients (dB/cm/

MHz): muscle 1.0, fat 0.8, liver 1.0, and cyst 1.0. Speeds of

sound (m/s): muscle 1540, fat 1540, liver 1540, and cyst 3080.

Fat – 1cm thick

1.5 cm

Fat – 1mm thick

3 cm Muscle cyst

5 mm Muscle

Linear sequential array 

Liver

FIGURE 1.26 Geometric representation of different aspects of the

body used to generate a B-mode ultrasound scan—see Exercise 6.

7. The B-mode image in the figure shows what is known as a

‘‘mirror artifact.’’ Explain what might give rise to this effect.

Transducer

FIGURE 1.27 Illustration of a mirror artifact produced in B-mode

ultrasound—see Exercise 7.
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8. Suppose you are an ultrasound engineer working for a

transducer manufacturing company. A customer needs

a plane-piston transducer that resonates at 5 MHz and

has a radius of 2.5 cm. Sketch the axial beam shape for

the customer as the normalized intensity versus the axial

distance, and indicate the location of the last axial max-

imum in water at 208C. What is the thickness of the

transducer?

9. Imagine that flow information is desired from a vessel that

is 4 mm in diameter and lies at a depth of 5 cm below the

skin. If a train of ultrasound pulses is sent out (each pulse

consisting of five cycles of ultrasound at a frequency of

5 MHz), determine the length of the ultrasound pulse, the

time delay between the end of the transmitted pulse and

the receiver gate being opened, and the time for which the

receiver gate is open (assuming an ultrasound velocity of

1540 m/s in tissue). What is the highest velocity that can

be determined?

10. A region of the brain to be imaged contains areas corre-

sponding to tumor, normal brain, and fat. The relevant

MRI parameters are:

r(tumor) ¼ r(fat) > r(brain)

T1(fat) > T1(tumor) > T1(brain)

T2(fat) > T2(tumor) > T2(brain)

Which type of weighted spin–echo sequence should be run in

order to get contrast between the three different tissue types?

Explain your reasoning, including why the other two types of

weighting would not work.
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2.1 Introduction

2.1.1 Background

Medical record, health record, patient record, patient medical

record, and medical chart are often used interchangeably to

describe a systematic documentation of medical information

on a particular patient [1]. This patient medical record (PMR)

has traditionally been a paper record, which contains diverse

data, accumulated over a single or multiple episodes where the

patient interacted with the health system. The paper-based

medical record (PBMR) is generally bundled into a single

(occasionally multiple) file(s) and kept in a central repository

often called the Medical Record Department. The individual

file is identified by a coding system that links patient demo-

graphics to a unique number (e.g., a medical record number

[MRN]). Staff in the Medical Record Department are respon-

sible for filing, updating, retrieving, and maintaining the

PBMR [2–4]. The PBMR will often contain details of hospital

inpatient and outpatient admissions; hand-written file notes

from medical, nursing, and allied health staff; results of labora-

tory, pathology, and imaging investigations; operation reports;

and copies of correspondence sent to referring and local med-

ical officers. In some instances, paper copies of imaging tests,

operative findings, and endoscopy results will also be included.

However, in the current complex medical environment

encountered by patients in their medical journey, the PBMR

will often be incomplete because many departments in a large

hospital maintain their own databases with pertinent data kept

within the department. Or the PBMR may be impossibly

cumbersome when countless pages of meaningless data (e.g.,

entire printed notes from an intensive care admission) are filed

in it. Another consideration is that while departmental data

will be necessary for the daily functioning of that department,

there will be duplication of some data that are kept in the

central repository. Parts of the record may be illegible, but
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perhaps most importantly, the data may not be immediately

available where and when they are needed. Thus, in the current

medical environment, which is increasingly reliant upon elec-

tronic media for access to patient information, the PBMR is a

suboptimal solution.

Improvements in information technology coupled with the

increasing volume of data that need to be stored in a medical

record and the need for these data across multiple sites where

different medical services are accessed by patients have

renewed interest in seeking an electronic solution to manage

these critical data. To state the obvious, effective management,

processing, and communication of patient data in medical

records to the relevant staff improves the quality of healthcare

[5–8]. If a digital medical record, called an electronic medical

record (EMR), were able to overcome the limitations of a

PBMR, it should follow that the quality of care should also

improve. Benefits of an EMR include ready access, rapid

searching, secure storage, and safe transmission of patient

data. However, an EMR is not a trivial undertaking. Important

considerations are the quantity and complexity of the data, the

marked diversity in the information infrastructure and data-

bases within and across hospitals (public, private, and univer-

sity-based) and the community (local general practice, medical

center, rural or community center). Homogeneity in system

and infrastructure, which is found in some large institutions

such as within the Veterans Hospitals in the United States, is an

exception rather than the rule, and what is needed is a state-

wide or nationwide solution. Heterogeneity across the various

systems is also likely to grow as patients live longer with more

medical and surgical co-morbidities [9]. It is not uncommon

for patients to have multiple specialists look after part of

their medical condition, such as a renal physician, a cardiolo-

gist, a diabetologist, and a neurologist for the patient with

vascular disease. The greater emphasis on and demand for

an evidence-based approach to medicine is a logical and seam-

less fit for an EMR. Rapid electronic access to patient data

and to large medical databases will allow decisions to be

made on the best available data relevant to a particular patient

or problem.

At present, there is not a single EMR approach that provides

all things for all patients and all health care personnel; how-

ever, there have been some recent useful attempts [6]. Many of

these new approaches use advanced network technologies.

Telemedicine, the use of telecommunications technology for

medical diagnosis and patient care, has enabled the exchange

of medical, imaging and surgical information [10–12]. The

broader concept of eHealth has emerged as a new paradigm

for providing health care using telecommunication technolo-

gies [13]. mHealth, where mobile devices and wireless net-

works are coupled to provide real-time health data, offers

tremendous advantages [14]. Research in these areas continues

to be encouraged because of the high expectations of modern

society and governments [15]. The major challenges for these

approaches are to adapt to and cater to the heterogeneity in the

targeted environment, whether it is patient- or system-based

[9, 16, 17]. Table 2.1 lists some of the diverse systems. These

are available in large hospitals, where the most serious illnesses

continue to be managed and treated. We suggest that custom-

ized system design is an essential element to the greater

penetration and acceptance of electronic approaches by health

care users [6]. Any new system should be sufficiently easy to

use [18–21] and adaptable within the local workflow or setting

[20, 22–24].

2.1.2 Overview of Electronic Medical Records

In this chapter, we address the structure and design issues of an

EMR. In the earliest phase of an EMR, the main effort is to

convert patient records into digital format for archiving by

scanning reports, letters, and other parts of the record. A more

advanced form of EMR requires the application of processing

and analytic methods [25, 26]. However, before this can be

carried out, it is essential that a standard terminology, classi-

fication, and rules for communication be developed. A long-

standing issue in health care is the lack of a uniform termin-

ology for even common disorders. A number of organizations

are continuing attempts to develop standard terminologies,

but as yet there is not a single agreed-upon approach that

can be applied across the whole of medicine. In part, this

relates to the proliferation of medical knowledge and the

extent and degree of specialization over the past decade.

Nevertheless, the first step in the development of a more

sophisticated EMR is the introduction of common terminolo-

gies and communication standards. However, this must occur

TABLE 2.1 Examples of data management systems in large hospitals

Systems Description

HIS (Hospital information system) Admission, discharge, and billing

RIS (Radiology information system) Patient tracking, workflow management, report generation

PACS (Picture archive and communication system) Accesses and distributes medical images and reports

Anesthesia system Administration/recording of anesthetic agents

Order entry system Electronic ordering of tests, treatment

Pharmacy system Administration/dispensation of pharmaceuticals

Surgery scheduling system Scheduling operating time in the operating room
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simultaneously with a thorough understanding of the environ-

ment in which the EMR will be used and the intended outcomes

from the end users. While it is self-evident that the true measure

of success of any EMR is its integration into the targeted

environment, such integration is not trivial. We emphasize

that the targeted workflow must be considered early rather

than late in the planning phase [27]. Although usability studies

can be employed in the early stages of development of an EMR,

there is no substitute for extensive collaboration and consul-

tation with the users of the final product [28].

2.2 Medical Data and Patient Records

2.2.1 Paper-Based Medical Records

As mentioned earlier, data contained in a PMR are complex

and diverse. At a simple level, these data can be separated into

demographic and historic information. Demographic data in-

clude details such as the patient’s name, date of birth, the

unique MRN or patient identification number (PID), address

and contact details, next-of-kin, mother’s maiden name, and

names/address/contact details of the referring doctors and/or

local medical practitioners. Meanwhile, the historic data in-

clude information relevant to the medical domain such as: the

current clinical diagnosis, medical history, medications, aller-

gies, examination findings, treatment plan, results of investi-

gations, nursing observations, and treatment plans and notes

from other allied health professionals including physiothera-

pists, occupational therapists, and social workers. Over time,

the historic data contain sequential events that chronicle the

development of various diseases and the investigations, com-

plications, and treatment of these disease states. Although

reports of various investigations may be found appended to

the PMR, in the past it was not possible to include images from

the various tests that were performed. For example, depart-

ments of medical imaging would maintain their own physical

archive of previous X-rays, which were linked to the PMR by

the MRN. Figure 2.1 shows a typical example of de-identified

notes from a patient file.

These pages demonstrate some of the limitations mentioned

earlier [29]. Over two pages and in less than 24 hours, there are

six different sets of handwriting. All have varying degrees

of legibility, abbreviations, and author identification, but over-

all the handwritten notes are difficult to read. Further, the

Institute of Medicine suggests that handwritten reports or

notes, manual order entry, nonstandard abbreviations, and

poor legibility are sources of medical error [30]. The typed

notes, meanwhile, are much easier to follow. Authors of the

notes are clearly identified as is the time the entry was made,

but the history is documented once again. The most appro-

priate tool to capture medical data is still to some extent

controversial. Interpretation of information from paper was

ranked higher than that from a computer display [2]. Some

studies suggest that a paper-based approach is a more effective

method of communication between clinicians and there is

high satisfaction level, but this is surely tempered by the

quality and legibility of the notes [31]. Another consideration

is that a paper-based approach is still regarded in legal circles

as the primary data source, and insurance companies rely on a

PBMR to evaluate appropriateness of admission and length of

stay [31]. However, the PBMR remains a discrete entity that

cannot be shared or distributed and appropriately is jealously

guarded by medical records departments. The PBMR follows

the patient but generally only within a single hospital. If a

patient enters another hospital system, health care personnel

are generally reliant on the patient’s memory rather than on

robust data about the medical condition.

2.2.2 Electronic Medical Records

A variety of terms have been used to describe an EMR. To some

extent, these terms have arisen from their use in different

environments.

. The Personal Health Record (PHR): An individual’s own

account of his or her medical history in a digital format

. The Electronic Medical Record (EMR): A provider-based

electronic medical record that includes health documen-

tation for a patient covering all services provided within

an enterprise

. The Electronic Patient Record (EPR): A patient-centered

system containing patient documentation

There are certain common attributes of an EMR. The digital

nature of an EMR allows data contained within it to be

searched and retrieved. Other attributes include system quality

(e.g, accessibility, usability), information quality (e.g. readabil-

ity, accuracy), and decision support (e.g. data analysis). Acces-

sibility describes the degree to which a system is reliable.

Although the EMR has the potential to be accessed by multiple

users at multiple locations, these same users are then dependent

upon the electronic medium for critical data. An unreliable

system could lead to medical errors [32, 33]. Usability describes

the ability of the EMR to be integrated into the clinical workflow

in a seamless manner [7]. Everyone is familiar with poor soft-

ware that does not deliver the desired outcomes or delivers them

at such a cost in time and frustration that users no longer use the

software. Legibility is not an issue with an EMR although

scanned documents can be problematic. However, a criticism

remains that complex data are often easier to read from a piece

of paper rather than from a computer monitor. Data storage via

electronic media is far less space- and weight-expensive. Accur-

acy is difficult to define in this context but can be defined as the

degree (measured as a percentage) of correctness, completeness,

and inclusiveness in a dataset [34]. Computer-defined fields,

when appropriately designed for data entry, provide a mechan-

ism for an EMR to be more comprehensive than a PBMR.
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(a)

FIGURE 2.1 Data from a typical hospital medical record. In (a) and (b) there are multiple hand-written notes.
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(b)

FIGURE 2.1 Cont’d
(Continued)
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2.3 Terminology Standards—Vocabulary
and a Clinical Coding System

One of the major challenges for an EMR is standardization of

the terminology that is to be used by a variety of different and

perhaps geographically separated health care personnel [35].

This relates to the clinical vocabulary as well as to the coding

system for various diseases. A clinical vocabulary can be

defined as a collections of words or terms that represent the

conceptual information that makes up a given knowledge

(c)

FIGURE 2.1 In (c) and (d), there are type-written notes from an electronic database that is used in the intensive care unit.
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domain. The terms are generally defined as actual events or

entities and mapped to their cognitive representations called

concepts [36]. A number of other descriptors are used in the

literature to describe clinical vocabularies. These include

health [37], structured clinical [38], and controlled medical

vocabularies as well as reference terminologies, but they can be

used interchangeably [39]. Unfortunately, the modern medical

clinical vocabulary is vast and replete with jargon and abbre-

viations, some of which are generalized, such as stat (from

statim, immediately), but most may be specific to a particular

(d)

FIGURE 2.1 Cont’d
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area or subspecialty. Some individual vocabularies have been

identified by standards organizations as candidates for specific

uses [40]. The criteria vary, but the core requirements for a

comprehensive clinical vocabulary include an accurate

representation of clinical detail, effective storage and retrieval,

translation and compatibility between coding methods, and

effective management of the data. It is also important to

mention the term synonymy, which has a central role in

clinical vocabularies. Synonymy can be defined as a semantic

relation where two words (or concepts) have the same

meaning [41]. Synonyms are important because they are often

used to describe different terms in records that refer to the same

concept [42]. It is logical that a meaningful and unambiguous

vocabulary will enable a smooth translation from natural

medical language to the more structured representations

required by application programs. Yet as noted before, this is

not a trivial undertaking, and there is not a single vocabulary

that is accepted as a universal standard for the representation of

clinical concepts.

There are three commonly used clinical coding systems:

International Classification of Diseases (ICD), Systematized

Nomenclature of Human and Veterinary Medicine Clinical

Terms (SNOMED CT), and Medical Subject Headings

(MeSH). The major aim is to establish consistency across the

medical spectrum so that communication is facilitated. Figure

2.2 shows how these three systems classify idiopathic Parkin-

son’s disease (IPD), which is a progressive neurodegenerative

disorder of unknown cause that is characterised by a tremor,

typically of the limbs; slowness in initiating movement; in-

creased tone in the limbs; a stooped posture; a gait with small

steps; and sometimes dementia. The major structures that are

involved in the brain are the basal ganglia (a series of deep

nuclei) and the extrapyramidal motor system.

2.3.1 International Classification of
Diseases

The ICD is a classification, terminology, or vocabulary intro-

duced by the World Health Organization. The most recent

version is the 10th Edition (1992), hence ICD-10. The ICD

chapters are divided by major anatomic systems or cause.

The previous version, ICD-9 with clinical modification (ICD-

9-CM) is still widely used as a system of assigning codes

to diagnoses and procedures in many countries like the United

States. In ICD-9-CM, coding employs a three-digit number

with an optional fourth digit separated by a decimal

point (e.g., 332 for Parkinson’s disease and 332.1 for Parkin-

sonism) while code G20 is used in ICD-10. The implementa-

tion of ICD-10 is not yet expected to phase out the use of

ICD-9-CM.

2.3.2 Systemized Nomenclature of Medicine
Clinical Terms

SNOMED CT is a universal health care terminology developed

by a division of the College of American Pathologists (CAP).

SNOMED consists of a set of axes, each of which serves as a

taxonomy for a specific set of concepts (e.g., organisms, disease,

procedures). Coding of patient information is accomplished by

combining terms from multiple axes (postcoordination) to

represent complex terms. SNOMED has several synonyms for

Parkinson’s disease as shown in Table 2.2.

ICD-10 MeSH SNOMED CT

Diseases of the nervous system
(G00-G99)

Nervous system disease
(C10) Disorder of body cavity

Disorder of brain

Movement disorder

Extrapyramidal
disease

Parkinsonism

Parkinson's disease

Central nervous system
disease (C10.228)

Brain disease
(C10.228.140)

Basal ganglia disease
(C10.228.140.079)

Parkinsonian disorders
(C10.228.140.079.862)

Parkinson disease
(C10.228.140.079.862.500)

Extrapyramidal and movement
disorder (G20-G26)

Parkinson's disease (G20)

FIGURE 2.2 How the ICD, MeSH, and SNOMED-CT approach the classification of Parkinson’s disease.
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2.3.3 Medical Subject Heading

MeSH is a large controlled vocabulary for indexing journal

articles and books in the life sciences. It was created and is

maintained and updated by the National Library of Medicine

(NLM) [43]. It is used by the MEDLINE article database and

by the NLM catalog of book holdings. The vocabularies and

their supporting informatics systems were designed to be used

both by indexing professionals and by medical staff who have

various degrees of computer experience.

2.3.4 Unified Medical Language System

The Unified Medical Language System (UMLS) is a large

number of clinical vocabularies and classifications used to

map structures between the vocabularies and the classifica-

tions. This integration can provide interconcept relationships

from the established vocabularies, including SNOMED, ICD,

and MeSH. There is a component within the UMLS called

Metathesaurus1. The primary purpose of this component is

to map between coding systems to enable information

exchange between different clinical databases and systems.

A semantic network maps categories to medical concepts

defined in the Metathesaurus. There are 135 semantic types

and 54 semantic network relationships available [44]. Figure

2.3 shows a portion of the network, where the super type is

biologic function, and it has two children: physiologic and

pathologic functions. Each of these has server children in the

hierarchy with an ‘‘is-a’’ relationship.

Another component in the UMLS called the SPECIALIST

Lexicon contains syntactic, morphologic, and orthographic

information for biomedical and common words in the English

language. The Lexicon and its associated lexical resources are

used to generate the indices to the Metathesaurus and have

wide applicability for natural language processing applications

in biomedicine.

2.3.5 Logical Observation Identifiers Names
and Codes

Logical Observation Identifiers Names and Codes (LOINC) is

a terminology database for identifying laboratory observations

that was developed by and is maintained by the Regenstrief

Institute, an internationally recognized nonprofit medical

research organization. The aim of LOINC is to standardize

laboratory and clinical codes for use in health care, outcomes

management, and research [45]. It is authorized by the Ameri-

can Clinical Laboratory Association and the CAP and is one of

the standards used in U.S. government systems for the elec-

tronic exchange of clinical health information.

It is likely to become a Health Insurance Portability and

Accountability Act (HIPAA) [46] standard. HIPAA is a federal

regulation that establishes national standards for health care

TABLE 2.2 SNOMED CT synonyms for Parkinson’s disease

Preferred description Synonyms

Parkinson’s disease Paralysis agitans

Idiopathic parkinsonism

Primary parkinsonism

Shaking palsy

Idiopathic Parkinson’s disease

Parkinson disease

PD–Parkinson’s disease

Biologic
function

Organism
function

Organ or 
tissue

function

Cell
function

Molecular
function

Cell or
molecular

dysfunction

Disease or
syndrome

Experimental
model of
disease

Physiologic
function

Pathologic
function

is-a is-a is-a is-a

is-a is-a

is-a is-ais-a

FIGURE 2.3 Part of UMLS network of biologic function.
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information in the United States. LOINC applies universal

code names and identifiers to medical terminology related to

the EMR. A unique code (format: nnnnn-n) is assigned to each

entry upon registration. There are six main parts in the codes:

an analytic component, a property measured, a time aspect of

the property measured, system/sample types, scale of the

measurement, and type of method used [45].

2.4 Information Exchange Standards

The main aim of the medical information standards is to

ensure that all data needed to accomplish a specific commu-

nication can be transmitted from one system to another [47].

2.4.1 Health Level 7

Health Level 7 (HL7) is a standards-developing organization

that is accredited by the American National Standards Institute

[48]. The domain of HL7 is in clinical and administrative

data. The HL7 standard is a specification, not software, for

information exchange between medical applications, and it

includes a protocol for data exchange. It defines the format

and content of the messages that applications must use when

exchanging data. HL7 standards are based on the reference

information model [49]. The current standard is HL7 version

2.4. Version 2.5 and version 2.6 were further constrained

by the previous standard. Recently, version 3 made fundamental

changes to the existing HL7 messaging approaches

that introduced clinical document architecture (CDA) [50].

A feature of the CDA is its ability to be viewed in a browser

using a single style sheet based on XML. Messages with CDA are,

by definition, able to include text, images, sounds, and other

multimedia content. A major advantage of HL7 is system inde-

pendence resulting from open system architecture. Open system

architecture discloses its specifications, and, by following

appropriate protocols, add-on components can be developed

without regard to vendor specifications. This avoids the need to

develop an entire infrastructure simultaneously. Each compon-

ent can be developed and integrated individually.

2.4.2 Digital Imaging and Communication
in Medicine

The move to digital images in radiology and their anticipated

dissemination electronically prompted the American College

of Radiology (ACR) and the National Electrical Manufacturers

Association (NEMA) to form a joint committee in 1983 to

create a standard format for storing and transmitting medical

images [51]. The committee published the original ACR-

NEMA standard in 1985, which has been revised since then.

In 1993, the standard was renamed to digital imaging

and communications in medicine (DICOM version 3.0) and

permitted the transfer of medical images in a multivendor

environment. The DICOM standard contains the network

components required for file exchange. It uses transmission

control protocol/Internet protocol to communicate between

systems. DICOM files can be exchanged between two entities

that have the capability to receive the information, both image

and patient data. The patient data are encoded in a header,

including the patient name, type of scan, image dimensions,

and other information related to the scan. The concept of

DICOM arose from a desire to integrate scanners, servers,

workstations, and network hardware from multiple vendors

into a picture archive and communication system. For picture

archive and communications system imaging devices, servers

and workstations have DICOM conformance statements

that identify the DICOM classes that are supported. DICOM

has been widely adopted by hospitals because of its inter-

changeability. HL7 and DICOM require the definition of all

data elements that are sent. In many cases, the content requires

a specific vocabulary that can be interpreted between the

systems. At present, there is heterogeneity between the stand-

ards. To improve the electronic interchange of clinical data,

universal standard formats should be defined to include im-

ages, signals, multimedia, and text. In the absence of such

a standard, a number of interpretation-based methods have

been proposed; one of these uses a middleware system as an

interpreter [52, 53].

2.5 Usability Issues in Electronic
Medical Records

Usability encompasses appropriateness for the intended pur-

pose, ease of use, and ease of learning. There are four main

components in usability: learnability, time efficiency, user error

rates, and user satisfaction [54]. Hartson [55] emphasized the

importance of user interaction in usability. Interaction is the

user’s perception of the impact of the system with the workflow.

In this context, it is referred to as human–computer interaction

(HCI). HCI itself has a number of components: design, evalu-

ation, and implementation. Usability is an important element

in any system, but the ramifications of design-induced error can

be catastrophic in a medical environment and may lead to

severe morbidity and even death [56]. To increase acceptability

of any EMR-based system, an extensive usability study is neces-

sary in the development process. In the following section, a

brief theoretical background of HCI is discussed.

2.5.1 Theoretical Background—
Human–Computer Interaction

The main theories used in HCI are activity [57, 58],

task-analysis [59, 60], and cognitive [61, 62] theory. Given

that the main aim of computer system design is to assist
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users in their professional activities, the user interface should

enable the user to complete tasks and achieve goals that

are associated with the chosen activity. Activity theory builds

on the work of Vygotsky and is a framework that allows

the study of different forms of human practice [57]. The

basic tenet of activity theory is that human (work) activity

is driven by needs. The activity is performed using one or

more tools. The tools are viewed in terms of usefulness

and as mediators of activity rather than as inanimate objects

[63].

Activity theory provides a paradigm to describe and

understand the way that humans interact with computers in

the user’s environment [58]. The human element gives rise to

the need for the activity. Activities consist of distinct actions

or series of actions, which in turn consist of operations.

Operations are ways of executing actions that enable the goal

to be achieved. An operation may begin as a conscious act but

may become routine and almost subconscious with practice

and repetition. This approach to the analysis of human

activities can also draw on processes such as interactive devel-

opment and evaluation between users and developers seen

with contextual inquiry/design [64, 65]. Contextual inquiry

identifies the issues of concern, the tasks to observe, the

questions to ask, and the criteria to use for screening

participants.

Task analysis is used to design system functionalities

and interfaces. It is essential for the developer to clearly under-

stand the tasks to be done using the system and the way each

task is performed to meet the needs of the users [60].

This process of describing tasks and their relationships is called

task-analysis. Annett and Duncan introduced hierarchical

task-analysis to evaluate the training needs of an organization

[66].

Cognitive theory stems from cognitive psychology in which

humans can be modeled as cognitive information processors

[61, 67]. This approach describes man as a sensory, effectors,

and central processing system (perception, cognition, storage).

The goals, operator, methods, and selection model are typical

examples used to explain the nature and structure using cog-

nitive theories [68].

2.5.2 Workflow Analysis

Efficient work processes are essential to any successful

organization. One method to achieve improved efficiency is

based on workflow analysis. Workflow can be defined as a set

of tasks comprised of coordinated computer-based and human

activities [69]. A workflow model or schema is a formal

computerized representation of work procedures that controls

the sequence of the tasks that are performed [70]. Ancillary

benefits of better efficiency can be improved cost-effectiveness,

productivity, communications, and user satisfaction. The

value of workflow analysis techniques is gradually being rec-

ognized in the health care industry [71]. Processes and

their associated workflows can be modeled in various ways

using different tools, which are mainly based on object-

oriented modeling methods. The four main approaches are

as follows [72]:

1. Informational modeling: The focus is on the flow,

structure, and interrelationships in the information.

2. Functional modeling: Attention is directed to tasks being

performed and the related information.

3. Organizational modeling: The focus is on agents

(humans or computers) and resources involved in

each task; communication between the agents is

analyzed.

4. Transactional modeling: Issues of timing (sequencing)

and control are examined, both within and between the

tasks in the process.

These modeled workflows can be hierarchically decomposed

into subworkflows [73]. Activities and tasks can be allocated

to one or more agent. The term agent can also refer to organ-

izational units or roles. In health care, there are two main types

of workflow: ad hoc and procedural [74]. Ad hoc workflows

are processes in which the outcome cannot be predicted.

Procedural workflows have a predefined structure that

is implemented each time the workflow is performed. For

example, in a medical imaging department, the performance

of a chest computed tomography (CT) scan is procedural and

routine, and the outcome can be predicted. The sequence of

procedures follows a predefined protocol. After the scan

is completed, the transmission of imaging report to the

requesting physician is an ad hoc process as the timing and

receipt by the requesting physician cannot be predicted.

In a workflow model, the outcome of each process is

recorded. A description of who performed the process, how

it was performed, and the tools and other resources used

is analyzed. These results are then specified as they relate

to the current state of the workflow process, workflow-

relevant data, organizational structure, and the available

technology.

The health care environment poses its own problems for

any workflow analysis as the work activities tend to be very

heterogeneous, range from simple to exceedingly complex, and

can be composed of ad hoc elements as well as repetitive

and well-defined processes.

2.5.3 User Involvement

There is no question that user involvement improves user

satisfaction with the end result [75, 76]. In this context,

user involvement refers to participation in the system

development process by the target user group, which tends to

be medical professionals. However, it is also important

to emphasize that user buy-in generally requires the user to

see benefits from the proposal.

2 Electronic Medical Records 39



2.6 User Interface

The design principles of the user interface have been discussed

by a number of investigators [59, 77]. Some key principles in

the development of a user interface for medical applications

are shown in Table 2.3.

A number of principles must also be followed when data are

displayed and perceived effectively (Table 2.4). Well-designed

information presented in a logical manner can lead to a higher

degree of usability. Conversely, an illogical and poorly designed

display reduces performance and effectiveness of the system.

2.6.1 Synoptic Presentation

Part of the EMR can be displayed in a synoptic (brief or

condensed) format. A synoptic report simplifies a complex

medical problem. Records following one of the clinical vo-

cabularies are readily organized and classified. There has been

some by-in for surgery and pathology reports where there is a

relatively high degree of repetition and use of standard pro-

cedures [78, 79]. Nevertheless, a synoptic report may cause

some ambiguity, which once again emphasizes the importance

of design and consultation with the user.

2.6.2 Narrative Presentation

Narrative text reports are the major component of a PBMR.

Admission notes, progress notes, imaging reports, and dis-

charge summaries are collected and stored as narrative text.

An example of a short medical imaging report is shown in

Figure 2.4. The example shown is a short report, but the

succinctness and value of such reports often depend on

the reader. Unnecessary data provided for the referring

physician clutter many such reports, and in this setting,

a synoptic report offers advantages.

To convert a narrative report to a coded format remains a

continuing challenge and is an area of very active research in

the field of natural language processing (NLP) [80–82]. NLP is

a synthetic area between artificial intelligence and linguistics

dealing with problems of automatic generation and under-

standing of human language. The foundation of NLP is pars-

ing of sentences and of terms used in narrative text. Natural

language can be converted into a structured representation for

computers, and information from computers can be converted

to natural language. The major advantage of NLP is that it can

be applied to existing narrative reports. NLP can be combined

with the clinical vocabularies discussed previously to enhance

medical coding.

2.6.3 Graphic User Interface and Standard
Data Entry

A graphic user interface (GUI) contains a graphic component

in addition to text and accepts input from devices such as a

keyboard and mouse. The GUI displays a graphic output on

the computer monitor in response to the input. There are a

number of different principles used for GUI design, and these

include object-oriented user interfaces and function-oriented

design [83].

The graphic component of a GUI can be designed and

arranged in a structured way called structured data entry

(SDE) [84–86]. This approach creates patient records that

can be edited and searched and that can have decision support

functions [87, 88]. It has been suggested that this type of

approach can improve completeness and reduce ambiguity.

The structure of the data must be reflected in the GUI design

such that the user can choose from a number of options or

templates [87]. For a given medical specialty, a limited dataset

may only need to be specified and collected. Advantages of

SDE include uniform and consistent patient data. However, an

SDE requires careful design. Long lists of values (which require

scrolling and a rigid hierarchy) should be avoided [89]. A very

important consideration is the time required to enter the data.

A patient history and physical examination can be a tedious

exercise to enter into a computer when compared to scribbling

a quick note that is legible to the person transcribing it.

2.6.4 Web-Based Interface (Static and Dynamic)

Another approach is to use a Web-based interface [90–92]. The

immediate and obvious advantages are that it provides ready

access and is operating system–independent. Information is

accessed with a Web browser over a network. The interface

can be updated and maintained centrally, which is also attract-

ive. Although there may be some functional limitations on a

Web interface, client-side scripting can add functionalities.

Most application-specific functionalities can be implemented

TABLE 2.3 User interface design principles

Principle Description

Consistency Interface uses consistent terms and concepts.

Ease of use Interface is easy to understand and use.

Robustness Interface is robust and reliable.

User control Override is available in an unexpected situation.

Flexibility Various input tools are available.

Feedback and help A context-sensitive user guide and assistance

are available.

TABLE 2.4 Data display principles

Principle Description

Grouping Logically related data are grouped.

Standard Consistent display of data according to standards.

Highlight Data are highlighted according to importance.

Graphics Appropriate graphics can increase effectiveness.

Colors and fonts Appropriate fonts and color enhance perception.
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using Java and JavaScript. Web-based communication systems

have been set up for transmitting medical images and for

online consultation [93]. However, a dynamic interaction be-

tween client servers has been lacking. Most of the data are

statically transmitted when the Web page is refreshed. Recently,

dynamic and interactive Web interfaces have been introduced

by using server-side technologies such as Hypertext Preproces-

sor and Asynchronous JavaScript and Extensible Markup Lan-

guage [XML] (AJAX) [94]. AJAX enables faster, more

responsive Web applications through a combination of Java-

Script, the document object model, and XML. In the AJAX

model, JavaScript calls to the server can update a single ele-

ment in the user interface with data retrieved from a server.

The application is much more responsive than a static interface

because the full screen is not reloaded.

2.6.5 Alternative–Input Interfaces

A number of investigators have reported on alternative methods

for data input [95–99]. Instrumentation improvements now

allow handwriting and voice recognition input to the EMR.

Accuracy, speed, and portability remain continuing challenges

PET WB FDG - Melanoma pre Six

Technical data:

The patient was scanned on the PET-CT scanner (LSO Biograph) after the intravenous injection of 351 MBq of
FDG.

Report:

There is a slightly irregular, markedly glucose avid lesion in the soft tissues of the left inguinal region consistent 
with the known site of disease. This lesion appears to be solitary. There is mild diffuse FDG uptake medial to  
the main abnormality in the lower abdominal wall, which may represent the site of previous surgery. There are no  
other abnormalities in the pelvis. The paraaortic nodes and abdominal viscera are clear. In the thorax, I cannot 
identify any glucose avid foci, but the small nodules which are referred to on the request form are approximately 5  
mm in size, which may be beyond the resolution of the scanner. There are no abnormalities in the mediastinum 
or in the rest of the study to indicate other sites of disease.

The patient was scanned with arms above the head. There are no large mass lesions in the cerebrum. There is
mild misregistration between the anatomical and functional data due to head movement.

Conclusion:

There is a slightly irregular, markedly glucose avid lesion in the soft tissues of the left inguinal region consistent
with active high-grade tumors. But the lesion appears to be solitary and there are no other abnormal foci of 
increased FDG uptake in the rest of the study.

Name:

DOB:

Age:

Sex:

Sample patient

01/01/2000

6

Male

Referring Doctor:  John Doe

MRN:  0000000

Patient #:  Q0000 I PID 00000

Study Date:  01/01/2006

FIGURE 2.4 A sample medical imaging report.
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for handwriting and voice recognition (VR) in a busy hospital/

ward setting. Voice technologies have penetrated a number of

areas in a hospital, but the need for greater computer power

has generally limited its use to relatively quiet environments.

Although VR is readily accomplished on a laptop, it would be

desirable to have the same functionality on a handheld device.

Newer areas of research and development are the tactile inter-

faces. A tactile interface supplements or replaces other forms of

output with haptic (hand) feedback [95]. Tactile sensation, a

sense of roughness and friction, is being used in the field of

HCI. Touch screens can be used in medical imaging to ma-

nipulate three-dimensional whole body, vascular, and neuro-

logic data. In another approach, the tangible user interface [98,

99], the environment is in three-dimensional space; this has

been used in neurosurgery to aid surgical planning [100].

2.6.6 Advanced Computing Devices

Still other approaches utilize mobile computing devices and a

wireless network [101, 102]. Mobile devices are ideally suited to a

busy hospital because there is no requirement to find a free

computer terminal, and the devices are carried to wherever the

healthcare worker is required. Other obvious benefits are real-

time data uploads and downloads to the device. These data can

include patient lists and the associated laboratory and imaging

results as well specific protocols for patient care. Electronic ver-

sions of drug references and abridged versions of medical text-

books have been available on mobile devices for some time, and

these are widely used by resident medical staff [24, 62, 103–108].

2.7 Evaluation

Any new intervention should have an appropriate evaluation

to measure its impact, which may be positive or negative. The

three common areas of interest relevant to the EMR are system

quality, information quality, and user satisfaction [4]. Some

studies include the impact of the system on individuals and

organizations [16, 109]. System quality is often measured with

the emphasis on time efficiency, including response time and

time savings [3, 110–113]. Time is a key criterion for measur-

ing the integration of the system into clinical workflow.

A system can be considered effective if it reduces time required

for documentation and access time, even if the time efficiency

does not translate into better patient care [114]. Attributes of

information quality can include accuracy, completeness, and

legibility. Depending on the application of the EMR, single or

multiple attributes can be included in the design of the evalu-

ation [109, 111, 115]. User satisfaction can refer to the system

itself or to its content [4]. Other than the attributes mentioned

above, general evaluation methods widely used in software

engineering can be applied to an EMR [116].

Formal methods used in cognitive science are generally

needed to evaluate usability [117]. Observation is one such

technique. Observation simply involves watching individuals

as they use a system; this can be done physically or by means of

a video. The users can also be interviewed as the tasks are

performed—a so-called think aloud, which provides an oppor-

tunity for user feedback. Questionnaires and surveys are also

commonly used. A questionnaire generally asks users to rate a

system according to the attributes and dedicated functional-

ities. To obtain reliable results from the survey, questions

need to be precise rather than general. It is also informative

to assess the background of participating users, such as their

experience and familiarity with the working environment and

system. Another approach is to assess and evaluate the new

system as it is developed in a process referred to as a cognitive

walk-through. Assessors evaluate the component tasks of the

system sequentially. The basic steps that are involved include

the following:

1. A description of the system and its functionalities

2. A description of the task the user is to perform using the

system

3. A complete, detailed list of actions required to accom-

plish the task

4. A profile of the target users and their backgrounds

2.8 Electronic Medical Records
System—A Case Study:
A Web-Based Electronic Record for
Medical Imaging

In our Department of Molecular Imaging, we specialize in

positron emission tomography (PET) CT scans that are carried

out mainly in the assessment of patients with a variety of

malignancies. We currently perform between 22 and 24 patient

PET/CT studies a day. The scanning procedure is explained

to the patient, and then pertinent clinical details including

diagnosis, treatment, results of other investigations, and

medications are recorded, and informed consent for the pro-

cedure is obtained [118]. The record of the interview was

originally paper-based and hand-written; these data were

then dictated using a Dictaphone, and secretarial staff would

type the dictated history into the department information

system (IS). However, we identified issues with legibility of

handwritten notes leading to delays in transcribing taped data

into the IS, and we found it increasingly difficult to use this

approach with our large number of patients. We sought to use

recent advances in information technology to improve our

efficiency. We used a Web-based approach called Web-based

imaging electronic patient history (WEBI-EPH), a personal

digital assistant (PDA), and a wireless network to access the

IS within the department.
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2.8.1 The Clinical Workflow

A profile of the clinical workflow in the department was

outlined before designing the new system. A contextual/en-

quiry method based on activity theory was applied in the

system development and interface design [65]. The profile of

the traditional history-taking process was as follows:

1. User (consultant or registrar) interviews the patient. He

or she explains the procedure, obtains informed consent,

and records pertinent historic data on paper.

2. The paper-based history is dictated using a Dictaphone.

3. The dictated material is typed into the IS by secretarial

staff.

The elements of the new system are as follows (Figure 2.4):

1. Prior to interviewing the patient, user creates a patient

record.

2. User interviews the patient and records the data on the

mobile PDA as the interview proceeds.

3. The mobile device displays a series of fields that are

appropriate to the underlying condition (e.g., lymph-

oma, lung cancer, bowel cancer).

4. Input is automatically saved.

5. Input is automatically updated in real time to the IS.

6. The patient undergoes the scan.

7. Updated data are available to the reporting clinician

before the scan is completed.

Fields were created to capture the patient’s current treat-

ment, medical history, medications taken, and social/environ-

mental factors. Each component creates queries to the

middleware tier, as shown in Figure 2.5, which are then

updated to the IS.

2.8.2 Web-Based Imaging Electronic
Patient History

The WEBI-EPH was designed to accommodate the sequence of

events that occurs when a patient is assessed prior to undergo-

ing a scan, which is shown schematically in Figure 2.5. The fields

were designed, tailored, and piloted for two common medical

conditions where PET-CT scanning provides unique informa-

tion: lung cancer and the evaluation of lymphomas (a type of

blood cancer). A look-up list was generated for expected an-

swers to common questions, and the design reflected the usual

sequence in which these questions were asked. The graphic

component was used to define basic units. A basic unit was a

dataset where the elements had distinctive properties that were

described separately. Each unit consisted of several descriptive

elements including properties and values. In the classification of

current symptoms, a basic unit was pain, and it included infor-

mation about the location and duration as properties and

values. Data input was achieved by selecting the relevant item

from a list of values provided by the template or by typing/

writing using a stylus. In cases requiring more complicated

input, multiple forms were designed in a hierarchic structure.

For each template, the first layer was shown immediately. For

more detail, the logical second layer of descriptive elements

appeared and was inserted into the first-layer values. This was

done in such a way that details relevant to the scan interpre-

tation were not lost and inclusiveness of data was maintained.

The WEBI-EPH design included demographic data, indi-

cation for the scan, current symptoms, medical history,

Physician

System

Search patient
detail

Search by date

Add patient

Delete patient

Input patient
history

Review patient
history

Symptom Imaging Treatment Medical history

Interface tier

Middleware tier

DB

DBMS tier

Get_input()
Gul_object()
Submit()
Imaging_type()
Imaging_detail()
...

Get_input()
Gul_object()
Submit()
Medication()
...

Get_input()
Gul_object()
Submit()
Surgical()
...

Social history
Get_input()
Gul_object()
Submit()
Cigarette_pack_year()
Occupation()
Exposed()
...

Get_input()
Gul_object()
Submit()
Relevant_background()
Current_symptom()
Stage_indication()

Convert
Create_sql()
Match_field()
Check_values()
Update_sql()

Convert
Create_sql()
Match_field()
Check_values()
Update_sql()

Convert
Create_sql()
Match_field()
Check_values()
Update_sql()

Convert
Create_sql()
Match_field()
Check_values()
Update_sql()

Convert
Create_sql()
Match_field()
Check_values()
Update_sql()

FIGURE 2.5 Sequence using unified modeling language to create a WEBI-EPH. User selects a function from the system interface, which

initiates the processes. The input process has five stages.
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FIGURE 2.6 The PBMR used in our department shows typical acronyms and the difficulty with hand-written data.

44 I Technological Fundamentals



management plan, and medications taken. A form-input–

based Web-interface was designed using JavaServer Pages in a

Web server. Data from the Web interface were transmitted

from the PDA to the IS using Java Database Connectivity in

real time via a wireless network. Fields were designed to min-

imize handwriting. We piloted the EPH in 180 patients with

lung cancer and 130 patients with lymphoma over a 3-month

period in 2005. We measured the time required to complete

and update a PBMR and the WEBI-EPH to the IS and the time

for the dictated history to appear in the patient’s file in the IS.

We also rated the WEBI-EPH and the PBMR for legibility,

inclusiveness, and relevance to the scan interpretation. A

PBMR of patient history is shown in Figure 2.6. The Web

interface WEBI-EPH is shown in Figure 2.7.

The time taken to complete the WEBI-EPH ranged from 2

to 59 minutes, and the average was 10.14 minutes (+ 4.2); the

outlying value was the result of an interruption in the inter-

view because of an unforeseen event when the registrar had to

attend to another sick patient. All 310 records were available

immediately in the IS. For the PBMR, the average time to

completion was 24 minutes; all records were dictated, but

none of those had appeared in IS over the period surveyed;

the average time for the dictated data to appear in the IS was 10

months. The EPH also received higher evaluation scores than

the PBMR in all categories: legibility 2.3 (PBMR), 5 (EPH);

inclusiveness 3.7 (PBMR), 4.7 (EPH); and relevance to scan 3.3

(PBMR), 4.3 (EPH). EPH data were legible, inclusive, and

immediately available without loss of accuracy. Our prelimin-

ary data indicate that a custom-designed EPH is a marked

improvement over a PBMR.

2.9 Summary

The theoretic advantages of an EMR are widely appreciated,

but as yet an effective, robust, routine EMR that is integrated

into health care remains elusive. Nevertheless, such an EMR is

imminent and will be achievable with recent advances in

information technology. However, it should be emphasized

that user input in the design is essential, the workflow where

the EMR is to be used should be carefully mapped, the medical

data that are to be captured should be standardized as much as

possible, and the input method should be easy to use and fast.

Further reading from the reference list is recommended.
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2.10 Exercises

1. Discuss the main advantages of using EMR with standard

terminologies.

2. Discuss emerging computer interfaces and possible

applications in the development of an EMR.

3. List the three major factors for evaluation of an EMR-based

system and its attributes.

FIGURE 2.7 PDA. Web-based interface on PDA is on the left and screen capture from desktop

browser is on the right.
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3.1 Introduction

Picture compression is an important tool in the modern digital

world. Over the years, the move toward the digital media has

led to the proliferation of digital picture compression systems.

This is particularly noticeable in the entertainment industry,

consumer electronics, and security/surveillance systems. How-

ever, data compression is becoming increasingly important in

biomedical imaging applications as well, due to the increased

popularity of digital biomedical imaging systems, the constant

improvement of image resolution, and the practical need for

online sharing of information through networks. Picture com-

pression came about following the advent of analog television

broadcasting. Initial methods of limiting signal bandwidth for

transmission were relatively simple. They included subsam-

pling to lower picture resolution and/or interlacing of televi-

sion pictures into alternate Welds in alternate picture frames.

With the introduction of color television, subsampling was

extended to the color channels as well [1]. The digital picture

is seen as a natural migration from the analog picture. Hence,

it is felt that digital picture compression is, in many ways, a

natural evolution of analog compression. While this is true in

some sense, the nature of digital signals and of analog signals is

quite diVerent. Consequently, the methods for compressing

digital and analog pictures are distinct from one another.

This chapter will Wrst provide a basic introduction to digital

picture compression, focusing on general concepts and

methods, then introduce some advanced data compression

techniques. These techniques are used in noisy medical image

data sets with high compression ratios (CRs) and improved

image quality, which have pioneered in biomedical diagnostic-

ally lossless data compression research. An extended discussion

of classical data compression can be found in [2–8], while the

new research in diagnostically lossless data compression can be

found in the references given in the later sections.

3.2 Picture Compression

A basic compression system has both an encoding and a

decoding component. The encoder is responsible for compres-

sion, while the decoder handles the reverse process; that is,

decompression. The goal of any compression system is to

reduce the size of signal data while maintaining information

integrity, or a certain degree of it. In the context of compres-

sion, it is important to note the diVerence between data and

information. Data are the individual samples of signal, while
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information conveys the content of all data samples. From this

perspective, compression can be seen as a function of data

versus information, as expressed by Shannon’s theory of

entropy [9]. Before moving on to information entropy, a

brief overview is presented Wrst of the concepts and termi-

nologies in picture coding.

3.2.1 Picture Coding Concepts and Terminologies

Pictorial data in general are representative of both two-dimen-

sional (image) and three-dimensional (video) spaces; but in the

biomedical domain, use is often made of 3D volume images

(e.g., computed tomography [CT], magnetic resonance

imaging [MRI]) and 4D time-varying 3D volume images (e.g.,

from positron emission tomography [PET] and single photon

emission computed tomography [SPECT]). In image process-

ing terminology, an image is made up of individual pixels

(picture elements) arranged by rows and columns (or voxels

for volume images arranged by rows and volumns for each

image plane). Video data consist of multiple static images,

commonly referred to as frames, arranged along the temporal/

spatial1 axis (Figure 3.1). Pixels in a picture have a common

depth that determines the number of discrete luminance and/or

chrominance levels. This pixel depth is measured in bits,

following the binary system utilized in existing computer

architectures. Most common images have bit depths of 8 bits

per pixel per channel, while medical images may have between

10 and 16 bits per pixel. Each bit, within the continuous string

of bits, is a binary number with value of 0 or 1. An 8-bit pixel,

therefore, may range from 0000 00002 to 1111 11112, which

in decimal terms is 0 to 255, having 28 (256) discrete levels.

For any unsigned2 binary number, the leftmost bit in a binary

sequence is called the most signiWcant bit (MSB), having the

highest order of magnitude. The rightmost bit is the least

signiWcant bit (LSB), with the lowest order of magnitude.

Natural pictures may be grayscale or color. Grayscale pic-

tures have a single luminance channel, while color pictures

have three separate channels. Typically, color channels are

arranged according to the primary colors of red, green, and

blue (the RGB color space). However, it is also a common

practice to represent color channels in the component color

domain with one luminance and two chrominance channels

(YCrCb color space) [1, 10].

The uncompressed representation of symbols/pixels3

appears in the form of Wxed length binary codes. The minimum

length, lm, of these codes is dependent on the size of a given

symbol set,4 n, governed by

lm ¼ log2 (n)
� �

: (3:1)

Here, d e denotes rounding up to the nearest integer.5 For

digital pictures, this code length is dependent on pixel depth.

For example, an 8-bit pixel uses an 8-bit Wxed length code.

Although compressed pictures are often quoted in terms of

their CRs, the more conventional measurement is in bit rate,

taken in units of bits per pixel (bpp). The CR, Cratio, deWned as

Rc ¼
bppuncompressed

bppcompressed

� �
: 1, (3:2)

is a measurement of compression gain, whereas bit rate is a

measurement of the size of compressed data.

3.2.2 Shannon’s Theory of Entropy

Shannon’s theory of entropy [9], in short, stipulates that a

minimum amount of data is necessary to represent a certain

amount of information. If the amount of data falls short of the

entropy, then information cannot be fully represented, leading

to information loss. Conversely, if the entropy level is sur-

passed, then an excessive amount of data has been used to

represent information, thus some redundancies exist. Given a

symbol set A, the discrete form of information entropy H, in

bits, is written as

H ¼
Xn

i¼1

p(i) log2

1

p(i)

� �
¼ �

Xn

i¼1

p(i) log2 p(i), (3:3)

1 Some volumetric images, such as biomedical images, are three-dimensional

spatial projection data or reconstructed projection data.

Pixel

Frames

FIGURE 3.1 Illustration of pixels and frames.

2 Nonnegative number.
3 Symbol is a reference to generic data (e.g., text, audio), whereas pixel is

speciWcally associated with picture data.
4 The number of diVerent symbols. For pixels, it is the number of discrete

magnitude levels.
5 Rounding is needed to remove fractions, since the Wxed length binary codes

have integer representation (quantization).
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where p(i) is the probability associated with the occurrence of

symbol A(i) such that
P

p(i) ¼ 1, for i¼ {1,2, . . . ,n} and A(i)

2 A. It is clear from Equation 3.3 that H is a summation of all

the information contained within each symbol in A, relative to

the probability of occurrence. This self-contained information

in each symbol is referred to as self-information and is deWned

as

i(i) ¼ � log2 p(i): (3:4)

Redundancy in data, as deWned by Shannon [9], is a

proportional diVerence between the entropy, H, and the actual

size of the source data, lm, as deWned in Equation 3.1, relative

to 1. It is formulated as

r ¼ 1� H

lm

� �
: (3:5)

Example 1: Given a set of symbols, A, with the probability

distribution shown in Table 3.1, the entropy is computed as:

H(A) ¼ � p(1) � log2 (p(1))þ p(2)½
� log2 (p(2))þ . . .þ p(6) � log2 (p(6))�

H(A) ¼ � 0:3 � log2 (0:3)þ 0:1 � log2 (0:1)½
þ . . .þ 0:2 � log2 (0:2)�

H(A) ¼ 2:4087 bits per symbol:

For most uncompressed natural audio and picture signals,

the amount of data used to represent the information is above

the entropy threshold. Consequently, it is possible to compress

these signals. For example, according to Equation 3.1, the

symbol set A from Table 3.1, with symbol size of six (n¼ 6),

required 3 bits to denote each symbol with Wxed length codes.

However, the information entropy associated with A is 2.4087

bits per symbol. From Equation 3.5, the redundancy in A is

calculated as

r(A) ¼ 1� 2:4087

3

� �
¼ 0:1971:

3.2.3 Entropy Coding

Entropy coding is a reference term for information lossless

compression at or near the data entropy. Its general operation

consists of two stages: modeling and coding. Modeling is

performed to identify and describe data redundancies. It is

carried out through statistical analysis of the data set in order

to capture the probability distribution of symbols (PDS) in the

set. The coding phase then encodes the information in data,

based on the description of data derived during the modeling

phase, by assigning a distinct code to each symbol.6 The size

of each code, measured in number of bits, is dependent on

the probability of occurrence of its respective symbol. Gener-

ally, the most common symbol will have the smallest code

size, while the least common symbol will have the largest code

size. The manner in which these codes are generated is

dependent on the coding algorithm. There are a variety of

entropy coding algorithms available [8]. The most common

of these is the HuVman code [11], which generates its alpha-

bet of codewords through recursive sorting of source symbols,

of a given probability distribution, into a binary tree. In each

iteration, the HuVman coding algorithm performs the follow-

ing operations:

1. The PDS is sorted in descending order.

2. The two symbols with the lowest probability of occur-

rence are then grouped together to build a tree branch

and generate an updated symbol table. For every tree

branch, each of the two merged symbols is assigned a

binary digit, 0 for the last and 1 for the second last.

With each successive iteration, the merged symbols will

then progressively build up their binary codeword

(BCW).

3. The process is iterated until the root of the tree is

reached. This occurs when no more tree branches can

be formed; that is, when there is only one symbol

remaining. The number of iterations, i, required to gen-

erate the entire tree is one less than the total number of

symbols, n, i.e., or i¼ n � 1.

Example 2: Given the PDS in Table 3.1, the HuVman code is

generated as follows:

Iteration 1:

probability: p(a) ¼ 0:3, p(b) ¼ 0:1, p(c) ¼ 0:2, p(d)

¼ 0:05, p(e) ¼ 0:15, p(f ) ¼ 0:2

1. Sorting symbols:

A ¼ {a,b,c,d,e,f }) {a,c,f ,e,b,d}

2. Group the lowest two symbols and build the tree

branch:

z ¼ {b,d}, b ¼ 1, d ¼ 0,

A1 ¼ {a,c,f ,e,z}

binary codeword : b ¼ 1; d ¼ 0

3. size(A1) > 1
TABLE 3.1 Example probability distribution of symbol set A

i 1 2 3 4 5 6

A(i) a b c d e f

p(A(i)) 0.3 0.1 0.2 0.05 0.15 0.2
6 Codes may also be assigned to a sequence of symbols, as in the case of

arithmetic coding.
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Iteration 2:

probability: p(a) ¼ 0:3, p(c) ¼ 0:2, p(f ) ¼ 0:2, p(e)

¼ 0:15, p(z) ¼ 0:15

1. Sorting symbols:

A1 ¼ {a,c,f ,e,z}) {a,c,f ,e,z}

2. Group the lowest two symbols and build the tree branch:

y ¼ {e,z},e ¼ 1,z ¼ 0,

A2 ¼ {a,c,f ,y}

binary boundary : e ¼ 1; b ¼ 01; d ¼ 00

3. size(A2) > 1

Iteration 3:

probability: p(a) ¼ 0:3, p(c) ¼ 0:2, p(f ) ¼ 0:2, p(y) ¼ 0:3

1. Sorting symbols:

A2 ¼ {a,c,f ,y}) {a,y,c,f }

2. Group the lowest two symbols and build the tree branch:

x ¼ {c,f },c ¼ 1,f ¼ 0,

A3 ¼ {a,y,x}

binary boundary : c ¼ 1; f ¼ 0; e ¼ 1; b ¼ 01; d ¼ 00

3. size(A3) > 1

Iteration 4:

probability: p(a) ¼ 0:3, p(y) ¼ 0:3, p(x) ¼ 0:4

1. Sorting symbols:

A3 ¼ {a,y,x}) {x,a,y}

2. Group the lowest two symbols and build the tree branch:

w ¼ {a,y}, a ¼ 1, y ¼ 0,

A4 ¼ {x,w}

binary codeword: a¼1, c¼1, f¼0, e¼01, b¼001, d¼000

3. size(A4) > 1

Iteration 5:

probability: p(x) ¼ 0:4, p(w) ¼ 0:6

1. Sorting symbols:

A4 ¼ {x,w}) {w,x}

2. Group the lowest two symbols and build the tree branch

v ¼ {w,x}, w ¼ 1, x ¼ 0,

A5 ¼ {v}

binary codeword : a ¼ 11; c ¼ 01; f ¼ 00; e ¼ 101;

b ¼ 1001; d ¼ 1000

3. size(A5)¼ 1: Stop iteration.

This operation is visualized in Figure 3.2. Once the Huffman

tree is generated, the encoding process replaces all source

symbols in a data set with code symbols to produce a coded

binary sequence. For decoding, one simply tracks the binary

decision level, in the coded sequence, from the root of the

Huffman tree to the leaves. When a binary decision reaches a

leaf, a source symbol is decoded and tracking of the next

source symbol begins anew at the root of the Huffman tree.

It is important to note that each individual code generated

in Figure 3.2 is distinct and therefore uniquely decodable. For

example, the encoded binary sequence 000111011000 can be

decoded only into symbols f (00), c(01), a(11), c(01), d(1000).
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FIGURE 3.2 Huffman tree corresponding to the PDS in Table 3.1. The Huffman codewords

are generated by tracing the binary numbers along each branch from the root to each leaf of

the tree.
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The compression rate, rH , associated with the HuVman

codes in Figure 3.2 can be computed as follows:

rH ¼
XN

i

p(i) � b(i), (3:6)

where p(i) and b(i) are, respectively, the probability of occur-

rence and the codeword length of the ith HuVman codeword.

The expected compression rate of the HuVman codes in Figure

3.2 is

rH ¼ p(1) � b(1)þ p(2) � b(2)þ . . .þ p(6) � b(6)½ �
rH ¼ [0:3� 2þ 0:1� 4þ 0:2� 2þ 0:05� 4

þ 0:15� 2þ 0:2� 3]

rH ¼ 2:45 bits per symbol:

The HuVman code is generally quite eYcient, compres-

sion-wise. It also has simple and fast implementation. How-

ever, its integer codeword may be less eYcient in situations

in which a fractional codeword7 occurs. Take the example of

symbol set A (Table 3.1). A comparison of its HuVman code

size, Shc , with its optimum code size, Soc ¼ log2(A), given in

Table 3.2, demonstrates some ineYciencies of the HuVman

code for symbols a, c, and f. While the HuVman codes for

symbols b, d, and e are more eYcient than the optimal code,

these symbols appear with less frequency than a, c, and f.

Therefore, on average, the HuVman codes will require 2.45

bits to code one symbol, whereas the optimum codes8 re-

quire 2.4087 bits per symbol.

In contrast to HuVman coding, arithmetic coding [12, 13]

can indirectly handle fractional codeword and consequently

has become the preferred choice for entropy coding in a

number of applications [14, 15]. Instead of encoding each

symbol separately, arithmetic coding encodes a group of

symbols. The arithmetic codeword used to represent a

sequence of symbols is formed through successive cascades

of the probability interval of source symbols. Figure 3.3

illustrates the formation of the cascaded intervals. A step-

by-step approach for encoding and decoding is shown in

Tables 3.3 and 3.4, respectively.

The encoding procedure for arithmetic coding has two steps

in each iteration:

1. Identity the interval range, R, of the symbol to be coded:

R ¼ H � L, (3:7)

where H and L are the upper and the lower bound, respectively,

of the interval range.

2. Update both the upper and lower bounds relative to the

encoded symbol:

H ¼ L þ R � SH (3:8)

L ¼ L þ R � SL, (3:9)

where SH and SL are the upper and lower interval bounds,

respectively, of the encoded symbol.

The decoding phase is also carried out in two steps per

symbol:

1. Locate the symbol interval for codeword, Ca: SL < Ca

< SH .
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FIGURE 3.3 Arithmetic coding with cascaded intervals for symbols {f, c, a, c, d} from PDS in

Table 3.1.

7 Codeword with fractional part.

TABLE 3.2 Symbol set A. Codeword sizes (bps) for the optimum

code (Soc) and the HuVman code (Shc). The HuVman code size is

shown in Figure 3.2

i 1 2 3 4 5 6

A(i) a b c d e f

p(A(i)) 0.3 0.1 0.2 0.05 0.15 0.2

Soc (i) 1.737 3.3219 2.3219 4.3219 2.737 2.3219

Shc (i) 2 4 2 4 3 2

8 Optimum code encodes at the entropy level.
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2. Update the codeword for decoding the next symbol:

Ca ¼ (Ca � SL)=Rs , (3:10)

where Rs ¼ SH � SL is the symbol range.

The initial coding intervals are taken as the boundary inter-

vals of the PDS. As each symbol is encoded, the coding inter-

vals are reWned. These reWned intervals are proportional to the

PDS but limited to within the interval range of the coded

symbol. For example, in Figure 3.3 (also Table 3.3), after the

Wrst symbol (f) is encoded, the intervals for the proportional

distribution of symbols are limited within the range of 0.8 and

1.0. Encoding the symbol sequence {f, c, a, c, d} in Figure 3.3

(Table 3.3) will result in the Wnal coding interval (0.88624,

0.88636). Any arithmetic code number, Ca, that resides within

this range can be used to represent the encoded symbol

sequence. Generating the cascaded probability intervals is a

trivial task. The real challenge for arithmetic coding is how to

eYciently encode the number between two given interval

points. With each successive cascade, the range of the prob-

ability interval decreases. As a result, the arithmetic precision

needed to represent the code number increases. This in turn

dictates the number of bits needed to encode the arithmetic

code number. In arithmetic coding, there is no Wxed codeword

for any particular source symbol, since symbols are coded in

groups rather than individually. Furthermore, as a conse-

quence of group encoding, individual symbols may be coded

indirectly in fractions. Take the example in Figure 3.3: The

symbol sequence {f, c, a, c, d} may be represented by the code

number Ca ¼ 0:88628. Its 8-bit integer representation is

226 ( (28 � 1)� 0:88628).9 Since an 8-bit codeword10 is used

to encode Wve symbols, it is possible to only extrapolate the

average code size per symbol, la, by

la ¼
codeword length

no: of symbols
¼ 8

5
¼ 1:6 bits per symbol:

However, this does not imply that only 1.6 bpp are needed

to encode symbols with the probability distribution given in

Table 3.1. The example given here, taken from Figure 3.3,

covers only the Wrst Wve symbols. In addition, the integer

representation of the arithmetic code number, Ca, is an overly

simplistic view of arithmetic coding. The full description of

arithmetic coding is given in Witten et al. [110]. A general

comparison between arithmetic and HuVman coding is cov-

ered in Sayood [8].

Entropy coding may operate in an adaptive or a static

manner [8]. The diVerence between these two modes is that

the former is able to adapt to changes in data, while the latter

does not. Adaptive entropy coding, also referred to as dynamic

entropy coding, utilizes a predetermined PDS in its initial

operation. This initial PDS is generally acquired, heuristically,

through generic sample data. During the encoding process, the

PDS is continually updated with coded data to reXect the

statistical proWle of the data set more accurately. Adaptive

coding is particularly useful in instances where the a priori

proWle of the PDS is unknown11 or where diVerent segments of

the source data exhibit diVerent PDS proWles. In addition to

this, adaptive coding is often employed in situations where the

statistical analysis of data is impractical due to time con-

straints. This is envisaged when dealing with volumetric data.

In instances where data volume or time constraints are not an

issue, then static entropy coding may be employed. Static

entropy coding generally models each data set independently

to capture the exact PDS. However, coding with the exact PDS

incurs some overheads, since the PDS used for encoding is also

needed for decoding. For example, in order to decipher the

HuVman codes at the decoding end, a copy of the HuVman

tree generated at the encoding end must be made available.

This is possible only if the PDS is sent to the decoder. Conse-

quently, an overhead is incurred for storing/transmitting the

PDS needed to generate the HuVman tree.

While the entropy for any given set of data may be deter-

mined analytically, it is understood that under normal cir-

cumstances, existing entropy coding techniques can never

reach the entropy threshold. For static entropy coding, this

TABLE 3.3 Arithmetic encoding of symbol sequence {f, c, a, c, d}

from PDS in Table 3.1

Symbol R L H

1.0 0.0 1.0

f 0.2 0.8 1.0

c 0.04 0.88 0.92

a 0.012 0.88 0.892

c 0.0024 0.8848 0.8872

d 0.00012 0.88624 0.88636

TABLE 3.4 Arithmetic decoding of symbol sequence {f, c, a, c, d}

from PDS in Table 3.1

Code Symbol SL SH Rs

0.88625 f 0.8 1.0 0.2

0.43125 c 0.4 0.6 0.2

0.15625 a 0.0 0.3 0.3

0.52083 c 0.4 0.6 0.2

0.60417 d 0.6 0.65 0.05

9 An 8-bit binary integer number has 256 discrete levels, ranging from 0 to

255 (28 � 1 ¼ 255).
10 In practice, the codeword size must be selected in a fashion that allows

distinct representation of all possible combinations of symbol sequences.

Here, an 8-bit codeword is used only as an example to illustrate fractional

codes.
11 Real-time encoding where data is encoded as soon as it is digitized.

56 I Technological Fundamentals



is due to the practical limitation of compression overheads,

i.e., the PDS. In order to maximize the compression perform-

ance of entropy coders, it is important to have an accurate

PDS of pictures. Since the PDS is dependent on picture

content and thus varies from picture to picture, it is neces-

sary, in the interest of having an accurate PDS, for static

entropy coding to generate and transmit a copy of the PDS

from the encoder to the decoder. In the case of adaptive

entropy coding, transmission of the PDS is unnecessary,

since a default PDS already exists. However, for adaptive

coding, the problem lies in the adaptation process, which

infers ineYciency, hence the need to adjust. Though the

adaptation approaches the entropy, it would never reach the

entropy threshold, since the entropy is progressively estimated

from causal data samples, not all data samples. Coding at the

entropy threshold is possible only if there is no variation in

data statistics and if the initial PDS is optimal, a most un-

usual situation if it does occur.

3.2.4 ClassiWcation of Picture Compression

Picture coding has traditionally been classiWed into two general

categories: information lossless and information lossy. Lossless

coding maintains information integrity. Lossy coding, in contrast,

degrades information integrity to a certain extent. However, any

information lost is oVset by a higher CR. Therefore, lossy com-

pression is a balancing act between information quality and com-

pression performance as dictated by the rate versus distortion (R–

D) curves of pictures (Figure 3.4). Ideally, lossless compression

would be the approach of choice for encoding picture data. In
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FIGURE 3.4 Example of R–D curve (a) for the Lena image (b) coded at diVerent

bit rates with the JPEG2000 coder [15]. As the bit rate increases, the distortion

decreases. An increase in bit rate corresponds to a lower CR.
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practice, however, lossless compression is unable to deliver the

necessary CR required for most consumer applications. The limi-

tation of lossless compression becomes obvious when dealing with

video or volumetric data. Consequently, there is preference for

lossy coding of digital video, as reXected in existing industrial

standards [16].

3.2.5 Lossless Picture Coding

Lossless picture coding in its most basic form is equivalent to

entropy coding. However, picture data, being two-dimensional

in nature, generally have strong correlations between adjacent

pixels. Consequently, it is common practice to employ predict-

ive coding prior to entropy coding to further improve com-

pression performance. Utilizing predictive coding such as

diVerential pulse code modulation (DPCM)12 [17, 18] has the

eVect of reshaping the PDS. For natural images, predictive

coding leads to sharper PDS, usually centered about the zero

prediction with a Gaussian or a Laplacian proWle. This trans-

lates to better compaction of data, since the probability distri-

bution is concentrated on fewer numbers of symbols, as

evident in Figure 3.5.

A simple DPCM encodes the diVerence between two pixels

such that

r[n] ¼ x[n]� x[n� 1], (3:11)

where r[n] is the predicted residue, and x[n] and x[n – 1] are

the current and previous pixels, respectively. It is, however,

more common in predictive coding to use multiple causal

samples to generate the predicted residue. Causality in this

context refers to samples that have been encoded; that is, x[i]

for i < n. The convention in image coding is to read pixels left

to right and top to bottom. Thus, any pixel that is above or to

the left of the current pixel is considered causal (Figure 3.6).

12 Pulse code modulation (PCM) [19] encodes analog signals in digital wave-

forms.
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FIGURE 3.6 Causal samples for predictive coding.
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One common approach to predictive coding is to utilize all

four immediate neighboring causal samples [20]. Other com-

binations that extend beyond the immediate neighbors are also

possible [14].

Generally, having more causal pixels would improve predic-

tion, since correlation between adjacent pixels or pixels in close

proximity is typically high. However, not all adjacent pixels are

correlated. Further, pixel correlation degrades relative to dis-

tance, as evident in Figure 3.7.

3.2.5.1 Context-Based Coding

In text compression, it is simple to envisage that the occurrence

of a letter in an English word13 is dependent on previous letters

in that word [21]. For example, if the letter Q is encountered,

the probability of the next letter being U is almost certain.

Similarly, if the two previous letters in a word are QU, it is likely

that the next letter will be a vowel. In light of this, it would be

most prudent to adjust the coding operation to take advantage

of this conditional correlation. Context-based coding operates

by selecting the most suitable context for encoding data based

on the behavior of past data samples.14 Each context within a

context coder maintains a separate PDS, independent of other

contexts, for entropy coding [8]. For image compression, con-

text selection is dependent on structural characteristics of

neighboring pixels. Typically, these characteristics are measured

in terms of horizontal, vertical, and/or diagonal edges. Context

coding employs multiple conditional predictors for residue

coding. Again, the predictor selection for coding any given

pixel is also dependent on structural characteristics. However,

it is important to distinguish between context selection and

predictor selection. The purpose of context selection is to

match the actual residue produced by the selected predictor to

a suitable probability distribution. The predictor, on the other

hand, is selected in order to minimize the prediction residue.

Having multiple predictors increases computation complexity

and cost. However, it usually leads to better prediction, hence a

more favorable probability distribution for entropy coding [8].

The manner in which context coding is employed varies with

diVerent lossless algorithms. This is illustrated in the next two

sections with two diVerent coders: the low-complexity (LOCO)

coder and the context arithmetic lossless image coder (CALIC).

3.2.5.2 Low-Complexity Coder

The LOCO coder [20] is the core of the JPEG-LS [22] coding

standard. It relies on the four causal neighboring pixels for

prediction and employs a conditional predictor given by

x̂x ¼
min (W ,N), NW � max (W ,N)

max (W ,N), NW � min (W ,N),

W þ N � NW , otherwise

(
(3:12)

where x̂x is the predicted pixel, with W, N, and NW the neigh-

boring pixels, illustrated in Figure 3.8. The residue is the diVer-

ence between the original pixel, x, and the predicted pixel, x̂x.

13 Insofar as the natural English language is concerned.
14 It is perhaps more accurate to diVerentiate between multicontext and

unicontext coding, as opposed to context and noncontext coding, since all

coding schemes have at least one context by default.
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The context selection process is dependent on three diVer-

ence measures, Di for i¼ {1, 2, 3}, with simple horizontal

and vertical edge detection. These difference measures are

deWned as

D1 ¼ NE � N

D2 ¼ N � NW

D3 ¼ NW �W :

(3:13)

The response of each diVerence measure is partitioned into

2T þ 1 equal distance interval, zi, such that

zi ¼

�T , Di � �T

�T þ 1, � T < Di � �T þ 1

. . .
0, Di ¼ 0

. . .
T � 1, T � 1 < Di � T

T , T < Di

8>>>>>>><
>>>>>>>:

(3:14)

The equal distance interval is chosen to simplify implemen-

tation. Ideally however, the intervals should be optimized

according to structural statistics of images. The total number

of contexts, C, is then taken as the number of possible per-

mutations for the given numbers of intervals and diVerence

measures, C ¼ (2T þ 1)3. The number of contexts may be

reduced by merging symmetric intervals in Equation 3.14

such that �T � zi � T ! 0 � jzij � T and thus resulting in

Csym ¼ ( (2T þ 1)3 þ 1)=2 contexts. The LOCO coder encodes

the residue with Golomb codes [23] under regular operation.

However, if Xat regions are encountered, adaptive run-length

coding15 is used.

3.2.5.3 CALIC

CALIC [14] is moderately sophisticated. Compared with the

LOCO coder, it has more developed edge detection, residue

prediction, and context modeling functions. Coding operation

begins with two edge-sensitive gradient estimation functions

based on neighboring pixels (Figure 3.8):

dh ¼ W �WWj j þ N � NWj j þ NE � Nj j
dv ¼ W � NWj j þ N � NNj j þ NE � NNEj j:

(3:15)

These gradient estimates determine the predicted pixel, �xx,

under the following conditions:

�xx ¼

N , dh � dv > 80

W , dv � dh > 80

(~xx þ N)=2, dh � dv > 32

(~xx þW )=2, dv � dh > 32

(3~xx þ N)=4, dh � dv > 8

(3~xx þW )=4, dv � dh > 8;

8>>>>>>>>><
>>>>>>>>>:

(3:16)

where ~xx ¼ (N þW )=2þ (NE � NW )=4: (3:17)

Context modeling is based on prediction error and texture.

The prediction error, e, is modeled as

e ¼ adh þ bdv þ c ewj j, (3:18)

where ew ¼ W �W is the previous prediction error, with W

being the prediction of W. The coeYcients a, b, and c are

parameters to be optimized. For eYcient operation, a¼ b¼ 1

and c¼ 2 have been suggested [14]. In the basic CALIC im-

plementation, e is optimally quantized into eight intervals. The

boundaries of these intervals were obtained through dynamic

programming and found to be

ji ¼ {5,15,25,42,60,85,140}, 0 � i � 7:

The actual intervals are

f ¼ {0 < e � j1,j1 < e � j2, . . . ,j6 < e � j7,j7 < e}:

Texture context, being dependent on the activity of

neighboring pixels, is modeled under eight separate factors,

Ct , deWned as

Ct ¼ {x0,x1, . . . ,x6,x7}

¼ {N ,W ,NW ,NE,NN ,WW ,2N�NN ,2W �WW }, (3:19)

where t¼ {1, 2, . . . , 7}. Individual factor, xk , is measured

against the prediction derived in Equation 3.12 as follows:

bk ¼
0, xk � �xx
1, xk < �xx

�
, k ¼ {0,1, . . . ,7}: (3:20)

The combined measurement of all factors, B¼ {b7,b6, . . . ,b0},

determines the behavior of the pixel neighborhood and forms

the number of texture contexts, 28 ¼ 256. However, due to

dependencies16 between factors in Ct , the actual number of

texture contexts is reduced to 144. The overall number

of contexts is a combination of texture and prediction error.

For the basic CALIC implementation, the prediction error

context is reduced from 8 to 4 to form a total of 144� 4¼ 576

coding contexts. Once the context has been determined through

Equations 3.18 and 3.19, the predicted pixel, �xx, is entropy-coded

with context arithmetic coding.

15 See Capon [24] for a description of run-length coding.

FIGURE 3.8 Neighboring samples used for prediction for LOCO

and CALIC coders.

16 See Wu and Memon [14] for further details.
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3.2.5.4 Near-Lossless Compression

A major limitation of lossless compression has always been its

compression performance. To address this deWciency, the near-

lossless coding scheme has been proposed [20]. Near-lossless

coding allows for controlled degradation of picture quality in

order to improve compression gain. This is carried out

through the quantization of the prediction residue, r, prior to

entropy coding.17 This quantization operation is performed in

a manner that guarantees that the quantized residue will not

deviate beyond a certain point, +D, as deWned by users. The

quantized residue, �rr , is derived as follows:

�rr ¼ sign(r)
jrj þ D

2Dþ 1

� �
, (3:21)

where D determines the maximum magnitude of deviation,

and sign(r) is deWned as

sign(r) ¼ �1, r < 0

1, r � 0

�
: (3:22)

Since a near-lossless coding scheme appends only an add-

itional quantization stage to the coding system, it can be

readily adapted to practically any lossless coding algorithm.

3.2.6 Transform-Based Lossy Picture Coding

In order to attain a higher CR that surpasses that of lossless

coding schemes, it has become a necessity to tolerate some

information loss. Transform-based coding is employed gener-

ally for this purpose. It consists of a transformation operator

followed by quantization and bitstream coding (Figure 3.9).

3.2.6.1 Transformation

The transformation operation is intended to rearrange data, in

pictures, in a manner that facilitates compression. The most

common form of data transformation applied in picture

coding is frequency based. Nonfrequency transforms such as

fractal [25, 26] have also been studied. A frequency transform

projects data from the time domain, x, to the frequency

domain, X, relative to a given Wlter set, s:

X ¼ Ts(x): (3:23)

The transformation process, T, is carried out through a con-

volution operator (�) deWned by

X ¼ Ts(x) ¼ S � x ¼
XI

i

S[i] � x[n� 1], (3:24)

where S is the transform Wlter of length I, n¼ {1, 2, . . . , N},

with N the number of data samples. In regard to Wlter length,

most signal processing applications, including picture com-

pression, typically employ Wnite impulse response (FIR) Wlters.

FIR Wlters have a Wnite number of Wlter taps, or Wnite Wlter

length. This is desirable for practicability. The alternative

inWnite impulse response (IIR) Wlters, while superior to FIR

Wlters in terms of frequency selectivity [27], require inWnite

sampling. InWnite sampling may be carried out through recur-

sive Wltering [28, 29]. For invertible systems with forward

(analysis) and inverse (synthesis) transformation, the synthesis

IIR operation can be realized only with signals of Wnite samples

(e.g., still images) [27].

The process of frequency transformation decomposes pic-

torial data into diVerent subband images. In this respect,

frequency transformation is referred to as subband transform.

Subband transforms are classiWed according to their decom-

position structure and Wlters. The decomposition structure

determines the way in which transform coeYcients are

arranged. The nature of this arrangement may be subband

[30], block based [31], or hierarchical [32, 33] (Figure 3.10).

Hierarchical decomposition is also known as multiresolution

or wavelet transform.

Image transformation is generally two-dimensional, since

images are 2D data. For video, there is a natural extension

from 2D to 3D transform to account for the temporal dimen-

sion. However, due to the prevailing coding philosophy [10,

16], most video coders adhere to the 2D transform for an

individual picture frame.

Filters are the core of the transform and dictate transform-

ation characteristics such as frequency response. The prin-

ciples of Wlter design originated from Fourier analysis [34].

Consequently, a basic and commonly employed tool in

Image

Decoded
image

Transform

Inverse
transform

Quantization

De-quantization
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FIGURE 3.9 Principal components of a transform-based coding structure.

17 Only the quantized residue, �rr , is entropy-coded, not the residue, r.
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signal analysis is the discrete Fourier transform (DFT) [3, 31],

deWned as

XDFT [k] ¼
XM�1

m¼0

x[m] � e
�2pj

M km

¼
XM�1

m¼0

x[m] � cos
2�j

M
� km �j sin

2pj

M
� km

� 	�
,

	��
(3:25)

where M is the Wlter length, j the imaginary unit, and k the

frequency band of the selected Wlter. In picture compression,

the application and performance of various transformation

kernels have been explored [2, 4]. The more popular among

these is the discrete cosine transform (DCT) [31], formulated as

XDCT [k] ¼
XM�1

m¼0

x[m] � cos
p

M
mþ 1

2

� �
k

� 	
: (3:26)

The DCT is a derivation of the real component of the DFT,

as is evident in Equation 3.25. It oVers near-optimal decorr-

elation performance, second only to that of the Karhunen–

Loève transform (KLT) [35], with respect to the Wrst-order

Markov random process [3, 7]. Decorrelation has been seen as

an important feature for Wlters, since it corresponds to energy

packing ability. Energy packing leads to compaction of statis-

tical redundancy, whereby a substantial amount of pixel energy

is contained with a small number of transform coeYcients.

The popularity of the DCT is in no small part credited to the

availability of fast DCT algorithms, so that its practical appli-

cation has proliferated in digital communication equipment

and services.

Separable Wlters such as the DFT and the DCT may be

extended from one dimension, as in Equations 3.25 and 3.26,

to two dimensions through separate horizontal (wh) and

vertical (wv) transformation operations performed in two

stages [2, 27]. For the DCT, this is formalized as

XDCT [k,l] ¼
XM�1

m¼0

wv(k,m) �
XN�1

n¼0

x[m,n] � wh(l,n) (3:27)

with wv(k,m) ¼ cos
p

M
mþ 1

2

� �
k

� 	
(3:28)

wh(l,n) ¼ cos
p

N
nþ 1

2

� �
l

� 	
: (3:29)

Filters are designed to address speciWc characteristics of the

data they operate upon. They have various properties, which

are discussed in detail in Vetterli and Kovačević [27]. For

picture coding purposes, there are a number of highly desirable

properties that Wlters should have, such as phase linearity and

orthogonality, among others. Complete recovery of data is

allowed by perfect reconstruction, deWned as

x ¼ T�1(T(x)), (3:30)

where x is both the input and output signal, T and T�1 are the

forward and reverse transforms, respectively. Invertibility,

while not strictly necessary for lossy coding, has become de-

sirable in light of the move toward scalable coding [36]. For

full scalability in picture quality, picture coders must have the

Xexibility to encode from lossy to lossless quality, such as in

the case of a JPEG2000-compliant image coder [15].

Filters that cater to critical sampling—that is, sampling at the

Nyquist frequency [2]— are particular useful, since they ensure that

the number of input samples prior to transformation equals the

number of output samples after transformation. Any transform

that has more output than input samples eVectively expands data.

While such overcomplete transforms have been applied in

pictorial compression, they are challenging and complex to

implement [37]. The Nyquist frequency, F, is deWned as the
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FIGURE 3.10 Transform decomposition structures. (a) An image of M�N dimension. (b) A 4� 4 subband decomposition.

Each band S(k,l) with k, l¼ {1, 2, 3, 4} has M/4�N/4 transform coeYcients. (c) A two-level dyadic hierarchical decomposition.

Each successive level is a quarter of the resolution of the previous. (d) Block-based transform with 64 blocks. Each block is of M/8

�N/8 dimension.
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bandwidth (i.e., maximal frequency) of a signal [2]. The Nyquist

rate, FN , is deWned as twice the Nyquist frequency. Sampling

below the Nyquist rate results in signal aliasing [28]. When

aliasing occurs, signal components with frequencies Fa above

half of the sampling frequency Fs, also known as the folding

frequency Ff , are indistinguishable from those with frequencies

Fb below the folding frequency Ff , such that Fa ¼ Fb þ n� Ff ,

where n is an integer with 0 < Fb � Ff and Fa > Ff . This is

illustrated in Figure 3.11 with time-domain sinusoidal signals.

For both auditory and pictorial signals, the appearance of aliasing

typically results in high-frequency signal distortions [2].

Aliasing in the transform domain occurs when downsam-

pling is carried out on Wlters with overlapping frequency

responses (Figure 3.12) [27, 29]. Typically, Wlters are designed

with multiple overlapped response bands to cover the entire

range of possible frequencies. Overlapping is a practical neces-

sity, since idealized Wlters,18 requiring inWnite Wlter taps, are

impossible to implement [29]. When these overlapped Wlters

are downsampled, that is, sampled at the critical frequency,

aliasing is induced in the overlapped regions.

Two classes of invertible Wlters that allow critical sampling

and address the aliasing factor are orthogonal19 and bi-orthog-

onal Wlters. In these Wlters, aliasing is dealt with through alias

cancellation in the reconstruction/synthesis process [27, 38].

Therefore, while aliasing still exists in transformed data, these

aliasing components are eVectively eliminated during the
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FIGURE 3.11 Two periodic signals S(F1) and S(F2) with respective frequencies F1 (dashed

line) and F2 (solid line) are depicted. Here, F2 ¼ 2F1. The sampling points associated with the

sampling frequency, Fs , are denoted by circles (�) and crosses (�). (a) Fs ¼ 4F2. (b) Fs ¼ 2F2.

(c) Fs ¼ F2. (d) Fs ¼ 2=3F2. In both (a) and (b), the subsampled signal at F2 retains its

periodic structure and is distinct from F1. In (c) and (d), the subsample signal at F2 has lost its

original periodic structure. Further, in (d) it is impossible to distinguish between F1 and F2

from the subsampled signal. Note that in (c), S(F1) is unaVected by aliasing, since Fs � 2F1.

18 With perfect (nonoverlapped) frequency localization. 19 Orthogonal Wlters with unity gain are referred to as orthonormal Wlters [27].
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FIGURE 3.12 Overlapping frequency responses of a two-band sys-

tem with a lowpass (w(v)) and a highpass (w(v)) Wlter. The overlapped

region is the triangular area that centers around midfrequency, p=2.
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inverse transform. However, total alias cancellation is possible

only if the transform data remain undamaged/unaltered—a

condition that is impossible to satisfy if the quantization

operation is undertaken after transform [27].

DiVerences between orthogonal and bi-orthogonal Wlters can

be seen in structural terms. Orthogonal Wlters allow for m

number of frequency response bands, whereas bi-orthogonal

Wlters have dyadic response bands, one highpass and one low-

pass. In addition, orthonormal systems such as the DFT and

DCT are inherently critically sampled and thus preserve vector

length20 [27]. Bi-orthogonal Wlters, on the other hand, do not

preserve vector length. Consequently, they have more inputs

than outputs. For image compression applications, this dispar-

ity may be resolved through the extension of input signal

samples [15, 36]. In terms of Wlter properties, bi-orthogonal

Wlters have a number of advantages over orthogonal Wlters, such

as phase linearity and regularity. These properties are discussed

further in [27].

3.2.6.2 Quantization

In order to achieve an acceptable level of compression, it is

necessary to limit the possible range of symbols to be coded

after transformation. The quantization operation in image

coders eVectively remaps the transform coeYcient from a

larger to a smaller set of discrete numbers. Quantizers may

be scalar or vector based. In addition, scalar quantizers may be

uniform or nonuniform (Figure 3.13). Scalar quantization is

usually carried out through the division operation

Xq[n] ¼ X[n]

q

� �
, (3:31)

where Xq[n] is the scalar quantized symbol, X[n] is the trans-

formed coeYcient, q is the quantization step size, and b c

denotes rounding down to the nearest integer. The method-

ology for designing optimal quantizers is discussed in Lloyd

[39] and Max [40].

Quantization introduces quantization errors, e, deWned as

the diVerence between the dequantized, Xr[n], and unquan-

tized data samples:

e ¼ X[n]� Xr [n], (3:32)

where Xr [n] ¼ Xq[n]� q. Quantization error leads to the

irrecoverable information loss in lossy coding. While scalar

quantization is quite eVective in shaping a favorable PDS for

entropy coding, it has been shown that vector quantization

(VQ) is generally more eVective [41]. In fact, scalar quantiza-

tion is seen as a subset of VQ, where the vector length equals

unity. VQ operates by approximating a group of transformed

coeYcients,21 x[u] 2 X, from the transformed space, X, with a

vector symbol, V[k] 2 V. The vector symbol is chosen from a

vector codebook, V, of size M based on some distance mini-

mization criteria, fDMC , such as the mean squared error (MSE).

With the MSE criterion, this process is formulated as

V [k] ¼ fDMC(x[u],V )

¼ min (MSE(x[u],V [m])), 8m 2 M :
(3:33)

The MSE is deWned as

MSE(A,B) ¼ 1

N

XN

n

A[n]� B[n]ð Þ2: (3:34)

The eVectiveness of VQ is ultimately dependent on the size

of the vector codebook, M. Having a large codebook with more

vector codes would lead to better approximation. Unfortu-

nately, as the size of the codebook grows, the overhead associ-

ated with storing and transmitting the codebook increases.

Additionally, the computation for the vector-matching oper-

ation also increases. Thus, there is a practical limitation that

curtails the eVectiveness of VQ.

Another realization of quantization is recursive quantiza-

tion22 associated with progressive bitplane coding. This

approach breaks the transformed coeYcient into its constitu-

ent bit components and encodes each bit component progres-

sively from the MSB to the LSB. The attraction of this method

is that it is particularly suited for scalable coding.

3.2.6.3 Bitstream Coding

The Wnal stage of a transform coder is concerned with two

things: Wrst, entropy coding of quantized transformed data;

second, the eYcient arrangement of an entropy-coded data

stream. General details of entropy coding have been covered

previously (Section 3.2.3). For bitstream coding, it is common

20 The number of input samples equals the number of output samples.

dn dn−1 dn−2 dn−3

dn dn−1 dn−2 d2 d1 d0

d2 d1 d0

rn−3 r1 r0rn−2rn−1

r1 r0rn−2rn−1

(a)

(b)

FIGURE 3.13 Nonuniform (a) and uniform (b) scalar quantization.

Each set of decision levels, d, corresponds to a quantized response, r.

For uniform quantization, the decision levels are equal distances

apart. Nonuniform quantization has variable distance intervals be-

tween decision levels.
21 Current discussion centers on frequency-domain transformed coeYcients.

However, VQ may also operate on time-domain data.
22 Also referred to as progressive bitplane quantization.
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to adapt various combinations of coding techniques to suit the

nature of the data being coded. For example, the JPEG still-

image coder employs run-length [2] coding prior to HuVman

coding in an eVort to reduce the number of quantized coeY-

cients to be coded. This is also true for standardized hybrid

video coders [42]. Similarly, for the JPEG2000 coder, run-length

coding has also been utilized, albeit conditionally. Further, the

JPEG2000 coder employs a context binary arithmetic coder for

entropy coding to match the progressive bitplane quantization

strategy. The formation of the Wnal data stream arranges the

order in which entropy-coded data are stored. This is especially

important where scalability is concerned. For example, if a

picture is coded with resolution scalability in mind, then the

Wnal bitstream should be formed in order of picture resolution;

that is, from low resolution to high resolution.

3.2.6.4 Video and Image Coding

One approach to encoding digital video is to encode each

video frame independently, as seen in motion JPEG2000

[43]. While this method does have some useful applications,

particularly in video editing, its compression performance is

unimpressive compared with three-dimensional transform

coding [44–46, 81] and hybrid video coding techniques [10,

16]. Conventional hybrid video coding strategy (Figure 3.14)

operates in two modes: intraframe and interframe.

The intraframe mode, for all intents and purposes, behaves

as a still-image coder and is intended for encoding reference

frames only. The interframe mode complements this by

encoding the diVerence frames. While the physical encoding

operation in the inter mode is equivalent to that of the intra

mode, its primary component is a prediction engine used to

perform the displace frame diVerence (DFD) operation [10].

The DFD generates the diVerence frame based on the reference

frame (Figure 3.15). The reference frame is then encoded in a

similar manner to the intraframe mode.

In order to account for motion in video data for DFD

operations, motion estimation (ME) and motion compensation

Video
+

+
+

+
+

DCT

Rate 
control

Entropy
coding

Entropy
decoding

Decoded
video

Video
buffer

Video
buffer

Bitstream

DCT−1 DCT−1

Q−1 Q−1

Q

Intra/Inter
Intra/Inter

MC FS MC FS

0 0

−

FIGURE 3.14 A simpliWed hybrid video coding structure (MPEG) that switches between intra- and interframe coding. The diVerence between

these two modes is the additional prediction operation for the interframe mode. In the intraframe mode, DCT is performed over video data

followed by quantization (Q). The quantized data are then entropy-coded to form the compressed bitstream. The entropy-coding process also

feeds into a rate control function that attempts to maintain coding at a desirable bit rate. For the interframe mode, the reconstruction of

previously encoded frames is needed in order to generate the prediction for the current frame with motion compensation (MC). Consequently,

a reverse process with dequantization (Q�1) and inverse DCT (DCT�1) is encapsulated in the encoder. Frame storage (FS) is employed to store

these previously encoded reference frames for MC operations. The decoding end mirrors the encoder, but in the reverse order.

Reference frames

I P P I P P I

Predicted frames

FIGURE 3.15 Arrangement of reference (I) and diVerence (P)

frames for hybrid video coding.
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(MC) [5, 7] functions are used to track moving objects in the

temporal Weld. This has the eVect of reducing diVerence or

residue errors from DFD operations. However, even with MC

and ME, motion mismatch may still occur, resulting in high

residue errors. Three-dimensional transform coders have no

standardized structure. Some of these coders are direct 3D

extensions of their 2D counterparts [47, 81]. Others, however,

adopt the hybrid coding structure with ME/MC [44, 46, 48].

While 3D transform coding is focused primarily on general

digital video coding applications, it has also been proposed for

coding of volumetric medical images [49].

3.2.6.5 Scalability

Scalability has been an issue of intense interest in picture

coding in recent years. It is a Xexibility feature that enables

some degree of control over the variations between the encod-

ing and decoding ends with respect to picture quality, reso-

lution, and, in the case of video, frame rate [10]. It is envisaged

that scalability would be most useful in instances where pic-

tures are coded to the optimum scale23 but decoded at diVer-

ent scales, subject to the requirements and limitations at the

decoding end [10]. An example of this may be a central picture

repository, such as an art collection or archive of medical

images, having high-quality pictures that are accessed

remotely. Scalability is also particularly useful in transcoding,

where digital videos are reencoded to diVerent bit rates, qual-

ities, or resolutions [50]. To maintain scalability in picture

coding, it is necessary to arrange the bitstream of the coder

into appropriate layers that reXect the scale used. For example,

if pictures are scaled according to quality, then the layers

should be arranged according to layers of decreasing degree

of quality improvement [51, 52]. That is, the Wrst layer should

have the highest degree of quality improvement, and the last

layer should have the least.

3.2.7 Perceptual Picture Coding

The impact on picture quality in lossy coding has always been

an area of concern, particularly for high-quality images. Trad-

itional methods for quantifying distortions and picture quality

do not consider the human factor [53]. It is recognized that

picture quality is dependent on perceived picture content. As a

result, it has become increasingly common for picture coders

to incorporate, at the very least, some aspects of the human

vision system (HVS) into the coding system. HVS-based coding

may operate at two levels, above or below threshold vision—

the former is perceptually lossy, while the latter is perceptually

lossless. The conceptual view of perceptual coding and trad-

itional lossless and lossy coding is depicted in Figure 3.16.

There are two main issues in perceptual coding. The Wrst is the

modeling of the HVS, for which a detailed treatment is given in

Wandell [55]. Human vision has a physical and a psychological

aspect. The psychological aspect is concerned with the human

mind—speciWcally, what the mind perceives based on memories

and experiences. The physical aspect deals with the physiology of

the HVS, which broadly consists of the human eye, the visual

pathways, and the visual cortex. The levels of understanding

among these three physical components vary. For example,

Max bit rate
(bpp or bps)

(e.g., 8 bpp or 1 Mbps)

Compression lower bound?
(Subject and viewing
condition-dependent)

Information lossless
compression

Information lossy
compression

Statistical redundancy reduction

Entropy of data

Psychovisual redundancy/
irrelevancy reduction

by exploring HVS
(e.g., HVS-based adaptive

quantization in
DCT/DPCM coding)

Min bit rate
(0 bpp or bps)

Perceptually lossless
compression

Perceptually lossy
compression

by entropy coding
(e.g., Huffman Coding)

FIGURE 3.16 Conceptual view of picture coding philosophy from Hwang et al. [54].

23 Scale in reference to quality, bit rate, and resolution.
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literary knowledge of the human eye is suYciently well developed

to allow accurate modeling of the visual acuity of the eyes and

color sensitivity. However, the more exact mechanical operation

of the visual pathways and, speciWcally, the visual cortex is less

developed. Hence, the model of the visual cortex only approxi-

mates basic primitive functions of the real visual cortex [56].

Nevertheless, this model does oVer a credible behavioral approxi-

mation of the HVS. The basic physiological characteristics of the

HVS can be summarized as follows:

. It is sensitive to the frequency and orientation of visual

stimuli.

. It operates in a relative rather than an absolute manner.

More speciWcally, the HVS sees the contrast between the

luminance of two visual stimuli rather than the absolute

luminance level of the two stimuli.

. The visibility of visual stimuli may be aVected by mask-

ing and facilitation. Masked signals would have dimin-

ished visibility, while facilitated signals increase their

visibility.

The contrast gain control (CGC) model [57] (Figure 3.17)

provides a reliable generic description of the HVS. Function-

ally, it evaluates the perceived similarity/diVerence between

two images, a reference, and an altered copy of the reference.

The CGC model consists of four main parts: contrast estima-

tion, Wltering, masking, and pooling. Contrast estimation

translates images from the absolute scale to the relative scale

via the contrast sensitivity function (CSF).

This is followed by the Wltering operation, which projects

images from the space domain into an oriented frequency

domain. There are a number of realizations for the Wltering

operation, including the steerable pyramid transform [58],

cortex transform [59], and Gabor array [57], to name a few.

Masking then attenuates individual coeYcient samples, in the

oriented frequency domain, according to the activity of their

surroundings. The masking response, Rm, has the general form

Rm[l,u,i,j] ¼ ym,1 �
X[l,u,i,j]pm

h
qm
m [l,u,i,j]þ ym,2

, (3:35)

where the transform coeYcient X[l,u,i,j] is masked by an

inhibition factor hqm
m [l,u,i,j] of masking domain m; variables

l, u, and (i,j) specify the frequency, orientation, and spatial

location, respectively, of the transform coeYcient; and

pm, qm, ym,1, and ym,2 are parameters to be optimized. Mask-

ing may occur in spatial, frequency, and/or orientation domain

[57]. Note that Equation 3.35 provides a separable model for

quantifying masking in individual domain. An alternative

model that concurrently quantiWes masking in all domains

has been proposed in [57]. Typically, only spatial and/or

orientation masking is considered [51, 60, 61]. For spatial

masking, the inhibition factor is a measurement of the activity

surrounding the target coeYcient, X[l,u,i,j], given by

hqs
s [l,u,i,j] ¼

XU

u

XV

v

X[l,u,u,v]qs : (3:36)

Spatial masking is localized within a windowed area, as

speciWed by U and V. This windowed area is generally centered

on spatial location (i, j). Orientation masking measures the

activity over the same spatial location, but over orientation, w.

It is written as

hqo
o [l,u,i,j] ¼

XF

f

X[l,f,i,j]qo : (3:37)

Separable masking models may be uniWed into a single

measurable quantity by weighted summation during pooling,

as in [60]. The pooling stage sums up all the diVerences

between masking responses of the reference and processed

image. The Minkowski summation is generally used for this

purpose. It is deWned as

DCGC ¼ gm �
XM

m

�XL

l

XQ

u

XI

i

XJ

j

Rm[l,u,i,j]ð :

��RRm[l,u,i,j]Þb
�1

b

,

(3:38)

where gm is the weight for masking domain m, and Rm[l,u,i,j]

and �RRm[l,u,i,j] are the masking responses of the reference

and processed pictures, respectively. The overall distortion

spans all resolution levels (L), orientations (Q), and spatial

locations (i,j).

The second issue regarding perceptual coding is the adapta-

tion of the HVS model to picture coders. There are a number

of ways to adapt vision models to coding structures. The most

common method is through the quantization stage, where
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and pooling

Distortion
measure

Processed
image

FIGURE 3.17 The contrast gain control model.
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vision models regulate the quantization operation to control

the level of perceived distortions in coded pictures [62–64]. An

unusual method of adapting the HVS to coders is to design

transformation Wlters that are speciWcally tuned to aspects

of the HVS [65]. For scalable coders such as the JPEG2000

still-image coder, vision models may be adapted to the error

distortion measure in the R–D function [51, 60, 61] (see

Section 3.2.4).

Perceptual coders may be rate driven or quality driven. The

purpose of the rate-driven perceptual coder is to encode pic-

tures to the best possible visual quality for a given bit rate. In

the quality-driven coder, pictures are encoded to a desired

visual quality level at the lowest possible bit rate. A quality-

driven coder operating at just below the super-threshold level

would provide visually lossless quality coding (Figure 3.18). The

super-threshold level is deWned as the point at which

diVerences between two visual stimuli are just perceptible [55].

It is also commonly referred to as the just-noticeable-diVerence

(JND) level.

3.2.8 Standardized Coders

Under the auspices of the International Standards Organiza-

tion (ISO), the Joint Photographic Experts Group (JPEG) and

the Moving Pictures Experts Group (MPEG) have been the

primary entities responsible for the development of industry

standard picture coders. JPEG is responsible for still-image

compression that includes grayscale and color images for

both lossy and lossless encoding. JPEG-LS is a lossless coder

based on the LOCO coding engine (see Section 3.2.5.2). The

(a) (b)

(c)

FIGURE 3.18 MRI slice of a brain. (a) Original image. (b) Perceptually lossless coded image

[71]. (c) DiVerence image between original and perceptually lossless coded image. For the

diVerence image, white areas indicate no pixel diVerence, while dark areas contain some pixel

diVerence. The diVerence image reveals areas within the image where psychovisual redundan-

cies exist.
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LOCO coder was a fairly advanced coding system when it was

Wrst introduced. In the years since, more eYcient lossless

coding algorithms have appeared [66, 67].

The JPEG baseline is lossy image coding using DCT scalar

quantization with run-length and HuVman codes for entropy

coding [68]. It is considered to be superseded by the recent

state-of-the-art JPEG2000 coder. The JPEG2000 still-image

coder [36] employs discrete wavelet transform (DWT) with

progressive bitplane coding. Entropy coding is handled by a

moderately sophisticated context-based arithmetic coder. This

coding system is scalable in resolution and compression rate.

In addition, it can operate in both lossless and lossy modes.

While its performance in the lossy mode is superior to the

JPEG baseline, its performance in the lossless mode is inferior

to JPEG-LS [69].

MPEG is responsible for video compression technology. Its

MPEG-x series of coders is closely related to the International

Telecommunication Union (ITU) line of H.26x coders. The

most recent standardized video coder, the MPEG-4 AVC/H.264

[16], has been developed through joint eVorts of the ISO and

ITU. Both the MPEG-x and H.26x coders share a similar

hybrid DCT/MC coding framework. Over the past decade,

the underlying hybrid technology has matured considerably,

and substantial performance gains have been made in MC,

entropy coding, and postWltering. The performance of

MPEG-4 AVC/H.264 over its predecessors is analogous to the

performance of JPEG2000 over JPEG baseline [70].

3.2.9 Applications of Picture Coding
to Medical Images

Picture compression has become increasingly important to

medical imaging. The shift toward digital media has provided

more Xexibility in the way in which medical images are taken,

transported, and made available for diagnosis (e.g., telemedi-

cine [82]). As in many other applications, digitized medical

images require storage space and bandwidth for transportation

over communication networks. The problem arises when stor-

age and transmission requirements exceed capacity. While it is

possible to increase capacity, it may also be prudent to invest

some eVort in compression so as to reduce the storage and

transmission requirements.

The critical issue for medical images in regard to compres-

sion is information integrity. Information loss should be

avoided when possible. Thus, in this regard, the medical fra-

ternity sees compression as lossy or lossless. In situations

where information loss is unavoidable due to practical reasons,

the attention is shifted from prevention to minimization of

information degradation [72]. The deterioration of informa-

tion through compression may be deemed acceptable if the

diagnostic value of medical images is preserved.

The question for lossy medical coding, then, is twofold.

First, under what conditions could lossy compression be

used? Second, what is the error tolerance level for maintaining

the diagnostic value of medical images? For example, which

pixels in a medical image contain critical diagnostic informa-

tion? Moreover, what eVects do distortions from lossy coding

have on diagnostic quality? Currently, there are no formal

guidelines for the use of lossy coding in medical images. This

may be partly due to legal considerations. The possibility that

the loss of some diagnostic information may lead to a drastic

misdiagnosis has considerable legal ramiWcations. Until lossy

compression can guarantee the preservation of diagnostic in-

formation in medical images, it is likely that medical imaging

will focus more on lossless compression [73].

If the diagnostic value of medical images is taken in terms

of measurable perceptible quantities, then perceptual coding

may be a solution that clinically retains diagnostic information

of medical images. To this eVect, perceptual lossless coding

has been shown to be equally or more eVective than the lossless

and the near-lossless coding strategies [71]. Ultimately, how-

ever, the compression of medical images may be dependent on

the nature of the diagnosis and individual situation.

3.3 Compression in the DICOM
Standard

This section will provide a brief description of picture coders

supported under the image compression component of the

Digital Imaging and Communications in Medicine (DICOM)

standard (see Chapters 2 and 13 of this book and [74]). The

DICOM standard provides a format for collating all informa-

tion associated with individual medical images. It encapsulates

pictures compressed through standardized coders within its

structure, thus ensuring modularity. This modular arrange-

ment allows for future introduction and retirement of coders

to and from the standard. Once medical images are bound to

the DICOM format, the manner in which they are stored and

transmitted is covered by the Picture Archiving and Commu-

nication System (PACS) (see Chapter 13 and [75, 76]).

3.3.1 DICOM Recommended Coders

DICOM does not necessarily support all features of standard-

ized coders. Additionally, DICOM neither speciWes nor recom-

mends under what conditions lossy compression should be

used. The decision is left entirely to individual users. Coders

that are currently supported in the DICOM standard are:

. JPEG-LS [22] for lossless and near-lossless compression

based on the LOCO coder [20].

. JPEG baseline [68, 77] for lossy compression. It imple-

ments DCTwith scalar quantization and HuVman coding.

. JPEG2000 [15, 36], which supports both lossless and lossy

compression through reversible (5/3) and irreversible

(9/7) Wlters, respectively. It also supports scalable coding
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and utilizes wavelet transform with bitplane coding and

arithmetic coding.

. MPEG-2 MP@ML (main proWle at main level) [42] for

compressing multiframe images.

3.3.2 Image Modality

Diagnostic imaging falls into three general categories: trans-

mission, reXection, and emission imaging. Transmission

imaging such as roentgenography (X-ray) projects particles

through a medium to capture speciWc characteristics within

that medium. The acoustic-based reXection techniques

send pulse signals into a medium. Information within the

medium is then captured from reXected signal pulses. Emis-

sion imaging operates by capturing signal emanations from

within a medium. These emanations may be induced exter-

nally, through the injection of radioactive isotopes, as in

the case of nuclear medicine, or may come about naturally

in MRI.

The modality of a medical image speciWes the method by

which the image is captured; that is, MRI, CT, ultrasound, etc.

DiVerent modalities are intended to extract diVerent types of

information. A list of supported modalities is provided in

Chapter 1 and reference [74]. The DICOM standard provides

no recommendation as to what type of compression, lossy or

lossless, should be used for any particular modality. This

decision is left to the individual user. One factor that may

aVect the choice of compression system is the size of digitized

images. Medical images have the tendency to be sizable due to

their bit depth, which ranges between 8 and 16 bits, and they

have resolution that may exceed 1000� 1000 pixels [78]. In

addition, when dealing with multiframe/sliced images, the

amount of storage requirement becomes most noticeable.

Therefore, it may be more economical to have high compres-

sion with some information loss if the diagnostic value of

medical images can be maintained [79, 80].

3.4 Data Compression for Dynamic
Functional Images

This section will present the medical data compression for

multidimensional dynamic functional images based on various

diagnostically lossless coding schemes. A brief background on

multidimensional dynamic functional imaging studies with

physiological parameter estimation is given, followed by

addressing the need for developing eYcient multidimensional

data compression to reduce the volume of dynamic functional

images without aVecting physiological parametric estimation

and clinical decision making. After that, diagnostically lossless

compression techniques for dynamic functional image data are

described in three aspects: compression in temporal domain

based on an optimal image sampling schedule; compression in

spatial domain with clustering analysis; and compression in

sinogram domain by a combination of principal component

analysis (PCA) and a channel-weighted JPEG2000 coding

scheme.

3.4.1 Multidimensional Dynamic Functional
Imaging Studies

As mentioned in Section 1.4, dynamic functional imaging such

as PET in nuclear medicine can provide image-wide quantiW-

cation of physiological, pharmacological, and biochemical

functions within the body and can support the visualization

of the distribution of these functions corresponding to ana-

tomical structures. Physiological function can be estimated by

observing the behavior of a small quantity of an administered

substance ‘‘tagged’’ with radioactive isotopes (tracers). Images

are formed by the external detection of gamma rays emitted

from the patient when the tracers decay. Since they allow the

observation of the eVects of physiological processes, where

most diseases are functional in nature and structural changes

are secondary, functional imaging techniques are invaluable

aids to patient diagnosis and treatment [83]. The range of

tests that can be performed in functional imaging studies is

extremely large and covers all organ systems of the body. In

some studies, the time course of tracer redistribution from

administration onward must be observed and quantiWed to

enable the calculation of physiological parameters by tracer

kinetic modeling. Figure 3.19 illustrates a typical study for

processing and analysis of dynamic functional image data

and subsequent generation of human brain parametric images

using PET with the glucose tracer 18F-Xuoro-deoxyglucose

(FDG). To estimate physiological parameters and form para-

metric images, for each cross-section plane, the PET scanner

acquires a series of scans at a predetermined rate (not neces-

sarily constant), typically for 20–60 minutes, in which projec-

tion views (sinogram data) are acquired at multiple angles and

reconstructed into slices that depict regional tracer uptake and

function during the study. From these data, a tissue time–

activity curve (TTAC) can be plotted for each voxel, and the

physiological parameter value for that voxel calculated by the

application of a tracer kinetic model to the TTAC. If the

modeling process is repeated for every plane, then a 3D

physiological parametric image can be constructed [84].

More details of generating parametric images can be found

in Chapter 6.

These dynamic functional imaging studies, however, are

accompanied by a growth in the size of the image data. For

example, a routine dynamic PET study using a CTI 951 scan-

ner (CTI Inc., Knoxville, TN) typically involves the acquisition

of 31 cross-sectional image planes of 128� 128 pixels each, at

20 to 30 time points. The resulting four-dimensional data set

contains upward of 11 million data points, requiring approxi-

mately 22 megabytes of storage for just one study for one bed

position. Such a large number of images places a considerable
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load on computer storage space and retrieval, data processing,

and transmission time. When the image resolution has to be

improved or the scanning procedure has to include the whole

body, rather than just a single organ, the demand for space is

greatly increased. Therefore, techniques for dynamic func-

tional image data compression are of great interest.

As mentioned in Section 3.2.4, conventional image com-

pression algorithms can be divided into two major categories,

lossless and lossy. Lossless compression algorithms allow for

perfect reconstruction of the original images from compressed

data. These algorithms yield modest CRs, typically between

1.7:1 to 2.1:1 for medical image data. On the other hand, lossy

compression can achieve higher CRs. However, the original

images can be reconstructed only approximately from com-

pressed data, though the diVerences may not be distinguish-

able by the HVS. The challenge in the development of a

practical image compression scheme for dynamic medical

images is the development of compression algorithms that

are lossless for diagnostic purposes; that is, they make no

diVerence to doctors’ qualitative and quantitative assessments,

yet attain high CRs to reduce storage, transmission, and

processing burdens. It should be noted that in the clinical

situation, a slight loss of precision in a derived parameter

may be undetectable visually and quite insigniWcant relative

to the measurement error.

The conventional compression algorithms are not speciW-

cally tailored for the diagnostic use of dynamic functional

image data. Therefore, new algorithms have to be developed

to fully exploit spatial and temporal redundancies in these

data. In addition, the variation of data can be organized in
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FIGURE 3.19 A brief diagram of the process of generation of physiological parametric images based on tracer kinetic modeling—for

example, quantitative estimation of regional glucose metabolic rate with FDG PET. After intravenous injection of the FDG tracer, the

time course of the regional radiotracer concentration in the brain is obtained by acquiring a series of images. At the same time, the

input function is obtained from a series of blood samples. The physiological parameter of interest, in this case the local cerebral

metabolic rate of glucose, is estimated by Wtting a compartmental model to the data. Four-dimensional data (three dimensions in space

and one in time) are required to construct the three-dimensional parametric image, which depicts regional glucose metabolism

quantitatively in quantitative units of mg/100g/min.

3 Image Data Compression and Storage 71



such a novel way as to remove the measurement noise and

improve the measurement reliability. In the following subsec-

tions, three diVerent diagnostically lossless compression tech-

niques for dynamic functional image data will be reviewed:

compression in temporal domain based on an optimal image

sampling schedule [85–87], compression in spatial domain

with clustering analysis [86–88], and compression in sinogram

domain by PCA and a channel-weighted JPEG2000 scheme

[89–91]. For simplicity and clarity, the dynamic functional

image data in human brain FDG PET studies are used to

illustrate the practicality of these compression techniques.

3.4.2 Diagnostically Lossless Compression
in Temporal Domain

In dynamic functional imaging studies, the reliability of the

temporal frames is directly inXuenced by the sampling sched-

ule and the duration of each frame. The number of counts and

hence the statistical reliability of a frame increases with its

duration. However, in order to obtain quantitative informa-

tion about dynamic processes, a certain number of temporal

frames are required. Conventional sampling schedules (CSSs)

[92–95] that involve the acquisition of a large number of

temporal frame images have been empirically developed but

may not be optimal for the extraction of accurate physiological

parameter estimates. Most previous studies suggest that a

higher sampling frequency should be used over the early

stages. This conclusion, however, imposes a considerable bur-

den on the computer image storage space and data processing.

To remedy these limitations, an optimal image sampling sched-

ule (OISS) has been developed and has been demonstrated

to be an eVective way to reduce image storage requirements

while providing comparable parameter estimates [85, 96]. It

was found that if a diVerent cost function for parameter

estimation were used—which depends only on the direct

PET measurement, rather than the instantaneous measure-

ment—the accuracy of parameter estimation could remain

almost unchanged when two neighboring image frames were

combined into one.

Finding the optimal image sampling schedule involves min-

imizing the determinant of the covariance matrix of the esti-

mated parameters p, or conversely maximizing the

determinant of the Fisher information matrix [97] by

rearranging the sample intervals, using the minimum number

of required samples. To illustrate the practicality of the OISS

algorithm, the Wve-parameter FDG model [98] for describing

the behavior of FDG in brain tissue with the eVects of cerebral

blood volume is adopted in this section, in which the Wrst four

parameters k�1 	 k�4 represent model transport and reaction

rate constants, and the Wfth parameter CBV is used to depict

the eVects of cerebral blood volume. For the Wve-parameter

FDG model with:

p ¼ k�1 ,k�2 ,k�3 ,k�4 ,CBV

 �

, (3:39)

the information matrix M with elements mij can be repre-

sented as:

M¼ [mij]¼
XN

k¼1

1

d2(tk)

@C�i (tk ,p)

@pi

� �
@C�i (tk ,p)

@pj

� �" #
: (3:40)

Here, C�i (tk ,p) is the output function of the Wve-parameter

FDG model:

C�i (t) ¼ k�1 (1� CBV )

a2 � a1

(k�3 þ k�4 � a1)e�a1t
�

þ (a2 � k�3 � k�4 )e�a2tg 
 C�p (t)þ CBV � C�p (t),

(3:41)

where 
 is the convolution operator, C�p tð Þ is the FDG con-

centration in plasma represented by the plasma time activity

curve (PTAC), and

a1,2 ¼ k�2 þ k�3 þ k�4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k�2 þ k�3 þ k�4 )2 � 4k�2 k�4

q� �
=2:

(3:42)

The required sampling schedule can be adjusted iteratively

to maximize the determinant of M, det(M), using an auto-

matic algorithm [85]. A set of a priori parameters has to be

provided as the nominal parameters of the model. The opti-

mization procedure starts with an initial sampling schedule

{I1,I2, . . . ,IN } and then iteratively adjusts the sample intervals.

At each iteration, each interval is inspected and adjusted

toward the direction in which det(M) increases. The optimiza-

tion procedure always converges, as there are a Wnite number

of intervals to start with, and det(M) increases monotonically.

It has been shown [85, 99] that the minimum number of

temporal frames required is equal to the number of model

parameters to be estimated. Therefore, for the Wve-parameter

FDG model, five temporal frames should be suYcient to ob-

tain parameter estimates with similar statistical accuracy and

reliability to the conventional technique, which typically re-

quires the acquisition of more than 20 temporal frames. This

reduces the number of temporal frames obtained and, conse-

quently, reduces data storage. Furthermore, as fewer temporal

frames are reconstructed, the computational burden posed by

image reconstruction is reduced. Figure 3.20(a) shows the

original 22 temporal frames for the 15th plane from one

patient study. Due to the lower tracer concentration and

short acquisition time in the Wrst few frames, these images

have been scaled to be visible. A set of five temporal frame

images derived from the OISS algorithm is illustrated in Figure

3.20(b), where a CR of 4.4:1 is obtained.

3.4.3 Diagnostically Lossless Compression
in Spatial Domain

The data compression whose principles were introduced

in Section 3.4.2 is used mainly for exploiting temporal
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FIGURE 3.20 (a) A set of 22 temporal frame images for the 15th cross-section plane from a patient brain FDG PET study.

(b) Results of compressing the images in the temporal domain with the OISS algorithm [87].

3 Image Data Compression and Storage 73



redundancies in dynamic functional image data. In terms of

removing spatial redundancies in the data, for each cross-

section plane, the reduced set of temporal image frames can

be further compressed to a single indexed image using cluster

analysis. In general, a TTAC can be obtained from each voxel in

dynamic PET images. However, many TTAC curves have simi-

lar kinetics. Clustering techniques can therefore be adopted to

automatically classify pixels into a certain number of typical

TTAC types corresponding to diVerent brain regions. The

main idea behind clustering algorithms is to group and classify

image-wide TTACs, zi(t) (where i¼ 1, 2, . . . , R, and R is the

total number of image voxels), into S cluster groups Cj (where

j¼ 1, 2, . . . , S, and S << R) by measurement of the magnitude

of natural association (similarity characteristics). In Li et al.

[86], an indirect agglomerative clustering algorithm is used to

conduct the data compression in spatial domain, based on the

traditional Euclidean distance criterion measure:

D2 zi ,�zzCj

� �
¼
X

t

zi tð Þ � �zzcj
tð Þ


 �2
, (3:43)

where �zzcj
tð Þ denotes the mean TTAC within each cluster Cj.

Here, the clustering analysis technique is applied to further

compress the reduced set of temporal frames into:

. A single indexed image that represents a mapping of the

cluster groups to their respective pixel time-activity curve

(TAC) locations (i.e., the spatial distribution of kinetic

behavior)

. An index table that contains the mean TAC for each

cluster group

In contrast with other kinds of medical images, dynamic

PET images have a consistent general structure, consisting of

an approximately oval region containing almost all of the

information of interest. Therefore, pixels containing back-

ground noise and negative values were suppressed prior to

cluster analysis in order to get accurate clustered TTAC results.

Using cluster analysis, the reconstructed images have been

further compressed in spatial domain, and a CR of 8.6:1 can

be gained. Furthermore, PNG (Portable Network Graphics)

[100], a well-known standard image lossless compression

method, can be used to compress the single indexed image,

achieving a further CR of 1.8:1. The PNG coding format was

chosen over other lossless image compression methods due to

its eYciency, portability, Xexibility, and lack of legal encum-

brances. In many centers performing clinical dynamic PET

studies, the extraction of physiological parameters (i.e., the

generation of parametric images) is of major importance.

With the proposed compression technique, it can be imple-

mented through:

1. Decompression of the indexed image

2. Tracer kinetic modeling and parameter estimation

3. Pixel-wise mapping

The resultant images obtained from the compressed data cor-

respond to the generated functional images [86]. Figure 3.21

shows the result of applying cluster analysis to the temporal

image frames in Figure 3.20(b). Compression does not appear

to have degraded image quality and Wne structural information

of the human brain, while the overall CR obtained for the

combined compression approach in temporal and spatial

domains is 68.1:1 [87].

In the cluster analysis algorithm pertaining to Figure 3.21,

the number of clusters used in dynamic functional image data

is a critical issue. A suYcient number of clusters are usually

required to ensure that the functional data contained in the

dynamic images are adequately represented; however, too

many clusters will increasingly reXect the variation in the

TTACs due to noise and will increase the heterogeneity in the

index image, resulting in increased noise and less scope for

compression of the index image. A performance evaluation for

compression of dynamic brain FDG PET image data has been

conducted in Chen et al. [88], and the optimal number of

clusters was shown to be 21	42. For a cluster number of 42,

the compression ratio achieved was approximately 87:1, while

the minimal practical number of clusters was shown to be 21,

which gives a maximum CR of approximately 86:1 [88].

3.4.4 Diagnostically Lossless Compression
in Sinogram Domain

Dynamic functional imaging studies using a CSS produce large

numbers of temporal image frames that may not provide the

Frame01 Frame02 Frame03 Frame04 Frame05

FIGURE 3.21 Results of applying cluster analysis to the temporal image sequence in Figure 3.20(b) [87].
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maximum information for the study. In Section 3.4.2, the

OISS was shown to greatly compress dynamic functional

image data in temporal domain, reducing the number of time

samples required to the number of model parameters that are

being estimated while providing good parameter estimates.

However, the OISS is model dependent and requires an input

function, typically from arterial blood sampling, which is

complicated to retrieve. Moreover, the OISS is optimized for a

speciWc model rather than for each individual patient data set,

and conventional compartment models may not be adequate to

describe heterogeneous tumor tissues that require more com-

plex modeling [101, 102]. An alternative, model-independent

approach for dimensionality reduction of dynamic PET data

involves multivariate data analysis techniques such as PCA

[103]. Previous PCA-based temporal compression approaches

for dynamic PET data have been applied in the image domain

after reconstruction of the sinogram projection data [104, 105].

This requires image reconstruction for every temporal frame in

the CSS (typically 22 or more), which imposes a large compu-

tational burden and introduces reconstruction errors that can

aVect the later PCA. An alternative is to apply PCA early to

the sinograms, before image reconstruction [89, 106, 107], to

reduce the computational cost of image reconstruction and

improve quantiWcation.

In Chen et al. [90], a combined temporal and spatial compres-

sion technique is proposed for the compression of dynamic func-

tional image data in sinogram domain, including a temporal

compression stage based on the application of PCA directly to

the sinogram data to reduce the dimensionality of the data, fol-

lowed by a spatial compression stage using JPEG2000 to each

principal-component channel weighted by the signal in each chan-

nel. Figure 3.22 illustrates the framework of the combined
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FIGURE 3.22 Dynamic functional image data compression using PCA and channel-weighted JPEG2000

in sinogram domain [90].
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data compression technique using PCA and channel-weighted

JPEG2000 in sinogram domain, including the following four

major coding steps:

1. Sinogram noise normalization

2. Sinogram-domain PCA

3. PCA channel weighting

4. Sinogram-domain JPEG2000 coding, and three major

decoding steps:

a. JPEG2000 decoding

b. PCA channel reconstruction

c. Inverse PCA

3.4.4.1 Sinogram Noise Normalization

A PETscanner in 2D mode outputs the initial projection data in

the form of N sinograms. These sinogram data are assumed to

have been corrected for attenuation, randomness, and diVer-

ences in detector eYciencies. Since PCA is a data-driven tech-

nique that cannot itself distinguish noise from signal, it is

necessary to scale or normalize each frame so that each has

approximately equal noise variance [108]. Assuming approxi-

mate Poisson statistics (attenuation and random-corrected

sinograms are no longer exactly Poisson), each temporal sino-

gram frame is noise-normalized through dividing by
ffiffiffiffi
N
p

=DT,

where N is the total number of detection counts in the sinogram

frame, and DT is the time duration of the frame. Several other

data preprocessing transformations have been developed to

normalize the noise in each frame to improve the PCA of the

signal [109].

3.4.4.2 Sinogram-Domain PCA

The PCA is applied directly to the time series of N (noise-

normalized) sinograms to produce a reduced number of M

sinogram principal-component (S-PC) channels and is per-

formed simultaneously on the data from all spatial planes. The

objective of PCA is to represent orthogonal maximum variance

directions for the analyzed data set. This multivariate image

analysis approach is well suited to high-dimensional, highly

correlated data such as those of dynamic PET. If there are N

frames in the CSS, PCA produces M principal components,

where M � N and the eigenvalues of the PCA channels

are ordered from largest to smallest. Given a random vector

population Xsinogram ¼ (x1, . . . ,xn)T , x1, . . . ,xn in this case

represents the individual time samples of the dynamic tomo-

graphic study in sinogram domain; the mean vector of

the population is deWned as msinogram ¼ E{Xsinogram}; and the

covariance matrix is:

C ¼ E{(Xsinogram � msinogram)(Xsinogram � msinogram)T }: (3:44)

After eigen-analysis of C, the eigenvalue-eigenvector

pairs (l1,e1),(l2,e2), . . . ,(ln,en) are ordered by eigenvalues in

descending order. To reduce the data set, only the Wrst

M eigenvectors of the covariance matrix are used to represent

the data. Let Asinogram be a matrix consisting of the Wrst M

eigenvectors of the covariance matrix as the row vectors. The

transformation of data vector Xsinogram is then given by:

Psinogram ¼ Asinogram(Xsinogram � msinogram), (3:45)

where Psinogram is in an orthogonal coordinate system deWned

by the eigenvectors.

3.4.4.3 Principal Components Analysis Channel
Weighting

It is required that each principal component in the M sino-

gram be compressed with diVerent qualities according to its

priority (importance of the signal) in the set of principal

components. The principal-component channel with the

higher priority requires less CR.

3.4.4.4 Sinogram-Domain JPEG2000 Coding

JPEG2000 is applied to each M sinogram principal-component

channel with a weighted CR to produce compressed M sino-

gram principal components. As noted in Section 3.2.8,

JPEG2000 is based on the DWT [36] rather than the DCT,

which provides signiWcant improvements over JPEG, including

progressive decoding by image quality and improved compres-

sion eYciency.

3.4.4.5 JPEG2000 Decoding

Decoding is performed on the M JPEG2000 compressed sino-

gram principal-component channels to regenerate M decom-

pressed sinogram principal-component channels.

3.4.4.6 Principal Components Analysis Channel
Reconstruction

A set of M image-domain principal-component channels is

reconstructed from the M decompressed sinogram-domain

principal components by using an image reconstruction algo-

rithm such as Wltered backprojection (FBP) or ordered subset

expectation maximization (EM). DeWne this reconstructed

space as Rimage . An advantage of applying PCA before the

image reconstruction stage is that the lowered noise levels in

the PCA channels allow for reduced Wltering in the FBP algo-

rithm, which reduces blurring and partial volume eVects in the

Wnal result.

3.4.4.7 Inverse Principal Components Analysis

The inverse of the PCA is performed on the M image princi-

pal-component channels to regenerate a time series of N image

frames. During sinogram-domain PCA, as described in Section

3.4.4.2, PCA of the sinograms created a transformation matrix
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Asinogram and a mean vector msinogram. The inverse PCA trans-

formation in the image domain is then:

Inv(Rimage) ¼ (Asinogram)T � Rimage þ msinogram=Nproj , (3:46)

where Nproj is the total number of projection angles in the

tomograph. Finally, the inverse of the noise-normalization

weighting is performed.

The results of performance evaluation demonstrate that noise-

normalized PCA can give equivalent CRs to OISS (to

approximately Wve frames) but with approximately twice the

precision. PCA in sinograms avoids introducing image recon-

struction errors into the analysis, decreases the computational

burden of image reconstruction, and gives similar quantitative

accuracy to OISS, as well as better accuracy than image-domain

PCA. Figure 3.23 shows the results of a dynamic reconstructed

PET series using diVerent data compression methods, in which

the signal-to-noise ratio (SNR) of the reconstructed images from

both PCA-only and the combined approaches is signiWcantly

improved. The improved SNR can be achieved because, after

applying noise normalization, the PCA can separate the

signal from the noise. It is noted that the reconstructed images

from the combined approach are slightly less noisy than those

from the PCA-only approach, because JPEG2000 itself has a

denoising eVect. The results indicate that the combined

approach not only can reduce the quantity of data in dynamic

PET, but can also improve the image quality of PET. Overall, the

combined temporal and spatial compression technique for the

compression of dynamic functional image data in sinogram

domain can achieve a CR as high as 129:1 while simultaneously

reducing noise, improving physiological parameter estimation

compared with the uncompressed data, and preserving the sino-

gram data for later analysis [90].

3.5 Summary

The basics of picture compression were reviewed in this chap-

ter. Information entropy dictates the minimum amount of

data needed to carry a certain amount of information.

Therefore, any datum that exceeds the entropy level contains

FIGURE 3.23 The results of dynamic reconstructed PET series using diVerent data compression methods: (a) the 11th, 13th, 15th, 17th, 19th,

and last frames of the original 22 temporal frames of the CSS; (b) the corresponding reconstructed images from the PCA-only compression

approach; (c) the corresponding reconstructed images from the combined compression approach based on PCA and channel-weighted

JPEG2000 [90].
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redundancies. The purpose of compression is to remove these

redundancies. The most rudimentary method for compressing

data is through entropy coding. Entropy coders compress data

to their source entropy using a variety of algorithms, such as

HuVman or arithmetic codes. Most competitive compression

strategies employ predictive coding and context-based coding

prior to entropy coding to further enhance compression

performance.

Compression of pictures is performed either in lossless or

lossy manner. Lossless compression is desirable, since it main-

tains information integrity. However, it has limited CRs. Con-

sequently, it has been more practical in many instances to

apply lossy compression. While it has superior compression

performance over its lossless counterpart, lossy compression

does not preserve all information contained within pictures. In

addition, the loss of information is a function of the compres-

sion rate as governed by the R–D function. Hence, for lossy

coding, it is important to maintain a balance between com-

pression and distortion/quality. The Wdelity of pictures is

dependent on how much perceptible information is contained

within them. The purpose of perceptual coding is to compress

pictures based on perceptible information. Consequently, the

performance of perceptual coders is generally superior to that

of nonperceptual coders in terms of visual quality. Perceptual

coders operating at just above the super-threshold vision level

produce compressed pictures of the quality level which is

deemed imperceptible to their respective original pictures by

removing only visually redundant information.

Compression of natural images is a straightforward task that

juggles CR and quality. For medical images, lossy compression

has been a sensitive issue, primarily because it leads to the

deterioration of information. However, a complete depend-

ency on lossless compression is impractical due to its limited

compression performance. To mitigate between information

loss and compression performance, the idea of preserving

diagnostic information as opposed to all information is gain-

ing support. The challenge of this approach, then, is to devise a

method for identifying diagnostic information. If diagnostic

information is dependent on perception, then perceptual cod-

ing may be a solution to preserving the diagnostic value of

medical images while maintaining high compression perform-

ance. It is important to note that in medical compression, it is

impossible to rely entirely on either lossless or lossy coding

alone. Therefore, advanced data compression techniques used

in noisy medical image data sets with high CRs and improved

image qualities were discussed in this chapter. These tech-

niques have pioneered in biomedical diagnostically lossless

data compression research. In this chapter, three examples

were used: compression in temporal domain, in spatial

domain, and in sinogram domain. These new techniques

have demonstrated a substantial improvement in image quality

while providing a significant reduction in storage space. Add-

itionally, these methods Wlter out the measurement noise

and thus provide more reliable and compact data sets, ready

for accurate diagnosis.

Acknowledgements

The authors are grateful to the support from ARC, PolyU/UGC

grants. The authors thank Mr. David Wu for providing illus-

trations of compressed medical images.

3.6 Exercises

1. Given the following probability distribution for alphabet A:

i 1 2 3 4 5 6 7

A(i) a b c d e f g

p(A(i)) 0.07 0.2 0.1 0.05 0.25 0.13 0.2

a. Calculate the entropy of A.

b. Calculate the Wxed length code, and compute data

redundancy.

c. Generate the HuVman tree and HuVman codes.

d. Generate the arithmetic code number for sequence

{a, e, g, c}.

2. What are the advantages and disadvantages of lossless and

lossy coding?

3. What is the purpose of predictive coding and context cod-

ing?

4. What are the basic components of lossy transform-based

coding? What is the purpose of each component?

5. How does aliasing occur?

6. What is perceptual coding?
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4.1 Introduction

In the past three decades, various medical imaging techniques,

as introduced in Chapter 1, have advanced rapidly, providing

powerful tools for patient diagnosis, treatment planning, med-

ical reference, and training. Medical image data have been

expanded rapidly in quantity, content, and dimension—due

to an enormous increase in the number of diverse clinical

exams performed digitally and to the large range of image

modalities available [1–3]. This development has therefore led

to an increased demand for eYcient medical image data re-

trieval and management. In current medical image databases,

images are indexed and retrieved mainly by alphanumeric key-

words, classiWed by human experts. However, purely text-based

retrieval methods are unable to suYciently describe the rich

visual properties or features of the image content and therefore

pose signiWcant limitations on medical image data retrieval

[4–6]. The ability to search by medical image content is becom-

ing increasingly important, especially with the current trend

toward evidence-based practice of medicine [6, 7].

In this chapter, we present an overview of current tech-

niques of content-based medical image retrieval (CBMIR). We

Wrst give an introduction to typical generic content-based

image retrieval (CBIR), including its key components: image

feature extraction, similarity comparison, indexing scheme,

and interactive query interface; followed by a short review of

the major image visual features, such as color, texture, shape,

and spatial relationships (Section 4.1.2). Then we brieXy ad-

dress the need for CBMIR and related challenges in Section

4.1.3. The major techniques used in CBMIR are reviewed in

detail with four diVerent categories: retrieval based on physical

visual features in Section 4.2, retrieval by geometric spatial

features in Section 4.3, retrieval by combination of semantic

and visual features in Section 4.4, and retrieval based on

physiologically functional features in Section 4.5. Conclusions

are drawn in Section 4.6.

4.1.1 Fundamentals of Content-Based Image
Retrieval

The recent escalating use of digital images in diverse applica-

tion areas such as medicine, education, remote sensing,

and entertainment has led to enormous image archives and
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repositories that require management and retrieval of eVective

image data [8–12]. This development is similar to the rapid

increase in the amount of alphanumeric data during the early

days of computing, which led to the development of database

management systems (DBMSs) by organizing data into inter-

related collections for convenient information retrieval and

storage [11]. Early work on image retrieval was still based on

the textual annotation of images; that is, images were Wrst

manually annotated by keywords or descriptive text and or-

ganized by topical or semantic hierarchies in traditional

DBMSs to facilitate easy access based on standard Boolean

queries. However, such purely text-based methods posed sign-

iWcant limitations on image retrieval. Manual annotation is

subjective, time-consuming, and prohibitively expensive, and

the sheer content volume of very large image databases is

simply beyond the manual indexing capability of human

experts. Furthermore, many visual features in images, such as

irregular shapes and jumbled textures, are extremely diYcult

to describe in text. Such a text-based approach also limits the

scope of searching to that predetermined by the author of the

system and leaves no means for using the data beyond that

scope.

In contrast to traditional text-based approaches that per-

formed retrieval only at a conceptual level, the recently devel-

oped CBIR methods support full retrieval by visual content/

properties of images, by retrieving image data at a perceptual

level with objective and quantitative measurements of the

visual content and integration of image processing, pattern

recognition, and computer vision [9, 10, 13, 14]. A typical

CBIR system is depicted in Figure 4.1.

Firstly, the visual contents for each image in the image

database are extracted. This content consists of a set of distin-

guishing features (a multidimensional feature vector) precom-

puted via an oZine feature extraction process. The feature

vector is then stored in a feature metadata repository. To

retrieve images, the user submits a query example image to

the system, and the example image is then converted into an

internal feature vector via an online feature extraction process.

The similarity or closeness between the feature vector of the

user’s query image and the feature metadata items is calculated

and ranked during a similarity comparison stage. Retrieval is

performed by applying an indexing scheme that can be used to

support fast retrieval and to make the system scalable to large

image databases. If the retrieval results in response to the query

are not fully satisfactory, the user can give some positive or

negative feedback to the system, and the modiWed query can be

resubmitted via the interactive relevance feedback. Such a feed-

back/retrieval cycle can be repeated until the user is satisWed

with the retrieval results. Among these various components,

the four key issues in any CBIR system are feature extraction,

similarity comparison, the indexing scheme, and the inter-

active query interface.

4.1.1.1 Feature Extraction

Feature extraction is the basis and most important component

of the CBIR system. In a broad sense, features may include

both those that are text based (keywords, annotations) and

those that are visual (color, texture, shape, spatial relation-

ships). Since there already exists a rich literature on text-based

feature extraction in the traditional DBMS and information

retrieval research communities, this chapter will be conWned

to general visual feature extraction. Representation of images

needs to consider which features are most useful for represent-

ing the contents of images and which approaches can eVectively

code the attributes of the images. Due to perception subjectiv-

ity, there exists no single best representation for any given

feature—instead, multiple representations are used to charac-

terize the feature from diVerent perspectives. It is well acknow-

ledged that a good visual feature representation should be

invariant to the accidental variance introduced by the imaging

process (e.g., the variation of the illuminant of the scene

taken in the image). There is a trade-oV, however, between the

invariance and the discriminative power of the visual feature,

since a very wide class of invariance may lose the ability to

discriminate among essential diVerences [13]. A short review

of the major image visual features used in CBIR will be given in

the next section.

Moreover, a visual feature can be either global or local. If the

feature extraction is applied on the whole image, the derived

content features then become global features. In order to obtain

more selective features at a Wner resolution, the image is often

divided into parts (subareas or homogeneous regions) before

features are computed from each part, and this is local feature

extraction. The easiest way to divide an image is to partition it

into equal-size blocks or tiles [13]. Such simple partition,

however, does not generate perceptually meaningful or salient

regions. A better method is to divide the image into homoge-

neous regions according to some criterion using segmentation

algorithms [14]. This is particularly true in medical imaging

studies. It is uncommon that a condition or disease will alter an

image over its entire spatial extent; more often than not, diag-

nostic features of interest manifest themselves in local regions.

In a screening situation, the radiologist scans the entire image

and searches for features that could be associated with disease;
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FIGURE 4.1 General architecture of the CBIR system.
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in a diagnostic situation, however, the medical expert concen-

trates on the region of suspected abnormality and examines its

characteristics to determine whether such a region of interest

(ROI) exhibits signs related to a particular disease [15].

4.1.1.2 Similarity Comparison

To measure similarity, the general approach is to represent the

image features as multidimensional vectors. Selection of met-

rics has a direct impact on the performance of a CBIR system.

A similarity-comparison function maps between pairs of fea-

ture vectors and a positive real-valued number, which is

chosen to be representative of the visual similarity between

two images. Therefore, the retrieval result is not a single image

but a list of images ranked by their similarities with the query

image. Various similarity-comparison approaches have been

developed for image retrieval based on empirical estimates of

the distribution of features, including:

. Minkowski form distance (a generic form of the well-

known Euclidean distance)

. Mahalanobis distance

. Quadratic form (QF) distance

. Proportional transportation distance

. Earth mover’s distance

. Kullback-Leibler divergence (KLD)

. JeVrey divergence (JD)

Readers are referred to Long et al. [13] for a detailed review.

4.1.1.3 Indexing Scheme

When the number of images in the database is small, a sequen-

tial linear search can provide a reasonable performance. How-

ever, with large image collections, indexing support for

similarity-based queries becomes necessary and can help in

avoiding sequential scanning. Index structures ideally Wlter

out all irrelevant images by checking image attributes with

the user’s query and retain only relevant images without ana-

lyzing the entire database. Retrieved images are ranked in order

of similarity to a query. Some commonly used multidimen-

sional indexing approaches include:

. Linear quad trees [16]

. k-dimensional binary search (K-D-B) trees [17]

. Holey brick (hB) trees [18]

. Rectangle (R) trees [19, 20] and their variants Rþ-trees

[21] and R�-trees [22]

. X-trees (having X as their leaves) [23]

. Telescopic vector (TV) trees [24]

. Similarity search (SS) trees [25]

Most of these indexing approaches perform reasonably well

for a small number of dimensions, but they explore exponen-

tially with increasing dimensionality and eventually reduce to

sequential searching. One of the methods commonly used for

addressing this problem is the application of dimension reduc-

tion techniques, such as principal components analysis (PCA),

an optimal technique that linearly maps input data to a coor-

dinate space such that the axes are aligned to maximally reXect

the variations in the data [26]. Some very good reviews and

comparisons of various indexing techniques can be found in

White and Jain [27] and Ng and Sedighian [28].

4.1.1.4 Interactive Query Interface

An interactive retrieval interface allows the user to formulate

and modify queries. The ability of users to express their search

needs accurately and easily is crucial in any CBIR system. The

most appealing paradigm in many ways is query by example:

providing a sample of the kind of output desired and asking the

system to retrieve further examples of the same kind. Virtually

all current CBIR systems now oVer such searching, where the

user submits a query image and the system retrieves and dis-

plays thumbnails of some closest-matching images in the data-

base. However, the user will not always have an example image

on hand. Several alternative query formulation approaches have

been proposed, such as Aslandogan and Yu [29]:

. Category browsing

. Simple visual feature query

. Feature combination query

. Localized feature query

. Query by sketch

. User-deWned attribute query

. Object relationship query

. Concept query

The ability to reWne searches online in response to user

indications of relevance—known as relevance feedback—is par-

ticularly useful for improving the eVectiveness of CBIR systems

interactively [30, 31]. The main idea of relevance feedback is to

use positive and negative examples from the user to improve

system performance. For a given query, the retrieval system

Wrst returns a list of ranked images based on predeWned simi-

larity metrics. The user then labels the retrieved images that

are relevant to the query as positive examples and those not

relevant to the query as negative examples. The system will

subsequently reWne the retrieval results based on the user’s

feedback by a certain learning algorithm and return a new

ranked list of images to the user. This process can continue

to iterate until the user is satisWed.

Relevance-feedback strategies help to alleviate the semantic

gap [14] between low-level visual features and high-level se-

mantic features, since it allows CBIR systems to learn users’

image perceptions. The learning algorithm usually deals with

small training samples (typically less than 20 per round of

interaction), asymmetry in training samples (a few negative
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examples are normally fed back to the system), and a require-

ment that the algorithm be fast enough to support user inter-

action in real time [32, 33]. Commonly used relevance-feedback

learning algorithms include:

. Genetic algorithms [34]

. Weight-based learning approaches [35]

. Bayesian probabilistic methods [36]

. Support vector machines (SVMs) [37]

4.1.2 Image Features in Content-Based Image
Retrieval

Clearly, the key to the CBIR framework lies in feature extrac-

tion, in which the quantitative image features, computed auto-

matically, are used to characterize image content. In essence,

image features can be classiWed into (1) general visual features

and (2) domain-speciWc semantic features. General visual

features typically include primitive image information that

refers to the constituents and composition of an image, such

as color, texture, shape, and spatial relationships. Domain-

speciWc semantic features, on the other hand, are application

dependent and consist mainly of abstract information that

refers to the ‘‘meaning’’ of an image, describing high-level

image semantic content in specialized domains.

This section will brieXy introduce the general visual features

that can be used in most CBIR applications. Readers are

referred to [8–10, 12, 14, 29] for detailed reviews on visual

feature extraction. Typically, general visual features can be

further classiWed into (a) physical visual features, including

color and texture, and (b) geometric spatial features, such as

shape and spatial relationships. (The domain-speciWc semantic

features, which can be obtained either by textual annotation or

by complex inference procedures based on image visual con-

tent, will be covered in Section 4.4, concentrating on the

medical domain application, CBMIR.)

4.1.2.1 Color

Color is the most frequently used general visual feature for

CBIR due to its invariance with respect to image scaling,

translation, and rotation and to its three color-component

values (e.g., red/green/blue [RGB], hue/saturation/value

[HSV], CIE L�a�b� or CIE L�u�v� [luminance/chrominance

values set by the Commission Internationale d’Éclairage]),

which make its discrimination potential superior to the sin-

gle-gray intensities of images [8, 9, 13]. There are many color

features that have been developed for CBIR, such as:

. Color histogram: A most eVective color representation,

with the distribution of the number of pixels for each

quantized color bin located in three diVerent color com-

ponents [38, 39]

. Color moments: Very compact color representations, with

three low-order moments (mean, variance, and skew-

ness) for each color component [26, 40]

. Color coherence vectors (CCVs): Incorporating spatial in-

formation into the color histogram (histogram reWne-

ment) [41]

. Color correlogram: A color descriptor characterizing both

color distributions of pixels and the spatial correlation of

pairs of colors [42]

. HDS-S (hue/diV/sum–structure): A color structure

descriptor for capturing local color image structure based

on the MPEG-7 HMMD (hue-min-max-diVerence) color

space [43, 44] (see Section 4.2.1)

4.1.2.2 Texture

Texture is a powerful discriminating visual feature that has

been widely used in pattern recognition and computer vision

for identifying visual patterns with properties of homogeneity

that cannot result from the presence of only a single color or

intensity [45]. Texture presents almost everywhere in nature.

The size of the image patch and the number of distinguishable

gray-level primitives and the spatial relationships between

them are all interrelated elements that characterize a texture

pattern [10]. Some commonly used texture features are:

. Co-occurrence matrices, with 14 texture descriptors for

capturing the spatial dependence of gray levels [46]

. Tamura features, with six visual texture components

designed in accordance with psychological studies of the

human perception of texture [47]

. Run-length matrices, for quantifying the coarseness of

texture in speciWed directions [48]

. Wavelet transform coeYcients, representing frequency

properties of texture patterns, including pyramid-struc-

tured and tree-structured wavelet transforms [49, 50]

. Gabor Wlters, as orientation and scale tunable edge and

bar/line detectors [51, 52]

. Wold decomposition, providing perceptual properties with

three components: harmonic (repetitiveness), evanescent

(directionality), and indeterministic (randomness) [53,

54]

. Markov random Weld (MRF) [55–57]

. Fourier power spectrum [58]

. Fractal dimension [59]

. Shift-invariant principal components analysis (SPCA)

[60]

4.1.2.3 Shape

Shape can be used to identify an object or region as a meaning-

ful geometric form. To humans, perceiving a shape means

capturing prominent/salient elements of the object or region

[10]. Therefore, shape features in an image are normally
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represented after that image has been segmented into objects or

regions. Due to the diYculties in fully automated image seg-

mentation [13] and the variety of ways a given 3D object can be

projected into 2D shapes in 2D images, CBIR based on shape

features is considered to be one of the most challenging tasks

and has usually been limited to speciWc applications where

objects or regions are readily available [14]. In general, shape

representation techniques fall into two broad categories: (1)

boundary-based and (2) region-based approaches. Boundary-

based approaches work on the outer boundary of the shape, and

the shape descriptors in this category include:

. A Fourier descriptor, which describes the shape of an

object with the Fourier transform of its boundary [61,

62]

. A turning function, for comparing both convex and con-

cave polygons [63]

. A Wnite element method (FEM), with a stiVness matrix

and its eigenvectors [64]

. A curvature scale space (CSS) [65, 66]

. Chord-length statistics [67]

. Chain encoding [68]

. Beam angle statistics (BAS) [69]

. A wavelet descriptor [70]

Shape descriptors commonly used in region-based approaches

include:

. Invariant moments, a set of statistical region-based mo-

ments [71, 72]

. Zernike moments [68]

. Generalized complex moments [73]

. Morphological descriptors [74]

4.1.2.4 Spatial Relationships

Spatial relationships between multiple objects or regions in an

image usually capture the most relevant and regular part of the

information in the image content [10, 13] and are very useful

for image retrieval and searching. Spatial relationships can be

divided into (1) directional (or orientation) relationships and

(2) topological relationships. Directional relationships capture

relative positions of objects with respect to each other, such as

‘‘left,’’ ‘‘above,’’ and ‘‘front,’’ and are usually calculated through

objects’ centroids or barycenters. Topological relationships

describe neighborhood and incidence between objects, like

‘‘disjoint,’’ ‘‘adjacency,’’ and ‘‘overlapping,’’ and are calculated

via objects’ shapes. The most commonly used approach to

describe spatial relationships is the attributed relational graph

(ARG) [75, 76], in which objects are represented by graph

nodes, and the relationships between objects are represented

by arcs between such nodes. Another well-known approach,

called the 2D strings method, is based on symbolic projection

theory and allows a bidimensional arrangement of a set of

objects to be encoded into a sequential structure [77]. In

addition to the ARG and 2D strings methods, spatial quad

trees [78] and symbolic images [79] are used to represent spatial

relationships.

4.1.3 Content-Based Image Retrieval
in the Medical Domain

In medicine, the majority of acquired medical images are

currently stored with a limited text-based description of their

content. As image databases expand, it is becoming increas-

ingly apparent that these simple text-based descriptions are

inadequate for the proper search and retrieval of medical

images. As a consequence, valuable diagnostic and prognostic

information in such databases remains unusable, and the

demand increases for eYcient retrieval techniques that can

tap the expertise contained in these databases [80]. In previous

sections of this chapter, CBIR has been shown to be a viable

alternative to text-based image retrieval, with the ability to

search for an image depending on metrics for comparing

image with visual/spatial properties that can match human

judgments of similarity. It is therefore very natural to apply

CBMIR by retrieving medical images according to their do-

main-speciWc image features, providing an important alterna-

tive and complement to traditional text-based retrieval.

The potential beneWts of CBMIR range from clinical deci-

sion support to medical education and research [6]. Clinical

knowledge has shown that visual characteristics of medical

images have strong eVects on diagnosis [81]. Therefore, diag-

nosis by comparing past and current medical images associ-

ated with pathological conditions has become one of the

primary approaches in case-based reasoning or evidence-

based medicine [7], while the clinical decision-making process

can be beneWcial to Wnd other images of the same modality or

the same anatomical region of the same disease [6]. CBMIR

can aid in such diagnoses in the following way: After observing

an abnormality in a diagnostic image, a physician can query a

database of known cases to retrieve images (and associated

textual information) that contain regions with features similar

to that observed in the image of interest. With the knowledge

of disease entities that match features of the selected region,

the physician can be more conWdent of the diagnosis and may

be able to expand the diVerential diagnosis to include patho-

logical entities not previously considered. Here, CBMIR is the

source of relevant supporting evidence from prior known

cases, providing the physician trained in its use with set ex-

amples that are close to his/her decision boundary, along with

the correct class labels (proven pathology) for these examples.

The less-experienced practitioner can also beneWt from this

expertise in that the retrieved images, if visually similar, can

serve the role of an expert consultant [82–84]. CBMIR could

be used to present cases that are not only similar in diagnosis,

but also similar in appearance, and in cases with visual simi-

larity but diVerent diagnoses. It would therefore be useful as a
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training tool for medical students, residents, and researches to

browse and search large collections of disease-related illustra-

tions using their visual attributes [6]. The success of CBMIR

will open up many new vistas in medical services and research,

such as disease tracking, diVerential diagnosis, noninvasive

surgical planning, clinical training, and outcomes research

[85].

Albeit the need is clearly identiWed, developing CBMIR

systems imposes several distinct challenges compared with

CBIR for general images, and demands a thorough under-

standing of the nature and requirements of medical images.

The following are ways in which this understanding is most

useful [2, 5, 6, 85–88]:

1. Medical image data are heterogeneous in how they are

collected, distributed, and displayed. Images are acquired

from diVerent modalities and in diVerent settings in

terms of position, resolution, contrast, and signal-to-

noise ratio. Inside one modality, the tuning of an imager

may lead to signiWcantly varying images—for example, a

magnetic resonance imaging (MRI) scan may be used for

acquisition of completely diVerent anatomical and func-

tional information, or an imaging scan by positron

emission tomography (PET) or single photon emission

computed tomography (SPECT) may be conducted

for diVerent organ studies with diVerent tracer settings.

A hospital can generate thousands of diverse images of

diVerent modalities for diVerent clinical studies every

day. Retrieval from these heterogeneous images is

much more complex compared with a single image

modality, and the existing CBIR approaches hardly

address all medical image properties.

2. Medical images, except histological, dermatoscopic, and

endoscopic, and tongue color images, are intensity-only

images, represented in grayscale. The color features

frequently used in CBIR thus cannot be applied.

3. Medical images are usually of low resolution and high

noise and are therefore diYcult to automatically analyze

for extracting visual features.

4. Many human organs are made of soft tissue or are

nonrigid bodies. The diseased tissue often has no regular

shape, and there is no clear boundary with respect to the

surrounding healthy part. Automatic and accurate image

segmentation of these organs or lesion regions is diYcult

to achieve.

5. A large fraction of medical images capture human

anatomy, which is three-dimensional and thus pro-

vides additional information not available in 2D images.

Therefore, an additional, complex registration procedure

is required before implementation of volumetric image

comparison and image feature extraction.

6. Staging of the disease state and the monitoring of patient

progress over time are fundamental to diagnostic and

therapeutic decisions and to outcome assessment in

long-term follow-up. The CBMIR system is required to

have the ability to deWne and track temporal relation in

the medical image sets of a patient taken at diVerent

periods, together with the medical history of that

patient.

7. Careful treatment of medical images is required due to

issues of patient privacy and other legal constraints.

Such security and administrative barriers hinder CBIR

research within the medical domain [85].

In recent years, various CBMIR approaches have been devel-

oped and integrated mainly in research prototypes. In a broad

sense, these retrieval techniques can be classiWed into four

diVerent categories according to the key image features used:

. Retrieval based on physical visual features such as color

and texture

. Retrieval based on geometric spatial features such as

shape, 3D volumetrics, and spatial relationships

. Retrieval by combination of semantic and visual features,

including semantic pathology interpretation approaches

and generic model-based methods

. Retrieval based on physiologically functional features

such as the dynamic activities of glucose metabolism in

human brain images

Details of these techniques will be given in subsequent sec-

tions.

4.2 Content-Based Medical Image
Retrieval by Physical Visual Features

4.2.1 Retrieval Based on Color

As mentioned in Section 4.1.2, color is the most extensively

used low-level feature for CBIR. However, since the majority of

medical images are intensity-only images carrying less infor-

mation than color images, color-based retrieval would be ap-

plicable to medical images based only on light photography,

where color is an inherent feature and any deviations or

changes in the color of a particular sample from a normal

sample can have signiWcant medical implications [4, 89]. Med-

ical images that can beneWt from color-based CBMIR include:

. Histological images

. Dermatoscopic images

. Endoscopic images

. Tongue images, in which the well-known color moments

and color histogram approaches are often adopted

Histological images are taken via light microscopy and can

be used for assisting the pathologist to observe and analyze the
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Wne details of biological cells and tissues. These images usually

possess unique color signatures, including various subtle

changes in color, such as in jaundice, congestion, and pigmen-

tation; and in exudation and eVusion [4, 90]. In Mattie et al.

[80], the mean optical density and color moments to RGB

components were calculated separately for the cytoplasm, nu-

cleus, and nucleolus and adopted as speciWc local color de-

scriptors in a content-based cell image retrieval system. As a

signiWcant color descriptor, the histogram of color distribution

has been used in retrieving cytohistological breast carcinoma

images [91], breast cancer biopsy slide images [92], and micro-

scopic pathology images of the prostate, liver, and heart [93].

In Tang et al. [94], the local RGB color histograms were ap-

plied as the coarse features for prepartitioned high-resolution

histological images of the gastrointestinal (GI) tract. Since

color characteristics in stained tissue images are prominent

within these coarse structures, the extracted color histograms

make themselves an ideal coarse detector for iconic content

analysis and retrieval, especially when an image database

contains a large number of high-resolution images [94–97].

Dermatoscopic imaging is a technique that allows microscopic

examination of skin lesions and has already proven to be an

eVective tool for analysis of skin erythema [98], evaluation of

wound status [99], and early detection of skin cancers [100]. Skin

color is produced by a combination of complex mechanisms and

is used as vital information in dermatology to interpret the

characteristics of a lesion and its depth in skin [101]. In Rahman

et al. [100], a CBMIR system was developed as a diagnostic aid to

dermatologists for skin cancer recognition. A 64-dimensional

color histogram consisting of four uniformly quantized bins for

each color channel and two color moments (mean and variance)

is extracted from the segmented skin lesion and used to provide

speciWc local features for retrieval of color variation.

Endoscopic images, on the other hand, are taken by a lighted

tubelike instrument with a camera, which is placed in the GI

tract for viewing abnormalities such as bleeding, growth of

tumors, polypoid lesions, and ulcerations [102]. A content-

based endoscopic image retrieval (CBEIR) system with color

clustering was recently presented in Xia et al. [103]. In order to

reduce the color sensitivity to noise and the color histogram

dimension, and considering that endoscopic images generally

contain only a few dominant colors (such as red, yellow, and

purple) and HSV color space is most approximate to human

perception, the original 24-bit RGB color images are converted

into HSV color space, in which the HSV components have been

nonuniformly quantiWed into six, four, and eight levels, respect-

ively. Therefore, color features of endoscopic images can be

represented by a clustered 192-bin (6� 4� 8) histogram.

Based on some preliminary studies of upper GI tract endoscopic

images, Kim et al. [104] proposed an endoscopic image analysis

system based on a domain-speciWed color model and the color

variations in the endoscopic images of the stomach for detect-

ing and retrieving abnormal regions such as sites of early gastric

cancer and inXammatory changes in the surroundings caused

by rubor, erosion, intestinal metaplasia, or atrophic gastritis

[104, 105]. Since most endoscopic images have redness on the

whole due to the inXuence of hemoglobin (a predominant

pigment in the GI mucosa), the detailed colors of an endoscopic

image can be determined by the amount of hemoglobin; that is,

the distribution of blood Xow in the mucous membrane, using

IHb (index of hemoglobin) [106, 107]. Such IHb can be calcu-

lated from the values of the original RGB channels (Vr, Vg, and

Vb) [107]: IHb ¼ 32flog2(Vr=Vg)g and used as a unique color

feature descriptor of the GI endoscopic images.

Similarly, Tjoa and Krishnan [108] proposed a new color

feature extraction approach for the classiWcation of colon

status from colonoscopic images. In general, colonoscopic

images contain rich color information associated with various

lesions; for example:

1. Malignant tumors are normally inXated and inXamed,

and the inXammation is usually reddish and more severe

in color than the surrounding tissues.

2. Benign tumors exhibit less intense hues.

3. Redness may specify bleeding.

4. Blackness may be treated as indication of deposits due to

laxatives.

5. Green may mean the presence of fecal material.

6. Yellow relates to pus formation [108].

Based on these properties, some local features are extracted from

the chromatic and achromatic histograms of the image. In the

histograms of each image, certain lower- and upper-threshold

values of the ROIs are selected for the extraction of the quantita-

tive parameters. The color features are deWned as follows:

bC ¼
XL2

i¼L1

HistC ið Þ
XL�1

i¼0

HistC ið Þ,
,

(4:1)

where bC is a set of the color features for various image

components C¼ {I(Intensity), R(Red), G(Green), B(Blue),

H(Hue), S(Saturation)}; HistC(i) is the histogram amplitude

at level i of a particular color component C; L is the number of

gray levels; and L1 and L2 are the lower- and upper-threshold

values of the histogram of the region [108].

Tongue diagnosis—that is, inspection of the tongue—is one

of the most important methods in traditional Chinese medi-

cine (TCM), where a physician visually examines the color and

other properties of the substance and coating of the tongue. It

has been shown to be a simple and noninvasive way to identify

the body condition/state and symptoms of the patient and can

be further combined with the other three major TCM diag-

nostic methods—listening/smelling, inquiry, and palpation—

for determining the actual disease or deWciency in the patient

[89, 109–111]. However, tongue diagnosis in TCM is usually

based on the capacity of the physician’s human vision for

detailed discrimination. Environmental factors such as the

diVerence of light sources and surrounding illuminations
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may aVect the physician in making accurate diagnoses via

observation of the tongue. Therefore, it is vital to build an

objective and quantitative tool/system—computerized tongue

characterization—for acquiring true-color tongue images that

are invariant to illumination changes and for supporting auto-

matic analysis of tongue properties [111–113]. Various tongue

diagnostic systems have been recently developed to support

acquisition, processing, analysis, storage, and retrieval of

tongue images and to be useful aids in standardization and

automation of tongue diagnoses [111, 114–118]. The key com-

ponents of these systems normally include a color charge-

coupled device (CCD) camera, standardized light sources, a

semi-closed box/chest with a head/face supporting mechan-

ism, and a computer system with image processing tools and

image databases. Some sample tongue images captured from

the systems are shown in Figure 4.2 [111, 119, 120].

According to the general principles of TCM, the tongue body

can be divided into Wve subregions, each of which corresponds

to the health conditions of diVerent organs of the human body,

as shown in Figure 4.2(c): Subregions A1 (root) and A2

(middle/center) represent the health conditions of the stomach

and spleen; subregion A3 (tip) corresponds to the heart and

lungs; and subregions A4 (right side) and A5 (left side) indicate

the health information of the liver and gall bladder [111, 117].

Given the fact that there are large variations in the colors of

tongue substance and coating, in Shen et al. [111] a total of 15

color categories are set up to run color feature extraction—the

colors of the tongue substance are divided into six diVerent

classes (Figure 4.3a), while the coating colors are divided into

nine diVerent classes (Figure 4.3b) [111, 119]. Based on sub-

regions A1 to A5 and the 15 color categories, the local color

features of tongue images were extracted by estimating the

distribution of substance (and coating) of each color category

in each subregion of the segmented tongue body; these have

been used for tongue image analysis and retrieval in a tongue

image analysis instrument (TIAI) system.

Moreover, in order to obtain color features that are more

consistent and correspond to human vision, color reproduction

was conducted for image capture, transfer, and display [121].

Some other systems for tongue image analysis and retrieval

include:

. A tongue-computing model (TCoM) for the diagnosis of

appendicitis using a total of 22 local metrics in four

color spaces (RGB, CIE Y xy, CIE Luv, and CIE Lab)

with color moments (mean and variance) for diVerent

subregions of the tongue body [114]

. A vision-based tongue diagnosis system using the local

(block-size) RGB color mean metric [115]

. A tongue diagnosis supporting system based on quant-

ized color class labels [116]

. A computerized tongue examination system (CTES)

using color relaxation with decision boundaries for

HSV color space [117]

. A digital tongue inspection system (DigiTIS) based on an

RGB color histogram [118]
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FIGURE 4.2 Examples of tongue images after color calibration. (a) An original tongue image with standard

color bars for color calibration. (b) A segmented normal tongue body image. (c) The partition of a tongue: Wve

subregions corresponding to the health condition of diVerent organs. (d) A light red tongue with thin white

coating. (e) A dark purple tongue with thin white coating. (f) A light white tongue with yellow thick coating. (g)

A deep red tongue with brown coating. Courtesy of Prof. L. S. Shen, Beijing University of Technology, China.
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For generic CBMIR—that is, retrieving varied medical im-

ages acquired from various image modalities, including the

color medical images mentioned, color-based retrieval is vital

and needs to be included in the systems. [122] simply used a

diVerent quantization of the HSV space with six hues, three

saturations, and three values for retrieving color medical im-

ages in CasImage [123]. Howarth et al. [43], on the other

hand, proposed a new color structure descriptor, HDS-S (see

Section 4.1.2.1), for retrieval of varied medical images from the

ImageCLEFmed [124] collection. In the HMMD color model,

the hue component is from HSV, and the min and max

components are taken from the minimum and maximum

values, respectively, in the RGB model. The diV component is

the diVerence between min and max. Based on the MPEG-7

standard [44], the HMMD space was unevenly quantized into

184 bins in the three-component HDS (hue, diV, sum) color

space. Then an HDS-S color structure descriptor was extracted

from a quantized HDS histogram based on an 8� 8 sliding

window—each color bin contains the number of window

positions for which there is at least one pixel falling into the

bin under consideration. Since the proposed HDS-S can dis-

criminate between images with the same global color distribu-

tion but diVering local color structures, it can beneWt the

retrieval of color medical images that tend to have similar

overall color but diVering color structure corresponding to

intrinsic image content [43].

4.2.2 Retrieval Based on Texture

Most medical images acquired and displayed in grayscale are

often highly textured, and consequently, examination of med-

ical images usually requires interpretation of tissue appear-

ance; that is, the local intensity variations, based on diVerent

texture properties, such as smoothness, coarseness, regularity,

and homogeneity [1, 125]. Since texture acquires such distin-

guished importance, it is becoming one of the most commonly

used characteristics in medical image analysis, classiWcation,

and retrieval [1, 6, 126]. Among the various texture descriptors

introduced in Section 4.1.2, mainly co-occurrence matrices

and Gabor Wlters are adopted in CBMIR.

The well-known co-occurrence matrices approach for tex-

ture feature representation explores the gray-level spatial

dependencies of texture by constructing co-occurrence matri-

ces based on diVerent orientations and distances among image

pixels and extracting meaningful statistics from the matrices as

texture representations [8]. In the co-occurrence matrices

approach, given a distance d at an orientation angle

u, p(d, u)(l1, l2), the (l1, l2) coeYcient of the corresponding

matrix P(d,u) is the co-occurrence count or probability of

going from a gray level l1 to another gray level l2 with an

intersample spacing of d along the axis making an angle u

with the x axis. If the number of distinct gray levels in the

quantized image is L, then the co-occurrence matrix P will be

of size L � L. For computational eYciency, the number of gray

levels can be reduced by binning, which is a simple procedure

in which the total range of values is divided by a smaller

amount—the required number of bins—thus ‘‘shrinking’’ the

co-occurrence matrix. DiVerent co-occurrence matrices can be

constructed by mapping the gray-level probabilities based on

the spatial relations of pixels at diVerent angular directions

speciWed by u while scanning the image according to the

distance d [15, 46, 87, 127]. On their own, these co-occurrence

matrices do not provide any measure of texture that can easily

be used as descriptors. The information in the matrices needs

to be further extracted as a set of feature values. In Haralick

et al. [46], a total of 14 second-order statistical quantities

Light white
substance 

Red
substance

Deep red
substance 

Light red
substance 

Dark red 
substance

Dark purple 
substance

(a)

Light white 
coating

Light yellow
coating 

Gray
coating

White
coating

Yellow 
coating

Brown
coating

Thick white 
coating

Thick yellow 
coating

Black
coating

(b)

FIGURE 4.3 Sample images of 15 diVerent color categories: (a) six color classes of the tongue substance;

(b) nine color classes of the tongue coating. Courtesy of Prof. L. S. Shen, Beijing University of Technology, China.
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called Haralick texture features are computed out of the coeY-

cients. In order to allow images of diVerent sizes to be com-

pared, before extracting these features, all co-occurrence

matrices are normalized by dividing each coeYcient in a mat-

rix by the sum of all elements. The formulas for calculating

these texture features are listed in Table 4.1.

The co-occurrence matrices approach, which provides

enough discrimination power for various texture appearances,

has been frequently used in CBMIR [4–6]. Tsang et al. [128]

proposed a texture-based image retrieval system for normal

anatomical regions presented in CT studies of the chest and

abdomen by using local and global co-occurrence texture

descriptors. To extract global-level features, 20 co-occurrence

matrices for the presegmented images were Wrst constructed

for four diVerent orientations (u as horizontal 08, vertical 908,
and two diagonals 458 and 1358) and Wve displacements

(d ¼ 1, 2, 3, 4, 5). Then 10 Haralick features were computed

for each of the 20 matrices. The obtained 20 values for each

feature were further averaged and recorded as a mean-based

feature vector for the corresponding image. For local (pixel)-

level feature extraction, the co-occurrence matrix construction

was based on setting a 5� 5 neighborhood window for each

pixel within the segmented region without the orientation and

displacement settings; that is, only a single co-occurrence

matrix was produced for each pixel rather than for each choice

of u and d. Therefore, for each co-occurrence matrix (each

pixel), the same set of Haralick features was calculated. In

Raicu et al. [127], the above 10 Haralick features and 11

texture descriptors extracted by run-length matrices [48, 125]

were calculated and stored in a texture dictionary for classiW-

cation and retrieval of images of various human organ tissues,

including the backbone, heart, kidney, liver, and spleen.

In Orphanoudakis et al. [129], various texture descriptors

were computed based on a gray-tone co-occurrence matrices

method associated with regions of interest and were used as

key image content descriptors in a so-called AttributeMatch

retrieval system for MRI head scans—for instance, for the

retrieval and tracking of images of Alzheimer’s disease [130].

Haralick descriptors have also been shown to be eVective

for the characterization of intrinsic texture features in high-

resolution CT (HRCT) images of lung [82]. In Felipe et al.

[131], a tool for texture extraction called TextEx was developed

TABLE 4.1 The 14 Haralick texture features

Feature Equation Feature Equation

F1: (energy) Angular second moment (ASM)
PL�1

l1¼0

PL�1

l2¼0

p l1,l2ð Þ½ �2 F8: Sum entropy �
P2(L�1)

k¼0

pxþy kð Þ log pxþy kð Þ
� �

F2: Contrast
PL�1

k¼0

k2
PL�1

l1¼0

PL�1

l2¼0

jl1 � l2j ¼ k

p l1,l2ð Þ F9: Entropy �
PL�1

l1¼0

PL�1

l2¼0

p l1,l2,Þ log p l1,l2ð Þ½ �ð

F3: Correlation

PL�1

l1¼0

PL�1

l2¼0

l1 l2p l1,l2ð Þ�mx my

sx sy
F10: DiVerence variance Variance of px�y

F4: Sum of squares (variance)
PL�1

l1¼0

PL�1

l2¼0

l1 � mf

� �2

p l1, l2ð Þ F11: DiVerence entropy �
PL�1

k¼0

px�y kð Þ log px�y kð Þ
� �

F5: Inverse diVerence moment
PL�1

l1¼0

PL�1

l2¼0

1
1þ l1�l2ð Þ2 p l1, l2ð Þ F12: Information measure A of correlation HXY�HXY1

max HX, HYf g

F6: Sum average
P2(L�1)

k¼0

kpxþy kð Þ F13: Information measure B of correlation 1� exp �2 HXY2 � HXYð Þ½ �ð Þ1=2

F7: Sum variance
P2(L�1)

k¼0

k � F6ð Þ2pxþy kð Þ F14: Maximal correlation coeYcient
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
second largest eigenvalue of Q

p

Notations: mx , my , sx , and sy are the means and standard deviations of Cx and Cy , respectively;

px l1ð Þ ¼
XL�1

l2¼0

p l1,l2ð Þ; py l2ð Þ ¼
XL�1

l1¼0

p l1,l2ð Þ; pxþy kð Þ ¼
XL�1

l1¼0

XL�1

l2¼0

l1 þ l2¼k

p l1, l2ð Þ where k ¼ 0, 1, 2, . . . , 2(L � 1);

px�y kð Þ ¼
XL�1

l1¼0

XL�1

l2¼0

jl1 � l2j ¼ k

p l1,l2ð Þ where k ¼ 0, 1, 2, . . . , L � 1; Q l1,l2ð Þ ¼
XL�1

k¼0

p l1,kð Þp l2,kð Þ
px kð Þpy kð Þ ;

HXY ¼ F9;

HXY1 ¼
XL�1

l1¼0

XL�1

l2¼0

p l1,l2ð Þ log px l1ð Þpy l2ð Þ
� �

; and HXY2 ¼ �
XL�1

l1¼0

XL�1

l2¼0

px l1ð Þpy l2ð Þ log px l1ð Þpy l2ð Þ
� �
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to index and retrieve CT and MRI scans based on six texture

descriptors extracted by the co-occurrence matrices method,

supporting tissue identiWcation of brain, spine, heart, lung,

breast, adiposity, muscle, liver, and bone.

Besides the applications in texture-based retrieval of CT and

MRI scans, the co-occurrence matrices approach has also been

used in retrieving ultrasound images that contain various

granular texture layouts [132, 133], mammography images

with benign and malignant masses [134], tongue images with

various texture layouts at diVerent subregions of the tongue

body [114,117,121], and dermatoscopic images with diVeren-

tial texture structures speciWc to skin lesions [100]. For

texture-based retrieval of color endoscopic images, a color

co-occurrence model [135] was set up to integrate color and

texture characteristics for eYcient image retrieval. The original

RGB color space was Wrst converted to HSV space and

rebinned to 192 levels (H: 6� S: 4� V: 8). Then 12 color

co-occurrence matrices with size 192� 192 were constructed

for four diVerent orientations (0, p=4, p=2, 3p=4) and three

diVerent distances (1, 3, 9). Finally, two statistics (mean and

standard derivation) of four Haralick descriptors (CONtrast,

ENerGy, CORrelation, and ENTropy) were computed from

each matrix to form a textual feature vector < mCON , sCON ,

mENG , sENG , mCOR , sCOR , mENT , sENT > [135].

Howarth et al. [43] and Rahmann et al. [88] reported the use

of the co-occurrence matrices approach for retrieving large

collections of medical images from ImageCLEFmed and from

World Wide Web medical image atlases, such as X-rays of the

chest with enlarged heart; sagittal or frontal views of head MRIs;

chest CTs with micronodules; abdominal CTs with liver blood

vessels; angiograms of aortas; and microscopic images of leuke-

mia, Alzheimer’s disease, bacterial meningitis, skin lesions, etc.

Unlike another well-known method, that of Tamura features

[47], which provides only visually meaningful texture proper-

ties, the co-occurrence matrices approach allows detection of

some abnormalities in medical images that are beyond human

appreciation of complexity and are otherwise diYcult to deter-

mine by other texture extraction methods, and it provides

valuable information about medical images that may not be

visible to the human eye [127]. In these CBMIR systems, a

subset of Haralick texture features is normally selected and

adopted, based on experiments, and these features have exhib-

ited the best performance among the total of 14 features. The

most eYcient and frequently used descriptors in the CBMIR

are: Energy, Entropy, Contrast, Inverse DiVerence Moment,

Correlation, and Variance.

Gabor Wlters have been commonly adopted as powerful

edge/line/bar detectors with orientation and scale (frequency)

tunable properties, and their statistics in the image or image

parts (regions) are often used to characterize the underlying

texture information while achieving minimum joint 2D un-

certainties in both spatial and frequency domains [52]. Since

Gabor Wlters allow one to choose arbitrary orientation and

scale, and considering that textural images are usually distin-

guishable with orientation and scale features, Gabor Wlters

have also been widely used to extract texture features from

images for CBIR [51, 52, 136]. A 2D Gabor function is a

Gaussian-modulated sinusoid deWned as:

g x, yð Þ ¼ 1

2psxsy

� �

exp � 1

2

x2

s2
x

þ y2

s2
y

 !
þ 2pjWx

" #
,

(4:2)

where sx and sy are the standard deviations of the Gaussian-

shape envelop along the x and y directions, respectively, and

Wx is the modulation frequency of the Wlter. A set of self-

similar Gabor Wlters is then generated via scaling (m) and

orientation (n):

gmn x, yð Þ ¼ a�mg x0, y 0ð Þ, (4:3)

where a > 1; x0 ¼ a�m x cos uþ y sin uð Þ; y 0 ¼ a�m �x sin uþð
y cos uÞ; u ¼ np=K ; m ¼ 0, 1, . . . , S � 1; n ¼ 0, 1, . . . , K � 1;

and S and K are the total number of scales and of orientations,

respectively. Based on the obtained Gabor Wlters, given an

image I(x,y), its Gabor transform is deWned to be:

Wmn x, yð Þ ¼
ð

I(x, y)g�mn

ðx � x1, y � y1Þdx1dy1,

(4:4)

where � indicates the complex conjugate. Then the mean mmn

and the standard deviation smn of the magnitude jWmnj form

a feature vector, < m00, s00, . . . , mmn, smn, . . . , mS�1 K�1,

sS�1 K�1 >, representing the texture features of the image.

Here, the whole image is decomposed at S scales and K orien-

tations by using the Gabor Wlters and is then ready for texture-

based indexing and retrieval.

The application of Gabor Wlters in CBMIR has been

reported and covered in various medical image categories

such as cardiac MRIs [87]; CT liver images [137]; histological

images of 10 organs [138] and the GI tract [95]; mammog-

raphy images [134]; and very large collections of various other

medical images [43, 122]. In Glatard et al. [87], a bank of 42

Gabor Wlters with angular bandwidths of 308 and frequency

bandwidths of one octave were used to compute the mean and

standard deviation of the magnitude response of each heart

MRI scan for extracting feature vectors of myocardium texture,

supporting CBMIR queries such as: ‘‘Given one vertical slice,

Wnd slides corresponding to a given instant in time along one

cardiac cycle (in particular the end of systole or the end of

diastole).’’ The basis of such myocardium texture-based

retrieval lies in the fact that the contraction of the myocardium

is correlated to the Wneness of its texture presented in the

image: (1) The more the myocardium is contracted, the Wner

its texture will be; and (2) the contraction of the myocardium
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corresponds to a reduction of its volume, and its Wbers then lie

more closely together [87].

A CBMIR system for CT liver images based on Gabor texture

is presented in Zhao et al. [137], allowing retrieval of diVerent

types of CT Wndings and manifestations such as low attenuation

with inWltration, lipiodol retention, and multifocal nodular

types. However, all hepatic pathology-bearing patches and

other abnormal regions need to be manually delineated before

Gabor feature extraction. For high-resolution histological

image retrieval, since texture patches in histological images are

normally not homogeneous, it is diYcult to directly use global

Gabor features to image indexing and retrieval. Instead, the

original image is usually divided into subimages or blocks, on

the hypothesis that texture patterns within a block are homo-

geneous. Gabor Wlters are then used to extract texture features

for these patterns. Finally, a histological image can be repre-

sented with a Wnite number of feature vectors, each correspond-

ing to one block [95, 138]. In Lam et al. [95], a total of 15

semi-Wne Gabor features based on a 64� 64 window size were

used for retrieving histological images of six GI tract organs. For

the CBMIR system presented in Zhao et al. [138], a Gabor Wlter

bank has 18 Wlters of three scales and six orientations, which are

calculated as texture features to index and retrieve histological

images from 10 organ categories: adrenal gland, heart, kidney,

liver, lung, pancreas, spleen, testis, thyroid, and uterus.

Gabor features have also been adopted for generic CBMIR;

that is, retrieving medical images acquired from various image

modalities. Muller et al. [122] investigated the potential of

using a bank of real circularly symmetric Gabor Wlters with

three scales and four orientations for retrieving varied medical

images from CasImage teaching Wles collections. The resultant

12 Gabor Wlters have been shown to give good coverage of

the frequency domain and little overlap between Wlters. How-

ever, the performance of these Gabor features has not yet

been compared with other characteristics, such as those based

on the co-occurrence matrices approach or wavelet Wlters.

Another generic CBMIR study [43] concluded that a Gabor

Wlter bank with two scales and four orientations gave the best

performance for retrieving varied medical images from the

ImageCLEFmed collection.

4.3 Content-Based Medical Image
Retrieval by Geometric Spatial
Filters

4.3.1 Retrival Based on Shape

Shapes found in medical images express diVerent character-

istics for diVerent parts of the anatomy. Some possess readily

identiWable shapes, such as those of the brain, heart, lungs,

kidneys, and several bones, while others can be arbitrary, such

as those of lesions or tissues. Disease processes can aVect the

structure of organs and cause deviation from their expected

shapes. Even abnormal entities tend to demonstrate diVerences

in shape between benign and malignant conditions [15].

Furthermore, shapes can undergo nonrigid deformation over

time, over the progression of disease, or from patient to

patient. Therefore, shape information becomes one of the

most important and eVective criteria in characterizing many

pathologies identiWed by medical experts. Medical image re-

trieval by shape features appears promising for quickly Wnding

the same anatomical region of the same disease and can be

beneWcial in supporting certain disease diagnoses. Many CBIR

techniques based on shape features that exhibit and retain

diVerent shape characteristics have been developed, as men-

tioned in Section 4.1.2. Some of them seem to be well Wtted to

certain CBMIR applications, while several new approaches

have been proposed for particular shapes that populate the

databases in some speciWc medical imaging studies.

The well-known Fourier descriptors (FDs) represent the

shape in a frequency domain with the Fourier transform of

its boundary signatures and can be used to discriminate diVer-

ent shapes. The lower-frequency FDs contain information

about the general shape, while the higher-frequency FDs hold

information about smaller details of the shape [62]. The most

general form of representation of a contour (2D shape) can

be just a closed sequence of N successive boundary points or

pixels (xi , yi), where i ¼ 0, 1, 2, . . . , N � 1. Three main

signatures of the contour are deWned: (1) curvature, (2) cen-

troidal distance, and (3) complex coordinate functions.

The curvature function at a point i along the contour is

deWned as the rate of change in tangent direction of the

contour: Ci ¼ dui=di , where ui is the turning function of

the contour, that is, ui ¼ arctan(y 0i=x0i ), here y 0i ¼ dyi=di and

x0i ¼ dxi=di . The centroidal distance function expresses the

distance of the boundary points from the centroid (xc , yc) of

the shape: Ri ¼ [(xi � xc)2 þ (yi � yc)2]1=2. And the complex

coordinate function can be obtained by simply representing

the coordinates of the boundary points as complex numbers:

Zi ¼ (xi � xc)þ j(yi � yc). Through Fourier transforms of

these three functions, three sets of complex coeYcients (i.e.,

FDs) can then be generated. In order to achieve rotation

invariance (since contourencoding is irrelevant to the choice

of the reference point), only the amplitudes of the complex

coeYcients are used, and the phase components are discarded.

Scale invariance is achieved by dividing the amplitudes of

the coeYcients by the amplitudes of the discrete cosine (DC)

descriptor or the Wrst nonzero frequency coeYcient. And the

translation invariance is obtained directly from the contour

representation [13, 62]. The FDs of the curvature are

FDC ¼ jF1j,jF2j, . . . , jFM=2j
� �

, (4:5)

and the FDs of the centroidal distance are

FDR ¼
jF1j
jF0j

,
jF2j
jF0j

, . . . ,
jFM=2

jF0 j

� 	
, (4:6)
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where Fi denotes the ith component of the Fourier transform

coeYcients. The FDs of the complex coordinate are:

FDZ ¼
jF�(M=2�1)j
jF1j

, . . . ,
jF�1j
jF1j

,
jF2j
jF1j

, . . . ,
jFM=2

jF1j

� 	
, (4:7)

where F1 is the Wrst nonzero frequency component used for

normalizing the transform coeYcients.

The study in Antani et al. [139] showed that the FD-based

retrieval approach could achieve better performance for spine

X-ray images with vertebral shapes, and eVectively described

various pathologies identiWed by medical experts as being con-

sistently and reliably found in the image collection. The shapes of

cervical and lumbar vertebrae were Wrst segmented from

the digitized spine X-ray images, and each shape was then

outlined by the coarse radiologist-marked nine-point model

that is widely used in the vertebra morphometry community.

The nine-point shapes were further made dense to 36 points by

linear interpolation. The resulting dense segmented vertebra

boundary shapes could be used to extract Fourier descriptors as

shape attributes. The nature of spine X-ray images in grayscale,

oVering very little in terms of texture for the anatomy of interest,

makes this an ideal application area for CBMIR by FDs.

Brodley et al. [82] presented a CBMIR system for lung HRCT

images, in which FDs were extracted from diVerent pathology-

bearing regions (PBRs) with seven types of diseases: centrilobu-

lar emphysema, paraseptal emphysema, sarcoid, invasive asper-

gillosis, broncheitasis, eosinophilic granuloma, and idiopathic

pulmonary Wbrosis identiWed by radiologists. The local shape

attributes using FDs have been demonstrated to signiWcantly

improve retrieval performance in the domain of HRCT images

of the lung over a purely global approach. Shape-based retrieval

by FDs has also been proven to be an eVective tool for pathology

images and can assist physicians in diVerential diagnosis of

lymphoproliferative disorders [140]. Various nucleus shapes

segmented from original leukocyte images were characterized

through FDs and used for eYcient retrieval of diVerent types of

leukocytes (band neutrophils, lymphocytes, monocytes, and

polymorphonuclear leukocytes) and three particular disorders:

chronic lymphocytic leukemia, follicular center cell lymphoma,

and mantle cell lymphoma [140].

Recalling the character of FDs, lower-frequency FDs

describe the general shape property, while higher-frequency

FDs reXect shape details; that is, FDs will become larger if

the object shape becomes more complex and rough. It ap-

pears that such FDs will be ideal in helping to perform

retrieval of mammography images and distinguish accurately

between benign masses and malignant tumors, due to the

following observation: Benign masses are normally round or

macrolobulated in appearance and are well circumscribed

with smooth contours; malignant tumors, on the other

hand, usually possess rough, jagged, or irregular boundaries,

including microlobulations, spicules, and concavities [141,

142]. Rangayyan et al. [141] investigated the use of various

shape descriptors such as FDs, compactness, invariant mo-

ments, acutance measure, and chord-length statistics to dis-

criminate between benign and malignant breast tumors.

Given that some benign lesions may have a speculated

appearance and that round/well-deWned malignant lesions

do exist, an evaluation study of the use of the diVerent

shape factors we have discussed to distinguish between

circumscribed and speculated tumors was also conducted in

Rangayyan et al. [141]. The results showed that the FD

method gave higher accuracy for circumscribed/speculated

classiWcation, but less accuracy than acutance measure for

benign/malignant classiWcation. Overall, acutance measure

achieved the best performance for breast cancer classiWcation

and retrieval. As presented in Rangayyan et al. [141] and

Rangayyan and Elkadiki [143], acutance measure is a descrip-

tor of the sharpness or change in density across a mass

margin and can be obtained by Wrst computing the sum of

diVerences d(j) along the normal to each boundary point

j ¼ 0, 1, . . . , N – 1, where N is the number of boundary

points of the region:

d(j) ¼
Xnj

i¼1

f (i)� b(i)

2i
: (4:8)

Here, f (i) and b(i) are pixels along the normal inside and

outside, respectively, of the region, and i ¼ 1, 2, . . . , nj ,

where nj is the number of pixel pairs along the normal used

to calculate the diVerences for the jth boundary pixel and is

limited to a predeWned maximum value nmax. The acutance

measure A can then be derived by normalizing d(j) over all

boundary pixels:

A ¼ 1

dmax

1

N

XN�1

j¼0

d2(ðj)
nj

" #1=2

, (4:9)

where dmax is a normalization factor dependent upon the max-

imum gray-level range and nmax, such that A is within the range

(0, 1]. In Rangayyan et al. [141], acutance measure was used as a

descriptor of edge strength or diVusion of a breast tumor or mass

into the surrounding regions, in which low values indicated

malignant tumors, while high values implied benign masses.

Unlike FDs and acutance measure, invariant moments can be

computed from a region’s boundary or silhouette. The former

is more sensitive to high-frequency edge details, while the

latter is less sensitive to noise and is an indicator of gross

shape [141]. The 2D (p þ q)th-order central moments mpq of

a density distribution function f(x,y) are derived as:

mpq ¼
X

x

X
y

(x � xc)p(y � yc )qf (x, y), (4:10)

where (xc , yc) is the center of the region, and the summation is

over all pixels in the region boundary. The central moments can

be further normalized for scale invariance: hpq ¼ mpq=mr
00,
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where g ¼ (p þ q þ 2)=2. A set of seven low-order central

moments invariant to translation, rotation, and scale can be

obtained [144, 145] as follows:

M1 ¼ h20 þ h02

M2 ¼ h20 � h02ð Þ2þ4h2
11

M3 ¼ h30 � 3h12ð Þ2þ 3h21 � h03ð Þ2

M4 ¼ h30 þ h12ð Þ2þ h21 þ h03ð Þ2

M5 ¼ h30 � 3h12ð Þ h30 þ h12ð Þ

h30 þ h12ð Þ2�3 h21 þ h03ð Þ2
� �
þ 3h21 � h03ð Þ h21 þ h03ð Þ

3 h30 þ h12ð Þ2� h21 þ h03ð Þ2
� �

M6 ¼ h20 � h02ð Þ h30 þ h12ð Þ2� h21 þ h03ð Þ2
� �

þ 4m11 h30 þ h12ð Þ h21 þ h03ð Þ
M7 ¼ 3h21 � h03ð Þ h30 þ h12ð Þ

h30 þ h12ð Þ2�3 h21 þ h03ð Þ2
� �
� h30 � 3h12ð Þ h21 þ h03ð Þ

3 h30 þ h12ð Þ2� h21 þ h03ð Þ2
� �

:

(4:11)

The invariant moments have been adopted for retrieving

HRCT lung images [82] and mammography images [134].

The evaluation study in Alto et al. [134] showed that shape-

based retrieval by invariant moments could be used to classify

breast tumors and achieve similar performance as FDs. In Zhu

and Schaefer [146], a shape-based retrieval system for thermal

medical images was developed by using a set of combinations

of invariant moments:

b1 ¼
ffiffiffiffiffiffiffi
M2

p

M1

, b2 ¼
M3m00

M1M2

, b3 ¼
M4

M3

,

b4 ¼
ffiffiffiffiffiffiffi
M5

p

M4

, b5 ¼
M6

M1M4

, b6 ¼
M7

M5

:

(4:12)

Such combinations can be found to achieve invariance

not only to translation, rotation, and scale, but also to

contrast [147]. Each thermal image is then characterized

by the six invariant moments in Equation 4.12:

F ¼ [b1, b2, b3, b4, b5, b6]. Image retrieval is performed by

Wnding those images whose invariant moments are closest to

the ones calculated for a given query image, and the results

have shown that this approach is very robust for thermal

images of the arms, neck, lower back, dorsal view, and legs

[146, 148].

Other shape-based retrieval techniques used in CBMIR in-

clude:

. Retrieval of MRI heart scans based on the simple turn-

ing-function approach [149]

. Retrieval of angiograms and MRI scans with mass/cen-

troid/dispersion features [150]

. Retrieval of dental radiographic images using the Wnite

element method (FEM) and eigendecomposition ap-

proach [151]

. Retrieval of mammogram images using Zernike mo-

ments [152], as well as morphological features for fast

search of tumor shapes [153]

. Retrieval of pathology images based on integrated region

matching (IRM) [154]

. Retrieval of functional-MRI (fMRI) brain scans using

concentric circle (CC) features extracted from wavelet-

decomposed ROI subsets [81]

. Retrieval of varied medical images using MPEG-7’s con-

tour shape descriptor [155], salient point detector [156],

optimal dynamic time warping (DTW) approach [157],

convex hull model [158], and similarity Xooding ap-

proach [159]

4.3.2 Retrieval by 3D Volumetric Features

The majority of medical images capture human anatomy that is

3D in structure. Three-dimensional medical images can be used

for nondestructive inspection of the body and its component

regions in vivo and in vitro, supporting execution and monitor-

ing of interventions and providing quantitative measurements

to determine whether an abnormality is present by comparison

with normal controls in diagnosis and treatment planning [1, 3,

160]. However, feature extraction and retrieval of 3D medical

images in most of the existing CBMIR systems are still per-

formed based on 2D slices—simply following the way of con-

versional image retrieval in the 2D domain and departing from

their originally obtained 3D form. It is believed that more

accurate CBMIR, with more discriminating power, can be

achieved if we can take full advantage of the information avail-

able in the 3D spatial domain by performing retrieval of these

medical images based on their 3D volumetric features [161].

Liu et al. [162] proposed a CBMIR approach based on 3D

ideal midsagittal plane (iMSP) features for retrieving 3D CT

neuroimages of hemorrhage (blood), bland infarct (stroke),

and normal brain. A basic observation from neuroradiologic

imaging is that normal human brains exhibit an approximate

bilateral symmetry that is often absent in pathological brains.

Given this observation, a symmetry detector was Wrst con-

structed to automatically extract an iMSP—a virtual geometric

plane about which the 3D anatomical structure captured in a

brain image presents maximum bilateral symmetry [163]. The

basic idea is to Wnd where the MSP is supposed to be for a

given 3D brain image, especially for pathological brains, where

the anatomical MSP is often distorted (shifted or bent) due to

large lesions. Automatically locating and retrieving possible

lesions (e.g., bleeds, stroke, tumors) can therefore be con-

ducted by detecting asymmetrical regions with respect to the

extracted iMSP.
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After the iMSP is aligned in the middle of each 3D volumetric

image, a stack of cross-sectional 2D slices are temporarily de-

rived as basic image units, from which three types of asymmetry

features are then calculated to quantify and capture the statis-

tical distribution diVerence of various brain asymmetries:

(1) global statistical properties, (2) measures of asymmetry of

halved and quartered brains, and (3) local asymmetrical region-

based properties. These features are calculated from:

. The original image unit with its iMSP aligned

. The diVerence image of the original image and its mirror

reXection with respect to the iMSP

. The thresholded diVerence image

. The original image masked by the thresholded binary

image

For each image unit, a feature vector with 48 image features

is constructed, including the means, the variances, and the X

and Y gradients of the intensity images at diVerent regions and

under various Gaussian smoothing, scaling, and thresholding

[162].

This retrieval approach, although taking advantage of

the 3D iMSP characteristics, provides global query and access

on entire 2D-slice images, instead of local retrieval based on

segmented 3D lesions. Since the 3D medical images are usually

acquired from diVerent modalities in diVerent hospitals, each

3D neuroradiology scan may start and end at diVerent por-

tions of the brain with diVerent angles or along diVerent axes.

This requires that 3D image data sets be properly registered

and segmented before existing CBMIR techniques can be dir-

ectly used for meaningful results [164–166].

Guimond and Subsol [166] developed a content-based re-

trieval of 3D brain MRIs with the user-selected 3D anatomical

structure deWned as the volume of interest (VOI) in a given

reference image. The retrieval process was turned into a de-

formable registration process using global-to-local aYne fol-

lowed by free-form transformations for the best matching

between the user-deWned VOI and 3D images in the database,

and correlation was used as a measure for morphological diVer-

ences. This retrieval method, however, relies on the VOI deWni-

tion to be a simple local subdivision of the image, rather than

the segmented region.

Megalooikonomou et al. [167] proposed a CBMIR approach

for 3D fMRI images using speciWc 3D concentric sphere features

extracted from pathological VOIs. Since tumors or lesions in

medical images are often considered to be homogeneous re-

gions for simplicity, the VOIs formed by the voxels with the

same value were Wrst segmented, followed by a three-step fea-

ture extraction process of these VOIs. In the Wrst step, the center

of mass V of the VOI was computed. In step 2, using V as the

center, a series of 1 . . . k concentric spheres in the 3D domain

were constructed with regular increments of their radii. In the

last step, for each sphere, the k-dimensional feature vectors Fs

and Fr were constructed, representing the fraction of the sphere

occupied by the VOI and the fraction of the VOI occupied by the

sphere, respectively. The obtained 3D concentric sphere feature

vectors actually mapped the entire VOI to a speciWc point in k-

dimensional space. To project the characterization vector to a

space of lower dimensionality, the well-known Karhunen-Loève

(KL) transform or the closely related singular value decompo-

sition (SVD) can be adopted. Furthermore, for a given training

set and classes of VOIs, experimentation can be conducted as an

optimal classiWcation process to obtain an appropriate value for

each increment of radius of the concentric sphere [81, 167].

In Kim et al. [161], a 3D VOI-based retrieval approach for

multidimensional dynamic brain PET images was proposed

and integrated into a prototype VOI-based functional image

retrieval system (VOI-FIRS). For each dynamic image data set,

VOIs that contained various physiological characteristics re-

lated to local cerebral glucose consumption were Wrst segmen-

ted based on a domain knowledge-based classiWcation process;

then a set of VOI functional and physiological features were

extracted (more details can be found in Section 4.5). For the

extraction of VOI visual features, an anatomical standardiza-

tion procedure of the 3D stereotactic surface projection trans-

formation in the NEUROSTAT package [168–170] was

adopted to deform the 3D image into a standard stereotactic

atlas by linear scaling of the image to correct individual brain

sizes and by nonlinear warping to minimize regional anatom-

ical variations. A set of transformation library Wles was then

created for the dynamic PET images and applied to the corre-

sponding segmentation results for warping the segmented

images into the same standardized image frame of reference.

After that, the centroid moment for each VOI and its corre-

sponding volume (i.e., the total number of voxels in the VOI)

was estimated and indexed into the database. The VOI volu-

metric features can be retrieved by measuring the absolute

diVerences between the two volumes. In the similarity measure

of the VOI location, the digital Zubal phantom [171] with fully

labeled phantom was transformed into the standard coordin-

ate system, as with dynamic PET images. The similarity of the

VOI location was measured based on the 3D spatial distance

(in voxels) between the user-deWned point from the Zubal atlas

and the centroids of the VOIs indexed in the database.

The ability of physicians to express their search needs and to

navigate their search results accurately and easily is crucial in

CBMIR systems [172], especially for retrieval of multidimen-

sional medical images by volumetric features. In Kim et al.

[161], the VOI-FIRS was responsive to user interaction in the

retrieval process. As one of the most important interface func-

tionalities of query components, the ‘‘query by VOI visual

features’’ graphic user interface (GUI) (see Figure 4.4) can

support user selection of the VOI location from the transformed

Zubal phantom that is used as the standard brain atlas (center

window in the Wgure).

The user is allowed to navigate in the 3D viewing space

(rotation, scaling, and translation) and to change the viewing

planes of sagittal, coronal, and transaxial slices, providing both
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conventional and 3D orthogonal views. The location feature

can be initiated by selecting a point either on the Zubal

phantom in the center display zone (setting voxel coordinates

numerically via an input panel at the left middle) or on the

labeled Zubal structure at the bottom right. The volume of the

VOI can also be set numerically, which works independently of

the location feature. The GUI of the output folder/window for

display of retrieved results is illustrated in Figure 4.5. Each

thumbnail result in the left part [Figure 4.5(a–d)] is presented

as an active display zone, instead of a still index image, and can

be individually navigated in orthogonal planes. The similarity

indices from the retrieved VOIs are listed below the images.

Any of the retrieved images can be enlarged and the VOI

surface rendered, as shown in the right display zone in Figure

4.5(e). The segmentation result from which the features were

extracted can also be retrieved from the database for inspection

of the segmented VOIs. In this example, the combination

query was formulated to search for images having similar

dynamic functional behavior and size apparent in a malignant

brain tumor case. The query was formulated to include a

kinetic curve as a functional feature derived from an existing

tumor VOI in the database, of 2,000 voxels as the volume

parameter, with equal weights applied to the two selected

features. The highest-ranked result shown in Figure 4.5(a)

and enlarged in Figure 4.5(e) with the VOI surface rendered

is of a patient study with a prominent tumor (indicated by the

arrows). The result shows that the query successfully identiWed

VOIs with high kinetic behavior and user-deWned volume,

which is in agreement with the similarity indices for the

query features shown below the images [161].

4.3.3 Retrieval by Spatial Relationships

Spatial relationships are an important piece of medical know-

ledge, since a physician’s mental model of the patient includes

understanding not only the shape, size, and boundaries of

organs or lesions, but also his or her spatial extents in relation

to adjacent structures in the human body. Medicine thus crit-

ically relies on knowing where body structures are located and

their locations relative to other structures [173, 174]. Given that

FIGURE 4.4 The GUI of ‘‘query by VOI visual features’’ exempliWed by the rendered surface corresponding to the

user-selected ‘‘prefrontal lobes’’ in the orthogonal Zubal slices [161].

98 I Technological Fundamentals



abnormalities are deWned as gross deviations from anatomical

models, the spatial relationships of body structures are often

critical to the diagnosis, prognosis, and mechanics of human

disease. For example, spatial content in terms of relationships in

surgical or radiation therapy of brain tumors is very decisive,

because the location and related adjacent structures of a tumor

have profound implications on a therapeutic decision [175].

Low-level features cannot always capture or describe these com-

plex scenarios. Various spatial relationships have therefore been

modeled and used as content features for CBMIR to support

complex image queries like ‘‘Find all image cases demonstrating

the invasion of an adenoma into the sphenoid sinus’’ [173] and

‘‘Retrieve all images having a dangerous tumor on the left lung

above and approximately touching another tumor’’ [176], as

well as to assist the physician to understand and integrate the

complex relationships between patient symptoms, diagnostic

image features, and underlying disease pathology [174,

176–179].

In Petrakis [177], a CBMIR system for MRI scans and CT

images was developed based on ARGs (see Section 4.1.2.4),

which represent features of objects (regions) and relationships

between them. In an ARG descriptor, the objects are repre-

sented by graph nodes, and the relationships between objects

are constructed by arcs between such nodes. Both nodes and

arcs are labeled by the attribute values of the object’s features

and relationship properties, respectively. The individual ob-

jects are described by four attributes:

. Size (s): computed as the size of the area the object

occupies

. Perimeter (p): calculated as the length of the object’s

bounding contour

. Roundness (r): computed as the ratio of the smallest to

the largest second moment

. Orientation (o): deWned as the angle between the hori-

zontal direction and the aixis of elongation that is the

axis of least second moment

The spatial relationships between objects are described by

three properties:

1. Relative distance (rd): calculated as the minimum dis-

tance between surrounding contours

2. Relative orientation (ro): deWned as the angle with the

horizontal direction of line connecting the centers of

mass of the objects

FIGURE 4.5 The GUI of the query results in the VOI-FIRS [161].
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3. Relative position (rp): deWned by the values (�1, 0, 1)

corresponding to objects that are:

a. The Wrst inside the second (�1)

b. Outside each other (0)

c. The second inside the Wrst (1)

In Petrakis [177], the images were Wrst subjected to pre-

segmentation to obtain polygonal approximations of object

contours, followed by shape corrections or deletion of

insigniWcant segments by experts. The segmented objects

were further classiWed into predeWned classes corresponding

to normal or abnormal anatomical structures, such as ven-

tricle, hematoma, and tumor. The individual objects were then

represented by 5D feature vectors of the normalized form <s,

p, r, 1þcos(o), 1þsin(o)>, while relative orientations were

deWned by <rd, 1þrp, 1þcos(o), 1þsin(o)>.

Spatial-relationship models can also be used to retrieve

microscopic tissue images [174]. Conventional region- or

image-level search algorithms always assume that regions or

images consist of uniform pixel feature distributions. However,

complex tissue images normally contain many pixels and re-

gions that have diVerent feature characteristics. Two images

with similar regions may have very diVerent interpretations if

the regions have diVerent spatial arrangements [1, 174]. There-

fore, a visual grammar of spatial relationships may help in

describing these scenarios. In Aksoy et al. [174], the spatial

relationships between all region pairs in a tissue image were

represented by an n� n region relationship matrix:

R ¼ rij ,dij ,uij


 �
ji, j ¼ 1, . . . , n, 8i 6¼ j

�
,



(4:13)

where rij ¼ pij=pi is the ratio of the common perimeter to the

perimeter of the Wrst region; pi and pj are the perimeters of

the Wrst and second region, respectively, and pij is the com-

mon perimeter between two regions; dij ¼ kvi � vjk is the

distance between the centroids; vi and vj are the centroids of

the Wrst region and second region, respectively; and uij is the

angle between the horizontal (column) axis and the line join-

ing the centroids. Here, each region pair was assigned a degree

of their spatial relationship using fuzzy class membership

functions Vc with c 2 {DIS, BOR, INV, SUR, NEAR, FAR,

RIGHT, LEFT, ABOVE, BELOW}. Then the degree of mem-

bership of regions i and j to class c could be deWned as Vc(rij ,

dij , uij). These class functions were divided into three relation-

ship groups:

1. Perimeter class: DISjoined, BORdering, INVaded_by,

and SURrounded_by

2. Distance class: NEAR and FAR

3. Orientation class: RIGHT, LEFT, ABOVE, and BELOW,

since multiple relationships may be used to represent a

region pair; for example, BORdering from ABOVE, or

INVaded_by from LEFT

Based on these second-order region relationships, the higher-

order region relationships were constructed for more complex

combined relationship representation.

Since medical image content is very rich in properties,

characteristics, salient objects, and spatial relationships that

heavily relate to medical knowledge, it is of great interest to

retrieve medical images by combining spatial relationships

with high-level medical domain knowledge. In Chu et al.

[178], a knowledge-based approach to retrieve medical images

by feature and content with spatial and temporal constructs

was proposed with a four-layered semantic image model repre-

senting the spatial, temporal, and evolutionary nature of med-

ical objects. Chbeir et al. [176] developed the medical image

management system (MIMS), based on a global description of a

medical image to achieve an eYcient retrieval process integrat-

ing a high level of precision (especially in terms of spatial

relations) required by the medical domain. A spatial know-

ledge-based model (SKM) was integrated into the MIMS to

provide coherent and eVective objectivity of interpretation at

diVerent facets (or views) of medical images. Notwithstanding

that spatial-relationship approaches are included in Chu et al.

[178] and Chbeir et al. [176], considering the overall focus of

these works on the integration of high-level medical domain

knowledge in the CBMIR, more details of these two studies

will be given in Section 4.4.2.

4.4 Content-Based Medical Image
Retrieval by Combination of
Semantic and Visual Features

4.4.1 Retrieval by Semantic Pathology
Interpretation

The ultimate goal for CBMIR is to Wnd medically meaningful

similar cases. However, these cases may or may not present

medical images that are similar in the usual visual sense.

Sometimes similar visual features in images may not imply

similar diagnoses or symptoms, and vice versa. It thus appears

that combining visual features in the image with domain

knowledge to reach the right subset of relevant cases in the

database is a key to the success of CBMIR.

Sometimes medical images derived from a speciWc organ are

similar visually and diVer only in small details that can be

missed by untrained eyes, but such domain-speciWc subtle

diVerences may be of pathological signiWcance [94]. One

such domain is medical radiology, for which clinically useful

information consists of gray-level variations in highly localized

regions of the image [180]. For example, for HRCT images of

the lung, the number of pathology-bearing pixels as a fraction

of all the image pixels is so small that global signatures cannot

be used for image characterization. Moreover, the unclear

boundaries between the pathology-bearing pixels and those

bearing the image of the surrounding healthy part are diYcult
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to discern, and such PBRs are unlikely to be automatically

extracted. Since medical images frequently give rise to ambi-

guity in interpretation and in diagnosis, current retrieval tech-

niques using primitive image characteristics—such as color,

texture, and shape—are likely to be insuYcient for some

domain-speciWc CBMIR systems. One approach to remedy

such limitation is to associate high-level semantic information

with low-level visual image data, albeit such an approach is still

controversial in terms of subjectiveness [6].

In Shyu et al. [180], a physician-in-the-loop approach for

content-based retrieval of HRCT lung images was developed

and integrated into a CBMIR system called ASSERT (Auto-

matic Search and Selection Engine with Retrieval Tools). To

archive an image into the database, a physician spent a few

seconds to delineate the PBRs and any relevant anatomical

landmarks. The information regarding the pathology of the

lung may reside as much in the location of each PBR with

respect to the anatomical markers as it does in the character-

istics of the PBR. Four major perceptual categories used by the

physician for detecting pathology in the image included:

. Linear and reticular opacities

. Nodular opacities

. DiVuse regions of high attenuation (high-density areas)

. DiVuse regions of low attenuation (low-density areas)

After the extraction of PBRs, a lung region extraction algo-

rithm was used to determine the boundary of the lungs. For

feature extraction of the image, the system computed attribute

vectors that characterized the PBRs individually and the part of

the image that consisted of just the entire lung region. Each

PBR was characterized by a set APBR of commonly used physical

and spatial features such as texture, shape, and other gray-level

attributes. However, more importantly, the PBR also included

another set BPBR of attributes that measured the perceptual

categories used by physicians for identifying and interpreting

pathology in HRCT lung images. For APBR, a large number of

general-purpose attributes were calculated; in total, 255. This

did provide the user an exhaustive characterization of a PBR,

but in light of eYcient indexing and searching, only a small

subset of these attributes could be used for database indexing

and retrieval. Therefore, a greedy search algorithm called SFS

(sequential forward selection) was applied to reduce the

dimensionality of the feature space while retaining the ability

to accurately classify each image as belonging to its associated

disease pattern, resulting in only 12 general features in APBR ,

such as the area, contrast, entropy, and edginess histogram of

the PBR. For BPBR, 14 pathology attributes for measuring four

major perceptual categories, such as shape of the bronchial

wall, curvature of an adjacent Wssure, and adjacent artery size,

were computed. Finally, a 26-dimensional mixture pathology

feature vector FPBR ¼ < APBR , BPBR > could be formed as a

PBR feature descriptor that was maximally discriminatory with

regard to the diVerent diseases [180].

In this PBR pathology interpretation approach, the phy-

sician is an integral part of the whole CBMIR system, in the

sense that it is the physician who delineates the PBRs with

semantic pathology interpretation. Taking into account the

physician’s perceptual categories, which correlate strongly

with the various lung diseases, [181] proposed a better alter-

native to this method. It extracted only those general features

that measured the presence or the absence of the various

perceptual categories that the physicians used for disease diag-

nosis. That is, general features were used to describe the

perceptual categories and discriminate among them. After

determining what perceptual categories were present in a

PBR, the user could determine the disease of the PBR.

An advantage of such a hierarchical approach is that it is now

easier to decide what features are needed to characterize the

PBRs [181]. To support semantic integration and knowledge

exchange in the medical radiology domain, a CBMIR frame-

work called an ‘‘evolutionary system for semantic exchange of

information in collaborative environments’’ (‘‘Essence’’) was

developed and reported in Barb et al. [182], extracting and

managing visual content of lung pathologies. In Essence, an

XML-based shared ontology was developed based on the com-

mon knowledge from expert radiologists and information from

two well-known references, [183, 184]. Physicians were able to

build their personalized semantic search criteria by customizing

the degrees of satisfaction of features to existing semantic terms

and by adding new semantic terms to existing perceptual

categories. The system also supported reWning the shared

ontology by adapting the assignment of semantic terms to

image features based on individuals’ preferences [182].

Tang et al. [94] presented an intelligent I-Browse system that

combined low-level image processing technology with high-

level semantic interpretation for retrieving histological images

of the GI tract—a range of histological images originating

from the esophagus, stomach, small intestine (small bowel),

large intestine (large bowel), appendix, and anus. Before se-

mantic features extraction, two sets of relevant histological

features (also called semantic labels) in GI tract images were

Wrst deWned by consulting with histopathologists:

1. The 15 coarse feature labels represented by diVerent

uppercase letters—such as lumen (L), mucosa (M), sub-

mucosa (S), muscularis externa (E), and serosa/adventi-

tia (A), providing an overall structural description of the

image content that is important for the later reasoning

procedures

2. The 63 Wne feature labels indicated by diVerent numbers

(1, 2, . . . , 63), such as adipose tissue #1, lumen #33,

stomach–junction of lumen and foveolae #63, for distin-

guishing diVerent visual appearances within each coarse

region

To enable automatic analysis and interpretation, the original

microscopy image was Wrst partitioned as a set of subimages,
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each of 64� 64 pixels. For each subimage, via the visual feature

detector (VFD), a set of coarse features (normalized color and

gray-level histograms) were extracted and passed to a three-

layer neural network of multilayer perceptrons (MLPs) for

classifying the subimage into one of the 15 coarse feature

classes, by assigning a coarse feature label to the subimage.

Using the VFD, a set of semi-Wne features (means, standard

deviations of the gray and color levels, and Gabor Wlters) were

also computed and used to classify the subimage into one of

the 63 Wne feature classes using a Bayes minimum risk classiWer

via marking a Wne feature label to the subimage. Since each

Wne class actually corresponded to a coarse class, another

coarse label result could be obtained for the subimage from

these semi-Wne features, whose classiWed Wne class result could

be matched into one of the coarse labels. Therefore, each sub-

image was with two letters and one number, representing two

coarse feature labels and one Wne feature label, respectively,

and the whole microscopy image could be presented with

three matrices (the label map). With these label matrices, the

semantic analyzer (SA) went through an iteration process to

reWne and correct the Wne histological feature label of each

subimage according to the histological context in the know-

ledge base (KB) and was able to produce a set of hypotheses on

the labels associated with subimages by the hypothesis generator

(HG), if those labels were deemed erroneously detected by the

extracted coarse and semi-Wne features. Based on the hypoth-

eses, a number of Wne features were invoked to extract and

conWrm the visual features within the suspected regions. Such

analysis-and-detection cycles iterated until the semantic ana-

lyzer found a coherent result and no further change was

needed. The reWned Wnal label map was then used to construct

the semantic content representation structure called Papillon, a

codename used in the I-Browse system, and could be used to

automatically generate the textual annotation for the image in

the database with the annotation generator (AG).

When the query was submitted by free text (natural lan-

guage), the free text analyzer (FTA) would extract the informa-

tion in the query and convert it into the Papillon. The Papillon

actually bridged information from diVerent media (image and

text), linking together the SA, AG, and FTA components in the

system. Therefore, when the query was issued by sample image

or free text, their semantic content in the Papillon could

be used for the retrieval [94, 95, 185–189]. Some other seman-

tic description-based CBMIR systems include a property

concept frame (PCF) approach for retrieval of histopathology

images [190] and a brain CT image retrieval system based on

the hierarchical medical image description model [191].

4.4.2 Retrieval Based on Generic Models

In light of the heterogeneous forms presented in medical

images, most CBMIR systems are task speciWc; that is, they

are limited to a particular modality, organ, or diagnostic study

and, hence, are usually not directly transferable to other

medical applications [4, 6, 192]. Medical knowledge arises

from anatomical and physiological information, requiring

regional features to support diagnostic queries. However, in-

terpretation of medical images depends on both image and

query context. Since the context of queries is unknown

when images are entered into the database, the number and

kind of image features can be especially subject to continuous

evolution, and the CBMIR scheme must be generic and Xexible

[4, 192, 193].

To conduct eYcient medical image retrieval, there is a need

for building comprehensive data models capturing the struc-

tured abstracts about images, and supporting more sophisti-

cated query predicates based not only on primitive image

characteristics, but also on generic semantic features with the

inclusion of knowledge. Chu et al. [178] developed a CBMIR

system called KMeD, in which a knowledge-based semantic

temporal image model was included containing four layers:

(1) the raw data layer (RDL), with image collection; (2) the

feature and content layer (FCL), with diVerent features extracted

from the image content, including shape, spatial-relationship

characteristics, and temporal features; (3) the schema layer

(SL), representing entities and relationships (spatial, temporal,

and evolutionary) among objects based on the features in the

previous layer; and (4) the knowledge layer (KL), containing

hierarchical structures called type abstraction hierarchies (TAHs)

for classifying shape and spatial-relationship features.

The FCL contains shape features such as type, area, vol-

ume, diameter, length, and circumference, and spatial-rela-

tions features between a pair of objects, including orthogonal

relations (i.e., east, south, southeast, etc.) and containment

relations (i.e., invades, contains, etc.). In SL, the image objects

can be represented as visual entities with textual attributes

and visual attributes, while multiple versions of an object over

a period of time (e.g., the stages undergone by a tumor

during the cancer process of a particular patient) can be

linked to form a stream entity for that time period. Moreover,

the evolutionary object constructs for evolution, fusion, and

Wssion, while the temporal-relation object constructs the tem-

poral relationships between peer objects and between an

object and its super or aggregated type. The TAHs in the

KL have been designed as hierarchical structures so that at

higher levels of abstraction, more generalized concepts are

speciWed (i.e., a wider range of feature values are used), and

at lower levels of abstraction, more speciWc concepts are

described (i.e., a narrower range of feature values) [173,

178, 194]. In the KMeD system, the knowledge-based tem-

poral, evolutionary, and spatial features extracted from the

images are classiWed and captured in the image data model

and stored in tables. For example, the query ‘‘Retrieve all

image cases demonstrating a pituitary gland microadenoma

that evolved into a macroadenoma with suprasellar extension

pressing against the optic chiasm’’ can be given by searching a

pituitary gland–microadenoma containment relationship

table, then following the evolutionary path that leads to a

102 I Technological Fundamentals



macroadenoma and selecting the instances from the outside

contact relationship table between a macroadenoma and the

optic chiasm [173].

Existing CBIR systems hardly address all medical image

properties, since medical images have diVerent acquisition

parameters and modalities and speciWc noise characteristics

for each imaging system. As such, the development of global

features that can represent an entire medical image database

seems to be practically infeasible. Aiming to provide eYcient

retrieval of generic medical images with coherent and eVective

objectivity of interpretation at diVerent facets (or views) of

medical images, Chbeir and Favetta [195] proposed a global

description of medical images in which a hyperspaced image

data model was constructed [175, 196]. The data model was

structured as a multispaced form in which each space contained

a set of features (contextual, physical, spatial, and semantic),

and considered the medical image as a composition of context-

ual and content feature spaces. The contextual space collects the

general data attached to the image without taking its visual

content into account. It does this through three components:

1. The independent context (e.g., the medical specialty,

patient name, acquisition date) has no impact on the

image description and, due to patient privacy and other

legal constraints, needs careful treatment and can be

managed separately.

2. The pseudo-independent context (e.g., the patient’s age

and gender, the image quality) is vital for CBMIR,

since it contains very important background knowledge

and may help in determining methods to be used to

construct and compare image content features. For

example, the age of the patient is a determinant factor

when considering organ shapes.

3. The dependent context (e.g., image type, incidence [sag-

ittal/coronal/axial/others], the scene described as a trip-

let <title, organ, alteration>, diagnostic report, voice

report) can signiWcantly help in the image description.

For instance, with help from natural language processing

or voice segmentation, the diagnostic report can be used

to clarify missing factors in some situations, such as

‘‘Describing a lung X-ray of a person remains incomplete

and insigniWcant if we ignore that he smokes.’’

The content space, on the other hand, provides a global

image description and can be used for various query types.

In general, a medical image is considered to be composed of a

set of salient image objects in three diVerent forms:

1. The anatomical organ (AO) presents the medical organs

found in the image, such as the brain, lungs, hands, etc.,

and gathers a set of medical regions. It is also called the

organ of interest (OOI).

2. The medical region (MR) describes the internal structure

of the AO, such as the left ventricle and the right lobe. It

allows one to locate any anomaly and is synonymous

with the ROI.

3. The medical sign (MS) concerns either medical anoma-

lies (such as tumors, fractures, and lesions) identiWed

and detected by physicians, or unidentiWed (or variable)

objects found in the image. Sometimes it is referred to as

the PBR.

Each salient object (AO, MR, or MS) is projected on the

following subspaces:

. The physical subspace contains low-level physical proper-

ties of the image content, such as various global or local

color and texture features that can be extracted manually,

semi-automatically, or automatically, depending on the

contextual space (image type, format, quality, etc.) and

may be used later to analyze other subspaces. Moreover,

the physical analysis can be achieved based on the

pseudo-independent and dependent contexts. For

example, the patient’s age is a determinant factor when

considering the medical organ shape. The type of the

image determines the appropriate color extraction

approach.

. The spatial subspace holds middle-level geometric fea-

tures of salient objects such as the shape and spatial-

relationship features.

. The semantic subspace concerns high-level semantic prop-

erties of salient objects. The objective of the semantic

subspace is to integrate high-level features of objects

and relations judged primordial by medical users for

image description. However, such semantic feature

analysis may require human intervention, since explicit

semantic objects must be recognized. The semantic sub-

space is usually described manually by the user due to the

fact that the medical domain is very complex, and each

term may have several meanings depending on the con-

text. Medical signs can be codiWed by some existing,

albeit controversial, labeling codes for disease classiWca-

tion such as the ICD-10 (International ClassiWcation of

Diseases, 10th Revision) [197] or the UniWed Medical

Language System (UMLS) [198].

The hyperspaced image data model previously discussed has

been integrated into the MIMS prototype [176, 196, 199–201].

Lehmann et al. [192] presented a general structure for con-

tent-based image retrieval in medical applications (IRMA)

based on a generic multistep approach including categorization

of the entire image, registration with respect to prototypes,

extraction and query-dependent selection of local features,

hierarchical blob/object representation, and image retrieval.

To cope with the complexity of medical knowledge, IRMA

split the whole retrieval process into seven consecutive steps,

with each step representing a higher level of image abstraction,

reXecting an increasing level of image content understanding:
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1. Image categorization (based on global features). This can

determine the imaging modality and its body orientation

as well as the examined body region and biological

system for each image entry with a detailed hierarchical

coding scheme [202] to supplement the existing stan-

dard (e.g., DICOM).

2. Image registration (in geometry and contrast). Diagnos-

tic inferences derived from medical images are normally

deduced from an incomplete but continuously evolving

model of normality [4]. Therefore, registration is based

on prototype images deWned for each category by experts

with prior medical knowledge or by statistical analysis,

in which the prototypes can be used for determination of

parameters for rotation, translation, scaling, and con-

trast adjustment.

3. Feature extraction (using local features). This derives

various local image descriptions with either a category-

free or a category-speciWc approach. Like the global

features for categorization, the number of local feature

images is extensible.

4. Feature selection (category and query dependent). The

separation of feature selection from feature extraction

enables the former task to be retrieval dependent. It can

integrate both the image category and the query context

into the abstraction process with a precomputed set of

adequate features. For instance, the retrieval of radio-

graphs with respect to bone fractures or tumors can be

conducted using a shape-based or texture-based feature

set, respectively.

5. Indexing (multiscale blob representation). This provides

an abstraction of the previously generated and selected

image features, resulting in a compact image description

via clustering of similar image parts into regions

described by invariant moments as ‘‘blobs.’’ Thereafter,

the blob representation of the image is adjusted with

respect to the parameters determined in the registration

step, yielding a multiscale ‘‘blob tree.’’

6. IdentiWcation (incorporating prior knowledge). This pro-

vides the link between medical a priori knowledge and

certain blobs generated during the indexing step. There-

fore, it is the fundamental basis for introduction of high-

level image understanding by analysis of regional or

temporal relationships between blobs.

7. Retrieval (on abstract blob level). This is performed by

searches in the hierarchical blob structures. This retrieval

step requires online computations, while all other steps

can be performed automatically in batch mode at image

entry time (oZine computation).

The above multistep approach has been applied to the IRMA

database of radiographs (consisting of medical images of six

major body regions taken from daily routine), narrowing the

gap between the semantic imprint of images and any alpha-

numeric description, which is always incomplete [192, 193].

Some other CBMIR systems that provide varied medical

image retrieval include I2C (Image Indexing by Content)

[203], COBRA (Content-Based Retrieval Architecture) [204],

ImageEngine [205], and MedGIFT [122, 206, 207]. MedGIFT

in particular, with its integration of the GNU Image Finding

tool (GIFT) [208], the Multimedia Retrieval Markup Language

(MRML) [209], and CasImage, provides an open-source

framework of reusable components for a variety of CBMIR

systems to foster resource sharing and avoid costly redevelop-

ment.

4.5 Content-Based Medical Image
Retrieval by Physiologically
Functional Features

The CBMIR techniques introduced in this chapter so far are

designed mainly for anatomical images that capture human

anatomy at diVerent levels and provide primarily structural

information. Unlike those anatomical images, functional/mo-

lecular images such as PET and SPECT allow the in vivo study

of physiological and biochemical processes, providing func-

tional information previously not available. This is what most

distinguishes medical images from general images [86, 210,

211]. Physiological function can be estimated at the molecular

level by observing the behavior of a small quantity of an

administered substance tagged with radioactive atoms. Images

are formed by the external detection of gamma rays emitted

from the patient when the radioactive atoms decay. Glucose

metabolism, oxygen utilization, and blood Xow in the brain

and heart can be measured with compounds labeled with

carbon (11C), Xuorine (18F), nitrogen (13N), and oxygen

(15O), which are the major elemental constituents of the body.

Existing CBMIR approaches may not be optimal when

applied to functional images due to the latter’s unique charac-

teristics with regard to the inherent knowledge of the disease

state as it aVects the physiological and biochemical processes

before the morphological change of the body. Such quantita-

tive physiological information inside the functional image

content is unlikely to be retrieved by common image retrieval

techniques using color, texture, and shape features. Color is

not captured in the imaging process of functional features,

whose images are usually acquired and displayed in grayscale

or pseudo-color. Therefore, the color feature is unlikely to be

applicable to functional images. Texture is likely to be con-

founded by the statistical noise in functional images. Shape

is also unlikely to be relevant to function. Indeed, function is

likely to result in changes in apparent shape during acquisition

as the tracer redistributes. It appears that the development of

CBMIR for functional images should take into account speciWc

physiologically functional features [161, 212].

An early study on content-based retrieval of dynamic PET

functional images was reported in Cai et al. [212]. Based on
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this work, Kim et al. [161] recently developed a new VOI-based

retrieval system for multidimensional dynamic functional

[18F]2-Xuoro-deoxy-glucose (FDG) brain PET images, which

are widely used to determine the local cerebral metabolic rate of

glucose (LCMRGlc) and depicts the glucose consumption and

energy requirements of various structural and functional com-

ponents in the human brain. In dynamic functional imaging

studies, prior knowledge has the form of a tracer kinetic model

to a time series of PET tracer uptake measurements. Such

functional information can be deWned in terms of a mathemat-

ical model m(t jp) (where t ¼ 1,2, . . . ,T are discrete sampling

times of the uptake measurements, while the number of con-

ventional scan time intervals T is 22, and p is a set of the model

parameters), whose parameters describe the delivery, transport,

and biochemical transformation of the tracer. The input func-

tion for the model is the plasma time activity curve (PTAC)

obtained from serial blood samples. Reconstructed PET images

provide the tissue time activity curve (TTAC), or the output

function, denoted by f(t) for every voxel in the image.

Application of the model on a voxel-by-voxel basis to meas-

ured PTAC and TTAC data using certain rapid parameter

estimation algorithms [213, 214] yields physiological paramet-

ric images. In Kim et al. [161], a four-dimensional fuzzy

c-means cluster analysis [215, 216] was used to construct

VOI functional groups consisting of voxels that have similar

kinetic behaviors. The physiological TTACs were Wrst extracted

for each of the N nonzero voxels in the image to form the

kinetic feature vector comprising the voxel values at the dy-

namic time sequence of tracer uptake measurements. After

applying the optimal image sampling schedule (OISS) tech-

nique [217, 218] for the dynamic FDG brain PET image study

based on the Wve-parameter FDG model, the dimension of

TTAC vectors was reduced from 22 to 5, while the signal-to-

noise ratio of the individual image frames was increased for

betterclustering output. The fuzzy c-means cluster analysis

was then applied to assign each of the N feature vectors to a

set number C of distinct cluster groups and minimized the

objective function J:

J ¼
XN

i¼1

XC

j¼1

uP
ij D

2
ij , (4:14)

where P (1 � P � 1) is a weighting exponent on each fuzzy

membership, which determines the amount of fuzziness of the

resulting classiWcation, and uij is the membership degree of the

ith feature vector in the cluster j. The similarity measure

between the ith feature vector f i tð Þ and the cluster centroid

f cj
tð Þ of the jth cluster group cj was computed using the

Euclidean distance:

Dij ¼
XT

t¼1

s tð Þ f i tð Þ � f cj
tð Þ

� 2

" #1=2

, (4:15)

where s(t) is a scale factor of time point t equal to the duration

of the tth frame divided by the total dynamic acquisition time.

The scale factor gives more weight to the later frames with

longer scan time durations, which contain more reliable data.

The minimization of J was achieved by iteratively updating uij :

uij ¼
XC

k¼1

Dij

Dik

� 	 2
P�1

" #�1

(4:16)

and the cluster centroids f cj
tð Þ:

f cj
tð Þ ¼

PN
i¼1 uP

ij f i tð ÞPN
i¼1 uP

ij

: (4:17)

Therefore, a probabilistic weighting was assigned to every

voxel i, representing it to be likely a member of each cluster j.

For any voxel, the sum of the assigned membership degrees

was 1.0. The procedure was terminated when the convergence

inequality

maxij umþ1
ij � um

ij

��� ���n o
> « (4:18)

was satisWed, where m was the iteration step and 0 < « < 1.

Upon convergence, a cluster map was created by assigning to

each voxel a value equal to the cluster number for which it had

the highest degree of fuzzy membership. From the derived

clustered results, the region-growing algorithm [145] was ap-

plied to the voxels in each cluster to construct the VOIs for

grouping the voxels that were spatially connected and separat-

ing the diVerent structures that may have been classiWed into a

cluster due to the similarity of the voxels’ kinetic behavior. The

TTAC feature vectors extracted from the VOIs were indexed as

physiologically functional features and used as a key query

method in the proposed VOI-FIRS [161].

Figure 4.6 shows the GUI of the query component ‘‘query by

functional and physiological features’’ in VOI-FIRS. The user is

allowed to manually draw the TTAC feature curve with the

labeled grid or to select from a list of predeWned sample

TTACs if needed. Once the selection has been made, the TTAC

curve can be manually adjusted for individual TTAC sampling

points. As the TTAC curve is concentrated in the early temporal

frames, the drawn curve can be zoomed for closer inspection.

An example of dynamic image retrieval based on physiolog-

ically functional features is illustrated in Figure 4.7. The sample

TTAC, which approximates a pattern found in gray matter of

dynamic brain FDG-PET images (as shown in Figure 4.7(a)),

and the 3D location of the ‘‘right thalamus’’ selected from the

labeled structures in the Zubal phantom panel (Figure 4.7(b))

were set as the query features. Weighting was set to 50% for

the functional feature and 50% for the 3D volumetric location

feature (see Section 4.3.2). The highest-ranked retrieved VOI

is shown in Figure 4.7(c), where the query identiWed a VOI

representing the right thalamus. Figure 4.7(d) presents the

top-ranked result from changing the location feature to ‘‘left

thalamus.’’ The result demonstrated that by retrieving based
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(a) (b)

FIGURE 4.6 The GUI of ‘‘query by physiological features’’ shows the user-drawn TTAC curve (a) and the retrieved

VOIs with their TTAC curves and similarity indices (b) [161].

Volume ID: s06586
Study: #s06

TTAC: 214.36
Location: 3.24

TTAC: 269.82 
Location: 4.62

Volume ID: s02483 
Study: #s02

(a) (c) (d)

(b)

FIGURE 4.7 (a) The sample TTAC curve; (b) selection of a location (right thalamus) in the standard

atlas (Zubal) panel; (c) retrieved result with the combination query features of (a) and (b);

(d) retrieved result with (a) and a diVerent location feature (left thalamus) as the query feature [161].



on the combination of functional features and the spatial

properties of the dynamic PET images in the 3D volumetric

location feature, VOIs with the user-deWned kinetic TTAC

characteristics could be successfully identiWed, which might

not have been possible from the functional feature alone

[145, 196].

4.6 Summary

This chapter introduced CBIR and its key components, includ-

ing image feature extraction, similarity comparison, indexing

scheme, and interactive query interface. The need for CBIR in

the medical domain (CBMIR) and its related challenges

were discussed, followed by a detailed review of the current

major CBMIR techniques in four diVerent categories: retrieval

based on physical visual features (color and texture); retrieval

based on geometric spatial features (shape, 3D volumetric

features, and spatial relationships); retrieval by combination

of semantic and visual features (semantic pathology interpret-

ation and generic models); and retrieval based on physiologic-

ally functional features. The success of CBMIR can open up

many new vistas in medical services and research, such as in

disease tracking, diVerential diagnosis, noninvasive surgical

planning, clinical training, and outcomes research.
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4.7 Exercises

1. Describe the mechanism of CBIR.

2. What are the primary diVerentiating factors between CBIR

and CBMIR?

3. Texture as a visual feature has been successfully applied in

numerous CBMIR systems (e.g., MRI head scans, HRCT

images of the lung). What is an image texture, and what

are its attributes that enable content-based retrieval?

4. Why can 3D volumetric features be used in CBMIR? What

are the advantages and disadvantages of 3D volumetric

features versus 2D shape features?

5. Give an example of a CBMIR application in clinical deci-

sion support.

6. What are the advantages and disadvantages of combining

semantic and visual features in CBMIR? How does com-

bining these two components exceed expected results from

using just one?
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5.1 Introduction

In vivo imaging techniques like positron emission tomography

(PET) and magnetic resonance imaging (MRI) are providing

crucial functional information at the organ/tissue level of the

human body. However, this functional information is not

directly available in quantitative terms by simply looking at

the images. This usually requires an interpretation of the image

with a mathematical model of the underling physiologic pro-

cess. Various classes of models (e.g., models of data or input-

output, models of system, graphic models) have been pro-

posed to interpret PET and MRI data. Focus here is on a

speciWc class of model of system, compartmental modeling,

which is the most frequently used.

Compartmental models are widely employed to solve a

broad spectrum of physiologic and clinical problems related

to the distribution of materials in living systems. The govern-

ing law of these models is conservation of mass, and the

models describe the events in the system by a Wnite number

of variables; that is, they are described by ordinary diVerential

equations. These characteristics make them very attractive to

users because they formalize physical intuition in a simple and

reasonable way. Their usefulness in research, especially in con-

junction with tracer experiments, has been demonstrated

at whole-body, organ, and cellular levels. Examples and refer-

ences can be found in several books [1–5]. Purposes for which

compartmental models have been developed are various, but

the most relevant here are the following:

1. IdentiWcation of system structure. Such models examine

diVerent hypotheses regarding the nature of speciWc

physiologic mechanisms.

2. Estimation of unmeasurable quantities. These quantities

might include the estimation of internal parameters and

other variables of physiologic interest.

3. Simulation of the intact system behavior where ethical or

technical reasons would not allow direct experimenta-

tion on the system itself.

In this chapter, we will Wrst brieXy review some fundamentals

on compartmental models focusing on tracee and tracer kinet-

ics. Subsequently, we discuss some aspects of model identiWca-

tion and parameter estimation. Finally, we will show the power

of compartmental modeling methodology in interpreting PET

and nuclear magnetic resonance (NMR) functional imaging

data.

5.2 Compartment Models

Before discussing the theory of compartmental models, we Wrst

need to give some deWnitions. A compartment is an amount of

material that acts as though it is well mixed and kinetically

homogeneous. A compartmental model consists of a Wnite

number of compartments with speciWed interconnections

among them. These interconnections represent a Xux of
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material which physiologically represents transport from one

location to another or a chemical transformation or both. An

example is shown in Figure 5.1. Control signals arising in

neuro-endocrine systems can also be described. In this case,

there can be two separate compartmental models: one for the

hormone and one for the substrate, and they interact via

control signals. An example is shown in Figure 5.2.

Given our introductory deWnitions, it would be useful to

discuss possible candidates for compartments before explain-

ing what we mean by a compartment’s well-mixed and kinetic

homogeneity. Consider the notion of a compartment as a

physical space. Plasma is a candidate for a compartment.

A substance such as plasma glucose could be a compartment,

and zinc in bone could be a compartment also as could insulin

in b-cells. In some experiments, several diVerent substances in

plasma can be followed, such as glucose, lactate, and alanine.

Thus, there can be more than one plasma compartment in the

same experiment, one for each of the substances being studied.

This notion extends beyond plasma. Glucose and glucose-6-

phosphate might need to be shown by two diVerent compart-

ments, depending on whether they are found in liver or muscle

tissue. Thus, a single physical space or substance may actually

be represented by more than one compartment, depending on

the components measured or their location.

In addition, one must distinguish between compartments

that are accessible and nonaccessible for measurement.

Researchers often try to assign physical spaces to the nonac-

cessible compartments. This is a very diYcult problem which is

best addressed by the recognition that a compartment is actu-

ally a theoretic construct, one which may in fact combine

material from several diVerent physical spaces. To equate a

compartment with a physical space depends upon the system

under study and the assumptions made about the particular

model.

With these notions of what might constitute a compartment

in mind, it is easier to deWne the concepts of well-mixed and

kinetic homogeneity. Well-mixed means that any two samples

taken for a compartment at the same time would have the

same concentration of the substance being studied and there-

fore would be equally representative. Thus, the concept of well-

mixed relates to the uniformity of the information contained

in a single compartment.

Kinetic homogeneity means that every particle in a com-

partment has the same probability of taking any pathway

leaving the compartment. When a particle leaves a compart-

ment, it does so because of metabolic events related to trans-

port and utilization, and all particles in the compartment

have the same probability of leaving due to one of these

events.

This process of combining material with similar character-

istics into collections that are homogeneous and that behave

identically is what allows one to reduce a complex physiologic

system into a Wnite number of compartments and pathways.

The number of compartments required depends both on the

system being studied and on the richness of the experimental

conWguration. A compartmental model is clearly unique for

each system studied because it incorporates known and

hypothesized physiology and biochemistry speciWc to that

system. It provides the investigator with insights into the

system’s structure and is only as good as the assumptions

that are incorporated into its structure.

5.2.1 Tracee Model

In this section, we will discuss the deWnition of the tracee

model using Figure 5.3. This is a typical compartment, the

ith compartment. The tracee model can be formalized by

deWning precisely the Xux of tracee material into and out of

this compartment and can be establishing the measurement

AA

BB

AA

BB

FIGURE 5.1 The compartmental system model showing the inter-

connections among compartments. The administration of material

into and sampling from the accessible pools are indicated by the input

arrow and measurement symbols (dotted line), respectively. The solid

arrows represent the Xux of material from one compartment to

another.

3 1 2

54

Substrate

Hormone

FIGURE 5.2 An example of a multicompartmental model of an

endocrine-metabolic control system. The top and bottom multi-

compartmental models describe the metabolism of the substrate

and hormone, respectively. The dotted arrows represent control

signals. For example, the dotted arrow from compartment 3 to the

input arrow into compartment 4 indicates that the amount of

material in compartment 3 controls the input of material into

compartment 4.
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equation if this compartment is accessible for sampling. Once

this is understood, the process of connecting several such

compartments together into a multicompartmental model

and writing the corresponding equations is easy.

Let Figure 5.3 represent the ith compartment of an

n-compartment model of the tracee system with Qi denoting

the mass of the compartment. The arrows represent Xuxes into

and out of the compartment. The input Xux into the compart-

ment from outside the system, the de novo synthesis of ma-

terial, is represented by Fi0; the Xux to the environment and

therefore out of the system by F0i; the Xux to and from

compartment j by Fji and Fif , respectively; and Wnally,

Uh(h ¼ 1, . . . ,r) denotes an exogenous input. All Xuxes

Fij (i ¼ 0,1, . . . ,n; j ¼ 0,1, . . . ,n; i 6¼ j) and masses Qi(i ¼
1,2, . . . ,n) are � 0. The dashed arrow with a bullet indicates

that the compartment is accessible to measurement. This meas-

urement is denoted by C1(1 ¼ 1, . . . ,m);where we assume it is a

concentration, C1 ¼ Qi=Vi where Vi is the volume of compart-

ment i. As already noted, usually only a small number of

compartments are accessible to test inputs and measurements.

By using the mass balance principle, one can write for each

compartment

_QQi(t) ¼ �
Xn

j¼0
j 6¼i

Fji(Q1(t) � � � ,Qn(t))þ
Xn

j¼1
j 6¼i

Fij(Q1(t), � � � ,Qn(t))

þ Fi0(Q1(t), � � � ,Qn(t))þ Uh(t) (5:1)

C1(t) ¼ Q1(t)

Vi

Qi(0) ¼ Qi0;

where _QQi(t) ¼ dQi(t)

dt
and t > 0 is time, the independent vari-

able. All the Xuxes Fij, Fi0, and F0i are assumed to be functions

of the compartmental masses Qi.

If one writes the generic Xux Fji(j ¼ 0,1, . . . ,n; i ¼ 1,2, . . . ,n;

j 6¼ i) as

Fij(Q1(t), � � � , Qn(t)) ¼ kij(Q1(t), � � � ,Qn(t))Qi(t) (5:2)

where kji( � 0) denotes the fractional transfer coeYcient be-

tween compartment i and j, Equation 5.1 can be rewritten as:

_QQi(t) ¼ �
Xn

j¼0

j 6¼i

kij(Q1(t), . . . , Qn(t))Qj(t)

þ
Xn

j¼1
j 6¼i

kji(Q1(t), . . . ,Qn(t))Qj(t)

þ Fi0(Q1(t), . . . ,Qn(t))þ Uh(t)

C1(t) ¼ Q1(t)

Vi

Qi(0) ¼ Qi0:

(5:3)

Equation 5.3 describes the nonlinear compartmental model of

the tracee system. To make the model operative, one has to

specify how the kij and Fi0 depend upon the Qi. This obviously

depends upon the system being studied. Usually the kij and Fi0

are functions of one or a few of the Qi. Some possible examples

include the following:

. kij are constant, and thus do not depend upon any Qi.

kij(Q1(t), . . . ,Qn(t)) ¼ kij ¼ constant: (5:4)

. kij are described by a saturative relationship such as

Michaelis-Menten.

kij(Qj(t)) ¼ VM

Km þ Qj(t)
(5:5)

or the Hill equation:

kij(Qj(t)) ¼
VMQm�1

j (t)

Km þ Qm
j (t)

: (5:6)

Note that when m ¼ 1 in the above, Equation 5.6 becomes

Equation 5.5.

. kij is controlled by the arrival compartment, such as by a

Langmuir relationship.

kij(Qj(t)) ¼ a 1�Qi(t)

b

� �
: (5:7)

. kij is controlled by a remote compartment diVerent from

the source (Qj) or arrival (Qi) compartments. For

example, using the model shown in Figure 5.2, one

could have:

k02(Q5(t)) ¼ g þQ5(t) (5:8)

or a more complex description such as:

k02(Q2(t), Q5(t)) ¼ Vm(Q5(t))

Km(Q5(t))þ Q2(t)
; (5:9)

where now one has to further specify how Vm and Km

depend on the controlling compartment, Q5.

ci = Qi/Vi

Qi

Fi0

F0i

Uh

Fij

Fij

FIGURE 5.3 The ith compartment of an n-compartmental model

showing Xuxes into and out of the compartment, inputs, and meas-

urements.
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The input Fi0 can also be controlled by remote compart-

ments. For example, for the model shown in Figure 5.2, one

can have:

F30(Q4(t)) ¼ d

«þ Q4(t)
(5:10)

F40(Q3(t)) ¼ hþ lQ3(t)þm _QQ3(t): (5:11)

The nonlinear compartmental model given in Equation 5.3

permits the description of a physiologic system in nonsteady

state under very general circumstances. Having speciWed the

number of compartments and the functional dependencies,

there is now the problem of assigning a numerical value to

the unknown parameters that describe them. Some of them

may be assumed to be known, but some need to be tuned to

the particular subject studied. Often, however, the data are not

enough to arrive at the unknown parameters of the model, and

a tracer is employed to enhance the information content of

the data.

5.2.2 Tracer Model

In this section, we will formalize the deWnition of the tracer

model using Figure 5.4. This parallels exactly the notions intro-

duced above, except now we follow the tracer, denoted by low-

ercase letters, instead of the tracee. The link between the two, the

tracee and tracer models, is given in the following section.

Suppose an isotopic radioactive tracer is injected (denoted

by uh) into the ith compartment, and denote qi its tracer mass

at time t (Figure 5.4). Assuming an ideal tracer, the tracer–

tracee indistinguishability ensures that the tracee rate constants

kij also apply to the tracer. Again as with the tracee, the

measurement is usually a concentration, yl(t) ¼ qi(t)=Vi.

The tracer model, given the tracee model (Equation 5.3), is:

_qqi(t) ¼ �
Xn

j¼0

j 6¼i

kji(Q1(t), . . . ,Qn(t))qj(t)

þ
Xn

j¼0
j 6¼i

kji(Q1(t), . . . ,Qn(t))qj(t)

þ uh(t) qi(0) ¼ 0

(5:12)

y1(t) ¼ qi(t)

Vi

:

Note that the endogenous production term Fi0 in Equation 5.3

does not appear in Equation 5.12; this is because this term

applies only to the tracee.

5.2.3 Linking Tracer and Tracee Models

The model necessary to arrive at the nonaccessible system

properties is obtained by linking the tracee and tracer models

to form the tracer–tracee model; this model is described by

Equations 5.3 and 5.12. The problem one wishes to solve is

how to use the tracee data Cl(t) and the tracer data yl(t) to

obtain the unknown parameters of the model. In the general

setting, with the tracee system in nonsteady state, the problem

is complex. The diYculty is reduced considerably when the

tracee system is in steady state. Because this situation is also the

experimental protocol most frequently encountered in PET

and NMR functional imaging studies, in the following we

will consider this important special case.

If the tracee is in a constant steady state, the exogenous input

Uh is zero, all the Xuxes Fij and masses Qi(t) in the tracee model

(Equation 5.1) are constant, and the derivatives Qi(t) are zero.

As a result, all the fractional transfer coeYcients kij are constant.

The tracee and tracer models given in Equations 5.3 and

5.12, respectively, thus become

0 ¼ �
Xn

j¼0
j 6¼i

kjiQi(t)þ
Xn

j¼1
j 6¼i

kijQj þ Fi0 Qi(0) ¼ Qi0 C1 ¼
Qi

Vi

(5:13)

_qqi(t)¼�
Xn

j¼1

j 6¼i

kjiqi(t)þ
Xn

j¼1

j 6¼i

kijqj(t)þ uh(t) qi(0)¼ 0 (5:14)

yl(t) ¼ qi(t)

Vi

:

This is an important result: The tracer compartmental model is

linear and time-invariant if the tracee is in a constant steady

state, irrespective of whether it is linear or nonlinear. The

modeling machinery for Equations 5.13 and 5.14 is greatly

simpliWed with respect to the nonlinear models shown in

Equations 5.3 and 5.12. The strategy is to use the tracer data

to arrive at the kij and the accessible pool volume Vi of

Equation 5.14, and subsequently use the steady-state tracee

model of Equation 5.13 to solve for the unknown parameters

Fi0 and the remaining Qi.

5.3 Model IdentiWcation

With the tracer-tracee model described by Equations 5.13 and

5.14, we can now proceed to model identiWcation, the process

by which we can arrive at a numeric value of the unknown

qi
fji

fij

f0i

fi0
yi = qi/Vi

uh

FIGURE 5.4 The ith compartment of an n-compartmental tracer

model showing Xuxes into and out from the compartment, inputs,

and measurements.
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model parameters from the tracer (and tracee) actual meas-

urements. Let’s assume that measurement error is additive;

thus, tracer actual measurements (assume the scalar case) are

described at sample time ti:

z(ti) ¼ y(ti)þ v(ti) i ¼ 1, . . . ,N; (5:15)

where v(ti) is the tracer measurement error. The error is

usually given a probabilistic description in that it is assumed

to be independent and often Gaussian. With Equation 5.15

and the model Equations 5.13 and 5.14, the compartmental

model identiWcation problem can now be deWned. We can

begin to estimate the unknown model parameters from the

z(ti) noisy data contained.

Before solving this problem, however, we must deal with a

prerequisite issue for the well-posedness of our parameter

estimation. This is the issue of a priori identiWability. As seen

below, this requires reasoning that uses ideal noise-free data,

(i.e., Equations 5.13 and 5.14).

5.3.1 A priori IdentiWability

A priori identiWability is a key step in the formulation of a

structural model in which parameters are going to be esti-

mated from a set of data. The question a priori identiWability

addresses is the following: Do the data contain enough infor-

mation to estimate all of the unknown parameters of the

postulated model structure? This question is usually referred

to as the a priori identiWability problem. It is set in the ideal

context of an error-free model structure and noise-free, con-

tinuous time measurements and is an obvious prerequisite for

well-posedness of parameter estimation from real data. In

particular, if it turns out in such an ideal context that the

postulated model structure is too complex for the particular

set of data (i.e., some model parameters are not identiWable

from the data), there is no way in a real situation, where there

is error in the model structure and noise in the data, that the

parameters can be identiWed. The a priori identiWability prob-

lem is also referred to as the structural identiWability problem

because it is set independently of a particular set of values for

the parameters. For the sake of simplicity, in what follows, only

the term a priori will be used to qualify the problem.

Only if the model is a priori identiWable is it meaningful to

use the techniques to estimate the numeric values of the

parameters from the data that will be discussed later. If the

model is a priori nonidentiWable, a number of strategies can be

considered. One would be to enhance the information content

of the experiment by adding, when feasible, inputs and/or

measurements. Another possibility would be to reduce the

complexity of the model by simplifying its model structure

(e.g., by lowering the model order) or by aggregating some

parameters. These simple statements allow one to foresee the

importance of a priori identiWability also in relation to quali-

tative experiment design (e.g., deWnition of an experiment),

which allows one to obtain an a priori identiWable model with

the minimum number of inputs and measurements.

Before discussing the problem in depth and the methods

available for its solution, it is useful to illustrate the funda-

mentals through some simple examples. Then, some formal

deWnitions will be given, using these simple examples where

the identiWability issue can be easily addressed.

5.3.1.1 Examples

5.3.1.1.1 Example 1 Consider the single compartmental

model shown in the left side of Figure 5.5, where the input is

a bolus injection of a tracer given at time zero and the

measured variable is the tracer concentration. The model and

measurement equations are:

_qq(t) ¼ �k � q(t)þ u(t) q(0) ¼ 0 (5:16)

y(t) ¼ q(t)

V
; (5:17)

where u(t) ¼ d�d(t); that is, d is the magnitude of the

bolus dose. The unknown parameters for the model are

the rate constant k and the volume V. Equation 5.17 deWnes

the observation on the system in an ideal context of noise-free

and continuous-time measurements. In other words, the

q

k

u

q1 q2

k02

k21

u

q1 q21

k21

u

k01

y = q/V
y = q2/V2 y = q1/V1

(a) (b) (c)

FIGURE 5.5 A single-compartment (a), a two-compartment (b), and a two-

compartment model in which the irreversible loss is from compartment 1 (c).

For all the models, the tracer input u(t) is a bolus injection of dose d given at

time zero. The compartments are characterized by a volume V, and y is the

measured tracer concentration.
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model output is describing what is measured continuously and

without errors; it does not represent the noisy discrete times

measurements. To see how the experiment can be used to

obtain estimates of these parameters, note that the solution

of Equation 5.16 is the mono-exponential

q(t) ¼ de�kt: (5:18)

The model output y(t) is thus given by

y(t) ¼ d

V
e�kt � Ae�lt: (5:19)

The model output or ideal data are thus described by a func-

tion of the form Ae�lt, and the parameters that can be deter-

mined by the experiment are A and l. These parameters are

called the observational parameters. What is the relationship

between the unknown model parameters k and V, and the

observational parameters A and l? From Equation 5.19, one

sees immediately:

A ¼ y(0) ¼ d

V
(5:20)

l ¼ k: (5:21)

In the example above, the unknown parameters k and V of the

model are a priori uniquely or globally identiWable from the

designed experiment because they can be evaluated uniquely

from the observational parameters A and l. Because all model

parameters are uniquely identiWable, the model is said to be

a priori uniquely or globally identiWable from the designed

experiment.

So far, we have analyzed the identiWability properties of the

model by inspecting the expression of the model output and

deriving the relationships between the observational param-

eters and the unknown model parameters. The method is easy

to understand because it requires only some fundamentals of

diVerential calculus. However, the approach is not practicable

in general as it works easily only for some simple linear models

of order one and two. For linear models of higher order, the

method becomes quite cumbersome, and its application is

practically impossible.

A simpler method to derive the desired relationships be-

tween observational parameters and unknown model param-

eters consists of writing the Laplace transform for the model

output and is known as the transfer function method. BrieXy,

the advantage of the Laplace transform method is that there is

no need to use the analytical solution of the system of linear

diVerential equations. By writing the Laplace transform of the

state variables such as masses and then of the model outputs

such as concentrations, one obtains an expression that deWnes

the observational parameters as a function of the unknown

model parameters. This gives a set of nonlinear algebraic

equations in the original parameters.

For the model of Figure 5.5, the Laplace transforms of

Equations 5.16 and 5.17 are, respectively:

s � Q(s) ¼ �k � Q(s)þ d (5:22)

Y(s) ¼ Q(s)

V
; (5:23)

where s is the Laplace variable, and the capital letter denotes

the Laplace transform of the corresponding lower case letter

variable.

The transfer function is

H(s) � Y(s)

U(s)
¼ Q(s)=V

d
¼ d=sþ k½ �=V

d
¼ 1=V

sþ k
� b

sþ a
:

(5:24)

The coeYcients a and b are determinable from the experi-

ment; that is, they are the observational parameters, and thus

one has:

b ¼ 1

V
(5:25)

a ¼ k: (5:26)

That is, the model is a priori uniquely identiWable.

For this simple model, the advantage of the Laplace trans-

form method is not evident, but its power will be appreciated

when we consider the next example.

5.3.1.1.2 Example 2 Consider the two-compartment

model shown in the Section (b) of Figure 5.5, where a bolus

injection of tracer is given into compartment 1. The accessible

compartment is compartment 2. Assume the measured

variable is the tracer concentration

y(t) ¼ q2(t)=V2:

The equations describing this model, assuming a bolus

input, are:

_qq1(t) ¼ �k21q1(t)þ u(t) q1(0) ¼ 0 (5:27)

_qq2(t) ¼ k21q1(t)� k02q2(t) q2(0) ¼ 0 (5:28)

y(t) ¼ q2(t)

V2

; (5:29)

where u(t) ¼ d � d(t). The unknown model parameters are

k21, k02, and V2. To see how the experiment can be used to

obtain estimates of these parameters, one can use either the

time domain solution of Equation 5.28 (a sum of two expo-

nentials) or the transfer function method, which is much more

straightforward. The transfer function is

H(s) ¼ Y(s)

U(s)
¼ k21=V2

(sþ k21)(sþ k02)
� b1

s2 þ a2sþ a1

; (5:30)

where the coeYcients a1, a2, b1 are the observational param-

eters (known from the experiment) linked to unknown model

parameters by:

b1 ¼ k21=V2 (5:31)

a2 ¼ k21 þ k02 (5:32)

a1 ¼ k21k02: (5:33)
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Equations 5.31, 5.32, and 5.33 are nonlinear, and it is easy to

verify that it is not possible to obtain a unique solution for the

unknown parameters. In fact, from equations 5.32 and 5.33,

parameters k21 and k02 are interchangeable, and thus each has

two solutions, say kI
21, kII

21 and kI
02, kII

02. As a result, from equa-

tion 5.31, V2 has two solutions also, VI
2 and VII

2 . The two

solutions provide the same expression for the model output

y(t). When there is a Wnite number of solutions (more than

one; two in this case), the unknown parameters are said to be

a priori nonuniquely or locally identiWable from the designed

experiment. When all the model parameters are identiWable

(uniquely or nonuniquely) and there is at least one of the

model parameters that is nonuniquely identiWable (in this

case, all three are), the model is said to be a priori nonuniquely

or locally identiWable.

It is also worth noting that in this case one has parameters

that are a priori uniquely identiWable, but these are not the

original parameters of interest. They are combinations of the

original parameters, in particular k21k02, k21 þ k02 and k21=V2.

To achieve unique identiWability of this nonuniquely identiW-

able model, one could design a more complex experiment or, if

available, exploit additional independent information available

on the system. In this particular case, knowledge of V2, or a

relationship between k21 and k02, allows one to achieve unique

identiWability of all model parameters.

5.3.1.1.3 Example 3 Consider the two-compartment

model shown in Section (c) of Figure 5.5, where a bolus

injection of a tracer is given at time zero and where the

measured variable is the concentration of drug in plasma.

The equations describing this model are:

_qq1(t) ¼ �(k01 þ k21)q1(t)þ u(t) q1(0) ¼ 0 (5:34)

_qq2(t) ¼ k21q1(t) q2(0) ¼ 0 (5:35)

y(t) ¼ q1(t)

V1

: (5:36)

The unknown model parameters are k21, k01 and V1.

To see how the experiment can be used to obtain estimates

of these parameters, one notes that the transfer function is:

H(s) ¼ Y(s)

U(s)
¼ 1=V1

sþ k21 þ k01

� b

sþ a
; (5:37)

and thus

b ¼ 1=V1 (5:38)

a ¼ k21 þ k01: (5:39)

It is easy to see that, whereas V1 is uniquely identiWable, k21

and k01 have an inWnite number of solutions lying on the

straight line a ¼ k21 þ k01.

When there are an inWnite number of solutions for a par-

ameter, one says the parameter is a priori nonidentiWable from

the designed experiment. When at least one of the model

parameters is nonidentiWable (in this case, there are two), the

model is said to a priori nonidentiWable.

As with the previous example, one can Wnd a uniquely iden-

tiWable parameterization; that is, a set of parameters that can be

evaluated uniquely). In this case, the parameter is the sum

k01 þ k12 (V1 has been seen to be uniquely identiWable).

Again, to achieve unique identiWability of k01 and k21, either a

more informative experiment is needed (e.g., measuring also in

compartment 2), or additional information on the system, such

as a relationship between k01 and k21, is required.

5.3.1.2 DeWnitions

The simple examples have allowed understanding of the

importance of the a priori identiWability problem and have

provided a means of introducing some basic deWnitions.

Below, we will give some generic deWnitions that also hold for

more general models such as the nonlinear compartmental

model (Equations 5.3 and 5.12). Consider the model (Equation

5.14). DeWne with p ¼ p1,p2, . . . ,pM½ �T the set of M unknown

model parameters (i.e., the kij and either Vi). So the model

(Equation 5.14) can be written as yl ¼ gl(t,p). DeWne now the

observational parameter vector F ¼ ½f1, . . . ,fR�T having the

observational parameters fj, j ¼ 1, . . . ,R as entries. Each par-

ticular input–output experiment will provide a particular value

F̂F of the parameter vector F̂F; that is, the components of F̂F can

be estimated uniquely from the data by deWnition. Moreover,

the observational parameters are functions of the basic model

parameters pi; which may or may not be identiWable:

F ¼ F(p): (5:40)

Thus to investigate the a priori identiWability of model

parameters pi, it is necessary to solve the system of nonlinear

algebraic equations in the unknown pi obtained by setting

the polynomials F(p) equal to the observational parameter

vector F̂F:

F(p) ¼ F̂F: (5:41)

These equations are called the exhaustive summary.

Examples of this have already been provided in working out

Examples 1, 2, and 3 in equations 5.20–5.21 and 5.25–5.26,

5.31–5.33, and 5.38–5.39, respectively.

One can now generalize deWnitions. Let us give them Wrst

for a single parameter of the model, and then for the model as

a whole.

The single parameter pi is a priori uniquely (globally) iden-

tiWable if and only if the system of equations (Equation 5.41)

has one and only one of solution:

. Nonuniquely (locally) identiWable if and only if the sys-

tem of equations (5.41) has for pi more than one but a

Wnite number of solutions

. NonidentiWable if and only if the system of Equations

(5.41) have for pi inWnite solutions
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. The model is a priori

. Uniquely (globally) identiWable if all of its parameters are

uniquely identiWable

. Nonuniquely (locally) identiWable if all of its parameters

are identiWable either uniquely or nonuniquely and at

least one is nonuniquely identiWable

5.3.1.3 The Transfer Function Method

The problem now is to assess, solely on the basis of knowledge

of the assumed model structure and of chosen experimental

conWguration, whether the model is a priori nonidentiWable,

nonuniquely identiWable, or uniquely identiWable. The most

common method to test a priori identiWability of linear dy-

namic models is the transfer function method. Assuming we

have r inputs and m outputs, the approach is based on the

analysis of the r x m transfer function matrix:

H(s,p) ¼ ½Hij(s,p)� ¼ Yi(s,p)

Uj(s)
; (5:42)

where each element Hij, of H is the Laplace transform of the

response in the measurement variable at port i, yi(t,p) to a unit

impulse at port j, uj(t) ¼ d(t). The transfer function approach

makes reference to the coeYcients of the numerator and de-

nominator polynomials of each of the m x r elements Hij(s,p)

of the transfer function matrix, respectively, b
ij
1 (p), . . . ,bij

n(p)

and a
ij
1 (p), . . . ,aij

n(p). These coeYcients are the 2n� r�m

observational parameters f
ij
‘ . Therefore, the exhaustive sum-

mary can be written as:

b11
1 (p) ¼ f11

1

..

. ..
.

a11
n (p) ¼ f11

2n

..

. ..
.

brm
1 (p) ¼ frm

1

..

. ..
.

arm
n (p) ¼ frm

2n :

(5:43)

This system of nonlinear algebraic equations needs to be solved

for the unknown parameter vector p to deWne the identiW-

ability properties of the model.

We have discussed the Laplace transform method to gener-

ate the exhaustive summary of the models. The method is

simple to use, even for system models of order greater than

two. What becomes more and more diYcult is the solution;

that is, to determine which of the original parameters of the

model are uniquely determined by the system of nonlinear

algebraic equations. In fact, one has to solve a system of non-

linear algebraic equations that is increasing both in number of

terms and in degree of nonlinearity with the model order.

In other words, the method works well for models of low

dimension (e.g., order two or three) but fails when applied

to relatively large models because the system of nonlinear

algebraic equations becomes too diYcult to be solved.

To deal with the problem in general, there is the need to

resort to computer algebra methods. In particular, a tool

to test a priori identiWability of linear compartmental models

of general structure that combines the transfer function

method with a computer algebra method is needed; therefore,

the Grobner basis algorithm has been developed [6]. Finally, it

is worth noting that for some classes of linear compartmental

models (i.e., catenary and mamillary models) and for the

general two- and three-compartmental models, explicit iden-

tiWability results are available [4].

From the above considerations, it follows that a priori

unique identiWability is a prerequisite for well-posedness of

parameter estimation and for the reconstructability of stated

variables in nonaccessible compartments. It is a necessary step

that, because of the ideal context where it is posed, does not

guarantee a successful estimation of model parameters from

real input–output data.

5.3.2 Parameter Estimation

At this stage, a model has been formulated, and the parameter

estimation is well-posed. In this section, we describe how to

obtain numerical estimates of the unknown parameters from

the noisy experimental data and how to judge the quality of

parameter estimation; that is, is the model able to describe the

data and what is the precision with which the unknown model

parameters are estimated? We will only consider Fisher esti-

mation techniques and, particularly, weighted least-squares

(WLS). This is probably the most widely used parameter

estimation technique. For its connection to Maximum Likeli-

hood estimation as well as for Bayesian estimation techniques,

the reader is referred to reference [5].

5.3.2.1 Weighted Least Squares

A model of the system has now been formulated. The model

contains a set of unknown parameters to which we would like

to assign numeric values from the data of an experiment. We

assume that we have checked its a priori identiWability. The

experimental data are also available. In mathematical terms,

the ingredients we have are the model output which can be

written as:

y(t) ¼ g(t,p); (5:44)

where g(t,p) is related to the model of the system and the

discrete-time noisy output measurements, zi;

z(ti) ¼ zi ¼ y(ti)þ v(ti) ¼ g(t,p)þ vi i ¼ 1, . . . ,N; (5:45)

where vi is the measurement error of the ith measurement.

The problem is to assign a numeric value of p from the data

zi. Regression analysis is the most widely used method to

adjust the parameters, characterizing a model to obtain the
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best Wt to a set of data. The weighted residual sum of squares

(WRSS) is a good and commonly used measure of how good

the Wt to the data is. It is given by:

WRSS ¼
XN

i¼1

wi zi � yið Þ2; (5:46)

where N is the number of observations and (zi � yi) the error

between the observed and predicted value for each sample time

ti; wi is the weight assigned to the ith datum. WRSS can be

considered as a function of the model parameters:

WRSS ¼ WRSS(p). The idea is to minimize WRSS with

respect to the parameter values characterizing the model to

be Wtted to the data. It is natural to link the choice of weights

to what is known about the precision of each individual

datum. In other words, one seeks to give more credibility, or

weight, to those data in which precision is high, and less

credibility, or weight, to those data in which precision is small.

The measurement error is vi in Equation 5.44. It is a random

variable, and assumptions about its characteristic must be

made. The most common assumption is that the sequence of

vi is a random process with zero mean (i.e., no systematic

error) independent samples and variance known. What this

means can be formalized in the statistical setting using the

notation E, Var and Cov to represent, respectively, mean,

variance, and covariance.

Then:

E við Þ ¼ 0 (5:47)

Cov vi, vj

� �
¼ 0 for ti 6¼ tj (5:48)

Var(vi) ¼ s2
i : (5:49)

Equation 5.47 means the errors vi have zero mean; Equation

5.48 means they are independent, and Equation 5.49 means the

variance is known. A standardized measure of the error is

provided by the fractional standard deviation (FSD) or coeY-

cient of variation (CV):

FSD við Þ ¼ CV við Þ ¼
SD(vi)

zi

; (5:50)

where SD is the standard deviation of the error

SD við Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(vi)

p
: (5:51)

The FSD or CV is often expressed as a percentage; that is, the

percentage fractional standard deviation or percentage coeY-

cient of variation, by multiplying SD(vi)=zi in Equation 5.50

by 100.

We have considered the case where the variance is known

(Equation 5.49). However, one can also easily handle the case

where the variance is known up to a proportionality constant,

Var(vi) ¼ bis
2 with bi known and s2 unknown. We shall not

consider this case explicitly in the following in order not to

make the presentation too heavy. For more details, the reader

is referred to Cobelli et al. [4].

Knowing the error structure of the data, how are the weights

wi chosen? The natural choice is to weight each datum accord-

ing to the inverse of the variance:

wi ¼
1

s2
i

: (5:52)

It can be shown that this natural choice of weights is optimal

in the linear regression case. Therefore, it is very important to

have correct knowledge of error of the data and to weight each

datum according to this error.

The problem now is how to estimate the error variance.

Ideally, one would like to have a direct estimate of the vari-

ance of all sources of error. This is a diYcult problem. For

instance, the measurement error is just one component of the

error; it can be used as an estimate of the error only if the

investigator believes that the major source of error arises after

the sample is taken. To have a more precise estimate of the

error, the investigator should have several independent repli-

cates of the measurement zi at each sampling time ti from

which the sample variance s2
i at ti can be estimated. If there is

a major error component before the measurement process, for

instance an error related to drawing a plasma sample or

preparing a plasma sample for measurement, then it is not

suYcient to repeat the measurement per se on the same

sample several times. In theory, in this situation it would be

necessary to repeat the experiment several times. Such repeti-

tion is not often easy to handle in practice. Finally, there is the

possibility that the system itself can vary during the diVerent

experiments.

In any case, because the above-mentioned approach esti-

mates the variance at each sampling time ti, it requires several

independent replicates of each measurement. An alternative

more practical approach consists of postulating a model for

the error variance and estimating its unknown parameters

from the experimental data.

A Xexible model that can be used for the error variance is:

s2
i ¼ aþ b(yi)

g; (5:53)

which can be approximated in practice by:

s2
i ¼ aþ b(zi)

g; (5:54)

where s, b, and y are non-negative model parameters relating

the variance associated with an observation to the value of the

observation itself. Values can usually be assigned to these

parameters, or they can also be estimated from the data

themselves.

5.3.2.2 Linear Regression Let us consider a linear model

with M parameters and put the regression problem in compact

matrix-vector notation. The measurement equation can be

written as:

z ¼ y þ v ¼ G � pþ v (5:55)
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z1

z2

..

.

zN

2
6664

3
7775¼

y1

y2

..

.

yN

2
6664

3
7775þ

v1

v2

..

.

vN

2
6664

3
7775¼

g11 g12 � � � g1M

g21 g22 � � � g2M

� � � � � � � � � � � �
gN1 gN2 � � � gNM

2
664

3
775

p1

p2

..

.

pM

2
6664

3
7775þ

v1

v2

..

.

vN

2
6664

3
7775

(5:56)

with

p ¼ p1,p2, � � � ,pM�T
h

(5:57)

G ¼

g11 g12 � � � g1M

g21 g22 � � � g2M

� � � � � � � � � � � �
gN1 gN2 � � � gNM

2
664

3
775: (5:58)

The measurement error v, assuming a second-order descrip-

tion (mean and covariance matrix [NxN]), is:

E[v] ¼ 0 (5:59)

E[v vT] ¼ Sv; (5:60)

and, since independence is assumed, Sv is diagonal:

Sv ¼ diag s2
1, s2

2, . . . ,s2
N

� �
: (5:61)

Now, if we deWne the residual vector r:

r ¼ z� G � p; (5:62)

the weighted residual sum of squares is

WRSS(p) ¼
XN

i¼1

r2
i

s2
i

¼ rTS
�1
v r ¼ (z� G � p)TS

�1
v (z� G � p):

(5:63)

The WLS estimate of p is that which minimizes WRSS(p)

p̂p ¼ arg min
p

WRSS(p)

¼ arg min
p

(z-G � p)T S
�1
v (z-G � p): (5:64)

After some calculations, one has:

p̂p ¼ GTS
�1
v G

� ��1
GTS

�1
v z: (5:65)

It is also possible to obtain an expression of the precision of p̂p.

Because data z are aVected by a measurement error v, one has

that p̂p is also aVected by an error that we call estimation error.

It can be deWned as:

~pp ¼ p� p̂p: (5:66)

~pp is a random variable because p̂p is random. The covariance

matrix of ~pp is

S~pp ¼ cov(~pp) ¼ Eb~pp � ~ppTc ¼ Sp̂p; (5:67)

and one can show that

Sp̂p ¼ GTS
�1
v G

� ��1
: (5:68)

The precision of the estimate p̂pi of p is often expressed in

terms of standard deviation, the square root of the variance

Var(p̂p):

SD(p̂pi) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(p̂pi)

p
: (5:69)

It can be given in terms of FSD or CV, which measures the

relative precision of the estimate

FSD(p̂pi) ¼ CV(p̂pi) ¼
SD(p̂pi)

p̂pi

: (5:70)

As noted previously, FSD and CV can be expressed as a percent

by multiplying by 100.

From Equations 5.65 and 5.68, one sees that both p̂p and Sp̂p

depend upon the s2
i . This is why it is essential that the inves-

tigator appreciate the nature of the error in the data.

Up to this point, the assumption has been made that the

model is correct. In this case, from the comparison between

the equation describing the data z ¼ G � pþ v and the deWni-

tion of the residual r ¼ z� G � p̂p, one can immediately con-

clude that residuals r must reXect the measurement errors v.

For this in fact to be true, two conditions must be met: The

correct model or functional description of the data has been

selected, and the parameter estimation procedure has con-

verged to values close to the true values. The sequence of

residuals can thus be viewed as an approximation of the

measurement error sequence.

One can check whether the above two conditions hold by

testing the assumptions made regarding the measurement

error on the sequence of residuals. Usually, the measurement

error is assumed to be a zero mean, independent random

process having a known variance. These assumptions can be

checked on the residuals by means of statistical tests.

Independence of the residuals can be tested visually using a

plot of residuals versus time. It is expected that the residuals will

oscillate around their mean, which should be close to zero, in an

unpredictable way. Systematic residuals—that is, a long run

sequence of residuals above or below zero—suggest that the

model is an inappropriate description of the system because it is

not able to describe a nonrandom component of the data.

A formal test of nonrandomness of residuals in the run test. A

run is deWned as a subsequence of residuals having the same sign

(assuming the residuals have zero mean); intuitively, a very

small or very large number of runs in the residuals sequence is

an indicator of nonrandomness; that is, of systematic errors in

the former and of periodicity in the latter case. For details and

examples, we refer the readers to Cobelli et al. [4].

In WLS estimation, a speciWc assumption on the variance of

the measurement errors has been made. If the model is correct,

the residuals must reXect this assumption.

Because

Var
vi

si

� �
¼ 1

s2
i

Var(vi) ¼ 1: (5:71)
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If we deWne, the weighted residuals as

wresi ¼
resi

si

; (5:72)

they should be a realization of a random process having unit

variance. By plotting the weighted residual versus time, it is

thus possible to test visually the assumption on the variance of

the measurement error: Weighted residuals should lie in a �1,

þl wide band. A typical plot of weighted residuals is shown in

Figure 5.6.

A pattern of residuals diVerent from that which was

expected indicates either the presence of errors in the func-

tional description of the data or that the model is correct but

that the measurement error model is not appropriate. In this

case, it is necessary to modify the assumptions on the meas-

urement error structure. Some suggestions can be derived by

examining the plot. As an example, consider the case where the

variance of the measurement error is assumed to be constant.

The residuals are expected to be conWned in a �1, þ1 wide

region. If their amplitude tends to increase in absolute value

with respect to the observed value, a possible explanation is

that the variance of the measurement error is not constant,

thus suggesting a modiWcation of the assumption on the meas-

urement error variance.

5.3.2.3 Nonlinear Regression Let us now turn to the

nonlinear model of equations:

y(t) ¼ g(t,p) (5:73)

zi ¼ yi þ vi ¼ g(ti,p)þ vi i ¼ 1,2, . . . ,N: (5:74)

Let us put the model in the compact matrix-vector notation

like we did with the linear model. One has:

y ¼ G(p) (5:75)

z ¼ y þ v ¼ G(p)þ v (5:76)

where

z ¼ z1,z2, . . . ,zN½ �T (5:77)

y ¼ y1,y2, . . . ,yN½ �T (5:78)

p ¼ p1,p2, . . . ,pM½ �T (5:79)

G[p] ¼ g(t1,p),g(t2,p), . . . ,g(tN,p)½ �T 5:80)

v ¼ v1,v2, . . . ,vN½ �T with Sv ¼ cov(v): (5:81)

The WLS estimate of p is the one that minimizes

WRSS(p) ¼ z� G(p)½ �TS
�1
v z� G(p)½ �: (5:82)

It can be easily shown, using the simple nonlinear model

y(t) ¼ Ae�a�t, that an explicit analytic solution for p analogous

to Equation 5.65 is not possible.

To arrive at an estimate of p, one possible strategy is based

on iterative linearization of the model, the Gauss-Newton

method. Let us go back to the model Equation 5.73 and

consider the expression of y(t) obtainable through its Taylor

series expansion around a speciWc value of p, say

p0 ¼ p0
1,p0

2, . . . ,p0
M�

T
h

(5:83)

by neglecting the terms that contain derivatives of second

order and higher

yi ¼ g(ti,p) ffi g(ti,p
0)þ @g(ti,p

0)

@p1

@g(ti,p
0)

@p2

. . .
@g(ti,p

0)

@pM

� �
p1 � p0

1

p2 � p0
2

� � �
pM � p0

M

2
6664

3
7775; (5:84)

where the derivatives are evaluated at p ¼ p0. Notice that this

equation is now linear in p. The data relate to yi as Equation

5.74. Thus, using Equation 5.84 and moving to vector notation

one has:

z1 � g(t1,p0)

z2 � g(t2,p0)

zN � g(tN,p0)

2
64

3
75 ¼

@g(t1,p0)

@p1

@g(t1,p0)

@p2

� � � @g(t1,p0)

@pM

@g(t2,p0)

@p1

@g(t2,p0)

@p2

� � � @g(t2,p0)

@pM

� � � � � � � � � � � �
@g(tN ,p0)

@p1

@g(tN ,p0)

@p2

� � � @g(tN ,p0)

@pM

2
6666666664

3
7777777775

p1 � p0
1

p2 � p0
2

� � �
pM � p0

M

2
66664

3
77775þ

v1

v2

..

.

vN

2
66664

3
77775; (5:85)

and thus

Dz ¼ S � Dpþ v (5:86)
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FIGURE 5.6 Plot of weighted residuals versus time.
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with obvious deWnition of Dz, S and Dp from Equation 5.85.

Now, because Dz is known (p0 is given, z is measured) and S

can be computed, one can use WLS to estimate Dp with the

linear machinery by using Equation 5.65 with the correspond-

ence z$ Dz, p$ Dp and G$ S:

Dp̂p ¼ STS
�1
v S

� ��1
STS

�1
v Dz: (5:87)

Hence, a new estimate of p can be obtained as

p1 ¼ p0 þ Dp̂p: (5:88)

Now, with p1, which is by deWnition a better estimate than p0

because WRSS(p1) < WRSS(p0), the process can restart. The

model is linearized around p1; a new estimate p2 is obtained,

and so on until the cost function stops decreasing signiWcantly,

for example, when two consecutive values of WRSS(p) are within

a prescribed tolerance.

Once p̂p has been obtained, by paralleling the linear case, one

can obtain the covariance of the parameter estimates as:

�p̂p ffi ST ��1
v S

� ��1
(5:89)

with

S ¼

@g(t1,p̂p)

@p1

@g(t1,p̂p)

@p2

. . .
@g(t1,p̂p)

@pM

@g(t2,p̂p)

@p1

@g(t2,p̂p)

@p2

. . .
@g(t2,p̂p)

@pM
. . . . . . . . . . . .

@g(tN,p̂p)

@p1

@g(tN,p̂p)

@p2

. . .
@g(tN,p̂p)

@pM

2
6666666664

3
7777777775
: (5:90)

Residuals and weighted residuals are deWned as for the linear

case above.

The linear machinery has been used to solve the nonlinear

case. However, it is worth remarking that the nonlinear case is

more complex to handle than the linear case. This is true, not

only from a computational point of view, but also conceptually

as a result of the presence of local minima of WRSS(p) and the

necessity of specifying an initial estimate of p, p0. To illustrate

graphically this additional complexity, let us consider the sca-

lar case with WRSS(p) as a function of p shown in Figure 5.7.

There is more than one minimum for WRSS, and this is

distinctly diVerent from the linear case, where there is only

one (unique) minimum. The minima shown in Figure 5.7 are

called local minima. The diVerence then between the linear

and nonlinear case is that in linear regression there is a unique

minimum for WRSS whereas in the nonlinear case there may

be several local minima for WRSS. Among the local minima,

the smallest is called the global minimum. This has obvious

implications for the choice of p0. Generally, to be sure one is

not ending up at a local minimum, several tentative values of

p0 are used as starting points.

The steps of nonlinear least squares estimation have been

illustrated using the Gauss-Newton iterative scheme. This out-

lines the principles of that class of algorithms which require the

computation of derivatives contained in matrix S. This is

usually done numerically, using, for example, central diVerence

methods, although other strategies are also available such as

the sensitivity system [4]. This class is referred to as gradient-

type (derivative) algorithms. Numerically reWned and eYcient

algorithms such as the Levenberg-Marquardt technique, based

on the Gauss-Newton principle, are available and are imple-

mented in many software tools.

Another category of algorithms for minimizing WRSS that

has been applied in physiologic model parameter estimation is

one that does not require the computation of the derivatives.

These algorithms are known as direct search methods, and

both deterministic and random search algorithms are available

and implemented in software tools. An eYcient deterministic

direct search algorithm is the simplex method. It is worth

emphasizing that with a direct search method, the computa-

tion of the derivatives is not required; a direct comparison of

gradient versus direct search methods is diYcult and may be

problem-dependent. Available experience in physiologic model

parameter estimation tends to favor the gradient-type

methods.

5.3.2.4 Test of Model Order

Up to this point, only the problem of testing whether or not a

speciWc model is an appropriate description of a set of data has

been examined. Consider now the case where diVerent candi-

date models are available, and the problem is to select the model

that provides the best description of the data. For example,

when performing multiexponential modeling of a decay curve:

y(t) ¼
Xn

i¼1

A1e�li�t (5:91)

the model order—that is, the number n of exponentials—is

not known a priori. A mono-, bi-, and tri-exponential model

are usually Wtted to the data, and the results of parameter

estimation are evaluated to select the optimum order or the

best value for n.

Relying solely on WRSS and an examination of the weighted

residuals to determine the optimum model order is not
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FIGURE 5.7 WRSS as a function of p.
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appropriate because as the model order increases WRSS will

decrease. For example, in dealing with a tracer decay curve

following a bolus injection, each additional exponential term

added to the sum of exponentials will decrease WRSS. Simi-

larly, the pattern of residuals will become more random. How-

ever, each time an exponential term is added, two parameters

are added, and the degrees of freedom are decreased by two.

Thus intuitively, when comparing diVerent model structures,

both WRSS and the degrees of freedom should be evaluated.

This is to check whether or not the reduction of WRSS truly

reXects a more accurate representation of the data or whether

it is merely the result of the increase in the number of param-

eters. Hence, additional tests are required.

The two tests that are frequently used to compare model

structures are the F-test and tests based on the principle of

parsimony. We brieXy describe below only the latter and refer

the reader for illustration of the F-test to Cobelli et al. [4].

The most commonly used tests that implement the principle

of parsimony—that is, that choose the model that is best able

to Wt the data with the minimum number of parameters—are

the Akaike information criterion (AIC) and the Schwarz cri-

terion (SC). More than two models can be compared, and the

model that has the smallest criterion is chosen as the best.

If one assumes that errors in the data are uncorrelated and

Gaussian, with a known measurement error variance, then the

criteria are:

AIC ¼ WRSSþ 2 �M (5:92)

SC ¼WRSSþM � lnN; (5:93)

where M is the number of parameters in the model, and N is

the number of data. Although AIC and SC have diVerent

derivations, they are similar because they are made up of a

goodness-of-Wt measure plus a penalty function proportional

to the number of parameters M in the model. Note that in

SC, M is weighted ln(N), with large N; this may become

important.

5.4 Model Validation

It is not diYcult to build models of systems—the diYculty lies

in making them accurate and reliable in answering the ques-

tion asked. For the model to be useful, one has to have

conWdence in the results and the predictions that are inferred

from it. Such conWdence can be obtained by model validation.

Validation involves the assessment of whether a compartmen-

tal model is adequate for its purpose. This is a diYcult and

highly subjective task when modeling physiologic systems be-

cause intuition and an understanding of the system, among

other factors, play an important role in this assessment. It is

also diYcult to formalize related issues such as model cred-

ibility or the use of the model outside its established validity

range. Some eVorts have been made, however, to provide

formal aids for assessing the value of models of physiologic

systems. Validity criteria and validation strategies for models of

physiologic systems are available that take into account both

the complexity of model structure and the extent of available

experimental data [7]. Of particular importance is the ability

to validate a model-based measurement of a system parameter

by an independent experimental technique. A model that is

valid is not necessarily a true one; all models have a limited

domain of validity, and it is hazardous to use a model outside

the area for which it has been validated.

5.5 Simulation

Suppose one wishes to see how the system behaves under

certain stimuli, but it is inappropriate or impossible to carry

out the required experiment. If a valid model of the system is

available, one can perform an experiment on the model by

using a computer to see how the system would have reacted.

This is called simulation. Simulation is thus an inexpensive

and safe way to experiment with the system. Clearly, the value

of the simulation results depends completely on the quality or

the validity of the model of the system.

Having derived a complete model, including estimating all

unknown parameters and checking its validity in relation to its

intended domain of application, it is now possible to use it as a

simulation tool. Computer simulation involves solving the

model (i.e., the equations that are the realization of the

model) to examine its output behavior. This might typically

be the time course of one or more of the system variables. In

other words, we are performing computer experiments on the

model. In fact, simulation can be used either during the pro-

cess of model building or with a complete model. During

model building, simulation can be performed to clarify some

aspects of behavior of the system or part of it to determine

whether a proposed model representation seems to be appro-

priate. This would be done by comparison of the model re-

sponse with experimental data from the same situation.

Simulation, when performed on a complete, validated model,

yields output responses that provide information regarding

system behavior. Depending on the modeling purpose, this

information assists in describing the system, predicting behav-

ior, or yielding additional insights (explanation).

Why carry out computer simulation? The answer is that it

might not be possible, appropriate, convenient, or desirable to

perform particular experiments on the system (e.g., it cannot

be done at all, it is too diYcult, it is too expensive, it is too

dangerous, it is not ethical, or it would take too long to obtain

results). Therefore, we need an alternative way of experiment-

ing with the system. Simulation oVers such an alternative that

overcomes the above limitations. Such experimenting can pro-

vide information that is useful in relation to our modeling

purpose.
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To perform computer simulation, we Wrst need a mathe-

matic model that is complete in terms of all its parameters

being speciWed and that has initial conditions speciWed for all

the variables. If the model is not complete in the sense of there

being unspeciWed parameter values, then formal parameter

estimation techniques must be employed to obtain such esti-

mates. The model is then implemented on the computer. This

assumes that the model equations cannot be, or are not being,

solved analytically and that a numeric solution of the system is

needed.

The model is solved on the computer; this solution process

produces the time course of the system variables. In technical

terms, the computer implementation is done either using a

standard programming language such as Fortran or C or by

using a specialist simulation package such as MATLAB1.

5.6 Case Study

To illustrate the methodologic points we have been making,

consider the following set of data, which will be described by a

sum of exponentials. In our previous discussion, we have

focused on compartmental models. However, when one is

starting from scratch, it is often wise to Wt the data to a sum

of exponentials because this gives a clue as to how many

compartments will be required in the model.

Consider the data given in Table 5.l; these data are radio-

active tracer glucose concentrations measured in plasma fol-

lowing an injection of tracer at time zero. The time

measurements are minutes, and the plasma measurements

are disintegrations per minute per milliliter. The experiment

was performed in a normal subject in the basal state [8]. To

select the order of the multi-exponential model that is best able

to describe these data, one-, two- and three-exponential

models can be considered:

y(t) ¼ A1e�l1�t (5:94)

y(t) ¼ A1e�l1�t þ A2e�l2�t (5:95)

y(t) ¼ A1e�l1�t þ A2e�l2�t þ A3e�l3�t: (5:96)

The measurement error is assumed to be additive

zi ¼ yi þ vi; (5:97)

where the errors vi are assumed to be independent, Gaussian

with a mean of zero, and an experimentally determined stand-

ard deviation of

SD(vi) ¼ 0:02 � zi þ 20: (5:98)

These values are shown associated with each datum in Table

5.1. The three models are to be Wtted to the data by applying

weighted nonlinear regression with the weights chosen equal

to the inverse of the variance. The plots of the data and the

model predictions together with the corresponding weighted

residuals are shown in Figure 5.8, and the model parameters

are given in Table 5.2.

Examining Table 5.2, we can see that all parameters can be

estimated with acceptable precision in the one- and two-expo-

nential models, while some parameters of the three exponen-

tial model are very uncertain. This means that the three-

exponential model cannot be resolved with precision from

the data. In fact, the Wrst exponential is so rapid,

l1 ¼ 4:6min�1, that it practically has vanished by the time of

the Wrst available datum at 2 minutes. The other two expo-

nential terms have values similar to those obtained for the two-

exponential model. In addition, the Wnal estimates of A1 and

l1 are also dependent upon the initial estimates; that is, start-

ing from diVerent initial points in parameter space, the non-

linear regression procedure yields diVerent Wnal estimates

while producing similar values of the WRSS. Therefore, the

three-exponential model is not numerically identiWable and

can be rejected at this stage.

One can now compare the Wt of the one- and two-

exponential models. Nonrandomness of the residuals for the

one-exponential model is evident because the plot reveals long

runs of consecutive residuals of the same sign. The run test

allows one to check the independence formally, and from

the values of Z, one can conclude that the residuals of the

two-exponential model is consistent with the hypothesis of

independence because the Z value lies within the 5% region

of acceptance (�1.96,1.96), or equivalently, the P value is

high. Conversely, the Z value for the one-exponential model

indicates that the hypothesis of independence is to be rejected,

with a P < 0.5%.

Most residuals for the two-exponential model lie between 1

and 1, which indicates they are compatible with the assump-

tions on the variance of the measurement error. On the other

hand, only a few of the residuals of the one-exponential model

TABLE 5.1 Plasma data from a tracer experiment

Time Plasma Time Plasma

2 3993.50 99.87 28 2252.00 65.04

4 3316.50 86.33 31 2169.50 63.39

5 3409.50 88.19 34 2128.50 62.57

6 3177.50 83.55 37 2085.00 61.70

7 3218.50 84.37 40 2004.00 60.08

8 3145.00 82.90 50 1879.00 57.58

9 3105.00 82.10 60 1670.00 53.40

10 3117.00 82.34 70 1416.50 48.33

11 2984.50 79.69 80 1333.50 46.67

13 2890.00 77.80 90 1152.00 43.04

14 2692.00 73.84 100 1080.50 41.61

15 2603.00 72.06 110 1043.00 40.86

17 2533.50 70.67 120 883.50 37.67

19 2536.00 70.72 130 832.50 36.65

21 2545.50 70.91 140 776.00 35.52

23 2374.00 67.48 150 707.00 34.14

25 2379.00 67.58
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fall in this range. To test formally whether the weighted resid-

uals have unit variance, as expected if the model and/or as-

sumptions on the variance of the measurement error are

correct, the X2-test can be applied. For the one-exponential

model, the degrees of freedom df ¼ N�M ¼ 31, and for the

level of signiWcance equal to 5%, the region of acceptance is

16.8, 47.0. Because the WRSS is greater than the upper bound

47.0, the assumption of unit variance of the residuals has to be

rejected with P < 0.5%. For the two-exponential model, the

P values are higher, and the WRSS lies within the 5% region
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FIGURE 5.8 The best Wt of the data given in Table 5.1 to a single-, a two-, and a three-exponential model together with a plot of the weighted

residuals for each case. The exponential coeYcients and eigenvalues for each model are given in Table 5.2.

TABLE 5.2 One-, two-, three-exponential model parameter estimates (see text for explanation)

1 Exponential 2 Exponentials 3 Exponentials

A1 3288 (1%) 1202 (10%) 724866 (535789%)

l1 0.0111 (1%) 0.1383 (17%) 4.5540 (7131%)

A2 2950 (2%) 1195 (14%)

l2 0.0098 (3%) 0.1290 (14%)

A3 2925 (2%)

l3 0.0097 (3%)

Run test: Z value �5.13 �1.51

5% region [�1.96,1.96] [�1.96,1.96]

P value <0.5% >6%

x2 test WRSS 167.1 32.98

5% region [16.8,47.0] [16.0,45.7]

P value <0.5% >20%

F test F ratio 2 vs 1: 29.59

5% region [0,3.33]

P value <0.5%

AIC 171.10 40.98

SC 174.09 46.97

5 Data Modeling and Simulation 129



(16.05, 45.72), indicating that the residuals are consistent

with the unit variance assumption. The WRSS decreases,

as expected, when the number of parameters in the model

increases.

The F test indicates that the two-exponential model reduces

the WRSS signiWcantly when compared with the one-exponen-

tial model because the F value is greater than Fmax ¼ 3:33

(evaluated for a 5% level of signiWcance from the F29:59 distri-

bution). Similar conclusions can be derived from the AIC and

SC, which assume their lower values for the two-exponential

model.

5.7 QuantiWcation of Medical Images

Having put the compartmental modeling methodology on Wrm

ground, we can now move into discussing its application to

quantiWcation of functional brain PET and MRI imaging data.

5.7.1 Positron Emission Tomography

We discuss below some classical PET compartmental models

that require an arterial blood or plasma input function (i.e.,

the measured radioactivity concentration in the blood supply

is used as input to the system). For receptor-binding studies,

there are less invasive alternatives, the so-called reference tissue

models such as those described by Lammertsma, et al. [9, 10],

but for the sake of space, we will not discuss them here.

5.7.1.1 Blood Flow

The model used is shown in Figure 5.9.

The model equation is:

dCt(t)

dt
¼ K1Cp(t)� k2Ct(t) Ct(0) ¼ 0; (5:99)

where Ct is the tracer concentration in tissue, Cp is the tracer

concentration in arterial plasma, and K1 and k2 are two

Wrst-order kinetic rate constants. The tracer concentrations

are often measured in [nCi/ml] or in [kBq/ml], and the acqui-

sition time in [min]. Consequently, K1 is in [mlplasma=
mltissue=min] or, shortly, in [ml/ml/min] or [ml/100gr/min]

and k2 in [min�1].

Following the introduction of the PET tracer, the total

concentration of radioactivity measured by a PET scanner,

C(t), is the sum of the tissue activity in a region of interest

(ROI), or in a voxel, and a certain fraction of blood tracer

concentration:

C(t) ¼ (1� Vb) � Ct(t)þ Vb � Cb(t), (5:100)

where Vb is the fraction of the measured volume occupied by

blood, and Cb is the tracer concentration in the whole blood.

The three model parameters are a priori uniquely identiWable

and can be estimated by weighted nonlinear least squares.

In PET neuroimaging, because blood volumes in the human

brain are small, 2%–4% [11] the blood volume term is often

omitted.

This model structure is used to quantify blood Xow with the

freely diVusible [15O]H2O PET tracer and by assuming:

K1 ¼ F (5:101)

k2 ¼
F

l
; (5:102)

where F is the rate of blood Xow per unit mass of tissue, and l

is the tissue:blood partition coeYcient. The partition coeY-

cient was originally deWned as the ratio of the tissue to venous

blood concentration. In PET, the partition coeYcient refers to

the concentration ratio between a tissue compartment and

arterial plasma at equilibrium, l ¼ Ct=Cpjequilibrium ¼ K1=k2;
and it is more correctly called volume of distribution, generally

symbolized by Vd. However, traditionally in [15O]H2O PET

quantiWcation, the ratio l ¼ K1=k2 is named partition coeY-

cient.

In quantitative [15O]H2O PET imaging, plasma tracer ac-

tivity is normally obtained by automatic blood sampling. In

this case, delay and dispersion aVect the measured plasma

activity and consequently the parameter estimates. However,

the bias introduced by delay and dispersion can be taken into

account by assuming [12]:

Cpmeasured(t)¼Cp(tþDt)�1

d
e�

1
d
�t¼ 1

d

ðt
0

Cp(tþDt)e�
1
d
(t�t)dt;

(5:103)

where Dt is the delay in [min], and d is the dispersion value in

[min]. Solving Equation 5.103 by using known value for d and

Dt, one can derive the corrected Cp(t) time activity curve not

aVected for delay and dispersion and obtain unbiased param-

eter values for blood Xow and partition coeYcient. Because the

discrepancy between Cp measured and Cp is negligible after a

few minutes, delay and dispersion correction is not aVecting

parameter estimates for PET studies that have a duration of 60
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FIGURE 5.9 The one-tissue compartmental model.
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minutes or more. Thus, in this case, discrepancy between

Cp measured and Cp is ignored.

5.7.1.2 Glucose Metabolism

The two-tissue compartment model proposed by SokoloV in

1977 [13] was originally developed for autoradiographic stud-

ies in the brain with 2-[14C]deoxyglucose and subsequently

used for PET studies of glucose utilization with [18F]Xuoro-

deoxyglucose, [18F]FDG. [18F]FDG is an analog of glucose that

crosses the blood–brain barrier by a saturable carrier-mediated

transport process and competes with glucose for the same

carrier. Once in the tissue, [18F]FDG, like the glucose, can be

either be transported back to plasma or phosphorylated. The

model structure is shown in Figure 5.10, where Cp is [18F]; FDG

plasma arterial concentration, Ce[18F] FDG is cerebral tissue

concentration, Cm[18F]FDG-6-P is cerebral concentration in

tissue, K1 ml=100gr=min or ml=ml=min½ � and k2[min�1], re-

spectively, are the rate constants of [18F]FDG forward and

reverse transcapillary membrane transport, and k3[min�1] is

the rate constant of [18F] FDG phosphorylation.

The model equations are:

dCe(t)

dt
¼ K1Cp(t)� k2 þ k3ð ÞCe(t) Ce(0) ¼ 0 (5:104)

dCm(t)

dt
¼ k3Cm(t) Cm(0) ¼ 0: (5:105)

The total concentration of radioactivity measured by a PET

scanner, C(t), is the sum of the tissue activity in an ROI or in a

voxel, and a certain fraction of blood tracer concentration:

C(t) ¼ (1� Vb) � Ce(t)þ Cm(t)ð Þ þ Vb � Cb(t); (5:106)

where Vb is the fraction of the measured volume occupied by

blood, and Cb is the tracer concentration in whole blood. All

four parameters, K1,k2,k3,Vb½ �, are a priori uniquely identiW-

able. Of note is that model parameters reXect 18F½ � FDG kin-

etics and not glucose kinetics. However, from 18F½ � FDG

parameter estimates one can also derive the cerebral metabolic

rate of glucose utilization, CMRglu from:

CMRglu ¼
K1k3

k2 þ k3

C
glu
p

LC
; (5:107)

where C
glu
p is the arterial plasma glucose concentration [mg/dl],

and LC is the lumped constant [unitless] (i.e., the factor that

describes the relation between the glucose analog [18F] FDG and

glucose itself). LC is given by:

LC ¼ EFDG

EGLU
; (5:108)

where EFDG and EGLU are, respectively, the extraction of 18F½ �
FDG and glucose. LC value in brain in humans under normal

physiology has a value in the range of 0.85 [14,15]. From

model parameter estimates, it is possible to also derive the

distribution volume for Ce compartment by:

Vd ¼
K1

k2 þ k3

[ml=100gr] or [ml=ml]: (5:109)

5.7.1.3 Receptor Binding

PET allows the study of receptor density and radio ligand

aYnity in the brain. QuantiWcation of the ligand–receptor

system is of fundamental importance not only to understand

how the brain works (e.g., how it performs the various com-

mands and reacts to stimuli), but also in the investigation of

the pathogenesis of important diseases like Alzheimer’s disease

and Parkinson’s disease. In recent years, PET has become an

increasingly used tool to quantitate important parameters like

the receptor density. The most–used compartmental model is

the two-tissue model shown in Figure 5.11, where Cfþns is the

free and the nonspeciWcally bound tissue concentration of the

PET ligand, and Cs is the tissue concentration of speciWcally

bound ligand. Parameters K1 [ml ml-1min-1] and k2 [min-1]

represent rate constant of ligand transfer from plasma to the

tissue and vice versa, while k3 [min-1] represents the transfer
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FIGURE 5.10 The two-tissue compartmental model.

Capillary

Blood
flow

Blood
flow

Artery

Vein

Cp K1 k3

k4k2

Cf+ns Cs
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of tracer to the speciWcally bound compartment, and k4 [min-1]

is the return from the speciWcally bound compartment to the

free and nonspeciWcally bound compartment. In truth, the

comprehensive compartmental model for PET ligand studies

requires three compartments, as shown in Figure 5.12, where

Cp is the arterial plasma concentration corrected for metabol-

ites, Cf is the concentration of free ligand, Cns is the concen-

tration of nonspeciWcally bound ligand, and Cs is

the concentration of speciWcally bound ligand. The model

equations are:

Cf (t)

dt
¼ K1Cp(t)� (k2 þ k3 þ k5)Cf (t)þ k4Cs(t)þ k6Cns(t)

Cs(t)

dt
¼ k3Cf (t)� k4Cs(t) (5:110)

Cns(t)

dt
¼ k5Cf (t)� k6Cns(t);

with initial conditions Cf (0) ¼ Cs(0) ¼ Cns(0) ¼ 0 and where

K1 [ml/ml/min] is the rate constant of transfer from plasma to

free ligand tissue compartment, and k2,k3,k4,k5,k6[min�1] are

the rate constants of ligand transfer from tissue to plasma and

inside the tissue.

To better understand the physiologic meaning of parameters

k3 and k4, let’s assume that the binding of the ligand to the

receptor site is describable as a bimolecular reaction:

Lþ R �!
kon

 �
koff

LR; (5:111)

where L represents the ligand, R is the receptor site, LR is the

binding product, kon is the association rate of the ligand with

the receptor sites, and koV is the dissociation rate of the

speciWcally bound reaction product. In the notation of Figure

5.12, one has that Cf and Cs represent L and LR, respectively.

Thus:

dCs(t)

dt
¼ konCf (t)Cr(t)� koV Cs(t); (5:112)

where Cr denotes the concentration of receptors. If Bmax is the

total number of available reactions sites, then

Bmax ¼ Cs þ Cr; (5:113)

and, if the ligand is present in tracer concentration, the con-

centration Cs is negligible, and thus:

Bmax 	 Cr: (5:114)

Equation 5.112 becomes:

dCs(t)

dt
¼ konBmaxCf (t)� koV Cs(t) ¼ k3Cf (t)� k4Cs(t);

(5:115)

with k3 ¼ konBmax and k4 ¼ koV .

An important parameter is also the equilibrium binding

constant Kd, which is deWned with the ligand–receptor reac-

tion in steady state as

Kd ¼
Cs

CrCf

¼ kon

koV

: (5:116)

The PET measurement is the result of the tracer present in the

tissue and of that present in the blood of the ROI. Conse-

quently, the measurement equation for the three-tissue com-

partment model is:

C(t) ¼ (1� Vb)(Cf (t)þ Cns(t)þ Cs(t))þ VbCb(t), (5:117)

where Cb is whole-blood tracer concentration, and Vb is the

fraction of the measured volume occupied by blood. However,

the three-tissue model is a priori only nonuniquely identiWable;

in particular, it admits two solutions for each parameter. To

ensure unique identiWability, it is usually assumed that the

exchange rates between the free tissue and nonspeciWc binding

pools are suYciently rapid (compared with the other rates of

the model) so that the three-tissue compartment model re-

duces to the two-tissue model where Cfþns(t) ¼ Cf (t)þ Cns(t)

is the free and nonspeciWc binding tracer concentration. For

this reason, the two-tissue model is the most used to quantify

receptor binding studies. The model equations for the two-

tissue model are:

Cfþns(t)

dt
¼ k1Cp(t)� (k2 þ k3)Cfþns(t)þ k4Cs(t)

Cs(t)

dt
¼ k3Cfþns(t)� k4Cs(t);

(5:118)

with initial conditions Cfþns(0) ¼ Cs(0) ¼ 0 and with

k3 ¼ konBmax f ; (5:119)

where f is given by:

f � Cf

Cfþns

¼ Cf

Cf þ Cns

¼ Cf

Cf 1þ Cns

Cf

� � ¼ 1

1þ k5

k6

: (5:120)

The measurement equation becomes:

C(t) ¼ (1� Vb)(Cfþns(t)þ Cs(t))þ VbCb(t): (5:121)
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FIGURE 5.12 The three-tissue compartmental model.
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The model now is a priori uniquely identiWable, and in

addition to k1,k2,k3,k4,Vb, it is also possible to estimate the

binding potential (BP):

BP ¼ f � Bmax

Kd

¼ k3

k4

(5:122)

and the distribution volumes:

Vd�Cfþns
¼ Cfþns

Cp

����
equilibrium

¼ K1

k2

(5:123)

Vd�Cs ¼ Cs

Cp

����
equilibrium

¼ K1k3

k2k4

(5:124)

Vd ¼
Cs þ Cfþns

Cp

����
equilibrium

¼ K1

k2

þ K1k3

k2k4

¼ K1

k2

�
1þ k3

k4

�
:

(5:125)

When a region is void of speciWc receptors, the two-tissue

compartmental mode collapses into a one-tissue compartmen-

tal one because, in this case, k3 ¼ k4 ¼ 0 and, its total distribu-

tion volume Vd is given by Vvoid
d ¼ K1=k2. In this case—that is,

in presence of regions void of speciWc receptors—BP in the

region or voxel having speciWc receptors can be estimated from:

BP ¼ Vd � Vvoid
d

Vvoid
d

¼

K1

k2

1þ k3

k4

� �
� Kvoid

1

kvoid
2

Kvoid
1

kvoid
2

¼ [assuming
K1

k2

¼ Kvoid
1

kvoid
2

] ¼ k3

k4

:

(5:126)

To obtain unbiased model parameter estimates, it is not only

required to choose the more adequate model for the particular

PET ligand, but one must be particularly careful with the

handling of the possible presence of metabolites in plasma

measures. Unlike [18F]FDG and [15O]H2O plasma data, the

metabolism of the other tracers, particularly those used for

binding studies, often leads to labeled metabolites in plasma.

In this case, using the model of Equation 5.118, it must be

assumed that the metabolites do not enter into the tissue and

that metabolites must be removed from the blood measure-

ments before identifying model parameters.

5.7.2 Arterial Spin Labeling–Magnetic
Resonance Imaging

QuantiWcation of arterial spin labeling (ALS) images allows

cerebral blood Xow (CBF) to be obtained [16, 17]. ASL is based

on the idea of magnetically labeling blood Xowing into the

slices of interest [16, 17]. Because blood exchanges with tissue

water, altering the tissue magnetization, a perfusion-weighted

image can be generated by the subtraction of an image in

which inXowing spins have been labeled from an image

in which spin labeling has not been performed. In the imaged

slice, the evolution of the tissue magnetization can be de-

scribed by the following modiWed Bloch equation:

dMt(t)

dt
¼ M0

t �Mt(t)

T1t

þ CBF ma(t)�mv(t)½ �; (5:127)

where Mt is the longitudinal magnetization of the brain tissue

per unit mass, M0
t is the magnetization of fully relaxed tissue

per unit mass, T1t is the longitudinal relaxation time of brain

tissue water, CBF is blood Xow (perfusion) (mL 100 g-1 min-

1), ma is the magnetization of water in the inXowing arterial

blood per unit volume of blood, and mv is the equivalent term

for the outXowing venous blood. At equilibrium:

m0
v ¼ m0

a ¼ ma(t) ¼ M0
t

l
; (5:128)

where l, is the blood–brain partition coeYcient, which repre-

sents the diVerence between water concentrations in blood and

in tissue. By assuming full exchange between blood and tissue

water:

mv(t) ¼ Mt(t)

l
: (5:129)

From which:

dMt(t)

dt
¼M0

t �Mt(t)

T1t

þ rCBF
M0

t

l
�Mt(t)

l

� �
¼

¼ 1

T1t

þ rCBF

l

� �
M0

t �
1

T1t

þ rCBF

l

� �
Mt(t):

(5:130)

By deWning:

T1tapp ¼
1

T1t

þ rCBF

l

� ��1

; (5:131)

one has

dMt(t)

dt
¼ 1

T1app

M0
t �

1

T1app

Mt(t): (5:132)

Assuming that a slice-selective inversion pulse has been applied

at t ¼ 0 on the tissue magnetization, Equation 5.132 yields:

Mt(t) ¼ M0
t 1� 2e�t=T1app �:
h

(5:133)

Once estimated T1app, CBF can be obtained from:

CBF ¼ l

T1app

1�Mlab
t

2M0
t

� �
; (5:134)

where Mlab
t =M0

t is the ratio of magnetization with and without

arterial spin saturation. In particular, Mlab
t is the tissue mag-

netization after reaching the steady state.

5.7.3 Dynamic Susceptibility Contrast–Magnetic
Resonance Imaging

The model used for cerebral hemodynamics quantiWcation

from dynamic susceptibility contrast (DSC)–MRI images is
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based on the principles of tracer kinetics for nondiVusible

tracers [18]. It relies on the assumptions that the contrast

agent is totally nondiVusible, that there is no recirculation of

the contrast agent, that the contrast-agent is conWned to the

intravascular space, and that the system is in steady state

during the experiment. In particular, in the case of intact

blood–brain barrier (BBB), the model makes it possible to

relate CBF to the concentration time curve of tracer within a

given VOI, CVOI, by convolution between the residue function,

R (the fraction of tracer still present in the VOI at time t

following an ideal bolus injection) and the arterial input func-

tion, CAIF:

CVOI(t) ¼ r

kH

CBF

Z t

0

CAIF(�)R(t� �)d�: (5:135)

R(t) is an unknown, dimensionless, positive, and decreasing

function in time for which:

R(0) ¼ 1: (5:136)

CVOI in Equation 5.135 is assumed known, but it needs to be

obtained from the DSC–MRI signal. In DSC–MRI the contrast

agent amount present within a voxel locally perturbs the total

magnetic Weld, thus decreasing relaxation time constants and

inXuencing the detected T2
-weighted signal, S(t), from the

voxel, as follows:

S(t) ¼ S0e�DR
2(t)�TE ; (5:137)

where:

1. S0 ¼ S(0) is the signal value from water protons at time

t ¼ 0, when no contrast agent is yet present.

2. DR
2(t) ¼ R
2(t)� R
2(0) is the change in transverse re-

laxation rate; that is, the diVerence between water proton

T2
-relaxation rate R2
(t) ¼ 1=T2
(t) and its value at

t ¼ 0.

3. TE is the echo-time; that is, a time parameter speciWc to

the particular gradient–echo sequence adopted.

Within frequently used low-dosage ranges of contrast

agents at common Weld B0 strength, a linear relationship

between the change in transverse relaxation rate and tracer

concentration CVOI(t) within the voxel of volume can be

assumed [19]:

CVOI(t) ¼ �VOIDR
2(t); (5:138)

where kVOI is an unknown proportionality constant depending

on the tissue, the contrast agent, the Weld strength, and the

pulse sequence. From Equations 5.137 and 5.138, one can

derive:

CVOI(t) ¼ ��VOI

TE

ln
S(t)

S0

� �
; (5:139)

which is the fundamental equation of DSC-MRI, relating the

tracer concentration proWle within a voxel to the measured

signal produced by the perturbed water protons spin-1⁄2
system. Equation 5.139 is used to convert both arterial and

tissue DSC–MRI measured signals. Because of the complexity

of the relaxation mechanism underling the DSC–MRI signal

generation and the consequent diYculty in retrieving the

correct kVOI, value for each voxel, the same proportionality

constant k ¼ kVOI is usually assumed for both tissue and

arterial concentration. However, this assumption can aVect

the correct quantiWcation of the derived parameter

below [20].

5.7.3.1 Cerebral Blood Flow

To obtain CBF, one needs to deconvolve (see below) Equation

5.135 to calculate R0(t) ¼ CBF � R(t); and, subsequently, CBF

from R0(t) value at time t ¼ 0:

CBF ¼ R0(0): (5:140)

In general, an analytic solution is not possible, and several

techniques can be used to compute an approximate solution.

One simple method to solve the inverse problem is using the

convolution theorem of Fourier transform, which states that

the transform of two convolved function equals the product of

their individual transforms:

F CBF � R(t)� CAIF (t)f g ¼ F CVOI (t)f g: (5:141)

From Equation 5.141, one obtains:

CBF � R(t) ¼ F�1 F CVOI (t)f g
F CAIF (t)f g

	 

; (5:142)

where F�1 denotes the inverse of the Fourier transform F.

The Fourier transform approach has the attraction of being

theoretically very easy to implement and insensitive to delays

between the arterial input function and the tissue. However, its

use is not without problems, and discordant results have been

reported in literature. For instance, Ostergaard et al. showed

that the Fourier transform approach biases CBF, in particular,

underestimating it in case of high Xow [21, 22]. On the other

hand, other researchers found satisfactory estimates of CBF

using the Fourier transform compared with other more

sophisticated deconvolution techniques [23].

Another method to solve Equation 5.135 is to resort to a

linear algebraic approach. More precisely, assuming that tissue

and arterial concentrations are measured at equidistant

times ti ¼ ti�1 þ Dt and choosing �t so that CBF � R(t)

is reasonably approximated by a staircase function, a

discrete version of Equation 5.135 can be written in matrix

form:

CVOI(tj) 	 CBF � Dt �
Xj

i¼0
CAIF(ti) � R(tj � ti); (5:143)
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and thus

CVOI(t1)

CVOI(t2)

. . .

CVOI(tN)

0
BBB@

1
CCCA ¼ CBF � Dt�

CAIF(t1) 0 . . . 0

CAIF(t2) CAIF(t1) . . . 0

. . . . . . . . . . . .

CAIF(tN) CAIF(tN�1) . . . CAIF(t1)

0
BBB@

1
CCCA �

R(t1)

R(t2)

. . .

R(tN)

0
BBB@

1
CCCA

(5:144)

or, in compact form:

CVOI ¼ CBF � Dt � CAIF � R; (5:145)

where CVOI 2 <Nx1, CAIF 2 <NxN, R 2 <Nx1, and Dt is the

sampling interval. Equation 5.145 is a standard matrix equa-

tion that can be inverted to yield CBF�R if det(CAIF) 6¼ 0:

CBF � Dt � R ¼ C�1
AIF � CVOI: (5:146)

This approach has been termed raw deconvolution in the lit-

erature [24]. Albeit appealing for its simplicity, it is well known

to perform poorly because it is extremely sensitive to noise.

A widely used approach to solve Equation 5.145 that over-

comes the limitations of raw deconvolution is singular value

decomposition (SVD). SVD was introduced as a method to

estimate R(t) by Ostergaard et al. [21, 22]. SVD constructs

matrices V, W, and UT so that the inverse of CAIF can be

written:

C�1
AIF ¼ V �W � UT; (5:147)

where W is a diagonal matrix, and V and UT are orthogonal

and transpose orthogonal matrices, respectively. Given this

inverse matrix, CBF � R is found as:

CBF � R ¼ V �W � UT � CVOI

Dt
: (5:148)

SVD has been shown to be a reliable technique for deconvolu-

tion because it reduces the eVect of noise on R(t) estimation.

This is achieved by setting to zero the elements in the diagonal

matrix W obtained by SVD when they are smaller than a

threshold value given beforehand.

SVD represents the most-used approach to quantify bolus

tracking MRI data. However, this method does have limita-

tions [25–27].

5.7.3.2 Cerebral Blood Volume

In case of intact BBB, one can also measure cerebral blood

volume (CBV) by means of DSC–MRI images, using the ratio

of the areas under the concentration time curve of tracer

within a given VOI, CVOI, and the arterial concentration CAIF

and normalizing it to the density of brain tissue r:

CBV ¼ kH

�

Ð1
0

CVOI(t)dt

Ð1
0

CAIF(t)dt

; (5:149)

where kH accounts for the diVerence in hematocrit between

large vessels (LV) and small vessels (SV) because only the

plasma volume is accessible to the tracer, kH ¼ (1�HLV)=
(1�HSV).

5.7.3.3 Mean Transit Time

An additional parameter that can be derived is the mean

transit time (MTT). MTT can be calculated by using the

central volume theorem of indicator dilution theory [28] for

which MTT is the ratio of CBV to CBF in the VOI:

MTT ¼ CBV

CBF
: (5:150)

5.8 Exercises

1. Analyze the a priori identiWability of the following model:

�
Ce(t) ¼ K1Cp(t)� k2 þ k3ð ÞCe(t) Ce(0) ¼ 0

�
Cm(t) ¼ k3Cm(t) Cm(0) ¼ 0

y(t) ¼ (1� Vb)(Ce(t)þ Cm(t))þ Vb � Cb(t);

where Cp(t) and Cb(t) are known functions.

2. Explain why compartmental modeling is widely used in

quantiWcation of medical imaging.

3. Explain why it is important to weight the measured data to

correctly estimate model parameters.

4. Explain under which hypothesis the two-tissue can be used

instead of the three-tissue compartment model to estimate

the binding potential with PET receptor images.

5. How can cerebral blood Xow be estimated when the brain-

blood barrier is not intact.

6. Explain why deconvolution is needed to quantify DSC–MRI

images.
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6.1 Introduction

6.1.1 Structural and Functional Imaging

Medical imaging has become an important component of

modern medicine in many areas, such as detecting abnormal-

ities, staging progression of disease, and guiding surgery,

through noninvasive visualization of internal structures or

functional changes in the human body. Medical imaging can

be classiWed into two broad categories: structural and func-

tional imaging. X-ray computed tomography (CT) and mag-

netic resonance imaging (MRI) are regarded as structural

imaging because they provide detailed visualization of ana-

tomic boundaries and morphologic variations. In contrast,

positron emission tomography (PET) and single photon emis-

sion computed tomography (SPECT) visualize in vivo physio-

logic or biochemical processes and are thus referred to as

functional imaging. They are capable of detecting subtle

changes of biochemical and physiologic function like glucose

metabolism and blood Xow at an early stage of the disease,

before marked changes become apparent on structural

imaging.

The radioactive drug is generally referred as a tracer because

it ‘‘traces’’ a functional process. After the tracer is adminis-

trated, its speciWc chemical and biologic properties lead to

diVerential uptake and clearance between normal and abnor-

mal tissues, giving rise to characteristic spatial and temporal

distributions in the human body. PET relies on the detection of

the two opposing 511keV photons from positron annihilation

to determine the tracer distribution in the patient. A typical

PET scanner consists of hundreds of detectors forming a de-

tector ring, which detects a large number of these opposing

photon pairs in coincidence followed by reconstruction to form

images of the 3D tracer distribution. These unique features of

PET facilitate quantitative measurement of in vivo function and

metabolism. More recently, PET scanners have been combined

with CT scanners into the one instrument [1]. The combined

PET-CT scanner can measure co-registered CT images, provid-

ing more accurate attenuation correction and an anatomic

frame of reference for the interpretation of the low-resolution

PET data. The recent introduction of time-of-Xight PET-CT

further improves image quality by accurately measuring and

using the time diVerence of two annihilation photons reaching

the two opposing detectors [2]. The most attractive feature of
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PET is its diversity of tracers, which not only visualize func-

tional change, but also provide early diagnosis of some dis-

orders with disorder-speciWc tracers. Some clinical PET tracers

are listed in Table 6.1.

Modern SPECT scanners employ one or more gamma cam-

eras rotating around the patient, detecting emitted photons

from the decay of the tracer. These features lead to poorer

image quality of SPECT with high level of random noise as

compared with PET. Advances in gamma camera technology

and correction algorithms have resulted in SPECT potentially

providing quantitative measures of functional processes [3]. A

diverse range of SPECT tracers is also available in the clinic,

with a small sample of SPECT tracers listed in Table 6.2.

Although functional imaging suVers from relatively low spa-

tial resolution compared with structural imaging, as shown in

Figure 6.1, PET and SPECT are still attractive for their unique

abilities to detect early functional changes in disease before

anatomic changes are apparent on anatomic imaging. This is

particularly important where early treatment is essential before

damage becomes irreversible, such as in some forms of demen-

tia [4]. Limited functional imaging can also be performed with

the structural imaging modalities, such as brain activation

measurements with functional MRI using the blood-oxygen-

ation-level–dependent (BOLD) method [5]. However, in this

chapter, functional imaging refers to PET and SPECT.

6.1.2 Kinetic Modeling and Parametric Images

In functional imaging, the injected tracer is transported

throughout the body by the circulation, following the behavior

of a targeted dynamic process without aVecting the normal

physiologic process. The tracer is accumulated or released over

time from normal and abnormal tissues, based on its speciWc

physiologic and biochemical properties. The distribution of the

tracer at any time point can be determined from the external

detection of the photons emitted in the body by the radioactive

decay of the tracer. Kinetic modeling is a highly versatile tool for

analyzing experiments in living systems, with application in

many branches of biology [6]. The compartment model is

most commonly used in functional imaging for its simplicity

and its ability to model a large range of physiologic and bio-

chemical processes [7]. Figure 6.2 demonstrates an example of

a three-compartment and four-parameter compartment

model for 2-[18F]Xuorodeoxyglucose (FDG), a radioactive

analog of glucose [8]. The compartment in kinetic modeling

can be a physical or a chemical compartment, such as two

compartments respectively for FDG in plasma and tissue, and

one compartment for the phosphorylated form 2-[18F]Xuoro-

deoxyglucose-6-phosphate (FDG-6-PO4) in tissue.

The fractional transfer rates between compartments are

nonlinear in many biologic systems, such as facilitated diVu-

sion and receptor binding systems. The corresponding frac-

tional transfer rates are functions of the amount of substance

in the compartments and may be saturated at a maximum.

However, if the dynamic system is in steady state and is time-

invariant over the study duration, the administration of a

small amount of tracer will not disturb the steady state or

underlying transfer rates [9]. Therefore, linear fractional trans-

fer rates can be assumed for the tracer in the compartment

model analysis, which allows taking advantage of the attractive

mathematical properties of linear compartment models. The

compartment model in Figure 6.2 is thus assumed to be a

linear model, whose arrows indicate the direction of transfer

governed by the rate constant. Rate constants describe the

fraction of substance in one compartment being transported

to another compartment per unit time. For example, if K1 is

equal to 0.1/min, then 10% of FDG mass in plasma is trans-

ported to the tissue per minute.

Figure 6.3 shows a Xow chart for estimating cerebral meta-

bolic rate of glucose (CMRGlc) with FDG and PET. The time

TABLE 6.1 Some PET tracers and their applications

Isotope name Tracer name Purpose

Fluorine-18 18F-FDG Glucose metabolism

Fluorine-18 18F-Fluoride Bone metabolism

Carbon-11 11C-Flumazenil Brain epilepsy

Carbon-11 11C-PIB Early diagnosis of Alzheimer’s disease

Oxygen-15 15O-Water Blood Xow/perfusion

Oxygen-15 15O-O2 Oxygen consumption

Nitrogen-13 13N-Ammonia Myocardial perfusion

TABLE 6.2 Some SPECT tracers and their purposes in the clinic

Isotope name Tracer name Purpose

Technetium-99m 99mTc-MIBI Myocardial perfusion scan

Technetium-99m 99mTc-MDP Bone scan

Technetium-99m 99mTc-MAA Perfusion of lung

Iodine-123 123I-MIBG Neuroendocrine tumors

Thallium-201 201Tl-chloride Myocardial perfusion

(a) (b)

FIGURE 6.1 DiVerence between structural imaging (a, MRI) and

functional imaging (b, PET) in the human brain.
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course of FDG uptake in the brain is followed by a dynamic

PET study that collects a series of images over predetermined

time intervals. A region of interest (ROI) is deWned to generate

a tissue time activity curve (TTAC) of the average activity

concentration within the ROI, which represents the sum of

FDG and the phosphorylated FDG-6-PO4 in the tissue. Arte-

rial blood samples are measured to obtain a plasma time

activity curve (PTAC) over the whole scan period, which is

used as input function (IF) to the kinetic model. The micro-

parameters of K1, k2, k3, and k4 of the kinetic model are

estimated from the model equations based on the measured

TTAC and PTAC. CMRGlc can then be estimated as shown in

Figure 6.3 based on the rate constants, the endogenous glucose

concentration (Cglu), and the lump constant (LC), which ac-

counts for diVerences between endogenous glucose and FDG.

If parameter estimation is performed for TTACs derived

from each voxel of the image volume, then images of CMRGlc

covering the three-dimensional image volume can be

generated as shown in Figure 6.4. Parametric images form a

three-dimensional image volume whose voxels represent

quantitative functional parameters. This avoids operator-

dependent manual delineation of ROI, and also avoids the

need for prior knowledge on the spatial distribution for a

newly developed tracer. Parametric images encapsulate the

detailed information contained in the dynamic scans and can

visualize functional changes such as metabolism, blood Xow,

and receptor binding.

6.1.3 Compartment Model Parameter
Estimation

Parameter estimation is a discipline that provides tools for

mathematically modeling phenomena and the estimation of

the constants appearing in these models [10]. Diverse ap-

proaches are available for parameter estimation. These are

optimized in terms of the tracer, compartment model, and

imaging implementation. A compartment model for regional

cerebral blood Xow (rCBF) is used to demonstrate two basic

methods of parameter estimation. In contrast to the indirect

measurement of metabolic rate of glucose with FDG, kinetic

modeling of blood Xow directly measures rCBF transported

into the tissue, as shown in Figure 6.5, based on the Kety-

Schmidt single compartment model [11, 12].

FDG in plasma:
Cp(t)

FDG in tissue:
Ce(t)

FDG-6-PO4 in
tissue:Cm(t)

K1

k2 k4

k3

Ct(t)

FIGURE 6.2 A three-compartment and four-parameter model for FDG.

FDG in plasma:
Cp(t)

FDG in tissue:
Ce(t)

FDG-6-PO4 in
tissue: Cm(t)

TTAC

Parameter Estimation

Cerebral metabolic rate of glucose

PTAC

K1 k3

k4

K1, k2, k3, k4

k2

CMRGlc =
Cglu K1k3

k2 + k3LC

FIGURE 6.3 Flow chart of estimating cerebral metabolic rate of glucose (CMRGlc) using ROI.
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The model yields the following diVerential equation for the

radioactivity concentration (Equation 6.1):

dCt (t)

dt
¼ rCBF � Cp(t)� rCBF

Vd

þ l

� �
� Ct (t), (6:1)

where rCBF is the local perfusion Xow, Cp(t) represents the

tracer concentration in arterial blood, Vd is the volume of

distribution for water, and l is the radioactive decay constant

of the tracer. Equation 6.1 can be simpliWed to Equation 6.2 by

substituting rCBF=Vd þ l with K:

dCt (t)

dt
¼ rCBF � Cp(t)� K � Ct (t): (6:2)

Equation 6.2 for rCBF study can be transformed into Equation

6.3 by the Laplace transform:

Ct (s) ¼ rCBF

s þ K
Cp(s): (6:3)

Taking the inverse Laplace transform, Equation 6.3 can be

reorganized into Equation 6.4:

Ct (t) ¼ rCBF �
Z t

0

Cp(t)e�K(t�t)dt

¼ rCBF � Cp(t)� e�Kt , (6:4)

where � represents the mathematical operation of convolu-

tion, Ct(t) is the measured tissue activity, and Cp(t) is the tracer

concentration in the plasma from arterial blood samples. Even

for this simple compartment model, the solution to the diVer-

ential equation is nonlinear, requiring a nonlinear Wtting rou-

tine to estimate f and K from the measured data. Nonlinear

least-squares Wtting, discussed in the next section, is the

method of choice for Wtting the nonlinear equations resulting

from compartment models.

6.1.3.1 Nonlinear Least-Squares Fitting

Nonlinear least-squares (NLS) analysis comprises a group of

numeric procedures that Wnd the ‘‘optimal estimates’’ of the

parameters for the experimental data [13]. In this context, the

NLS method is frequently called NLS Wtting, since it is used to

iteratively Wt the model equation to the TTAC for a given

PTAC. As shown in Figure 6.6, the NLS Wtting consists of

initial parameters and an iterative procedure, adjusting esti-

mated parameters to derive a better approximation until suY-

cient convergence has been reached. Within the iterations, the

improved parameter estimates derived from the previous step

are used as a new set of initial parameters in the present step.

The objective function is chosen to evaluate how well the

estimated model TTAC approximates the measured TTAC. In

general, the objective function minimizes the nonweighted or

weighted sum of squared diVerences between the estimated

and measured TTAC.

FDG in plasma:
Cp(t)

FDG in tissue:
Ce(t)

PTAC TTAC

Voxel-wise parameter estimation

Cerebral metabolic rate of
glucose

CMRGlc =
Cglu K1k3

k2 + k3LC

FDG-6-PO4 in
tissue: Cm(t)

K1

k2

k3

k4

FIGURE 6.4 Flow chart of generating parametric image of cerebral metabolic rate of glucose (CMRGlc).

rCBF rCBF15O-Water in tissue:

l

Cp(t) Ct(t) /VdCt(t)

FIGURE 6.5 A single-compartment model for regional cerebral

blood Xow (rCBF).
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Given a set of initial parameters u0 ¼ [rCBF, K], the estimated

TTAC can be derived according to Equation 6.4 and the measured

Cp(t). The sum of squared diVerences between the estimated TTAC

and measured TTAC forms the objective function in Equation 6.5:

F(ui) ¼
XN

j¼1

[CE(tj)� CM (tj)]2, (6:5)

where ui are the estimated parameters in the ith iteration, N is

the number of sampling frames, CE(tj) is the estimated activity

for the jth sampling point using Equation 6.4, and CM(tj) is the

measured activity for the jth sampling point. If F(ui) hasn’t

reached its minimum, the parameters ui are adjusted to uiþ1

using multidimensional optimization techniques such as the

Newton-Gauss or Levenberg-Marquardt algorithms [14, 15].

The updated uiþ1 is then used in the next iteration. Once the

minimum is reached or estimation has converged to within a

set tolerance, the whole process is terminated, and the Wnal

estimates are regarded as the results of the NLS method.

Because noise exists in PET and SPECT data, with particu-

larly low signal to noise ratio (SNR) in the early frames, a

modiWed objective function Equation 6.6 can be adopted using

a weighted least-square distance.

FW (ui) ¼
XN

j¼1

wj[CE(tj)� CM (tj)]2, (6:6)

where the weight function, W ¼ [w1,w2, . . . ,wN ], can be

chosen to be proportional to the frame durations with higher

weights for frames with longer collection times, or propor-

tional to the inverse of variance of the measurements [16]. This

is then referred to as the weighted nonlinear least-square

(WNLS) Wtting method.

The NLS and WNLS methods are considered the methods of

choice for providing parameter estimates for TTACs with

optimum statistical accuracy and reliability [8]. The practical

implementations of NLS and WNLS are dependent on the

choice of initial values. If poor initial values are given, the

methods may converge very slowly, fail to converge, or be

trapped in local minima [17]. Because of the high computa-

tional burden, NLS and WNLS are not well suited for the

generation of parametric images. However, NLS methods are

often used as the gold standard to assess the performance of

other methods for Wtting ROI TTACs to a model.

6.1.3.2 Steady-State Technique

Steady-state technique is also called the equilibrium method.

Constant infusion of tracer leads to a steady state eventually

being reached with a constant tissue concentration. For ex-

ample, the time to reach equilibrium state is approximately 10

minutes for C15O2. In steady state, dCt (t)=dt ¼0, thus

rearranging Equation 6.1 yields:

Ct (T) ¼ rCBF � Cp(T)

lþ rCBF=Vd

, (6:7)

where T is the time when the concentration reaches a steady

state. The estimation of rCBF can be derived by Equation 6.8:

rCBF ¼ l

Cp(T)=Ct (T)� 1=Vd

¼ l � Ct (T) � Vd

Cp(T) � Vd � Ct (T)
: (6:8)

Since the Cp(T) and Ct(T) are known from the measurements,

the derivation of rCBF depends on the values of l and Vd.

rCBF has a nonlinear relationship with the tissue concentra-

tion Ct(T), with the degree of nonlinearity depending on l. A

tracer with a short half-life (i.e., larger l values) can improve

the linearity. This fact and the requirement that equilibrium be

reached in a reasonable short time restrict the steady-state

technique to tracers with short half-lives, such as 15O with a

half-life of 2 minutes [9].

The steady-state technique requires only one scan and one

blood sample according to Equation 6.8. However, estimation

of rCBF is sensitive to measurement error of the steady-state

plasma concentration. A 10% error in Cp(T) may give rise to

20 � 30% error in the rCBF [18]. Thus, a few blood samples

are usually collected over the scanning period to obtain an

average measurement of Cp(T), improving the accuracy of the

estimation [19, 20].

6.2 Parametric Image Estimation
Methods

FDG is the most commonly used tracer in PET imaging because of

its availability (half-life of 109.7 minutes) and wide application in

the assessment of glucose metabolism for neurology and the

diagnosis, staging, and monitoring of treatment in oncology.

Several reasonable assumptions are generally made for the

FDG kinetic model [8, 21]. For example, it is assumed that the

Initial parameters q0

Estimated TTAC
from kinetic model

Measured TTAC

Compare estimated and
original TTAC F(q i) 

Update estimated
parameters q i+1 

No
Model fit?

Estimated parameters q

FIGURE 6.6 Diagram illustrating iterative process for Wtting model

to measured data. TTAC: tissue time activity curve.
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compartment is homogenous with respect to blood Xow, trans-

port rate, and substance mass and that the arterial plasma con-

centration of FDG is approximately equal to the capillary plasma

concentration.

These assumptions and knowledge lead to the three-com-

partment and four-parameter model for FDG shown in Figure

6.2. The corresponding diVerential equations of activity con-

centration in tissue for FDG and FDG-6-PO4, respectively, are

shown in Equations 6.9 and 6.10:

d

dt
Ce(t) ¼ K1Cp(t)� (k2 þ k3)Ce(t)þ k4Cm(t) (6:9)

d

dt
Cm(t) ¼ k3Ce(t)� k4Cm(t), (6:10)

where Cp(t) represents the FDG concentration as a function of

time in plasma, which is measured by arterial blood sampling.

Ce(t) represents free FDG concentration in tissue; Cm(t) repre-

sents the concentration of FDG-6-PO4 in tissue. Because PET

measures the total activity in the tissue space, the measured Ct(t)

is the sum of Ce(t) and Cm(t). Solving Equations 6.9 and 6.10 can

yield the diVerential equation for Ct(t) shown in Equation 6.11:

d2Ct (t)

dt2
¼ K1

dCp(t)

dt
þ K1(k3 þ k4)Cp(t)

� (k2 þ k3 þ k4)
dCt (t)

dt
� k2k4Ct (t):

(6:11)

The solutions for Ce(t) and Cm(t) can be derived as shown in

Equations 6.12 and 6.13:

Ce(t)¼ K1

a2�a1

[(k4�a1) � e�a1t þ (a2� k4) � e�a2t ]

�Cp(t)

(6:12)

Cm(t) ¼ K1k3

a2 � a1

(e�a1t � e�a2t )� Cp(t), (6:13)

where � denotes the mathematical convolution,

a1,2 ¼ k2 þ k3 þ k4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k2 þ k3 þ k4)2 � 4k2k4

p
2

. Once the

rate constants are obtained from parameter estimates, the

CMRGlc is calculated as deWned by Equation 6.14 [7, 8]:

CMRGlc ¼ 1

LC
� K1k3

k2 þ k3

� Cglu, (6:14)

where Cglu is the endogenous glucose concentration in the

plasma, and LC denotes the lumped constant accounting for

the diVerence in transport and phosphorylation between glu-

cose and deoxyglucose. Cglu can be obtained from analyzing

blood samples, and a prior value can be used for LC—for

example, 0.52 provided in Reivich et al [22].

6.2.1 Autoradiographic Technique

Usually a dynamic study is required to generate the TTACs that

allow estimation of the rate constants (K1, k2, k3, and k4) and

hence in vivo quantitation of CMRGlc. The autoradiographic

(ARG) technique requires only one static study (one frame) and

thus substantially reduces the complexity of the study and com-

putational burden compared with the NLS and WNLS methods.

Given that Ct (t) ¼ Ce(t)þ Cm(t), Equation 6.14 can be

rewritten as Equation 6.15:

CMRGlc ¼ Cglu

LC
� K1k3

k2 þ k3

� Ct (t)� Ce(t)

Cm(t)
: (6:15)

As the accuracy of CMRGlc estimation is rather insensitive to

variation of the rate constants, their values can be assumed to

be constant in the brain [8]. The estimated CMRGlc then

approximates its true value when the rate constants (K1, k2,

k3, and k4) are based on the mean kinetic values (K 1, k2, k3,

and k4) from a population of control subjects [21]. Therefore,

the formula of the ARG method is presented in Equation 6.16

with Ce(t) and Cm(t) substituted by estimates derived from the

population rate constant and the measured input function:

CMRGlc �Cglu

LC

�
Ct (t)� K 1

a2�a1

[(k4�a1) � e�a1t þ (a2� k4) � e�a2t ]�Cp(t)

k2þ k3

a2�a1

(e�a1t � e�a2t )�Cp(t)

,

t > T :

(6:16)

With the prior knowledge of LC, the required measurements

for the ARG technique are a single image scan at time T after

injection. However, the tracer concentration of FDG in plasma,

Cp(t), still has to be determined from the time of injection to

the end of the image acquisition. As before, endogenous glu-

cose concentration has to be measured at least once during the

study. Equation 6.16 provides good estimates of CMRGlc for

the scan times, T, between 30 minutes and 2 hours. The

advantages of the ARG method are its simplicity and compu-

tational eYciency, and it has thus become the method of

choice for routine clinical neurologic studies where the as-

sumptions are suYciently satisWed.

However, in pathologic states such as tumor or stroke, the

rate constants can diVer signiWcantly from the assumed popu-

lation means derived from brain studies, leading to high bias in

CMRGlc estimates [8, 21]. For example, negative values were

obtained in patients with stroke [8, 21]. Alternative formula-

tions have been investigated to improve the accuracy of the

ARG method estimates [23]. One approach assumes Ct(t) is

proportional to CMRGlc because Equations 6.12 and 6.13

demonstrate that Ce(t) and Cm(t) are linearly dependent to

the inXux rate K1. For the variations of K1 and k2, better

estimation of CMRGlc is provided by Equation 6.17 because

of the normalization of K1 [21, 23–25]:

CMRGlc � Cglu

LC
� K 1k3

k2 þ k3

� Ct (t)

Ce(t)þ Cm(t)
: (6:17)
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If the tissue’s free FDG is assumed to be small compared to

the total radioactivity in the tissue, (Ce(t) << Ct(t)), Equa-

tion 6.18 provides a further simpliWed formula for CMRGLC

at later time (T > 45 min) [26]:

CMRGlc � Cglu

LC
� Ct (T)R T

0
Cp(t) � dt

: (6:18)

6.2.2 Standardized Uptake Value Method

Although the ARG method is attractive, a series of blood

samples is still required to obtain the plasma time activity

curve. A popular alternative approach is the standardized

uptake value (SUV) method, which has been widely applied

in diVerentiating malignant from benign tumors and assessing

the eYcacy of therapy [27], especially for whole-body FDG-

PET.

If the time integral of Cp(t) is assumed proportional to

the injected tracer dose divided by body weight of the

scanned subject with a proportional constant b (that is,R T

0
Cp(t) � dt ¼ b Dose

Weight
) Equation 6.18 can be reorganized

into Equation 6.19:

MRGlc ¼ Cglu=100

LC � b=100
� Ct (T)

dose=Weight
¼ Cglu=100

LC � b=100
� SUV ,

(6:19)

where SUV ¼ Ct (T)=(dose=Weight), and MRGlc is the meta-

bolic rate of glucose for the whole body rather than for the

brain. If LC and b are both constants, SUV is proportional to

MRGlc [27] if Cglu is also constant in Equation 6.19. This is the

theoretical background of the SUV method. Therefore patients

should fast before and during PET scans to keep plasma glu-

cose concentration relatively stable for the duration of the PET

study [28].

There are many factors aVecting accuracy of SUV values,

such as patient size, standardized measurement time, plasma

glucose level, and partial volume eVects. For example, SUV in a

lung tumor was observed to vary by 40% from 5.5 to 7.7

between 30 and 60 minutes [29]. The use of lean body mass

[30] or body surface area [31] has been proposed to provide

more accurate estimation for the SUV method instead of

traditional body weight. Because of its computational eYciency

and clinical practicality, the SUV method is the method of

choice for providing a semiquantitative measure of MRGlc in

routine clinical studies, despite its shortcomings.

6.2.3 Integrated Projection Method

The integrated projection (IP) method was developed to ad-

dress the issue of computational cost with the NLS or WNLS

methods. The IP method was proposed to derive rCBF from

dynamic studies in terms of time integrals of the tissue and

blood activity concentrations [32, 33]. For the Kety-Schmidt

compartment model in Figure 6.5, if blood and tissue meas-

urements have been corrected for decay, the diVerential Equa-

tion 6.1 can be converted to Equation 6.20:

dC�t (t)

dt
¼ rCBF � C�p (t)� rCBF

Vd

� C�t (t), (6:20)

where C�p (t) ¼ Cp(t) � e lt and C�t (t) ¼ Ct (t) � e lt are radio-

active decay corrected terms. Integrating Equations 6.1 and

6.20 over the scan duration from time 0 and T, the estimates

of rCBF and Vd can be solved in Equation 6.21 if zero initial

conditions are assumed:

rCbBF ¼R T

0
C�t (t)dt � [l

R T

0
Ct (t)dt þ Ct (T)]� C�t (T) �

R T

0
Ct (t)dtR T

0
Cp(t)dt �

R T

0
C�t (t)dt �

R T

0
Ct (t)dt �

R T

0
C�p (t)dt

V̂Vd ¼R T

0
C�t (t)dt � [l

R T

0
Ct (t)dt þ Ct (T)]� C�t (T) �

R T

0
Ct (t)dtR T

0
C�p (t)dt � [l

R T

0
Ct (t)dt þ Ct (T)]� C�t (T) �

R T

0
Cp(t)dt

,

(6:21)

where rCbBF and V̂Vd are the estimates of rCBF and Vd using

the IP method. If the integral time, T, is chosen to be long

enough so that Ct (T) << l
R T

0
Ct (t)dt, the equations of the

original integrated method may be simpliWed further into

Equation 6.22:

rCbBF ¼
l
R T

0
C�t (t)dt �

R T

0
Ct (t)dt � C�t (T) �

R T

0
Ct (t)dtR T

0
Cp(t)dt �

R T

0
C�t (t)dt �

R T

0
Ct (t)dt �

R T

0
C�p (t)dt

V̂Vd ¼
l
R T

0
C�t (t)dt � C�t (T)

l
R T

0
C�p (t)dt � C�t (T) �

R T

0
Cp(t)dt=

R T

0
Ct (t)dt

:

(6:22)

The advantage of the integrated method is the simple compu-

tation for parameter estimation based on the direct recon-

structing of the time integrals of the projection data. Because

reconstruction is a linear operation, integration can be per-

formed either prior to reconstruction or postreconstruction

[34]. Performing the integration prior to reconstructions

avoids the need to reconstruct the dynamic data.

6.2.4 Weighted Integrated Method

The weighted integrated method (WIM) is an optimized ver-

sion of the IP method to minimize the noise eVect on estimates

of rCBF and improve statistical accuracy and reliability of

estimates [35, 36]. The method was originally proposed by

introducing weighted integrals using two arbitrary weighting

functions and their diVerentials into the IP method [34]. It was

then extended using piecewise continuous weighting functions

instead of the diVerentials [37]. The WIM method was later

extended for CMRGlc using the two-compartment and three-

parameter SokoloV model (assuming k4¼ 0) [38].
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For the two-compartment and four-parameter model for

FDG (Figure 6.2), integrating Equation 6.11 twice from 0 to

a time, t, derives the linearized equation for Ct(t) given by

Equation 6.23 [39]:

Ct (t) ¼ P1

Z t

0

Cp(t)dt þ P2

Z t

0

Z t

0

Cp(t)dt2

þ P3

Z t

0

Ct (t)dt þ P4

Z t

0

Z t

0

Ct (t)dt2,

(6:23)

where P1 ¼ K1, P2 ¼ K1(k3 þ k4), P3 ¼ �(k2 þ k3 þ k4); and

P4 ¼ �k2k4. After the four weighting functions, W1(t),W2(t),

W3(t),W4(t) are multiplied with the corresponding integral

terms in Equation 6.23, followed by integration over the scan

duration of T, the obtained simultaneous equations can be

solved in matrix form Equation 6.24:

A ¼ BuWIM þ «, (6:24)

where uWIM ¼

P1

P2

P3

P4

2
664

3
775, A ¼

R T

0
W1(t)Ct (t)dtR T

0
W2(t)Ct (t)dtR T

0
W3(t)Ct (t)dtR T

0
W4(t)Ct (t)dt

2
6664

3
7775, « ¼

«1

«2

«3

«4

2
664

3
775

« corresponds to the error terms, and B ¼R T

0
W1(t)

R t

0
Cp(t)dtdt ,

R T

0
W1(t)

R t

0

R t

0
Cp(t)dt2dt ,R T

0
W2(t)

R t

0
Cp(t)dtdt ,

R T

0
W2(t)

R t

0

R t

0
Cp(tÞdt2dt ,R T

0
W3(t)

R t

0
Cp(t)dtdt ,

R T

0
W3(t)

R t

0

R t

0
Cp(t)dt2dt ,R T

0
W4(t)

R t

0
Cp(t)dtdt ,

R T

0
W4(t)

R t

0

R t

0
Cp(t)dt2dt ,

2
666664
R T

0
W1(t)

R t

0
Ct (t)dtdt ,

R T

0
W1(t)

R t

0

R t

0
Ct (t)dt2dtR T

0
W2(t)

R t

0
Ct (t)dtdt ,

R T

0
W2(t)

R t

0

R t

0
Ct (t)dt2dtR T

0
W3(t)

R t

0
Ct (t)dtdt ,

R T

0
W3(t)

R t

0

R t

0
Ct (t)dt2dtR T

0
W4(t)

R t

0
Ct (t)dtdt ,

R T

0
W4(t)

R t

0

R t

0
Ct (t)dt2dt

3
777775:

The estimates of WIM can be derived by solving Equation 6.24:

ûuWIM ¼ B�1A (6:25)

Once the estimates for ûuWIM are obtained, the microparam-

eters can be calculated according to Equation 6.26.

K̂K1 ¼ P̂P1,
_

k2 ¼ �
P̂P2

P̂P1

�P̂P3, k̂k3 ¼ �P̂P3 �k̂k2 �k̂k4,

k̂k4 ¼ �
_

P4
_

k2

:

(6:26)

The advantage of WIM is that the computational cost is sub-

stantially reduced through the linear calculations. Whereas a

range of time-weighting functions has been proposed, the

choice of weighting function still aVects reliability of the par-

ameter estimates. Thus, optimization of the weighting function

can keep noise eVects in parameter estimates to a minimum,

but it may require considerable computational time to achieve

the objective for each pixel [9, 34].

6.2.5 Spectral Analysis

In kinetic modeling, the numbers of compartments and corre-

sponding interconnections are assumed to be known a priori.

However, in some experiments such as the study of a new drug

or tracer, prior knowledge may not be available about the

behavior of the tracer. In addition, the assumption of homo-

genous tracer distribution and behavior within the ROI may

not be accurate for regions in tumors [40]. The spectral analy-

sis (SA) method identiWes the unit impulse tissue response

function with no prior assumptions of a speciWc kinetic

model [41, 42].

The SA method solves a linear problem by modeling TTAC

as a linear combination of a series of basis function Cj(t) in

Equation 6.27:

Ct (t) ¼
XN

j¼1

ajCj(t), (6:27)

where aj denotes non-negative coeYcients. Typically the basis

functions are exponentials convolved with the PTAC,

Cj(t) ¼ Cp(t)� exp (�bj t). bj is the parameter deWning

basis function, which is predetermined and Wxed to cover an

appropriate spectral range. Usually, N is chosen to be equal to

100 in order to generate a large number of basis functions.

The application of spectral analysis to PET data without

decay correction provides useful constraints on the range of

values for bj. For example, for the FDG study with a decay

constant l ¼ 0:000105 s�1, a suitable range of bj is from l to 1

s�1. 1 s�1 represents the fastest spectral component that can be

realistically extracted in practice [41].

The Wt coeYcients aj are constrained to be non-negative by

using non-negative least-square Wtting, such as a simplex

method [15], in the curve Wtting. The impulse response func-

tion (IRF) is then given by summation of the basis functions as

given by Equation 6.28:

h(t) ¼
XN

j¼1

aj � exp(�bj � l)t : (6:28)

An important feature of the process is that most �j coeYcients

are returned as zero, with only two to three aj being non-zero

because of the imposed constraints. The parameters of interest

then can be derived from the obtained IRF in Equation 6.28.

The delivery rate constant K1 can be estimated from IRF at

time t¼0 and is given by h(0) ¼
PN
j¼1

aj [9]. The volume of

distribution Vd is deWned by Vd ¼
R1

0
h(t)dt ¼

PN
j¼1

aj

bj � l

[40, 41].

The spectral analysis can be directly applied to projection

data so that the reconstruction burden may be reduced. The

eYciency of spectral analysis is well suited to incorporating

into iterative parametric image reconstruction algorithms

[40, 43]. This is further described in Section 6.2.8.
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6.2.6 Graphic Analysis Methods

Graphic analysis techniques transform the data to allow esti-

mates of the parameters of interest to be determined from a

linear plot (hence graphic analysis) with linear regression an-

alysis. The slope and intercept of the graphic analysis are related

to parameters of interests in the kinetic modeling. The graphic

analysis methods are computationally eYcient, and the esti-

mates are usually highly reliable in contrast to other methods.

6.2.6.1 Patlak Graphic Analysis

One of the best-known graphic analysis techniques is the

Patlak graphic analysis (PGA) [44, 45]. It estimates the

inXux rate constant Ki ¼ (K 1k3)=(k2 þ k3), which is a more

appropriate measure of FDG uptake than SUV. The Patlak

plot was originally proposed for a two-compartment and

three-parameter SokoloV model with one irreversible com-

partment for FDG-6-PO4 in tissue. For the compartment

model with k4 ¼ 0 in Figure 6.2, the diVerential equations

for the mass concentration in tissue are quite similar to

Equations 6.9 and 6.10, except terms related to k4 are re-

moved in Equation 6.29:

d

dt
Ce(t) ¼ K1Cp(t)� (k2 þ k3)Ce(t)

d

dt
Cm(t) ¼ k3Ce(t):

(6:29)

The total tracer concentration in the tissue can be solved from

Equation 6.29 as:

dCt (t)

dt
¼ K1 � k3

k2 þ k3

� Cp(t)þ k2

k2 þ k3

dCe(t)

dt
: (6:30)

After a suYciently long time post tracer administration

(t > t�), it can be assumed that an equilibrium has been

reached between the plasma and free tissue concentrations,

Ce(t). In other words, Ce(t)=Cp(t) tends to a constant when

t > t�. Thus, integrating Equation 6.30 and dividing the equa-

tion by the plasma concentration of Cp(t) yields Equation 6.31:

Ct (t)

Cp(t)
¼ K1 � k3

k2 þ k3

�
R t

0
Cp(t)dt

Cp(t)
þ k2

k2 þ k3

Ce(t)

Cp(t)

� Ki �
R t

0
Cp(t)dt

Cp(t)
þ k2

k2 þ k3

Const , t > t�, (6:31)

where Ki ¼ (K 1k3)=(k2 þ k3), and Const is a constant.

Therefore, plotting

R t

0
Cp(t)dt

Cp(t)
vs.

Ct (t)
Cp(t)

will then generate a

straight line with slope of Ki and intercept of

k2Const=(k2 þ k3) in Figure 6.7b. As Ki is directly related

to CMRGlc (Equation 6.14), voxel-by-voxel parameter esti-

mates of Ki using PGA can readily derive parametric images

of CMRGlc. In the clinical application, the value of t� ranges

from approximately 15 to 60 minutes post tracer administra-

tion for FDG studies [46].

The advantages of PGA are its computational eYciency,

reliability, and simplicity. PGA does not necessarily require

full dynamic scan protocols. For example, four scans of 5

minutes duration are suYcient to achieve adequate accuracy

for parametric images of CMRGlc [46]. The drawback of PGA

is its inability to estimate individual microparameters. The

assumptions of k4 ¼ 0 will underestimate the value of CMRGlc

if there is appreciable dephosphorylation.

6.2.6.2 Logan Graphic Analysis

The Logan graphic analysis (LGA) extends graphic analysis

methods to reversible compartments [47, 48]. Based on the

diVerential Equations 6.9 and 6.10, the total tissue tracer

concentration Ct(t) can be derived by Equation 6.32:

Ct (t) ¼ K1

k2

� k3 þ k4

k4

� Cp(t)� k3 þ k4

k2k4

� dCt (t)

dt
� 1

k4

� dCm(t)

dt
: (6:32)

Integrating Equation 6.32 and dividing the equation by the

tissue tracer concentration of Ct(t) yields:R t

0
Ct (t)dt

Ct (t)
¼ K1

k2

� k3 þ k4

k4

�
R t

0
Cp(t)dt

Ct (t)
� k3 þ k4

k2k4

� � 1

k4

� Cm(t)

Ct (t)
: (6:33)

The assumption of the Logan plot is that when equilibrium is

reached, the ratio between Cm(t) and Ct(t) becomes constant. So if

t > t�, the Equation 6.33 can be reorganized into Equation 6.34:R t

0
Ct (t)dt

Ct (t)
¼ Vd �

R t

0
Cp(t)dt

Ct (t)
þ Int , (6:34)

where Vd is volume of distribution, which is K1(k3 þ k4)=(k2k4),

Int is a constant. Thus, when plotting

R t

0
Cp(t)dt

Ct (t)
vs.

R t

0
Ct (t)dt

Ct (t)
,

the slope of the LGA plot is the volume of distribution as shown

in Figure 6.7c. If Cm(t) is assumed to be far less than Ct(t) at

steady state, Int � �(k3 þ k4)=(k2k4) and the inXux rate of K1

would be derived from the slope and intercept of the Logan plot

(i.e., K1 � �Vd=Int). Usually, t� is assumed to be about 40

minutes for FDG studies.

The volume of distribution has been used extensively to

monitor changes related to receptor-ligand binding in neuro-

receptor studies [48]. For other studies, the Logan plot is still

attractive because of its computational eYciency and stable

estimates of Vd. K1 is potentially underestimated because of the

underlying assumption detailed above. Despite Vd being based

on a compartment model in this section, one advantage of the

Logan method is that it does not require prior knowledge of

the tracer’s kinetics. Parametric images derived by the Logan

plot give rise to direct quantitative intrasubject and intersub-

ject comparisons.

6 Techniques for Parametric Imaging 145



6.2.6.3 Yokoi Plot

The Yokoi plot was proposed to estimate cerebral blood Xow

for a two-compartment and two-parameter model [49]. The

kinetics of cerebral blood Xow can be written by a Wrst-order

diVerential equation (6.35):

dCt (t)

dt
¼ K1Cp(t)� k2Ct (t), (6:35)

where Ct(t) is the tracer concentration in tissue, and Cp(t) is the

tracer concentration in plasma. The integration of Equation

6.35, divided by the integral of Cp(t), derives Equation 6.36:

Ct (t)R t

0
Cp(t)dt

¼ K1 � k2

R t

0
Ct (t)dtR t

0
Cp(t)dt

: (6:36)

When plotting

R t

0
Ct (t)dtR t

0
Cp(t)dt

vs.
Ct (t)R t

0
Cp(t)dt

, the slope of the

Yokoi plot is �k2, while the intercept of line is K1, as shown in

Figure 6.7(d). Because K1 dominates the early part of the kin-

etics, when t < t�, the Yokoi plot provides a more accurate

estimate of K1. The advantages of the Yokoi plot are its rapid

computation and simplicity to derive parametric image of K1.

However, lower SNR at early time frames gives rise to unreliable

estimates using the Yokoi plot. Thus, low-pass Wlter may need to

be applied to improve SNR before the Yokoi plot is applied.

6.2.7 Linear Least-Squares Method

The linear least-square method is similar to the weighted inte-

grated method, and it estimates parameters from the matrices
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of linearized equations. The advantage of linear least-square

method and extended methods is that they avoid the need for

specifying initial parameters required for the NLS method and

determination of optimal weights in the WIM method.

6.2.7.1 Linear Least-Squares

The linear least-squares (LLS) method is a special case of the

more general nonlinear least square method [13]. For param-

eter estimation for a general compartmental model for FDG,

all the available dynamic information from measurements of

plasma and imaging data is used to derive reliable estimates of

CMRGlc [39, 50].

The diVerential Equation 6.11 can be discretized by the

second-order integration for m imaging durations, whose

mid scan times range from t1 to tm. The algebraic equations

are shown by Equation 6.37:

Ct (t1) ¼ P1

Z t1

0

Cp(t)dt þ P2

Z t1

0

Z t1

0

Cp(t)dt2

þ P3

Z t1

0

Ct (t)dt þ P4

Z t1

0

Z t1

0

Ct (t)dt2 þ «1

Ct (t2) ¼ P1

Z t2

0

Cp(t)dt þ P2

Z t2

0

Z t2

0

Cp(t)dt2

þ P3

Z t2

0

Ct (t)dt þ P4

Z t2

0

Z t2

0

Ct (t)dt2 þ «2

..

.

Ct (tm) ¼ P1

Z tm

0

Cp(t)dt þ P2

Z tm

0

Z tm

0

Cp(t)dt2

þ P3

Z tm

0

Ct (t)dt þ P4

Z tm

0

Z tm

0

Ct (t)dt2 þ «m,

(6:37)

where P1 ¼ K1, P2 ¼ K1(k3 þ k4), P3 ¼ �(k2 þ k3 þ k4) and

P4 ¼ �k2k4, « ¼ [«1,«2, . . . ,«m]T are the equation error

terms. Those equation errors are not independent but are

correlated because of the involved integrations of measure-

ments of PTAC and TTAC, even though the measurement

errors are independent [51]. Rearranging Equation 6.37 into

a matrix form yields Equation 6.38:

y ¼ XuLLS þ «, (6:38)

where y ¼ [Ct (t1), Ct (t2), . . . , Ct (tm)]T , uLLS ¼ [P1,P2,P3,P4]T,

« ¼ [«1,«2, . . . ,«m]T, and

X ¼

R t1

0
Cp(t)dt,

R t1

0

R t1

0
Cp(t)dt2,

R t1

0
Ct (t)dt,

R t1

0

R t1

0
Ct (t)dt2R t2

0
Cp(t)dt,

R t2

0

R t2

0
Cp(t)dt2,

R t2

0
Ct (t)dt,

R t2

0

R t2

0
Ct (t)dt2

..

.R tm

0
Cp(t)dt,

R tm

0

R tm

0
Cp(t)dt2,

R tm

0
Ct (t)dt,

R tm

0

R tm

0
Ct (t)dt2

2
666664

3
777775:

Thus, the LLS estimator of u can be solved by Equation 6.39:

ûuLLS ¼ (XT X)�1XT Y : (6:39)

Once ûuLLS is derived, the estimated microparameters can be

obtained according to Equation 6.26, followed by the calcula-

tion of parameters of interests, like MRGlc and Vd. The LLS

method doesn’t require any optimization or prior initial

parameters. The statistically non-independent error terms

result in potentially biased estimation for the LLS method.

6.2.7.2 Generalized Linear Least-Squares

The generalized linear least-squares (GLLS) method was pro-

posed to address the biased estimation in the LLS method [51,

52]. The equation error terms in Equation 6.37 are not inde-

pendent with respect to time because of the overlapping inte-

gration, even though the measurement errors are independent.

For example, the equation error term «1 contains the meas-

urement error E(t1), whereas «2 contains the measurement

errors E(t1) and E(t2). In practice, the equation error term

«m may contain certain other errors in addition to the meas-

urement errors, such as the approximation errors from the

numerical integration method [34].

Reconsidering Equation 6.11, the Laplace transform con-

verts the equation into the frequency domain in Equation 6.40:

s2Ct (s) ¼ sP1Cp(s)þ P2Cp(s)þ sP3Ci(s)þ P4Ct (s), (6:40)

where P1 ¼ K1, P2 ¼ K1(k3 þ k4), P3 ¼ �(k2 þ k3 þ k4), and

P4 ¼ �k2k4. Rearranging Equation 6.40, with a white

measurement noise term of E(s) added, can yield Equation 6.41:

Ct (s) ¼ sP1Cp(s)þ P2Cp(s)

s2 � sP3 � P4

þ E(s): (6:41)

Equation 6.41 can be reorganized into Equation 6.42,

which depicts the noise term colored by the equation term of

s2�sP3�P4, even if the measurement noise E(s) is white. That

is the reason why the estimates of the LLS method are biased.

s2Ct (s) ¼ sP1Cp(s)þ P2Cp(s)þ sP3Ct (s)þ P4Ct (s)

þ (s2 � sP3 � P4)E(s) (6:42)

The principle of the GLLS method is to prewhiten the equation

noise term to obtain unbiased estimates. Both sides of Equation

6.42 are divided by an autoregressive Wlter F(s) ¼ s2 � sP̂P3 �P̂P4

as show in Equation 6.43:

s2Ct (s)

s2 � sP̂P3 �P̂P4

¼ sP1Cp(s)

s2 � sP̂P3 �P̂P4

þ P2Cp(s)

s2 � sP̂P3 �P̂P4

þ sP3Ct (s)

s2 � sP̂P3 �P̂P4

þ P4Ct (s)

s2 � sP̂P3 �P̂P4

þ (s2 � sP3 � P4)

s2 � sP̂P3 �P̂P4

E(s): (6:43)

If F(s) is close to the term s2�sP3�P4, the equation noise in

Equation 6.43 is whitened, and the estimates would become

unbiased. Therefore, Equation 6.43 can be transformed into
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the temporal domain by the inverse Laplace transform in

Equation 6.44:

Ct (t)þP̂P3c1�Ct (t)þP̂P4c2�Ct (t)

¼P̂P1c1�Cp(t)þP̂P2c2�Cp(t)þP̂P3c1�Ct (t)þP̂P4c2�Ct (t),

(6:44)

where c1 ¼ l2e�l2t � l1e�l1t

l2 � l1
and c2 ¼ e�l1t � e�l2t

l2 � l1
. The

values of l1 and l2 are determined by P̂P3 and P̂P4 with

l1,2 ¼ � P̂P3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂P3 þ 4P̂P4

p
2 . Therefore, the estimates of the GLLS

method can be solved in the matrix form from m measurements

(m 	 4 for a four-parameter model) in Equation 6.45:

ûuGLLS ¼ (ZT Z)�1ZT r , (6:45)

where ûuGLLS ¼

P̂P1

P̂P2

P̂P3

P̂P4

2
6664

3
7775, r ¼

Ct (t1)þP̂P3c1�Ct (t1)þP̂P4c2�Ct (t1)

Ct (t2)þP̂P3c1�Ct (t2)þP̂P4c2�Ct (t2)

..

.

Ct (tn)þP̂P3c1�Ct (tn)þP̂P4c2�Ct (tn)

2
66664

3
77775;

Z ¼

c1�Cp(t1),c2�Cp(t1), c1�Ct (t1), c2�Ct (t1)

c1�Cp(t2), c2�Cp(t2), c1�Ct (t2), c2�Ct (t2)

..

.

c1�Cp(tn), c2�Cp(tn), c1�Ct (tn), c2�Ct (tn)

2
6664

3
7775.

In a manner similar to the LLS method, the estimated ûuGLLS

can derive the microparameters in terms of Equation 6.26.

Theoretically, Equation 6.45 needs to be performed iteratively

until unbiased estimates are achieved or the termination cri-

terion is reached [39, 51]. In the implementation, estimates

from the LLS method are used as the parameters in the auto-

regressive Wlter for the Wrst iteration. In practice, two or three

iterations provide satisfactory results in most cases, and fur-

ther iterations are typically not necessary for PET studies.

The GLLS method is a computationally eYcient algorithm

for generating parametric images without having to specify

initial parameters. The microparameters in the kinetic model

can be estimated by the GLLS method as can macroparameters

such as volume of distribution and CMRGlc.

6.2.7.3 Improved Versions for Generalized Linear
Least-Squares Methods

The GLLS method has been successfully applied to PET data in

the brain [51], heart [53], and liver [54]. However, despite the

potential of advanced SPECT providing quantitative informa-

tion, the high level of noise intrinsic in SPECT still gives rise to

unsuccessful Wts using GLLS, especially for voxel-by-voxel

TTACs used to generate parametric images [55]. The unsuc-

cessful Wts may result in negative parameter estimates, which

are physiologically meaningless. EVorts have been made to

improve the reliability of GLLS for challenging SPECT data.

One approach uses a prior volume of distribution in the

curve Wtting to reduce the number of estimated parameters.

Vd is a relatively stable functional parameter and is

predominantly inXuenced by late time frames with relative

higher SNR than earlier time frames in SPECT. The approach

is referred to as the Vd-aided GLLS method.

According to Equation 6.28, the deWnition of Vd can be

rewritten in Equation 6.46.

Vd ¼
K1

k2

1þ k3

k4

� �
¼ � P2

P4

: (6:46)

Because Vd is assumed to be constant in the Vd-aided GLLS,

the diVerential equation for Ct(t) can be rearranged into Equa-

tion 6.47, with three unknown parameters for the three-com-

partment and four-parameter model:

d2

dt2
Ct (t) ¼ P1

d

dt
Cp(t)þ P3

d

dt
Ct (t)þ P4[Ct (t)

� VdCp(t)]: (6:47)

The parameter estimates of the Vd-aided GLLS can then be

derived by solving the matrix Equation 6.48:

uVd�GLLS ¼ (ZT
VdZVd)�1ZT

Vd � r , (6:48)

where:

ûuGLLS ¼
P̂P1

P̂P3

P̂P4

2
4

3
5, r ¼

Ct (t1)þP̂P3c1�Ct (t1)þP̂P4c2�Ct (t1)

Ct (t1)þP̂P3c1�Ct (t2)þP̂P4c2�Ct (t2)

..

.

Ct (t1)þP̂P3c1�Ct (tm)þP̂P4c2�Ct (tm)

2
6664

3
7775,

ZVd ¼

c1�Cp(t1), c1�Ct (t1), c2�Ct (t1)�Vdc2�Cp(t1)

c1�Cp(t2), c1�Ct (t2), c2�Ct (t2)�Vdc2�Cp(t2)

..

.

c1�Cp(tn), c1�Ct (tn), c2�Ct (tn)�Vdc2�Cp(tn)

2
6664

3
7775:

The microparameters are then obtained by Equation 6.49:

K̂K1 ¼ P̂P1,
_

k2 ¼
V̂Vd �P̂P4

P̂P1

�P̂P3, k̂k3 ¼ �P̂P3 �k̂k2 �k̂k4,

k̂k4 ¼ �
_

P4
_

k2

:

(6:49)

Vd can be predetermined from the GLLS method for a lower-

order compartment model [56]. However, because of the po-

tentially biased estimation from the diVerent underlying

model, the optimum Vd has to be searched over a reasonable

range of values determined from the lower-order compartment

model estimate of Vd, which substantially increases computa-

tional cost. Thus, Vd derived from the Logan plot was used

directly as the prior for the Vd-aided GLLS in recent investi-

gations [55]. Although reliability of estimates is improved for

noisy SPECT data, the Vd-aided GLLS is still not completely

immune from the negative parameter estimates for extremely

noisy curves.

The statistical resampling technique solves the problem by

incorporating the bootstrap Monte Carlo (BMC) method into

the Wtting routine. The BMC approach is a well-established,
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robust statistical method with no underlying assumption

about the noise level and distribution [15]. The only assump-

tion is that the sequential order of the data points is not

important in the data processing.

Given a curve of n data points, n points are randomly

selected from the original curve with some points duplicated

and others not selected. The points that are duplicated and not

selected will vary randomly for each iteration [57]. For one

given TTAC, a number of resampled curves are generated,

followed by the GLLS Wtting for each resampled curve. The

mean parameters, derived from successful Wts of the resampled

curves, are used as the results. This is referred as the BMC-

aided GLLS. This method has been found to overcome the

problem of unsuccessful Wts in GLLS-derived parametric im-

ages from dynamic SPECT studies [58].

For the BMC-aided GLLS, the Wtting part can be substituted

by the Vd-aided GLLS, which is the integration of the two

improved methods (BMC–Vd-aided GLLS). This method can

further improve the reliability of parameter estimates for noisy

SPECT data. Because each derived BMC curve requires Wtting

using the GLLS method, the BMC-aided GLLS and the

BMC–Vd-aided GLLS have substantially increased the compu-

tational burden over the standard GLLS method.

6.2.8 Parametric Image Reconstruction Method

In general, the data for each frame of a dynamic study are Wrst

reconstructed, followed by parameter estimation from either

ROI-based or voxel-by-voxel TTACs derived from the recon-

structed data. This approach tends to reduce SNR because

particularly the early, short frames contain a very high level

of noise [59]. Furthermore, the requirement for mechanically

rotating the detectors around the patient with SPECT can lead

to inconsistent projections and introduce bias and artifacts,

particularly for tracers with fast kinetics [60, 61]. Parametric

image reconstruction (PIR) methods can overcome these

problems by carrying out parameter estimation in the projec-

tion data space prior to reconstruction.

Typically, the PIR method consists of two steps. One is the

expression of the kinetic model in the projection domain. The

other is incorporation of the parameter estimation into the

reconstruction. As described in Section 6.2.5, the kinetic model

can be expressed as a linear function of the unknown parameters.

Such a time-dependent tracer distribution can be directly

incorporated into a reconstruction with a temporal component.

PIR can be classiWed into non-iterative and iterative

approaches. The non-iterative approaches were implemented

to solve the time-dependent Radon transform [60, 62], for

example, to estimate the exponential factors using linear

time-invariant system theory for the kinetic model, followed

by estimating parameters using a linear estimation technique

[60]. It is more attractive incorporating the kinetic model into

an iterative algorithm, such as ordered subset expectation

maximization (OS-EM) [61], because the temporal compon-

ent and noise properties can then be explicitly modeled and

included in the reconstruction.

Nonlinear parameter estimation provides more accurate

estimates because linear estimation relies on the model linear-

ization, which may introduce bias [59]. However, performing

nonlinear parameter estimation with iterative reconstruction is

computationally intensive. The standard acceleration tech-

nique can be used to reduce reconstruction time [61]. Alter-

natively, a multiresolution reconstruction scheme can be

applied to overcome slow convergence of maximum a poster-

iori reconstruction at low spatial frequency [59].

6.3 Noninvasive Methods

Parameter estimates for parametric imaging usually require

frequent blood sampling to obtain tracer concentration in

blood or plasma as an input function for kinetic analysis.

Arterial blood sampling is considered the gold standard, pro-

viding the most accurate measures. However, arterial sampling

may cause patients discomfort and carries some risks such as

arterial thrombosis, arterial sclerosis, and ischemia. The arteri-

alized-venous method using a heated limb avoids the discom-

fort of arterial puncture [8, 63], but requires frequent blood

sampling and prolonged warming to achieve arterial-venous

shunting. In addition, it also exposes personnel to additional

radiation and risks associated with handling blood. A number

of approaches have been proposed to reduce the need for

blood sampling.

6.3.1 Image-Derived Input Function

The image-derived input function (ID-IF) method relies on a

suYciently large vascular structure, such as the left ventricle or

major artery, to be in the imaging Weld of view. An ROI is then

drawn over the vascular structure to derive the concentration

of the tracer in blood. The use of a manually deWned ROI

within the left ventricle is well established for cardiac studies

[64]. However, spill-over from tracer uptake in adjacent struc-

tures as a result of limited spatial resolution can introduce

large bias in the blood activity concentration estimates, par-

ticularly at late time frames when blood concentration is low.

Thus, careful placement of ROI and correction of spill-over are

essential for the ID-IF method from the left ventricle images

[65, 66].

As shown in Figure 6.8, assuming CbROI (t) is the measured

blood time activity curve (BTAC) for a ROI in the left ventricle

and CtROI (t) is the measured TTAC from an ROI over adjacent

myocardium, the spill-over eVect is demonstrated in Equation

6.50 [66]:

CbROI (t) ¼ Cb(t)þ Fmb � Ct (t)

CtROI (t) ¼ Ct (t)þ Fbm � Cb(t),
(6:50)
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where Cb(t) is the corrected BTAC, Ct(t) is the corrected TTAC

for adjacent myocardium, Fmb is the spill-over fraction from

myocardial to the blood pool in the ventricle, and Fbm is the

spill-over fraction from the blood pool to myocardium.

The expected input function Cp(t) can be resolved by

Equation 6.51:

Cp(t) ¼ Cb(t)� Fmb � Ct (t)

1� Fmb � Fbm

: (6:51)

Substituting Cp(t) from Equation 6.51 in Equations 6.12 and

6.13 leads to the unknown parameters for estimating Ct(t)

consisting of K1, k2, k3, k4, Fmb , and Fbm. Thus, the original

invasive parameter estimates for four microparameters are

transformed into the noninvasive estimates for four

microparameters and two spill-over factors. These six

unknown parameters can be estimated by the NLS or other

methods.

When the heart is outside the scanner Weld of view, other

large vessels can be used to derive IF from imaging data,

such as the venous sinus [67], cardiac aorta [68], and

abdominal aorta [69, 70]. If the spatial resolution and system

sensitivity are suYcient, carotid arteries can potentially yield

ID-IF for cerebral studies [71]. The ID-IF method relies on

manually drawn ROIs on the early imaging data, when blood

activity is highest and tissue activity is low, for optimum

delineation of vascular structure. For example, the initial

36-second images are used to delineate the carotid artery

[71]. Manual drawing of ROIs is time-ineYcient and sub-

jective, which increases variability and may introduce bias.

The clustering technique can address the problem and aid

automatic identiWcation of ID-IF by classifying TTACs into

clusters. Because the time course of BTAC is quite distinct

from a TTAC, it is easy to identify ID-IF automatically using

the cluster method [72]. The simultaneous estimation

(SIME) method avoids the choice of ROI placement by

simultaneous estimation of kinetic parameters for the com-

partment model and parameters for a mathematically deWned

IF during the NLS Wtting of the TTACs [73, 74]. To provide

accurate estimates, several distinct TTACs are required from

diVerent tissues to provide suYcient information to estimate

the additional IF parameters.

6.3.2 Reference Tissue Model

The binding potential (BP), which reXects the densities of

transporters or receptors in a brain ROI [17], has been used

extensively to evaluate changes in receptor density and binding

[48]. The volume of distribution has also been used to estimate

receptor binding [75]. The reference tissue model, originally

proposed for neuroreceptor studies, assumes the existence of

a tissue region with a negligible concentration of speciWc

binding sites. As shown in Figure 6.9, K1, k2, K 01, and k02 describe

the exchange of tracer between plasma and free (nonspeciWcally

bound) ligand compartments in the ROI and the reference

region, respectively; and k3, k4 represent the exchange of the

tracer between the free compartment and a speciWcally bound

ligand compartment [76]. CREF(t) is the tissue tracer concen-

tration in the tissue devoid of receptors; Ct(t) is the measured

tissue tracer concentration in the receptor-rich region.

The simpliWed reference tissue model (SRTM) method

assumes that the volume of distribution for nonspeciWc binding

is the same for the reference model and the receptor-rich model

(i.e., K1=k2 ¼ K 01=k02). The kinetics of the receptor-rich region

can be described as a function of the reference region without

requiring blood sampling, as shown in Equation 6.52 [77]:

Ct (t) ¼ RI � CREF (t)þ k2 �
RI � k2

1þ BP

� �
� CREF (t)

� e�[k2=(1þBP)þl]t ,

(6:52)

FDG in ventricle:

Cp(t)

CbROI (t)

CtROI (t)

Fmb

Fbm

Ct(t)

FDG in 

myocardial: Ce(t)

FDG-6-PO4 in 

myocardial: Cm(t)

K1

k2

k3

k4

FIGURE 6.8 The modiWed compartment model of FDG with spill-over eVect in the heart.
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FIGURE 6.9 The three-compartment model and two-compartment

model as reference models in the neuroreceptor study.
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where RI is relative rate of delivery of RI ¼ K1=K 01, BP is binding

potential for the receptor-rich region, and BP ¼ k3=k4, l is the

physical decay constant of the radiotracer. The three unknown

parameters (RI, BP, and k2) in Equation 6.52 can be estimated by

Wtting Equation 6.52 to the measured CREF(t) and Ct(t) data.

The LLS method has been applied to generate voxel-by-voxel

parametric images by introducing a set of basis parameters in the

SRTM method [76]. If the clearance rate of reference region, k02,

is constant across brain regions, a two-step simpliWed reference

tissue model (SRTM2) can improve the quality of neuroreceptor

functional images using a global value of k02 , which improves

reliability of the estimated parameters [78].

The reference tissue model method can be applied with

graphic analysis as well. The noninvasive Logan plot can esti-

mate the distribution volume ratio (DVR), which is the ratio

of Vd in a receptor-rich region to Vd in a non-receptor region

[75]. For example, Equation 6.53 gives the equation of the

Logan plot for the reference non-receptor region in Figure 6.9:R t

0
CREF (t)dt

CREF (t)
¼ V 0d �

R t

0
Cp(t)dt

CREF(t)
� 1

k02
, (6:53)

where V 0d ¼ K 01=k02 . Solving the integral term of Cp(t) and sub-

stituting the term in Equation 6.34 yields Equation 6.54 [75, 79]:R t

0
Ct (t)dt

Ct (t)
¼ Vd

V 0d
�
R t

0
CREF(t)dt

Ct (t)
þ Vd

k02V 0d
� CREF (t)

Ct (t)
þ Int

¼ DVR �
R t

0
CREF(t)dt

Ct (t)
þ Int 0, (6:54)

where DVR ¼ Vd=V 0d , Int ¼ Vd

k02V 0d
� CREF (t)

Ct (t)
þ Int . If

CREF(t)
Ct (t)

becomes constant after t > t�, the plot of

R t

0
CREF (t)dt

Ct (t)
vs.R t

0
Ct (t)dt

Ct (t)
becomes linear, and the slope of the Logan plot is

equal to DVR. DVR is widely used in neuroreceptor studies to

assess the receptor binding with tracers for which reference

tissue regions exist.

The noninvasive Logan plot requires CREF(t)/Ct(t) to

become constant during the scanning period, which depends

on the characteristics of the radioligand [17]. The multilinear

reference tissue model (MRTM) method can estimate binding

potentials without such assumptions. The MRTM method

assumes K1=k2 ¼ K 01=k02 as for the SRTM method. The same

degree of nonspeciWc binding in the reference tissue and

receptor-rich region leads to Vd=V 0d ¼ 1þ k3=k4. Substituting

DVR¼1þBP in Equation 6.54 yields,R t

0
Ct (t)dt

Ct (t)
¼ (1þBP) �

R t

0
CREF (t)dt

Ct (t)
þ 1þBP

k02
�CREF (t)

Ct (t)
þ Int

¼ a �
R t

0
CREF (t)dt

Ct (t)
þ b �CREF (t)

Ct (t)
þ c:

(6:55)

Equation 6.55 is a multilinear equation with partial regression

coeYcients of a, b, and c, which may be estimated by multiple

regression analysis [80]. Once the voxel-by-voxel parameters

are obtained, parametric images of binding potentials can be

calculated from the relationship BP ¼ a � 1. As for the

SRTM2 method, the number of parameters to be estimated

can be reduced from three to two in the updated two-param-

eter MRTM (MRTM2) method with a Wxed k02 [81]. The

incorporation of Wxed k02 substantially reduces variability of

the binding potential by a factor of two or three over the

MRTM or SRTM method.

6.4.3 Population-Based Input Function and
Cascaded Modeling Approaches

The image-derived method and the reference tissue model both

rely on dynamic scans to provide suYcient information for

noninvasive parameter estimates. However, the required

long scan durations for dynamic studies are often impractical

in a busy clinical practice. For example, a dynamic FDG

neurologic study requires at least 60 minutes of scanning

compared with 5 � 10 minutes for a static study. If the shape

of IF can be assumed to be similar across subjects, an individual

IF may be derived from a population-based standard arterial

input curve.

The standard IF (SIF) can be derived by averaging the actual

arterial blood curves for several subjects [82]. To avoid SIF’s

noise eVect on generation of CMRGlc images, a smooth curve

can be derived by normalizing individual IF to a standard

370 MBq/kg injection and curve-Wtting with linear interpo-

lation. Only two arterial blood samples taken at around 10 and

45 minutes postinjection are required to calibrate the SIF in

the population-based input function method. Arterialized ven-

ous blood sampling has also been used for the calibration of

the SIF [83]. The SIF is given for a 3-minute infusion protocol

using the arterialized-venous method in Equation 6.56:

Cp(t)¼
0:009094þ 7:8720 � t � 0:5666 � t2, 0
 t < 3:5 min

5:646 � e�1:5680(t�3:5)þ 6:581 � e�0:1438(t�3:5)

þ7:848 � e�0:0109(t�3:5), t 	 3:5 min:

8<
:

(6:56)

The Equation 6.56 calibrated with two arterialized venous

blood samples has been shown to achieve highly correlated

values of CMRGlc compared with frequent blood sampling

(r 	 0:992)[83]. The number of blood samples for calibration

may be further reduced to one at around 40 minutes postin-

jection with little loss in accuracy [84]. Furthermore, SIF was

also investigated without any blood samples [85], relying only

on the SIF normalization by injected dose and body mass in

Equation 6.57:

SIF(t) ¼

PN
i¼1

BMi

IDi
� Cp(t)i

N
, (6:57)
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where N is total number of subjects, BM is the body mass, and

ID is the injected dose. Thus, the individual IF can be esti-

mated from Equation 6.58:

Cp(t) ¼ ID

BM
SIF(t): (6:58)

Using body surface area instead of BM may provide better

estimation of IF [85]. Other approaches have been investigated

to normalize SIF for better estimation, such as the use of initial

distribution of volume of tracer through statistically minimiz-

ing diVerence among the individual IF and derived standard-

ized IF [86]. However, the population-based input function

without any blood sample calibration potentially suVers from

more than 10% bias in the generated CMRGlc because of the

many factors that can inXuence an individual IF.

Alternatively, the PTAC can be estimated by a mathematical

model that preserves the shape of individual IFs while reducing

the eVect of random noise in blood sampling on the kinetic

parameter estimates. A four-compartment model of blood

pools is used to describe the tracer distribution over time in

the circulatory system, as shown in Figure 6.10 [87].

The compartment of ‘‘Pool 1’’ includes the tracer in the

veins where the tracer is introduced, the right cardiac cham-

bers, and part of the pulmonary system. The second compart-

ment of ‘‘Pool 2’’ encompasses the arteries where blood

samples are taken, including ‘‘arterialized’’ veins. The vascular

tissue and interstitial space make up most of the compartment

of ‘‘Pool 3’’, while the fourth compartment describes the cellular

space of the tracer. The model input, u(t), is the bolus FDG

injection, which is an impulse function of the model. Random

noise, including measurement error, is described by e(t). The

PTAC measurement, Cp(t), is the model output response

function. Clinical data have validated that the model in

Equation 6.59 is the most suitable PTAC model, consisting of

a three-exponential function with a pair of repeated eigenvalues

[73, 87]:

Cp(t) ¼ (A1t � A2 � A3) � el1t þ A2 � e�2t þ A3 � e�3t : (6:59)

The parameters of A1, A2, and A3 can be estimated by the

curve-Wtting. The curve derived by the PTAC model eYciently

improves SNR and has been shown to facilitate generation of

functional images, both in computer simulation and in clinical

studies [88]. For example, the PTAC model has been applied to

study the eVect of input function sampling schedule [89] and

to model the SIF, which facilitates calibration with the selected

number of blood samples [83].

Furthermore, based on the PTAC model in Equation 6.59,

the PTAC can also be noninvasively estimated by the SIME

method from dynamic data of an individual patient [73, 74],

as described in Section 6.3.1. Because several TTACs are used

in the estimation, a cascaded modeling technique in Figure

6.11 is applied for the simultaneous estimation of parameters

of one PTAC and a number of kinetics. The cascaded modeling

converts noninvasive estimation into solving solutions of mul-

tiple systems with a single input and multiple outputs for

several known TTACs. The success of the SIME method is

relying on the appropriate choices of ROIs for distinct TTACs.

6.4 Clinical Applications of Parametric
Images

6.4.1 Blood Flow Parametric Images

The circulatory system is essential to maintain basic physiolo-

gic function in the living body. Blood Xow in the circulatory

system delivers metabolic substances and clears waste to sup-

port metabolism in the tissue. Rate of blood Xow is dependent

on vascular resistance and regional functional variation, and

any abnormality may be relevant to disorders. Measurement

of blood Xow has become a clinical routine to evaluate the

variability of tissue function.

Perfusion studies can be performed for the evaluation of

rCBF in the brain and myocardial blood Xow (MBF) in

the heart using perfusion tracers such as 15O-water and
13N-ammonia for PET, 201Tl, and 99mTc-sestamibi for

SPECT. Parametric images of rCBF have been used in many

areas, for example, diagnosing neurodegenerative disorders

[90], localizing epileptic focus [91], assessing stroke recovery

[92], and investigating cognitive or behavioral functional spe-

cialization [93].
15O-water is recognized as an ideal tracer for measuring

blood Xow because it freely diVuses across cell membranes.

When the heart is in the Weld of view, the input function can be

derived noninvasively using the ID-IF method. The ROI for

the left ventricle (LV) is deWned within the LV chamber in the

early scan images. In contrast, the other ROI for myocardial

tissue is placed within the myocardial wall in the late images, as

shown in Figure 6.12 [94].

Once the spill-over fractions are generated through analyz-

ing the derived time activity curves from the ROIs, the input

function can be estimated according to Equation 6.51. The

autoradiographic method for 15O-water is then used to

u(t)

k13

k21

k32

e(t)

PTAC

measurement

k43

k34

k04

Pool 1

Pool 3 Pool 4

Pool 2

FIGURE 6.10 The four-compartment model of blood pools describ-

ing tracer distribution in the circulatory system.
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FIGURE 6.11 Flow chart of the cascaded modeling for the simultaneous estimation method, where � is the convolution

operator.

FIGURE 6.12 Image-derived input function for the heart in 15O-water study. The red

lines on (c) and (d) show the outlines of the ROIs for left ventricular chamber (c) and for

adjacent myocardial region (d). LV is the time activity curve for left ventricular (a); Myo

TAC is the curve for myocardial tissue (b), Ca(t) is the estimated input function (a).

Courtesy of Dr. H. Iida, Akita, Japan. For a more detailed view of this figure, please visit

our companion site at: http://books.elsevier.com/companions/9780123735836.
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generate the parametric images of rCBF using the image-

derived IF (Figure 6.13).

In the heart, measurement of MBF is used to assess coronary

artery disease and LV dysfunction [95, 96]. Because of the anat-

omy and motion of the heart, spill-over correction between myo-

cardium and LV is essential [97]. The electrocardiograph-gated

image acquisition is capable of reducing false-positive perfusion

studies by removing the confounding eVects of heart motion [98].

Automated quantiWcation has been used to derive ejection frac-

tion (EF) and regional myocardial wall motion and thickening

from the gated study as shown in Figure 6.14, all of which

contribute valuable information to the diagnosis of the patient.

Although the perfusion images are usually interpreted visually

and qualitatively, voxel-by-voxel quantitative images can provide

more objective and accurate results. 201Tl is a SPECT tracer that

can assess both myocardial perfusion and cellular viability. Figure

6.15 shows parametric images from a 201TlCl study in a patient.

The Yokoi plot is applied to process the voxel-by-voxel TTACs

from dynamic reconstructed data that have been processed by

low-pass Wltering to reduce noise. As the two-compartment and

two-parameter model for blood Xow is applied, the volume of

distribution is obtained according to the equation, Vd ¼ K 1=k2.

Quantitative parametric images can not only identify

regional diVerences but also can assess global changes that

are not apparent on nonquantitative images. The apparently

higher values of K1 with thicker wall (Figure 6.15c) indicate

contamination from an adjacent liver area rather than

increased blood Xow in this myocardial region because the

limited spatial resolution caused spill-over from the high

blood Xow of the liver. In contrast, Vd of myocardium is less

aVected by the liver because of the lower Vd of liver compared

to that of the myocardium [9].

FIGURE 6.13 rCBF images using the image-derived input function from the 15O-water study. Courtesy of Dr. H. Iida,

Akita, Japan. For a more detailed view of this figure, please visit our companion site at: http://books.elsevier.com/companions/

9780123735836.

FIGURE 6.14 Display of gated SPECT with the automated quantiWed parameters (b). LV

volume time curve over cardiac cycle (a), estimated variation of thickening (d). For a more

detailed view of this figure, please visit our companion site at: http://books.elsevier.com/

companions/9780123735836.
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6.4.2 Oxygen Consumption Parametric Images

Oxygen use is another measure of brain function because the

cerebral metabolism is dependent on the transported glucose

and oxygen. Increased metabolism in the brain requires greater

consumption of oxygen, which may result in an increase of rCBF.

However, because of the physical reasons why rCBF may not

increase, the extra supply of oxygen would rely on the increased

delivery from the hemoglobin to the surrounding tissue. That is

the reason why the regional cerebral metabolic rate of oxygen

consumption (rCMRO2) provides a more accurate measure of

the cerebral metabolism than rCBF.

rCMRO2 is related to regional cerebral blood Xow (rCBF),

regional cerebral oxygen extraction fraction (rCOEF), and the

arterial oxygen concentration (CaO2) [99], as shown in Equa-

tion 6.60:

rCMRO2 ¼ rCBF � rCOEF � CaO2: (6:60)

In general, a dual-tracer study is taken to derive rCMRO2 using

the steady-state method [100]. Two steps are involved in the

process to derive rCMRO2. 15O-water is administrated via con-

stant infusion until the steady state is reached, followed by gener-

ation of rCBF images using the steady-state method. The second

step involves measurement of rCOEF through the inhalation of
15O2, again using the steady-state method. The value of CaO2 in

Equation 6.60 is measured from the arterial blood samples.

The two-step method was later found to overestimate rCOEF

because it neglected vascular 15O activity [101]. A correction

method using regional cerebral blood volume (rCBV) was then

proposed to account for the intravascular 15O activity in the

estimation of rCOEF. rCBV is usually measured by inhaling

C15O [102]. Therefore, the two-step method was extended to

a three-step sequential study with rCBF from 15O-water, rCOEF

from 15O2, and rCBV from C15O infusions.

The three-step method requires a prolonged data-acquisition

period. A relatively high level of radiation exposure is also required

to reach steady state for each scan. Thus, an alternative method has

been developed to substitute the steady-state method with the

autoradiographic method [103], and improvements have been

made to simplify and optimize the derivation of rCMRO2 [99,

104, 105]. Recently, a two-step autoradiographic method has been

proposed for fast generation of parametric images of rCMRO2

using a look-up table procedure with a dual-scan study of 15O2,

and H2
15O [106]. Figure 6.16 demonstrates an example of para-

metric images respectively for rCBF, rCOEF, and rCMRO2.
11C-acetate, which can study the tricarboxylic acid cycle activ-

ity, has been frequently used as an indirect measurement of

regional myocardial metabolic rate of oxygen consumption

(rMMRO2) [107, 108]. However, the lack of an appropriate

model that accurately describes the complex tissue kinetics of
11C-acetate and the lost correlation with rMMRO2 under some

conditions have prevented absolute quantiWcation of rMMRO2

using 11C-acetate [109, 110]. The direct, accurate quantiWcation

of rMMRO2 can be obtained with 15O2 inhalation [109, 111]. The

three-step method can be used to derive regional myocardial

blood Xow (rMBF), regional myocardial oxygen extraction frac-

tion (rMOEF), and regional myocardial blood volume (rMBV)

from a sequential study of continuous inhalation of C15O and
15O2 and administration of H2

15O with spill-over correction.

6.4.3 Glucose Metabolism Parametric Images

Physiologic processes in the living body require energy, which

is released through metabolism. Glucose metabolism is the

most common metabolism and in the presence of oxygen

occurs via oxidative phosphorylation in most living cells.

Hypoxia, such as can be encountered in tumors, may drive the

glucose metabolism switch from oxidative phosphorylation to

simple glycolysis as a means of energy generation [112]. Thus,

the measurement of glucose metabolism is important to

accurately assess the tissue metabolism correlated to energy

release, especially for oncology studies in most tissues.

FIGURE 6.15 Parametric images of K1 (a) and Vd (b) using the Yokoi

plot for a 201Tl study. For a more detailed view of this figure, please

visit our companion site at: http://books.elsevier.com/companions/

9780123735836.

FIGURE 6.16 Example of parametric images of rCBF, rCOEF and

rCMRO2. Courtesy of Dr. H. Iida, Akita, Japan. For a more detailed

view of this figure, please visit our companion site at: http://books.

elsevier.com/companions/9780123735836.
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2-[18F]Xuorodeoxyglucose (FDG), which is a glucose analog

undergoing similar uptake as glucose, is the most commonly

used tracer in PET. FDG is carried by glucose transporters into

the tissue, where it is phosphorylated to yield FDG-6-PO4.

Because FDG-6-PO4 cannot be further metabolized and depho-

sphorylation occurs only slowly, FDG-6-PO4 becomes trapped

in the tissue and accumulates at a rate proportional to glucose

metabolism. The increased glucose consumption of cancer cells

leads to high FDG uptake, which can be visualized with PET

studies. This feature has enabled FDG-PET to gain widespread

clinical acceptance in oncology for detecting, staging, and as-

sessing treatment response in patients with cancer.

Analysis of FDG-PET data consists of visual interpretation,

semiquantitative evaluation, and quantitative assessment. The

visual interpretation relies on the physician’s knowledge and

identiWcation based on the tumor’s region, boundary, and

contrast against background. This approach is a subjective,

qualitative evaluation of images. The SUV method is a semi-

quantitative method, assuming that the tumor uptake, nor-

malized to the injected dose and a measure of total volume of

distribution, is related to the metabolic rate of glucose.

The SUV method does not require prolonged data acquisi-

tion and blood sampling. For example, SUV > 5:0 is associated

with a worse prognosis for lung cancer [113]. SUV has been

shown to provide an independent prognostic value for primary

non–small cell lung cancer (NSCLC) for SUV > 7, to supple-

ment other factors in the choice of appropriate treatment [114],

while SUV ¼ 7 is the discriminative point of prognosis for

small-cell lung cancer (SCLC) [115]. Although SUV is depend-

ent on patient size, uptake time, and plasma glucose concentra-

tion, the SUV method has been frequently used as a measure of

FDG uptake to assess diVerences between scans [112].

Figure 6.17 demonstrates SUV images for staging and evalu-

ating response to radiotherapy for one patient. The parametric

images were derived by dividing the corresponding FDG

images by the ratio of the injected dose and body weight.

The body weight of the patient was 77 kg. For the Wrst study

(a), 378 MBq of FDG was injected in contrast to 491 MBq of

FDG in the second study. The focal abnormality near the

central mediastinum with the maximum value of SUV above

5 (arrow in Figure 6.17) is prominent and obvious. The lesion

was diagnosed as stage IIIA NSCLC. Thus, radiotherapy

was chosen to treat the tumor. After 3 months, the second

study (b) showed almost complete resolution of the focal

abnormality, demonstrating a marked response to treatment.

Because the cortical regions in the brain have high glucose

metabolism, the SUV method is less applicable in the brain. A

kinetic study is often used to measure the glucose metabolic

rate instead. The Patlak graphic plot can be applied on a pixel-

by-pixel basis, generating parametric images of Ki, which im-

proves image contrast and gives a direct view of glucose con-

sumption [116]. If population-based kinetic constants are

assumed for all brain regions, a static study can be used with

the autoradiographic technique to estimate CMRGlc (see

Section 6.2.1), avoiding a prolonged image acquisition.

The quantitative values of CMRGlc are mainly dependent on

the area under the curve of the input function when the auto-

radiographic method is used. Thus, the population-based input

function can further decrease the required number of blood

samples to only two without aVecting the accuracy of CMRGlc

[83]. Figure 6.18 depicts images of CMRGlc derived by the

autoradiographic method for a neurologic study of FDG-PET.

A number of cortical regions such as the parietal lobes and

the occipital association cortex are observed with hypometab-

olism (blue area in Figure 6.18); that is, decreased CMRGlc.

The changes of quantitative values and morphologic features

of the images are consistent with Alzheimer’s disease.

6.4.4 Neuroreceptor Binding Parametric Images

FDG is not a tumor-speciWc tracer, and other pathologic states

such as inXammation and infection may have high uptake that can

result in false positives in the diagnosis of cancer. Receptor-speciWc

tracers provide eYcient imaging of receptor binding, for instance,

to investigate neurologic disorders [117]. Continued research into

development of diverse receptor-speciWc tracers holds great prom-

ise for future advances and application in functional imaging.

Receptors have a prominent role in the brain. Imaging of the

distribution, density, and activity of receptors provides insight

into the organization of functional networks in the brain, which

cannot be achieved by the structural imaging or imaging of

blood Xow, oxygen, and glucose metabolism [118]. Neuro-

receptor studies have been widely used to evaluate the eVects

of novel drugs in humans through speciWcally targeted recep-

tors such as dopamine transporter, serotonin receptor, muscari-

nic receptors, and nicotinic receptors [119, 120]. Parametric

FIGURE 6.17 SUV images for whole body FDG-PET. (a) Initial

staging of NSCLC. (b) Response to treatment. For a more detailed

view of this figure, please visit our companion site at: http://books.

elsevier.com/companions/9780123735836.
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images of specially targeted tracers enhance early diagnosis and

assessment of disease progression. For example, 11C-PIB, which

is targeted at amyloid plaque deposits, is showing great promise

in the early diVerential diagnosis of Alzheimer’s disease [121]

and in the eYcacy of treatments targeting plaque deposits.

Graphic methods are often used in the generation of para-

metric images for receptor-speciWc studies because of their

computational eYciency and relative immunity to noise. For

example, in a baboon study for neuronal nicotinic acetylchol-

ine receptors (nAChRs), which are implicated in various neu-

rodegenerative disorders, the Logan method was applied to

process reconstructed SPECT data. The tracer of 5-[123I]-

iodo-A-85380 is an nAChRs-speciWc tracer. The corresponding

parametric images of Vd are shown in Figure 6.19. The baseline

FIGURE 6.18 Parametric images of rCMRGlu for a neurologic study using FDG-PET. The input function is derived by the population-based

IF with two calibration points. For a more detailed view of this figure, please visit our companion site at: http://books.elsevier.com/

companions/9780123735836.

FIGURE 6.19 Parametric images of Vd for the baseline state, nicotine implant-

ation, and post-nicotine infusion, respectively. The middle images at each row

demonstrate normal, blocking, and upregulation of nAChRs, respectively. For a

more detailed view of this figure, please visit our companion site at: http://book-

s.elsevier.com/companions/9780123735836.
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images (top row) show higher Vd in the thalamus, which has

been found to be rich in nAChRs receptors. After a chronic dose

of nicotine was infused for 2 weeks, no uptake was observed in

the thalamus (middle row) because of the larger concentration

of infused nicotine blocking the binding of the tracer. A sig-

niWcant increase in Vd was observed in the thalamus (bottom

row) after cessation of nicotine infusion as a result of upregula-

tion of nAChRs caused by the exposure to nicotine.

In addition to the graphic methods, a number of other

methods have been applied to neuroreceptor studies, including

the LLS method. For example, the GLLS method and improved

GLLS methods for three-compartment and four-parameter

model can simultaneously generate parametric images for

multiple parameters from the nAChRs data. Figure 6.20

depicts the parametric images of K1, Vd , and BP.

In Figure 6.20, the voxels with nonphysiologic rate constant

estimates (negative rate constants or > 1Þ, were set to zero.

The original GLLS suVered from a large number of unsuccess-

ful Wts because of the high level of noise in SPECT (Wrst

column). Prior knowledge of Vd indeed improves the reliability

of parametric images with slightly smoother images of Vd and

BP (second column); however, an appreciable fraction of vox-

els still could not be successfully Wtted. The bootstrap resam-

pling enables the BMC-aided GLLS to eliminate unsuccessful

Wts even for noisy SPECT data (third column). The limitation

of the BMC-aided GLLS is the overestimation of Vd and BP

because the BMC resampling favors the bootstrap curves with

higher Vd. The BMC-Vd –aided method improves the reliabil-

ity of GLLS for SPECT further, as shown in the fourth column

for K1, Vd, and BP.

6.5 Summary

Parametric images derived from functional tracer studies

enable quantitative estimates of physiologic or biochemical

processes in the living body. Functional imaging not only

provides unique information related to in vivo physiologic

processes but is also capable of deriving quantitative functional

parameters that can be used in the diagnosis of disorders, the

assessment of treatment, and the evaluation of a novel drug.

The process of parameter estimates usually involves a kinetic

model that abstracts the complex physiologic process and

describes the tracer distribution in the tissue.

Some of the major techniques for parametric imaging have

been described in this chapter with tracer kinetic models for

blood Xow, glucose metabolism, and neuroreceptor studies.

The appropriate methods of parameter estimates may be

chosen according to the tracer, kinetic model, and scan dur-

ation. Noninvasive methods, which avoid frequent and inva-

sive blood sampling, were also covered. Examples of

FIGURE 6.20 Parametric images for inXux rate: K1; volume of distribution: Vd ¼ K1=k2 (1þ k3=k4); and binding

potential: BP ¼ K1 k3=k2 k4 , respectively. Voxel values with nonphysiologic rate constant estimates (negative rate

constants or > 1) were set to zero. For a more detailed view of this figure, please visit our companion site at: http://

books.elsevier.com/companions/9780123735836.
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parametric images have been presented for blood Xow, oxygen

consumption, glucose metabolism, and neuroreceptor binding

studies for both clinical and research applications.

With the development of new tracers targeting speciWc re-

ceptors, the present techniques for parameter estimates will

need to be validated for new physiologic processes. Innovative

methods will be developed as well to address the kinetics of the

new tracers and provide more reliable parametric images for

the developed tracers. Complex physiologic processes still pose

a challenging task for parametric imaging techniques.
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6.6 Exercises

1. State the diVerences between structural and functional im-

aging.

2. Why is the SUV considered to be proportional to metabolic

rate of glucose? What are the necessary conditions in this

case?

3. Give the equation of Logan plot for two-compartment and

two-parameter model. Note: Vd ¼ K1=k2.

4. State why the GLLS method can provide unbiased estima-

tion compared with the LLS method.

5. List the major noninvasive input functions and compare

their merits and limitations.
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7.1 Introduction

Biomedical data processing and analysis has become a major

component of biomedical research and clinical applications.

To successfully detect and diagnose disease, it is vital for

clinicians to properly apply the latest data processing and

analysis technologies. Because of either the nature or volume

of available biomedical data, early or obscured signs of disease

can go undetected or can be misinterpreted. To combat these

inaccuracies, biomedical researchers and clinicians have come

to rely on advanced data processing and analysis techniques

and software.

Biomedical data processing and analysis have been woven

into the fabric of the signal processing and pattern analysis

community. Initially, the eVorts in this area were seen as

applying pattern analysis and computer vision techniques to

another interesting dataset. However, over the last two to three

decades, the unique nature of the problems presented within

this area of study has led to the development of a new disci-

pline in its own right.

The focus of Chapter 7 is on data processing and analysis. It

is an essential reference that details the primary methods,

techniques, and approaches used to improve the quality of

biomedical data visualization and interpretation as well as

quantitative detection and diagnostic decision aids. This infor-

mation is presented by the contributing authors, who are at the

forefront of biomedical data processing and analysis. This

comprehensive volume illustrates analytical techniques such

as medical image enhancement, medical image segmentation,

medical image feature extraction, computer-aided diagnosis,

and data-driven medical decisions by clinicians.

7.2 Medical Image Enhancement

Because of limited capability of a display system, the optical

imaging noises, and many other factors, the acquired medical

images usually have poor quality. Image enhancement is the

procedure used to alter the appearance of an image or the

subset of the image for better contrast or visualization of

certain features and to facilitate the subsequent image-based

medical diagnosis. For example, in the X-ray mammogram

imaging for the breast cancer diagnosis, image enhancement is

usually used to improve the visibility of microcalciWcations,

masses, and soft tissues. The design of a good image enhance-

ment system should consider the speciWc features of the med-

ical images and understand the imaging procedure of a

particular imaging modality [1]. In brain imaging using
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X-ray computed tomography (CT), the bony structure and

soft tissues display diVerent contrast and geometric features,

while in positron emission tomography (PET) brain images,

there is little structural information. Therefore, the Wltering

algorithm should be diVerent for improving the soft tissue

contrast and enhancing anatomic structures. Another example

is that in microscopic imaging, the images are usually

acquired at diVerent focal planes and at diVerent time inter-

vals and spectral channels. The design of the enhancement algo-

rithm should fully take advantage of this multidimensional

information.

There has been a variety of image enhancement algorithms

available. They are usually categorized into two types: Spatial-

domain– and transform-domain–based methods. The spatial-

domain methods include image operations on a whole image or

a local region based on the image statistics. Histogram equal-

ization, image averaging, sharpening of images using edge de-

tection and morphology operators, and nonlinear median

Wltering all belong to this category. The other class is a trans-

form-domain–based method because the image operations are

performed in the transform domain, such as in the Fourier and

wavelet domain. The frequency transform methods facilitate

the extraction of certain image features that cannot be derived

from the spatial domain. One can manipulate the transform-

ation coeYcients in the frequency domain and then recover

the image in the spatial domain to highlight interested image

contents. As one of powerful image transforms, wavelet ap-

proaches have been used in recent years for medical image

analysis. We will introduce several wavelet approaches for

image contrast enhancement. Finally, we will discuss how to

evaluate the performance of enhancement algorithms and use

chromosome image enhancement as an example to compare

among diVerent image enhancement approaches.

7.2.1 Spatial-Domain Methods Using Pixel
Operations

When display devices have a limited range of gray level over

which the image features are most visible, one can use the

global method to adjust all the pixels in the image to ensure

that the features of interest fall into the visible range of display.

This technique is also called contrast stretching [2]. For ex-

ample, if I1 and I2 deWne the intensity range of interest, a

scaling transformation can be introduced to map the image

intensity f to the image g with the range of 0 to

Imax as g ¼ I � I1

I2 � I1

� Imax. This mapping is a linear stretch. A

number of nonlinear monotonic pixel operations exist [2,3].

The image intensity scaling is usually used for contrast stretch

and clipping, display calibration, etc. Because no a priori in-

formation may be available to identify useful intensity bands,

it is useful to distribute the intensity information uniformly

over the available intensity bands. This technique is called

histogram equalization [2].

When there is more than one image available, image aver-

aging is a simple way to enhance the signal-to-noise ratio. For

example, in microscopic imaging, one usually has multiple

images at diVerent focal planes. For motion images, images

of the same scene are acquired at diVerent time points. These

multiple images can be properly registered and averaged to

reduce noise. Image subtraction is usually performed when

two images of the same object are obtained at diVerent

imaging conditions and have signiWcant similarities [3]. The

image subtraction will enhance the diVerences between the two

images. An application is the background subtraction or

correction. In the microscopic imaging of human chromo-

somes, the image is contraindicated by slowly varying the

background shading pattern. One can move the microscope

stage to obtain an empty Weld and use this image as

the background. Then the background is subtracted from the

image that contains chromosomes to remove the shading.

7.2.2 Local Operations

Because image properties vary at diVerent pixels, the operation

of spatial Wltering is usually performed in a local neighbor-

hood. An example of local Wltering is the local area histogram

equalization [2], obtained with a modiWcation of the histo-

gram equalization. The local histogram equalization adapts the

histogram equalization technique from whole image to small

and overlapping areas of the image [2], which takes into

account the image local features. However, this nonlinear

Wltering is computationally intensive. There are a number of

variants on the image histogram transforms by considering the

local properties of the image. A local histogram transform was

performed based on local standard deviation [4]. A wavelet

transform-based histogram equalization [5] was also intro-

duced for the enhancement of gastric sonogram images.

Median Wlter is a well-used nonlinear Wlter that replaces the

original gray level of a pixel by the median of the gray values of

pixels in a speciWc neighborhood. The median Wlter is also

called the order-speciWc Wlter [3] because it is based on statis-

tics derived from ordering the elements of a set rather than

taking the means. This Wlter is popular for reducing noise

without blurring edges of the image [6]. The noise-reducing

eVect of the median Wlter depends on two factors: the spatial

extent of the neighborhood and the number of pixels involved

in the median calculation. An adaptive neighborhood can be

used for preserving edges while smoothing noise [2]. In adap-

tive neighborhood Wltering, a region centered at a pixel is

grown until a prespeciWed criterion of region growing is

satisWed. Mathematical morphology approach is another type

of nonlinear operation, where the Wlters are represented as the

combination of two simple set operations: dilation and ero-

sion. Based on the properties of morphologic Wlters, an algo-

rithm was designed for enhanced segmentation and extraction

of suspicious mass areas from mammographic images [7]. The

morphologic Wlters are also used in combination with active
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contours for the automated extraction of foreign objects in

radiographic images [8].

The unsharp masking technique is commonly used for

sharpening the edges of the image. This Wltering method

involves the convolution of an image with a speciWc Wlter

such as the high-frequency Wltering mask. In general the un-

sharp masking operation is represented by:

g(x,y) ¼ f (x,y)þ le(x,y), (7:1)

where l > 0; and e(x,y) is often taken to be the gradient of the

image. The operation is equivalent to adding the gradient

information to the image. A commonly used gradient function

is the discrete Laplacian Wlter [6]. Other gradient Wlters such as

the Sobel Wlter can be used to compute the Wrst-order gradient

in the x- and y-directions. The directional Wlters such as the

steerable Wlter [9] can extract directional information of the

image to sharpen the image at a speciWc direction. Examples

using local derivative information for medical image enhance-

ment can be found in references [10–12].

7.2.3 Frequency Domain Methods

In many cases, Wltering in frequency domain is more straight-

forward than in spatial domain when reducing noises because

noises can be easily identiWed in frequency domain. When

an image is transformed into the Fourier domain, the low-

frequency components usually correspond to smooth regions

or blurred structures of the image, whereas high-frequency

components represent image details, edges, and noises. Thus,

one can design Wlters according to image frequency components

to smooth images or remove noise [1, 13]. Low-pass Wltering

will usually smooth images by attenuating high-frequency com-

ponents, and high-pass Wltering will emphasize the image edges

or sharp details by attenuating low-frequency components.

The Wiener Wlter is an optimal Wlter derived under a min-

imum of mean-squared error criterion [1, 3, 6]. When the

noisy image is obtained as the sum of the image and stationary

noise g(x,y) ¼ f (x,y)þ n(x,y), where the noise is assumed to

be spectrally white with the zero mean and variance s2, the

Wiener Wlter is derived as follows [2]:

H(u,v) ¼ Pf (u,v)

Pf (u,v)þ s2
, (7:2)

where Pf is the power spectrum of the signal. The conventional

Wiener Wlter has limitations [3]. If the signal is a realization of

a non-Gaussian process such as in natural images, the Wiener

Wlter is outperformed by nonlinear estimators. A number of

variants of Wiener Wlter exist by considering the spatial variant

characteristics of the signal and noise [2]. An approach to

make the Wlter spatially variant is by using a local spatially

varying model of the noise parameter sn. This Wlter changes

from pixel to pixel. A variant of this Wlter is the noise-adaptive

Wiener Wlter by Lee et al. [14], which models the signal locally

as a stationary process. The Wlter is given by the following:

~ff (x,y) ¼ mf (x,y)þ
s2

f (x,y)

s2
f (x,y)þ s2

n(x,y)
(g(x,y)�mf (x,y)) ,

(7:3)

where mf is the local mean of the signal f, and s2
f is the local

signal variance. This Wlter is similar to the unsharp Wltering

(Equation 7.1).

The Wiener Wlter only relates to second-order statistics of

the input image. By introducing nonlinearity in the image,

some limitations can be overcome. Abramatic and Silverman

[15] proposed a Wlter that is a linear combination of the

stationary Wiener Wlter H and the identity map:

Ha ¼ H þ (1� a)(1�H): (7:4)

The modiWed adaptive Wlter equals the Wiener Wlter for a ¼ 1,

and for a ¼ 0 the Wlter becomes the identity map. From the

study of the human visual system, Knutsson et al. introduced

an anisotropic component in the model of Abramatic and

Silverman [16]:

Ha,g ¼H þ (1�a)(gþ (1�g) cos2 (w� u))(1�H), (7:5)

where the parameter Y controls the degree of anisotropy, w is

the angular direction of the Wlter, and u deWnes the orientation

of local image structure. The more dominant the local orienta-

tion, the smaller the Y value and the more anisotropic the Wlter.

The local direction and the level of anisotropy can be estimated

with three oriented Hilbert transform pairs. The weighting

function cos2 (w� u) was imposed by its ideal interpolation

properties, and the directed anisotropy Wlter can be implement-

ed as a steerable Wlter by Freeman and Adelson [9].

7.2.4 Wavelet Domain Methods

Human visual perception occurs at multiple scales; hence,

edges of an image can be extracted from Laplacian of Gaussian

(LoG) operators, as proposed by Maar-Hildreth [6]. Wavelets

are developed in applied mathematics for the analysis of multi-

scale image structures [17]. Wavelet functions are distinguished

from other transformations such as Fourier transform because

they not only dissect signals into their component frequencies

but also vary the scale at which the component frequencies

are analyzed. As a result, wavelets are exceptionally suited for

applications such as data compression, noise reduction, and

singularity detection in signals. The ability to vary the scale of

the function as it addresses diVerent frequencies also makes

wavelets better suited to signals with spikes or discontinuities

than traditional transformations such as the Fourier trans-

forms. The application of wavelets to medical image enhance-

ment has been extensively studied. We introduce two types of

wavelet transforms and the enhancement algorithms based on

these transforms. The use of other image transforms such as the

Steerable [9] and Gabor Wltering [18] transforms can be found

elsewhere.

7 Data Processing and Analysis 167



Mathematically, using wavelet transforms, a signal can be

decomposed into the low-frequency and high-frequency com-

ponents at dyadic scales 2j . A typical orthogonal/bi-orthogonal

wavelet transform is shown in Figure 7.1. It uses low-pass and

high-pass Wlters {h} and {g} [17]. After each level of decom-

position, the number of wavelet coeYcients becomes half of

the previous decomposition. The low-pass and high-pass com-

ponents of the image are contained in the coeYcients {c} and

{d}, respectively.

A more general family of wavelets suitable for image

enhancement is the non-orthogonal wavelet transforms or

frames. Zhong and Mallat [19] proposed a family of non-

orthogonal wavelet transforms. The edge information can

be extracted from the zero-crossings and/or extrema of the

wavelet transforms. These wavelet transforms are translation-

invariant and outperform the orthogonal wavelet transforms

when reducing ringing eVects at the signal edges [20]. A more

general family of diVerential wavelets was proposed [21, 22]. If

we deWne the smoothing and wavelet transform of an image f

as S2j f and W2j f , we can compute the wavelet transforms using

a fast algorithm

S2j f ¼ S2j�1 f � h"2j�1

W2j f ¼ S2j�1 f � g"2j�1

�
, 1 � j � J , (7:6)

where {h} and {g} are the low-pass and high-pass Wlters, and

"2j�1 is the up-sampling operation by putting 2j�1 � 1 zeroes

between two samples in the Wlter. The values of these Wlters can

be found in Wang [21].

One can manipulate the wavelet transform coeYcients to

magnify coeYcients to enhance the authentic signals while

suppressing noise. The modiWcation of the wavelet coeYcients

results in a nonlinear mapping from the wavelet transform

coeYcients x to a new value. The hard-thresholding and soft-

thresholding functions proposed by Donoho and Johnstone

[23] are such nonlinear functions. For example, the soft-

thresholding function was given by:

u(x) ¼
x � T , if x � T

x þ T , if x � �T

0, if jxj � T

:

8<
: (7:7)

The threshold T is usually chosen to be T ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log2 N

p
,

where N is the length of the signal. CoeYcients below the

threshold T or above –T are shrunk to a nearly zero value.

The thresholding Equation 7.7 is usually applied to the

orthogonal/bi-orthogonal wavelet transform domain. A trans-

lation invariant wavelet transform such as in Equation 7.6

is more favorable [20]; the translation-invariant procedure

reduces ripple eVects when estimating discontinuous signals.

A variety of enhancement schemes [24, 25, 26] were proposed

based on the non-orthogonal transforms. The nonlinear map-

ping function used in these schemes acts as a multiscale

unsharp mask.

The diVerential wavelet transforms (Equation 7.6) facilitate

the extraction of edges at multiple scales. Because the edge

patterns are correlated spatially, we have used this property to

identify edges and subsequently amplify them. We have

adopted multiscale point-wise products (MPP) to measure

the cross-scale correlation [27]. The MPP is deWned:

PK (n) ¼
YK
j¼1

W2j f (n), (7:8)

where {W2j f } are the wavelet transforms deWned in Equation

7.6. This criterion was used for detection and localization [28],

denoising [19], and Wltering of magnetic resonance images

(MRIs)[29]. In fact, even before the advent of wavelet trans-

form, the MPP had been used to enhance multiscale signal

peaks while suppressing noise by exploiting the multiscale

correlation of desired signals [30]. Because the maxima of

W2j f (n) tend to propagate across scales because of edges in

the signal f(n), whereas the maxima caused by noise does not,

PK (n) reinforces the response of the signal rather than the

noise. Analysis of edge patterns indicates that the multiscale

product has an inherent ability to suppress isolated and nar-

row impulses while preserving the edge responses across diVer-

ent scales [27]. A more detailed analysis of the probability

distribution function of the MPP can be found in Sadler and

Swami [28]. Based on this observation, we have proposed the

following nonlinear mapping function using the MPP as a

criterion to modify the wavelet coeYcients [27]

u(x) ¼ lx, if jxj � m

0, otherwise
,

�
(7:9)

where l is an adjustable constant corresponding to the scale,

and its choice can have diVerent degrees of enhancement. The

threshold parameter m can be set by users. Larger values of m

result in a high denoising eVect, and vice visa. The choice of m
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FIGURE 7.1 Multiresolution wavelet pyramid decompositions at two levels.
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depends on the noise level in the image, which is similar to the

hard thresholding method used in Coifman and Donoho [20].

7.2.5 Evaluation of Image Enhancement

QuantiWcation of contrast enhancement is generally diYcult

[31]; there is no universal measure for specifying either the

objective or the subjective performance of the enhancement

algorithm. Contrast is often deWned as the diVerence in mean

luminance between an object and its surrounding. There are

many measures of contrast. For example, in the deWnition

proposed in Gordon and Rangayyan [32], the local contrast

is deWned as the diVerence of the mean values in two rectangu-

lar windows centered on a pixel. SpeciWcally, the local contrast

c(x,y) is deWned as:

c(x,y) ¼ jp � aj
jp þ aj , (7:10)

where p and a are the average values of gray levels in the center

window and surrounding window of the pixel location (x,y), as

illustrated in Figure 7.2. It gives the contrast measure c in the

range [0,1]. The performance measure, contrast improvement

ratio (CIR), is deWned as the ratio of the enhanced image and

the original image within the region of interest (ROI) R,

CIR ¼
j
P

(x,y)2R jc(x,y)�~cc(x,y)j2P
(x,y)2R jc(x,y)j2

, (7:11)

where c and ~cc are the local contrast values of the original and the

enhanced images, respectively. Figure 7.2 illustrates the center

and surrounding regions. The CIR can be used as an objective

criterion to evaluate diVerent enhancement techniques.

We use chromosome enhancement as an example to com-

pare the wavelet approach [27] with several diVerent ap-

proaches. These are the adaptive contrast stretch (ACS), the

adaptive contrast enhancement (ACE), and the contrast gain

transform (CGT) [4]. The CGT and ACE parameters used in

the article by Chang and Wu [4] are 25 and 2.0 in the experi-

ments. The parameters l (Equation 7.9) used in our proposed

method for the three scales are 5, 2, and 2, respectively. In

addition, we also compare our method with the multiscale

contrast enhancement (MCE) approach proposed in

Boccignone and Ferraro [33]. Figure 7.3 shows one example

of the spread image enhancement using diVerent enhancement

methods. One can see that the proposed wavelet method

produces the best visualization eVect after enhancing the

band patterns. The adaptive contrast enhancement (ACE)

method and the CGT method, on the other hand, both cause

blurring at the edges. Chromosome images are used in routine

cytogenetic diagnosis and cancer research. Image enhancement

is desired for high-resolution display and visualization of the

chromosome band patterns [31]. A set of 21 human chromo-

some images, including 10 chromosome metaphase spread

images and 11 karyotype images, was tested in the experi-

ments. The test results, in terms of the average CIRs measured

from the spread and karyotype images, are tabulated in Wang

et al. [27]. Among all the methods tested, the wavelet approach

consistently yielded the highest CIRs.

A more objective evaluation of an enhancement algorithm is

determined by the subsequent application. For example, in the

chromosome image enhancement, the ultimate purpose is to

S

C

FIGURE 7.2 The local contrast is defined as the measure between

the center region and the surrounding region. The size of the center

and surrounding window are 3 and 7, respectively.

(a) (b)

(d)(c)

(e) (f)

FIGURE 7.3 A comparison of the CIRs among different methods

for enhancing chromosome images. (a) Original image, (b) Enhance-

ment using the proposed method, (c) MCE, (d) CS, (e) ACE, (f) CGT.
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improve the classiWcation accuracy of the chromosome images.

The enhanced image using the wavelet approach results in the

highest classiWcation accuracy among the enhancement algo-

rithms that we compared [27].

7.3 Medical Image Segmentation

Note: In the following, references to pixels also include volu-

metric elements (voxels), with some noted exceptions.

Image segmentation is the process of partitioning an image

into sets of pixels corresponding to regions of physiologic

interest. For example, Figure 7.4(a) is a single slice from an

MRI. Figure 7.4(b) shows a segmentation of the image into

brain and nonbrain tissues as a collection of pixels with an

anatomic label (red) for brain tissues.

The segmented image can be used to make measurements such

as brain volume, to detect abnormalities, or to visualize areas

such as the brain surface in Figure 7.4(c). Image segmentation has

been an active area of research in image processing and computer

vision from the outset of digital imaging. As a result, there is a

wide array of segmentation approaches for medical images.

7.3.1 Intensity and Texture

A major class of segmentation methods form regions with

similar intensities or textures. The motivation behind this ap-

proach is that these regions correspond to diVerent objects or

features in the original image. The various methods diVer in

their exact deWnition of a region and the way pixels are assigned

to those regions. It is diYcult to deWne what a meaningful

region is in the general sense, since this is often application

dependent. However, a basic deWnition of a region is as follows:

. Regions contain pixels that are similar with respect to a

homogeneity criteria.

. Regions should be topologically simple and void of small

holes and non-uniform edges.

. Adjoining regions should be characteristically diVerent as

determined by the homogeneity criteria.

Mathematically, this can be considered as partitioning the

image space into disjoint sets that satisfy the homogeneity criteria.

Ri ¼ x 2 RN Ti < H[f (x)] < Tiþ1j g,
�

(7:12)

where Ri is region number i, x is a vector whose length depends

on the image dimensions, and H is the homogeneity criteria

applied to the image f. Each region corresponds to a diVerent set

of values constrained by the threshold functions Ti and Tiþ1.

In general, T can be a complicated function based on prior

information. The requirement that the sets be disjoint may be

relaxed during the region formation process, but the Wnal result

should contain mutually exclusive sets. The homogeneity

criteria have been deWned in many diVerent ways and are used

to measure the degree to which the pixel belongs to the region.

The simplest formulation of the homogeneity criteria is to

use the intensity at the pixel location itself or the output of an

image processing Wlter; for example, smoothing or a texture

measure. The thresholds, Ti , then correspond to intensity

limits, and the regions are groups of pixels with intensities in

the given limits. This technique is referred to as thresholding

and has two basic parameters: the number of regions and the

threshold values. If only two regions are considered, a single

threshold is used. This rarely describes real scenes, so multiple

thresholds are often required, giving rise to multivalued

thresholding. The number of regions and thresholds can be

determined from a priori knowledge of expected image

(a) (b) (c)

FIGURE 7.4 Example of image segmentation used to identify pixels belonging to brain tissue.

(a) Slice from a T2-weighted image. (b) Region identified as brain highlighted in red. (c) Surface

rendering of the brain region from the entire image volume. The MR images are from the BrainWeb

database (http://www.bic.mni.mcgill.ca/brainweb). For a more detailed view of this figure, piease visit

our companion site at: http://books.elsevier.com/companions/9780123735836.
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intensities or estimated from histogram analysis. The histo-

gram analysis may locate peaks and subdivide the pixel range

accordingly or, as is more often the case, model the pixel

intensities using probability distributions. The parameters of

the distributions can then be estimated from the image histo-

gram and used to form linear discriminate functions that

specify the threshold values.

The histogram analysis approach is a subset of a larger class

of region-based segmentation algorithms that model the

image as a stationary random process and individually classify

pixels based on a set of features calculated from the image.

These classiWcation or clustering techniques are a subset of

tools from pattern recognition and can use a wide variety of

information from the image. In the case of classiWcation, the

goal is to Wnd the most probable segmentation given

the measured image. This is accomplished by maximizing

the posterior distribution to obtain the most likely segmen-

tation (the maximum a posteriori or MAP estimate). The

clustering approaches use measures of intraclass and interclass

homogeneity, like the Fisher criteria, to determine the best

segmentation. Methods such as hierarchical clustering [34]

and nearest neighbor algorithms (c-means or k-means) can

also be used to group pixels into regions. When the intensity

of a pixel and its neighbors is used, the classiWcation can be

considered a region-based technique.

The results obtained by thresholding and classiWcation of

individual pixels often contain many small holes or gaps in the

regions, especially in noisy situations. Also, the results must be

processed to obtain pixels that are spatially isolated using

a labeling algorithm. A more focused approach to region

segmentation is known as pixel aggregation or region growing.

This technique starts with a speciWed point in the image, called

the seed. It then collects all the pixels that are adjacent to the

region that meet the homogeneity criteria. Because only

a single pixel is added to the region at a time, restrictions as

to region size and shape can be made to guide the region

formation process. Using this approach, a single connected

region with certain topologic characteristics can be extracted

without examining the entire image domain. In addition to

selecting the threshold values, the seed point must also be

located. This is often speciWed by an operator, but may also

be automatically determined in some applications.

Alternatively, the entire image domain can be iteratively

subdivided until the combination of pixels in each region

meets the homogeneity criteria. The process may also be

reversed, combining individual regions, until no more can

be merged and each region meets the homogeneity criteria.

These two approaches form a hierarchical-directed graph

structure. In the case of splitting, the graph has a single

root corresponding to the image and terminal nodes that

correspond to individual regions. In the case of merging, the

graph has a root for each pixel and a smaller set of terminal

nodes that correspond to individual regions. The homogeneity

criteria used in split and merge methods use either the

maximum and minimum of an image characteristic or a sta-

tistical test to determine when to stop the split or merge

process. As with the case for pixel aggregation, constraints of

size and shape can be applied to restrict the region topology.

The region-growing and split-merge segmentation

approaches are sequential in nature. They make decisions

about inclusion or exclusion from the region based on a previ-

ous estimate of the region. A more generalized sequential

approach that modiWes the decision criteria per iteration is

called relaxation [35]. In relaxation, the likelihood of each

pixel belonging to a particular class or region is measured

using probabilities or fuzzy membership. These individual like-

lihoods are updated iteratively using the likelihood of neighbor-

ing pixels at the previous iteration. Relaxation bears a striking

similarity to a statistical approach to segmentation based on

Markov random Welds (MRF) and is used with several diVerent

algorithms including simulated annealing [36], iterated condi-

tional modes [37], and in several medical applications [38].

Another approach to region-based segmentation, the water-

shed, is derived from the Weld of mathematical morphology.

Using a geographic analogy, consider the gradient of the image

as a topological map. The map is gradually Xooded, and

regions separated by peaks or crests in the gradient are artiW-

cially separated by a barrier called the watershed. When the

map is completely Xooded, the set of points within a watershed

forms the individual regions. Whereas this technique does use

edge information, the Xooding process is much like the region-

growing approaches described above. The watersheds are diY-

cult to construct in two and three dimensions, and the tech-

nique tends to over-segment the image. These issues have been

addressed somewhat by using Wrst-in Wrst-out breadth-Wrst

techniques to perform the Xooding [39] and morphological

postprocessing to correct over segmentation [40].

One of the major diYculties in applying the region-based

approaches is the process of parameter estimation. For thresh-

olding, classiWcation, clustering, and MRF approaches, the

number of partitions of the features may be diYcult to deter-

mine. It is often the case that a priori knowledge of the number

of classes does not produce a useful segmentation, and auto-

matic methods are ad hoc in nature. In general, region-based

methods tend to over-segment the images because of blurring

and noise. In terms of computational complexity, the region-

growing techniques are the fastest region-oriented techniques

because they only examine a subset of the total number of

pixels in the image. Thresholding, classiWcation, and relaxation

approaches have linearly increasing complexity with the size of

the image because they must examine each pixel. The MAP

and MRF approaches are often computationally expensive

because they must extremize a complicated functional.

7.3.2 Edges

To identify an object from a two- or three-dimensional image,

you can, as in the previous section, locate the interior of the
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object itself. Alternately, you can identify only the boundaries

of the objects and interpret the interior as taking on values

from the original image or some average of those values. This

technique, referred to as edge Wnding or edge detection, is a

useful tool for segmentation.

A natural deWnition of an edge is the location where objects

are separated in the image. From this deWnition of an edge, the

process of edge Wnding can be considered using a diVerential

operator. It is well known that the process of numeric diVer-

entiation is ill posed in the sense of Hadamard [41]. Thus, the

output of the system does not depend continuously on the

data, and noise is ampliWed. As a result, one of the major

aspects of edge detection research has been to regularize the

diVerentiation process.

The Wrst attempts to obtain a discrete diVerential operator

were based on simple Wnite diVerence approximations to the

continuous derivatives. These simple operators can then be

applied to the image to obtain an approximation to each

directional derivative. Each directional derivative can then be

combined to form the gradient, rf . To address the issue of

noise, the Wnite diVerence operators were combined with sim-

ple Wlters to produce the classic edge detection operators of

Sobel and Prewitt [42]. Both of these approaches combine a

simple low-pass Wlter with the Wnite diVerence operator to

obtain edge Wlters that are less aVected by noise.

A more formal approach to the regularization of the diVer-

ential operators can be obtained from the theory of inverse

systems. Here, the linear image formation model is explicitly

used to obtain a least mean square solution to the inverse

problem by Wnding a minimum of a cost. The diVerential

operator smoothes the solution and thus provides the required

stability. The smoothing eVect of the regularization operator

can be obtained either explicitly through Wltering or implicitly

by approximation. The Wltering approach led to the Gaussian

regularization Wlter introduced by Marr [43] and has connec-

tions to scale-space approaches [44–47]. The Marr-Hildreth

operator combines a Wlter with the selection of gradient peaks

by means of the second derivative. The Wlter used is the Gauss-

ian, which can be shown to minimize the uncertainty between

the spread in the spatial domain and the spread in the frequency

domain from inWnite impulse response and Wnite impulse

response Wlters [41]. The Marr-Hildreth operator is then the

Laplacian of Gaussian or Mexican hat Wlter. The approximation

approach to regularization led to the Haralick edge operator

[48]. This technique Wrst approximates the image locally using a

least-squares Wt polynomial. The edges are then located using

the zero crossings of the second directional derivative of the

polynomial, steered in the gradient direction.

The Wltering approach to regularization of diVerential oper-

ators can be combined with desirable edge operator character-

istics in a variational framework. This idea is normally

attributed to John Canny, who proposed a set of criteria that

a good edge detector should obey [49]. Canny proposed three

principle characteristics an edge detector should have. First,

the diVerential operator should respond maximally to a true

edge and minimally to noise. Second, the operator should

locate edges with the highest possible precision. Third, the

operator should provide a unique estimate of an edge.

The noise used in the Canny model is additive, stationary,

white noise with known or estimated statistics. The detection

criteria can be considered the maximization of the signal-to-

noise ratio (SNR). The optimal operator that maximizes the

SNR is a matched Wlter. The localization criteria can be quan-

tiWed by the dislocation of the measured edge location from

the true edge location. In contrast, Deriche assumed the opti-

mal operator to have an inWnite spatial extent, resulting in

a simpler form that can be implemented recursively. Spacek

used criteria similar to those of Canny but incorporated the

expression for the average distance between local maxima

directly into the criteria function. A comparison of the per-

formance relative to the three optimal criteria shows that,

in general, the Deriche and Spacek operators provide more

accurate detection and localization of edges than the Canny

operator [41]. In practice, however, the Canny operator can be

approximated by a Wrst derivative of Gaussian Wlter, which is

simple conceptually and has an eYcient implementation.

The algorithms discussed thus far have been concerned with

Wlters that implement the derivative operation in a stable and

well-deWned manner. The output of these Wlters must be

examined to explicitly locate the edges, as a chain of points

in two dimensions or as a mesh of points in three dimensions.

This postprocessing step is called edge linking and is a diYcult

part of the edge-based approach. The simplest method is to

threshold the gradient magnitude image and use morpho-

logical operators and labeling to identify edge chains. The

main diYculty with this approach is the selection of the

threshold, which can produce gaps and is ad hoc in nature.

Graph searching and the Hough transform are two examples of

methods for bridging the gaps produced by thresholding the

gradient response. The graph search techniques use both

greedy algorithms and heuristic search to Wll gaps, while the

Hough transform is used to locate parametrically deWned lines

and curves.

A more principled approach is to locate zero-crossings of

the second derivative, like those produced by the Marr-

Hildreth operator. Although this is well-deWned numerically,

it does not guarantee closed contours and does not handle

noise responses well. A set of rules can be established for the

selection of edge points, such as those proposed by Canny in

conjunction with his optimal operator. These rules include

nonmaximal suppression and hysteresis thresholding and

have been applied to many other edge operators.

7.3.3 Geometric Models

Deformable models begin with an estimate of the object shape

to be segmented and its approximate location in relation to the

image. This estimate is then modiWed iteratively until it
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matches the local image data using mathematical techniques

from variational calculus and optimization. The application of

deformable models is appropriate when a priori information

about the target object’s location and shape are known or

can be provided manually, often the case in medical image

segmentation.

Deformable models are themselves a subset of variational

segmentation techniques and implicitly include correlations

between pixels (or voxels) by using a geometric representation

for the objects to be segmented. The usefulness of the various

deformable models stems from the focus on local information,

controlled in a global manner by a functional. The geometric

variational approaches include the distributed image space

(DIS) models and lumped parameter space (LPS) models.

Examples of the DIS models are the physically based deform-

able models [50–53] and the geometric deformable models

[54–57]. LPS models include the active shape models [58–60]

and the statistical shape models [61]. DIS models attempt to

minimize a functional that is only deWned on a curve or

surface of the image. The application of variational calculus

to the functional gives rise to a partial diVerential equation

(PDE) that determines the optimal deformation of the model

parameters. In the case of the physically based deformable

models, the PDE is a necessary condition for a minimum

called the Euler-Lagrange equation and is used to determine

the motion of the curve. In the case of the geometric deform-

able models, the Wrst variation of the functional is used to

derive the Hamilton-Jacobi equation, giving the steepest

descent direction toward a functional minima. LPS models

typically optimize over a much smaller set of parameters

than the DIS models and are much more compact represen-

tations. Each of the deformable model approaches requires

initialization by a contour or surface estimate, either by

hand or from some other high level method (i.e., a database

of shapes).

The LPS models use compact, parameterized shape models

to deform and register the shape to the measured image by

minimizing a functional. A model of each shape is required,

and care must be taken to ensure that the model can fully

capture the expected variation in the object. One example of a

shape model is that of Fourier descriptors, a representation of

the parameterized shape as a Wnite combination of basis func-

tions [59]. These basis functions are often sinusoids with the

coeYcients determined using an optimization strategy. An-

other LPS approach uses Wgural shape and statistical models

[58] to represent the object and its local deformations. These

and related techniques have shown promise in medical image

analysis for low-contrast segmentation where variability in the

target shape(s) is low.

In general, LPS models cannot change their topology from

the initial shape, and they require better description of the

shape itself than other deformable models. Thus, they are

closely related to object recognition tasks. However, because

LPS models rely heavily on the a priori knowledge of the shape

itself, they are often more robust solutions to contrast-limited

problems for which topological Xexibility is not necessary.

Distributed image space models are physically based

deformable models, sometimes referred to as snakes or active

contour models. They generally attempt to minimize a function

by combining an internal spline energy of the model, a potential

term derived from the intensity and gradient of the image along

the contour, and a term including external forces that can be

applied to the model given a priori knowledge. Computer

implementation requires the sampling of the curve into snaxels

(snake elements) and iterative solution of the Euler-Lagrange

equations [50] or other minimization strategies [62, 63]. The

physically based model is also applicable to three-dimensional

surfaces, referred to as balloons [64], and to multiscale imple-

mentations [52, 65].

The main criticism of physically based deformable models is

the diYculty in tracking the parameterized curve or surface,

especially in areas where the surface changes topology. These

issues have been addressed by adapting the physically based

approach (T snakes or surfaces [51]) and an implicit represen-

tation of the deformable model. The T snakes and T surfaces of

McInerney and Terzopoulos [51] are able to change topology

by a re-parameterization of the contour at each iteration using

an implicit formulation. The physically based deformable

models also require weighting coeYcients to adjust the inter-

action of the forces on the contour. These weights are diYcult

to determine in a principled manner and are adjusted experi-

mentally.

The geometric deformable models embed the curve or sur-

face in a two-dimensional or three-dimensional space termed

the level function and use numeric schemes introduced by

Osher and Sethian [66] to compute the Hamilton-Jacobi equa-

tion for a length or area preserving functional. The result of

minimization of this functional and embedding in a level set is

a gradient Xow equation that uses an image-dependent speed

to control the contour movement. The main advantage of the

above geometric approach is that the surface is deWned by the

level set such that changes in topology are possible without

further intervention, a powerful motivation for their use.

The diYculty with the above geometric deformable model is

the lack of any physical principle to drive it. The contour

moves toward a minimal length curve with an image depen-

dent speed; however, there is no physical interpretation of

stopping or selection of the speed term. The addition of

image-independent forces [54] adds to the parameters that

must be chosen, and while improving noise independence,

this reduces the sensitivity to low-contrast and high-curvature

boundaries.

The work by Caselles et al. [67] and Kichenassamy et al. [68]

unites the physical energy minimization and implicit form for

the contour evolution into the geodesic deformable model.

Subsequent analysis and application in both two dimensions

and three dimensions have shown the approach to be useful

for segmentation in medical images.
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7.4 Medical Image Feature Extraction

ClassiWcation, comparison, or analysis of images is performed

almost always in terms of a set of features extracted from

the images. Usually this is necessary for one or more of the

following reasons [69]:

1. Reduction of dimensionality. An 8-bit-per-pixel image

of size 256� 256 pixels has 25665536 � 10157826 possible

realizations. Clearly it is worthwhile to express structure

within and similarities between images in ways that

depend on fewer, higher-level representations of their

pixel values and relationships.

2. Incorporation of cues from human perception. Much is

known about the eVects of basic stimuli on the visual

system. In many situations, moreover, we have consid-

erable insight into how humans analyze images (essen-

tial, for example, in the training of radiologists and

photo-interpreters). Use of the right kinds of features

would allow for the incorporation of that experience

into automated analysis.

3. Transcendence of the limits of human perception.

Notwithstanding the great facility that humans have

in understanding many kinds of images, there are prop-

erties (e.g., some textures) of images that we cannot

perceive visually but which could be useful in character-

izing them. Features can be constructed from various

manipulations of the image that make those properties

evident.

4. The need for invariance. The meaning and utility of an

image often are unchanged when the image itself is

perturbed in various ways. Changes in one or more of

scale, location, brightness, and orientation, for example,

and the presence of noise, artifact, and intrinsic vari-

ation are image alterations to which well-designed

features (depending on the application) are wholly or

partially invariant. Many of the examples of features

presented below exhibit invariance in at least one of

those ways.

Features can be based on individual pixels (e.g., the number

having an intensity greater than x; the distance between two

points), on areas or volumes (the detection of regions having

speciWc shapes), on time (the Xow in a vessel, the change in an

image since the last examination), and on transformations

(wavelet, Fourier, and many others) of the original data. The

assumption made here is that feature extraction is automated,

and we describe only those features that can be computed

without user interaction. That process generally is easier if

the image has been segmented; that is, divided into regions

each of which is internally homogeneous and diVerent from its

neighbors. Segmentation is discussed elsewhere in this chapter

and is sometimes alternated with feature extraction.

7.4.1 Feature Extraction Across Space, Time,
and Frequency

The distribution of gray levels (intensity values) or of color

levels (e.g., of red, green, and blue) can be of great value in

describing an image. For example, if each picture element

(pixel) could take on one of only two widely separated values,

the image would have high contrast, and essentially no vari-

ation in tone or shade would be evident. At the other ex-

treme, if all intensities were represented equally often among

the pixels, the image could look washed out, having little

contrast. A way to describe the distribution of levels is the

histogram, a plot of the relative frequency of occurrence of

each gray level (or color intensity). In the cases mentioned

above, the Wrst histogram would have two spikes, and the

second would be Xat: a horizontal line.

Often it is useful, therefore, to characterize the histogram’s

shape [70, 71]. Some of the commonly used descriptors are

the mean and the mode (location parameters); the central

moments (e.g., variance, skewness, and kurtosis), which

describe rough shape; energy (sum of squares of the intensity

values, emphasizing the larger values); and entropy (a measure

of nonuniformity).

Regions correspond to areas that are homogeneous in some

characteristic(s). The shape of a subimage may be described in

terms of its boundary (contour-based) and/or its interior

(region-based).

Descriptors of contour include the following: (1) The chain

code [71], which uses a connected sequence of straight-line

segments, all of a speciWed length, oriented at angles that are

multiples of 45 degrees. The code number indicates the line’s

orientation, and a sequence of numbers corresponds to the

sequence of edges bounding a region. (2) A set of values of

the curvature of the surface at each point [72]. (3) Radial edge-

gradient analysis [73] (e.g., for describing spiculations in mam-

mography.(4) A signature, a one-dimensional representation of

the boundary. Some property of the boundary (e.g., distance

from the centroid of the region) is plotted as a function of angle

or arc length. (5) Segments obtained from decomposition of the

boundary; this may be based, for example, on concavities in the

boundary. These can be detected by Wnding the convex hull [71]

(the smallest convex region that contains the original region

where A convex region is one in which any two points can be

connected by a line that lies entirely within the region) and

noting those subregions where the original boundary departs

from the convex hull. (6) If the coordinates of points on a

digitized boundary are taken as the components of complex

numbers, then the sequence of those numbers will describe a

closed path in a complex plane. The Fourier transform of that

sequence yields a set of coeYcients, of which a subset can be

used in an inverse Fourier transform to reconstruct the contour

approximately. The subset of coeYcients can serve as useful

features.
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Useful descriptors of shape that are derived from the entire

object include the following: (1) EVective diameter (the diam-

eter of circle that has the same area as the region); it equals 2

(A=p)1=2, where A is the area. (2) Circularity (a circle has

value 1); it equals 4pA=P
2
, where P is the perimeter. (3) Com-

pactness (minimum for a circle): P2=A. (4) Projections deWne

the cumulative intensity of a region as measured along a set of

parallel rays cast through the region in any direction. Most

commonly the projections are in the horizontal and vertical

directions. If a region has pixel value f (x,y) at location (x,y), the

horizontal and vertical projections ph are, respectively:

ph(i) ¼
Xn

j¼1

f (i,j) and ph(j) ¼
Xm

i¼1

f (i,j), (7:13)

where m and n are the overall sizes (in pixels) of the image or

area of interest. These measures can be useful for measuring

the height and width of an object (zero values of the projec-

tions indicate the end of a region) and also the homogeneity of

a region (inferred from the variation in the projection values

across their extent). (5) The skeleton of a region (also called

the medial axis) can be taken as the set of points maximally

distant from the boundary, as the locus of centers of maximal

disks inside the region. It thus describes the orientation and

approximate curvature of the region as a whole and can indi-

cate the presence of branches in the object. Numerous algo-

rithms exist [70] for the calculation of skeletons from gray-

scale and binary images. (6) Topological descriptors include

the number C of connected components (a connected com-

ponent is one in which all member pixels have a path to all

other member pixels; the path’s pixels must lie in the compon-

ent; connectivity of the path is deWned as being either 4- or

8-adjacent), the number H of holes (connected nonregion

pixels lying within the region), and the Euler number C-H.

Texture does not have a formal deWnition, though usually it

is taken to refer to regularities, smoothness, and roughness in

images. The perception of texture depends on scale and some-

times orientation, so a description must allow the explicit

incorporation of those factors.

One way to describe relationships among pixels is to choose

a relationship and examine the image to determine the ways in

which the relationship appears. Let P be a relationship oper-

ator, and let A be an L� L matrix, where L is the number of

possible gray levels. The operator P can be viewed as a dis-

placement vector P ¼ (dx,dy) that speciWes the direction and

spacing from a given pixel to another. Each element aij of A

contains the count of the number of times that such a pair of

pixels occurs related in space by P and having, respectively,

gray levels bi and bj .

Let n be the number of point pairs in the image that satisfy

P. If a matrix C is normalized by dividing every entry of A by n,

then Cij is an estimate of the joint probability that a pair of

points satisfying P will have values (bi,bj). The matrix thus

deWned will in general not be symmetric because of the direc-

tionality of the relationship between the pixels. The matrix C is

called a gray-level co-occurrence matrix [70, 72].

An understanding of the properties of C may be developed

by considering possible values of P. If the texture in the image

is coarse—that is, d is smaller than the texture element’s

dimension—then pixels separated by d will have similar gray

levels, and there will be many counts along the main diagonal

of the matrix. Conversely, Wne variations within the image (d

comparable to texture-element size) will appear in C as sub-

stantial numbers of counts located far from the diagonal,

making the overall matrix more uniform.

In practice, C (or A) is computed for several values of P. One

way to deWne the relationship more formally is to specify the

angle w and distance d from the Wrst to the second pixel [70].

Using Cw,d(i,j) or Aw,d(i,j) to denote the entries in the matrix

for gray levels i and j, we can extract several features from the

co-occurrence matrix that will give insight into the textural

nature of the image [70, 74]. Because C is a histogram, some of

the features used for it are applicable here also.

Sequences of two-dimensional images arise in many appli-

cations. A set of CT or MRI slices, for example, may be viewed

as a sequence. A pixel in a given slice could be compared to the

corresponding pixel in the next slice, and so on, yielding a one-

dimensional plot of intensity versus slice number for each

pixel. The variation in size of the slices means that some pixels

will not have a neighbor in the adjacent slice, and thus the

lengths of the one-dimensional plots will diVer in general. The

sequence could occur over time rather than space. Examples of

this include a series of images of a beating heart and images of

drug uptake in the brain. Those slices in time often can be

treated in the same way as the CT and MRI slices.

Pixels that are adjacent in a given slice are likely to have

similar intensities (because they are likely to be describing the

same tissue type or phenomenon), and this similarity is likely

also to hold across time. The extent of that persistence in space

and/or time can be measured in several ways. Correlation is

a well-known process by which one signal is shifted relative to

the other, and at each value of shift we compute the sum of

the products of corresponding points’ values. When the two

signals are the same, we have the autocorrelation, and its value

as a function of shift is a measure of the amount of informa-

tion retained in later values of the signal. It is a measure of

persistence of the structure of the signal and can be computed

for each of the one-dimensional plots deWned above, as a

function of shift in time or space (slice). The correlation length

is a feature that the user can deWne as a measure of the

maximum shift that can occur before the autocorrelation

drops below a given value.

Equally, correlation can be calculated within a slice. In two

dimensions, an image or a section of it is shifted relative to

another image (or itself), and the sum of products is com-

puted. This can provide a measure of spatial homogeneity.
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Autocorrelation is one example of a tool from time series

analysis [75]. Probability models for time series provide a

richer set of tools that help describe structure. Autoregressive

processes use past values of a signal to estimate the next value;

the coeYcients of such regressions may be useful descriptors

and allow comparison of one-dimensional functions among

adjacent pixels.

The more general analysis of the multidimensional problem

(two-dimensional or three-dimensional versus time) is ad-

dressed by hyperspectral imaging [76–78] for which a variety

of tools and methods exist.

Images usually are represented in the two-dimensional space

domain, which displays intensity as a function of position in

(x,y). The Fourier transform provides an additional represen-

tation in the two-dimensional spatial frequency domain. The

two axes represent spatial frequency (in units of cycles per unit

length or angle), as manifest in orthogonal directions in the

space domain, the (u,v) space. A regular pattern of bars

that are parallel to the x-axis and that alternate between

black and white along the y-axis, for example, will have a

zero-frequency component in u (because there is no variation)

and a single value of frequency in v (because of the regularity).

As an object rotates in (x,y), its Fourier transform also

rotates about the origin in (u,v). This means that properly

extracted features from (u,v) will be invariant to rotation in

(x,y), which usually is a desirable characteristic. Examples

include rings and disks that span regions of spatial frequency.

Their circular symmetry ensures that an object’s representation

(its measure of power in a given spatial frequency range, which

can for example, measure texture coarseness and scale) is

insensitive to rotation [71]. Conversely, power measured

within a given radial wedge can be used to detect orientation.

One application of Fourier-related features arises in eVorts

to model human perception. As described elsewhere in this

chapter, the human observer’s detection and recognition tasks

are diYcult for the observer to describe directly. Measurements

of observer eye movement [79] during the performance of

those tasks, however, provide some insight into the mechan-

isms of detection of important structures in an image.

A perceptually correlated metric has been demonstrated

[80] that quantiWes the conspicuity of local, low-level (or

bottom-up) visual cues and identiWes those spatial frequencies

that are most distinct and perhaps most relied upon by radi-

ologists for decision-making. The goal is to provide a holistic,

or top-down, measure of conspicuity that would quantify the

variability in perceptual pop-out that occurs as a result of case

diVerences (anatomical background), lesion size, location, or

signal-to-noise, for example. A measure of feature conspicuity

derived from visually inspired Wlters has been used to show

[81] that ROIs obtained from eye-position data exhibited

statistically signiWcant diVerences in the conspicuity associated

with diVerent class types (true positive and true negative),

reader experience levels, and cases. The Gabor Wlter examines

ROIs and extracts information from each at a variety of spatial

frequencies and orientations; a new salience measure [80–82]

combines those Gabor responses into a single value. The fea-

tures contained in each pass band and the average salience

measure led to a measure that is useful for lesion detection

and image categorization [81].

7.4.2 Characterization and Selection of Features

Features are extracted and selected on the basis of one or more

criteria, which may overlap and sometimes conXict. Those

criteria include the ability of a set of features to group samples

of a similar type (clustering), to separate samples of diVerent

types (classiWcation), to convey intrinsic information about

the samples (description), to capture properties that humans

Wnd important for a task (e.g., salience), and to remain useful

in the presence of noise, changes in scale and orientation, and

measurement error (invariance).

Minimizing the number of features used in a given clas-

siWcation or clustering problem generally is desirable because,

when constructed based on a limited amount of design

(training) data, classiWers that use a large number of features

will not perform well on new data [83]. This curse

of dimensionality leads to the need for better features and

for ways to select the best subsets of candidate features. Both

of those subjects have been addressed extensively in the lit-

erature [83] and will not be discussed here; they should,

however, be considered carefully in the design of any practical

system.

7.4.3 Applications of Feature Extraction

Much of current automation in medical imaging aims to

produce a system that can automatically assign the correct

label (e.g., normal or abnormal) to a given image; this is the

classiWcation problem. The goal is to achieve both a high true-

positive rate and a low false-positive rate. There is inevitably a

trade-oV between the two; this is made explicit by the receiver

operating characteristic (ROC) curve, described elsewhere

[84], and often summarized by the single statistic Az, the

area under the curve, which we seek to maximize. One way

to measure classiWer performance is with Az.

ClassiWer design usually requires a set of labeled training

data, from which we extract features that we evaluate and select

as indicated above. A separate set of data (the testing set) then

is used to assess the overall eVectiveness of the combination of

classiWer and feature set, often using the ROC area as the

criterion.

In some circumstances, the available data samples do not

have class labels. Analysis in this unsupervised case is called

clustering, and there are several reasons that this situation can

be of interest [83]. They include the following: (a) One could

design a classiWer with large amounts of (presumably less-

expensive) unlabeled data, and then use labeled data to Wne-

tune the classiWer; (b) slowly changing characteristics of the
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data (e.g., as in gradual appearance of disease, or in time- or

geography-based epidemiology studies) may be identiWed and

tracked by a classiWer operating in the unsupervised mode; (c)

candidate features can be evaluated for their ability to induce

natural clusters in the data.

The interaction between feature selection and clustering can

provide insights to the structure of the data and oVers the

opportunity to incorporate whatever side information we

may have about the problem, such as the number of classes,

the prior probabilities of occurrence of various classes, or the

probabilistic nature of the features for each of the hypothesized

or actual classes.

Instead of attempting to deal explicitly with each of the very

large number of possible images that can be created by varying

their gray-scale structures, we can use features to capture the

essential information for a given task that is contained in a given

image or a set of images. In that case, when a set of n features is

extracted from a given image, it then is represented as a point in

n-dimensional feature space, and well-separated points in that

space would then make evident the diVerences among the

contents of the set of images. The goal is for images that are

similar (as deWned by the task) to cluster in feature space. Here

we also see the interaction with clustering methods.

Queries to an image storage and retrieval system can be

formulated explicitly in terms of features, or as query-by-

example. If the user knows the characteristics of the desired

images in terms of the extracted features (size, shape descrip-

tors, etc.), then it is straightforward to search the database for

images that match either exactly or approximately. In the

second case, the user submits an image for which a match is

sought. Features are extracted from that query image and used

as search terms in the database. Clearly, one can iterate on this

process, by selectively deleting features from the set of search

terms.

Feature extraction in medical images is part science and part

art. It is very much task-speciWc. Descriptions by the expert of

the diagnostic process provide the scientist with starting points

for the deWnition of candidate features to be used then for

rigorous mathematical formulation and analysis. The set of

candidates, and the subsequent elimination of some of them,

will be driven in part by the next step (usually classiWcation or

clustering), and the task-speciWcity thus also enters at this

point. The user must deWne carefully the nature of the source

images and what conclusions are expected at the end of the

process. That will yield a principled basis for feature deWnition

and selection.

7.5 Medical Image Interpretation

This section explains how radiologists work when they look at

and interpret a medical image. Radiologists work, to some

degree, in image space rather than verbal space. They,

therefore, may have great diYculty explaining what they do,

how they process the data in the image to create a diagnosis,

and why they are so certain (if they are) that they are correct.

The data in an image are ambiguous, and the radiologist has

innate skills or has learned the skill of assembling ambiguous

information into patterns and those patterns into diagnoses.

To some degree, identifying these Wndings depends on gestalt

processes, but how these processes work within the mind is

poorly understood. Gestalt provides names for what occurs

but not explanations.

Radiologists are inconsistent in what they identify on an

image, disagreeing with themselves and with other radiologists

with some medium frequency when the image has diYcult-to-

interpret Wndings. When you discuss the Wndings on an image

with a radiologist, he or she may have diYculty explaining the

thought processes that led to the identiWcation of disease and

the selection of a diagnosis. Diagnoses based on images vary in

their certainty, and the degree of uncertainty may be included

in the radiologist’s report on an image. For research purposes,

knowing ground truth is important—one would want to train

and test one’s algorithm on the most deWnite cases, but only a

limited number of deWnite cases are available. Knowledge of

how certain the diagnosis is should be conveyed along with the

algorithms that have been developed or tested on cases.

7.5.1 How Radiologists Work

Radiologists are diverse in their training and skills and use

somewhat diVerent methods for image interpretation. Some

are more skillful in subconsciously detecting unusual Wndings

on images and do so very rapidly and consistently; others reach

equal subconscious skill levels by carefully deWned search

methods that they have trained themselves to follow. In gen-

eral, radiologists will have diYculty describing what they do

when they are interpreting an image. Often, they will point to

the abnormality but cannot describe how they found it—it is

just so obvious to them that they cannot tell you what they did,

or if they missed a Wnding, why they missed it. The following

is a systematic description of what radiologists appear to do.

This is based on Wndings learned through systematic but still

incomplete investigations. Remember, however, that most

radiologists will not understand the processes they follow or

how the sections that follow relate to the things they actually

do as they interpret medical images.

7.5.2 Search, Detection, Description, Diagnosis

There appear to be four processes in image interpretation:

search, detection/rejection, description, and diagnosis. Search

is the nonsystematic or systematic visual review of the image

during which attention is focused on speciWc areas for more

intensive review. Detection/rejection is the process of evaluat-

ing each of these areas of attention to decide whether they are

indeed abnormalities requiring further analysis or are spurious

7 Data Processing and Analysis 177



Wndings that can be rejected. Description is the processes of

deWning an area of detection that may or may not involve the

use of words. Diagnosis is assigning a category to the process

detected: normal or abnormal. If abnormal, what is it likely to

represent.

There are three methods commonly used for search. Search

can represent a quick review of the image looking for areas that

are most conspicuous. Search can represent a systematic search

attempting to review all areas of the image. Search can be

based on the expectation of Wnding features that point toward

a single suspected disease or several suspected diseases. For

example, Figure 7.5 shows a mammogram in which there is an

abnormality, a mass. The mass is of high contrast and is quite

conspicuous. It stands out from the background. Figure 7.6

shows a mammogram in which there are microcalciWcations.

Although each of these calciWcations is of high contrast, they

are small features. They can be found by a systematic search

that surveys the entire breast tissue image, for example, by

scanning up and down over the entire image, often with the

use of magniWcation. If one is looking at a mammogram, one

knows that there are only a few features of cancer. These

include a mass, microcalciWcations, and architectural distor-

tion. Thus, one searches the mammogram in expectation that

if one or more of these Wndings is present, cancer may be

present. Thus, the expectation of what might be found guides

the search. There is a risk that a computer program for disease

detection may do quite well detecting conspicuous features but

would fail with more subtle Wndings. Sometimes, the most

obvious Wnding on a mammogram will represent scar, whereas

the cancer is quite hard to see. In addition, if the computer

program is to help radiologists with detection, it is the subtle

Wndings that they need help with.

Sometimes search involves only a single image; sometimes

it involves a comparison of images obtained with the same

modality (several mammograms, several CTs). Other times,

the comparison is made of images of several imaging modal-

ities (comparing a CT to an MRI, for example).

Normal breast patterns tend to be symmetrical, so when

something is observed on one view of a mammogram that

could be normal or abnormal, it is common for a radiologist

to compare the Wnding to the opposite side. In evaluating the

breasts, symmetry is good, asymmetry can point to disease.

Sometimes, the only sign of cancer on a mammogram is the

Wnding of more tissue in one breast than the other. Each breast

appears normal, but it is the asymmetry that indicates that one

is abnormal. Many parts of the body are right–left symmetrical.

When two images are obtained at diVerent times, the search

pattern may be directed by knowledge of what is seen on the

other image. On a chest radiograph that appears initially

FIGURE 7.5 An example of a conspicuous mass in the lower portion

of a woman’s breast (arrow). The small, round, white object is a metal

marker indicating that the mass could be felt during breast palpation.

(a)

(b)

FIGURE 7.6 (a) This mammogram demonstrates microcalcifica-

tions of a type that indicate malignancy. On the view of a large portion

of the breast, the microcalcifications are not well seen. (b) This

magnified view of a portion of the same breast shows the microcalci-

fications and white dots and short white lines.
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normal, one may sometimes see an area of pneumonia on the

prior Wlm. This then directs the radiologist’s attention to the

same area of the current Wlm to see whether any pneumonia

can still be seen.

When a small area of abnormal attenuation is shown on a

liver CT, an MRI may be performed to aid in diagnosis. The

radiologist, guided by the liver CT, will look especially at the

area on the MRI that represents the same area shown to be

abnormal on the CT.

When the radiologist has data available that are not image

data, that may guide him or her to look for certain patterns of

disease. Thus, if the radiologist knows that the patient has

smoked cigarettes for many years, the radiologist may search

more fully for signs of lung cancer and emphysema. To some

extent, the radiologist will see what he or she expects to see. This

has good and bad features. To some degree, it enhances the

likelihood that disease will be detected and the correct diagnosis

will be made. It has the detrimental feature, however, of what is

called assignment or attribution error in diagnosis. If a Wnding

on the image is consistent with the expected diagnosis, the

radiologist is more likely to assign a Wnding as caused by that

expected diagnosis, when it may actually have another cause.

Once the radiologist identiWes an area of interest, he or she

applies a critical analysis of this, either accepting it as an area

that requires further attention or as an area of normality that

can be dismissed. The initial process of discrimination that

occurs is subconscious, and thus its exact mechanism is not

known. It is presumed that it is related to an image memory

bank that each radiologist develops that represents the patterns

of normality and the patterns of disease. Many such analyses

occur when an image is viewed, and the process is extremely

fast. The usual viewing method often starts with a global

overview followed by a very quick review of many small areas

on the image. Only a few of these areas of attention reach the

level of conscious evaluation. If they reach the level of con-

scious evaluation, then the radiologist makes a conscious eVort

to separate the image pattern into features that may represent

disease or normality. To some extent, this is also related to that

individual radiologist’s stored memories of normal and abnor-

mal patterns, and to some extent, it is an extrapolation from

these known patterns looking for similarities. Radiologists

quickly detect what doesn’t Wt the pattern of normal.

Knowledge of normal patterns is quite important to the

radiologist because the variation of normal is quite wide.

When a radiologist wants to learn how to interpret a new

type of imaging, he or she can learn extensively from looking

at normal cases. Once the range of normal appearances is

learned and is active at the subconscious level, then variations

from the various normal appearances can be rapidly detected.

Another major component of this discrimination is a series of

image interpretation patterns called gestalt. To varying degrees,

all image patterns are somewhat ambiguous rather than deWni-

tive. Gestalt (German, for the way things have been put to-

gether, their shape or form) is a group of poorly understood

processes by which the brain processes image data to form the

shapes that result in interpretations. To a large extent these

are subconscious, but decisions based on them can rise to the

conscious level. The four main gestalt patterns are emergence,

closure, multistability, and invariance. These are basic patterns

of seeing that aVect medical image interpretation [85–88].

Emergence occurs when the structure of an object in an

image is not well deWned. The brain can insert the margins

of the object so that the brain can interpret it. An alternative

interpretation is grouping. The brain can group ambiguous

images features to create an object that can be interpreted and

described.

Closure occurs when the actual visible object has incomplete

margins. The brain can complete the margins so that the object

can be recognized.

Multistability allows one to interpret an incompletely

deWned object in diVerent ways—thus, an ambiguous object

could be one of two structures and can be alternately inter-

preted as either of these objects. This is commonly used with

ambiguous structures when the radiologist reassembles an

object in diVerent ways to determine whether it is real and/or

what it might represent. Radiologists can rapidly change

groupings of ambiguous data to form diVerent potential com-

binations to form an image, selecting those that are possible

Wndings of disease and excluding those that are not likely.

Invariance is the ability to recognize an object when it is seen

from a diVerent perspective. One can learn to recognize the

shape of an object and then continue to recognize it when it is

rotated, changed in size, or warped in shape. Certain types of

images are obtained as stacks of consecutive adjacent slices.

Radiologists viewing these can quickly understand the rela-

tionship of one slice to the next and can visualize structural

relationships across images.

Recognition that radiologists use gestalt in the analysis of

images is important. Radiologists do this completion very

quickly. Currently, computer image pattern recognition pro-

grams have diYculty with gestalt tasks.

Invariance recognition can be programmed to some extent,

but invariance incorporating warping of the shape of a struc-

ture can be quite diYcult for a computer. Emergence, closure,

and multistability represent diYcult problems for the com-

puter to solve and are probably only partially solved with

current technology.

Radiologists seldom describe the Wndings on images in

detail. The long-standing trend has been for radiologists to

switch from extensive description to diagnosis; the same

change has occurred in pathology. Years ago, radiologists

were trained in how to describe images by having one trainee

describe in words the Wndings on a radiograph to another

trainee who was not allowed to look at the image. The second

trainee would then have to diagnosis the patient from the

verbal description. This is no longer done.

Engineers developing computer analysis systems for medical

images often request descriptions of Wndings, reXecting a desire
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to translate into computer code the observations of radiologists;

these descriptions by radiologists are often brief and incom-

plete. To obtain a description that helps an engineer, it may be

necessary for the engineer to ask speciWc questions of the radi-

ologist, reXecting what it is that the engineer can do, rather than

relying on what the radiologist describes.

Radiologists may request from the engineer things that can-

not be achieved by engineering, or even if they can, the radiolo-

gists may not recognize the amount of work that the engineer

must do to create what seems to the radiologist a simple thing.

A thoughtful radiologist may know what is needed to make his

or her work easier and be able to prioritize needs. The engineer

can understand what is easy and what is hard to achieve. In a

dialogue, a decision can often be arrived at that combines what

is most important with what is most easily achievable. Radiolo-

gists often want everything all at once and will usually not accept

that that which is so easy for them to visualize may be diYcult to

achieve with current computer methods.

Radiologists vary in the way in which they formulate diag-

noses. There are three main patterns:

1. Providing a diagnosis that is really an abstract descrip-

tion. For example, saying that there is an inWltrate in the

lungs. This means the lungs are abnormal, but it does

not classify the abnormality into a speciWc disease.

InWltrates can be caused by pneumonia, heart failure,

pulmonary emboli, and a group of other diseases, so

a diagnosis of inWltrate is really a description. Similarly,

a mass can be caused by cancer, infection, inXammation

without infection, and several other diseases.

2. Providing a diagnosis with indication of uncertainty. For

example, there is an inWltrate likely caused by pneumo-

nia. To some extent, patterns can indicate that a process

is most likely caused by a certain disease.

3. Providing a diagnosis, for example, pneumonia, and not

indicating the uncertainty of that diagnosis. This is done

on the assumption that the physician who reads the

report knows that there is uncertainty in many radiology

diagnoses and wants to know what is most likely, not

several or all the possibilities. If the radiologist’s diagno-

sis does not Wt clinically, then the other physician may

ask for additional possibilities. That is, when what is

probable, based on the image, appears to be wrong, the

physician will start to think of other possible diagnoses.

In general, radiologists are trained to view the image with-

out knowledge of the patient’s symptoms or history. This is to

help the radiologist avoid assignment or attribution error (see

above). If one is more likely to see what one expects to see,

then foreknowledge of the symptoms or suspected diagnosis

may result in the radiologist underestimating the importance

of Wndings that do not agree with the expected diagnosis or

that fail to explain the symptoms. This is part of the problem

of satisfaction of search, a process that is described below.

Once the radiologist considers that everything on the image

has been seen, and often after having decided on a temporary

diagnosis, he or she will then look at the clinical information

and prior reports to see whether this information Wts the initial

radiology diagnosis. Whether it does or not, the radiologist

will then usually look again at the image to see whether there

are any Wndings that could further explain the clinical concern

or contradict the clinical impression. [89] The radiologist’s

role in this case is to decide whether Wndings on the image

explain the clinical Wndings, support the diagnosis, or indicate

that another diagnosis is more likely.

Every so often, the radiologist will appear to rapidly claim

that a patient has an unexpected diagnosis, often with a speed

that startles the observer who is not a radiologist. Radiologists

can have incredible image memory skills, and, if the pattern is

unique for one rare disease, they may recognize it in an instant.

In the radiologist’s mind, the correct diagnosis leaps out of

without thought or censorship.

In other cases, the radiologist will rapidly take what appears

to be unfocused information about a patient and, combined

with the image, rapidly assemble these items into an unex-

pected diagnosis.

In the Wrst case, the radiologist, if asked, will often say either

‘‘it is this’’ or ‘‘I just remembered it.’’ The radiologist will usually

not understand how the surprising diagnosis was made.

Radiologists are thinking in image space rather than verbal

space. For many, it is quite diYcult to explain in words how

they reached their conclusion, though they have learned to

describe in words what they have found.

7.5.3 Transforming Data to Information

Radiologists face certain problems when they interpret images.

These problems result in inconsistency of diagnosis [90–92].

A radiologist can disagree with himself or herself when viewing

an image a second time. For diYcult cases, the rate of change is

approximately 20%. Two radiologists can disagree with each

other. For diYcult cases, the rate is approximately 30%. The

radiologist looking at an image may Wnd something that is

obvious and explains the patient’s symptoms and stop looking.

This is called satisfaction of search. Many images that radiolo-

gists view are ambiguous. The radiologist must assemble the

Wnding out of ambiguous details. There is often diagnostic

ambiguity: The same Wndings can have more than one reason-

able diagnosis and can have a few rare diagnoses as well.

Intraobserver variability is a well-recognized problem that is

not fully understood. If you provide a radiologist with the

same image twice and ask for a diagnosis, the radiologist

may or may not provide the same description and diagnosis.

When a case is easy, such as a major fracture of a large bone,

the radiologist most likely will see the same Wnding twice, but

the more ambiguous the Wnding on the radiograph, the greater

the chance that the diagnosis will change. Part of this is the

result of the variability of identifying things through gestalt
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processes. Poorly deWned or incomplete structures may not

always be interpreted the same—the gestalt may be diVerent

at diVerent times. The structure of many poorly deWned

objects has to emerge from the ambiguity of the actual den-

sities in the image, and at diVerent times, diVerent things may

emerge. When radiologists are interpreting diYcult images,

intraobserver variability can be in the range of 20%, meaning

that 10% of abnormal Wndings previously seen will not be seen

the second time, and 10% of those things not seen previously

can emerge.

In the same way as with intraobserver variability, if you

show two or more radiologists the same image, they may

have diVerent interpretations. The diVerence between the

interpretations of two or more radiologists is called interob-

server variability. If the Wndings are obvious to the radiologists,

they are likely to agree, but if the Wndings are ambiguous or

diYcult to see, they may disagree with each other in as much as

30% of cases. As with intraobserver variability, sometimes one

radiologist will recognize one group of Wndings, and the other

radiologist will recognize a diVerent, but overlapping, group of

Wndings. Fortunately for radiologists and patients, most things

on images are relatively obvious to a radiologist, and so the

intraobserver and interobserver variability, overall, is much

less [92].

For the engineer working to create a computer program for

image analysis, this intraobserver and interobserver variability

creates problems in knowing what ground truth to use. If all

the radiologists who look at an image come to the same

diagnosis, the case is likely too simple to beneWt from a

computer program to help with detection. If the case is diY-

cult enough so that a radiologist will disagree with herself or

himself or that two radiologists will disagree with each other, it

becomes diYcult to know what ground truth to use. On the

other hand, it is precisely in these cases where radiologists have

diYculty and where a computer detection and diagnosis pro-

gram could be of the greatest help to radiologists.

The task of a radiologist is to review images and come to a

Wnal impression or diagnosis as quickly as possible. In doing

this, there is a risk that the radiologist may see a Wnding that,

for that person, mentally completes the task so that he or she

can move on to the next case. Deciding that enough has been

seen means that the search has been satisWed. Radiologists

satisfy their search on every image they view; at some point

they stop looking and move on to the next case. The problem

of satisfaction of search is that, sometimes, there is something

else on the image that the radiologist should see. The missed

Wnding is then ascribed as having been missed because of

satisfaction of search [93–95].

Each radiologist decides on each image when the search has

been satisWed. There are no rules or criteria to know when

enough time and eVort have been spent; rather, if the radiologist

has missed something, it may be because the search was not

satisWed or because the ambiguity in the image was assembled

diVerently and the Wnding was not seen and would not be seen

even with more time spent. Indeed, some studies have shown that

radiologists who spend too much time on an image may talk

themselves out of a Wnding that is real and important [96, 97].

Many medical images are somewhat ambiguous in their

Wndings. Perhaps the most common ambiguity is edge ambi-

guity. The easiest way to demonstrate this is to have several

radiologists outline the same Wnding. There will almost always

be some diVerences in the edges drawn. The second common

form of ambiguity is of inclusion and exclusion. When a lesion

is seen, there is often some heterogeneity of the Wnding. When

a radiologist views this, some parts may appear to be appro-

priate for inclusion (they are part of the Wnding) and others

appropriate for exclusion (they are not part of the Wnding).

This image ambiguity can result in diVerent radiologists draw-

ing diVerent margins or providing diVerent sizes of an object.

A third ambiguity is contrast ambiguity. When a Wnding is of

low contrast, one radiologist may identify the Wnding as pres-

ent and another may decide that there is nothing there. This

problem is greater on images with more image noise and

decreased on images with lesser amounts of noise.

There are several thousand medical diagnoses, and there are

books for coding most of them. Most patients, however, have

common diseases. The Wndings on an image that point toward

a diagnosis are often not speciWc to that diagnosis but can

occur in several diVerent diseases. In general, radiologists will

either provide a descriptive diagnosis (as with inWltrate, as

discussed above) or, if they want to list a speciWc disease, will

list the two or three that best correspond to the image Wndings

and other things they know about the patient. A disease diag-

nosis coming solely from an image should be considered

a probability statement. With a fracture of the femur, the

diagnosis is almost always correct. With a mass in the kidney,

there can be a high statistical probability of diagnosis of

mass, but not 100% certainty from the image alone as to

whether that mass is cancer. With lung inWltrates, the degree

of diagnostic uncertainty increases. The engineer designing a

diagnostic program has to consider the degree of uncertainty

of diagnosis of the images used to train the system and in any

claims made for its accuracy.

7.5.4 Postdiagnostic Recommendations

Most radiologists at the end of their oYcial report of an image

or series of images will provide either a descriptive or disease

diagnosis. In general, if the radiologist considers the diagnosis

likely, he or she will not indicate any uncertainty in the word-

ing of the report. It will be assumed that the patient’s primary

clinician understands that there is uncertainty of diagnosis

based on image Wndings alone. In some cases, the report will

contain some estimate of the likelihood of the diagnosis or

likelihood of an alternative diagnosis. Words commonly used

to indicate uncertainty are rare, possible, likely, or probable.

Although these terms do not have precise usages by radiolo-

gists, one can interpret them as follows: rare means < 1%
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likelihood; possible means about 5% likelihood; likely means

about 50% likelihood; probable means about 95% likelihood;

and deWnite means about 99% likelihood.

For mammogram interpretation, a standard set of names

has been developed. The Breast Imaging Reporting and Data

System (BI-RADS) was developed by radiologists and is used

commonly to describe the likelihood that a mammogram is

normal or shows cancer [98]. BI-RADS 1 is assigned to a

normal mammogram. BI-RADS 2 is assigned to a mammo-

gram that shows some abnormality but that abnormality does

not represent cancer. BI-RADS 3 indicates that there is a

Wnding that most likely is not cancer, but cancer is possible,

and therefore the patient should have some additional follow-

up or evaluation. BI-RADS 4 is assigned to a mammogram

that shows a Wnding that is of moderate suspicion for cancer.

BI-RADS 5 is assigned to a mammogram that shows a Wnding

of probable cancer.

After the diagnosis, some radiologists may include a state-

ment recommending the next step or steps that could be used

to conWrm the radiologist’s diagnosis. If there is any such

statement, there will usually be a statement that the recom-

mended method is only one of several appropriate methods for

further establishing the diagnosis.

Radiologists and other physicians in general are used to

dealing with uncertainties in diagnosis. They know they do

not see everything on every image and that their interpretation

of what they see may not be consistent were they to look at the

image again themselves or with other radiologists. Engineers

working with radiologists should expect some degree of un-

certainty in what radiologists detect and diagnose.

Establishing ground truth or the gold standard—the abso-

lute truth so that one can develop computer systems based on

truth—is a major and diYcult task and is probably not fully

achievable. For this reason, it is perhaps better to think of how

to deal with the uncertainty of diagnosis and accept that one

will have to work with images with diVerent degrees of ground

truth.

DiVerent methods are used for establishing truth for diVer-

ent types of problems where truth needs to be known either for

training or validating a computer algorithm; the higher the

standard of proof, the fewer the number of cases likely to be

available for engineering applications. Because the engineer

may not be able to obtain a suYcient number of cases with

the highest levels of proof, he or she should always incorporate

into the description information on the standard of proof used

for developing and testing the program.

Proof comes at several levels. The highest level of proof

normally requires a pathologist’s diagnosis, providing the

pathologist with accurate information about the location

from which the tissue was sampled. Thus, an image-guided

biopsy can be used to conWrm that the tissue came from the

area of interest on the image. Even with this, some uncertainty

remains because pathologists also encounter the same types of

problems as radiologists when they interpret the pathology

images: image ambiguity, intraobserver and interobserver vari-

ability, and diagnostic ambiguity. In addition, there are prob-

lems of sampling error, where the area of interest on the image

is not the area where the tissue came from There are also

changes in tissue that occur when the tissues are processed

for the pathology examination.

The next highest level of proof would be one where the

Wndings on the image match the Wndings of the pathologist,

even though the actual location used for sampling the tissue

is not exactly known. In this level of proof, and in others, it is

common to use a consensus panel (see below) to conWrm the

image Wndings and, in some cases, the pathology Wndings.

When there is no pathologic proof available, the next lower

level of proof is obtained by the use of a consensus panel.

A consensus panel is a group (usually) of recognized experts

or specialists in evaluating that type of image and disease.

Consensus means that all of the experts agree on the image

interpretation. The members of a consensus panel can evalu-

ate a case as a group, providing one Wnal consensus or as

individuals each of whom provides a diagnosis. These separate

individual diagnoses can be combined in several ways because

there will almost always be some degree of disagreement.

Results may indicate the number of experts who agreed com-

pared to those who disagreed; so, for example, Wve of Wve

means there were Wve radiologists and all Wve agreed; three of

Wve means that only three agreed. If all radiologists are

required to see a Wnding for the Wnding to count, then

harder-to-see lesions may be excluded because not all of the

radiologists saw the subtle lesion. Thus, when a full consensus

is reached (e.g., Wve of Wve), it may be harder to show the

beneWt of a system such as a computer-aided detection system

because harder-to-see lesions may be excluded. If one allows

cases where a fewer number of radiologists need to agree, then

one may include cases where the diagnosis of one or two

radiologists is incorrect. However, if correct, the cases are

likely to be harder, and it would, therefore, be better to

show the beneWt of a computer system if the computer algo-

rithm detected them.

7.6 Summary

This chapter provided an introduction of various biomedical

data processing and analysis methods, most of them aimed at

assisting data visualization and diagnostic decision-making.

Most of the reviewed work revolves around computerized

medical image processing and analysis, ranging from the

description of the basic steps a clinician takes in medical

decisions to a more elaborate exposition of speciWc methods

such as image enhancement, segmentation, feature extraction,

image interpretation.

Most of the mathematical and technical concepts presented

in this chapter exhibit a general level of sophistication. To fully
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understand some of the discussed techniques, consultation to

the cited references and other supplementary materials may be

required.

7.7 Exercises

1. Compare the diVerence between image spatial smoothing,

frequency Wltering, and wavelet Wltering methods in image

enhancement. Compare both the advantages and disad-

vantages of these methods.

2. What is the diVerence between the orthogonal, bi-

orthogonal, and translation invariant wavelet transform?

3. Add the Gaussian white noise to a medical image. Perform

the wavelet-based soft and hard thresholding algorithms,

and calculate the signal-to-noise ratio (SNR) improve-

ment using these two de-noising approaches.

4. What is the diVerence between image smoothing and

image sharpening? How do you evaluate these two diVer-

ent approaches?

5. BrieXy describe the four types of gestalt processes that

radiologists use in the interpretation of images. How

might these aVect computer image analysis? What types

of computer vision approaches could one apply to mimic

gestalt processes?

6. What is assignment or attribution error? What is its po-

tential eVect on the diagnoses that radiologists make? How

might attribution error adversely aVect a computer pro-

gram for image diagnosis?

7. What is satisfaction of search? What is (are) the problem(s)

associated with satisfaction of search? Can a computer

detection system have a problem with satisfaction of

search? Can a computer program for image analysis be

deleterious because of the problem of satisfaction of search?

8. What is intraobserver variability? What is interobserver

variability? If you are designing a computer system to aid

radiologists in diagnosis, how will these two types of

variability aVect your design and testing? Can a computer

system have intramachine variability? Can two computer

systems show intermachine variability? What are the

implications of this for computer programs for image

analysis?

9. What is the BIRADS? Why should computer systems pro-

vide a BIRADS-equivalent measure of certainty or uncer-

tainty? Or, should they not provide an equivalent measure

of certainty or uncertainty?

10. What is ground truth (also called gold standard)? How can

it be established? How might a computer detection or

diagnosis system positively or negatively aVect the deter-

mination of ground truth?

11. How might you deal with uncertainties in ground truth in

evaluating computer systems for detection or diagnosis of

abnormalities?
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8.1 Introduction

In current clinical practice, large amounts of imaging data,

acquired from diVerent imaging devices, over multiple time

points, are used for the accurate diagnosis and management of

patients with a variety of diseases. Anatomical imaging mo-

dalities such as magnetic resonance imaging (MRI), computed

tomography (CT), and X-ray depict mainly detailed morpho-

logical structure. Functional imaging modalities such as posi-

tron emission tomography (PET) and single photon emission

computed tomography (SPECT) reveal information primarily

about underlying biochemical and physiological changes. Re-

cently, combinations of functional and anatomical imaging

technologies into a single device, PET/CT and SPECT/CT

scanners, have widened the array of medical imaging ap-

proaches and oVered new challenges in the assimilation of

imaging data. Further, each of these imaging technologies

can have its own inherent value for patient management, and

ideally all such imaging data would be available for the one

individual when they are required. However, the seamless

integration of such diverse data acquired on diVerent scanners

at diVerent times poses substantial challenges.

Medical image registration is an important step in maxi-

mizing the information embedded in imaging datasets. Regis-

tration aims to spatially match datasets that may diVer in time

of acquisition, imaging device, and acquisition angle. After

registration, spatial correspondence between functional infor-

mation and anatomical structure can be achieved. Data fusion

often follows the registration procedure to combine comple-

mentary information from multiple image datasets and rep-

resent these heterogeneous data in a common coordinate

system. Information that was not apparent in an individual

dataset can be extracted by accurate registration and fusion.

For example, PET data have poorer spatial resolution com-

pared with CT data. On the other hand, it can be diYcult to

accurately localize abnormalities in CT data, whereas these are

identiWed in PET. Registration followed by fusion of these

multimodal data allows functional abnormalities that are evi-

dent in PET, but not in CT, to be accurately localized and

allows a more complete insight into the underlying problem.
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The increase in diagnostic accuracy provides for better patient

management; in the context of a patient with non–small cell

lung cancer (NSCLC), registered data may mean the diVerence

between surgery aimed at cure and a palliative approach by

the ability to better stage the patient (see Figure 8.1). Further,

registration of multiple studies from the same imaging tech-

nique (monomodality) performed over multiple time intervals

is critical in the longitudinal assessment of certain processes,

such as serial studies in patients with lymphoma, where scans

are done over several months to gauge the eVectiveness of

chemotherapy.

Medical image registration and fusion are playing an increas-

ingly important role in improving the quality and eVectiveness

of health care through the provision of imaging data in a usable

format. There are a wide range of clinical applications, includ-

ing radiation therapy planning and assessment, disease progress

monitoring, detection of dynamic structural and functional

changes, and image-guided surgery (IGS). In IGS, registration

and fusion of preoperative data to intraoperative Wndings pro-

vides an important navigational tool to precisely localize the

area of interest and limit interference with normal structures.

Image registration is also essential in building statistical atlases

to capture and encode morphological or functional variability

over a large population. The population-based atlas can be used

in the automatic labeling, segmentation, and interpolation of

structures and tissues, while the disease-speciWc atlas can assist

the detection of pathology.

However, research into image registration is not new and

dates back to the 1980s [1]. After decades of intensive research,

numerous algorithms have been proposed, and a number of

reviews, surveys, and books have been published in this area

[2–12]. In these surveys, registration methodologies are clas-

siWed into up to nine diVerent categories [5], based on criteria

such as image dimensionality, registration feature space, trans-

formation, similarity measure, image modalities, optimization,

interaction, and subjects involved. These criteria may overlap

with each other in the registration procedure, so that any

registration scheme can be the combination of diVerent

choices of these criteria [2].

In addition to a large number of software-based registration

algorithms, more advanced imaging devices, such as combined

PET/CT and SPECT/CT scanners, provide hardware-based so-

lutions for registration and fusion by performing functional

and anatomical imaging in the one imaging session with the

one device. Although combined PET/CT scanners can reduce

misregistration between PET and CT data by obtaining these

data at one imaging session, software-based registration may

still be required to correct misregistration caused by patient

motion between the PET scan and the CT scan.

This chapter aims to impart an understanding of registra-

tion and fusion fundamentals, major methodologies and tech-

niques, and applications of registration and fusion in the

clinical environment.

8.2 Fundamentals of Biomedical
Image Registration and Fusion

8.2.1 Registration DeWnition

Image registration is a primary tool in comparing or combin-

ing images acquired from multiple sensors, at diVerent times,

or at diVerent viewpoints for analysis or visualization. The

main task of the registration algorithm is to determine a

(a)

(b)

(c)

FIGURE 8.1 Coronoal PET (a), CT (b), and fused images (c) of
18F-Xuoro-deoxyglucose (FDG) PET/CT images in a 69-year-old

man with NSCLC involving the right main bronchus. PET detected

additional sites of disease in the bony skeleton, clearly shown in the

fused images. These Wndings mean that the patient has not been

oVered surgery because there is evidence of extensive disease outside

the chest.
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mapping to spatially relate the image sets so that these images

can be represented in a common coordinate system. Math-

ematically [2], image registration can be expressed as:

IR(XR) ¼ g(IS(T(XS))), (8:1)

where

. IR and IS are the reference-image and study-image sets,

respectively, indexed by their spatial coordinates.

. T : (XS)! (XR) is the spatial transformation of coordin-

ates of study image XS to the coordinate system of refer-

ence image XR:
. g : (Is)! (IR) is the one-dimensional intensity trans-

formation.

8.2.2 Main Components of Registration

As shown in Figure 8.2, the study-image set is compared with

the reference-image set using a similarity measure. Based on

the similarity measure, updated transformation parameters are

estimated to provide an improved spatial match between the

two image sets. The study images are interpolated and trans-

formed with the updated parameters and again compared with

the reference images to allow further improvement in trans-

formation parameters by the optimization step. This proce-

dure is repeated until the optimum transformation parameters

are found, which are then used to register the study-image set

to the reference-image set.

8.2.3 ClassiWcation of Registration Based
on Input Data

According to the dimensionality of the input images, registra-

tion can be classiWed as 2D, 3D, 2D-3D (when one image is

two-dimensional and the other is three-dimensional), or

multidimensional (when time domain is added as the fourth

dimension) registration categories. Comparatively, 2D regis-

tration is easier and faster because of the smaller data volume

and the fewer transformation parameters to be computed.

Applications of 2D registration include image mosaics that

provide a whole view of a sequence of partially overlapped

images and atlas construction. 3D medical image registration

is required for most clinical applications. However, the lack of

computational eYciency and automation of 3D registration

techniques limits their application in the routine clinical set-

ting, particularly for large datasets such as 3D whole-body

data. In applications such as IGS, 2D-3D registration is re-

quired to align 3D preoperative images (e.g., CT, MRI) to 2D

intraoperative images (e.g., ultrasound, X-ray), with the aim of

achieving a safer and less-invasive surgical result. Computa-

tional eYciency or speed is one of the main concerns in this

registration application scenario. Multidimensional registra-

tion is used to register a series of medical images acquired at

diVerent times for applications such as tumor growth mon-

itoring, cancer staging, and treatment response assessment.

The input images to be registered may be from the same

imaging modality (e.g., CT-CT, PET-PET, MRI-MRI) or diVer-

ent imaging modalities (e.g., CT-PET, CT-MRI, MRI-PET), and

accordingly, registration can be cataloged as monomodal and

multimodal. Monomodal registration is used mainly to detect

changes over time due to disease progression and treatment.

Multimodal registration is used to combine the complementary

information from modalities (e.g., CT, MRI) to optimally visu-

alize both soft tissue information and bone structure.

8.2.4 Registration Transformations

8.2.4.1 Basic Concept of Transformation

In any biomedical imaging procedure, many factors can lead to

distortions and deformations in the images. For instance,

diVerent underlying physics principles of imaging sensors are

primary causes of diVerences among the multimodal images to

be registered; in addition, even for monomodal images, such

factors as intersubject diVerences, voluntary and involuntary

motion of the subject during imaging, and diVerences in

positions and poses of the subject in diVerent studies can

lead to signiWcant diVerences in spatial orientation of struc-

tures and organs of interest [7]. To align medical image data

with these diVerences and deformations, a registration trans-

formation, T, which may be linear or nonlinear, must be

determined. A transformation is linear if for any two images

X1, X2 and two scalars a, b, it satisWes:

T(aX1 þ bX2) ¼ aT(X1)þ bT(X2): (8:2)

The number of parameters used to describe the transformation

is known as the number of degrees of freedom.

Similarity measure

Optimization 

Study image 

Reference image 

Transformation and 
interpolation

Input images 

FIGURE 8.2 Image registration framework.
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8.2.4.2 Homogeneous Coordinates

By introducing an additional dimensional vector, homoge-

neous coordinates not only include Cartesian coordinates

and transformation in one matrix, but importantly, make the

combination of linear transformations simple.

In homogeneous coordinates, a 3D point (x, y, z) is repre-

sented by (x, y, z, 1), and 3D transformations of rotation,

translation, and scaling are represented by 4 � 4 matrices. A

series of these linear transformations can be combined into a

single matrix by the multiplication of their corresponding

matrices. In homogeneous coordinates, the transformation

composed by two consecutive transformations T1 and T2 can

be computed by:

x1

y1

z1

1

2
664

3
775 ¼ T1

x

y

z

1

2
664
3
775;

x2

y2

z2

1

2
664

3
775 ¼ T2

x1

y1

z1

1

2
664

3
775 ¼ T2

�T1

x

y

z

1

2
664
3
775: (8:3)

For instance, Tr is the translation matrix, Rx is the rotation

matrix of rotating a degrees about the x-axis, and S is the

scaling matrix:

Tr ¼

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

2
6664

3
7775; Rx ¼

1 0 0 0

0 cos a � sin a 0

0 sin a con a 0

0 0 0 1

2
6664

3
7775;

S ¼

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

2
6664

3
7775: (8:4)

The transformation T, including rotation about the x-axis and

then scaling and translation, can be expressed as:

x1

y1

z1

1

2
6664

3
7775 ¼ T

x

y

z

1

2
6664
3
7775 ¼ Tr

�S �Rx

x

y

x

1

2
6664
3
7775

¼

sx 0 0 tx

0 sy cos a �sy sin a ty

0 sz sin a sz cos a tz

0 0 0 1

2
6664

3
7775

x

y

z

1

2
6664
3
7775:

(8:5)

8.2.4.3 Rigid-Body Transform

Rigid transformation is a linear transformation that has six

degrees of freedom in three dimensions, including three

rotations around three axes and three translations in three

directions. After rigid transformation, the distance between

points and the angle between lines will not be changed. Rigid

transformation can be used to cope with simple diVerences

caused by position changes of the subject and is generally used

in brain image registration due to the rigid structure of the

skull.

All rigid transformations can be considered as special cases

of the aYne transformation, which is composed of rotations,

translations, scalings, and shears. Parallel lines remain parallel

after aYne transformation. AYne distortions may be present

in medical images—for instance, through scaling displace-

ments in MRI scans due to the miscalibration of MR gradients,

or skewing errors that appear in CT images if the gantry is

tilted. AYne transformations, with their 12 degrees of freedom

in 3D, can be used to correct these displacements in the images

and are usually used as global transformations to provide good

initial estimates for complex nonlinear registrations.

8.2.4.5 Elastic Transformation

Linear registration approaches are limited outside the brain

because of organ motion and deformation (in heart, lungs,

liver, bowel, etc.) that occur as a result of normal physiology

and the eVects of a disease process. Registration outside the

brain thus requires complex, nonlinear transformations. To

cope with these more complicated changes, more degrees of

freedom are needed in nonlinear registration. The complex

nonlinear transformation cannot be simply represented as a

4 � 4 matrix. Instead, it is usually represented as a displacement

Weld D, which is composed of displacement vectors vi . One

displacement vector is deWned for each individual point in the

images as the diVerence between point positions pRi and pSi :

D ¼ vi vi ¼ pRi � pSi , pRi 2 XR & pSi 2 XSj g:f (8:6)

After nonlinear transformation, straight lines will not be

preserved. Compared with rigid-body transformations, the

additional degrees of freedom of nonrigid transformations

will inevitably increase the registration complexity and slow

down the registration speed. Nonrigid image registration thus

remains an active and challenging research area.

8.2.5 Interpolation

Interpolation is an essential component of image registration

and is required whenever the image needs to be transformed.

When the points in an image are mapped to nongrid positions

after transformation, interpolation is performed to approximate

the values for these transformed points. Interpolation also com-

pensates for resolution diVerences among the images to be regis-

tered. For instance, interpolation is needed to compensate for

the diVerence between the intraslice resolution and the interslice

resolution. Since images from diVerent imaging modalities have

diVerent resolutions, lower-resolution images in a multimodal

image registration are often interpolated to the sample space of

the higher-resolution images. A survey of interpolation methods

in medical image processing is presented in Lehmann et al. [13].
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The most frequently used interpolation methods include:

. Nearest neighbor

. Linear

. Bilinear

. Trilinear

. Bicubic

. Tricubic

. Quadrilinear

. Cubic convolution

The more complex the interpolation method, the more sur-

rounding points are used, and the slower the registration speed

[12]. For instance, the nearest-neighbor interpolation is a fast

technique because only the nearest grid point is taken into

account, and there is no need for a Xoating-point computa-

tion. In contrast, when using tricubic interpolation, 64 points

are needed to estimate a new value. To speed up the registra-

tion procedure, computationally low cost interpolation tech-

niques are often preferred.

Linear interpolation is one of the most popular techniques.

The value of a certain point will be determined by the weighted

combination of its neighbors, and the weights will depend on

the distances from the neighbors to the point. Because of its

good trade-oV between accuracy and computational complex-

ity, the bilinear interpolation, which needs four points to get

an interpolated value, is frequently employed [14]. According

to the research of [15], in cardiac and thorax image registra-

tion, trilinear interpolation, in which eight points are involved

to calculate an interpolated value, can be used to achieve good

registration performance [12].

Other interpolation techniques such as sinc and window

sinc are also used in image registration. Some special interpo-

lation techniques such as partial-volume interpolation [16]

and stochastic interpolation [17] were proposed for mutual

information (MI)-based registration. The interpolation eVects

on MI-based image registration are analyzed in Ji et al. [18].

8.2.6 Optimization

Almost every registration procedure requires an optimization

algorithm, which searches for the optimal transformation to

minimize a cost function (or maximize the similarity meas-

ure). For a given optimization algorithm, the registration

procedure can be expressed mathematically as:

Toptimal ¼ arg
(T)

min f (T(XS), XR), (8:7)

where T is the registration transformation, and f is the cost

function to be minimized.

8.2.6.1 Gradient-Based Methods

Gradient-based optimization methods [26] are often used to

determine the search direction in which the value of the cost

function will be decreased locally. The gradient vector of

cost function f (~xx), where ~xx is an n-dimensional vector

~xx ¼ x1, x2, . . . , xn½ �T , can be expressed as:

rf (x) � g(x) � @f

@x1

,
@f

@x2

, . . . ,
@f

@xn

� �T

,

and the second-order partial derivatives can be represented by

a Hessian matrix:

r2f (x) � H(x) �

@2f

@2x1

� � � @2f

@x1@xn

..

. ..
.

@2f

@x1@xn

� � � @2f

@2xn

2
6666664

3
7777775

T

: (8:8)

Function f (x) can be approximated by its Taylor series expan-

sion about xk :

f (~xxk þ~xx) � f (~xxk)þ (rf (~xxk))T~xx þ 1

2
~xxTr2f (~xxk)~xx

¼ f (~xxk)þ g(~xxk)T~xx þ 1

2
~xxT H(~xxk)~xx:

(8:9)

8.2.6.1.1 General Gradient-Based Optimization Algo-
rithm. The gradient-based optimization is performed it-

eratively:

Step 1: Initialize. Set iteration k¼ 0 and, initialize vector~xxk.

Compute f (~xxk).

Step 2: Check the convergence criterion. If the convergence

criterion is satisWed, the optimization procedure will be

stopped, and~xxk is the solution.

Step 3: Compute a search direction. The vector ~ppk, which

deWnes the search direction, will be computed.

Step 4: Compute a step length lk . A positive scalar lk will be

determined so that f (~xxk þ lk~ppk) < f (~xxk).

Step 5: Update variables. Set ~xxkþ1 ¼~xxk þ lk~ppk , compute

f (~xxkþ1), set k ¼ k þ 1, and return to Step 2.

Computing the search direction ~ppk and Wnding the step

length lk are two major issues of gradient-based optimization

algorithms, and diVerent methods of calculating search direc-

tion will generate various gradient-based methods.

8.2.6.1.2 The Steepest Descent Method. In the stee-

pest descent method, the Wrst-order Taylor series is used to

approximate the function [26]:

f (~xxk þ~ppk) � f (~xxk)þ (rf (~xxk))T~ppk: (8:10)

As a result, the gradient vector at each point is used as the

search direction, which is also the steepest descent direction at

that point:

~ppk ¼ �rf (~xxk): (8:11)
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8.2.6.1.3 Newton’s Method and Quasi-Newton
Methods [26]. In Newton’s method, a second-order expan-

sion is used to approximate the function, and the search

direction can be obtained as a solution to the equation

H(~xxk)~ppk ¼ �g(~xxk):

Quasi-Newton methods approximate and update the

Hessian matrix at each iteration. There are two eYcient

implementations of quasi-Newton methods: One is the

Dividon-Fletcher-Powell (DFP) algorithm, in which the

inverse Hessian is calculated, and the other is the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method, in which the

approximation of Hessian is used.

Christensen et al. [19] reported on gradient descent opti-

mization, and a number of investigators have used the quasi-

Newton method [20, 21]. Gradient-based optimization

methods are computationally eYcient, but their performance

is highly dependent on the initial estimation, and they are

prone to being trapped in local optima.

8.2.6.2 Powell Algorithm

For the Powell algorithm [22], derivatives are not required in

choosing the successive searching directions, which can reduce

the computational cost. The Powell method performs a suc-

cession of one-dimensional optimizations, Wnding the best

solution for each variable, and the single-variable optimiza-

tions are used to determine the new search direction. The

algorithm is repeated until it is unable to Wnd a new solution

that is a major improvement over the current solution. This

algorithm has been used frequently as an optimization strategy

in image registration [16, 23–25].

8.2.6.3 Downhill Simplex Method

The Nelder-Mead downhill simplex algorithm [26] also re-

quires no derivatives. However, unlike the Powell algorithm,

downhill simplex is a multidimensional optimization method

starting with an initial simplex. In n-dimension, the simplex is

an (n þ 1)-point geometrical Wgure. The simplex method

searches the optimum solution downhill through a complex

n-dimensional topology by operations of reXection, expansion,

contraction, and multiple contractions. At each step of the

search:

1. The function value at these n þ 1 points is evaluated.

2. The points with highest value, second-highest value, and

lowest value are determined.

3. A new point is generated, and one of the existing points

may be replaced by the new point to generate a new

simplex.

4. Step 3 is repeated until the diVerence between the high-

est value and the lowest value is less than the predeWned

tolerance.

Downhill simplex is not as eYcient as the Powell algorithm due

to the larger number of evaluations involved, but it is more robust.

Downhill simplex has been used, for example, in Hill et al. [27].

Rohlfing et al. [28] adopted a variant of the downhill simplex

algorithm restricted to the direction of the steepest ascent.

8.2.6.4 Global Optimization

The algorithms previously discussed are local optimization

techniques and might be trapped in local optima as a result

of a good local similarity measure or improper implementa-

tion factors such as interpolation and changes of overlap

between the images [29]. To achieve good registration, global

optimization methods are required.

8.2.6.4.1 Quasi-Exhaustive Optimization. The quasi-

exhaustive searching method was adopted as optimization strat-

egy for medical data registration [e.g., 4, 30]. Because of its high

computational complexity, the exhaustive method was used for

only simple transformations (e.g., translation). It is not an

eYcient choice and becomes impractical for searching for global

optimization when transformations become more complex.

In addition to cost-expensive quasi-exhaustive optimization,

the search for a global optimal registration transformation can

be performed by genetic algorithms [31], the simulated anneal-

ing method [32], and the particle swarm technique [33].

8.2.6.4.2 Genetic Algorithm. The genetic algorithm

(GA) [31] is an interesting optimization technique based on

the Darwinian concept of survival of the Wttest.

1. The GA starts with the initialization of the population of

n random solutions to the similarity measure to be

optimized. The solution consists of transformation par-

ameter values (genes) that are encoded as chromosomes

made of bits and connected as a single string, called the

individual.

2. Then, the Wtness of each individual is estimated by the

similarity function that can be calculated from the genes

stored in the individual.

3. According to survival of the Wttest, the pairs of Wt indi-

viduals are selected to recombine their genes to produce

oVspring.

4. The current generation will be replaced by the oVspring.

5. The population of solutions evolves through operations

of selection, crossover, and mutation, in order for gen-

erations to produce the Wttest solution.

Multiresolution optimization schemes have been used widely

to escape from a local optimum and speed-up registration [e.g.,

15, 25]. More recently, a new derivative-free global optimization

for medical image registration was proposed in Wachowiak and

Peters [34].
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8.3 Feature-Based Medical Image
Registration

Registration methods seek to optimize values of a cost function

or similarity measure that deWne how well two image sets are

registered. The similarity measures can be based on the dis-

tances between certain homogeneous features and diVerences

of gray values in the two image sets to be registered. Accord-

ingly, biomedical image registration can be classiWed in terms

of feature-based or intensity-based methods.

In feature-based registration, which involves corresponding

landmarks and features identiWed in the datasets to be regis-

tered, the transformation that is required to spatially match the

features can be computationally eYciently determined and

applied to the image datasets. Feature-based medical image

registration methods can be classiWed into point-based ap-

proaches [35], curve-based algorithms [36, 37], and surface-

based methods [1, 38]. A preprocessing step is usually needed

to extract the features manually or semi-automatically, which

makes this an operator-intensive and -dependent approach.

An automated approach to feature extraction and deWnition is

desirable because it would avoid intensive operator interaction

and still take advantage of the computational eYciency of

feature-based registration.

8.3.1 Landmark-Based Registration

Landmark-based registration involves identifying correspond-

ing landmark points, matching the landmarks, and estimating

the image transformation from the locations of the landmarks.

The corresponding points are also called homologous land-

marks, to emphasize that they should present the same feature

in the diVerent images. These points can be anatomical fea-

tures or markers attached to the patient that can be identiWable

in both image modalities.

8.3.1.1 Extrinsic Landmarks (Fiducial Markers)

Extrinsic landmarks refer to the artiWcial markers attached to

the subject. These landmarks can be noninvasive, such as a

mold, frame, dental adapter, or skin markers [5]. However,

because of the elasticity of human skin, skin markers do not

provide an accurate registration result. Although extrinsic land-

mark screw markers [39] and stereotactic frames [40] provide a

robust basis for registration and a ‘‘gold standard’’ for brain

image registration, they are uncomfortable and invasive.

Since Wducial markers can usually be easily detected in the

images, registration based on these extrinsic landmarks is often

automated and can be used in monomodal and multimodal

image registration. Once the corresponding Wducial landmarks

have been extracted, complex optimization and computation

of registration parameters are not needed. The end result is

fast registration. This scheme can be used in IGS, where

registration eYciency is one of the primary concerns [39].

8.3.1.2 Intrinsic Landmarks

Intrinsic landmarks can be anatomically or geometrically sali-

ent points extracted from the patient images. Such landmarks

should be uniquely localized and scattered evenly over the

image volume and should carry substantial and characteristic

information of the image. In registration based on anatomical

landmarks, intensive user interaction is usually involved to

manually identify the corresponding morphological feature

points, and the accuracy of the registration result is highly

dependent on the experience of the user. Geometric landmarks

such as corner points, intersection points, and local extrema

[41] can be segmented automatically; however, the accuracy of

registration based on such landmarks may depend on the

precision of the segmentation algorithms.

8.3.1.2.1 Iterative Closest Point Algorithm. Once the

landmarks have been determined, the iterative closest point

(ICP) algorithm can be used to register the images [e.g., 5, 43].

The ICP method proposed by [42] can be used with seven

presentations of geometric data, including landmarks, free-

form curves, and surfaces [42]. Furthermore, no prior know-

ledge about correspondence between the features is required,

which eases the registration procedure greatly.

For two landmark sets,

PR ¼ {pRi pRi 2 XReference , i ¼ 0,1, � � �m� 1} and
��

QS ¼ {qSi qSi 2 XStudy , i ¼ 0,1, � � � n� 1},
��

from the reference and the study image, respectively. The ICP

algorithm repeats the following steps until the mean-square

diVerence falls below the predeWned threshold:

Step 1: Determine the closest reference points for each

study landmark point.

Step 2: Find the mean-square distance matrix and the

transformation.

Step 3: Apply the transformation on the study landmark

points, and redetermine the new closest point set.

A more eYcient technique to speed up registration can be

found in Kapoutsis et al. [44].

8.3.1.2.2 Thin-Plate Splines. The ICP technique is usu-

ally suitable for rigid-body registration, while thin-plate splines

(TPSs) can be used in elastic registration. The TPS interpol-

ation was Wrst introduced by Bookstein [45, 46]. Because it can

produce a smooth spline interpolation, has high computation

speed, and can correct local elastic deformations, it is a com-

monly used elastic registration method [47]. Rohr [8] provided

a good example of elastic registration based on TPSs.

The transformation function f (pi) ¼ qi , i¼ 1,2, . . . ,n is to

be determined to minimize the energy function, which reXects
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the amount of variation. The least bending energy of the TPS

function is:

E ¼
ð
R2

ð
@2f

@x2

� �2

þ2
@2f

@x@y

� �
þ @2f

@y2

� �2
 !

dxdy: (8:12)

The TPS function is expressed as:

f (x,y) ¼ a1 þ axx þ ayy þ
Xn

i¼1

wiU k (x,y)� pi kð Þ, (8:13)

where

. The coeYcients a1, ax , and ay deWne the aYne part of the

transformation, whereas the coeYcient w deWnes the

elastic deformation.

. pi is the ith landmark.

. U k (x,y)� pi kð Þ ¼ k(x,y)� pi k2 log k (x,y)� pi k2ð Þ is

the radial basis function.

In order to ensure that f(x,y) has square integratable second

derivatives, the following conditions must be satisWed:Xn

i¼1

wi ¼ 0 and
Xn

i¼1

wixi ¼
Xn

i¼1

wiyi ¼ 0:

The coeYcient vector a ¼ (a1,ax ,ay)T and w ¼ (w1,w2, . . . ,

wn)T can be computed through the following linear equations:

kw þ Pa ¼ v

PT w ¼ 0
,

�
(8:14)

where

. v represents column vectors of landmarks.

. kij ¼ Ui(pj) ¼ U k(xi ,yi)� (xj ,yj)k
� �

.

. (1,xi ,yi) is the ith row in P.

These two vector equations can be solved by:

w ¼ K�1(v � Pw)

a ¼ (PT K�1P)�1PT K�1v
:

�
(8:15)

8.3.2 Line-Based Registration

Multimodal (CT/MRI) registration can make use of line fea-

tures such as edges, which have local maximum gradient mag-

nitude, ridges, or crest lines [37, 48]; representations of the skull

[36, 49]; and boundaries [50]—all extracted from images.

‘‘Snakes,’’ or active contours, Wrst proposed by Kass [51],

provide eVective contour extraction techniques and have been

widely applied in image segmentation and shape modeling [52,

53], boundary detection and extraction [54], motion tracking

and analysis [55], and deformable registration [56–58]. Active

contours are energy-minimizing splines, which can detect the

closest contour of an object. The shape deformation of an active

contour is driven by both internal energy and external energy:

E
�

snake ¼
ð1

0

Esnake(v(s))ds

¼
ð1

0

Eint v sð Þð Þ þ Eimage v sð Þð Þ þ Econ v sð Þð Þds: (8:16)

An active contour can be represented by a curve v(s)¼ [x(s),

y(s)]. The contour coordinates (x, y) can be expressed as the

function of arc length s. The snakes are inXuenced by internal

forces, image forces, and external constraint forces. The classic

active contour model previously shown is Xexible, since it

maintains the shape as a curve, and the Wnal form of the

contour can be inXuenced by feedback from a higher-level

process. However, this classic snake is sensitive to the initial

contour guess and cannot deal with concavity. Some

approaches such as the balloon model [59] and gradient vector

Xow (GVF) [60] have been proposed to solve these problems.

More recently, there have been proposals for ‘‘united snakes,’’

which unify Wnite element formulations, Hermitian shape

functions, and B-spline functions in a consistent Wnite element

formulation, and these have been tested in segmentation and

dynamic chest image analysis [61].

In the balloon model, the initial contour does not need to be

close to the target contour, as in the original version of the

snake. The original snake is modiWed by using an inXation

force so that the curve reacts like a balloon. The contour will be

inXated and pass the weak edges but will be stopped if the edge

is strong with respect to the inXation force.

The GVF, on the other hand, is deWned to move the bound-

ary into concavities. The GVF model is less sensitive to the

initial contour than is the traditional snake. GVF has thus

gained considerable popularity and has been used in elastic

biomedical registration and fusion of multimodal cardiac [62],

thoracic, and abdominal data [63].

Rather than solely depending on the interface, as in the

parametric active contour presented by the snake, the geomet-

ric active contour presented by a level set, which was Wrst

introduced in Osher and Sethian [64], Wts the initial contour

into a surface. Compared with the snake, the level set’s advan-

tages include the ability to (1) easily calculate the intrinsic

geometric properties and (2) curve evolution. In addition,

topological adaptations such as splitting and merging can be

handled naturally [65]. Due to these advantages, level sets have

attracted more research attention [66] and have been applied

in image segmentation. Their properties make them suitable

for 3D medical image registration. But there are very few

registration methods based on it, since it has only relatively

recently been proposed for registration by Vemuri et al. [67].

8.3.3 Surface-Based Registration

In surface-based registration, the corresponding structure sur-

faces, which can be extracted automatically by various segmen-

tation algorithms, are used as distinct features in the

registration procedure.
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The head and hat algorithm [1] is one example of a success-

ful surface Wtting technique for multimodal image registration.

In this method, two equivalent surfaces are identiWed in the

images. The Wrst surface, extracted from the higher-resolution

images, is represented as a stack of discs and is referred to as

the ‘‘head.’’ The second surface, referred to as ‘‘hat,’’ is repre-

sented as a list of unconnected 3D points extracted from the

lower-resolution image volume. The registration is determined

by iteratively transforming the hat surface with respect to the

head surface, until the closest Wt of the hat onto the head is

found. Because the segmentation task is comparatively easy

and the computational cost is relatively low, this method

remains popular. However, it is prone to error for convoluted

surfaces.

Surface-based elastic registration can be used in intersubject

applications and atlas registration. Elastic surface-based regis-

tration approaches include, among others, the elastic matching

approach proposed by Bajcsy and Kovacic [69] and the Wnite-

element model (FEM) technique proposed by Terzopoulos and

Metaxas [70]. More details of surface-based registration algo-

rithms can be found in the review in Audette et al. [71].

8.4 Intensity-Based Registration

In addition to the registration schemes based on the features

extracted from the images, registration can directly utilize all

the image intensity information without requiring segmenta-

tion or extensive user interactions. Intensity-based registra-

tions, which can be fully automated, have attracted

signiWcant research attention, and numerous registration

methods have been proposed. These include correlation-

based methods, Fourier-based approaches, moment and prin-

cipal axes methods [72], minimization of variance of intensity

ratios [27, 74], and mutual information methods [23, 75].

In intensity-based registration, a cost function or similarity

measure, which is based on the raw image content and is

sensitive to misregistration, is deWned, and the image datasets

are iteratively transformed until the cost function is optimized.

There are several well-established intensity-based similarity

measures used in biomedical image registration.

8.4.1 Intensity DiVerence and Ratio Similarity
Measures

8.4.1.1 Registration Measures Based on Intensity
DiVerences

Methods of minimizing the intensity diVerence include sum of

squared diVerences (SSD) and sum of absolute diVerences (SAD),

which exhibit a minimum in the case of perfect matching [2]:

SSD ¼
XN

i

(IR(i)� T(IS(i)))2 (8:17)

SAD ¼ 1

N

XN

i

IR(i)� T(IS(i))j j, (8:18)

where

. IR(i) is the intensity value at position i of reference

image R.

. IS(i) is the corresponding intensity value in study image

S.

. T is geometric transformation.

SSD and SAD are suitable for monomodal image registra-

tion only when intensity diVerences among the data are suY-

ciently small. In spite of their high computational eYciency,

these cost functions can lead to false monomodal data regis-

tration when intensity changes are signiWcant—for instance,

due to an operation. This undesirable property obviously

restricts the application of this category of registration criteria.

8.4.1.2 Variance of Intensity Ratios Algorithm

Introduced by Woods [73] for PET data registration, the algo-

rithm derived from the variance of intensity ratios (VIR) is

based on the assumption that when images are accurately

registered, the value of a pixel in one image can be related to

the value of a pixel in another image by a single factor. This

strict assumption is seldom true for the data of diVerent

modalities, and this algorithm is suitable for only monomodal

image registration.

1. In the VIR algorithm, the image intensity ratio R(i) is

calculated by dividing each reference-pixel value IR(i) by

each study-pixel value IS(i):

R(i) ¼ IR(i)=T(IS(i)):

2. The standard deviation of the ratio is calculated by:

dR ¼ 1=N
P

i

(R(i)� �RR), and N is the number of the

pixels.

3. The registration is achieved by minimizing the normal-

ized standard deviation dstd ¼ dR=�RR of the ratio image.

8.4.1.3 Partitioned Intensity Uniformity

To overcome the limitation of registration based on minimiz-

ing the intensity diVerence, Woods and his colleagues [74]

introduced an intrasubject, cross-modal registration for MRI

and PET brain scans, known as the partitioned intensity uni-

formity (PIU) algorithm.

Based on an ideal assumption that ‘‘all pixels with a par-

ticular MR pixel value represent the same tissue type so that

values of corresponding PET pixels should also be similar to

each other’’ [74], the PIU algorithm divides the MR image into

diVerent partitions according to their intensity values, and
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then the uniformity of PET values for each partition is maxi-

mized by minimizing a certain standard deviation.

In the PIU algorithm, for any MRI voxel located at position

i with value j, the value of the corresponding PET voxel is

aij ; for all voxels i with an MRI voxel value of j and with nj

as the total number of voxels in the brain region with MRI

value j:

a0j ¼ 1
nj

Pnj

i¼1

aij is the mean ofaij :

dj ¼ 1
nj�1

Pnj

i¼1

(aij � a0j)
2 is the standard deviation of aij :

d0j ¼ dj=a0j is the normalized standard deviation:

d
00

j ¼
PN
j¼1

d0j
nj

N
is the weighted average of the measures of

normalized standard deviations of the various MRI voxel

values j, and registration can be achieved by minimizing

this standard deviation.

Although manual removal of scalp, skull, and meninges is

required before this rigid registration, the introduction of

this algorithm has stimulated enthusiastic research into multi-

modal medical image registration based on image intensity

information.

8.4.2 Correlation Techniques

Correlation techniques were proposed to register medical data

from multimodal imaging sensors [36, 49]. In correlation

methods, the registration is obtained by maximizing the simi-

larity between images of the same object that may be diVerent

due to, for instance, diVerent acquisition conditions. The cross-

correlation technique has also been used for rigid motion

correction of SPECT cardiac images [11, 76]. However, because

these correlation methods are based on the assumption of a

linear dependence between the image intensities, which usually

is not true for complex multimodal images, these correlation

techniques cannot always achieve reliable registration results.

The normalized cross correlation is deWned as:

CR ¼

P
i

(IR(i)��IIR)(IT
S (i)��IIS)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

(IR(i)��IIR)2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

(IT
S (i)��IIS)2

r , (8:19)

where

. IR(i) is the intensity value at position i of reference image

R.

. IT
S (i) is the corresponding intensity value in the trans-

formed study image S.

. �IIR and �IIS are the mean intensity values of the reference

and study images, respectively.

8.4.3 Registration Based on Information
Theory

8.4.3.1 Information-Theoretic Concepts and
DeWnitions

Techniques based on information theory play an important

role in multimodality medical image registration. Shannon

entropy is widely used as a measure of information in many

branches of engineering. It was originally developed as a part

of information theory in the 1940s and describes the average

information supplied by a set of symbols X¼ {x} whose prob-

abilities are given by {p(x)}. The entropy of a random variable

X is deWned as:

H ¼ �
X

x

p(x) log p(x)� (8:20)

Entropy will be maximal when all symbols have equal prob-

ability. Entropy will be minimal when one symbol has a prob-

ability of 1 and all others have a probability of zero.

Image registration aims to increase the correspondence be-

tween the information in the datasets to be registered and to

decrease the information in the combined image. Joint entropy

provides a method to measure the amount of information in

the combined image. If the two datasets are completely inde-

pendent, their joint entropy will be a maximum value and will

be the sum of the entropies of the individual dataset; the more

related the images are, the lower their joint entropy is.

The joint entropy H(X,Y) of pairs of random variables (X,Y)

is deWned as:

H(X , Y ) ¼ �
X
x2X

X
y2Y

pXY (x,y) log pXY (x,y): (8:21)

Joint entropy can be calculated using the joint histogram of

images involved in the registration. For a registration trans-

formation T, the intensity i in the Wrst image X paired with

intensity j in the second image Y, the joint histogram is the

probability:

pi,j(T) ¼ k: X(xk) ¼ i ^ T(Y (xk)) ¼ jf gj j: (8:22)

The axes in the joint histogram are the intensities of the

images to be registered, and the value in the histogram repre-

sents the number of occurrences of intensity value pairs. The

joint histogram becomes a measure of the degree of statistical

dependence between the intensities in the two images. In

image registration, when the images are correctly aligned, the

joint histograms have tight clusters, and the joint entropy is

minimized. These clusters disperse as the images become less

well registered, and correspondingly, the joint entropy is in-

creased [23]. Because minimizing the entropy does not require

that the histograms be unimodal, the joint entropy is generally

applicable to multimodality registration, and segmentation of

images is not needed.
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8.4.3.2 Registration Based on Maximization
of Mutual Information

Mutual information (MI) was simultaneously and independ-

ently introduced by two research groups, Collignon et al. [23]

and Viola and Wells [75], as a registration criterion for multi-

modal images. Maes and Suetens [78] and Pluim et al. [29]

give good summaries of the development history of the MI

criterion for medical image registration.

8.4.3.2.1 DeWnition. MI measures the degree of statis-

tical dependence of two random variables and can be used to

measure how well one image explains the other. For two

datasets X¼ {x} and Y¼ {y}, MI is deWned as:

I(X ,Y ) ¼
X
x,y

pXY (x,y) log
pXY (x,y)

pX (x) � pY (y)
, (8:23)

where pXY (x,y) is the joint distribution of the intensity pair

(x,y), and pX (x) and pY (y) are the marginal distributions of x

and y.

MI can be calculated by entropy:

I(X ,Y ) ¼ H(X)þH(Y )� H(X , Y )

¼ H(X)�H(X jY )

¼ H(Y )� H(Y jX),

(8:24)

where H(Y j X) is the conditional entropy, which is the amount

of uncertainty left in Y when X is known [16]. H(Y j X) is

deWned as:

H(Y jX) ¼
X
x2X

X
y2Y

pXY (x,y) log pY jX (yjx): (8:25)

Therefore, MI measures the amount of information that one

image contains about the other. If X and Y are completely

independent, pXY (x,y) ¼ pX (x) � pY (y) and I(X,Y)¼ 0 reaches

its minimum; if X and Y are identical, I(X,Y)¼H(X)¼H(Y)

arrives at its maximum. Registration can be achieved by

searching the transformation parameters that maximize the

mutual information.

If both pX (x) and pY (y) will not change with registration

transformations, then entropies H(X) and H(Y) will be con-

stants, and hence, the registration can be computed by minim-

izing the joint entropy H(X,Y). If only one of the marginal

distributions changes with transformations, then registration

based on MI can be achieved by minimizing the conditional

entropy H(Y j X) or H(X j Y). However, in most cases, because

registration transformation will change the overlaps between the

images, both pX (x) and pY (y) will change, and both H(X) and

H(Y) will vary accordingly. In implementation, the joint entropy

and marginal entropies can be estimated by normalizing the

joint and marginal histograms of the overlap sections of the

images.

Algorithm Description

1. Allocate an NX � NY array for bins in the joint histo-

gram, with NX and NY as the number of intensities in

the images.

2. Compute the joint intensity histogram HIS(X,Y) of the

overlap part X \ Y in the images by binning the intensity

pairs. For every pixel i 2 X \ Y, if the intensity value in X

is X(i)¼ x, and the corresponding value in Y is Y(i)¼ y,

then HIS(x,y)¼HIS(x,y) þ 1.

3. Calculate the normalized joint intensity histogram

PDF(x,y) ¼ HIS(x,y)P
x;y

HIS(x,y)
.

4. Calculate the marginal intensity distributions by the

sums of the rows and the columns of the normalized

joint histogram: pX (x) ¼
P

y

PDF(x,y) and pY (y) ¼P
x

PDF(x,y).

5. Calculate the mutual information.

Because no assumption is made regarding the nature of this

dependence and no limit constraints are imposed on the image

content, maximization of MI is a general and powerful criterion

and is suitable for multimodality medical image registration

[29]. Various implementations and extensions of MI-based

registration techniques have been proposed in [16, 77, 79,

80–82].

8.4.3.2.2 Registration Based on Normalized Mutual
Information. Maximization of MI sometimes may gener-

ate false registrations—for instance, MI may increase with

increasing misregistration due to changing overlap between

the image data [80]. Studholme [83] proposed a normalized

MI-based registration approach, which is less sensitive to

changes in image data overlap:

NMI(X ,Y ) ¼ H(X)þ H(Y )

H(X ,Y )
: (8:26)

Maes et al. [16] proposed the entropy correlation coeYcient

(ECC) technique to get a better registration result:

ECC(X ,Y ) ¼ 2 � I(X ,Y )

H(X)þH(Y )
: (8:27)

Although the MI criterion has been widely used in registration of

multimodal medical images of MRI/CT, MRI/PET, CT/PET, and

CT/SPECT, as pointed out by Maes and Suetens [78], registra-

tion directly based on maximizing the MI criterion may not be

able to get robust alignment of thorax CT and PET images. Use

of the MI criterion for thorax and abdomen images may not be

as feasible as for brain images, mainly because of reduced

anatomical information in PET images of such areas [78].
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8.4.3.3 Medical Image Registration Based
on Other Information Measures

In addition to MI, researchers have explored other information

measures in image registration. Zhu [84] proposed a cross-

entropy optimization based on a volume image registration

method. A divergence measure (Jensen divergence) was used as

a similarity measure for image registration by He et al. [85].

Measures of F (Fisher)-information (e.g., V-, Ia-, and xa-

information) were applied in image registration, and the per-

formance, robustness, and accuracy of rigid registration were

studied by Pluim et al. [86], who showed that some measures

have the potential to achieve more accurate registration than

MI, even though they may be more diYcult to optimize.

As mentioned, intensity-based methods can be automatic

and accurate. However, they are also computationally expen-

sive and are ineYcient because the image contents have to be

included in spatial transformation at each optimization iter-

ation to allow calculation of an updated cost function. Fur-

thermore, this category of schemes does not make use of

a priori knowledge of the organ structure.

8.5 Hybrid Registration and
Hierarchical Registration

In addition to feature-based registration and the intensity-

based scheme, hierarchical and hybrid image registration

have been explored to increase computational eYciency,

achieve automation, and Wnd better solutions.

By combining intensity-based techniques with feature-based

methods, hybrid registration approaches try to exploit the

merits of both and at the same time avoid their disadvantages.

Hybrid registration can be automatic, more accurate, and

faster than either of its registration components used separ-

ately.

By decomposing the datasets into multiple resolutions and

performing the registration from low resolutions to high reso-

lutions, hierarchical registration methods have the potential to

increase registration speed, avoid local minima, and therefore

improve registration performance.

8.5.1 Hybrid Registration

As mentioned previously, because feature-based registration

methods are eYcient, they can be used to tackle more complex

nonrigid deformations. However, it is hard to generate one-to-

one correspondence for regions at some distance from the

extracted registration features. Hybrid registration approaches

were proposed to overcome this limitation.

Johnson and Christensen [87] proposed consistent hybrid

registration combining a landmark technique with an inten-

sity-based method. Hybrid registration was composed of two

main steps: (1) the landmark-based step, where TPSs were used

to obtain the exact correspondence at the landmarks and (2)

the intensity-based step, where the regions away from land-

marks were matched by minimizing the intensity diVerences in

these regions without aVecting the matched landmark regions.

The landmark-based step provided a global registration, while

the intensity-based step was used to reWne the registration

locally. Experiments on 2D MRI scans demonstrated that this

hybrid registration could produce better registration than using

the intensity or the landmark method alone.

Hellier and Barillot [88] proposed a hybrid registration that

reversed the order of Johnson and Christensen [87]. In this

method, global registration was obtained by optical Xow–based

photometric similarity, while local elastic registration was

achieved by a sparse landmarks-based technique. Based on

their experiments, the authors claimed that the algorithm was

eYcient and was capable of coping with functional variability.

A hybrid deformable registration for intersubject cortical

structures in the brain was proposed by Borgetors [38]. The

hybrid method combined the advantages of a volumetric ap-

proach and a surface warping method. As a Wrst step, the

volumetric method was used to reduce the variations between

the model cortical structure and the individual cortical struc-

ture and to provide initial estimation for the surface-based

registration in the second step. However, accurate registration

may depend on topologically correct cortical surface recon-

struction, which is a prerequisite step in this hybrid method.

A more recent hybrid retinal image registration method,

which combined an area-based (intensity-based) method with

a feature-based technique, was proposed by Chanwimaluang

et al. [89]. The method consisted of three steps:

1. Binary vascular trees were extracted based on local en-

tropy-based thresholds.

2. Zero-order translation was estimated by using MI tech-

niques.

3. Feature points were used to estimate higher-order trans-

formation.

The hybrid method was eVective and robust for retinal image

registration.

8.5.2 Hierarchical Registration and Fusion

To achieve fast registration and fusion for clinical applications,

it is necessary to decompose the very large datasets into man-

ageable sizes for registration, which can signiWcantly relieve the

heavy computational burden and complexity. Hierarchical bio-

medical image registration schemes have been proposed to

produce registration with both increased computational

eYciency and the ability to Wnd better solutions [15, 38, 69,

90–92].

In hierarchical strategies, the datasets to be registered are

divided into multiple resolution levels to compose registration

pyramids, and then the registration procedure is carried out
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from low-resolution scales to high-resolution scales. This mul-

tiscale scheme has several merits. The initial registration of the

global information provided by the low-resolution scales helps

to avoid being trapped in local minima and hence contributes

to improved registration performance. This initial registration

estimation also improves computational speed. Based on this

estimation, the registration precision of high-resolution scales

can be further improved by adding more registration informa-

tion or features. Because most registration iterations occur on

low-resolution scales, with fewer required in high-resolution

scales, eYcient registration can be achieved through hierarch-

ical registration methods.

One of the key issues in hierarchical registration schemes is

the building of registration pyramids. Several categories of

hierarchical registration have been proposed [6], such as

Gaussian pyramids [90, 92], spline pyramids [15], and wave-

let-based registration. In these multiresolution registration

approaches in general, registration pyramids are usually

created by successively Wltering and then downsampling the

datasets.

8.5.2.1 Spline-Based Hierarchical Registration

Systematic research into B-spline–based hierarchical registra-

tion has been carried out by [15, 20, 91, 94, 95]. In these spline-

based registration methods, pyramids were constructed by

preWltering and then downsampling the images. The preWlters

can be B-splines [15] or cubic splines [20]. B-splines are piece-

wise polynomials and can be deWned recursively. Based on

B-splines, Thévenaz and Unser [15] proposed a faster and

more accurate multiresolution registration for multimodal im-

ages by using MI as a similarity measure. However, as pointed

out by Unser et al. [20], the underlying spline image is not shift

invariant, due to the downsampling operation, which leads to

small residual error even for an ‘‘exact alignment.’’ This eVect

might be overcome by using higher-order splines. In addition,

these spline-based hierarchical schemes concentrated mainly

on rigid-body registration.

Due to its global-to-local inXuence, coarse-to-Wne match-

ing, and computational eYciency, hierarchical B-splines in the

form of free-form deformation were applied in multiscale

registration by Xie and Farin [92]. The hierarchical B-splines

were used in point-based registration, surface-based registra-

tion, and intensity-based registration.

8.5.2.2 Wavelet-Based Hierarchical Image
Registration

Wavelets lend themselves naturally to the separation of image

data into diVerent frequencies and resolutions while preserving

information at diVerent resolutions. The wavelet decompo-

sition is a key component for automated extraction of features,

which then allows eYcient rigid, as well as nonrigid, transform-

ation. Pajares and de la Cruz [96] provides a tutorial for wave-

let-based image fusion.

Multiresolution analysis (MRA) Mallat [97] is important for

the construction of fast two-dimensional wavelets from one-

dimensional ones. For a given 2D image of size 2m�2n, the

wavelet-based image decomposition can be achieved by con-

volving the wavelet lowpass Wlter hw(n) and the wavelet high-

pass Wlter hc(n) and downsampling by a factor of 2 along rows

and columns independently (Figure 8.3).

Mathematically, the series of Wltering and down-

sampling operations used to compute WC(j,m,n) and

{W i
C(j,m,n)ji ¼ D,V ,H} can be expressed as:

WC(j,m,n)¼ hw(m)�[hw(n)�Ww(j�1,m,n)jn¼2k,k�0]jm¼2k,k�0

W H
C (j,m,n)¼ hc(m)�[hw(n)�Ww(j�1,m,n)jn¼2k,k�0]jm¼2k,k�0

W V
C (j,m,n)¼ hw(m)�[hc(n)�Ww(j�1,m,n)jn¼2k,k�0]jm¼2k,k�0

W D
C (j,m,n)¼ hc(m)�[hc(n)�Ww(j�1,m,n)jn¼2k,k�0]jm¼2k,k�0,

(8:28)

3-Level 

decomposition

H

V D

FIGURE 8.3 Wavelet decomposition of original image into quarter-sized subimages.
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where

. WC(j,m,n) are approximation coeYcients used to repre-

sent global (low-frequency) information.

. W H
C (j,m,n),W D

C (j,m,n), and W V
C (j,m,n) are horizontal

coeYcients, diagonal coeYcients, and vertical coeY-

cients, respectively, which represent local (high-

frequency) information.

Fast wavelet transform can be obtained by MRA and used in

hierarchical image registration. However, coeYcients of the

shifted and rotated versions of the same dataset may be distrib-

uted diVerently. The lack of translation invariance and rotation

invariance, which are the basic requirements for an image regis-

tration procedure, makes discrete wavelet-based registration

diYcult, especially for intensity- or coeYcient-based registration.

Research eVorts have been devoted to breaking the barrier of

translation invariance and rotation invariance, and innovative

techniques such as steerable pyramids [98] and translation

invariant wavelets [99] have been proposed. A multiresolution

registration method based on a steerable Wlter was also proposed

[100]. To cope with rotation displacements in wavelet-based

matching, a rotation-invariant pattern-matching method

was introduced by Tsai and Chiang [101] and adopted by Xue

et al. [102]. However, because the lack of translation invariance

is neglected, this rotation-invariant pattern-matching method is

not necessarily robust in dealing with more signiWcant and

complex displacements.

Feature-based methods oVer a potential solution to the prob-

lem of rotation invariance and translation invariance in wavelet-

based multiresolution registration. A wavelet-based coarse-to-

Wne matching method using ‘‘points of interest’’ as feature space

was proposed by You and Bhattacharya [103] and Wang and Feng

[104], and a surface alignment approach using multiresolution

wavelet representation was introduced by Gefen et al. [105].

8.6 Hardware Registration

Outside the brain, software-based image registration algo-

rithms face many challenges due to diVerences in patient

positioning and movement and changes of internal organs

between imaging sessions performed on diVerent devices

[106, 107]. Despite continued progress in software image

registration algorithms, these techniques can still be labor

intensive and have limited accuracy and are thus impractical

to apply routinely on a patient-by-patient basis [106]. Func-

tional and anatomical images provide complementary data,

and a routine clinical combination of information from these

modalities can oVer:

. Improved lesion detection on both the functional and

anatomical images

. Improved localization of the lesion or foci seen with

functional imaging, resulting in better diVerentiation

between physiological and pathological uptake

. Precise localization of the abnormal foci, such as in bone

versus soft tissue, which can aid in guiding biopsy, treat-

ment planning, etc. [107]

Hardware registration largely overcomes the current limita-

tions of software-based techniques. In hardware registration,

the functional imaging device, such as PET, is combined with

an anatomical imaging device, such as CT, in the one instru-

ment. Functional and anatomical imaging are then performed

in the one imaging session on the same imaging table, which

minimizes diVerences in patient positioning and in the loca-

tions of internal organs between the scans. It also ensures that

both sets of registered data are ready for reporting almost as

soon as the study is completed.

A prototype of a combined PET/CT system to be used

clinically was Wrst described by Beyer et al. [108]. This early

system consisted of a single-slice spiral CT scanner mounted

on the same rotating assembly as a low-end, partial-ring PET

scanner. The addition of the CT scanner to a PET scanner

brought two main advantages:

. CT provided fast and low-noise transmission data for

attenuation correction of the PET data. Previous

methods based on radioactive transmission sources

added substantially to the total study time and increased

the noise in the reconstructed PET images.

. The CT data provided exquisite anatomical detail, which

enabled the PET data to be put into anatomical context

and thus aided the interpretation of PET, as detailed in

the previous section.

For these reasons, PET/CT has gained rapid acceptance in the

clinical setting, and currently over 95% of PETscanners sold are

PET/CT systems. Current-generation PET/CT scanners com-

bine high-end multislice CT systems with high-end full-ring

PET systems (Figure 8.4). Although combined into a single

unit, the gantries of the CT and PET are separate units; this

allows advantage to be taken of progress in the technology of

both PETand CTscanners, which may occur at diVerence paces.

As the CT and PET units are mounted on separate gantries,

transformation matrices have to be determined to map between

the two coordinate systems. This is achieved by a calibration

scan with sources visible both on CT and on PET arranged in a

suitable geometry. The transformation factors mapping be-

tween the coordinate systems can then be calculated using

similar techniques as those applicable to Wducial markers or

stereotactic frame registration techniques (see also Section

8.3). Manufacturers have paid considerable attention to the

design of the patient scanning bed. It is a requirement that the

bed deXection for a particular region in the patient be the same

during the CTscan as it was when the patient passed through the
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PET gantry, irrespective of patient weight. This has been

achieved through a number of diVerent designs, including bed

supports between the CTand PET gantries or a cantilevered bed,

where the fulcrum and support move as shown in Figure 8.4.

The mechanical design and calibration procedures ensure

that the CT and PET data are inherently accurately registered

if the patient does not move. However, patient motion can be

encountered, as illustrated in Figure 8.5, where there is consid-

erable movement in the patient’s head between the CT and the

PET. This results in not only incorrect anatomical localization,

but also artifacts from the attenuation correction based on the

misaligned CT data. Misregistration between the PET and CT

data can also be due to involuntary motion, such as from

respiratory or cardiac processes. An example of artifacts due

to respiratory motion is shown in Figure 8.6. The errors intro-

duced due to involuntary motion have been assessed [109, 110].

Voluntary patient motion can be minimized by careful patient

position, restraints, and scanning protocol. EVects of involun-

tary (e.g., respiratory) motion can be reduced through suitable

breathing protocols. More recently, considerable interest has

focused on acquiring respiratory-gated CT and PET data, to

determine and correct for respiratory motion.

Despite the limitations in registration accuracy between CT

and PET in hybrid systems due to voluntary and involuntary

patient motion, PET/CT has proven very valuable in the rou-

tine clinical setting. There is, however, a deWnite role for

software registration in the PET/CT setting to remove the

misregistrations due to patient motion. However, to be accept-

able in the routine clinical setting, it has to be fast and con-

venient to perform and should not unduly slow down the

workXow of PET/CT studies. For this, PET/CT studies oVer

the advantage that CT and PET imaging are performed in the

same session, using the same setup, such as the patient bed,

which makes the registration task less demanding and poten-

tially more eYcient.

8.7 Assessment of Registration Accuracy

To be clinically useful, a registration method must be suY-

ciently accurate and robust. Accuracy and robustness are two

important criteria for assessing the performance of a registra-

tion approach. Accuracy can be measured by the diVerence

between the optimal solution obtained from an algorithm and

the real correct solution. Robustness is used to measure how

frequently the algorithm can achieve an optimum solution

regardless of deformations and image contents and modalities.

However, the assessment of registration accuracy and robust-

ness can be diYcult due to the strong impact of other factors,

such as similarity measures, interpolation techniques, and

FIGURE 8.4 Illustration and photo of commercial PET/CT system.

A multislice CT is combined with a high-end, ring-type PET system to

form a hybrid scanner. The CT is mounted at the front of the PET

unit. The gantries can be separated for servicing.

FIGURE 8.5 Patient moved the head between acquisition of CT and

PET data in this whole-body PET/CTstudy. This causes not only loss of

anatomical localization but also artifacts in the PET data due to mis-

aligned CT-based transmission data used for attenuation correction.
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optimization algorithms [111], as well as the lack of a ‘‘gold

standard.’’ Frequently used validation methods include

simulation and phantom studies, Wducial markers, and visual

inspection.

8.7.1 Simulations and Phantoms

Simulation and phantom studies are important for the estima-

tion of registration accuracy because the phantom is motionless

in the imaging scenarios, and the displacement information

or artiWcial transformations are known. Simulation- and

phantom-based validations provide measures for computational

complexity of diVerent registration methods. In particular, they

are useful for estimating the accuracy of intramodality registra-

tion methods [27, 111, 112]. However, assessment based on

simulations and phantoms may not take all issues and imaging

characteristics into account, and the simulated deformations

might not be entirely realistic. To get a realistic model for elastic

registration, Schnabel et al. [113] presented a validation method

for nonrigid registration for breast MRI scans that took into

account tissue properties and deformations by using the FEM.

8.7.2 Fiducial Markers

Fiducial markers have been devised to assess registration

accuracy. To a certain extent, assessment using Wducial markers

provides a gold standard for medical image registration [112].

A basic assumption of Wducial markers is that the motion

experienced by the markers is the same as that of the organ

of interest. This is not necessarily the case for Wducial markers

attached to the skin, since skin can move independently of the

organ of interest, such as the brain. To obtain gold standard

transformation parameters for registration, skull-implanted

Wducial markers have been used [35], with which the accuracy

of diVerent registration methods can be compared. But this

invasive method is applicable to only rigid-body registration.

8.7.3 Visual Inspection

Visual inspection is a qualitative assessment and is the most

intuitive method for the evaluation of registration accuracy.

This assessment may involve the inspection of subtraction

images, contour overlays, or anatomical landmarks [35]. It

has been used widely in both rigid [9] and nonrigid registra-

tion [21, 114] assessment. Visual inspection is an important

technique by which to assess a registration method for clinical

use, but it is subjective and cannot provide a robust, reproduc-

ible measure of registration accuracy.

8.7.4 Consistency Measures

Internal consistency measures of transformations provide an

elegant method for assessing registration accuracy for suitable

image datasets [27, 87, 115–117]. For N images of the same

FIGURE 8.6 Respiratory motion during CT resulting in a ‘‘mushroom’’ artifact on the CT at the top of the liver,

which results in artiWcially increased activity in the PET images in the aVected region.
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subject, the number of transformations is p(N,2)¼N � (N� 1).

For three images XA, XB , and XC , if we can apply three trans-

formations TA!B , TB!C , and TC!A in turn to build a close

transformation circuit, then the transformation composition

TA!B 	 TB!C 	 TC!A would transform image XA to itself in

the perfect registration process.

Holden et al. [27] proposed the assessment method, which

adapted the hierarchical optimization scheme to accelerate the

computational speed and avoid local minima. Johnson and Chris-

tensen [87] presented a hybrid consistency measurement that

fully utilized the advantages of both landmark-based and inten-

sity-based registration methods. However, consistency measures

are largely limited to assessing monomodal, rigid registrations.

8.7.5 Investigations of Accuracy Assessment

Researchers have been developing novel and practical vali-

dation techniques. Wang et al. [118] proposed a novel auto-

matic method to estimate conWdence intervals of the resulting

registration parameters and allow the precision of registration

results to be objectively assessed for 2D and 3D medical im-

ages. InXuence of implementation parameters on MRI and

SPECT registration by MI was investigated by Zhu and Cochoff

[25], and the eVect of interpolation artifacts on registration

was studied by Tsao [119].

A number of investigations into the accuracy of registration

similarity measures have been presented. Penny et al. [112]

carried out a comparison of six intensity-based similarity

measures for 2D-3D CT registration. The similarity measures

were used to register phantom spine images, and their accur-

acy was compared with the gold standard obtained from Wdu-

cial markers. To further test the accuracy and robustness of

these similarity measures in the presence of soft-tissue struc-

tures and other clinically encountered features, the researchers

simulated more realistic gold standard data by overlaying

clinical image features on the phantom images.

An assessment of eight similarity measures for rigid-body

registration of 3D MRI scans was performed by Hill et al. [27].

These similarity measures were assessed by using simulated brain

images and internal consistency measures. Based on their inves-

tigation, the authors ranked the accuracy of these registration

similarity measures, and their results also showed that image

noise had a signiWcant eVect on registration accuracy.

A validation protocol for selecting the most suitable simi-

larity measure and corresponding optimization method for a

certain application has been proposed by Škerl et al. [111].

Nine similarity measures have been tested on multimodal

registration, including MRI/CT and MRI/PET of spine

phantom images and brain images. Extensive discussions and

summaries of performance validation methods for medical

image registration are provided in [9, 11, 14]. However, valid-

ation of registration accuracy for clinical applications remains

a diYcult task, and objective performance validation is still a

challenge in the Weld of biomedical image registration.

8.8 Applications of Biomedical Image
Registration and Fusion

8.8.1 Applications in the Brain

As with most developments in medical imaging, the Wrst site of

research was the brain. It has always been easier to study the

brain because it is relatively stationary with respect to the skull,

and tomographs with small apertures were cheaper to build.

This research also applies to registration, which has been

applied to the localization of tumors, eloquent cortex, and

regions of dysfunction. These advances have been applied to

neurosurgery, localization of seizure foci, detection of disease

at an early stage, and monitoring of patients’ responses to

treatments.

8.8.1.1 Disease Progress Monitoring and Atlas
Construction

Image registration is an essential step in the monitoring of

disease progress and in the automatic construction of brain

atlases. Accurate monomodal registration of images obtained

over time intervals allows a comparison of serial images. Brain

atlases are enabling analytical tools for automatic segmenta-

tion, labeling, and interpretation of brain tissue and structures.

Brains diVer across individuals, so by mapping a large amount

of brain image data to a common coordinate system, statistical

brain atlases can provide anatomical and functional informa-

tion and interpretation for a speciWc population group [120].

Even for the same individual, the brain will change over the

lifetime. Dynamic brain atlases reveal brain changes due to

such factors as age, gender, or disease. For instance, popula-

tion-based, disease-speciWc brain atlases provide a template for

early-stage brain disease detection and identiWcation [121].

8.8.1.2 Early Detection of Neurodegenerative
Disease

The dementias are the major causes of disability in the elderly

population. Alzheimer’s disease (AD) is the most common

cause of dementia [122]. Early detection of AD holds the

promise of early intervention, which may delay or halt its

progression when disease-modifying agents become available.

The comparison of data from subjects at risk for developing a

dementing illness with data from normal subjects will be the

main focus of disease-modifying agents in the dementias.

Preliminary FDG-PET studies have already shown that subtle

reductions in glucose metabolism in the posterior cingulate

gyrus herald the onset of AD, and these changes, while diYcult

to detect on routine FDG-PET scans of the brain, can be

robustly demonstrated when the subject’s PET data are com-

pared with a normal age- and sex-matched atlas. Registration

of longitudinal anatomical MRI studies [123–127] allows the

identiWcation of probable AD [122]. Voxel-based morphome-

try (VBM), which is an automated image analysis tool, has
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been used in the investigation of the presence and severity of

anatomical tissue reduction in early-stage AD [128–131].

Alternatively, Thompson and his team performed research in

detecting brain abnormalities by using group-speciWc brain

atlases [121, 132–136].

8.8.1.3 Image-Guided Surgery

Most neurosurgical procedures require highly precise localiza-

tion of the intended cerebral target (e.g., tumor, malforma-

tion) to minimize damage to normal structures [137].

Registration is critical in preoperative lesion identiWcation,

planning, intraoperative IGS, and postoperative assessment.

Conventionally, IGS is done by surgeons’ visual perception

and examination of 2D anatomical images of MRI or CT

scans and then their mentally relating this preoperative image

information to the patient in the operation theater. This pro-

cedure is very dependent on the surgeon’s expertise and ex-

perience. Automatic registration techniques that can assist

surgeons to directly visualize the accurately fused structures

to guide the surgical procedure are clearly advantageous.

Registration is a major component in an IGS system. Oper-

ation planning is facilitated by the registration of preoperative

images or videos [138], and operation navigation can be

achieved by the registration of intraoperative images with the

patient, as well as the fusion of segmented anatomical struc-

tures with the intraoperative images [139, 140].

8.8.1.4 Radiotherapy Planning

Intensity-modulated radiotherapy (IMRT), in which radiation

dose to a tumor is varied across its 3D volume, is becoming

increasingly utilized to deliver high doses to the most active

regions of a tumor. Such an approach maximizes tumor cell

death and minimizes damage to normal tissue [141]. Multi-

modal image registration such as CT/MRI and CT/PET allows

more accurate deWnition of the tumor volume during the

treatment planning phase [142]. These datasets can also be

used later to assess response to therapy and evaluate suspected

tumor recurrence.

8.8.2 Applications Outside the Brain

As mentioned earlier, registration of brain images is easier to

achieve than the registration of abdominal or thoracic organs

such as the lung, heart, and liver. Outside the brain, organs

move relative to each other as a part of normal physiology—

the beating heart, peristalsis in the bowel and ureters, respira-

tory movement of the lungs—and can deform and change

shape during and between imaging sessions (e.g., the bladder

becomes larger in FDG-PET images because FDG is excreted

by the kidneys during the scan). Thus, simple rigid transfor-

mations are no longer suYcient, and more complex and

challenging elastic transformations are required.

8.8.2.1 Cardiac Image Registration

In developed countries, heart disease is the main cause of death

[143]. Cardiac image registration and fusion provide a non-

invasive tool that aids diagnosis and risk stratiWcation in pa-

tients with heart disease. Registration is essential for the

construction of cardiac atlases, as well as for the modeling of

heart motion, which is important in the detection of heart

disease [144]. The recently introduced hybrid X-ray and MRI

system XMR and 64-slice PET/CT systems provide new possi-

bilities for better cardiac diagnosis and management. Image

registration of MRI scans and X-ray images is a crucial step in

the XMR-guided cardiovascular intervention, as well as in

therapy and treatment planning [145, 146]. However, because

of motion, low-image resolution, and the lack of anatomical

landmarks, cardiac image registration is more complex than

brain image registration. The nonrigid and mixed motion of

the heart and the thorax structures makes the task even more

diYcult [62]. Researchers have been devoting considerable

eVort to Wnding good registration approaches for cardiac

images [37, 153]. Mäkelä et al. [11] presents a good review of

cardiac image registration methods.

8.8.2.2 Breast Image Registration

Breast cancer is one of the major causes of cancer-related

death, and early detection is a proven approach to reduce its

morbidity and mortality. Registration plays an important role

in early breast cancer detection. The medical imaging tech-

niques frequently used in breast cancer detection include X-ray

mammography, pre- and postcontrast MRI, and ultrasound.

Registration of pre- and postcontrast MRI sequences can eVec-

tively distinguish diVerent types of malignant and normal

tissues [148]. However, breast image registration is not trivial.

Due to the elastic property of the breast tissue, one can observe

signiWcant temporal changes of breast tissue and shape and

motion diVerences caused by respiration. Breast image regis-

tration can be feature based or intensity based. The former

involves features such as boundaries, surfaces, and landmark

points. Due to the nonrigid deformations at diVerent imaging

times and with various imaging equipment, automated breast

registration is an ongoing research direction. Maximization of

the MI technique has been claimed to be superior to other

methods in the intensity-based registration category [148,

149]. A survey of breast image registration is presented in

Guo et al. [150].

8.8.2.3 Whole-Body Registration in Oncology
Studies for Assessment of Disease
Progression and Treatment Response

Whole-body scanning with PET or PET/CT reveals metabolic

information at the molecular level and is critical in cancer

detection, staging, disease progress, detection of tumor recur-

rence, and the assessment of treatment response. Whole-body
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CT or MRI scans provide information on anatomical changes.

These imaging techniques have diVerent properties, such as

resolution, radiation exposure, and examination time [151].

Proper registration and fusion to fully utilize the complemen-

tary information of these modalities is thus highly desirable.

Newly introduced advanced hybrid imaging techniques such

as PET/CT enhance localization, detection, staging, and diag-

nosis. But as mentioned in Section 8.6, accurate registration

between the two modalities is not guaranteed. Furthermore,

software-based registration is still required to address the

issues of (1) patient motion between the PET and the CT and

(2) PET/CT scans performed on the same patient but on

diVerent occasions. PET/CT data raise particular challenges

for software-based registration. The large data volumes due

to the extended scan range require an eYcient registration

mechanism that can provide registered datasets in a clinically

acceptable time frame. In addition, nonrigid, elastic trans-

formation is required in these studies, adding to the complex-

ity and potential computational expense of the registration.

Automatic whole-body registration and fusion for the im-

ages from separate PET and CT operations, as well as from the

hybrid PET/CT scanners, have been explored and investigated

more recently [152–154]. Once again, maximization of mutual

information has shown promise for this registration applica-

tion. However, elastic registration for complex internal organ

deformations remains a challenging and ongoing research

topic.

8.9 Summary

Due to advances in medical imaging technologies, diverse

imaging modalities play an increasingly important role in

improving the quality and eVectiveness of health care. Medical

imaging is now indispensable to good quality care. However,

full utilization of these imaging techniques is in its infancy, and

the challenge is to seamlessly integrate these data into a user-

friendly environment in a rapid time frame. Image registration

is a critical element in integrating complementary and hetero-

geneous medical data into a common coordinate system. Fac-

tors such as diVerent imaging principles, patient motion

during the imaging procedure, diVerences due to disease pro-

gression or treatment, and complex deformations of internal

organs mean that there are still many challenges ahead for

medical image registration. The ever-increasing improvements

in instrumentation such as 64-slice PET/CT and 128-slice CT

and beyond will provide a wider range of imaging datasets with

higher resolution and higher dimensionality. Registration will

play a key role in managing these datasets eVectively.

Apart from applications in the medical imaging environ-

ment, data registration and fusion also have wide applications

in remote sensing and multimedia areas. For instance, mosaic

construction, image/video compression, motion tracking, and

content-based retrieval rely on eYcient and eVective image

registration. Data registration and fusion may also have poten-

tial and important applications in the research and industry of

bio-informatics and biotechnology, such as in the develop-

ment of new therapeutic agents, by allowing quantitative and

qualitative analysis of patterns and expressions of proteins to

reveal their biological functions.

Overall, more eYcient and automatic image registration

will be needed with these applications in the medical and

multimedia environments.
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8.10 Exercises

1. Describe four main components of the image registration

framework; brieXy explain the functions of these compon-

ents; and give one often-used technique for each of them.

2. Explain why maximization of mutual information is more

suitable for multimodal image registration than are other

intensity-based registration criteria; describe mutual infor-

mation algorithm based on histogram calculation.

3. Describe why hybrid and hierarchical registration schemes

potentially provide more eYcient and robust registrations.

4. Explain why registration may still be necessary for data

from hybrid scanners, such as PET/CT systems.

5. Give one application of data registration and fusion both in

the brain and for an organ outside the brain.
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ation of similarity measures for rigid registration. IEEE

Trans. Med. Imaging. 25(6):779–791, 2006.

112. G. P. Penny et al. A comparison of similarity measures for

use in 2D-3D medical image registration. IEEE Trans.

Med. Imaging. 17(8):586–595, 1998.

113. J. A. Schnabel et al. Validation of nonrigid image regis-

tration using Wnite-element methods: Application to

breast MR images. IEEE Trans. Med. Imaging.

22(2):238–247, 2003.

114. E. R. E. Denton et al. Comparison and evaluation of rigid

and nonrigid registration of breast MR images. J. Comput.

Assist. Tomogr. 23(5):800–805, 1999.

115. R. P. Woods et al. Automated image registration: I. Gen-

eral methods and intrasubject, intramodality validation.

J. Comput. Assist. Tomogr. 22:141–154, 1998.

116. E. R. E. Denton et al. The identiWcation of cerebral

volume changes in treated growth hormone deWcient

patients using serial 3-D MR image processing.

J. Comput. Assist. Tomogr. 24(1):139–145, 2000.

117. G. E. Christensen and H. Johnson. Consistent image

registration. IEEE Trans. Med. Imaging. 20:568–582, 2001.

118. H. S. Wang et al. Objective assessment of image registra-

tion results using statistical conWdence intervals. IEEE

Trans. Nucl. Science. 48:106–110, 2001.

119. J. Tsao. Interpolation artifacts in multimodality image

registration based on maximization of mutual informa-

tion. IEEE Trans. Med. Imaging. 22(7):854–864, 2003.

120. D. Rueckert, A. F. Frangi, and J. A. Schnabel. Automatic

construction of 3-D statistical deformation models of the

brain using nonrigid registration. IEEE Trans. Med.

Imaging. 22(8):1014–1025, 2003.

121. A. W. Toga and P. M. Thompson. The role of image

registration in brain mapping. Image and Vision Comput-

ing Journal. 19:3–24, 2001.

122. P. J. Nestor, P. Scheltens, and J. R. Hodges. Advances in

the early detection of Alzheimer’s disease. Nat. Rev.

Neurosci. 5(Suppl):S34–S41, 2004.

123. N. C. Fox, P. A. Freeborough, and M. N. Rossor. Visual-

isation and quantiWcation of rates of atrophy in AD.

Lancet. 348:94–97, 1996.

124. N. C. Fox et al. Using serial registered brain magnetic

resonance imaging to measure disease progression in

Alzheimer’s disease: Power calculation and estimates of

sample size to detect treatment eVects. Arch. Neurol.

57:339–344, 2000.

125. W. R. Crum, R. I. Scahill, and N. C. Fox. Automated

hippocampal segmentation by regional Xuid registration

of serial MRI: Validation and application in Alzheimer’s

disease. Neuroimage. 13:847–55, 2001.

126. W. R. Crum, T. Hartkens, and D. L. G. Hill. Non-rigid

image registration: Theory and practice. Br. J. Radiol.

77:S140–S153, 2004.

127. R. I. Scahill et al. A longitudinal study of brain volume

changes in normal aging using serial registered magnetic

resonance imaging. Arch. Neurol. 60(7):989–994, 2003.

128. G. B. Frisoni et al. Detection of grey matter loss in mild

Alzheimer’s disease with voxel based morphometry.

J. Neurol. Neurosurg. Psychiatr. 73:657–64, 2002.

129. G. B. Frisoni and P. Massimo. Multiple sclerosis and

Alzheimer’s disease through the looking glass of MR

imaging. Am. J. Neuroradiol. 26:2488–2491, 2005.

130. G. E. Busatto et al. A voxel-based morphometry study of

temporal lobe gray matter reductions in Alzheimer’s

disease. Neurobiol. Aging. 24:221–231, 2003.

131. K. Ishii et al. Voxel-based morphometric comparison

between early- and late-onset mild Alzheimer’s disease

and assessment of diagnostic performance of z-score

images. Am. J. Neuroradiol. 26:333–340, 2005.

132. P. M. Thompson et al. Mathematical/computational chal-

lenges in creating deformable and probabilistic atlases of

the human brain. Hum. Brain Mapp. 9:81–92, 2000.

133. P. M. Thompson et al. Detecting dynamic (4D) proWles

of degenerative rates in AD patients, using tensor

mapping and a population-based brain atlas. Proc. Soc.

Neurosci.

134. P. M. Thompson et al. Cortical change in Alzheimer’s

disease detected with a disease-based atlas. Cerebral

Cortex. 11:1–16, 2001.

135. P. M. Thompson et al. Structural abnormalities in the

brains of human subjects who use methamphetamine.

J. Neurosci. 24(26):6028–6036, 2004.

136. A. W. Toga and P. M. Thompson. Temporal dynamics of

brain anatomy. Annu. Rev. Biomed. Eng. 5:119–145, 2003.

137. W. E. L. Grimson. Medical applications of image under-

standing. IEEE Expert. 18–28, 1995.

138. M. J. Clarkson et al. Registration of multiple video images

to preoperative CT for image-guided surgery. In

K. M. Hanson (Ed.). Proceedings of SPIE: Medical Im-

aging 1999: Image Processing. 3661:14–23, 1999.

139. A. Raabe et al. Laser surface scanning for patient

registration in intracranial image-guided surgery. Neuro-

surgery. 50(4):797–803, 2002.

140. M. Audette et al. An integrated range-sensing, segmenta-

tion and registration framework for the characterization

8 Data Registration and Fusion 209



of intra-surgical brain deformations in image-guided

surgery. Comput. Vis. Image Underst. 89:226–251,

2003.

141. J. G. Rosenman et al. Image registration: An essential part

of radiation therapy treatment planning. Int. J. Radiat.

Oncol. Biol. Phys. 40(1):197–205, 1998.

142. C. Scarfone et al. Prospective feasibility trial of radiother-

apy target deWnition for head and neck cancer using

3-dimensional PET and CT imaging. J. Nucl. Med.

45(4):543–552, 2004.

143. American Heart Association. Heart and Stroke Statistical

Update, 2006. http://www.american heart.org

144. A. F. Frangi et al. Automatic construction of multiple-

object three-dimensional statistical shape models: Appli-

cation to cardiac modeling. IEEE Trans. Med. Imaging.

21(9):1151–1166, 2002.

145. K. S. Rhode et al. A system for real-time XMR guided

cardiovascular intervention. IEEE Trans. Med. Imaging.

24(11):1428–1440, 2005.

146. M. Sermesant et al. Simulation of cardiac pathologies

using an electromechanical biventricular model and

XMR interventional imaging. Med. Image Anal.

9:467–480, 2005.

147. K. McLeish et al. A study of motion and deformation of

the heart due to respiration. IEEE Trans. Med. Imaging.

21(9):1142–1150, 2002.

148. D. Rueckert et al. Non-rigid registration of breast MR

images using mutual information. MICCAI ’98 lecture

notes in computer science. Cambridge. 1144–1152, 1998.

149. T. Bruckner. Comparison of rigid and elastic matching of

dynamic magnetic resonance mammographic images by

mutual information. Med. Phys. 27(10):2456–2461, 2000.

150. Y. Guo et al. Breast image registration techniques: A

survey. Med. Bio. Eng. Comput. 44:15–26, 2006.

151. M. D. Seemann. Whole-body PET/MRI: The future

in oncological imaging. Technol. Cancer Res. Treat.

4(5):577–582, 2005.

152. R. Shekhar et al. Automated 3-dimensional elastic regis-

tration of whole-body PET and CT from separate or

combined scanners. J. Nucl. Med. 46(9):1488–1496, 2005.

153. P. Slomka et al. Automated 3-dimensional registration of

standalone F-FDG whole-body PET with CT. J. Nucl.

Med. 44(7):1156–1166, 2003.

154. Y. Nakamoto et al. Accuracy of image fusion using a

Wxation device for whole-body cancer staging. Am.

J. Roentgenol. 184:1960–1966, 2005.

210 I Technological Fundamentals



9
Data Visualization and Display

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

9.2 Two-Dimensional Visualization Techniques. . . . . . . . . . . . . . . . . . . . . 212
9.2.1 Multiplanar Reformatting : 9.2.2 Oblique and Curved Sectioning

9.3 Three-Dimensional Visualization Techniques. . . . . . . . . . . . . . . . . . . . 213
9.3.1 Surface Rendering : 9.3.2 Direct Volume Rendering : 9.3.3 Texture-Based

Volume Rendering : 9.3.4 Multivariate Volume Rendering

9.4 Volume Navigation Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.4.1 3D Volume Navigation : 9.4.2 Input Devices

9.5 Volume Enhancement and Manipulation . . . . . . . . . . . . . . . . . . . . . . 216
9.5.1 Segmentation in Visualization : 9.5.2 Transfer Function SpeciWcation :
9.5.3 Spatial Transfer Function

9.6 Large Data Visualization and Optimization . . . . . . . . . . . . . . . . . . . . . 218
9.6.1 Multiresolution : 9.6.2 Empty Space Skipping : 9.6.3 Early Ray Termination :
9.6.4 Parallel Rendering

9.7 Dual-Modality Positron Emission Tomography–Computed

Tomography Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.7.1 Dual-Transfer Function : 9.7.2 Spatial Transfer Function in Positron Emission

Tomography–Computed Tomography : 9.7.3 Interactive Segmentation and Volume

Interchange in Positron Emission Tomography–Computed Tomography

9.8 Data Display Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.8.1 Stereoscopic Visualization : 9.8.2 Depth Projection

9.9 Applications of Biomedical Visualization . . . . . . . . . . . . . . . . . . . . . . 223

9.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.12 References and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.1 Introduction

This chapter describes data visualization and display tech-

niques for multidimensional biomedical images.

Advances in digital biomedical imaging are enabling unpre-

cedented visualization of the structure, function, and pathology

of the human body. These images can be acquired in multiple

dimensions and with multiple modalities, including magnetic

resonance imaging (MRI) and positron emission tomography

coupled with computed tomography (PET/CT). These new

techniques have also introduced signiWcant challenges for

eYcient visualization [1–3]. In line with advances in image

acquisition, methods to visualize and display these data have

also seen rapid developments and challenges. PET/CT was

introduced in 2000 with a PET scanner coupled to an early-

generation helical CT scanner, but in the space of Wve years the

leading-edge PET/CT has a 64-slice CT coupled to a PET

scanner that has much better resolution and sensitivity than

the device of 2000. A major challenge now is to put these vast

amounts of imaging data in a readily usable and viewable

format for interpretation. Fortunately, there has also been tre-

mendous progress in three-dimensional volume visualization of

biomedical data. In general, this refers to the ability to interact

and navigate the image data in a realistic 3D volumetric display.

These volumetric displays are typically constructed from 2D

slice images that are acquired in a regular pattern (e.g., one

slice every millimeter) and make up a volumetric grid. Rapidly

improving capabilities for 3D visualization have made this an

attractive method for imaging applications, including those

geared toward image-guided surgery (IGS), radiotherapy, and

computer-aided diagnosis (CAD) [1, 4–11].

With current visualization technologies, it is possible to per-

form real-time interactive visualization of multidimensional

volumes using low-cost hardware instead of restricting it to
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expensive high-end workstations [12, 13]. These visualization

advances have been accompanied by developments and im-

provements in display and input control devices. In current

diagnostic workstations, it is common to Wnd multiple liquid

crystal display (LCD) screens to visualize the imaging data in 2D

and 3D views. Specialized display devices, such as stereoscopic

screens, enable new approaches to visualize and interact with

biomedical data; virtual reality (VR) systems, for instance, are

able to provide a realistic image alongside highly interactive

control of the visualization process [2, 14]. To provide conveni-

ent and eYcient navigational control of 3D visualizations, new

input devices designed for 3D controls have also been intro-

duced [15–17]. Appropriate biomedical visualization and dis-

play, given the vast amount of data, is now mandatory to ensure

accurate diagnosis. Moreover, intelligent and innovative new

visualization algorithms are necessary in order to overcome the

increase in image dimensions that are making conventional

viewing approaches ineYcient.

This chapter describes data visualization and display tech-

niques for multi-dimensional biomedical images. Section 9.2

discusses 2D visualization techniques that include multi-

planar reformatting and oblique/curved sectioning. This is

followed by a section on volume rendering techniques

(surface-based, direct, and texture-based rendering) for 3D

volumetric data and for multivariate data (greater than 3D,

i.e., time-varying, dynamic sequence). Section 9.4 introduces

methods and devices that are used to navigate through volu-

metric data. Enhancements in volume visualization are then

discussed in Section 9.5, followed by visualization optimiza-

tion methods (hardware and software approaches) in Section

9.6. A case study on dual-modality PET/CT visualization is

presented in Section 9.7, which illustrates how advances in

visualization techniques are adapted for use with biomedical

data to improve diagnosis and image understanding. Display

devices and technologies are presented in Section 9.8, which is

followed by a summary of cutting-edge biomedical data visu-

alization projects in Section 9.9. A summary of the chapter is

then given in Section 9.10.

9.2 Two-Dimensional Visualization
Techniques

Conventional methods of visualizing volumetric biomedical

images utilize 2D coronal or transaxial views, with multiple

images viewed in montage or slice-by-slice formats. With im-

provements in the resolution of imaging devices and the vast

amount of data they generate, it is now virtually impossible to

rely on the previous approaches for image analysis. This has

led to the development of new 2D approaches for biomedical

data visualization, such as volume slicing, multiplanar re-

formatting, and curved sectioning, which provide views

complementary to conventional 2D views.

9.2.1 Multiplanar Reformatting

Volumetric data allow the voxels in the volume to be reformat-

ted into diVerent orthogonal orientations, namely, transaxial,

sagittal, and coronal views. These orthogonal views are often

displayed simultaneously, as shown in Figure 9.1, exempliWed

by a brain MR dataset [18]. Multiplanar images provide an

eVective tool to visualize volumetric data with interactive con-

trol and are the default visualization setup in many diagnostic

applications [5, 12, 19]. By simultaneously displaying the three

orthogonal views, they enable rapid observation of the volu-

metric data. These views are often navigated through the ‘‘click

and drag’’ method of manipulating a viewpoint within one of

the three views of the volume, causing other views to be

reformatted according to the new point position. Multiplanar

sectioning, as shown in Figure 9.1(d), is another popular

approach toward viewing multiplanar images, visualizing the

three orthogonal views stacked perpendicular to each other,

thereby creating a 3D visualization.

9.2.2 Oblique and Curved Sectioning

In various clinical applications, the required 2D views may not

necessarily lie parallel to the orthogonal orientation of the 3D

volume image, as obtained from multiplanar reformatting. It is

at times necessary to view cross sections made at arbitrary

angles through the volume. Oblique sectioning, also known

as volume slicing, is a technique that cuts the volume in any

conceivable orientation by a user-deWned cutting plane [20].

(a) (b)

(c) (d)

FIGURE 9.1 Multiplanar reformatted views of an MR brain image.

(a) Transaxial. (b) Coronal. (c) Sagittal. Multiplanar sectioning shown

in (d) is the result of stacking images together.
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This endows users with the ability to depict the inner structure

of the volume by removing arbitrary parts of the volume that

obscure the primary volumes of interest (VOIs). An example of

oblique sectioning is shown in Figure 9.2, which demonstrates

the removal of occluding sections from a whole-body CT

volume. Instead of utilizing a straight line (cutting plane)

selection, as in oblique sectioning, curved sectioning traces

along an arbitrary path on any orthogonal image to construct

an image. Calculation of the voxels on the cutting plane is then

essentially performed via an interpolation or resampling oper-

ation such as trilinear or nearest-neighbor interpolation [21].

Another approach that has been shown to produce a good

selection of viewable data is positioning and resizing a clipping

cube box, which encapsulates the volume such that only the

volumetric data residing inside the box are visible.

9.3 Three-Dimensional Visualization
Techniques

In 3D visualization of biomedical data, there are four common

techniques that may be used to maximize the visual informa-

tion, which can be obtained from diVerent types of biomedical

data. These visualization techniques—surface rendering, direct

volume rendering, texture-based volume rendering, and multi-

variate rendering—can be used independently or in combin-

ation. The Wrst three visualization techniques deal with having

diVerent ways to render the data, with each technique having

its advantages and limitations. Figure 9.3 compares the three

techniques in rendering the bone structure from a CT scan.

Rendering was performed using marching-cubes surface

rendering [24], direct volume rendering, and texture-based

volume rendering, all available through the visualization tool

kit (VTK) [25]. In these rendering techniques, appropriate

parameters were applied to select the bone structure. In the

Wgure, all three rendering methods appear to be equally

matched in visual qualities. However, the marching-cubes

method (see the next section) renders only the approximate

shapes of the bones (calculating polygonal surfaces from the

voxels), whereas the other methods render every voxel belong-

ing to the bones. For multivariate rendering, these techniques

are used alongside others to visualize data that are in multiple

states, such as time-varying and dynamic data. DiVerences in

rendering techniques are explained in greater detail in the

following sections.

9.3.1 Surface Rendering

Surface rendering techniques build a geometrical contour rep-

resentation of the surface deWned by the segmentation of the

image volume. The contours of the segmented volume(s) are

then extracted with surface tiling techniques [21, 24, 26, 27],

which creates polygonal surfaces representing the structure.

One of the most well-known algorithms for surface tiling is

the marching-cubes algorithm [24], which functions by creating

FIGURE 9.2 Oblique sectioning applied to a whole-body CT dataset

using ImageJ [22] software with the Volume Viewer plug-in [23].

Thumbnails at left are the cutting planes applied to diVerent orthog-

onal views, and the resulting 3D volume is in the center. Trilinear

interpolation has been applied to volume-rendered images.

(a) (b) (c)

FIGURE 9.3 Rendering of bone structures from a CT dataset using three diVerent rendering algorithms:

(a) surface rendering, (b) direct volume rendering, and (c) texture-based volume rendering.
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triangulated representations of the surface and has produced

many optimizations and variations for diVerent applications.

The main attraction that surface rendering oVers is its ability to

leverage the advances in modern graphics hardware that is

speciWcally designed to process large numbers of polygons,

providing the ability for real-time volume rendering. In add-

ition, lighting and shading models can be applied to the surfaces

(e.g., Phong shading, Gouraud shading [28, 29]), which aid in

depth perception and overall realism of the volume.

Generally, surface rendering techniques require segmenta-

tion of the image volume to determine the structures to render.

Segmentation as a preprocess is the main disadvantage of sur-

face rendering, due to the complexities in accurate structure

delineation and computation. There are numerous segmenta-

tion techniques available that are optimized for individual

imaging modalities. However, accurate recognition and delin-

eation of all individual structures in an image is likely to be

restricted only to controlled environments [2, 30, 31]. Due to

the reliance on segmentation results, once preprocessing has

been performed, it is computationally ineYcient to modify the

parameters that generated the surfaces. A further limitation of

surface rendering is that only the surface is rendered, and hence

potentially important information about structures and path-

ologies inside the surface-rendered organ or structure is lost.

9.3.2 Direct Volume Rendering

The direct volume method renders every voxel in the image and

thus diVers from surface rendering in that it does not require

surface extraction of the image data to be visualized. Rendering

of every voxel allows for natural geometrical structures and the

representation of the complete volume data. However, due

to the calculations required for every voxel, direct volume

rendering is computationally expensive. Real-time rendering

performance for direct volume rendering is achievable only by

using commodity graphics hardware through the use of spe-

cialized rendering optimization techniques. Section 9.6 covers

performance optimization for volume rendering visualization.

The most versatile approach to direct volume rendering of

biomedical data is through ray casting (also known as ray

tracing) [3, 20, 32], whose basic principle is the casting of rays

starting from the viewer’s eye through each renderable voxel in

the image. It involves sampling, Wltering, lighting, and accumu-

lating voxel colors and opacities as the ray passes through the

volume. A computationally fast approach to ray casting is

maximum intensity projection (MIP), which has found several

clinical applications [33–35]. MIP works by projecting the voxel

with the maximum intensity that falls in the path of the ray.

Although computationally eYcient, this approach is limited in

illustrating depth and orientation, where the MIP of the volume

cannot be distinguished between left/right and front/back. In

order to improve the sense of 3D with MIP, animations are often

created that consist of MIP rendering with rotated viewing

angles, which aids in the viewer’s perception of the 3D volume.

An example of an MIP of whole-body PET data is shown in

Figure 9.4, with selection of frame sequences that are used to

animate the volume. Other volume rendering techniques that

are favorable to biomedical data visualization are splatting [36]

and shear warp [37, 38], which are designed to improve render-

ing eYciency at the cost of visual quality.

9.3.3 Texture-Based Volume Rendering

Advances in consumer technologies are resulting in the devel-

opment of graphic cards that are extremely eYcient in their

texture mapping capabilities. Texture mapping is the process of

(a) (b) (c)

FIGURE 9.4 Sequence of MIP-rendered PET volume data. (a) Coronal view; (b) 45 degrees to the left

of (a); and (c) 90 degrees to the left of (a). Animating frames rendered at diVerent angles provide

improved perception of the 3D data. These particular data enabled clear identiWcation of the tumor

using MIP volume rendering (the bright spot indicated by the arrow).
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applying images as textures to geometric objects. This attribute

has been utilized in the visualization of biomedical data with

real-time interactive capabilities using low-cost consumer

hardware [20, 39–41]. The principal concept of texture-based

volume rendering is to create parallel planes through the

columns of the volume data, in the direction most perpen-

dicular to the user’s line of sight. The number of planes to be

created is based on the sampling rate, where higher rates

equate to better visual quality. In a typical setting, the sampling

rate is set proportional to the dimensions of the voxel to be

rendered. The parallel planes are converted to polygons that

are texture mapped with appropriate 3D texture coordinates

[40] that are derived from the volume data and are then drawn

in back-to-front order with blending of the voxel colors to

result in a smooth image. Texture-based volume rendering

produces images that are of comparable quality to direct vol-

ume rendering, apart from the noticeable diVerences during

volume manipulations, such as rotation [3]. Due to its image

quality and computational eYciency, texture-based volume

rendering has become a popular choice in many applications

of biomedical data visualization [32, 39, 40, 42, 43].

9.3.4 Multivariate Volume Rendering

Many applications in the Weld of biomedical visualization

require visual outputs of data that contain multiple scalar

values at each sample (voxel) point [1, 44–46]. Such data are

often referred to as multivariate data and can come from

numerous applications—for example, multivolume data

(dual-modality PET/CT) and time-varying data (ultrasound,

Xow visualization). In multivolume visualization, two or more

complementary datasets are combined and volume-rendered.

The combination of these data may be in the form of (1)

volume overlay, or overlapping of one volume onto another;

or (2) data intermixing, or the calculation of a new voxel value

according to two or more values from the same sample. An

example of data intermixing of dual-modality biomedical data

is discussed in Section 9.7. Time-varying data are frequently

used in biomedical applications to visualize the changing sca-

lar values of a selected object over a deWned time. Tory et al.

[47] introduced glyphs, animated arrowhead Wgures that rep-

resent scalar properties (uptake and temperature) with regard

to time. Glyphs have been cleverly used to visualize time-

varying 3D MRI data for lesion analysis. Thune and Olstad

[48], reported animation of 4D ultrasound images (3D spatial

and 1D temporal) by direct volume rendering.

9.4 Volume Navigation Interface

In Section 9.2, we introduced 2D approaches to navigate

3D data through the use of a pointer in two dimensions (the

x- and y-axes). In 3D, navigation is based on movement of the

volume with an additional z-axis. Data with even greater

dimensions, such as multivariate data, demand additional

interactive features and input devices for eYcient control.

This section highlights common approaches for the navigation

of volume-rendered data.

9.4.1 3D Volume Navigation

Conventional interactive navigational methods for volume

rendering consist of scaling, rotation, and translation within

the 3D coordinate system. To improve rendering performance

during interactive navigation, the sampling rate of the volume

can be lowered to accelerate the rendering capabilities [7, 39,

41]. Once the interaction is completed, the sampling rate can

be reset to its defaults. Automating the toggle in the sampling

rate by listening to changes in mouse interaction allows for

progressive reWnement during interactive volume rendering.

This attribute is particularly important during the rendering of

large volume data. Comparison of texture-based rendering

performance with regard to varying sampling rates is demon-

strated in Figure 9.5.

For 4D or greater-dimensional data, such as time-varying

and multimodal volume rendering, additional complexity is

added to volume navigation. For time-varying rendering, the

volumes are often animated with controls similar to those used

for video playback [5]. Such video controls can be used to-

gether with 3D navigation, a concept that has found usage in

biomedical visualization applications such as those enabling

virtual endoscopy [49, 50], which requires movement both in

3D and in the temporal dimension.

9.4.2 Input Devices

In the design of Biomedical data visualization software, due to the

complexity in volume navigation, it is often beneWcial to custom-

ize the input devices. Rosset et al. [12] introduced the use of jog

wheels, which have been widely adopted in the video and movie

industry, thereby providing the ability to control the diVerent

dimensions more eYciently than is possible by conventional

means, such as a computer mouse. Alternative input devices are

readily available that can be used to replace or complement the

mouse, such as Hewlett-Packard’s 3D SpacePilot [51], consisting

of a knob that can be tilted, pushed, pulled, twisted, and turned in

a full arc to indicate the direction and velocity with which you

wish to move your model. Touch screens have been used as

alternative input devices for visualization applications.

With recent developments in and subsequent adaptations of

hardware for personal digital assistants (PDAs), tablet personal

computers (PCs), and ultramobile PCs (UMPCs), ever greater

numbers of visualization applications are taking advantage of

stylus and touch-sensitive screens. Figure 9.6 demonstrates the

potential use of a touch screen–enabled device for input control

to complement a conventional mouse. In this example, the

touch-screen input interface was separated from other screens,
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thereby freeing the screens to display only images. Such applica-

tions can Wnd usefulness for teaching and presentation purposes

[15, 52]. Bornik et al. [15] demonstrated a hybrid input device,

controlling a stereoscopic projection display (see Section 9.8.1 for

stereoscopy) and a desktop display. The input device, named Eye

of Ra, is a combination of a wireless mouse, a stylus pen, and

motion-tracking sensors. A camera setup is used to track the

input device movements, which in turn control the stereo-pro-

jected display for rapid and rough control, whereas a stylus pen

with mouse buttons is used to control the desktop display for

precise control. Kim and Varshney [53] used an eye-tracking

device for saliency-guided visualization. Here, based on the re-

gion of interest (ROI) on which the eye is focusing, visual em-

phasis is applied to highlight the ROI. It was shown to be eVective

in helping users navigate through complex volumetric datasets.

9.5 Volume Enhancement
and Manipulation

Enhancement and manipulation techniques applied to 2D

slice images, such as Wltering, segmentation, and geometrical

transformation, can also be extended and applied to 3D image

10% sampling rate
36.2 FPS

(a) (b) (c)

50% sampling rate
14.1 FPS

100% sampling rate
6.6 FPS

FIGURE 9.5 DiVerent sampling rates applied to whole-body PET data using texture-based volume

rendering. The lowest sampling rate has the poorest visual quality, with obvious loss of detail in

rendering the internal organ structures. Increasing the sampling rate improves rendering quality.

However, there is a decrease in the frames per second (fps) when the volume is interacted with

(rotated around all axes). For a more detailed view of this figure, please visit our companion site at:

http://books.elsevier.com/companions/9780123735836.

FIGURE 9.6 The touch screen is used to display the input interface that controls the

display of data on the other three screens. In this example, the displays are used to visualize

PET, fused PET/CT, and CT data, respectively (left to right). By separating the input

controls, additional screen space is available to display the images.
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volumes [2, 54]. When extended into the 3D domain,

additional information is available, and this therefore generally

allows for more accurate (if complicated) methods. An

example is the image interpolation that is applied when

images are scaled. In 2D data, bilinear interpolation is

applied, which calculates a voxel value based on the voxel’s

eight immediate neighbors. In 3D, trilinear interpolation may

be applied instead, which uses an additional 18 neighbors (for

a total of 26) in the calculation of a new voxel value, resulting

in more accurate interpolation while multiplying the complex-

ity. In volume-rendering visualization, additional enhance-

ments and manipulations are applicable by manipulating 3D

attributes such as illumination, shading, and transparency

[3, 28, 29].

This section starts with segmentation methods that are

fundamental to volume visualization, followed by transfer

function techniques that enable the control of visualization

attributes for volume enhancements.

9.5.1 Segmentation in Visualization

Segmentation is one of the core components in all image

processing, and its outcome dictates the quality of the overall

processing [31]. Often in volume rendering, the segmentation

of image data is employed in order to separate the VOIs from

the entire image. By selecting only the VOIs to be rendered,

unnecessary rendering of voxels containing little information

of interest can potentially be avoided. In surface rendering,

segmentation of VOIs is a mandatory requirement for surface

generation. The segmentation in volume rendering is also

useful for two-level rendering [13]; that is, a VOI can be

rendered using direct volume rendering for optimal quality,

while other structures of less importance can be rendered using

surface-based techniques.

Recent studies have demonstrated the potential of inter-

active segmentation in real-time 3D visualization [15,

55–57]. Such methods have the potential to provide a tremen-

dous advantage, since segmentation need not be restricted to

being a preprocess, but may also allow us to see resultant

rendering as segmentation changes are applied in real time.

Furthermore, these methods render only the segmented VOIs,

without placing them in the context of surrounding structures.

[55] reported a method of correcting segmentation errors from

volume-rendered VOIs by adjusting the radius of the viewable

volume to reveal the surrounding image, which allows the

physician to correct for segmentation errors in volume render-

ing. The correction was made by rendering only the surround-

ing voxels within the radius of the VOIs. An interactive

segmentation in volume-rendered visualization (texture

based) was introduced in [58] for dynamic PET images.

Here, the PET images were presegmented using fuzzy

c-means cluster analysis, where a fuzzy-logic algorithm assigns

probabilistic weightings to every voxel, representing the likeli-

hood that the voxel is a member of a particular segmented

cluster (a feature). These weights were then used to inter-

actively adjust the segmentation via computationally eYcient

thresholding, as shown in Figure 9.7.

9.5.2 Transfer Function SpeciWcation

A considerable amount of research has been carried out in

the application of transfer functions as a tool for feature selec-

tion in volume rendering of biomedical images. A typical feature

classiWcation for a particular anatomical structure in volume-

(a) (b) (c) (d)

FIGURE 9.7 Interactive segmentation of dynamic PET images, with changes in the segmentation of

the brain tumor’s deWnition. Top row is the volume-rendered images of the segmented structures.

Bottom row is the 2D representation of these volumes, with segmentation results highlighted in red

outline. Image (a) is the original image, and (b) to (d) are the results from varying the segmentation

parameter in real-time volume rendering. For a more detailed view of this figure, please visit our

companion site at: http://books.elsevier.com/companions/9780123735836.
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rendering visualization can be achieved by a transfer function

speciWcation [44, 59, 60]. The transfer function assigns proper-

ties such as color, via a lookup table (LUT), and opacity to the

voxel data in real time to alter the visualization of the data.

Transfer functions are often applied in 1D to the voxels’ values

from the volume data, as shown in Figure 9.8, which demon-

strates the selection of lung nodules and bone in a CT volume.

The capabilities of transfer functions can be extended to

multiple dimensions, to selectively visualize data through the

control of gradient magnitude and second derivatives of voxels’

intensity [44]. Increase in transfer function dimensions also

increases complexity. Setting an ideal transfer function speciWca-

tion can be tedious and time consuming, let alone confusing.

Automation of transfer function speciWcations and improve-

ments in user-interface design have the potential to ease their

usage and improve eYciency. Konig and Groller [61] introduced

a transfer function interface in which variations in data values,

color, and opacity attributes from the input data were arranged

in thumbnail views for user selection. Meanwhile, Marks et al.

[62] reported a design gallery, which presents the user with all

possible transfer function variations that are automatically gen-

erated and organized based on the input render. A novel and

intuitive interface for controlling 3D transfer functions (based

on data value, gradient magnitude, and second directional

derivatives) was presented by Kniss et al. [44] through a clever

use of probing and classiWcation widgets.

9.5.3 Spatial Transfer Function

Section 9.5.1 introduced the importance of incorporating seg-

mentation into the visualization of biomedical data. Instead of

rendering the segmentation result, it can be used to specify the

transfer function. This allows for the selection of a transfer

function based on the spatial properties of the image volume

rather than using an LUT, as described in the previous section.

An automated approach that removes or suppresses the less

important objects of a scene to reveal more important underlying

information was reported by investigators [30, 63], who applied

diVerent compositing strategies based on the importance of the

object calculated via image segmentation, which also provides

control of the opacity of the voxels. Tzeng and Ma [64] discussed

the use of fuzzy-based cluster analysis to segment and classify

data into individual objects. This approach enables user manipu-

lation of rendering properties such as LUTs and opacity, as well as

fuzzy classiWcation to render spatially related voxels on an object-

by-object basis. Zhou et al. [65] reported distance-based volume

rendering. Here, the distance of voxels to a focal point was used

to control the optical properties of nearby voxels to emphasize

the objects of interest and fade out other parts.

9.6 Large Data Visualization
and Optimization

Advances in medical scanning technologies are constantly push-

ing the limits of visualization techniques. Medical data storage

commonly exceeds terabytes; such data require advanced com-

putation, are often restricted to dedicated hardware conWgura-

tions (i.e., parallel rendering), and require software-based

optimization. Texture-based volume rendering (Section 9.3.3)

is a software-based optimization that permits visualization of

large medical data using the ability of modern graphical pro-

cessing units (GPUs) to render large amounts of textures. Al-

though texture-mapped rendering produces interactive

visualization of the data, the capacity of volume rendering is

limited to the size of the texture memory in GPUs (currently at

512 MB [megabytes] for a single consumer GPU), and thus it is

diYcult to maintain an interactive frame rate when large data

have to be rendered [39, 66].

This section highlights some of the solutions for optimizing

volume-rendering visualization of large biomedical data.

A combination of the methods discussed in the subsections

that follow can be applied and has been shown to produce

particularly good results in texture-based volume rendering

[40, 67, 68]. Finally, we show that parallel rendering achieves

the computation of a single rendering using several networked

computers.
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FIGURE 9.8 (a) CT volume of the lung using texture-based rendering;

(b) application of transfer function speciWed in (c) to the volume in (a).

A spike-based transfer function appears to produce the most appealing

results in revealing structures of interest with gradual fade-out of nearby

structures to the selected structures (lung and bone) in CT visualization.

For a more detailed view of this figure, please visit our companion site at:

http://books.elsevier.com/companions/9780123735836.
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9.6.1 Multiresolution

Multiresolution volume rendering is a common optimization

technique that allows applications to interactively render large

volume data by assigning multiple levels of detail (LODs) in

volume rendering [42, 66, 69]. An LOD is used as a controller

for the trade-oV between quality of rendering and interactive

performance and is often applied to data such that when the

entire dataset is viewed, a low LOD is applied, which progres-

sively increases in detail as smaller sections of the data are

selected for visualization. Multiresolution rendering works by

computing data structures that are constructed by decompo-

sition of the data into bricks [66], as shown in Figure 9.9,

which illustrates variation of rendering resolution according

to diVerent LODs. A typical data structure utilized in multi-

resolution rendering is an octree, which is a simple yet eYcient

algorithm that breaks up the data into uniformly shaped

rectangles. The bricks of diVerent LOD levels are combined

using interpolation to minimize the visual artifacts that may

arise with diVerent LODs.

9.6.2 Empty Space Skipping

At any particular scene during volume rendering, only a por-

tion of the entire data is visualized. Empty space skipping is a

technique of avoiding the rendering of portions of the volume

not being visualized, through the use of precomputed data

structures [67, 68]. The principle of empty space skipping is

to divide the data into subsections, as in multiresolution

rendering. In the rendering phase, visibility testing is per-

formed to determine whether the subsection is visible and

should be rendered. There are many data structures that can

be used to partition the data, which have optimal performance

under varying visualization requirements [67, 70].

9.6.3 Early Ray Termination

Early ray termination is probably the best-known optimization

technique in ray-casting volume rendering [68, 70]. As its

name implies, this technique is based on the termination of a

ray when the contribution from that ray is minimal in the

computation of the voxel to display. Early ray termination

works only in ray casting that is traversed from front to back.

9.6.4 Parallel Rendering

Whereas the methods described in Sections 9.6.1 to 9.6.3 work

on optimizing the computation of data via software-based

approaches by trading oV between quality and performance,

alternate approaches to the rendering of large data harness the

computation from multiple graphic cards (hardware) for par-

allel rendering [40, 71–73]. One way to obtain parallel render-

ing is to split the rendering processes into several distinct

functions that can be applied in series to individual data

items. Such a technique is often favored for surface rendering

applications [71], which require several separate functional

stages: segmentation, surface generation, and then rendering.

Instead of computing functions in series, a more common

method is to split the data into multiple streams, which can

then be operated independently and simultaneously, with each

stream responsible for rendering a subsection of the data. All

of the subsections are then combined together. Parallel data

streaming has been successfully applied on a variety of plat-

forms, ranging from networks of PCs to massively parallel

supercomputers for the visualization of large biomedical data

via texture-based or direct volume rendering [40, 71].

9.7 Dual-Modality Positron Emission
Tomography–Computed
Tomography Visualization

In the visualization of dual-modality PET/CT, the PET images

provide high sensitivity in tumor detection and tissue charac-

terization, while the coregistered CT data provide the localiza-

tions of the anatomical landmarks and boundary deWnitions of

tumors and organs [1, 74]. PET/CT images have led to a new

paradigm in biomedical diagnosis and interpretation by ena-

bling visualization of fused anatomical and functional struc-

tures. These dual-modality images, which consist of large

image dimensions (full-body PET/CT data are typically in

the range of 512� 512� 262 for CT and 128� 128� 262 for

PET), have introduced interesting challenges for eYcient 3D

visualization [74] and stand to beneWt signiWcantly from

LOD 1 LOD 2LOD 3LOD 4Viewer’s eye 

Planes

FIGURE 9.9 Multiresolution for single volume data with view-

aligned planes. Each brick (square box) in the Wgure has the same

data dimension but a diVerent geometry size; that is, smaller bricks

have the same amount of information used in rendering as bigger

bricks, thereby increasing the resolution and quality of data nearest to

the viewing plane.
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advances in visualization technologies. The following section

discusses the application of visualization techniques with PET/

CT data.

9.7.1 Dual-Transfer Function

In PET/CT visualization, PET and CT data with independent

LUTs are often required to be fused in real time. These volumes

may be fused together into a single volume prior to volume

rendering [5] or individually rendered using diVerent rendering

techniques, such as surface and direct volume rendering, which

are then fused together as a preprocess to form a resultant

volume [13]. These approaches all rely on the fusion of volumes

to be a preprocess prior to volume rendering and are subse-

quently limited to the application of volume-rendering

manipulations, such as window/level and transfer function, to

the fused volume and cannot be applied individually to its

component scans. Alternatively, fusion of multiple volumes by

data intermixing in the rendering phase in direct volume ren-

dering was proposed by Cai and Sakas [75], thus allowing

interactive and real-time fusion of the volumes.

The scenario of detecting tumor structures in a lung cancer

patient illustrates the requirement to deWne transfer functions

independently in PET/CT visualization. Selecting the VOI

from CT (e.g., by transfer function) and adjusting window/

level via transfer functions of PET necessitate manipulation of

individual volumes, with the ability to visualize the changes in

the fused volume in real time. Physicians may beneWt from

visualizing the functional tumor apparent in the PET scan

alongside corresponding anatomical structures for localization

from the CT scan. Kim et al. [76] suggested using dual-transfer

functions for PET/CT images, thereby providing separate 1D

LUT transfer functions independently to the PET and CT

volumes to be controlled, with the resultant volumes being

fused in real time. Results from use of dual-transfer functions

are shown in Figure 9.10. An axial view of a fused PET/CT

volume is shown in Figure 9.10(a), with its dual-LUT transfer

function in Figure 9.10(b). Equal fusion ratios were applied

that were able to visualize the functional tumors (indicated by

arrows) with surrounding anatomical structures. Figure

9.10(c) shows the result, using a dual-LUT transfer function

in Figure 9.10(d). The transfer function was applied to the PET

component for the selection of the LUT range belonging to

tumors (high LUT values).

The slope of the transfer function enables gradual increase

in the visualization of the LUT values of the voxels as these

values reach that of the tumor. Therefore, no voxels belonging

to the tumors were erroneously excluded, and they avoided

abrupt discontinuation of the selection of structures. For CT, a

trapezoidal transfer function was applied to visualize the

boundaries of anatomical structures while minimizing spatial

overlap with the functional tumor structures. These results

demonstrate that the dual-LUT transfer function can be util-

ized to control the fusion between the PET and CT volumes to

avoid overlap and highlight the structure of interest, in this

case the tumors, while still retaining the anatomical context

provided by the CT data. A diVerent combination of dual-

transfer functions is shown in Figure 9.10(e, f). The real-time

dual-LUT transfer function applied to the PET/CT volume

rendering provides immediate feedback on the accuracy of

the feature selection and provides selective rendering of ana-

tomical and functional structures. This permits improved visu-

alization of the anatomical frame of reference and localization

of the tumors when compared with the fusion of PET/CT in

Figure 9.10(a).

9.7.2 Spatial Transfer Function

Application of the dual transfer function in PET/CT data en-

ables visualization of, for example, tumor structure from PET

with surrounding anatomical structures from CT. However, due

to the tumor having similar color values as functional organs

(e.g., the liver), identiWcation of the tumor using only a transfer

function based on the LUT is limited. For such cases, if the

location of the tumor is known, a spatial transfer function can

be applied that allows control of the viewable range of the

segmented structure according to the spatial distance of voxels

to the segmented structure [30, 64, 65]. Kim et al. [77] pre-

sented an application of spatial transfer to PET/CT data, in

which tumors identiWed on PETwere segmented as a preprocess

(Figure 9.11(a)). The segmentation result was then used to

construct a distance map according to spatial distance of voxels

to the segmented structure based on the algorithm introduced

by Fichtinger et al. [4]. These distances were used to calculate

the weights assigned to each individual voxel in the PET, as

illustrated in Figure 9.11(b). The weights were then multiplied

with the PET, during voxel-by-voxel data intermixing with CT

[75]. Several parameters in this algorithm can be Wne-tuned.

Firstly, the weight applied to the PET data can be controlled in

such a way that greater emphasis can be placed on voxels near

the tumors. Secondly, cutoVs can be added, such as the red

circles in Figure 9.11(b), which can be used to control the

application of the weights to only the voxels that reside within

these cutoVs. The result of the spatial transfer function is shown

in Figure 9.11(c), where tumors are clearly depicted with their

surrounding anatomical CT structures. Here, a cutoV of 30

voxels was applied. The spatial transfer function has the advan-

tage of visualizing spatially related voxels to the segmented

tumor and enables gradual increase in the transition of the

fusion ratio of the voxels as they approach the tumor.

9.7.3 Interactive Segmentation and Volume
Interchange in Positron Emission
Tomography–Computed Tomography

Instead of using segmentation results for the spatial transfer

function, they can be used directly in volume rendering.

Rendering the segmented VOI as an independent volume
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FIGURE 9.10 Application of dual-LUT transfer functions. (a) Axial view of PET/CT with its dual-LUT transfer function in (b) set to equal

fusion ratio. Tumors inside the lungs are highlighted by arrows. (c, d) Selection of tumors from PET and the surrounding anatomical lung

boundary from CT. (e, f) Identical PET transfer function with inverted and modiWed CT transfer function. For a more detailed view of this

figure, please visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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FIGURE 9.11 Overview of the segmentation-based spatial transfer function applied to PET/CT visualization. (a) Original PET

image (single axial-view slice) with segmented structures highlighted (arrow); (b) distance map calculated from the segmented

result; (c) fused PET/CT result from the spatial transfer function using (b). For a more detailed view of this figure, please visit our

companion site at: http://books.elsevier.com/companions/9780123735836.
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that is transparent, together with the original PET and CT

volumes, is potentially useful in highlighting the VOIs.

In PET/CT, such ability can be further extended to allow

interchange of the volumes, as shown in Figure 9.12 [41].

Here, the segmented VOIs from the PET data are shown

rendered together with either data from PET (Figure 9.12[b])

or CT (Figure 9.12[c]). This was possible through utilization

of the high memory bandwidth capacity of modern graphic

hardware to rapidly transfer 3D textures from the system

memory into the graphic memory, which was used to replace

an old volume in the graphic memory with a new volume in

real-time volume rendering.

9.8 Data Display Devices

Previous sections of this chapter have discussed algorithms and

methods that are used to generate volume-rendered visualiza-

tions. The hardware devices that display these visual outputs are

equally important. The utilization of digital displays in biomed-

ical data visualization in recent times has been accelerated by the

acceptance of picture archiving and communications systems

(PACSs) [78] for digital image management, as well as by the

additional abilities that digital images provide, such as image

processing and volume visualization. The eVectiveness of all

diagnostic imaging visualization is aVected by the quality of

the display devices [79]. In the current diagnostic workstation,

it is common to Wnd multiple LCD screens for use in visualizing

biomedical data in 2D and 3D views. These screens typically

have resolutions of 1600� 1200 and greater, with pixel depth of

24-bit color, thus providing suYcient display capacity for

modern medical imaging modalities. Apart from LCDs,

more advanced display devices are being designed and devel-

oped for diagnostic rooms and operating theaters. These

include stereoscopic displays for virtual reality and depth

display devices.

9.8.1 Stereoscopic Visualization

On a 2D screen, true 3D visualization can be obtained only by

displaying the data stereoscopically, thereby creating the illu-

sion of depth. This technique has been widely adopted in

biomedical visualization for creating virtual reality environ-

ments and has found many uses in surgical simulations [14,

50, 80]. Fundamentally, stereoscopy presents slightly diVerent

images to the left and right human eyes, such that each eye can

see only a single image. The most routinely utilized stereos-

copy equipment in biomedical visualization are infrared syn-

chronized shutter glasses, which allow the left/right eye images

to be quickly alternated (generally at 60 Hz). Stereoscopic

visualization has also been applied to immersive environ-

ments, with examples such as Immersadesk [81] and the

CAVE virtual-reality environment [82, 83]. As an alternative

to shutter glasses, which restrict the viewing capability to a

single user per computer screen, the study in [80] proposed

polarized Wlters to separate the stereo information, allowing

multiple users to visualize from the same screen with relatively

cheap polarized glasses.

As the requirement of wearing glasses was an impediment

for adoption of stereoscopic visualization, there has been

signiWcant research by display manufacturers (in particular,

Sharp [84] and Philips [85]) aiming to allow realistic 3D

viewing without the need for 3D glasses. Glasses-free, or auto-

stereoscopic, 3D displays work by the device being able to display

two separate images concurrently. These images have the same

disparity, and the display device uses switchable parallax barrier

technology [84] to ensure that each eye sees only one of these

images; in doing so, it creates the illusion of depth without the

need for glasses to separate the diVerent signals.

9.8.2 Depth Projection

Stereoscopy is a visualization technique that creates the illu-

sion of depth, and therefore the display has no physical depth

deWnition [86]. This has major limitations in creating true

depth perception. A device produced by LightSpace Technolo-

gies, the DepthCube [87], is a solid-state multiplanar volumet-

ric display that uses a high-speed video projector to display a

sequence of slices of the 3D image into multiplanar optical

elements. The individual slices in the multiplanar views are

than anti-aliased to result in smooth images.

(b)

(d)(c)

(a)

FIGURE 9.12 (a) Volume rendering of PET/CT image using texture-

based volume rendering; (b) automated FCM (fuzzy c-means cluster-

ing) segmentation result with segmented tumor structures fused with

PET; (c) result from varying the PET segmentation parameter to select

voxels that more closely resemble the tumor; (d) segmentation result

of (b) fused with CT. All volumes have been fused with equal fusion

ratios. The transparency level and the LUT of the segmented volumes

can be adjusted to reduce obscuration of underlying structures rele-

vant for the interpretation of the images and segmentation results. For

a more detailed view of this figure, please visit our companion site at:

http://books.elsevier.com/companions/9780123735836.
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9.9 Applications of Biomedical
Visualization

Modern visualization and display technologies are enabling

the development of clinical applications that provide new

approaches for interacting with and interpreting biomedical

data, such as in virtual biopsy [88], motion activity visualiza-

tion [89], and applications in radiotherapy planning [8]. These

applications are capable of providing complete 3D views of

the human body that are rendered in real time to volume

navigations and manipulations. Furthermore, advances in

visualization and display technologies have accelerated the

developments of computer-integrated surgery (CIS), IGS, and

CAD systems (which are detailed in Chapters 16 and 18).

This section summarizes some of the research that has been

made possible by the utilization of cutting-edge biomedical

data visualization technologies.

Research eVorts in biomedical data visualization have been

focused primarily on reconstructing data into 3D volumetric

views. However, much other information and many other uses

can be obtained from the same data—for example, by tracer

kinetic modeling and the modeling of diVerent elements

(e.g., bones, cartilage, ligaments, muscles, tendons) and their

interrelationships [89–94]. A study by Feng et al. [90, 91]

discussed the medical parametric imaging that requires mod-

eling and parameter estimation for certain metabolic, pharma-

cokinetic, endocrine, or other biochemical systems at voxel-by-

voxel level. It is an important technique that provides image-

wide quantiWcations of physiological and biochemical func-

tions and allows the distributions of these functions

corresponding to anatomical structures to be visualized.

(For more information about parametric imaging, refer to

Chapter 6.)

In another study by Magnenat-Thalmann et al. [93], the

visualization and understanding of functionalities of human

articulation of the shoulders is presented. Here, a generic 3D

shoulder was constructed as a physically based model along

with other elements and was used to produce a simulation of

movements and deformations. This project used the Visible

Human Dataset (VHD) [95] and pioneered the innovative use

of 3D visual simulation in the medical computing Weld. The

project is currently expanding to the study of hip articulation

using dynamic MRI. A study by Benjamin et al. [89] presented

the ability to visualize an accurate estimate of joint kinetics for

the understanding of joint motion activity. The modeling and

simulations of hip articulation were validated using medical

data and demonstrated the potential to provide physicians

with the beneWt of having the technology that enables visual-

ization and observation of motion activity (in 3D) for use in

diagnosis of problems of human-body articulations. Further

work of this project will investigate the biomechanical model

of the hip to simulate and visualize its motion and to under-

stand the possible malfunctioning of the articulation in indi-

vidual patients. The biomechanical model will rely on the

interrelations of the various anatomical elements involved in

joint articulation and their inXuence on the range of motion of

the hip [89, 94].

The Visible Human Project (VHP) [95] is an eVort to create

a detailed dataset of cross-sectional photographs of the human

body, in order to facilitate anatomy visualization applications

for education, research, and clinical diagnosis. The importance

of this project has led to the formation of many research

endeavors, such as the motion modeling study previously

noted and the development of Korean [96] and Chinese

VHPs [97]. The Biomedical Imaging Resource (BIR) at the

Mayo Clinic was one of the Wrst laboratories to be involved in

VHD-related research, and during the last decade, it has pro-

duced many novel 3D visualization and image processing

methods (e.g., rendering, registration, segmentation, model-

ing, classiWcation) and evaluated the eVectiveness of these

methods for eventual applications in clinical diagnosis and

therapy [20, 98, 99]. In the BIR’s recent study, Robb et al.

[99] developed an anesthesiology training simulation system,

in close collaboration with clinicians, using the VHD as the

patient. This system enabled the simulation of examinations

using 3D visualization of the relationships among the anatom-

ical structures, in addition to its use in needle insertion prac-

tice. The training system was built through an immersive

environment (a virtual operating theater) created through

the use of a head tracking system, a head mounted display, a

needle tracking system, and haptic input/feedback. The user

may interact with the virtual patient using a wand or haptic

feedback devices that provide a sense of touching the patient

[100, 101]. This system has been extended to medical simula-

tion used for popliteal nerve (knee) block and prostate bra-

chytherapy training [98] and can also be used with individual

patient scans as well as the VHD.

An innovative project that deals with full-body virtual au-

topsies was recently reported by Ljung et al. [88]. This study

reported a procedure based on interactive 3D visualization of

large-scale, high-resolution CT data of human cadavers for

virtual autopsies, demonstrating its potential to provide key

information in guiding criminal investigations. A unique chal-

lenge in this project arises from the large volume of data

acquired from multidetector CT (MDCT), which captures

8,000 transaxial images for a full-body scan (data size of several

gigabytes). In order to interactively visualize these MDCT

images in real time, a state-of-the-art volume-rendering

pipeline was developed that applied and reWned several

visualization optimization algorithms, including transfer func-

tion–based adaptive LOD [102], interblock interpolation

[103], and a single-pass ray casting of multiresolution volumes

[104], as well as memory management techniques. Further-

more, this study introduced an extension to the GPU-based

ray-casting algorithm that enabled eYcient dual transfer func-

tion rendering for fast localization of, for example, metal

fragments. The described autopsy procedure was evaluated

using examples from routine forensic examinations and
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demonstrated great potential as an imaging application to

complement standard autopsies by enabling broad and sys-

tematic examination of the full body in forensic investigations.

DiVusion tensor imaging (DTI) is an MRI technique (also

known as DT-MRI) that enables the measurement of the

diVusion of water in tissues such as bone, muscle, and white

matter of the brain. Here, diVusion refers to the ability of water

molecules to migrate from one part of a biological system to

another, in random molecular motion (moving faster in some

directions than in others) [105, 106]. This geometrical feature

of DT-MRI enables quantitative characterization and visual-

ization of the local structures in tissues. Due to the large

information available in DT-MRI, visualization approaches

for it constitute a challenging Weld, with many alternatives

for representing the DT-MRI image. One tool for interpreting

the image is the use of a glyph—a parameterized icon that

represents the data with its shape, color, texture, location, etc.,

and can be used to represent the diVusion properties [107] (see

Section 9.3.4). In a recent study, Kindlemann and Westin [108]

proposed a glyph packing method, which would use a particle

system with anisotropic potential energy proWles to arrange

glyphs, rendered using a texture-based technique, into a dense

pattern that would display some of the visual continuity of

texture-based visualizations while maintaining the ability to

discern the full tensor information at each glyph. This study

demonstrated that the use of visualization techniques can

complement and also reveal additional information that can

aid in the diagnosis and interpretation of DT-MRI images.

9.10 Summary

With continuous development in image acquisition technolo-

gies that are resulting in ever-increasing data sizes, the need for

visualization of these data in an eYcient and intelligent man-

ner is becoming crucial for clinical diagnosis and image under-

standing. In line with advances in imaging modalities,

development of new theories and reWnement of techniques in

biomedical data visualization are improving the way these data

are utilized and interpreted. Furthermore, new discoveries in

visualization technologies are enabling alternate approaches to

conventional methods. This chapter introduced the visualiza-

tion and display technologies that are currently being

employed in clinical applications, as well as techniques that

have the potential to enhance and provide improved diagnos-

tic capabilities.

Starting from 2D and 3D visual methods, core visualization

technologies were discussed, including navigation interfaces,

volume enhancement and manipulations, and large data visu-

alization. A PET/CT visualization was presented as an example

that took advantage of many of the techniques discussed in this

chapter. Finally, the next generation of display devices and

technologies was brieXy covered with regard to their potential

clinical applications. Future developments in visualization and

displays for biomedical data will carry on the development of

new technologies and produce new ways to improve the dis-

play and interpretation of biomedical data.
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9.11 Exercises

1. In Figure 9.3, renders of CT volume data using three diVer-

ent techniques are shown. List the main diVerences among

the rendering techniques and their advantages/disadvan-

tages in biomedical data visualization.

2. Volume-rendering visualization introduces several render-

ing attributes, such as shadowing and transparency, that

create more realistic display of biomedical data. Together

with conventional enhancement tools such as window/level,

these attributes provide powerful tools for volume enhance-

ment. List and give examples of how these attributes are

used for visualization enhancement.

3. Transfer function speciWcation is applicable in 1D, 2D, or

greater dimensions. This chapter discussed multidimen-

sional transfer functions used for LUT manipulations. Dis-

cuss how multidimensional transfer functions can be

applied in the spatial domain.

4. Segmentation is a key component of visualization. How-

ever, interactive segmentation is often too computationally

intensive for real-time performance in volume rendering.

State how this problem can be minimized, in terms of

software and hardware solutions.

5. State the basic principles of parallel direct volume rendering

and why this technique is favored for surface rendering

techniques.

6. Section 9.4.2 presents diVerent input devices that may

be used for navigating volumetric biomedical data. Design

and analyze a setup of input devices for use in controlling

the multidimensional transfer function of multivariate

biomedical data.
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10.1 Introduction

The current model for health care is built around hospitals,

doctors, nurses, and other medical personnel. This model has,

up to now, well served the needs of developed countries and

relatively young, healthy, and less mobile communities, by

sharing costly infrastructure and medical personnel. However,

if we continue with this model, the health care system will be

stressed to the point of collapse for a number of reasons, and

alternative solutions need to be developed to reduce health

care costs while preserving or enhancing the quality of life of a

country’s citizens. Some of the reasons are:

. Health care is becoming too expensive to deliver. For

example, the U.S. Congress, already overburdened with

an annual health care bill of more than $1.5 trillion, fears

that the health care system will be unable to deal with the

increase of potential patients [1].

. Population demographics are changing. The worldwide

population of people over the age of 65 is expected to

double from 375 million in 1990 to 761 million by 2025

[1]. This implies that preventive and/or assistive care must

remove the expensive components of health care. Hospital

visits and face-to-face consultations with medical person-

nel are required only when absolutely necessary.

. Society is increasingly mobile. With the advance of the

Internet and mobile technologies, people are becoming

extremely mobile, both at work and in their social activ-

ities. Health services must follow people on the move,

not expect people to come to the service.

. Home care is increasingly preferred. Many people prefer

living in their own homes during treatment rather than

being in a hospital or nursing home, provided there are

satisfactory means for assisting them with home health

care services.

Mobile health (m-health) and telemedicine provide alterna-

tive and supplementary solutions for coping with new problems

in health care. Telemedicine is the use of telecommunications

and information technologies for the provision of health care to
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individuals at a distance and transmission of information to

provide that care [2]. M-health is about monitoring the health

status of, or providing treatment to, people who are on the

move. Telemedicine is often used interchangeably with m-

health, but its meaning is diVerent; telemedicine focuses on

the transfer of medical data, particularly medical images. How-

ever, in both telemedicine and m-health, medical diagnosis

takes place remotely, and most m-health applications involve

the teletransmission of medical data.

Clearly, communication technologies and network infra-

structures play crucial roles in these solutions. Wireless com-

munication is required to support mobile people and medical

practitioners. Network infrastructures are needed to support

the transfer of medical information and expert advice neces-

sary for treatment. Sensor networks are necessary to keep

watch on the vital signs of users who require constant support.

Communication technologies are being used in health care

today in a variety of ways—including notiWcation, messaging,

web access, videoconferencing, teleradiology, telesurgical con-

sultation, and access to legacy applications. The integration of

health care with the Internet, wireless, telecommunication, and

mobile technologies has led to increased accessibility to health

care providers, more eYcient processes, and higher quality of

health care services [3–5].

The deployment of communications technologies and net-

work infrastructures aims at eliminating the expensive com-

ponents of the conventional health care system, providing

better health care services to an increasing number of people,

and reducing the overall health care cost.

The aim of this chapter is to provide a basic understanding

of concepts in data transmission and communications with

wired and wireless technologies and a discussion of the role of

network architectures and infrastructures for supporting cur-

rent and emerging health care services. In particular, the chap-

ter focuses on:

. Elucidating the concepts of information and communi-

cation channel capacity

. Providing explanations of communication and data

transmission techniques

. Discussing the theoretical limitations of a communica-

tion channel

. Presenting the Internet architecture and the World Wide

Web

. Discussing wireless communication technologies and

wireless mobile networks

. Introducing sensors and associated wireless technologies

for health monitoring.

. Presenting applications in telemedicine/m-health that

require the support of sensors and communication

technologies

The chapter is organized as follows: Section 10.2 discusses

fundamental concepts of data, data transmission, and the

communication channel. This section reviews foundation con-

cepts of information, the nature of data, bandwidth, limita-

tions of a communication channels by Shannon-Hartley law,

digital/analog signals, modulation, Asynchronous Digital Sub-

scriber Line (ADSL) technology, and packet switching.

Section 10.3 discusses network layered architecture, the

Internet, and the World Wide Web. This section discusses the

role of diVerent layers of the architecture of local area and wide

area networks. Section 10.4 discusses the essentials of wireless

technologies and networks; in particular, it discusses wireless

technology from radio frequency to radio transmissions

schemes, through narrowband, wideband, and ultra wideband.

The section also reviews a number of wireless networks

deployed in telemedicine such as mobile cellular networks,

wireless local area networks, personal area networks, and sat-

ellite communications.

Section 10.5 discusses sensors and their associated wireless

infrastructure for health monitoring. This section focuses on

sensors, wireless sensor networks and their requirements in

supporting health monitoring systems. Section 10.6 presents

several relevant applications that illustrate the use of various

technologies discussed in earlier sections, as well as some

modern applications of wired and wireless networks in tele-

medicine/m-health which involve emergency, location-based

services, tele-training, and tele-operated robot systems.

10.2 Transmission and Communication
Technologies

The most important concept in data communications is that

the maximum rate at which information is transmitted over a

channel (i.e., the channel capacity C with units of bits

per second [bps]) is proportional to the available bandwidth.

This concept is generally well understood, in that end users

today seek high-bandwidth connections to the Internet, pre-

ferring asymmetric (or asynchronous) digital subscriber lines

(ADSLs) or cable over dial-up connectivity.

Of course, the amount of information transmitted depends

on the quality of the link, as well as the technology used. If the

link or channel quality is poor and there are high levels of

noise, then this will reduce the rate at which information can

be transmitted over the link. Before we continue, we need to

clarify and deWne more precisely the terms introduced. We will

use real examples of communication technologies to illustrate

their principles; unfortunately, this means we will come across

many TLAs (three-letter acronyms!).

. Information (I ): This is a precise term in communica-

tions, referring to units of bits. It is actually a measure of

uncertainty or surprise. If the content of a message is

known before it arrives—that is, if it contains no new

information—then the information of the message is 0
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bits, regardless of its length. In mathematical terms, if the

probability P of a message arriving is 1, then I¼ 0. On the

other hand, if P¼ 0 (i.e., receiving the message is a

total surprise, something that should not have happened),

then I¼1. In fact, I ¼ log2 (1=P) bits, where log2 (x) ¼
log10 (x)= log10 (2).

. Bandwidth (B): Because B is proportional to channel

capacity C, sometimes bps is used as the unit of band-

width—for example, one might say that the bandwidth

of an 802.11-bit wireless link (one of a range of WiFi

technologies) is 11 Mbps (megabits per second). How-

ever, strictly 11 Mbps is the data rate, and the bandwidth

is the amount of frequency spectrum available in the

channel, which is measured in hertz (Hz) or, to give it

its older name, cycles per second (mains electrical fre-

quency is either 50 or 60 Hz, depending on the country,

which means that the polarity of the voltage changes

from þ to � 50 or 60 times a second).

For example, the WiFi 802.11b wireless technology uses the

2.4 gigahertz (GHz) Industrial, ScientiWc, and Medicine (ISM)

frequency band, which has a frequency range from 2.4 to

2.4835 GHz; that is, a bandwidth of (upper frequency –

lower frequency) 0.0835 Ghz, or 83.5 MHz, although it is

divided into multiple, overlapping channels of 22 megahertz

(MHz) bandwidth each (nonoverlapping channels are chan-

nels 1, 6, and 11).

. Noise: This is any unwanted signal, ranging from ran-

dom thermal noise generated in electronic components,

to interference from other signals, to noise generated by

lightning, etc. Without noise, we could send any amount

of information over a channel. A precise voltage level

could be assigned as a character representing, say, an

encyclopedia; unambiguous reception of this voltage

would be equivalent to receiving all the information in

the encyclopedia. It is the presence of noise that ulti-

mately limits the capacity of any channel.

We are now in a position to understand equations linking

the channel capacity C with the bandwidth B. For a digital

technology that uses M characters (e.g., binary communication

is a digital technology with M¼ 2), the maximum channel

capacity or data rate is given by Hartley’s law:

C ¼ 2B log2 (M)bps:

Hence, for a binary system, C¼ 2B and (by deWnition) there is

1 bit per symbol, whereas for a technology with 16 distinct

characters (i.e., M¼ 16), then C¼ 8B and there are

log2 (M) ¼ 4 bits per symbol. So, one approach to increasing

data rates is to use more complicated transmission technologies

than binary; but Wrst, consider binary signaling.

The binary characters can be diVerent voltages representing

0 and 1, or diVerent frequencies, or even diVerent phases of the

same frequency. For a binary system, we use the term shift

keying—so, if we use voltage levels, then we are using ampli-

tude shift keying (ASK); if we use two diVerent frequencies, we

are using frequency shift keying (FSK); and if we use two

phases of the same frequency, we are using phase shift keying

(PSK). In all cases, we are using broadband communication,

where we are modulating a baseband signal (our data) onto

a sine wave carrier signal. Mathematically a sine wave is

expressed as

v(t) ¼ A sin (2pft þF) volts,

where either the amplitude A (V), the frequency f (Hz), or the

phase F (radians) can be modulated to carry a signal (or two or

more variables can be simultaneously modulated). For example,

the early V.21 modem used FSK (two frequencies for the trans-

mit path: one corresponding to binary 0 and the other to binary

1; and a diVerent pair of frequencies on the return path to avoid

interference). The chosen frequencies are all in the frequency

band of an analog telephone channel, that is from 300 Hz to 3.4

kilohertz (kHz) (with bandwidth of 3.1 kHz). It can transmit

300 bps (yes, only 300 bps!) in full duplex (FDX) mode: trans-

mitting 300 bps and receiving 300 bps simultaneously over the

same two-wire (2W) circuit. Note that other transmission

modes are half duplex (HDX), where a channel is used alter-

nately for the transmission and reception directions, and a 4W

circuit uses two 2W circuits, one for the transmission and one

for the reception direction.

For a system with more characters, it is common to combine

both amplitude and phase shift keying. For example, eight

phases might be distinguished, each with two voltage levels,

giving 16 distinct characters. Combining amplitude and phase

is called quadrature amplitude modulation (QAM): in this case,

16-QAM with 4 bits per symbol. Using an advanced technique

called trellis coded modulation (TCM) enables higher data

rates to be reached. TCM uses a forward error correction

(FEC) code, where the signal contains some redundant infor-

mation, enabling some characters to be corrected immediately

on reception based on information in the received signal.

Although sending redundant information increases the

amount of data to be sent, the overall eVect of the error

correction is to enable the data rate to be increased. The FEC

code is then modulated using QAM.

The result of TCM is that a V.34 modem can reach speeds of

33.6 kbps FDX over a dial-up connection (with TCM and

1,664-QAM, i.e., 10.7 bits per symbol), this rate being close

to the theoretical limit, which is determined by the noise on

the channel. The equation for the maximum channel capacity

in the presence of noise is called the Shannon-Hartley law:

C ¼ B log2 (1þ S=N) bps:

A channel capacity C¼ 33.6 kbps and B¼ 3.1 kHz requires

a high-quality channel with a signal-to-noise power ratio

(S/N) of at least 1,830 (a ratio usually expressed in dB for

convenience, where 10 log10 (1830) ¼ 32:6 dB).
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Other modems, such as the V.92, which allows a maximum

rate of 56 kbps using pulse amplitude modulation (PAM), and

ADSL modems (see next section), provide higher speeds than

the V.34. But they carry data only over the ‘‘last mile,’’ from the

local exchange (or central oYce, in the United States) to the

user, whereas the V.34 provides an end-to-end data connection

across the telephone network.

10.2.1 Asymmetric Digital Subscriber Lines

In ADSLs, a typical ratio of 10:1 is set between the download

rate (from the Internet) and the upload rate (to the Internet),

hence the term asymmetric. The maximum rates depend on the

distance between the user and the telephone exchange, ranging

from 8.448 Mbps near the exchange (<3,000 meters) down to

1.554 Mbps farther away (<5,500 m) [6].

The maximum data rate over an analog telephone line

using a V.92 modem is only 56 kbps. But ADSLs use the

same copper twisted-pair telephone wiring, with one pair

carrying signals in both directions (i.e., over the 2W FDX

circuit in the local loop between the telephone subscriber

and the local telephone exchange)—so how does it achieve

such enormous increases in the data rates? The answer is

that the line is set up for a digital link, rather than for an

analog telephone. What was important for the analog tele-

phone line was that the frequency response should be Xat

over the 3.1 kHz bandwidth so that voice signals were not

distorted; whereas for a digital line, we need only recognize

characters, and, as we have seen, it is the bandwidth that

is important. The Xat frequency response was achieved

using ‘‘loading coils,’’ which are passive inductors inserted

into the line. Removing these greatly increases the available

bandwidth.

With the ITU G992.1 ADSL standard, this increased band-

width is used for multiple 4 kHz bandwidth channels, with

each individual frequency slot or channel being modulated

very much like the V.34 modem. This is a form of frequency

division multiple access (FDMA), but the technology for ADSL

is called discrete multitone (DMT). There are a maximum of

224 channels for download from the Internet and 25 for

upload. So, an ADSL modem can be thought of as 224 QAM

modems in one box! Not all of these 224 modems can achieve

the full rate simultaneously, but the maximum data rate is still

very impressive.

The frequency range for an analog channel (300 Hz

to 3.4 kHz) is kept for an existing analog POTS (plain old

telephone system!) phone. All the other channels are 4 kHz

bandwidth and modulated onto carrier waves spaced

4.3125 kHz apart in the frequency spectrum. The 25 upstream

channels are in the frequency range from 30 kHz to 138 kHz,

while the 224 downstream channels are in the frequency range

from 138 kHz to 1.104 MHz (see Figure 10.1). From 3.4 kHz

to 30 kHz is a guard band, to prevent interference between the

POTS channel and the digital data.

A typical ADSL plan provides 1.5 Mbps for download and

256 kbps for upload, while the actual download rate achieved

would be typically 1.1 Mbps [7].

10.2.2 The Nature of Data

In the real world, we expect data to be mostly analog; that is, a

continuous variable within some range, such as air pressure or

vehicle speed. The term analog derives from the correspond-

ence between the original signal (e.g., air pressure) and the

analog signal (e.g., the voltage output by a pressure transducer,

or sensor, which converts air pressure to an electrical signal).

But we also deal with digital data, such as a traYc light with its

three colors. The process of converting from a continuous

analog voltage signal to a binary number can be divided into

three stages:

1. Sampling: This is a process in which a sample of the

signal (e.g., the value of the voltage) is taken at repetitive

intervals (so that the signal is no longer continuous).

The time between adjacent samples is the sampling

period Ts, and the sampling rate or frequency fs is simply

the reciprocal of this; thus, fs ¼ 1=Ts. There is a very

important result in communications theory, called the

sampling or Nyquist theorem, that for a signal with

bandwidth B, all the information in the original signal

can be recovered if the sampling rate fs > 2B (fs ¼ 2B is

called the Nyquist rate). Considering our analog tele-

phone channel with B¼ 3.1 kHz, the minimum sam-

pling frequency is just over 6.2 kHz. However, using

simple Wlters to keep costs low means that the sampling

frequency needs to be increased, and a value of 8 kHz is

chosen as the standard rate.

2. Quantization: Consider a simple 4-bit analog-to-digital

converter (ADC) that is used to convert voltages in the

range from�0.5 V to 15.5 V into a 4-bit number. With 4

bits, we can have 16 possible voltages, ranging from 0000

(corresponding to 0 V) to 1111 (corresponding to

þ15 V). Any voltage in the range from �0.5 to 0.5 V is

converted to 0000, and anything in the range from 14.5

to 15.5 V is converted to 1111, etc. This stage introduces

rounding or quantization errors, which, being unwanted,

25
UpstreamPOTS

phone

138 kHz 30 kHz 1.104 MHz3.4 kHz 

224
Downstream

4.3125 kHz

FIGURE 10.1 ADSL frequency spectrum.
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are actually another form of noise. The maximum quan-

tization error in this example is 0.5 V or (0.5)/16¼
1/32¼ 3.125%. In general, for a linear ADC of n bits,

the maximum quantization error is 1=(2nþ1), and the

resolution is simply stated as n bits.

3. Serialization: This is where a rounded (quantized) volt-

age is converted into a binary number. In this particular

example, the analog voltage is converted directly into a

binary number. The serialization process is hidden,

which is how most ADCs operate.

For an analog telephone channel, an 8-bit number is gener-

ated for each speech signal; thus, the digital telephone bit rate

is 8 bits� 8 kHz¼ 64 kbps. Although advantage is taken of the

characteristics of speech signals to use nonlinear coding, the

resolution is 12 bits for low-amplitude speech but lower reso-

lution for high-amplitude speech.

A signiWcant advantage of digital signals is their generally

better performance in the presence of noise. Since a digital

signal is selected from a restricted and known set of symbols,

it is possible to recover and regenerate the original symbol

exactly if the noise is not too great. For example, if the green

light in a traYc light is a shade of blue-green, people will still be

able to recognize that it should be ‘‘green’’ and will proceed with

basic conWdence of their safety. If we can correctly recognize the

transmitted digital symbol when we regenerate the signal at the

receiver, we will remove any noise added in transmission over a

link. Hence, the noise in a well-set-up digital communication

system is essentially just the noise introduced by the rounding

errors of the original ADC process (which by increasing the

number of levels can be made arbitrarily small), regardless of the

number of links over which the message is transmitted. This is

diVerent from what occurs in an analog communication chan-

nel, where generally the noise is additive, so the longer the

channel, the worse the noise. However, note the qualiWer that

the channel must be well set up. If the noise is such that we

choose the wrong symbol when regenerating the signal at the

receiver, then errors are inserted into the data. When a wrong

symbol is selected, the noise is actually increased. Hence, above

a certain noise threshold, the performance of a digital link tends

to collapse, and the signal breaks up, while the analog signal,

while degraded, is still meaningful.

10.2.3 Packet Switching

A POTS connection is an example of circuit switching, which

means that a physical channel is dedicated to the call for its

duration. Nowadays, however, a more usual technique of com-

municating is packet switching. Sometimes one packet will be

enough for the entire message, but in other cases a packet will

be part of a call or Xow. In packet switching, the physical link is

shared among all the packets, so that one packet from one call

or Xow uses the link, then another from another Xow, and so

on. Other packets from the Xow will follow on the link as and

when they are available and as and when the link is free; that is,

not necessarily at regular time intervals.

Packet switching is a digital technology, where all informa-

tion sources are converted to binary data before being sent.

This is very useful, as it means that all sources can be trans-

ported over the same network, saving management and de-

ployment costs; for example, speech is converted to packets of

data and sent using the Voice over Internet Protocol (VoIP). As

we have seen, a 64 kbps constant bit rate (CBR) stream is the

standard for telephony, but we cannot achieve the CBR with

raw traYc over the Internet, as the data are sent in packets.

Hence, our 64 kbps data stream must be chopped up and sent

in packets over the Internet and reassembled at the destination.

As an example of a typical VoIP scenario, for a G.711 codec

with two 10 millisecond (ms) samples per packet, the expected

packet arrival rate is 50 packets per second, and the packet

length is 200 bytes [8] (hence, the total IP data rate is 80 kbps).

There are two types of packet switching: connectionless (as in

the current Internet), and connection oriented. In connection-

less packet switching, even though there may be a Xow of

packets, each packet in principle Wnds its own way over the

network, so packets may end up going diVerent routes, and

hence may end up out of sequence (but in general, the Internet

is stable enough over a time scale of a week that the packets will

all follow the same route unless a fault occurs). In connection-

oriented packet switching, all packets follow the same route;

and if there is a fault, then the Xow is terminated.

10.2.4 Medium Access Schemes

Packet switching is one way of sharing a common medium

between multiple channels. Other methods (see Figure 10.2)

are:

. FDMA (see Section 10.2.1), which divides the bandwidth

of the channel into several subbands of frequencies, and

each user is assigned a subband for the total channel time.

. TDMA (time division multiple access), which divides the

channel into time slots. Each user is assigned the total

channel bandwidth for a time slot on a rotating or

on-demand basis.

. CDMA (code division multiple access), which uses spread

spectrum techniques and assigns a unique digital code

rather than radiofrequencies to diVerentiate among

diVerent transmissions. (A discussion of spread spectrum

is in Section 10.4.1.2.)

10.3 The Internet and World Wide Web

From home we can connect to the Internet using a V.92 dial-up

modem or an always-on ADSL or cable modem. Cable provides

access rates of typically 3 Mbps [7] using the feed originally
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designed to support cable TV. Or we can use one of the wireless

technologies, as described in Section 10.4. At work we may use

an in-house network or connect over a LAN (a local area

network), as outlined in Section 10.3.2. In this section we will

look at some of the common protocols used to support our use

of the Internet, and end up looking at some applications of the

World Wide Web (WWW).

10.3.1 Layered Communication Architecture

It has been found to be advantageous to have a layered archi-

tecture for networks. The interface between layers is well

deWned, which enables diVerent technologies and protocols

to be ‘‘slotted in’’ as appropriate. And changes to one layer

do not cause changes to ripple through the rest of the protocol

stack. However, although layered architectures have served us

well up to now, thought is being given to linking layers and

breaking the model with multilayer services, in order to pro-

vide diVerent quality-of-service (QoS) levels to diVerent

applications.

There are two common layered architectures: the seven-layer

Open Systems Interconnection reference model (OSI RM) of

the International Standards Organization (see Figure 10.3),

and the TCP/IP (transport control protocol/Internet protocol)

stack (see Figure 10.4) [9]. Both architectures have as their

bottom two layers a physical layer (Layer 1) and a data-link

layer (Layer 2).

Layer 1 deals with physical connectivity such as pin layout,

voltage levels, cabling speciWcations and limits, etc. Often to

troubleshoot this layer, all that is needed is to Wnd out whether

or not a light-emitting diode (LED) is lit.
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FIGURE 10.4 TCP/IP protocol suite layers. SMTP¼ simple mail

transfer protocol; HTTP¼ hypertext transfer protocol; FTP¼ Wle

transfer protocol; SNMP¼ simple network management protocol;

UDP¼user datagram protocol; Ping¼ packet Internet groper;

ICMP¼ Internet control message protocol; ARP¼ address resolution

protocol; IEEE 802.3 CSMA/CD¼ Institute of Electrical and Electron-

ics Engineers standard for carrier sense multiple access and collision

detection.
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Layer 2 deals with data transfer between two machines over

a physical link. At this layer, both devices have to be running

the same protocol at the same speed. The most important

standardization at this level comes from Ethernet or, more

correctly, 802.3 CSMA/CD (carrier sense multiple access/colli-

sion detection). These are essentially the same (minor diVer-

ences between the two protocols mean that they can run on the

same physical network but will not interoperate); however, the

old Ethernet protocol proper is so rare now that the term

‘‘Ethernet’’ is often used (as we will from now on) to refer to

802.3 CSMA/CD. (Ethernet is considered at length in Section

10.3.2.1.) Error control is a function of primarily Layer 2, and

the data unit is normally called a ‘‘frame’’ in this layer.

Layer 3 is referred to as the network layer in both the OSI

RM and the TCP/IP protocol stack. Its function is to ensure

that data get from the source to the destination over multiple

hops (i.e., over multiple Layer 2 links). However, unlike Layers

1 and 2, the Layer 3 standards are diVerent in the two models:

In TCP/IP, the IP provides the mechanism to route packets

over a network of networks (i.e., an internetwork, or Internet),

while an example of an OSI RM network layer protocol would

be X.25. Routing and flow control are primary functions of

this layer. The data unit is called a ‘‘packet’’ in this layer.

Layer 4 is the transport layer in both the OSI RM and TCP/IP,

although, again, they are not compatible standards. Unlike the

network layer, Layer 4 appears only in the end hosts. This layer

may be necessary in a gateway between two diVerent network

technologies, but really the gateway is acting as a proxy or stand-

in for an end host. The function of this layer is to ensure that all

packets are received and presented to the next layer in the

correct order. The relevant TCP/IP protocol is the TCP, which

aims to present to the next layer a service that appears to be

connection oriented, even though it actually runs over a con-

nectionless IP service. Sometimes we do not require a connec-

tion-oriented service, so the user datagram protocol (UDP) is an

alternative, lightweight transport protocol in the TCP/IP stack.

In the OSI RM, there is also Layer 5, involving the work

session, and Layer 6, dealing with presentation. They are not

present in the TCP/IP protocol stack. Layer 5 allows a session

to be rolled back to a previously saved common position. In

TCP/IP, this function is left to the top layer (the application

layer). Layer 6 allows data formats to be adjusted to Wt the

presentation requirements of the end hosts (e.g., Wle structures,

character sets). TCP/IP again leaves such things to the appli-

cation layer.

Finally, the top layer deals with the application. This is Layer

7 in the OSI RM or Layer 5 in the TCP/IP protocol stack. In

TCP/IP, this could be e-mail via simple mail transport protocol

(SMTP), the WWW via the well-known http (hypertext trans-

fer protocol) signature, or one of the many other Internet

applications. There are similar applications in the OSI RM.

Data are segmented into the appropriate size for packets, or are

reassembled, at this layer.

Actually, there is another layer even above the application

layer: This is the user program, which calls the application

layer protocol. It would be better to think of the applica-

tions in the top layer as services rather than applications;

thus, the user application (e.g., a web browser) uses the http

service.

10.3.2 Local Area Networks

LAN protocols are media access control (MAC) protocols. Their

function is to get data from source to destination host in the

same LAN. To do this, they use the MAC address, a unique six-

byte address hard-wired (mostly) into every network interface

card (NIC) (the subsystem that provides the interface between

a computer and a network). The MAC address is expressed in

hexadecimal—for instance, 00-13-02-90-71-E2, where the Wrst

three bytes identify the manufacturer (Intel, in this case). Try

typing ‘‘ipconWg/all’’ into a Windows command shell (from

the ‘‘start’’ button in Windows, go to ‘‘Run’’; type ‘‘cmd’’; and

click ‘‘OK’’) to see the MAC or physical address of your own

machine.

10.3.2.1 Ethernet

This protocol has several diVerent versions. The older ver-

sions supported a 10 Mbps data rate, but 100 Mbps is com-

mon today, and 1 Gbps and 10 Gbps are available. The

original Ethernet speciWcation used a copper cable as a

‘‘bus’’; that is, a common transmission medium connecting

all the nodes on the network. Since it was a common med-

ium, if two nodes started to transmit at the same time, there

would be a ‘‘collision’’; that is, both signals would appear

together on the bus and each would appear as noise to the

other, corrupting each other’s signal and preventing any node

from being able to recover it. The deWnition of the 802.3

CSMA/CD standard as ‘‘carrier sense multiple access/collision

detection’’ refers to the way the protocol deals with this

problem:

1. CSMA: First check or sense if any other node is using the

medium. If yes, wait; if no, start to transmit.

2. CD: But some nodes might decide that the medium is

free at the same time, causing a collision; so, detect it (by

recognizing out-of-speciWcation voltage levels), and then

recover (by waiting a random time before trying to

transmit the frame again). Give up after 15 failed at-

tempts (highly unlikely).

ModiWcations of this scheme are used for wireless access

(since wireless devices also use a common medium), but even

if the medium is dedicated, rather than being common,

Ethernet is still used for simplicity and Xexibility in managing

networks.
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The general format for describing Ethernet technologies is

cModex, where c refers to the data rate in Mbps; Mode is either

‘‘base,’’ which means that the signal is not modulated (i.e., it is

a baseband signal), or ‘‘broad,’’ which means that the data are

modulated onto a carrier wave to make a broadband signal;

and Wnally, x either refers to the maximum length of the cable

bus to the nearest 100 m or gives (if x is a character string) a

clue as to the medium—for instance, ‘‘T’’ refers to the use of a

copper twisted pair, and ‘‘F,’’ ‘‘LX,’’ or ‘‘SX’’ mean that Wber-

optic cable (of various types) is being used. Hence, some

Ethernet technologies are 10Broad36, 100BaseT, 10Base5,

1000Base-SX, and 10GBase-T.

10.3.3 The Internet

The Internet is based on the use of the TCP/IP protocol stack.

As noted in our introduction of Layer 3 (Section 10.3.1), it is a

network of networks, providing a way to link LANs together.

Packets are routed from one network to another using IP, while

in a LAN the MAC protocol is used to deliver packets (frames

at Layer 2) from source to destination host. The address reso-

lution protocol (ARP) is used to associate MAC addresses with

IP addresses. TCP works in the end hosts to resequence packets

and provide Xow and congestion control.

The TCP/IP protocol stack and the Internet itself came out

of work on ARPANET, the Advanced Research Projects Agency

Network developed in the late 1960s for the U.S. Department

of Defense, with the Wrst TCP/IP release in 1983. A primary

reason for the success of TCP/IP was that IP was engineered to

be a very simple network. Because early computing and net-

working equipment was unreliable, making the network resili-

ent came down to making it connectionless (as opposed to

connection oriented), which also helped by making IP simpler.

In a connectionless network, even if a next hop router fails,

packets can be delivered as long as an alternative route exists.

While it satisWes the resiliency constraint, this choice has made

QoS provision very diYcult, because QoS cannot be guaran-

teed unless all packets follow the same path—this is a problem

the Internet Engineering Task Force (IETF) is currently trying

to resolve.

The most widely used IP today is version 4 (IPv4), but there

is a problem with the number of available IPv4 addresses. The

IPv4 address Weld is 32 bits, and while theoretically this gives

232 ¼ 4:3� 109 addresses, many multiple blocks have been

given away, and the number of free addresses is scarce. There

are work-arounds for this, such as network address translation

(NAT), which enables many workstations in an enterprise to

use private IP addresses in the enterprise network and share

relatively few public IPv4 addresses for connecting to the

Internet. However, this suits only organizations that already

have IPv4 addresses.

In developing countries, IP version 6 is a preferred solution,

since it has what seems now to be a virtually inexhaustible

reservoir of addresses. There are 128 bits in the IPv6 address

Weld: 64 bits for the network ID and 64 bits for the host

ID. This means that there are a possible 1:8� 1019 network

addresses, used to route packets over the Internet to the

destination network—that is 2.8 billion networks for every

one of the 6.5 billion people alive today, with each network

supporting 1:8� 1019 host addresses. There are enough bits

in the IPv6 host ID to use the 48 bits of the MAC address,

which would simplify network administration (although

it does raise a privacy issue in that end-user equipment

could be tracked). The IPv6 address space contains the IPv4

address space as a subset, so IPv4 networks can work with IPv6

equipment.

10.3.3.1 Internet Protocol Addresses

We have three address formats to consider: hostname, IPv4,

and IPv6. The hostname is a more human-friendly label, which

really refers to a service rather than a machine. For example,

www.iana.org is the hostname of a web server for the Internet

Assigned Numbers Authority (IANA) (responsible for allocat-

ing IP addresses). The Domain Name System (DNS) is used to

map between hostnames and the IP address used to route

packets across the Internet (e.g., typing ‘‘nslookup www.iana.

org’’ into a Windows command shell would show that www.

iana.org might have the IPv4 address 192.0.34.162. So, putting

‘‘http://www.iana.org’’ into the uniform resource identiWer

(URI) Weld of a web browser has the same eVect as typing

http://192.0.34.162). The advantage of hostnames, besides

being easier to remember, is that they are not machine speciWc.

Hence, the IANA web server might be swapped to another

machine, the DNS would be updated, and no user of the

hostname would notice any diVerence, while anyone using

the actual IP address would no longer Wnd the web server.

IPv4 addresses are written in a ‘‘dotted decimal’’ notation.

They are 4 bytes long, and in decimal a byte is from 0 to 255

bits, so each byte value is written in decimal and separated by a

dot from its neighbors. Some addresses are reserved for special

use, such as in private or dedicated networks [10].

An IPv6 address consists of 16 bytes, written in groups of

two (as four hexadecimal characters) with a colon between

them, thus:

2001:0000:0000:0000:1319:8a2e:0370:7334:

Any consecutive groups of four zeroes may be replaced by a

double colon, as long as only one double colon is used (two

double colons would be ambiguous). Hence, the address in the

foregoing example can be shortened to

2001::1319:8a2e:0370:7334:

As mentioned before, IPv6 contains IPv4 addresses, and the

format of an IPv4-mapped IPv6 address is

::FFFF:w:x:y:z

(where w.x.y.z is any IPv4 address).

236 I Technological Fundamentals



TCP (or UDP) and IP together provide a ‘‘socket’’ in the end

host to identify an application for connecting at the level of the

application programming interface (API). With TCP there is a

return path, so in this case there is a ‘‘socket pair.’’ IP provides

the IP address, while TCP provides the port number. An

example of a socket used for a web browser is

192.0.34.162:80 (e.g., type ‘‘netstat -n’’ in a Windows shell

immediately after loading a new webpage, and look under

‘‘Foreign Address’’; see Figure 10.5). There are well-known

port numbers [11] such as 25 for SMTP and 80 for HTTP.

In Figure 10.5, the establishment of the IPv4

192.0.34.162:80 socket on my PC is caused by opening a

web browser and loading the URI http://www.iana.org/

assignments/port-numbers. This gives the hostname of the

server with the page I am trying to Wnd and also speciWes that

I want to use http (i.e., port 80). A call to a DNS server

converts the hostname (www.iana.org) into an IPv4 address.

My machine then establishes a socket 192.0.34.162:80 and

sends a synchronization (SYN) packet to start the TCP ses-

sion. The web server at www.iana.org replies with a synchro-

nization/acknowledgment (SYN/ACK) packet (using, e.g.,

port 1544; the port number is not 80, since this is a return

path to a browser; i.e., only packets to a web server have the

port number 80). My machine then establishes the second

socket of the pair (e.g., 10.50.1.203:1544, as I am using a

private address with NAT) and sends an ACK back to conWrm

the TCP session (by this point, both browser and server have

acknowledged each other). This SYN to the server, the SYN/

ACK back, and the ACK to the server is the three-way TCP

‘‘handshake’’ to establish a TCP session, with the socket pair

identifying both ends. The webpage having been delivered, the

session is over, so the socket is now in the TIME_WAIT state.

The 127.0.0.1 IP address is a special-use address that on any

computer refers to itself (i.e., localhost). Here it shows that a

looped TCP connection has been established to ensure that

the TCP/IP protocol stack is kept in use, in order to avoid any

startup delay.

Type ‘‘arp -a’’ in a Windows shell to see the cache (a short-

term memory that is rebuilt as needed) of mappings between

IP addresses and MAC addresses that your machine has dis-

covered. You should at least see the mapping between the IP

and MAC address of your gateway to the Internet.

10.3.4 The World Wide Web

The WWW is actually just one service (using http) that runs

on the Internet. It was developed at the Centre Européen de

Recherche Nucléaire (CERN) by Tim Berners-Lee, originally as

a way of sharing work on physics. The Wrst public release was

in 1991. Apart from marrying the Internet with hypertext and

a markup language (HTML), it also introduced URIs (also

known as URLs [uniform resource locators] and web

addresses, although URI is the preferred technical name).

Hypertext is the linking of one or part of a document to

another or even to itself, using one-way hyperlinks (e.g., the

underlined and generally blue text in a webpage, unless you

have clicked on them already, in which case they show a

diVerent color). The fact that links are one-way is important,

since they do not require changes in two documents in perhaps

diVerent web servers to establish a link; hence, the web rapidly

grew. On the other hand, it does mean that broken links are to

be expected as documents are removed without regard for all

the pages linking to them. A hyperlink need not be text—an

image can be a hyperlink.

URIs describe the location and method of access of a resource

(e.g., a document, an image)—for example, http://info.cern.ch

is a webpage found on a web server at info.cern.ch and is to be

accessed using a web browser to display HTML, which is the

markup language for the web—the latest version being HTML

4.01 [12]. The markup language is concerned purely with the

presentation of information, not with any meaning, although

there is a massive eVort now to develop a semantic web using

XML (eXtensible markup language). This would be a web where

information could be understood by machines.

A very simple webpage can easily be written:

<html>
<head>
<title>an example webpage</title>
</head>
<body>
<p>This is a paragraph with an <a href¼ "http://info.

cern.ch">example hyperlink</a></p>.

</body>
</html>

FIGURE 10.5 Sockets for web browsing.

10 Data Communication and Network Infrastructure 237



The display instructions in this HTML document are speciWed

by the tags (< >), and a web browser is programmed to

display the page appropriately. Note that tags should be paired

(a closing tag starts with </ ) and nested (e.g., the paragraph is

completely inside the body that is inside the HTML tags). You

may see the code of a webpage in your browser by selecting

View¼> Source or Page Source. The webpage in our example

can be typed in Notepad in Windows and saved as exam-

ple.htm. A web browser can then be used to display the Wle

simply by clicking on it (N.B.: Take care with the ’’ marks).

A key diVerence between HTML and XML is in the presen-

tation of dates in a document. HTML has no knowledge of

dates and will simply display ‘‘19/9/2006’’ as text, leaving it to

the reader to recognize that it is probably a date. But associated

with an XML document there will be a schema describing what

every tag does, allowing new tags to be introduced (hence, the

extensible in XML)—for instance, <date> may be deWned so

that when a program scans the document, it can recognize

<date>19/9/06</date> as a date.

For doctors, perhaps the most obvious use of the WWW is

by patients looking up their symptoms or their diagnoses so as

to be proactive in their own health care. There are many

support groups who have webpages giving information and

links, doing fund-raising, etc., to help people diagnosed with a

particular condition. Or, for people who have symptoms of

particular concern, there are many websites that will walk them

through self-diagnosis.

As its programs improve, artiWcial intelligence (AI) will

become an essential component in health care. AI programs

may become acceptable to patients through the use of avatars

(i.e., virtual others) such as ALICE (ArtiWcial Linguistic Inter-

net Computer Entity) and Alex [13, 14]. Interestingly, it has

been shown that avatars should not be too realistic: The

assumption of people that they are talking with a real human

being becomes confused due to slight miscues. Of course, the

WWW is open to everyone, and there are some snake-oil

merchants peddling their wares online. One opportunity to

detect those who prey on vulnerable people in need of medical

care is when a website says that patients must buy the product

or they will end up blaming themselves. A task for health care

professionals is to give advice to patients as to which websites

are appropriate and can be trusted.

10.4 Wireless and Mobile
Technologies in M-Health

10.4.1 Wireless Technology Essentials

10.4.1.1 Radio Waves and the Frequency Spectrum

Conventional wired communications use conductors (twisted-

pair copper wires or coaxial cables) or optical Wbers to send

and receive data, whereas wireless communications utilize

electromagnetic waves without relying on wires.

The radiofrequency (RF) spectrum is the lower part of

the electromagnetic frequency spectrum. Figure 10.6 shows

the RF spectrum and common uses from very low frequency

(VLF) to the microwave frequency, EHF (extremely high

frequency), and on up through infrared, visible, and ultraviolet

(UV) light. RF ranges extend from 10 Hz to over 30 GHz and

are divided into 450 diVerent bands. Normally, a license is

required from a regulation authority to send and receive on

a speciWc frequency, but unregulated bands are available to

use without a license. Two unregulated bands are the ISM

band (see Section 10.2) (902–928 MHz, 2.4–2.4835 GHz,

and 5.725–5.85 GHz) and the Unlicensed National Infor-

mation Infrastructure (U-NII) band (5.15–5.35 GHz and

5.725–5.825 GHz).

There are a number of interesting facts associated with

electromagnetic waves. With equal power levels, waves with

lower frequencies tend to travel farther than higher-frequency

waves. And lower-frequency waves tend to penetrate objects

better than higher-frequency waves. For example, FM radio
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can travel through buildings and other obstacles easily, while

higher frequencies such as from GSM phones operating at

1.8 GHz have a harder time penetrating buildings.

In one sense, though, Figure 10.6 is misleading, since it uses

a log scale on the x-axis (each tick is 10 times the previous tick).

Therefore, the bandwidth between ticks is 10 times greater than

in the adjacent lower band. Because capacity is proportional to

bandwidth, higher frequencies can carry more data.

10.4.1.2 Transmission Schemes

Both infrared and radio waves can be carriers of wireless

signals. Infrared transmission utilizes a narrowly focused

beam of infrared light that is normally emitted from an LED

or semiconductor laser. An infrared signal can be sent to the

receiver directly or by reXection to the receiver.

Radio transmission is performed by emitting a sine wave RF

carrier into space, the carrier being characterized by ampli-

tude, frequency, and phase, as discussed in Section 10.2. In-

formation (e.g., user data) can be carried by modulation onto

one of the carrier’s characteristics: its amplitude (as in AM

radio), its frequency (as in FM radio), or its phase. A receiver

with an appropriate antenna tuned to the right carrier will be

able to collect the embedded signal.

Radio signals are narrowband, meaning that the information

occupies only a narrow band of frequencies centered on the

carrier frequency. Figure 10.7 depicts the narrowband radio

transmission process using amplitude modulation.

An alternative to narrowband is spread spectrum transmis-

sion. Spread spectrum is a technique that takes a narrow signal

and spreads it over a broader portion of the RF band. This has

beneWts where, as is often the case, noise occurs at particular

frequencies. Spread spectrum is marginally aVected by such

noise, whereas narrowband RF can be impossible if the noise is

in the same frequency band as the narrowband signal.

Two methods are used for spreading the frequency spec-

trum: frequency hopping spread spectrum (FHSS) and direct

sequence spread spectrum (DSSS). With FHSS, spreading is

achieved by sending a short burst of user data on one fre-

quency, hopping to a new frequency and sending data for a

short period of time on this frequency, then hopping to a new

frequency and doing the same, etc., until the transmission is

complete. The exact sequence of frequencies used is known as

the hop sequence. The receiver must know and synchronize

with the transmitter hop sequence in order to correctly receive

the transmission. DSSS uses an expanded redundant code to

transmit each data bit. Figure 10.8 illustrates the transmitting

and receiving processes of DSSS. The transmission process

involves two stages. In the Wrst stage, the user signal is spread

by multiplying itself (XOR [‘‘exclusive or’’] operation) with a

chipping sequence; and in the second stage, the spread signal

modulates an RF carrier before transmission. At the receiving

end, the reverse process is performed to recover the user data.

Spread spectrum is employed in CDMA, allowing better-qual-

ity signal reception and higher (up to 3x) data-carrying cap-

acity compared with TDMA.

Ultra-wideband (UWB) technology refers to a modulation

technique based on transmitting very short pulses [12, 15].

The purpose is to spread the information signal over a very

large bandwidth so that the signal power can be extremely

small for the same channel capacity (Shannon-Hartley law;

see Section 10.2). There are two main diVerences between

UWB and other ‘‘wideband’’ systems. First, the bandwidth

of UWB systems is more than 25% of the center frequency,

or more than 1.5 GHz as deWned by the U.S. Federal Com-

munications Commission. This bandwidth is clearly much

greater than the bandwidth used by any current scheme (at

least an order-of-magnitude wider than current spread spec-

trum techniques such as FHSS and DSSS in CDMA technol-

ogy). Second, UWB is typically implemented in a carrierless

fashion. UWB implementations can directly modulate an

extremely narrow pulse that has very sharp rise and fall

times, thus resulting in a waveform that occupies several

GHz of bandwidth.
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FIGURE 10.7 Narrowband radio transmission.
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10.4.2 Wireless Wide Area Networks

The most prominent wireless application of wide area net-

works (WANs) is the cellular telephone, so called because the

coverage area of its network is divided into cells. Cellular

telephone networks allow users to move freely while commu-

nicating with other users. When a user moves around within

the same cell, its associated base station will be responsible for

maintaining the connection between the phone and the Wxed

network. As the user moves beyond the coverage of the current

cell to another cell, the cellular network will arrange for a new

base station to take over the management of the connection in

a hand-oV procedure. The user can also roam beyond the

coverage of the entire cellular network to another cellular

network.

The Wrst generation (1G) of wireless cellular technology

used analog transmission (Section 10.2) was mainly for voice

communication and did not allow roaming.

The second generation (2G) uses digital transmission, al-

lows roaming between network operators, and supports data

transmission. Examples of 2G networks include the Global

System for Mobile Communications (GSM) [16] in Europe

and IS-41 in North America. GSM users can send and receive

data at rates up to 9,600 bps in normal operation. It is a

circuit-switched network. The General Packet Radio Service

(GPRS) [16] (the so-called 2.5G) evolved from GSM to

transport both voice and data. GPRS uses packet switching

for sending data. It enables connection to public and private

data networks such as TCP/IP and X.25 networks. The max-

imum data rate for GPRS networks is 171 kbps.

Third generation (3G) wireless devices use packet-switched

networks for both voice and data. The International Telecom-

munication Union (ITU) has deWned two 3G types of net-

works: WCDMA for GSM networks and CDMA2000 for IS-41

networks. Theoretically, 3G networks can oVer a maximum

data rate of 144 kbps [16, 17] in rural areas when a user

is traveling at 500 km/h; 384 kbps in suburban areas at

120 km/h; and 2 Mbps at 10 km/h.

10.4.3 Wireless Local Area Networks

The IEEE 802.11 standard [18] deWnes several wireless LANs

(WLANs) with diVerent data transmission speeds. The three

most important versions of the standard are 802.11a, 802.11b,

and 802.11g (also called Wi-Fi5, Wi-Fi, and Wi-FiG, respect-

ively). The most popular one is 802.11b, allowing 11 Mbps at

ranges up to 100 m, though the actual throughput of user data

(‘‘goodput’’) is typically 6 Mbps. The 802.11b standard uses

DSSS and the ISM 2.4 GHz band for its transmission.

The 802.11 standard supports two modes of operation:

ad hoc (or peer to peer) mode and infrastructure mode.
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In ad hoc mode, wireless devices can communicate directly

between themselves without using an access point (AP).

Infrastructure mode requires an AP to relay communications

between devices and to connect to other networks. An AP has

two functions: to act as a base station for a wireless network

and to act as a bridge between wireless and wired networks.

The 802.11b standard uses the distributed coordinated func-

tion (DCF) access method, which speciWes the use of the

CSMA procedure for collision avoidance (CA). The CSMA/

CA scheme implements a minimum time gap between frames,

called DCF-interframe spacing (DIFS). The basic CSMA/CA

MAC protocol works as follows. A station wishing to transmit

must Wrst ‘‘listen’’ to, or ‘‘sense,’’ the radio channel to deter-

mine whether another station is transmitting. If the medium is

idle for at least one DIFS duration, the station can access the

medium at once. If the medium is busy, the station has to wait

for one DIFS duration after the end of the current transmis-

sion and then enters a contention period. During the conten-

tion period, the station selects a random amount of time

(called a backoV interval, kept by a backoV timer) to wait

before ‘‘listening’’ again to verify a clear channel on which to

transmit. If the station does not get access to the medium, it

freezes its backoV timer, waits for the medium to be idle again

for one DIFS period, and starts the counter again. As soon as

the counter expires, the station is allowed to access the me-

dium. This scheme provides fairness, since longer-waiting sta-

tions have the advantage over newly entering stations, in that

they have to wait only for the remainder of their backoV timer

from the previous cycle.

The CSMA/CA protocol provides options for reducing

collisions by using Request To Send (RTS) and Clear To Send

(CTS) data and ACK transmission frames in a sequential

fashion. Communication is established when one of the

stations sends a short-message RTS frame to the destination.

The RTS frame includes the length of the message. The mes-

sage duration is known as the network allocation vector

(NAV). The NAV warns all other stations in the medium to

back oV for the duration of the transmission. The receiving

station issues a CTS frame back to the sender, also including

the NAV. If the CTS frame is not received, it is assumed that a

collision occurred, and the RTS process starts all over again

using CSMA/CA. After the data frame is received, an ACK

frame is sent back immediately, verifying a successful data

transmission.

10.4.4 Wireless Personal Area Networks

10.4.4.1 Bluetooth

Bluetooth is a wireless technology that uses short-range RF

transmissions. It can transmit at a speed of 1 Mbps (2.1 Mbps

for the latest version of the standard, v2.0) and has three

diVerent power classes for transmitting. Bluetooth operates

in the 2.4 GHz ISM band (the same as 802.11b) and uses

FHSS for transmission [19].

When Bluetooth devices (maximum of eight) come within

range of each other, they automatically connect and form a

piconet. One device will assume the role of the master, con-

trolling all the communications within the piconet. Others

assume the role of slaves and take commands from the master

for communications. All devices in a piconet use the same

channel for communications. A group of piconets with con-

nections among them is called a scatternet.

10.4.4.2 ZigBee and 802.15.4

The IEEE 802.15.4 standard [20] deWnes the characteristics of

the physical and the MAC layer for low-cost, low-rate, and

low-power wireless personal area networks (LR-WPANs).

The ZigBee Alliance [21] is an association of companies

working together to develop standards and products for reli-

able, cost-eVective LR-WPANs. ZigBee deWnes the network

layer speciWcations and provides a framework for application

programming in the application layer over the IEEE 802.15.4

standard.

The physical layer uses a DSSS access mode. It supports

three frequency bands: a 2,450 MHz band with a maximum

data rate of 250 kbps, a 915 MHz band with 40 kbps, and an

868 MHz band with 20 kbps, at ranges up to 10 m. The MAC

layer deWnes two types of nodes: reduced function devices

(RFDs) and full function devices (FFDs). FFDs can act as

network co-coordinators or network end devices. As network

co-coordinators, FFDs can oVer synchronization, communica-

tion, and network services. RFDs can act as only end devices,

may interact with only a single FFD, and are equipped with

sensors/actuators.

The 802.15.4 standard supports two types of topology: the

star topology and the peer-to-peer topology. In the star top-

ology, a master/slave model is adopted. The master is called the

PAN co-coordinator, and this role can be taken by only an

FFD; slaves can be RFDs or FFDs and communicate with only

the PAN coordinator. In the peer-to-peer topology, an FFD can

talk to other FFDs within its radio range and can relay mes-

sages to other FFDs outside its range through an intermediate

FFD, forming a multihop network. A PAN coordinator is

selected to administer the multihop network operation.

A particular feature of ZigBee is that it supports a compre-

hensive set of security measures for WPANs.

10.4.5 Ultra-wideband Communication

UWB technology shows promise for extremely low-cost and

low-power sensor networks [22]. UWB can carry a huge

amount of data (over 50 Mbps [15]) with very low power

over a short distance up to 10 m. UWB radio also has the

ability to carry signals through obstacles that tend to reXect

narrowband signals. UWB networks can be used in areas too

obstacle laden for other wireless protocols to work in. The

IEEE standard for UWB, 802.15.3a, is under development.
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10.4.6 Satellite Communication

A communication satellite functions as a repeater in the sky. It

contains a number of transponders, each of which listens to an

uplink channel (Earth station to satellite), ampliWes the received

signal, and rebroadcasts it on a downlink channel (satellite to

Earth station). The most common type of communication

satellite today is the geostationary (GEO) satellite, which is

positioned at approximately 36,000 km above the equator and

hence rotates at the same rate as the Earth. The satellite appears

stationary to an Earth station, and communications can always

take place without having to track the movement of the satellite.

A typical satellite has several transponders, each with a

36–50 MHz bandwidth [23]. Communication between the sat-

ellite and Earth stations occurs in the microwave frequency

bands: C band at 4–6 GHz and Ku band at 11–14 GHz.

A signiWcant fraction of international telephone calls are relayed

via the INTELSATsystem. Three GEO satellites separated by 120

degrees can cover most of the populated surface of the Earth.

Inexpensive communication using GEO satellites can be

achieved with low-cost micro Earth stations called VSATs

(very small aperture terminals). These stations can transmit

about 1 watt of power and can support an uplink data rate of

19.2 kbps and a downlink rate of 512 kbps. Typical end-to-end

delay between two Earth stations is about 270 ms.

The disadvantages of GEO satellite communication include

long and noticeable delays and waste of spectrum in point-to-

point communications. Satellites characterized as low Earth

orbit (LEO) and medium Earth orbit (MEO) have been devel-

oped to solve these problems. They circulate at an orbit of

around 2,000–12,000 km, resulting in a round-trip propaga-

tion delay of less than 50 ms. A user needs only a small GSM-

type satellite handset to communicate via these satellites.

10.5 Sensor Networks for Health
Monitoring

This section provides a discussion of various issues concerning

the deployments of sensors and their associated wireless com-

munication technologies.

10.5.1 Sensors

A sensor is a device that detects the presence and/or the

variation of some physical phenomenon, such as voltage or

current, and converts the sensed quantity into a useful signal

that can be directly measured and processed. An actuator, on

the other hand, converts information into actions such as

moving itself or initiating actions in other items in its envir-

onment. Sensors and actuators often go together as the means

of physical interaction between an entity and its surroundings.

A smart sensor is a sensor that provides extra functions beyond

those necessary for generating a correct representation of the

sensed quantity. Often, smart sensors possess processing, stor-

age, and decision-making capabilities.

Sensors can measure:

. Physical properties such as pressure, temperature,

humidity, and Xow

. Motion properties such as position, velocity, angular

velocity, and acceleration

. Contact properties such as strain, force, torque, slip, and

vibration

. Presence properties by tactility/contact, proximity, dis-

tance/range, and motion

. Biochemical properties by biochemical agents

. IdentiWcation properties by personal features

Sensors can be conveniently categorized according to one of

the following signal domains [24]:

. Mechanical domain: Mechanical sensors can convert

an applied strain to a change in resistance that can be

sensed using electronic circuits (piezoresistive eVect), or

an applied stress (proportional to force) to a voltage

(piezoelectric eVect).

. Thermal domain: Thermal sensors rely on materials

exhibiting thermal expansion on changes in temperature.

. Magnetic domain: Magnetic sensors do not require direct

physical contact and are useful for detecting proximity

eVects.

. Chemical domain: Chemical and biological transducers

are devices that interact with solids, liquids, and gases

of all types and convert induced property changes

(e.g., mass, resistance) into detectable electrical or optical

signals.

. Radiant domain: Sensors detect a wide spectrum of elec-

tromagnetic radiation, including visible-spectrum and

nuclear radiation.

Optical transducers convert light to various quantities that

can be detected. These are often based on photoelectric, photo-

conductive, or photovoltaic eVects. In the photoelectric eVect,

photons (elementary particles of light with zero rest mass) of

suYcient energy incident on a charged plate generate a Xow of

current. In the photoconductive eVect, photons generate car-

riers that lower the resistance of the material. In the photovol-

taic eVect, photons generate electron-hole pairs in a

semiconductor junction that cause current Xow. Photovoltaic

devices include photodiodes, phototransistors, and solar cells.

For health monitoring, wearable medical sensors are of par-

ticular interest. These devices are used to monitor a set of key

ambulatory parameters in oncology, pediatrics, and geriatrics.

Some of these parameters are:

. Heart rate for cardiac function

. Acceleration during walking and running for activity
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. Body temperature for illness

. Virtual capacity for severity of airway obstruction in

chronic obstructive pulmonary disease

. Blood glucose for vascular or neurological complications

. Electroencephalography (EEG) for seizure disorders,

confusion, head injuries, brain tumors, infections, degen-

erative diseases, and metabolic disturbances that aVect

the brain

. Electrocardiography (ECG) waveform for cardiac

arrhythmias

. Blood pressure

. Arterial oxygen saturation for sleep disorders

. Body weight

The factors that are most important or desirable to be taken

into consideration when selecting sensors are:

. Cost. In many applications, sensors are most eVective

when they are used in large numbers, since they provide

a comprehensive map or a rich and dense set of infor-

mation about an environment or health condition that

had been unobservable before. However, these applica-

tions will be widely deployed only if sensors are aVord-

able.

. Size. The size of a sensor is important in many applica-

tions. In general, the smaller the size, the more acceptable

they appear to be to the user. Some advantages of small

and lightweight sensors include ease of attachability to

the body, nonintrusiveness, and convenience to users.

. Power consumption. Most sensors have to use a battery as

their only source of power. It is essential for sensors to

consume as little energy as possible so that the battery lasts

as long as possible—ideally, for the life of the sensors.

Some sensors may be able to harvest power themselves

(e.g., solar, wind); however, power-harvesting devices

carry with them other unwanted maintenance problems.

. Mobility. For health monitoring tasks, it is desirable that

sensors be able to communicate with other sensors or

control devices while in motion, as they are often at-

tached to a mobile user.

. Processing capability. It is often desirable for a sensor to

perform some simple data processing such as Wltering,

removing additive noise before sending useful data to a

data collector, etc. This is done to reduce data redun-

dancy and minimize the cost (power) of data transmis-

sion.

. Storage capability. It is often desirable for a sensor to

possess a small amount of storage for critical (or prepro-

cessed) data prior to being passed on to a data collector.

For example, the communication channel may be tem-

porarily unavailable or interrupted.

Other factors may include ease of use, clinical approval,

durability, and accuracy of measurement. Fortunately, with

advances in microchip technology, tiny sensors are becoming

available that use very little power, have some processing and

storage capability, and can be manufactured in large quantities

at relatively low costs.

10.5.2 Monitoring Requirements

There are many factors that need to be considered in a health

monitoring system. However, the most important factors

regarding wireless technology application to health monitoring

are the system security, the bandwidth of the transmission

channel, and the power consumption for data transmission.

General system security entails authentication, authorization,

conWdentiality, integrity, availability, and nonrepudiation.

However, because of the many constraints, such as limited

bandwidth, low power, etc., that are imposed on wireless sensor

networks, comprehensive security measures are impractical. But

often in a medical setting, there are extra security concerns that

must be addressed. With remote monitoring, measurements of a

patient’s vital signs are often moved from a secure environment

in hospitals into the patient’s home. This means that there are

some additional security issues to consider when putting these

systems in use, as they process and transport sensitive informa-

tion about a person whose privacy must be protected.

Larger transmitted power allows wider transmission coverage

and provides for better quality of the received signal. However,

this is not always possible, because with wireless sensors the

power source is always limited. Furthermore, there is a set limit

to the amount of radiation that can be emitted by a device,

since the radiation may interfere with other critical systems

and aVect the environment and health of nearby living things.

Ideally, one would like to send a lot of data very far, very fast,

for many users, all at once. Unfortunately, it is impossible to

achieve all these attributes simultaneously.

It is clear from this discussion that desirable properties often

conXict with one another in many aspects. For example:

. Small sensors may be desirable for mobility but may not

have room for a long-lasting battery or storage capacity.

. Sensors that possess many desirable properties are often

expensive and consume a lot of power.

. Sensors require wireless communications for mobility;

hence, no permanent power supply can be connected.

The communications capability of sensors is thus very

limited.

. Sensors may be able to communicate only over a short

distance, and hence they have to rely on their neighbors

to relay their data to remote data centers. Some forms of

self-organizing networks may be necessary.

. Sensors do not often have large storage capacity; hence,

they have to upload data frequently to a data center. It is

important that the wireless communications technology

employed does not drain excessive power from the

sensors.
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. Sensors do not often have large processing capability. They

may not be able to summarize their data before uploading

them to the data center; hence, they may have to send a

large amount of raw data to their neighbors. It is import-

ant to have an eYcient wireless communication channel.

It is clear that in order for sensors and sensor networks to be

deployed in health monitoring systems, an integrated network-

ing infrastructure is necessary.

10.5.3 Communication in Wireless Sensor
Networks

It is thus clear that the choices of sensors, wireless technolo-

gies, and applications are interrelated. The choice of wireless

technologies should be carefully considered in conjunction

with the choice of sensors and the environments of an

intended application. Most existing conceptual architectures

have three layers, as shown in Figure 10.9(a): The data

acquisition layer is responsible for sensing and collecting

information concerning health conditions. The data distribu-

tion layer is responsible for distributing relevant data to com-

ponents for analysis. The processing and control layer is

responsible for processing, interpreting summarized data,

and making appropriate controls or responses. In reality, the

functions of a layer are usually carried out by groups of

components simultaneously at diVerent topological levels.

Figure 10.9(b) shows a typical and practical architecture for

health monitoring.

At the lowest level topologically, a group of sensors operate

within a conWned area (e.g., over the body of a person) and

form a wireless body area network (BAN) (which is really a

PAN wearable on a body) so that they can rely on one another

to relay sensed information to a more powerful sensor, which

then relays the information (possibly Wltered) to a local server.

Wireless technology of the 802.15.4 standard is often used to

form such a BAN.

The local server acts as a bridge between its sensor network

and a central server, which may also serve as a gateway to

a WAN such as the Internet or a mobile wireless WAN

(WWAN) [25].

The central server is more powerful in terms of its capabil-

ities. It has more power to process and analyze data and extract

relevant information for diagnosis and/or initiate appropriate

responses. It often communicates with the local server through

Bluetooth and/or 802.11 technologies.

At the top layer, the central server may distribute its data to

other servers and obtain from them additional data relevant

and complementary to the monitored health conditions for

forming better responses [26]. Communication between cen-

tral servers can take place over the wired or the wireless

Internet.

From our discussion of sensors, wireless technologies, and

health monitoring architectures, several guidelines for the

choice of technologies can be recommended:

1. ZigBee technology should be considered if sensors are to

be very small and need to communicate over a very short

distance, batteries have to last for a long time (a few

months), and low data transmission rates are adequate.

2. UWB technology is applicable at high data rates over

extremely short distances via small sensors.

3. Bluetooth technology is used as a wire replacement and a

bridge between sensor devices and more powerful control

devices in WANs. Bluetooth devices can often serve as

local servers to coordinate and control wireless sensors.

4. IEEE 802.11 technology is normally deployed as a bridge

between sensors and the wired and wireless Internet. It

requires more power and is not often used in mobile

wireless sensors. However, the 802.20 standard is work-

ing on a fully mobile broadband access solution. It

will support various vehicular mobility classes up to

250 km/h in a metropolitan area network.

5. Mobile cellular technologies (GSM, GPRS, CDMA2000,

WCDMA) are needed to connect devices over WANs.

They are often used to connect local servers to global

servers that oversee the overall aspects of an application

over the mobile Internet.

Processing/Control

Data distribution

Data acquisition

(a) (b)

Internet Wireless 
networks

WLAN (802.11�s, etc.) 
WWAN (3G, Satellites, etc.)

Central 
server

Local 
server

Actuating

Sensor/Actuator net

Sensing

FIGURE 10.9 Monitoring system architecture with wireless sensor networks.
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Both the wired and the wireless Internet are integrated for

applications that require resource sharing and collaboration

across independently managed enterprises.

10.6 Applications of Wireless
Technologies in Telemedicine

Health care is about the diagnosis and treatment of illness.

Diagnosing an illness involves collecting information about the

patient and analyzing that information to decide on the causes

of illness and provide appropriate treatment. Telemedicine is

the use of telecommunications and information technologies

for the provision of health care to individuals at a distance and

transmission of information to provide that care [2].

The goal of using communication technologies in medical

environments is to provide care when face-to-face physician-

to-patient encounters are not possible and to improve the

overall quality of health care at an aVordable cost. Telemedi-

cine is generally used for remote sensing, decision making, and

collaborative arrangements for the real-time management of

patients at a distance.

Telemedicine includes diagnosis, treatment, monitoring,

and education of patients by using systems that allow ready

access to expert advice and patient information, no matter

where the patient or relevant information is located. It means

that basic patient information must be transferred over com-

puter networks by means of videoconferencing, multimedia,

and web-based applications.

In this section, we describe several telemedicine applications

that rely heavily on the wired and wireless technologies

described in previous sections. The aim is to illustrate the

deployment of the transmission and communication technolo-

gies within telemedicine applications.

10.6.1 Location-Based Services for Emergency
Medical Incidents

In this section, we describe an application, EmerLoc [27], for

handling emergency incidents at sites where immediate health

support is not available. The system is intended for patients

suVering from chronic diseases or requiring continuous mon-

itoring of their physical conditions.

The architecture of the system is depicted in Figure 10.10. Its

main components include the patient and his/her portable

equipment, the attending doctor and his/her portable equip-

ment, and the central monitoring unit (CMU) and its associ-

ated location-based service (LBS). The communication

infrastructure includes a wireless sensor network that uses

ZigBee/Bluetooth, a WLAN that uses 802.11, and a WWAN

that uses GSM/GPRS.

The patient wears a personal device (PD) and a set of

sensors. The sensors are attached to the patient’s body for

measuring biosignals such as ECG, blood pressure, heart rate,

breathing rate, and oxygen saturation. The PD collects and

processes the patient’s vital signals from the sensors. The

sensors together with the PD form a PAN that monitors the

patient’s health status and communicates with the correspond-

ing CMU. The PD transmits alarm signals to the CMU when-

ever predeWned thresholds are exceeded and an emergency

situation is imminent. Sensors and PDs are equipped with

RF transceivers compatible with Bluetooth or ZigBee. The

patient’s attending doctor carries a portable doctor device

(DD), capable of receiving the alarm signals and the full

range of the patient’s biosignals.

The CMU controls and coordinates the communication Xow

among components of the system. It communicates with the

PD and the DD over either a WLAN or a WWAN such as GSM

or GPRS. The LBS relies on an LSB platform[28] platform that

includes a location server of either a mobile network operator or

a WLAN position provider.

PAN

WLAN (802.11b)

Patient 
PD

GSM/GPRS

Central monitoring unit 
+ Location server

Doctor 
DD

FIGURE 10.10 The overall system architecture of EmerLoc.
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10.6.1.1 Operation

When the processed biosignals from the sensors exceed a pre-

deWned threshold, the PD generates an alarm signal and relays

the emergency information along with its current position to

the CMU within its reach through a WLAN or a WWAN.

The CMU acknowledges the receipt of the emergency notiWca-

tion (EN) and uses the patient identiWcation included in the EN

to query the medical records database for the appropriate pa-

tient’s information. The CMU also retrieves the identiWcation of

the handling doctor. The doctor’s location can be retrieved by the

system’s location server. Armed with the collected coordinates of

the PD and DD, the CMU asks the Geographical Information

System (GIS) component for the best routing path from the

doctor to the patient. The CMU then sends an alarm message

to the DD containing instructions for accessing the emergency

information on the CMU. The DD contacts the CMU through a

GPRS network to obtain all the relevant information, including a

recent CT image along with the routing information.

As the doctor approaches the site of the incident, the DD

attaches to the PD’s local WLAN. Finally, the DD requests the

PD for the full set of recent biosignals and the stored medical

records of the patient.

The system was evaluated by 15 physicians in a hospital

environment for a period of 10 days. Overall, the results

proved ‘‘the feasibility of the architecture and its alignment

with the widely established practices and standards, while the

reaction of potential users who evaluated the system is quite

positive’’ [27].

10.6.2 Mobile Robotic Tele-Ultrasonography
Systems

In this section, we describe the advanced medical robotic

system called Mobile Tele-Echography Using an Ultra-Light

Robot (OTELLO). Originating as a project funded by the

European Information Society Technologies (IST) association,

OTELLO developed a fully integrated end-to-end mobile tele-

echography system for population groups that are not served

locally by medical ultrasound experts.

The system features a fully portable tele-operated robot,

allowing a sonography specialist to perform a real-time robot-

ized tele-echography in remote patients. It comprises three

subsystems:

1. The expert station, where the medical expert interacts

with a dedicated pseudo-haptic Wctive probe instrumented

to control the positioning of the remote robot and emulate

an ultrasound probe. Videoconferencing facility is also

available.

2. The communication links: satellite, 3G wireless, and

terrestrial

3. The patient station, which comprises a lightweight

robotic system with six degrees of freedom (DoF) and

its control unit. The robot manipulates an ultrasound

probe according to orders sent by the ultrasound expert.

The probe retrieves the patient’s ultrasound images and

sends them to the expert. Videoconferencing facility is

also available. Figure 10.11 shows the overall functional-

ity of the OTELLO system.

Three types of critical data are to be transmitted over the

OTELLO system: robotic control data, ultrasound stream of

images, and medical ultrasound data. The ultrasound medical

stream represents the most stringent requirements in terms of

data rate and near real-time responses.

The robotic system also has a force feedback mechanism,

allowing the expert to move the Wctive probe and control the

distant probe holder at the remote patient station. The 3G

communication link oVers a data rate of 144 kbps for a

rural outdoor mobile user traveling at a speed of more than

Expert station - Hospital center

Video-conference

Medical expert

Ultrasound
images

Robot control
Force feedback

Satellite communication link Patient station - Remote isolated area

Video-conference

Robotic system

Image processing
Robot control Ultrasound

device

3G

FIGURE 10.11 The overall functionality of the OTELLO system. Adapted from Garawi et al. [29].

246 I Technological Fundamentals



120 km/h, a 384 kbps downlink for a pedestrian user traveling

at a speed of less than 5 km/hour, and 2 Mbps indoors.

For OTELLO, the patient station sends ultrasound images,

ultrasound streams, ambient video, sound, and robot control

data, while it receives only robot control, ambient video, and

sound from the expert station. The best-suited QoS class for

video streaming is the ‘‘Streaming’’ 3G service class that pre-

serves the time relation between information entities of the

stream. However, for medical image sequences with real-time

requirements, the ‘‘Conversational’’ class would be necessary.

The experimental setup over the 3G/satellite network is

shown in Figure 10.11. The ultrasound scanner data are

acquired at the rate of 13 frames per second (fps), each frame

with a resolution of 320� 240 pixels for videoconferencing

format. The robotic data Xow is generated from the expert

station at a rate of 16 bytes every 70 ms. The received robot

data stream from the patient station updates the robotic head

position continuously. The experiment in Garawi et al. [29]

was carried out under diVerent network loading conditions, as

reXected by the results. The real-time protocol (RTP) is used

for end-to-end real-time streaming, and the UDP/IP protocol

is used for the robot data in both directions.

The OTELLO system was tested on a live 3G network

(Vodafone, U.K.). The experimental transmissions were car-

ried within London between Kingston University (patient side)

and St. George’s Medical School (expert side). The test results

for transmitting ultrasound streams encoded in the Quarter

Common Intermediate Format (QCIF) using the H.263 codec

demonstrated successful transmission in 3G real-time envir-

onments. The minimum bounds for quality of the received

ultrasound information that were clinically acceptable by the

medical experts using the OTELLO system for prediagnosis

were 5 fps at 35 dB peak signal-to-noise ratio. These results

were achieved using 64 kbps at the patient station uplink. It

was found that the network delay jitter variations were within

the acceptable boundaries of maintaining high-quality real-

time interaction for the system: 297 ms compared with a

maximum delay of 325 ms. It was concluded that such

advanced mobile robotic telemedicine systems could success-

fully provide clinically acceptable quality ultrasound data

using commercial 3G networks.

The demonstration in Garawi et al. [29] also shows that it

is possible to overcome the technical diYculties involved in

presenting a haptic teaching environment, linking two remote

locations across the world.

10.7 Summary

Wired and wireless technologies and communication networks

are becoming an integrated part of the health care infrastruc-

ture to support current and emerging services and applications

in an increasingly mobile and information-driven society,

providing better services at reduced costs Wnancially and with

fewer human resources.

It is impossible to cover the Weld of telecommunications and

computer networks in one chapter. This chapter attempts to

focus on providing a basic understanding of data communi-

cations technologies and how they are deployed in various

forms in wired and wireless infrastructures to support appli-

cations in m-health and telemedicine.

The chapter discussed the TCP/IP stack (see Figure 10.4), in

which a TCP/IP application layer service (http) transmits data

that are carried in a TCP protocol data unit with a speciWc port

number, which in turn is carried in an IP packet with an IP

address used to route the packet across the Internet. The TCP

port number and the IP address together form a ‘‘socket.’’ The IP

packet is Wnally carried in an Ethernet (802.3 CSMA/CD) frame

to the destination host machine using the MAC address. The

ARP protocol is used to map between the IP and MAC addresses.

In particular, the chapter discussed the limitations of a

communication channel, to make sure that we are aware of

them when building an infrastructure for health care. In par-

ticular, the chapter discussed aspects of emerging health mon-

itoring that require sensors and wireless sensor networks. The

chapter discussed the working of Internet network architecture

and other mobile and wireless networks that are being

deployed in health care applications.

The chapter identiWed a large number of open issues and

challenges that must be addressed before wireless tech-

nologies can be applied on a wide scale within the health

care environment.

10.8 Exercises

1. DiVerentiate between narrowband, wideband, and ultra-

wideband transmission schemes.

2. Name some of the limitations of a wireless communication

channel.

3. Explain why many networks (wireless sensor networks,

WLANs, mobile cellular networks, and the Internet) have

to be involved in an application. Describe their role.

4. What do you think are the issues that must be addressed

before wireless technologies can be applied on a wide scale

within the health care environment?

5. What are the MAC protocol, data rate, and transmission

medium of 10GBase-T?

6. What are the main advantages of the IPv6 protocol com-

pared with IPv4?

7. Discuss the opportunities and changes in lifestyle that

are likely to occur as all electronic devices in a home

(telephone, refrigerator, microwave, etc.) are wirelessly con-

nected to the Internet using IPv6.

8. As their costs fall, RF identiWcation devices will become

used to track smaller and smaller unit quantities
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(e.g., presently a container, perhaps a crate, later a

box, then individual items). What do you think the

implications of this trend are for privacy, proWling, and

monitoring of patients?

9. Write a simple webpage with links to online medical

resources for patients.

10. Discuss the advantages of a digital data network compared

with an analog network.

11. Discuss the advantages of a network based on TCP/IP

compared with the digital public switched telephone

network.
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11.1 Introduction

11.1.1 Background

There are ethical and legal obligations for health care providers

to preserve the privacy and conWdentiality of patient informa-

tion, which can contain some of the most intimate informa-

tion conceivable about an individual [1]. Despite the

advantages of electronic medical records (EMR), there is a

higher chance of disclosure of information to the public com-

pared to other formats such as paper-based records [2]. Fast

network and processing tools allow large-scale data searches

and retrievals and enable the disclosed data to be transferred.

Easy access to networked systems increases the risk of disclos-

ure of the information both intentionally and unintentionally.

The actual level of security breaches in current health care

systems is not yet signiWcant but is strong enough to raise

concerns [3, 4].

In such an environment, the primary risk or danger associ-

ated with medical information is the disclosure of content to an

unauthorized party, which can result in misuse. The unauthor-

ized alteration of content, whether it is intentional or not, may

lead to misdiagnosis and other severe results. The security of

medical information is protected by legislation and strict

ethics. The Health Insurance Portability and Accountability

Act (HIPAA) [5] recently introduced by the U.S. government

mandates the development of a national privacy law, security

standards, and electronic transactions standards to reduce

violations and wrongful disclosures of health information.

Three aspects of security arise in relation to dealing with

medical images: conWdentiality, reliability (integrity, authenti-

cation), and availability [6] which can be deWned as follows.

ConWdentiality aims to ensure that only the entitled users have

access to the information.

Reliability has two aspects: integrity, which ensures that the

information has not been modiWed by errors in transmission

and unauthorized users; and authentication, ensuring the data

or information is correctly identiWed (i.e., is from the correct

source and belongs to the correct patient). Availability means

that the information is used by the entitled users in the

conditions of access and exercise.

EVective distribution and communication of medical

images among health care providers are becoming increasingly

important. Health care networks are key components in the

delivery of cost-eVective clinical care. To provide eVective

communication and exchange of data, the use of public net-

work channels like the Internet is inevitable. Recently, many

image-distribution systems that use the Internet have been

proposed in the literature such as the Web-based medical

image distribution and telemedicine system [7–11]. These

systems have great potential because of their cost-eVectiveness

and easy accessibility.
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An important consideration in the implementation of any

networked imaging system that uses the Internet is that image

data may be susceptible to unauthorized access, disclosure, and

alteration. Most clinical picture archive and communication

systems (PACS) [12] use the digital imaging and communica-

tions in medicine (DICOM) [13] standard image format for

medical images. A number of security measures are currently

available for PACS and DICOM, such as encrypted transmis-

sion, Wrewall, passwords, and private and public keys, which

provide adequate protection for data storage and transmission.

However, computer and network speed advance rapidly and

may result in security threats to the medical environment.

Faster processing speeds increase the vulnerability to brute-

force attack and diVerential cryptanalysis [14]. Extended

wide-area networks create possibilities for unauthorized con-

nections to health care networks, resulting in attacks like eaves-

dropping. Most security tools also have limits. Combining

diVerent methods can increase the security of data [15]. In

this chapter, some security methods currently being used in

practice and new approaches to protect medical images are

brieXy introduced.

11.1.2 Cryptographic System and Digital
Watermarking

A cryptographic system, or cipher, is a mathematical function

used for encryption and decryption. At present, a cryptographic

system is the security protection for medical information sys-

tems such as DICOM, using digital signatures and encryption

to improve security [13]. Cryptographic systems are capable of

providing conWdentiality using encryption and content protec-

tion guaranteeing integrity and authenticity using a digital

signature. However, there are still some weak aspects in crypto-

graphic systems; for example, no protection is guaranteed after

decryption using a legitimate key (which is the most common

method of illegally redistributing multimedia content) [6]. The

digital signature scheme is a good solution for detecting the

intentional or accidental modiWcation of digital contents.

Digital watermarking is a technique to embed encoded

information into digital data so that the information is imper-

ceptible but easily decoded by authorized parties [16]. It

should be diYcult for unauthorized parties to remove the

embedded information without the original data. Applications

of digital watermarking include copyright protection, authen-

tication, captioning, and tracing of illegal distribution and

secure communication. Each application has diVerent require-

ments. For example, copyright protection requires robust

watermarking [17] whereas authentication requires fragile or

semifragile watermarking [18]. Robust watermarking is a

method in which the embedded watermark should remain

the same after any processing technique has been applied,

including compression and geometric transformation. This

robustness is useful for copyright protection because the

ownership of the content can be preserved. Fragile or semifra-

gile watermarking is a method for embedding readily breakable

watermarks on the image content such that any processing

damages the watermark. The damaged watermark can still be

used to authenticate and localize the modiWcation.

The diVerence between cryptographic systems and digital

watermarking is shown in Figure 11.1. A key diVerence is that a
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Encryption key

Decryption

Decryption key

Transmission:
contant is invisible

Decrypted
medical image

Original medical
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insertion

Watermark
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Key
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FIGURE 11.1 (a) Cryptographic system for medical images—Image content is hidden during

transmission. (b) Embedded digital watermarking—Image is accessible during transmission, but

secret information is invisibly or visibly embedded inside the image.
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cryptographic system hides the image from unauthorized ac-

cess by encrypting it while a digital watermark hides secret

information within the image content that can be extracted for

veriWcation.

11.2 Overview of Cryptographic System

Cryptography originated from the Greek word kryptós, hidden,

and gráphein, to write, meaning secret writing. The encryption

process converts a plain text message to cipher text using the

cryptographic algorithm. The decryption process is the reverse

process of retrieving the original plain text. In general, there

are two types of cryptographic algorithms, symmetric (private)

key and asymmetric (public) algorithms.

11.2.1 Symmetric Key Cryptography

Symmetric (also called private) key cryptography is based on a

shared key that is known only to the communicating parties.

Famous symmetric key algorithms are Data Encryption Stand-

ard, International Data Encryption Algorithm [19], RC5 [20],

and Advanced Encryption Standard.

The level of security provided by the algorithms depends on

the secrecy of the key. Both communicating parties have to

agree upon the secret key before the message is transmitted.

This type of algorithm mainly ensures conWdentiality of the

message. A major disadvantage of secret key algorithms is that

any message can be compromised when the key is disclosed or

intercepted. Another issue is the use of a secret key algorithm

in a networked environment. When more than two commu-

nicating parties or nodes are involved, each pair of parties or

nodes is assumed to use separate keys. This is highly compu-

tationally complex for large user groups, which is common in

the medical environment. On the other hand, an advantage

over a public key algorithm is that a symmetric algorithm

requires much smaller key sizes for the same level of security.

The computations can be faster, and the memory requirements

are smaller, which is useful for communication involving small

numbers of users.

11.2.2 Asymmetric Key Cryptography

Asymmetric (also called public) key cryptography uses two

diVerent keys: a public key and a private key. A public key is

available to anyone, and a private key is only known to the key

owner. The sender can encrypt the message using the recipi-

ent’s public key. The encrypted message can only be decrypted

with the recipient’s private key. Public-key cryptography does

not require a shared secret key between communicating par-

ties, thereby solving the problem of key distribution in

communication networks. But the overall process of encryp-

tion and decryption is much slower than symmetric key

cryptography. The key size for public key cryptography has

grown very large, requiring large computational processing

power and memory size.

When performance is an issue, symmetric key cryptography

is preferable to asymmetric key cryptography. To balance per-

formance and eVective distribution, a combination of sym-

metric and asymmetric key cryptography can be used. A

temporary random key called a session key can be used. The

session key is used to encrypt the message. The session key is

then encrypted using the recipient’s public key. The public-key

encrypted session key is sent along with the encrypted message

to the recipient. The session key is retrieved using the recipi-

ent’s private key. The message is then decrypted using the

session key. In medical imaging, because of its large size, this

combined approach can improve the performance and security

of key management.

11.2.3 Cryptographic Hash Function

Hash functions take any length of input data (e.g., image

content) and generate Wxed-length strings. The digested string

can be appended to the input data during the transmission for

error detection. The string is also called parity bits when it is a

binary string. Comparing the digest of received data and the

appended message digest (also called checksum) checks the

error. In general, it detects random error caused by noise

during transmission. However, there is a possible threat to

the methods such as a malicious attacker intercepting the

transmitted data, modifying it, and resending it with the digest

recalculated for the modiWed message.

Cryptographic hash functions using symmetric (private) or

asymmetric (public) key cryptography are commonly used for

authentication. Authentication is similar to error checking, but

it ensures that the origin of data (i.e., authenticity) is correctly

identiWed. Authentication is normally done at the same time as

integrity checking. The outcome of the cryptographic hash

value (i.e., a binary string) is deWned as the digital signature.

To produce a digital signature, the digest of input message

M is calculated using hash function H(x). The digested mes-

sage M0 is then encrypted with the key of the sender. The

encryption can be either private or public. This encryption of

the hash prevents malicious attackers from modifying the

input data and recalculating its checksum. The two most

widely used cryptographic hash functions are message-digest

algorithm 5 and secure hash algorithm. However, the existence

of possible security Xaws has been reported in both algorithms

[21, 22].

Message authentication code (MAC), also known as a

cryptographic checksum, is a public function of the input

data and a secret key that produces a Wxed length value that

is used for authentication. MAC algorithms are symmetric-key

techniques that provide data origin authentication and data

integrity. They have received widespread use in many practical

applications such as eCommerce. A keyed hash function h has
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a secret k-bit key K as a secondary input when used for

message authentication.

11.3 Digital Watermarking

Digital watermarking techniques [16, 23–25] can be classiWed

according to their perceptivity, robustness, processing domain,

and key types (Table 11.1).

Fragile watermarks do not survive glossy image processing.

This fragility enables the detection of modiWcation [18]. Pla-

cing the fragile watermark into the perceptually insigniWcant

portions of the data guarantees imperceptibility. Robust

watermarks will survive any image processing applied to the

content [26]. Robust watermarks are intended to survive com-

mon image processing operations such as Wltering, scaling, or

cropping [27] and are mainly used for security and copyright

protection. It is diYcult to achieve a single watermark that

will survive all image processing techniques. More than one

watermarks are embedded in a host image so that at least one

watermark survives under different image processing called

cocktail embedding [28] have been reported in the literatures.

Cryptography is often used in generating digital water-

marks. Either a private or public key can be used. Wong [29]

has proposed a public-key watermark that divides an image

into blocks and calculates the signature of each block using the

public-key hash function. The generated signatures are embed-

ded within the corresponding blocks. This signature can iden-

tify the location of modiWcations up to the base block size.

Despite its localization ability and cryptographic key strength,

possible methods to attack this method have been reported

[26]. The individual signatures depend only on the block so

that no interrelationship exists between the signatures. This is

called block-wise independency. A possible method to forge

the block-wise independent watermarking is called vector

quantization (VQ) counterfeiting attack [26]. If an attacker

has a suYcient number of watermarked image samples, it is

possible for the attacker to generate a new authentic image by

adding pieces of diVerent authentic image samples, like a

patchwork. Since the introduction of VQ attack, a number of

improvements of the existing methods have been proposed

[30]: (1) increasing block dimension, (2) including block in-

dices in the signature, (3) including image indices in the

signature, and (4) breaking block-wise independency.

With regard to the signal processing domain shown in Table

11.1, existing watermarking methods can be classiWed into

transformation domain methods and spatial domain methods

[31]. The basic idea of spatial domain methods is to embed

watermarks into and extract watermarks from the image in the

spatial domain, without transformation. The watermarks are

constructed in the spatial domain and embedded directly into

an image’s pixel data. The most common approach to embed-

ding invisible information is the least signiWcant bit (LSB)

substitution method [23, 32, 33]. The fundamental idea is to

insert the bits of the hidden message into the LSB of the pixels.

Early fragile watermarking systems embedded checksums [34]

or pseudo-random sequences in the LSB plane of an image.

More recent systems apply more sophisticated embedding

mechanisms, including the use of cryptographic hash func-

tions as mentioned in Wong’s scheme [35], to aid detection of

changes to a watermarked image. In the extraction process, the

LSBs of the watermarked image are extracted and concatenated

to reconstruct a secret message, then the inverse of the control

function is applied. The LSB method can be expanded to many

diVerent types of application by using a diVerent kind of

control function, depending on its applications.

Compared with spatial domain methods, the basic idea of

transform domain methods using transforms like Furrier

transform, discrete cosine transform (DCT), and wavelet

transform is to embed and extract watermarks in the trans-

form domain. Transform domain methods hide the message in

signiWcant areas of the image, making it more robust to attack.

11.4 Medical Image Watermarking

Watermarking techniques enhance existing security measures

for distributed data of many kinds including medical images.

However, a potential limitation in applying the techniques

directly to medical images is that the watermark may alter

the original image to an extent that it may not be acceptable

for diagnosis or quantitative analysis. The eVect of embedded

watermarks on the diagnosis and analysis of medical images is

a key issue.

In medical imaging, the applications of watermarking [36]

are mainly authentication [6], integrity checking [37–42] and

metadata embedding [43, 44]. A number of the proposed

watermarking methods are for distribution and management

of medical images for purposes other than diagnosis [40, 42,

43]. The watermarking methods acceptable for diagnostic

analysis are mainly based on either the reversible watermarking

schemes [39, 41] or region-based schemes [5, 37, 38], which

are discussed next. There are a number of watermarking

schemes suitable for compressed medical images in the trans-

form domain. In this chapter, we focus on watermarking

methods for noncompressed images. Noncompressed images

are accepted for use in diagnosis.

TABLE 11.1 Taxonomy of digital watermarking

ClassiWcation Type of watermark

Perceptivity Visible, invisible

Robustness Robust, semifragile, fragile

Signal processing domain Spatial, transform domain

Key types Private, public key
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11.4.1 Reversible Watermarking

Watermarking is said to be reversible if the image is deemed

authentic and the distortion due to authentication can be com-

pletely removed to obtain the original image data. Two principal

reversible watermarking techniques are reported in the litera-

ture. One is based on robust spatial additive watermarks com-

bined with modulo addition [45], and the second is based on

lossless compression and encryption of bit planes [46–48]. Both

techniques provide cryptographic strength in verifying the

image integrity because the system security is related to a secure

cryptographic primitive such as a hash function.

One of the earliest reversible watermarking methods was

proposed by Barton [46] and compresses the bits to be aVected

by the embedding operation. The compression preserves the

original data while creating a space for the embedding of secret

information. The compressed data and the payload are then

embedded into the host image. This method is widely adopted

for embedding reversible watermarks [47, 48].

Another reversible data-embedding method [45] uses a spa-

tial additive robust watermarking scheme [49] to embed a

watermark pattern W into an 8-bit original image I, where W

is calculated from a hash function H (of the original image). A

hash function with a secret key K can be used:

W ¼ H(p,K ), (11:1)

where P is payload bits. The generated watermark pattern W is

added to the image as follows:

Iw ¼ I þW mod256, (11:2)

where Iw is the watermarked image. For the recovery of the

original image, the payload p is Wrst extracted from the water-

marked image, then the watermark pattern W is calculated as

above. The embedded data can be removed using subtraction

modulo of 256 to obtain the original image I as follows:

I ¼ Iw �W mod256: (11:3)

The possibility of the above introducing salt-and-pepper noise

into the watermarked image when pixels close to zero are

Xipped to values close to 255 and vice versa in grey scales has

been discussed in [50]. The possibility of extracting the pay-

load correctly is reduced when the number of the Xipped pixels

is too large. This salt-and-pepper distortion in the water-

marked image; may be undesirable in some medical imaging

applications.

Fridrich et al. [51] proposed a lossless data embedding

method for uncompressed image formats. The original image

is assumed to be a grey scale image with M�N pixels including

pixel values from the set P, e.g., P¼ {0, . . . ,255}. The pixels in an

image are grouped into non-overlapped blocks, each consisting

of a number of adjacent pixels. The image is divided into

disjoint groups of n adjacent pixels (x1, . . . ,xn). A

discrimination function F is established to classify the blocks

into three diVerent categories: regular (R), singular (S), and

unusable (U ) groups. An invertible operation F on P called

Xipping is deWned, which is a permutation of grey levels that

consists entirely of two cycles. The main idea of the method is

that they inspect the image in groups and losslessly compress

the bit stream of R and S. The R and S groups are Xipped into

each other under the Xipping operation F, while the U groups do

not change status. By assigning a 1 to R and a 0 to S, they embed

one message bit in each R or S group. If the message bit and the

group type do not match, the Xipping operation F is applied to

the group to obtain a match. The data to be embedded consist of

the overhead and the watermark signal. Although the technique

is novel and successful in reversible data hiding, the amount of

data that can be hidden is limited. A possible problem with

applying the method to medical images is that as the capacity

increases, the visual quality drops severely.

Celik et al. [52] presented a high-capacity, low-distortion

reversible data-hiding technique. The host signal is quantized,

and the residual is obtained in the embedding phase. The

context-based, adaptive, lossless image coding (CALIC) com-

pression algorithm [53] is adopted, with the quantized values

as side information. The algorithm has three components:

prediction, context modeling, and conditional entropy cod-

ing. Prediction coding reduces spatial redundancy in the

image. The context model examines spatial correlation with

diVerent image levels. Conditional entropy coding creates

smaller code by translating the correlation. This enables the

creation of high capacity for the payload data by compressing

the quantization residuals. The compressed residual and the

payload data are concatenated and embedded into the host

signal using the LSB substitution method. It was reported that

the high embedding capacity could be achieved with relatively

little distortion.

The major concerns in the development of all lossless em-

bedding algorithms are increasing capacity and minimizing the

visual artifact created by embedding the payload.

11.4.2 Region-Based Watermarking

Region-based schemes utilize the spatial redundancy of the

image. In most medical images, there exists spatial redundancy

such as a background, which has less importance in diagnosis.

Coatrieux [37] proposed region-based watermarking for med-

ical image integrity veriWcation. The medical image to be

protected is divided into two zones: region of interest (ROI)

and non-ROI (NROI), as shown in Figure 11.2.

The ROI is the region needed for the diagnosis, and its

integrity is important. The NROI is the peripheral region

(outside the ROI) that is not used for diagnosis. The ROI can

be deWned automatically or delineated semi-automatically by

operator. The ROI boundary information is required in the

veriWcation process. Signatures generated from cryptographic

hash function are calculated from ROI and embedded in the

insertion zone. Any image on which the signature extracted

from the ROI does not match that stored in the insertion zone

indicates possible modiWcation. Thus, any change, whether

11 Data Security and Protection for Medical Images 253



due to malicious forging, tampering, casual processing or

random errors, can be detected. Using the same ROI and

NROI in the embedding and veriWcation process is an import-

ant precondition of such methods.

The image ROI can be considered as a binary message M;

jMj is the length of the message; its integrity is veriWed with a

signature SR calculated from cryptographic hash function f. M

can be subdivided into N segments mi of mi bits each:

M ¼ m1, . . . ,mN . The signature SR results from the concaten-

ation of N control words Si of length h1, . . . ,hN to localize

alteration. Each Si protects the corresponding segment mi

independently. The signature extraction function, f (also called

the control function), can be deWned as follows.

SR ¼ f (M) ¼ f (m1, . . . ,mN ) ¼ (h1, . . . ,hN ): (11:4)

In the veriWcation process, the integrity is checked by compar-

ing the embedded signature SR and the calculated signature

from the received image S0R ¼ f (M 0).

Any segments in which Si 6¼ S0i are deemed to have been

modiWed.

Cao et al. [5] used a steganographic approach to embed

an encrypted digital signature of content and conWdential

patient information, called a digital envelope (DE). The

image is Wrst segmented with the background removed by

Wtting a minimum rectangle that contains the diagnostically

important region. This rectangle separates ROI and NROI.

The digital signature (DS) of ROI is produced using the sig-

nature extraction function using a private-key such as a

cryptographic hash function. The patient information is

appended to the digital signature if it is necessary to form

DE. The generated DE is embedded within NROI outside

of the rectangle. The DE-embedded image is encrypted for

transmission.

11.5 Region-Based Reversible
Watermarking for Secure
Positron Emission Tomography
Image Management

A region-based digital watermarking method has been applied

to positron emission tomography (PET) images for security

and management [54]. Region-based embedding has been

used to divide PET images into two regions, ROI and NROI,

depending on the diagnostic importance. Patient information

is encrypted and embedded within ROI using LSB embedding.

The original bits changed because of embedding the encrypted

patient information are encrypted and embedded within

NROI. The original values of ROI can be restored using data

contained in the watermark embedded in the NROI.

A threshold method is used to deWne ROI and NROI. Pixels

in the image with intensity less than the threshold are assigned

to NROI. The remaining pixels are assigned to the ROI. It is

possible to get misclassiWed pixels (gaps) in both regions,

which are Wlled using a morphological process [55]. The

LSBs of ROI pixels are extracted and concatenated into binary

string, which is then encrypted and embedded within the

NROI using LSB substitution. Patient information (e.g.,

name, date of birth) is embedded within ROI (Figure 11.3)

The amount of information depends on the capacity of ROI.

The reconstructed images used in the result shown in

Figure 11.4 were 128� 128, unsigned raw data (data were

scaled to 0 to 27537 intensity unit). There was no signiWcant

visual diVerence between the original and embedded images

(MSE of 0.24+ 0.03). Decrypting and extracting the embed-

ded message on the background could recover the original

ROI. The embedded patient information has many potential

uses. Integrating the patient information within the image

content oVers advantages such as conWdentiality of informa-

tion, compact storage, and fast transmission.

Non-ROI

ROI

FIGURE 11.2 Region-based embedding scheme. The ROI signature

is embedded in the NROI.

Recovery information

LSB Extraction

Non-ROI

ROI

Patient information Encryption

3 Embedding

5 Embedding

4

2

1

Encryption

FIGURE 11.3 A conceptual diagram of region-based watermark

embedding process with patient information. The data to be changed

because of embedding patient information (recovery information) is

extracted and embedded within the NROI. Patient information is

embedded within the ROI.
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11.6 Summary

In this chapter, a number of security methods applicable to

medical images are introduced. Currently, cryptographic algo-

rithms are the most widely used security measure, being fast

and eVective. However, most security tools have their limits

and combining diVerent security methods is the best way to

protect data. The newly emerging technique of digital water-

marking has been introduced as an alternative tool to improve

the security of medical images.
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11.7 Exercises

1. Describe the diVerence between cryptography and digital

watermarking.

2. Compare the advantages and disadvantages of the following

security measures introduced in this chapter:

. Private key encryption

. Public key encryption

. Reversible watermarking

. Region-based watermarking

3. Write a pseudo-code using bitwise operation to replace LSB

of a given image with a payload (university logo).
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12.1 Introduction

Biologic computing, as deWned in this current chapter, focuses on

computational and bioinformatics approaches for three funda-

mental molecules of life: DNA, RNA, and protein. These three

building blocks form cells, tissues, and the living human body.

DNA is the code that contains the 30,000 or so genes that can be

turned on or oV in various contexts and sequences in response to

development and the environment. DNA databases are focused

on the three-billion–letter linear code in humans (smaller in

other organisms). The relatively static nature and low dimension-

ality of DNA allow it to serve as a reference and anchor for most

other biologic computing databases. mRNA and protein are more

highly dimensional, with dynamic range, modiWcations, patterns

of expression, and interactions with other mRNAs and proteins

dictating normal and pathologic conditions. Much of current and

future eVorts in biologic computing work toward recording

changes of mRNA and protein patterns as a function of a speciWc

variable, with the goal of assembling changes into biologically

relevant networks and pathways. The long-term goal is to under-

stand and predict the responses of cells, tissues, and the patient to

environmental and pathologic conditions; however, the very high

dimensionality makes this a formidable task.

12.2 Overview of Genomic Methods

The three types of molecules, DNA, mRNA, and protein, each

have their own bioinformatics challenges. DNA has been the

most intensively studied and is in many ways the most straight-

forward. DNA has only four possible components (A, G, T, C),

and these are arranged in highly speciWc linear code to make up

the genes and intergenic regions. We will not go over the basic

chemistry of DNA, but it is important to understand a few

basic concepts to appreciate the existing resources and remain-

ing challenges in computational bioinformatics.

DNA is a double helix with perfectly complementary strands.

As such, it is relatively unimportant which strand one databases

or visualizes, as the other strand can be easily derived. The

three-billion–letter string of DNA is arranged into some super-

structure (chromosomes, with telomores and centromeres

within each chromosome). However, for the purposes of com-

putational bioinformatics, the chromosomes become a rela-

tively minor feature. More important are the functional units

of DNA, the genes or transcript units, that are oriented in both

directions within the DNA.

To explain genes and the databases associated with these, we

will use one of the most popular Web sites, namely the Genome

Browser (http://www.genome.ucsc.edu). The Genome Browser

was developed by University California Santa Cruz bioinfor-

matics professor Jim Kent and colleagues in 2000 using MySQL

database, with a set of Linux Pentium-class machines acting as

Web servers [1]. The Genome Browser uses the genetic code of

humans and other organisms as an anchor to which hundreds

of other databases are then referenced. Approximately half of

the data links are done by UCSC staV, and half are done by

remote investigators wishing to have their databases transpar-

ently accessible and queried via the Genome Browser site.
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The size of genes ranges from quite small (perhaps

100–300 bp) (Figure 12.1), to the largest gene known, the dys-

trophin gene, measuring in at 2.3 million base pairs (Figure 12.2).

Overall, there are about 20,000–25,000 transcript units or genes

dispersed over the three billion base pairs, but the count depends

on how one deWnes what is considered a gene and what is not.

One quickly then asks, ‘‘How is a gene or transcript unit

deWned?’’ If a region of DNA functions as a transcript unit,

then it should produce an RNA molecule (e.g., be transcribed

into RNA). One can then simply take some tissue such as

muscle or brain, isolate all RNA, then sequence the RNA

fragments. Each RNA must have come from some fragment

of DNA somewhere in the genome, so one simply maps the

RNA sequence back to the DNA genomic sequence. This

process has been done for hundreds of tissues and cells over

the last two decades, leading to large databases of expressed

sequence tags (ESTs), snippets of RNA sequence that are used

as databases to map back to genomic DNA and deWne

transcript units within the genomic DNA.

The process of mapping ESTs back to the linear genomic

DNA sequence is a cornerstone of biologic computing. This

process relies entirely on the central tenet of biologic comput-

ing, namely that the order of bases in DNA and RNA is entirely

predictable based on the sequence (e.g., mapping by sequence

homology). If an RNA fragment matches to two distinct re-

gions of DNA that are in the same neighborhood, then one can

assume that these are two exons separated by an intron. Itera-

tively doing this process for hundreds of tissues and cells and

millions of RNAs leads to the transcript map currently visual-

ized in the genome browser.

There are other aspects of mRNA that are variables in the

development and use of biologic computing. As shown in

Figure 12.2, the promoters (signals driving transcription at

the 50 end of the gene) and associated Wrst exon can be a

variable. An additional variable is alternative splicing, where

diVerent exons are used by diVerent cells at diVerent times.

Finally, alternative 30 stop sites can be used. An example where

a single transcript unit shows multiple promoters, alternative

splicing, and alternative termination sites is shown in Figure

12.3 (tropomyosin 3, TPM3).

It is important to point out that the use of transcript units

by cells and tissues depends on many factors, including devel-

opmental state, environmental cues, and pathologic states.

Indeed, neighboring cells in a tissue may turn diVerent genes

on and oV, and even when using the same gene may use

diVerent variants of that gene. Most importantly, the pattern

of gene and protein expression in one cell may alter the

pattern of expression in the neighboring cell or in a cell in a

distant part of the body. One quickly sees how the neat and

invariant order of the three-billion–unit DNA genome is

FIGURE 12.1 Genome browser view of the insulin (INS) gene. The position of the gene on the short arm of chromosome 11

(11p15.5) is indicated by the top view, with the base pair coordinates on chromosome 11 indicated (2,138,000 bp region). The INS

gene is transcribed in the right-to-left direction (shown by arrows on the INS gene schematic) and contains three exons (heavy

lines). The complete gene is about 1,500 bp (1.5 kbp). The initial Wrst exon to the right is small and noncoding (smaller line; 50

untranslated region of transcript), whereas the second exon contains a small amount of noncoding and a larger amount of coding

(amino acid coding; larger bar) sequence. The last exon to the left contains about 2/3 amino acid coding sequence, and the

remainder is 30 noncoding (untranslated). The evolutionary conservation tracks are visualized here, showing that exons 2 and 3 are

very highly conserved through evolution, while exon 1 is not. Highly conserved regions imply functional importance of the

sequence in that region since there is strong evolutionary pressure to keep these regions the same. The bottom track gives a

summary of single nucleotide polymorphisms (SNPs) through the region of the gene. Taken from http://www.genome.ucsc.edu [1].
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quickly brought into tremendous complexity at the RNA level.

While complex, it remains relatively easy to query, catalogue,

and create an RNA database because of the exquisite sensitivity

and speciWcity of computer homology searches and labora-

tory-based solution hybridization of speciWc sequences. These

are discussed later in this chapter, which also includes a

discussion of current bioinformatic tools and challenges.

12.3 Overview of Proteomic Methods

The complexity of RNA patterns and networks pales in com-

parison to the complexity of protein networks. I typically teach

that about 1%–4% of complexity resides in RNA expression;

96%–99% of complexity resides in protein expression and

function. Proteins become exponentially more complex at a

number of levels. First, there are 20 standard amino acids

(building blocks) rather than the four in DNA and RNA.

Second, once a protein is translated, a long list of variables

inXuences activity and function of the protein. These include

extensive posttranslational modiWcations (phosphorylation,

glycosylation, proteolytic cleavage). Third, folding of the pro-

tein dictates activity, as do interactions with additional copies

of itself or other proteins. Fourth, subcellular localization and

local concentration of substrates and cofactors can dramati-

cally inXuence protein function.

In addition to the inherent complexity, the understanding of

protein networks has been slowed by two technical problems.

It is considerably more diYcult to purify and sequence pro-

teins, compared to the cloning and automated sequencing

technologies available for nucleic acids (DNA, RNA). Also,

the exquisitely sensitive and speciWc sequence-speciWc hybrid-

ization used to query nucleic acids is not available for proteins.

FIGURE 12.2 The Genome browser view of the dystrophin gene, the largest gene known to date. Shown is the dystrophin or

DMD gene (Duchenne muscular dystrophy). The gene covers 2.3 million base pairs and includes more than 80 exons. There are

multiple alternative start sites of the gene (see alternative exon 1 to the right of the diVerent isoforms listed). The resolution of

exons, conservation, and SNPs is all quite compressed in this view, making the information diYcult to interpret. There are

additional transcript units to the left of the view (GK, TAB3, FTHL17). Comparisons of the relatively simple insulin gene in

Figure 12.1 and this highly large and complex gene demonstrates the wide range of transcript units in the human genome. Taken

from http://www.genome.ucsc.edu [1].
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To date, it has been impossible to develop probes that can pick

a single protein from a complex solution as is possible with

hybridization for complex solutions of DNA or RNA.

The lack of sensitive and speciWc methods of querying

proteins in complex solutions has recently changed with the

advent of high throughput mass spectrometers (MS), more

sensitive protein separation methods, and proteomic proWling

using stable isotopes labeling strategies. These are described in

a bit more detail later in this chapter. However, a brief descrip-

tion of the principles of high throughput analysis of proteins

(proteomics) is given here.

The understanding of the underpinnings of proteomics is

critical when considering the bioinformatic aspects of proteo-

mics. The fundamentals of proteomics are as follows:

. In MS, ionized protein fragments moving through a

vacuum have a speciWc mass over charge (m/z) ratio.

. The secondary structure (amino acid sequence) of pro-

teins can be predicted by in silico translation of genes

(transcript units both known and predicted).

. A protein sequence can be fragmented in silico into pre-

dicted patterns of m/z fragments.

A pattern of observed m/z fragments detected by MS can then

be matched against all theoretical m/z patterns for all known

or predicted proteins, and the protein of interest can be

assigned and identiWed.

To begin with the physical and chemical principles behind

the use of MS, MS typically have three components: ion

source, mass analyzer, and detector (Figure 12.4). The ion

source imparts charge to protein fragments (peptides), ena-

bling them to be driven through space by electromagnetic

forces within a vacuum. There are a number of methods used

for ionization, but the two most frequently used are matrix-

assisted laser desorption ionization (MALDI ) and electrospray

ionization (ESI) (Figure 12.4). The major distinction is that

MALDI analyzes samples as dry solids co-precipitated with an

ultraviolet laser-absorbing matrix on a probe, while ESI is a

solution-based method sprayed through a narrow stainless

steel capillary.

FIGURE 12.3 The complex transcript unit of the tropomyosin 3 gene. The TPM3 gene covers about 35,000 bp (35 kbp) and is

transcribed from right to left. At least three diVerent promoter and exon 1 regions are used by diVerent cell types at diVerent times

(top transcript uses a promoter and Wrst exon in the center of the gene, while other transcripts are using exons 10–15 kbp to the

right). There are also at least three diVerent terminal exons used. The lower transcripts terminate early but also include additional

exons not shared with the uppermost transcripts (alternative splicing). This results in a diversity of TPM3 proteins being

produced by these transcripts, all from the same parental transcript unit. Taken from http://www.genome.ucsc.edu [1].
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The second component of the MS is the mass analyzer

(Figure 12.4). These are vacuum units that manipulate the

charged polypeptides in such a way that the m/z ratio is

directly related to time at detection by the detector. The three

most common mass analyzers are time-of-Xight (TOF), where

the m/z ratio is related to a linear Xight path from the ion

source to the detector. Ion traps and quadrupoles have a series

of electromagnetic forces that modulate ion frequency in a

nonlinear manner. Finally, the detector is where the charged

particles are transduced into electrical signals via a photon

diode and electron multiplier.

A peptide must be charged (ionized) by the ion source in

order to be resolved by the mass analyzer and detected by the

detector, but there are a number of possible charged states of a

peptide especially (þ1 [singly charged], þ2 [doubly charged],

etc) especially when using ESI as a ionization method. One

must know the charge state of the ion in order to determine

the m/z value, and thus the precise molecular mass. This is

calculated by the presence of naturally occurring stable iso-

topes, speciWcally a stable isotope of the carbon atom (Figure

12.5). Carbon typically has an atomic molecular weight of 12

(e.g., 12C). However, the stable (nonradioactive) isotope 13C,

with an extra neutron, exists in all natural peptides at about a

1% level (Figure 12.5). This leads to all peptides detected on

MS showing a series of peaks rather than a single monoisotop-

ic peak as a result of 1% replacement by 13C (and low levels of

other stable isotopes). The monoisotopic mass (no 13C in the

peptide) is seen as MW 1296.685 in Figure 12.5, and the

addition of one 13C leads to an additional peak to the imme-

diate right, shifted by one neutron (1 mass unit). If the mass

diVerence between the monoisotopic peak (the far left peak at

m/z 1297.685/1 – 1296.685/1¼ 1), and the peak with one 13C

(immediate adjacent peak m/z 1297.685) is equal to one, then

the charge state (z¼ 1) (1296). However, if the peptide is

doubly charged, the apparent molecular weight detected on

MS is altered due to z¼ 2 (e.g., 1296.685/2). In this case, the

mass diVerence between the isotopic peaks becomes 0.5 mass

units (1297.685/2 – 1296.685/2¼ 0.5). The bioinformatics soft-

ware can quickly determine the charge state of the peptide

simply by looking at the distance between adjacent isotopic

peaks; if the distance between peaks is 1, then the peptide is

singly charged, while a distance between peaks of 0.5 (1/2)

indicates a doubly charged state. The improved mass reso-

lution of current MS enabled the accurate detection of stable

isotopic variants of peptides, which was a crucial step in the

determination of charge state and enabled m/z calculations.

The remaining principles of proteomics depend on the

prediction of polypeptide patterns on MS using genomic

sequence data (genes, transcript units) and the matching to

observed patterns in data from MS. There are three types of

polypeptide databases that are often used. The most widely

used databases are the SwissProt, a curated protein sequence

database that provides a high level of annotation; followed by

the National Center for Biotechnology and Information data-

base (NCBI), which contains nonredundant protein and

nucleic acid sequences; and the International Protein Index

database, which maintains and organizes a large eukaryotic

database. Nearly all full-length proteins are too large (high

molecular weight) to resolve within most MS. Thus, this data-

base is not used directly for matching to MS data but is used

instead as the starting point for in silico prediction of poly-

peptide fragments from the full-length parent protein.

Predicted mass spectra use the molecular mass of each

amino acid (Figure 12.6) then calculate the predicted molecu-

lar weight of the sum of amino acids of protein fragments

(peptides, or polypeptides).

Mass Spectrometer is composed of:

Ion source Mass analyzer Detector

• Electron impact (EI)
• Chemical ionization (CI)
• Fast atom bombardment (FAB)

• Fourier transform ion
  Cyclotron resonance (FTICR)

• Quadrupole
• Magnetic sector

• Matrix assisted laser desorption/
  lonization (MALDI)
• Electropsray ionization (ESI)

• Ion trap
• Quadrupole-TOF
• Time-of-flight (TOF)

Photon diode
and electron
multiplier.

FIGURE 12.4 Overview of mass spectrometer components. The red-font items are the

most frequently used ion source and mass analyzer methods. For a more detailed view of

this figure, please visit our companion site at: http://books.elsevier.com/companions/

9780123735836.
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FIGURE 12.5 Isotopic distribution of a peptide analyzed by a high resolution mass

spectrometer. The isotopic distribution and intensities are due to the natural abundance

of different isotopes of C, H, N, and O.
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FIGURE 12.6 Amino acids and their corresponding molecular weights (residue mass). The

structure of the polypeptide chain with the amide linkages is also shown.
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There are two fragmentation patterns that are then assem-

bled into databases: protease Wngerprints (e.g., tryptic pep-

tides) and random fragmentation spectra (MS/MS spectra).

For protease Wngerprints, the most commonly used protease

is trypsin, an enzyme that cleaves polypeptide chains imme-

diately after lysine (K) and arginine (R) residue. Peptide

Wngerprint databases use the primary protein sequence, digest

the protein with trypsin in silico, create a database of the

expected peptide Wngerprint, and then match this with the

observed peptide Wngerprint on MS. If a protein is puriWed

and then digested with trypsin and detected on MS, the pep-

tide Wngerprint alone is suYcient to provide an unambiguous

protein identiWcation (identiWcation of the parent). Peptide

Wngerprints require only a determination of the intact peptides

emanating from a parent protein (MS).

Two-dimensional electrophoresis of proteins allows resolution

of 100–1,000 individual proteins (including post-translationally

modiWed states) (Figure 12.7), where the X axis is charge (iso-

electric focusing point) and the Yaxis is molecular weight. These

spots are puriWed to the extent that the visible spot is likely to be a

single protein. Excision of the spots from the two-dimensional

gel, digestion with trypsin, then detection of the peptide map

often allow the identiWcation of the protein in each spot.

Additional conWdence to a protein identiWcation can be

obtained by MS/MS spectra. For MS/MS, speciWc peptides

are gated (isolated in the electromagnetic Weld in MS),

then further fragmented by laser or a neutral collision gas. In

Figure 12.8, the 644.4 peptide peak was gated then fragmented,

and MS/MS spectrum was obtained as a series of fragment

ions that permit determination of the probable amino acid

sequence.

Two-dimensional gels have the advantage of identifying

proteins with a high degree of conWdence. Both peptide maps

and MS/MS sequencing of individual peptides should map

back to the same parent protein in databases. The disadvan-

tages of two-dimensional gels are their relatively poor sensi-

tivity, limited molecular weight/pI range, and the requirement

for relatively large amounts of proteins (� 200 mg).

A more sensitive method is often called shotgun, where

more complex solutions of proteins are digested with trypsin

as a mixture then run on solution-based electrospray using

multidimensional chromatography coupled to MS. Shotgun

25

1

23

6

2

5

4

26

7 8

9

10
1112

13

14

15

16

17 1819

20

21

22

24

27

28 29 30

31

32

33

34

35

36
37

38

39 40
41

42
43

44
45

46

4748

49

50 51

52

53

54
5556

57 58
59

* * **

****

*

FIGURE 12.7 Two-dimensional gel electrophoresis (two-dimensional gels). Shown is an

example of soluble cytoplasmic proteins isolated from the Torpedo Wsh electric organ,

a specialized tissue that is able to generate 200 volts of direct current through water to stun

prey. Taken from Nazarian et al. [2].
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methods lose the ability to generate peptide Wngerprints and

rely largely on MS/MS sequence spectra (Figure 12.9). Because

the complex mixture of peptides derives from many diVerent

parent proteins, it is diYcult if not impossible to reconstruct a

peptide Wngerprint from the highly complex mixture. Also,

with shotgun methods, there is typically less coverage of each

parent protein, with fewer peptides detected per parent pro-

tein. The major advantages of the shotgun method are high

throughput and increased proteome coverage.

Statistical signiWcance of parent protein identiWcation

becomes more challenging with shotgun MS/MS methods.

Typically, a single peptide detected and fragmented is consid-

ered insuYcient for a robust parent protein identiWcation.

Multiple MS/MS identiWcations of peptides mapping back

to the same parent are required before one can conWdently

conclude that the parent protein was in the original solution

under analysis.

Another relatively recent development in proteomics is the

ability to compare proteins in two samples in a quantitative

and high throughput manner (proteomic proWling). This

involves diVerential labeling of the peptides from one sample

relative to a second, unlabeled sample. Many methods are

available, but one that is commonly used is metabolic labeling

with stable isotopes amino acids. Growth of cells in 13C-labeled

arginine and lysine results in each peptide being larger than the

same peptide in unlabeled cells (Figure 12.10). Mixture of the

labeled and unlabeled solutions results in a doublet for each

component peptide in the mixture. Each of the two peaks can

be gated and subjected to MS/MS, thus allowing the identiWca-

tion of the peptide, with a relative quantitation of the parent

protein in the two original solutions (Figure 12.10).

12.4 Bioinformatics and Information
Infrastructure

Bioinformatics and information infrastructure can be done

locally (sites at speciWc labs or universities) for data analysis

within a lab or group, or it can be performed by a more

centralized data repository such as the NCBI. Intra-lab or

intra-university systems are often referred to as a laboratory

information management system (LIMS). LIMS can house

fairly elaborate methods of tracking and storing information

on experimental design, methods, data acquisition, and data

interpretation. The more advanced LIMS have a portal for

either public access to subsets of the data and/or a portal

for export of selected data sets into public repositories. An

example of an advanced LIMS that we established for micro-

array data is described here as one example.
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FIGURE 12.8 Gating of a 644.4 peak (MS), fragmentation and detection of MS/MS

spectra. The 644.4 peptide is found to be doubly charged as a result of the close spacing

(0.5 mass units) of the isotopic variants (upper right blow-up window), hence the

designation as [Mþ 2H]2þ. The true mono-isotopic weight of this peptide is 1287.8.

Resolution of b and y ions (see Figure 12.9) allows the derivation of the amino acid

sequence of the peptide.
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DNA and single nucleotide polymorphism (SNP) databases

are relatively straightforward, given the linearity (two-

dimensionality) of the genomic data. We will not discuss

these in this section of the text, but the reader is referred to

outstanding public resources such as the Genome Browser

(www.genome.ucsc.edu) and the HapMap project (www.

hapmap.org) as examples.

In this section, we focus on the challenging area of mRNA

proWling bioinformatics and information infrastructure.

mRNA proWling using either AVymetrix microarrays (www.

aVymetrix.com) or more customized spotted cDNA or oligo-

nucleotide microarrays has been in widespread practice for

nearly 10 years, with many tens of thousands of microarray

proWles in the public domain. The heavy use of microarrays for

mRNA proWling has led to a relatively rich literature on quality

control and standard operating procedure, signal derivation,

bioinformatics, and statistical analyses (Tumor Analysis Best

Practices Working Group 2004).

There are excellent public data repositories for mRNA

proWling microarray data (e.g., (ArrayExpress www.ebi.ac.uk/

arrayexpress; Gene Expression Omnibus (GEO) http://

www.ncbi.nlm.nih.gov/geo/) [3, 4]. Although they can store

large numbers of projects and much experimental data,

they also have limitations. With so many contributors, it is

often diYcult to ensure accurate metadata collection process,

accessibility, and appropriate data formats. Also, these data-

bases accept many diVerent experimental platforms (e.g.,

diVerent methods of conducting expression proWling: cDNA

arrays, AVymetrix arrays, SAGE), and it becomes diYcult or

impossible to compare experiments across platforms. One ap-

proach to provide some means of comparing data Welds across

experiments and experimental platforms has been to develop

the minimal information about a microarray experiment stand-

ards [5, 6]. This does not set a standard for experimental

platforms or data but attempts to provide certain data Welds

that can be mapped across diVerent data sets and databases.

Local LIMS are often able to develop more of an experi-

mental standard and thus provide more power in the data

queries and data analysis methods. Two that are commonly

used are the Stanford Microarray Database ([7]; http://

genome-www5.stanford.edu/) and the Public Expression

ProWling Resource (PEPR) at Children’s National Medical Cen-

ter in Washington, D.C. ([8, 9]; http://pepr.cnmcresearch.org).

For PEPR, we focused on improving three aspects of data

acquisition and public data analysis:

1. Improving the complete prospective data collection

process

2. Improving the application programming interface (API)

so that it automatically converts raw mapped image data
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FIGURE 12.9 Mechanisms of peptide fragmentation in MS/MS spectra.
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for microarrays (.cel Wles) to a series of summary signals

for each probe set using Wve probe set algorithms

3. Improving simple public interfaces for dynamic Web-

based queries

Regarding the prospective data collection process, we designed

and implemented a process where the originator of a micro-

array project begins interacting with PEPR soon after initial

concept of the experiment. This allows implementation of

automated checks and balances on data Welds and a process

of approval at diVerent steps in data generation and public

release. A schematic of the design of PEPR is shown in Figure

12.11.

For any bioinformatics and biologic computing develop-

ment, it is critical to know about issues or concerns regarding

the accuracy of data. For mRNA microarray experiments, there

is considerable debate regarding how to appropriately interpret

hybridization signals on a microarray and derive a normalized

signal for each mRNA transcript on the chip and within the

project. For AVymetrix microarrays (www.aVymetrix.com),

each transcript is queried by a probe set with 11 perfect-

match 25mers tiled against the last 500 bp of the transcript

and 11 paired mismatch 25mers that serve as a possible control

for nonspeciWc binding to the perfect match probe. Thus, there

are at least 22 hybridization signals that can be considered for

each transcript, and the methods of interpreting signal from

noise and normalization methods within and between micro-

arrays is a very active area of research (and hotly debated). The

bioinformatic and statistical methods used to move a mapped

image Wle to transcriptional signals for each gene are called

probe set algorithms, and there are dozens of methods that are

available (see Seo and HoVman [10] for review).

The design of PEPR enables rich metadata search functions

(i.e., search by experiment design type or by animal model age

or sex), including a Web-interface data input system to capture

experiment information prospectively (and remotely such that

an investigator in Sweden begins entering metadata and design

data prior to initiation of the proWling project in Washington).

Unlike other currently utilized proWling packages, our Web-

interface data input submission process oVers great Xexibility

Labeled and unlabeled protein mixture

Trypsin

Complex peptide
mixture

Peptide fractionation (HPLC, IEF, etc)

LC-MS and MS/MS analysis

Database search &
protein identification

Validation
quantification

Zoom scan
Based peak

MS/MS

FIGURE 12.10 DiVerential labeling of peptides in two biologic samples allows relative quantitation of the parent proteins. The based peak

shows the peptides detected in a scan of the mass spectrometer (MS). A single peak in the based peak scan (red arrow) is then expanded to

greater resolution in the zoom scan, where the pair of peaks representing the same peptide from the two biologic samples (labeled and

unlabeled peptides). Isotopic variants of each peptide are obvious in the zoom scan. Individual peptides are then gated and fragmented to

provide fragmentation scan representative of the amino acid sequence (MS/MS) (see Figure 12.9). For a more detailed view of this figure,

please visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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to obtain desired experiment metadata (e.g., addition of

experiment design type) for analysis and visualization. It pro-

vides a mechanism to enforce data input consistency and

validation and eliminates the current accessory tables and

batch process to Wlter data. The data consistency expands the

search and visualization capabilities. PEPR also utilizes our

newly implemented GEO submitted or update APIs to submit

new experiments or revised previously published experiment

data. PEPR incorporates a custom-designed API for auto-

mated conversion of all projects to Wve probe-set algorithms

(MAS5.0, dCHIP PMonly, dCHIP diV, ProbeProWler PCA,

RMA). This API coupled to user interface feature allows the

public Web user to rapidly visualize the eVect of probe-

set algorithm on data interpretation. Finally, PEPR provides

oV-line batch data exportation that allows the researcher to

download/export a series of large data sets while continuing to

navigate the site. The generation of .chp, .dat, and .cel data Wles

is done during oV-peak hours.

Regarding PEPR process architecture design and implemen-

tation, PEPR is a three-tier Java enterprise application com-

posed of a Web tier, a middle tier, and a back-end tier. The Web

tier includes a Web server, a Tomcat application server, and

various Web components that provide front-end functional-

ities such as navigation, data browsing, data searching, project

submission, project publishing, gene query tool, and user

notiWcation. Most Web components interface transparently

with PEPR back-end databases. This tier’s interface allows

users to trigger the middle tier application.

The middle tier is integrated with several third-party ser-

vices. For some of these, we have purchased enterprise versions

of pre-existing software, and for others we wrote or contracted

speciWcally for PEPR (Popchart, Lucene, AVymetrix SDK and

Corimbia Probe ProWler SDK). The application is designed to

handle time-consuming processes such as AVymetrix data

extraction and oZine data downloading while allowing a

user to navigate the site without waiting for the completion

of the process. The middle tier applications require intense

computing resources and are responsible for chart visualiza-

tion generation, oZine data download, metadata indexing for

keyword search, NCBI GEO data submission, AVymetrix data

Wle extraction and transformation, and Probe ProWler mixture

of algorithm data generation.
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FIGURE 12.11 Public expression proWling resource (PEPR) architecture design. From htpp://pepr.cnmcresearch.org.

12 Biologic Computing 269



Most of processes in this tier do not require synchronous

response from the PEPR front end. In addition to the conven-

tional Web click-and-wait applications features, PEPR allows

users to submit the request without waiting for the completion

of the process while the process is guaranteed to be completed.

To achieve this asynchronous operation in a reliable manner,

an Open JMS queue server is introduced in PEPR implemen-

tation, and this serves to enhance the PEPR application func-

tionalities. JMS is designed to handle the message delivery

between Web components. When a user submits a request to

download a large set of data in PEPR, a Web component in

Tomcat application server packages the user’s request to a

message and drops the message into the JMS queue. The JMS

queue is responsible for receiving and delivering the message as

a specialized router that looks at the message address and

delivers it to the appropriate parties (i.e., oZine data down-

load process in the chart). The oZine data download process

then parses and handles the download request. It continues to

search and compress the requested data and then sends the

download URL notiWcation to the user. During this process,

the user does not have to wait for the lengthy Wle compression

process completion. The JMS queue makes the batch down-

load possible.

The back-end tier is composed of two databases: the PEPR

DB and the AVymetrix LIMS DB. PEPR DB stores all sorts of

metadata of projects and experiments alone with associated

analysis value for real-time data mining purposes. The AVy-

metrix LIMS DB stores all AVymetrix expression proWling

physical data and chipping process information.

The total number of microarrays currently populating our

internal LIMS is 7,000, with most from human specimens. The

public PEPR resource is populated with 2,827 AVymetrix ar-

rays and shows about 6,000 proWle downloads per month from

PEPR. There is an automated submission pipeline developed

with NCBI GEO, and PEPR is the #1 contributor to GEO,

accounting for 12% of all AVymetrix Wles for vertebrates.

12.5 Data Mining and Large-Scale
Biologic Databases

There is an increasing diversity of data sources in the public

domain and increasingly Xexible tools by which data mining of

large-scale biologic databases can be done. Public access data sets

have provided a link between the biologists generating the large-

scale data and the computer scientist or statistician who wishes

access to this data for method development and analysis.

In our experience, there are two common misperceptions

that can inhibit the development of biologic computing. First,

computer scientists and statisticians tend to assume that the

data provided by biologists are as good as they can be (robust,

accurate, with good signal/noise balance). This is generally not

true, but biologists tend to neglect to inform the quantitative

scientists of this. Second, biologists tend to assume that the

data analyses provided by computer scientists and statisticians

have transformed their data into something that is robust,

accurate, with good signal/noise balance. This is also not

true, as it counters the classic theorem of ‘‘garbage in, garbage

out.’’

The garbage in, garbage out problem is relatively rare with

DNA data mining, largely because of the relative simplicity of

the problems (low dimensionality) and robust and mature

nature of genomics databases. The problem is much more

pronounced as the complexity increases and methods become

less standardized and robust. A good example is the issue of

probe set algorithms for AVymetrix microarrays introduced

above. The computer scientist is typically provided a signal

for each transcript on each microarray in a project. This signal

is a distillation of many composite signals (22 oligonucleotide

probe set), with extensive normalization imposed to make

transcripts comparable between arrays. Each probe-

set algorithm makes many assumptions regarding normality,

penalties for hybridization for mismatch probe signal, and

background assessments [10–12]. Yet the computer scientist

is rarely informed of these assumptions, and the impact on

subsequent data interpretation is often not evaluated.

We have studied the probe-set algorithm problem in the

setting of signal/noise assessments for diVerent microarray

projects [10, 13] and the related question of power calculations

for speciWc species and tissues [14]. Most biologists select one

speciWc probe-set algorithm (e.g., MAS5.0, PLIER, dCHIP,

RMA) to convert their microarray project into a set of signals.

The choice of the probe-set algorithm is based on the belief

that the one chosen out-performs the others not chosen, based

on the literature or on their experience. To the contrary, we

found that diVerent microarray projects require the use of

diVerent probe-set algorithms because each of the probe

set algorithms is diVerentially inXuenced by uncontrolled

sources of biologic and technical noise (confounding vari-

ables). Some probe sets algorithms are relatively impervious

to extensive noise but then become relatively insensitive. Other

probe-set algorithms are exquisitely sensitive, but this results

in a high proportion of false positives if confounding variables

(noise) become high [10, 14]. We suggest that the method of

signal generation in microarrays (selection of probe

set algorithm) should be tailored for individual microarray

projects.

The selection of a speciWc probe-set algorithm is clearly a

fundamental early step in appropriate data interpretation and

analysis. Probe-set algorithms have a profound impact on the

data generated, dependent on the intrinsic assumptions of

each algorithm. Indeed, if one takes a typical microarray pro-

ject and queries concordance between two algorithms, one

Wnds only 10%–30% concordance of statistically signiWcant

expression diVerences. Despite the low concordance, the biolo-

gist typically selects a single probe-set algorithm, believing one

to be best, with little or no knowledge of the underlying
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assumptions or any assessment of the appropriateness of the

selection. The computer scientist and statistician then take the

resulting signals from the biologist. They are often unaware of

the probe-set algorithm used or the underlying assumptions

made in generating the composite signal data. This step is

typically done by the biologist, and the resulting signals are

provided to the computer scientist, who believes that these are

robust and accurate numbers.

Probe-set algorithms are a single step in the path from

biologist to computer scientist, but it is exemplary of the

relatively deep canyon that exists between these disciplines.

As biologic data sets become exponentially larger and more

complex, it becomes more and more important to bridge the

canyon, with biologists more aware of computational methods

and computer scientists more aware of the technical and bio-

logic variables inXuencing the data provided to them.

One relatively easy way to bridge the divide is for computa-

tional researchers to insist on being given raw data rather than

processed data. For AVymetrix microarrays, raw data Wles are

the image data from the microarray (.DAT Wles) and the

unprocessed hybridization intensity calculations for each of

the 1 million cells (oligonucleotides) on the array (.CEL

Wles). These Wles are quite large relative to summary tables

generated by probe set algorithms. These Wle types have

been available on PEPR for a number of years and are also

now available for many projects in both NCBI GEO and Array-

Express. If the biologic computing specialist accesses the raw

data, then a more rational selection of probe-set algorithms

(or multiple algorithms) can be done and the resulting data

interpreted more sensitively.

Large-scale databases for proteomics data are only begin-

ning to be developed. These make both the biology and the

data collection considerably more complex. Whereas RNA

experiments are typically conducted by grinding up an entire

sample into a pool of transcripts, proteomic experiments often

study diVerent subcellular compartments (cytoplasm, mem-

brane, nucleus), adding an additional dimension to data

acquisition, storage, and interpretation. RNA microarray

experiments typically have one sample¼ one microarray

(image), whereas proteomic experiments often involve decon-

volution of complex protein solutions into isoelectric and

molecular weight ranges. Also, proteomic data acquisition on

MS is an intrinsically linear process over time (as opposed to

the highly parallel data generation of hybridization on micro-

arrays). One recent experiment run by our center involved

testing the response of patient cells to a drug using proteomic

proWling (stable isotope labeling; see above). This experiment

involved a time series, using patients and controls who were

and were not receiving drug, with analysis limited to a speciWc

subcellular compartment (endoplasmic reticulum). This ex-

periment required a high throughput MS (electrospray ion

trap) to run 24 hours a day, 7 days a week for 6 weeks, with

both MS and MS/MS (fragmentation) data. The amount of

raw data gathered is in the hundreds of gigabytes for this single

experiment. How will this be databased and provided to the

public? The controversies of probe-set algorithms with RNA

microarrays set the stage for the even more complex debate

regarding proteomics databasing and data analysis methods.

Again, it would be best if computational scientists could have

access to the raw MS data, but the logistics of databasing and

public access and the complexity of the data become quite

challenging.

12.6 Biologic Event-Driven,
Time-Driven, and Hybrid
Simulation Techniques

The sequence of DNA is relatively static and changes in only

certain circumstances. For example, gene mutation and poly-

morphism are changed from the ground state (normal linear

sequence) but can be considered isolated events (unrelated to

each other) and relatively easy to characterize, database, and

interpret. DNA can be modiWed by acetylation (transient in-

activation of chromatin), and methylation (more permanent

inactivation), and the acetylation and methylation state of

speciWc genes likely has both dynamic and static components.

For example, one X chromosome in each female cell is inacti-

vated (Barr body; X inactivation) through widespread methy-

lation early in development; this is a static change. On the

other hand, the response of a cell to an environmental chal-

lenge results in rapid changes in acetylation of speciWc genes to

activate or inactivate transcription (event-driven, time-

driven). Methods to access methylation and acetylation status

of genes on a genome-wide scale are just beginning to emerge.

Once these methods are mature, DNA will take on a dynamic

component that will dramatically increase the complexity of

databasing and data interpretation.

As described above, existing mRNA proWling and proteomic

experiments have intrinsic complexity that makes them chal-

lenging to interpret. There are two key approaches that can aid

in the interpretation of this highly dimensional data: time

series and knowledge networks.

Knowledge networks are computer databases and associated

interfaces that assemble preexisting biologic knowledge into a

tool that can accept genomics data sets (e.g., mRNA expression

proWles) and help interpret the data in the context of preexist-

ing knowledge. There are many types of knowledge networks

[15]. One group is gene ontology databases, where genes

and encoded proteins are categorized into biochemical- or

sequence-deWned groups. Another approach is to code existing

literature into biologically relevant pathways and networks

and then compare genomics data sets to these networks.

Again, there are many resources, but two commonly used

ones are Ingenuity Pathways Analysis (www.ingenuity.com)

and GenMapp (www.genmapp.org). For example, imagine

that a biologist has tested the response of some cancer cells
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to an anticancer drug using mRNA expression proWling

(microarrays). The statistically signiWcant transcriptional

diVerences (drug-responsive genes) are uploaded into Ingenu-

ity, and then the program package compares the list of diVer-

entially expressed genes with their databases of interacting

genes and proteins. The protein networks that show the great-

est proportion of changes in the cancer–drug data set are

calculated and then ranked by statistical signiWcance. In this

case, it is found that there is a previously described protein

network governing apoptotic cell death containing 123 pro-

teins, with transcriptional induction of 85 of these proteins by

the anticancer drug. The statistical likelihood that 85/123

would be detected by chance is vanishingly small, so the

‘‘apoptotic cell death’’ network is returned to the user as

‘‘highly signiWcant altered network.’’ One concludes that the

anticancer drug induces apoptotic cell death in the cancer cells

studied.

An example of comparison of muscle biopsies from lean and

obese subjects is shown in Figure 12.12. In this analysis,

expression diVerences using a threshold of signiWcance were

input into Ingenuity software, and a network showing a high

proportion of transcripts signiWcantly altered by the obesity

state was identiWed (Figure 12.12). Those proteins indicated by

red symbols were signiWcantly up-regulated by obesity, and

those with green symbols were signiWcantly down-regulated.

Network analysis software is a highly useful and practical

method to condense genomic data sets into biologically rele-

vant pathways deserving further study. The sensitivity and

speciWcity of these packages must be considered tentative at

best. Pathways and networks are highly dependent on the cells,

tissues, and organisms under study, and these packages gener-

ally assume that an interaction described in the literature

between two proteins described in mouse eye are relevant

to the cancer cells. Additionally, they must be assumed to

be a relatively blunt instrument (insensitive), as only a very

small proportion of biologic truth in terms of networks and

pathways is currently known and published (perhaps 1%).

The second tool to assist in interpretation is the time series.

The behavior of a gene or protein as a function of time allows

an assessment of biologic plausibility that can help reduce false

positives. Most microarray and proteomics experiments are

snap shots at only a single point in time (e.g., aVected vs.

unaVected subjects; see Figure 12.12 as typical example). It is

impossible to determine any cause/eVect of responses to obe-

sity in the data in Figure 12.12. However, if serial muscle

biopsies were taken as a function of time (perhaps after a

gastric bypass operation or strict diet), then some of the

transcriptional responses seen in Figure 12.12 could be

assigned to an earlier time point than others, leading to models

of cause and eVect.
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FIGURE 12.12 Ingenuity network analysis of mRNA transcripts diVerentially regulated by the obesity state. For a more detailed view of this

figure, please visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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To provide an example of the value of time series data, we

have described a 27 time-point muscle regeneration series,

where muscle damage was invoked in mouse models and

muscle samples were taken as a function of time during recov-

ery from the muscle damage (Figure 12.13). Two transcription

factors, myogenin and MyoD, are both seen to be strongly

transcriptionally induced around day 3 during recovery.

Close inspection of the time series shows the peak of myogenin

to be a half-day later than the peak of MyoD: This can establish

a hypothesis that MyoD induces myogenin (e.g., MyoD is

upstream of myogenin). A cause–eVect relationship between

these two proteins can thus be established.

Future directions in biologic computing will be focused on

combining data from multiple data sets and may include both

snap shot (cross-sectional) projects and time series data,

possibly done in diVerent species. We recently published an

example of a multiproject approach [17, 18]. The Wrst step was

to do a snap shot cross-sectional study, where about 125

patient muscle biopsies from 12 disease groups underwent

mRNA proWling. Bioinformatic analysis of the proWles led to

a relational tree of the diVerent disorders (Figure 12.14). The

disease of interest was Emery Dreifuss muscular dystrophy

(EDMD), where patients show mutations of components of

the nuclear envelope; however, the molecular pathophysiology

of the disorder is poorly understood (red box in Figure 12.14).

We then took diagnostic genes from the 6-EDMD node in

the tree and queried these in the degeneration/regeneration

time series completed in the mouse model (Figure 12.13) and

deWned a cause–eVect transcriptional regulatory pathway that

included many of the diVerentially expressed EDMD-speciWc

transcripts (Figure 12.15) [16]. This deWned a model for

disease pathogenesis (failure of events during muscle regener-

ation) that was then tested and validated in a mouse model of

EDMD [17].
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FIGURE 12.13 Time series data in muscle regeneration in vivo. Data from Zhao et al. 2002 [18] and Zhao et al.

2003 [19] are publicly available in PEPR (http://pepr.cnmcresearch.org). MyoD shows a peak of expression at 3.0

days, while myogenin shows peak expression 0.5 day later, suggesting that MyoD is upstream of myogenin.
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12.7 Summary

The bioinformatics and biologic computing associated with

DNA are quite mature. Hybridization methods allow sensitive

and speciWc identiWcation and quantitation of entire genomes

in single microarrays containing millions of features (oligonu-

cleotides at speciWc addresses on the array). The use of the

linear genomic DNA sequence of humans and many other

organisms creates an anchor for hundreds of associated data-

bases, such as DNA polymorphisms, mRNA and EST mapping

(transcript units, or genes), evolutionary conservation, and

others.

The bioinformatics and biologic computing for mRNA is

considerably more challenging, because many new variables

are introduced such as environmental cues, time, place (in

tissue, in body), alternative splicing, and others. There are

also diVerent experimental platforms with diVerent amounts

of repeated measurement and robust data acquisition and

storage intrinsic to each. This makes it much more diYcult

to deWne standards or any anchor by which all experiments can

be compared. Relatively dense time series data are emerging

that begin to deWne cause/eVect pathways, at least with regard

to transcriptional regulatory networks.

Proteins are orders of magnitude more complex than mRNA

patterns, with posttranslational modiWcations, subcellular

localization, and binding partners all dictating protein activity

and function. High throughput proteomics is coming of age

with the advent of high resolution MS and associated spectra-

matching databases. Proteomic proWling using diVerentially

labeled solutions of peptides is reaching widespread use, but

bioinformatics and biologic computing approaches are just

beginning to be developed.

Future challenges in biologic computing include deWning cell-

and tissue-speciWc pathways and networks and response of

networks to environmental and physiologic challenges. A focus

will be on integration of DNA, mRNA, and proteomics data sets

and databases, with attempts to garner support for established

networks while deWning new networks through a combination of

computational modeling and experimental validation.
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12.8 Exercises

1. How easy is it to study DNA compared to RNA compared

to proteins?

2. What factors influence the use of transcript units by cells?

3. Why is it difficult to study proteomics?

4. What are the fundamentals of proteomics?

5. Advantages and disadvantages of 2D gel and shotgun?

6. What are two common misconceptions that can inhibit

the development of biological computing?

7. What is a major issue with Affy probe set algorithm with

regards to signal/noise? How can one overcome this prob-

lem?

8. Describe knowledge networks? Name two commonly used

ones.

9. What are some future challenges in biological computing?

10. What is a LIMS system, and what is it used for?
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13.1 Introduction

Picture archiving and communication systems (PACS) based

on digital, communication, display, and information technolo-

gies (IT) have revolutionized the practice of radiology, and in

a sense, of the entire clinical continuum in medicine during

the past 10 years. This chapter introduces the basic concept,

terminology, technology development, implementation, inte-

gration, and experiences within the clinical practice. There are

many advantages to introducing digital, communications, dis-

play, and IT to conventional paper- and Wlm-based operations

in radiology and medicine.

13.1.1 The Role of PACS in the Clinical
Environment

PACS and IT technologies can be used to improve health care

delivery workXow eYciency, resulting in speeding up of health

care delivery and reducing operating costs. With all these

beneWts, the digital, communication, and IT technologies are

gradually changing the method of acquiring, storing, viewing,

and communicating medical images and related information

in the health care industry. One natural development along

this line is the emergence of digital radiology departments

and the digital health care delivery environment. A digital
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radiology department has two components: a radiology infor-

mation management system (RIS) and a digital imaging sys-

tem. The RIS is a subset of the hospital information system

(HIS) or clinical management system (CMS). When these

systems are combined with the electronic patient (or medical)

record (ePR or eMR) system, which manages selected patient

data, the arrival of the total Wlmless and paperless health care

delivery system can become a reality. The digital imaging

system, sometimes referred to as a PACS or image manage-

ment and communication system (IMAC), involves image

acquisition, archiving, communication, retrieval, processing,

distribution, and display. A digital health care environment

consists of the integration of HIS/CMS, ePR, PACS, and

other digital clinical systems. The combination of HIS and

PACS is sometime referred to as hospital integrated PACS

(HI-PACS). The health care delivery system related to PACS

and IT is reaching one billion dollars per year (excluding

imaging modalities) and continues to grow.

13.1.2 The Role of PACS in Medical Imaging
Informatics

PACS originated as an image management system for improv-

ing the eYciency of radiology practice. However, it has evolved

into a health care enterprise-wide system that integrates infor-

mation media in multiple forms, including voice, text, medical

records, waveform images, and video recordings. To integrate

these various data types requires the technology of multimedia:

hardware platforms, information systems and databases, com-

munication protocols, display technology, and system inter-

facing and integration. As the PACS grows in its role within

the clinical continuum, it also becomes integrated with these

various enterprise-wide media formats and can grow in its

richness of content within its database. This wealth of informa-

tion data becomes the fundamental basis for new approaches in

medical research and practice through the discipline of medical

imaging informatics, thus ultimately improving the overall

health care delivery, research, and education.

13.1.3 General PACS Design

A PACS consists of image and data acquisition, storage, and

display subsystems integrated by digital networks and applica-

tion software. PACS design should emphasize system connect-

ivity. A general multimedia data management system that is

easily expandable, Xexible, and versatile in its operation calls

for both top-down management to integrate various HIS and a

bottom-up engineering approach to build a foundation (i.e.,

PACS infrastructure). From the management point of view, a

hospital-wide or enterprise PACS is attractive to adminis-

trators because it provides economic justiWcation through a

return on investment cost analysis for implementing the sys-

tem. In addition, proponents of PACS are convinced that its

ultimately favorable cost–beneWt ratio should not be evaluated

as the balance of the resources of the radiology department

alone but should extend to the entire hospital or enterprise

operation. This concept has gained momentum. Many hos-

pitals and some enterprise-level health care entities around the

world have implemented large-scale PACS and have provided

solid evidence that PACS improves the eYciency of health care

delivery and at the same time saves hospital operational costs.

From the engineering point of view, the PACS infrastructure is

the basic design concept to ensure that PACS includes features

such as standardization, open architecture, expandability for

future growth, connectivity, reliability, fault tolerance, and

cost-eVectiveness. This design philosophy can be constructed

in a modular fashion with the infrastructure design described

in Section 13.2.

13.1.4 Chapter Overview

This chapter will Wrst describe the PACS infrastructure and its

various components in detail. The latter half of the chapter will

conclude with implementation and integration strategies for

installing a PACS within a health care environment as well as

clinical experiences derived from various health care institu-

tions’ PACS process.

13.2 PACS Infrastructure

13.2.1 Introduction to PACS Infrastructure
Design

The PACS infrastructure design provides the necessary frame-

work for the integration of distributed and heterogeneous

imaging devices while supporting intelligent database manage-

ment of all patient-related information. With this infrastruc-

ture, it oVers an eYcient means of viewing, analyzing, and

documenting study results and provides a distribution method

for eVectively communicating study results to referring phys-

icians. The PACS infrastructure consists of a basic skeleton of

hardware components (imaging device interfaces, storage

devices, host computers, communication networks, and display

systems) integrated with a standardized and robust software

system with Xexibility for communication, database manage-

ment, storage management, job scheduling, interprocessor

communication, error handling, and network monitoring.

The infrastructure as a whole is versatile and can incorporate

rules to reliably perform not only basic PACS management

operations but also more complex research, clinical service,

and educational requests. The software modules of the infra-

structure use the ability to handshake and communicate at

a system level to permit the components to work together

as a system rather than as individual networked computers.

The corresponding hardware components of the general

PACS infrastructure include patient data servers, imaging

280 II Integrated Applications



modalities, data/modality interfaces, PACS controllers with

database and archive, and display workstations connected by

communication networks for handling the data/image Xow in

the PACS and tuned for a more eYcient clinical workXow.

Image and data stored in the PACS can be extracted from the

archive and transmitted to application servers for various uses.

Figure 13.1 shows the basic components and data Xow of the

PACS. This diagram will be expanded to present additional

details in later chapters. The PACS application server concept

shown in the bottom of Figure 13.1 broadens the role of PACS

in the health care delivery system as a contributor to the

advancement of medical imaging informatics Weld during the

past several years. The Web server is optional and is used to

distribute PACS studies through wide area networks (WAN) to

clinics and physician’s oYces. Sometimes the Web server is

used within the health care enterprise local area network

(LAN) to distribute PACS studies throughout the hospital or

health care institution.

13.2.2 Industry Standards

Transmission of images and textual information between

health care information systems has always been challenging

for two major reasons. First, information systems use diVerent

computer platforms, and second, images and data are gener-

ated from various imaging modalities by made diVerent manu-

facturers. With the emergent health care industry standards,

Health Level 7 (HL7) and Digital Imaging and Communica-

tions in Medicine (DICOM), it has become feasible to inte-

grate these heterogeneous, disparate medical images and

textual data into an organized system. Interfacing two health

care components requires two ingredients, a common data

format and a communication protocol. HL7 is a standard

textual data format, whereas DICOM includes image and

textual data format and communication protocols. In con-

forming to the HL7 standard, it is possible to share health

care information between the HIS, the RIS, and the PACS. By

adapting the DICOM standard, medical images generated

from a variety of modalities and manufacturers can be inter-

faced as an integrated health care system. These two standards

will be discussed in more detail in the following paragraphs.

Integrating health care enterprise (IHE), which is a model for

driving the adoption of standards, will also be addressed. IHE

combines these available standards with clinical workXow

proWles to persuade users and manufacturers to adopt and

use this system in daily clinical practice.

13.2.2.1 Health Level 7

HL7, established in March 1987, was organized by a user-

vendor committee to develop a standard for electronic data

exchange in health care environments, particularly for hospital

applications. With the HL7 standard, the level 7 refers to the

highest level, which is the application level, in the open systems

interconnection (OSI) seven communication levels model. The

common goal is to simplify the interface implementation

among computer applications from multiple vendors. This

standard emphasizes data format and protocol for exchanging

certain key textual data among health care information sys-

tems, such as HIS, RIS, and PACS. HL7 addresses the highest

level (level 7) of the OSI model of the International Standards

Organization (ISO), but it does not conform speciWcally to

the deWned elements of the OSI’s seventh level. It conforms

to the conceptual deWnitions of an application-to-application

interface placed in the seventh layer of the OSI model. These

deWnitions were developed to facilitate data communication in

a health care setting by providing rules to convert abstract

messages associated with real-world events into strings of

characters comprising an actual message.

The most commonly used HL7 today is version 2.X, which

has many options and is thus Xexible. During the past years,

version 2.X has been developed continuously, and it is widely

and successfully implemented in the health care environment.

Version 2.X and other older versions use a bottom-up

approach, beginning with very general concepts and adding

new features as needed. These new features become options to

the implementers so that the standard is very Xexible and is

easy to adapt to diVerent sites. However, these options and

Xexibility also make it impossible to have reliable conformance

tests of any vendor’s implementation. This forces vendors to

spend more time in analyzing and planning their interfaces to

ensure that the same optional features are used in both inter-

facing parties. There is also no consistent view of the data when

HL7 moves to a new version or when assessing that data’s

relationship to other data. Therefore, a consistently deWned

and object-oriented version of HL7 is needed, which is version

3. The initial release of HL7 version 3 was in December 2001.

The primary goal of HL7 version 3 is to oVer a standard that is

deWnite and testable. Version 3 uses an object-oriented meth-

odology and a reference information model (RIM) to create

HL7 messages. The object-oriented method is a top-down
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method. RIM is the backbone of HL7 version 3, since it

provides an explicit representation of the semantic and lexical

connections between the information in the Welds of HL7

messages. Because each aspect of the RIM is well-deWned,

very few options exist in version 3. Through object-oriented

method and RIM, HL7 version 3 improves many of the short-

comings of previous 2.X versions. Version 3 uses extensible

markup language for message encoding to increase interoper-

ability between systems and will include new data interchange

formats beyond the American Standard Code for Information

Interchange (ASCII) and support of component-based tech-

nology such as ActiveX and CORBA. HL7 version 3 will oVer

tremendous beneWts to providers and vendors as well as ana-

lysts and programmers, but complete adoption of the new

standard will take time and eVort.

13.2.2.2 Digital Imaging and Communications
in Medicine Standard

ACR-NEMA, formally known as the American College of

Radiology and the National Electrical Manufacturers Associ-

ation, created a committee to develop a set of standards to

serve as the common ground for various medical imaging

equipment vendors. The goal was for newly developed instru-

ments to be able to communicate and participate in sharing

medical image information, in particular within the PACS

environment. The committee, which focused chieXy on issues

concerning information exchange, interconnectivity, and com-

munications between medical systems, began work in

1982.The Wrst version, which emerged in 1985, speciWed stand-

ards in point-to-point message transmission, data formatting,

and presentation and included a preliminary set of communi-

cation commands and a data format dictionary. The second

version, ACR-NEMA 2.0, published in 1988, was an enhance-

ment to the Wrst release. It included hardware deWnitions and

software protocols as well as a standard data dictionary. How-

ever, networking issues were not addressed adequately in either

version. For this reason, a new version aiming to include

network protocols was released in 1992. Because of the number

of changes and additions, it was given a new name: DICOM

3.0. In 1996, a new version was released consisting of 13

published parts that form the basis of future DICOM new

versions and parts. Manufacturers readily adopted this version

to their imaging products. Currently, the latest version of

DICOM has been expanded to 18 parts. Two fundamental

components of DICOM are the information object class and

the service class. Information objects deWne the contents of a

set of images and their relationships, and the service classes

describe what to do with these objects. The service classes and

information object classes are combined to form the funda-

mental units of DICOM, called service-object pairs (SOPs).

The next few paragraphs will describe the DICOM data model,

which represents the information object, and the DICOM

service classes.

13.2.2.3 DICOM Data Model

There are two components relating to the DICOM data model:

the DICOM model of the real world and the DICOM Wle

format. The former is used to deWne the hierarchical data

structure from patient to studies, to series, and to images and

waveforms. The latter describes how to encapsulate a DICOM

Wle ready for a DICOM SOP service.

The DICOM model of the real world deWnes several real-

world objects in the clinical imaging arena (e.g., patient, study,

series, image) and their interrelationships within the scope of

the DICOM standard. It provides a framework for various

DICOM information object deWnitions (IOD). The DICOM

Model deWnes four level objects: (1) patient; (2) study; (3)

series and equipment; and (4) image, waveform, and struc-

tured report document. Each of the above levels can contain

several (1–n or 0–n) sublevels. Figure 13.2 shows the DICOM

real-world data model. Note the levels with which the above-

mentioned four objects reside.

The DICOM Wle format deWnes how to encapsulate the

DICOM data set of a SOP instance in a DICOM Wle. Each

Wle usually contains one SOP instance. The DICOM Wle starts

with the DICOM Wle meta information (optional), followed by

the bit stream of the data set and ends with the image pixel

data if it is a DICOM image Wle. The DICOM Wle meta

information includes Wle identiWcation information. The

meta information uses explicit value representations (VR)

transfer syntax for encoding. Therefore, the meta information

does not exist in the implicit VR-encoded DICOM Wle. Explicit

VR and implicit VR are two coding methods in DICOM.

Vendors or implementers have the option of choosing either

one for encoding. DICOM Wles encoded by both coding

methods can be processed by most of the DICOM-compliant

software. One data set represents a single SOP instance. A data

set is constructed of data elements. Data elements contain

the encoded values of the attributes of the DICOM object.

If the SOP instance is an image, the last part of the DICOM

Wle is the image pixel data.

13.2.2.4 DICOM Service Classes

DICOM services are used for communication of imaging

information objects within a device and for the device to per-

form a service for the object, for example, to store the object or

to display the object. A service is built on top of a set of DICOM

message service elements (DIMSEs). These DIMSEs are com-

puter software programs written to perform speciWc functions.

There are two types of DIMSEs: one for the normalized objects

and the other for the composite objects. DIMSEs are paired in

the sense that a device issues a command request and the

receiver responds to the command accordingly. The composite

commands are generalized, whereas the normalized commands

are more speciWc. DICOM services are referred to as service

classes because of the object-oriented nature of its information

structure model. If a device provides a service, it is called a
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service class provider; if it uses a service, it is a service class user.

Note that a device can be either a service class provider or a

service class user or both, depending on how it is used.

DICOM uses existing network communication standards

based on the ISO-OSI for imaging information transmission.

The ISO-OSI consists of seven layers from the lowest physical

(cables) layer to the highest application layer. When imaging

information objects are sent between layers in the same device,

the process is called a service. When objects are sent between

two devices, it is called a protocol. When a protocol is involved,

several steps are invoked in two devices; the two devices are

referred to as in association using DICOM. If an imaging device

transmits an image object with a DICOM command, the

receiver must use a DICOM command to receive the informa-

tion. On the other hand, if a device transmits a DICOM object

with a Transmission Control Protocol/Internet Protocol (TCP/

IP) communication protocol through a network without

invoking the DICOM communication, any device connected

to the network can receive the data with the TCP/IP protocol.

However, a decoder is still needed to convert the DICOM object

for proper use. The most commonly used communication

protocol in DICOM is TCP/IP for transmitting DICOM

image objects within PACS. To an end user, the two most

important DICOM services are (1) send and receive images

and (2) query and retrieve images. The query and retrieve

services are built on top of the send and receive services.

13.2.2.5 Integrating the Health Care Enterprise

Even with the DICOM and HL7 standards available, there is a

need for common consensus on how to use these standards for

integrating heterogeneous health care information systems

smoothly. IHE is neither a standard nor a certifying authority;

instead, it is a high-level information model for driving the

adoption of HL7 and DICOM standards. IHE is a joint initiative

of RSNA and HIMSS (Health Care Information and Manage-

ment Systems Society) started in 1998. The mission was to

deWne and guide manufacturers to use DICOM- and HL7-

compliant equipment and information systems to facilitate

daily clinical workXow operations. The IHE technical frame-

work deWnes a common information model and vocabulary

for using DICOM and HL7 to complete a set of well-deWned
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FIGURE 13.2 DICOM model of the real world showing the four main level

objects: (1) patient, (2) study, (3) series, and (4) image. Note that there can be
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radiological and clinical transactions for a certain task. These

common vocabularies and models would then facilitate health

care providers and technical personnel in understanding each

other better, which then would lead to smooth systems integra-

tion. The Wrst large-scale demonstration was held at the RSNA

annual meeting in 1999. Additional presentations were made at

RSNA in 2000 and 2001 and at HIMSS 2001 and 2002. In these

demonstrations, manufacturers came together to show how

actual products could be integrated based on certain IHE proto-

cols. It is the belief of RSNA and HIMSS that with successful

adoption of IHE, life would become more pleasant in health

care systems integration for both the users and the providers.

The IHE integration proWles provide a common language,

vocabulary, and platform for health care providers and manu-

facturers to discuss integration needs and the integration

capabilities of products. As of the 2003 implementation, there

are 10 integration proWles; this number will grow over time.

The 10 implemented IHE proWles are as follows:

1. Scheduled workXow

2. Patient information reconciliation

3. Consistent presentation of images

4. Presentation-grouped procedures

5. Access to radiology information

6. Key image note

7. Simple image and numeric report

8. Basic security

9. Charge posting

10. Postprocessing workXow

13.2.3 Connectivity and Open Architecture

If PACS modules in the same hospital cannot communicate

with each other, they become isolated systems, each with its

own images and patient information. It would be diYcult to

combine these modules to form a total hospital-integrated

PACS. Open network design is essential, allowing a standardized

method for data and message exchange between heterogeneous

systems. Because computer and communications technology

changes rapidly, a closed architecture would hinder system

upgradeability. For example, suppose an independent imaging

workstation from a given manufacturer would, at Wrst glance,

make a good additional component to a magnetic resonance

imaging scanner for viewing images. If the workstation has a

closed proprietary architecture design, however, no compon-

ents except those speciWed by the same manufacturer can be

augmented to the system. Potential overall system upgrading

and improvement would be limited. Considerations of connect-

ivity are important even when a small-scale PACS is planned.

13.2.4 Reliability

Reliability is a major concern in a PACS for two reasons. First,

a PACS has many components; the probability of a component

failing is high. Second, because PACS manages and displays

critical patient information, extended periods of downtime

cannot be tolerated. The PACS can be considered a mission-

critical system within the health care enterprise that should

strive for continuous operation 24 hours a day, 7 days a week.

In designing a PACS, it is therefore important to use fault-

tolerant measures, including error detection and logging soft-

ware, external auditing programs (i.e., network management

processes that check network circuits, magnetic disk space,

database status, processer status, and queue status), hardware

redundancy, and intelligent software recovery blocks. Some

fail-recovery mechanisms that can be used include automatic

retry of failed jobs with alternative resources and algorithms

and intelligent bootstrap routines (a software block executed

by a computer when it is restarted) that allow a PACS com-

puter to automatically continue operations after a power out-

age or system failure. Improving reliability is costly; however, it

is essential to maintain high reliability of a complex system.

13.2.5 Security

Security, particularly the need for patient conWdentiality, is an

important consideration because of medical-legal issues and

Health Insurance Portability and Accountability Act (HIPAA)

mandated in April 2003. The violation of data security can

be of three diVerent types: physical intrusion, misuse, and

behavioral violations. Physical intrusion relates to facility

security, which can be handled by building management.

Misuse and behavioral violations can be minimized by

account control and privilege control. Most sophisticated

database management systems have identiWcation and author-

ization mechanisms that use accounts and passwords. Appli-

cation programs may supply additional layers of protection.

Privilege control refers to granting and revoking user access to

speciWc tables, columns, or views from the database. These

security measures provide the PACS infrastructure with a

mechanism for controlling access to clinical and research

data. With these mechanisms, the system designer can enforce

policy as to which persons have access to clinical studies. In

some hospitals, for example, referring clinicians are granted

image study access only after a preliminary radiology reading

has been performed and attached to the image data. An

additional security measure is the use of the image digital

signature during data communication. If implemented, this

feature would increase the system software overhead, but data

transmission through open communication channels would

be more secure.

13.2.6 Current PACS Architectures

There are three basic PACS architectures: (1) stand-alone, (2)

client/server, and (3) Web-based. From these three basic

PACS architectures, there are variations and hybrid design

types.
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13.2.6.1 Stand-Alone PACS Architecture

The three major features of the stand-alone model are as

follows:

1. Images are automatically sent to designated reading and

review workstations from the archive server.

2. Workstations can also query/retrieve images from the

archive server. Workstations have short-term cache

storage.

3. Data workXow of the stand-alone PACS model is shown

in Figure 13.3.

Following the numerals in Figure 13.3:

1. Images from an examination acquired by the imaging

modality are sent to the PACS archive server.

2. The PACS archive server stores the examination images.

3. A copy of the images is distributed to selected end-user

workstations for diagnostic reading and review. The

server performs this automatically.

4. Historic examinations are prefetched from the server,

and a copy of the images is sent to selected end-user

workstations.

5. Ad hoc requests to review PACS examinations are made

via query/retrieve from the end-user workstations. In

addition, if automatic prefetching fails, end-user work-

stations can query and retrieve the examination images

from the archive server.

6. End-user workstations contain a local storage cache of a

Wnite number of PACS examinations.

The advantages of the stand-alone model are as follows:

. If the PACS server goes down, imaging modalities or

acquisition gateways have the Xexibility to send directly

to the end-user workstation so that the radiologist can

continue reading new cases.

. Because multiple copies of the PACS examination are

distributed throughout the system, there is less risk of

losing PACS data. Some historic PACS examinations will

be available in workstations because they have a local

storage cache.

. The system is less susceptible to daily changes in network

performance because PACS examinations are preloaded

onto the local storage cache of end-user workstations and

are available for viewing immediately.

. Examination modiWcation to the DICOM header for

quality control can be made before archiving.

The disadvantages of the stand-alone system are as follows:

. End-users must rely on correct distribution and prefetch-

ing of PACS examinations, which is not possible all the

time.

. Because images are sent to designated workstations, each

workstation may have a diVerent wordlist, which makes it

inconvenient to read/review all examinations at any

workstation in one setting.

. End-users depend on the query/retrieve function to re-

trieve ad hoc PACS examinations from the archive, which

can be a complex function compared with the client/

server model.

. Radiologists can be reading the same PACS examination

at the same time from diVerent workstations because the

examination images may be sent to several workstations.

13.2.6.2 Client/Server PACS Architecture

The three major features of the client/server model are:

1. Images are centrally archived at the PACS server.

2. From a single wordlist at the client workstation, an end-

user selects images via the archive server.

3. Because workstations have no cache storage, images are

Xushed after reading.

Data workXow of the client/server PACS model is shown in

Figure 13.4.

Following the numerals in Figure 13.4:

1. Images from an examination acquired by the imaging

modality are sent to the PACS archive server.

2. The PACS archive server stores the examination.

3. End-user workstations or client workstations have access

to the entire patient/study database of the archive server.
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FIGURE 13.3 Stand-alone picture archiving and communication

systems architecture and the six workXow steps as described in the

text.
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The end-user may select preset Wlters on the main word-

list to shorten the number of wordlist entries for easier

navigation.

4. Once the examination is located on the wordlist and

selected, images from the PACS examination are loaded

from the server directly into the memory of the client

workstation for viewing. Historic PACS examinations

are loaded in the same manner.

Once the end-user has completed reading/reviewing the exam-

ination, the image data are Xushed from memory, leaving no

image data in local storage on the client workstation

The advantages of the client/server model are as follows:

. Any PACS examination is available on any end-user

workstation at any time, making it convenient to read/

review.

. No prefetching or study distribution is needed.

. No query/retrieve function is needed. The end-user just

selects the examination from the wordlist on the client

workstation, and images are loaded automatically.

. Because the main copy of a PACS examination is located

on the PACS server and is shared by the client worksta-

tions, radiologists will be aware of when they are reading

the same examination at the same time and thus avoid

duplicate readings.

The disadvantages of the client/server model are as follows:

. The PACS server is a single point of failure; if it goes

down, the entire PACS is down. In this case, end-users

will not be able to view any examinations on the client

workstations. Newly acquired examinations must be held

back from archival at the modalities until the server is

back up.

. Because there are more database transactions in the

client/server architecture, the system is exposed to more

transaction errors, making it less robust compared with

the stand-alone architecture.

. The architecture is very dependent on network perform-

ance.

. Examination modiWcation to the DICOM header for

quality control is not available before archiving.

13.2.6.3 Web-Based Model

The Web-based model PACS is similar to the client/server

architecture with regard to data Xow. However, the main

diVerence is that the client software is a Web-based applica-

tion.

Additional advantages as compared with client/server are

the following:

. The client workstation hardware can be platform-

independent as long as the Web browser is supported.

. The system is a completely portable application that can

be used both on-site and at home with an Internet

connection.

Additional disadvantages as compared with client/server are as

follows:

. The system may be limited in the amount of functional-

ity and performance by the Web browser.

With consistent technology, hardware, and software improve-

ments to database management and performance, clustered

and parallel servers, and network communications perform-

ance, the client/server and Web-based models have become the

architecture of choice for most PACS vendors.

13.3 PACS Components and WorkXow

13.3.1 Introduction of Components

This section provides an overview of PACS for two topics.

The Wrst topic is the basic concept of PACS and its compon-

ents, which gives a general architecture and requirements

of the system. The second topic is an example of a generic

PACS workXow in radiology that highlights the functionalities

of these components. As discussed in the previous section,

a PACS should be DICOM-compliant. It consists of an

image and data acquisition gateway, a PACS controller and

archive, and display workstations integrated together by digital
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networks as shown in Figure 13.1. The following sections

introduce these components in more detail.

13.3.2 Image Acquisition Gateway

PACS requires that images from imaging modalities (devices)

and related patient data from the HIS and RIS be sent to the

PACS controller and archive server. A major task in PACS is to

acquire images reliably and in a timely manner from each

radiological imaging modality and relevant patient data in-

cluding study support text information about the patient, a

description of the study, and parameters pertinent to image

acquisition and processing.

Image acquisition is a major task for three reasons. First,

the imaging modality is not under the auspices of the PACS.

Many manufacturers supply various imaging modalities, each

of which has its own DICOM-compliant statement. Worse,

some older imaging modalities may not even be DICOM-

compliant. To connect many imaging modalities to the PACS

requires tedious and labor-intensive work and the cooper-

ation of modality manufacturers. Second, image acquisition

is a slower operation than other PACS functions because

patients are involved, and it takes the imaging modality

some time to acquire the necessary data for image reconstruc-

tion. Third, images and patient data generated by the modal-

ity sometimes may contain format information unacceptable

to the PACS operation. To circumvent these diYculties, an

image acquisition gateway computer is usually placed between

the imaging modality(s) and the rest of the PACS network to

isolate the host computer in the radiological imaging modal-

ity from the PACS. Isolation is necessary because traditional

imaging device computers lack the necessary communication

and coordination software that is standardized within the

PACS infrastructure. Furthermore, these host computers

do not contain enough intelligence to work with the PACS

controller to recover various errors. The image acquisition

gateway computer has three primary tasks: It acquires

image data from the radiological imaging device; it converts

the data from manufacturer speciWcations to a PACS standard

format (header format, byte ordering, matrix sizes) that

is compliant with the DICOM data formats; and it forwards

the image study to the PACS controller or display work-

stations.

Two types of interfaces are used to connect a general-

purpose PACS acquisition gateway computer with a radio-

logical imaging modality. With peer-to-peer network

interfaces, which use the TCP/IP ethernet protocol, image

transfers can be initiated either by the radiological imaging

modality (a push operation) or by the destination PACS

acquisition gateway computer (a pull operation). The pull

mode is advantageous because if an acquisition gateway com-

puter goes down, images can be queued in the radiological

imaging modality computer until the gateway computer

becomes operational again, at which time the queued images

can be pulled and normal image Xow resumed. Assuming that

suYcient data buVering is available in the imaging modality

computer, the pull mode is the preferred mode of operation

because an acquisition computer can be programmed to re-

schedule study transfers if failure occurs (because of failure of

the acquisition computer or failure in the radiological imaging

modality). If the designated acquisition gateway computer is

down and a delay in acquisition is not acceptable, images from

the examination can be rerouted to another networked desig-

nated backup acquisition gateway computer or workstation.

Although traditionally the image acquisition gateway is a

separate computer device within PACS, improvements in ser-

ver hardware processing speed and memory have provided

some manufacturers with the ability to integrate the image

acquisition gateway component within the PACS controller or

PACS server. Although the image acquisition gateway shares

the same hardware as the PACS controller, the main function-

alities remain the same as a standalone image acquisition

gateway.

13.3.3 PACS Controller and Image Archive

Imaging examinations along with pertinent patient informa-

tion from the acquisition gateway computer, the HIS, and the

RIS are sent to the PACS controller. The PACS controller is the

engine of the PACS and consists of high-end computers or

servers; its two major components are a database server and an

archive system. The archive system consists of short-term,

long-term, and permanent storage. These components are

explained in more detail in the next section.

The following lists some major functions of a PACS

controller:

1. Receives images from examinations via acquisition

gateway computers

2. Extracts text information describing the received exam-

ination

3. Updates a network-accessible database management

system

4. Determines the destination workstations to which

newly generated examinations are to be forwarded

5. Automatically retrieves necessary comparison images

from a distributed cache storage or long-term library

archive system

6. Automatically corrects the orientation of computed

radiography images

7. Determines optimal contrast and brightness parameters

for image display

8. Performs image data compression if necessary

9. Performs data integrity check if necessary

10. Archives new examinations onto long-term archive

library

11. Deletes images that have been archived from acquisi-

tion gateway computers

13 PACS and Medical Imaging Informatics for Filmless Hospitals 287



12. Services query/retrieve requests from workstations and

other PACS controllers in the enterprise PACS

13. Interfaces with PACS application servers

13.3.4 Display Workstations

A workstation includes communication network connection,

local database, display, resource management, and processing

software. The fundamental workstation operations are listed

in Table 13.1. There are four types of display workstations

categorized by their resolutions: (1) high-resolution (2.5K�
2K) liquid crystal display (LCD) for primary diagnosis at the

radiology department, (2) medium-resolution (2000� 1600

or 1600� 1K) LCD for primary diagnosis of sectional

images and at the hospital wards, (3) physician desktop

workstation (1K� 768) LCD, and (4) hard-copy workstations

for printing images on Wlm or paper. In a stand-alone pri-

mary diagnostic workstation, current and historic images are

stored in local high-speed magnetic disks for fast retrieval. It

also has access to the PACS controller database for retrieving

longer-term historic images if needed. Figures 13.5–13.7

show examples of a typical PACS diagnostic workstation

displaying various PACS studies. Note the tool set at the

bottom of each Wgure used for manipulating the digital

PACS study for case presentation, interpretation, and

documentation.

13.3.5 Communications and Networking

A basic function of any computer network is to provide an

access path by which end users (e.g., radiologists and clini-

cians) at one geographic location can access information (e.g.,

images and reports) at another location. The important net-

working data needed for system design include location and

function of each network node, frequency of information

passed between any two nodes, cost for transmission between

nodes with various-speed lines, desired reliability of the com-

munication, and required throughput. The variables in the

design include the network topology, communication line

capacities, and data Xow assignments.

TABLE 13.1 Major functions of a picture archiving and communication systems display workstation

Function Description

Case preparation Accumulation of all relevant images and information belonging to a patient examination

Case selection Selection of cases for a given subpopulation

Image arrangement or hanging protocols Tools for arranging and grouping images for easy review

Interpretation Measurement tools for facilitating the diagnosis

Documentation Tools for image annotation, text, and voice reports

Case presentation Tools for a comprehensive case presentation

Image reconstruction Tools for various types of image reconstruction for proper display

FIGURE 13.5 Example of a picture archiving and communication systems diagnostic workstation displaying a magnetic resonance brain

examination.
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At the LAN level, digital communication in the PACS

infrastructure design can consist of low-speed Ethernet

(10 megabits/s signaling rate), medium-speed (100 megabits/s),

or fast-speed (1 gigabit/s) Ethernet, and high-speed

asynchronous transfer mode (ATM) technology (155–622

megabits/s and up). In a WAN, various digital service (DS)

speeds can be used, which range from DS-0 (56 kilobits/s)

and DS-1 (T1, 1.544 megabits/s) to DS-3 (45 megabits/s) and

ATM (155–622 megabits/s). There is a trade-oV between

transmission speed and cost.

FIGURE 13.6 Example of a picture archiving and communication systems diagnostic work-

station displaying a computed radiography chest examination.

FIGURE 13.7 Example of a picture archiving and communication systems diagnostic workstation displaying a

computed radiography chest examination.
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The network protocol used should be standard, for example,

the TCP/IP and DICOM communication protocol (a higher

level of TCP/IP). A low- or medium-speed network is used to

connect the imaging modalities (devices) to the acquisition

gateway computers because the time-consuming processes dur-

ing imaging acquisition do not require high-speed connection.

Sometimes, several segmented local area Ethernet branches may

be used in transferring data from imaging devices to acquisition

gateway computers. Medium- and high-speed networks are

used on the basis of the balance of data throughput require-

ments and costs. A faster image network is used between acqui-

sition gateway computers and the PACS controller because

several acquisition computers may send large image Wles to

the controller at the same time. High-speed networks are always

used between the PACS controller and workstations. It is even

more crucial to have high-speed networks to support the client/

server PACS architecture because the PACS workstation is

highly dependent on data transfer of images from the PACS

controller to the PACS workstation’s local memory, with per-

formance expectations similar to PACS workstations from

a stand-alone architecture where the images are located on the

local workstation’s hard disk storage.

Process coordination between tasks running on diVerent

computers connected to the network is an extremely import-

ant issue in system networking. This coordination of processes

running either on the same computer or on diVerent com-

puters is accomplished by using interprocessor communi-

cation methods with socket-level interfaces to TCP/IP.

Commands are exchanged as ASCII messages to ensure stand-

ard encoding of messages. Various PACS-related job requests

are lined up into disk resident priority queues, which are

serviced by various computer system DAEMON (agent) pro-

cesses. The queue software can have a built-in job scheduler

that is programmed to retry a job several times by using either

a default set of resources or alternative resources if a hardware

error is detected. This mechanism ensures that no jobs will be

lost during the complex negotiation for job priority among

processes.

13.3.6 PACS WorkXow

This section discusses a generic PACS workXow starting from

the patient registering in the HIS to the RIS ordering examin-

ation, the technologist performing the examination, image

viewing, reporting, and archiving. Comparing this PACS

workXow with the PACS components and workXow in Figure

13.1 and the general radiology workXow, PACS has replaced

many manual steps in the Wlm-based workXow. Figure 13.8

shows the PACS workXow.

13.3.6.1 PACS, Hospital Information Systems,
Radiology Information System WorkXow

Following the numerals in Figure 13.8:

1. Patient registers in HIS, and a radiology examination

is ordered in RIS. An examination accession number is

automatically assigned.

2. The RIS outputs HL7 messages of HIS and RIS demo-

graphic data to PACS broker/interface engine.

3. The PACS broker notiWes the archive server of a sched-

uled examination for the patient.

Modality

PACS Archive

PACS Reading
workstation

(5)

(7)

(4,8)

(10)

(9)
(14)

(11)

(13)

PACS QC
workstation

(6)

(3)

PACS
Broker

(1)

(2)

Dictation
system

PACS Review workstations

(12)
RIS

FIGURE 13.8 Generic picture archiving and communication systems workXow

showing the numerical steps involved in the clinical workXow as described in the

text.
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4. Following prefetching rules, historic PACS examin-

ations of the scheduled patient are prefetched from

the archive server and sent to the radiologist reading

workstation.

5. The patient arrives at examination facility. Modality

queries PACS broker/interface engine for DICOM

work list.

6. Technologist acquires images and sends PACS examin-

ation of images acquired by modality and patient

demographic data to QC workstation in DICOM

format.

7. Technologist prepares PACS examination and sends to

the radiologist reading workstation as prepared status.

8. When the PACS examination arrives at the radiologist

reading workstation, it is immediately sent automatic-

ally to the archive server. The archive server database

is updated, and the PACS examination is marked as

prepared status.

9. The archive server automatically distributes the PACS

examination to the review workstations in the wards

based on patient location received from the HIS/RIS

HL7 message.

10. The reading radiologist dictates a report using the

examination accession number. The radiologist signs

oV on PACS examination with any changes. The archive

database is updated with changes and marks PACS

examination as signed-oV status.

11. The transcriptionist retrieves the dictation that corres-

ponds with the examination accession number within

RIS and types the report.

12. The RIS outputs HL7 message of results report data

along with any previously updated RIS data.

13. The radiologist queries PACS broker/IE for previous

reports of PACS examinations on reading workstations.

14. Referring physicians query broker/IE for reports of

PACS examinations on review workstations.

13.4 PACS Controller and Image Archive

The PACS central node, considered the engine of the PACS, has

two major components: the PACS controller and the archive

server. Consisting of both hardware and software architecture,

the PACS controller directs the data Xow in the entire PACS by

using interprocess communication among major processes.

The image archive provides a hierarchical image storage man-

agement system for short-, medium-, and long-term image

archiving.

13.4.1 Image Management and Design Concept

Two major aspects should be considered in the design of the

PACS image storage management system: data integrity, which

protects against loss of images once they are received by the

PACS from the imaging modalities, and system eYciency, which

minimizes access time of images at the display workstations.

In this section, we only discuss the DICOM-compliant PACS

controller and image archive server. To ensure data integrity, the

PACS always retains at least two copies of an individual image

on separate storage devices until the image has been archived

successfully to the long-term storage device (e.g., an optical disk

or tape library). This backup scheme is achieved through PACS

intercomponent communication among the following PACS

components, as shown in Figure 13.1. Figure 13.9 shows the

hierarchical image storage management in PACS:

1. A copy of the PACS study is stored on the imaging

modality until the technologist has veriWed that the

studies have been successfully archived to PACS.

2. A copy of the PACS study is stored on the acquisition

gateway computer until the archive subsystem has

acknowledged that the study has been received success-

fully.

3. A copy of the study is retained until the PACS study

has been successfully stored to permanent storage (e.g.,

optical disk or tape library).

4. For stand-alone architecture, a copy of the PACS study is

retained on the display workstation until the patient has

been discharged or transferred. For client/server archi-

tecture, the study is deleted when the review has been

completed.

13.4.2 PACS Controller and Archive Server
Functions

The PACS controller and the archive server consist of four

components: an archive server, a database, a digital linear

Image modality

Acquisition gateway

PACS archive server

Display workstation

R
A
I
D
 
 D

L
T

FIGURE 13.9 A diagram showing hierarchic image storage manage-

ment in picture archiving and communication systems. Note that at

least two copies of each picture archiving and communication system

image resides on separate storage devices.
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tape (DLT) library, and a communication network. Attached

to the archive system through the communication network are

the acquisition computers and the display workstations. Im-

ages acquired by the acquisition computers from various

radiological imaging devices are transmitted to the archive

server, from which they are archived to the DLT library and

routed to the appropriate display workstations. The following

is a brief description of each of the four subcomponents as well

as some of the major functions.

13.4.2.1 The Archive Server

The archive server consists of multiple powerful central pro-

cessing units (CPUs), small computer systems interface (SCSI)

data buses, and network interfaces (Ethernet and ATM). With

its redundant hardware conWguration, the archive server can

support multiple processes running simultaneously, and image

data can be transmitted over diVerent data buses and net-

works. In addition to its primary function of archiving images,

the archive server acts as a PACS controller, directing the Xow

of images within the entire PACS from the acquisition gateway

computers to various destinations such as archive, worksta-

tions, or print stations.

The archive server uses its large-capacity redundant array of

inexpensive disks (RAID) as a data cache, capable of storing

several weeks or months or years worth of images acquired

from diVerent radiological imaging devices. As an example, a

20-GB disk storage, without using compression, can hold

simultaneously up to 500 computed tomography (CT), 1000

magnetic resonance (MR), and 500 computed radiography

(CR) studies. Nowadays, very large RAID and SAN technolo-

gies are available in the archive server, especially in the client/

server model. The magnetic cache disks conWgured in the

archive server should sustain high data throughput for read

operation, which provides fast retrieval of images from the

RAID.

13.4.2.2 The Database System

The database system consists of redundant database servers

running identical reliable commercial database systems, (e.g.,

Sybase, Oracle) with structured query language (SQL) utilities.

A mirror database with two identical databases can be used to

duplicate the data during every PACS transaction (not image)

involving the server. The data can be queried from any PACS

computer via the communication networks. The mirroring

feature of the system provides the entire PACS database with

uninterruptible data transactions that guarantee no loss of data

in the event of system failure or a disk crash. Besides its

primary role of image indexing to support the retrieval of

images, the database system is necessary to interface with

the RIS and the HIS, allowing the PACS database to collect

additional patient information from these two health care

databases.

13.4.2.3 The Archive Library

The archive library consists of multiple input/output drives

(usually DLT, although some older PAC systems may still use

optical erasable, WORM disk, optical tape, or CD-ROM) and

disk controllers, which allow concurrent archival and retrieval

operations on all of its drives. Newer technologies available as

archive library solutions include DVD-ROM, large-scale

RAID, and storage area network (SAN). The library must

have a large storage capacity of terabytes and support mixed

storage media if migrating to newer solutions. In this case,

most hospitals opt for migrating PACS studies entirely from

one data media solution to another to reduce the complexities

of managing mixed storage media. Redundant power supply is

essential for uninterrupted operation.

13.4.2.4 Communication Networks

The PACS archive system is connected to both the PACS LAN

and the WAN. The PACS LAN can have a two-tiered commu-

nication network composed of Ethernet and ATM or high-

speed Ethernet networks. The WAN provides connection to

remote sites and can consist of T1 lines, ATM, and fast Ether-

net. The PACS LAN uses the high-speed ATM or Ethernet

switch to transmit high-volume image data from the archive

server to 1K and 2K display workstations. An Ethernet using

100 MB/s can be used for interconnecting slower-speed com-

ponents to the PACS server, including acquisition gateway

computers, RIS, and HIS, and as a backup of the ATM or the

GB/s Ethernet. Failure of the high-speed network automatic-

ally triggers the archive server to reconWgure the communica-

tion network so that images can be transmitted to the PACS

display workstations over slower Ethernet.

13.4.2.5 PACS Controller and Archive Server
Functions

In the controller and archive server, processes of diverse

functions run independently and communicate simultaneously

with other processes using client/server programming, queuing

control mechanisms, and job prioritizing mechanisms. Because

the functions of the controller and the archive server are closely

related, we sometimes use the term archive server to represent

both. Major tasks performed by the archive server include

image receiving, image stacking, image routing, image archiv-

ing, studies grouping, platter management, RIS interfacing,

PACS database updating, image retrieving, and image prefetch-

ing. The following subsections describe the functionality carried

out by each of these tasks. Whenever appropriate, the DICOM

standard is highlighted in these processes.

13.4.2.5.1 Image Receiving. Images acquired from vari-

ous imaging devices in the gateway computers are converted

into DICOM data format if they are not already in DICOM.

DICOM images are then transmitted to the archive server via
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the Ethernet or ATM by client/server applications over stand-

ard TCP/IP protocols. The archive server can accept concur-

rent connections for receiving images from multiple

acquisition computers. DICOM commands can take care of

the send and receive processes.

13.4.2.5.2 Image Stacking. Images that come to the arch-

ive server from various gateway computers are stored on its

local magnetic disks or RAID (temporary archive) based on

the DICOM data model and managed by the database. The

archive server holds as many images in its several hundred

gigabyte disks as possible and manages them on the basis of

aging criteria. During a hospital stay, for example, images

belonging to a given patient remain in the archive server’s

temporary archive until the patient is discharged or trans-

ferred. Thus all recent images that are not already in a display

workstation’s local storage can be retrieved from the archive

server’s high-speed short archive instead of the lower-speed

DLT library. This feature is particularly convenient for radi-

ologists or referring physicians who must retrieve images from

diVerent display workstations. In the client/server PACS

model, the temporary archive is very large, some have terabytes

of capacity with the long-term archive library solution a SAN

storage device.

13.4.2.5.3 Image Routing. In the stand-alone (or peer-

to-peer) PACS model, images that come to the archive server

from various acquisition computers are immediately routed to

their destination workstations. The routing process is driven

by a predeWned routing table composed of parameters includ-

ing examination type, display workstation site, radiologist

name, and referring physician name. All images are classiWed

by examination type (1-view chest, CT head, CT body, etc.) as

deWned in the DICOM standard. The destination display

workstations are classiWed by location (Chest, Pediatrics,

CCU, etc.) as well as by resolution (1K or 2K). The routing

algorithm performs table lookup based on the aforementioned

parameters and determines an image’s destination(s). Images

are transmitted to the 1K and 2K workstations over Ethernet,

LAN, or ATM and to remote sites over dedicated T1 lines,

ATM, or high-speed WAN.

13.4.2.5.4 Image Archiving. Images arriving in the arch-

ive server from gateway computers are copied from temporary

storage to the archive library for long-term storage. When the

copy process is complete, the archive server acknowledges

the corresponding acquisition gateway, allowing it to delete

the images from its local storage and reclaim its disk space. In

this way, the PACS always has two copies of an image on

separate magnetic disk systems until the image is archived to

the permanent storage. Images from multiple examinations

that occur during a patient’s hospital stay are scattered

temporarily across the archive library.

13.4.2.5.5 RIS and HIS Interfacing and PACS Database
Updates. The archive server accesses data from HIS/RIS

through a PACS gateway computer. The HIS/RIS relays mes-

sages regarding patient admission, discharge, and transfer

(ADT) to the PACS only when a patient is scheduled for an

examination in the radiology department or when a patient in

the radiology department is discharged or transferred. For-

warding ADT messages to PACS not only supplies patient

demographic data to the PACS but also provides information

the archive server needs to initiate the prefetch, image archive,

and studies grouping tasks. Exchange of messages among these

heterogeneous computer systems can use the HL7 standard

data format running TCP/IP communication protocols on

a client/server basis. In addition to receiving ADT messages,

PACS receives examination data and diagnostic reports from

the RIS. This information is used to update the PACS database,

which can be queried and reviewed from any display worksta-

tion. Data transactions performed in the archive server, such as

insertion, deletion, selection, and update, are carried out by

using SQL utilities in the database. Data in the PACS database

are stored in predeWned tables, with each table describing only

one kind of entity. The design of these tables should follow the

DICOM data model for operation eYciency. Individual PACS

processes running in the archive server with information

extracted from the DICOM image header update these

tables and the RIS interface to reXect any changes of the

corresponding tables.

13.4.2.5.6 Image Retrieving. Image retrieval takes place

at the display workstations. The display workstations are con-

nected to the archive system through communication net-

works. The archive library conWgured with multiple drives

can support concurrent image retrievals from multiple tapes.

The retrieved data are then transmitted from the archive li-

brary to the archive server via the SCSI data buses. The archive

server handles retrieve requests from display workstations

according to the priority level of these individual requests.

Priority is assigned to individual display workstations and

users based on diVerent levels of needs. For example, the

highest priority is always granted to a display workstation

that is used primary for diagnosis or is in a conference session

or at an intensive care unit. Thus, a workstation used exclu-

sively for research and teaching purposes is compromised to

allow fast service to radiologists and referring physicians in the

clinic for immediate patient care.

13.4.2.5.7 Image Prefetching. The prefetching mechan-

ism is initiated as soon as the archive server detects the arrival of

a patient by means of the ADT message from HIS/RIS. Selected

historic images, patient demographics, and relevant diagnostic

reports are retrieved from the archive library and the

PACS database. Such data are distributed to the destination

workstation(s) before the completion of the patient’s current

examination or staged at the short-term RAID storage device.
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The prefetch algorithm is based on predeWned parameters such

as examination type, disease category, radiologist name,

referring physician name, location of the workstation, and the

number and age of the patient’s archived images. These param-

eters determine which historic images should be retrieved, when

they should be retrieved, and where they should go.

13.4.3 Digital Imaging and Communications
in Medicine-Compliant PACS Archive
Server

The purpose of the DICOM standard is to promote a

standard communication method for heterogeneous imaging

systems, allowing the transfer of images and associated infor-

mation among them. By using the DICOM standard, a

PACS would be able to interconnect its individual compon-

ents and allow the acquisition gateways to link to imaging

devices. However, imaging equipment vendors often select

diVerent DICOM-compliant implementations for their own

convenience, which may lead to diYculties for these systems

in interoperation. Therefore, it is an important step to per-

form throughput testing of the entire system from PACS

study acquisition to archival to ensure that the system is

integrated properly. A well-designed DICOM-compliant

PACS server can use two mechanisms to ensure system inte-

gration. One mechanism is to connect to the acquisition

gateway computer with DICOM providing reliable and

eYcient processes of acquiring images from imaging devices.

The other mechanism is to develop specialized server software

allowing interoperability of multivendor imaging systems.

Both mechanisms can be incorporated in the DICOM-

compliant PACS server.

13.4.4 Hardware and Software Components

The PACS archive server generic hardware components con-

sist of the PACS archive server computer, peripheral archive

devices, and fast Ethernet interface and SCSI. For large-scale

PACS, the server computer used is a mostly UNIX-based

machine. The fast Ethernet interfaces the PACS archive

server to the fast Ethernet network, where acquisition gate-

ways and display workstations are connected. The SCSI inte-

grates peripheral archive devices with the PACS archive server.

The main archive devices for the PACS server include mag-

netic disk, RAID, DLT, and CD/DVD (digital video disks)

jukeboxes, and newer SAN technologies. RAID, because of

its fast access speed and reliability, is extensively used as the

short-term archive device in PACS. Because of its large data

storage capacity, DLT is mostly used for long-term archiving.

Many kinds of storage devices are available for PACS

application. In the following we describe the two most popu-

lar ones, RAID and DLT, along with a third, newer SAN

technology.

13.4.4.1 Redundant Array of Inexpensive Disks

RAID is a disk array architecture developed for fast and reliable

data access. A RAID groups several magnetic disks (e.g., eight

disks) as a disk array and connects the array to one or more

RAID controllers. The size of RAID is usually several hundred

gigabytes (e.g., 320 GB for eight disks) to terabytes. With the

individual disk size increasing, the size of RAID can also be

increased. The RAID controller has a SCSI interface to connect

to the SCSI interface in the PACS server. Multiple RAID con-

trollers with multiple SCSI interfaces can avoid the single-

point failure in the RAID device.

13.4.4.2 Digital Linear Tape

DLT uses a multiple magnetic tape and drive system housed

inside a library or jukebox for large-volume and long-term

archive. With current tape drive technology, the data storage

size can reach 40 to 200 GB/tape. One DLT can hold from 20

to hundreds of tapes. Therefore, the storage size of DLT can be

from one to tens of terabytes, which can hold PACS images

from one to several years. DLT usually has multiple drives to

read and write tapes. The tape drive is connected to the server

through SCSI or Wber-optic connection. The data transmission

speed is several megabytes per second for each drive. The tape

loading time and data locating time are several minutes.

Hence, in general, it takes several minutes to retrieve one CR

image from DLT. PACS image data in DLT are usually pre-

fetched to RAID for fast access time.

13.4.4.3 Storage Area Network

A current data storage trend in large-scale archiving is SAN

technology. With this new conWguration, the PACS server will

still have a short-term storage solution in local disks contain-

ing unread patient studies. However, for long-term storage, the

PACS data are stored in a SAN. This SAN is a stand-alone data

storage repository with a single IP address. File management

and data backup can be achieved with a combination of digital

media (e.g., RAID or DLT) smoothly and with total transpar-

ency to the user. In addition, the SAN can be partitioned into

several diVerent repositories each storing diVerent data Wle

types. The storage manager within the SAN is conWgured to

recognize and distribute the diVerent clients’ data Wles and

store them to distinct and separate parts of the SAN.

13.4.4.4 Archive Server Software

PACS archive server software is DICOM-compliant and sup-

ports DICOM storage service class and query/retrieve service

class. Through DICOM communication, the archive server

receives DICOM studies/images from the acquisition gateway,

appends study information to the database, and stores the

images in the archive device, including the RAID, DLT,

or SAN. It receives the DICOM query/retrieve request from
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display workstations and sends out the query/retrieve result

(patient/study information or images) back to workstations.

The DICOM services supported in PACS archive server are

C-Store, C-Find, and C-Move. All software implemented in

the archive server should be coded in standard programming

languages—for example, C and Cþþ on the UNIX open sys-

tems architecture. PACS archive server software is composed of

at least six independent components (processes), including

receive, insert, routing, send, Q/R-server, and retrieve send. It

also includes a PACS database. All of these processes run inde-

pendently and simultaneously and communicate with other

processes through queue control mechanisms.

13.4.5 Disaster Recovery and Backup Archive
Solutions

The PACS archive server is the most important component in a

PACS, and even though it may have the fault-tolerant feature,

chances are it could fail occasionally. A backup archive server is

necessary to guarantee its uninterrupted service. Two copies of

identical images can be saved through two diVerent paths in the

PACS network to two archive libraries. Ideally, the two libraries

should be in two diVerent buildings in case of natural disaster.

To reduce the cost of redundant archiving, the primary unit can

be another DLT library. The backup archive server can be short

term (3 months) or long term. The functions of a backup

archive server are twofold: maintaining the PACS continuous

operation and preventing loss of image data. Data loss is espe-

cially troublesome because if a major disaster occurs, it is

possible to lose an entire hospital’s PACS data. In addition,

scheduled downtimes to the main PACS archive have a great

impact on a Wlmless institution. Few current PACS archives

feature disaster recovery or a backup archive, and designs are

limited at best. Furthermore, current general disaster recovery

solutions vary in the approach toward creating redundant

copies of PACS data. One novel approach is to provide a

short-term fault-tolerant backup archive server using the appli-

cation service provider (ASP) model at an oVsite location. The

ASP backup archive provides instantaneous, automatic backup

of acquired PACS image data and instantaneous recovery of

stored PACS image data, all at a low operational cost because

it uses the ASP business model. Figure 13.10 shows the general

architecture of an ASP backup archive server. In addition,

should the downtime event render the network communication

inoperable, a portable solution is available with a data migrator.

The data migrator is a portable laptop with a large-capacity

hard disk that contains DICOM software for exporting and

importing PACS examinations. The data migrator can populate

PACS examinations that were stored on the backup archive

server directly onto the clinical PACS within hours to allow

the radiologists to continue to read previous PACS examin-

ations until new replacement hardware arrives and is installed

or until a scheduled downtime event has been completed.

13.5 Large-Scale PACS Implementation

Around the world, because of the need to improve operation

eYciency and provide more cost-eVective health care, many

large-scale health care enterprises have been formed. Each of

these enterprises can group hospitals, medical centers, and

clinics together as one enterprise health care network. The

management of these enterprises recognizes the importance

of using PACS and image distribution as a key technology in

better-quality and more cost-eVective health care delivery at

the enterprise level. As a result, many large-scale enterprise-

level PACS/image distribution pilot studies, full design, and

implementation, are under way. The following are character-

istics of these systems:

1. Scale: large enterprise level, from 39 to 399 hospitals and

medical centers

2. Complexity: total health care IT integration

PACS
Gateway

DICOM
gateway

Clinical
PACS
server

Fault-tolerant
backup archive

Hospital
site PACS Storage

offsite

T1 Router T1 Router

T1 
Con

ne
cti

on

PACS

FIGURE 13.10 General architecture of the ASP backup archive server. One DICOM

gateway and one picture archiving and communication systems gateway are used as the

buVers between the two sites. T1 is used for wide area network (WAN).
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3. Goals and Objectives: complete system deployment to

the enterprise

4. Costs: extremely expensive

5. DiYculty of Implementation: culture, resources, time-

line, and overcoming legacy technologies

13.5.1 Introduction to Hospital Clinical Systems

PACS is a workXow-integrated imaging system designed to

streamline operations throughout the entire patient care

delivery process. One of its major components, image dis-

tribution, delivers relevant electronic images and related

patient information to health care providers for timely patient

care either within a hospital or in a health care enterprise.

Enterprise-level health care delivery emphasizes sharing of

enterprise-integrated resources and streamlining operations.

In this respect, if an enterprise consists of several hospitals

and clinics, it is not necessary for every hospital and clinic to

have similar specialist services. A particular clinical service like

radiology can be shared among all entities in the enterprise.

Under this setup, all patients registered in the same enterprise

can be referred to a radiology expert center for examinations.

In this scenario, the patient being cared for becomes the focus

of the operation. A single index like the patient’s name/

identiWcation would be suYcient for any health care provider

in the enterprise to retrieve the patient’s comprehensive record.

For this reason, the data management system would not be the

conventional HIS, RIS, or other organizational information

system. Rather, the ePR or eMR concept will prevail. However,

to develop the ePR, the successful integration of the HIS, RIS,

and, additionally, voice recognition system, is crucial. The

following sections will describe each of the afore-mentioned

hospital clinical systems and their interfaces with each other, as

well as the ePR concept.

13.5.2 Hospital Information System

The HIS is a computerized management system for handling

three categories of tasks in a health care environment:

1. Support clinical and medical patient care activities in the

hospital

2. Administer the hospital’s daily business transactions

(Wnancial, personnel, payroll, bed census, etc.)

3. Evaluate hospital performances and costs and make a

long-term forecast

Many clinical departments in a health care center, such as

radiology, pathology, pharmacy, clinical laboratories, and

other units, have their own speciWc operational requirements

that diVer from those of the general hospital operation. For this

reason, special information systems may be needed in these

departments. Often, these information systems are under the

umbrella of the HIS, which maintains their operations.

Other departments may have their own separate information

systems, and some interface mechanisms are built to integrate

data between these systems and the HIS. For example, RIS was

originally a component of HIS; later, independent RIS was

developed because of the limited support oVered by HIS to

handle special information required by the radiology depart-

mental operations. However, the integration of these two sys-

tems is still extremely important for the health care center to

operate as a total functional entity.

Large-scale HIS mostly use mainframe computers. These

can be purchased through a manufacturer with certain custo-

mization software or homegrown through the integration of

many commercial products progressively over years. A home-

grown system may contain many reliable legacy components

but have out-of-date technology. Therefore, to interface HIS

to PACS, caution must be taken to circumvent the legacy

problem.

Most HIS are an integration of many information data

systems, starting the day the health care data center was

established, with older components being replaced by newer

ones over many years of operation. In addition to taking care

of the clinical operation, the HIS also support hospital and

health care center business and administrative functions. They

provide automation for such events as patient registration and

ADT, as well as patient accounting. They also provide

on-line access to patient clinical results (e.g., laboratory, path-

ology, microbiology, pharmacy, radiology). The system broad-

casts in real time the patient demographics and encounters

information with HL7 standards to the RIS. Through this path,

ADT and other pertinent data can be transmitted to the RIS

and the PACS.

13.5.3 Radiology Information System

The RIS is designed to support both the administrative and

clinical operation of a radiology department, to reduce admin-

istrative overhead, and to improve the quality of radiological

examination delivery. Therefore, the RIS manages general radi-

ology patient demographics and billing information, proce-

dure descriptions and scheduling, diagnostic reports, patient

arrival scheduling, Wlm location, Wlm movement, and examin-

ation room scheduling. The RIS conWguration is very similar

to the HIS, except that it is on a smaller scale. RIS equipment

consists of a computer system with peripheral devices such

as RIS workstations (normally no image display), printers,

and bar code readers. Most independent RIS are autonomous

systems with limited access to HIS. However, some HIS

oVer embedded RIS as a subsystem with a higher degree of

integration.

The RIS maintains many types of patient- and examination-

related information, including medical, administrative,

patient demographics, examination scheduling, diagnostic
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reporting, and billing information. The major tasks of the

system include:

1. Process patient and Wlm folder records

2. Monitor the status of patients, examinations, and exam-

ination resources

3. Schedule examinations

4. Create, format, and store diagnostic reports with digital

signatures

5. Track Wlm folders

6. Maintain timely billing information

7. Perform proWle and statistics analysis

The RIS interfaces to PACS based on the HL7 standard

through TCP/IP over Ethernet on a client/server model using

a trigger mechanism. Events such as examination scheduling,

patient arrivals, and actual examination begin and end times

trigger the RIS to send previously selected information

(patient demographics, examination description, diagnostic

report, etc.) associated with the event to the PACS in real time.

13.5.4 Voice Recognition System

Typically, radiological reports are archived and transmitted

independently from the image Wles. They are Wrst dictated by

the radiologist and recorded on an audiocassette recorder from

which a textual form is transcribed and inserted into the RIS

several hours later. The interface between the RIS and the

PACS allows for sending and inserting these reports into

the PACS database, from which a report corresponding to the

images can be displayed on the PACS workstation on request

by the user. This process is not eYcient because the delay

imposed by the transcription prevents the textural report

from reaching the referring physician in a timely manner.

One method is to append the digital voice recordings of the

radiologist to the PACS study. The concept of interfacing this

method is to have the digital voice database associated with the

PACS image database; thus, before the written report becomes

available, the referring physician can look at the images and

listen to the report simultaneously. The radiologist views

images from the PACS workstation and uses the digital

Dictaphone system to dictate the report, which converts it

from analog signals to digital format and stores the result in

the voice message server. The voice message server in turn

sends a message to the PACS data server, which links the

voice with the images. The referring physicians at the work-

station can, for example, in an intensive care unit, request to

review certain images and at the same time listen to the voice

report through the voice message server linked to the images.

Later, the transcriber transcribes the voice by using the RIS.

The transcribed report is inserted into the RIS database server

automatically. The RIS server sends a message to the PACS

database server. The latter appends the transcribed report to

the PACS image Wle and signals the voice message server to

delete the voice message.

The ideal method is to use a voice recognition system that

automatically translates voice into text. In this case, the voice

recognition system is either called within the PACS application

or the RIS application. All the necessary Welds are populated

(e.g., patient name, medical record number, type of study), and

the radiologist can begin to dictate. Once the radiologist has

completed the dictation, the report can be edited, reviewed, and

electronically signed oV. It is then ready for distribution. In

addition, report templates can be created for common diagnosis

results that allow the radiologist to quickly create a report result

via voice recognition commands. The report is then sent to RIS

via an interface, and RIS can then forward the report to PACS as

needed. When the DICOM-structured report standard becomes

available, radiologists can directly enter the report through the

structured report format while reviewing the images. Thus, the

digital voice dictation system may see less use while the voice

recognition system will be enhanced with a full set of automatic

templates that can be created on demand once the DICOM-

structured report becomes more acceptable to radiologists.

13.5.5 Interfacing PACS, Hospital Information
Systems, Radiology Information Systems,
and Voice Recognition Systems

There are three methods of transmitting data between infor-

mation systems: through workstation emulation, through

database-to-database transfer, and by means of an interface

engine.

13.5.5.1 Workstation Emulation

This method allows a workstation of an information system to

emulate a workstation of a second system. As a result, data from

the second information system can be accessed by the Wrst sys-

tem. For example, a PACS workstation can be connected to the

RIS with a simple computer program that emulates a RIS work-

station. From the PACS workstation, the user can perform any

RIS function such as scheduling a new examination, updating

patient demographics, recording a Wlm movement, and viewing

the diagnostic reports. This method has two disadvantages. First,

there is no data exchange between RIS and PACS. Second, the

user is required to know how to use both systems. Also, a RIS or

HIS workstation cannot be used to emulate a PACS workstation

because the latter is too speciWc for HIS and RIS to emulate.

13.5.5.2 Database-to-Database Transfer

The database-to-database transfer method allows two or more

networked information systems to share a subset of data by

storing them in a common local area. For example, the ADT

data from the HIS can be reformatted to HL7 standard and

broadcasted periodically to a certain local database in the HIS.
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A TCP/IP communication protocol can be set up between the

HIS and the RIS, allowing the HIS to initiate the local database

and broadcast the ADT data to the RIS through either a pull

or push operation. This method is most often used to share

information between the HIS and the RIS. A recent trend is

the integration between RIS and PACS databases. In this

conWguration, common elements are shared between both

databases, and any changes or modiWcations made to the

patient, study, or image information are updated once without

the need to update both databases manually. In addition, at the

diagnostic workstation, the RIS application would call the

PACS application to display the particular study. An additional

monitor is usually used to display the RIS application. The

user will navigate through the RIS application to identify and

select the particular radiology study to be diagnosed, and the

RIS application makes a function call to the PACS application

to display the selected PACS study. This method of workXow is

called RIS-driven workXow because the RIS is the driver of the

diagnostic workXow and the PACS acts as a client in this

instance.

13.5.5.3 Interface Engine

The interface engine provides a single interface and language

to access distributed data in networked heterogeneous infor-

mation systems. In operation, it appears that the user is

operating on a single integrated database from his or her

workstation. In the interface engine, a query protocol is

responsible for analyzing the requested information, identify-

ing the required databases, fetching the data, assembling

the results in a standard format, and presenting them at the

workstation. Ideally, all these processes are done transparently

to the user and without aVecting the autonomy of each data-

base system. To build a universal interface engine is not a

simple task. Most currently available commercial interface

engines are tailored to limited speciWc information systems.

13.5.5.1 Integrating HIS, RIS, PACS, and VR Systems

Another recent trend to streamline the diagnostic workXow

and provide as much clinical information as possible to the

radiologist has resulted in the integration of HIS/RIS/PACS/

voice recognition (VR) application on one diagnostic work-

station. This new integrated workstation is often referred to as

the radiology command center and allows the radiologist full

access to all available pertinent and historic clinical patient

data while making a primary diagnosis. Because this is a fairly

recent technology trend, the complexities and challenges of

integrating multiple applications on a single workstation

have impacted the user with factors such as ease-of-use, reli-

ability, and eYciency. More work in the future is needed to

fully realize the potential of such an integrated workstation.

In a hospital environment, interfacing the PACS, RIS, and

HIS has become necessary to enhance diagnostic process,

PACS image management, RIS administration, and research

and training. These are all important aspects to consider when

integrating systems.

13.5.6 Electronic Patient Record

The eMR or ePR is the ultimate information system in a health

care enterprise. In an even broader sense, if the information

system includes the health record of an individual, then it is

called the electronic health record (eHR). In this context, we

concentrate on ePR. Currently, only small subsets of ePR are

actually in clinical operation. One can consider ePR as the big

picture of the future health care information system. Although

the development of a universal ePR as a commercial product is

still years away, its eventual impact on the health care delivery

system should not be underestimated. An ePR consists of Wve

major functions:

1. Accepts direct digital input of patient data

2. Analyzes across patients and providers

3. Provides clinical decision support and suggests courses

of treatment

4. Performs outcome analysis and patient and physician

proWling

5. Distributes information across diVerent platforms and

health information systems

HIS and RIS, which deal with patient nonimaging data man-

agement and hospital operation, can be considered components

of ePR. An integrated HIS-RIS-PACS system, which extends the

patient data to include imaging, forms a cornerstone of ePR.

Existing ePRs have certain commonalties. They have large data

dictionaries with time stamped in their contents and can query

and display data Xexibly. Examples of successfully implemented

EMRs are the Computer-Stored Ambulatory Record developed

at Massachusetts General Hospital (in the public domain), the

Regenstrief Medical Record System at Indiana University, the

Health Evaluation Through Logical Processing system devel-

oped at the University of Utah and Latter-Day Saints Hospital,

and the Department of Veterans AVairs Health Care Enterprise

(VAHE) information system. Among these systems, the VAHE

is one of the most advanced systems in the sense that it is being

used daily in many of the VA medical centers and it includes

images in the ePR. Figure 13.11 shows examples of the ePR from

the VAHE system called Veterans Health Information System

Technology Architecture (VistA).

As with any other medical information system, the develop-

ment of the ePR faces several obstacles:

. Finding a common method to input patient examination

and related data to the system

. Developing an across-the-board data and communica-

tion standard

. Gaining buy-in from manufacturers to adopt the standards

. Gaining acceptance by health care providers
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An integrated HIS-RIS-PACS system provides solutions for

some of these obstacles.

. DICOM and HL7 standards have been adopted for im-

aging and text, respectively.

. Images and patient-related data are entered into the

system almost automatically.

. The majority of imaging manufacturers have adopted

DICOM and HL7 as de facto industrial standards.

Therefore, in the course of developing an integrated PACS, one

should keep in mind the big picture, the ePR. Anticipation of

future connections and the integrated PACS as a subsystem of

ePR with images should be considered thoroughly.

13.6 PACS Clinical Experiences

13.6.1 Introduction

In this section, methodology and a road map for PACS imple-

mentation and system evaluation within a clinical hospital

environment will be discussed. In addition, some examples of

FIGURE 13.11 (a) VistA imaging displays the patient record with images. (b) VistA

imaging displays thumbnail images, microscopic images, magnetic resonance images,

and electrocardiogram. Courtesy of Dr. H. Rutherford; DayhoV, 2000.
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clinical experiences and pitfalls will be presented. The phil-

osophy of PACS design and implementation is that, regardless

of the scale of the PACS being planned, the strategy should

always be to leave room for future expansion, including inte-

gration with an enterprise PACS. Thus, if the planning is to

have a large-scale PACS now, the PACS architecture should

allow its future growth to an enterprise PACS. On the other

hand, if only a PACS module is being planned, the connectivity

and compatibility of this module with future modules or with

a larger-scale PACS are important. The terms we discussed in

previous chapters, including open architecture, connectivity,

standardization, portability, modularity, and IHE workXow

proWles, should all be considered.

13.6.2 PACS Implementation Strategy

When implementing a PACS within a clinical environment, it

is very important to recognize some key fundamental concepts

that will serve as cornerstones for a successful implementation.

First, PACS is an enterprise-wide system or product. It is no

longer just for the radiology or imaging department; therefore,

careful consideration of all decisions/strategies going forward

should include the entire health care continuum, from refer-

ring physicians to the radiology department clinical and tech-

nical staV to the health care institution’s IT department. It is

crucial for a successful implementation that some of the key

areas within the health care institution have buy-in of the

PACS process, including administration, the radiology depart-

ment, the IT department, and all high-proWle customers of

radiology (e.g., orthopedics, surgery). Furthermore, a cham-

pion or champions should be identiWed for the PACS process.

Usually this is the medical director of radiology, but it can

include other physicians as well as IT administrators. Second,

PACS is a system with multiple complex components that

interact with one another. Each of these components can be

an accumulation of multiple hardware components. A general

clinical PACS usually includes the archive, the archive server/

controller, the DICOM gateway, the Web server, the worksta-

tions, and a RIS/PACS interface. Whether considering imple-

mentation or acceptance, all components of the system must

be assessed. The following sections describe some of the steps

involved in implementing a PACS within a health care institu-

tion.

13.6.2.1 Risk Assessment Analysis

It is important to perform a risk assessment analysis before

implementation so that problem areas and challenges can be

mapped out accordingly and timeline schedules can be made

to accommodate potential roadblocks. Some areas to focus on

are Z the network infrastructure that will be supporting the

PACS, the integration of acquisition modality scanners with

PACS (e.g., legacy systems, modality work list, quality control

workstations), physical space for the PACS equipment, and

resource availability. Resource availability is especially crucial

because a successful PACS implementation hinges on the sup-

port provided by the in-house radiology department. In mak-

ing risk assessments, it is also helpful to determine areas in

which there is a low risk and a high return. These areas are

usually departments where there is a high volume of image

(Wlm) and a low rate of return of Wlm back to the radiology

department (e.g., critical care areas, orthopedics, surgery).

These low-risk/high-return areas can help to drive the imple-

mentation phase timeline and can also be a good Wrst push in

the implementation process.

13.6.2.2 Implementation Phase Development

Implementation of PACS should be performed in distinct

phases, which would be tailored based on the risk assessment

analysis performed at the health care institution. Usually, the

Wrst phase occurs when the main components are implemen-

ted such as the archive, archive server/controller, network

infrastructure, HIS-RIS-PACS interfaces, workstations, and

one or two modality types. The next phases are targeted

toward implementing all modality types and a Web server for

enterprise-wide and oV-site distribution of PACS examin-

ations. The phased approach allows for a gradual introduction

of PACS into the clinical environment, with the ultimate goal

being the transformation into a Wlmless department/hospital.

13.6.2.3 Development of Workgroups

Because PACS covers such a broad area within the health care

institution, it is important to develop workgroups to handle

some of the larger tasks and responsibilities. In addition, a

PACS implementation team should be in place to oversee the

timely progress of the implementation process. The following

are some key workgroups and their responsibilities:

1. RIS-PACS interface and testing: Responsible for integra-

tion/testing of RIS/PACS interfaces including the modal-

ity work list on the acquisition scanners

2. PACS modalities and system integration: Responsible for

the technical integration of modalities with PACS and

installation of all PACS devices

3. PACS acquisition workXow and training: Responsible for

developing workXow and training for clerical and technical

staV and for any construction needed in the clinical areas

4. PACS diagnostic workXow and training: Responsible

for developing workXow and training for radiologists and

clinicians and for any construction needed in the clinical

diagnostic areas (e.g., reading room designs). Figure 13.12

shows an example of the diVerent stages of conversion of

a clinical space into a reading room for radiologists.

5. PACS network infrastructure: Responsible for all design

and implementation of the network infrastructure to

support PACS
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In addition to the above-listed workgroups, a PACS imple-

mentation team should be formed to oversee the implementa-

tion process. Members should include at least one point

person from each workgroup, and additional members should

include the PACS implementation manager, the medical

director of imaging, the administrative director of imaging,

an IT representative, and an engineering/facilities representa-

tive. This team should meet at least every 2 weeks and more

frequently as the date of live implementation nears. The goals

of this team are to update any status items and to highlight any

potential stumbling blocks to the implementation process. In

addition, this team meeting allows a forum for higher-level

administrators to observe the progress of the implementation.

It is crucial to identify particular in-house resources for the

implementation process. These include a technical supervisor

of each modality, a clerical supervisor, a Wlm librarian or Wlm

clerk, an RIS support person, and an IT network support

person. These resources are an excellent source of information

for issues related to PACS such as technologist workXow,

clerical workXow, Wlm distribution workXow, design and per-

formance of RIS interface testing with PACS, and overall hos-

pital IT infrastructure.

13.6.2.4 Implementation Management

Developing a schedule and implementation checklist can assist

management of the implementation process. This template

includes topics such as the task description, the date scheduled

for the task, the owner of the task, and a checkmark box to

indicate completion of the task. This template allows for Wner

granularity of the implementation process to protect against

overlooked implementation tasks. Input for the checklist can

come from the PACS implementation team meetings. Further-

more, the checklist can be broken down into smaller subtask

checklists for tracking of issues within each of the workgroups.

13.6.3 System Acceptance

One of the key milestones to system turnover is the completion

of the acceptance testing (AT) of PACS. There are a few reasons

why AT is important to PACS. First, AT provides vendor

accountability for delivering the Wnal product that was initially

scoped and promised. It also provides accountability for the

in-house administration that there is documentation that the

system was tested and accepted. AT also provides a glimpse

into determining the characteristics of PACS uptime and

whether it will function as promised. Finally, AT provides

proof of both PACS performance and functionality as origin-

ally promised by the vendor. Most vendors provide their own

AT plan; however, usually it is not thorough enough, and the

template is not customized to the speciWc health care institu-

tion’s needs. The following sections describe some of the steps

in designing and developing a robust AT that can be used for

Wnal turnover of PACS in the clinical environment.

FIGURE 13.12 DiVerent stages of the conversion of a clinical space into a reading room for

radiologists. Note the pinwheel-shape design using the center Xoor of the room. Power and

networking are supplied through the column in the center of the Xoor.
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Acceptance test criteria are divided into two categories.

The Wrst category is quality assurance. This includes PACS

image quality, functionality, and performance. The second

category is technical testing, which focuses on the concept of

no single point of failure through the PACS and includes

simulation of downtime scenarios. Acceptance criteria should

include identifying which PACS components are to be tested.

The following are some of the components that should be

included are:

1. RIS/PACS interface and/or PACS broker

2. Acquisition gateways

3. Modality scanner(s)

4. Archive server/storage

5. Diagnostic workstation

6. Review workstation

7. Network devices

If the PACS also includes a Web server, then it also should be

included within the acceptance testing criteria.

Each of the implementation phases of the PACS process

should have an acceptance test performed. Acceptance at

each of the phases is also crucial for the vendor because it is

only after acceptance that the vendor can collect the remainder

of the fee balance, which is negotiated beforehand. The imple-

mentation of the AT is a two-phased approach. The Wrst phase

should be performed approximately 1 week before the live

date. The content of phase one includes the technical com-

ponent testing focusing on single points of failure, end-to-end

testing, contingency solutions for downtime scenarios, and any

baseline performance measurements. The second phase should

be performed approximately 2 weeks after the live date so that

the PACS has stabilized a bit in the clinical environment. The

contents of phase two include PACS functional and perform-

ance testing as well as any additional network testing, all on a

loaded clinical network.

13.6.4 Image/Data Migration

Two scenarios are possible to trigger image/data migration:

converting to a new storage technology and increasing data

volumes. It is possible for a health care institution to have a

dramatic increase in PACS data volumes once it transforms

into a Wlmless institution. This is possible due in part to the

continuous image accumulation as well as the integration of

new modalities generating mass volumes of PACS data and

archiving the large data quantities to PACS. For example, the

multislice detector CT scanner is capable of generating up to

1000 images amounting to almost 500 MB of data per exam-

ination. It is very likely that a hospital may need to expand the

archive storage capacity. Furthermore, most PACS installed in

previous years do not have a secondary copy backup of all the

archived PACS image data for disaster recovery purposes. It

has only been a recent trend for PACS to oVer disaster recovery

solutions. Therefore, should a hospital decide to upgrade the

archive server performance and expand with a higher-capacity

data media storage system, there are a few major challenges

facing a successful upgrade. One challenge is how to upgrade

to a new PACS archive server in a live clinical setting. Another

challenge is how to migrate the previous PACS data to a new

data media storage system in a live clinical setting.

Some of the issues that surround a migration plan are that

the data migration must not hamper the live clinical workXow

in any way or reduce system performance. With any migration,

it is important that veriWcation be performed to prevent any

data loss. Once the data have been successfully migrated to the

new data media, the original data media storage system should

be removed, which may incur additional downtime of the

archive server. Development of a migration plan is key to

addressing the surrounding issues and ensuring a data migra-

tion that will have the least impact on the live clinical PACS.

Because data migration occurs in a live clinical setting, it is

important to determine the times at which the data migration

will not impact normal clinical workXow. This may include

scheduling a heavier data migration rate during oV-hours (e.g.,

nights and weekends) and a lighter rate during operating

hours and hours of heavy clinical PACS use. Expert knowledge

of the clinical workXow is valuable input toward developing

a good schedule data migration. Downtime may be involved

both initially and at the end of the data migration process

and should be scheduled accordingly with contingency

procedures.

It may be necessary to Wne-tune the data migration rate

because estimates for the migration rate may not be accurate

initially. Fine-tuning is very crucial because an aggressive

migration rate can adversely aVect the performance of the

entire clinical PACS. Careful attention to the archive and

system performance is especially important during the onset

of the data migration. The data migration rate may need to be

scaled back. This may be an iterative cycle until an optimal

migration rate is achieved that does not adversely aVect the

clinical PACS.

13.6.5 PACS Clinical Experiences and Pitfalls

The following sections describe an overview of two diVerent

PACS clinical experiences from two diVerent sized health care

institutions. One is a large-scale health care institution, and

the second is a high-proWle community-sized hospital. In

addition, some PACS pitfalls will be discussed.

13.6.5.1 Clinical Experiences at Baltimore VA
Medical Center

The Baltimore VA Medical Center (VAMC) started its PACS

implementation in the late 1980s and early 1990s. The VAMC

purchased a PACS in late 1991 for approximately $7.8 million,

which included $7.0 million for PACS and $800,000 for CR.
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The manufacturers involved were Siemens Medical (Erlangen,

Germany) and Loral Western Developed Labs (San Jose, CA);

the product later changed hands to Loral/Lockheed Martin

and then to General Electric Medical Systems. The goals

of the project were to integrate with the VA home-grown

clinical patient record system (CPRS) and the then to-be-

developed VistA imaging system. The project has been under

the leadership of Dr. Eliot Siegel, Chairman of the Radiology

Department. The system was in operation in the middle of

1993 in the new Baltimore VAMC. This system has since

evolved and has been integrated with other VA hospitals in

Maryland into a single imaging network, the VA Maryland

Health Care System. Four major beneWts at the Baltimore

VAMC are: changing the operation to Wlmless, reducing un-

read cases, reducing retake rates, and drastically improving the

clinical workXow.

The two major contributors to the cost of the system are the

depreciation and the service contract. The VA depreciates its

medical equipment over a period of 8.8 years, whereas com-

puter equipment is typically depreciated over a 5-year time

period. The other signiWcant contributor to the cost of the

PACS is the service contract, which includes all of the person-

nel required to operate and maintain the system. It also

includes software upgrades and replacement of all hardware

components that fail or demonstrate suboptimal performance.

This includes replacement of any monitors that do not pass the

quality control tests. No additional personnel are required

other than those provided by the vendor through the service

contract. In the Baltimore VAMC, the radiology administrator,

chief technologist, and chief of radiology share the responsi-

bilities of a PACS departmental system administrator. Cost

savings attributed to PACS include three areas: (1) Wlm oper-

ation costs, (2) space costs, and (3) personnel costs. Films are

still used in two circumstances. Mammography examinations

are still using Wlms, but they are digitized and integrated to the

PACS. Films are also printed for patients who need to have

them for hospital or outpatient visits outside the VA health

care network. Despite these two uses, Wlm costs have been cut

by 95% compared with the Wgure that would have been

required in a conventional Wlm-based department. Additional

savings include reductions in Wlm-related supplies such as Wlm

folders and Wlm chemistry and processors. The second area in

cost savings is space. The ability to recover space in the radi-

ology department because of PACS contributes to a substantial

savings in terms of space indirect costs. Finally, the personnel

cost savings include radiologists, technicians, and Wlm library

clerks. An estimate was made that at least two more radiolo-

gists would have been needed to handle the current workload

at the VAMC had the PACS not been installed. The eYciency of

technologists has improved by about 60% in sectional imaging

examinations, which translates to three to four additional

technologists had the PACS not been used. Only one clerk is

required to maintain the Wlm library and to transport Wlm

throughout the medical center.

13.6.5.2 Clinical Experience at Saint John’s
Health Center

Saint John’s Health Center, Santa Monica, CA, has a Wlmless

PACS that acquires approximately 130,000 radiological exam-

inations annually. As the Wrst phase, St. John’s implemented

the PACS with CR for all critical care areas in April 1999. Phase

II, completed in April 2000, included the integration of MR,

CT, ultrasound, digital Xuorography, and digital angiography

within the PACS. Since then, St. John’s PACS volumes have

increased steadily. The original storage capacity of the PACS

archive was a 3.0 TB MOD Jukebox, which would mean that

older PACS examinations would have to remain oV-line before

a year is over. Also, the archive had only a single copy of the

PACS data. Therefore, should St. John’s encounter a disaster, it

might lose all the PACS data because there was no backup.

With these considerations, St. John’s determined to overhaul

its PACS archive system with the following goals:

. Upgrade the archive server to a much larger capacity

. Develop an oV-site image/data backup system

. Conduct an image/data migration during the archive

system upgrade

These goals were accomplished in late 2001 based on the con-

cepts discussed in this section. With the archive upgrade, all new

PACS examinations were archived through a Sun Enterprise 450

platform server with a 270 GB RAID. The examinations were

then archived to a network-attached digital tape storage system

comprising an additional Sun Enterprise 450 with a 43 GB

RAID and a 7.9 TB storage capacity digital tape library. The

storage capacity of the tape library technology was forecast to

double in the next few years as the tape density doubles, even-

tually making it a 16 TB library. Figure 13.13 shows the Wnal

conWguration after the completion of the data migration.

13.6.5.3 PACS Pitfalls

PACS pitfalls are mostly from human error, whereas bottle-

necks are due to imperfect design in either the PACS or image

acquisition devices. These drawbacks can only be realized

through accumulated clinical experience.

Pitfalls resulting from human error are often initiated at

imaging acquisition devices and at workstations. Three major

errors at the acquisition devices are entering wrong input

parameters, stopping an image transmission process improp-

erly, and positioning the patient incorrectly. The errors occur

most often at the workstations, where users have to enter many

key strokes or click the mouse frequently before the workstation

can respond. Other pitfalls at the workstation unrelated to

human error are missing location markers in a CT or MR

scout view, images displayed with unsuitable lookup tables,

and white borders in CR images due to X-ray collimation.

Pitfalls created by human intervention can be minimized by

implementing a better quality assurance program, providing
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periodic in-service training, and interfacing image acquisition

devices directly to the HIS/RIS through a DICOM broker.

Bottlenecks aVecting the PACS operation include network con-

tention; CR, CT, and MR images stacked up at acquisition

devices; slow responses from workstations; and long delays for

image retrieval from the long-term archive. Improving the sys-

tem architecture, reconWguring the networks, and streamlining

operational procedures through a gradual understanding of the

PACS clinical environment can alleviate bottlenecks. Utilization

of the IHE workXow proWles discussed would also help to

circumvent some of the bottleneck problems. During the inte-

gration of multivendor PACS components, it should be remem-

bered that, even though each vendor’s component may come

with a DICOM conformance statement, the components still

may not be compatible. These pitfalls can be minimized through

the implementation of two DICOM-based mechanisms, one in

the image acquisition gateway and the second in the PACS

controller, to provide better connectivity solutions for multi-

vendor imaging equipment in a large-scale PACS environment.

13.7 Summary

In this section, various components, terminology, and stand-

ards used in PACS were presented and discussed. Integrating

the health care enterprise are protocols of image data work-

Xow allowing connectivity of components in PACS from vari-

ous vendors based on existing standards. The information

system used in hospitals is called HIS or CMS, which consists

of many clinical databases, like the RIS. These databases

are operation-oriented and are designed for special clinical

services. The new trend in health care information systems is

the ePR, which is patient-oriented (i.e., data goes where the

patient goes).

Up-to-date information on these topics can be found in

multidisciplinary literature, reports from research laboratories

of university hospitals, and medical imaging manufacturers,

but not in a coordinated way. Therefore, it is diYcult for a

radiologist, hospital administrator, medical imaging re-

searcher, radiological technologist, trainee in diagnostic radi-

ology, or student in engineering and computer science to

collect and assimilate this information. One major purpose

of this section is to provide a brief overview and consolidate

PACS-related topics and PACS integration with HIS and ePR.

PACS and medical imaging informatics is an ever-growing Weld

that mirrors the ever-changing IT landscape. However, the

fundamental concepts remain as important as ever and con-

tinue to form the bedrock for this expanding Weld.

PACS has impacted the health care industry Wnancially

and operationally, streamlining clinical workXow and

increasing the eYciency of the health care enterprise. Medical
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imaging informatics infrastructure is an emerging Weld focused

to take advantage of existing PACS resources and image and

related data for large-scale horizontal and longitudinal clinical,

research, and education applications that could not be per-

formed previously because of insuYcient data.

13.8 Exercises

1. Based on the generic PACS basic components diagram and

data Xow (Figure 13.1) and the components descriptions,

identify the single points of failure for both stand-alone and

client/server PACS architectures.

2. Describe how the clinical workXow would be impacted for

each of the single points of failure.

3. Provide solutions to address the single points of failure

identiWed.

4. Develop a testing script to perform acceptance testing for

each of the single points of failure.
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14.1 Introduction

Medical records, such as patient records, lab reports, literature

articles, and newsletters, are in free-text form, and oftentimes

medical practitioners wish to perform scenario-speciWc

retrieval on these documents. A scenario typically refers to a

speciWc health care task, such as searching for treatment

methods for a speciWc disease. Although traditional systems

are useful for general information retrieval (IR), these systems

cannot support scenario-speciWc IR because:

1. The terms in the query posed by the user may not use a

standardized medical vocabulary.

2. There is no eVective technique to represent synonyms,

phrases, and similar concepts in free text.

3. The terms used in a query and those used in a document

for representing the same topic may be mismatched.

In this chapter, we present a new knowledge-based approach

(e.g., using the UniWed Medical Language System [UMLS]) to

mitigate these problems. More speciWcally, we propose to use the
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metathesaurus and semantic structure in the UMLS to extract

key concepts from the free text for (1) indexing, (2) phrase-based

indexing for representing similar concepts, and (3) query expan-

sion to improve the probability of matching query terms with the

terms in the document. To do so, the system formulates the query

based on the user’s input and selects scenario templates such as

‘‘disease, treatment’’ or ‘‘disease, diagnosis.’’ Thus, the system is

able to retrieve relevant documents for a speciWc scenario. Fur-

thermore, we propose a topic-oriented directory that is generated

based on query-templates and frequently occurring relevant

topics in documents. Such a directory system not only selects a

set of relevant documents in respect to the query template but

also provides cross-references among related topics. These tech-

niques have been implemented in a testbed at the University of

California, Los Angeles (UCLA). Using the standard California

OYce of Statewide Health medical corpus. Our empirical results

validate the eVectiveness of this new approach over the trad-

itional text retrieval techniques.

Medical information knowledge and clinical data are grow-

ing at explosive rates. Ten years ago, medical publications were

being added to the world’s biomedical journal collections at

the rate of approximately 3,000 entries per month. Today, the

volume of bibliographic citations is growing at 1,000 per day in

Medline alone [1]. Hospitals also generate large amounts of

health care data that are stored on computers. Hence, the

delivery of quality health care to consumers requires availabil-

ity and accuracy of IR from large information sources. The

demand for the use of evidence-based practices to help

improve the quality of care also puts great pressure on health

care professionals to regularly access the highest-quality infor-

mation during health care planning, decision, and delivery.

Today, computer-assisted IR and processing are necessary to

support quality decision making and to help overcome human

cognitive constraints [2].

A medical digital library consists of three types of data: (1)

structural data, such as from patient lab results and demo-

graphic studies, (2) multimedia data, such as images from

magnetic resonance imaging (MRI), and (3) free-text docu-

ments, such as patient reports, medical literature, teaching

Wles, and news articles. Previous research focused on the eVec-

tive retrieval of structural data and image data [3–4]. However,

as a rule, medical records are in free-text form and usually

require scenario-speciWc retrieval. For example, a physician

may pose the following two queries, one for diagnosis and

the other for treatment of a disease:

. Diagnosis scenario: ‘‘diagnosis of large-cell lung cancer,’’

from all patient reports

. Treatment scenario: ‘‘treatment of large-cell lung cancer,’’

from the collection of medical literature articles (e.g.,

Medline references).

From this scenario, speciWc queries cannot be eVectively

supported by traditional IR systems because of the lack of

indexing for free text, ranking the similarity of the content

within the document with the query term and a method to

resolve the mismatch of the term in the query with that in

the document. We developed the following knowledge-based

techniques to ameliorate these problems.

14.1.1 Extracting Key Concepts from
Free Text

We have developed a new technique of knowledge-based med-

ical extraction to automatically extract key concepts from free

text and to permute the set of words in the input free text,

thereby generating all valid concepts deWned by the controlled

vocabulary in a knowledge base (e.g., UMLS). Since the gen-

erated valid concept may not be relevant to the query, syntactic

and semantic Wlters are then used to Wlter out the irrelevant

concept. Thus, retrieval eYciency is improved because key

concept terms can be used as indices in a free-text directory

system, as well as transforming the ad hoc terms in the query

into a controlled vocabulary.

14.1.2 Phrase-Based Vector Space Model

Vector space models (VSMs) are commonly used to measure

the similarity between a query and a document. Traditional

stem-based VSMs cannot match terms in the query with those

used in the documents that have similar meanings but diVer-

ent expressions. We developed a knowledge-based/phrase-

based VSM [5], which identiWes terms with similar meanings

and represents them based on both concepts and stems. As

a result, this phrase-based VSM yields signiWcantly better

retrieval performance than the stem-based VSM.

14.1.3 Knowledge-Based Query Expansion

Queries can be appended with related terms to increase the

probability of matching the terms in the query with those of

relevant documents. Traditional expansion techniques append

all statistically co-occurring terms into the original query, but

many of the expanded terms may not be scenario speciWc. We

use a knowledge-based approach that appends the query with

only terms related to the scenario of the query.

14.2 Extracting Key Concepts from
Documents

14.2.1 The Knowledge Source of the UniWed
Medical Language System

Since our approach is leveraged on knowledge bases, we shall

Wrst brieXy describe the UMLS [6] knowledge source, then

present an index tool called IndexFinder, which is used for
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extracting key concepts from free texts. UMLS is a standard

medical knowledge source developed by the National Library

of Medicine and composed of the UMLS metathesaurus, the

SPECIALIST lexicon, and the UMLS semantic network.

The metathesaurus is a central vocabulary component that

contains 1.6 million phrases representing over 800,000 con-

cepts from more than 60 vocabularies and classiWcations in its

2003 edition. We use the metathesaurus as the controlled

vocabulary to detect concepts and to derive the conceptual

relations using the hyponym relations encoded in it.

A concept-unique identiWer (CUI) identiWes each concept.

The metathesaurus encodes ‘‘broader-narrower-than’’ types

of relations among the concepts. For example, ‘‘lung cancer’’

is a broader concept than ‘‘lung neoplasm.’’ A class of concepts

in the metathesaurus is abstracted into one semantic type in the

semantic network. For example, the concept ‘‘lung cancer’’

belongs to the semantic type ‘‘Disease and Syndrome.’’ Each

semantic type has several semantic relationships with other

types—for example, ‘‘Disease and Syndrome’’ is ‘‘treated by’’

‘‘Therapeutic or Preventive Procedures,’’ ‘‘Pharmacological

Substance,’’ and ‘‘Medical Devices.’’ These semantics are used

for knowledge-based query expansion (see Section 14.6).

14.2.2 Indexing for Free-Text Documents

Indexing free text is a diYcult task, since its writing does not

use a controlled vocabulary. Similar concept terms and syn-

onyms in free text add an additional level of diYculty to such a

task. This also applies to ad hoc queries that can be viewed as

documents. Unlike medical literature, which provides key

words, many free-text documents do not provide such infor-

mation. To eVectively retrieve these free texts, we are motivated

to extract the key concepts from these documents. To rapidly

retrieve the relevant information/knowledge for a query from a

large number of documents, we propose to use a topic-

oriented directory system for free text where the document

can be obtained based on a set of index terms. Having located

a group of documents that satisfy the key concept terms,

traditional IR techniques can then be used to rank these

documents.

Thus, extracting key concepts from free text is a critical task.

Words or word stems are commonly used for indexing, and

these indexing techniques do not require any knowledge

source. However, synonyms and some morphological diVer-

ences between the texts in the target documents and the search

words used often hamper the search results and are beyond the

technological spectrum of word/stem indexing and matching

techniques. This issue is particularly problematic in health

care, wherein the biomedical language is packed with many

interchangeable terms, such as ‘‘common cold’’ and ‘‘coryza,’’

‘‘mass’’ and ‘‘lump,’’ ‘‘fever’’ and ‘‘pyrexia,’’ ‘‘weakness’’ and

‘‘paresis,’’ etc. Therefore, we developed indexing systems

based on standard descriptors or dictionaries, such as the

UMLS.

Using search terms generated from standard dictionaries

also helps to resolve the diVerences in synonyms and morphol-

ogies and thus reduce user frustration by minimizing the rates

of missed hits and failed searches. A signiWcant amount of

research has been dedicated to developing eVective methods

for mapping free text into UMLS concepts. Examples of such

eVorts include SENSE (SEarch with New SEmantics) [7],

MicroMeSH (Micro–Medical Subject Headings) [8], Meta-

phrase [9], KnowledgeMap [10], PhraseX [11], and MetaMap

[12]. Many of these eVorts use techniques of natural language

processing (NLP) to parse passages of free text to generate noun

phrases, which are in turn mapped into UMLS phrases. This

approach achieves some success; however, it has two major

weaknesses:

First, some important concepts cannot be discovered

through the identiWcation of noun phrases, because they

span multiple noun phrases. Table 14.1 provides examples of

texts that reveal the shortcomings of the use of noun phrases.

. Example 1: A word from the Wrst line with a word from

the second line forms the key concept, ‘‘prostate hyper-

plasia,’’ which corresponds to concept ID 33577 in the

UMLS metathesaurus.

. Example 2: A word from the subject and two words from

the location phrase combine to form the key concept,

‘‘left lung mass,’’ which corresponds to concept ID

746117 in the UMLS metathesaurus.

Second, NLP requires signiWcant computing resources. As a

result, most of the NLP systems work in an oZine mode and

are not suitable for mapping large volumes of free text into

UMLS concepts in real time. To remedy these shortcomings,

we developed a new tool called IndexFinder [13] to extract key

concepts from free text.

14.2.3 IndexFinder

IndexFinder operates by permuting words in a sentence to gen-

erate concept candidates that match the UMLS-controlled vo-

cabulary. Since the generated valid controlled vocabulary and

concept terms may contain negative sense and may not be rele-

vant to the query, negation detection is used to identity negative

concepts. Further, syntactic and semantic Wlters based on a spe-

ciWc scenario are used to Wlter out irrelevant concepts.

TABLE 14.1 Problems with mapping noun phrases individually

Example Text

1 Prostate, right (biopsy)

Wbromuscular and glandular hyperplasia

2 A small mass was found in the left hilum of the lung.
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14.2.3.1 Text Preprocessing

Since IndexFinder uses the UMLS normalized string table for

indexing and also supports certain types of abbreviations, we

need to preprocess the input text to normalize words, detect

undeWned and ambiguous abbreviations, and remove stop

words to increase the accuracy of the extraction.

IndexFinder Wrst converts the UMLS controlled vocabulary

into an eYcient concept indexing structure that resides in the

main memory and thus avoids disk access. To detect the

concepts embedded in a free-text sentence, IndexFinder scans

through the sentence word by word, looks up the indexing

structure, and marks every concept where all the words repre-

senting that concept have appeared in the sentence. We use the

UMLS SPECIALIST lexicon for word normalization and han-

dle synonyms by mapping diVerent wording of the same con-

cept into one entry in the indexing structure. This indexing

and matching technique is eYcient and able to generate re-

sponses in real time for free-text indexing.

14.2.3.2 Negation Detection

Negation detection is an important task in medical document

processing, since whether or not a medical symptom has been

presented can make for totally diVerent diagnoses of a disease.

If a doctor searches for the concept ‘‘no cough,’’ returning the

concept ‘‘cough’’ is considered to be irrelevant. To handle the

negation problem in IndexFinder, we Wrst deWne a list of terms

and negation hues, which carry negative sense for a concept.

Then, we identify the UMLS semantic types that can be neg-

ated. Finally, for the concepts of these deWned semantic types,

we combine them with possible negation hues according to

certain deWned rules. More speciWcally, IndexFinder relies on

the three parts for negation detection:

. Negation hues list: SpeciWes the list of words that tend to

negate a concept in a sentence. For example, in medical

reports, the words ‘‘no,’’ ‘‘not,’’ ‘‘isn’t,’’ etc., are frequently

used for negation.

. UMLS semantic types qualiWed for negation: SpeciWes the

list of UMLS semantic types that can be negated. For

example, the semantic type T191 (disease/cancer) is qua-

liWed for negation, since the concepts related to T191 can

appear in patient records in negation form.

. Rules for negating concepts in a sentence: SpeciWes the rules

for negating UMLS concepts when negation hues are

presented in the same sentence from which the concepts

are extracted. For example, ‘‘no’’ tends to negate the

immediately succeeding concept; when multiple concepts

are qualiWed for negation, the concept closest to the

negation hue is selected for negation.

Figure 14.1 shows the web interface for IndexFinder. The

interface has two text panes: The upper text pane takes free text

as input, and the lower text pane outputs the identiWed UMLS

concepts. Each line in the output pane shows one identiWed

concept, which contains the concept ID, the concept’s phrase

string, and the concept’s semantic type. Part of the UMLS

concepts detected from the input pane is shown in the output

pane. Three buttons for adding synonyms, removing inXec-

tion, and conWguring options, respectively, are at the top of the

input window. Results appear when a user clicks the ‘‘IFinder

Search’’ button below the input window. Eighteen phrases

Output window

Input window

FIGURE 14.1 IndexFinder web interface.

310 II Integrated Applications



were found when no Wlters were applied. Each line has a UMLS

concept identiWer, phrase text, and corresponding semantic

type.

14.2.3.3 Syntactic and Semantic Filtering

Although word permutation detects more concept candidates,

some concepts may be irrelevant to the original sentence.

IndexFinder applies Wlters that use knowledge source and

syntactic or semantic information from the original sentence

to Wlter out irrelevant concepts. For example, if a physician

wishes to know what kind of diseases a patient suVers from, it

is more desirable to return disease-related UMLS phrases rath-

er than all concepts to the physician. We consider six types of

Wlters, as shown in Figure 14.2.

The Wrst three Wlters are applied during the mapping

process:

. The symbol type Wlter speciWes the symbol types of inter-

ests. For example, a user who wants to ignore digits (as

MetaMap does) can simply not check the ‘‘Digits’’ box,

shown in Figure 14.2.

. The term length Wlter speciWes the length limitation of

candidate phrases.

. The coverage Wlter speciWes the coverage condition for a

candidate phrase. It has three options: at least one, ma-

jority, and all. By default, the all option is where every

word in a candidate phrase should be present in the input

text.

The later three Wlters are used for further pruning of the

candidate phrases:

. The subset Wlter removes phrases if they are subsets of

other phrases. For example, if the results are {lung cancer}

and {cancer}, then {cancer} will be removed, since it is a

subset of the former.

. The range Wlter removes a phrase if the phrase is

found from words in the input text to exceed a speciWc

distance.

. The semantic Wlter removes the phrases of semantic types

that the user is not interested in. In UMLS, 134 semantic

types are deWned, and each concept maps to one or

several semantic types. For example, as shown in Figure

14.2, the user can select Disease or Syndrome and its two

subtypes, so that the resulting phrases will be of these two

types. As a result, the Wlter also eliminates those irrele-

vant phrases from the set of phrase candidates. Note that

the UMLS ‘‘is-a’’ relationship may also be used to Wlter

out more general phrases.

Table 14.2 shows the Wltering result for the sample input in

Figure 14.1 (also given at the top of Table 14.2). When a subset

Wlter is used, eight phrases are returned. If the Pathologic

Function is selected, four answers will be returned. The two

terms ‘‘prostate’’ and ‘‘focal’’ will be given if the user wishes to

know about body parts or spatial characteristics. Prostate

biopsy is the only diagnostic procedure used.

FIGURE 14.2 Filter selection.
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14.2.3.4 Evaluation

IndexFinder is written in C# and runs on a 1.2 GHz personal

computer (PC) with 512 MB main memory. We implemented

the IndexFinder algorithm as a web-based service that provides

web interfaces for users and programs. We tested the web

service using 5,783 reports of 128 patients from the UCLA

Medical Center. The total size of the documents was 10.8

million bytes. There were 910,000 concepts found in 254

seconds. Therefore, the throughput was about 42,700 bytes

per second, which validated that the system could extract key

concepts from clinical free texts in real time. Next, we manu-

ally examined the mapping results for 100 topic sentences from

this set of patient reports. There were a total of 456 UMLS

phrases found of the 100 topic sentences. We noticed 18

concepts that were not from a single noun phrase and thus

could not be detected by NLP-based methods. Further, we

noted that all the concepts detected by IndexFinder were

relevant. Filtering was eVective in eliminating the irrelevant

terms from the validated candidates.

14.2.3.5 Comparison with Natural Language
Processing

We performed a comparison study between IndexFinder and

MetaMap, which uses the NLP method. We noticed that the

NLP tends to break each sentence into small fragments. Con-

versely, IndexFinder considers all the possible word combin-

ations in the input unit that are valid in UMLS. As a result,

NLP does not yield concepts as speciWc as IndexFinder, as

shown in Table 14.3.

We are currently in the process of further evaluating the

accuracy of our method. We plan to generate a test dataset by

randomly selecting a set of topic sentences from the 5,783

patient reports and then comparing the accuracy of the index-

ing terms generated by the IndexFinder in terms of the num-

bers of false negatives and false positives [14].

The key terms extracted by IndexFinder can be used for (1)

indexing the free-text documents, which can be used in the

directory system for linking the documents with key concepts;

(2) formulating scenario-speciWc queries for content corre-

lation; and (3) transforming the ad hoc query terms to con-

trolled vocabulary, thus increasing retrieval eVectiveness.

14.2.3.6 An Example

As a speciWc clinical application for this research, we have

focused on using the IndexFinder to intelligently Wlter all

clinical free text in an electronic medical record for documents

that speciWcally mention brain tumor–related content. It is not

uncommon for brain tumor patients to have as many as 50

clinical documents in their medical records. Many of these

documents will have nothing to do with the treatment of the

brain tumor but are concerned with other health problems.

These documents consist of primary care clinical notes, spe-

cialist clinical notes, pathology reports, laboratory results,

radiology reports, and surgical notes. For instance, free text

from a radiology report would read in part:

The right frontal convexity meningioma is slightly larger

now than on the prior examination. The left frontal menin-

gioma is unchanged. There are three other small enhancing

nodules seen along the frontal convexities bilaterally, as

TABLE 14.2 Key concepts after filtering

Input: Prostate, right (biopsy)

- fibromuscular and glandular hyperplasia

- focal acute inflammation

- no evidence of malignancy

Filtering Results

Subset C0194804: Biopsy prostate

C0033577: Prostate hyperplasia

C0035621: Right

C0259776: Hyperplasia Wbromuscular

C0334000: Hyperplasia glandular

C0522570: InXammation focal

C0333361: InXammation acute

C0391857: No malignancy evidence

Pathologic function (T046) C0033577: Prostate hyperplasia

C0259776: Hyperplasia Wbromuscular

C0334000: Hyperplasia glandular

C0333361: InXammation acute

Body parts and spatial (T023, T082) C0033572: Prostate

C0205234: Focal

Diagnostic procedure (T60) C0194804: Biopsy prostate

TABLE 14.3 Comparing results generated by IndexFinder and

MetaMap

Input: A small mass was found in the left hilum of the lung.

IndexFinder Results

C0024873: A mass >>T190: Anatomical Abnormality

C0700321: Small >>T080: Qualitative Concept

C0746117: Mass lung left >>T033: Finding

C0332285: Found >>T082: Spatial Concept

C0225733: Lung left hilum >>T029: Body Location or Region

MetaMap Results

Phrase: ‘‘A small mass’’ 861 Mass, NOS [Anatomical Abnormality]

694 Small [Qualitative Concept]

Phrase: ‘‘was’’ Meta mappings: <none>

Phrase: ‘‘found’’ Meta mappings: <none>

Phrase: ‘‘in the left hilum’’ 1000 Left Hilum [Body Part, Organ, or Organ

Component]

Phrase: ‘‘of the lung’’ 1000 Lung [Body Part, Organ, or Organ

Component]

1000 Lung<3> (Lung diseases)

[Disease or Syndrome]
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described above. There are no new lesions seen. There is no

mass eVect caused by these lesions. There is bifrontal ence-

phalomalacia.

Since our interests focus on brain tumor–related concepts,

we can specify a semantic Wlter work list of pertinent docu-

ments based on brain tumor characteristics including cancer

type, anatomical location, and medical interventions. These

characteristics are then mapped to relevant UMLS semantic

types to deWne semantic Wlters, as shown in Table 14.4.

A clinician looking for speciWc documents that address a

certain type of brain tumor (e.g., ‘‘meningioma’’) would have

to carefully search the individual documents. With IndexFind-

er, only two key terms, ‘‘meningioma’’ and ‘‘encephalomala-

cia,’’ are returned for the radiology report in our example, as

shown in Table 14.5. The two concepts, in fact, are important

in the excerpt and thus are good terms for indexing.

14.3 Transforming Similar Queries
into Query Templates

Recent studies reveal that users’ information requests in a

speciWc domain typically follow a limited number of patterns.

In the medical domain [15–18], for example, more than 60%

of all the physicians’ clinical questions can be classiWed into 10

frequent categories. We can summarize the frequently asked

similar queries and tailor our retrieval system according to the

summarized queries. This motivates us to introduce the notion

of a query template. A query template deWnes the structure of a

group of similar queries that consist of a key concept and

scenario concept(s). Filling in the key concept values in a

query template results in a speciWc free-text query.

To Wnd out how to deWne a query template, we shall inves-

tigate a few medical queries presented in Hersh et al. [16] from

the Oregon Health and Sciences University medical corpus

(OHSUMED).

Q1: Lactase deWciency, therapy options

Q2: Iron deWciency anemia, which test is best

Q3: Thrombocytosis, treatment and diagnosis

where the disease concepts are in boldface, and the scenario

concepts are in italics. By inspecting these queries, we note that

each focuses on a particular disease concept: ‘‘lactase deWciency,’’

‘‘iron deWciency anemia,’’ or ‘‘thrombocytosis.’’ Such disease

concepts provide the focus of each query. Further, each query

asks about a speciWc scenario related to the disease concept. For

example, Q1 asks about the ‘‘treatment’’ scenario of a disease; Q2

asks about the ‘‘diagnosis’’ scenario; and Q3 asks about both.

To generalize these sample queries, we can extract the key

concept and scenario concepts (the structural information) and

transform them into the following templates. Note that in the

templates, we unify the representation of scenario concepts—

for instance, mapping ‘‘therapy options’’ to ‘‘treatment.’’

T1: <Disease and syndrome>, treatment

T2: <Disease and syndrome>, diagnosis

T3: <Disease and syndrome>, treatment and diagnosis

Thus, in general, each query template has two essential

components:

1. The key concept. In the template, we specify only the

semantic type of this concept (e.g., ‘‘Disease and Syn-

drome’’). The user needs to Wll in the concept value to

generate a concrete query. For example, Wlling in ‘‘lung

cancer’’ in template T1 results in a real query of ‘‘lung

cancer, treatment.’’ Further, the concept must belong to

the semantic type deWned in the template—for instance,

‘‘lung cancer’’ must be a ‘‘Disease and Syndrome’’

concept.

2. One or more scenario concepts. For example, ‘‘treatment,’’

‘‘diagnosis,’’ and/or ‘‘complication’’ of some disease

concept

In the following sections, we shall illustrate how we use the

structural information in query templates to organize the key

document features into a topic-oriented directory. Further, the

structural information in query templates enables us to expand

more scenario-speciWc terms to the original query and sig-

niWcantly improve the retrieval performance.

14.4 Topic-Oriented Directory

To improve the eYciency of free-text document retrieval in

terms of precision and recall of the request documents and to

provide cross-reference among related topics, we shall propose

to use a directory system that is based on user queries and

topic/subtopic hierarchies derived from key features of the

documents.

TABLE 14.4 Using UMLS semantic type to deWne interests

Brain tumor characteristics Relevant UMLS semantic types

SpeciWc cancer Neoplastic process

Medical intervention Therapeutic procedure

Anatomical location Body part, organ, or organ component

TABLE 14.5 Output from IndexFinder for the radiology report

excerpt

Semantic descriptor UMLS code

T191: Neoplastic process C0025286: Meningioma

T047: Disease or syndrome C0014068: Encephalomalacia
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Using our IndexFinder, we are able to automatically extract a

set of key features to represent a document. Next we will use data-

mining techniques to identify frequently co-occurring key fea-

tures. Each group of frequent features can be viewed as a directory

topic. Since these topics are directly derived from the document

content without any generalization, we consider them to be the

most speciWc ones in the directory. Therefore, they are placed at

the leaf level of the topic hierarchy. Starting from the most speciWc

topics, we merge these subtopics into more general topics. By

continuing this process, a topic hierarchy can be eventually con-

structed. In order for the merging process to be semantically

meaningful, the process is guided by the semantic network in

the knowledge base (e.g., UMLS). For the topic hierarchy to be

sensitive to directory users, we should reorganize the hierarchy

also based on the user querying patterns. One way to achieve this

is to adjust the hierarchy so that it corresponds to the frequent

browsing patterns from general to speciWc topics. This can be

accomplished by modifying the knowledge hierarchies in the

semantic network in accordance with the query granularity to

form directory paths and by concatenating these directory paths

in the drill-down browsing patterns. As a result, the topics and

subtopics in the directory hierarchy are derived based on key

features in the documents, as well as on user query patterns.

Such a directory design diVers from existing document clus-

tering techniques in the following ways. First, our directory

topics are derived from the documents and represented by

control vocabulary from a knowledge source. In conventional

document clustering, each tree node represents only a subgroup

of documents without any semantic meaning. Second, our

directory topics are generated from mining the document key

features as well as the user queries (query templates). As a result,

our directory system can adapt to diVerent types of queries and

is user sensitive. Existing document clustering techniques do

not consider information related to frequent query patterns and

user type. Third, the directory topic hierarchy is organized by

the guidance of the semantic network in the knowledge source

(e.g., UMLS) and is therefore well deWned. The resulting direc-

tory structure has more semantic meaning than the statistical

approaches and thus is able to provide scenario-speciWc index-

ing and improve document retrieval performance.

Let us illustrate the process of organizing a topic-oriented

directory system by the following example. Given a large corpus

of documents related to disease, we will design a directory

system for lung cancer physicians. Based on their interests,

most of the query will be related to lung cancer; that is, its

diagnosis, treatment, risk factors, etc. As a result, the document

collection for these particular physicians can be divided into

three topics: lung cancer–related, general cancer–related, and

other disease-related documents, as shown in Figure 14.3.

Through data mining of the key features of these documents,

we are able to derive the following list of topics from the broader

topics: lung cancer, diagnosis, treatment, risks of cancer,

chemotherapy, surgery, radiation, etc. Such topics and subto-

pics can be organized with the guidance of the semantic net-

work of UMLS. For example, the topic ‘‘lung cancer’’ can be

further divided into various subtopics such as ‘‘diagnosis,’’

‘‘treatment,’’ and ‘‘risk factors of cancer.’’ Then, based on the

knowledge source, the subtopic ‘‘treatments’’ can be organized

into the subsubtopics ‘‘chemotherapy,’’ ‘‘surgery,’’ and ‘‘radi-

ation.’’ Since the topics are derived from the key features of

the documents, such topics and subtopics can be indexed to

represent scenario-speciWc topics.

Note that the directory is organized based on a given user

query (query template), as well as topics and subtopics that

derive from the key features of documents. Thus, the directory

system not only can provide scenario-speciWc document re-

trieval, but can also improve document retrieval performance.

Likewise, we can organize the directory system for diVerent user

query templates. These diVerent directory systems can be linked

and formed into a general directory system for the set of query

templates. Nodes in the directory of a query may overlap with

nodes in the directories of some other queries. Such overlap

provides cross-references of topics and increases the search

scope of the nodes (topics). For a given query, the system will

navigate according to its directory to retrieve the documents.

The overlap nodes may provide cross-references to diVerent

scenarios in other directory systems. In order to restrict the

cross-reference topics, the user can provide a certain range of

topics of interest. As a result, the directory navigator will branch

only to these topics. Such focused cross-referencing can increase

All documents

Other disease−
related

General cancer−
related

Lung cancer−
related

Lung cancer
detection with X-ray

Lung cancer treatment
with chemotherapy

Lung cancer treatment
with radiation

FIGURE 14.3 A sample directory system for a lung cancer physician.
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the search scope while providing focused expansion of topics

and improving retrieval performance.

14.4.1 Deriving Frequent Directory Topics
via Data Mining

Using IndexFinder, we can extract a set of key features from

each document. Each feature is a concept deWned in the con-

trolled vocabulary of the knowledge source (e.g., the metathe-

saurus in UMLS). In this section, we will present a data-

mining technique to discover topics from document features

for directory construction.

A topic can be viewed as a condensed synopsis of a sub-

collection of documents. For example, ‘‘lung cancer and

chemotherapy’’ is a topic that covers all the documents on

the treatment of ‘‘lung cancer’’ with ‘‘chemotherapy.’’ To cap-

ture the meaning of a subset of documents, we typically need

multiple concepts, such as ‘‘lung cancer’’ and ‘‘chemotherapy.’’

Therefore, a speciWc topic should consist of multiple concepts.

Further, the concepts that belong to one topic should fre-

quently co-occur in the documents. For example, it is mean-

ingless to combine ‘‘back pain’’ and ‘‘heart surgery’’ within a

topic, because very few medical documents mention both

concepts.

Since a topic is a group of concepts that frequently co-occur

in documents, we propose to use frequent item-set mining

techniques [19–21] for topic discovery. To map topic discovery

into a frequent item-set mining problem, we shall view each

document as a market basket, and the concept features

extracted from that document as the items in the basket. To

use the data-mining techniques for topic discovery, we need to

specify a minimum support number. In the topic-discovery

context, this minimum support is the minimum number of

documents that we want to group under each topic. For

example, if any topics in our directory cover at least Wve

documents, then we should set the support level at ‘‘5.’’ Table

14.6 further illustrates the mapping between topic discovery

and data mining.

If we discover that each topic is a group of frequently co-

occurring concepts, any subportion of that group must also be

frequent. That is, any subportion of a topic is also a valid topic.

For example, if we discovered the topic {‘‘lung cancer,’’ ‘‘detec-

tion,’’ ‘‘biopsy’’} as a group of frequent concepts, then a sub-

group such as {‘‘detection,’’ ‘‘biopsy’’} must also be a valid

topic. Supergroups of concepts have more speciWc meanings

than subgroups—for instance, {‘‘lung cancer,’’ ‘‘biopsy,’’ ‘‘de-

tection’’} is more speciWc than {‘‘biopsy,’’ ‘‘detection’’}. There-

fore, it would be desirable to keep only the topics that are

supergroups and not those of the subgroups. To eYciently

discover these supergroups, we need a specialized data-mining

technique called maximum frequent item-sets (MFI) mining.

We have developed a general-purpose MFI mining algorithm,

SmartMiner, which can handle extremely large datasets [21].

We plan to apply this technique to discover topics that have the

longest and the most specialized form and use this to construct

a more accurate directory system.

14.4.2 Organizing Topics into a Hierarchical
Directory Structure

By mining frequent co-occurring features in the document

collection, we obtain a list of topics each with a corresponding

set of documents covered by that topic. We shall build a

hierarchical structure from these topics for eYcient retrieval

of relevant documents. Since topics derived from mining fre-

quent document features are the most speciWc ones in the

hierarchy, they are placed at the leaf level. Starting from these

most speciWc topics, we can construct a topic hierarchy by

iteratively merging subtopics into more general ones. To con-

struct a scenario-speciWc and query-sensitive hierarchical dir-

ectory, we will leverage using a knowledge source, UMLS, and

the query templates. The knowledge source organizes its con-

cepts in a general-to-speciWc fashion. For example, ‘‘lung neo-

plasm’’ is a more general term than ‘‘lung cancer,’’ and ‘‘lung

cancer’’ is more general than ‘‘non-small-cell lung cancer.’’ This

provides useful guidance to determine the general-to-speciWc

relationships among directory topics. For example, ‘‘lung can-

cer with chemotherapy’’ will be considered more general than

‘‘non-small-cell lung cancer with chemotherapy.’’

UMLS deWnes multiple hierarchies of concepts. Each UMLS

concept hierarchy focuses on one semantic type of concept.

For example, the disease-concept hierarchy represents the

general-to-speciWc relationships among all the ‘‘Disease and

Syndrome’’ concepts. Similarly, the procedure-concept hier-

archy focuses on all ‘‘Therapeutic and Preventive Procedure’’

concepts. The information in query templates can be used to

select the appropriate candidate hierarchy.

Let us consider the following example. Suppose that we have

discovered four speciWc topics by mining the key features of

the documents:

1. ‘‘Lung cancer, surgery’’

2. ‘‘Lung cancer, radiotherapy’’

3. ‘‘Heart disease, surgery’’

4. ‘‘Heart disease, drug therapy’’

TABLE 14.6 Mapping between topic discovery and frequent

item-set mining

Topic discovery Frequent item-set mining

Document Market basket

Concepts in a document Items in a basket

Topic as a group of frequently

co-occurring concepts

Frequent item set

Minimum number of documents

under each leaf topic

Minimum support for

frequent item sets
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Following UMLS’s disease-concepts hierarchy, entries 1 and

2 and entries 3 and 4 are two pairs of similar topics. At a higher

level, both of these two topics fall under a general topic called

‘‘disease.’’ The resulting directory structure is shown in Figure

14.4(a). If we use UMLS’s procedure-concept hierarchy, the

resulting directory structure is shown in Figure 14.4(b). We

shall leverage the query template information to select the

appropriate candidate structure.

Recall that a query template consists of two parts: a key

concept and a set of scenario concepts. For a particular user

type, we can identify the set of frequently used query tem-

plates. Suppose the key concepts in these frequent templates

are ‘‘<Disease and Syndrome>’’; that is, many templates are

seen as ‘‘<Disease and Syndrome>, treatment’’ or ‘‘<Disease

and Syndrome>, diagnosis,’’ etc. Now consider a sample query

constructed by the template ‘‘lung cancer, treatment.’’ In the

initial step, we want the directory to guide us to a single branch

that is all about ‘‘lung cancer.’’ Underneath that single branch,

we want to further focus on the treatment subtopic. Clearly,

the structure in Figure 14.4(a) serves this need better than that

in Figure 14.4(b). On the other hand, if the key concept in the

query templates is of type ‘‘<Therapeutic and Preventive

Procedure>,’’ then the structure in Figure 14.4(b) will be

preferable.

14.4.3 Navigating the Topic-Oriented Directory

The topic-oriented directory is constructed by the set of topics

that are generated by data mining, query templates of a par-

ticular user type, and the semantic structure of the knowledge

source. With the directory system, identifying a set of relevant

documents for a given query is equivalent to selecting a path in

the hierarchy to navigate to a leaf node. The path selection

should be based on user type and query templates. Further, the

directory enables us to easily navigate to broader topics related

to the query. For example, if we use the directory in Figure

14.4(a) to answer the query ‘‘lung cancer treatment with sur-

gery,’’ we Wrst select the path ‘‘disease’’ ! ‘‘lung cancer’’ !
‘‘surgery’’ to reach a subset of documents. Thereafter, we can

suggest further reading in the closest path ‘‘disease’’ ! ‘‘lung

cancer’’! ‘‘radiotherapy.’’

Multiple directory structures are constructed from the query

templates for multiple user types. The commonality in query

templates results in overlapping nodes of various directory

structures. Such overlapping nodes provide cross-referencing

points among multiple directories and enlarge the search

scope. For example, the leaf node for ‘‘disease’’ ! ‘‘lung

cancer’’ ! ‘‘surgery’’ in Figure 14.4(a) overlaps with the leaf

node ‘‘procedure’’ ! ‘‘surgery’’ ! ‘‘lung cancer’’ in Figure

14.4(b). Depending on the user’s preference, the system may

decide the direction and the scope of cross-referencing. For

example, a lung cancer oncologist may be interested in the

topics of the treatment procedure and in the etiology and

development of the patient’s disease but not in other diseases

such as mental illness. Note that for the most general cases, the

navigation path may include generalization (going upward).

We propose to use query, user type, and topic hierarchy in the

directory to generate and control the navigation path that

provides scenario-speciWc document retrieval.

14.4.4 An Example

We use the 5,000 UCLA medical reports to construct the

knowledge hierarchies and a sample topic directory. Directly

following the Parent of relationships in UMLS, we extract all

the possible knowledge hierarchies (or knowledge paths). Such

paths cannot be directly used in our directory system for two

reasons. First, using all the knowledge paths for our directory

system design is not feasible, since the number of knowledge

paths in UMLS for a concept can be large. Second, the granu-

larity can be too detailed for a set of documents, and thus we

need to simplify the knowledge hierarchies as follows:

. Select a proper source for a knowledge type. The UMLS

semantic network deWnes about 200 knowledge types (or

semantic types), such as disease, treatment, body part, etc.

For each knowledge type, a domain expert can identify the

best knowledge source. For example, the ninth edition of

the International ClassiWcation of Diseases can be a good

source for disease knowledge hierarchies. By applying a

source selector for a knowledge type, we signiWcantly

reduce the number of knowledge paths for a concept.

. Combine nodes in knowledge paths that contain syn-

onyms. Patient reports may possess synonym concepts.

Disease

Lung cancer Heart disease

Surgery Radiotherapy Surgery Drug therapy

Procedure

(a)

(b)

Surgery Drug therapy

Lung cancer Heart disease Lung cancer Heart disease

Radiotherapy

Directory structure derived from
the disease-concept hierarchy

Directory structure derived from
the procedure-concept hierarchy

FIGURE 14.4 DiVerent directory structures derived from diVerent

sets of query templates.
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To reduce the number of knowledge paths, we combine

the parents of synonym concepts with a synonym group

and assign a concept for the synonym group in the

knowledge paths.

. Reduce the number of knowledge paths. Remove the

nodes in the knowledge paths that contain only a single

child node to the topic concepts. For a speciWc document

set, topics can be derived by data-mining the MFIs. The

set of concepts that contains the topics is called topic

concepts. For each topic concept, we can extract know-

ledge paths from UMLS, and we compute the number of

descendant nodes in the path. All path nodes with a

single child will be removed for simplicity of the topic

directory.

Using these three techniques, we can extract knowledge

hierarchies from UMLS and simplify them for our directory

system design. For example, Table 14.7 shows a portion of the

body part knowledge hierarchies we have extracted from

UMLS.

There are 875,255 concepts in the UMLS’s 2003AA edition.

In a real dataset, the number of concepts appearing in the

topics of a document set can be much less. Table 14.8 shows

the number of concepts for some knowledge types in the set of

about 5,000 UCLA medical reports.

We obtain knowledge hierarchies for the Wve types of knowl-

edge as shown in Table 14.8. A portion of the knowledge paths

used in our experiment are shown in Table 14.9.

We constructed the topic directory systems by using a set of

50 patient reports from the UCLA Medical Center. Figure 14.5

shows a user giving a usage pattern [disease], after which the

system creates a directory for the usage pattern.

Using such a directory, a user is able to obtain patient

reports that are organized by disease type þ body organ. For

example, if a user wants to Wnd reports on cancer/respiratory

system/lung, the system returns 33 reports, as illustrated in the

upper-left corner of Figure 14.5. When a user clicks on a

report, the system will bring the document to the user, as

shown in the bottom of the Wgure.

Such a system provides the user with the capability to

generate a topic-oriented directory and to navigate the infor-

mation that best satisWes the query goals. Such scenario-speiWc

directories generate a set of relevant clinical free-text docu-

ments that can then be input for ranking.

14.5 Phrase-Based Vector Space Model
for Automatic Document Retrieval

IndexFinder is able to extract key concepts from free text for

the directory system. Based on a given query, the directory

system is able to identify a group of documents that match the

key concepts in the query from a corpus. We need to rank and

order this set of documents by their similarity with the target

document (query). VSMs are commonly used in IR to perform

such ranking. In this section, we shall Wrst present an overview

of the phrase-based VSM, a new paradigm to represent docu-

ments and to measure document similarities. We then present

the performance improvement of this new model and its

computation complexity.

Retrieval systems consist of two main processes, indexing

and matching. Indexing is the process of selecting content

identiWers, also known as terms in this setting, to represent a

TABLE 14.7 Sample disease knowledge hierarchy extracted from

UMLS for the UCLA document set

Depth Disease CUI

1 Disease C0012634

. . .

2 . cancer C0006826

. . .

3 . . respiratory system cancer C0814136

4 . . . bronchus cancer C0345950

4 . . . lung cancer C0242379

5 . . . . small-cell cancer C0149925

5 . . . . non-small-cell cancer C0220601

4 . . . mediastinum cancer C0153504

4 . . . pleural tumor C0345966

. . .

CUI¼ concept-unique identiWer.

TABLE 14.8 Number of concepts for some knowledge types for the

UCLA document set

TUI Knowledge type Number of concepts

T191 Disease 181

T184 Finding 171

T061 Treatment 242

T060 Diagnosis 155

T023 Body organ 482

TUI¼ topic-unique identiWer.

TABLE 14.9 Example of the simpliWed directory paths for some

disease concepts

CUI TUI Concept name Knowledge path

C0000735 T191 Abdomen tumor Disease/cancer/abdomen

C0001418 T191 Adenocarcinoma Disease/cancer/epithelial/adenocarcinoma

C0001624 T191 Adrenal tumor Disease/cancer/urological/kidney/adrenal

C0005967 T191 Bone cancer Disease/cancer/bone

C0006118 T191 Brain tumor Disease/cancer/neurologic/brain

C0006142 T191 Breast cancer Disease/cancer/breast

C0006264 T191 Bronchus tumor Disease/cancer/respiratory/bronchus

. . . . . . . . . . . .
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text. Matching is the process of computing a measure of

similarity between two text representations. It is possible for

human experts to manually index documents. However, it is

more eYcient and thus more common to use computer pro-

grams to automatically index a large collection of documents.

A basic automatic indexing procedure for English usually

consists of (1) splitting the text into words (tokenization), (2)

removing frequently occurring words such as prepositions and

pronouns (removal of stop words), and (3) conXating mor-

phologically related words to a common word stem (stem-

ming). The resulting word stems could be used as the terms

for the given text.

In early retrieval systems, queries were represented as Bool-

ean combinations of terms, and the set of documents that

satisWed the Boolean expression was returned in response to

the query. Since its inception, the VSM [22] has been the most

popular model in information retrieval. In this model, docu-

ments and queries are represented by vectors in an n-dimen-

sional space, where n is the number of distinct terms. Each axis

in this n-dimensional space corresponds to one term. Given a

query, a VSM system produces a ranked list of documents

ordered by their similarities to the query. The similarity between

a query and a document is computed using a metric on their

respective vectors.

14.5.1 The Problem

Although word stems have been shown to be quite eVective

indexing terms, a recurring question in document retrieval is:

What should be used as the basic unit to identify the content in

the documents? Or, what is a term?

The problem of using word stems as terms is manifested in

several ways:

1. The component words of a phrase sometimes have only

a remote, if any, relation with the phrase. For example,

separating ‘‘photo synthesis’’ into ‘‘photo’’ and ‘‘synthe-

sis’’ could be misleading.

2. Words can be too general. For example, the individual

words ‘‘family’’ and ‘‘doctor’’ are not speciWc enough to

distinguish between ‘‘family doctor’’ and ‘‘doctor family.’’

3. DiVerent words can be used to represent the same thing.

For example, both ‘‘hyperthermia’’ and ‘‘fever’’ indicate

an abnormal body temperature elevation.

4. The same word can mean diVerent things. For example,

‘‘hyperthermia’’ can indicate an abnormal body tem-

perature elevation as well as a treatment in which body

tissue is exposed to high temperature to damage and kill

cancer cells.

FIGURE 14.5 Topic directory system experiment.
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As a result, many researchers proposed both phrases and

concepts in place of words or word stems as content identiWers.

However, neither the phrases nor the concepts had been shown

to produce signiWcantly better results than word stems in

automatic document indexing. On the other hand, through

manual indexing, [23] showed the potential of concept-based

indexing to produce signiWcant improvements over the

stem-based scheme. The high potential shown there and the

low performances of current automatic indexing schemes

using phrases and concepts led us to the search for such

a scheme.

To facilitate discussion, we use the following example query

throughout the discussion: ‘‘Hyperthermia, leukocytosis, in-

creased intracranial pressure, and central herniation. Cerebral

edema secondary to infection, diagnosis and treatment.’’ The

Wrst part of the query is a brief description of the patient; the

second part is the information desired.

14.5.2 Vector Space Models

14.5.2.1 Stem-Based Vector Space Model

In a stem-based VSM, morphological variants of a word like

‘‘edema’’ or ‘‘edemas’’ are conXated into a single word stem

such as ‘‘edem’’ using the Lovins stemmer [24], and the result-

ing word stems are used as terms to represent the documents.

Using the Lovins stemmer, the example query becomes

‘‘hypertherm,’’ ‘‘leukocytos,’’ ‘‘increas,’’ ‘‘intracran,’’ ‘‘pressur,’’

etc.

Not all word stems are equally important. Authors usually

repeat words as they elaborate the major aspects of a subject.

Therefore, a frequent word stem in a document is often more

important than an infrequent one. On the other hand, a word

stem that appears in many documents is less speciWc than one

that appears in only a few. Combining these two aspects, we

often evaluate the importance of a word stem following a term-

frequency-inverse-document-frequency (tf-idf) scheme. We

deWne the weight of stem s in document x as, ws;x ¼ ts;xis ,

where ts;x is the number of times s occurs in x, often called the

term frequency of s, and is is the inverse document frequency

of stem s. One way to compute the inverse document fre-

quency is is ¼ log2 N=nsð Þ þ 1, where N is the number of

documents in the collection, and ns is the number of docu-

ments containing stem s, often called the document frequency

of s.

To compute the document similarity in the stem-based

VSM, we deWne the stem-based inner product between docu-

ments x and y as hx,yis ¼
P
s2S

ws;xws,y ¼
P

i2
s ts;xts,y and deWne

their similarity as the cosine of the angle between their respect-

ive document vectors,

sims x,yð Þ ¼ hx,yisffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx,xishy,yis

p :

14.5.2.2 Concept-Based Vector Space Model

Using word stems to represent documents results in the in-

appropriate fragmentation of multiword concepts such as ‘‘in-

creased intracranial pressure’’ into their component stems like

‘‘increas,’’ ‘‘intracran,’’ and ‘‘pressur.’’ Clearly, using concepts

instead of word stems as content identiWers should produce a

VSM that better mimics human thought processes and there-

fore results in more eVective document retrieval.

However, using concepts is more complex than using word

stems, because:

1. Concepts are usually represented by multiword phrases.

2. There exist polysemous and synonymous phrases. A

phrase is polysemous if it can be used to express diVerent

meanings, and two phrases are synonymous if they can be

used to express the same meaning. For example, ‘‘fever’’

and ‘‘hyperthermia’’ are synonyms, since both can be

used to denote ‘‘an abnormal elevation of the body

temperature.’’ On the other hand, ‘‘hyperthermia’’ is

polysemous, because it can be used to mean either

‘‘fever’’ or a type of ‘‘treatment.’’

3. Some concepts are related to one another.

Assuming that we can partition the documents into phrases,

and ignoring the polysemy, our example query becomes

(C0015967), (C0023518), and (C0151740), representing

‘‘hyperthermia,’’ ‘‘leukocytosis,’’ and ‘‘increased intracranial

pressure,’’ respectively, where the three strings in the paren-

theses are CUIs in UMLS.

Not all concepts are equally important, just as not all stems

are equally so. We deWne the weight of a concept c in document

x following the tf-idf scheme just like before, wc;x ¼ tc;xic ¼
tc;x log2 N=ncð Þ þ 1ð Þ, where tc;x is the number of times c

appears in x, N is the number of documents in the collection,

and nc is the number of documents containing c.

Unlike in the stem-based VSM, where diVerent word stems

are considered unrelated, we deWne the concept-based inner

product between documents x and y as

hx,yic ¼
X
c2C

X
d2C

ictc;xidtd;y sc c,dð Þ, (14:1)

where we take sc c, dð Þ, the conceptual similarity between con-

cepts c and d, into consideration. The similarity between

documents x and y is deWned to be the cosine of the angle

between their respective document vectors,

simc (x,y) ¼ hx,yicffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx,xichy,yic

p .

14.5.2.3 Phrase-Based Vector Space Model

Concepts in controlled vocabularies such as UMLS are used in

the concept-based VSM. Conceptual similarities needed are

often derived from knowledge sources. The qualities of

such VSMs therefore depend heavily on the qualities of the
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controlled vocabularies and the knowledge sources. Some con-

cepts could be missing from the controlled vocabularies. For

example, if we detect only concept C0021852 for ‘‘small bowel’’

in the phrase ‘‘inWltrative small bowel process’’ and Wnd no

concepts matching either the entire phrase or the fragments

‘‘inWltrative’’ and ‘‘process,’’ then we are losing important in-

formation when we represent documents using concepts only.

Furthermore, the absence of certain conceptual relations in the

knowledge sources potentially degrades retrieval eVectiveness.

For example, treating ‘‘cerebral edema’’ and ‘‘cerebral lesion’’ as

unrelated is potentially harmful. Noticing the words ‘‘inWltra-

tive’’ and ‘‘process’’ that match no concepts and the common

component word ‘‘cerebral’’ in phrases ‘‘cerebral edema’’ and

‘‘cerebral lesion,’’ we propose a phrase-based VSM to remedy

the incompleteness of the controlled vocabularies and the

knowledge sources.

In the phrase-based VSM, a document is represented as a set

of phrases. Each phrase may correspond to multiple concepts

(due to polysemy) and consist of several word stems. For

example, ‘‘inWltrative small bowel process’’ is represented by

phrases (; ‘‘inWltr’’), (C0021852; ‘‘smal,’’ ‘‘bowel’’), (; ‘‘proces’’).

Our example query now becomes (C0015967, C0203597;

‘‘hypertherm’’), (C0023518; ‘‘leukocytos’’), (C0151740;

‘‘increas,’’ ‘‘intracran,’’ ‘‘pressur’’), etc.

We use an ordered pair of two sets to represent a phrase

p ¼ ({(s, ps;p)}, {(c, pc;p)}). The Wrst set, {(s, ps;p)}, consists of

ordered pairs that indicate the stems and their occurrence

counts, ps;p, in the phrase. The second set, {(c, pc;p)}, indicates

the concepts and their occurrence counts, pc;p, in the phrase.

We denote the set of all phrases by P. Furthermore, we require

that there be at least one stem in each phrase; that is, for each

phrase p 2 P, there exists some stem s such that ps;p � 1. We

use a phrase vector xp to represent a document x,

xp ¼ {(p, tp;x)}, where tp;x is the number of times phrase p

occurs in document x. And we deWne the phrase-based inner

product as

hx,yip ¼
X
p2P

X
q2P

tp;xtq;y sp(p,q),

where we use sp(p,q) to measure the similarity between phrases

p and q. We call sp(p,q) the phrase similarity between phrases p

and q and deWne it as

sp(p, q) ¼ max f s
X
s2S

i2
s ps;pps;q

 ! 
,

f c
X
c2C

X
d2C

icpc;pidpd;qsc(c,d)

 !!
,

where is, ic , id > 0 are the inverse document frequencies of

stem s, concept c, and concept d, respectively, and sc(c,d) is

the conceptual similarity between concepts c and d. As in the

concept-based VSM, we ignore polysemy and assume that each

phrase expresses only one concept,

pc;p ¼ dc,cp
¼ 1 if c ¼ cp

0 if c 6¼ cp
,

�
where cp is the concept that phrase p expresses. Then the

phrase similarity is reduced to

sp(p,q) ¼ max f s
X
s2S

i2
s ps;pps;q

 !
, ( f cicp

idq
sc(cp,dq))

 !
,

(14:2)

where cp is the concept phrase p expresses, and dq is the

concept q expresses. Here we use two contribution factors, f s

and f c, to specify the relative importance of the stem contri-

bution and the concept contribution in the overall phrase

similarity. The stem contribution

f s
X
s2S

i2
s ps;pps;q

measures the stem overlaps between phrases p and q, and the

concept contribution

f cicp
idq

sc(cp,dq)

takes the concept interrelation into consideration. Conceptu-

ally, when combining the stem contribution and the concept

contribution this way, we use stem overlaps to compensate for

the incompleteness of the controlled vocabularies in encoding

all necessary concepts and the incompleteness of the knowl-

edge sources in describing all necessary concept interrelations.

Once again, we deWne the phrase-based document similarity

between documents x and y to be the cosine of the angle

between their respective phrase vectors,

simp(x,y) ¼ hx,yipffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx,xiphy,yip

p :

14.5.2.4 Phrase Detection

The building blocks of the concept-based VSM and the phrase-

based VSM are phrases. A phrase usually consists of multiple

words. Given a controlled vocabulary containing a set of

phrases P and a set of documents X, we need to eYciently

detect the occurrences of the phrases in P in each of the

documents in X. We can achieve this goal by applying indexing

methods such as IndexFinder or the Aho-Corasick algorithm.

In our phrase detection, we remove the stop words in the

stop list after multiword phrase detection. In this way, we

correctly detect ‘‘secondary to’’ and ‘‘infection’’ from ‘‘cerebral

edema secondary to infection.’’ We would incorrectly detect

‘‘secondary infection’’ if the stop words (‘‘to’’ in this case) were

removed before the phrase detection.

14.5.2.5 Conceptual Similarity Evaluation

Among the many possible conceptual relations, we concentrate

on the ‘‘is–a’’ relation, also called the hypernym relation.
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A simple example is that ‘‘body temperature elevation’’ is a

hypernym of ‘‘fever.’’ Hypernym relations are transitive [25].

For example, ‘‘sign and symptom’’ is a hypernym of ‘‘body

temperature change,’’ and ‘‘body temperature change’’ is a

hypernym of ‘‘hyperthermia,’’ so ‘‘sign and symptom’’ is also

a hypernym of ‘‘hyperthermia.’’ We derive the similarity be-

tween a pair of concepts using their relative position in a

hypernym hierarchy. For a pair of ancestor-descendant con-

cepts, c and d, in the hypernym hierarchy, we deWne their

conceptual similarity as

sc(c,d) ¼ 1

l(c,d) log2 (D(c)þ D(d)þ 1)
, (14:3)

where l(c,d) is the number of hops between c and d in the

hierarchy, and D(c) and D(d) are the descendant counts of

c and d, respectively.

14.5.2.6 Primitive Word Sense Disambiguation

Polysemy is one of the diYculties people encounter when

using concepts. A polysemous phrase can express multiple

meanings. As a result, it is necessary to disambiguate polysem-

ous phrases in document retrieval. For example, seeing ‘‘hyper-

thermia,’’ it is necessary to Wgure out whether it means ‘‘fever’’

or a type of ‘‘treatment’’ using word sense disambiguation

[26]. The current accuracy and eYciency of word sense dis-

ambiguation algorithms are low. We perform a very primitive

word sense disambiguation based on the following observa-

tion. UMLS tends to assign a smaller CUI to the more popular

sense of a phrase. For example, the CUI for the ‘‘fever’’ sense of

‘‘hyperthermia’’ is C0015967, while the CUI for its ‘‘treatment’’

sense is C0203597. Therefore, we use the concept correspond-

ing to the smallest CUI in the concept-based VSM and the

phrase-based VSM.

14.5.3 Experimental Evaluation of the
Phrase-Based Vector Space Model

14.5.3.1 Phrase Detection and Conceptual
Similarity Derivation via the UniWed
Medical Language System

In our experiments, we used UMLS as the controlled vocabu-

lary for phrase detection. We also applied the conceptual

relations in the metathesaurus to derive conceptual similar-

ities. We are particularly interested in hypernym/hyponym

relations. Two pairs of relations in UMLS roughly correspond

to the hypernym/hyponym relations: the RB/RN (broader

than/narrower than) and the PAR/CHD (parent/child) rela-

tions. For example, C0015967 (fever) has a parent concept

C0005904 (body temperature change). RB and RN are redun-

dant—for two concepts c and d, if (c, d) is in the RB relations,

then (d, c) is in the RN relations, and vice versa. Similarly, PAR

and CHD are redundant. As a result, we combine RB and PAR

into a single hypernym hierarchy. Hypernymy is transitive.

However, the UMLS metathesaurus encodes only the direct

hypernym relations, not the transitive closure. We derive the

transitive closure of the hypernym relation and use Equation

14.3 to compute the conceptual similarities.

14.5.3.2 The Test Collections

To compare the eVectiveness of diVerent VSMs in document

retrieval, we need a test collection that provides (1) a set of

queries, (2) a set of documents, and (3) the judgments indi-

cating whether a document is relevant to a query.

OHSUMED [16] is a test collection widely used in recent

information retrieval tests. OHSUMED contains 106 queries.

Each query contains a patient description and an information

need. Our example is query 57 in the collection. The document

collection is a subset of 348,000 Medline references from 1987

to 1991. Seventy-Wve percent of the references contain titles

and abstracts, while the remainder have only titles. Each ref-

erence also contains human-assigned subject headings from

the MeSH. Of the references in the document collection,

14,430 are judged by ‘‘physicians who were clinically active

and were current fellows in general medicine or medical in-

formatics or senior medical residents’’ to be deWnitely relevant,

possibly relevant, or nonrelevant to each of the 105 queries.

The standard recall and precision evaluation that we shall

discuss later requires a binary judgment of relevance or non-

relevance. This can be easily achieved by merging the deWnitely

relevant and the possibly relevant documents into a single

relevant category.

Another test collection, known as Medlars [27], is based on

Medline reference collections from 1964 to 1966. It has been

used extensively in document retrieval system comparisons.

There are 30 queries and 1,033 references in the collection. The

judgments are provided by ‘‘a medical school student.’’

We use both test collections to compare the retrieval eVec-

tiveness of diVerent methods. However, based on the qualiWca-

tion of the human experts, the extent, and the up-to-dateness

of these collections, we believe that OHSUMED reXects expert

judgment better. Therefore, we direct the attention of the

reader to the results obtained from the OHSUMED collection

in later sections. Table 14.10 compares some statistics of the

TABLE 14.10 Comparison of OHSUMED and Medlars statistics

OHSUMED Medlars

Query Document Query Document

Number of documents 105 14,430 30 1,033

Phrases per document 7.5 112 11 90

Stems per phrase 1.34 1.25 1.25 1.14

Concepts per phrase 1.21 1.18 1.27 1.21

Multistem phrases per document 1.96 21.3 2.6 10.8

Multisense phrases per document 1.2 11.3 2 9.8

Note: noticeable differences in italics.
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two collections. Besides the collection size diVerence discussed

above, other noticeable diVerences include:

. OHSUMED queries are slightly shorter than those in

Medlars.

. OHSUMED documents on average contain more long

phrases (those with more than one stem).

. Medlars contains slightly more polysemous phrases

(those with multiple senses).

14.5.3.3 Retrieval EVectiveness Measures

The goal of document retrieval is to return documents relevant

to a user query before nonrelevant ones. The eVectiveness of a

document retrieval system is measured by the recall and pre-

cision [28–29] based on the user’s judgment of whether each

document is relevant to a query q. When a certain number of

documents are returned, we deWne precision to be the propor-

tion of the retrieved documents that are relevant, and we

deWne recall to be the proportion of the relevant documents

retrieved so far. More speciWcally, if we use Rq to represent the

set of documents relevant to q, and A to represent the set of

retrieved documents, then we deWne:

precision ¼ jRq \ Aj
jAj and recall ¼ jRq \ Aj

jRqj
:

There are several ways to evaluate retrieval eVectiveness

using recall and precision. To visually display the change in

the precision values as documents are retrieved, we interpolate

the precision values to a set of 11 recall points 0, 0.1, 0.2, . . . , 1.

Averaging the precision values over a set of queries at these

recall points illustrates the behavior of a system. Further aver-

aging the 11 average precision values, we arrive at the average

11-point average precision, denoted by GP11. Instead of inter-

polating the precision values to a set of standard recall points,

we can also compute the average precision values after each

relevant document is retrieved. The average of such a value

over a set of queries is the average precision, denoted by GP.

14.5.3.4 Comparison of the Recall–Precision Curves

Figures 14.6 and 14.7 depict the average precision values of 105

OHSUMED queries and 30 Medlars queries, respectively, at

the 11 standard recall points 0, 0.1, 0.2, . . . , 1 for Wve diVerent

VSMs.

For the OHSUMED results:

1. ‘‘Stems’’ is the baseline generated by the stem-based

VSM. Its average 11-point average precision is

Gs
P11 ¼ 0:376.

2. ‘‘Concepts Unrelated’’ is generated by using the concepts

as the terms and treating diVerent concepts as unrelated.

More speciWcally, we use sc(c,d) ¼ dc,d in the inner

product calculation (Equation 14.1). The average

11-point average precision is Gcu
P11 ¼ 0:336, an 11% de-

crease from the baseline.

3. ‘‘Concepts’’ is similar to case 2, but taking the concept

interrelations into consideration, we achieve a signiWcant
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FIGURE 14.6 Comparison of the average recall–precision curves over 105

OHSUMED queries.
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improvement over case 2. The average eVectiveness is

approximately equal to that of the baseline.

4. ‘‘Phrases, Concepts Unrelated’’ refers to considering con-

tributions from both the concepts and the word stems in

a phrase but, once again, treating diVerent concepts as

unrelated. By setting sc(cp,dq) in Equation (14.2) to

dcp,dq, we achieve signiWcant improvement over the

‘‘Concepts Unrelated’’ case. In fact, its average 11-point

average Gcu
P11 is 7.1% better than the baseline.

5. ‘‘Phrases’’ is similar to case 4, but considering the con-

cept interrelations, we achieve an average 11-point aver-

age precision of G
p
P11 ¼ 0:433, which is a signiWcant 15%

improvement over the baseline. In both cases 4 and 5, we

used equal weight for the stem and the concept contri-

butions, f s ¼ f c ¼ 1.

Our experimental results reveal that using only concepts

to represent documents and treating diVerent concepts as un-

related can cause the retrieval eVectiveness to deteriorate (case

2). Considering concept interrelations (case 3) or relations of

diVerent phrases by their shared word stems (case 4) can im-

prove retrieval eVectiveness. Measuring the similarity between

two phrases using their stem overlaps and the relation between

the concepts they represent, the phrase-based VSM (case 5) is

signiWcantly more eVective than the stem-based VSM.

14.5.3.5 Sensitivity of Retrieval EVectiveness
to f s and f c

To generate the two sets of recall–precision curves ‘‘Phrase,

Concepts Unrelated’’ and ‘‘Phrase’’ in Figures 14.6 and 14.7, we

used equal weight, f s ¼ f c ¼ 1. To study the relative import-

ance of the stem contribution and the concept contribution in

the inner product calculation, we vary the weights f s and f c

and study the change of the average11-point average precision

value GP11. The document similarity value depends on the

ratio between f s and f c , not their absolute values; therefore,

we vary the (f s, f c) from the stem-only case (1, 0) to the equal-

weight phrase case (1, 1) to the concept-only case (0, 1) and

study the change of the average 11-point average precision

values.

Figure 14.8 depicts the changes of the average 11-point

average precision values as the result of the change of f s and

f c . We observe that the retrieval eVectiveness measured by GP11

is maximized when f c is about the same as f s , and, in this

region, the retrieval eVectiveness is not sensitive to the change

of the relative importance of the stem contribution and the

concept contribution.

14.5.3.6 Retrieval EVectiveness Comparison in
Cluster-Based Document Retrieval

In the previous section, we showed that the phrase-based VSM

is more eVective than the stem-based VSM in document re-

trieval using an exhaustive search. Let us consider a set of N

documents. In an exhaustive search system, the similarity

values between an incoming query and all the N documents

need to be computed online before the documents can be

returned to the user. Because of the relatively large computa-

tion complexity of the VSMs, such an exhaustive search

scheme is not feasible for large document collections. Using

hierarchical clustering algorithms, we can Wrst construct a
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queries.

14 KMeX: A Knowledge-Based Digital Library for Retrieving Scenario-Specific Medical Text Documents 323



document hierarchy using O(N log N) oZine document simi-

larity computations and return a ranked list of documents

using only O(log N) online comparisons.

We compare the stem-based VSM and the phrase-based

VSM using an O(Nlog N) spherical k-means algorithm that

has been shown to produce good clusters in document cluster-

ing [30–31]. The resulting document clusters are searched

using top-down and bottom-up searching strategies.

Figure 14.9 contains the recall–precision curves of six diVerent

searching strategies on the OHSUMED data. They are the result

of an exhaustive search of the 14,000 documents in OHSUMED.

Their average 11-point average precision values are Gs
11 ¼ 0:376
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and G
p
11 ¼ 0:433. The other four curves depict the retrieval

eVectiveness of systems when the document hierarchies are

searched. Clearly, the retrieval eVectiveness of the cluster-based

approaches is lower than that of the exhaustive search–based

approaches. That is, by using cluster-based document retrieval,

we sacriWce the retrieval eVectiveness for more eYcient retrieval.

More importantly, using the same searching strategy, we see

that the retrieval eVectiveness of the phrase-based VSM is

always much better than that of the stem-based VSM. For

the top-down search, G
s;td
11 ¼ 0:235 and G

p;td
11 ¼ 0:283; and

for the bottom-up search, Gs;bu
11 ¼ 0:251 and G

p;bu
11 ¼ 0:299.

In each case, the phrase-based VSM is about 20% more eVec-

tive than the stem-based VSM. In IR, if the performance

improvement for a new retrieval model exceeds 5% evaluated

from 50 queries over an existing model, then it is considered

signiWcant enough to warrant using the new retrieval model

[23]. In our case, there is a 20% improvement average over 100

queries, representing a signiWcant improvement.

14.5.4 Computation Complexity

The document similarity calculation in the phrase-based VSM is

more complex than that in the stem-based VSM. Let us use L to

represent the average length of a document. In the stem-based

VSM, diVerent word stems are considered unrelated. As a result,

by building indexes on the word stems in the documents, an

eYcient algorithm computes the stem-based similarity between

two documents using O(L log L) time. The time complexity of a

straightforward implementation of the phrase-based document

similarity calculation is O L2ð Þ. DiVerent phrases in the phrase-

based VSM can be related to one another not only because they

may share common word stems, but also because the concepts

they represent can be related. Therefore, indexing the phrases in

the documents does not reduce the time complexity of the

phrase-based document similarity calculation to O(L log L).

To reduce the computation complexity, we need to build sepa-

rate indexes on the concepts and the stems in the documents,

keep track of where each stem or concept occurs, and modify

the conceptual similarity storage structure. The phrase-based

document similarity calculation utilizing such data structure

modiWcations has an O(L log L) time complexity. For the

OHSUMED documents, the improved phrase-based document

similarity calculation is about 10 times slower than the stem-

based calculation, while the straightforward implementation is

over 250 times slower than the stem-based calculation.

Preliminary experimental results show that the number of

related concept pairs decreases drastically as the pairwise con-

ceptual similarity value increases. Therefore, we can further

reduce the phrase-based computation complexity by treating

related concepts with low conceptual similarity values as un-

related. We are currently investigating the trade-oV between

retrieval eVectiveness and computation time complexity when

related concepts are treated as unrelated in the phrase-based

document similarity calculations.

14.6 Knowledge-Based Scenario-SpeciWc
Query Expansion

14.6.1 A Framework for Knowledge-Based
Query Expansion

A knowledge-based query expansion and retrieval framework

is shown in Figure 14.10. For a given query, statistical query

expansion (whose scope is marked by the inner dotted rec-

tangle) derives candidate expansion concepts1 that statistically

co-occur with the given query concepts (Section 14.6.2) and

assigns weights to each candidate concept according to the

statistical co-occurrence. Such weights will be carried through

the framework. Based on the candidate concepts derived by

statistical expansion, knowledge-based query expansion (whose

scope is marked by the outer rectangle) further derives the

scenario-speciWc expansion concepts, with the aid of a domain

knowledge source such as UMLS (Section 14.6.2). Such know-

ledge may be incomplete and fail to include all possible query

scenarios. Therefore, in an oZine process, we apply a knowledge

acquisition and supplementation module to supplement the

incomplete knowledge (Section 14.6.5). After the query is

expanded with scenario-speciWc concepts, we employ a VSM

to compare the similarity of the expanded query with each

document. Top-ranked documents with the highest similarity

measures are output to the user.

14.6.2 Method

Formally, the problem for knowledge-based query expansion

can be stated as follows: Given a scenario-speciWc query with a

key concept denoted as ckey (e.g., lung cancer, the eye disease

keratoconus) and a set of scenario concepts denoted as cs (e.g.,

treatment or diagnosis), we need to derive specialized concepts

that are related to ckey , and the relations should be speciWc to

the scenarios deWned by cs. In this section, we describe how to

derive such scenario-speciWc concepts by presenting existing

statistical query expansion methods that generate candidate

concepts. We then propose a method that selects scenario-

speciWc concepts from this candidate set with the aid of

a domain knowledge source.

14.6.2.1 Deriving Statistically Related Expansion
Concepts

Statistical expansion is also referred to as automatic query

expansion [32–34]. The basic idea is to derive concepts that

are statistically related to the given query concepts, where the

statistical correlation is derived from a document collection

1 In the rest of this paper, a concept is referred to as a word or phrase that has a

concrete meaning in a particular application domain. In the medical domain,

concepts in free text can be extracted using existing tools, such as MetaMap

[12], IndexFinder [13], etc.
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(e.g., OHSUMED [16]). Appending such concepts to the

original query makes the query expression more specialized

and thus matches relevant documents better. Depending on

how such statistically related concepts are derived, statistical

expansion methods fall into two major categories:

1. Co-occurrence thesaurus-based expansion [35–37]. In this

method, a concept co-occurrence thesaurus is Wrst con-

structed automatically oZine. Given a vocabulary of M

concepts, the thesaurus is an M�M matrix, where the

<i,j> element quantiWes the co-occurrence between con-

cept i and concept j. When a query is posed, we look in the

thesaurus to Wnd all concepts that statistically co-occur

with concepts in the given query and assign weights to

those co-occurring concepts according to the values in the

co-occurrence matrix. A detailed procedure for comput-

ing the co-occurrence matrix and for assigning weights to

expansion concepts can be found in Qiu and Frei [35].

2. Pseudo-relevance feedback-based expansion [34, 38–41].

In pseudo-relevance feedback, the original query is used

to perform an initial retrieval. Concepts extracted from

top-ranked documents in the initial retrieval are consid-

ered statistically related and are appended to the original

query. This approach resembles the well-known rele-

vance feedback approach, except that instead of asking

users to identify relevant documents as feedback,

top-ranked (e.g., top 10) documents are automatically

treated as ‘‘pseudo’’-relevant documents and are inserted

into the feedback loop. Weight assignment in pseudo-

relevance feedback [39] typically follows the same

weighting scheme for conventional relevance feedback

techniques [38].

We note that the choice of statistical expansion method is

orthogonal to the design of the knowledge-based expansion

framework (Figure 14.10). In our current experimental evalu-

ation, we used the co-occurrence thesaurus-based method to

derive statistically related concepts. For convenience of discus-

sion, we used co(ci,cj) to denote the co-occurrence between

concept ci and cj , a value that appeared as the <i,j> element in

the M�M co-occurrence matrix. Table 14.11 lists the top 15

concepts that are statistically related to keratoconus using the

co-occurrence measure. Here, the co-occurrence measure is

computed from the OHSUMED corpus.

14.6.2.2 Deriving Scenario-SpeciWc Expansion
Concepts

Using a statistical expansion method, we can derive a set of

concepts that are statistically related to the key concept, ckey , of

the given query. Only a subset of these concepts are relevant

to the given query’s scenario, such as treatment. For example,

Knowledge-based query expansion

Deriving scenario-
specific concepts

Scenario-specific expansion concepts

Original query

Domain knowledge
(e.g.,UMLS)

Knowledge
acquisition &

supplementation
(offline)

Supplemented
knowledge

Vector space model (VSM)

Documents

Top-ranked documents

Expanded query

Statistical query expansion

Deriving statistically-
related concepts

Candidate expansion concepts

Concept co-occurrence
thesaurus

+

FIGURE 14.10 A knowledge-based query expansion and retrieval framework.
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the 5th and 8th concepts in Table 14.11 (acute hydrops and

corneal) are not related to the treatment of keratoconus.

Therefore, in terms of deriving expansion concepts for a

query of keratoconus treatment, these two concepts should

be Wltered out. In this section, we will Wrst describe the type

of knowledge structure that enables us to perform this Wltering

and then present the Wltering procedure.

In previous sections, we introduced UMLS and how to

apply its subsystems, such as the metathesaurus and the SPE-

CIALIST lexicon, for implementing the IndexFinder and the

phrase-based VSM. For the task of knowledge-based query

expansion, we apply the subsystem of the semantic network.

The semantic network deWnes about one hundred semantic

types, such as Disease or Syndrome, Body Part, etc. Each

semantic type corresponds to a class/category of concepts.

The semantic type Disease or Syndrome, for instance, corres-

ponds to 44,000 concepts in the metathesaurus, such as kera-

toconus, lung cancer, diabetes, etc. Besides the list of semantic

types, the semantic network also deWnes the relations among

various semantic types, such as Treatments and Diagnoses.

Such relations link isolated semantic types into a graph/net-

work structure. The top half of Figure 14.11 presents a frag-

ment of this network, which includes all semantic types that

have a treats relation with the semantic type Disease or Syn-

drome. Relations such as treats in Figure 14.11 should be

interpreted as follows: Any concepts that belong to semantic

type Therapeutic or Preventive Procedure (e.g., penetrating

keratoplasty, chemotherapy) have the potential to treat con-

cepts that belong to the semantic type Disease or Syndrome

(e.g., keratoconus, lung cancer). However, it is not indicated

whether such relations concretely exist between two concepts

(e.g., a treats relation between penetrating keratoplasty and

lung cancer).

Given the knowledge structure in the semantic network, the

basic idea in identifying scenario-speciWc expansion concepts

is to use this knowledge structure to Wlter out statistically

correlated concepts that do not belong to the speciWc semantic

types. Let us illustrate this idea through Figure 14.11, using

the treatment scenario as an example. We start with the set

of concepts that are statistically related to keratoconus. Our

goal in applying the knowledge structure is to identify that

(1) concepts such as penetrating keratoplasty, contact lens,

and griVonia have the scenario-speciWc relation (i.e., treats)

with keratoconus and should be kept during expansion, and

(2) concepts such as acute hydrops and corneal that do not have

the scenario-speciWc relation with keratoconus are Wltered out.

TABLE 14.11 Concepts that statistically correlate to keratoconus

Number Concept

1 Fuchs dystrophy

2 Penetrating keratoplasty

3 Epikeratoplasty

4 Corneal ectasia

5 Acute hydrops

6 Keratometry

7 Corneal topography

8 Corneal

9 Aphakic corneal edema

10 Epikeratophakia

11 Granular dystrophy corneal

12 Keratoplasty

13 Central cornea

14 Contact lens

15 Ghost vessels

Therapeutic or
preventive procedure

Disease
Pharmocological

substance
Medical
device

Treats

Penetrating keratoplasty

Contact lens Keratoconus

Treats

Griffonia

Corneal

Acute hydrops

Treats Treats

Treats Chemotherapy

Lung cancer InsulinX-ray

Treats

Metathesaurus

Semantic network

FIGURE 14.11 Using knowledge to identify scenario-speciWc concept relationships.
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Each solid circle in Figure 14.11 represents a single concept,

and the solid lines connecting these solid circles indicate strong

statistical correlations computed for a pair of concepts—for

instance, the solid line between keratoconus and contact lens.

A dotted circle represents a class of concepts, and a dotted line

links that class of concepts to a corresponding semantic type.

For example, the concepts keratoconus and lung cancer are in

the class that links to Disease or Syndrome. We identiWed

scenario-speciWc expansion concepts using the following pro-

cess: Given a key concept ckey of the given query, we Wrst

identiWed the semantic type that ckey belongs to. For example,

we identiWed Disease or Syndrome given the key concept

keratoconus. Starting from that semantic type, we further

followed the relations marked by the query’s scenario and

reached a set of relevant semantic types. For the previous

example, given the query’s scenario, treatment, we followed

the treats relation to reach the three other semantic types, as

shown in Figure 14.11. Finally, we identiWed those statistically

related concepts that belonged to the relevant semantic types

as scenario speciWc. We further Wltered out other statistically

related concepts that did not satisfy this criteria. From the

previous example, this Wnal step identiWed penetrating kerato-

plasty, contact lens, and griVonia as scenario-speciWc expan-

sion concepts and Wltered out non-scenario-speciWc ones such

as acute hydrops and corneal.

The lists of the concepts for treating and diagnosing kerato-

conus are shown in Table 14.12. These concepts were derived

based on the process we have described and show the top 15

concepts in terms of their correlation with keratoconus. To

highlight the eVectiveness of the knowledge-based Wltering

process, we can compare the concepts in Table 14.12 with

those in Table 14.11 that are statistically correlated with kera-

toconus. Five out of these 15 statistically correlated concepts are

kept in Table 14.12(a), whereas two are kept in Table 14.12(b).

This comparison reveals that the knowledge structure is eVec-

tive in Wltering out concepts that are not closely related to the

scenario of treatment or diagnosis.

The goal of knowledge-based query expansion is to append

specialized terms that appear in relevant documents but not in

the original query. Scenario-speciWc concepts derived from the

previous subsection represent a subset of such specialized

terms. Another set of highly relevant terms contains hyper-

nyms and hyponyms of the key concept ckey .2 For example,

corneal ectasia, a hypernym of keratoconus, is frequently men-

tioned by documents regarding keratoconus treatment. There-

fore, we need to also expand those concepts that are close to

ckey in the hypernym/hyponym hierarchy.

To expand hypernyms/hyponyms of the key concept to the

original query, we again refer to the UMLS knowledge source.

The metathesaurus subsystem deWnes not only the concepts

but also the hypernym/hyponym relationships among these

concepts. For example, Figure 14.12 shows the hypernyms

(parents), hyponyms (children), and siblings of the concept

keratoconus. Here we deWne a concept’s siblings as those

concepts that share the same parents with the given concept.

Through empirical study (which will be discussed later), we

have found that expanding the direct parents, direct children,

and siblings to the original query generates the best retrieval

performance. This is in comparison with expanding parents/

children that are two or more levels away from the key concept.

Therefore, in the rest of our discussion, we will focus on

expanding only the direct parents/children and siblings.

14.6.2.2 Weight Adjustment for Expansion Terms

To match a query and a document using the VSM, we repre-

sent both the query and the document as vectors. Each term in

the query becomes a dimension in the query vector and

receives a weight that quantiWes the importance of this term

in the entire query. Under this model, any additional term

appended to the original query needs to be assigned a weight.

An appropriate weight scheme for these additional terms is

important because ‘‘underweighting’’ will make the additional

terms insigniWcant compared with the original query and lead

to unnoticeable changes in the ranking of the retrieval results.

On the other hand, ‘‘overweighting’’ will make the additional

terms overly signiWcant and cause a ‘‘topic drift’’ for the

original query.

In the past, researchers proposed weighting schemes for

these additional terms based on the following intuition: The

weight for an additional term ca should be proportional to

its correlation with the original query terms. Thus, the weight

for ca,wa, is proportional to its correlation with the key concept

ckey :

wa ¼ co(ca,ckey ) � wkey , (14:4)

TABLE 14.12 Concepts that treat or diagnose keratoconus

Number

(a) Concepts that

treat keratoconus

(b) Concepts that

diagnose keratoconus

1 Penetrating keratoplasty Keratometry

2 Epikeratoplasty Corneal topography

3 Epikeratophakia Slit lamp examination

4 Keratoplasty Topical corticosteroid

5 Contact lens 2D Echocardiography

6 Thermokeratoplasty Transmission electron

microscopy (TEM)

7 Button Interferon

8 Secondary lens implant Alferon

9 Fittings adapters Analysis

10 Esthesiometer Microscopy

11 GriVonia Bleb

12 Trephine Tetanus toxoid

13 Slit lamps Antineoplastic

14 Fistulization Heart auscultation

15 Soft contact lens Chlorbutin
2 A hypernym of concept ccis a concept with a broader meaning than c,

whereas a hyponym is one with a narrower meaning.
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where wkey denotes the weight assigned to the key concept ckey .

In Equation (14.4), the correlation between ca and

ckey , co(ca, ckey) is derived using methods described in Section

14.6.2. In Section 14.6.3, we will further explain how wkey is

decided according to a common weighting scheme. Given that

co(ca, ckey ) lies in [0, 1], the weight that ca receives will not

exceed that of ckey . Using this equation, we compute the

weights for the terms that statistically correlate with keratoco-

nus (Table 14.11) and the weights for those that treat kerato-

conus (Table 14.12a). We list the weights for these terms in

Table 14.13(a) and Table 14.13(b), respectively. These weights

are computed by assuming that the weight of the key concept

(wkey ) keratoconus is 1.

We will compare the retrieval eVectiveness of knowledge-

based query expansion with that of statistical expansion. Since

the knowledge-based method applies a Wltering step to derive a

subset of all statistically related terms, the impact created by

this subset on retrieval eVectiveness will be less than the entire

set of statistically related terms. Therefore, weight adjustments

are needed to compensate for the Wltering. For instance, in our

example of keratoconus treatment, the ‘‘cumulative weight’’

for all terms in Table 14.13b is obviously smaller than the

cumulative weight of those in Table 14.13a. To increase the

impact of the terms derived by the knowledge-based method,

we can ‘‘boost’’ their weights by multiplying a linear factor b,

so that the cumulative weight of those terms is comparable to

those of the statistically related terms. We refer to b as the

boosting factor. With this factor, we alter Equation (14.4),

which assigns the weight for any additional term ca, as follows:

wa ¼ b � co(ca,ckey ) � wkey : (14:5)

We quantify the cumulative weight for both the statistical

expansion terms (e.g., those in Table 14.11a) and the knowl-

edge-based expansion terms (e.g., those in Table 14.11b). The

former cumulative weight will be larger than the latter. We

deWne b to be the former divided by the latter. In this way, the

cumulative weight for the knowledge-based expansion terms

equals that of the statistical expansion terms after boosting.

More speciWcally, we quantify the cumulative weight of a set

of expansion terms using the length of the ‘‘expansion vector’’

composed by these terms. Here we deWne the vector length

according to the standard vector space notation: Let

V KB ¼ <wKB
1 , . . . ,wKB

k > be the augmenting vector consisting

solely of terms derived by the knowledge-based method, where

wKB
i (1 � i � k) denotes the weight for the ith term in

knowledge-based expansion (Equation 14.4). Likewise, let

V stat ¼ <wstat
1 , . . . ,wstat

l > be the augmenting vector consisting

of all statistically related terms. The process of deriving

{wKB
1 , . . . ,wKB

k } yields k < l. Consequently, {wKB
1 , . . . ,wKB

k }

� {wstat
1 , . . . ,wstat

l }. Let jV KBj be the length of the vector V KB :

jV KBj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(wKB

1 )2 þ (wKB
1 )2 þ . . .þ (wKB

k )2
q

: (14:6)

Likewise, let jV stat j represent the length of vector V stat, which

can be computed similarly as Equation (14.6). Thus, the

boosting factor for V KB is:

b ¼ jV
stat j
jV KBj : (14:7)

To study the eVects of diVerent levels of boosting, a

boosting-level–controlling factor a is introduced to reWne

Equation (14.7):
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Keratoconus

Stable condition
keratoconus

Acute hydrops
keratoconus

Keratocon
junctivitis

Arcus
corneal

Intususception

Hypernyms
(parent concepts)
of keratoconus

Sibling concepts
of keratoconus

Hyponyms (child
concepts) of
keratoconus

FIGURE 14.12 The direct parents, direct children, and siblings for keratoconus.

TABLE 14.13 Weights for sample expansion concepts

(a) Concepts that statistically

correlate to keratoconus Weight

(b) Concepts that

treat keratoconus Weight

Fuchs dystrophy 0.289 Penetrating keratoplasty 0.247

Penetrating keratoplasty 0.247 Epikeratoplasty 0.230

Epikeratoplasty 0.230 Epikeratophakia 0.119

Corneal ectasia 0.168 Keratoplasty 0.103

Acute hydrops 0.165 Contact lens 0.101

Keratometry 0.133 Thermokeratoplasty 0.092

Corneal topography 0.132 Button 0.067

Corneal 0.130 Secondary lens implant 0.057

Aphakic corneal edema 0.122 Fittings adapters 0.048

Epikeratophakia 0.119 Esthesiometer 0.043

Granular dystrophy corneal 0.109 GriVonia 0.035

Keratoplasty 0.103 Trephine 0.033

Central cornea 0.103 Slit lamps 0.032

Contact lens 0.101 Fistulization 0.030

Ghost vessels 0.095 Soft contact lens 0.026

14 KMeX: A Knowledge-Based Digital Library for Retrieving Scenario-Specific Medical Text Documents 329



br ¼ 1þ a � jV
stat j
jV KBj � 1

� �
, (14:8)

where br is the reWned boosting factor. The parameter a,

ranging within [0, 1], can be used to control the boosting

scale. From Equation (14.8), we note that br ¼ 1 when we

set a ¼ 0, which represents no boosting. br increases as a

increases. As a increases to 1, br reduces to
jV stat j
jV KBj. Thus, a

can be used to experimentally study the boosting sensitivity.

(We experimentally evaluated cases of setting a > 1. We noted

that the retrieval eVectiveness in those cases was usually sub-

optimal compared with cases where a was within [0, 1].)

14.6.3 Retrieval Performance

In this section, we compare the retrieval performance of

the knowledge-based query expansion with that of statistical

expansion using two standard medical corpuses. We start

with the experiment setup and then present the results under

selective settings.

14.6.3.1 Testbeds

A testbed for a retrieval experiment consists of three compo-

nents: (1) a corpus (or a document collection), (2) a set of

benchmark queries, and (3) relevance judgments indicating

which documents are relevant for each query. Our experiment

is based on the following two testbeds:

1. OHSUMED [16]. This testbed was introduced in Section

14.5.3. In the task of evaluating knowledge-based query

expansion, we are interested in a subset of the

OHSUMED queries that are scenario speciWc. Among

the 106 queries, we have identiWed a total number of 57

such queries. In Table 14.14, we categorize these 57

queries based on the scenario(s) that each query men-

tions. The corresponding ID of each query is listed in

this table. (The full text of each query is shown in Liu

and Chu [42].) Note that a query mentioning multiple

distinct scenarios will appear multiple times in this table

corresponding to its scenarios.

2. The McMaster University Clinical Hedges Database

[43–46]. This testbed was originally constructed for the

task of medical document classiWcation instead of free-

text query answering. As a result, adaptation is needed for

retrieval performance study. We Wrst describe the original

dataset and then explain how we adapted it to make it a

usable testbed for retrieval performance evaluation.

14.6.3.1.1 Original Dataset. The McMaster Clinical Hedges

Database contains 48,000 PubMed articles published in

2000. Each article was classiWed into one of the following

scenario categories: treatment, diagnosis, etiology, prognosis,

clinical prediction guide of a disease, economics of a health care

issue, or review of a health care topic. Consensus about the

classiWcation was drawn from among six human experts [43].

When the experts classiWed each article, they had access to the

hard copies of the full text. However, to construct a testbed for

our retrieval system, we were able to download only the title and

abstract of each article from the PubMed system. (The full text of

each article is typically unavailable through PubMed.)

14.6.3.1.2 Construction of Scenario-SpeciWc Queries.
Since the McMaster Clinical Hedges Database is constructed to

test document classiWcation, it does not contain a query set.

Using the following procedure, we constructed a set of 55

scenario-speciWc queries and determined the relevance judg-

ments for these queries based on the document classiWcation

that can be adapted for them:

. Step 1. We identiWed all the disease/symptom concepts

in the OHSUMED query set. We identiWed such concepts

based on their semantic-type information (deWned by

UMLS). We used these as the key concepts in construct-

ing the scenario-speciWc queries for the McMaster

testbed. In selecting these concepts, we manually Wltered

out eight concepts (out of an original 90) that we con-

sidered too general to make a scenario-speciWc query

(e.g., infection, lesion, carcinoma). After this step, we

obtained 82 such key concepts.

. Step 2. For each key concept identiWed in Step 1, four

scenario-speciWc queries were constructed: treatment,

TABLE 14.14 OHSUMED queries categorized based on their

scenarios

Scenario Query ID

Treatment of a disease 2, 13, 15, 16, 27, 29, 30, 31, 32,

35, 37, 38, 39, 40, 42, 43, 45,

53, 56, 57, 58, 62, 67, 69, 72,

74, 75, 76, 77, 79, 81, 85, 93,

98, 102

Diagnosis of a disease 15, 21, 37, 53, 57, 58, 72, 80, 81,

82, 97

Prevention of a disease 64, 85

DiVerential diagnosis of a

symptom/disease

14, 23, 41, 43, 47, 51, 65, 69, 70,

74, 76, 103

Pathophysiology of a disease 2, 3, 26, 64, 77

Complications of a disease/medication 3, 30, 52, 61, 62, 66, 79

Etiology of a disease 14, 26, 29

Risk factors of a disease 35, 64, 85

Prognosis of a disease 45

Epidemiology of a disease 3

Research of a disease 75

Organisms of a disease 81

Criteria of medication 49, 52, 94

When to administer a medication 33

Preventive health care for a type of patient 96
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diagnosis, etiology, and prognosis of a disease/symptom.

For example, for the concept of breast cancer, we con-

structed the queries ‘‘breast cancer treatment,’’ ‘‘breast

cancer diagnosis,’’ ‘‘breast cancer etiology,’’ and ‘‘breast

cancer prognosis.’’ Our study was restricted to these four

scenarios because UMLS covers only these four.

. Step 3. For each query generated in Step 2, we generated

its relevance judgments by applying the following simple

criterion: A document is considered to be relevant to a

given query if (1) experts have classiWed the document to

the category of the query’s scenario and (2) the docu-

ment mentions the query’s key concept. This criterion

has been our best choice to automate the process of

generating relevance judgments on a relatively large

scale; however, it may misidentify irrelevant documents

as relevant. After we identiWed the relevant documents

for each query, certain queries were Wltered out based on

the intuition that a query with too few relevance judg-

ments would lead to less reliable retrieval results (espe-

cially in terms of precision/recall). For example, for a

query with only one relevant document, two similar

retrieval systems may obtain completely diVerent preci-

sion/recall results if one ranks the relevant document on

top and another accidentally ranks it out of the top 10.

Following this intuition, queries that had less than Wve

relevant documents were Wltered out. After this Wltering

step, we were left with 55 queries. These queries, together

with the scenarios identiWed for each, are presented in

Liu and Chu [42].

14.6.3.2 The Vector Space Model and Indexing

In IR studies, indexing refers to the step of converting free-text

documents and queries to their respective vector representa-

tions [29]. The query and document vectors are then matched

based on a VSM. In experimental evaluation of the knowledge-

based query expansion method, we focus on results generated

by the following two VSMs:

1. Stem-based VSM [29]. Using a stem-based VSM, both a

query and a document are represented as vectors of word

stems. Given a piece of free text, we Wrst removed com-

mon stop words such as ‘‘a,’’ ‘‘the,’’ etc., and then derived

word stems from the text using the Lovins stemmer [47].

We further applied the tf-idf weighting scheme (more

speciWcally the atc � atc scheme [48]) to assign weights to

stems in documents and the query before expansion.

(This weighting process yields the weight for the key

concept in Equation (14.1).) Under the stem-based

VSM, all terms expanded to a given query need to be

in the word-stem format. Thus, for expansion concepts

derived from procedures in Section 14.6.2, we applied

the following procedure to identify the corresponding

word stems: For each expansion concept, we Wrst looked

up its string forms in UMLS. We further removed stop

words and used the Lovins stemmer to convert the string

forms into word stems. Lastly, we assigned weights to

these expansion word stems using the method described

in Section 14.6.2.

2. Phrase-based VSM [5]. Using a phrase-based VSM, both

a query and a document are represented as vectors of

phrases. We Wrst used the concept extraction method

presented in Section 14.2 to identify the concepts

appearing in a given query and a set of documents. We

further formulated phrase representations of the query

and the documents based on the deWnition of phrases in

Section 14.5.2. We applied the weighting method in

Section 14.5.2 to assign weights to phrases in the query

and the documents. For expansion concepts appended to

the original query, we converted them into their corre-

sponding phrase representations and assigned the

weights for both concepts and word stems appearing in

a phrase using the method described in Section 14.6.2.

14.6.3.3 Evaluation Metrics

We measure the retrieval performance using the following

three diVerent metrics:

1. avgp¼ the 11-point precision average (precision aver-

aged over the 11 standard recall points [29])

2. p@10¼ the precision in the top 10 retrieved documents

3. p@20¼ the precision in the top 20 retrieved documents

14.6.3.4 Retrieval Performance Using the
Stem-Based Vector Space Model

In the following, we study the performance improvement of

knowledge-based expansion as compared with that of statis-

tical expansion.

We used s to denote an expansion size. For a given s, we used

both knowledge-based expansion and statistical expansion to

expand the top s stems that had the heaviest weights. For

knowledge-based expansion, no weight boosting was applied.

We computed the three metrics for both methods on the

OHSUMED and McMaster testbeds. We further averaged the

results over the queries in these two testbeds. Table 14.15

shows the performance comparison of the two methods on

both testbeds, which is under the three metrics previously

given. The Wrst row in each subtable shows the performance

of statistical expansion, whereas the second row shows the

performance of knowledge-based expansion and its percentage

of improvement over statistical expansion.

In these tables, ‘‘s¼All’’ means appending all possible ex-

pansion terms that have a nonzero weight (Equation (14.5))

into the original query. Using the knowledge-based method,

setting ‘‘s¼All’’ led to expanding an average of 1,717 terms to

each query on average, with the standard deviation of 1,755;
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using the statistical method, it led to an average of 50,317

terms with the standard deviation of 15,243.

From these experimental results, we observe the following:

The performance for knowledge-based expansion generally in-

creases as s increases and usually reaches the peak when s¼All.

(The only exception is in the case of using the avgp metric on the

McMaster testbed, in which the performance of the knowledge-

based method roughly remains constant as s increases.) On the

other hand, the performance of the statistical method degrades

as s increases. On the OHSUMED testbed, its performance

degrades after s reaches a certain level, such as s¼ 100 (Table

14.15(a)) and s¼ 200 (Tables 14.15(b) and 14.15(c)); on the

McMaster testbed, the performance starts degrading almost

immediately after s exceeds 20. This is due to the fact that

statistical expansion does not distinguish whether an expansion

term is scenario speciWc. As a result, as more terms are appended

to the original query, the negative eVect of including those

non-scenario-speciWc terms begins to accumulate, and the

performance drops after a certain point. In contrast, the knowl-

edge-based method appends scenario-speciWc terms, and con-

sequently the performance keeps increasing as more ‘‘useful’’

terms are appended.

Our experimental results also revealed that both statis-

tical expansion and knowledge-based expansion consistently

TABLE 14.15 Performance comparison of the two methods under selected expansion sizes using the stem-based VSM

(a) Performance comparison using the avgp metric for the OHSUMED testbed

Expansion size, s 10 20 30 40 50 100 200 300 All

Statistical expansion 0.417 0.424 0.428 0.43 0.429 0.432 0.429 0.43 0.425

Knowledge-based expansion without weight boosting 0.422 0.431 0.430 0.432 0.434 0.438 0.442 0.443 0.445

Knowledge-based expansion with weight boosting 0.428 0.436 0.437 0.437 0.439 0.443 0.446 0.450 0.452

(b) Performance comparison using the p@10 metric for the OHSUMED testbed

Expansion size, s 10 20 30 40 50 100 200 300 All

Statistical expansion 0.535 0.546 0.549 0.553 0.551 0.567 0.581 0.574 0.567

Knowledge-based Expansion without weight boosting 0.544 0.547 0.554 0.551 0.553 0.572 0.572 0.577 0.588

Knowledge-based expansion with weight boosting 0.552 0.567 0.568 0.577 0.577 0.595 0.586 0.595 0.600

(c) Performance comparison using the p@20 metric for the OHSUMED testbed

Expansion size, s 10 20 30 40 50 100 200 300 All

Statistical expansion 0.482 0.491 0.493 0.491 0.492 0.496 0.497 0.493 0.496

Knowledge-based expansion without weight boosting 0.483 0.491 0.494 0.496 0.493 0.498 0.496 0.497 0.498

Knowledge-based expansion with weight boosting 0.482 0.496 0.498 0.510 0.509 0.514 0.514 0.513 0.511

(d) Performance comparison using the avgp metric for the McMaster testbed

Expansion size, s 10 20 30 40 50 100 200 300 All

Statistical expansion 0.326 0.328 0.325 0.324 0.323 0.319 0.311 0.309 0.295

Knowledge-based expansion without weight boosting 0.325 0.328 0.324 0.326 0.325 0.324 0.321 0.32 0.321

Knowledge-based expansion with weight boosting 0.325 0.326 0.324 0.325 0.323 0.322 0.320 0.315 0.318

(e) Performance comparison using the p@10 metric for the McMaster testbed

Expansion size, s 10 20 30 40 50 100 200 300 All

Statistical expansion 0.316 0.324 0.324 0.318 0.324 0.311 0.295 0.3 0.293

Knowledge-based expansion without weight boosting 0.322 0.324 0.322 0.325 0.322 0.318 0.315 0.32 0.335

Knowledge-based expansion with weight boosting 0.320 0.322 0.318 0.322 0.320 0.315 0.316 0.313 0.324

(f) Performance comparison using the p@20 metric for the McMaster testbed

Expansion size, s 10 20 30 40 50 100 200 300 All

Statistical expansion 0.285 0.285 0.285 0.283 0.283 0.281 0.279 0.278 0.279

Knowledge-based expansion without weight boosting 0.285 0.287 0.287 0.291 0.29 0.293 0.286 0.291 0.292

Knowledge-based expansion with weight boosting 0.285 0.289 0.287 0.287 0.289 0.289 0.285 0.287 0.289
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outperformed the no-expansion method by more than 5%. On

the OHSUMED testbed, for example, the avgp of no expansion

is 0.382, which is outperformed by the peak performance of

statistical expansion at 0.432 and by the peak performance of

knowledge-based expansion at 0.452 (Table 14.15(a)). Simi-

larly, the p@10 and p@20 of no expansion are 0.532 and 0.470,

which are outperformed by the peak performance of statistical

expansion at 0.581 and 0.497 and by the peak performance of

knowledge-based expansion at 0.600 and 0.514 (Tables

14.15(b) and 14.15(c)).

We evaluated the eVectiveness of weight boosting and its

impact on retrieval performance. The boosting factor b was

computed using Equation (14.8), under the diVerent settings of

a ¼ 0:25, 0:5, 0:75, 1, 1:25, 1:5. We present the peak perform-

ance of weight boosting in the third row of each subtable of

Table 14.15. For the OHSUMED testbed, boosting helped im-

prove the performance, and the best performance occurred in

the range from a ¼ 0:5 to a ¼ 1:25. We note that setting

a ¼ 0:5or ¼ 0:75 generally yields the best boosting eVect for

the avgp metric; setting a ¼ 1 to 1.25 yields better performances

for the p@10 and p@20 metrics. For the McMaster testbed,

weight boosting failed to yield improvements. Further discus-

sion of weight boosting is presented in Liu and Chu [42, 49].

We further studied how knowledge-based expansion per-

formed for diVerent query scenarios, and experimental results

showed that the performance varied depending on the query

scenario [42, 49]. More speciWcally, the method yields more

improvements in scenarios such as treatment, diVerential diag-

nosis, and diagnosis, whereas it yields fewer improvements in

such scenarios as complication, pathophysiology, etiology, and

prognosis. An explanation of this lies in the diVerent qualities

of the knowledge structures for these scenarios. The knowledge

structures (i.e., the fragments of the UMLS semantic network

such as Figure 14.11) for the latter four scenarios were origi-

nally missing in UMLS and were acquired by ourselves from

experts. (See the knowledge acquisition process in Section

14.6.5.) These acquired structures have more semantic types

marked as relevant than those for the former three scenarios.

As a result, when handling queries with the latter four sce-

narios, the knowledge-based method keeps more concepts

during the Wltering step. Thus, the expansion result for the

knowledge-based method resembles that of the statistical

expansion method, leading to almost equivalent performance

between the two methods and less improvements. Further

reWnement on the clustering and ranking of the knowledge

structures for the four scenarios (i.e., complication, pathophy-

siology, etiology, and prognosis) will increase the improve-

ments in retrieval performance.

14.6.3.4.1 Choice of a for weight boosting. Experi-

mental results revealed that weight boosting was helpful in

improving retrieval performance. Further, the performance of

weight boosting was sensitive to the query scenario. Certain

query scenarios such as treatment and diagnosis are associated

with more mature knowledge structures, which require fewer

expansion concepts. In these scenarios, setting a between 0.75

and 1.25, which represents more aggressive weight boosting,

achieves noticeable improvements. In other scenarios, associ-

ated with less mature knowledge structures, such as complica-

tion, the diVerence is insigniWcant between the set of

expansion concepts by our method and those by statistical

expansion. As a result, the cumulative weights of the two sets

of expansion concepts are close to each other. For such scen-

arios, our experimental data suggest a more conservative

weight boosting with a in the range of 0 to 0.5.

14.6.3.4.2 Comparison with Previous Knowledge-
Based Query Expansion Studies. In past studies

[50–52], research compared knowledge-based expansion

methods against a baseline generated without expansion.

Such studies reported an insigniWcant improvement [51–52]

or even degrading performance [50] compared with the no-

expansion method. In contrast, our study compares against a

baseline generated by statistical expansion. In our experimen-

tal setup, this baseline had an observed improvement over the

no-expansion method by 5% to 10%.

In Aronson and RindXesch’s study [53], the researchers

applied the UMLS metathesaurus to automatically expand

synonyms to the original query. In one particular case, their

approach achieved a 5% improvement over a previous study

[54] that applied statistical expansion on the same testbed.

This result indicates the value of knowledge-based query

expansion. However, their approach was limited to expanding

only synonyms instead of scenario-speciWc terms. Thus, the

improvement was limited.

14.6.3.5 Retrieval Performance Using the
Phrase-Based Vector Space Model

In this section, we compare the performance of knowledge-

based query expansion with that of statistical expansion by

using the phrase-based VSM for query-document matching.

The experiments were performed on the 57 scenario-speciWc

queries in OHSUMED. (Similar results were observed on the

McMaster testbed and are excluded from this discussion due

to space limits.) The results are shown in Table 14.16, under

the three metrics, avgp, p@10, and p@20. We present the

performance of both knowledge-based query expansion and

statistical expansion under selected expansion sizes s. We have

also provided the retrieval results for the original queries

without expansion, as shown in each row and listed under

s¼ 0.

From these results, we made the following two major obser-

vations:

. With phrase-based VSM, query expansion (both

methods) still brings signiWcant improvements for

about 10%. For example, both expansion methods yield
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a peak avgp of 0.49 compared with the avgp of the

no-expansion method, which is 0.44.

. Both expansion methods achieve the peak performance

when expanding 10 to 20 concepts. This makes it desir-

able to combine query expansion with the phrase-based

VSM, since appending 10 to 20 concepts to the original

query incurs a small amount of computation overhead.

We note that this is in contrast to the case of using

the stem-based VSM, in which we need to expand

hundreds or thousands of word stems to reach peak

performance.

We also noted that the peak performance of the two expansion

methods is comparable. That is, expanding 10 to 20 statistic-

ally related concepts is almost as good as expanding 10 to 20

scenario-speciWc concepts identiWed by the knowledge-based

method. This is in contrast to the comparison obtained by

using the stem-based VSM, where there is signiWcant diVerence

between the two methods. This is due mainly to the ability of

the phrase-based VSM in approximately matching distinct

concepts. Recall the fact that expanding all statistically related

terms introduces certain heavily weighted terms that are non–

scenario speciWc. Using the stem-based VSM that performs

strict matching among terms, the existence of such non-

scenario-speciWc terms promotes the ranking of certain

non-scenario-speciWc documents while demoting the ranking

of other, scenario-speciWc documents. The phrase-based VSM,

however, is able to partially match a non-scenario-speciWc

phrase with a scenario-speciWc one appearing in a relevant

document. Subsequently, the existence of certain non-scen-

ario-speciWc phrases generated by the statistical expansion no

longer negatively impacts the retrieval result.

We also note that the precision of using the phrase-based

VSM without expansion (the Wrst cell in each row of Table

14.16) is signiWcantly higher than that of using the stem-based

VSM (the Wrst cell in each row of Table 14.15). Since the

phrase-based VSM is based on UMLS, these improvements

can be viewed as the results of a Wrst step in applying human

knowledge. On top of this, statistical expansion takes another

step and applies statistical knowledge derived from a sample

corpus to append statistically correlated concepts. The 5–10%

improvement in precision (e.g., an avgp of 0.489 for statistical

expansion under s¼ 20 compared with an avgp of 0.440 for no

expansion; Table 14.16(a)) suggests that the statistical knowl-

edge is ‘‘additive’’ to human knowledge to achieve better

retrieval results. Knowledge-based query expansion uses sta-

tistical expansion as a starting point and attempts to further

apply UMLS to reWne the query expansion results. Nonethe-

less, since the same knowledge source has already been applied

in the form of the phrase-based VSM, this reWnement step

yields only a small amount (1–2%) of performance improve-

ment.

14.6.4 Computation Complexity Comparison

The computation complexity of knowledge-based expansion is

comparable to that of statistical expansion. In the step of

deriving expansion terms, the knowledge-based method re-

quires an additional step of going through all statistically

related terms and selecting those that are scenario speciWc.

This step incurs a complexity that is linear to the number of

statistically related terms. Since the complexity of identifying

all statistically related terms by the statistical method is at least

linear to the number of these terms, the additional step in

TABLE 14.16 Performance comparison of the two methods under various expansion

sizes using the phrase-based VSM

(a) Performance comparison using the avgp metric

s 0 10 20 30 40 50 100

Statistical expansion 0.440 0.486 0.489 0.483 0.479 0.479 0.460

Knowledge-based expansion 0.440 0.486 0.490 0.487 0.482 0.485 0.475

(b) Performance comparison using the p@10 metric

s 0 10 20 30 40 50 100

Statistical expansion 0.584 0.612 0.604 0.581 0.579 0.567 0.544

Knowledge-based expansion 0.584 0.612 0.616 0.604 0.600 0.595 0.586

(c) Performance comparison using the p@20 metric

s 0 10 20 30 40 50 100

Statistical expansion 0.504 0.546 0.540 0.532 0.528 0.525 0.496

Knowledge-based expansion 0.504 0.538 0.546 0.554 0.543 0.542 0.535
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the knowledge-based method does not signiWcantly increase

complexity.

In the step of matching an expanded query with documents,

the complexity of the knowledge-based method is less than

that of the statistical method. The complexity in this step is

directly proportional to the number of terms in the expanded

query. As revealed by our experiments, knowledge-based ex-

pansion requires signiWcantly fewer expansion terms, which

reduces the computation complexity.

14.6.5 Knowledge Acquisition

The quality of our knowledge-based method depends largely

upon the quality and completeness of the domain-speciWc

knowledge source. The knowledge structure in the UMLS

knowledge base is not speciWcally designed for scenario-

speciWc retrieval. As a result, some frequently asked scenarios

(e.g., etiology, complications of a disease) are either undeWned

in UMLS or deWned but with incomplete knowledge. There-

fore, we present a methodology that consists of the following

two steps:

1. Acquisition of knowledge for undeWned scenarios to

supplement the UMLS knowledge source

2. ReWnement of the knowledge of the scenarios deWned in

the UMLS knowledge source (including the knowledge

supplemented by Step 1)

14.6.5.1 Knowledge Acquisition Methodology

14.6.5.1.1 Knowledge Acquisition for UndeWned Sce-
narios. For an undeWned scenario, an incomplete relation-

ship graph, as shown in Figure 14.13, is presented to medical

experts. Edges in this relationship graph are labeled with one of

the undeWned scenarios, such as ‘‘etiology.’’ The experts will Wll

in the question marks with existing UMLS semantic types that

Wt the relationship. For example, because viruses are related to

the etiology of a wide variety of diseases, the semantic type

Virus will replace one of the question marks in Figure 14.13.

This new relationship graph (etiology of diseases) will be

appended to the UMLS semantic network and can be used

for queries with the ‘‘etiology’’ scenario.

14.6.5.1.2 Knowledge ReWnement Through Relevance
Judgments. A relationship graph for a given scenario (ei-

ther previously deWned by UMLS or newly acquired from Step

1) may be incomplete in including all relevant semantic types.

A hypothetical example of this incompleteness would be the

missing relationship treats between Therapeutic or Preventive

Procedure and Disease or Syndrome. The basic idea in amend-

ing this incompleteness is to explore the ‘‘implicit’’ knowledge

embedded in the relevance judgments of an IR testbed. Such a

testbed typically provides a set of benchmark queries, and for

each query, a prespeciWed set of relevant documents. To amend

the knowledge structure for a certain scenario, such as treat-

ment, we focus on sample queries that are speciWc to this

scenario (e.g., keratoconus treatment). We then study the

content of documents that are marked as relevant to these

queries. From the content, we can identify concepts that are

directly relevant to the query’s scenario (e.g., treatment). If the

semantic type for those concepts is missing in the knowledge

structure, we can then reWne the knowledge structure by add-

ing the corresponding semantic types. For example, let us

consider a hypothetical case where the type Therapeutic or

Preventive Procedure is missing in the knowledge structure

of Figure 14.13. If by studying the sample query ‘‘keratoconus

treatment,’’ we identify quite a few Therapeutic or Preventive

Procedure concepts appearing in relevant documents, such as

penetrating keratoplasty and epikeratoplasty, we are then able

to identify Therapeutic or Preventive Procedure as a relevant

semantic type and append it to Figure 14.13.

Given that a typical benchmark query has a long list of

relevant documents, it is labor intensive to study the content

of every relevant document. One way to accelerate this process

is to Wrst apply an incomplete knowledge structure to perform

knowledge-based query expansion and conduct retrieval tests

based on such expansion. An incomplete knowledge structure

leads to an ‘‘imperfect’’ query expansion, which in turn, fails to

retrieve certain relevant documents to the top of the ranked

list. Comparing this ranked list with the ‘‘gold standard’’ and

identifying the missing relevant documents will give us

pointers to determine the incomplete knowledge. For example,

failure to include Therapeutic or Preventive Procedure in the

knowledge structure in Figure 14.11 prevents us from expand-

ing concepts such as penetrating keratoplasty to the sample

query of keratoconus, treatment. As a result, documents with a

focus on penetrating keratoplasty will be ranked unfavorably

Disease or
syndrome

Semantic type

??? ??????

is_etiology_of

is_etiology_of
is_etiology_of

FIGURE 14.13 A sample template to acquire knowledge for previously undeWned scenarios.
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low. After we identify such documents, we can discover the

missing expansion concepts that are contributing to the low

rankings and reWne the knowledge structure as we have just

described.

14.6.5.2 Knowledge Acquisition Process

The 57 scenario-speciWc queries (Table 14.14) in the

OHSUMED testbed were chosen to apply our proposed

knowledge acquisition method because of the following con-

siderations:

. The OHSUMED queries are collected from physicians’

patients in a clinical setting. Therefore, the OHSUMED

query scenarios should be representative of health care,

and the knowledge acquired from these scenarios should

be broadly applicable.

. The knowledge acquisition methodology also requires

the exploration of relevance judgments for a set of bench-

mark queries. OHSUMED is the largest testbed for med-

ical free-text retrieval that has relevance judgments for

knowledge reWnement.

We identiWed 12 OHSUMED scenarios whose knowledge

structures were missing in UMLS. We applied the two-step

knowledge acquisition method to acquire the knowledge struc-

tures for these 12 undeWned scenarios and to reWne the knowl-

edge structures for all scenarios. During the Wrst step of the

acquisition process, we interviewed two intern physicians at

the UCLA School of Medicine. During the interview, we Wrst

described the meaning of the relationship graphs, as shown in

Figure 14.13. Next, we presented the entire list of UMLS

semantic types to the experts so that appropriate semantic

types were Wlled into the question marks. We communicated

the results from one expert to another until they reached a

consensus for each scenario. For the second step of knowledge

acquisition, we performed retrieval tests on the OHSUMED

testbed using both queries expanded by the knowledge-based

method and the method of expanding all statistically related

concepts. We focused on 12 queries in which the statistical

method outperformed the knowledge-based method in terms

of the precision in top 10 results. We further applied the

method presented in the previous section to study the content

of these top-ranked documents and augmented the knowledge

structure for the corresponding scenario with appropriate se-

mantic types.

14.6.5.3 Knowledge Acquisition Results

The acquisition results are shown in Table 14.17. Due to space

constraints, we provide only a statistical summary of the re-

sults. The scenarios in the Wrst three rows (i.e., treatment,

diagnosis, and prevention) are deWned in UMLS. The Wrst

column in these rows shows the number of semantic types

marked as relevant for each scenario (i.e., the number of

semantic types that experts have Wlled into the blank rectangles

of Figure 14.13). The second column for these rows is ‘‘N/A’’

because there was no need to acquire knowledge structure

from domain experts for these scenarios. The third column

shows the number of semantic types added during knowledge

reWnement (the second step of knowledge acquisition). For

example, for the diagnosis scenario, two additional semantic

types, Laboratory or Test Result and Biologically Active

Substance, were added because of the study on query 97:

Iron deWciency anemia, which test is best. These two seman-

tic types were added because their absence prevented the

TABLE 14.17 Knowledge acquisition results

Scenarios

No. of semantic

types deWned

in UMLS

No. of semantic

types acquired

from experts

No. of additional semantic

types through knowledge

reWnement

Total no. of semantic

types after knowledge

acquisition

Treatment of a disease 3 N/A 1 4

Diagnosis of a disease 5 N/A 2 7

Prevention of a disease 3 N/A 0 3

DiVerential diagnosis of a symptom/disease N/A 10 4 14

Etiology of a disease N/A 40 1 41

Risk factors of a disease N/A 40 2 42

Complications of a disease or medication N/A 15 0 15

Pathophysiology of a disease N/A 56 0 56

Prognosis of a disease N/A 15 2 17

Epidemiology of a disease N/A 13 0 13

Research of a disease N/A 28 0 28

Organisms of a disease N/A 7 0 7

Criteria of medication N/A 26 0 26

When to administer a medication N/A 5 6 11

Preventive health care for a type of patient N/A 10 2 12
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knowledge-based method from expanding two critical con-

cepts into the original query: serum ferritin and fe iron, each

belonging to one of the two semantic types. From the relevance

judgment set, we noted that missing these two concepts leads

to the low ranking of three relevant documents that heavily use

them.

Starting from the fourth row, we list the scenarios for which

we need to acquire knowledge structure from domain experts.

The Wrst column for these scenarios is ‘‘N/A’’ because these

scenarios are originally undeWned in UMLS. The second col-

umn shows the number of semantic types that experts have

Wlled into the structure template of Figure 14.13. The third

column shows the number of additional semantic types from

knowledge reWnement (the second step of knowledge acquisi-

tion), and the last column shows the total number of semantic

types after knowledge acquisition.

The proposed knowledge acquisition method on the

OHSUMED testbed was shown to be eYcient and eVective.

We Wnished communicating with domain experts and acquir-

ing the knowledge structures for the 12 scenarios in less than

20 hours and spent an additional 20 hours to reWne the

knowledge structures by exploring the relevance judgments.

The augmented knowledge was applied in our experiments

presented in Section 14.6.3 and was eVective in improving

the retrieval performance of the knowledge-based method

over the statistical expansion method.

14.6.6 Study of the Relevancy of Expansion
Concepts by Domain Experts

Through experiments on the two standard medical text re-

trieval testbeds, we observed that under most retrieval settings,

knowledge-based query expansion outperformed statistical ex-

pansion. Our conjecture was that knowledge-based query ex-

pansion selects more speciWc expansion concepts to the

original query’s scenario than does statistical expansion. To

verify this conjecture, we requested domain experts to manu-

ally evaluate the relevancy of expansion concepts.

The basic idea for this study was the following: For each

query in a given retrieval testbed, we applied two query ex-

pansion methods to generate two sets of expansion concepts.

We then prepared an evaluation form that inquired about the

relevancy of each expansion concept to the original query. In

this form, we presented the query and asked domain experts to

judge the relevancy based on the query’s scenario(s). For each

concept, we provided four scales of relevancy: relevant, some-

what relevant, irrelevant, or do not know. We blinded the

method used to generate each concept, and in doing so, we

reduced bias that an expert might have had toward a particular

method.

To implement this idea, we chose the 57 scenario-speciWc

queries in the OHSUMED testbed. We applied the two expan-

sion methods and derived 40 expansion concepts from each

method with the highest weights. We presented the evaluation

form consisting of these concepts to three medical experts who

were intern doctors at the UCLA School of Medicine. We asked

them to make judgments only on those queries that belonged

to their area of expertise (oncology, urology, etc.). On average,

each expert judged the expansion concepts for 15 queries.

Thus, for each expansion method, we obtained 1,600 expan-

sion concepts classiWed into one of the four categories.

Figures 14.14 and 14.15 present a summary of the results

from this human subject study. For the expansion concepts

derived from each method, we summarized the results into a

histogram. The bins of this histogram were the four scales of

relevancy. We noted that 56.9% of the expansion concepts

derived by the knowledge-based method were judged as either

relevant or somewhat relevant, whereas only 38.8% of expan-

sion concepts by statistical expansion were judged similarly.

This represented a 46.6% improvement. The results validate

that knowledge-based query expansion derives more relevant

expansion concepts to the original query scenario(s) than

those by statistical expansion and thus yields improved re-

trieval performance for scenario-speciWc queries.
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FIGURE 14.14 Relevancy of statistical expansion concepts.
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FIGURE 14.15 Relevancy of knowledge-based expansion concepts.
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14.7 The KMeX System Architecture for
Retrieving Scenario-SpeciWc
Free-Text Documents

We have implemented and integrated the three proposed

techniques in the KMeX system to provide scenario-speciWc

free-text retrieval (Figure 14.16). This system provides the

capability to retrieve many types of medical free-text docu-

ments, such as patient clinical reports, medical literature

articles, etc. IndexFinder Wrst extracts key concepts and nor-

malize them into standard terms as deWned in the knowledge

source (e.g., UMLS). Topics and subtopics are then derived by

mining the frequently co-occurring features extracted from

the documents. With the aid of the knowledge source and the

user’s query patterns, a topic-oriented directory system can be

constructed.

During the retrieval phase, the query expansion module

appends the user query with scenario-speciWc terms. The di-

rectory system selects the most relevant topics that match the

expanded query. Documents that belong to those topics are

submitted to the module that ranks the documents based on

their similarity to the query via the phrase-based VSM and

returns the documents most similar to the query to users first.

14.8 Summary

We have developed a new knowledge-based approach for re-

trieving scenario-speciWc free-text documents, which consists

of three integrated components: IndexFinder, phrase-based

VSM, and knowledge-based query expansion. IndexFinder ex-

tracts key terms from free text, generating conceptual terms by

permuting words in a sentence rather than using the traditional

techniques based on NLP. Although the generated concepts are

matched with the controlled vocabulary in the UMLS and are

valid terms, they might not be relevant to the document. Thus,

syntactic and semantic Wlters are used to eliminate the irrelevant

candidates. Preliminary evaluation shows that Wltering is eVec-

tive in eliminating irrelevant concepts. Our experimental results

show that IndexFinder can process free texts at a speed of about

43,000 bytes of text per second on a PC with Pentium 4. As a

result, it is able to extract key UMLS concepts from clinical texts

in real time. The extracted concepts can be used for content

correlation, document indexing for directory systems, and

transforming ad hoc terms in the queries into controlled

vocabulary to improve retrieval eVectiveness.

The phrase-based VSM has been developed for document

retrieval. In this model, we divided each document into a set of

Medical
free-text

documents

Phrase-indexed
documents

IndexFinder

Scenario-specific
retrieval results

Web interface

Knowledge source
(e.g., UMLS)

User-input
free text

Key concept(s)

User–selected
scenario(s)

IndexFinder

Scenario-specific
query

Scenario-specific query
formulation and expansion Phrase-based VSM Topic-oriented

directory

Content-based
document cross

reference

FIGURE 14.16 The KMeX system architecture.
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phrases. Each phrase is represented by both a concept deWned

in a controlled vocabulary and the component word stems.

The similarity between concepts is based on the interrelation-

ships of concepts in a knowledge base. The similarity between

two phrases is measured by their stem overlaps as well as the

similarity between the concepts they represent. The similarity

between two documents is deWned as the cosine of the angle

between their respective phrase vectors.

Using UMLS as both the controlled vocabulary and the

knowledge base to derive the conceptual similarities, we dem-

onstrated from diVerent perspectives that the retrieval eVec-

tiveness of the phrase-based VSM was signiWcantly higher

than that of the current gold standard—the stem-based

VSM, because in phrase-based VSM, the stem similarity com-

pensates for the incompleteness of knowledge sources, while

the concept similarity compensates for the lack of semantic

meaning in the stem similarity. Such a signiWcant increase in

retrieval eVectiveness was achieved without sacriWcing exces-

sive computation eYciency. Knowledge-based query expan-

sion of terms related to the scenario yields 5–10%

improvement in precision and recall as compared with the

statistical query expansion case. Knowledge-based query ex-

pansion can be applied together with the phrase-based VSM.

In that case, the peak performance is achieved with very few

expansion terms (10 to 20), which is a desirable property.

Topics can be generated from mining document features.

Based on query templates and knowledge type hierarchies,

free-text documents can be organized into a set of scenario-

speciWc topic-oriented directory systems. In each directory

system, the documents are indexed and linked based on the

topics. Such topic organization not only improves the retrieval

performance for ranking relevant documents but also provides

cross-referencing among related topics.

We have implemented a testbed with these three technolo-

gies. Using the UCLA Medical Center patient reports as a test

set, we have shown that IndexFinder is able to extract features

from free-text documents and that data-mining algorithms

can be used to organize features into topics and are feasible

to construct topic-oriented directory systems. Our knowledge-

based query expansion techniques and the phrase-based VSM

can be used in conjunction to signiWcantly improve precision

and recall. The scenario-speciWc topic-oriented directory sys-

tems further improve retrieval eVectiveness and perform

content correlation of medical documents.
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14.9 Exercises

1. Explain why IndexFinder currently limits word combi-

nation within a sentence. Discuss the trade-oVs of using

other methods of word combination such as phrase, para-

graph, or word properties (e.g., part of speech).

2. Discuss why semantic Wltering is important for improving

the retrieval quality for IndexFinder.

3. Discuss how to handle the negation concept in the Index-

Finder.

4. List the reasons why the knowledge-based query

expansion technique performs better than the statistical

expansion.

5. In what type of queries might the knowledge-based query

expansion method not yield signiWcant retrieval perform-

ance improvements compared with statistical expansion

cases? Suggest ways to improve such queries. (Hint: non-

scenario-speciWc queries).

6. Discuss why the retrieval performance of statistical query

expansion improves as the number of expansion terms

increases and then degrades with expansion after it reaches

a certain size, while the knowledge-based expansion does

not exhibit such behavior.

7. Discuss why the phrase-based VSM alone (without apply-

ing query expansion) yields similar performance to that of

the combination of knowledge-based query expansion and

the stem-based VSM.

8. Explain why the expansion size required to reach optimal

performance using the phrase-based VSM is much smaller

than that using the stem-based VSM.

9. What is the computation complexity of the phrase-based

VSM? Suggest methods to reduce the computation com-

plexity.

10. Describe the concept of a topics directory. How does a

topics directory complement search techniques to improve

document retrieval performance?

11. Discuss the additional tasks and research issues needed to

extend the knowledge-based document retrieval methods

used in this chapter (i.e., IndexFinder, the phrase-based

VSM, knowledge-based query expansion, and topic-

oriented directory) to application domains other than

medicine and health care.
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15.1 Introduction

This chapter will discuss the multimedia patient record as

implemented by the U.S. Department of Veterans AVairs

(VA), the largest health care network in the United States.

The VA’s software, called Veterans Health Information System

and Technology Architecture (VistA), was developed in-house

and is freely available under the U.S. Freedom of Information

Act. This automated health care system has allowed the VA to

set the national benchmark in quality of health care in the

United States. The involvement of frontline providers, use of

performance measures, and universal use of electronic health

records have enabled the VA to outperform all other sectors of

American health care across the spectrum of 294 measures of

quality in disease prevention and treatment [1].

The VA’s online multimedia patient record includes tra-

ditional medical chart information and scanned chart docu-

ments, as well as a wide variety of medical images from

specialties (see Section 15.2.2). Clinicians perform all medical

record activities online, including placing orders, writing pro-

gress notes, requesting consults, and viewing and capturing

images. Images can also be acquired automatically through

standard interfaces with Digital Imaging and Communications

in Medicine (DICOM) interfaces. Images are associated with

the corresponding patient studies and are thus incorporated

directly into the online patient record. Clinicians can easily

navigate between chart information and the associated images

using the graphical user interface.

The VA’s health care enterprise consists of a nationwide

network of 156 VA Medical Centers (VAMCs) and approxi-

mately 876 outpatient clinics serving a patient population of

7.8 million veterans. Patients are often treated at more than

one facility. Clinicians can access their patients’ medical in-

formation automatically from any facility where care has been

provided. Telemedicine is used to share specialty services

between facilities and to reduce patient travel.
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15.2 Multimedia Patient Record

Complete online patient data, including traditional medical

chart information and clinical images, are essential to provid-

ing good health care. Information must be available at any

location and any time that the patient needs care. A complete

multimedia patient record allows health care networks to pro-

vide care seamlessly, without repeating studies and delaying

treatment.

The contents of the patient record can be divided into four

parts:

1. The paper patient chart portion that can be rendered in

textual format.

2. The computable data portion, such as laboratory results,

that can be used in calculations, graphing, searching, or

decision logic to provide additional value to the user.

3. The multimedia portion that traditionally resides in

various locations and various departments throughout

the medical center. This portion includes radiographs,

pathology slides, endoscopy and ultrasound videos,

surgery and dermatology photos, and cardiology Wlms.

In the past, the disparate media of paper, Wlm, and tape,

as well as the sheer volume of these data, have prevented

the Wling of these elements in the traditional medical

record.

4. The remainder of the contents of the paper patient chart

includes signed forms, hand-drawn Wgures, and papers

generated by outside institutions. This portion may

include graphic elements like diagrams related to pro-

gress notes or consults, charts of Xuid input and output,

and anesthesia records.

It is essential to have all these data available at all worksta-

tions in order for clinicians to embrace the electronic medical

record. The user interface to an electronic multimedia record

can be enhanced to present data in ways not possible with a

paper chart or other physical image media (see Figure 15.1).

Once the clinical workstation is the most reliable and eYcient

source of patient information, clinicians will use it enthusi-

astically. The electronic record will increase clinician produc-

tivity, facilitate medical decision making, and improve quality

of care [1].

A user logs on to the workstation with a personal hospital

information system (HIS) security code. Privileges are ver-

iWed by the HIS. The user selects a patient and then views

the patient’s multimedia longitudinal medical record. A

number of windows are used to display the patient’s image

and text data. The online patient chart window allows the

user to access traditional chart tabs for the cover sheet,

problem list, progress notes, reports, medications, orders,

consults, and lab results. Various image windows can be

placed on the screen by the user, generally around the chart

window. This allows simultaneous viewing of chart and im-

ages. The list window (top center) allows the user to Wlter

and sort image studies. The user can view study images by

FIGURE 15.1 A patient’s multimedia medical record includes images (top and left) integrated with an online

computerized patient chart (lower right).
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clicking on the list entry or the study thumbnail image

(lower left).

15.2.1 User Requirements

The VA has been using a multimedia online patient record for

15 years and has signiWcant experience with medical center use

[2, 3]. A number of critical features of a multimedia electronic

record system have been identified:

. Single security logon

. Access to all images and data for the patient (from any

medical facility in the health care network)

. Easy access to related data (chart and multimedia)

. Ability to search, sort, and Wlter data and images

. Clear identiWcation of patients and studies, including

date and time

. Image/multimedia spatial and color resolution adequate

to make medical decisions

. Ability to electronically manipulate and compare images

. Minimal keystrokes or clicks to access key images or data

. Automated capture process that properly documents

image attributes

. Delivery of relevant information at the point of care—for

example, alerts and notiWcations of actions required by

patient care guidelines

. Ability to annotate diagrams and images

. Conformance to standards for image exchange and re-

tention

. Usable interfaces with consistent and familiar metaphors

. Ease of learning and training for students and residents

who rotate through the facilities

. Comprehensive and fully integrated chart with a com-

mon presentation

. Ability to customize behavior, rules, and templates to

match local policies and practices

. Rapid system response for common user activities

. Overall system reliability

Development of this system has been an evolutionary

process, with a cycle of continually adapting the software to

accommodate workXow and policy changes as users more

fully incorporate information technology into clinical care.

DeWnition of requirements and system design has required

close collaboration among the clinical, medical informatics,

and information technology professions. Frequent meetings

with representative user groups, shadowing of clinicians in

their everyday environments, and usability testing have con-

tributed to the reWnement of the software. An iterative

approach to software development has allowed the design

of the system to respond to changes in practices and tech-

nology. Advocacy of clinical and administrative leaders has

also facilitated the widespread acceptance of an online patient

record.

15.2.2 Overview of Multimedia Patient
Record Functionality

The VA has combined several major system development eVorts

to deliver a complete online multimedia patient record contain-

ing all of the foregoing elements to users at its hospitals

and clinics. The Computerized Patient Record System (CPRS)

uses the patient chart paradigm with tabs for cover sheet,

problem list, medications, orders, progress notes, consults, lab

results, and reports. The clinician may enter all information,

including orders, consults, results, notes, and reports using the

CPRS software. A number of decision support tools are pro-

vided to enhance the patient chart capability. In addition, work-

Xow tracking tools assist in management of the medical record

and the institutions’ prompt completion of documentation.

The VistA Imaging System brings radiology images, medical

photographs, endoscopic pictures, scanned documents, anno-

tated diagrams, and graphical data such as electrocardiograms to

the electronic clinician’s desktop in an integrated manner. With

current technology, the VA is storing over 14 million new med-

ical images per month. Images are distributed along with the

electronic patient record using workstations located throughout

the hospitals and even across its wide area network [2–5].

The major goal of the multimedia patient record is to

provide complete patient data in an integrated manner that

facilitates the clinician’s decision making. Images and associ-

ated text data are available at any time anywhere throughout

the hospital and across the VA wide area network on Windows-

based workstations that are interfaced to the main HIS. The VA

system handles high-quality image data from many specialties

(see Figure 15.2), including:

. Anatomical pathology

. Bronchoscopy

. Cardiology

. Dentistry

. Dermatology

. Electrocardiography

. Gastrointestinal endoscopy

. Hematology

. Ophthalmology

. Neurology

. Nuclear medicine

. Nursing

. Podiatry

. Radiology

. Scanned documents

. Surgery

. Textual reports from the HIS and associated medical

devices

. Urology

. Vascular care

The VistA Imaging System is being used at all 156 VAMCs,

as well as by some other government medical facilities.
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It improves the quality of patient care, enhances clinicians’

communications, and is used routinely for daily work during

patient visits, conferences, morning reports, and ward rounds.

The electronic multimedia patient record has played a critical

role in allowing the VA to provide the ‘‘best care anywhere’’ in

the United States [1].

In Figure 15.2, a menu of small thumbnail images allows the

user to select image studies for more detailed viewing (left).

Windows show color, grayscale, and document images and

electrocardiograms. This ‘‘visual chart’’ capability is typically

used by treating clinicians reviewing patients’ courses and

determining treatment plans. Specialists review procedure

data when interpreting studies and writing their reports.

The electronic multimedia patient record developed by the

VA demonstrates the breadth of functionality that can be

provided with current technology. In addition to serving U.S.

veterans, the VA’s system provides a model for future multi-

media patient record systems.

15.3 Components of the Multimedia
Patient Record System
Architecture

The multimedia medical record requires a number of inter-

faced architectural components. The HIS provides database

functions for the image registry and medical record text and

data. Images are stored in servers by storage management

software. Workstations display and capture multimedia med-

ical record images. DICOM gateways capture and save images

and other DICOM objects.

15.3.1 Hospital Information System

All VA medical facilities use the same comprehensive VistA

HIS, which supports all the clinical services. A client server

architecture allows clinical workstation clients to communicate

with HIS servers. Modules include Admission-Discharge-

Transfer, Laboratory, Pharmacy, Dietetics, Mental Health,

and Bar Code Medication Administration, among many

others.

The VA has installed a local area network (LAN) at all

medical centers to support its client–server architecture, and

all facilities are connected by a national wide area network. The

LAN at each medical center connects clinical workstations

to multiple magnetic and optical disk image Wle servers, to

the VA’s HIS, and to commercial medical devices via DICOM

gateways. The LAN uses Ethernet (currently up to gigabit/sec).

The wide area network carries traYc via TCP/IP (transport

control protocol/Internet protocol) to all sites, thus trans-

porting HIS communications, images, and DICOM messages.

A remote procedure call (RPC) architecture allows commu-

nication between Windows-based clients and the HIS. All re-

quests for clinical database access are processed using RPC

requests that perform the desired operations on the HIS and

FIGURE 15.2 Multimedia patient record containing dermatology, pathology, nursing, ophthalmology, and

radiology images.
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return the results to the workstation using a TCP/IP message.

Security logon and server connections are handled by the HIS in

the same manner. Synchronization of applications on the desk-

top is achieved by conformance to the context management

standard from the Health Level Seven (HL7) Clinical Context

Object Workgroup [6]. With the proper security privileges, a

workstation user may connect to any HIS server on the wide

area network and access computerized patient record data

through the graphical user interface software. Clinicians may

access their patients’ remote records to provide health care.

The HIS provides extensive support for VistA Imaging and

contains a full image-management infrastructure. Image ac-

quisition, exportation, display, network access, long-term

archiving capabilities, and integration with the clinical data-

base are all supported. Hierarchical magnetic and optical disk

storage is automatically handled by the HIS image-manage-

ment software. This provides compliance with required reten-

tion periods for images.

15.3.2 Image Database Schema

A common object-oriented approach is used for interfacing all

multimedia data to the online patient record. Image manage-

ment information is stored in the VistA HIS database, in the

same manner as all of the rest of the patient text data.

Information about each image is stored in a multimedia

object table. Each image entry in the table points to an image

Wle stored on a server outside of the HIS database. The image

entry also contains information about the object type and the

patient. Figure 15.3 shows three image objects (Wles A, B,

and C) in the multimedia object table. Each image object

points to its corresponding image Wle.

A set of related multimedia objects are collectively joined

together into a multimedia group. The multimedia group is

then associated with the speciWc patient study record—for

example, a radiology report, an ophthalmology consult, or a

progress note. This association allows the user to navigate from

the patient to the images and then to the corresponding

study report, or from the patient to the study report and

then to the corresponding images. In Figure 15.3, the three

image objects are joined together to form a multimedia group

in the multimedia object table. The multimedia group is asso-

ciated with a consult request in the consult table. Other studies

in the radiology report table and the progress notes table are

associated with other multimedia groups in the multimedia

object table.

15.3.3 Image Storage

The storage of all document and multimedia data is controlled

by an institution’s retention schedule, which indicates how

long each type of document or multimedia object must be

stored by the health care organization. In some cases, retention

periods can be in excess of 75 years. Some types of data may

have shorter retention periods, depending on local regulations.

Clearly, lengthy retention requirements demand storage for-

mats, devices, media, and software infrastructures that are

reliable for a number of years into the future. The storage

architecture must provide for redundant copies of data kept

in diVerent geographic locations and must also provide rapid

recovery in case of disaster. Finally, the system must detect

when media or mechanisms are beginning to fail. Migration of

data to newer platforms will be required periodically to avoid

technological obsolescence.

VistA multimedia object database schema

Image
file A

Image
file B

Multimedia object table

Multimedia group N

File C Patient X Group N

Image
file C

Radiology report table

Consult table

Progress notes table

File B Patient X Group N

File A Type Q

Type Q

Type Q

Patient X Group N

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

FIGURE 15.3 Multimedia object database schema used for handling images.
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Image storage uses a three-tiered approach. The most re-

cently captured images go into fast magnetic storage, typically

holding 3–5 years of image data. A second copy of all images is

stored on optical media for long-term archiving. In addition, a

copy of all images is made on optical or tape media and stored

at a diVerent location for disaster recovery. The HIS stores the

information about the locations of the patient’s images and

their association with other patient record data.

The DICOM standard identiWes data elements that are to be

included in the header section of the image Wle. Some elements

are mandatory, while others are optional. DICOM header data

stay with the image Wle whenever it is stored or communicated

to another system. This ensures patient identity. Any changes,

such as correction of entry errors or changes in names, require

correction in both the database and the image Wle.

15.3.4 Display Workstations

Clinical workstations are located in most specialty depart-

ments and patient care areas. Images are accessed and dis-

played on the workstation client. The multimedia

workstation platform is based on standard Windows com-

puters with a minimum of 1024� 768 resolution and at least

24-bit color. Some workstations use multiple monitors to

allow a larger number of images to be displayed simulta-

neously. At this time, thin client stations do not fully support

manipulations such as window/level modiWcation and are

therefore not used for diagnostic purposes. Software running

on the workstations was developed by the VA and is written in

CodeGear Delphi from Borland, except for integrated com-

mercial oV-the-shelf products.

High-resolution radiology workstations allow radiologists to

make diagnostic interpretations using VistA Imaging. This

diagnostic interpretation software is totally integrated with

the radiology HIS module, resulting in a seamless operation

and streamlined workXow for the users. These workstations

generally include a color monitor and two to four high-reso-

lution grayscale monitors capable of display of three to Wve

megapixels of image data.

15.3.5 Capture Workstations

Capture workstations use the same basic computer hardware

as the display workstations, with the addition of a capture

device. Frame grab boards are used to capture video input

from endoscopes or other video devices. Foot pedals can be

added to allow hands-free capturing during procedures. Video

capture boards or devices allow capture of video clips. Scan-

ners, either color or grayscale, allow input of photographic

prints or Wlm, as well as printed or handwritten medical record

pages. Finally, digital cameras, universal serial bus (USB)

devices, and magnetic storage attached to the workstation or

server can provide images for import.

15.4 Electronic Medical Chart
Components

The VA’s online patient chart software was designed to resem-

ble a paper chart and includes functional components that are

displayed as chart tabs. These tabs are ‘‘Cover Sheet,’’ ‘‘Problem

List,’’ ‘‘Medications,’’ ‘‘Orders,’’ ‘‘Progress Notes,’’ ‘‘Consults,’’

‘‘Discharge Summaries,’’ ‘‘Surgery,’’ ‘‘Labs,’’ and ‘‘Reports’’ (as

noted in Section 15.2). Most tabs include browse and search

capabilities, in addition to supporting the collection of clinical

information. Clinicians may enter progress notes, update

the problem list, write orders, enter vital measurements, and

record other data that must be collected with each patient

encounter.

The online patient chart is always available for access by

health care providers and may be used by multiple providers

simultaneously. Many clinicians review the status of their

patients from their homes via access to the Virtual Private

Network (VPN). From remote locations, health care providers

can act on abnormal clinical results by entering medication,

lab, dietetic, consult, procedure, radiology, and patient-care

orders that will be electronically transmitted to the responsible

service for immediate action.

The application uses a hierarchically structured set of

parameters to allow the behavior of the software to be adapted

to speciWc settings. A baseline set of parameters is provided.

Sites may override these by exception. General behavior can be

modiWed for speciWc hospital locations or even speciWc clini-

cians. For example, a baseline set of clinical reminders may be

used throughout the hospital while a diVerent subset is used in

speciWc clinics. This capability for Wne-tuning is particularly

important where the software is used by so many diVerent and

varied health care facilities.

Descriptions of the major functional areas follow. These

areas are generally represented and accessed by tabs on the

patient chart (see Figure 15.1 and Wgures that follow).

15.4.1 Cover Sheet and Problem List

The cover sheet of the online patient chart facilitates quick

orientation to a patient by providing a condensed view of

relevant clinical information on one screen. Included are active

problems, allergies, immunizations, active medications, recent

lab results and vital signs, a list of appointments and admis-

sions, crisis notes, warnings, and reminders.

Clicking on a cover sheet item provides immediate access to

a greater level of detail for that item. For example, clicking on

an admission displays the discharge summary for that admis-

sion, while clicking on a recent lab test displays the results and

reference ranges. Allergies and vital measurements may also

be updated from the cover sheet. The components that are

displayed on the cover sheet are fully customizable and may be

tailored to a speciWc facility or individual.
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The problem list of the patient may be maintained through

the application. Problems may be added, inactivated, and

annotated. Pick lists may be customized to speciWc user set-

tings to allow easier addition of new problems. There is also a

mechanism to automatically update the problem list with a

diagnosis when documenting a patient encounter.

15.4.2 Clinical Reminders and Alerts

The clinical reminder system exists to improve preventive

health care and to encourage timely clinical interventions to

be initiated. Reminders may be viewed on the cover sheet and

also during the writing of progress notes. They alert the cli-

nician to certain actions that should be performed. Examples

of these actions include examinations, immunizations, patient

education, and laboratory tests. Reminders assist in identifying

patients who are at risk for hepatitis C, breast cancer, colorectal

cancer, hypertension, etc. Some of the actions a clinician may

take upon receipt of a reminder include performing an exam-

ination, ordering a test, or collecting speciWc patient informa-

tion. The information collected in response to a clinical

reminder may be automatically appended to the current pro-

gress note. Figure 15.4 shows the clinical reminder dialogue

that is displayed when tobacco screening is due.

The VA, in cooperation with the Department of Defense and

professional organizations, has been developing clinical prac-

tice guidelines since the early 1990s. Guidelines have been

developed for diabetes mellitus, hypertension, tobacco use

cessation, chronic obstructive pulmonary disease (COPD),

ischemic heart disease, and depression. The clinical reminder

system assists the clinician with following these guidelines.

SpeciWc reminders are deWned nationally, but other reminders

may be deWned at each facility to meet additional needs. By

allowing the clinician to record the action taken in response to

a reminder, the system can monitor conformance to clinical

practice guidelines. A variety of reports are available that allow

one to view reminders across patients and look for anything

that may have been missed. Some reminders are tracked na-

tionally. This allows the VA, as a whole, to evaluate how well it

is conforming to clinical practice guidelines and to demon-

strate its performance against various quality measures.

Whenever a patient is selected, a list of current alerts is

displayed. These notify the clinician of signiWcant events.

Some of the areas for which alerts are available include:

. Abnormal results for lab tests and imaging procedures

. Medication orders that are about to expire

. Consults that have been completed or canceled

. Orders that have been Xagged for clariWcation

. Signatures that are required for orders or notes

. Patient movements (admissions, transfers)

Some of the alerts have built-in follow-up actions, allowing the

clinician to immediately respond. For example, when an un-

signed order notiWcation is received, selection of the notiWcation

will display the unsigned orders and allow a signature to be

entered. Whenever alerts are selected, the user is taken automat-

ically to the part of the online chart that is relevant to that alert.

FIGURE 15.4 Clinical reminder dialogue.
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15.4.3 Orders and Medications

Orders may be entered and maintained in the online patient

chart. Patient orders may be sorted and viewed in a variety of

ways. The most common view displays all active orders. Ex-

amples of custom views include orders that are about to expire,

orders for a speciWc service, orders that have been written for

discharge, orders that have been recently completed, and or-

ders that still require a signature (such as verbal/telephone

orders).

Order entry can beneWt the clinician by assisting in obtain-

ing all the information necessary to complete an order.

If speciWc information about a patient is required before a

procedure may be performed, the clinician is prompted for

that information. If additional signatures must be obtained

for a particular procedure or treatment, this information may

be displayed so that the clinician knows immediately whom to

contact. Once an order has been signed, it is transmitted

directly to the receiving service. The electronic transmission,

completeness, and legibility of the order allow for prompt

action. The clinician is able to electronically track the order

to completion.

The order entry process may be highly customized to meet

the diVering needs of clinicians throughout the hospital. In-

deed, the degree of customization eVort is closely related to the

success of an electronic order entry system. The parameters

previously described allow customization at the individual

clinician level, if necessary. Menus may be used to organize

the ordering process in addition to providing some informa-

tion about policies and protocols for certain areas of ordering.

Quick orders may be set up with some or all prompts

answered. In situations where there is a large amount of

consistency among the orders that are placed, or where certain

protocols are in place, quick orders can speed the ordering

process, decrease typographical errors, and reduce ambiguities

in the order. Order sets are another timesaver, allowing a group

of orders to be entered at once and the associated activities to

be managed consistently.

Orders can be entered in advance and saved for release to a

service at a time in the future. Admission orders may be

written weeks ahead. Discharge orders may be written

throughout a hospital stay and modiWed as needed. These

orders are easily available for review. Similarly, when writing

admission orders, a patient’s current outpatient prescriptions

are easily viewed and may be transferred to become inpatient

orders, if appropriate.

Order checking alerts the clinician during ordering to po-

tential problems that can exist if the order is processed.

A message is displayed when a potential problem is detected.

If the clinician decides to continue processing the order and if

the potential severity of the problem is high, an override

reason must be entered. This justiWcation is retained with the

order and passed to the service that is processing the order.

Some of the order checks that are available include:

. Allergies to contrast media or medication ingredients

. Potential drug–drug interactions

. Duplicate orders or orders for the same drug class

. Laboratory values that may contraindicate an order

. Lab tests that have been ordered too frequently

The order entry system retains a complete, time-stamped

history of all orders placed, along with a record of all activity

for each order.

A dedicated view of medications is also provided. Separate

parts of the screen display outpatient prescriptions, inpatient

medications, and medications provided by non-VA sources.

Medications may be transferred from the inpatient setting to

the outpatient setting and vice versa. This facilitates writing

admission and discharge orders.

15.4.4 Progress Notes and Encounter Form

Progress notes may be both viewed and entered through the

online patient chart. Extensive facilities exist to deWne rules for

diVerent note types. These rules are based on user roles along

with actions taken on a given type of document. It is possible,

for example, to restrict who may view, write, or sign a particu-

lar type of note. Each type of note has an assigned title. It is

possible for sites to create new titles and unique rules for any

given title. For example, it is possible to say that a note of a

particular title may be viewed by only mental health providers

or may be signed by only an attending physician.

A template mechanism is available to reduce typing and to

accelerate the entry of notes. A note title may be assigned

default (boilerplate) text. Templates may be used throughout

the process of note writing. Templates may include elements

that are interpreted at run time. These elements expand into

text based on previously existing data for the selected patient.

For example, the patient’s active medication list and recent

vital measurements are elements that may be instantiated at

run time. Figure 15.5 shows a note in the process of being

written using template text. Clinicians have the ability to

deWne their own templates. There are also facilities that allow

notes to be uploaded from transcription services.

About 600,000 progress notes are added each workday by

clinicians in the VA. Progress notes have been entered online

for over ten years. This creates challenges when one needs to

locate speciWc information among a large volume of notes. The

viewing of progress notes is facilitated by a variety of Wltering

and sorting capabilities. Progress notes may be organized by

clinic/hospital location, author, title, or time of note. For

example, it is possible to list only notes that were created for

the Pulmonary Clinic with ‘‘COPD’’ in the subject Weld. Re-

cently, the capability has been added to allow one to search for

speciWc text within a set of progress notes. EVorts are under

way to standardize note titles, so that a list of note titles for a

patient who has been seen at multiple VA facilities will be

consistent and meaningful.
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An online encounter form is available when writing progress

notes. Each clinic has the ability to set up pick lists of encoun-

ter-form items that are relevant to that clinic. The encounter

form can be used to collect data related to patient education,

immunizations, skin tests, health factors, diagnoses, proce-

dures, examinations, and vital signs. The collected encounter-

form information is displayed along with any note that

matches the same patient visit. The collected data are used

for workload measurement and billing. They are also used

extensively to support clinical reminders. The encounter-

form information may determine whether a particular patient

meets the criteria that would cause a speciWc reminder to be

issued. For example, a diagnosis of diabetes would issue a

reminder when a foot exam is due.

15.4.5 Discharge Summaries, Consults,
Surgery

Discharge summaries, like progress notes, may be viewed and

edited online. Discharge summaries share the same mechan-

isms for sorting and Wltering with progress notes. Often, dis-

charge summaries are dictated and become available online

after they are transcribed. Alerts that indicate the presence of a

newly transcribed discharge summary assist in getting the

document electronically signed in a timely manner.

Consults are shown in another specialized view that is similar

in capability to progress notes. The consult reports are grouped

by consulting service. Additional actions for the consultant or

consulting service are available. These actions include:

. Refer a consult to another service.

. Schedule a requested consult.

. Deny a consult request and notify the requestor with the

reason.

. Add comments to a consult request.

. Attach related result sets to a consult.

. Record signiWcant Wndings for a consult.

Using these actions, a consult can be tracked from the initial

request until completion.

For surgery, operative reports may be entered directly using

the application, but they are often dictated, transcribed, and

transmitted into the database separately. Once in the database,

the chart application allows the reports to be viewed, veriWed,

updated, and Wnally signed electronically. The reports are

usually grouped by surgical case, but custom views are also

available.

15.4.6 Laboratory, Graphing, and Reports

Laboratory results may be viewed in a variety of ways. It is

possible to 1) see the most recent results, 2) follow a single set

of tests over time, or 3) show abnormal tests only. Clinicians

are able to design their own worksheets. This allows them to

follow custom panels of tests together over time. Visualization

of trends is facilitated by a graphing tool. Graphing extends

beyond laboratory results. Nearly any item in the chart can be

graphed, and sets of these graphed items may be saved into

views to be easily called up again in the future. For example,

FIGURE 15.5 Progress note in the process of being edited. The ‘‘Current Medications’’

list was prepopulated when the note was started. Any template from the list on the left

may be dropped into the note.
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one may graph speciWc lab tests in relation to medications

prescribed and procedures administered.

A wide variety of reports are available in the online patient

chart. These include reports for procedures, medication

proWles, order summaries, nutritional assessments, pathology

reports, and health summaries. A health summary is a special

report that makes available a wide variety of clinical reporting

components. These components may be conWgured to create

custom reports that provide relevant information for a

particular situation.

Imaging reports contain the narrative for radiology and

other imaging procedures. When these reports have associated

multimedia objects, an icon is visible next to the report title.

Whenever such a report is selected, image displays are syn-

chronized to show the images that are associated with the

report. Progress notes may also have associated multimedia

and behave in a similar manner.

15.5 Objects Comprised by the
Multimedia Patient Record

A number of diVerent image types are part of the multimedia

patient record. These include medical color and grayscale

images, scanned patient record documents, waveform data

such as electrocardiograms and electroencephalograms,

sound and video Wles, stereo image pairs, and three-dimen-

sional reconstructions. The DICOM standard supports these

image types and deWnes header metadata that must be stored

with each kind of multimedia object.

Any of these image types can be annotated with text, arrows,

measurements, circles, and other markings. Annotations can

be stored in a separate Wle and applied to the original image

Wle, or they can be ‘‘burned into’’ the original image Wle. The

Wrst approach allows multiple annotations to be made avail-

able. The second changes the original image and thus is a less

appropriate method. The DICOM standard uses an object

called ‘‘Presentation State’’ for annotation information.

15.6 Capturing Multimedia Data with
a Clinical Workstation

Both text and image data are collected at the point of care.

Multimedia data, including clinical images, scanned docu-

ments, and motion video, are captured using a clinical capture

workstation. Electrocardiogram data are captured on a com-

mercial system and accessed by clinical workstations directly

from the commercial storage system, or saved as PDF files.

Proper patient and study identiWcation is essential to incorp-

orating data into the electronic patient record. The VA has 15

years of experience acquiring images in clinical disciplines.

Images may be captured by clinical workstations from a

number of sources. A frame grab board can be mounted in

the workstation, a TWAIN1 interface can pass images to VistA

Imaging, or Wles may be imported from a disk drive. In

addition, images may be transmitted from independent sys-

tems using a VistA Imaging–provided application program

interface (API). The independent system must implement the

interface and pass the images with identifying information to

VistA Imaging. Over 50 million images have been acquired

using these methods.

Using the VistA Imaging capture workstation graphical user

interface, images are collected during medical procedures for

diagnostic or follow-up purposes. After logging on to the

capture workstation software, the clinical user identiWes the

patient and the study being performed. Image capture requires

only the click of a mouse. The user then enters any pertinent

descriptive information related to the image and clicks a but-

ton to save it to the patient’s record. This simple procedure

takes less than 30 seconds, and the result is more informative

than a textual description of the image.

Typically, the clinician performing the procedure selects

images for capture that are signiWcant to the patient’s diagnosis

or treatment course. Typically, images are linked to the pro-

cedure or consult report in the HIS. The number of images

captured per procedure varies by the specialty and is deter-

mined by the users themselves. Some specialties have deWned

the speciWc set of views to be acquired, while others leave this

to the judgment of the clinician.

In some cases, images are captured at the patient’s home or

nursing home. Images are captured using a digital camera and

are later input into the patient’s online record.

15.7 DICOM Image Acquisition

The DICOM standard was developed to permit transmission of

medical images and their associated information in a multi-

vendor environment. The standard speciWes a network proto-

col, the operation of a variety of service classes, and a

mechanism for uniquely identifying information objects across

the network. Each information object has a set of attributes.

Information objects include images, patient history, studies,

reports, and other data. Goals are to achieve compatibility and

to improve workXow eYciency between imaging and other

health care information systems. A key success factor is that

vendors cooperate in testing, and every major diagnostic im-

aging vendor in the world uses DICOM [8].

Integrating the Healthcare Enterprise (IHE) is an initiative

chartered by health care professionals and industry to improve

the way computer systems in health care share information. It

1 Not really an acronym. Nicknamed ‘‘Technology Without An Interesting

Name’’ (http://www.twain.org >> FAQ).
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is a multiyear, international eVort sponsored by the Radio-

logical Society of North America, the Healthcare Information

and Management Systems Society, the American College of

Cardiology, the American Academy of Ophthalmology, and

several other organizations. IHE promotes the coordinated

use of established standards such as DICOM and HL7 to

address speciWc clinical needs in support of optimal patient

care. ProWles are deWned to specify in greater detail how the

standards will be used to meet particular needs. Systems devel-

oped in accordance with IHE communicate with one another

better, are easier to implement, and enable care providers to

use information more eVectively [8].

IHE-based standard DICOM interfaces allow the VA to

capture images directly from radiology devices such as com-

puted tomography and magnetic resonance imaging scanners,

ultrasound systems, computed radiography, and angiography

systems, among others. Images can be transferred between

systems on portable media such as CDs. Images can also be

obtained via DICOM from commercial radiology picture

archiving and communication systems (PACS).

Image data may pass through a number of diVerent elec-

tronic systems before becoming part of the multimedia patient

record. Textual data related to the patient’s order and study

must be passed from the HIS to the image-producing modal-

ities and the commercial PACS (if present), so that image data

are consistent and correctly identiWed while they traverse mul-

tiple systems.

15.7.1 Modalities

In 1999, the IHE initiative deWned the methodology for

obtaining DICOM objects from radiology image acquisition

devices. The IHE Technical Framework Scheduled Work-

Xow Integration ProWle deWnes speciWc sets of transactions

that are essential for robust transfer of images from the

acquisition devices (called modalities) to a PACS, which

might be a commercial radiology imaging system or an

image-enabled electronic medical record system such as

VistA Imaging [9].

15.7.1.1 Modality Worklist

A DICOM object contains patient and study identiWcation,

including a universally unique identiWer for each study per-

formed. When the DICOM object is sent to the PACS, this

information is used to associate the object to the correspond-

ing study entry in the electronic medical record. It is necessary

that this information be exactly correct so that this association

can be performed completely automatically.

The DICOM modality worklist service enables the acquisi-

tion device to electronically obtain this information. The order

placer (e.g., the HIS) Wrst sends an HL7 order message to the

PACS, which uses it to populate the modality worklist data-

base. When the patient arrives for the examination, the image

acquisition modality performs a query and obtains matching

patient and study identiWcation information. Then the

examination procedure is ready to begin.

Proper operation of the modality worklist transaction

is absolutely essential to the success of the DICOM image

acquisition. If patient and study identiWcation must be

entered manually, the error rate is so high that the process is

unworkable.

15.7.1.2 Modality Performed Procedure Step

At the start of the examination procedure, after the patient

and study have been selected from the worklist, the modality

sends a message to the PACS indicating that the procedure is

beginning. This message identiWes the patient, study, and pro-

cedure that is being performed. After the procedure is Wnished,

the modality sends a message to the PACS indicating that the

procedure has been completed. This termination message lists

the DICOM objects that were created during the course of the

procedure.

15.7.1.3 Storage

During the course of the examination procedure or soon

afterward, the imaging modality will use the DICOM storage

service to transmit copies of acquired objects to the PACS

image archive.

15.7.1.4 Storage Commitment

Old images on the modality have to be deleted to make room

for new ones. The storage commitment transaction allows the

modality to verify that the objects previously transmitted to

the PACS image archive have been successfully stored. After the

examination procedure when the DICOM objects have been

transferred to the image archive, the modality sends a storage

commitment request transaction to the PACS. The request

message contains a list of the DICOM objects that the modality

would like to delete. The PACS checks the status of each

DICOM object and then sends status information back to the

modality in the storage commitment result transaction. The

modality can then delete the DICOM objects that it knows

have been successfully stored on the PACS.

15.7.1.5 VistA Imaging Modality Interface

In 1996, VistA Imaging implemented the modality worklist and

storage functions for radiology. In 2003, this support was

extended to the other clinical specialties, primarily dentistry,

ophthalmology, and cardiology, but also endoscopy, pathology,

and dermatology. Introducing this workXow for clinical spe-

cialties has helped foster interoperability standardization eVorts

in dentistry and eye care [10, 11].

The VA uses a VistA Imaging DICOM gateway to provide

DICOM services for the modality. The DICOM gateway
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provides both the modality worklist and storage services for

the DICOM acquisition devices. A VA facility with many mo-

dalities may use several DICOM gateways to share the work-

load.

This VistA Imaging IHE-based interface has been highly

successful. There are now about 340 diVerent models of

image acquisition devices interfaced to VistA Imaging—

about 50 of these are in the clinical specialties outside of

radiology. In excess of a half million images per day are

acquired across the VA from these modalities.

15.7.2 Portable Media

DICOM objects can be transferred between systems using

portable media like CDs. In 2004, IHE Radiology published

the Portable Data for Imaging (PDI) integration proWle, which

speciWes how data are to be formatted on CDs using the

DICOM standard for interchange between systems [9, 12]. A

demonstration at the annual 2004 meeting of the Radiological

Society of North America included two dozen vendors who

had the capacity to generate and read each other’s IHE PDI

CDs.

The PDI integration proWle, however, did not address how

to import these data into a PACS. It was necessary to deWne a

method to resolve the diVerences between the patient and

study identiWcation information on the CD (assigned by an

outside system) and that on the local PACS. This was a crucial

problem for the VA because imaging studies are often con-

tracted to be performed at outside facilities, and the DICOM

images from these studies are always returned on CDs.

A solution was developed to treat the DICOM CD import

device as an acquisition modality and use the Scheduled

WorkXow integration proWle to handle importation. In the

VA, every study that has images must be ordered, whether it

is performed within the institution or outside. Since there is

always an order, it is easy to use the modality worklist service

to provide the CD import device with the local VA system’s

patient and study identiWcation information. The study on the

CD is then matched to the one that was ordered on the local

VA system, key data elements in the DICOM headers on the

CD are replaced with those from the local VA system, and the

objects are then sent to the local VA system.

In 2006, the VA spearheaded the eVort to incorporate these

requirements into an IHE Radiology integration proWle. This

resulted in the IHE Radiology Import Reconciliation integra-

tion proWle, which encompasses the VA requirements and

addresses the general issue of importing DICOM objects

from portable media on a wider scale [12].

15.7.3 Commercial Picture Archiving
and Communication Systems

Commercial PACS are used at some VA facilities for image

acquisition and diagnostic radiology reading. VistA Imaging is

the VA’s oYcial permanent archive for all medical images, and

it is necessary that commercial PACSs forward all of their

images to VistA Imaging in a timely manner. This assures the

VA that all images will be accessible regardless of changes in

commercial PACS technology.

The interface between commercial PACSs and VistA Im-

aging evolved through three generations of standards. The

earlier interface versions used the 1993 ACR-NEMA (Ameri-

can College of Radiology–National Electrical Manufacturers

Association) and 1997 DICOM standards for all communica-

tions between the VistA HIS and the commercial PACS [5, 13].

The VA is moving to another version (2007) that follows IHE

Radiology and uses a combination of HL7 for communication

of admission, discharge and transfer, orders, and report

information and DICOM for handling all aspects of image

transfer [14].

The workXow for image acquisition for modalities con-

nected to the commercial PACS will follow the Scheduled

WorkXow integration proWle (see Figure 15.6). The process

starts when an HL7 order message is sent to the commercial

PACS. This causes the study to be placed on the DICOM

modality worklist. The image acquisition device performs the

modality worklist query and obtains the patient and study

information from the commercial PACS. It then sends a mo-

dality performed procedure step (MPPS) message to the com-

mercial PACS indicating that the examination is starting. The

images for the examination are acquired and sent to the

commercial PACS. At the end of the study, the acquisition

device sends an MPPS message to the commercial PACS to

inform it that the examination has been completed. This

message contains a list of the DICOM objects that were ac-

quired during the course of the examination.

When the commercial PACS receives the completion mes-

sage from the MPPS, it will check that each of the DICOM

objects in the list is stored in its image archive. Once they are

all present, the commercial PACS will send an instance avail-

ability notiWcation message to VistA Imaging identifying the

set of DICOM objects for the examination. VistA Imaging then

uses the DICOM retrieve service to obtain copies of them so

that they can be placed into the permanent VA image archive

(see Figure 15.6). Alternatively, the commercial PACS may

send newly received DICOM objects to VistA Imaging so that

they can be permanently archived.

15.8 Remote Data and Image Viewing
Across the Health Care Network

Because VA patients may receive care at any VAMC, their med-

ical record information may be scattered in diVerent systems. VA

has developed two capabilities, remote data views and remote

image views, to provide all patient information and images to

treating clinicians from the facility where they are stored.
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15.8.1 Remote Data Views

When a patient has been seen at multiple VAMCs, a button at

the top right of the screen indicates that remote data are

available. Pressing the button reveals a list of sites where the

patient has been seen and the date of last activity. Any or all of

the sites may be selected (see Figure 15.7), causing data from

the selected sites to become available. Each queried site is

represented by a tab that appears above the report, allowing

reports from each other site to be selected and viewed. Thus,

clinicians can directly access data from other sites rather than

relying on the patient’s memory. This reduces the number of

redundant tests and procedures and can provide more com-

prehensive knowledge of additional treatments, such as medi-

cations, that may be provided elsewhere.

In addition to the views of remote data available via the

reports tab, the VistA web application (VistAWeb) provides

views of remote patient data. VistAWeb integrates data from

across VA sites into a single view. It is also used by those who

require read-only access to patient data across sites. As a web

application, VistAWeb has also provided temporary access to

patient charts during emergency situations where hospitals

have been evacuated. VistAWeb consists of a simple list of

reports available from all VA sites. When a report is selected,

all sites that have data for the particular patient are queried,

and a table of the returned data is built. This table is displayed
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FIGURE 15.6 Messages used for PACS interface.

FIGURE 15.7 Report tab providing access to information from other VA sites where

the patient has been seen.
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on the right side of the VistAWeb screen. An example of an

allergy report is shown in Figure 15.8. The user can use

hyperlinks to drill down to more speciWc information.

15.8.2 Remote Image Views

Images are available to clinicians through the similar mech-

anism of remote image views. A master patient index main-

tains unique VA identiWers for all patients across the country

and the facilities where a patient has been treated. Informa-

tion related to a particular patient’s images can be gathered

and used to present a list of available study images to the

clinician. Selected images can be displayed on the local work-

station for patients under the care of the clinician user. This

approach has been called ‘‘virtual integration’’ or ‘‘federation’’

because there is no single enterprise-wide database storage of

the information [15].

BeneWts of remote image views include:

. Immediate access to images saves time. Access can be

from any other point on the VA health care network,

without contacting the other facility.

. Redundant testing, which is often done in urgent situ-

ations when images and reports are missing, is avoided.

. Patient wait times are reduced because all information is

immediately available.

15.9 Impact on Patient Care

The VA currently has over 560 million patient images online.

Up to this point in time, there have been 840 million docu-

ments (progress notes and discharge summaries) and 1.6

billion orders recorded electronically. Clinicians Wnd that

the online multimedia patient record provides a number of

beneWts to care providers and patients [16], including:

. Ability to provide all patient data, automated reminders,

and alerts electronically

. Reductions in errors based on lack of data or nonstand-

ard terminology used to describe images

. Increases in communication among clinicians, improv-

ing continuity of care when multiple specialists are

involved

. Reductions in physician time spent searching for data

. Improvements to physician education

. Reductions in costs by avoiding Wlm printing

. Decreased hospital admissions, due to rapid availability

of electrocardiograms and prior studies

. Reductions in repeat procedures

. Decreased ordering errors through electronic placement

of orders and consult requests

. Reduction in medication administration errors through

bar-code technology

. Reductions in patient transfers between facilities

. Assistance to patients in understanding their problems

. Reductions in patient wait times

. Increased clinician and technologist productivity

Clinicians use the multimedia patient record during confer-

ences and rounds, on wards, and in the emergency room,

operating rooms, intensive care units, clinics, and their own

oYces. For consultation and medical record access for patients

at distant locations, clinicians can view information easily

through remote viewing capabilities.

15.10 Summary

The VA’s experience indicates that seamless integration of all

types of patient data is a critical feature for clinical work-

station software. It must be easy and reliable for users to

capture patient data in their procedure rooms and view

their patients’ online multimedia records on workstations

anywhere in a medical center. Accurate, synchronized pa-

tient identiWcation is essential on all systems that will

capture data for inclusion in the online multimedia patient

record.

FIGURE 15.8 VistAWeb application providing an integrated view of allergies for a

patient, drawing data from multiple VA sites.
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The full range of patient data must be available from a single

source—the clinical workstation. This is a key factor in system

eYciency, usability, and user acceptance. Because the VistA

system is integrated, data that are entered into any part

of the system serve all users. No duplicate data entry is

needed. This results in a system that contains a ‘‘critical

mass’’ of information. Users are more likely to Wnd what

they need from the system, and therefore they look Wrst

to the system, and Wnd it most eVective to place information

in it. An institution must reach this critical mass to achieve

the maximum beneWts from an integrated patient record

system.

An online multimedia patient record can present data in

ways not possible with a paper chart or other physical

media. Data or images can be manipulated on the worksta-

tion to present diVerent views. Clinical activities are more

eYcient, and errors are reduced. Obtaining a critical mass of

information online is essential to user satisfaction and

eYciency, as well as to achievement of maximum beneWts

from an integrated patient record system. The involvement

of frontline providers in system requirements and design, the

use of performance measures in monitoring health care

services, and the universal use of the multimedia patient

record have enabled the VA to provide the best care any-

where [1].
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16.1 Introduction

The beneWt of a medical imaging exam depends on both the

quality of the medical images and the ability of the radiologists

who interpret them. Over the years, advances in various image

acquisition methods have been made, including the standard-

ization of mammography and development of multislice CT.

However, with these acquisition advances come more and

more data requiring assimilation and interpretation by the

human radiologist. During the past 20 years, developments

in computerized image analysis have attempted to improve

the interpretation stage of the medical imaging exam by pro-

viding a ‘‘second opinion’’ to the radiologist, leading to the use

of computer-aided diagnosis (CAD) in many breast cancer

screening programs. This chapter describes CAD for the de-

tection and diagnosis of diseases, with illustrations on breast

cancer, lung cancer, and colon cancer, using examples from the

University of Chicago.

16.2 Computer-Aided Diagnosis

16.2.1 Rationale for Computer-Aided Diagnosis

In the clinical interpretation of medical images, limitations are

posed by the nature of the human eye/brain visual system,

reader fatigue, distraction, the presence of overlapping struc-

tures in images, and the vast number of normal cases in

screening programs. These limitations provide motivation for

the use of CAD with the potential to improve detection,

diagnostic performance, and ultimately patient care.

Development and implementation of computer-aided

detection and diagnosis involves the application of computer

technology in medical image interpretation [1–8]. Radiologists

can use the output from a computerized analysis of medical

images as a ‘‘second opinion’’ in detecting and characterizing

lesions as well as in making diagnostic decisions. It should be

noted that the Wnal diagnosis is made by the clinician (e.g., the

radiologist). Thus, the computer output needs to be at a

suYcient performance level in terms of sensitivity and speciWc-

ity, and the computer interface should have a user-friendly

format for eVective and eYcient use by the radiologist.

16.2.2 Development of Computer-Aided
Diagnostic Methods

Research in CAD has advanced rapidly over the past 20 years—

from time-consuming Wlm digitization and computations on a

limited number of cases to present-day developments in a

variety of medical imaging applications and workstations read-

ied for implementation in the clinical arena. Basic CAD research

involves collection of relevant normal and pathological cases,
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development of a computer algorithm appropriate to the med-

ical interpretation task, validation of the algorithm alone using

appropriate cases for performance evaluation and robustness

assessment, evaluation of radiologists in the relevant diagnostic

task with and without the use of the computer aid, and then

ultimate performance evaluation with a clinical trial.

Two general types of systems for CAD are being developed by

multiple researchers: CADe for computer-aided detection and

CADx for computer-aided diagnosis. CADe involves the use of

computer analyses to indicate locations of suspect regions in a

medical image. The characterization, diagnosis, and patient

management are left to the radiologist. CADx involves the use

of computer analyses to characterize a region or lesion, initially

located by either a human or a computer, leaving the Wnal

diagnosis and patient management to the radiologist. Both

CADe and CADx are schematically shown in Figure 16.1.

Figure 16.2 shows the Wrst CAD prototype, which was devel-

oped at the University of Chicago. The 1994 system took

mammograms as input, and output the computer-determined

locations of suspect lesions (clustered microcalciWcations and

mass lesions) on low-resolution thermal paper. Thus, it is an

example of CADe. Image analysis in the system took minutes,

while today’s systems yield real-time analyses.

16.2.3 Evaluation of Computer-Aided
Diagnostic Systems

Discussion of evaluation methods is important at an early part

of this chapter in order to help the reader appreciate the

diYculties and subtleties of the results given in the various
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(a)

(b)

FIGURE 16.1 Schematic diagram illustrating the incorporation of

CAD into mammographic interpretation.

(a)

(b)

FIGURE 16.2 First prototype for mammography CAD, developed at

the University of Chicago: (a) system and (b) example of computer

printout illustrating CADe outputs. Courtesy of M. Giger, University

of Chicago.
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subsequent sections and in the literature. Evaluations can be

given in terms of the computer performance or the human

performance during use of the computer output.

Performance levels can be given for (1) lesion detection

schemes in terms of the sensitivity (true-positive rate) for

detection and the number of false-positive detections (or

‘‘false marks’’) per image, and (2) classiWcation schemes in

terms of the sensitivity for classiWcation and the speciWcity

(i.e., 1 minus the false-positive fraction). Figure 16.3 illustrates

free-response receiver-operating-characteristic (FROC) curves

for a mammographic mass detection algorithm. Various per-

formance indices exist for use in the evaluation of computer-

ized methods, such as receiver-operating-characteristic (ROC)

[9] and FROC analyses [10, 11]. Appropriate measures are

discussed in a paper by Metz [9]. These include the true-

positive fraction and false-positive fraction pair and ROC

analysis. The area under the ROC curve yields the performance

of a computerized classiWcation method [9]. Note that a partial

area index from an ROC curve is useful when evaluating a

system that requires a high level of sensitivity, such as in the

task of determining the likelihood of malignancy of lesions

seen on mammograms [12]. See Figure 16.4 for an example of

an ROC curve along with indication of the partial area index.

Comparison of diVerent computerized methods in mam-

mography is often not possible because of the use of diVerent

databases [13]. That is, it cannot be assumed that a compu-

terized scheme that achieves a high level of performance with

one database of mammograms will achieve a similar perform-

ance level with another database or with an actual patient

population. Nishikawa et al. [14] have shown the eVect of the

database on mass detection performance using FROC analysis

(see Figure 16.3). Use of a database containing very subtle cases

will yield a lower performance level. It is possible, for example,

that a computerized detection scheme could achieve a sensi-

tivity of 90% at two false positives per image with one database

and a sensitivity of 70% at two false positives per image with

another database. The characteristics of a database will inXu-

ence the training (i.e., the development) of a computer method

as well as its reported performance level. Databases can be

described by objective measures such as lesion size and con-

trast and by subjective measures such as subtlety for detection.

Lesion subtlety is a subjective measure that depends on the

particular observer who reports the subtlety rating, the speciWc

task, and the presence or absence of other images and/or

information.

Demonstration of robustness is important in order to assess

the usefulness and generalizability of a particular computer

analysis system across acquisition devices, institutions, and

case mixes. A mammographic mass classiWcation scheme was
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shown to be robust with respect to case mix and digitization

technique in Huo [15]. In that study, the investigators failed to

show a statistically signiWcant diVerence between the perform-

ance of the computer classiWcation method on the training

database in a round-robin evaluation and the performance of

the same computer method on an independent database digi-

tized on a diVerent digitizer.

How a database is used will also inXuence the development

and reported performance of a computerized method. For

example, in the training and testing of artiWcial neural net-

works, it is important that multiple images of the same lesion

be kept either in a training set or a testing set but not be spread

across both.

DiVerent scoring methods will also vary the performance of

a computerized method. For example, in the detection of

masses, some investigators use the percent of overlap between

the actual lesion and the computer-detected region as a means

of determining a true detection. It should be noted that there

are diVerent deWnitions of percent overlap. Some investigators

deWne overlap as the intersection of the two regions, whereas

other investigators deWne overlap as the intersection of the two

regions divided by the union of the two regions, the second

deWnition being a stricter criterion [1, 16].

How the actual ‘‘truth’’ is deWned for a particular interpre-

tation task will also aVect the performance of a computerized

method. For example, in the development of computerized

nodule detection methods, investigators have trained with

cancerous lung nodules, all lung nodules, and/or any ‘‘action-

able regions.’’ In addition, database collection may be hindered

by the rapid growth of the Weld of computed tomography

(CT) imaging, in which helical CT systems have evolved from

single-slice to 16-slice to now clinically used 64-slice scanners.

In addition, the choice of reconstruction algorithm for a

CT scanner will aVect the physical image properties and

visual appearance of the transaxial images obtained from the

CT scanner sinogram data [17]. Thus, it is expected that

variations in reconstruction algorithms may also aVect the

performance of computerized analyses. Investigators are

therefore examining the robustness of computerized lung

nodule detection schemes across reconstruction algorithms

and scanner type.

Computerized detection and diagnosis methods are evalu-

ated both in terms of the computer’s own performance as well

as in terms of the performance of humans using the computer

output as an aid in observer studies. In a sequential observer

study, radiologist observers interpret the medical image(s)

with just the image data, record their interpretations, and

then are shown the computer output. After seeing the com-

puter ‘‘interpretation’’ in terms of a symbol, numerical value,

similar images, or graphical presentation, the observer can

modify or keep his/her initial interpretation. Analysis of the

observer performance before and after use of the computer

output can yield information on the beneWt (or hindrance) of

the computer aid.

16.3 Computer-Aided Diagnosis
for Cancer Screening

Focused research on CAD started in the mid-1980s at the

University of Chicago with the investigation of CADe methods

for the detection of lesions on chest radiographs and mam-

mograms [18, 19]. Computerized detection of lesions (for

CADe) involves having the computer locate suspicious regions,

leaving the subsequent classiWcation of the lesion (e.g., prob-

ability of malignancy) and patient management decisions

to the radiologist. In such situations, the computer acts as

a second reader or a spell checker in the cancer screening

process. Once a possible abnormality is detected, its character-

istics must be evaluated by the radiologist in order to estimate

a likelihood of malignancy and to yield a decision on patient

management.

16.3.1 Breast Cancer: Mammography

While mammography is the best screening method for the

early detection of breast cancer, missed lesions do occur.

Misses of lesions on radiographic images may be due to the

presence of quantum mottle, overlapping normal structures,

or radiologists’ insuYcient search patterns and lapses in

perception. In addition, variability in mammographic image

interpretation among diVerent radiologists has been reported

[20, 21]. In screening programs, the detection of an abnormal-

ity is a tedious task, since although most cases are normal, each

requires a thorough review by the radiologists. Use of output,

however, from a computerized analysis of an image may help

the radiologist in detection or diagnostic tasks and potentially

improve the overall interpretation of medical images and per-

haps overall interpretation time.

One of the earliest published investigations into the com-

puterized analysis of medical images was reported in 1967 by

Winsberg et al. [22], which included a computerized method

comparing mammographic density patterns in various areas

within an individual breast and between right and left breasts.

With advances in computer vision, artiWcial intelligence, and

computer technology, along with recognized medical screening

needs and the availability of large databases of cases, the Weld

of CAD has grown substantially since the mid-1980s.

As noted earlier, CAD for the detection (i.e., localization) of

regions in an image suspected of possessing the disease has

been referred to as CADe in order to emphasize the detection,

rather than the characterization task. Algorithms for mammo-

graphic CADe include detection of mass lesions and clustered

microcalciWcations, which are two of the primary signs of

potential breast cancer. Radiographic mass lesions can be

detected and/or characterized by using the mathematical

descriptors of various features, including radiating patterns

of density (spiculation), margin sharpness, circumscribed

conWgurations, shape, bilateral asymmetries, local textural

changes, and temporal stability, as summarized elsewhere [1].
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Mathematical descriptors of calciWcations are based on the

radiographic presentation of individual calciWcation (e.g.,

shape, area, brightness) [1, 18, 23–25], the variation of indi-

vidual features within a cluster [26], the spatial distribution of

calciWcations within a cluster [26], and the knowledge that

clinically signiWcant microcalciWcations are clustered [27].

There are currently three computer-aided detection systems

approved by the U.S. Food and Drug Administration (FDA):

R2/Hologic, ISSI (Intelligent Systems Software Inc.)., and

Kodak, which are distributed on multiple vendor systems for

screen-Wlm mammography and full-Weld mammography

units. Various studies have shown that mammographically

detected cancers are visible in retrospect. Such ‘‘missed-lesion’’

databases have been used by manufacturers to demonstrate

their system’s performance for the FDA. Many investigators

have shown that computer detection can catch 50% to 90%

of missed cancers [13, 28, 29]. Websites of the various systems

describe performance as well as physical space requirements,

workXow aspects, and options.

Various clinical prospective studies of the use of computer-

aided detection systems have been performed. It is important

to note that proper use of a CADe output requires that any

initial human detected region/lesion remain as a detection

even if the computer does indicate the location. This is neces-

sary in order to ensure that the radiologists’ detection sensi-

tivity remains either constant or improves with the use of the

computer aid. There have been, in general, two types of clinical

studies of mammography CADe systems:

. Sequential assessment of a case that involves an initial

interpretation without computer aid followed by a view-

ing of the computer output, and a subsequent reinter-

pretation of the case with the computer aid

. Separate assessment of cases in which computer output is

not used within a practice for some set time period and

then the computer output is used clinically during a

subsequent time period

In one clinical study [30], radiologists interpreted 12,860

mammographic cases using a commercial CAD system alone

and then again with the computer output assistance. They

showed a 19.5% increase in cancer detection, along with an

18.5% increase in recall rate. Gur et al. [31] investigated the

eVect of introducing CAD into a radiology practice, and

initial results indicated that changes in cancer detection rate

and recall rate were not statistically signiWcant. In further

analysis of the data, low-volume radiologists showed a

19.7% increase in sensitivity with only a 14.1% increase in

call-back rate [30, 31]. To date, additional clinical studies

have been performed; these are listed in Table 16.1 [30–38],

which also gives the percent change in sensitivity and call-

back rate for each study. Note that if the ratio of percent

change in sensitivity to the percent change in call-back rate

is equal or greater than 1, then one can say that the use of

the computer output was beneWcial to the interpretation

process.

16.3.2 Lung Cancer: Single Projection
Radiography and Computed
Tomography

Lung cancer continues to rank as the leading cause of cancer

deaths in the United States [39, 40], and early detection may

allow more timely therapeutic intervention and thus a more

favorable prognosis for the patient [41–44]. Chest radiography

has been used for detection of lung nodules (i.e., potential lung

cancer) because of its low cost, simplicity, and low radiation

dose. Radiologists, however, may fail to detect lung nodules in

chest radiographs in up to 30% of cases that have nodules

visible in retrospect [45, 46]. CAD schemes for nodule detec-

tion on chest radiographs are being investigated [19, 47, 48],

since studies have shown that use of computer output can

improve radiologists’ detection accuracy [49–51] by providing

potential nodule sites.

A number of researchers have developed image analysis

methods for lung nodule detection on chest radiographs. In

1984, a CAD scheme [19, 52, 53] was developed at the Uni-

versity of Chicago, based on a novel diVerence image approach

to initially enhance nodules and suppress the surrounding

background (i.e., non-nodules). The performance of the

CAD scheme was improved by incorporation of an artiWcial

neural network (ANN) and linear discriminant analysis (LDA)

[54], an adaptive thresholding technique [55], and massive-

training artiWcial neural networks (MTANNs) [56]. By use

of the MTANNs, the false-positive rate of the CAD scheme

TABLE 16.1 Summary of clinical studies on CADe in

mammography�

Study No. of Studies % Change % Change

Sequential Unaided Aided

Cancer

Detected Recall Rates

Freer, 2001 12,860 12,860 19.5 18.5

Helvie, 2004 2,389 2,389 10 9.9

Birdwell, 2005 8,692 8,692 7.4 8.4

Khoo, 2005 6,111 6,111 1.3 5.8

Dean, 2006 9,520 9,520 13.3 26

Morton, 2006 21,349 21,349 7.6 10.8

Separate

Gur & Feig, 2004 (high

volume radiologists)

44,629 37,500 �3.32 �4.9

Gur & Feig, 2004 (low

volume radiologists)

11,803 21,639 19.7 14.1

Cupples, 2005 7,872 19,402 16.1 8.1

�From diVerent investigators using diVerent CAD systems: either diVerent

software versions or diVerent manufacturers, as well as either sequential or

separate study designs.
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was improved substantially, while the original sensitivity was

maintained, as illustrated in Figure 16.5.

The Wrst commercial CAD system (Riverain Medical,

Miamisburg, OH) received FDA approval for clinical use in

2001. The commercial CAD system was tested in a retrospect-

ive clinical trial and achieved a sensitivity of 65.0% with

5.3 false positives per image [57]. A study has shown that

radiologists’ performance was improved with the aid of

another commercial CAD system (Mitsubishi Space Software,

Japan) having a sensitivity of 73% with 4.0 false positives per

image [58].

One of the major challenges in current CAD schemes for

chest radiography is to achieve high performance, because

there are a large variety of normal structures similar to nodules

in chest radiographs [59]. It is diYcult to detect nodules over-

lapping with normal anatomical structures such as ribs and

vessels, which account for the majority of false positives [55,

59] and can result in lowering of the sensitivity as well as the

speciWcity of a CAD scheme. To address this issue, an MTANN

for suppression of ribs in chest radiographs has been developed

[60]. The MTANN suppresses rib opacity in chest radiographs,

whereas soft-tissue opacity is maintained (i.e., it produces

‘‘soft-tissue’’ images and ‘‘bone’’ images from standard chest

radiographs).

Because CT is more sensitive than chest radiography in the

detection of small noncalciWed nodules due to lung carcinoma

at an early stage [61, 62], lung cancer screening programs

are being conducted [61–67] with low-dose helical CT as the

screening modality. Thus, an active area of research in com-

puterized image analysis for lung cancer is in the use of

computers to aid in the detection of lung nodules on thoracic

CT. Even though the use of CT, as opposed to single projection

chest radiography, has helped remove much of the camouXag-

ing presence of overlapping structures, the detection of lung

nodules is still confounded by the presence of blood vessels. In

addition, radiologists’ readings of CT images are hindered by

the vast number of slices (images) generated by a CT scan, with

each requiring careful interpretations. This makes lesion

detection a burdensome task that is further complicated by

human fatigue and distractions. It is expected that a comput-

erized scheme for the detection of lung nodules on CT images

should help radiologists focus their attention on regions sus-

pected of being cancerous. This seems particularly advanta-

geous in potential low-dose CT lung cancer screening

procedures, in which most cases will be normal.

Various investigators have been developing methods for the

computerized detection of lung nodules on thoracic CT images

[17, 68–76]. Currently, methods include both two-dimensional

and three-dimensional analyses for the delineation of the lung

volume, the segmentation of pulmonary structures indicative

of an abnormality, and the extraction of features (i.e., math-

ematical descriptors of lung nodules). In order to reduce false-

positive detections (i.e., computer-indicated locations that in

fact do not correspond to lesions), investigators have used

ANNs to merge computer-extracted features and distinguish

nodules from normal structures such as blood vessels. Infor-

mation such as continuity between slices can also be used to

distinguish the tubelike structure of blood vessels from the

approximate spherical nature of nodules. Recently, MTANNs

[76] based on linear-output ANN models [77, 78] have been

developed for reduction of false positives. Unlike standard

ANNs with image features, the MTANN can learn image data

(a) (b)

FIGURE 16.5 Illustration of the eVect of MTANNs on the false-positive reduction in a CAD

scheme for nodule detection in chest radiographs. (a) CAD without MTANNs exhibits one true-

positive detection and six false-positive detections (indicated by arrow heads); (b) CAD with

MTANNs exhibits one true-positive detection (a small nodule in the left lung) and one false-

positive detection. Courtesy of K. Suzuki, University of Chicago.
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directly [79]; therefore, inaccuracies in extraction of image

features can be avoided. By use of the MTANNs, the false-

positive rate of the original CAD scheme was improved from

27.4 to 4.8 false positives per scan, while a relatively high

sensitivity of 80% was maintained [76, 80]. One of the advan-

tages of MTANNs is robustness against low-contrast nodules

such as ground-glass opacity, which is one of the major

sources of false negatives by radiologists [81], as illustrated in

Figure 16.6.

CAD schemes are being developed speciWcally for thin-slice

CT [82–84]. In thin-slice CT images, which may range from

1 to 2.5 mm, nodules as well as other normal anatomical

structures are more likely to be imaged on multiple contiguous

sections on the z-axis than those in thick-slice CT images (e.g.,

slice thickness of 5 or 10 mm). Therefore, three-dimensional

volume-processing techniques are applicable to computerized

CT analysis methods. A low partial-volume eVect is another

advantage of thin-slice CT images over thick-slice CT images.

Consequently, smaller nodules can be detected more reliably in

thin-slice than in thick-slice CT. The performance of these

CAD schemes is generally higher than that of CAD schemes

for thick-slice CT. As in thick-slice CT, a majority of false

positives are caused by lung vessels [84].

16.3.3 Colon Cancer: CT Colonography

While colon cancer is one of the leading causes of cancer

deaths, many can be avoided if precursor colonic polyps are

detected and removed. CT colonography (virtual colonoscopy)

is being examined as a potential screening device (and an

alternative to conventional colonoscopy) for the early detec-

tion of colonic polyps. When colorectal cancers are detected

at an early localized stage, the Wve-year relative survival rate

is 90% [39]. The American Cancer Society recommends

that a person at average risk for developing colorectal cancer

(beginning at age 50) have colorectal cancer screening.

A radiologist’s interpretation of a CT colonography exam can

be quite time-consuming, due to the potentially large number

of axial CT images (400–700 slices). In addition, the overload

of image data for interpretation may result in oversight errors.

Moreover, the diagnostic performance of CT colonography

varies across diVerent clinical trials [85, 86] and depends on

the radiologist’s experience. Thus, computerized image analy-

sis techniques are being developed to aid in the interpretation

of CT colonography images.

Various investigators are developing such computer algo-

rithms for the visual presentation of CT colonography images

for human interpretation [85–89] and for computerized image

analysis or CAD [90–98] to aid in the detection of colonic

polyps. CAD has the potential to (a) increase radiologists’

diagnostic accuracy in the detection of polyps, (b) decrease

reader variability, and (c) reduce radiologists’ interpretation

time when CAD is used during the primary read. An improve-

ment in radiologists’ detection performance can be achieved

because CAD can reduce perceptual errors during the detec-

tion of polyps. Decreased inter- and intrareader variability can

be achieved because CAD provides objective and consistent

results, while the performance of a human reader may be

inXuenced by dependence on skill and experience. Also, reduc-

tion of interpretation time can be achieved if radiologists focus

mainly on the small number of regions indicated by the CAD

scheme and quickly review the large portion of the colon that

is likely to be normal. It is important to note that in the

combined interpretation process, both the presentation of

a three-dimensional image dataset and the format of the

computer output are critical for accurate interpretation, user-

friendly implementation, and reduction in interpretation

times.

The computerized image analysis of CT colonography

images has various stages, including segmentation of the

colonic wall, detection of polyp candidates, reduction of

false-positive detections, and display of Wnal detection output.

In the computerized detection of the polyps, geometric fea-

tures of each voxel of the segmented colon are computed [94].

The geometric model for structures in the lumen of the colon

involves the calculation of a shape index in order to help

distinguish polyps (which are caplike structures) from folds

(which are elongated, ridgelike structures) [90, 94]. Subse-

quent mathematical descriptors are employed to eliminate

false-positive detections that are caused, for example, by

the presence of stool in the colon during imaging [96, 97].

Common sources of false positives generated by CAD schemes

are haustral folds, residual stool, extracolonic structures such

as small bowel and stomach, rectal tubes, and the ileocecal

valve. Among these, rectal tubes are relatively ‘‘obvious’’ false

FIGURE 16.6 Illustration of a thoracic CT image with a lung cancer

with pure ground-glass opacity that was ‘‘missed’’ in lung cancer

screening. CAD incorporating MTANNs correctly detected the lung

cancer (indicated by the circle). In an observer study, ten radiologists

failed to detect the cancer without CAD, whereas seven radiologists

were able to detect the cancer with the aid of CAD. Courtesy of K.

Suzuki, University of Chicago.
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positives; thus, radiologists may lose their conWdence in CAD

as an eVective tool if the CAD scheme consistently generates

them. To address this issue, further false-positive reduction

techniques employing an MTANN have been developed for

elimination of false positives due to rectal tubes [99]. An

example of the use of the MTANN is shown in Figure 16.7,

in which a polyp that was missed by radiologists in axial CT

colonography in a multicenter clinical trial was detected by the

computer. This illustrates that by improving the methods for

false-positive reduction, one may be able to relax criteria

earlier in the algorithm and thus improve sensitivity.

The performance of CAD schemes [90–99] ranges between

by-patient sensitivities of 70% and 100% for polyps 6 mm or

larger, with two to eight false positives per patient, based on

7–39 polyps in 8–20 patients. A meta-analysis of the reported

performance of CT colonography [100] showed that for

human readers, the pooled by-patient sensitivities for polyps

10 mm or larger and those between 6 and 9 mm were 88% and

84%, respectively.

16.4 Computer-Aided Diagnosis
for DiVerential Diagnosis

Once a possible abnormality is detected, its characteristics

must be evaluated by the radiologist in order to estimate a

likelihood of malignancy and to yield a decision on patient

management. Characteristics of the lesion may be evaluated

further by multiple imaging techniques, including special view

mammography, ultrasound, and magnetic resonance imaging

(MRI) in order to improve the positive predictive value for

biopsy recommendations.

16.4.1 Breast Cancer

The initial investigations into the use of computers in diag-

nostic mammography involved artiWcial intelligence tech-

niques to merge observations of image features made by

radiologists into useful diagnostic predictions [101, 102].

Ratings from the Breast Imaging Reporting and Data System

(BIRADS) [101] provided by humans have been analyzed by

computer for lesion characterization. However, in order to

eliminate the subjectiveness of human ratings and to more

fully automate lesion classiWcation, features extracted using

computer vision have been investigated as computerized diag-

nostic aids [1, 103–105]. Such mathematical descriptors may

characterize the lesion using features that radiologists can

visually extract, such as mass spiculation or distribution of

microcalciWcations; or they may characterize the lesion using

features that are not so visually apparent to a human observer,

such as those extracted using co-occurrence matrices. Com-

puter-extracted features can be obtained from standard mam-

mographic views (cranial–caudal and mediolateral oblique) as

well as from special-view mammograms and from prior mam-

mographic exams. Similar to Wndings vis-à-vis radiologist

performance, studies have demonstrated improved computer

performance in diagnosing lesions on special-view mammo-

grams as compared with standard views [103] and improved

performance when prior mammograms were also analyzed

[105].

In observer studies, computerized diagnostic methods have

been shown to aid radiologists in the task of distinguishing

between malignant and benign lesions [105–107]. Therefore,

use of a computer diagnostic aid has the potential to increase

sensitivity, speciWcity, or both in the workup of breast lesions.

Investigators have demonstrated that radiologists showed an

(a) (b) (c)

FIGURE 16.7 (a) CAD incorporating MTANNs has correctly detected a small (7 mm) sessile polyp that was missed

in a clinical trial and points to it with an arrow. (b) The polyp in the 3D endoluminal view. (c) 3D volume rendering

of the colon with three computer outputs indicated by white circles (the one in the rectum is a true-positive

detection, and the other two are false-positive detections). Courtesy of K. Suzuki, University of Chicago.
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increase in both sensitivity and speciWcity in the characteriza-

tion of clustered microcalciWcations and in the associated

recommendation for biopsy [106]. In addition, it was shown

that an improvement in performance can be obtained by both

expert mammographers and community-based radiologists

who used CAD information, with the increase greater for

the nonexperts [107]. In addition, use of computer output is

expected to reduce the variability among radiologists’ inter-

pretations [106].

The diagnostic workup of suspect breast lesions may also

include imaging with multiple modalities, such as sonography

and MRI. Breast sonography is used by many radiologists in

distinguishing between solid lesions and cysts, but diYculty

exists in distinguishing between benign solid lesions and can-

cerous lesions. CAD methods in breast ultrasound are being

explored by various researchers [108–117]. Mass lesions visible

at ultrasound can be classiWed by computer using a variety of

mathematical descriptors of texture, margin, and shape criteria

[108]. Observer studies investigating the performance of radi-

ologists using a computerized sonographic analysis method

and a multimodality CAD workstation demonstrated that the

use of computer-estimated probabilities of malignancy yielded

a statistically signiWcant improvement in radiologists’ per-

formances in the task of interpreting sonographic breast

images and multimodality breast images, respectively

[118–120].

Computerized analysis of MRI scans has multiple potential

beneWts due to the signiWcant variability in the assessment

of MRI lesions by radiologists and by the lack of standard

imaging protocols for breast MRI. Computer analysis of

lesions on MRI scans include morphological features, temporal

features, or combinations [121–125]. Temporal features such

as uptake or washout rates and time of peak enhancement can

be extracted from enhancement curves from either the entire

lesion in question or the most enhancing voxels in the lesion

(as demonstrated in Figure 16.8). It should be noted that the

application of computerized image analysis and CAD to 3D

breast MRI has the potential to improve both interpretation

performance and interpretation time.

While some features encountered in breast imaging, such

as margin sharpness, can be utilized across modalities, others

are peculiar to the imaging modality, such as the computer

characterization of the posterior acoustic behavior on ultra-

sound and the inhomogeneity of contrast uptake in breast

MRI. Thus, workstations capable of displaying both image

data and computer analysis output are necessary (these are

discussed in section 16.5).

16.4.2 Lung Cancer

In a screening program with low-dose helical CT in New York,

88% of suspicious lesions were found to be benign nodules on

follow-up examinations [126]. In a screening program in Japan,

only 10% of the scans with suspicious lesions were diagnosed

to be cancer cases [127]. According to Wndings at the Mayo

Clinic, 98.6% of nodules detected by a multidetector CT were

benign, and 1.4% of nodules were malignant [128]. Thus,

a large number of benign nodules are found with CT, and

follow-up examinations such as high-resolution CT (HRCT)

and/or biopsy are necessary. Therefore, CAD schemes for

classiWcation of nodules as benign or malignant would be

useful for reducing the number of ‘‘unnecessary’’ follow-up

examinations.

Some investigators have developed CAD schemes for clas-

siWcation of nodules in CT [129, 130]. This type of CAD

scheme generally provides radiologists the computer-estimated

likelihood of malignancy for assisting them in their task of

distinguishing between benign and malignant pulmonary nod-

ules on low-dose helical CT. One such CAD scheme for nodule

classiWcation involved the use of nodule segmentation, image

feature analysis, and LDA [130]. In a database consisting of 76

primary lung cancers and 413 benign nodules, a comparison of

this classiWcation scheme and an MTANN-based classiWcation

method was performed, yielding areas under the curve of 0.83

and 0.88, respectively [129, 130]. Similar results were obtained

in a study for the distinction between 183 benign and 61

malignant nodules in HRCT, as illustrated in Figure 16.9.

16.5 Intelligent Computer-Aided
Diagnostic Workstations:
Indices of Similarity and
Human/Computer Interfaces

CADe systems output the location of suspect abnormalities to

the radiologist by marks on display monitors, hard-copy Wlm,

or paper. Note that in the computer output for the detection of

potential lesions, both actual lesions and false positives are

indicated. Over the years, investigators have worked to increase

detection sensitivity while decreasing the number of false

marks per image. Investigators have also studied the necessary

sensitivity and false-mark rate for computerized detection

methods in order to yield improvement in radiologists’ per-

formance levels [131]. Sensitivity that is too low or the pres-

ence of too many false marks will yield computer output that

may be detrimental to radiologist performance.

Radiologists interpret cases rather than individual images;

thus, the computerized analysis of images can be case based as

opposed to image based. Computer analysis of multiple views

or multiple modalities, however, requires eVective and eYcient

displays in order to communicate the multiple images

and output to the radiologist. Research has been performed

to develop display interfaces, which would better present

the computer output to the radiologist [119, 132–134]. For

example, the output of a CADx system can be presented

in terms of numerical values related to the likelihood of
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malignancy, by displaying similar images of known diagnoses

or by a graphical representation of the unknown lesion relative

to all lesions in a known database (an online atlas) [119, 134].

Searching within an online image atlas can be performed based

on individual features, on a likelihood of malignancy, or on

psychophysical measures of similarity [119, 134]. Figure 16.10

shows a computer interface that displays similar images and

uses color coding to indicate whether the similar images are

malignant (red outlines) or benign (green outlines). In add-

ition, the probability of malignancy of the unknown case can

be shown relative to the probability distributions of all the

malignant and benign cases in the known database. The po-

tential of this interface as an aid in the diagnostic interpre-

tation of lesions by radiologists has been shown for both

mammography alone and for a combined mammography

and sonography display [119].

(a)

(b)

(c) (d)

FIGURE 16.8 Illustration of a kinetic analysis for breast MRI CAD using a kinetic curve identiWcation

method. (a) 3D breast MRI Wrst postcontrast series displayed as multiple slices, with a malignant mass lesion

segmented by a radiologist. (b) Color-encoded membership map from fuzzy cluster-means (FCM) analysis

overlapped on the original lesion marking the most enhancing regions in the lesion. (c) Detected prototype

curves within the lesion. (d) The characteristic kinetic curve identiWed by the FCM method (solid line) and

the curve obtained by averaging over the radiologist-outlined lesion region (dashed line). Reprinted with

permission from Swensen et al. [126].
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0.260.26

0.93

(a) (b)

FIGURE 16.9 Illustration of benign and malignant nodules in HRCT with a computer-estimated

likelihood of malignancy. (a) Malignant nodule with a high computer-estimated likelihood of

malignancy. (b) Benign nodule with a low computer-estimated likelihood of malignancy. It should

be noted that average conWdence ratings by 16 radiologists in an observer study were 0.49 and 0.46

for (a) and (b), respectively. Courtesy of K. Suzuki, University of Chicago.

FIGURE 16.10 Display interface for a multimodality workstation that displays computer outputs in numer-

ical, pictorial, and graphical modes for both mammography CADx output and sonography CADx output.

Sonography CADx output is shown in the Wgure. Courtesy of M. Giger, University of Chicago. For a more

detailed view of this figure, please visit our companion site at: http://books.elsevier.com/companions/

9780123735836.
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16.6 Summary

Limitations in the human eye/brain visual system, the pres-

ence of overlapping structures in images, and the vast num-

ber of normal cases in screening programs provide

motivation for the use of computer techniques that have

the potential to improve detection and diagnostic perform-

ance, and ultimately patient care. The ultimate success of

computerized image analyses in the interpretation of medical

images depends on both the ability of the computer systems

that extract and characterize suspect lesions and the ability of

radiologists to incorporate the computer output into their

decision making. The clinical usefulness of computer-aided

detection for screening mammography is being tested by

actual prospective clinical usage of commercial systems. In

addition, various observer studies for computer-aided diag-

nosis indicate the promising role of computer interpretation

aids in diagnostic workup. For thoracic CT and CT colonog-

raphy for the early detection of lung cancer and colon

cancer, respectively, eVective and eYcient displays are also

needed to help the radiologist incorporate the computer

output into the three-dimensional image data. The develop-

ment of computerized techniques for aiding in the interpre-

tation of medical images is progressing rapidly, and ultimate

incorporation into routine clinical care is expected in the

near future.

16.7 Exercises

1. List and discuss three motivations for the use of CADe in

cancer screening programs.

2. List four major steps in a computer algorithm for CADe.

3. Discuss the trade-oV between true-positive detections and

false-positive detections in CADe.

4. Explain the diVerence between CADe and CADx.

5. Discuss the two types of clinical studies for evaluating the

usefulness of CAD.
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17.1 Introduction

Decision-making is central to the activities of clinical pro-

fessionals in their dealings with patients. Decisions need

to be made when diagnosing the state of the patient, in plan-

ning and adjusting therapy, and in monitoring the evolving

patient state. Over recent decades, a range of computational

methods and tools has been developed to support the clinician

in these tasks. In general their purpose is not to replace or

substitute for human abilities or skills, but rather to oVer

support and assistance. Given the increasing importance

of information and communications technologies in the

infrastructure of health care organization and delivery, it is

important that clinicians, allied health care professionals, and

others associated with health care be aware of such computa-

tional methods and techniques that can support the decision-

making processes. This is the motivation for this present

chapter.

The aim of the chapter is to provide an overview of the

decision-making process, the need for support in such activ-

ities, and the broad range of methods and techniques that are

now available. SpeciWc objectives include reviewing the nature

of the decision-making process, providing a structure in terms

of which decision support systems can be classiWed, and

providing examples of the application of a number of such

decision support techniques in the clinical setting.
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The chapter begins with an overview of the decision-making

process and the context of decision support. This is followed

by an outline of the nature of human diagnostic reasoning,

models of the reasoning process, and issues to be considered in

the clinical setting. A structure is then presented for character-

izing clinical decision support systems (CDSS). In this section,

the broad range of conceptual, methodologic, and technical

approaches is reviewed, demonstrating their bases and some of

their particular strengths and limitations. A range of applica-

tions of decision support systems is then considered: Wrst in

hospital and other health care settings and then in relation to

medical education. Finally, the major topic of evaluating deci-

sion support systems is addressed, including relevant legal and

ethical issues.

17.2 Overview of Clinical Decision
Support Systems

17.2.1 What Is the Decision-Making Process?

Decision making in the clinical context can be seen as an

integral part of the overall care delivery process by considering

the simple feedback model shown in Figure 17.1. Here the

clinical decision maker receives data and information regard-

ing the state of the patient, and by comparing these current

data with past data and a desired state of the patient, using

relevant models, determines an appropriate decision action.

This decision is then carried out, for example, by other mem-

bers of the health care team. The result is a change in some

attributes of the patient state, either in terms of state of

knowledge diagnostically in response to test or investigation,

or state of well-being following therapeutic intervention.

Feedback, via appropriate information systems, enables the

decision maker to review or update the decision as necessary.

Classically, the decision-making process starts with the rec-

ognition of the need for a decision, be this diagnostic or

therapeutic. The need for a decision then implies that there

are a number of alternative courses of action. These alterna-

tives are generated and then assessed. A choice is then made

among these alternatives, adopting that which is best in terms

of the criteria used to assess worth or value of outcome. The

chosen alternative is then implemented. Finally, on the basis

of feedback from the result of the decision (as depicted in

the feedback loop shown in Figure 17.1), the decision maker

is able to learn from the process and hence may be able

to enhance future performance. Further elaboration of the

decision-making process is presented in section 17.3.

17.2.2 Who Needs Decision Support?

Decision making is central to the organization and delivery of

health care. Hence, decision makers are to be found at all levels

of health care operation. At the strategic level, policy makers

are making investment decisions relating to new health care

facilities and provision, including those relating to public

health. Operationally, health care professionals, both clinicians

and allied health professionals, are making diagnostic and

therapeutic decisions so as best to manage the individual

patient. In the arena of chronic disease, in particular, increas-

ingly patients both wish to, and are encouraged to, be involved

in the management of their condition, as are their family

members and care givers.

Decision making is thus an activity that involves health

managers and policy makers, health care professionals of all

grades, patients, and their care givers among others. Hence

all may beneWt from support in relation to the decisions

needing to be made. Clearly this need for support will vary

according to the particular situation and circumstances.

However, the domain of decision support is, in principle,

something that may be of interest to all involved in the

organization and delivery of health care.

17.2.3 What Decisions Need Supporting?

In terms of the needs of the individual patient, clinical decision

making includes diagnosis, prognosis, and therapy. Such

decisions will relate to diVerent stages in the patient’s journey

through the health care system. Decisions will also have diVer-

ent degrees of urgency with regard to time. At the one end of

the spectrum are life-threatening and traumatic events where

almost instantaneous decisions need to be made, while at the

other, there is the more relaxed time scale of decisions involved

in changing the medication necessary to manage a chronic

disease such as diabetes or hypertension. This time factor will

inXuence the extent to which decision support techniques can

be employed. When time is of the essence, it may just not be

practicable to enjoy the luxury of formal decision support.

Diagnostic, prognostic, and therapeutic decisions relate to

managing the individual patient. There are also decisions to be

made at policy, management, and resource levels. Can a
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national health service make a costly new drug routinely avail-

able for managing a life-threatening condition? What will be

the consequences for clinical outcomes of closing a community

hospital? What level of nursing support should be provided in

a ward of elderly confused patients? These are decisions where

formal decision support techniques can play an equally im-

portant role.

In the sections that follow, emphasis will be placed on the

role of decision support systems in the management of the

individual patient. However, it needs to be borne in mind that

many of the methods and techniques discussed are equally

relevant to decision making in management, policy making,

educational, and research contexts.

17.3 Human Diagnostic Reasoning

17.3.1 Clinical Reasoning and Decision Making

As discussed earlier, one aspect that distinguishes clinical rea-

soning and decision making from many other arenas is that

frequently a decision has to be made, often with incomplete

information, in a very limited time frame. The luxury of time

to make a well-informed and complete decision is not always

an option when a patient’s welfare is at stake. In an acute

situation, the patient’s condition may be rapidly changing.

Therefore, any delay in decision making could result in further

deterioration of their condition and, in eVect, a new decision-

making situation. Additionally, once a decision has been made,

it is not always easy, or possible, to reverse that decision. This

could be the result of the eVects of the treatment on the

patient, such as drugs or surgery, again creating a new decision

scenario. The ingredients of diagnostic reasoning will now

be considered.

17.3.2 Deductive, Inductive, and Abductive
Reasoning

Deductive reasoning is perhaps the most mechanical reasoning

process. It seeks to identify a set of rules which, if followed, will

result in the best possible decisions on average or in the long

run. For example, condition B is a consequence of symptom A.

Inductive reasoning recognizes that people do not always

follow deductive rules and instead use experience and gut

feeling to reach a decision or diagnosis. This is particularly

true in clinical decision making, where knowledge of previous

cases is frequently used to resolve the current situation. An

example of this would be that in the clinician’s experience most

patients with symptom A have condition B.

Abductive reasoning begins with a set of facts and derives

the most feasible explanations. The process works in the

reverse direction to the previous two forms of reasoning.

For example, symptom A is an explanation of condition B.

A more realistic situation for real-world cases would be a

combination of the above scenarios, for example a set of rules

combined with experience and gut feelings.

17.3.3 Models of Diagnostic Reasoning

The above concepts can be combined to provide a model for

diagnostic reasoning as shown below in Figure 17.2 (1). A

patient comes to the physician with a set of symptoms, and

abductive reasoning is used to choose possible causes that

could account for the data. This process may result in a

number of possible diagnoses for the patient’s illness. Deduc-

tive reasoning can then be used to decide which symptoms

would be present if the patient had each condition. This may

result in further tests (requests for new data) to repeat the loop

and test the hypothesis. Inductive reasoning is used to evaluate

test results and either conWrm or reject the hypothesis. Another

possibility is to request further data. An additional aspect of

the model is the ability to simulate a possible diagnosis to

explore accuracy with the expected data.

Other models of diagnostic reasoning include association-

based diagnosis, pathophysiologically based diagnosis, and

pattern classiWcation diagnosis. Descriptions of these can be

found in Deutsch et al. [1].

17.3.4 Causal Reasoning

An alternative way of expressing reasoning is with causal

relationships between events, where one event is caused by

the occurrence of another event. An example of this could be

the presence of high blood pressure being caused by heart

disease. Causal beliefs are expressed using conditional state-

ments with a probability being deWned for the connection.
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FIGURE 17.2 Model of diagnostic reasoning. Adapted from

Deutsch et al. [1].

17 Clinical Decision Support Systems 377



An interlinked number of these causal beliefs are known as

Bayesian networks or causal probabilistic networks. They are

popular because they represent uncertainty in medical know-

ledge in an eYcient manner. Variables are represented by nodes,

and the causal relationships between these are represented by

directed arcs linking the nodes. Uncertainty is represented by

probability distributions on the states of each arc. The relation-

ships between nodes are represented by conditional probability

tables, and model inference is performed using Bayes’ theorem.

In the context of medical decision making, Bayesian net-

works can be easily integrated with decision theory to yield

models for the selection of optimal treatments, or to develop

models for health care planning under uncertainty. For a more

detailed description of causal reasoning, the reader should

consult Pearl [2].

17.3.5 The Decision-Making Process

The decision-making process itself can be broken down into

four stages. These will now be introduced and explained. The

Wrst stage identiWes the need for a decision, clearly deWnes the

problem to be addressed, and then concerns the collection of

knowledge relevant to solving the problem. This knowledge

collection may include a critical literature review, using

evidence-based medicine techniques, or discussions with

colleagues.

The second stage involves creating a range of possible

decision alternatives to resolve the problem identiWed in the

Wrst stage. The set of possible decisions could be large, so

the most realistic candidates are initially considered. It should

be noted that making no decision could be classed as a possible

strategy.

The third stage involves the evaluation of each of these

possible candidates by considering the consequences and

potential repercussions involved in following each strategy.

The areas that would be considered in this aspect could include

ethical, technical, cost, and political issues as well as long-term

beneWts for both the patient and his or her family. While the

detailed consideration of each possible candidate decision may

be thought time consuming, it does have the additional merit

of allowing the development of suitable contingency plans

should circumstances change or if the preferred decision

proves to be incorrect.

The last stage of the decision-making process is the making

of the actual choice between the possible candidates. The

beneWts, likelihood of success, risks, and costs are all consid-

ered, and a selection is made based on the most appropriate

choice of action.

This process has been described as a single loop process, but

in some situations it may be possible to revisit the earlier stages

and revise the details based on the results from the later stages.

For example, on considering the possible alternative strategies,

it may be realized that the initial problem was ill-deWned and

needs to be reconsidered. Figure 17.3 illustrates the process.

17.3.6 Clinical Judgment, Uncertainty, and Bias

The classical approach to decision making is based on the

assumption that the decision maker can identify and evaluate

all possible alternatives and their consequences and rationally

make a choice as to the most appropriate course of action.

However, the true state of the problem cannot be observed

directly. For example the diagnosis of an illness may require

testing for further clariWcation, and this can introduce uncer-

tainty, in terms of the accuracy of the test, to the decision-

making process. As a result, the decision maker has to use

knowledge that potentially may be imperfect, and so an ele-

ment of uncertainty is introduced into the process. A funda-

mental problem with uncertainty is the subjective nature of the

terms used. What might be highly probable to one person may

be classiWed as quite unlikely by another. The accepted way to

express this uncertainty is in probabilistic terms. For the above

example, this would be the speciWcity and sensitivity of the

test. In more general cases, it may be the probability that a

patient with a set of symptoms has a certain disease. The

subjective nature of general terms for expressing uncertainty

remains a concern in most clinical decision making.

A further impediment to the classical decision-making

approach is bias, an unfair preference or dislike for a particular

choice. Bias can be categorized into a number of diVerent

classes:

. Representative bias: Bias resulting from the tendency to

generalize from a small sample or from a single salient or

vivid event or episode

Problem
definition

Possible decision
strategies

Evaluation of
possible decisions

Final choice

Action

FIGURE 17.3 Decision-making process.
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. ConWrmation bias: Seeking evidence supporting a belief

and not data that test competitors

. Omission bias: The decision maker feels more responsible

for harms caused by action rather than by inaction and as

a result tends to omit potentially harmful actions and so

avoids potentially beneWcial actions in a trade-oV.

. Illusion of control: Bias resulting from the tendency to

overestimate one’s ability to control activities and/or

events

. Prior hypothesis bias: Bias resulting from the tendency to

base decisions on strong prior beliefs, even if evidence

shows that those beliefs are wrong

. Groupthink: Biased decision making that occurs in

groups whose members strive for agreement at the

expense of accurately assessing the information relevant

to the decision being made

17.4 A Structure for Characterizing
Clinical Decision Support Systems

Decision support systems for application in the clinical do-

main have exploited a wide range of conceptual, methodologic,

and technical approaches. This section will brieXy look at this

range of approaches, showing how they can be classiWed and

describing the basis of the major categories of technology that

have been adopted in their formulation.

17.4.1 Active, Semi-Passive, and Passive Systems

One classiWcation schema that can be adopted is that of

passive, semi-active, and active decision support systems.

Active systems include those in which one or more feedback

control mechanisms are employed, for instance to administer

drug therapy in a closed-loop conWguration. Examples have

included the administration of sodium nitroprusside to the

patient in intensive care following cardiac surgery as a means

of controlling blood pressure [3]. The automatic controller in

the feedback loop that comprises patient, sensor, controller,

and actuator (drug infusion pump) adjusts the rate of drug

delivery to achieve a given pattern of control in accordance

with rules or algorithms proposed by the expert clinician.

In this feedback conWguration, the clinician is able to override

the automatic mechanisms, so as to retain responsibility for

decision making as appropriate.

Semi-active systems include alarms and alerts, indicating to

the clinical decision maker that a problem may exist with the

patient that requires a decision-making input. Examples span

the full clinical spectrum, from those in the context of deliver-

ing anesthesia to the patient in the operating room to those

now being adopted in situations of home telecare. These could

include the patient with diabetes transmitting home-moni-

tored blood glucose data to the clinical center, where auto-

mated analysis of such data could Xag undesirable patterns of

hyperglycemia or hypoglycemia that require a clinical decision

regarding changes to the insulin regimen of the patient in

question.

Passive systems include those that operate in a consulting

mode and those that adopt a critiquing style. Consulting

systems are, in essence, advisors. They accept patient-speciWc

data, ask questions, and suggest problem-speciWc recom-

mendations as requested [1]. In addition to needing patient-

speciWc data, critiquing systems require the clinician to provide

the diagnostic conclusion that is thought to be correct or the

patient management action that is intended to be taken. The

decision support system evaluates the conclusions and pro-

posed decisions and expresses agreement or critique as appro-

priate. Whatever the outcome, the critiquing system can

suggest alternatives.

If the decision support system is linked to the electronic

medical record that contains patient data and the management

actions being proposed by the clinician, then that system can

automatically evaluate patient management. This integration

of decision support system and medical record can reduce

the need for repeated data entry, because patient data are

available from the electronic record or have been entered

directly from clinical instruments, for example in the critical

care environment [4].

It should be noted that critiquing systems, when linked to

electronic records, can also operate in semi-active mode.

In this way, they act like watchdogs by providing warnings

when they observe speciWc events or data combinations in the

patient’s clinical history that are likely to result in unwanted

eVects. They can also produce reminders to focus the attention

of the clinician on problems that might otherwise be over-

looked, or to suggest alternative actions if appropriate. A

classic example would be the case of a clinical laboratory

system that Xagged abnormal laboratory values or reminded

the physician of the need to retest some laboratory values [5].

17.4.2 Analytic (Mathematical) Models

Analytic models comprise qualitative and quantitative math-

ematical models that can aid the decision maker by predicting

the future state of the patient, and its evolution, based on the

present state and a representation of what has passed (system

dynamics). Such models include representations of system

behavior that allow test signals to be used so that the response

of the system to various disturbances can be studied to make

predictions of the evolving patient state [6].

Qualitative models can be used to explore time-dependent

behavior by representing the patient state trajectory as a set of

connected nodes, where the links between the nodes reXect

transitional constraints placed upon the system. Classic

examples of such qualitative dynamics include the early work

of Kuipers [7]. Such models can be used to support decisions

involving assessment of patient state and therapy planning.
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In the case of diagnostic assessment, the causal mechanisms of

the disease process are deWned by the precursor nodes and the

pathway to the node (decision) of interest. With regard to

therapy planning, the desired therapy can be prescribed by

investigation of the utility values associated with each link in

the disease–therapy relationship. These utility values refer to a

cost function, where cost can be deWned as the monetary cost

of providing the treatment and cost beneWt to the patient in

terms of eYciency, eYcacy, and eVectiveness.

Quantitative models typically provide their representation

in the form of diVerential and auxiliary equations. When the

parameters of such a model are tuned to match the character-

istics of the individual patient, simulation studies enable the

model to be run under diVerent scenarios, for example diVer-

ent regimens of drug therapy. In this way, the clinical user can

gain insight about the impact of such change in therapy on key

physiologic variables, another form of decision support.

An example of such quantitative modeling is that of

Coleman and Gay [8] in relation to the human cardiovascular

system. The model can predict changes in arterial pressure,

cardiac output, and total peripheral resistance in response to

several challenges. It is worth noting, however, that when

examining the behavior of physiologic systems in the context

of decision support, clinicians generally prefer to use symbolic

descriptions of continuously varying quantities, such as

direction of Xow or increasing or decreasing quantities rather

than dealing with numeric values as such. In addition, they

also tend to replace mathematical equations by qualitative or

logical functional constraints that hold among variables and

govern their temporal evolution [1].

Quantitative mathematical models can also form an integral

part of an active decision support system. One example is that

of a nonlinear model-based predictive controller that has been

developed to maintain normal levels of blood glucose in sub-

jects with type 1 diabetes during fasting conditions such as an

overnight fast [9]. The controller employs a compartmental

model which represents the glucoregulatory system. It includes

submodels for the absorption of subcutaneously administered

insulin and for gut absorption. The controller uses Bayesian

parameter estimation to determine time-varying model

parameters. The model makes predictions of blood glucose

over the following 15-minute interval. These predictions are

used to adjust the dosage of insulin administered by pump

to the patient to achieve and maintain the desired blood

glucose level.

17.4.3 Decision Theoretic Models

Decision theoretic models in the clinical context include algo-

rithms, decision trees, and inXuence diagrams. Let us consider

each of these.

The clinical algorithm is a means of structuring the diag-

nostic or therapeutic decision problem in the form of a clas-

siWcation tree. The root of the tree represents some initial state,

and the branches yield the diVerent options available. In its

operation, the choice points of the clinical algorithm are

assumed to follow branching logic. Hence, the algorithm con-

sists of a set of questions that must be collectively exhaustive

for the particular clinical domain. Equally, the responses avail-

able to the clinician at each branch point in the tree must be

mutually exclusive. This rigid formalism means that there is

only a limited range of well-deWned and constrained clinical

decision problems that can be addressed, given the lack of

Xexibility in the formalism. Nevertheless, the approach has

been widely applied, with examples ranging from acid–base

disorders [10], the diagnosis of mental disorders [11], and at

the site of occurrence of major accident and trauma [12].

The decision tree appears in some ways to be of similar

structure to the clinical algorithm but is more rigorous as a

means of classiWcation. Key features are the calculation of

likelihood and cost-beneWt for each choice to provide a quan-

titative measure for each available option. This enables opti-

mization procedures to be used to gauge the probability of

success for the correct diagnosis or for a beneWcial outcome on

the basis of the chosen therapeutic action.

In terms of structure, the decision tree also diVers from the

clinical algorithm in that the tree contains two types of branch-

ing points. At a decision node, the clinician must decide on

which choice (branch) is appropriate for the given clinical

scenario. At chance nodes, the responses available have no

clinician control. For example, the response may be due to

patient-speciWc data, and outcome nodes deWne the chance

nodes at the leaves of the decision tree. That is, they summarize

a set of all possible clinical outcomes for the chosen domain

[6]. An example of a simple decision tree is shown in Figure

17.4.

The possible outcomes from each chance node must obey

the rules of probability and add up to unity; the probability

assigned to each branch reXects the frequency of that event

occurring in a general patient population. It follows that these

probabilities are dynamic (i.e., can be updated), with accuracy

increasing as more evidence becomes available. A utility value

can be added to each of the outcome scenarios. These utility
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measures reXect a trade-oV between competing concerns, for

example, survivability and quality of life, and may be assigned

heuristically.

The detailed methodology of this analysis using decision

trees is described in many classic works, including those of

Sox et al. [13] and Llewellyn and Hopkins [14], which contain

many worked examples. However, a very wide range of prac-

tical clinical applications is now to be found in mainstream

clinical journals, particularly Medical Decision-Making. One of

the main reasons for the increased interest in this modeling

approach has been the desire to contain the costs of medical

care while maintaining clinical eVectiveness and quality of

care. In the United Kingdom, this is reXected in the establish-

ing of the National Institute for Health and Clinical Excellence

(NICE) (www.nice.org.uk). Cost-eVectiveness analysis is an

extension of decision analysis and compares the outcome of

decision options in terms of the monetary cost per unit of

eVectiveness. Thus, it can be used to set priorities for the

allocation of resources and to decide between one or more

treatment or intervention options. It is most useful when

comparing treatments for the same clinical condition. Detailed

descriptions of cost-eVectiveness analysis and its implications

can be found in Gold et al. [15] and Sloan [16].

InXuence diagrams provide a further form of representa-

tional model as a means of solving decision problems. As a

graphic model, they in essence complement the decision tree,

providing a diVerent graphic representation of the same math-

ematical model and operations on it. The classic examples of

the role of this modeling approach being applied in the med-

ical domain are to be found in Owens et al. [17] and Nease and

Owens [18].

17.4.4 Statistical Models

Statistical models are widely adopted in decision support

systems, with the more important approaches including the

following.

Database searching: large clinical databases when appropri-

ately examined can yield statistical evidence that is of value

diagnostically. In some cases such evidence can form the basis

of rule induction for the creation of expert systems. However,

the most direct approach for clinical decision making is to

determine the relative frequency of occurrence of an entity, or

more likely group of entities, in the database of past cases (the

frequentist approach). This enables a prior probability meas-

ure to be estimated [19]. A drawback of this simple, direct

approach to problem solving is that the greater the evidence

that is available, the fewer the number of matches in the

database that will be found. This is counter to the common

wisdom that more evidence leads to an increase in probability

of a diagnosis being found. Moreover, such a simple approach

lacks any weighting of the individual pieces of evidence. Hence

it is not possible to judge which are more signiWcant in relation

to patient outcome.

Database searching was one of the earliest statistical

approaches to be adopted. However, interest in this approach

has been rekindled with the completion of the human genome

sequence. For example, methods are being developed for

Wnding data, such as single nucleotide polymorphisms, in

the many genetic database resources that are distributed

throughout the world [20].

Regression analysis can be used to model the relationship

between a response variable of interest and a set of explanatory

variables. This involves adjustment of the regression coeY-

cients, which are the parameters of the model, until a best Wt

to the data set is achieved. This type of model improves on the

use of relative frequencies, as 1ogistic regression explicitly

represents the extent to which elements of evidence are

important in the value of the regression coeYcients. Examples

can be found in a wide range of clinical applications, with one

of the classics being found in the domain of gastroenterology

[21].

Statistical pattern analysis is an important tool in support of

decision making. In this way, the recognition of patterns in

data can be formulated as a statistical problem of classifying

the results of clinical Wndings into mutually exclusive but

collectively exhaustive decision regions. This enables physiolog-

ic data to be classiWed as well as the disease states that they

give rise to and the therapy options available to treat the

disease. The approach has found widespread clinical applica-

tion, ranging from the analysis of cardiac rhythms to the

treatment of head injuries. The methods used to distinguish

patterns in data rely on discriminant analysis, which involves

obtaining measures of separability between class populations.

The pattern recognition problem can be considered as a

two-stage process as shown in Figure 17.5. The pattern vector,

P, is an n-dimensional vector derived from the data set used.

Let us deWne the pattern space as Yp, which is the set of all

possible values P may assume. The pattern recognition prob-

lem can then be formulated as Wnding a way of dividing Yp

into mutually exclusive and collectively exhaustive regions. In

the case of analysis of the electrocardiogram, for instance, the

complete waveform could be used to perform classiWcations of

diagnostic value. A complex decision function would probably

be required in such cases. In some cases, however, it might be

appropriate to simplify the pattern vector to investigation of
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FIGURE 17.5 The basis of pattern recognition.
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subfeatures within a pattern. For example, in cardiac arrhyth-

mia analysis, only the R–R interval of the electrocardiogram

is required, which allows a much simpler decision function to

be used. This may be a linear or nonlinear transformation

process:

X ¼ tP;

where X is termed the feature vector and t is the transfor-

mation process [22].

Just as the pattern vector P belongs to a pattern space YP, so

the feature vector X belongs to a feature space YX. Because the

function of feature extraction is to reduce the dimensionality

of the input vector to the classiWer, some information is lost.

ClassiWcation of YX can be achieved using numerous statistical

methods including: discriminant functions (linear and poly-

nomial), kernel estimation, k-nearest neighbor, cluster analy-

sis, and Bayesian analysis [22].

Markov models are generally used as a means of represent-

ing stochastic processes (random processes that evolve over

time). As such, they are particularly suitable to describe the

progression of diseases that can be divided into distinct states,

with transition probabilities being assigned for transitions

between these states. A simple example of a three-state

Markov model is depicted in Figure 17.6, showing the possible

transitions between the states characterized by the relevant

probabilities.

A number of assumptions underpin the Markov model. It is

assumed that there are a Wnite number of distinct health states

and that the state transition probabilities remain constant.

Moreover, history is ignored, meaning that the probability of

moving from one state to another is independent of any

history prior to being in that initial state. It is a discrete time

model, meaning that transitions between states occur at equal,

speciWed time intervals.

As well as being used to model disease progression in a

patient, Markov models can also be used to model hospital

stay as a set of daily transitions among the diVerent states.

Disease states represent clinically and economically important

events in the disease process. Time is divided into discrete

periods termed a Markov cycle. Probabilities of transitions

refer to one Markov cycle. Suppose that estimates of param-

eters such as resource use (costs) and health outcome conse-

quences (e.g., quality-adjusted life estimates) are attributed to

the states and transitions (e.g., drug eVectiveness, discount

rates) in the model. If the model is then run over a large

number of cycles, estimates can be made of the long-term

costs and outcomes associated with the disease and drug inter-

ventions [23]. This is one example of the use of such a model

in a decision support role, enabling the consequences of

parameter changes to be investigated.

Bayesian analysis is one of the most widely adopted

approaches used in the development of decision support sys-

tems. In essence, it is an example of a parametric method of

estimating class conditional probability density functions.

Clinical knowledge is represented as a set of prior probabilities

of diseases to be matched with conditional probabilities of

clinical Wndings in a patient population with each disease.

The classiWcation problem becomes one of a choice of deci-

sion levels, which minimizes the average rate of misclassiWca-

tion or minimizes the maximum of the conditional average

loss function (the so-called minimax criterion) when informa-

tion about prior probabilities is not available. Bayes’ rule is the

optimal decision rule that minimizes the average rate of mis-

classiWcation. It serves as the inference mechanism that allows

the probabilities of competing diagnoses to be calculated when

patient-speciWc clinical Wndings become available.

Bayesian classiWcation is not dependent on the availability of

a large clinical database of past cases. Hence, less time is taken

in reaching a decision as compared with other database search

techniques. Moreover, classiWcation errors resulting from the

use of inappropriate clinical inferences are quantiWable. A

limitation of the approach, however, is the assumption that

the disease states are considered to be complete and mutually

exclusive, assumptions which in reality may not be valid.

The early classical clinical application was that of De

Dombal and colleagues [24] in relation to the diagnosis of

acute abdominal pain. It is worth noting that from the date

of the above publication it took a further 20 years for it to be

accepted via a multicenter multinational trial.

Bayesian methods continue to Wnd widespread application

in the clinical domain. In some instances, this is as a single

method. In other cases, it forms part of a multimethod

approach, for example, for insulin sensitivity [25]. It is also

widely adopted for the analysis of clinical trial data [26, 27].

Bayesian decision theory also Wnds application in health care

technology assessment [22] and is used to analyze economic

models that aid decisions about whether new health care

technologies should be adopted and the resources that should

be allocated [28]. Examples relating to clinical trials and health

care technologies more generally can be found in O’Hagan and

Stevens [29] and Claxton [30]. These include both the issue of

whether a new technology should be adopted immediately and

whether there is a need for more research prior to reaching a

decision.

The Bayesian approach has a number of advantages over the

frequentist approach. It allows knowledge to be accumulated

and updated by making use of the prior distribution. It yields

more Xexible inferences and emphasizes predictions rather
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FIGURE 17.6 Three-state Markov model.
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than hypothesis testing. It is relatively simple to estimate

probabilities involving multiple end points. Finally, it provides

a solid theoretical framework for decision analyses and

decision support.

17.4.5 Rule-Based and Network-Based Systems

Rule-based systems represent knowledge to inform the deci-

sion-making process in the form of production rules. One of

the classic early systems was MYCIN developed by ShortliVe

[31], and this will be used to illustrate the underlying

approach. The application domain in this case was the iden-

tiWcation of organisms causing microbial infection and the

recommendation of appropriate treatment.

The causal relationships between individual items of factual

knowledge held in the knowledge base are represented by

production rules of the following form: If premise assertions

are true, then consequent assertions are true with conWdence

weight X.

The measure of certainty attached to each rule aids the

reasoning strategy of the system. This measure ranges from

�1 corresponding to complete disbelief to þ1 corresponding

to complete belief in the consequent assertions. The assertions

can be Boolean combinations of clauses, each of which consists

of a predicate statement triple: attribute, object, value. For

instance, (Gram’s stain, Escherichia coli, gramneg) indicates

that the Gram’s stain of the E coli organism is gram-negative.

The formalism employed enables a simple control strategy

of goal-directed backward chaining of the production rules to

be adopted. In this way, the Wrst rule to be evaluated is the one

that contains the highest level goal. For MYCIN, this is to

determine whether there are any organisms, or classes of

organisms, that require therapy. To deduce the need for

therapy involves knowledge of the infections, which is usually

unknown initially. Hence, the system tries to satisfy subgoals

that originate in the premise of the top goal that will allow the

infections to be inferred. Rule chaining is the name given

to the process in which the hierarchy of production rules is

linked together. The premise portion of each subgoal rule Wres

a new set of subgoals. This procedure is continued until the

most fundamental level of the hierarchy is reached, where

the rules become assertions that can only be conWrmed or

denied by directly questioning the user for the appropriate

information.

MYCIN determines the signiWcant microbial infections

on the basis of assessing the overall certainty factor that com-

bines the individual degrees of conWdence associated with each

of the production rules. Then the organisms that account for

the infections are found deterministically. Having completed

this identiWcation phase, the system can then proceed to rec-

ommend an antimicrobial therapy. This involves the MYCIN

therapy selector using a description of the infections present

and the causal organisms together with a ranking of drugs by

their sensitivity and a set of drug-preference categories.

The algorithm used within the therapy selector also calcu-

lates the drug dosage needed and contains knowledge to mod-

ify the value in light of other complications, for instance renal

failure. The therapy selector is able to accept and critique a

treatment protocol proposed by the user. Equally, it is able to

generate explanation and justiWcation for its treatment selec-

tion. Why queries are dealt with by displaying the rule that it is

trying to imply. A further why query is answered by ascending

the goal-tree hierarchy. How queries are interpreted as the

chain of rules that are Wred to reach the particular conclusion.

Repetition of a how query is answered by descending the

goal-tree hierarchy.

The advantage of a production rule system is that each

rule is a small quantum of knowledge, with each being inde-

pendent of all the others. This means that changing or

adding knowledge to the MYCIN knowledge base is relatively

easy. Also, having a modular data structure facilitates the

addition of new rules. A disadvantage lies in the fact that

disease states cannot always be adequately described by a

rule. Also, it may not always be possible to map a series

of desired actions into a set of production rules. Moreover,

although new knowledge can be added by inserting a new

rule, this may not interact with the existing rule set in the

anticipated manner.

In contrast, the semantic network provides a graphic repre-

sentation of the knowledge base. One of the early classics of

this type was CASNET, an expert system for consultation

in the diagnosis and treatment of glaucoma [32]. In it,

the relevant knowledge for patient-speciWc reasoning in

the decision-thinking process is encompassed in a causal-

associational network model of the speciWc disease process.

The semantic network consists of nodes connected by links,

where the nodes correspond either to the condition or action

part of the rules and the links are inferences between the two.

The model of disease is separate from the decision-making

strategy, which allows for easier updating of both data

structures.

The CASNET model has a descriptive component that

includes observations, pathophysiologic states, causal relation-

ships, disease categories, and treatment plans. The observa-

tions consist of symptoms and laboratory tests, together

forming the direct evidence that a disease is present. The

pathophysiologic states describe internal abnormal conditions

or mechanisms that can directly cause the observed Wndings.

The causal relations between states are of the following form:

aij

ni ! nj,

where ni and nj are pathophysiologic states and aij is the causal

frequency with which state ni, when present in a patient, leads

to state nj. Each disease category consists of a pattern of states

and observations.

Also included in the CASNET model are the decision rules,

which state the degree of conWdence with which an inference of
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a pathophysiologic state can be made from an observed pattern

of Wndings. This translates to the following:

Qij

ti ! nj,

where ti is a Wnding or observation or Boolean combination of

Wndings, nj is the pathophysiologic state and Qij is a number in

the range�1 toþ1 representing the conWdence with which ti is

believed to be associated with nj. Q is the certainty factor

which indicates the strength of belief that the patient is in

state nj. Dependent upon the threshold value that is set for it,

this factor will then conWrm or deny the patient as being in

that state, or else the situation will remain undetermined.

Rules can then be established for connecting disease categories

and pathophysiologic states to treatment protocols. These rules

take the form of a classiWcation table that consists of ordered

triples:

(n1, D1, T1), (n2, D2, T2),. . . . ., (ni, Di, Ti),

where ni is the pathophysiologic state, Di is the disease process

resulting from it, and Ti is the preferred treatment regimen(s)

corresponding to that disease state.

The pathogenesis and mechanisms of the disease process are

described in terms of cause and eVect relationships between

pathophysiologic states. Hence, complete or partial disease

processes can be characterized by pathways through the net-

work. When a set of cause and eVect relationships is speciWed,

the resulting network can be described as an acyclic graph of

states. The state network is deWned by a four-tuple (S, F, N, X).

S is the set of starting states (that is states having no antecedent

causes), F is the set of Wnal states, N is the number of states

visited between S and F, and X represents the causal relation-

ships between the states visited, in the form of a list.

One of the merits of the CASNET system is its ability to

present alternative expertise derived from diVerent clinical

consultants. This, taken together with the well-deWned nature

of the clinical problem being tackled, namely glaucoma, results

in the accuracy of diagnosis that led to the relative success of

this pioneering system. Evaluation studies revealed a diagnos-

tic accuracy greater than 75% for very diYcult cases and an

overall Wgure greater than 90% across the whole spectrum

of cases investigated. However, that CASNET’s clinical utility

was not particularly high limited its adoption in the routine

clinical setting. Nevertheless, it has proved to be a powerful

research tool in advancing AI in medicine, particularly in

catalyzing further advances in causal modeling.

17.5 Decision Support Tools

Software programs written speciWcally to aid the decision-

making process have been in existence since the 1970s, with

MYCIN being a prime example as discussed above. While

these tools have been applied to a variety of medical domains,

they have common essential features that will now be

introduced.

17.5.1 Types of Knowledge

The actual knowledge used in a decision support tool will be

speciWc to the application domain, but the source of the

knowledge can be from the following:

. Observations: Observing the domain experts as they carry

out their duties. This approach can often result in the

discovery of new knowledge.

. Academic knowledge: Printed information from published

material in academic publications such as journals and

conference proceedings is a useful source of knowledge.

Care should always be given to ensure the accuracy of any

published information, particularly from unreviewed

sources.

. Experimental: Results from conducting tests and trials.

This is a useful method of collecting knowledge as

control is maintained; however, costs and time con-

siderations, in terms of both ethical approvals and col-

lecting a suitable number of subjects, should not be

underestimated.

17.5.2 Knowledge Acquisition

The acquiring of knowledge that is both representative of

the domain being supported and accurate can be a diYcult

task but one that is a main contributory aspect to the success

of a CDSS. Aspects of knowledge acquisition include the

following:

. Elicitation: The discovery of aspects of the CDSS domain

that are not immediately obvious or a detail so com-

monly part of the domain process that the experts do

not consider mentioning it, yet it has an important role

in a CDSS.

. Domain experts: The knowledge from experts is a vital

ingredient of a CDSS. This can be obtained from inter-

views, questionnaires, or observations. A nonexpert can

play a useful role in extracting knowledge from experts

by asking questions to establish the real need for each

procedure.

. Information to users: Techniques from knowledge

engineering and knowledge management can be used

to ensure that the Wnal output is of value to the user

of a CDSS.

17.5.3 Knowledge Representation

Knowledge representation is one of the key elements of a CDSS

system. It is the method by which collected information is
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stored and presented to the CDSS. A number of methods have

been applied for this task, including the following:

. Heuristic systems: These are less well deWned and can be

based on experimental or critical knowledge [33, 34]. A

heuristic system can be considered as the knowledge of

good practice, good judgment, or plausible reasoning.

. ArtiWcial neural networks: Simple models of the human

brain can be used to model knowledge. The strength of

these tools lies in their ability to be trained for speciWc

domains [35].

. Expert systems: A series of if, then rules can be used to

deWne a knowledge base. An inference engine is then used

to navigate the knowledge base using deWned rules, such

as forward to backward chaining [31].

. Computer languages: Formal, specialized computer lan-

guages, such as PROLOG, that use logic statements to

deWne and navigate a knowledge base.

17.5.4 The Interface

The interface is the medium by which the user interacts with

the CDSS. It is a frequently overlooked aspect of CDSS design

but is one that has a direct bearing on the acceptance of a

system. A CDSS with excellent embedded knowledge and rep-

resentation will fail to be accepted if the users Wnd the method

of accessing the system not to be intuitive and user friendly.

The interface should allow the user to both input data and

knowledge into the CDSS and to receive the results of the

decision-making process fast enough to be of use in the sup-

ported domain. The user interface needs to be designed with

consideration for the following:

. Usability: The ease of entering commands, deWning sce-

narios, and presenting the results in an easily understand-

able form

. Acceptability: The ease of use, with consideration of the

environment of application. For example, a CDSS used in

a high-dependency unit would require diVerent features

than one designed for a General Practicioner (primary

care physician) surgery.

17.6 Decision Support Systems in the
Hospital and Other Health Care
Settings

17.6.1 Examples of Clinical Decision Support
Systems in Hospital (Including the
Imaging Context), General Practice,
and the Community

This section provides some examples of CDSS in the hospital

setting. The examples given are not an exhaustive list, but at

the time of writing were considered to be a good representa-

tion of the current level of implementation of the technology.

A detailed list of both current and superseded systems can be

found at the open clinical Website (http://openclinical.org/

dss.html).

Automedon/SmartCare–Ventilator Management

This CDSS automates and eVects clinical guidelines for venti-

lator management in high-dependency environments [36].

Knowledge engineering techniques have been applied to elicit

and model the clinical guidelines with expert system method-

ologies. These are rule based with forward chaining coupled

with temporal reasoning. In addition, software engineering

techniques are employed for automatic source code generation.

The system has been approved to meet International Stand-

ards Organization standards and successfully implemented in a

clinical environment. Further evaluation in a multicentered

study is also being undertaken. Dräger is embedding this

CDSS in its range of ventilators.

GIDEON–Diagnosis and Treatment of Infectious
Diseases

GIDEON is a Web-based decision support tool, using Bayesian

modeling, for the diagnosis of global infectious diseases [37].

GIDEON contains four seamlessly integrated, operational

modules. Diagnosis uses clinical signs and symptoms to sug-

gest possible infections; epidemiology focuses on the epide-

miologic aspects of the disease database; therapy suggests

treatment regimens for the disease database; and microbiology

can be used for entering laboratory results to assist in the

diagnosis process.

LISA–Treatment of Childhood Leukemia

LISA is a Web-based CDSS for providing dosage decision

support for the drug regimen in the treatment of acute child-

hood lymphoblastic leukemia [38]. The system implements

the dose adjustment rules as speciWed in Medical Research

Council guidelines. LISA is a rule-based system and uses the

PROforma decision engine for determining the course of

treatment [39]. Doses have to be constantly monitored, and

the treatment regimen is unique for each patient, so this

application is ideal for a CDSS.

PERFEX–Expert System for Automated
Interpretation of Cardiac Single Photon
Emission Computed Tomography Data

PERFEX is a rule-based expert system for automatic interpre-

tation of cardiac SPECT data [40]. This system assists in the

diagnosis of coronary artery disease by suggesting the extent

and severity of the condition. It provides a patient-speciWc

summary of the state of the main cardiac arteries together
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with related information. Knowledge-based methods are used

to process and map the 3D visual information into symbolic

representations, which are used to assess the extent and sever-

ity of cardiovascular disease both quantitatively and qualita-

tively. The knowledge-based system presents the resulting

diagnostic recommendations in both visual and textual forms.

17.6.2 Decision Support and Information
Systems

An example of the way in which the concepts of information and

decision support are converging can be found in the current

activity relating to the provision of electronic records. Many

countries are developing electronic patient record (EPR) systems

to provide a paperless, easy-to-access, location-independent

realization of a patient’s medical history. A CDSS can interface

with the EPR to provide enhanced patient care. The advantages

of bringing these elements together include the following:

. Reduction of clinical errors as a result of, for example,

incorrect drug doses, patient allergies, or drug inter-

actions

. Reduction of superXuous diagnostic tests and hence sav-

ings of patient anxiety, time, and cost

. Enhanced patient care by providing a reminder for clini-

cians and care givers for repeat prescriptions and screen-

ing tests

. Support for clinicians in extended roles

Unfortunately, a number of potential problems are also evi-

dent from this approach:

. The CDSS could rely on obsolete knowledge or Xawed

reasoning. This could lead to potentially serious or even

fatal recommendations to the clinician.

. The quality of the advice from a CDSS is diYcult to

access. Evaluation of a CDSS is not always rigorous, and

so the advice from scenarios that do not exactly match

the knowledge base may be unpredictable.

. There is currently no framework for approving a CDSS.

With the potential availability over the World Wide Web,

the number of future systems and potential users could

be large.

. High technology applications rapidly become redundant

with the progress of computer hardware and software.

17.7 Health Care Education
Applications

The ideas and concepts introduced and discussed so far have

all been concerned with using patient-related knowledge to

provide useful diagnostic information of some form. An alter-

native use of a CDSS is for training and educating health care

professionals and students. In this mode, a CDSS can present

scenarios for the student to analyze and provide feedback on

performance and accuracy. The following systems are pre-

sented to provide examples of applications in this domain.

17.7.1 Simulators for Health Care Students,
Health Care Professionals, and Patients

17.7.1.1 High-Dependency Medicine: MacPuf

MacPuf (http://www.chime.ucl.ac.uk/resources/Models/macpuf.

htm) is a freely available model of the human respiratory system

that allows the student to explore the management of a wide

range of medical scenarios. A large number of model variables

allow the sophisticated simulation and demonstration of

problems in oxygen delivery without harming patients [41].

17.7.1.2 Chronic Diseases: AIDA2

AIDA (www.2aida.net) is a free simulator (both online and

downloadable) for the education and teaching of glucose–

insulin interaction and insulin dosage and dietary adjustment

in diabetes mellitus [42]. The program is based on a model of

the human glucose–insulin interaction and can be used for

simulating the eVects of dietary changes and blood glucose

levels for patients with type I diabetes. A knowledge base can

be used to identify problems in the included case scenarios.

17.7.2 Provision of Information for the Patient

17.7.2.1 Web-Based Provision–NHS Direct

NHS Direct Online (www.nhsdirect.nhs.uk) is a Web-based

CDSS that patients can use to diagnose common health prob-

lems and learn about treatments. The interface provides simple

pictures or questions to help with the diagnosis. For additional

advice, the CDSS is supported by a telephone link to a nurse.

In addition, an online health illustrated encyclopedia provides

information on a large number of illnesses and conditions,

tests, treatments, and operations.

17.7.2.2 The Home Telecare Setting–Decision Support
for Lung Transplant Recipients

This work resulted in the development of a computerized rule-

based decision support algorithm for the identiWcation of

potential acute bronchopulmonary events in lung transplant

patients. Weekly home monitoring of forced expiratory vol-

ume and respiratory symptoms was used to classify a patient as

being in either a stable (improving) state or one that requires

watching. The system was well evaluated on 155 patients with

sensitivity and speciWcity greater than 90% and was compar-

able to the standard human clinical review of the same weekly

home-monitoring data [43].
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17.8 VeriWcation, Validation,
and Evaluation

In essence, the process of evaluating a CDSS is all about

assessing its worth or value in relation to the purpose for

which it is designed. Because of this relationship between

evaluation and purpose, we must start thinking about the

process of evaluation from the outset. The very purpose for

which the decision support system is designed helps to deter-

mine the criteria for assessing the value of the system: Does it

meet its intended purpose?

The literature is full of references to the terms veriWcation,

validation, and evaluation, and there may be a degree of

confusion about their speciWc meanings.

VeriWcation is the act of checking whether the contents of

our decision support system are technically correct. In the case

of a rule-based system, this would involve checking that each

of the rules is individually correct. Once this is the case, the

validity of the system can be assessed. This might typically in

the Wrst instance involve examining a series of cases where the

outcome is known. The recommendations, say, of a consulting

system would be compared with the actual recommendations

made by expert clinicians in those clinical cases. A high level of

agreement in this retrospective validation test would increase

the level of conWdence in the validity of the decision support

system.

The concept of evaluation is broader than that of veriWca-

tion or validation. Many deWnitions have been proposed. Ex-

amples include: the systematic application of social research

procedures to judge and improve the way information re-

sources are designed and implemented; the process of describ-

ing the implementation of an information resource and

judging its merit and worth; and an overall assessment of the

value of a decision support system in relation to its intended

purpose. In this context, a clinical decision support system

would be an example of an information resource. A good

overall review of methods for evaluation can be found in

Friedman and Wyatt [44].

17.8.1 A Framework for Evaluation

What is clear is that a proper systemic framework is required

for the evaluation process. To begin with, a full evaluation

should reXect the totality of the decision support system’s

intended purpose in terms, for instance, of settings, stake-

holders, and perspectives.

Possible settings could range from use in community or

primary care environments to use in a hospital clinic, labora-

tory, or pharmacy. Stakeholders might include some or all of

patients, health care workers, health managers, regulatory bod-

ies, public health clinicians, taxpayers, insurance companies,

and the health care industry.

DiVering perspectives also give rise to diVerent questions

being asked as part of the evaluation process. From the

patient’s perspective, issues would include whether the system

was safe and whether it would be helpful in the context of his

or her clinical condition. The health care user might also be

concerned about whether the system was fast (in relation to the

time available for a patient consultation) and accurate. The

purchaser of a system would be concerned about its cost

beneWt and its safety and reliability. For the developer, key

issues include whether it works as intended and whether

those purchasing it will use it. A further point is that the

evaluation issues change over the course of the development

and testing processes. This is illustrated in Figure 17.7.

17.8.2 Evaluability, Formative Evaluation,
and Summative Evaluation

One of a number of useful approaches to the evaluation

problem that has relevance in the context of decision support

is that proposed by Bashshur [45]. The framework that he

adopts makes use of the concepts of evaluability, formative

evaluation, and summative evaluation.

The Wrst stage of evaluability involves clearly deWning the

problems and issues to be evaluated; specifying the evaluation

criteria, and setting objectives in terms of the stakeholders’

expected beneWts and costs. Formative evaluation includes a

description of system design and implementation, stakeholder

analysis of intermediate and short-term eVects, where this also

provides a focus for additional data collection or modiWcation

of the system being evaluated. Summative evaluation involves

determining the ultimate eVects of the system on health out-

comes and making recommendations for modifying the pro-

cess of health care delivery in the light of the impact of the

decision support system.

An example of a model demonstrating the interaction of

formative and summative evaluation is depicted in Figure 17.8.
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function

Study impact 
on users

Study impact 
on patients

Disseminate, 
monitor

ProblemsBest prototype

Best prototype

Problems Problems

Define 
the need

Build 
prototypes

Participatory design

Debugging, 
informal testing

FIGURE 17.7 Changing evaluation issues during the development

process.
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The Wrst layer of evaluation results from the Wrst measurement

process, essentially corresponding to formative evaluation in

the terminology of Bashshur [45]. Here a number of criteria

need to be satisWed as a necessary precursor to investigating the

overall value or worth of a decision support system. For

example, necessary requirements to be met might include

those of safety, reliability, and usability of hand-held computer

implementation that has been designed to oVer decision sup-

port in the home setting. As such, these would be the criteria

upon which assessment and evaluation would be based at this

formative level. Since all such criteria must be satisWed, the

evaluation in essence corresponds to a logical AND function.

The actual implementation of these criteria will depend on

the particular context. For example, one measure of reliability

of a system would be the mean time between failures, where

in this context failures might represent instances where the

decision maker disagreed with the recommendation being

proposed by the decision support system.

Once these necessary conditions have been met, evaluation

continues via an analysis of the results of subsequent rounds of

measurement processes (data gathering exercises). Here the

assessment and evaluation processes become more complex.

For instance, at any given level the criteria involved might

relate to measures of clinical eVectiveness, aVordability, and

organizational impact, or as eVectiveness, eYciency, and cost,

as shown in Figure 17.8. Hence there is the need to address the

problem of deWning overall worth or value.

The issue here is not as simple as was the case with formative

evaluation. In that case, all the necessary criteria needed to be

satisWed. Here we are dealing with a set of criteria that are

more diYcult to bring together, involving as they do diverse

variables relating to both clinical outcomes and Wnancial costs.

One possible way of achieving an overall measure of worth at

this stage is to adopt a model based on multi-attribute utility

theory or something similar. However, this is still an ongoing

topic of research.

A number of features of the model presented are worth

noting. First, the overall process of evaluation is very much

iterative in nature. If at the stage of formative evaluation one

of the necessary criteria fails to be met, then it is necessary to

return to the design of the system. Similarly, failure at the

summative stage will probably also mean a re-examination of

the system design. In terms of the formative phase of evaluation,

no issues of economic value are addressed (as indicated by the

corresponding shaded area in Figure 17.9). These are included

in the concerns at the summative stage. On the other hand, all

the technical issues are addressed in the formative stage. These

features are depicted in Figure 17.9. This Wgure shows how the

Decision support system
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Patient-centered decision support

No

No
“Worth”

Measurement process
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FIGURE 17.8 Model of evaluation.
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various criteria relate to the diVerent types of variables that need

to be considered in the evaluation process [46].

What is absolutely clear is that good evaluation practice

must be a multifaceted, multidimensional, multi-attribute

process. The essence of this is depicted in Figure 17.10. This

demonstrates that to gain a measure of the overall worth or

value of a decision support system, it is necessary to include a

wide range of perspectives. As indicated in this Wgure, these

might typically include the technical, clinical, organizational,

and economic, as well as those of the key individuals involved,

including both the patient and health care professionals.

17.8.3 The Ethical and Legal Dimensions

Among the impacts that need to be addressed when consider-

ing the overall worth of a decision support system are those

relating to legal and ethical issues. Here one of the key issues

is the diVerentiation between decision making and decision

support.

For the most part, decision support systems are designed to

do just that; to support, but not to replace, the decision maker.

In other words, the Wnal decision remains with the health care

professional. The decision support system can thus be viewed

as providing advice that can be either accepted or rejected (or

queried if this facility is built into the software). As such, it in

some ways parallels the way in which a clinician might seek the

advice of a colleague before arriving at a decision.

The systems that come nearest to being decision making

rather than decision support are active systems as discussed

earlier in section 17.4.1. Examples include closed-loop control

of one or more physiologic variable in the context of critical

care medicine, for instance blood pressure or blood glucose

concentration. However, in such situations there is always

provision for override by the clinical decision maker.

Legal liability is a crucial issue in relation to technologic

solutions in the decision-making context. How such issues are

treated depends very much on the particular national legal

framework. For instance, in the United Kingdom, liability

would generally be deWned in terms of case law; for example,

as a result of a case being brought to court following an

allegation of negligence by a clinician where decision support

technology had been involved. It is worth noting, however, that

if technology can be shown to be beneWcial, the decision maker

would be expected to make appropriate use of it. For instance,

in the shipping industry, ship captains have been found to be

negligent by failing to make use of navigational decision sup-

port systems.

Another issue, ethically, is that of involving the patient. This

is important as indicated in Figure 17.10 because it is the

patient who is the focus of clinical decision making. Increas-

ingly, the patient is encouraged to participate actively in the

decision-making process. Clearly there will be a range of re-

sponses to such proposals with some patients still wishing to

retain a purely passive role, feeling either unable or unwilling

to be involved. However, there are many who welcome the

opportunity for active involvement in the decisions that will

aVect their health. Indeed, a number should be regarded as

expert patients, particularly those willing and able to take

responsibility for all the day-to-day decisions relating to the

management of chronic diseases such as diabetes.

This shift toward greater patient involvement and empower-

ment has clear implications for decision support and the

manner in which it should be used. Increasingly, decision

support systems will become an integral component of the

patient–clinician encounter. Indeed, one of the authors of

this chapter has already experienced participation in decision

analysis in a clinical consultation in the area of gastroenter-

ology. Decision support systems are welcomed by many pa-

tients who are managing their chronic disease. For example, in

the case of diabetes, such systems will increasingly provide

advice regarding lifestyle and diet as well as advice relating to

day-by-day adjustments in their insulin regimens. All these

trends clearly have implications for future developments in

clinical decision support in relation to legal and ethical issues.

17.9 Summary

This chapter has provided an overview of clinical decision

support systems and the role that they can play in supporting

the decision maker in a range of clinically related tasks. First,

an overview of the decision-making process has been pre-

sented, thereby enabling the context for decision support to

be fully appreciated. This was followed by an outline of the

nature of human diagnostic reasoning, models of the reason-

ing process, and issues to be considered in the clinical setting.

A structure for characterizing clinical decision support systems

was then described. Within this framework, the broad range of

conceptual, methodologic, and technical approaches to deci-

sion support has been outlined and reviewed, demonstrating

their bases and some of their particular strengths and limita-

tions. A range of applications of decision support systems was
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FIGURE 17.10 Evaluation of impact.
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then considered: Wrst in hospital and other health care settings,

and then in relation to medical education. Finally, the major

topic of evaluating decision support systems was addressed,

including relevant legal and ethical issues.

17.10 Exercises

1. Discuss the advantages and disadvantages of the analytic

models presented in the chapter.

2. Describe the types of CDSS systems that have been

described in this chapter, and comment on their relative

merits in the context of clinical application.

3. Should formal decision-making methods be the normative

approach to resolving complex decisions arising in the

delivery of health care?
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18.1 Introduction

This chapter is concerned with computer-integrated interven-

tional medicine (CIIM). Over the past 50 years, the technology

used in interventional medicine increasingly has been com-

puter-based. Medical imaging devices have progressed from

simple X-ray units to sophisticated systems combining

advanced sensors and computation to provide unprecedented

information about a patient’s anatomy and physiology. Med-

ical workstations are able to combine information from many

sources to help surgeons and other physicians plan interven-

tions and provide real-time information supports in carrying

out these plans. Robotic devices and endoscopic cameras en-

able physicians to perform minimally invasive procedures that

would otherwise be impossible. Computer-controlled systems

use directed energy to destroy tumors and other malforma-

tions inside a patient’s body without surgery. Computer-based

physiologic monitoring devices are ubiquitous in operating

rooms and intensive care units.

This evolution is a natural consequence of the computer’s

ability to integrate information with action to fundamentally

improve treatment processes, in much the same way that

computer-integrated systems and processes have aVected

other sectors of our society, such as manufacturing, trans-

portation, retailing, and agriculture. The basic information

loop of interventional medicine is illustrated in Figure 18.1.

The process starts with information about the patient, such

as images, test results, genetic information, and symptoms.

This information is combined with general information

about human anatomy and physiology to create a patient-

speciWc model or representation that is used to diagnose

the patient’s condition and formulate an interventional plan.

During the intervention, the virtual reality of the model

and plan is registered to the actual reality of the patient and

may be coupled to appropriate technology to assist the

clinician in carrying out the plan. Further information is

typically generated both during and after the intervention

to update the model and assess the eVect of the intervention.
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This information may be used subsequently in further

treatment of the patient. It may also be analyzed statistically

to assess and improve the overall eVectiveness of treatment

plans and protocols in a manner somewhat analogous to

the use of statistical quality control and process learning in

manufacturing.

We often refer to this as a closed-loop process of Wrst

constructing a patient-speciWc model and interventional plan,

then registering the model and plan to the patient and using

technology to assist in carrying out the plan, and Wnally as-

sessing the result as surgical or interventional computer-aided

design/computer-aided manufacturing (CAD/CAM), again

emphasizing the analogy between computer-integrated inter-

ventional medicine and computer-integrated manufacturing.

Of course, it is important to recognize that there are also

profound diVerences between medicine and manufacturing.

In particular, our goal is not automation of medical interven-

tions. Rather, our goal is to exploit computer-based technology

and systems to assist human clinicians in treating patients.

Thus, we often refer to these systems as surgical (or interven-

tional) assistants, especially when the interventional decisions

are highly interactive, as is frequently the case with surgery.

However, it is important to remember that these concepts are

not incompatible. Although it is often more convenient to

think of a CIIM system as being primarily a CAD/CAM or

an assistant system, the same underlying concepts and tech-

nology are present in both cases. As these systems become

more and more sophisticated, the distinction will be harder

and harder to make.

18.2 Technology and Techniques

In this section, we will provide a brief overview of key tech-

nology components found in CIIM systems, with special

attention to surgical navigation and medical robotics. Further

discussion may be found in references [1–4].

18.2.1 System Architecture

The overall architecture of CIIM systems is shown in Figure

18.2. Broadly, these systems consist of the following compon-

ents: (1) computational components that perform a wide

variety of image processing, surgical planning, monitoring,

and similar tasks; (2) databases of patient-speciWc information,

as well as more generic knowledge bases about human anat-

omy and physiology, common treatment plans, outcome data,

etc.; and (3) devices such as imagers, robots, and human–

machine interfaces that relate the virtual reality of computer

representations to the actual reality of the patient, interven-

tional room, and clinician.

18.2.2 Registration and Transformations
Between Coordinate Systems

Geometric relationships between portions of the patient’s

anatomy, images, robots, sensors, and equipment in interven-

tional suites are fundamental in all areas of CIIM, and there is

an extensive literature on techniques for determining the

transformations between the associated coordinate systems

Model

General information
(anatomic atlases,

statistics, rules)

Information

Plan Action

Patient-specific evaluation

Statistical analysis

Patient-specific
Information

(Images, lab results,
genetics, etc.)

FIGURE 18.1 Computer-integrated interventional medicine (CIIM) as a closed-

loop process.
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[5, 6]. The brief discussion below follows the basic frame-

work developed in Lavallee [6]. Given two coordinates

~vvA ¼ [xA,yA,zA] and ~vvB ¼ [xB ,yB ,zB] corresponding to com-

parable features in two coordinate systems Ref A and Ref B ,

the process of registration is simply that of Wnding a function

TAB( � � � ) such that:

~vvB ¼ TAB(~vvA):

Although nonrigid registrations are becoming more common,

TAB( � � � ) is still usually a rigid transformation of the form

~vvB ¼ TAB(~vvA) ¼ RAB �~vvA þ~ppAB;

where RAB represents a rotation and ~ppAB represents a transla-

tion. RAB is often represented by an axis ~nn and angle u so that

RAB(~nn,u) ¼ eun̂n where n̂n ¼
0 �nz ny

nz 0 �nx

�ny nx 0

2
4

3
5:

Thus, if we have two transformations TAB and TBC , the rota-

tion and displacement components associated with the com-

posite transformation TAC ¼ TAB � TBC will be given by

RAC ¼ RAB � RBC

~ppAC ¼ RAB �~ppBC þ~ppAB:

In many cases, TAB cannot be computed exactly, so the actual

transformation T �AB is related to the nominal value TAB by a

small perturbation:

T �AB ¼ TAB � DTAB:

In this case, we frequently approximate the rotational com-

ponent of a small rotation DR by

DR � Iþ un̂n,

so that

DR �~vv �~vvþ u~nn�~vv:
Further, we often ignore the eVects of a small rotation DR on

a suYciently small translation vector D~pp, so that

DR � D~pp � D~pp:

Thus, if the actual value of a coordinate

~vv �A �~vvA þ D~vvA,

then the actual value of

~vv �B ¼ T �AB �~vv
�
A

will be given by

~vv �B ¼ TAB � DTAB � (~vvA þ D~vvA)

¼ TAB � (DRAB �~vvA þ DRAB � D~vvA þ D~ppAB)

� TAB � (~vvA þ u~nn�~vvA þ D~vvA þ u~nn� D~vvA þ D~ppAB)

� TAB � (~vvA þ u~nn�~vvA þ D~vvA þ D~ppAB)

¼ RAB � (~vvA þ u~nn�~vvA þ D~vvA þ D~ppAB)þ~ppAB

¼~vvB þ RAB � (u~nn�~vvA þ D~vvA þ D~ppAB):

Thus, the uncertainty in~vvB will be given by

D~vvB ¼ RAB � (u~nn�~vvA þ D~vvA þ D~ppAB):
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FIGURE 18.2 The architecture of computer-integrated interventional medi-

cine systems.
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There is extensive literature concerning registration methods.

Typically, the process involves Wnding corresponding sets of

features FA and FB , and then Wnding a transformation

TAB( � � � ) that minimizes some distance function

dAB ¼ distance(FB ,TAB(FA)):

Typical features can include artiWcial Wducial objects (pins,

implanted spheres, rods, etc.) or anatomic features such as

point landmarks, ridge curves, or surfaces. One very common

case involves registration of a set of sample points from an

anatomic surface with a computer representation of that sur-

face. In this case, variations of the iterated closest point algo-

rithm of Besl and McKay [7] are commonly used. For example,

3D robot coordinates~aaj may be found for a collection of points

known to be on the surface of an anatomic structure which can

also be found in a segmented 3D image. Given an estimate Tk

of the transformation between image and robot coordinates,

the method iteratively Wnds corresponding points ~bb
(k)
j on the

surface that are closest to Tk �~aaj and then Wnds a new trans-

formation

Tkþ1 ¼ arg min
T

X
j
k~bb

(k)

j � T �~aaj k2 :

The process is repeated until some suitable termination con-

dition is reached.

18.2.3 Navigational Trackers

Real time measurement of intraoperative positions and orien-

tations is ubiquitous in CIIM, and a number of technologies

are available for this purpose. These include encoded mechan-

ical linkages, ultrasound localizers, electromagnetic localizers,

active optical triangulation systems that locate light-emitting

diodes, passive optical triangulation systems that locate reXec-

tive markers, and more general computer vision systems.

Excellent technology surveys may be found in the literature

[8–10] and in comparisons of diVerent systems [11–13],

although one should be aware that the relative technical ca-

pabilities of diVerent technology approaches can change as

technology develops.

In recent years, optical systems such as the Optotrak1 and

Polaris1 systems (Northern Digital, Inc., Waterloo, Canada)

have been the most widely used option for surgical navigation

systems (see Section 18.4.2 and Figure 18.9 later) because

of their relatively high accuracy, predictable performance,

and insensitivity to environmental variations. However, they

do have several limitations. The most serious of these is

the requirement that a clear line of sight be maintained

between the tracking cameras and the markers being tracked,

which can complicate the arrangement of equipment and

workXow around the patient. A related drawback is that

the markers being tracked must generally be on portions

of surgical instruments outside the patient. This approach

can lead to inaccuracies in instrument tip position determi-

nation and cannot be used with Xexible instruments such as

catheters.

Electromagnetic trackers were considered for many early

surgical navigation applications, but the measurement distor-

tions associated with metal in operating rooms caused them to

fall out of favor. More recently, improvements in electromag-

netic tracking technology (including reduced distortion and

the development of very small sensors) and increased interest

in tracking devices inside the patient have led to increased

interest in this technology. Current examples include the Aur-

ora1 (Northern Digital, Waterloo, Canada), Flock-of-Birds1

(Ascension Technology, Burlington, VT), Polhemus Patriot

(Polhemus, Inc., Burlington, VT), and proprietary systems

used in the Medtronic Axiem1 (Medtronic Navigation, Inc.

Louisville, CO) and the GE InstaTrak1 (General Electric OEC

Medical Systems, Salt Lake City, UT).

18.2.4 Robotic Devices

Historically, the term robot as been used for multi-axis ma-

chines that are capable of autonomous motion. With this strict

deWnition, the well-known daVinci system would not be clas-

siWed as a robot, but rather as a teleoperator, because it does

not operate autonomously. In fact, this would be true of many

of the medical robot systems that have been developed in

recent years. Therefore, at least in the medical Weld, the deWni-

tion of a robot has been expanded to include virtually any

mechanism that provides assistance to the surgeon, whether or

not it can operate autonomously. In fact, safety is such

a critical concern in medical robotics that it has prompted

several researchers to develop robots that are incapable of

autonomous motion [14–17]. These systems rely on the sur-

geon, rather than on motors, to provide suYcient force to

create motion. The systems may still contain powered elements

(e.g., motors, brakes), but they are only used to constrain

motion. Although such systems do not Wt the classic deWnition

of a robot, they are considered passive robots in the medical

Weld.

In an industrial setting, the beneWt of robotics over Wxed

automation is that a robot can be programmed to serve in

many diVerent capacities. An industrial robot can assemble

typewriters, weld car bodies, or debur molded parts. There is,

of course, some degree of specialization. A robot that places

surface mount components on a printed circuit board is likely

to be small and extremely accurate, whereas a robot that

installs automobile windshields must be large and powerful.

This specialization also applies to medical robots. For example,

a robot developed for microsurgery will diVer from a robot

developed for orthopedic joint reconstruction. Although the

Weld of medical robotics is not yet mature, current experience

suggests that medical robots may be more specialized than

their industrial counterparts; a robot developed for one

medical procedure may not be as easily adapted for other

procedures, for reasons outlined below. Some examples of
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multifunctional medical robots do exist, such as the ortho-

pedic robot systems that assist with hip and knee replacement

surgery as well as with ligament repair.

Clearly, there are many similarities between industrial and

medical robots. Both (typically) consist of motors, sensors,

and articulated links that can be programmed to perform

a variety of functions. There are, however, many diVerences,

including their integration in the working environment (fac-

tory workcell vs. operating room/interventional suite), the

relationship between robot and workpiece (design for manu-

facturability vs. adapting to human anatomy), and safety sys-

tems (keeping humans out of the workspace vs. working

alongside and on humans). These issues are discussed in the

following paragraphs.

Robots are now commonplace on factory Xoors, and much

experience has been gained in workcell conWguration. Workcell

design is simpliWed by the fact that other pieces of equipment,

such as conveyer belts and parts feeders, are designed to inte-

grate with robots and other industrial machines. Once a work-

cell design is completed, the robot and associated equipment

are installed and, in most cases, left in place for a long time.

In contrast, robots are not (yet) standard equipment in

the interventional suite or operating room, where space is

limited. Thus, a medical robot must be easily transported in

and out of the room or, if permanently installed, should be

able to be moved out of the way. In eVect, a medical robot

must be installed in the medical workcell for each use. This

installation includes transporting the robot to the site

(e.g., operating room), connecting it to appropriate power

sources, and sterilizing it. Because other medical equipment

is not designed for compatibility with robotics, the robot

must Wt in as unobtrusively as possible. It is important to

minimize the space requirement around the operating table,

since much of this space is needed for the medical team and

equipment.

Similarly, the manufacturing industry has widely adopted

the principle of design for manufacturability, which means

that parts are designed for ease of manufacturing by auto-

mated machines, including robots. Furthermore, in an indus-

trial setting, the number of distinct parts is limited, and like

parts typically diVer only by small manufacturing tolerances.

The environment can be further structured using specialized

parts feeders to orient or align the parts. In contrast, medical

robots must operate on human anatomy, which cannot be

redesigned to facilitate robotic procedures and is often not

easily accessible from outside the body. Also, although humans

have the same types of parts, there are large variations between

individuals. A medical robot must be able to sense and adapt

to these variations. If sensors alone cannot perform this

task (and they often cannot), the clinician should be included

in the loop to augment the system’s sensing capabilities.

This requires a human–machine interface that is easy to

use by individuals (clinicians) who do not have robotics

backgrounds. In addition, novel kinematic designs are often

necessary to operate on the target anatomy without unduly

restricting the clinician.

Although the mechanical design of medical robots has

many similarities to that of industrial robots, the special

requirements associated with interventional procedures

(access, workspace, biocompatibility, imaging-device compati-

bility, etc.) have tended to produce distinct designs. For

example, many medical robots are designed to manipulate

surgical instruments or needles passed through constrained

entry points into the patient’s body. This consideration has

led many groups [17–20] to develop kinematic structures that

decouple tool orientation motions about a remote center of

motion (RCM ) distal to the robot’s structure. In clinical use,

the robot is typically positioned so that the RCM point is

positioned at the point where the instrument or needle passes

into the patient’s body (see Figure 18.5 later for an example).

Similarly, a number of groups [21–27] have developed robots

speciWcally for use in a magnetic resonance imaging (MRI)

environment.

Safety is an important consideration for both industrial and

medical robots [28]. In both cases, the goals, in order of

priority, are to prevent injury to human beings working near

the robot and to prevent the robot from damaging itself, other

equipment, or the workpiece. In an industrial setting, safety

systems typically involve gates, pressure-sensitive mats, and

Xashing lights—devices designed to keep people out of the

robot’s workspace or to shut down the system if a person

comes too close. This is especially important when the robot

is capable of high speeds or torques. In an industrial robot,

high speeds and torques are desirable because they reduce

the cycle time, thereby increasing the robot’s productivity.

In addition, many industrial robots require super-human

strength to perform their tasks (e.g., lifting heavy parts).

Unfortunately, these desirable attributes increase the potential

danger to human beings. In the medical domain, there is little

distinction between the two safety goals listed above since the

workpiece is a human patient, and other equipment includes

life-sustaining medical equipment. Because the medical staV

and the patient must be inside the workspace, medical robot

safety systems must ensure that they are not harmed, even

in the event of a malfunction. The situation is even more

challenging when the robot is holding a potentially dangerous

device such as a cutting instrument and is supposed to actually

contact the patient with this device (in the correct place, of

course). As a result, compared to industrial robots, medical

robots usually contain more redundancy in hardware and

software.

Many classiWcations systems for medical robotics have been

proposed [29]; some of them deWne systems as being active,

semi-active, or passive. There is no universally accepted deWni-

tion of these terms; some would argue that any robot that is

capable of motion (i.e., contains powered actuators) can never

be considered passive, whereas others focus on the manner

in which the robot is used. This chapter adopts the latter
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convention, which is an operational deWnition rather than a

mechanical deWnition. An active robot automatically performs

an intervention, such as machining bone. A semi-active robot

performs the intervention under the direct control of the

surgeon (e.g., a hands-on or cooperative control mode). A

passive robot does not actively perform any part of the inter-

vention (e.g., positions a tool guide).

There is some debate whether one class of robots may be

better than another class when considering factors such as

safety, user acceptance, or regulatory approval. In the latter

case, it is likely that the less active a robot is, the more

comfortable regulatory agencies will be in granting approval.

Regarding safety, although a passive robot may avoid some of

the risks inherent with a more active robot, there are still many

safety issues that much be considered in all cases. For example,

when preparing the bone for a knee prosthesis, regardless of

whether the bone is automatically machined by an active

robot, cooperatively machined by the surgeon and semi-active

robot, or machined by the surgeon using a tool guide posi-

tioned by a passive robot, it is critical that the cutting be

performed at the correct position and orientation. Therefore,

each of these robots must provide a safety system to ensure

that sensor failures do not cause them to incorrectly position

the cutting tool or tool guide. The question of user acceptance

has not yet been answered because currently the diYculty of

using medical robots has been a bigger obstacle than whether

they are active, semi-active, or passive.

18.2.5 Intraoperative Human–Machine
Interfaces

Fundamentally, CIIM systems are intended to work with cli-

nicians, not replace them in the operating room or interven-

tional suite. Consequently, technology and methods for

human–machine communication are crucial components in

these systems. This communication is two-way, and successful

systems must address techniques both for providing informa-

tion to and for accepting information and direction from the

clinician.

Visual display is the most common method for providing

information to the clinician. Computer displays relating the

positions of surgical instruments to cross-sectional medical

images or to X-ray projections are ubiquitous in surgical

navigation systems (see Section 18.4.2). The ergonomics of

such systems have some serious limitations. Once a procedure

has begun, the clinician’s attention is necessarily focused on

the patient’s anatomy, and it is awkward for the clinician to

look away from the patient. Consequently, a number of groups

have developed systems and devices for superimposing visual

information directly on the surgeon’s view of the patient.

(d) (e) (f)

(b)(a) (c)

FIGURE 18.3 Visual information display in CIIM systems. (a) CMU image overlay system [42] based on active

tracking of surgeon’s head, 3D graphics, and semitransparent mirror. (b) Johns Hopkins University image overlay

system for simple in-scanner display of scan planes [43, 44]. (c) Typical display from a surgical navigation system.

Courtesy Medtronic Surgical Navigation. (d) Osaka/Tokyo laser guidance system [33]. (e) Johns Hopkins University/

intuitive surgical overlay of laparoscopic ultrasound onto daVinci surgical robot video monitor [45]. (f) Sensory

substitution display of surgical force information onto daVinci surgical robot video monitor [41].
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The Wrst such systems [30–32] were designed to inject

registered graphic information into a surgical microscope.

Subsequently, several groups have developed variations on

this theme for use in other environments (Figure 18.3). Some

of these systems may use active elements such as laser pointers

[33, 34] to help the surgeon achieve a desired alignment. Other

forms of feedback used by CIIM systems include auditory

feedback, either in the form of computer-generated speech

[35] or simple auditory cues [36], haptic (force) feedback

[37–40], or visual/auditory representation of tool-tissue inter-

action forces [41].

There are many ways for a surgeon to provide information or

command direction to a CIIM system. The most common are

those used with any computer workstation: typed text and

mouse-like pointing devices. Intraoperatively, these devices

have many limitations, especially because they are difficult to

sterilize and they tie up the clinician’s hands. One common

though clearly limited work-around has been to rely on verbal

instructions to technicians operating the equipment. Another

has been to rely on computer voice recognition systems

[46–49]. Still another method has been to rely on sterile touch

screen displays or on the motions of instruments tracked by

surgical navigation systems. A few groups have explored video

tracking of the clinician’s head or eye motions [50].

The motion of surgical robots is frequently commanded

through the use of conventional telerobotic master devices,

which are essentially powered or unpowered robot manipula-

tors moved by the clinician, or by cooperative control methods

in which the robot’s motion complies to forces exerted on it

by the surgeon (see Section 18.4.3). Other methods, often used

in research systems designed for more intelligent assistance to

a surgeon, include visual tracking of surgical instruments and

target anatomy [51, 52].

18.2.6 Sensorized Instruments

A number of research groups [56–63] have developed sensor-

ized surgical instruments capable of measuring tool-to-tissue

interaction forces and providing these results to surgical work-

stations. Often, these eVorts have relied on graphic interfaces

to display force data, whether the instrument was manipulated

freehand by the clinician or by a robot. For example, Poulose

et al. [58, 59] demonstrated that a force-sensing instrument

used together with an IBM/JHU LARS robot [51] could sig-

niWcantly reduce both average retraction force and variability

of retraction force during Nissen fundoplication. There have

also been eVorts to incorporate sensed-force information into

the control of robotic devices [64–67]. Several researchers [68,

69] have focused on specialized Wngers and display devices for

palpation tasks requiring delicate tactile feedback (e.g., for

detecting hidden blood vessels or cancerous tissue beneath

normal tissue). Yet another use of sensorized instruments is

in biomechanical studies to measure organ and tissue me-

chanical properties to improve surgical simulators [70, 71].

There has also been work to integrate nonhaptic sensors

into surgical instruments. For example, our group at Johns

Hopkins is developing instruments that measure tissue

oxygenation as well as force [53–55]. Our plan is to use this

information to help surgeons assess tissue viability, avoid

ischemic tissue damage during retraction, and distinguish

tissue types (see Figure 18.4).

18.2.7 Software and Robot Control
Architectures

Figure 18.5 shows the basic control architecture for a robot

system. There are two periodic loops: a high-frequency servo

loop (typically 1 KHz or higher) that controls the individual

motors and a lower-frequency supervisory loop (typically

about 100 Hz) that coordinates the individual motors and

may also close a loop around an external sensor, such as a

force sensor or imaging system. Although the dynamic equa-

tions of a robot include coupling between the axes, the stand-

ard practice is to perform the servo control of each motor

independently. In fact, some robot systems perform the servo

control on a distributed network of embedded microproces-

sors, where each microprocessor is attached to just one or two

motor/sensor pairs. Fortunately, most medical robots move

rather slowly (often for safety reasons), so the dynamic coup-

ling between joints can be ignored without aVecting control

performance.

For a typical path-controlled robot, the supervisory control

loop consists of a trajectory planner that breaks down a high-

level motion command (such as moving at a speciWed velocity

along a straight line) into a set of intermediate setpoints that

are sent to the servo control loop(s). Because the high-level

motion command is often in a Cartesian coordinate system,

this process generally includes the invocation of the robot’s

inverse kinematic equations to transform the Cartesian coor-

dinates into the robot joint coordinates expected by the servo

loop. Although path-controlled robots are common in indus-

trial applications, in the medical Weld many other supervisory

control strategies are often required. One example is a compli-

ant control mode, where robot motion is dictated by the forces

and torques applied by the surgeon and measured by a force

sensor. The most common approach is to transform the Car-

tesian velocity to joint velocities using the robot’s inverse

Jacobian. Alternatively, the Cartesian velocity can be added to

the current Cartesian position to obtain a desired position,

which can be transformed to joint positions via the robot’s

inverse kinematics.

Historically, robot manufacturers have provided an inter-

preted language for programming the robot because this allows

the end-user (or systems integrator) to quickly develop new

applications or modify existing applications in the Weld, if

necessary. An interpreter environment allows fast implement-

test-debug cycles because debugging changes can be made

during execution without losing any of the program state
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FIGURE 18.4 Sensorized instruments from our laboratory at Johns Hopkins University

[53–55]. (a) Liver retractor with integrated force sensor and optical sensors for measuring

blood oxygenation. (b) Retraction of pig liver. (c) Sensor readings as blood supply is cut oV and
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FIGURE 18.5 Architecture of a typical robot system. The robot shown was

developed at Johns Hopkins for in-scanner percutaneous needle placement

procedures [19, 72, 73]. The screen interface at the top is typical of the sort

of research interface commonly developed for similar procedures, although

a diVerent interface was used for the kidney biopsy shown at bottom.
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such as the robot’s position [74]. On the other hand, compiled

code runs signiWcantly faster than interpreted code, which is

especially important for tasks that require real-time perform-

ance, such as closing a loop around an external sensor. For

medical robots, regulatory requirements must also be consid-

ered. These dictate that a medical device manufacturer must

carefully control all software changes (conWguration control).

This requirement, along with liability considerations, necessi-

tates a system design that prevents inadvertent or unauthor-

ized software modiWcations, especially in the Weld. Although it

is possible to protect interpreted code from modiWcation (e.g.,

by encryption of the source code), a compiled language has the

advantage of enabling manufacturers to provide end-users

with only the executable Wles. For these reasons (eYciency

and security), most medical robots are programmed in a

compiled language such as C or Cþþ. For development,

however, it is still desirable to have an interactive (interpreted)

environment. This can be achieved by wrapping the C/Cþþ
code for use with a standard interpreted language, such as TCL

or Python.

The development of standard software and control libraries

and application frameworks for medical robotics research rep-

resents a signiWcant challenge and opportunity. This goal has

been a major research focus at Johns Hopkins University.

Figure 18.6 illustrates the software/hardware environment

being developed in our laboratory at Johns Hopkins for

research on intelligent surgical assistants, which is based on

the set of open source software libraries that we are developing

[75–77]. The development of this sort of infrastructure can

be an important enabler in medical robotics research. See also

Section 18.4.6.

18.2.8 Accuracy Evaluation and Validation

Validation of computer-integrated interventional systems is

challenging because the key measure is how well the system

performs in an operating room or interventional suite with a

real patient. Clearly, for both ethical and regulatory reasons, it

is not possible to defer all validation until a system is used with

patients. Furthermore, it is often diYcult to quantify intra-

operative performance because there are limited opportunities

for accurate postoperative assessment. For example, even

though computed tomography (CT) scans are accurate, they

may not provide suYcient contrast for measuring the post-

operative result, and they expose the patient to additional

radiation. For these reasons, most computer-integrated inter-

ventional systems are validated using phantoms, which are

objects that are designed to mimic (often very crudely) the

relevant features of the patient.

One of the key drivers of surgical CAD/CAM is the higher

level of accuracy that can be achieved using some combination

of computers, sensors, and robots. Therefore, it is critical to be

able to evaluate the overall accuracy of such a system. One

common technique is to create a phantom with a number of

objects whose locations are accurately known, either by precise

manufacturing or measurement. If the system uses Wducial-
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FIGURE 18.6 Modular system environment for robotic surgical assistance research at Johns

Hopkins University. Available at http://www.cisst.org/.
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based registration, the objects in the phantom should corre-

spond to Wducials. Furthermore, the phantom should contain

extra Wducials (not used for registration) or other known

features that can be used as targets. If the system uses an

anatomic registration, it may still be useful to place a number

of Wducials in the phantom so that they can provide a reason-

ably accurate estimate of the ground truth registration.

The basic technique is to image the phantom, perform the

registration, and then locate the target features. Maurer [78]

deWned the following types of error:

. Fiducial localization error (FLE): The error in locating a

Wducial in a particular coordinate system (i.e., imaging

system or surgical CAD/CAM system)

. Fiducial registration error (FRE): The root-mean-square

(RMS) residual error at the registration Wducials; that is,

FRE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

~bbk � T �~aak

��� ���2

vuut ;

where T is the registration transform and (~aak ,~bbk) are matched

pairs of homologous Wducials (k¼ 1, . . . , N).

. Target registration error (TRE): The error in locating a

feature or Wducial that was not used for the registration;

if multiple targets are available, the mean error is often

reported as the TRE.

For a robot system, one method for measuring TRE is to

locate the targets in the image, transform them to the robot

coordinate system (using the registration), and then command

the robot to position its instrument at the computed target

location. The TRE is given by the diVerence between the

robot’s position and the actual position of the target. It may

not be practical or convenient to measure this position diVer-

ence, however, so a common strategy is to manually position

the robot at the physical target and then compute the TRE as

the diVerence between the computed position (based on the

registration) and the robot’s actual position. Essentially, this

method uses the robot itself to measure the TRE.

18.2.9 Risk Analysis and Regulatory Compliance

The medical device industry is a heavily regulated industry. In

the United States, medical devices must be cleared for market by

the Food and Drug Administration (FDA). There are two paths

to market. One is via the 510(K) premarket notiWcation process,

and the other is via the premarket approval (PMA) process. A

manufacturer can obtain a 510(K) clearance if the new device is

‘‘substantially equivalent’’ to an existing device that is already on

the market. Otherwise, the PMA application is required. Sur-

prisingly, several medical robots obtained clearance via the

510(K) path, including Aesop (Computer Motion, Inc.), Neu-

romate (Innovative Medical Machines International, subse-

quently Integrated Surgical Systems), and daVinci (Intuitive

Surgical). In contrast, the earlier ROBODOC System (Integrated

Surgical Systems) started down the PMA path and, as of 2006, has

not received clearance. ROBODOC was tested in multi-center

clinical trials in the United States under an investigational

device exemption (IDE), which is the mechanism by which FDA

authorizes limited clinical trials to gather supporting data.

In addition to the need for 510(K) or PMA approval, med-

ical device companies must comply with the quality system

regulations (QSR) and are periodically audited by the FDA to

verify compliance. Initially, the FDA required companies to

adhere to good manufacturing practices (GMP), which regu-

lated just the manufacturing phase. For simple devices, this

worked well because device failures were primarily due to

manufacturing Xaws. As devices became more complex, espe-

cially with the integration of computers and software, the FDA

discovered that a large number of device failures were due to

design Xaws rather than to manufacturing Xaws. The infamous

Therac-25 accident, where six patients received massive over-

doses of radiation from a computer-controlled medical linear

accelerator, is a well-known example [79]. As a result, FDA

QSR began to regulate the design phase as well.

In the European market, all products (medical or otherwise)

require Conformité Européenne (CE) marking. Furthermore,

the design and manufacturing processes must comply with

International Standards Organization (ISO) 9001 and 9002,

respectively (often these are grouped together by the term ISO

9000). The CE marking and ISO 9000 certiWcation are handled

by a number of notiWed bodies, which are independent, non-

governmental entities.

To comply with ISO 9000 and/or FDA QSR, medical device

companies must deWne their development and manufacturing

processes and then produce documents (quality system re-

cords) that demonstrate adherence to these processes. Al-

though ISO 9000 and FDA QSR are similar, they are not

identical, which requires most medical device companies to

comply with both of them.

It should be noted that obtaining FDA approval and CE

marking and complying with FDA QSR and ISO 9000 are still

not enough to guarantee commercial success. Obviously, it is

necessary for the device to be marketable (i.e., to provide a

favorable cost–beneWt ratio). It is perhaps less obvious, how-

ever, that the device must also be accepted by the third-party

payers in the health care system. In the United States, this

consists of Medicare and the health insurance companies.

These entities must agree to reimburse for procedures per-

formed with the new technology for that technology to prolif-

erate in the marketplace.

Risk (or hazard) analysis is one of the key elements of a

medical device development process and is often a focal point

for audits by FDA or notiWed bodies. A failure modes eVects

analysis (FMEA) or failure modes eVects and criticality analy-

sis (FMECA) are the most common methods [80]. These

are bottom-up analyses, where potential component failures
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are identiWed and traced to determine their eVect on the

system. Methods of control are devised to mitigate the hazards

associated with these failures. The information is generally

presented in a tabular format. The FMECA adds the criticality

assessment, which consists of three numerical parameters: the

severity (S), occurrence (O), and detectability (D) of the fail-

ure. A risk priority number is computed from the product of

these parameters; this determines whether additional methods

of control are required. The FMEA/FMECA is a proactive

analysis that should begin early in the design phase and evolve

as hazards are identiWed and methods of control are developed.

18.3 Surgical CAD/CAM

18.3.1 Example: Robotically Assisted Joint
Reconstruction

The relative rigidity of bone and the excellent contrast available

in X-ray and CT images make orthopedic procedures, especially

joint replacement surgery, natural applications for medical ro-

bots, and about 20% of all medical robots surveyed in 2005 were

intended for such applications [81]. The authors of this chapter

were co-developers of one of the Wrst robotic systems for ortho-

pedic surgery (ROBODOC1 [82, 83]), so it is natural for us to

use it as an example in discussing surgical CAD/CAM applica-

tions. Earlier research using a robot for total knee replacement

surgery was performed at the University of Washington [84],

and subsequently, a number of other groups also developed

systems for similar applications [85–89].

ROBODOC1 (Integrated Surgical Systems, Inc., Sacramento,

CA), was initially developed for total hip replacement (THR)

surgery [90, 91] and was later applied to total knee replace-

ment (TKR) [92]. THR surgery involves preparing an elon-

gated cavity in the femur (thigh bone) and a rounded cavity in

the acetabulum (hip socket) to accommodate the two com-

ponents of a hip prosthesis: the femoral stem (Figure 18.7b)

and acetabular cup. Accurate placement of components rela-

tive to the patient’s bones is very important for achieving a

good result. Furthermore, with cementless implants, the bone

must be shaped to achieve a close Wt between the implant and

the bone to encourage the bone to grow into a porous coating

on the implant.

For conventional THR surgery, preoperative planning is

performed by overlaying templates (outlines) and making

measurements on two-dimensional X-rays. Templates are

available at diVerent magniWcation factors so that errors due

to X-ray magniWcation can be minimized. Usually, planning is

limited to identifying an approximate range of implant sizes

and the approximate desired implant position relative to the

bone. During surgery, the bone is prepared using hand-held

reamers (drills) and broaches to prepare the desired cavities.

Proper execution relies on a signiWcant amount of experience

and surgical feel, especially when preparing the femoral cavity.

In this case, the surgeon typically begins with the reamer and

broach corresponding to the smallest planned implant size. If

the cavity feels loose (i.e., insuYcient contact with hard cor-

tical bone), the surgeon switches to the next larger size until he

or she feels that there is suYcient, but not excessive, cortical

contact. If the surgeon chooses a prosthesis that is too large,

the femur can fracture either during cavity preparation or

during prosthesis insertion. This is one of the most common

intraoperative complications associated with THR. Similarly,

although the surgeon can plan any desired prosthesis position,

(a) (b)

FIGURE 18.7 (a) Typical screen view from ORTHODOC1 CT-based planning system

for ROBODOC1 orthopedic robot. Integrated Surgical Systems, Sacramento, CA.

(b) Typical implant components for cementless hip and knee reconstruction surgery.
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the actual position is determined mostly by anatomic con-

straints because the hand-held instruments tend to follow the

path of least resistance.

Laboratory tests [93] showed that the conventional method

for cavity preparation was inherently inaccurate. The cavities

produced were extremely irregular, with large gaps between

implant and bone. Further, accurate alignment of the cavity

relative to bone was extremely uncertain because the interior

surface of the bone could deXect the path of the broach. These

considerations led our surgeon colleagues (Drs. Paul and Bar-

gar) to propose the use of a robot to prepare the implant

cavity. Expected beneWts included adequate and uniform

bone ingrowth, uniform stress transfer, reduced stress shield-

ing, less thigh pain, and the elimination of femoral fractures as

an intraoperative complication.

The ROBODOC procedure for THR (and TKR) consists of

two phases: a preoperative planning phase (ORTHODOC1 )

and an intraoperative (ROBODOC) phase. The input to

ORTHODOC consists of a CT scan of the patient’s anatomy,

the prosthesis geometry that is supplied by the manufacturers,

and clinical decisions made by the surgeon. The surgeon plans

the procedure by selecting a prosthesis from the database

and positioning it in the CT image. ORTHODOC displays

three orthographic views (i.e., orthogonal slices) of the data

as well as a 3D model (Figure 18.7). Each joint of the Wve-axis

surgical robot (Figure 18.8a, b) contains two optical encoders

for redundant position feedback. The system includes a wrist-

mounted six-axis force sensor that monitors the forces applied

at the tool. This force information makes it possible to imple-

ment functionality such as manual guidance, tactile search,

safety checking, and an adaptive cutter feed rate. ROBODOC

executes the preoperative plan by machining the speciWed

prosthesis cavity in the femur. This requires the bone to be

rigidly attached to the robot. A bone motion monitor is used

as a safety sensor to detect motion of the bone relative to

the robot. In addition, accurate cavity placement requires a

registration between the patient’s anatomy in the preoperative

plan (i.e., the bones in the CT scan) and the anatomy of

the actual patient. The preoperative plan is speciWed in image

(CT) coordinates whereas intraoperative localization of the

patient can be obtained in robot coordinates, so registration

implies Wnding the transformation between image and robot

coordinates.

Initially, ROBODOC used a ‘‘pin-based’’ registration

method, which required the implantation of titanium bone

screws (pins) in the femur prior to the CT scan. Registration

was accomplished by deWning at least three reference points on

the pins and then identifying them in both the CT and robot

coordinate systems. Because the pins are titanium, the

ORTHODOC software could easily locate them in the CT

data using image processing techniques. The robot system

identiWed the physical pins via a tactile search, using feedback

from its wrist-mounted force sensor [83]. ROBODOC initially

used three registration pins, with the centers of the pin heads

(a)

(b)

(d)

(c)

FIGURE 18.8 Clinically applied robots for orthopedic surgery. (a, b) The Robodoc1

system for cementless total hip and knee replacement surgery machines bone to match a

surgeon-selected implant shape according to a presurgical plan based on patient CT

images [83, 94]. (c) The Acrobot system [85] employs cooperative hand guiding with

active constraints derived from the implant shape for total knee replacement surgery.
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serving as the three reference points. Shortly afterward, it

transitioned to a two-pin method, where the third reference

point was obtained by creating a virtual pin based on the

center and axis of the distal pin. In this case, a longer distal

pin was required to enable accurate determination of the pin

axis in the CT data.

Although pin-based registration is reliable, it involves an

extra (minor) surgery to implant the pins before making the

CT scan and was also the source of postoperative knee pain for

many patients. This motivated the development of a pinless

system [95], which uses anatomic features instead of metal

pins as Wducials. Registration is performed using a method

similar to the iterated closest point method outlined in Section

18.2.2, using bone surface point positions measured by a small

digitizing arm.

Once surgery has begun, ROBODOC provides a visual dis-

play of its progress on the computer monitor. As the robot

mills the cavity, the monitor displays the CT data overlaid with

a model of the prosthesis cavity. The completed portion of the

cavity is displayed in one color while the remaining portion is

displayed in another. This is similar to the visualization pro-

vided by most navigation systems. During surgery, the control

software continuously monitors the force sensor and adjusts

the cutter feed rate based on the sensed force and on param-

eters speciWc to the prosthesis design and cutting tool [96].

This enables the robot to adapt to the patient’s anatomy by

slowing down in regions of hard cortical bone and speeding up

in other regions.

As of December 2006, ROBODOC has been installed in

about 50 hospitals around the world and has performed over

10,000 THR surgeries. Use of this system became controversial,

especially in Germany, with surgeons and patients reporting

both positive and negative results. Two points that both sides

seem to agree on are: (1) the robot procedure requires a longer

surgery time and has higher surgical costs, compared to the

conventional technique; and (2) the robot can execute the

preoperative plan more accurately than the conventional tech-

nique. There is no consensus, however, on whether the im-

proved accuracy provided by the robot system provides a

clinical beneWt to the patient.

18.3.2 Example: Needle Placement

Placement of needles or similar devices� is one of the most

basic interventional CAD/CAM applications, although there

are numerous challenges, depending on the target organ and

the operating environment. The problem can be simply stated

as placing the tip of the needle at a location speciWed on an

image, typically through an entry point also speciWed on the

image. Both robots and navigation systems have been used to

assist with this task. In some cases, the interventional device

(robot or navigation system) is used to position a cannula or

instrument guide through which the needle is manually ad-

vanced. Accurate placement of needles in the brain was one of

the Wrst uses of robots in interventional medicine [97–100],

and these techniques have since been extended to many parts

of the body, including prostate, liver, spine, etc. Further,

percutaneous needle placement is a natural application for

surgical navigation and image overlay techniques such as

those illustrated in Figure 18.3. There is an extensive literature

on robotic and nonrobotic systems for needle placement. This

section will touch brieXy on a few common themes.

When performed using CAD/CAM techniques, the entry

and target positions can be identiWed on preoperative images,

intraoperative images, or some combination of the two. In all

cases, it is necessary to register the image space to the inter-

ventional device (e.g., robot or tracked instrument). When

using intraoperative images, this registration can be obtained

by placing a calibration object on the robot or patient. The

transformation between the calibration object and device

coordinate system is known by design, and the transformation

between the calibration object and the image coordinate sys-

tem is computed by locating features of the calibration object

in the image, often via image processing techniques. Recent

examples from the work of our own group at Johns Hopkins is

included in references [101] and [102], although these tech-

niques are widely practiced by many groups.

Another potential issue for CAD/CAM needle placement is

target motion. Although this is a relatively minor (though not

nonexistent) problem for bone and organs such as the brain

(which is encased in the skull), it can be very challenging

for soft tissue organs such as liver, kidneys, or prostate,

as well as for anatomic targets such as the lungs or spine,

which can be aVected by respiratory motion or by heartbeats.

For this reason, many groups have emphasized placement

of needles under direct feedback from imaging modalities

such as X-ray Xuoroscopy, CT, MRI, or ultrasound. Whether

or not direct image feedback is available, it is often important

to compensate for motion and/or to register preoperative

images with (possibly deformed) intraoperative anatomy or

images.

In many cases, needle placement under direct (intraopera-

tive) image guidance is diYcult due to patient access issues.

This is especially true when the image modality is a closed bore

MR scanner, where the patient is placed inside a long cylin-

drical tube that has a diameter that is not much larger than the

patient. Here, the only option for performing needle place-

ment (besides catheter-based methods) is to use a robot that is

small enough to Wt inside the MRI scanner [27, 103]. The

design of MR-compatible robotic devices poses signiWcant

challenges as a result of materials and component limitations

associated with the high magnetic Welds and radiofrequency

sensing associated with MR imaging [104]. Even for a robot

intended for use with CT or X-ray Xuoroscopy, it is generally

� For convenience, we use the term needle placement, but the problem is

generic to the placement of any needle-like instrument, including probes,

drills, radiation beams, etc.
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desirable for the robot’s end eVector to be as radiolucent as

possible to reduce interference with the images used for guid-

ance and targeting.

18.4 Surgical Assistance

18.4.1 Basic Concepts

Interventional procedures, especially those that we think of as

surgery, can be highly interactive processes, and many inter-

ventional decisions are made in the operating room and exe-

cuted immediately. The goal of computer-based interventional

systems, including medical robots, is not to replace the sur-

geon or interventionalist� with a machine so much as to

provide the surgeon with versatile tools that augment his or

her ability to treat patients. Currently, there are three main

sub-classes of Assistant Systems, although the distinctions

between them are by no means hard and fast.

The Wrst class, intraoperative information support systems,

simply provide information to the surgeon, who uses his or her

manual dexterity to manipulate the surgical instruments in

performing the intervention. An extremely important subclass

of these systems (discussed in Section 18.4.2) is surgical navi-

gation systems, which relate surgical instrument positions to

medical images and patient anatomy. Interestingly, surgical

navigation systems can also be thought of as surgical CAD/

CAM because they provide the capability to couple presurgical

image-based planning with intraoperative execution.

The second class, surgeon extender robots, are operated

directly by the surgeon and augment or supplement the sur-

geon’s ability to manipulate surgical instruments during sur-

gery. Potentially, these systems can give even average surgeons

super-human capabilities such as elimination of hand tremor

or ability to perform dexterous operations inside the patient’s

body. The clinical advantages associated with these systems

potential include the ability to treat otherwise untreatable

conditions, reduced invasiveness and patient morbidity, im-

proved safety and reduced complication rates; and reduced

surgeon fatigue. A special subclass of surgeon extender robots

is a remote telesurgery system, which permits the surgeon to

operate on patients at distances ranging from a few hundred

meters to several thousand kilometers.

A third class, auxiliary surgical supports, generally work side

by side with the surgeon and perform such functions as endo-

scope holding, tissue retraction, or limb positioning. These

systems typically provide one or more direct control interfaces

such as joysticks, head trackers, voice control, or the like.

However, there have been some eVorts to make these systems

smarter to require less of the surgeon’s attention during use,

for example, by using computer vision to keep the endoscope

aimed at an anatomic target or to track a surgical instrument.

Although these systems may oVer some of the same advan-

tages as surgeon extenders (e.g., reduced tissue damage due to

more delicate retraction), their main justiWcation is improved

operative eYciency and reduced need for operating room

staV.

18.4.2 Surgical Navigation Systems
as Information Assistants

Surgical navigation systems track the positions of surgical

instruments and other objects in the operating room and

display this information graphically, usually relative to regis-

tered images of the patient. Although Wrst developed for

neurosurgery [8, 105], they have also been widely adapted to

otolaryngological surgery [11, 106], orthopedic surgery [9,

10], craniofacial surgery [107, 108], and other applications

placing a high value on precise localization and integration

of information from medical imaging systems. There are cur-

rently many commercially available systems, and surgical navi-

gation has rather larger acceptance in the interventional

systems market than does any form of robotic assistance.

As shown in Figure 18.9, a typical surgical navigation system

consists of a navigational tracking device capable of determin-

ing the position and orientation of rigid bodies attached to

surgical instruments and to the patient’s anatomy, together

with a computer workstation and display. After a registration

step is performed, the workstation is able to compute and

display the position of instruments relative to patient images.

18.4.3 Surgeon Extenders

Telesurgical robots are the most widely deployed form of sur-

geon extender system and have been used extensively for cardiac,

prostate, and other minimally invasive laparoscopic procedures.

Examples include numerous (dozens) research systems [20, 25,

109–114], as well as commercially deployed systems such the

daVinci [115] (Intuitive Surgical, Sunnyvale, CA) and Zeus

[116] (formerly marketed by Computer Motion, Goleta, CA).

The architecture of a typical system (here, the daVinci) is

shown in Figure 18.10. The system consists of a patient-side

slave robot and a master control console. The slave robot has

three or four robotic arms that manipulate a stereo endoscope

and dexterous surgical instruments such as scissors and needle

holders. The surgeon sits at the master control station and

grasps handles attached to two dexterous master manipulator

arms, which are capable of exerting limited amounts of force

feedback to the surgeon. The surgeon’s hand motions are sensed

by the master manipulators, and the motions are mimicked by

the slave manipulators. A variety of control modes may be

selected by means of foot pedals on the master console and

� For simplicity of discussion, we will use the word ‘‘surgeon’’ throughout the

balance of this section, rather than the more inclusive (but awkward) ‘‘inter-

ventionalist.’’
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used for such purposes as determining which slave arms are

associated with the hand controllers. Stereo video is transmitted

from the endoscope to a pair of high-quality video monitors in

the master control station, thus providing high-Wdelity stereo

visualization of the surgical site. The display and master ma-

nipulators are arranged so that it appears to the surgeon that the

surgical instruments (inside the patient) are in the same pos-

ition as his or her hands inside the master control console.

Other telesurgical systems employ the same basic architecture,

although there are many diVerences in implementation. For

example, many systems [26, 116] use more conventional stereo

TV set displays that use polarizing glasses or liquid crystal

display shutter glasses to multiplex left and right eye images.

Some surgeons Wnd this arrangement more comfortable for

long-duration procedures, although much of the immersive

feel of the daVinci is lost. Similarly, research systems incorpo-

rate many diVerent mechanical designs for the patient-side slave

robots.
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FIGURE 18.9 A typical surgical navigation system showing key coordinate

transformations. After registration, the system computes ~ppCtip, the position in

image coordinates corresponding to the current position of the pointer tip and

uses this information to update a display.
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FIGURE 18.10 Architecture of a typical telesurgical system. Photos: Intuitive

Surgical Systems.
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A primary advantage promised by telesurgical robots for

minimally invasive surgery is their ability to permit the sur-

geon to perform dexterous manipulation of instruments and

tissues inside the patient’s body. A major theme in current

research has been development of highly dexterous, miniatur-

ized robotic end-eVectors suitable for this purpose. Some

examples are shown in Figure 18.11. Many systems [20, 25,

115, 117, 118] have used cable-actuated tools. One drawback

of this approach is that it becomes increasingly diYcult to

provide high strength and dexterity as the mechanisms get

smaller and smaller. This has led various groups to investigate

alternatives. For example, several groups have explored micro-

hydraulic systems [119, 120]. At Johns Hopkins, we have ex-

plored another approach, illustrated in Figure 18.11(b) and

(c), using parallel superelastic spines to produce snakelike end-

eVectors [119]. Although most current surgical robots employ

manipulator arms to position tools within the patient’s body,

with wrist-like mechanisms to provide distal dexterity, there has

been some work on systems with a greater degree of autonomous

motion capability [121–123].

Although teleoperation has many advantages, especially for

high-dexterity robotic manipulation inside the patient’s body,

it also has some drawbacks. The amount of equipment re-

quired is large, since both master and slave manipulators are

needed. The surgeon is frequently somewhat removed from the

patient because he or she is sitting at a master control station

and may have a reduced overall awareness of the surgical

situation.

Consequently, several groups, including our own, have

developed an alternative approach based on hands-on admit-

tance control, in which the robot moves in response to forces

exerted by the surgeon directly on the robot’s end-eVector or on

a handle attached to the robot. Our early experiences with

Robodoc1 [83] and other surgical robots [51, 124] showed us

that surgeons Wnd this form of control very convenient and

natural for surgical tasks. Two notable uses of cooperative

control are the Imperial College Acrobot2 orthopedic system

[85] [Figure 18.8(c) and (d)] and the Johns Hopkins Steady

Hand microsurgery system [125] (Figure 18.12). Although

cooperative control is usually limited to precise positioning

tasks, it can also provide force scaling via the use of two force

sensors: one to sense the surgeon’s input and another to meas-

ure tool-to-tissue interaction forces and then move the robot in

response to a scaled diVerence between these forces [66, 125].

Other groups have developed completely free-hand instru-

ments that sense and actively cancel physiologic tremor [129,

130]. The main advantage of this approach is that it requires

the least change in normal operating room procedure. The

(a) (b) (c)

(d) (e)

(f)
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FIGURE 18.11 Dexterity and mobility inside the patient’s body. (a) daVinci dexterous wrist with

typical surgical instrument. Courtesy Intuitive Surgical. (b, c) 4.2-mm diameter Johns Hopkins

University/Columbia University snake manipulator [132, 133]. (d) Five degree-of-freedom, 3 mm-

diameter microcatheter robot [112, 117]. (e) Dexterous robot for endogastric surgery [118]. (f)

Mobile Heart Lander robot for crawling across the heart [123].
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surgeon uses the tremor-reducing tool just as he or she would

use any other instrument. The challenges are instrument

ergonomics (mostly size and weight) and precise motion per-

formance, which is still not as good as that of fully robotic

devices.

One problem commonly encountered in all forms of med-

ical robotics is the diYculty of maintaining a desired relation-

ship between an instrument held by the robot and moving

patient anatomy. Broadly speaking, there are two approaches

to solving this problem. The Wrst approach [52, 133] is to sense

the relative motion, most commonly with computer vision or

some other form of imaging device, and then move the robot.

The second approach [83, 86, 134, 135] is to attach the robot’s

base Wrmly to the patient’s anatomy, so that it rides with the

patient. This approach is especially common in orthopedics

but may be applied in other areas such as otolaryngology,

neurosurgery, or ophthalmology, where a good attachment

point is available.

18.4.4 Auxiliary Surgeon Supports

Although attention is often focused on robotic systems that

directly extend the surgeon’s ability to manipulate surgical

instruments, many of the most successful robotic applications

in surgery have focused on auxiliary tasks such as patient

positioning [136], surgical instrument delivery [137, 138]

and laparoscopic camera positioning [51, 52, 139]. In fact,

the AESOP1 laparoscopic camera surgery system [46, 140]

(formerly distributed by Computer Motion, Goleta, CA) was

one of the Wrst widely deployed surgical robots.

18.4.5 Remote Telesurgery and Telementoring

The possibility for using master–slave telesurgery systems to

perform procedures in which the surgeon and patient are

separated by very long distances has long been recognized

[141, 142]. Commonly considered applications include space

exploration, military combat care, and provision of care in

sparsely populated areas. A number of research groups have

developed experimental systems over the years [20, 143–148].

A major milestone was achieved by Marescaux et al. in 2001

with successful performance of a trans-Atlantic laparoscopic

cholecystectomy [149]. Subsequent work has included eVorts

by Anvari et al. to develop a practical system for deployment in

Canada [150, 151].

There has also been signiWcant interest in using telesurgical

technology to provide remote (or on-site) mentoring, in which

an expert surgeon advises a less-experienced surgeon in carry-

ing out a procedure [152–154]. Although in some ways similar

to more conventional telesurgery, this form of telementoring

can introduce some additional challenges. In particular, proto-

cols may be needed to enable the expert and trainee surgeon to

trade oV control of a surgical robot or otherwise to work

cooperatively during completion of the case.
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FIGURE 18.12 Johns Hopkins University Steady Hand cooperative manipulation systems for microsurgery.

(a) First-generation system [125], here used to demonstrate fenestration of the stapes bone for an otology application

[67]. (b) Comparative motion tremor with freehand instrument manipulation and steady-hand robot manipulation

[126]. (c) Steady-hand micro-injections into mouse embryos [127]. (d) Newer-generation steady-hand robot for eye

surgery [128]. (e, f) Evaluation on chick embryos.
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18.4.6 Toward Intelligent Surgical Assistance

Although one goal of both teleoperation and hands-on control

in a surgeon extender system is to enable the surgeon to

directly control the motion of the robot, the fact that a com-

puter is actually meditating between the surgeon’s command

input and the robot’s actual motion can create many more

possibilities. The simplest is a safety barrier or no Xy zone, in

which the robot’s tool is constrained from entering certain

portions of its workspace. More sophisticated versions include

virtual springs, dampers, or complex kinematic constraints

that help a surgeon align a tool, maintain a desired force, or

perform similar tasks. This concept has many names, of which

virtual Wxtures seems to be the most popular [156–160]. The

Acrobot system shown in Figure 18.8(c) and (d) represents a

successful clinical application using virtual barriers to limit the

motion of cutting tool.

A number of groups [161–164] are exploring extensions of

the virtual Wxtures concept to active cooperative control, in

which the surgeon and robot share or trade oV control of the

robot during a surgical task or subtask. As the ability of

computers to model and follow along surgical tasks [138,

155] improves, these modes will become more and more

important in surgical assistant applications. Figure 18.13(a)

shows the functional architecture of a typical surgical assistant

workstation being developed at Johns Hopkins University.

Figure 18.13(b) illustrates initial eVorts to develop automatic

motion segmentation tools to distinguish the diVerent steps in

a suturing procedure.

18.5 Summary

Medical robotics and CIIM are still relatively young Welds.

Nevertheless, they have grown remarkably, especially in the

past 5 to 8 years, as clinical systems have been deployed and

as more researchers enter them. This short chapter has

only provided a brief introduction to some of the main areas

of research and practice, and our treatment has necessarily

skipped over important research and groups working in the

Weld. To those who may have been left out, we extend our

sincere apologies and hope that readers of this chapter will be

motivated to pursue further reading, perhaps starting with

books such as those of references [165, 166], recent journal

special issues such as those found in references [114, 167], or

any of the many conference proceedings in the Weld.

By coupling information to action in ways that were not

possible before, these systems have the potential to fundamen-

tally change the practice of interventional medicine. Enough

progress has been made in all of the architectural elements

shown in Figure 18.2 so that clinically useful systems can indeed

be deployed. However, further advances are still needed across

the board in the modeling and analysis required for medical

robotic applications, for the interface technologies required to

relate the data world to the physical world of patients and

clinicians, and to the system science that makes it possible to

put everything together safely, robustly, and eYciently. It is our

belief that this research is best done in interdisciplinary teams

motivated by important applications. Our experience has been

that building a strong researcher-surgeon-industry team is one

of the most challenging, but also one of the most rewarding,

aspects of medical robotics and CIIM research. The only greater

satisfaction is the knowledge that the results of such teamwork

can have a very direct impact on patients’ health. This is a

challenging area, but it is worth it.

18.6 Exercises

1. Develop an outline for evaluating alternative approaches to

a surgical system or application, including such factors as

cost, safety, eVectiveness of pain relief, accuracy, time. For

each such criterion, include:

Situation assessment 
Task strategy and decisions 
Sensory-motor coordination

Display

Sensors

Online references and 
decision support
Manipulation 
enhancement

Cooperative control
and "macros"Assistant workstation

Atlases

Libraries

4
3

2

1

FIGURE 18.13 (a) Functional architecture of a typical intelligent surgical assistant. (b) Segmented

trace of daVinci hand motions during a suturing procedure [155].
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a. Short deWnition or explanation of the criterion

b. Short discussion of how that criterion should be assessed

(e.g., units of measure, means of gathering information)

c. Short discussion of how important each criterion is to

each relevant group aVected (patient, surgeon, hospital

administrator, insurance company, employer, etc.)

2. Use your outline to evaluate robotic versus navigationally

assisted versus conventional manual joint reconstruction

surgery.

3. Use your outline to evaluate robotically assisted versus

conventional minimally invasive surgery.

4. Consider the surgical navigation system shown in

Figure 18.9. The expression given shows the calculation of

the CT coordinates corresponding to the position of the

pointer tip:

~ppCtip ¼ TregT�1
ref Ttool~pptip

Suppose, now, that each of the constituent expressions is

subject to some small error:

T�reg ¼ Treg DTreg

T�ref ¼ Tref DTref

T�tool ¼ TtoolDTtool

~pp�tip ¼~pptip þ D~pptip:

We will assume that the errors are small so that the follow-

ing approximations are valid:

DTreg �~vv �~vvþ ~aareg �~vvþ~««reg ;

where ~aareg and ~««reg are small vectors

with similar conventions for the other quantities.

a. DeWne ~pptt ¼ TCtip �~pptip. Write an expression estimating

the error in the computed value of ~pptt . That is, write an

expression for

D~pptt ¼ TtoolDTtool(~pptip þ~««tip)� Ttool~pptip:

b. DeWne ~pprt ¼ T�1
ref~pptt . Write an expression estimating the

error in the computed value of D~pprt (Hint, use your

previous result as a start).

c. Write an expression estimating the error in the com-

puted value of ~ppCtip.

d. Suppose that value errors given above for DTtool and

DTref correspond to random measurement errors. Sup-

pose, further, that the tracker has developed an unsus-

pected systematic error, such that if the reported value of

a tracked frame A is TA then the actual value is

T�A ¼ DTerr TA. How does this aVect your answer to

question c? Justify your answer.
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19.1 Introduction

19.1.1 Background

The increased use of computerized processing and analysis

techniques in medical imaging modalities, along with the

rapid advance in information technology has resulted in sign-

iWcant advancement in medicine and health care [1–4]. These

advances have given rise to new 2D, 3D, and multidimensional

imaging modalities such as computerized axial tomography

(CAT or CT), magnetic resonance imaging (MRI), single pho-

ton emission computed tomography (SPECT), positron emis-

sion tomography (PET), and fused imaging modalities such as

SPECT/CT, PET/CT, and their clinical signiWcance in the diag-

nosis and treatment of disease is overwhelming.

The introduction of clinical MRI in the 1980s completed

the modern revolution of neuroradiology. MRI, unlike CT,

depends on the physical phenomenon of the nuclei spinning

to provide biomedical information. MRI is free from the

radiation and is therefore a relatively safe technique. It can

characterize and discriminate various tissues by using their

physical and biochemical properties such as water, iron, fat,

and blood products. Since calcium emits no signal on MRI,

tissues surrounded by bone, including the posterior fossa and

spine, can be imaged without beam-artifact such as occur in

CT scan. With its high spatial and tissue contrast resolution,

MRI can also provide excellent delineation of anatomic struc-

tures. The ability to obtain multiplane images with equivalent

resolution without moving the patient oVers special advan-

tages for diagnosis and radiation and surgical treatment plan-

ning. In addition, MRI contrast agents are well tolerated, with

fewer allergic reactions and nephrotoxic eVects compared to

CT contrast agents. The application of MRI in various aspects

of medical science enormously beneWts patients, medical prac-

titioners, and scientists. Therefore MRI has been widely

accepted in the medical community since its Wrst use on

humans by Dr. Raymond Damadian in 1977 [5].

The progress in MRI technology has moved very rapidly and

the pace shows little sign of slowing. Major advances in MR

technology and particularly in magnetic Weld gradient designs

have created a new popularity in the application of high-speed

MRI. The recent development of integrating high-Weld magnet

(3.0T) into MR machines gives rise to higher spatial and

temporal resolution in both functional and anatomic imaging.

Software improvements include novel pulse sequence designs

and advanced image processing techniques to speed up recon-

struction and to correct for patient motion, etc. Dynamic

contrast-enhanced MRI techniques for evaluating soft tissue

masses or cervical lymph nodes can help to diVerentiate non-

malignant tissue from malignant tumors [6–10]. Because
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structural imaging techniques alone are inadequate for deWn-

ing the cerebral function that is increasingly important in

clinical assessment, functional imaging techniques were inves-

tigated to improve the evaluation of various pathologic

processes [7–14].

Functional imaging techniques other than MRI, like nuclear

medicine techniques, involve ionizing radiation and have dis-

advantages from imprecise anatomic localization due to poor

spatial and temporal resolution [15, 16]. Functional MRI can

produce an image with spatial resolution of less than 1mm

apart, whereas the latest commercial PET scanners can resolve

images of structures within 4mm of each other. With the

continuous support of increasingly powerful computer and

advanced image processing methods, MRI allows for not only

qualitative but also quantitative analysis, which is extremely

valuable for understanding disease and planning treatment.

Given its higher spatial and temporal resolution, lack of ion-

izing radiation, and lower cost, functional MRI may become

more widely used than other existing imaging modalities for

clinical brain function mapping. Therefore, under the goal of

providing an integrated view of brain structure, chemistry, and

physiology, MRI occupies a central and currently irreplaceable

position in the Weld of diagnostic brain imaging in spite of

many exciting and promising emerging functional techniques.

19.1.2 Overview of Brain Magnetic Resonance
Imaging

MRI provides multiplanar large Weld-of-view images of the

body with excellent soft tissue contrast but without ionizing

radiation, making it a pivotal imaging modality in the evalu-

ation of brain disease [17, 18]. This noninvasive imaging

technique requires a strong and homogeneous external mag-

netic Weld (1.5 to 3T). During the examination, the transmit-

ting coils emit radiofrequency (RF) magnetic Weld to excite

the biological tissues; then the excited tissues would release the

energy (the magnetic signals), which would be detected by

the receiving coils. The received magnetic signals are then

transmitted to the computer, where the magnetic signals are

reconstructed to MR images. The intensity of MR signals

depends on T1, T2 relaxation time and proton density. Usually

high-resolution anatomic brain MRI will make use of

T1-weighted, T2-weighted, proton density-weighted, or Xuid

attenuated inversion recovery (FLAIR) sequences. Recent

development of functional MRI techniques has also expanded

the clinical brain MRI application because of its unequivocally

established relationship with physiologic function, energy

metabolism, and localized blood supply [19–23]. Based on

detecting the changes of diverse physiologic parameters, func-

tional brain MRI can potentially diVerentiate the pathologic

tissue from normal brain tissue.

Functional brain MRI techniques comprise of diVusion-

weighted imaging (DWI) for cerebral water molecule mobility

assessment, perfusion-weighted imaging (PWI) for cerebral

tissue perfusion assessment, MR spectroscopy (MRS) for cere-

bral chemical metabolites assessment, and blood oxygenation

level dependent (BOLD) technique for functional brain local-

ization or lateralization (fMRI). The combination of func-

tional and anatomic information aVords a new means of

understanding the origin and temporal sequences of various

brain diseases.

The material in this chapter was presented at an introduc-

tory level for those who have little experience in brain MRI. In

addition to the overview of brain MRI, diVerent functional

MRI techniques will be covered in the following subsections.

After reading this chapter, readers will be inspired by the

potential use of MRI techniques for unraveling the mysteries

of the human psyche and brain.

19.2 DiVusion-Weighted Magnetic
Resonance Imaging in Brain

In addition to T1, T2 relaxation time and proton density,

molecular motion due to pulsatile Xow and convective or

diVusion processes also contribute to MR signal intensity.

DiVusion is an important process to MRI or nuclear magnetic

resonance (NMR) imaging. In the diVusion MRI, regions of

the brain are depicted not only based on physical properties,

such as T2 relaxation time and spin density, but also on local

characteristics of water molecule diVusion [24, 25]. DWI is

used to probe random microscopic motion of water protons,

that is, the Brownian motion, on a pixel basis [26]. Shifts of the

water protons between tissue compartments are related to

physical or anatomic constraints including permeability of

the cell membrane, osmolarity of the tissue Xuid, and active

transportation, all of which have an impact on the extent of

proton mobility, or diVusivity. This property makes DWI a

powerful tool for the diagnosis of diseases involving alteration

in water mobility, such as ischemia, multiple sclerosis (MS),

dyslexia, schizophrenia, trauma, and various intracranial

abnormalities [27–30].

19.2.1 Basic Principles

The physical model of diVusion is one of successive small,

random steps since the size and direction of each step is

unrelated to the preceding ones (Figure 19.1a). After a large

number of individual steps, there will be, on average, no net

displacement of a molecule from its starting location. How-

ever, there will be a region around the starting location where

the molecule could be expected at any one time (Figure 19.1b).

If t is the average time between steps, t is the total diVusion

time, then, after a large number of steps, the mean-squared

(expected) displacement from the starting location, Dx2, is

directly related to the mean-squared displacement of each

step, d2:
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Dx2 ¼ d2

t

 !
t ¼ 2Dt , (19:1)

where D( ¼ d2=2t), the constant of proportionality, is the free

diVusion coeYcient term. This equation applies to the inter-

diVusion of molecules of a single type and can be measured

experimentally by the use of NMR excitation or radioactive

isotope labeling.

To understand how diVusion can lead to net displacement,

assume a gradient of concentration, dC/dx. According to Fick’s

Wrst law of diVusion, the net Xux, J, or net movement across

the plane (of area S) per time t can be expressed as

J ¼ �SD
dC

dx
, (19:2)

which describes that diVusion acts to even out concentrations.

Because diVusion acts to eliminate any concentration diVer-

ences, there needs to be a mechanism to maintain unequal

chemical solutions of the living systems. This is possible

through the use of membrane barriers surrounding individual

cells or organelles.

Most DWI sequences are based on the spin-echo (SE)

Stejska-Tanner sequence. DiVusion sensitization is typically

added to SE sequence by applying a pair of pulsed magnetic

Weld gradients as shown in Figure 19.2. After the initial 908
pulse (dephasing pulse), the ensemble of transverse spins rap-

idly gets out of phase. Then after the 1808 pulse (rephrasing

pulse), the dephased spins would match the pulsed gradient

again. If the position of the spins does not change between the

two pulsed gradients, the second pulse would generate a simi-

lar spatially dependent precession rate variation. Therefore,

stationary water molecules would be fully rephrased. However,

moving water molecules would cause signal loss owing to

incomplete rephrasing, that is, diVusion between the two gra-

dients would reduce the NMR signal intensity. The diVusion

decay factor is normally formed as exp (-bD), where D is the

diVusion coeYcient of water molecule and b is a constant

deWned as

b ¼ g2G2d2(D� d=3) (19:3)

where g is the proton gyromagnetic ratio, and G, d, and D are

the magnitude, duration, and interval of the pulsed gradient

pair, respectively (Figure 19.2). Raw images obtained with a

high b value are often called diVusion-weighted images.

Since most DWI sequences are based on SE sequence, diVu-

sion-weighted images usually retain some properties of the SE

image (i.e., with T2 contribution). When T2 elevation domin-

ates (T2 shine-through eVect), the diVusion-weighted image

shows hyperintensity in the presence of rapid or facilitated

diVusion. Therefore, diVusion image (not DWI), free from

T2 contribution, is desired. An alternative solution is to create

two (or more) images with diVerent diVusion gradients, which

is the only diVerence between the two DWI sequences, then the

ratio of the two images, S1 and S2, would be:

S1

S2

¼ exp �b1D½ �
exp �b2D½ � ¼ exp[(b2 � b1)D], (19:4)

where b1 and b2 are the b factors of the corresponding se-

quences. Taking the logarithm of the ratio image and dividing

the result of each pixel by the known quantity (b2–b1) would

generate an image of the diVusion coeYcient (D).

In biological tissues, factors other than diVusion contribute

to the signal loss, such as vessel Xow, cerebrospinal Xuid Xow

or restriction due to organelles, and cell membrane or Wber

packing. Therefore, the apparent diVusion coeYcient (ADC),

which combines the eVects of capillary perfusion and water

diVusion in the extracellular space, is preferred [31].

Normally, there are two kinds of diVusion in the living

system. DiVusion within tissues that has a random microstruc-

ture or unrestricted media will have diVusion equal in all

directions, called isotropic diVusion. On the other hand, diVu-

sion within regions that has restricted movement of molecules

refers to anisotropic diVusion. The diVusion within the nerve

Wber is anisotropic diVusion.

Despite its well-established clinical advantage, DWI is not

without pitfalls. High diVusion gradients make the images very

sensitive to other types of motion, particularly patients’ motion

and blood Xow. Therefore, development of eVective motion

(a) (b)

S S
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FIGURE 19.1 (a) The physical model of random diVusion move-

ment. (b) There will be an increasing large region in which the

molecule can be expected at any one time.
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FIGURE 19.2 A typical SE diVusion MRI sequence.
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suppression methods is very important. Signal averaging,

restraining holders, and sedation can help to suppress bulk

motions, such as breathing and jerking [32]. Motion artifacts

can largely be eliminated with the use of diVusion-weighted

echo-planar MRI whose acquisition time is within 150 msec [33].

19.2.2 Clinical Applications

The clinical application of DWI began in the last decade with

the demonstration of its capabilities for depicting the anatomy

of the white matter Wber tracts in the brain. With its quanti-

tative evaluation based on the diVusion tensor, DWI has a role

in the assessment of brain maturation and white matter dis-

eases in the fetus, neonate, and child. Figure 19.3 demonstrates

the brain DWI of a normal volunteer, depicting the size and

course of major white matter pathways. In the adult, the white

matter tracts (association, projection, and commissural white

matter pathways) of both peripheral and central nervous sys-

tem (CNS) could be mapped using the diVusion tensor im-

aging (DTI). Figure 19.4 shows the displacement (rather than

destruction) of the right white matter tracts of a patient with

right frontal meningioma, which is very important for plan-

ning the operation. MS is an inXammatory disease of the CNS,

leading to a progressive decline of motor and sensory func-

tions, and eventually permanent disability. In the setting of

MS, diVusion increases in plaques due to demyelination.

Therefore, the ADC or D values of the normal-appearing

white matter are increased compared to the control values. In

addition, the D value of the normal-appearing grey matter is

increased as well, which correlates with the cognitive deWcit.

DiVusion change might be a more sensitive marker in predict-

ing the progression of MS disease than conventional imaging

Wndings [34].

Cerebrovascular disease is one of the leading causes of death

worldwide. Of the 60% of patients who survive a Wrst stroke,

only 10% recover completely, while the majority have perman-

ent disability, with many requiring institutional care. The most

important and widely used clinical application of DWI is in

the Weld of cerebrovascular disease, which includes cerebral

ischemia and infarction. Patients with signs or symptoms of

cerebral ischemia are now evaluated by DWI, which is much

more sensitive than CT. As shown in Figure 19.5, the DWI

FIGURE 19.3 The diVusion tensor tractography (direction-encoded

color map) of the normal volunteer identifying the major association,

commissural, and projection pathways in the brain. The diVerent colors

of the white matter tracts represent their diVerent directions/orienta-

tions. For a more detailed view of this figure, please visit our companion

site at: http://books.elsevier.com/companions/9780123735836.

FIGURE 19.4 The DTI (Wber tracking) of a patient with right

frontal meningioma, depicting the displacement (rather than destruc-

tion) of the right white matter tracts. For a more detailed view of this

figure, please visit our companion site at: http://books.elsevier.com/

companions/9780123735836.

FIGURE 19.5 The diVusion-weighted image shows marked hyper-

intensity in the acute infarction at the right cerebral hemisphere.
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demonstrates marked hyperintensity at the right cerebral

hemisphere, indicating acute infarction. DWI could provide

one of the earliest demonstrations of ischemic lesions. In one

study [27], during the Wrst hour following middle cerebral

artery occlusion in a cat, changes could be obtained on DWI

when no abnormality was found on T1- or T2-weighted im-

ages. T2 signal abnormality did not become evident until 6 to 8

hours or as late as 12 hours after the ischemic event [35]. The

ADC decreases in the acute phase but it will ultimately increase

in the chronic phase of the stroke as a result of increased local

water content [36].

DWI could diVerentiate arachnoid cyst and epidermoid,

which is a diYcult task for conventional MRI because both

arachnoid cyst and epidermoid show hyperintensity on T2-

weighted images (Figure 19.6a,b). As shown in Figure 19.6c,d,

arachnoid cysts show increased diVusion; whereas epidermoid

has relative restricted diVusion. DWI is also suitable for deter-

mining glioma grade and regions of active tumor growth [37].

Furthermore, it is helpful to assess the tumor response to

therapy, possible therapy failure, and therapy complications

such as radiation necrosis.

19.3 Magnetic Resonance Perfusion
Imaging in Brain

The perfusion-weighted MR imaging of brain tissue is widely

used. The term perfusion refers to the passage of blood in the

brain capillaries, most often related to contrast agent from an

arterial supply to venous drainage through the cerebral micro-

circulation. PWI is sensitive to microscopic tissue-level blood

Xow. The PWI techniques may or may not require intravenous

administration of an MR contrast agent. Most current clinical

experience is with contrast-based technique. Quantitative im-

aging of cerebral perfusion has been commonly performed

with nuclear medicine techniques. Advantages of PWI over

nuclear medicine techniques include relatively lower cost,

higher spatial resolution, and easier comparison with anatomic

images.

19.3.1 Basic Principles

MR perfusion imaging is based on monitoring the passage of a

nondiVusible tracer, such as the paramagnetic gadolinium-

diethyltriamine pentaacetic acid (GdDTPA), within the brain

tissue dynamically. The paramagnetic contrast agent (tracer)

has both T1 shortened eVect through dipole-dipole interaction

(routinely associated with contrast-enhancement) and T2

(T2�) shortened eVect through magnetic susceptibility eVect.

If the blood-brain barrier is intact, the contrast agent in the

CNS can only produce enhancement of the blood pool. Never-

theless, the magnetic susceptibility eVect due to the magnetic

Weld gradient between the lumen of the vessel and surrounding

tissue would cause loss of coherence of spins, whose eVect is

more dominant than T1 shortened eVect. The susceptibility

eVect is most signiWcant during the Wrst passage of contrast

bolus through the brain. Gd-DTPA is a suitable contrast agent

for PWI in view of its availability and T2 (T2�) susceptibility

eVect [38]. The mechanism causing shortened T2 (T2�) is very

eYcient in the capillaries due to their large intravoxel disper-

sion and relatively large surface area (compared with arteries

and veins). The T2 (T2�) MR signal drop of a brain region

depends on both the vascular contrast concentration and the

concentration in small (3 to 10 mm) vessels [39, 40], and is

therefore served as the relative perfusion to that region.

PWI could be performed using the SE or gradient-echo

pulse sequence. The sensitivity of the two acquisition methods

for evaluating pathologic brain abnormalities may be similar.

However, SE-based PWI is more accurate than gradient-echo

measurement for representing the capillary perfusion in the

human brain [41] because the later technique may incorporate

extensive artifacts from the large cerebral vessels [42].

PWI technique is capable of providing quantitative as well as

qualitative assessment of brain microcirculation. By using

rapid imaging techniques to resolve the tissue transit of

intravenously administered contrast agents and applying

tracer kinetic modeling techniques to the acquired dynamic

(c) (d)

(a) (b)

FIGURE 19.6 T2-weighted images of (a) arachnoid cyst and

(b) epidermoid, which have similar signal intensity and appearance.

(c) DWI of arachnoid cyst shows unrestricted diVusion. (d) DWI of

epidermoid depicts restricted diVusion.
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perfusion images, the diagnostically valuable parameters, such

as the cerebral blood volume (CBV), cerebral blood Xow

(CBF), and mean transit time (MTT), could be estimated. To

apply tracer kinetic analysis for the measurement of these

physiologic parameters, a relationship between the PWI signal

intensity and local contrast concentration should be deter-

mined to generate the contrast concentration-time curve of

the region of interest (ROI). Analysis of these curves by

accounting for the kinetics and compartmentalization of con-

trast delivery to tissue as well as how these factors aVect MR

signal intensity, will allow calculation of the above-mentioned

tissue microcirculatory perfusion parameters.

19.3.2 Quantitative Analysis

By repeated imaging in a short interval (typically 1 to 2

seconds), one can observe magnetic susceptibility eVect within

the brain tissue during the Wrst pass of the contrast bolus as a

transient signal drop from the baseline shown in Figure 19.7.

The degree of signal intensity drop depends on the contrast

concentration, relative blood volume, and a number of

hemodynamic parameters. Villringer et al. [43] experimentally

veriWed that the relationship between the signal intensity

and T2 relaxation rate change (DR2 ¼ 1=DT2) could be

approximated by

S(t) ¼ S0e[�TE(DR2(t))] (19:5)

where S0 and S(t) are the signal intensities at baseline and time

t, and TE is the echo time. Hence, MR signal intensity-time

curve can be readily converted into DR2-time curve:

DR2(t) ¼ � ln (S(t)=S0)

TE
(19:6)

Both theoretic and empiric data [44] have shown a linear

relationship between tissue contrast concentration (Ct(t))

and T2 relaxation rate change:

DR2(t) ¼ k2Ct (t) (19:7)

where k2 is a constant that depends on tissue type, magnetic

Weld strength, and MR pulse sequence [40]. Therefore, the

contrast concentration-time curve in brain tissue (Ct(t)) can

be measured by mapping the MR signal intensity dynamically

through

Ct (t) ¼ � ln (S(t)=S0)

k2TE
(19:8)

With the measurement of Ct(t), CBV can be determined by

the ratio of the areas under the tissue and arterial concentra-

tion-time curves within a given ROI:

CBV ¼

Ð1
0

Ct (t)dt

Ð1
0

I(t)dt

(19:9)

where I(t) is the arterial input function (AIF). Since directly

measuring the AIF by blood sampling is very invasive, relative

CBV (rCBV) approximated by the integral of the tissue con-

centration-time curve, is therefore often used. Recirculation in

blood vessels always occurs before complete washout of the

contrast is Wnished [45, 46]. By modeling the measured Ct(t)

using the gamma-variate function and proper curve Wtting

methods, such as the nonlinear regression methods, the tissue

concentration-time curve could be corrected. MTT (one of the

hemodynamic parameters) is the average time taken for the

contrast passing through the tissue following bolus injection. It

could be evaluated for each pixel in the concentration-time

curve, referring to the time to the centroid. By central volume

principle:

CBF ¼ CBV

MTT
(19:10)

CBF could be calculated.

FIGURE 19.7 A frame of bolus-tracking perfusion-weighted imaging and MR signal

intensity-time curves of two ROIs.
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Although CBV could be obtained approximately by the inte-

gral of the tissue concentration-time curve, CBF deter-

mination, which is associated with the Xow-weighted tissue

impulse response, is limited by the fact that an ideal con-

trast bolus has a duration of 0 seconds, whereas in clinical reality,

contrast injection is of relatively long duration. Accordingly,

the corrected Ct(t) should be equal to the convolution

of Xow-weighted impulse response model with the AIF. Usually,

the arterial contrast concentration in vessels directly supplying

the brain tissue could be approximated by dynamic MRI

measurements of the carotid artery. Given the high spatial

and temporal resolution, MRI could provide suYcient infor-

mation to characterize both I(t) and Ct(t) curves. Then,

deconvolution of the gamma-variate corrected Ct(t) with

the image-derived AIF from the carotid artery could be

applied to estimate the model parameters including CBF.

19.3.3 Clinical Applications

Vascular disease of the brain, with the associated tissue

ischemia and infarction, is a major health problem. Using

the dynamic susceptibility-weighted bolus-tracking method

to measure tissue perfusion, brain PWI has a signiWcant

impact in the diagnosis of ischemic diseases and treatment

of aVected patients [41]. PWI could also identify areas

where blood Xow and oxygen supply are compromised to

such an extent that sequent tissue damage is imminent.

From PET studies, CBF is known to be very important for

evaluating tissue survival. Furthermore, MTT is roughly

inversely proportional to the perfusion pressure, therefore,

prolonged MTT represents an important indicator of the

hemodynamic impairment after acute stroke. Figure 19.8

shows the maps of (a) CBF, (b) CBV, (c) MTT, and (d)

time to peak (TTP) obtained from the perfusion-weighted

images of a patient with acute infarct. The MTT and TTP

maps demonstrate elevated signal intensity, suggestive of

prolonged MTT and TTP, at the posterior right temporal

lobe. The CBF map depicts reduced blood Xow not only at

the corresponding infarct region but also at the right

frontal lobe (to a lesser degree). Figure 19.9 gives the

PWI of a patient with old stroke and the corresponding

CBV map, demonstrating the focal reduced blood volume

in the right brain due to old infarction. The signal inten-

sity-time curve of the infarct region shows less reduced

signal compared to that of the normal brain region.

In addition to assessing cerebral ischemia, PWI can help to

select patients who will beneWt most from treatment such as

thrombolysis [47]. The mismatch area between the DWI and

PWI will give rise to the penumbra area or salvageable area.

DiVerentiation between brain abscesses and cystic brain tu-

mors such as high-grade gliomas and metastases is often diY-

cult with conventional MRI. Tumor angiogenesis by release of

humoral factors (vascular endothelial growth factor) is one of

the hallmarks of tumor growth and also constitutes the target

of novel approaches to treat human neoplasm. PWI could

be used to assess the size, density, and integrity of tumor

(c) (d)

(a) (b)

FIGURE 19.8 Maps of (a) CBF, (b) CBV, (c) MTT, and (d) TTP

obtained from the perfusion-weighted images of a patient with acute

infarct. The MTT and TTP maps demonstrate elevated signal inten-

sity at the posterior right temporal lobe. The CBF map depicts

reduced blood Xow not only at the corresponding region but also at

the right frontal lobe (to a lesser degree). For a more detailed view of

this figure, please visit our companion site at: http://books.elsevier.

com/companions/9780123735836.

(a)

(b)

(d)(c)

FIGURE 19.9 The PWI (a) of a patient with old stroke. The CBV map

(d) demonstrates the focal reduced blood volume in the right brain due

to old infarction. The signal intensity-time curve (b) of the infarct region

denoted by red dashed line displays less reduced signal. For a more

detailed view of this figure, please visit our companion site at: http://

books.elsevier.com/companions/9780123735836.
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microvessels, which allows the diVerentiation of pyogenic

brain abscess from cystic brain tumor, making it a strong

additional imaging modality in the early diagnosis of these

two entities [48].

19.4 Functional Magnetic Resonance
Imaging Using BOLD Techniques

19.4.1 Introduction

In the last decade, much emphasis on neuro-MRI has been

beyond the conWne of anatomy and pathology. fMRI not only

reWnes the management of various brain disorders but also

shows a novel insight into normal and abnormal cognition and

behavior. Further, it is one of the noninvasive and powerful

methods for presurgical mapping of functional cortical areas

in relation to underlying brain lesions and surgically important

anatomy (areas that include sensorimotor, visual, language, or

even memory centers). While fMRI is evolving rapidly, it will

be a useful tool in understanding the neurobiology of many

neuropsychiatric disorders.

The brain is made up of a large number of specialized

regions that have extensive primary functional activities and

responses to diVerent speciWc neural stimulations such as

vision, hearing, movement, or sensation. The structure of the

microcirculation in a tissue is distinctively characteristic of

that tissue and varies among regions with specialized function-

ality. There can be Xow heterogeneity within tissues, reXecting

local metabolic demands or patterns of growth. The fraction of

blood in tissue provides an approximate estimate of the meta-

bolic rate [49]. It was found that neuronal activity induces

focal increase in CBF [50], CBV [51], and blood oxygenation

[52]. Conventional fMRI techniques are CBV-based and CBF-

based methods. Currently, the most widely used fMRI is the

BOLD technique. To make use of the BOLD technique cor-

rectly, suitable models describing the underlying physiologic

processes contributing to measured BOLD signal changes,

including contribution from changes in CBF, CBV, cerebral

metabolic rate for oxygen (CMRO2), and cerebral metabolic

rate for glucose (CMRGlu), should be developed [53].

19.4.2 Basic Principles

The use of quantitative tools for clinical evaluation and scien-

tiWc research aids in the understanding of normal and patho-

logic brain functions. It is well established that CBF, CMRO2,

and CMRGlu are tightly coupled in the normal resting state

[54]. However, during focal activation, CBF and CMRO2 are

discordant: CBF and CMRGlu increase up to 50% [55, 56],

whereas CMRO2 increases only 5% [52, 57]. The rate of

oxygen delivery to the activated brain increases in proportion

to CBF, whereas there is little or no increase in the rate of

oxygen consumption, resulting in increased capillary-venous

oxyhemoglobin content but relatively decreased deoxyhemo-

globin content during activation. Deoxyhemoglobin is para-

magnetic and functions as an endogenous intravascular

magnetic susceptibility contrast agent. It increases the mag-

netic Weld strength in red blood cells and thus creates a micro-

scopic intravascular Weld gradient. This gradient, although

weak, degrades spin-phase coherence on gradient-weighted

sequence and attenuates the signal intensity. Therefore, the

relatively decreased deoxyhemoglobin during the brain activa-

tion will lead to hyperintensity on MRI (the signal change is

around 2%–8%). fMRI techniques are based on imaging se-

quences sensitive to the changes of the magnetic properties of

blood related to the focal cerebral microcirculation changes

during brain activation [58–60]. Actually, the principles of

fMRI are similar to those of PWI except that the magnetic

susceptibility of PWI is from the contrast agent (exogenous),

whereas for fMRI it is from deoxyhemoglobin in the micro-

circulation (endogenous). Hence, movies of brain activity

could be revealed as patients perform various tasks or are

exposed to various stimuli such as visual, sensory, or motor

stimulation. Figure 19.10 shows the BOLD images of a normal

volunteer during (a) visual stimulation and (b) during motor

cortex activation by asking the subject to touch the thumb to

individual Wngers in a predetermined sequence. With the sup-

port of powerful computer hardware and advanced image

processing techniques, BOLD images could be generated on

site and superimposed on the high-resolution structural MRI

in diVerent planes, as shown in Figure 19.11.

The implementation of BOLD fMRI includes the design of

task paradigm, MR data acquisition, generation of functional

maps by statistical analysis, and postprocessing. A statistical

threshold is used to discriminate the inactive brain regions

from the active brain regions responding to the condition of

the paradigm. As shown in Figure 19.11, the results of activa-

tion analysis are then registered to the high-resolution struc-

tural images for more accurate evaluation of the brain regions

involved in the activation task. In fMRI data analysis, diVer-

entiating the noise-induced signal from brain activity-induced

signal is achieved by test hypothesis, including the null and

alternate hypotheses. The null hypothesis states that the ac-

quired MR signal is generated by noise; whereas the alternate

hypothesis states that it is generated by brain activity. Test

statistics such as the Student t test, correlation analysis, and

Kolmogorov-Smirnov statistics are widely used.

fMRI involves no ionizing radiation or external injection,

therefore, it has been increasingly used in clinical practice for

the evaluation of brain diseases. The invasive techniques in-

volving electrode-placement or intracarotid Wada test, along

with the PET scan, have gained less popularity. On the other

hand, PET scan still retains the advantage of being able to

identify the brain receptors activated by neurotransmitters,

abused drugs, or potential treatment compounds [61, 62].
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19.5 Clinical Magnetic Resonance
Spectroscopy in Brain

NMRS has attracted much attention in recent years and has

become an important tool to study the biochemical aspect of

brain disorders. It provides a noninvasive in vivo measurement

of serial biochemical and metabolic changes in various brain

diseases and characterizes biochemical components of normal

and abnormal brain tissue. Recent development of spatial

localization methods makes possible the combined presenta-

tion of the biochemical or metabolic information obtained

from MRS and the anatomic information provided by conven-

tional MRI. This integration has widened the horizon in

understanding the origin and characteristics of brain diseases.

19.5.1 Basic Principles

Before using the MRS technique, the choice of RF coils, the nucleus

to be monitored (i.e., H-1 or P-31), and the method of spatial

localization should be decided. Localization can be achieved by

employing RF gradient, static B0 gradient, pulsed spatial gradient,

or a combination of gradients similar to those currently used in

MRI. The proton (H-1) is widely used for MRS because of its high

natural abundance (100%) of organic substances and high nuclear

magnetic sensitivity. Additionally, diagnostically resolvable hydro-

gen MR spectra may be obtained with existing units (1.5Tor above)

and standard head coils. Proton MRS (1H-MRS) could provide

noninvasive assessment of changes in brain metabolism underlying

several brain diseases since almost all metabolites contain hydrogen

atoms [63]. Typically, changes in levels of N-acetylaspartate (NAA),

choline (Cho), and creatine (Cr) are evaluated. Figure 19.12 illus-

trates the normal 1H-MRS spectra of NAA, Cho, and Cr of diVerent

ROIs. Other metabolites such as lactate and glutamine/glutamate

could also be monitored.

If a proton is placed in an external static magnetic Weld (B0),

the frequency ( f ) of the proton processing around the strong

external magnetic Weld is well deWned by the Larmor equation:

f ¼ gB0

2p
(19:11)

(a)

(b)

FIGURE 19.10 BOLD images of the activations of (a) occipital

cortex during visual stimulation and (b) motor cortex. The signal

intensity-time curves show increased BOLD signals during stimula-

tion. For a more detailed view of this figure, please visit our compan-

ion site at: http://books.elsevier.com/companions/9780123735836.

FIGURE 19.11 Real-time BOLD image (top left) of the cortical acti-

vation of speciWc center, which could be superimposed on the multi-

planer high-resolution structural MRI (bottom right). The BOLD signal

intensity-time curves of the two ROIs demonstrate signiWcant diVerence.

For a more detailed view of this figure, please visit our companion site

at: http://books.elsevier.com/companions/9780123735836.
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where g is the gyromagnetic ratio. Proctor and Yu [64] found

that the chemical environment would produce a small change

of the Larmor resonance frequency ( f ) (so-called chemical

shift), which is the result of tiny magnetic Welds created by

the orbiting electron clouds around the nucleus opposing the

external magnetic Weld. Therefore, the magnetic Weld experi-

enced by the hydrogen nucleus is slightly less than B0, which is

called shielding eVect. Protein and fat molecules have stronger

nuclear shielding eVect than water and soft tissue. Conse-

quently, water and fat protons would have distinct resonance

peaks on the MRS spectrum. The chemical shift is expressed as

parts per million (ppm). For NAA, Cho, and Cr, the values are

2ppm, 3.2ppm, and 3.03ppm, respectively. Results obtained in

healthy control subjects would serve as the reference for reli-

able identiWcation and quantiWcation of metabolites concen-

tration in CNS. The technical problems of using 1H-MRS

include water suppression, shimming localization, editing,

quantitiation, and spectra interpretation.

19.5.2 Clinical Applications

Currently, the most common diagnostic indication for MRS is

to characterize suspected cerebral tumor recurrence from post-

irradiation necrosis, infections, degenerative brain disorders,

hepatic encephalopathy, ischemia, and demyelination. MRS is

a potential tool for capturing speciWc metabolic proWles and

oVering a diVerential diagnosis. In addition, spectroscopic

mapping allows visualization of diVerent metabolite concen-

trations and distribution within lesions.

Brain damage in Alzheimer’s disease (AD) and mild cogni-

tive impairment (MCI) is widespread, with involvement of

large portions of the neocortex and subcortical white matter.

With the measurement of NAA, Cr, myo-inositol, and Cho,

1H-MRS could characterize the white matter biochemical

proWles of MCI and patients with early AD [65, 66]. Since

neuronal damage is already evident and widespread in indi-

viduals with MCI before the onset of clinical dementia [67],

biochemical changes can be observed by 1H-MRS in the pre-

clinical period. People with higher Cho/Cr ratios have a higher

risk to develop dementia or AD [68]. In patients with AD, a

reduction of NAA/tCr is present. Reduced NAA levels suggest

neuronal loss or dysfunction in the observed region. The

observed regional metabolic alteration reXects the characteris-

tic neurologic symptoms in AD (dementia) and mirrors the

disease progress over time [69].

1H-MRS could evaluate brain infarction. Normal brain

shows no detectable lactate, while brain with infarction

shows the continued presence of lactate and substantial reduc-

tion of NAA, Cr, and Cho in the infarct area, as shown in

Figure 19.13. This is primarily the result of diminished cell

density. The presence of lactate indicates increased anaerobic

glycolysis due to ischemia [70].

1H-MRS also demonstrates its clinical usefulness in classi-

fying brain tumor type and grade, monitoring response to

therapy and progression to higher grade, and determining

tumor extent for treatment planning. The metabolite concen-

tration and pH value in human brain tumors diVer signiW-

cantly from those in normal brains. The NAA/Cr, NAA/Cho,

FIGURE 19.12 Normal proton MRS spectra of NAA, Cho, and Cr of diVerent brain

regions.
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and Cr/Cho ratios can distinguish normal brain from gliomas,

low-grade astrocytoma from high-grade group, and tumor

recurrence from postirradiation necrosis. Figure 19.14 shows

the MRS of a patient who underwent radiation for a brain

tumor. The spectrum of postirradiation necrosis demonstrates

reduced Cho, Cr, and NAA levels as well as an inverted doublet

at 1.3 ppm compatible with lactate. Figure 19.15 demonstrates

a patient with glioblastoma multiforme. There is increased

lactate and a reduced NAA level as well as increased free lipid

and Cho levels that are diVerent from those found with necro-

sis. 1H-MRS could also be used to stage metastatic brain

tumors [71].

Brain abscess and brain tumor may have similar clinical

presentations. Additionally, the diVerential diagnosis of brain

abscess versus cystic or necrotic tumor may be diYcult based

on CT or MRI Wndings. However, the strategies of manage-

ment for abscess and neoplasm are very diVerent; therefore, it

is especially imperative to have a correct diagnosis before any

surgical intervention. Spectral patterns of 1H-MRS permit

diVerentiation of brain abscess from necrotic or cystic tumor

[72]. For the cerebral abscess, there are various resonances

attributed to lactate, valine, alanine, leucine, acetate, and suc-

cinate, whereas there is only one resonance attributed to lactate

in the cerebral tumor. 1H-MRS provides valuable information

on tumor biochemistry, which is an important complement to

conventional radiology.

19.5.3 Conclusion

MRS of the brain can provide interpretable spectra for measur-

ing tissue metabolites and can increase conWdence in the diag-

nosis and treatment of brain lesions. Recent recommendation

FIGURE 19.13 The MRS of a patient with brain infarction.

FIGURE 19.14 The MRS of a patient with postirradiation necrosis.
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for monitoring MS treatment suggests an increasing role of

MRS [73]. Ongoing improvement in the equipment and pulse

sequence design may make cerebral MRS more practical in the

near future. There will always be the need for the development

and validation of new and better MRS methods including P-31.

19.6 Summary

Conventional MRI has been used successfully in neuroradiol-

ogy. The advanced techniques in functional MR imaging such

as PWI, DWI, fMRI, and MRS provide a more complete

picture of structural and functional brain abnormalities [74].

Functional MRI promises to be a valuable tool in the manage-

ment of patients with a broad spectrum of brain disorders.

Clinical applications of functional MRI will continue to ex-

pand in the presence of unlimited innovative technical devel-

opment of both hardware and software. As computers become

more powerful, the advanced information technologies of

rapid 3D or even multidimensional image processing, graphic

display, and multimodality data integration/fusion will result

in break-throughs in neuroradiology. These developments

would not only improve the diagnostic image quality but

also the visualization of real-time brain activities. The role of

functional MRI may be limited only by our imagination.

PET, SPECT, MRI, and the electroencephalogram are non-

invasive functional imaging techniques that can measure bio-

logical activity and reveal the living human brain at work. The

full potential of functional imaging has not yet been appreci-

ated, let alone harnessed. The ability to fuse metabolic PET or

SPECT image with an anatomic MRI map will undoubtedly

prove valuable for routine clinical use in the future.
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19.7 Exercises

1. List the main advantages of functional MRI compared to

other existing medical imaging modalities.

2. Specify why and how ‘‘diVusion’’ could be used in MRI.

Give the most common application of DWI in the detection

of brain diseases.

3. How to quantitatively interpret the MR signal on perfusion

images and what are the physiological parameters used for

the quantitative estimation on PWI?

4. Describe the usefulness of BOLD fMRI in neuroradiology.

How to quantitatively analyze the signal change on fMRI

during diVerent types of stimulation?

5. State the underlying principle for the ‘‘chemical shift’’ and

list the common metabolites evaluated by 1H-MRS.
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20.1 Introduction

Cancer imaging has traditionally consisted of answering the

questions of where and how big are the tumors. These answers

are determined by conducting planar X-ray, computed tomog-

raphy (CT), ultrasound (US), or magnetic resonance imaging

(MRI) scans (Figure 20.1). The scan results then guide the

surgeon about where to cut or the radiation oncologist about

where to direct the radiation beam. Additionally, the progress of

chemotherapy and radiation therapy are typically monitored by

assessing whether or not existing tumors are shrinking in size by

comparison of pre- and post-treatment images. Today, cancer is

understood to be a genetic disease where tumor cells are char-

acterized by unique molecular marker expression proWles. In

contrast with standard anatomic imaging to answer where and

how big, cancer imaging is increasingly focusing on detecting

unique molecular markers to help characterize the identity,

extent, and progression of speciWc neoplastic disease.

Molecular imaging can be deWned as ‘‘the non-invasive

visualization of molecular processes’’ [1]. Molecular imaging

uses many of the same modalities mentioned previously

(X-ray, CT, MRI, US) in addition to Xuorescence microscopy

and endoscopy as well as nuclear scanning techniques like

positron-emission tomography (PET) and single-photon

emission tomography (SPECT). The study of cancer encom-

passes many disciplines from the basic sciences, which explore

the genetic and biochemical origins and progression of neo-

plastic disease, to clinical practice, where cancer detection and

treatment take place. Molecular imaging in cancer is of use in

basic research and clinical management of cancer as scientists

use the techniques to validate hypotheses and potential treat-

ments in preclinical models and clinicians use these methods

to noninvasively detect, characterize, and follow treatment in

living patients. Examples provided in the following sections

in this chapter illustrate how molecular imaging is currently

being used in the study of cancer.
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20.2 Imaging of Gene Expression

Cancer is initiated by and progresses through genetic changes.

Initial genetic changes allow cancer cells to evade biologic

programs that regulate and limit cellular growth under normal

conditions. As tumor growth continues, the unique physiolo-

gic microenvironment that cancer cells are exposed to in solid

tumors inXuences tumor progression, aggressiveness, and

response to treatment. Therefore, imaging of cancer-related

genes has been developed to study cancer initiation and pro-

gression in vivo, and allow for visualization of gene expression

in the context of the unique features of solid tumors both in

real time and dynamically over a period of time. The ability to

image gene expression has helped tremendously to study key

pathways in tumor models in vivo. Researchers can now study

genetic processes in the biologically complex setting of whole

tumors in living animals. Molecular imaging of gene expres-

sion also has the potential of being translated to the clinic to

achieve speciWc detection of the genetic make-up of a particu-

lar tumor and to monitor gene delivery to the tumor in future

gene therapies.

Molecular imaging can be applied to visualize gene expres-

sion-related processes such as promoter activity or transcrip-

tional activity, among other processes, in living organisms

in vivo. To detect these processes, it is necessary to couple the

expression of reporter genes to the process under investigation.

Researchers have designed reporter genes for each of the avail-

able imaging modalities such as optical, MR, and nuclear

imaging methods. For optical imaging, the reporter genes

typically used are luciferase genes [2] for bioluminescence

imaging and Xuorescent protein genes [3] for Xuorescence

imaging. For PET and SPECT imaging, the herpes simplex

virus thymidine kinase (HSVtk) genes [4] or the sodium

iodide symporter (NIS) [5] are frequently used. The ferritin

gene [6] or chemical exchange saturation transfer (CEST)

reporters [7] are available for imaging of gene expression

using MRI. It is also possible to use several of these reporter

genes in the same system for multimodality imaging where

diVerent imaging modalities can either be used in combined

scanners or sequentially. For example, a triple fusion reporter

gene has been reported that allows in vivo multimodality

imaging of bioluminescence, Xuorescence, and PET imaging

[8]. The principle for imaging gene expression is generally

outlined in Figure 20.2. The reporter gene coupled to the

promoter or gene under investigation is Wrst delivered within

cells, which can be achieved by means of transfection agents

in live cell applications, or systemically by viruses or other

vehicles such as liposomes in tumors in vivo (Figure 20.2).

Planar X-ray showing lung tumor. CT scan showing Wilm's tumor.

Left, MRI scan showing a spine tumor.
Above, US scan showing metastatic lung
cancer.

Normal
upper pole

Lower pole
tumor

FIGURE 20.1 Planar X-ray, computed tomography, magnetic resonance imaging, and ultra-

sound scans showing anatomic features of cancer in patients. Circles and arrows indicate the

location of each tumor.
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The cellular machinery for transcription and translation pro-

duces the corresponding mRNA and protein of the reporter

gene, and the latter can be detected by an imaging modality

such as optical, MR, PET, or SPECT imaging either directly or

in conjunction with a substrate that is activated by the reporter

(Figure 20.2).

To study the promoter activity of a cancer-relevant gene

in vivo, reporter genes are placed under the control of the

promoter of a cancer-relevant gene. To visualize the Wnal

product of gene expression, which is the encoded protein, a

reporter gene is positioned in-frame with the gene of interest

in solid tumors of animal models in vivo to produce a fusion

protein that can be imaged. Such fusion proteins, however, can

be functionally altered because they contain additional protein

units that are attached to the native protein. To avoid this,

an internal ribosome entry site (IRES) coding sequence can

be introduced between the reporter gene and the gene under

investigation. Transcription of such an IRES-containing con-

struct results in bicistronic mRNA, which ribosomes translate

into two separate proteins: the reporter protein and the un-

altered protein of interest. Imaging of gene expression has

helped researchers delineate mechanistic and functional as-

pects of oncogenes such as myc and tumor suppressor genes

such as p53 [9, 10]. Examples will be given in Section 20.2.1

20.2.1 Optical Imaging of Gene Expression

Optical imaging of gene expression in vivo requires that gene

expression be coupled to the emission of light photons that can

travel through tissue. As demonstrated in Figure 20.3, these

light photons should lie within the spectral window of low

tissue autoXuorescence, photon attenuation, and light scatter-

ing, in the spectral region between 650 nm and 950 nm [11].

Molecules such as water and oxygenated and deoxygenated

hemoglobin, which are highly abundant in biologic tissues,

absorb a lot of light in the lower portion of the visible

spectrum as well as in the infrared region of the spectrum

(Figure 20.3).

Luciferase genes, which are used for bioluminescence

imaging [2], occur naturally in some insects, enabling them

to glow in the dark. The most useful luciferase genes for

molecular imaging have been found in the WreXy (Photinus

pyralis), Renilla, green or red click beetle (Pyrophorus plagi-

ophthalamus), and Gaussia. Bioluminescence imaging of

luciferase reporters has the advantages of being robust and

cost-eVective and provides high signal-to-noise levels.

However, gene expression imaging of luciferase biolumines-

cence requires the administration of a substrate such as

luciferin because luciferases are enzymes that catalyze the

oxidation of this substrate, and visible light photons are

a product of this reaction, producing bioluminescence.

Gene delivery

Transcription Translation

Imaging

Plasma membrane

Reporter Gene

Substrate

Nucleus

mRNA of
reporter gene

Reporter

Optical, MR, PET,
or SPECT Scanner

FIGURE 20.2 Principle for imaging of gene expression. The reporter gene is

delivered into the cell, transcribed, translated, and imaged directly or following the

action of an enzyme on a substrate.
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Therefore, bioluminescence imaging depends on substrate

pharmacokinetics. Fluorescent protein genes [3], which are

used for Xuorescence imaging of gene expression, do not

require substrates, because the Xuorescent proteins themselves

emit light photons following excitation with light of a shorter

wavelength than the emitted light, as demonstrated in Figure

20.4. Green Xuorescent protein genes were Wrst cloned from

the jellyWsh Aequorea victoria, and since then numerous mu-

tants and novel monomeric Xuorescent proteins with various

spectral properties have been generated as shown in Figure

20.4 [3]. For imaging of gene expression in vivo, the generation

of red-shifted Xuorescent protein variants was important be-

cause it improved the signal-to-noise ratio due to decreased

tissue autoXuorescence, photon attenuation, and light scatter-

ing in this region of the visible spectrum, as shown in Figure

20.3. Fluorescent proteins, however, only achieve a relatively

low light photon output compared to luciferase biolumines-

cence, and therefore molecular imaging of Xuorescent proteins

in vivo suVers from relatively poor sensitivity.

In this section, we will give two examples of how researchers

have used molecular imaging to study cancer-related gene ex-

pression in vivo: the myc oncogene and the p53 tumor suppres-

sor gene. The myc oncogene is one of the most

commonly activated oncogenes in liver cancers, which are

often refractory to clinical treatment. Therefore, basic research

studies and future clinical imaging of myc function and myc

gene expression are of great interest. Dynamic long-term in vivo

bioluminescence imaging was applied in a study of transgenic

mice that had conditional expression of doxycycline-inducible

myc proto-oncogene and were also transgenic for WreXy lucifer-

ase in subcutaneous liver tumors [12]. As shown in Figure 20.5,

myc oncogene inactivation resulted in tumor regression and

dormancy as long as myc remained inactive, indicated by de-

creased bioluminescence. When myc expression was reactivated,

tumor growth was reactivated as well (Figure 20.5b), and the

neoplastic features of previously diVerentiated hepatocytes and

biliary cells were immediately restored [12]. This study demon-

strated that myc inactivation resulted in tumor regression, and

myc reactivation caused malignant expansion of previously dor-

mant liver cancer cells [12]. Bioluminescence imaging of

gene expression enabled direct visualization of myc oncogene

inactivation and reactivation in this study, demonstrating the
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FIGURE 20.4 (a) Excitation and (b) emission spectra are shown as solid or dashed lines for monomeric variants

and as a dotted line for dTomato and tdTomato, with colors corresponding to the color of each variant. PuriWed

proteins (from left to right, mHoneydew, mBanana, mOrange, tdTomato, mTangerine, mStrawberry, and mCherry)

are shown in (c) visible light and (d) Xuorescence. The Xuorescence image is a composite of several images with

excitation ranging from 480 nm to 560 nm. Adapted from Shaner et al. [3]. For a more detailed view of this figure,

please visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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impact of optical imaging of gene expression in vivo in cancer

research.

The p53 tumor suppressor gene is mutated in approximately

50% of all human cancers. p53 plays a key role in cell cycle

regulation and apoptosis following DNA damage, and it

functions as a sequence-speciWc transcription factor. p53 mu-

tations and p53 deWciency also contribute to an aggressive and

chemotherapy- or radiotherapy-resistant cancer phenotype.

Therefore, much research has been devoted to studying the

function and molecular regulation of p53 in cancer development
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FIGURE 20.5 (a) Kinetics of tumor regression using in vivo bioluminescence imaging of

luciferase-labeled liver tumors. Transplanted tumors undergo rapid regression but residual,

persisting luciferase activity remains at the site of tumor growth. Upon myc reactivation,

tumor growth reoccurred. For visualization of tumor growth, a pseudocolor image represent-

ing luciferase light intensity is superimposed over a greyscale reference image of the repre-

sentative animals in each treatment group: squares, myc on, then myc oV, and Wnally myc on;

circles, myc on then myc oV. Luciferase activity is measured in photons=cm2=s per steradian

(p cm�2 s�1 sr�1). (b) Representative images for a mouse where myc is on (left); myc is on

and then oV for 3 months (3 m) (center); and myc is on, oV for 3 months, and then

reactivated for 2 months (right). (c) A representative control mouse is represented for the

same time points: myc on (left); myc on then oV for 3 months (center); and myc remains oV

for 5 months (right). Data are representative of Wve diVerent experiments with 1 to 10 animals

in each group. Adapted from Shachaf et al. [12]. For a more detailed view of this figure, please

visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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and response to radiation therapy. An example of how p53 gene

expression was optically imaged using bioluminescence imaging

will be outlined next. The transcriptional activity of p53 was

noninvasively evaluated in vivo in a transgenic mouse model

conditionally expressing the WreXy luciferase gene, which was

placed under the control of the p53-responsive P2 promoter for

the murine double minute 2 (mdm2) gene [9]. p53 acts as a

sequence-speciWc transcription factor modulating the expression

of target genes, one of which is mdm2. Following DNA damage

caused by ionizing radiation, p53 is stabilized, and its transcrip-

tional function is activated, which leads to up-regulation of genes

containing a p53-responsive P2 promoter, such as the P2 pro-

moter WreXy luciferase construct in this study. Following expos-

ure to ionizing radiation, the in vivo p53 transcriptional activity

was dynamically visualized by bioluminescence imaging for up to

14 hours in transgenic mice containing this construct. p53 tran-

scriptional activity following radiation displayed a distinct oscil-

latory pattern as demonstrated in Figure 20.6, conWrming p53

transcriptional oscillations previously observed in cultured cells

[9]. Such in vivo bioluminescence imaging studies of mdm2-P2-

promoter-bioluminescence mice will help assess the p53 response

in vivo following systemic administration of novel therapeutic

p53 inhibitors or agents modulating the response to ionizing

radiation [9].

20.2.2 Nuclear Imaging of Gene Expression

Nuclear imaging using SPECT or PET relies on reporter genes

that result in intracellular trapping or selective retention of radi-

olabeled substrates. Nuclear imaging is highly sensitive and can

detect femtomolar concentrations of radiotracer quantitatively.

Because SPECTand PETare inherently tomographic, it is feasible

to use these modalities for imaging of gene expression. However,

expensive instrumentation, availability of in-house radiophar-

maceutical drug production, and dependence on tracer pharma-

cokinetics are some disadvantages for these molecular imaging

modalities when imaging gene expression. Nuclear imaging of

gene expression can be achieved with the herpes simplex virus
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FIGURE 20.6 (a) Oscillatory behavior of p53 following total body irradiation. MDM2-luciferase mice were radiated

with 5 Gy total body irradiation or sham irradiated and then followed with serial bioluminescence imaging scans:

before radiation, 0.5 hour, 1 hour, and then every hour until 14 hours after radiation. Top, serial images from one

representative irradiated animal; bottom, serial images from one representative control animal. (b) QuantiWcation of

bioluminescence induction for the abdominal region of interest (ROI). Fold-induction above baseline for the

abdominal ROI for the irradiated (black circles) or control (white squares) animals depicted in (a). (c) QuantiWcation

of the bioluminescence induction for the abdominal ROI. Points, average of Wve irradiated (black circles) and four

control animals (white squares); bars, standard error. Adapted from Wiener et al. [9]. For a more detailed view of this

figure, please visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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HSVtk gene [4] or with NIS [5] as reporter genes. Nuclear imaging

of HSVtk relies on the enzymatic modiWcation of a radiolabeled

substrate, which leads to selective retention of the converted sub-

strate in reporter cells. Substrates used for nuclear HSVtk reporter

imaging are [18F] 9-[4-Xuoro-3-(hydrox-ymethyl) butyl] guanine

([18F]FHBG), or [124I]/[131I] 20-Xuoro-20-deoxy-5-iodouracil-b-

D-arabino furanoside ([124I]/[131I]FIAU) and analogous com-

pounds. Intracellularly expressed HSVtk phosphorylates these

compounds so that they are trapped in the HSVtk-

expressing cells. The HSVtk gene can also be used in gene-directed

enzyme prodrug therapy, which is a two-step therapeutic approach

for cancer gene therapy. In this therapy, the transgene HSVtk is Wrst

delivered into and expressed in the tumor. Then the prodrug

ganciclovir is administered and is selectively activated by the

expressed HSVtk enzyme. The antiviral drug ganciclovir is non-

toxic to cells, but is a potent antitumor agent when phosphorylated

in the presence of HSVtk expression to its triphosphate. The use of

NIS as a reporter gene requires intravenous injection of free [124I]

NaI, [131I]NaI, or [99mTc]pertechnetate. The NIS is a transmem-

brane protein capable of transporting iodide into the cells, and

thus, iodide or pertechnate will be trapped in cancer cells that

express the NIS reporter. We will explain in the following two

preclinical research examples how nuclear molecular imaging of

gene expression is used to study cancer.

Telomerase is an important tumor marker because it remains

active in cancer cells and leads to continued proliferation, while it

is inactive in most diVerentiated cells [5]. More than 85% of all

solid tumors contain high telomerase activity, which makes tel-

omerase an attractive target for molecular imaging of cancer.

Novel therapeutic approaches to target telomerase in cancer

treatment are also being developed. The expression pattern of

telomerase promoter fragments in mice was imaged using PET

in vivo [5] as shown in Figure 20.7. For this purpose researchers

generated two diVerent recombinant adenoviruses that each con-

tained promoter fragments from either the RNA component of

telomerase, which is human telomerase RNA (hTR), or the

catalytic protein component of telomerase, which is human

telomerase reverse transcriptase (hTERT), to drive the expression

of the NIS PET reporter gene [5]. They found that both of these

telomerase gene promoter fragment constructs resulted in can-

cer-speciWc expression of the NIS transgene, which was visualized

by PET imaging (Figure 20.7). This example shows how PET

imaging of the NIS reporter gene can be used to develop novel

methods to measure telomerase activity in tumors. In the future,

this basic research can lead to clinical applications, including the

use of these telomerase gene promoter fragments for therapeutic

transgene expression in gene delivery vectors [5].

A unique example of using the HSVtk reporter gene was

demonstrated in a novel hybrid vector in which ligand-direc-

ted tumor targeting was combined with molecular PET re-

porter imaging [13]. In this report, researchers combined

single-stranded phages (P) that display short peptides that

bind to an integrin to achieve tumor targeting with recombin-

ant adeno-associated virus (AAV), which is required to achieve

gene delivery into the cancer cells, to form chimeric viral

particles (AAVP) [13]. These AAVP also contained the HSVtk

gene for molecular PET imaging using 20-[18F]-Xuoro-

20-deoxy-1-b-D-arabino-furanosyl-5-ethyl-uracil ([18F]FEAU)

or the luciferase gene for molecular bioluminescence imaging.

Comparison of treatment with nontargeted or scrambled control

AAVP-HSVtk particles with the integrin-targeted RGD-4C

AAVP-HSVtk particles demonstrated improved tumor targeting,

speciWcity, and eYcacy of gene delivery [13] as evident in Figure

20.8. Since HSVtk also serves as a suicide gene when combined

with ganciclovir (GCV) administration [13], improved thera-

peutic response following GCV administration was observed in

the RGD-4C AAVP-HSVtk particle-treated animals as well [13]

(Figure 20.8).

Ad-Luciferase

Ad-hNIS

Ad-hTERT-NIS

Ad-hTR-NIS

Marker Tumor Stomach

100%

50%

0%

FIGURE 20.7 PET imaging of A2780 tumor-bearing BALB/c nu/nu

mice after injection of adenoviruses. The tumors were injected with

the various recombinant adenoviruses (5� 108 plaque-forming units,

three mice/group) and scanned 72 hours later after injection of

Na124I. The data were acquired for 1 hour. Single 0.5-mm coronal

slices of the 30–60 minute time frame are shown. hTERT, human

telomerase reverse transcriptase; hTR, human telomerase RNA; NIS,

Na/I symporter. Adapted from Groot-Wassink et al. [5]. For a more

detailed view of this figure, please visit our companion site at: http://

books.elsevier.com/companions/9780123735836.
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FIGURE 20.8 (a) In vivo bioluminescent imaging of luciferase expression after systemic AAVP delivery. Nude

mice bearing DU145-derived tumor xenografts received an intravenous single dose of either RGD-4C AAVP-

Luciferase (5� 1011 TU) or control (nontargeted AAVP-Luc or scrambled RGD-4C AAVP-Luciferase). Ten days

later, bioluminescence imaging of tumor-bearing mice was performed. (b) Multitracer PET imaging in tumor-

bearing mice after systemic delivery of RGD-4C AAVP-HSVtk. Nude mice bearing DU145-derived tumor

xenografts (n¼ 9 tumor-bearing mice per cohort) received an intravenous single dose (5� 1011 TU) of RGD-

4C AAVP-HSVtk or nontargeted AAVP-HSVtk. PET images with [18F]FDG and [18F]FEAU obtained before and
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20.2.3 Magnetic Resonance Imaging
of Gene Expression

Several diVerent approaches have been pursued to generate MR

contrast for molecular imaging of gene expression, most of which

require addition of substrate or additional contrast agent. The

ferritin MR reporter gene has been developed to generate MR

contrast without additional substrate [6]. Cellular ferritin reporter

expression provides contrast by transiently lowering the intracel-

lular iron concentration, leading to a physiologic compensation

mechanism that triggers cellular iron uptake. The overexpressed

ferritin protein, which is a ubiquitously expressed iron-binding

protein, will store excess intracellular iron. Ferritin shortens T1

and T2 relaxation times in MRI. In a recent study, researchers

analyzed the longitudinal (R1), and transverse (R2) relaxation

maps in ferrritin expressing C6 glioma xenografts in nude mice

as demonstrated in Figure 20.9 [6]. Both R1 and R2 relaxation

were increased in ferritin overexpressing tumors (Figure 20.9) [6].

In this study, a tetracycline (TET)-activated system was used to

perform MRI on comparable tumor xenografts with and without

ferritin expression [6]. To validate their results using Xuorescence

imaging studies and biochemical analyses, researchers constructed

a cassette of multimodality reporter genes containing the ferritin

gene tagged with hemagglutinin (HA) as well as enhanced green

Xuorescent protein (EGFP) under the control of TET. This process

is outlined in Figure 20.9 [6]. The advantage of this novel MR-

detectable reporter gene is that no exogenous administration of

contrast-generating substrate is required.

20.3 Receptor Imaging

One of the most promising targets of in vivo molecular imaging

is the cellular receptor. Receptors are deWned as proteins that

receive and respond to stimuli from other proteins, hormones,

or small molecules. Receptors make good molecular targets

because their expression is frequently tissue- and/or disease-

speciWc and they often have high selectivity for their ligands.

High-aYnity (� 5 nM binding aYnity) and highly speciWc

ligands are chosen for use as probes for their given receptor.

Receptors may be located within a membrane (e.g., plasma,

nuclear, golgi, mitochondrial) or within the cytoplasm.

The key to selecting an appropriate receptor target for oncologic

imaging is similar to that for selecting good real estate: location,

location, location! First, the receptor must be expressed either only

within the cancerous tissue (the ideal situation) or be greatly over-

expressed within the tumor with low expression in normal tissues.

This is critical to diVerentiating neoplastic and normal tissue. How

does one identify a good receptor target for the neoplasm of choice?

Today, the emerging Weld of proteomics is the preferred way to

identify selectively expressed receptors for a given cell type. Proteo-

mics can be deWned as the qualitative and quantitative comparison

of proteomes [proteome¼ PROTEin matched to its genOME]

under diVerent conditions to further unravel biologic processes

(http://ca.expasy.org). This method works by collecting many tis-

sue samples from both healthy and aVected patients and compar-

ing gene and/or protein expression levels within those tissues. Look

for receptors that (1) are highly expressed in the tissue you wish to

image/study (i.e., prostate carcinoma), (2) are highly expressed in a

large majority of patients with the given tumor type (if you want to

develop a universal screening process for patients to detect the

selected type of tumor), and (3) receptors with known ligands.

Ligand selection is as important as receptor target identiW-

cation. Ligand selection is also about choosing the right loca-

tion. Criteria for selecting the right ligand are as follows:

. High aYnity (� 5 nM binding aYnity) for the receptor

and high selectivity for the target receptor over other

receptors and receptor subtypes

. The ligand must be amenable to labeling with an optical,

MR, nuclear, or US opaque moiety that will generate

measurable contrast signal within the appropriate scan-

ning device. The addition of the contrast moiety must

not signiWcantly alter ligand binding aYnity or speciWcity

for its receptor. The addition of a contrast-enhancing

group to the receptor ligand makes it a molecular probe.

. The probe should have characteristics such that it can

endure a general route of administration (for example

intravenously), arrive at and quickly bind to the target

receptors in the target tissue, and quickly wash out of

nontarget tissues that lack the target receptor. In this way,

the probe contrast is detected largely at the site of interest

(location).

. The probe should also display favorable biodistribution

characteristics where the only nonspeciWc probe uptake

occurs at sites of metabolic processing such as the kidney

and bladder or in the gastrointestinal tract for hepato-

biliary clearance.

. Finally, ligands should be chosen to maximize the two

points listed above by matching the ligand choice to the

location of the receptor.

This last criterion is the most complicated. The tissue as well as

subcellular location of the receptor will also determine what type

after GCV treatment are presented. T, tumor; H, heart; BR, brain; BL, bladder. Calibration scales are provided in (a) and (b).

Superimposition of PET on photographic images of representative tumor-bearing mice was performed to simplify the interpretation of

[18F]FDG and [18F]FEAU biodistribution. (c) Growth curves of individual tumor xenografts after AAVP administration. (d) Temporal

dynamics of HSVtk gene expression as assessed by repetitive PET imaging with [18F]FEAU at diVerent days post-AAVP administration. (e)

Changes in tumor viability before and after GCV therapy as assessed with [18F]FDG PET. Error bars in (c) through (e) represent standard

deviations. Adapted from Hajitou et al. [13]. For a more detailed view of this figure, please visit our companion site at: http://

books.elsevier.com/companions/9780123735836.
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of ligand will be suitable for imaging. For example, if monoclonal

antibodies have been generated against a particular receptor that

is overexpressed in cancerous tissue (i.e., a-methylacylCoA race-

mase [AMACR] in prostate carcinoma [14, 15]), the antibody

will only be suitable as a probe if it can access its receptor in vivo.

This is only possible if the receptor is located in the plasma

membrane and the antibody recognizes an extracellular epitope.

In the case of AMACR-directed antibodies, the AMACR protein

is expressed in the mitochondria and peroxisomes, which are

intracellular. Antibodies do not enter cells passively or nonspe-

ciWcally, so in the case of an intracellular receptor target, a

successful probe must be able to enter the cell and interact with

the receptor in its native environment. Currently, the search for a

suitable small-molecule ligand able to bind the AMACR receptor

tightly and speciWcally in vivo is under way.

20.3.1 Nuclear Receptor Imaging

Nuclear receptor imaging involves the use of either PET or

SPECT. Each has its own strengths and weaknesses. Table 20.1

illustrates some of the more important features of both, including

availability, cost of the isotope, ligand limitations, and sensitivity.

Most larger hospitals possess their own SPECT scanner(s) and

can order either the free isotope for custom labeling or prefor-

mulated tracers from a radiopharmacy. Currently, the vast ma-

jority of SPECT scans that take place every day around the world

are nonspeciWc scans such as [67Ga]Ga citrate (nonspeciWc tumor

uptake), [201Tl]TlCl (myocardial heart uptake), and

[99mTc]MDP (bone scans). However, the use of receptor-targeted

probes in clinical SPECT is gaining acceptance. Three examples

of now commonly used receptor-based SPECT tracers for tumor

detection include [111In]OctreoScan1 for the detection of soma-

tostatin receptor-expressing tumors [16], [111In]Zevalin for the

detection of CD20-positive lymphomas [17], and [111In]Pros-

taScint for detecting prostate-speciWc membrane antigen

optimized-expressing prostate cancer [18]. Figure 20.10 illustrates

(PSMA) results seen in clinical scans with these tracers.

The three examples cited above are all labeled with In-111 and

comprise peptide (OctreoScan) and antibody probes (Zevalin

and ProstaScint). In the case of antibody probes, their target
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Selected clones showed overexpression of EGFP and HA-tagged ferritin, both of which were tightly suppressed by administration of TET (þTet).

(Right) In vivo MRI detection of switchable ferritin expression in C6 tumor xenografts in the hind limb of nude mice generated from C6 cell

clones stably expressing TET-EGFP-HA-ferritin. TET and sucrose (or sucrose only for –Tet) were supplied in drinking water, starting 2 days

before inoculation. (a) R1 and R2 maps of tumor regions overlaid on the MR images are shown for two representative mice from each group.

(b) R1 and R2 values (mean + SD) at the tumor region in the presence (ferritin oV; n¼ 7) or absence (ferritin on; n¼ 4) of TET in drinking

water. �P < 0.05: two-tailed unpaired Student t test. Scalebar¼ 2.5 mm. Adapted from Cohen et al. [6]. For a more detailed view of this figure,
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receptor aYnity is very high, but their biodistribution includes

substantial nontarget uptake in both the liver and spleen. How-

ever, given suYcient uptake and clearance time (2 to 6 days),

these probes do eVectively show the locations where high

densities of their target receptors are located and whether those

tumors will respond to that speciWc targeted therapy.

Current trends favor the development of small-molecule

probes for receptor imaging that possess both high aYnity and

speciWcity for their targets and display favorable pharmacoki-

netics. Pharmacokinetics are essentially the speed and tissue

distribution that describe the movement of a probe through

the body. Small hydrophilic molecules (� 1 kDa) generally

display excellent pharmacokinetic properties such as quick

wash-in rates and quick nontarget wash-out rates. These typic-

ally also clear through the urine and so do not display nonspe-

ciWc liver or GI uptake. An example of a small-molecule probe

with these attributes is [18F]DCFBC, a 391 Da PSMA inhibitor

probe under development for use in primary and metastatic

prostate cancer detection using PET. Currently, this probe has

been tested in preclinical models of prostate cancer in mice

(R. Mease et al., patent pending). Other small-molecule probes

for PSMA expression using SPECT are also being developed.

20.3.2 Magnetic Resonance Receptor Imaging

Recently, novel receptor probes that take advantage of inherently

high resolution of MRI and couple it with detection of speciWc

biochemical targets have been developed. Contrast enhance-

ment using MRI is typically induced by altering the relaxation

rate constants of the abundant water signal in tissue. This is done

typically by using either chelated Gd3þ to create T1 (spin-lattice

relaxation time) positive contrast or superparamagnetic Fe2O3

particles to create T2 (spin-spin relaxation time) negative con-

trast. Generally, probes that are amenable to labeling with radio-

metals for SPECTor PET can also be labeled with Gd3þ for use in

MRI. The diVerence is that the sensitivity of detection for MRI is

considerably lower than that of either SPECTor PET. Therefore,

MRI probes must either contain many chelated Gd3þ ions or the

density of receptor targets must be high. Additionally, these

probes can only be used for cell surface receptors.

An example of successful receptor imaging using T1 contrast

MRI has been accomplished using a biotinylated herceptin

antibody to target Her2/neu expressing breast cancer tumors

[19]. Once the antibody has had suYcient time to bind and

clear from nonspeciWc tissues, a Gd3þ-chelated avidin probe is

injected and binds speciWcally to the biotin present on

the herceptin antibody [19]. This generates positive contrast,

enabling imaging of Her2/neu expressing tumors. This has

been achieved in preclinical mouse models as demonstrated

in Figure 20.11 [19].

Another example of receptor imaging using MRI is imaging

the folate receptor with superparamagnetic iron-containing

dendrimers decorated with folate ligands [20]. This employs

negative T2 contrast and has been successfully demonstrated in

www.carcinoid.com

(a) (b) (c)

www.rad.kumc.edu
Anterior Posterior

FIGURE 20.10 (a) [111In]OctreoScan showing somaostatin receptor-positive metastatic cancer (arrows). (b) [111In]Zavalin scan showing

CD20þ recurrence on non-Hodgkin’s lymphoma (arrows). (c): [111In]ProstaScint scan showing PSMAþ metastatic prostate cancer (arrows).

TABLE 20.1 SPECT vs. PET in clinical imaging

SPECT (clinical) PET (clinical)

$200-$500K (scanner) $1� 106 (scanner)

Generator-produced isotopes $50-$2,500/ dose Cyclotron-produced isotopes $2---5� 106 (cyclotron)

[99mTc], [123I], [111In], [67Ga] [11C], [13N], [18F], [124I], [64Cu], [62Cu], [86Y], [94mTc]

Mostly chelation chemistry Physiologic tracers (mostly direct covalent attachment)

Largely qualitative Quantitative

1-1.5 cm resolution 0.4-0.8 cm resolution
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imaging folate receptor overexpressing tumors in preclinical

tumor models. Many types of cancer overexpress the folate

receptor and this method may provide a high-resolution

noninvasive method for detecting cancers that express this

molecular marker.

20.3.3 Optical Receptor Imaging

Optical receptor imaging uses Xuorescently labeled probes and

is traditionally used to detect receptors in either cell culture or

tissue sections. ImmunoXuorescence is a widely used tech-

nique to detect well-known cancer markers in biopsy speci-

mens to help characterize cancer type and stage. An emerging

aspect of this Weld is in using Xuorescently labeled probes to

image receptors in vivo. Cooled charge-coupled device cameras

are now available within small animal imagers. These animal

scanners have the ability to excite Xuorophores with various

frequencies of light and then capture their emission in either

planar or tomographic mode (http://www.xenogen.com/

wt/page/imaging, http://www.visenmedical.com/technologies/

index.html). These in vivo scanners are used in rodent preclin-

ical studies only because of the large attenuation observed in

animal tissue even at shallow depths. Beyond 1 cm in tissue

depth, the signal becomes unusable.

Both antibody and small molecule probes have been conju-

gated to Xuorophores emitting from the green through near-

infrared (NIR) wavelengths. NIR light passes through tissue

with less attenuation than shorter wavelengths and so these

dyes are becoming the standard choice for Xuorescence imaging

(see Figure 20.3). Attenuation is the critical limitation of this

technique and optical receptor imaging is only just emerging as

a preclinical modality to study cancer and cancer therapy.

One example of optical receptor imaging is the use of Xuores-

cently labeled cyclic arginine-glycine-aspartic acid (RGD) pep-

tides to study avb3 integrin expression in tumor

neovasculature. The avb3 integrin subtype has been found to

be overexpressed in a variety of tumor types and in tumor

neovasculature. Conjugation of a cyclic RGD peptide, a known

high-aYnity ligand of this receptor subtype, to the Cy-7 NIR

dye has been done to visualize metastatic ovarian tumor

models in mice as a proof-of-principle demonstration of

targeted receptor imaging [21].

Additional clinical applications for optical receptor imaging

lie in using a confocal endomicroscope, which can be man-

euvered into body cavities to image epithelial surfaces [22, 23].

It can also potentially be used during surgery to aid the

surgeon in determining where the margins are located and

where to stop cutting.

20.3.4 Ultrasound Imaging of Receptors

To generate contrast for receptor imaging in ultrasound

applications, microbubbles have recently been used, typically

perXuorohydrocarbon gas in hydrophobic vesicles [24, 25].

Microbubbles enhance the US echo by creating backscatter

because they expand and contract when being exposed to US

beams of any frequency [25]. Researchers have attached

US contrast-generating microbubbles to the peptide arginine-

arginine-leucine, which can speciWcally be found in the tumor

vasculature [26]. Avidin-biotin binding was used to attach

microbubbles to the targeting peptide [26]. This US contrast

agent was tested preclinically and generated vasculature-

speciWc contrast in US images of a prostate tumor xenograft,

as demonstrated in Figure 20.12 [26].

Pre-contrast

EMT-6

NT-5

1 h 8 h 24 h 48 h

FIGURE 20.11 MR T1 weighted images of control EMT-6 and NT-5 tumors obtained before administration of the contrast agent

(avidin-GdDTPA conjugate) and at 1, 8, 24, and 48 hours after contrast. Arrows show enhanced signal from the tumor at the 8- and

24-hour time points for the HER-2/neu-expressing NT-5 tumor. Adapted from Artemov et al. [19].
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20.4 Enzyme-Activated Probes

Enzyme-activated probes are smart contrast agents that become

detectable following enzymatic cleavage. Thus, the contrast agent

needs to be a substrate for the enzyme activity to be monitored by

molecular imaging. This substrate should only be detectable by

molecular imaging once the enzyme under investigation has

modiWed it enzymatically. Several such enzymatic substrates

have been developed for optical imaging. They provide the pos-

sibility of delivering Xuorophores that are quenched in the

MBRRL
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FIGURE 20.12 (a) Background-subtracted, color-coded US image taken 120 seconds after injection

of microbubbles (MBs) conjugated to RRL (MBRRL) into a mouse bearing a Clone C tumor. Within the

colored areas, gradations from red to orange to yellow to white denote greater signal enhancement by

contrast material. Non-color coded portions are not background subtracted and do not inXuence the

videointensity data. MBRRL resulted in greater contrast enhancement. (b) Corresponding image for

MBs conjugated to a glycine control peptide (MBControl) in the same mouse as A. (c) and (d) Similar

ultrasound images as in (a) and (b), but from a mouse with a PC3 tumor. (e) Collage of high-resolution

photomicrographs taken of a midline PC3 tumor section immunohistochemically stained for factor

VIII, showing localization of the microvasculature predominantly to the periphery of the tumor. Cells

are counterstained with hematoxylin. Some expected shrinkage has occurred secondary to formalin

Wxation. Original magniWcation�20. Adapted from Weller et al. [26]. For a more detailed view of this

figure, please visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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substrate because they are in close proximity. Once the enzyme

cleaves the substrate, the previously quenched Xuorophores are

released and start Xuorescing. Examples are discussed in Section

20.4.1. For MRI and magnetic resonance spectroscopy (MRS),

enzyme-activated probes have been developed in the context of

molecular imaging of gene expression, as discussed in Section

20.2. b-galactosidase, which can be used as a reporter for mo-

lecular imaging of gene expression, requires the addition of a

substrate for molecular imaging by MRI or MRS. Some reporter

genes for nuclear imaging also require administration of a labeled

substrate for molecular imaging, as described in Section 20.2.

20.4.1 Optical Imaging of Enzyme-Activated
Probes

Optical imaging of enzyme-activated probes has been most heavily

explored in molecular imaging of enzymes that are overexpressed

in cancers. Several diVerent proteases, which are enzymes that

cleave proteins at speciWc sites based on a speciWc amino acid

sequence, participate in degrading and remodeling the extracellu-

lar matrix (ECM) and basement membranes. The ECM is a tissue-

structuring meshwork of several types of structural proteins con-

sisting mainly of collagens, laminin, and Wbronectin. ECM deg-

radation and remodeling facilitate cancer invasion, metastasis, and

angiogenesis. The overexpression of thiol proteases such as cathe-

psin B and matrix metalloproteases (MMPs) such as MMP-2

(gelatinase) has been associated with tumor aggressiveness and

poor clinical outcome in several cancers [27, 28]. Researchers

have developed molecular imaging of protease activity in tumors.

Most frequently they use NIR optical imaging of protease-acti-

vated probes to minimize tissue autoXuorescence, photon attenu-

ation, and light scattering, as discussed in Section 20.2.1 (Figure

20.3). These probes contain quenched Xuorophores, which are

released from a carrier after cleavage of the probe by an enzyme,
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FIGURE 20.13 (a) The initial proximity of the Xuorophore molecules to each other results in

signal quenching. (b) NIR Xuorescence image (top) and bright light image (bottom) of non-

activated C-PGC (left) and activated probe (right). Fluorophore concentration: 0.17 M. Image

acquisition time: 30 seconds. Excitation: 670 nm, emission: 700 nm. Note the diVerence in

signal intensity between enzyme-activated and unactivated probe. (c) Chemical structure of

repeating graft copolymer segment indicating quenching of Cy5.5 and enzymatic degradation

site (green arrow). Adapted from Weissleder et al. [29]. For a more detailed view of this figure,

please visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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and then a Xuorescent signal is detected, as depicted in Figure

20.13 [29]. A well-tolerated nontoxic nonimmunogenic synthetic

graft copolymer consisting of poly-L-lysine (PL) sterically pro-

tected by multiple methoxypolyethylene glycol (MPEG) side

chains was used as a delivery vehicle of quenched Xuorophores

to tumors [29]. Each PL backbone contained an average of 92

MPEG molecules and 11 molecules of Cy5.5 yielding

(Cy5:5)11-PL-MPEG92 (abbreviated as C-PGC) [29].

These smart optical contrast agents have been developed

for MMP-2 detection [27] and for NIR optical imaging of

cathepsin B-sensitive probes in breast tumor models [28], as

shown in Figure 20.14. Activation of the cathepsin B probe

was observed in both well-diVerentiated and highly invasive

metastatic tumors. However, the Xuorescence signal intensity

was higher in the metastatic tumor model, which was con-

sistent with higher cathepsin B protein expression or activity

in the more metastatic tumor [28]. This cathepsin B-acti-

vated smart contrast agent for optical imaging has great

potential for being translated to clinical applications to dis-

cern breast cancers with high proteolytic activity that may, as

a result, be more metastatic. This may be possible in the

future because optical imaging scanners are being tested in

clinical trials.

20.5 Metabolic Imaging

Metabolic imaging can be performed using probe-free contrast

where endogenous molecules are imaged or by using isotope-

labeled metabolite precursors that are being imaged. Nuclear

metabolic imaging requires administration of radiolabeled

tracer compounds that are analogs of endogenous metabolites.

Proton and 31P MRS can be used to detect endogenous metab-

olite levels, while 13C MRS has been applied for metabolic tracer

studies following administration of 13C-labeled substrates. Typ-

ical metabolic features found in most tumors are the activation

of glycolysis as well as active suppression of the tricarboxylic

acid cycle [30]. Increased total choline levels are also typical of

tumors and occur primarily as a result of increased phospho-

choline levels [31], which have been linked to oncogenic ras

signaling [32] and oncogenic transformation [33].

20.5.1 Nuclear Metabolic Imaging

Nuclear metabolic imaging is the most proliWc and widely

practiced form of molecular imaging. Every day, hundreds of

patients around the world are scanned using [18F]FDG PET or

PET-CT to determine the extent of their cancer. Fluorodeox-

yglucose (FDG) is a glucose analog that is taken up by all

cells but is taken up in much higher quantity by cancer cells

that have high glycolytic activity. Most tumors display higher

glucose uptake as well as higher glycolytic rates and there-

fore sequester a larger amount of FDG than surrounding nor-

mal tissues. [18F]FDG PET is a highly sensitive method to

detect rapidly growing tumors noninvasively because of both

overexpression of glucose transporters and presence of the

glycolytic enzyme hexokinase.

(a)

DU4475 BT20

(b)

(c)

9500

FIGURE 20.14 NIR Xuorescence imaging 24 hours after intravenous

injection of the cathepsin-B-sensitive autoquenched probe in a rep-

resentative animal. (a) Light image; (b) raw NIR Xuorescence image;

and (c) color encoded NIR Xuorescence signal (arbitrary units of NIR

Xuorescence intensity) superimposed on light image. The highly in-

vasive breast adenocarcinoma (DU4475) was implanted on the right

of the chest and the well-diVerentiated adenocarcinoma (BT20) on

the left. Note the higher Xuorescent signal depicted on the highly

invasive breast lesion (b, c). Adapted from Bremer et al. [28]. For a

more detailed view of this figure, please visit our companion site at:

http://books.elsevier.com/companions/9780123735836.
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Tumors typically also display a higher rate of DNA synthesis

due to increased proliferation as well as increased protein and

lipid metabolism. These traits can be targeted by using radiola-

beled probes such as [18F]FLT (Xuoro-L-thymidine), which is

incorporated into replicating DNA following deoxyribosylation;

[11C]choline, which accumulates in tumors due to increased

choline phospholipid metabolism in cancer cells [31]; and

[11C]methionine, which measures total protein synthesis. Tracers

such as [11C]choline are becoming even more useful as they are

also taken up in slower-growing tumor types, which contain

elevated levels of phosphocholine but exhibit a lower glycolytic

rate and thus lower [18F]FDG uptake than other tumor

types. Evidence suggests that elevated choline kinase and phos-

phocholine levels are associated with an aggressive phenotype

and may indicate a higher propensity to metastasize [31, 34].

Figures 20.15 and 20.16 show representative scans of [18F]FDG

and [11C]choline PET, illustrating the diVerences between meta-

bolic imaging of increased glycolytic rates, proliferation, and

increased choline phospholipid metabolism in tumors. The abil-

ity to characterize a tumor’s metabolic proWle noninvasively is

valuable in staging and selecting an appropriate therapy.

20.5.2 Metabolic Magnetic Resonance
Spectroscopy

Proton MRS can be used to detect endogenous tumor lactate levels

because tumors have an elevated glycolytic activity. Although 1H

MRS of lactate has been used as a tumor marker, contamination

from the lipid signal as well as variability in its clearance make it a

less reliable marker than elevated total choline. Proton MRS is

frequently used to detect elevated tumor total choline levels, which

are detected as a single overlapping MRS signal consisting of the

endogenous choline-containing molecules in tumors: glyceropho-

sphocholine, phosphocholine, and free choline. Figure 20.17 dem-

onstrates how increased total choline levels in an MRS image

overlap with the contrast-enhancing region in a postcontrast T1-

weighted image of a tumor in a woman with breast cancer [35]. In

the clinic, metabolic molecular imaging of choline in cancers is

currently being used as an adjunct for diagnosis of primary ma-

lignant tumors in brain, prostate, and breast [36]. Proton MRS of

the total choline signal is useful clinically in treatment planning for

radiation therapy and in assessing treatment response in brain,

breast, and prostate [36].

© http://www.petlab.com.cn

B B�

A A�

FIGURE 20.15 Comparison of [18F]FDG PET (A and A0) and [11C]choline PET (B and B0) in

two patients with brain tumors. The tumor (red arrow) in A and B has a high glycolytic rate and

high choline levels. The tumor in A0 and B0 contains high choline levels, but a relatively low

glycolytic rate. For a more detailed view of this figure, please visit our companion site at: http://

books.elsevier.com/companions/9780123735836.
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20.6 Imaging of Permeability,
Perfusion, and Blood Flow

Angiogenesis plays an important role in tumor growth

because once a tumor reaches a certain size, it cannot grow

any further unless it recruits new blood vessels that supply

the tumor with nutrients and oxygen. The formation of new

blood vessels, also referred to as neovascularization, is there-

fore necessary for tumor progression. This process involves

multiple angiogenic factors that induce existing vasculature

in the surrounding tissue to migrate toward the cancer cells

and establish neovasculature [37]. Multiple anti-angiogenic

factors also exist and the net outcome is the balance between

pro- and anti-angiogenic factors [38]. Vascular endothelial

growth factor (VEGF) is an example of a potent angiogenic

agent that induces angiogenesis as well as increases the per-

meability of vasculature [38]. Tumor vasculature can be

imaged by PET, contrast-enhanced MRI, CT, and US. In

addition, imaging can provide functional parameters such

as blood Xow, blood volume, and permeability in preclinical

models and in patients [24]. These functional imaging tech-

niques measure tumor perfusion and microvascular permea-

bility by detecting the pharmacokinetic behavior of

intravenously administered contrast agents, which are carried

in the blood and distributed in the tumor tissue [24].

20.6.1 Magnetic Resonance Imaging and
Magnetic Resonance Spectroscopy
of Permeability, Perfusion, and
Blood Flow

In preclinical studies, tumor vascular volume and permea-

bility can be characterized by the use of a macromolecular

contrast agent consisting of albumin bound to gadolinium-

diethyltriamine pentaacetic acid (GdDTPA). The GdDTPA on

the albumin results in a reduction of T1 of water that can be

quantiWed to derive maps of vascular volume and permeabil-

ity. MRI studies using this agent, which is approximately

90 kDa in size, of human breast and prostate cancer xeno-

grafts [39] revealed that the vasculature of metastatic tumors

was signiWcantly more permeable than the vasculature of

nonmetastatic tumors [39]. These researchers also observed

that increased vascular endothelial growth factor (VEGF)

expression levels correlated with the increased permeability

of these tumors [39]. Macromolecular contrast agents have

also been used to detect the eVect of anti-angiogenic treat-

ment [40]. Low molecular weight GdDTPA-based contrast

agents such as MagnevistTM are routinely used in the clinic

to identify tumors by contrast-enhancement. Low molecular

weight agents also provide values of relative perfusion of

tumors [40].

© Soc. Nucl. Med.
JNuclMed (2003) 44(9); 1426-31.

© Soc. Nucl. Med.
JNuclMed (2002) 43(1); 46-55.
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Coronal views

Coronal views

(a) (a)(c)

(b) (b) (c)(d)

FIGURE 20.16 (Left) [18F]FDG PET of a lung tumor (a, arrow) compared with [18F]FLT PET (b), indicating an increased glycolytic rate with

no increase in proliferation. (Right) [18F]FDG PET showing metastatic prostate cancer (a) with clearer uptake using [11C]methionine PET

(b, arrow).
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20.6.2 Nuclear Imaging of Perfusion
and Blood Flow

Measurement of perfusion and blood Xow in nuclear imaging

is done principally to account for blood pool uptake in images

(so as not to be confused with tumor uptake) and also is

critical for molecular modeling to determine the input func-

tion for a given probe (see chapter sections 5.2 and 6.4).

Currently, anti-vasculature treatments are being developed to

kill tumors, and methods are needed to measure the progress

of these therapies and validate new treatments.

Methods for measuring blood Xow include [15O]water PET,

[11C]CO [41] and [11C]CO2 PET as well as [133Xe]Xe SPECT

and [99mTc]-labeled human serum albumin SPECT. Measure-

ments are taken during the Wrst minute or two following tracer

injection to capture the Wrst-pass kinetics of the tracer. In this

way, hypervascular areas associated with tumor growth can be

detected [42] as well as hypovascular areas associated with large,

necrotic tumors or obstruction of major vessels. In the case of

measuring the eVects of anti-angiogenic or anti-vascular agent

therapy, blood Xow measurements are taken before and follow-

ing therapy and the region of interest surrounding the tumor is

quantitated to determine the eVects of the treatment [43, 44].

Perfusion can be measured using [64Cu]PTSM PET and

virtually all of the above listed probes when acquiring data

following probe equilibrium. The intent is to capture data

after the Wrst few passes of the tracer in the body and then

quantitate the deposition of the tracer into the tissue. Perfusion

in tumors is critical since blood vessels inside tumors tend to be

tortuous and leaky and are characterized by poor perfusion

into the tumor itself. This is why the inside of most tumors

become necrotic and hypoxic after growing beyond a certain

size. The eVectiveness of many chemotherapeutics and radi-

ation therapy is directly related to tumor perfusion since cyto-

toxic drugs need to be delivered within the tumor to be eVective

against the cancer cells, and radiation therapy is more eVective

in well-oxygenated tumors. Therefore, a number of tracers have

been developed to facilitate measurement of tumor perfusion.

[64Cu]PTSM is now being used in the clinic on a trial basis to

gauge tumor perfusion in an eVort to determine whether

tumors are likely to respond to radiation therapy prior to

initiation of treatment [42]. This has the potential to spare

patients damaging ionizing radiation therapy if their tumors

turn out to be poor candidates for such treatment.

20.6.3 Ultrasound Imaging of Perfusion
and Blood Flow

The tumor vasculature can be visualized by unenhanced ultra-

sound imaging. Ultrasound imaging can detect vascular fea-

tures in tumors with a high anatomical resolution of 40 mm to

200 mm vessel diameters [24]. The velocity of blood Xow

within an evaluated vessel can be measured by color Doppler

ultrasound. This technique assigns color to the measured

blood vessel based on a scale that is proportional to the

velocity of the blood Xow [24].

20.7 Imaging of the Tumor
Microenvironment

Solid tumors consist of tumor cells that are surrounded, and

inXuenced, by other cells, such as Wbroblasts and vascular

endothelial cells. The extracellular matrix (ECM) is a mesh-

work of proteins with tumor-speciWc physiological environ-

ments, such as hypoxia and acidic extracellular pH, which

characterize the tumor microenvironment. This tumor stroma

plays key roles in processes ultimately leading to tumor pro-

gression, such as tumor angiogenesis [45], lymphangiogenesis

[46], inXammation [47], and invasion and metastasis [48].

Because the tumor vasculature is chaotic, easily collapses, and

sometimes cannot meet the oxygen and substrate demands of

the cancer cells, tumors contain hypoxic and acidic physio-

logical environments [49]. Tumor hypoxia is associated with

poor prognosis, and resistance to radiation and chemotherapy

FIGURE 20.17 (a) Postcontrast T1-weighted images of a breast

lesion. (b) Proton MRSI image of total choline-containing com-

pounds (tCho). (c) MagniWed (�50) representative 1H MR spectrum

from within the tumor demonstrating elevated tCho (signal-to-noise

ratio of 10.6) levels within the tumor. Adapted from Jacobs et al. [35].
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[50]. Hypoxia also triggers angiogenesis as the expression of

VEGF, which is regulated by a hypoxia response element in its

promoter region [37]. For all these reasons, researchers have

attempted to image tumor hypoxia with diVerent molecular

imaging modalities. Several potential therapeutic targets in the

tumor stroma have been discovered with the help of novel

imaging techniques, which help investigate the interactions

between cancer cells and the tumor microenvironment

noninvasively and in vivo [51].

20.7.1 Nuclear Imaging of the Tumor
Microenvironment

The ability to image hypoxia noninvasively is a boon to

both researchers and physicians. Several positron-emitting radio-

tracers have been developed to facilitate this purpose. By far,

the most commonly used are [18F]-Xuoromisonidazole

([18F]FMISO) and [64Cu]-copper(II)-diacetyl-bis(N(4)-

methylthiosemicarbazone) ([64Cu]ATSM). Both of these tracers

are dependent on the concentration of NADH inside the cell.

Once the tracer is reduced, it becomes trapped in the cytosol and

accumulates, while tracer diVusing into well-oxygenated tissues

diVuses back out and clears from the body. Physicians have used

both [18F]FMISO and [64Cu]ATSM to probe the hypoxic content

of tumors prior to treatment in an eVort to determine whether

PET scans with these agents have any predictive value of the

eYcacy of certain therapies or for patient prognosis [52]. For

example, studies in patients with head and neck cancer who were

scanned using [18F]FMISO PET prior to treatment established

that patients who had hypoxic tumors had a more favorable

response to tirapazamine, a hypoxia-targeting drug, than to

standard cytotoxic therapy alone, whereas patients who did not

have hypoxic tumors did not beneWt from the tirapazamine [53].

Also, in an attempt to transiently oxygenate a tumor, hyperther-

mia treatments were tested and progress was monitored using

[64Cu]ATSM in mouse models of breast cancer [54]. The re-

searchers found that hyperthermic treatment decreased uptake

of the tracer while pO2 increased.

Similarly, [18F]FDG PET clearly shows whether solid tumors

are homogeneous in their glycolytic activity and whether there

are pockets of necrosis. This is useful to help in staging and

treatment planning to determine whether the entire tumor

needs treatment or only the viable rim. A combination of

blood Xow analysis, hypoxia scanning, and [18F]FDG PET gives

a clear picture of the microenvironment of a tumor as blood Xow

and perfusion relate to hypoxia/normoxia and tissue viability.

These data are important in understanding tumor dynamics.

20.7.2 Magnetic Resonance Imaging and
Magnetic Resonance Spectroscopy
of the Tumor Microenvironment

Parameters characterizing the ECM have been measured

by molecular imaging using MRI methods. Peritumoral inter-

stitial convection and lymphatic drain have been measured

in vivo using macromolecular contrast-enhanced MRI [55].

These parameters provide an index of the ECM integrity and

signiWcant diVerences in vascular and ECM transport were

observed in two breast cancer models with diVerent invasive-

ness. These MRI Wndings suggest that a combination of in-

creased invasiveness and reduced extracellular matrix integrity

may increase lymph node metastasis [56]. Contrast-enhanced

MRI has also been used to visualize the spatial distribution of

tumor interstitial Xuid pressure in vivo using contrast-en-

hanced magnetic resonance imaging [57].

20.7.3 Optical Imaging of the Tumor
Microenvironment

Researchers currently apply optical imaging techniques such as

diVerential interference contrast (DIC) microscopy and second

harmonic generation microscopy [58] to study the tumor

microenvironment, which is characterized by an interaction

of tumor cells, stromal cells, and the ECM. Optical imaging

using DIC optics generates imaging contrast by means of

diVerent optical path length gradients passing through a

Nomarski prism [59]. Such DIC microscopy has been used

by researchers to dynamically track cell-induced matrix

remodeling [59]. Second harmonic generation (SHG) micro-

scopy is a nonlinear optical process that requires an environ-

ment without a center of symmetry, such as an interfacial

region, to produce a signal. Researchers have used this optical

contrast mechanism to image endogenous structural proteins

such as collagen-rich layers within the dermis of the mouse ear

[60]. It is possible to visualize collagen Wbers in melanoma

xenografts grown in a window chamber in severe combined

immunodeWcient mice as shown in Figure 20.18 [61]. These

researchers were able to detect collagen Wbers in vivo without

adding contrast agent [61]. Such SGH imaging of tumoral

Wbrillar collagen provided estimates of the relative diVusive

hindrance in tumors and demonstrated that enzymatic mod-

iWcation of tumor collagen by relaxin can improve diVusive

transport in tumors, which is important for drug delivery

processes in tumors.

20.8 Multimodality Imaging

The most powerful form of in vivo oncologic imaging com-

bines molecular, functional, and anatomic imaging. Measuring

a speciWc chemical signal leads ideally to a focused area of

increased contrast, where the density of the target molecule is

highest. Since most molecular probes are also subject to meta-

bolic processing and breakdown within the body, it is crucial

to have a co-registered anatomic image of the subject to verify

that the regions of increased contrast correspond to the site(s)
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of the tumor and as an anatomic aid to the surgeon or

radiation oncologist where to cut. Figure 20.19 illustrates

how combined SPECT-CT helps pinpoint the location of a

prostate tumor and metastases where SPECT or CT alone

would each yield only half of the picture.

Useful combinations of multimodality imaging pair a

molecular technique that possesses high sensitivity with an

anatomic technique that produces a high-resolution image of

the body’s soft and hard tissues. Each modality has its own

strengths and weaknesses regarding sensitivity and resolution.
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FIGURE 20.18 (a) Second-harmonic signal in a Mu89 melanoma grown in the dorsal skinfold

chamber of a severe combined immunodeWcient mouse. This image was a montage of 12 separate

images, each of which was a maximum intensity projection of 5 images obtained at 20-mm steps.

The image shown is 6.6 mm in width. (b) Second-harmonic signal with highlighted vessels.

Vessels were highlighted with an intravenous injection of 0.1 ml tetramethylrhodamine-dextran

(10 mg/ml; red pseudocolor). SHG signal, green pseudocolor. There was no colocalization of

SHG signal with the borders of blood vessels. The image shown is 275 mm in width. (c) Average

spectra of light generated with 810 nm excitation of an approximately 0:25-mm2 region of a

Mu89 melanoma in the dorsal skinfold chamber of an immunodeWcient mouse. Adapted from

Brown et al. [61]. For a more detailed view of this figure, please visit our companion site at: http://

books.elsevier.com/companions/9780123735836.
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Choosing which modality to use is always a balance among

what the target molecule is, whether it has a ligand capable of

being labeled, the resolution needed for the application, and

the size of the subject. Table 20.2 illustrates the diVerences in

sensitivity and resolution for each modality to help choose

which one is right for your application.

Multimodality imaging has been performed in several pre-

clinical studies, one of which will be described in the following

section. In this study, researchers combined MRI and optical

imaging to characterize the relationship between hypoxia and

vascular parameters in prostate cancer xenografts in mice. The

spatial distribution of hypoxia in these tumors was detected by

imaging Xuorescence from cells stably expressing green Xuor-

escent protein under control of a hypoxia response element

[62]. Vascular volume and permeability were measured using

macromolecular contrast-enhanced MRI [62]. Combined

macromolecular contrast-enhanced MRI and optical images

demonstrated that vascular volume was low in Xuorescing

hypoxic tumor regions, which were also frequently permeable

[62] as shown in Figure 20.20. The researchers concluded that

these observations were consistent with the Wnding that hyp-

oxia regulates VEGF expression by a hypoxia response element

in the VEGF promoter region [37], and thus impacts vascular

parameters such as vascular volume and permeability.

FIGURE 20.19 SPECT versus SPECT-CT in combined PSMA receptor and anatomic prostate cancer

imaging. (Left) SPECT scan of a patient receiving ProstaScintTM showing the presence of multiple metas-

tases as well as liver and spleen uptake. (Right) Fused SPECT-CT images in a diVerent patient also receiving

ProstaScintTM as well as major blood vessels in the imaged region (yellow arrows). For a more detailed view

of this figure, please visit our companion site at: http://books.elsevier.com/companions/9780123735836.

TABLE 20.2 Imaging modalities and their respective sensitivities, contrast agents, and applications

Molecular imaging in intact species: methods and agents

Sensitivity Modality Agents H R Primary uses Examples

. Optical

FMT Fluorescent proteins X Gene expression, tagging superficial structures GFP, RFP, NIRF probes

BLI Luciferin X Gene expression, therapeutic monitoring fLuc rLuc

. Nuclear

SPECT 99mTc, 123=5I, 111ln X X Site-selectivity, protein labeling 99mTc-annex in V, 123I-A85380

PET 11C, 18F, 124I, 64=62=60Cu X X Site-selectivity, gene expression, drug development 11C-RAC, 124I-FIAU, 64Cu-ATSM

. MRI

MRS Endogenous metabolites X X CNS, prostate, heart, breast NAA, Cr, Cho, Glx, mI, 31P

Contrast agents Gd, Mn, FeO X Cell trafficking, enzymatic activation Poly-L-lysine, dendrimers, MION

. Ultrasound

Contrast agents Perfluorinated microbubbles X Drug delivery, gene transfection Human albumin (Optison)

H¼human, R¼rodent

pM

nM

mM

(10 mm)
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20.9 Summary

Cancer is a multifaceted disease that requires individual char-

acterization for each tumor but also shares common charac-

teristics. It is important to be able to identify and visualize

molecular markers that occur either collectively or individu-

ally in various cancers. Such ability is valuable in the quest for

the development and application of more potent molecular

targeted cancer therapies that kill malignant tissue while

sparing normal tissue. As multimodality imaging instruments

become increasingly available, a combined molecular-

functional-anatomic imaging approach will become more

commonplace for preclinical and clinical investigations and

will play an integral role in characterizing tumors to select

and validate treatment, screen for sensitivity, and monitor

treatment.
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20.10 Exercises

1. Please list the advantages of performing molecular imaging

in cancer diagnosis over purely anatomic imaging.

2. Which aspects of molecular imaging are most useful in the

clinic and why?

3. What biologic processes can be visualized using molecular

imaging of gene expression?
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FIGURE 20.20 Maps of (a) vascular volume (VV) and (b) permeability surface area product

(PSP) obtained from a central slice of a PC-3 prostate tumor xenograft (180 mm3) expressing

enhanced green Xuorescent protein (EGFP) under the control of a hypoxia response element (HRE).

VV ranged from 0 to 344 ml=g and PSP from 0 to 24 ml=g min. (c) Fluorescent microscopy of a fresh

tissue slice obtained from the imaged slice, using a Nikon TS100-F microscope (�1 objective) with a

wavelength of 512 nm. (d) Hematoxylin and eosin stained, 5-mm-thick section from the central

MRI slice. The region exhibiting EGFP consisted of viable cells. The less dense staining in the upper

part of the section is due to uneven sectioning. The only area of dying cells was in a small necrotic

focus (black arrow). Adapted from Raman et al. [62]. For a more detailed view of this figure, please

visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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4. What reporter genes are available for molecular imaging of

gene expression, what imaging modalities are required to

visualize each reporter gene, and what are the advantages

and disadvantages of these reporter genes?

5. What are the optimal features of a receptor that make it

feasible for molecular receptor imaging in tumors, and why

should the perfect receptor have these features?

6. What are smart contrast agents?

7. What imaging modality has been used most frequently in

molecular imaging of smart contrast agents, and why?

8. Compare the advantages and disadvantages of the various

imaging modalities used in molecular imaging.

20.11 References and Bibliography

1. R. G. Blasberg and J. G. Tjuvajev. Molecular-genetic

imaging: Current and future perspectives. J. Clin. Invest.

111(11):1620–1629, 2003.

2. J. F. Rodriguez et al. Expression of the WreXy luciferase

gene in vaccinia virus: A highly sensitive gene marker to

follow virus dissemination in tissues of infected animals.

Proc. Natl. Acad. Sci. USA. 85(5):1667–1671, 1988.

3. N. C. Shaner et al. Improved monomeric red, orange and

yellow Xuorescent proteins derived from Discosoma sp. red

Xuorescent protein. Nat. Biotechnol. 22(12):1567–1572,

2004.

4. J. G. Tjuvajev et al. Noninvasive imaging of herpes virus

thymidine kinase gene transfer and expression: A potential

method for monitoring clinical gene therapy. Cancer Res.

56(18):4087–4095, 1996.

5. T. Groot-Wassink et al. Noninvasive imaging of the

transcriptional activities of human telomerase promoter

fragments in mice. Cancer Res. 64(14):4906–4911,

2004.

6. B. Cohen et al. Ferritin as an endogenous MRI reporter for

noninvasive imaging of gene expression in C6 glioma

tumors. Neoplasia. 7(2):109–117, 2005.

7. A. A. Gilad et al. ArtiWcial reporter gene providing MRI

contrast in vivo based on chemical exchange. Proceedings

of the Fourteenth ScientiWc Meeting of the International

Society for Magnetic Resonance in Medicine 2006: Ab-

stract #100.

8. P. Ray et al. Imaging tri-fusion multimodality reporter

gene expression in living subjects. Cancer Res. 64(4):

1323–1330, 2004.

9. D. A. Hamstra et al. Real-time evaluation of p53 oscilla-

tory behavior in vivo using bioluminescent imaging.

Cancer Res. 66(15):7482–7489, 2006.

10. W. Wang, S. H. Kim, and W. S. El-Deiry. Small-molecule

modulators of p53 family signaling and antitumor eVects

in p53-deWcient human colon tumor xenografts. Proc.

Natl. Acad. Sci. USA. 103(29):11003–11008, 2006.

11. U. Mahmood and R. Weissleder. Near-infrared optical

imaging of proteases in cancer. Mol. Cancer Ther.

2(5):489–496, 2003.

12. C. M. Shachaf et al. MYC inactivation uncovers pluripo-

tent diVerentiation and tumour dormancy in hepatocellu-

lar cancer. Nature. 431(7012):1112–1117, 2004.

13. A. Hajitou et al. A hybrid vector for ligand-directed tumor

targeting and molecular imaging. Cell. 125(2):385–398,

2006.

14. B. M. Carswell et al. Detection of prostate cancer by alpha-

methylacyl coa racemase (P504S) in needle biopsy speci-

mens previously reported as negative for malignancy.

Histopathology. 48(6):668–673, 2006.

15. B. P. Adley and X. J. Yang. Application of alpha-methylacyl

coenzyme A racemase immunohistochemistry in the diag-

nosis of prostate cancer: A review. Anal. Quant. Cytol.

Histol. 28(1):1–13, 2006.

16. R. E. Weiner and M. L. Thakur. Radiolabeled peptides in

oncology: Role in diagnosis and treatment. Biodrugs.

19(3):145–163, 2005.

17. C. P. Theuer et al. Radioimmunotherapy of non-Hodgkin’s

lymphoma: Clinical development of the Zevalin regimen.

Biotechnol. Annu. Rev. 10:265–295, 2004.

18. D. Yao et al. The utility of monoclonal antibodies in

the imaging of prostate cancer. Semin. Urol. Oncol.

20(3):211–218, 2002.

19. D. Artemov et al. Magnetic resonance molecular imaging

of the HER-2/neu receptor. Cancer Res. 63(11):2723–2727,

2003.

20. E. C. Wiener et al. Imaging folate binding protein expres-

sion with MRI. Acad. Radiol. 9(suppl 2):S316–S319, 2002.

21. Z. H. Jin et al. Noninvasive optical imaging of ovarian

metastases using Cy5-labeled RAFT-c(-rgdfk-)4. Mol.

Imaging. 5(3):188–197, 2006.

22. S. Ito et al. Principle and clinical usefulness of the infrared

Xuorescence endoscopy. J. Med. Invest. 53(1–2):1–8, 2006.

23. A. L. Polglase, W. J. Mclaren, and P. M. Delaney. Pentax

confocal endomicroscope: A novel imaging device for

in vivo histology of the upper and lower gastrointestinal

tract. Expert Rev. Med. Devices. 3(5):549–556, 2006.

24. H. E. Daldrup-Link, G. H. Simon, and R. C. Brasch.

Imaging of tumor angiogenesis: Current approaches and

future prospects. Curr. Pharm. Des. 12(21):2661–2672,

2006.

25. V. R. Stewart and P. S. Sidhu. New directions in

ultrasound: Microbubble contrast. Br. J. Radiol. 79(939):

188–194, 2006.

26. G. E. Weller et al. Ultrasonic imaging of tumor angiogen-

esis using contrast microbubbles targeted via the tumor-

binding peptide arginine-arginine-leucine. Cancer Res.

65(2):533–539, 2005.

27. C. Bremer et al. Optical imaging of matrix metalloprotei-

nase-2 activity in tumors: Feasibility study in a mouse

model. Radiology. 221(2):523–529, 2001.

20 Molecular Imaging in Cancer 453



28. C. Bremer et al. Imaging of diVerential protease expression

in breast cancers for detection of aggressive tumor pheno-

types. Radiology. 222(3):814–818, 2002.

29. R. Weissleder et al. In vivo imaging of tumors with prote-

ase-activated near-infrared Xuorescent probes. Nat.

Biotechnol. 17(4):375–378, 1999.

30. J. W. Kim et al. HIF-1-mediated expression of pyruvate

dehydrogenase kinase: A metabolic switch required for

cellular adaptation to hypoxia. Cell Metab. 3(3):177–185,

2006.

31. E. AckerstaV, K. Glunde, and Z. M. Bhujwalla. Choline

phospholipid metabolism: A target in cancer cells? J. Cell

Biochem. 90(3):525–533, 2003.

32. A. Ramirez de Molina et al. Regulation of choline

kinase activity by Ras proteins involves Ral-GDS and

PI3K. Oncogene. 21(6):937–946, 2002.

33. E. O. Aboagye and Z. M. Bhujwalla. Malignant transform-

ation alters membrane choline phospholipid metabolism

of human mammary epithelial cells. Cancer Res.

59(1):80–84, 1999.

34. K. Glunde et al. RNA interference-mediated choline

kinase suppression in breast cancer cells induces diVeren-

tiation and reduces proliferation. Cancer Res. 65(23):

11034–11043, 2005.

35. M. A. Jacobs et al. Proton magnetic resonance spectro-

scopic imaging of human breast cancer: A preliminary

study. J. Magn. Reson. Imaging. 19(1):68–75, 2004.

36. K. Glunde, M. A. Jacobs, and Z. M. Bhujwalla. Choline

metabolism in cancer: Implications for diagnosis and ther-

apy. Expert Rev. Mol. Diagn. 6(6):821–829, 2006.

37. R. Haubner and H. J. Wester. Radiolabeled tracers

for imaging of tumor angiogenesis and evaluation of anti-

angiogenic therapies. Curr. Pharm. Des. 10(13):1439–1455,

2004.

38. Z. Huang and S. D. Bao. Roles of main pro- and anti-

angiogenic factors in tumor angiogenesis. World

J. Gastroenterol. 10(4):463–470, 2004.

39. Z. M. Bhujwalla et al. Vascular diVerences detected by MRI

for metastatic versus nonmetastatic breast and prostate

cancer xenografts. Neoplasia. 3(2):143–153, 2001.

40. A. R. Padhani. MRI for assessing antivascular cancer treat-

ments. Br. J. Radiol. 76(spec. no. 1):S60–S80, 2003.

41. K. D. Miller et al. Randomized phase II trial of the anti-

angiogenic potential of doxorubicin and docetaxel; pri-

mary chemotherapy as biomarker discovery laboratory.

Breast Cancer Res. Treat. 89(2):187–197, 2005.

42. J. S. Lewis et al. Copper-64-pyruvaldehyde-bis(N(4)-

methylthiosemicarbazone) for the prevention of tumor

growth at wound sites following laparoscopic surgery:

monitoring therapy response with micropet and magnetic

resonance imaging. Cancer Res. 62(2):445–449, 2002.

43. P. Kunz et al. Angiopoietin-2 overexpression in Morris

hepatoma results in increased tumor perfusion and induc-

tion of critical angiogenesis-promoting genes. J. Nucl.

Med. 47(9):1515–1524, 2006.

44. M. A. Flower et al. 62Cu-PTSM and PET used for the

assessment of angiotensin II-induced blood Xow changes

in patients with colorectal liver metastases. Eur. J. Nucl.

Med. 28(1):99–103, 2001.

45. M. Sund, L. Xie, and R. Kalluri. The contribution of

vascular basement membranes and extracellular matrix

to the mechanics of tumor angiogenesis. Apmis.

112(7–8):450–462, 2004.

46. W. P. Li and C. J. Anderson. Imaging matrix metallopro-

teinase expression in tumors. QJ. Nucl. Med. 47(3):

201–208, 2003.

47. J. W. Pollard. Tumour-educated macrophages promote

tumour progression and metastasis. Nat. Rev. Cancer.

4(1):71–78, 2004.

48. N. Wernert. The multiple roles of tumour stroma. Virch-

ows Arch. 430(6):433–443, 1997.

49. R. K. Jain. Normalization of tumor vasculature: An emer-

ging concept in antiangiogenic therapy. Science. 307(5706):

58–62, 2005.

50. J. Czernin, W. A. Weber, and H. R. Herschman. Molecular

imaging in the development of cancer therapeutics. Annu.

Rev. Med. 57:99–118, 2006.

51. M. M. Mueller and N. E. Fusenig. Friends or foes: Bipolar

eVects of the tumour stroma in cancer. Nat. Rev. Cancer.

4(11):839–849, 2004.

52. J. G. Rajendran et al. Hypoxia imaging-directed radiation

treatment planning. Eur. J. Nucl. Med. Mol. Imaging.

33(suppl 13):44–53, 2006.

53. D. Rischin et al. Prognostic signiWcance of [18F]-misoni-

dazole positron emission tomography-detected tumor

hypoxia in patients with advanced head and neck cancer

randomly assigned to chemoradiation with or without

tirapazamine: A substudy of Trans-Tasman Radiation

Oncology Group Study 98.02. J. Clin. Oncol. 24(13):

2098–2104, 2006.

54. R. J. Myerson et al. Monitoring the eVect of mild hyper-

thermia on tumour hypoxia by Cu-ATSM PET scanning.

Int. J. Hyperthermia. 22(2):93–115, 2006.

55. H. Dafni et al. Overexpression of vascular endothelial

growth factor 165 drives peritumor interstitial convection

and induces lymphatic drain: Magnetic resonance

imaging, confocal microscopy, and histological tracking

of triple-labeled albumin. Cancer Res. 62(22):6731–6739,

2002.

56. A. P. Pathak et al. Lymph node metastasis in breast cancer

xenografts is associated with increased regions of extra-

vascular drain, lymphatic vessel area, and invasive pheno-

type. Cancer Res. 66(10):5151–5158, 2006.

57. Y. Hassid et al. Noninvasive magnetic resonance imaging

of transport and interstitial Xuid pressure in ectopic

human lung tumors. Cancer Res. 66(8):4159–4166, 2006.

454 II Integrated Applications



58. P. Friedl. Dynamic imaging of cellular interactions with

extracellular matrix. Histochem. Cell Biol. 122(3):183–190,

2004.

59. W. M. Petroll and L. Ma. Direct, dynamic assessment of

cell-matrix interactions inside Wbrillar collagen lattices.

Cell Motil. Cytoskeleton. 55(4):254–264, 2003.

60. P. J. Campagnola et al. Three-dimensional high-resolution

second-harmonic generation imaging of endogenous

structural proteins in biological tissues. Biophys. J.

82(1 Pt 1):493–508, 2002.

61. E. Brown et al. Dynamic imaging of collagen and its

modulation in tumors in vivo using second-harmonic

generation. Nat. Med. 9(6):796–800, 2003.

62. V. Raman et al. Characterizing vascular variables in hyp-

oxic regions: A combined magnetic resonance and optical

imaging study of a human prostate cancer model. Cancer

Res. 66(20):9929–9936, 2006.

20 Molecular Imaging in Cancer 455



This Page intentionally left blank



21
Molecular Imaging in Biology

and Pharmacology

21.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
21.1.1 Basic Elements and New Developments in Molecular Imaging :
21.1.2 Recent Developments in Biology and Pharmaceuticals

21.2 Considerations for Quantitative Molecular Imaging . . . . . . . . . . . . . . . 460
21.2.1 Input Function : 21.2.2 Physiological/Biological Model

21.3 Design/Development of Molecular Imaging Probes. . . . . . . . . . . . . . . . 463
21.3.1 Chemical Probes (Small Molecules) : 21.3.2 Biological Probes

(Antibodies, Peptides, Aptamers)

21.4 Molecular Imaging of Beta-Amyloid and NeuroWbrillary Tangles . . . . . . 466
21.4.1 Brief Review of Molecular Probes for Beta-Amyloid Imaging : 21.4.2 In Vitro

Characterization of FDDNP : 21.4.3 In Vivo Imaging of Beta-Amyloid and NeuroWbrillary

Tangles in Alzheimer’s Disease

21.5 Molecular Imaging Using Antibody Probes . . . . . . . . . . . . . . . . . . . . . 468
21.5.1 Imaging Cell-Surface Phenotype : 21.5.2 Optimization of Antibodies for

In Vivo Targeting : 21.5.3 Measurement of Target Expression : 21.5.4 Monitoring

Response to Therapy

21.6 Some Other Molecular Imaging Applications. . . . . . . . . . . . . . . . . . . . 470
21.6.1 In Vivo Regional Substrate Metabolism in Human Brain : 21.6.2 Cell Proliferation

Rate in Mouse Tumor : 21.6.3 Measurement of Murine Cardiovascular Physiology

21.7 Summary and Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
21.7.1 Optical Imaging, Small-Animal Single Photon Emission Computed Tomography, and

MicroXuidic Blood Samplers : 21.7.2 Automated Image/Data Analysis : 21.7.3 Virtual

Experimentation

21.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

21.9 References and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

21.1 Introduction and Background

Recently, there has been tremendous progress in biology and

medicine, in particular in expanding our understanding of

biology and disease at the cellular and molecular levels. In

parallel, there has been dramatic progress in noninvasive bio-

logical/medical imaging. It is now possible to examine in vivo

speciWc biochemical pathways and gene expression in cells.

SpeciWcally, a labeled molecule, called a tracer, can be used as

a sensor/marker to indicate the activity level of a speciWc gene,

enzyme, biochemical pathway, or other cellular process at the

molecular level. This approach is commonly referred to as

molecular imaging. Molecular imaging already plays an im-

portant role in disease diagnosis, treatment selection, and

monitoring of treatment response in patients. Furthermore,

molecular imaging provides critical information for drug

development by allowing investigators to understand the

underlying biology. It allows the eYcacy of drugs to be easily

assessed in vivo and is expected to have a large impact on

future drug evaluation and development [1–3].

The Weld of molecular imaging involves expertise from

many basic sciences, including physics, chemistry, engineering,

etc., in addition to biology and medicine. Accelerating

advances in these scientiWc and technical areas in recent years

have created signiWcant momentum and led to the Xourishing

state of molecular imaging today [1–3]. Information technol-

ogy has played a key role in molecular imaging, and its

importance is expected to increase in the future. The objectives

of this chapter are to introduce the basic elements of molecular

imaging, describe recent advances, provide examples that
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highlight the role of information technology, and introduce

examples of applications that illustrate how molecular imaging

is used in biology, medicine, and pharmacology.

21.1.1 Basic Elements and New Developments
in Molecular Imaging

Molecular imaging generally involves the administration of a

labeled molecule (called a tracer or labeled probe) in the body,

the measurement of the tracer with an imaging device, and the

analysis and interpretation of the measured images to give

biologically meaningful information. Thus, from a technical

point of view, the basic components of molecular imaging are

synthesis of labeled tracers, tracer measurement instrumenta-

tion, and image analysis.

In the area of tracer development, numerous new com-

pounds are continually being made available to follow various

biological processes or to bind to various receptors or en-

zymes. There are three major types of tracers in terms of the

imaging device to monitor their body distribution/kinetics:

. Positron emitters

. Single photon emitters

. Optical light emitters

They have diVerent advantages and limitations, but posi-

tron-emitting tracers are experiencing the most rapid rate of

growth, because they can be natural compounds with one

atom in the molecule replaced by a positron-emitting radio-

isotope (e.g., O-15, C-11, N-13, F-18) or with the molecular

structure slightly altered to include one of the positron-emit-

ting radionuclides but maintaining similar biological/bio-

chemical properties. In this chapter, we will focus mainly on

this type of tracer, whose associated imaging modality is posi-

tron emission tomography (PET) [4]. Readers are referred to

other chapters in this book or other books for details of other

types of tracers. Among the imaging devices for the three types

of tracers, PET can give the most quantitative measure of the

concentration level of a tracer and thus can provide the most

accurate biological information in local tissue regions.

The development/preparation/synthesis of PET compounds

also has experienced rapid growth. Commonly used positron-

emitting radionuclides have relatively short half-lives (t 1⁄2 )

(from 70 seconds for Rb-82 to 110 minutes for F-18) and are

typically produced using a cyclotron. After such radioisotopes

are produced, they need to be incorporated quickly into spe-

ciWc molecules to make the compounds as PET tracers. The

development of small self-shielded cyclotrons (called baby

cyclotrons) has made it possible to have cyclotrons installed

on-site in most hospitals or medical centers. The developments

of new targets and automated synthesis units have facilitated

the process of incorporating the cyclotron-produced positron-

emitting radioisotope into desired molecules to produce a

usable PET tracer. With these developments, fewer people are

needed to support the routine operation of tracer preparation,

and higher-quality tracers can be made widely available

reliably.

In the area of imaging devices, the development of the PET

scanner in the early 1970s represented a major milestone [4]. It

uses scintillation detectors and coincidence detection to detect

positron annihilation events, and mathematical tomographic

reconstruction [5–8] to determine the 3D distribution of the

positron-emitting tracers. Using tomographic reconstruction,

the generated image gives not only a relative distribution of the

tracer, but also a quantitatively accurate measurement of

the tracer concentration in local regions in absolute physical

units. This ability to measure tracer concentration in vivo

without invasive procedures is an amazing accomplishment

(Figure 21.1).

Numerous developments in scintillation crystals, detection

electronics, detector and scanner designs, and reconstruction

algorithms have improved detection sensitivity and image

signal-to-noise ratio and have achieved spatial resolutions of

less than 1.75 mm full width at half maximum (FWHM) (see

Sections 21.5, 21.6, and 21.7). The temporal resolution for

imaging distribution changes over time has also been dramat-

ically improved (Section 21.7). Recent developments in PET/

computed tomography (CT) and time-of-Xight PET have

further improved the image quality and incorporation of

anatomical information.

In addition to improving image quality through image

processing and image reconstruction, data/image analysis

plays an important role in linking the physical measurement

of tracer distribution to biological information, which is what

the end users of molecular imaging are primarily interested in.

The use of tracers for biological studies has been around for a

long time, and the basic principles of tracer kinetics have been

used in many practical procedures for measuring various

physiological functions (e.g., cardiac output, cerebral blood

perfusion, glomerular Wltration rate). Since PET images pro-

vide regional tracer concentration in absolute units, tracer

principles can be applied rigorously. Compartmental models,

commonly used in physiological studies, have been adopted

for molecular imaging. Analysis has also been simpliWed by the

use of the blood time activity of the tracer as the input

function to describe the tissue tracer kinetics obtained from

dynamic PET images. This approach has improved the robust-

ness of model parameter estimations and has become a com-

mon method for interpreting PET images in terms of

biological information [9]. The robustness of the parameter

estimation for some studies has been further improved by the

use of the kinetics in reference tissue to replace the input

function [10, 11]. These improvements in robustness plus the

incorporation of the imaging process into the model and

the development of graphical analysis methods have allowed

the generation of parametric images, in which the image value

is a biological parameter expressed in absolute biological units

(e.g., mg/g/min for reaction rates, nl/g for receptor density).
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Recent developments in image coregistration and spatial nor-

malization have allowed the easy merging of functional and

anatomical information.

However, technical advances alone would not have created

the current large impact of molecular imaging had there not

been parallel and equally impressive advances in biology and

medicine.

21.1.2 Recent Developments in Biology
and Pharmaceuticals

Biology and medicine are being revolutionized by the profu-

sion of information Xowing from highly successful research

initiatives in genomics, proteomics, systems biology, and in-

formatics. Completion of the sequence of the human genome

has provided the foundation for the identiWcation of genes and

proteins and, most importantly, for deciphering their roles and

interactions in health and disease. Comprehensive methods are

now available for analysis of the DNA, RNA, and protein in a

variety of samples, which can be cells and tissues from labora-

tory studies, animal models, or clinical specimens. At the DNA

level, high-throughput DNA sequencing, rapid analysis of sin-

gle nucleotide polymorphisms (SNPs), and the use of com-

petitive genome hybridization (CGH) for genome-wide

surveys are examples of some of the techniques that can be

used to detect the existence of genetic variations. Of equal

importance is whether or not individual genes are active.

Expression proWling of gene activity is most commonly con-

ducted by microarray analysis for the detection of the presence

of the speciWc RNA transcripts from each gene. Finally, it is the

expression and activity of the protein product of each gene that

truly represents gene function.

The comprehensive analysis of the structure, function,

expression, and interactions of proteins has been accelerated

by the Weld of proteomics, which combines rapid, high-

throughput analysis of proteins using mass spectrometry for

peptide Wngerprinting and sequencing, modern electrophor-

etic techniques for identifying protein modiWcations, struc-

tural proteomics (employing X-ray crystallography and

nuclear magnetic resonance methodology), and functional

assays to document protein-protein interactions.

This wealth of information has required new approaches

and even new disciplines in order to analyze and interpret

data. The most important shift has been away from the inten-

sive study of a single gene, single protein, or single metabolic or

signaling pathway, toward more global, integrated strategies.

FIGURE 21.1 PET images of the brain of a normal subject. The images are transaxial cross sections from the top to

the bottom of the brain. The tracer used in the imaging study was 2-deoxy-2-[F-18]Xuoro-D-glucose (Xuorodeox-

yglucose, FDG) given intravenously as a bolus. Brightness in the images indicates the utilization rate of the glucose,

which is related directly to neurological function in brain tissues. Various gray-matter substructures of the brain are

clearly delineated on the images.
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Systems biology has provided a framework for measuring and

cataloging gene expression, cell signaling, metabolic signatures,

and other meta-information that informs us of the biological

state of cells or tissues. Modeling of biological systems allows

the identiWcation of key nodes or components that can repre-

sent targets for detection as well as sites for therapeutic inter-

vention.

As an example, in oncology, the epidermal growth factor

receptor (EGFR) family of receptor tyrosine kinases has long

been known to play a key role in the cancerous growth of cells

of epithelial origin [12]. Years of work have led to the iden-

tiWcation of gene ampliWcation of family members such as

EGFR and HER2 in tumors, culminating in the identiWcation,

development, and ultimately clinical approval of pharmaceut-

icals that target the presence and action of these very speciWc

biomarkers. Successful drugs targeting these speciWc growth-

signaling molecules include classic small molecule pharma-

ceuticals (geWtinib, erlotinib), as well as biotherapeutics in

the form of engineered antibodies (trastuzumab, cetuximab,

panitumumab). Furthermore, it has become clear that the

molecular characterization of tumors is key to understanding

their susceptibility to molecularly targeted therapies. For ex-

ample, trastuzumab can be eVective only in tumor tissues that

overexpress the Her2/c-erb-B2 growth factor receptor, and

resistance to geWtinib is a function of mutations in the EGFR

kinase region. Some key information can be extracted directly

from tumor biopsies. However, it is becoming equally impera-

tive to develop methods to monitor the genotype and pheno-

type of tumor tissues in living organisms, including patients,

in order to assess biological potential, to predict drug suscep-

tibility, and to monitor response to targeted therapies.

Fortunately, the same information that facilitates identiWca-

tion of novel targets for therapy also provides potential targets

for molecular imaging probe development. Molecular imaging

can be based on the presence of elevated levels of receptors,

enzymes, kinases, etc., at the target tissue. For example, ele-

vated expression of glucose transporters and hexokinases leads

to increased phosphorylation and retention of [18F]-Xuoro-

deoxyglucose (FDG) in metabolically active tumor cells or

activated immune cells during infection and inXammation.

Increased expression of thymidine kinase leads to trapping of

[18F]-Xuorothymidine in highly proliferative cells in tumors,

bone marrow, and other tissues. Both are readily detectable by

PET/microPET. Overexpression of speciWc proteases (such as

cathepsins) in tissues can be assessed by using self-quenched

peptide probes that contain appropriate cleavage sequences

and by using Xuorescence imaging detection. Antibodies spe-

ciWc for a spectrum of cell-surface markers can be conjugated

to a variety of signal-generating moieties, including radio-

nuclides, magnetic particles, Xuorescent dyes, bioluminescent

enzymes, ultrasound bubbles, etc., to generate molecularly

speciWc imaging probes. Molecular imaging provides a window

into development, health, and disease processes in the living

organism.

21.2 Considerations for Quantitative
Molecular Imaging

In most cases of molecular imaging, quantitative biological

information is expected. In order to provide quantitative in-

formation, issues related to tracer, biology, imaging device

characteristics, study procedure, and data/image processing

all need to be carefully coordinated or considered to provide

the needed information. For example, for measuring the trans-

port/reaction rate of a dynamic process, not only must the

tracer follow the biological process of interest, but its kinetics

must be signiWcantly inXuenced by rate changes in the process

of interest. In the terminology of tracer methods, this means

that the uptake/clearance of tracer should be limited by the key

step of the dynamic process of interest. If the change is

reXected signiWcantly in the absolute amount of tracer uptake,

the imaging device would need to provide accurate measure-

ment of the concentration of the tracer in tissue, and the

time of imaging would need to include the period when the

tracer uptake reaches high levels compared with the back-

ground. Since the tracer, biology, and imaging device proper-

ties cannot be described by a Wnite set of variables like indexes

of merit, optimization of all the factors involved is diYcult.

Instead, the factors are usually considered one or a couple

at a time, with the others Wxed. So, usually a suboptimal

and practical study would be performed. For consideration of

imaging devices, one is referred to published articles or books

on biomedical imaging instrumentations. (Section 21.3 con-

tains a comprehensive discussion of tracer/probe design and

selection.)

We now address issues related to study procedure and tracer

kinetics. Measurements from the imaging device are assumed

to be able to provide accurate information on the concentra-

tion level of tracer in local tissues like those provided by PET.

To interpret acquired images in terms of biology, molecular

imaging utilizes tracer methods, in which the physical meas-

urement needs to be processed to give the biological informa-

tion. Many confounding factors could potentially aVect the

tracer concentration in tissue. These factors include:

. SpeciWc biochemical processes that the tracer probes

. Amount of dose administered

. Route of tracer administration

. Blood perfusion of the tissue of interest

. Body size of the subject

. Systemic condition of the body (uptake of tracer in other

tissue/organs, excretion rate of the tracer, body fat con-

tent, biochemical reaction/metabolism of the tracer in

the body, etc.)

. Endogenous substrate/transmitter competition

. NonspeciWc biochemical environment in tissue

. Biochemical properties of labeled metabolites in plasma

. Vascular volume in tissue

. Time of uptake post–tracer administration
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A common approach to reduce the eVects of confounding

factors is the use of the blood time activity curve (TAC) of

the tracer, usually called the ‘‘input function.’’ Since the

amount of tracer in local tissue is delivered through blood

perfusion and is cleared primarily through venous blood

Xow, the tracer kinetics in local tissue regions can be isolated

from considerations in the rest of the body if the activity level

of the tracer in blood is measured. This simpliWes greatly the

problem of extracting biological information from measured

kinetics in local regions. So, in the following subsection, issues

related to the input function are Wrst addressed. Modeling for

extracting biological information from local tissue kinetics will

be discussed afterward.

21.2.1 Input Function

The input function can be viewed as a summary of the tracer

administration and the kinetics of the whole body that inXu-

ence the kinetics in local tissues. In other words, if the input

function is known, one can focus only on the kinetics of the

tracer in the local tissue of interest. That is, one does not need

to consider the kinetics of the tracer in the rest of the body, so

far as the estimation of the biological information in the local

tissue is concerned. For example, change in the kidney clear-

ance of a hydrophilic tracer is reXected on the time course of

the blood concentration level of the tracer. The tracer kinetics

in other tissue regions (e.g., brain, muscle) would be aVected

also (even though local biological condition remains the

same), but only as a consequence of the change in the time

course of the tracer concentration in blood, that is, changes in

the input function.

In addition to changes in the clearance rate of the tracer, the

way the tracer is administered to the body can aVect directly

the shape of the input function. Usually, the tracer in molecu-

lar imaging studies is administered as a bolus through intra-

venous (IV) injection. If the injection speed is slowed down

(i.e., as a slow bolus), the input function would have a wider

early peak. If the tracer administration is through constant

infusion or orally, there may not be an early peak at all. As a

result, the kinetics in local tissue would be diVerent, because

local tissue kinetics are dependent on the input function and

the tissue’s biological condition. This does not imply that the

method/route of tracer administration as reXected in the shape

of the input function is of no signiWcance. The input function,

when available, simpliWes the relationship and thus the con-

siderations. For example, for extracting biological information

from local tissue kinetics, one needs to be concerned only

about how changes in tissue biological parameters aVect the

tissue kinetics. Figure 21.2 illustrates that the tissue kinetics

could change due to either biological changes in tissue or

changes in the input functions. It shows that the kinetics are

sensitive to both factors; and for comparable tracer levels in

tissue at certain times, they could correspond to two sign-

iWcantly diVerent biological states because they have two diVer-

ent input functions. This illustrates the importance of knowing

the input function for interpreting the tracer kinetic data.

In Figure 21.2, the tracer in tissue is assumed to follow a

compartmental model like that for FDG (see the Wgure in the

next subsection). TAC 1, TAC 2, and TAC 3 have the same

input function but correspond to three diVerent tissue bio-

logical states (i.e., model parameters), which are reXected in

diVerent shapes of the kinetics. TAC 4 has the same tissue

parameters as does TAC 1, but the input function is diVerent.

Over the time period from 30 to 60 minutes, the activity levels

in tissue for TAC 3 and TAC 4 are comparable, although they

correspond to two diVerent biological states—illustrating the

importance of knowing the input function for interpreting the

tracer kinetic data.

21.2.2 Physiological/Biological Model

As stated earlier and as the basis of tracer methods, tissue

kinetics are related to the biological condition in the local

tissue. Considering the complexity of structure, composition,

and function in tissue, the relationship between tracer kinetics

in tissue and the biological condition can be quite compli-

cated. However, for the time scale of the kinetic measurements

taken during most molecular imaging studies, the relationship

can be simpliWed and described by compartmental models that

consist of interconnected compartments. For each compart-

ment in the model, the tracer concentration is constant, and

the rate of transport between compartments is linearly related

to the concentration of the originating compartment through

the use of a rate constant (not time varying). The values of

these rate constants in the model are used to deWne a particular

biological condition in tissue. Changes in the biological con-

dition are represented as changes in the values of these rate

constants.

In Figure 21.3(a) is depicted a comprehensive model of

tracer delivery and tissue trapping/binding. Figure 21.3(b) is
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FIGURE 21.2 Tissue time activity curves (TACs) that illustrate the

eVects of the input function and tissue biological parameters.
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a compartmental model derived from panel (a), when the

delivery of tracer to tissue is not limited by blood perfusion.

The model in panel (b) is commonly used for describing the

tissue kinetics of FDG in the brain and myocardium. The

relationship among the concentration levels of all the com-

partments can be easily described mathematically using linear

diVerential equations, which can be easily solved and usually

have good mathematical properties. The simplicity of this type

of model for describing the relationship between kinetics

and biological condition in tissue is very desirable, and thus

accounts for its popularity in many tracer studies.

To illustrate the procedure of setting up a compartmental

model for describing the kinetics of a tracer in tissue, we will

go through the steps evolving from biology to a model, using

the kinetics of F-18–labeled FDG, an analogue of glucose, as an

example. Tracer is delivered to tissue through blood perfusion

(‘‘arterial blood Xow’’ in Figure 21.3[a]). While the majority of

the tracer molecules pass through the capillary and leave the

tissue via venous blood Xow (at the left in Figure 21.3[a]), a

fraction is transported across the capillary and cell membrane

into cells through a carrier-facilitated transport system (e.g.,

GLU1 and GLU3 in the brain tissue), as indicated by the arrow

K1. Some tracer molecules will undoubtedly be transported

back to the vasculature (arrow k2) and cleared away; some will

be phosphorylated to FDG-6-P (as indicated by arrow k3) by

the cellular enzyme hexokinase. Unlike glucose-6-P, which

continues to be converted to glucose-1-P and moved onto

the glycolytic pathway, FDG-6-P is not a substrate for the

isomerase in the next step and is accumulated in cells. So, a

simple compartment model, as shown in Figure 21.3(a) can be

used to described the kinetics of FDG in tissue. The transport

step k4 shown in the model indicates that the accumulated

FDG-6-P can be dephosphorylated slowly back to the unpho-

sphorylated form. Furthermore, if the perfusion rate is sign-

iWcantly larger than the transport rate into tissue (i.e., F >>
K1), the tissue kinetics are not flow-limited and the model can

be further reduced to the form shown in Figure 21.3(b). With

this model, the kinetics of F-18 activity in tissue (Ci(t)) can be

described by the following equation [13]:

Ci(t)¼
�

K1

a2�a1

[(k3þ k4�a1) exp (�a1t)� (k3þ k4�a2)

exp (�a2t)]

�
�Cp(t)þ vbCp(t)

with

a1,a2 ¼ 0:5� (k2þ k3þ k4)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k2þ k3þ k4)2� 4k2k4

q� �
(21:1)

where Cp is the input function, K1, k2, k3, and k4 are the rate

constants of the model shown in Figure 21.3(b); the symbol �
denotes the mathematical operation of convolution; and the

last term of the equation accounts for the activity in the

vasculature in tissue, with vb denoting the vascular volume in

tissue. So, based on the equation, the input function, and the

measurement of the tissue kinetics, one can use nonlinear

regression [9, 14] to estimate the values of the rate constants,

from which the net uptake constant of FDG from blood to

tissue can be determined as K1k3=(k2 þ k3) [13].

However, the transport and phosphorylation of FDG go

through the same biochemical pathway as does glucose. There-

fore, if the eYciencies of these carrier/enzymatic reactions for

FDG relative to those of glucose are known or can be cali-

brated, the utilization rate of glucose in tissue can be estimated

from the accumulation rate of FDG. The calibration constant

between FDG and glucose through these steps is commonly

referred to as the lumped constant (LC), a term coined origin-

ally by SokoloV [15] for deoxyglucose (DG) and later adopted

for FDG [13, 16].

The example in Figure 21.3 illustrates the modeling process

for a tracer that follows a dynamic process/reaction in tissue.

The reaction can be a natural cellular biochemical pathway

(like glucose utilization) or it can be used to indicate another

cellular process/state, like the use of FHBG (Xuorohydroxy-

methylbutyl-guanine) for gene expression [17–19]. In either

case, the important information that molecular imaging pro-

vides is the transport/uptake constant (i.e., K1k3=(k2 þ k3)) of

the tracer in tissue that reXects the overall underlying bio-

logical process involved. Instead of going through nonlinear

regression for estimation of the individual rate constants and

then calculating the uptake rate, the Patlak analysis can pro-

vide the uptake constant directly using a graphical method

[20] and is commonly used for this type of study.
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FIGURE 21.3 Models of tracer kinetics in local tissue region.

Cp ¼ plasma concentration; Cf ¼ free concentration; Cb ¼ bound con-

centration; Ce ¼ concentration of unmetabolized (extravascular)

tracer; Cm¼ concentration of metabolized tracer.
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Another type of tracer/probe commonly used is for deter-

mination of the density of receptors/enzymes in tissue. An

example of this type of tracer/probe is FDDNP (Xuoroethyl(-

methyl)amino-2naphthyl ethylidene malononitrile) for assay

of the density of amyloid plague and neuroWbrillary tangles

(NFTs) in tissue for assessment of pathological processes re-

lated to Alzheimer’s disease (see Section 21.4). The model for

this type of tracer is similar to that for tracers of a dynamic

process, except that the k3 step is proportional to the binding

aYnity of the tracer to the receptor site and the density of the

receptors, and k4 represents the dissociation rate of the tracer

from the binding site. The ratio of k3 to k4 is thus related

directly to the ratio of receptor density and the dissociation

constant of the tracer for receptor binding and is commonly

called the binding potential [21]. Theoretically, if one knows

the value of the dissociation constant, the receptor density can

be easily obtained from the binding potential. Due to the

uncertainty of the biochemical environment, the receptors

are exposed to tissue in vivo, accurate estimation of the disso-

ciation constant of the binding tracer is diYcult, and the

binding potential is usually used instead as an index of recep-

tor density.

The primary parameter of interest for this type of study is

thus the ratio k3=k4. Although the values of k3,k4, or the ratio

can be obtained from nonlinear regression of the model to

the measured tissue kinetics, there is a simple graphical

method, the Logan plot [22], that can give the distribution

volume (Vd) of the tracer in tissue relative to that in blood.

This distribution volume, according to the model, is equal to

(K1=k2)(1þ k3=k4). If a tissue region does not have any spe-

ciWc receptor that the tracer will bind to, the value of Vd will

simply be K1=k2. Assuming that this K1=k2 ratio is uniform

over all tissue regions, the ratio k3=k4 can be obtained by the

following equation:

k3=k4 ¼ (Vd)=(Vd)ref � 1:

Moreover, it has been shown that the ratio of distribution

volumes in this equation can be determined easily with the use

of the kinetics of the reference tissue as the input function in

applying the Logan plot [11]. With this approach, one does

not even need to determine the input function from blood

samples. However, for this type of simpliWed analysis, one

needs to keep in mind the underlying assumptions of a uni-

form K1=k2 ratio and the existence of a reference tissue that is

devoid of speciWc receptors for the tracer/probe used.

A unique feature of measuring receptor density is the bind-

ing saturability of the binding sites on receptors. The available

number of binding sites for the tracer/probe can be aVected by

endogenous ligands that also bind to the same receptor. There-

fore, diVerent tracers/probes that have diVerent binding

aYnity to the same receptor could give diVerent density results

due to their diVering competitiveness with the endogenous

ligands. Binding saturability can also be caused by exogenous

ligands that are introduced externally via IV or oral adminis-

tration [23, 24]. In fact, one can repeat the molecular imaging

study at multiple levels of externally administered ligands to

determine both the receptor density (Bmax) and the dissoci-

ation constant (KD), similar to the in vitro receptor assay

procedure that uses the Scatchard plot to determine Bmax and

KD simultaneously [25].

In the discussion of tracer methods so far, the tracers/probes

are assumed to have ideal properties for the speciWc biological

processes. However, many practical tracers/probes have prop-

erties that require some modiWcation of the model or the input

function. One common Wnding among many tracers/probes is

that they are metabolized peripherally (e.g., in the liver), and

some labeled metabolites would circulate in the blood along

with the original tracer/probe. Depending on the chemical

property of the labeled metabolites, methods or models to

account for the eVects of the metabolites could have a wide

range of complexities. Some examples are the metabolism of

O-15 oxygen to O-15 water [26–28] (for measurement of

oxygen metabolic rate) and the metabolism of FDOPA

([18F]Xuorodopa) to OMFD (3-O-methyl-[18F]FDOPA) (for

measurement of presynaptic dopaminergic function) [29].

(Readers are referred to the cited references for details.)

Other issues frequently encountered include the transport/

uptake of tracer/probe in red blood cells, and nonspeciWc

bindings of tracers/probes in tissue.

In summary, since the interpretation of molecular imaging

results is based on tracer methods, it is important to under-

stand the general characteristics of these methods for assessing

biological functions in tissues/cells. Generally, the biological

information that tracer methods provide can be grouped into

two categories:

1. Information about the transport/reaction rates of a

dynamic process

2. Information on the density/capacity of macromolecules

(e.g., receptors, enzymes, amyloid plaques) in tissue

Even though compartmental models are used for both categor-

ies, they have diVerent characteristics, and diVerent analysis

techniques are usually used.

21.3 Design/Development of
Molecular Imaging Probes

21.3.1 Chemical Probes (Small Molecules)

The introduction of radioactive molecules into living organ-

isms has become one of the preferred methods for the study of

biological systems. Introduction of tracer probes, due to the

extremely low mass of the probe, produces very minimal

disturbances in the steady state of the living system under

investigation. Even though tracer techniques have led to the

development of useful clinical applications (e.g., conventional
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nuclear medicine techniques), the development of PET has led

the way in the development and use of quantitative assays of

local biochemical and pharmacological processes in humans.

An important property of molecular imaging probes used

with PET is that compounds labeled with positron-emitting

radioisotopes can be prepared with high speciWc activity (e.g.,

>>1 Ci (curies)/mmol) so that the process to be measured is

not perturbed.

Another important property of molecular imaging probes is

that with cyclotron-produced positron-emitting radioisotopes

of carbon (C-11; t 1⁄2 ¼ 20.38 min), nitrogen (N-13; t 1⁄2
¼ 9.96 min), oxygen (O-15; t 1⁄2 ¼ 2.03 min), and Xuorine

(F-18; t 1⁄2 ¼ 109.72 min), true molecular imaging probes

matching the strict requirements of enzyme and/or receptor

targets can be designed. For example, labeling with the

most common positron-emitting radioisotopes, carbon-11,

nitrogen-13, and oxygen-15, renders compounds biochemi-

cally indistinguishable from their natural counterparts;

furthermore, Xuorine-18 can be used to provide labeled sub-

strate analogues (e.g., FDG, 6-Xuoro-L-DOPA, FDOPA) or

pharmacological agents (F-18–labeled neurotransmitter recep-

tor ligands) to trace biochemical or pharmacological processes

in a predictable manner. Because of its small size and the

strength of the C-F bond, the Xuorine atom is commonly

used to replace H or OH on a molecule. This modiWcation

allows favorable interactions of the new molecule (e.g.,

molecular imaging probe or drug) with the target (e.g.,

enzyme, receptor) to occur without steric hindrance. More-

over, the presence of Xuorine may, with target enzymes,

speciWcally block subsequent reactions of a given substrate

analogue (e.g., FDG vs. glucose).

The positron emitters carbon-11, nitrogen-13, oxygen-15,

and Xuorine-18 constitute the only externally detectable forms

of carbon, nitrogen, oxygen, and Xuorine, respectively. Thus,

the dynamic course of radioactive emission can be readily

quantitated with PET, permitting the application of tracer

kinetic techniques for the measurement of substrate concen-

trations, reaction rates, and receptor binding in various tissues.

It is then important to recognize that speciWc probes are

designed and used to target the process to be investigated (e.g.,

glucose metabolism, neurotransmitter synthesis, neurotrans-

mitter reuptake, postsynaptic receptor binding, protein syn-

thesis, gene expression). Based on the tissue (e.g., enzymes,

receptors, pathological deposition), molecular imaging probes

can be divided into a few large groups:

1. Probes based on enzyme-mediated transformations. These

are designed as speciWc substrates of the enzymes to be

targeted in tissue. Examples include FDG for targeting

hexokinase as the initial step in glucose metabolism;

FDOPA for targeting aromatic amino acid decarboxy-

lase; and Xuorothymidine (FLT) for targeting thymidine

kinase, the Wrst step for the incorporation of thymidine

in DNA.

2. Probes based on stoichiometric binding interactions. These

include most receptor ligand interactions and detection

of brain pathological deposition in neurodegenerative

diseases. Examples include receptor ligands for neuro-

receptors and FDDNP for amyloid aggregates in brain

tissue.

3. Probes for determination of perfusion (e.g., [N-13]ammo-

nia). Perfusion probes have no speciWc structural

requirements, except for their high vascular membrane

permeability without speciWc macromolecular targets in

tissue.

4. Probes targeting speciWc transporters. Examples include

radiolabeled aminoacids for sodium-dependent trans-

porters for detection of cancer (e.g., FDOPA as a brain

tumor marker).

The general criteria for selecting and using molecular

imaging probes have been recently described [30]. In brief, to

select a molecular imaging probe to measure a speciWc process

or assess organ function, the probe should meet the following

criteria:

1. The probe has target speciWcity. Ideally, it should be

restricted to the target process.

2. The probe has high membrane permeability to reach

target areas.

3. Trapping of the labeled molecule or labeled reaction

product occurs in a slow turnover pool.

4. Analogues speciWc to one biochemical pathway are used

to isolate one or a few steps of the process. Thus, the

kinetics of only the administered compound is repre-

sented in the measured data.

5. The molecular probe has high aYnity for its tissue

target and is rapidly cleared from nonspeciWc areas.

6. The blood pool is rapidly cleared of the molecular

imaging probe to reduce blood pool background at

the tissue target.

7. The probe is not or is slowly metabolized so that it is

the only or primary chemical entity in the blood.

8. The probe has high speciWc activity to trace the process

under investigation without exerting mass eVects on the

target molecule.

9. The probe has low nonspeciWc binding to increase target

speciWcity and target-to-background ratios >> 1.

10. The molecular imaging probe has a small number of

transport and biochemical reaction steps to allow tracer

kinetic modeling to establish quantitative parameters

for imaging determination.

21.3.2 Biological Probes (Antibodies,
Peptides, Aptamers)

Labeling of biological molecules for use as tracers has a long

history, which parallels that of chemical (small molecule)
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probes. Proteins and peptides are capable of highly speciWc

interactions, and living organisms capitalize on these recogni-

tion properties by using speciWc receptors to sense the presence

of ligands. For example, peptide hormones and neurotrans-

mitters and their cognate receptors embody the recognition of

short peptide sequences, whereas for cytokines, growth factors,

and their corresponding receptors, recognition of speciWc pro-

teins controls key cellular events. To take this a step further,

researchers have developed somatostatin analogues such as

octreotide for therapeutic modulation of somatostatin recep-

tors (SSTr’s). Furthermore, radiolabeling of octreotide and

related molecules provides imaging probes for neuroendocrine

tumors that overexpress SSTr [31]. Antibodies that recognize

tumor-associated antigens, such as prostate-speciWc mem-

brane antigen, have been developed into imaging agents (Pros-

tascintTM, capromab pendetide) for detection of cancer based

on cell-surface biomarkers [32].

The development of biological probes for molecular

imaging is set to rapidly expand due to the following recent

advances:

1. Burgeoning knowledge allowing the identiWcation of

informative biomarkers (including cell-surface biomar-

kers) arising from genomics, proteomics, and bioinfor-

matics research (as described in Section 21.1.2)

2. Widespread availability of PET scanners in hospitals and

clinics and of small-animal PET (microPET) scanners

in academic, biotech, and pharmaceutical company

research facilities

3. Expanding availability of ‘‘exotic’’ PET radionuclides

(such as 64Cu, 68Ga, 76Br, 86Y, and 124I) combined with

robust, general methods for conjugation to biological

molecules. Particularly important has been the improved

availability of positron-emitting nuclides with longer

half-lives (e.g., 64Cu and 124I) compatible with the kin-

etics of biological processes in vivo (protein distribution

and clearance, cell traYcking) [33, 34]. Furthermore,

there is signiWcant interest in the radiopharmaceutical

Weld in codevelopment of pairs of imaging/therapeutic

radionuclides (124I=131
I, 86Y=90

Y, 64Cu=67
Cu) for at-

tachment to molecular targeting agents. This is a grow-

ing area where quantitative imaging, biomathematical

modeling, and dose estimation will play especially im-

portant roles.

4. Powerful platforms for generation of biological mol-

ecules (antibodies, peptides, aptamers) with any desired

binding speciWcity

Advances in ligand generation are probably the most sign-

iWcant for the development of molecular imaging probes.

Antibodies represent a classic example from nature in which

the immune system has devised a mechanism for the gener-

ation of molecules with a broad range of binding properties.

SpeciWcally, binding diversity is encoded in genomic DNA, in

the form of multiple copies of antibody variable-region genes.

Combinatorial rearrangements of the variable regions, along

with joining and diversity gene segments, result in a diverse

repertoire of antibody binding speciWcities expressed by the B

lymphocytes of the immune system. When a mouse, or

human, is exposed to a foreign antigen, the lymphocytes pro-

ducing the corresponding antibody are triggered to expand

and produce the appropriate binding agent (antibody). This

process has been captured by monoclonal antibody technol-

ogy, in which immunization of a mouse with an antigen or

protein of interest can be followed by routine isolation of a

high-aYnity antibody with the desired speciWcity.

Antibody technology has been further accelerated by the

replacement of traditional mouse monoclonal antibodies

with antibodies isolated using microbial or in vitro display

methods. A classic example is phage display, in which an

antibody binding site is ‘‘displayed’’ on an individual phage

(bacterial virus) by fusion of the antibody variable genes to the

phage coat protein [35]. A diverse library of phage (ca109---1010

diVerent binders) is generated, and the individual phage exhi-

biting the desired speciWcity is selected by ‘‘panning’’ on the

target antigen. This shortens the time required for identifying

speciWc binders from months down to weeks. Variations

include yeast display and mammalian cell display [36]. Alter-

natively, microbes and cells can be eliminated from the process

entirely, by employing rapid in vitro techniques such as

ribosome display or in vitro compartmentation [37].

Similar technologies also allow the rapid identiWcation of

novel peptides with unique binding properties. Libraries of

linear or constrained peptides (in which loops are linked by a

disulWde bridge) have been constructed in phage display sys-

tems and screened for novel binding properties. A further

advance has been the use of alternative small protein scaVolds

(intermediate in size between peptides and antibody variable

domains), for generation of libraries of diverse binders [38].

The use of peptides, small proteins, and antibodies allows the

identiWcation of binding agents that recognize a variety of

target shapes, from grooves, pockets, and indentations to Xat

surfaces. Finally, aptamers represent another broad class of

ligands, derived from nucleic acids instead of polypeptides

[39]. RNA and DNA molecules can adopt deWned three-

dimensional structures and exhibit exquisitely speciWc binding

to proteins and other targets. In vitro selection using the

SELEX method (Systematic Evolution of Ligands by EXponen-

tial enrichment) has allowed generation of aptamers that can

bind to a variety of biological targets. Nucleic acid chemistry

then allows production of derivatives with the stability

required for in vivo use.

Following is a general outline of the steps required for

development of a biological probe for molecular imaging,

along with associated considerations at each step:

1. Target selection. Most biological molecular probes have

been directed toward cell-surface targets. Cell surfaces in
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living organisms are readily accessible to properly

designed biologicals, whereas delivery to intracellular tar-

gets requires additional strategies to facilitate cell uptake.

Moreover, biologicals are biodegradable, so their metab-

olism and fate are diYcult to control once inside the cell.

Depending on the nature of the target, either aptamers,

peptides, or antibodies can be selected to provide a variety

of sizes and shapes for the binding site.

2. Generation of molecular probe. As previously described in

detail, powerful methods are available for routine isol-

ation of antibodies, peptides, or aptamers with any

binding speciWcity. These methods can also be used to

improve the aYnity and reWne the speciWcity of binders

once initial candidates are identiWed.

3. Production. Peptides and aptamers can be synthesized

chemically in bulk once the desired sequence is identiWed

by the display and library methods outlined above.

Automated peptide or nucleic acid synthesizers are

available that can also incorporate nonstandard amino

acids or nucleosides and nucleotide backbones to

enhance the properties of peptides and aptamers. Anti-

bodies are proteins, and while there are systems for

in vitro synthesis, mainstream methods of production

involve microbial or mammalian cell expression. Since

cells are employed to synthesize these proteins, the pro-

cess takes longer, but the methods are standardized and

widespread.

4. Radiolabeling. Methods for routine labeling of proteins,

peptides, and aptamers are widely available. DiVerent

chemistries for radio-iodination can result in linkages

that are labile or stable, suiting diVerent applications.

A variety of bifunctional chelating agents have been

developed for conjugation to biomolecules, to allow

labeling with radiometals. It is also possible to directly

engineer chelating sites into proteins and peptides using

cysteine residues or hexahistidine sequences. An added

beneWt is that site-speciWc, stoichiometric radiolabeling

can be enabled. An important beneWt of using large

biomolecules is that the addition of a small radioactive

tag is unlikely to impact the biological and binding

properties of the probe, in contrast to chemical modiW-

cation of small molecule probes.

5. Pharmacokinetics and disposition in vivo. As is the case

for all molecular imaging probes, whether small mol-

ecules or biomolecules, the distribution, targeting, clear-

ance, and metabolism of the imaging agent are of utmost

importance to understand. Protein engineering can be

used to modulate pharmacokinetics; the in vivo proper-

ties of peptides and aptamers can also be modiWed

chemically—for example, by conjugation to polyethylene

glycol (PEG).

In summary, all the elements are in place for the expanded

use of biological molecules as probes for molecular imaging.

21.4 Molecular Imaging of Beta-Amyloid
and NeuroWbrillary Tangles

21.4.1 Brief Review of Molecular Probes
for Beta-Amyloid Imaging

Alzheimer’s disease (AD) is characterized by a progressive loss

of cognitive function with neuronal loss and with b-amyloid

senile plaques (SPs) and neuroWbrillary tangles (NFTs) as the

pathological hallmarks of the disease [40]. In 1990 more than 4

million Americans were diagnosed with AD, making it the

most common form of dementia [41]; and assuming that a

cure is not found, the number of AD patients has been

extrapolated to quintuple by 2040 [42]. It is important to

note that the deWnitive diagnosis of AD can only be made

based on postmortem histopathological examination of brain

tissue and detection of NFTs and SPs [43]. These neuropatho-

logical aggregates have become important imaging targets for

early detection of the disease. Imaging probes speciWc for these

aggregates have also become surrogate markers for monitoring

the eVectiveness of therapeutic interventions aimed at remov-

ing these aggregates from the brain.

A priori, monomeric peptides (e.g., radiolabeled b-amyloid

peptides [44, 45]) or the monoclonal antibodies directed

against them (see e.g., [46]) can be used as molecular imaging

probes for amyloid plaques (SPs) present in the brains of AD

patients. These radiolabeled peptides can orient themselves in

the highly ordered arrangement of peptide monomers and thus

accumulate as the result [47]. A very important limitation,

however, is the very poor permeability of these peptides to

cross the blood-brain barrier, which has limited their possible

use for in vivo imaging. The development of b-amyloid–speciWc

small molecule imaging agents with improved brain entry has

been more successful. Target recognition for these ligands may

be provided by the cross-b sheet structure in the core of the

Wbril anchored together with hydrogen bonds from the peptide

backbones and with p stacking of the aromatic amino acid

residues, as well as electrostatic interactions [48]. Some of

these compounds have structural features similar to Congo

Red, a histological dye used for in vitro detection of amyloid-

like structures. Examples of Congo Red–related structures in-

clude X-34 [49], methoxy-X04 [50], and BSB ((trans, trans),-1-

bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene)

[51].

Another histological dye, thioXavin T, has provided the

framework for the development of thioXavin T–related

molecular imaging probes, like 2-[(40-methylamino)phenyl]-

6-hydroxybenzothiazole (PIB) [52], imidazo[1,2-a]pyridine

derivatives [53, 54], benzoxazole derivatives such as IBOX

(2-(40-dimethylaminophenyl)-6-iodobenzoxazole) [55] and

styrylbenzoxazoles [56], and 4-methylamino-40-hydroxystyl-

bene [57]. Other types of probes are based on aromatic or

heteroaromatic polycyclic moieties such as Xuorene [58],

acridine in BF-108 [59], and [F-18]FDDNP [60].
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Only three of these molecular imaging probes have

been applied to in vivo imaging of AD brain with PET.

[F-18]FDDNP was the Wrst molecular imaging probe reported

to be eVective in the visualization of neuropathology in

the living brain of AD patients [60–62]. SpeciWcally,

[F-18]FDDNP labels b-amyloid and NFTs both in vitro and

in vivo [63] and has proven useful to follow reliably the

neuropathological progression of the disease in the living

brain [64]. [F-18]FDDNP accumulates signiWcantly in several

cortical areas (medial and lateral temporal lobe, parietal lobe,

frontal lobe), with the highest increases in the medial temporal

lobe of AD patients as a result of Ab and NFT deposition

in this area. Since the medial temporal lobe is associated with

initial pathology formation [65], [F-18]FDDNP oVers an ex-

cellent opportunity for early detection (i.e., patients at risk and

patients with mild cognitive impairment). An attempt to

image Ab aggregates in living human subjects was reported

by Klunk et al. [66] using the hydroxylated benzothiazole

aniline derivative ([C-11] 2-(4-methylaminophenyl)-6-hydro-

xybenzothiazole ([C-11] 6-OH-BTA or [C-11] PIB). In AD

patients, [C-11]PIB retention is most prominently increased

in frontal cortex (standard uptake value [SUV]¼ 1.56) and

parietal areas (SUV¼ 1.45). Temporal accumulation (1.26) is

low, similar to that of the pons (1.31), known to lack Ab

aggregates [66]. [C-11]PIB retention was equivalent in AD

patients and control subjects for areas known to have no or

minimum amyloid deposition (e.g., white matter, pons, cere-

bellum). VerhoeV et al. [67] also reported human PET data

with a novel hydroxylated stilbene derivative, 4-[C-11]methy-

lamino-40-hydroxystylbene ([C-11]SB-13), with promising

results.

21.4.2 In Vitro Characterization of FDDNP

In vitro binding is a necessary, but not suYcient condition, to

validate the potential value of a molecular imaging probe for

in vivo use. Normally, determinations of in vitro binding are a

prelude to in vivo utilization of molecular imaging probes, and

these results provide a line of evidence as to the possible

usefulness of a probe when used in vivo. For example, the

binding constant of [F-18]FDDNP to synthetic Ab(1–40)

Wbrils was initially determined [61] in 0.25% ethanol in phos-

phate buVered saline (PBS) to be in the subnanomolar range,

indicating its potential utility in vivo. Radioactive binding

assays with brain homogenates from AD and normal control

patients, performed in 1% ethanol in PBS, conWrmed the high-

aYnity binding of [F-18]FDDNP to ex vivo SPs and NFTs. The

resulting Scatchard plot of [F-18]FDDNP binding in AD hom-

ogenates yielded a KD value of 0.75 nM and a Bmax value of

144 nM with the brain sample studied [63]. Confocal Xuores-

cence microscopy and immunohistochemistry were used to

correlate the distribution of radioXuorinated [F-18]FDDNP

in digital autoradiograms of AD brain specimens. Digital

autoradiography of AD brain specimens using [F-18]FDDNP

in 1% ethanol in saline [63, 68] revealed its binding in the

temporal and parietal cortices matching the immunohisto-

chemistry of adjacent slices and the pattern of SP and

NFT distribution. There was no appreciable binding of

[F-18]FDDNP to homogenates from age-matched control

brains. The high-aYnity binding and Bmax for [F-18]FDDNP

sites in AD brain homogenates fulWlls the requirement for

in vivo PET visualization of probe binding to brain receptor

sites if it is assumed that the binding sites on SPs are analogous

to the receptor model of binding [47, 62].

The apparent KD value for [F-18]FDDNP in the low nano-

molar range is also consistent with the speciWc labeling of SPs

and NFTs, as microscopically evident by the Xuorescence im-

ages and the gross pattern of binding observed with digital

autoradiography, wide-Weld Xuorescence microscopy, and

immunostaining. It has also been shown that FDDNP is able

to label all neuropathological aggregates—generically named

amyloids—having cross-b sheets as a secondary structure

element the protoWlaments [68], including SPs, NFTs

(paired-helical tau Wlaments), and prion aggregates. As such,

FDDNP parallels results with thioXavin T in the same brain

tissue. FDDNP labeling also predicts birefringence in Congo

Red–stained histological sections with high reliability [68].

These studies with FDDNP have also been extended to living

patients.

21.4.3 In Vivo Imaging of Beta-Amyloid and
NeuroWbrillary Tangles in Alzheimer’s
Disease

The availability of animal models of b-amyloid deposition in

brain has opened a new avenue for in vivo imaging research

with microPET. These models oVer an invaluable opportunity

for testing new potential molecular imaging probes for amyl-

oid aggregates and also for evaluation of new anti-aggregation

therapies. For example, [F-18]FDDNP binds to the b-amyloi-

d–rich areas of the rat brain (frontal cortex and hippocampus)

in a triple transgenic rat model of b-amyloid deposition [69].

In humans, the spatial pattern of SP and NFT distribution in

neocortex depends on the severity of disease [65]. As an

example, the deposition of b-amyloid SPs follows distinctive

spatial and temporal patterns, for which Braak and Braak [65]

have proposed three stages. In stage A, neocortical areas of

temporal lobe and orbitofrontal cortex Wrst develop SP

deposits. In stage B, these deposits become denser in the

same regions but also spread into the rest of the frontal lobe

and into the parietal lobe. Finally, in stage C, SPs have invaded

the whole neocortex. This indicates that both pathology load

(SPs and NFTs) in a speciWc region and the pattern of path-

ology distribution in the brain are important factors to con-

sider for diagnostic work with in vivo imaging techniques

targeting these pathologies.

AD is today almost exclusively diagnosed based on clinical

symptoms. However, the diagnosis of probable AD can be
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made in advanced stages of the disease only when the death toll

of neurons in the central nervous system is already heavy and

widespread [65, 70]. At that point, therapeutic interventions

are mostly palliative. Therefore, new imaging tools for early

diagnosis are essential, and this is a key for eVective therapeutic

interventions. Studies in living subjects have indeed demon-

strated that [F-18]FDDNP-PET can diVerentiate mild cogni-

tive impairment from normal aging and AD [64, 71] and has

proven useful in early detection of neurodegeneration. These

Wndings also suggest the utility of FDDNP-PET to monitor the

eVects of anti-aggregation drug candidates. Autopsy evaluation

in one patient showed that the regional pattern of FDDNP

in vivo distribution measured with PET was consistent with

plaque and tangle accumulation patterns. Because FDDNP

binds both plaques and tangles, regional binding patterns

may be helpful in diVerentiating early AD from normal

aging, nonamnestic mild cognitive impairment, or other

forms of dementia.

Initial FDDNP studies of frontotemporal dementia show

binding in frontal and temporal but not parietal regions,

suggesting that FDDNP labels regional tau pathology and

thus diVerentiates these two dementia forms according to

binding patterns. Future studies will determine whether com-

bining several informative imaging techniques will improve

diagnostic accuracy and whether the beneWts of using multiple

scans outweigh the added costs.

21.5 Molecular Imaging Using
Antibody Probes

21.5.1 Imaging Cell-Surface Phenotype

Intact antibodies, or immunoglobulins, are large (150,000

daltons), complex, glycosylated proteins comprising four poly-

peptide chains with intra- and interchain disulWde bridges.

Nonetheless, they are adept at penetrating and permeating

tissues in vivo, to provide the Wrst line of recognition and

defense against infection. As previously discussed, antibody

technologies have allowed the development of countless

monoclonal antibodies, including a large subset that recognize

cell-surface proteins. Indeed, the techniques of Xow cytometry

and Xuorescence-activated cell sorting (FACS) are heavily

dependent on monoclonal antibodies that recognize cell-

surface biomarkers. Important classes of markers include

the human CD antigens that deWne the diVerentiation and

activation state of immune cells, and the growing list of

well-characterized tumor-associated antigens.

Monoclonal antibodies have become laboratory workhorses,

widely employed in research and diagnostic methods, includ-

ing enzyme-linked immunosorbent assays (ELISAs), radioim-

munoassays, Western blots, immunohistochemical staining,

immunoXuorescence, and Xow cytometry and FACS. A

number of years ago, eVorts to extend the utility of antibodies

to targeted delivery in vivo led to the Wrst examples of radio-

immunoscintigraphy. Pioneering work of Goldenberg and col-

leagues showed that administration of a 131I-radiolabeled

murine monoclonal antibody with speciWcity for carcinoem-

bryonic antigen (CEA) allowed detection of CEA-expressing

colon cancer in patients by external scanning. Over the subse-

quent years, radiolabeled antibody conjugates have been devel-

oped and approved for immunoscintigraphy in humans,

including CEA-ScanTM, OncoscintTM, and ProstascintTM.

21.5.2 Optimization of Antibodies
for In Vivo Targeting

Radiolabeled antibodies for clinical imaging have not been

widely accepted, and one reason may be the suboptimal prop-

erties of the antibody component. The Wrst-generation tracers

are based on murine antibodies, which can be highly immuno-

genic in humans. Initial attempts at implementing antibody-

based imaging have also been hampered by pharmacokinetics

that are far from ideal. In particular, native antibodies exhibit

prolonged blood and whole-body retention, as is Wtting for

their role as defense agents. However, when coupled to a

radionuclide for use as an imaging agent, slow blood clearance

results in high background activity, which can persist for days.

Antibody engineering has provided solutions to most of these

issues. Reduction of immunogenicity has been achieved by

replacing the murine components of monoclonal antibodies

with the corresponding human domains, to yield chimeric

and humanized antibodies. More recently, techniques such as

phage display (described in Section 21.3.2) and the develop-

ment of transgenic mice carrying germline human antibody

genes have streamlined the process of directly producing fully

human antibodies of any speciWcity. The pharmacokinetics of

recombinant antibodies and fragments have systematically been

explored by evaluation of cognate fragments that diVer in mo-

lecular weight, valency, and presence or absence of native anti-

body domains. For example, an antibody that recognizes CEA, a

well-characterized biomarker in human colon cancer, was used

as the starting point for the generation of a series of engineered

antibody fragments [72]. These included monovalent single-

chain antibodies (scFv, 25 kDa) consisting solely of the variable

regions of the parental antibody joined by a peptide linker.

Larger, bivalent fragments were also evaluated, including dia-

bodies (55 kDa), minibodies (80 kDa), scFv-Fc fragments

(110 kDa), and intact chimeric antibodies (150 kDa). Evalu-

ation of the tumor targeting, distribution, and clearance of

radiolabeled anti-CEA fragments in athymic mice bearing

human colorectal carcinoma xenografts showed the following:

1. Bi- or higher valency is required for good tumor

retention.

2. Engineered proteins with molecular weights below about

60 kDa (the threshold for Wrst-pass renal clearance) clear
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the circulation rapidly, resulting in low background but

also limiting the tumor uptake.

3. Larger fragments such as minibody and scFv-Fc clear

more slowly and attain higher levels of tumor activity.

4. The targeting and clearance properties of scFv-Fc

fragments (and intact antibodies) can be tailored by

introducing speciWc mutations into the Fc region to

modulate blood half-life.

Smaller fragments, such as the diabody and minibody, labeled

with 64Cu or 124I, produced excellent tumor images by micro-

PET scanning, within a few hours of systemic administration

[73, 74]. Ongoing clinical imaging studies will delineate which

format(s) are optimal for tumor detection in patients [75].

An important question is whether the results obtained in the

CEA antigen system can be extended to other cell-surface bio-

markers. Minibodies and scFv-Fc fragments were produced

from the anti-Her2 therapeutic antibody, trastuzumab. When

radiolabeled with 64Cu, these engineered antibody fragments

demonstrated excellent localization to Her2-expressing breast

cancer xenografts in mice, as shown by microPET imaging [76].

More recently, the approach has been conWrmed by production

of anti-CD20 minibodies based on the CD20-speciWc thera-

peutic antibody, rituximab [77], and a diabody and minibody

speciWc for a novel cell-surface biomarker in prostate cancer,

prostate stem cell antigen (PSCA) (see Figure 21.4) [78]. Thus,

antibody engineering provides a platform for producing

molecular imaging agents that can recognize any cell-surface

target.

21.5.3 Measurement of Target
Expression

Antibody recognition is based on stoichiometric binding inter-

actions and does not oVer the versatility of some small mol-

ecule probes, which can assess perfusion, transport, enzyme

activity, and other biological processes. Instead, antibody

imaging can provide a readout on the presence or absence

of a speciWc molecular biomarker. The spatial distribution of

an antibody probe can provide an indication of cells in an

unusual location (e.g., a tumor). The cell-surface phenotype

(e.g., CEA-positive, CD20-positive) can indicate the tissue

of origin. Presence or absence of cell-surface markers can also

provide an indication of the biology of the cells in a tissue—for

example, indicating responsiveness to growth factors or cyto-

kines or providing a readout on the activation state of immune

cells.

One particularly useful path is the codevelopment of anti-

body imaging agents and matching antibody therapeutics.

Ongoing studies are focusing on the measurement of speciWc

molecular targets. For example, in vivo imaging using a
64Cu-radiolabeled trastuzumab antibody fragment can be

used to distinguish two breast cancer tumor xenografts in a

mouse, based on whether the tumor cell lines express high

(MCF-7/HER2) or low (MDA-MB-231) levels of the target

antigen, Her2 (Figure 21.4(b)). In the future, quantitative

assessment of the level of expression of cell-surface targets by

molecular imaging may prove to be an important determinant

for selection of targeted therapies.

(a) (b) (c) (d)

FIGURE 21.4 Antibodies of any speciWcity can readily be engineered for in vivo targeting and

imaging by microPET. In each panel, the antigen-positive xenograft is indicated by the thick

yellow arrow, and the antigen-negative control tumor is shown by the thin orange arrow. All

images were acquired at 18–21 hours postinjection; coronal slices are shown. (a) CEA imaging

using I-124 cT84.66 diabody. (b) Her2 imaging using Cu-64-DOTA (tetraazacyclo-dodecane-

tetraacidic acid) trastuzumab scFv-Fc DM. (c) CD20 imaging using I-124 rituximab minibody.

(d) PSCA imaging using I-124 hu2B3 minibody. For a more detailed view of this figure, please

visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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21.5.4 Monitoring Response to Therapy

Radiolabeled antibodies and fragments can also be used as

molecular imaging probes for following the response of cells

or tissues to therapeutic intervention. A simple case would be

to use an antibody that recognizes a tumor-speciWc marker as a

means to quantitate tumor burden; upon therapy, a decrease in

signal would indicate a loss of viable tumor cells. Such an

approach would need to be validated; for example, if the

antigen is particularly stable, it might remain at the tumor

site even if therapy were eVective. More sophisticated imple-

mentations of antibody imaging can be based on knowledge of

the molecular actions of speciWc drugs. For example, Smith-

Jones [79] used trastuzumab (Fab0)2 fragments radiolabeled

with Ga-68 to assess the eVect of the drug 17-AAG in vivo by

microPET imaging. This drug interferes with the action of

hsp90, a chaperone protein that protects Her2 from degrad-

ation. Treatment of a xenograft-bearing mouse with 17-AAG

resulted in a reduction of Her2 signal at the tumor. Thus, using

an antibody probe to monitor the downstream eVect on a cell-

surface biomarker provided conWrmatory evidence of the

mechanism of action of the drug in vivo.

21.6 Some Other Molecular Imaging
Applications

A few other molecular imaging examples are also interesting,

and represent certain types of application in biology and

pharmacology. They are described brieXy.

21.6.1 In Vivo Regional Substrate Metabolism
in Human Brain

Human brain tissue has a unique metabolic characteristic. It is

known that glucose taken up from plasma is the primary

metabolic substrate used in brain tissue to generate the energy

for its cellular functions. Normally, the glucose molecules in

brain cells go through aerobic metabolism in the Krebs cycle

and are converted to carbon dioxide and water, using six

molecules of oxygen for each glucose molecule. So, the

whole-brain utilization rates of oxygen and glucose are nor-

mally around 6:1, in terms of molar quantities. However, it is

unclear whether this oxygen-to-glucose utilization ratio

(OGR) holds uniformly for both gray and white matter, espe-

cially under pathological conditions. For example, for brain

trauma patients, a better understanding of regional metabolic

changes is expected to help treatment. A molecular imaging

study addressing these questions has been performed by Bergs-

neider et al. [80–84] at the UCLA Brain Injury Research Center

and the UCLA Nuclear Medicine Clinic. The study involved

the use of a multiple of dynamic PET sessions, using O-15

carbon monoxide (for blood volume), O-15 water (for blood

perfusion), O-15 oxygen (for oxygen utilization), and FDG

(for glucose utilization). The study was performed within

one week of brain injury. (Readers are referred to the cited

references for detailed study procedures.) Some parametric

images of cerebral blood Xow (CBF), oxygen extraction frac-

tion (OEF), and cerebral metabolic rate of oxygen (CMRO) in

a normal subject are shown in Figure 21.5, and the average

values of these parameters in normal subjects and in subjects

with traumatic brain injury (TBI) are summarized in Table

21.1.

In general, the results show that in TBI subjects, the brain

tissue not adjacent to the contusion region has normal blood

perfusion and normal OEF, but the glucose and oxygen util-

ization rate in the gray matter are both reduced. The OGR

value has some particular implication for the metabolic state

in tissue. OGR¼ 6 indicates that the mechanism in mitochon-

dria for aerobic metabolism is functioning well. If OGR < 6,

some glucose probably goes through anaerobic metabolism,

and lactate is produced (potentially lowering the tissue pH).

FIGURE 21.5 Parametric images from a dynamic brain PET study in a normal human subject, using O-15 CO, O-15

oxygen, O-15 water, and FDG tracers, sequentially in a single session. The dynamic O-15 water PET images were used

to generate the CBF image; O-15 CO and O-15 oxygen images were used along with the CBF image to generate the

CMRO2 and OEF images; the FDG image was used to calculate the image for cerebral metabolic rate of glucose

(CMRG). The OGR image was generated as the ratio of the CMRO2 and CMRG images. Figure provided by Dr. H. M.

Wu, Department of Molecular and Medical Pharmacology, UCLA School of Medicine.
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If this couples with a reduced oxygen utilization rate, one

could question whether the oxygen delivery to tissue is limited.

On the other hand, if OGR > 6, substrates (e.g., lactate, ketone

bodies) in addition to glucose are being used. It could indicate

that oxygen delivery is not limited but that glucose transport

or metabolism is altered or that the tissue prefers other sub-

strates in that pathological state. Full interpretation of this,

however, requires consideration of additional information,

such as of perfusion, OEF, and arterial-venous diVerences (in

concentration) of various substrates. Nevertheless, results from

the molecular imaging study provided new biological infor-

mation that is diYcult to obtain by other methods available

today.

21.6.2 Cell Proliferation Rate in Mouse Tumor

FLT is an analogue of thymidine involved in DNA synthesis

during the S-phase of cell division. It has been used in PET

studies to examine the cell proliferation rate in tumors

[85–91] to grade tumor aggressiveness or to show the eYcacy

of a treatment protocol. The animal study we will describe

shows an application of FLT-PET and FDG-PET for investi-

gating tumor response post–irradiation treatment. The study

involved tumor implantation via transgenic adenocarcinoma of

mouse prostate (TRAMP), irradiation, and multiple imaging

longitudinally. The study was a collaboration between Huang’s

and McBride’s laboratories at UCLA [92–94]. (Readers are

referred to the cited references for detailed study procedures.)

Figure 21.6 summarizes the results. Within one week post-

irradiation, FDG uptake on irradiated tumor was usually

higher than that of the reference. In two weeks, FDG uptake

was lower than that of the reference. Thereafter, FDG uptakes

on active growing areas of the tumors on both sides were

comparable. For FLT, uptake in the Wrst week was lower in

the irradiated tumor, but in the second week and thereafter,

FLT uptake was comparable to that of the reference. In other

words, cell proliferation rate in tumor post-irradiation was

suppressed initially but fully recovered thereafter. Glucose util-

ization rate, on the other hand, was enhanced immediately

after irradiation but went through a suppressed period after-

ward (in the second week) before recovering to its reference

level. The results are consistent with an oxidative metabolism

impairment immediately following irradiation, possibly due to

mitochondrial damage, resulting in increases in anaerobic

glycolysis (increase in FDG uptake). While oxidative metabol-

ism is impaired, DNA replication and cell proliferation are

decreased. The discordant FDG and FLT uptake changes fol-

lowing irradiation suggest caution in the interpretation of

FDG-PET scan images in cancer patients. FLT-PET is probably

more useful for treatment eYcacy assessment. The study is

currently ongoing at UCLA to examine the optimal dosage

fractionation in radiation treatment of cancer.

21.6.3 Measurement of Murine Cardiovascular
Physiology

Historically, many physiological parameters were Wrst deter-

mined in humans using tracer methods and were later

conWrmed by other, more sophisticated or more direct meas-

urements. Some parameters, like blood perfusion and cardiac

output (CO), continue to be measured clinically in patients by

tracer methods due to the methods’ simple procedures and

robustness [95]. For small animals such as mice, the cardiac

function is also an important physiological consideration in

the study of drug response but is usually very diYcult to

measure due to their small body size (�28 gm), small total

blood volume (�2 ml), and fast heart rate (�400 beats/min).

At the UCLA Nuclear Medicine Clinic, a small-animal PET

procedure has been developed that can provide information

on cardiac function in mice conveniently and noninvasively,

along with other biological information in a single imaging

session [96, 97]. Figure 21.7 shows typical image data of the

study. With such a study procedure, the cardiac output was

found to average 20.4+ 3.4 ml/min in anesthetized mice,

with a stroke volume (SV) of 45.0+ 6.9 m1. The results are

comparable to those obtained with a much more elaborate

and tedious procedure using magnetic resonance imaging

(MRI) [98] and demonstrate the capability of molecular im-

aging for measuring cardiovascular function in small-animal

models. When cardiac stress was simulated with dobutamine

injection, CO and SV were increased by �75% and �23%,

respectively.

21.7 Summary and Future Perspectives

Many new technical and biological developments are being

worked on by many investigators in many institutions. A few

of them are summarized below.

TABLE 12.1 Metabolic parameters in human brain tissues�

Normal (n¼ 16) TBI (n¼ 11)

CMRG (mg/min/100g) 4.31+ 0.69 3.29+ 0.58

1.87+ 0.36 1.97+ 0.25

CBF (m/min/g) 0.44+ 0.09 0.43+ 0.08

0.22+ 0.06 0.22+ 0.04

OEF 0.40+ 0.06 0.38+ 0.06

0.31+ 0.05 0.30+ 0.07

CMRO (ml/min/100g) 3.18+ 0.47 2.44+ 0.54

1.21+ 0.14 0.97+ 0.18

OGR 6.03+ 1.04 6.01+ 1.09

5.37+ 1.00 3.99+ 0.77

�Numbers are mean+ standard deviation, with the top number of each group

for gray-matter regions, and the bottom number for white-matter regions. The

values for TBI excluded regions with contusion. Values in this table are taken

from Wu et al. [83].
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21.7.1 Optical Imaging, Small-Animal Single
Photon Emission Computed Tomography,
and MicroXuidic Blood Samplers

Optical imaging, though still facing a number of hurdles to be-

coming a quantitative measurement tool, has some favorable

characteristics for biological studies. The imaging device required

is relatively simple. It does not involve radioactivity, and it does not

require a cyclotron to make the tracer. The group led by Dr. Arion

Chatzioannou at UCLA is developing a device that combines

optical imaging with small-animal PET. The new device will have

complementary information from both imaging modalities and is

expected to add additional information for molecular imaging.

While the spatial resolution of PET is limited by the posi-

tron range of the labeling radioisotope, the resolution of pin-

hole single photon emission CT (SPECT) can be changed

by adjusting the imaging geometry and the distances between

the pinhole, the object, and the detector plane. Thus, it can

in principle have a much higher spatial resolution than PET.

The potential has been demonstrated in some prototype scan-

ners [99–102]. While issues related to radiation dose level,

detection eYciency, and photon attenuation still need to be

addressed, the spatial resolution that this type of small-animal

SPECT scanner can provide is impressive.

As discussed earlier in this chapter, the availability of the

input function is very important for image quantiWcation in

terms of biological information. The current method of using

manually drawn blood samples is tedious, labor intensive, and

diYcult to use for small animals like mice. Nanotechnology

(e.g., microXuidic devices) is promising to relieve some of

these diYculties. A prototype microXuidic blood sampler

has already been demonstrated [103, 104]. It takes a very small

and precise amount of blood for each sample and can be

operated by computer control. Coupled with nanotechnologies

for chemical assay [105, 106], this type of device can further

simplify the procedures for determining red blood cell uptake

and labeled metabolites and is expected to make quantitative

molecular imaging more convenient and practical to perform.

Effects of irradiation on implanted tumor in mouse as measured with PET
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FIGURE 21.6 Multiple microPET images (using FDG and FLT) of a mouse (C57BL/6) at various

days post-irradiation (25 Gy) applied to an implanted tumor (TRAMP). The tumor on the other

side did not receive radiation and was used as a control. The images are the transaxial (left) and

coronal (right) sectional images of the mouse through the center of the tumors. They were scanned

at 60 minutes after tracer injection (IV bolus through the tail vein). FDG uptakes at days 2 and 5

post-irradiation (P.I.) are seen to have increased (compared with that of the control tumor) until

day 9 P.I., when it decreased. FLT uptake at day 1 P.I. is seen to be lower than that in the control

tumor but got back to a comparable level at day 8 P.I. For a more detailed view of this figure, please

visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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21.7.2 Automated Image/Data Analysis

Currently, one of the major time-consuming steps in a molecular

imaging procedure is the data/image analysis to convert the meas-

ured physical quantities to biological information. It usually in-

volves multiple steps of manual interaction, and the result is

susceptible to many error sources. Hence, many investigators

simply skip the analysis and settle for visual examination of

images that reXect only the distribution of tracer concentration.

This greatly compromises the advantages of quantitative molecu-

lar imaging. The development of parametric imaging to facilitate

the conversion of tracer concentration to biological information

has helped ease somewhat the diYculty of image quantitation. In

brain imaging, extensive eVort has been devoted to image warping

and alignment to standardize spatially the images to a common

space [107, 108] to allow easy extraction of region-

of-interest values and statistical evaluation (i.e., SPM2 [109,

110], NeuroSTAT [111, 112], AIR [113], and others [114] ). In

cardiac studies, people have also adopted polar maps as a standard

[115]. However, this has not been generalized to the whole body.

Much more can be done to automate the analysis procedure,

especially for small-animal studies. We expect that the proced-

ure of image/data analysis will be facilitated in the future to

become as routine as blood tests in clinical laboratories in

hospitals today. Ideally, a biology/pharmacology investigator

will no longer need to be involved directly in image/data

analysis processing and will simply receive a summary report

after a molecular imaging experiment.
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FIGURE 21.7 (a) Short-time-frame PET images (coronal and sagittal sections) of a mouse

immediately after a bolus of FDG injected IV in the tail vein. The PET images (in color) were fused

over the x-CT images (in black and white) of the animal. The injected tracer Wrst appeared in the

vena cava, then in the right ventricle (RV), the lung, the left ventricle (LV), and the aorta in

sequence in less than Wve seconds. Afterward, the tracer was delivered to various organ tissues in

the body. (b) Time activity curves obtained from regions of interest deWned on the RVand LV. The

kinetics can be used to calculate the transit time through the pulmonary system and the cardiac

output of the animal [96, 97]. Figure provided by Dr. H. M. Wu, Department of Molecular and

Medical Pharmacology, UCLA School of Medicine. For a more detailed view of this figure, please

visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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21.7.3 Virtual Experimentation

Animal experiments are critical to biomedical and pharmaco-

logical studies, but they are usually very time-consuming and

costly to perform. If one has a clear idea of the expected outcome

before a set of experiments is performed, one can reduce the

number of experiments and obtain the results faster. This applies

to molecular imaging studies as well. With the tremendous ad-

vancement in computational methodology and computers, com-

putation can be used to reduce the number of necessary

experiments. In fact, this has been recognized in many scientiWc

Welds. Computation has already played an important role in many

areas. New terms like ‘‘computational Xuid dynamics,’’ ‘‘compu-

tational biology,’’ and ‘‘computer aided design’’ have become

popular. For molecular imaging, computational methods are use-

ful in many diVerent ways. For example, Monte Carlo simulation

of photon emission and detection can be used before a prototype

imaging device is built. Whole-body tracer kinetics for a tracer

with certain chemical and biological properties can be simulated

to see whether the tracer is suited for certain application before the

tracer is actually synthesized.

When an investigator decides that an experiment is needed,

computer simulation of the kinetics in all organ tissues in the

whole body can be used to guide the protocol design of the

experiment. An Internet-based software system, KIS (Kinetic

Imaging System) [116], has been developed at the Department

of Molecular and Medical Pharmacology at UCLA to address

the general need in this direction. The system currently con-

sists of four modules—glossary, virtual experimentation,

image analysis, and kinetic model Wtting, as shown in Figure

21.8. The virtual experimentation module is focused on simu-

lating the tracer kinetics in various organs in a mouse and can

generate a set of dynamic PET images of a mouse as if it were

from a real small-animal PET scanner, for any selected tracer of

FIGURE 21.8 Screen capture of the opening window panel of KIS (upper left background)

and that of the whole-body kinetics simulation panel of the virtual experimentation module in

KIS. For a set of kinetic parameters speciWed by the user for a tracer in various organs of the

body, virtual experimentation can generate the time activity curves in the body organs and

corresponding dynamic mouse PET images, which simulate the real PET images if the tracer

were actually given to an experimental mouse. For a more detailed view of this figure, please

visit our companion site at: http://books.elsevier.com/companions/9780123735836.
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assumed chemical/biological properties. It is clear that the

potential capability of such systems is enormous, and the

current software system can be greatly expanded. For example,

virtual experimentation can be made to resemble more closely

the true physiology in a mouse and to provide the drug

kinetics. The expansion can also be directed to simulation of

tracer/drug kinetics in other animals and in humans.

21.8 Exercises

1. List and elaborate on the major components of molecular

imaging.

2. Elaborate in general terms why molecular imaging can

provide biological information in vivo.

3. State the rationale for the need of an input function for

biological quantiWcation of molecular images.

4. What are the two most commonly used graphical analysis

methods in molecular imaging? What are their diVerences

and how would one choose one over the other for any

speciWc study?

5. Discuss the general criteria for selecting and using chemical

probes (small molecules) for molecular imaging.

6. What are the major steps/considerations required for devel-

opment of a biological probe (antibodies, peptides, apta-

mers) for molecular imaging?
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22.1 Introduction

Existing health care systems are designed to react on illness and

are optimized to manage illness. The widespread use of com-

munication and information technologies has facilitated the

delivery of medical services at a distance, which is known as

telemedicine [1]. Ranging from tele- and videoconferencing to

robotic surgery, telemedicine has extended the reach of med-

ical services from elite medical institutions to remote villages

in Finland and isolated Greek islands. New approaches have

also forced changes in clinical practices, the most notable being

the introduction of electronic medical records and informa-

tion and communications technology. This new paradigm is

known as eHealth [2, 3].

Recent developments in sensors, wearable computing, and

ubiquitous communications have the potential of providing

clinicians and users with tools and environments to gather

physiological data over extended periods of time. This emer-

ging concept is known as m (mobile)-health and represents

the evolution of eHealth systems from traditional desktop

telemedicine platforms to wireless and mobile conWgurations

[4–6].

The main enabling technological trends for m-health sys-

tems include:

. Increased communication and computation capabilities

of cell phones

. The new generation of power-eYcient processors and

communication controllers

. Revolutionary changes in microelectromechanical systems

(MEMSs) and nano-sensor technologies enabling embed-

ded and implanted biomedical sensors in frequently used

objects in homes and oYces

This chapter outlines enabling technologies and the tax-

onomy of m-health applications and introduces the ultimate

concept in unobtrusive system organization for ‘‘anytime, any-

where’’ monitoring—wireless body area networks (WBANs) of

intelligent wireless sensors. We discuss system integration and

implementation issues, future trends, and possible applications.
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22.2 Overview of M-Health Systems

22.2.1 Introduction

We divide m-health systems into two broad categories:

WBAN-based systems and systems based on ‘‘smart clothes’’

(Section 22.2.3). However, as the section about smart clothes

will discuss, these do not represent two completely disjointed

sets of systems. We also present examples of wearable biomed-

ical sensors to provide enough insight into diVerent types of

sensors and to serve as an illustration of our taxonomy.

Examples of m-health systems and sensors are grouped

according to the medical condition they apply or cannot

apply to. We will discuss current and past commercial and

research projects related to mobile monitoring of health con-

ditions. Wireless telemetry has been available for a few decades,

but wireless intelligent sensors capable of real-time signal

processing have been developed only recently. Therefore,

most of the work related to wireless intelligent sensors that

will be discussed in this section represents research projects.

22.2.1.1 Cardiopulmonary Monitoring

Medtronic oVers the Reveal1 Plus Insertable Loop Recorder

[78], developed in collaboration with the Division of Cardi-

ology, University of Western Ontario. It provides up to 14

months of monitoring and data acquisition of critical cardiac

events. Up to 40 minutes of history can be stored after an

episode. This device weighs 17 g, with an approximate volume

of 8 mL. A previously recorded episode can be uploaded on

demand to the computer for analysis.

The implantable EndoSure MEMS blood pressure sensor

from CardioMEMS [9, 10] was originally developed at Georgia

Tech. It was the Wrst implantable pressure sensor that com-

bined wireless and MEMS technology to receive approval from

the U.S. Food and Drug Administration (FDA). The device is

implanted during aneurysm repair; at the same time that a

graft is placed in the aneurysm sac, the sensor is inserted into

the sac, from within which it will take pressure readings; the

readings can be transmitted from the sensor to an external

device using radiofrequency (RF) scavenging techniques.

Scientists at the d’ArbeloV Laboratory for Information

Systems and Technology at the Massachusetts Institute of

Technology (MIT) have developed a ring sensor that continu-

ously monitors heart rate using a photoplethysmograph (PPG)

signal and sends data wirelessly to a host computer [11].

Shaped like a ring, the device can be worn on a Wnger.

Researchers at MIT and Massachusetts General Hospital

have developed a behind-the-ear PPG-based sensor that uses

a modiWed hydrostatic-based oscillometric method. It employs

a MEMS accelerometer to reliably measure height [12]. Philips

Research Europe has developed a system based on the 802.15.4

standard of the Institute of Electrical and Electronics Engineers

(IEEE) that enables continuous cuZess blood pressure estima-

tion using an electrocardiography (ECG) dry sensor worn on

the waist and a behind-ear PPG sensor [13].

Researchers at the University of Alabama in Huntsville

developed a system for stress level assessment based on heart

rate variability measurements [14]. The system performs syn-

chronous measures of individual heart rate during prolonged

stressful training. Data are stored locally (for up to 60 hours)

and collected wirelessly from the entire group of users using

mobile gateways.

22.2.1.2 Diabetes Control

A typical example of a commercial system is SymphonyTM

Diabetes Management [15] from Sontra Medical Corporation.

Sontra oVers a patch sensor that will continuously extract

interstitial Xuid, draw the analytes into the sensor, and meas-

ure and calculate the blood glucose concentration. The results

are calculated and wirelessly sent to the receiver every 3.8

seconds. Currently, the system is used for only glucose meas-

urements, but the company plans to add sensors to measure

other analytes as well. DexCom [16] and Medtronic [17, 18],

among others, currently oVer systems based on subcutaneous

sensors that can be worn for up to 72 hours before replacement

is needed. DexCom also has reported results for patients with

surgically implanted long-term glucose level sensors.

A ‘‘skin breakdown detection’’ device is intended for use

by people suVering from diabetes [19]. The device is worn in

the shoe and records temperature, pressure, and humidity

under the heel and metatarsal heads. The data are periodically

evaluated oZine to detect abnormal conditions that may lead

to skin breakdown; the goal is to prevent formation of foot

ulcers, which in a patient with advanced diabetes may lead to

amputation.

Medtronic MiniMed is an example of eVorts to develop an

artiWcial pancreas for diabetes patients. The Wrst step in the

development is an insulin pump (e.g., MiniMed Paradigm1)

that disperses insulin based on the results of blood glucose

measurements [18].

LG Electronics and Healthpia [20] have developed the LG

KP8400 cell phone that features a built-in glucose monitor.

The cell phone is currently commercially available in some

countries in Asia and is awaiting approval from the FDA.

The user places a drop of blood on a test strip and inserts

the strip into a slot in the cell phone. The glucose measure-

ment is automatically sent to a caregiver.

22.2.1.3 Brain and Muscle Activity
Recording/Stimulation

Researchers from the University of Washington, Caltech, and

Case Western Reserve University have developed an implanta-

ble microcomputer [21] capable of recording nerve and muscle

signals from small animals during their normal activity. They

use Xexible metallic needles to collect signals from nerve
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bundles and micromachined silicon probes to record activity

of neural assemblies. However, to collect signals from individ-

ual neurons, scientists from the University of Washington are

working on silicon MEMS probes that will mimic the perform-

ance of glass capillaries used on constrained animals. The

implantable device consists of variable-gain ampliWers, a

system-on-a-chip microcontroller, and a high-density mem-

ory. In this project, researchers decided to avoid antennas and

charge pumps needed for RF-powered devices, due to size

constraints of the implantable device. Instead, they plan to

employ thin-Wlm batteries.

At the University of Michigan’s Center for Wireless Inte-

grated Microsystems, researchers developed a BiCMOS (bipolar

complementary metal-oxide semiconductor) wireless stimula-

tor chip [22], to be used in conjunction with micromachined

passive stimulating microprobes. This design allows wireless

and stand-alone operation for unlimited time, since the chip

uses a 4 MHz carrier signal to receive both data and power

through inductive coupling. Total power dissipation of the

chip is less than 10 mW, and its surface area is about 13 mm2.

Another example of an RF-powered intelligent sensor is

a miniature implantable wireless neural recording device

[23, 24] developed at the University of California, Los Angeles.

This device records and transmits neural signals. The device

size is less than 1 cm2, and power dissipation has been meas-

ured at 13.8 mW. Tests have shown that the transmitting range

is up to 0.5 m and that the demodulated signal is highly

correlated with the original signals in the range between 5

and 1.5 mV.

Medtronic has developed the Activa Therapy Deep Brain

Stimulator, a surgically implanted device similar to a cardiac

pacemaker, to block the brain signals associated with dystonia,

Parkinson’s disease, and essential tremor. It delivers carefully

controlled electrical stimulation to targeted areas within the

brain [25].

22.2.1.4 Gastrointestinal Monitoring

Researchers from the Universities of Glasgow, Edinburgh,

and Strathclyde are developing a capsule [26] traversing the

gastrointestinal tract (part of the Integrated Diagnostics for

Environmental and Analytical Systems [IDEAS] project). The

capsule-based sensor gathers data that cannot be collected

using traditional endoscopy. The device is battery powered

and integrates sensors, processing, and RF bidirectional com-

munication onto a single piece of silicon (current device size is

32� 11.5 mm) [27, 28].

Given Imaging oVers the commercially available Given1

Diagnostic System [29, 30]. A disposable imaging capsule is

swallowed by a patient and passes through the gastrointestinal

tract while wirelessly transmitting images to a receiver worn on

a belt. The images are received through an array of antennas;

the antennas are used also to determine the exact location of

the capsule.

22.2.1.5 Heterogeneous Sensor Systems

The U.S. Army Research Institute of Environmental Medicine

(USARIEM) and the U.S. Army Medical Research and Materiel

Command (USAMMRC) led the WarWghter Physiological

Status Monitoring (WPSM) project [31, 32]. The experimental

system in development for that project includes sensors for

heart rate, metabolic energy cost of walking, core and skin

temperatures, geolocation, and activity/inactivity. Data col-

lected by various sensors are transmitted wirelessly to a hub

(worn on a soldier’s belt) through a low-power personal area

network (PAN). Sensors are expected to be low-cost and dis-

posable, capable of collecting data for up to a few weeks. Ag-

gregated data can be stored or forwarded to a warWghter’s digital

Wghting system, command center, or, in the future, the Internet.

The Wnal system is expected to be able to predict the critical

aspects of a soldier’s performance under extreme conditions.

The careTrendsTM system, oVered by Sensitron, uses a com-

bination of Bluetooth and IEEE 802.11b transmission to send

patient vital signs data from point of care to a server [34].

Currently, the company oVers monitoring of blood pressure,

pulse, temperature, weight, oxygen saturation, and respiration

rate; measurements are uploaded wirelessly to a Patient Com-

munication Unit. The caregiver can use the handheld unit to

input pain scores, view and manage test results, and commu-

nicate with a careTrends access point.

Cleveland Medical Devices Inc. markets Crystal Monitor [35]

as a lightweight programmable wireless physiological monitor,

capable of viewing and recording electroencephalography

(EEG), ECG, electromyography (EMG), electro-oculography

(EOG), pulse oximetry oxygen saturation (SpO2), and other

signals. Collected data are wirelessly transferred to a personal

computer (PC) up to 50 feet away, using the 2.4 GHz Industry,

Science, and Medicine (ISM) band. The device can operate

continuously for up to 12 hours on two AA batteries. In add-

ition, it uses a removable secure digital (SD) card to store over

60 hours of patient data for unattended monitoring.

Equivital Limited has developed the EquivitalTM system for

continuous monitoring and storage of physiological life signs,

to be used by the military, emergency services, Wrst responders,

performance sports, and general health care. The system allows

for real-time or oZine analysis of the data and incorporates

the sensors for monitoring heart rate, respiratory rate, user’s

motion and position, temperature, and G shocks caused by

falls and heavy impacts. It also provides a rudimentary cogni-

tive response from the user to assess the user’s consciousness

and awareness [36].

The 3G wireless cellular data system can be used for direct

transmission of all patient data (video, medical images, ECG

signals, etc.) [37].

22.2.2 Taxonomy of M-Health Systems

We introduce two taxonomy groups. One classiWes personal

medical devices based upon their usage, while the other deals
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with their implementation. The taxonomies allow us to ab-

stract from a particular application and devise design prin-

ciples that hold for all applications that fall within a given

category. Our taxonomy groups will include some devices

not covered in the examples listed in the previous section.

The functionality of these devices is either well known or

goes beyond the scope of this paper—deWbrillators/pace-

makers, hearing aid devices, artiWcial hearts, artiWcial limbs,

artiWcial eyes, drug pumps, etc. We include them in the tax-

onomy for completeness and to show possible areas for future

medical applications of wearable computing.

22.2.2.1 Description of Taxonomy of Usage

Our taxonomy of usage for personal medical devices is shown

in Figure 22.1. The taxonomy places devices in a 2D space

deWned by two axes: capability and mode of wearability. A

third axis could also be introduced, to address duration of

the required service. We see four broad categories along the

capability axis: recording/transmitting, processing, correcting,

and replacing. We deWne these functions as follows:

. Recording/transmitting: Devices that store or send rele-

vant signals and data from the patient but do not evalu-

ate the signals (except for signal conditioning) in any

manner or provide feedback to the patient. The signals

are evaluated oZine.

. Processing: Devices that process relevant signals and

provide immediate feedback to the patient about his or

her current condition. This feedback may or may not be

continuous, as in the case of an ECG monitor that pro-

vides alerts of impending cardiac events. These process-

ing devices may also store the signals so that they may be

further processed oZine, just like the recording devices.

. Correcting: Devices that provide appropriate stimuli dir-

ectly to a malfunctioning organ in order to correct its

behavior.

. Replacing: Devices that replace an organ entirely (pros-

theses).

There may be another category in the future, somewhat

related to the correcting category, but going a step further:

Devices that train the body in some way but then can be

removed, analogous to braces for the teeth. For the purpose

of this taxonomy, we treat as implanted all the devices that are

inside the user’s body, even if they were not inserted surgically

(i.e., even if they were swallowed, inserted subcutaneously by

the user, etc.). In the not-too-distant future, devices may be

small enough to be introduced into the body by other means,

such as inhalation. Some devices straddle the border between

categories. (For more information, see Raskovic et al. [33].)

22.2.2.2 Description of Taxonomy
of Implementations

The taxonomy of implementations classiWes systems according

to the system mobility (represented in Figure 22.2). It charac-

terizes systems along two axes: patient mobility and gateway

availability. We use this taxonomy to emphasize the fact that

the development of medical monitoring equipment constantly

goes in the direction of increased patient mobility and the

Xexibility of positioning of external monitoring equipment.

In the past, patient monitoring has been performed in hos-

pitals or labs with patients strapped to the Wxed monitoring

system and not able to move about freely. With technological

advances, wearable monitors allow patients to walk around the

hospital. The ultimate goal would be normal patient mobility

while patients are monitored as they go about their everyday

routine with the miniaturized monitoring equipment con-

cealed on their persons.

In most modern systems, data are not only provided to the

user, but at the same time forwarded to a hospital information

or telemedical system. Therefore, it is necessary to have access

points (or gateways) to medical networks. One of the main
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system design issues is availability of these gateways, which,

depending on the application, can be implemented as net-

works of Wxed gateways within a medical institution, health

kiosks throughout the city, or global access points, in the case

of satellite-based systems. The smaller the size of the monitor-

ing device, the more limited will be the available power for

signal transmission. One design solution is to keep communi-

cation distances short but to allow access points to move

around and connect with individual monitors. Alternatively a

limited set of access points are available to monitor devices

that move in and out of reach of the access points. Such

solutions keep power consumption by the monitor low, at

the cost of delayed data delivery.

We deWne two broad categories along each of the axes of

patient mobility and gateway availability: The patient can be

either mobile or static, while the gateway availability can

be either local or global. A moving gateway or a group of

local gateways will be treated as a global gateway. The ultimate

goal of ubiquitous personal health monitoring systems is

maximal user mobility. Using these axes, we divide systems

into four categories and provide some typical examples:

. Local gateway/static patient (LGSP) is typical of older

monitoring systems, such as Wxed bedside hospital

monitors.

. Local gateway/mobile patient (LGMP) is usually used in

wireless in-hospital or home monitoring systems and

allows patient mobility within the range of the network

of access points. Another possible future application of

LGMP is in terms of health information kiosks that could

be used to collect data from personal monitors at diVer-

ent locations in town.

. Global gateway/static patient (GGSP) is exempliWed by an

emergency response vehicle globally connected with a

medical network, while patients are incapacitated.

. Global gateway/mobile patient (GGMP) allows patients to

move freely over large areas, made possible by distributed

wireless monitoring systems. These systems employ

either cell phone infrastructures or mobile gateways as

access points.

22.2.3 Smart Clothes

Smart clothes are extensions to networks of independent wire-

less medical sensors. Smart clothes are not yet widely employed,

but once current problems with fabrication and usability are

solved and their costs come down, wider acceptance is expected.

Smart clothes were Wrst applied for monitoring of patients,

athletes, and high-risk workers, but applications for everyday

life followed very soon afterward [38].

Smart clothes can be used to detect biomechanical (e.g.,

respiration, body movement, posture monitoring), bioelectri-

cal (ECG, EMG, EEG, etc.), temperature, and other param-

eters. The IEEE Engineering in Medicine and Biology Society

(EMBS) Technical Committee for Wearable Biomedical Sen-

sors and Systems [39] considers smart clothes the core of a

wearable biomedical system, because they are convenient, per-

sonal, and in close proximity to the source of most biomedical

signals. In addition, they can be worn with little chance of

disclosing the possible medical conditions of their users.

In their simplest form, smart clothes provide only intercon-

nectivity among sensors, electrodes, and external electronics.

However, if smart clothes are to become truly wearable m-health

systems, electronics need to be embedded into clothing as well.

Ideally, an entire smart clothes system should wirelessly

communicate with electronic devices that the wearers would

normally use. For example, a smart phone can be used to display

the current state of the smart clothes system, issue warnings,

and relay information to higher tiers of a medical system.

Several major challenges need to be addressed successfully

before smart clothes can be widely employed:

. Wearability. Many of the characteristics that deWne wear-

ability (unobtrusiveness, stretchability, washability, etc.)
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are in direct conXict with the requirements for the

increased functionality of smart clothes (more sensors

embedded in clothing, integrated processing and display,

etc.).

. Interconnectivity. Sensors, electrodes, and conductive

yarns are sometimes built in diVerent technologies. This

can create diYculties in interfacing them electrically and

can also compromise the Xexibility of the yarn because of

diVerences in mechanical properties.

. Motion and other artifact suppression. Signal integrity is

crucial in any medical system and becomes even more

important in the case of wearable systems. Smart clothes,

by their very nature, are prone to diVerent types of

artifacts (interference of other personal electronic de-

vices, diYculties with propagation of signals near and

through the human body, etc.), among which motion

artifacts are especially prominent. Motion and other arti-

facts can be reduced or completely removed through

careful design of sensors and interconnections, sensor

redundancy, signal conditioning, and signal processing.

However, requirements for increased signal integrity

often conXict with requirements related to acceptable

levels of comfort while wearing smart clothes.

A number of commercial products are available, such as the

Sensatex SmartShirt System [40, 41], the VivoMetrics LifeShirt

System [42], and Information Society Technologies’

WEALTHY (WEarable heALTH care sYstem) [43]. Universities

are also performing a range of research activities in this area

[44–48].

22.3 M-Health Based on Wireless
Body Area Networks

22.3.1 General Concepts

Recent technological advances in sensors, integrated circuits,

and wireless networking facilitate wireless sensor networks that

are deeply embedded in their native environments. Wireless

sensor networks are highly suitable for many applications, such

as habitat monitoring [49], machine health monitoring and

guidance, traYc pattern monitoring and navigation, plant

monitoring in agriculture [50], and infrastructure monitoring.

The current technological and economic trends will enable

new generations of wireless sensor networks with more com-

pact and lighter sensor nodes, more processing power, and

more storage capacity. In addition, the ongoing proliferation

of wireless sensor networks across many application domains

will result in a signiWcant cost reduction.

One of the most promising application domains is health

monitoring [51], and within health care, WBANs in particular

are emerging as promising enabling technologies to implement

m-health. A WBAN for health monitoring consists of multiple

sensor nodes that can measure and report the user’s physio-

logical state. A WBAN for health monitoring may also feature

active devices for control of the user’s physiological state—for

example, some WBAN nodes may be responsible for drug

delivery. These sensor nodes are strategically placed on the

human body. The exact location and attachment of the sensor

nodes on the human body depend on the sensor type, size, and

weight. Sensors can be worn as stand-alone devices or can be

built into jewelry, applied as tiny patches on the skin, hidden

in the user’s clothes or shoes, or even implanted in the user’s

body. Each node in the WBAN is typically capable of sensing,

sampling, processing, and wirelessly communicating one or

more physiological signals. The exact number and type of

physiological signals to be measured, processed, and reported

depends on end-user application and may include a subset of

the following physiological sensors:

. An ECG sensor for monitoring heart activity

. An EMG sensor for monitoring muscle activity

. An EEG sensor for monitoring brain electrical activity

. A PPG sensor for monitoring pulse and blood oxygen

saturation

. A cuV-based pressure sensor for monitoring blood

pressure

. A resistive or piezoelectric chest belt sensor for monitor-

ing respiration

. A galvanic skin response (GSR) sensor for monitoring

autonomous nervous system arousal

. A blood glucose level sensor

. A thermistor for monitoring body temperature

In addition to these sensors, a WBAN for health monitoring

may include sensors that can help determine the user’s loca-

tion, discriminate among the user’s states (e.g., lying, sitting,

walking, running), or estimate the type and level of the user’s

physical activity. These sensors typically include the following:

. A localization sensor (e.g., a global positioning system

[GPS])

. A tilt sensor for monitoring trunk position

. A gyroscope-based sensor for gait-phase detection

. Accelerometer-based motion sensors on extremities to

estimate type and level of users’ activities

. A ‘‘smart sock’’ or an insole sensor to count steps and/or

delineate phases and distribution of forces during indi-

vidual steps

Environmental conditions may often inXuence the user’s

physiological state (e.g., it has been shown that blood pressure

may depend on the subject’s ambient temperature) or accuracy

of the sensors (e.g., background light may inXuence the read-

ings from PPG sensors). Consequently, WBANs may beneWt

from integrating the third group of sensors, which provide
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information about environmental conditions such as humid-

ity, light, ambient temperature, atmospheric pressure, and

noise.

All technological trends and the ability to measure a wide

variety of physiologically important signals indicate that

WBANs are well positioned to become a key component in

providing continual, unobtrusive, and aVordable monitoring

in health care.

22.3.2 System Architecture and Organization

Typically, a WBAN will form the lowest tier (Tier 1) of a

multitiered medical information system for health monitoring.

Figure 22.3 illustrates a general system architecture of a med-

ical monitoring information system that includes a personal

server at Tier 2 and a series of medical servers at Tier 3. The

exact system architecture and the number of system tiers

depend predominantly on target applications, available infra-

structure, and type and number of users. Though we focus

on the health monitoring system described in Figure 22.3,

we will identify possible alternatives to this type of system

organization.

The WBAN in Figure 22.3 includes one heart sensor and two

motion sensors, one attached at a wrist and the other to an

ankle. One possible target application for such a WBAN is

Wtness monitoring—helping to track duration, type, and in-

tensity of regular daily exercise. A similar system can be used

for monitoring of cardiac patients during a rehabilitation

period at home. The heart sensor can operate in multiple

modes reporting either (1) a raw ECG signal (from one or

multiple channels), (2) time-stamped heart beats, or (3) aver-

aged heart rate over a certain period of time. The motion

sensors, each equipped with a 3D accelerometer, can also

operate in several modes, reporting either (1) raw acceleration

signals for x-, y-, and z-axes, (2) extracted features (e.g., time-

stamped steps or phases of a step), or (3) an estimated level of

activity (e.g., activity-induced energy expenditure [AEE] over a

certain period of time). The sensor nodes (together with a

network coordinator) attached to a personal server compose

the WBAN. Upon conWguration, the WBAN continually per-

forms sensing, sampling, and signal processing. Sensors wait

for command and control messages from the WBAN coordin-

ator and report continual sensor readings or events of interest

as they occur.

Tier 2 encompasses the personal server, which is responsible

for a number of tasks, providing a transparent interface to the

wireless sensor nodes, an interface to the user, and an interface

to the medical server. The interface to the WBAN includes

network conWguration and management. Network conWgura-

tion encompasses the following tasks: sensor node registration

(type and number of sensors), initialization (e.g., specifying

sampling frequency and mode of operation), customization

(e.g., running user-speciWc calibration or user-speciWc signal-

processing-procedure upload), and setup of a secure commu-

nication (security key exchange). Once the WBAN network is

conWgured, the personal server manages the network and takes

care of channel sharing, time synchronization, data retrieval

and processing, and fusion of the data. Based on synergy of

information from multiple physiological, location, activity,

and environmental sensors, the personal server can determine

users’ states and their health status; in addition, the personal

server can provide feedback through a user-friendly and intui-

tive graphical or audio user interface. Finally, if a communica-

tion channel to the medical server is available, the personal

FIGURE 22.3 A multitiered health monitoring system based on WBAN.

PS¼ personal server; MS¼medical server; GPRS¼ general packet radio service.
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server can establish a secure link to the medical server and send

condensed or detailed reports about users’ health status. These

reports can be processed, displayed, and integrated into users’

medical records. However, if a link between the personal ser-

ver and the medical server is not available, the personal server

should be able to store the data locally and initiate uploads

when a link becomes available. Depending on the use scenario,

the personal server can run on a smart phone (as illustrated in

Figure 22.3), on a personal digital assistant (PDA) enabled by a

wireless wide area network (WWAN), or on a home PC.

Tier 3 includes a medical server accessed via the Internet.

In addition to the medical server, the last tier may encompass

other servers, such as informal caregivers, commercial health

care providers, and even emergency services. The medical

server keeps electronic medical records of registered users

and provides various services to the users, medical personnel,

and informal caregivers. It is the responsibility of the medical

server to authenticate users, accept health monitoring session

uploads, format and insert the session data into corresponding

medical records, analyze the data patterns, recognize serious

health anomalies in order to contact emergency caregivers, and

forward new instructions to the users, such as physician-

prescribed exercises. Patients’ physicians can access the data

from their oYces via the Internet and examine the data to

ensure that the patients are within expected health metrics (in

terms of heart rate, blood pressure, activity) and that they are

responding to a given treatment or performing prescribed

exercises. A server agent may inspect the uploaded data and

create an alert in the case of a potential medical condition.

The large amount of data collected through these services

can also be utilized for knowledge discovery through data

mining. Integration of the collected data into research data-

bases and quantitative analysis of conditions and patterns

likely will prove invaluable to researchers trying to link symp-

toms and diagnoses with historical changes in health status,

physiological data, or other parameters (e.g., gender, age,

weight). In a similar way, a WBAN–personal server–medical

server infrastructure could signiWcantly contribute to monitor-

ing and study of drug therapy eVects.

22.3.3 Applications of Wireless Body Area
Networks

WBANs can be used in a number of applications, from Wtness/

exercise monitoring of healthy users, to monitoring of patients

with chronic or impeding medical conditions in hospitals and

ambulatory settings, to early detection of disease, to emergency

care. Table 22.1 lists medical conditions and their correspond-

ing relevant physiological signals.

For each medical condition, a series of WBAN solutions can

be devised; it is not our intention to cover a broad series of

medical conditions. Instead, we opt to present a hypothetical

case study of a representative condition in a patient recovering

from a heart attack, to illustrate the usefulness of WBAN-based

health monitoring systems. We discuss many common prob-

lems that patients face after a heart attack and describe how

our system can be used to address these problems; in addition,

we will show how WBANs would provide advantages over

typical present-day solutions.

22.3.3.1 Case Example

Peter Petrovich is recovering from a heart attack. After release

from the hospital, he attended supervised cardiac rehabilita-

tion for several weeks. His recovery process is going well, and

Peter is to continue a prescribed exercise regimen at home.

However, the unsupervised rehabilitation at home does not go

well for Peter. He does not follow the exercise regimen as

prescribed. He exercises but does not truthfully disclose to

the treating health care providers the minimal intensity and

duration of his exercise. As a result, Peter’s recovery is slower

than expected, which raises concerns among his health care

providers about his health status: Is the damage to Peter’s heart

greater than initially suspected, or does he not follow medical

advice? His physician has no quantitative way to verify his

adherence to the exercise program.

A WBAN-based health monitoring system oVers a solution

for Peter and all persons undergoing cardiac rehabilitation at

home, as well as for the health care providers. Peter is equipped

with a WBAN-based ambulatory health monitoring system.

Tiny electronic inertial sensors measure movement on extrem-

ities and the number of steps Peter takes, while electrodes on

the chest measure Peter’s heart activity. The WBAN provides

continual reporting of heart rate and AEE. The time and

duration of his normal and exercise activities are recorded,

and the level of intensity of the exercise can be determined

by calculating an estimate of energy expenditure from the

motion sensors. The information is available on Peter’s smart

phone, which acts as his personal server. The personal server

may also assist Peter in his exercise eVorts: It may alert him

that he has not initiated or is not reaching his intended goals,

TABLE 22.1 Medical conditions and suggested minimal

conWgurations of wireless body area network (WBAN)

Medical condition WBAN Sensors

Cardiac arrhythmias/heart

failure

Heart rate/ECG, blood pressure, activity

Asthma Respiration rate, peak Xow, oxygen saturation

Cardiac rehabilitation Heart rate/ECG, activity, environmental

sensors

Postoperative rehabilitation Heart rate/ECG, temperature, activity

Diabetes Blood glucose level, activity, temperature

Obesity/weight loss

programs

Heart rate, smart scale, activity

(accelerometers)

Epilepsy EEG, gait (gyroscope, accelerometers)

Parkinson’s disease Gait, tremor, activity

(gyroscope, accelerometers)
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or it may generate warnings in case of excessive exercise (e.g.,

heart rate above the maximum threshold for a person of his

age, weight, and condition).

Through the Internet or cell phone–connected server, his

health care providers can collect and review all data, verify

that Peter is exercising regularly, issue new prescribed exercises,

adjust data threshold values, and schedule oYce visits. Peter’s

description of his progress continues to be important, but his

health care providers no longer need to rely on only subjective

descriptions. Instead, they have an objective and quantitative

dataset of his level and duration of exercise. In addition, Peter’s

parameters of heart rate variability provide a direct measure of

his physiological response to the exercise, serving as an in-home

stress test. Substituting these remote stress tests and data col-

lection for in-oYce tests, Peter’s health care providers reduce

the number of oYce visits. This decreases health care costs and

makes better use of the health care providers’ time. In urgent

cases, however, the personal server can directly contact Emer-

gency Medical Services (EMS) if the user subscribes to this

service. Figure 22.4 illustrates one possible data Xow.

22.4 Wireless Intelligent Sensors
for M-Health

Each WBAN sensor node typically performs four basic tasks:

1. Sensing and sampling of relevant physiological or envir-

onmental signals

2. Digital signal processing of input signals (e.g., Wltering,

feature extraction, data compression)

3. On-sensor data buVering

4. Wireless communication with the personal server

Consequently, a WBAN node encompasses the following

physical resources, shown in Figure 22.5:

. Sensor devices

. Signal conditioning circuitry

. Analog-to-digital converter circuitry

. Processing units

. Memory

. Communication input/output (I/O) devices (e.g., radio

interfaces) and power supply

In addition to the monitoring function, a sensor node may

include actuators, capable of changing or reacting to the user’s

state. For instance, a WBAN sensor node may include a drug

delivery pump that is automatically activated once certain

conditions are met; a blood glucose sensor may be augmented

with actuators that control dosage of insulin. Another example

of an acting sensor node is an EEG sensor augmented with

actuators for electrical neural stimulation to prevent the

development of epileptic seizures.

The actual hardware organization of each sensor node is

greatly inXuenced by the main design requirements for the

WBAN, such as functionality, wearability, ease of deploy-

ment/durability, reliability of communications, security, and

interoperability.

Internet

PS

1. Events and 
data are collected.

2. Relayed to MS

3. Health care provider 
can retrieve and analyze data.

4. Based on analysis, 
health care provider recommends 
patient increase exercises.5. Relayed to PS

6. Peter can review 
new prescribed exercises.

MS

WBAN

WWAN

FIGURE 22.4 Example of data Xow in the proposed WBAN health care monitoring system.
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. Functionality. The end-user application determines (i) the

number and type of vital statistics the WBAN needs

to provide, (ii) the required precision and accuracy of

sensor readings, and (iii) the sample frequency and fre-

quency of reported data. For example, a Wtness monitor-

ing application targeting healthy users may not require

ECG and may also tolerate possible loss of heart beat

messages. However, arrhythmia monitoring applications

require a very precise heart beat stream or even raw ECG.

Possible loss of heart beat events is unacceptable, as it

may result in false alarms or missed events.

. Wearability. To achieve noninvasive and unobtrusive con-

tinuous health monitoring, WBAN sensors should be

lightweight and have a small form factor, so they can be

built into clothes or applied as tiny patches on the skin.

The size and weight of current sensor platforms are deter-

mined predominantly by the size and weight of batteries.

However, a battery’s capacity is directly proportional to its

size. It is desirable to provide an extended period of oper-

ation without the need for battery replacements because

multiple sensors requiring frequent battery changes will

hamper users’ acceptance of wearable systems. In addition,

longer battery life will decrease WBAN operational costs.

Consequently, energy eYciency is one of the key design

requirements for WBAN sensor nodes, as it improves both

wearability and user compliance. Electrophysiological sig-

nals rely on contact electrodes with gels used to reduce

contact resistance. It is known that prolonged wear of

resistive electrodes can result in skin irritation. A number

of other problems can arise. For example, if the contact gel

dries out, the signal quality likely deteriorates. Worse is if

the electrode pulls away from the skin completely. These

problems can be overcome by using recently introduced

insulated noncontact bio-electrodes [52].

. Deployment and durability. The ideal location of speciWc

WBAN sensors is still an open issue—for instance, for

activity research, the research community is investigating

a minimal set of motion sensors and their placement that

will enable almost perfect discrimination of the user’s

states. Sensor attachment is also a critical factor, since

the movement of loosely attached sensors creates spuri-

ous oscillations after an abrupt movement; such signal

artifacts can generate false events or mask real events. The

sensor nodes also need to be robust and durable, so that

environmental conditions and time will not inXuence

sensor readings.

. Reliable communication is of utmost importance for med-

ical applications that rely on WBANs. The communica-

tion requirements of diVerent medical sensors vary with

required sampling rates, from less than 1 Hz to 1,000 Hz.

One approach to improve reliability is to move beyond

telemetry by performing on-sensor signal processing. For

example, instead of transferring raw data from an ECG

sensor, one could perform feature extraction on the sen-

sor and transfer only the information about an event

(e.g., QRS features and the corresponding time stamp

of the R peak). In addition to reducing heavy demands

for the communication channel, the reduced communi-

cation requirements decrease total energy consumption

and consequently increase battery life. A careful trade-oV

between communication and computation is crucial for

optimal system design.

. Security. Another important issue is overall system secur-

ity. The problem of security arises at all three tiers of a

WBAN-based telemedical system. At the lowest level,

wireless medical sensors must meet privacy requirements

mandated by law for all medical devices and must guar-

antee data integrity. Though security key establishment,

authentication, and data integrity are challenging tasks in

resource-constrained medical sensors, the relatively small

number of nodes in a typical WBAN and short commu-

nication ranges make these requirements achievable [53].

. Interoperability. Wireless medical sensors should allow

users to easily assemble a robust WBAN depending on

the user’s state of health. Standards that specify inter-

operability of wireless medical sensors will promote

vendor competition and eventually result in more aVord-

able systems.

Sensors

Signal 
conditioning 

circuitry

Radio 
interface

Analog-to-digital 
converter

Power 
supply

Sensor probes

Central 
processing unit

Memory

Digital-to-analog 
converter

Signal 
conditioning 

circuitry

Actuators

FIGURE 22.5 WBAN node architecture.
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22.4.1 Sensor Architecture

Physical sensors are devices that detect and convert natural

physical quantities into analog signals (voltages and currents).

Electrophysiological signals, such as ECG, EEG, EMG, and

GSR, are sensed directly through contact or contactless elec-

trodes attached to certain parts of the human body. Parameters

of physical quantities such as blood pressure, blood glucose

level, and body motion are converted into electrical signals

using corresponding transducers. For example, MEMS-based

accelerometers attached to the human body convert acceler-

ation measured on that location into an electrical signal. Often

these electrical signals need to be conditioned before sampling.

Signal conditioning circuits amplify signals that are too weak

(e.g., ECG signals are in millivolts, and these signals are typic-

ally ampliWed into the range of volts before sampling). Other

signal conditioning circuits may reduce the signal level or

reduce the frequency range of the signal through Wltering.

Finally, analog signals are converted into corresponding digital

code that can be further processed. These three functions—

sensing (with transducing), signal conditioning, and analog-

to-digital conversion (ADC)—are typically implemented by

multiple integrated circuits, but current trends are toward

integration of all these functions into a single-chip solution.

The WBAN physical sensors must satisfy a key requirement:

to be unobtrusive and easily deployable. They also need to have

a stable function over long time periods and be easy to cali-

brate. Sensor characteristics such as accuracy, resolution, sam-

pling rate, and the number of channels depend on health

monitoring applications. Table 22.2 shows for a series of

typical WBAN sensors min-max sampling rate, min-max

resolution, number of channels, type of sensor probes, and

preferred sensor location.

22.4.1.1 Computing

Processing resources on a WBAN node include one or more

processors/microcontrollers. They are responsible for coordin-

ating sampling activities; preprocessing sampled data (e.g.,

Wltering); performing feature extraction; managing local mem-

ory resources; and initializing, controlling, and managing

WBAN communication. In order to meet strict requirements

for small size and weight, the WBAN sensor nodes have lim-

ited processing and storage resources. Processing and storage

requirements of a WBAN node vary greatly depending on

physiological signals (type, resolution, sampling rate) and

WBAN application requirements. For example, a WBAN

node equipped with one or more foot switches poses minimal

requirements for processing power; similarly, transmission of a

raw ECG signal does not require signiWcant processing power.

But a heart sensor featuring morphological ECG analysis

requires higher processing power.

WBAN nodes must have enough storage resources for tem-

porary data buVers to accommodate for lost messages and

intermittent communication. The size of these buVers is de-

termined by allowed event latency and available memory cap-

acity. Event latency requirements deWne the maximum

propagation delay from the moment an event has been

detected on a WBAN node until the moment the personal

server application has received that event. For example, a

TABLE 22.2 Physiological signals: sampling rates, precision typical for wearable health monitoring applications, and likely

locations of deployment

Physiological

parameter

Sampling rate (Hz)

(min–max)

Precision (bits)

(min–max)

Channels

(min–max)

Type of sensing

device

Placement

location

ECG (per channel) (100–1000) (12–24) (1–3) Electrodes Chest

EMG (125–1000) (12–24) (1–8) Electrodes Muscles

EEG (125–1000) (12–24) (1–8) Electrodes Head

PPG (100–1000) (12–16) 1 Photodiode Ear or Wnger

Blood pressure (100–1000) (12–24) 1 Pressure cuV Arm or Wnger

Respiration (25–100) (8–16) 1 Elastic chest belt or electrodes Chest

Blood glucose <0.01 (8–16) 1 Chemical Skin

GSR (50–250) (8–16) 1 Electrodes Fingers

Skin temperature <1 in 60 sec (16–24) 1 Thermistor probe Wrist/arm

Localization (0.01–10) (80–120) 1 GPS receiver Personal server (PS)

Gait (25–100) (16–32) (1–3) Inertial gyroscope Chest

Activity (25–100) (12–24) 3 Accelerometers Chest, extremities

Steps (2–100) (1–16) (1–8) Mechanical foot switch Shoe insole

Humidity <1 in 60 sec (12–16) 1 — Attached to PS

Light <1 in 60 sec (12–16) 1 — Attached to PS

Ambient temperature <1 in 60 sec (12–16) 1 — Attached to PS

Atmospheric pressure <1 in 60 sec (12–16) 1 — Attached to PS

Ambient noise <1 in 60 sec (12–24) 1 Attached to PS
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WBAN node or multiple nodes monitoring posture of an

elderly person must notify the personal server that a fall has

been detected within a couple of seconds, so that the personal

server may create an alert event for emergency services or

home health care providers. Contrary to this, a WBAN appli-

cation targeting monitoring of physical activity and exercise of

a healthy user does not pose strict requirements for event delay

propagation. The data upload does not need to be in real time,

and it can be done once a day. However, even in this case,

available memory capacity imposes limitation on total operat-

ing time if we do not want to lose any data (see Example #3 in

Section 22.4.1.4).

22.4.1.2 Wireless Communication

The radio interface of a WBAN node must be able to receive

command and calibration messages from the network coord-

inator and to transmit sensor readings, extracted events, and

status messages to the network coordinator. Emerging wireless

standards and the expected proliferation of large-scale wireless

sensor networks enable continual advances in radio inter-

faces—each new generation of radio devices provides higher

bit rates at lower cost and energy consumption, with higher

levels of integration and miniaturization. System designers

need to estimate the required application bandwidth. In

general, bandwidth depends on the number and type of

sensor signals, their sampling frequency, and sample sizes.

The required communication bandwidth may be estimated as

follows:

SBW ¼
XN

i¼1

XNchi

j¼1

Fsi � SSi � Rovi ,

where

. SBW is the total required system bandwidth (without

communication protocol overhead),

. N is the total number of monitored signals in the system

(i.e., the body area network),

. Nchi is the number of channels of the signal i,

. FSi is the sampling frequency of the signal i, and

. SSi is a sample size of the signal i.

. Rovi is the recorded message overheard with the signal i.

The WBAN communication may feature a custom wireless

protocol or a wireless PAN based on IEEE standard 802.15.4

(Zigbee) or 802.15.1 (Bluetooth). ZigBee has been developed

for control and home automation applications; has a low data

rate, low power consumption, and short latency; and supports

short packet devices and a large number of devices in the

network. Bluetooth, on the other hand, uses a higher data

rate and higher power consumption and works with large

packet devices. Table 22.3 shows the main characteristics of

Zigbee and Bluetooth.

22.4.1.3 Putting Everything Together:
The Actis System

In the spirit of the system architecture previously described, a

prototype WBAN for health monitoring has been developed

[54, 55]. Figure 22.6 shows the prototype components. The

prototype includes two activity sensors (ActiS), an integrated

ECG and tilt sensor (eActiS), and a personal server. Each sensor

node includes a custom application-speciWc board and uses the

Tmote sky platform for processing and 802.15.4-compliant

wireless communication [56, 57]. The personal server runs

on either a laptop computer or a wide local area network/

WWAN–enabled handheld pocket PC. The network coordin-

ator with wireless ZigBee interface is implemented on another

Tmote sky module that connects to the personal server through

TABLE 22.3 Zigbee vs. bluetooth: comparison of main characteristics

Parameter Zigbee Bluetooth

Frequency band 2.4 GHz 2.4 GHz

Modulation

technique

Direct sequence spread

spectrum (DSSS)

Frequency hopping spread

spectrum (FHSS)

Protocol stack size 4–32 KB 250 KB

Battery changes Rare Intended for frequent

recharges

Max bandwidth 250 Kb/s 750 Kb/s

Max range Up to 70 m 1–100 m

Typical network

join time

30 ms 3 sec

Network size 65536 8

FIGURE 22.6 Prototype WBAN. From left to right: the personal

server with network coordinator, ECG sensor with electrodes, and a

motion sensor.
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a universal serial bus (USB) interface. For an alternative setting,

a custom network coordinator has been developed featuring a

ZigBee wireless interface, an advanced RISC (reduced instruc-

tion set computer) machine (ARM) processor, and a compact

Xash interface to the personal server. More details about proto-

type architecture, implementation issues, communication

protocol, and software architecture can be found in [54, 55].

22.4.1.4 Examples

Example #1: Calculate the min-max bandwidth requirements

[B/sec] of a heart sensor that streams a subject’s three-channel

ECG signal.

Solution: Bandwidth¼ [Sampling rate] � [Number of bytes

per sample] � [Number of channels]¼ [100, 1000] � 2 � 3¼
[600 B/sec, 6000 B/sec]

Example #2: Calculate min-max bandwidth requirements of a

heart sensor that streams RR intervals.

Solution: Normal heart rate is in the range of 30 to 240 bpm.

The heart sensor detects each heart beat and time-stamps it.

Therefore, an R-peak event is represented by an associated

time-stamp. If we assume a common time tick of 1/32

kHz¼ 31.25 ms, the Wrst step is to determine the number of

bits needed for each time-stamp. For the maximum heart

rate of 240 bpm, the number of clock ticks is (60/240) �

32,000¼ 8,000. For the minimum heart rate of 30 bpm, the

number of clock ticks is (60/30) � 32,000¼ 64,000. To represent

this range (8,000–64,000), a two-byte unsigned integer will

suYce. Consequently, the required min-max bandwidth is in

the range of (30 bpm � 2 B)/60¼ 1 byte/sec, and (240 bpm �

2 B)/60¼ 8 B/sec.

Example #3: Consider a WBAN node with a three-level mem-

ory hierarchy, including on-chip local random-access memory

(RAM), on-chip or on-board Xash memory, and an external

Xash disk. Assume that available memory capacity for data

buVering is as follows:

M1¼RAM capacity, 5 KB (40 Kb)

M2¼ Xash memory capacity, 4Mb

M3¼ Xash disk capacity, 1 GB (8 Gb)

What are expected operating times for an ECG sensor node

transmitting (a) a single channel ECG signal (sampling

rate¼ [100, 1000], resolution¼ 16 bits) and (b) RR intervals

for each level of the memory hierarchy?

Solution: The system operating time (OT) can be deter-

mined as:

OT ¼ Mi=BWi ,

where Mi is the given memory capacity and BWi is the amount

of data to be stored in memory (sampling_rate � sample_

length).

(a)

OT1(RAM) ¼ M1=BWECG ¼ 40 Kb=[1,600::16,000]bps

¼ [2:56::25:6]s

OT2 (flash memory) ¼ M2=BWECG

¼ 4 Mb=[1,600::16,000]bps � [0:72::7:2]hours

OT3(flash disk) ¼ M3=BWECG ¼ 8 Gb=[1,600::16,000]bps

� [2:5::25]days

(b)

OT1(RAM) ¼ M1=BWRR ¼ 40 Kb=[8::64]bps � [10::85] min

OT2(flash memory) ¼ M2=BWRR ¼ 4 Mb=[8::64]bps

� [0:75::6]days

OT3(flash disk) ¼ M3=BWECG ¼ 8 Gb=[8::64]bps

� [4:25::42]years

22.5 Wireless Mobile Devices
for M-Health

The WBAN personal server application can run on wireless

handheld devices, such as smart phones (which tend to be

voice-centric devices with PDA-like data capabilities) or

WWAN-enabled PDAs or personal communicators (which

tend to be data-centric devices with voice capabilities). In

home monitoring settings, the personal server application

may also run on a PC. Each new generation of wireless hand-

held devices includes more processing power, more storage,

and longer battery life, so that their capabilities meet the

requirements of the personal server application. Consequently,

the focus of this section is on personal server application

requirements.

The personal server provides user interface, controls the

WBAN, fuses data and events, and creates unique session

archive Wles. It begins a health monitoring session by wirelessly

conWguring sensor parameters, such as sampling rate, selection

of the type of physiological signal of interest, and speciWcation

of events of interest. Sensors, in turn, transmit pertinent event

messages to the personal server. The personal server must

aggregate the multiple data streams, create session Wles, and

archive the information in the patient database. Real-time

feedback is provided through the user interface. The user can

self-monitor vital signs and be notiWed of any detected warn-

ings or alerts.

The user interface must provide seamless control of the

WBAN, implementing all the necessary control over it, such

as node identiWcation, sensor conWguration [53], sensor cali-

bration, visual real-time data capture, and graphical presenta-

tion of events, alerts, and health status.

Sensor node identiWcation requires a method for uniquely

identifying a single sensor node to associate the node with
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a speciWc function during a health monitoring session. For

example, a motion sensor placed on the arm performs an

entirely diVerent function than a motion sensor placed on the

leg. Because two motion sensors are otherwise indistinguish-

able, it is necessary to identify which sensor should function as

an arm-motion sensor and which should function as a leg-

motion sensor. The personal server application will typically

guide a user through the process of sensor mounting and setup.

Another important function is sensor calibration, which can

be permanent (once in a lifetime) or session speciWc (e.g.,

activity sensors on the leg may require an initial calibration

of the default orientation on the body).

The personal server is solely responsible for collecting data

and events from the WBAN. Each sensor node in the network

samples, collects, and processes data. Depending on the type of

sensor and the degree of processing speciWed at the time of

conWguration, a variety of events will be reported to the per-

sonal server. An event log is created by aggregating event

messages from all the sensors in the WBAN; the log must

then be inserted into a session archive Wle. The personal server

must recognize events as they are received and make decisions

based on the nature and severity of the event. Normally,

neither R-peak nor heart beat events create alerts and only

are recorded in the event log. However, the personal server

will recognize when the corresponding heart rate exceeds

predetermined threshold values; in that case, it alerts the user

that the heart rate has exceeded the target range.

Even in a deployed system where intelligent sensors analyze

and process raw data and transmit application event messages,

there may be cases where it is necessary to transmit raw data

samples. Such cases become apparent when considering a

deployed ECG monitor. When embedded signal processing

routines detect an arrhythmic event, the node should send an

event message to the personal server, which will then be relayed

to the appropriate medical server. The medical server, in turn,

will provide an alert to the patient’s physician. However, a

missed heart beat can also be caused by electrode movement.

Therefore, it would be useful to augment this event with actual

recording of the fragment of unprocessed ECG sensor data.

The recording can be used by a physician to evaluate the type

and exact nature of the event or to dismiss it as a recording

artifact. In such a case, the embedded sensor will begin stream-

ing the real-time data to the personal server for a predeWned

time period.

22.6 Next-Generation M-Health Systems

To gain wider acceptance, the next generation of m-health

systems will have to address several challenges that today

limit the usefulness of such systems. Those challenges include

the availability of infrastructure and bandwidth in current and

new wireless networks, miniaturization of medical sensors,

convenience, and standardization of communication protocols

and interfaces between medical and nonmedical devices.

With the advances in wireless mobile devices, their usage in

the m-health context becomes more practical. A smart phone

(see section 22.5) seems to be the most frequently considered

candidate for a future personal multimedia hub. In addition to

handling all personal multimedia needs, it could serve as a

central part of m-health systems by taking over the tasks of

medical sensor coordination, monitoring, archiving, and

reporting. The answer to the question of why to use a phone

as a personal server seems to be an easy one. Recent advances

in computational and storage capacity, the dramatic increase

in the available wireless bandwidth, and advances in screen

technologies have made it possible to turn a once simple device

into a convenient do-it-all gadget. In addition, it appears that

everyone has a cell phone now, or will have one in the near

future. While in 1991 there were only about 16 million cell

phone subscribers worldwide, by 2005 the number of sub-

scribers had grown to 2.14 billion [58]. Worldwide, cellular

subscribers are expected to top 3.2 billion in 2010 and to

continue to grow in numbers. In the United States, the number

of land lines reached almost 193 million in 2000 and has been

declining since. At the same time, the number of cell phone

subscribers went from 5.3 million in 1990 to 202 million in

2005 [59].

22.6.1 Wireless Cellular Technologies
for M-Health Systems

Despite the usual issues of concern whenever medical systems

are considered (security, reliability, latency, physical size), one

of the biggest obstacles to widespread use of cellular networks in

telemedical systems is the lack of bandwidth and performance.

There is some discrepancy in the way diVerent groups

classify current and future wireless cellular technologies into

generations (1G, 2G, 3G, and 4G) [60, 61]. We will give a

short description of some of the most important technologies

available today or currently being developed.

22.6.1.1 First and Second Generations

1G was simply the Wrst generation of analog mobile phones,

oriented exclusively to voice communication.

2G, the second generation, replaced 1G analog mobile

phones. 2G phones were intended primarily for digital trans-

mission of voice. Three systems were developed: PaciWc Digital

Cellular (PDC, widespread in Japan), Interim Standard 95

(IS-95) and IS-136 in the United States, and the Global System

for Mobile Communications (GSM, widespread in Europe).

22.6.1.2 Generations 2.5 and 2.75

2.5G was generally reserved for General Packet Radio Service

(GPRS) (see Figure 22.3), delivered as a network overlay for
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GSM, Code Division Multiple Access (CDMA), and Time

Division Multiple Access (TDMA) networks. While the basic

GSM service allowed data rates of up to 9.6 kbps only, GPRS is

capable of having 14 kbps per channel (after protocol and

error-correction overhead). GPRS can combine up to eight

channels, bringing the total to over 100 kbps in theory. For

the Wrst time, the focus of a wireless phone service was pri-

marily on data transmission. The protocol architecture of the

backbone network is based on the Internet protocol (IP),

which can be supplemented by the transmission control proto-

col (TCP) for reliability or the user datagram protocol (UDP)

for applications that do not require that level of robustness.

The most important feature for end users was the always-on

connectivity of GPRS. The user could remain continuously

connected but the network resources and bandwidth were

used (and the user charged) only when data were transmitted.

GPRS oVered multiple services—web browsing, transfer of still

images and video clips, document sharing and remote collab-

orative working, etc. All of these services allowed the emer-

gence of the Wrst usable medical systems based on global

availability.

2.75G referred to Enhanced Data for GSM Evolution

(EDGE). If the GPRS protocol was the Wrst step toward 3G,

the EDGE protocol was the second one. In theory, EDGE

oVered data rates of up to 384 kbps, with the actual data

rates being much lower. The real attractiveness of EDGE was

in its ability to work on the existing GSM spectrum. The EDGE

protocol was adopted mostly by mobile operators in countries

where the allocation of spectrum for the 3G systems was

delayed (e.g., the United States).

22.6.1.3 Third Generation

In 2000, European mobile phone operators spent well over

$100 billion on 3G spectrum licenses. In September 2006, the

U.S. Federal Communications Commission (FCC) completed

the auction of licenses for one of the bands (AWS-1) of Ad-

vanced Wireless Services. The total amount raised from the

auction was close to $14 billion [62]. High fees and the neces-

sity of building entirely new infrastructure delayed the intro-

duction of 3G systems, except in some Asian countries (Japan,

South Korea) where fees were almost nonexistent. The main

air interface for the third generation is wideband CDMA (W-

CDMA). Two services using W-CDMA are the Universal Mo-

bile Telecommunications System (UMTS, a GSM successor)

and Freedom of Mobile Multimedia Access (FOMA, imple-

mented in Japan). The International Telecommunication

Union (ITU) approved UMTS as a part of the ITU-R M.1457

recommendation. UMTS provides up to 2 Mbps indoors

(a low-mobility condition), up to 384 kbps outside (at the

speed of slow-moving pedestrians), and up to 144 kbps for

fast-moving mobile phones. The general idea behind IMT

(International Mobile Telecommunications)-2000/UMTS is

to have a uniWed, seamless operation through the combined

use of pico- and microcells indoors and in urban areas, macro-

cells in outdoor and rural areas, and satellite networks when

necessary.

In the early days of deWning the 3G systems, video telephony

was envisioned as the killer application. However, music

downloading was the most frequently used service among the

early adopters of these systems. It has been shown that 3G

systems can easily support the amount of data required for

medical applications [37].

22.6.1.4 Beyond 3G

Post-3G requirements and classiWcations become blurred.

Instead of making a clear distinction among systems, many

use the term ‘‘3G and beyond’’ or B3G (beyond 3G) to include

both 3G and 4G systems. As expected, some of the key require-

ments of new systems are increased bandwidth, stable perform-

ance, and quality of service (QoS). However, the emphasis

seems to be even more on providing a generalized access net-

work that will allow internetworking between diVerent access

systems in terms of horizontal and vertical handover [63].

The following standards and technologies are by some con-

sidered as 4G systems, while others treat them only as the Wrst

steps toward the ‘‘real’’ 4G systems:

. High Speed Downlink Packet Access (HSDPA) is designed

for data rates of up to 14.4 Mbps and features lower delays

of approximately 100 ms. More importantly, in its initial

implementation, it is capable of delivering average

throughput rates of about 1 Mbps. Cingular Wireless

(since 2005) and a number of other companies (since

2006) have oVered HSDPA on a commercial basis. The

peak network rates are expected to reach 7.2 Mbps by 2008.

. WiMax, originally based on the IEEE 802.16 speciWca-

tion, is designed to deliver up to 70 Mbps over a 50 km

radius. The IEEE 802.16-2004 standard was developed for

an unlicensed band (5.8 GHz) and intended primarily

for local connectivity. The IEEE 802.16e-2005 added sup-

port for mobile radio operation. One aspect of WiMax

that currently limits its usability is the fact that schedul-

ing becomes ineYcient if a large number of users are

present in the same sector.

22.6.2 Future Trends and Obstacles

Most people agree that to be considered ‘‘truly’’ 4G, the system

has to be capable of achieving up to 100 Mbps when the user is

stationary (indoor/urban) and up to 1 Gbps when the user

is moving (outdoors). 4G systems are data- and visual-centric.

In addition, a 4G system is expected to have the following

features:

. Use of IP version 6, which increases the number

of addresses, eliminates the need for network address
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translation (NAT) devices, and makes it possible to use

concepts and applications developed for other devices for

easier integration into global systems

. Multiple antennas at the transmitter and the receiver, to

sustain the increased data rate

. Support for pervasive networking (handover), as is being

deWned by the IEEE 802.21 standard

Some of the envisioned features beyond 4G include:

. Being able to smell the environment of the other person

on the phone

. Communicating without emitting any voice (lip move-

ment recognition)

Having in mind the current trends for increasing the data

rates in new wireless mobile systems, it seems that the most

important issues to be resolved prior to widespread adoption

of m-health medical systems are:

. The need for further miniaturization of medical sensors

in order to increase user comfort and reduce power

consumption and the possibility of unwanted disclosure

of the patient’s condition

. The lack of standardization and the ability to interface

existing medical equipment with new communication

systems

. The security of data during transmission and while

stored in the user’s personal hub (smart phone)

. Users’ and caregivers’ conWdence in m-health systems

22.7 Summary

M-health is becoming a major technological trend for ambu-

latory and prolonged physiological monitoring. It has the

potential to shift the paradigm of health care from reactive to

proactive, from disease management to disease prevention.

System developers will still have to resolve a number of issues.

The most important are (a) wearability and compliance,

(b) system integration, (c) standardization of protocols and

procedures, (d) seamless system integration, and (e) data min-

ing of huge datasets.

In this chapter we have discussed the current state of tech-

nology, existing systems, and the main issues to provide system

designers a feel for the ‘‘landscape’’ of the design space.

22.8 Exercises

1. Prepare a survey of relevant sensing techniques for nonin-

vasive blood glucose monitoring used in commercial systems

and research prototypes. Discuss their accuracy, system

design, and suitability for wearable applications.

Do the same for blood pressure monitoring.

2. Wireless interfaces consume the most energy in WBAN

sensor platforms. To reduce energy requirements (and con-

sequently improve wearability), on-platform compression

of biomechanical and bioelectrical signals can be employed.

Prepare a survey of the existing approaches for compression

of these signals and discuss their suitability for on-platform

implementation.

3. A microcontroller system is performing the following task:

16-bit samples have a frequency fADC and are processed and

stored in internal memory. After 16 samples are collected,

they are sent using an external wireless interface operating

at 200 kbps. Data are encapsulated into a simple frame

format:

Header

(preamble þ sync)

Sample

0

Sample

1 . . .

Sample

15 Check sum

6 bytes 2 bytes 2 bytes 2 bytes 2 bytes

The microcontroller also keeps a software real-time clock

with a 500 ms precision. The microcontroller is running at

8 MHz (main clock), and the internal ADC is using the same

clock. It takes:

. 8 clock cycles to sample 16-bit data

. 13 clock cycles to convert it

. 14 clock cycles to process each sample and store it to

memory

. 12 clock cycles to update the real-time clock

. 12 clock cycles to prepare a byte and send it to the

external wireless interface

It takes 6 ms to wake up the wireless interface and to begin

transmission. Assume that the microcontroller can wake up

instantaneously and that the previously given processing times

include interrupt overhead (if appropriate). The current con-

sumption of the microcontroller and the wireless interface is as

follows:

Mode Current consumption

Active mode, ADC oV 2 mA

Active mode, ADC on 4 mA

Sleep mode 2�A

Wireless interface, active mode 15 mA

If the system is running on batteries that have a capacity of

2,000 mAh, calculate the maximum sampling frequency (fADC)

such that the calculated battery life is at least 6 months (180 days).
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4. Calculate the required bandwidth of a heart sensor that

reports both raw ECG (single channel), with a sampling

frequency of 100 Hz, and heart rate, assuming average heart

rate of 72 bpm. Heart beat stream includes 4-byte time-

stamps.

5. Calculate the required bandwidth for ECG and EEG mon-

itoring. The system features three channels of ECG, four

channels of EEG, and a tilt sensor. ECG and EEG signals are

sampled at 125 and 250 Hz, respectively, and the tilt sensor

is sampled once every 10 seconds and saved as a one-byte

status/position.

6. How many users with ECG monitors can we simultaneously

monitor in a network with eVective data bandwidth of

100 kbps? Each ECG monitor records three channels of

ECG with a sampling frequency of 500 Hz.

7. What is the expected operation time of a monitoring system

with one ECG channel and two sensors with 3D acceler-

ometers? Sampling frequency of the ECG is 250 Hz, sam-

pling frequency of accelerometers is 40 Hz, and the

personal server uses a 512 KB Xash memory card.

8. What is the eVective duty cycle of the system in Question 7

assuming constant message size of 50 bytes with eVective

payload of 25 B and 250 kbps wireless communication

bandwidth?

9. What is the expected battery life assuming that the system is

powered with 2 AAA batteries with capacity of 750 mAh.

Average power supply current in active mode is 1 mA and

during wireless communication 20 mA. The system fea-

tures TDMA protocol with 50 ms time slots for each sensor.

Each sensor listens throughout the master time slot (50 ms)

and transmits in its own time slot. Average transmission

time is 10 ms.
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23.1 Introduction

With recent advances in multimedia technology, its impact

toward information technology in biomedicine is ever increas-

ing [1–3]. Multimedia technologies are enabling more com-

prehensive and intuitive uptake of information in a wide range

of Welds that have a direct impact on our life, particularly in

entertainment, education, work, and health. Systems and ser-

vices have been developed to harness the advantages of multi-

media technology, which ranges from video-conferencing,

online shopping in virtual environments, video-on-demand

services and E-learning to remote healthcare [1, 4, 5]. The

core components behind these multimedia technologies are

human-centered multimedia services, which combine many

Welds of information technology including computing, tele-

communication, databases, mobile devices, sensors, and vir-

tual/augmented reality systems. Human-centered multimedia

services are built upon three key research pillars as shown in

Figure 23.1. These are (1) human-computer interaction (HCI);

(2) multimedia delivery; and (3) multimedia data manage-

ment. HCI (e.g., via the use of keyboard/mouse input devices)

is the initial component of the multimedia information Xow

with the responsibility of generating outputs by interpreting

inputs from the users. Multimedia delivery systems (e.g., the

Internet) are responsible for transparent information delivery

(e.g., streaming video) from sources to destinations. Finally,
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the multimedia data management components facilitate infor-

mation access (e.g., browsing, retrieval, and indexing).

One area of biomedicine that has seen rapid transition and

great beneWt from state-of-the-art developments in multi-

media technology is the smart medical home, known also as

smart houses [3, 6–10], and often considered to be the hub of

future health care [11]. The smart medical home is a subcom-

ponent of the concept of a smart home [3, 12, 13]. This notion

of smart home was Wrst introduced in the early 1980s with the

proposal to integrate intelligent implementations of consumer

electronic devices, electrical equipment, and security devices

for the purpose of automation of domestic tasks, easy com-

munication, and human-friendly control, as well as safety [3,

13]. Smart homes include devices that have automatic func-

tions and systems that can be remotely controlled by the user

with the primary objective of enhancing comfort, saving en-

ergy, and increasing security for the residents of the house.

These developments have found applications in the Weld of

enhancing the medical capabilities of homes for people with

medical conditions and special needs.

The aim of a smart medical home is analogous to that of

smart homes, namely to create an integrated system of aVord-

able, easy to use, intelligent health care tools for consumers in

their home [6, 14]. The smart medical home has recently seen

signiWcant research and development [3, 9, 14–16]. This is

attributed to the trend of consumers increasingly taking con-

trol of their own health care. This trend is evident from the

shift observable in medical treatment plans, which are increas-

ingly moving from a hospital-based to a patient-centered sys-

tem [17]. The same phenomenon is observable in the increased

use of the Internet to search for health-related information and

in the billions of dollars being spent annually on alternative

and nontraditional health products [9, 16, 18, 19]. More

signiWcantly, the health care system may not be able to cope

with the impending inXux of new patients as the population

continues to age. It is expected that by the year 2020, the

65-year-and-older population in the United States will reach

53 million, an increase of 18 million from 2000 [3]. Thus, the

need for technologies that are able to complement the health

care system while enabling people to live healthier, longer lives

in their own home is becoming critical. With the rapid expan-

sion of networking and information technologies into our

daily lives through such technologies as the Internet, mobile

phones, and interactive digital television (DTV), the accept-

ance level for potential smart medical home technologies is at

an all-time high. The needs of our aging population will

accelerate the movement and awareness of self-care and

wellness and will irreversibly alter traditional doctor-patient

relationships [3, 7, 20].

This chapter presents latest research and development in

multimedia technologies and the transition of these technolo-

gies into health care products for the smart medical home. It is

subdivided into two parts: (1) enabling multimedia technolo-

gies and (2) applications involving multimedia technologies in

biomedicine. In the Wrst part, a general introduction to multi-

media technologies is presented, continuing into a discussion

of the visual, audio, and other emerging media components

for HCI in section two. This is followed by multimedia content

management in section three. The technologies for delivering

this multimedia content are presented in section four. The

second part starts with a general description of biomedical

technologies that either have already found or are Wnding

their way into smart medical homes. Section Wve introduces

and gives examples of developments in smart medical homes,

with emphasis on enabling multimedia technologies. This is

followed by sections six to eight which present the major

applications used in medical homes of telemedicine (monitor-

ing, consultation, etc.), sensors (wearable and stand-alone

devices), and computer-assistance technologies (medication

advisor, decision support, etc.). Seamless integration of these

diVerent multimedia technologies is necessary for medical

devices used in a smart medical home. A more in-depth

discussion of the biomedical information technology topics

of telemedicine and wearable medical devices in biomedicine

FIGURE 23.1 Illustration of the three pillars of human-centered multimedia systems:

(1) interaction; (2) delivery; and (3) management.
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can be found in Chapter 22. However, to fully appreciate the

contents of this chapter, these topics will be brieXy covered,

with emphasis on their application to the smart medical home

and their use of multimedia technologies. Section nine dis-

cusses potential applications of virtual/augmented reality, fol-

lowed by the developments in patient awareness toward

biomedical multimedia technologies in section ten. Finally, a

summary of the chapter is given in section eleven.

23.2 Multimedia for Human-Computer
Interaction

The aim of HCI is to mimic human-human interactions. Of

course a complete picture of how human beings interact with

the real world is not yet available to us, and this remains one of

the greatest scientiWc challenges. Interacting with the computer

is essentially the Wrst step toward manipulating and using

digital information. Given the ever-increasing role of com-

puters in society, HCI has become increasingly important in

our daily lives [21]. However, interaction between the human

and computer via the use of traditional input devices that are

often the combination of mouse, keyboard, joystick, or remote

control, is far less Xexible than spontaneous human-human

interaction. The constraints derived from these devices have

become even more restrictive with the emergence of tech-

niques such as virtual/augmented reality [22, 23] and wearable

computers [10, 15, 24].

In general, human-human interaction consists of all Wve

basic senses of human cognition: vision, hearing, smell, taste,

and touch [25]. The ultimate aim of HCI is to make use of

all natural human actions, such as facial expressions, body

movement, speech, and eye gaze, in communicating with the

computer, which interprets these and generates outputs that

are understandable by the human operators. Vision and speech

are two of the most dominant senses, and hence they will be

focused on in greater depth in the sections below, followed by a

review of emerging technologies for other sensing modalities.

23.2.1 Visual Information Processing

Visual information refers to what a human perceives through

his or her eyes or information captured by optical cameras.

A key contributor in the Weld of visual information processing

is face recognition technology [26], as used in such applica-

tions as security and surveillance systems [27], gesture recog-

nition [28], lip reading for the deaf [29], and optical character

recognition [30]. One of the main limitations of current visual

information processing systems is the need to apply con-

straints to the users, such as the need to wear gloves to ease

hand tracking for gesture recognition systems to provide

enough information for the computation to make use of the

data.

The other key research area in visual information processing

is the way that computers present users with visual informa-

tion. Computer graphics and visualization have greatly con-

tributed to this issue, providing approaches that include stereo

or multiple-view image analysis, 3D reconstruction, view syn-

thesis and rendering, 3D displays, graph drawing, etc. Com-

puter graphics and visualization, as a Weld, aims to produce

realistic representation and visual information of data in 2D,

3D, or in greater dimensions, through the use of mathematical

models and algorithms [4, 31, 32]. These include but are not

limited to ray tracing, texture-based rendering, and illustrative

rendering. Computer graphics and visualization techniques

have already been widely applied to a large variety of domains

including public transport, biology, social science, and archae-

ology. These research areas focus on facilitating information

comprehension for the users by means of virtual environ-

ments, generally to permit users to capture computational

information through their visual senses. In general, visual

information processing requires intensive computation and

therefore continuous research on how to achieve eYcient

computation is of great importance. Chapter 9 covers

the applications of data visualization and display of digital

medical images.

23.2.2 Speech Processing

Apart from visual information, another dominant modality in

human communication is sound, with speech in particular.

The two main areas for speech processing in HCI are speech

recognition and speech synthesis. The concept of speech rec-

ognition is for a computer program to acquire analog signal

(speech) from a microphone, convert it to a digital waveform,

and process it to search for a matching wave (recognition) [33,

34]. The conversion requires sophisticated algorithms that

compare the input with a database of known words. Once

the words are recognized, these words are often represented

in digital text format. Automatic speech recognition (ASR) has

been a research topic for decades [34] and tremendous

advancements have been made. Many prototypes (e.g., Sphinx

project II [35]) and commercial systems (e.g., IBM ViaVoice

[36]) are now readily available. Most speech recognition sys-

tems are based on statistical models of the acoustic features of

spoken words and of natural language. Therefore, it is error

prone because of the diversity of diVerent speakers, the phys-

ical or emotional change of a speaker, and diVerent physical

environments (e.g., noise). This issue has been partially

addressed by the introduction of training and adaptive

tuning algorithms, which require an initial training session

but allow continuous updates to the software model of

the user’s speech through user-conducted error checking

and corrections. Most current ASR systems constrain users to

special training, a special speaking style (e.g., prepared vs.

spontaneous and discrete vs. continuous), and known physical

environments.
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Speech synthesis is a process of converting unrestricted text

into speech and communicating information to users. As

reviewed in Breen [37], speech synthesis systems in general

operate via the following steps. First, the text is converted into

a symbolic linguistic/phonologic description. Second, the pho-

nologic component converts the set of orthographic symbols

into a set of distinctive features or sounds (i.e., phonemes)

depending on the phonologic model. The phoneme is the most

popular form of phonologic representation and the set of

phonemes of a language can be understood as the smallest

segments of sounds that can be distinguished by their contrast

within words. Finally, this abstract symbolic description is

transformed into an acoustic signal. The success of speech

synthesis has been beneWcial to many applications such as

automatic telephone banking and taxi booking. A trend in

speech synthesis is to reinforce the message with paralinguistic

cues so that communication moods and other content beyond

the text itself can be delivered. This area of study is called

expressive text-to-speech synthesis, with interest in non-

emotional expressive speaking styles growing in recent years.

It has been recognized that depending on the domain and the

target group of speech applications, diVerent expressive styles

are required. For example, expressing suspense and global

storytelling style is essential to storytelling applications.

Theune et al. [38] proposed to generate expressive speech for

storytelling applications through a set of prosodic rules

extracted from human storytellers’ speech. Recently, IBM

[33] introduced an expressive text-to-speech engine that can

be directed, via text markup, to use a variety of expressive

styles including questioning, contrastive emphasis, and con-

veying good and bad news for American English.

23.2.3 Emerging Sensing Modalities

Motivated by the tremendous need to explore better HCI

paradigms, there has been a growing interest in developing

innovative sensing modalities [39–43]. Besides the vision and

speech senses for HCI, computers can also simulate tactile

sensing, which enables the feeling of realism through the use

of haptic devices, for example, in virtual reality (VR) [41].

Haptic interfaces allow users to input commands into the

computer by means of hand movements and provide users

with tactile and force feedback that is consistent with what the

user is viewing, thus providing users with senses to manipulate

3D virtual objects with respect to features such as shape,

weight, surface texture, and temperature [42]. Haptic inter-

faces provide the opportunity for complex yet potentially more

intuitive means of interacting with a computer, and this ability

has been widely explored in medical applications [42, 43].

Another sensing modality that has seen an exponential

increase in research interest is the monitoring of brain elec-

trical activity (via electroencephalogram). Brain activity can be

monitored noninvasively from the surface of the scalp and can

be harnessed to directly control a computer [40]. The hands-

free nature of such HCI is potentially useful in situations where

hands are needed for other tasks, such as in aircraft piloting.

Such sensing modality is also of paramount importance for

physically disabled patients, as it allows them to interact with

the latest information technologies.

23.2.4 Virtual/Augmented Reality

VR, formerly known as a visually coupled system, is a concept

that aims to integrate all the sensing technologies seamlessly

and allow users to gain more realistic experience in a physically

and perceptually appropriate manner [22]. This approach is

generally believed to be the next generation of HCI [44], as it

leverages the multimodal nature of human-human interaction

to facilitate multimedia computing without the need for spe-

cialized training. One of the Wrst multimodal HCI systems can

be credited to Bolt [45]. His put-that-there system fused

spoken input and magnetically tracked 3D hand gestures

using a frame-based integration architecture. The system was

used for the simple management of a limited set of virtual

objects such as the selection of objects, modiWcation of object

properties, and object relocation. Even though the natural feel

of the interaction was hindered by the limitations of the

technology at the time, put-that-there has remained the

inspiration of all modern multimodal interfaces. A compre-

hensive review of multimodal HCI can be found in Sharma

et al. [21] and Pantic et al. [46].

More advanced VR systems demand support from advanced

multimedia technologies that include computer graphics, visu-

alization, speech recognition, and haptic interaction. This

demand is clearly illustrated by Schreer et al. [4], where the

state of 3D multimedia technologies including 3D video re-

construction and rendering and 3D audio processing have

been reviewed for their applications to VR as well as to tele-

presence. Recent trends in VR systems have resulted in less

dependence on special wearable HCI devices (i.e., head-

mounted displays and sensory gloves) and a move toward

larger scale 3D displays and systems that minimize HCI re-

quirements [4]. This has further facilitated the development of

more immersive VR systems, leading to the development of

augmented reality (AR) systems, which diVer in that the visu-

alized information and real-world visual objects co-exist in the

same user interaction space [23].

23.3 Multimedia Content Management

Creating and publishing digital multimedia content today is

easier than ever before, at both individual and organizational

levels. Every individual in the world is a potential content

producer who is capable of creating digital content that

can be easily distributed and published. The ease of content

production is accelerating its growth, and thus leading to
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problems in content management and content identiWcation.

Health care is a domain that stands to signiWcantly beneWt

from enhancements in content management [47]. In a typical

health care system, patient records consisting of multimedia

content (images, audio, etc.) are stored electronically, and this

content needs to be searchable by physicians. Thus, with

growth in patient records, the ability to manage these contents

so that searching can be performed eYciently is becoming

increasingly important. To eYciently use the advantages

of multimedia data, it is essential to develop intelligent

approaches to processing and managing these data and index-

ing their content.

23.3.1 Multimedia Content Analysis

Multimedia data are typically annotated manually with text-

ual descriptions and then stored in a database management

system (DBMS) which controls access to these data [48–50].

However, such a solution was found to possess serious con-

straints when applied to multimedia content management

[51]. The problems associated with manual annotation are

that it is labor intensive and subjective to the operators and

traditional textual annotation is limited in its ability to

contextualize multimedia contents. For instance, it is not

feasible to contextualize the texture visual feature of each

image by keywords. Therefore, in the early 1990s, content-

based retrieval was proposed to resolve these issues and allow

users to access multimedia data based on their perceptual

content.

As multimedia data have diVerent formats and character-

istics (e.g., image, video, and audio), diVerent approaches are

used to contextualize their contents. The ever-improved Weld

of data processing and analysis, as described in Chapter 7, has

greatly contributed to the growth of visual feature extraction.

Visual features such as color, shape, and texture are extracted

to characterize image and video content [52]. For example, the

color histogram is used to represent the color distribution of a

given image, shape for object contours, and texture for visual

patterns (e.g., stripes) [53–55]. Additionally, motion informa-

tion can be exploited to contextualize the movements of ob-

jects and cameras in the categorization of videos [56].

In the medical domain, visual features such as shape and

texture have been used for medical image retrieval [47]. Due to

the advances in image processing and possible inclusion of

prior knowledge, content-based image retrieval (CBIR) has a

great potential in medical image database applications. Cur-

rent developments of CBIR of medical images can be found in

Chapter 4.

Much as with visual features, audio feature extraction has

beneWted signiWcantly from advances in audio processing that

are enabling the use of, for example, loudness and harmoni-

city as features to characterize audio content [57], with a

good example being the automated classiWcation of music

genres [58].

23.3.2 Multimedia Content Description
Interface

The great potential of multimedia retrieval has attracted much

interest from a large number of researchers. Therefore, many

feature extraction approaches have been proposed to charac-

terize both the perceptual and conceptual contents of multi-

media data. Meanwhile, no systematic way has been found to

exchange the features and to model multimedia content

through these features, which may result in proprietary solu-

tions in multimedia content access. Motivated by such a de-

mand, the motion picture experts group (MPEG) in 1996

initiated MPEG-7 to look into the issues of providing inter-

operable descriptions to bridge multimedia content and its

consumption and facilitate multimedia content access [59].

Unlike previous MPEG standards that target the compression

and reproduction of the data itself, MPEG-7 is geared towards

enhancing that data that describes the context and contents of

the multimedia data, the so-called metadata.

MPEG-7 descriptions are intended to provide extensible

metadata solutions for a wide range of applications where

content description can be at diVerent levels of abstraction

from the low-level (automatic and statistical features) to the

representation of high-level features that convey semantic

meaning. In addition, highly structured MPEG-7 descriptions

support the combination of low-level and high-level features in

a single description. Examples of content-based access with

MPEG-7 include Wnding information using spoken queries,

hand-drawn images, and query by humming [59], as well as

the personalized service of TV news [60, 61]. MPEG-7 has also

been adopted to facilitate the management, delivery, and access

of medical data as demonstrated by Rege et al. [62] in whose

study human brain images were annotated and used to capture

the semantic information such that both the retrieval tasks and

answering domain-speciWc complex queries can be supported

for image-guided neurosurgery. Similarly, electroencephalo-

gram images were organized eYciently by combining textual

information and low-level image information with MPEG-7

[63]. In a recent study, Cuggia et al. [64] introduced an

integration of MPEG-7 with existing medical standards to

manage digital audiovisual medical resources.

23.4 Multimedia Delivery

Multimedia data places considerable demand on computing

resources and subsequently presents formidable technical diY-

culties for storage, networking, and computing infrastructures.

Compression techniques are critical to deliver multimedia

content to a wide range of communities. Telecommunication

technologies oVer valuable opportunities for distributing

multimedia data. Undoubtedly, the Internet is one of the

most popular manners, though it was not initially designed

for multimedia services. Wireless sensor networks have also
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recently enabled a paradigm shift in the science of monitoring

applications such as weather and soil moisture [65]. In this

section, we will introduce a new potentially useful delivery

system, the digital TV, which enables the distribution of multi-

media content as well as interactive data. It is expected that

almost every nation is in the process of transforming analog

TV to digital TV [66]. We will also introduce the MPEG

technology, which is the most routinely used multimedia

delivery standard.

23.4.1 Digital Television

The TV has long been an integral part of our life, whether as an

entertainment appliance or as a window to the world. Its legacy

role of high penetration media-delivery in households will be

further emphasized in the DTV era because DTV via satellite,

cable, and terrestrial broadcasting provides much better picture

and sound quality as well as more opportunities for applica-

tions such as interactive services and data-casting. A TV that

receives its signal digitally is no longer just a passive box that

displays pictures and sound. A DTV that is properly equipped

can be a powerful and interactive computer with similarities to

networked desktop PCs. Access to such TV has even been

extended to handheld devices such as mobile phones and per-

sonal digital assistants (PDAs). These advantages will signiW-

cantly enrich the viewing experience and take it beyond its

current dimensions in addition to fostering a number of novel

applications (such as the ability to access health information

and medical consultation) in the Weld of home health care and

mobile health systems (m-health) [67]. Cable TV networks have

also been used to transmit alarms, emergency calls and biomed-

ical data and to provide home telecare interactively [68].

Traditionally, users follow TV program schedules to watch

their favorite shows. This situation has changed since the

videocassette recorder was introduced, allowing users to record

programs and watch them at the user’s convenience. Increases

in modern computing and storage capacity are bringing users

more improved services such as video-on-demand and digital

recording.

23.4.2 Multimedia Compression

Today, we can enjoy digital music almost anywhere with music

players becoming smaller and able to store increasing numbers

of songs. In addition, digital video can be watched through the

Internet, DTV, and even hand-held devices. Behind all these

successful multimedia products are standards that provide

interoperability and thus generate a marketplace in which

consumer equipment manufacturers can produce competitive

yet conformant products.

In terms of static images, the joint photographic experts

group (JPEG) standard has achieved enormous success [69],

as is evident from the use of JPEG in all digital cameras to store

pictures. To accommodate advances in multimedia technology,

JPEG has evolved into JPEG2000. JPEG2000 uses wavelet com-

pression as the core technique [70] to develop a new image

coding standard for diVerent types of images (e.g., bi-level,

gray-level, and color) with diVerent characteristics (e.g., nat-

ural, scientiWc, medical, and text), and thus allowing diVerent

imaging models (e.g., real-time transmission and image library

archival) preferably within a uniWed and integrated system.

The advantages of JPEG2000 have spurred its application in

biomedicine. For instance, Khademi and Krishman [71] suc-

cessfully used JPEG 2000 for robust and real-time digital

mammogram compression with eYcient database access and

remote access to digital libraries that was shown to reduce the

time required during diagnosis.

DiVerent standards of MPEG which include MPEG-1,

MPEG-2, and MPEG-4 have been proposed for diVerent ap-

plications, a decision which forms a large part of the MPEG

format’s popularity. MPEG-1 (issued in 1991), entitled ‘‘Cod-

ing of Moving Pictures and Associated Audio at Up to About

1.5 Mbps’’ is the Wrst standard by the MPEG and is intended

for medium-quality (e.g., VHS quality) and medium bit-rate

video and audio compression. MPEG-1 organizes audio cod-

ing schemes in three layers, simply called layer-1, layer-2, and

layer-3. Encoder complexity and performance (sound quality

per bit rate) progressively increase from layer-1 to layer-3. Each

audio layer extends the features of the layer with the lower

number. The popular MP3 Wle format is an abbreviation for

MPEG-1 layer-3, which set the stage for the ongoing revolu-

tion in distributing digital music.

MPEG-2 (issued in 1994) [72], entitled ‘‘Generic Coding of

Moving Pictures and Associated Audio’’ was designed to sup-

port more coding schemes, a wider range of bitrates, and more

choice in video resolution (e.g., high definition TV). Although

MPEG-2 systems have video and audio speciWcations that are

largely based on the MPEG-1 speciWcations, MPEG-2 provides

higher picture quality by using higher data rates. Advanced

audio coding is added to provide a signiWcant performance

increase over backward-compatible audio. MPEG-2 tries to be

a generic coding standard for a wide range of applications by

comprising a large set of tools to meet the requirements of

various applications. The tool sets are characterized in terms of

proWles and levels that are deWned to provide coding solutions

with appropriate complexity as well as to limit the memory

and computational requirements for various applications. For

example, set-top boxes of standard deWnition TV and high

deWnition TV correspond to the implementation of diVerent

proWles/levels of MPEG-2 standard.

MPEG-4 (issued in 1999), entitled ‘‘Coding of Audio-Visual

Objects’’ is the latest video coding standard and is designed to

move from the pixel-based to an object-based approach [56].

This is achieved by embodying a signiWcant conceptual jump

in audiovisual content representation and object-based mod-

eling and thus enabling an audiovisual scene to be built as a

composition of independent objects with their own coding,

features, and behaviors. Temporal and spatial dependencies
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between objects can also be described with a binary format

for scene description. In summary, the object-based coding

approach in MPEG-4 allows for hybrid natural and synthetic

coding, content-based interaction and reuse, content-based

coding (e.g., text coding tools for text objects and 3D model

coding for 3D objects), and universal access, which has the

potential to revolutionize the way users create, reuse, access,

and consume multimedia content. The power and advantages

of the object-based representation also make MPEG-4 a stand-

ard that can be applied to applications ranging from low bit-

rate personal mobile communications to high-quality studio

production.

23.4.3 Multimedia Framework

As mentioned in the sections above, MPEG has played a key

role in developing the standards for multimedia-enabled prod-

ucts and applications. However, in general, each multimedia

entity needs to communicate with its environment, clients,

and applications. A solution is required to oVer users trans-

parent and interpretative consumption and delivery of rich

multimedia content so that the coding and metadata standards

can be linked with access technologies, rights and protection

mechanisms, adoption technology, and a standardized event

reporting mechanism under the umbrella of a complete multi-

media framework. Furthermore, the need for a solution also

stems from the fact that the universal availability of digital

networks, particularly the Internet, is changing traditional

business models, adding the new possibility of the electronic

trade of digital content in addition to the trade of physical

goods. The aim of the framework is to Wll the gaps in the

multimedia delivery chain and to create seamless and universal

delivery of multimedia. As such, MPEG-21 (issued in 2000)

was introduced to provide a complete framework for deliver-

ing and managing multimedia content throughout the chain,

encompassing content creation, production, delivery, person-

alization, consumption, presentation, and trade, to meet its

vision ‘‘to enable transparent and augmented use of multi-

media resources across a wide range of networks and services’’

[73].

MPEG-21 proposed a new distribution entity termed the

digital item (DI) for use in interaction with all users in a

distributed multimedia system, where a user is any entity

that interacts with the MPEG-21 environment or that makes

use of a DI. Such users include individuals, consumers, com-

munities, organizations, corporations, consortia, governments,

and other standards bodies and initiatives around the world,

and their roles are identiWed speciWcally with regard to their

relationship to another user for a certain interaction. In par-

ticular, content management, intellectual property manage-

ment, and content adaptation are regulated to handle

diVerent service classes. MPEG-21 is thus a major step forward

in multimedia standards. It collects the technologies to create

an interoperable infrastructure for transparent and protected

digital media consumption and delivery. Many application

domains have beneWted from adopting MPEG-21. MPEG-21

has been used to establish personalized video systems [61]

and in backpack journalism scenarios [74]. Together with

MPEG-7, MPEG-21 can also be leveraged to create distributed

multimedia databases [75]. Successful applications of

MPEG-21 have also been reported in the medical and health

care domains. The intellectual property management and

protection function of MPEG-21 was employed to provide

accurate audit trails to authenticate appropriate access to

medical information (e.g., patient records) that is shared

nationally in England [76]. It has been shown that MPEG-21

can be used to implement information architecture for elec-

tronic health records and features of MPEG-7 such as universal

accessibility and interoperability will make the architecture

highly interoperable in both existing health care systems and

diVerent multimedia systems [77].

23.5 Smart Medical Home

The primary aim of medical homes is to develop an integrated

health system that is personalized to an individual’s home.

This technology will allow consumers, in the privacy and

comfort of their own homes, to maintain health, detect the

onset of disease, and manage symptoms. The data collected 24

hours a day, 7 days a week inside the home will augment the

data collected by physicians and hospitals. The data collection

modules in the home start with the measurement of traditional

vital signs (blood pressure, pulse, respiration) and work to

include measurement of new vital signs such as gait, behavior

patterns, sleep patterns, general exercise, and rehabilitation

exercises [3, 7]. The smart medical home has the potential to

delay or partially remove the dependence on retirement nurs-

ing homes and thereby extend the person’s quality of life.

Incorporating smart medical devices into homes can poten-

tially make a strong and positive impact on the lives of persons

with physical disabilities and those with chronic diseases [7,

78, 79]. Clinical studies have demonstrated that the use of

medical devices in the patient’s home can identify adverse

trends in clinical signs early and reduce time spent in the

hospital [79]. This is made possible by combining multimedia

technologies such as networked care systems (telemedicine)

with integrated sensors that monitor clinical signs, medication

reminders, health education, and daily logs. Figure 23.2 illus-

trates an example of the multimedia-enabled components that

make up a smart medical home.

23.5.1 Recent Projects in the Smart Medical
Home

Numerous medical devices and systems have been designed

and developed for the home environment with the purpose of
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providing health beneWts to the residents. There are many large

projects in the Weld of smart medical homes that bring to-

gether knowledge and expertise from many diVerent discip-

lines of engineering and biomedicine. Table 23.1 presents

selected projects involved with smart medical homes that

have made signiWcant research contributions and continue to

expand its aim of establishing a smart medical home.

The AgeLab at MIT, [e1] in Table 23.1, aims at meeting the

needs of the aging population to invent the future of healthy

and active living. Smart medical advisor is a wireless system

that uses the consumer’s health information to help with food

purchasing decisions. Another project titled adaptive devices

for independent living is an assistive device to deliver personal

information, basic health care, support, and critical assistance

for older adults and people living with a degenerative condi-

tion. Employing a combination of state-of-the-art technolo-

gies, these devices are being designed to be user-friendly so

even those with limited technology skills can beneWt from their

design in their own home.

The smart medical home project at Rochester University’s

center for future health, [e2] in Table 23.1, is a controlled

environment in which research, preconcept testing, concept

testing, pilots, and prototype testing are done. The center’s

overall goal is to develop and integrate a personal health system

for the home so that all technologies work seamlessly and allow

consumers, in the privacy of their own homes, to maintain

health, detect the onset of disease, and manage disease. Selected

projects for smart medical homes include smart bandages,

wearable medical devices, motion understanding—investigating

the ability to learn human motion for medical diagnosis, con-

versational medical advisor—a system that has conversational

interface for consumer use (i.e., medication management), and

other medical home components such as networking and deci-

sion support.

The medical automation research center at the University of

Virginia, [e3] in Table 23.1, has a research and development

project working on smart house technologies. These are pas-

sive and unobtrusive technologies for monitoring elders’

activities, designed with privacy and security in mind. Some

of the monitoring technologies developed are a sleep monitor-

ing system that uses noninvasive sensors to gather sleep and

physiologic signals and a smart in-home monitoring system

that is composed of a suite of low-cost, noninvasive sensors

(strictly no cameras or microphones), and a data logging and

communications module, in addition to an integrated data

management system, linked to the Internet for the purpose

of lessening the burden of the caregivers and increasing quality

of life for the elders.

These projects are varied in their technical aspects, audience,

and management aspects (from single institutional research

to international collaboration), and hence provide a broad

Health monitoring 
system

Sensory 
devices

Wireless networking 
(telemedicine)

Virtual 
reality

Conversational 
system

Multimedia 
computer

Haptic 
interfaces

FIGURE 23.2 Primary components for the smart medical home

using multimedia technologies. These components all share the pur-

pose of improving health care and quality of life of the consumers. In

a typical scenario, the health information collected from the sensors

and conversational system in the medical home is transmitted (wire-

less networking) to physicians in the hospital. The received informa-

tion is then augmented with already existing patient information and

can be used by the physician for diagnosis and consultation with the

patient via teleconsultation (telemedicine) using a multimedia-en-

abled computer with haptic controls. Treatment prescribed for the

patient maybe through the use of virtual reality system that is

designed for surgical rehabilitation.

TABLE 23.1 Selected homepages of projects involved with the smart medical home

Project Name Institution Features Homepage

[e1] AgeLab Massachusetts Institute

of Technology

Developing systems for aging populations, such as medical

advisors and adaptive devices for independent living

http://web.mit.edu/agelab

[e2] Smart

Medical Home

Center for Future Health,

University of Rochester

Integration of health technologies for home, with projects based

on motion understanding, a conversational medical advisor,

smart bandages, and others

http://www.futurehealth.rochester.

edu/smart_home

[e3] SmartHouse

Technologies

Medical Automation Research

Center, Virginia University

Health technology for elders that emphasizes health

monitoring, including smart in-home monitoring

and sleep monitoring

https://smarthouse.med.virginia.edu

[e4] Personal

Ambulatory

Monitoring

E-Health Research Center,

CSIRO

Investigating chronic disease management solutions from

home by monitoring patient’s vital signs

http://www.e-hrc.net
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overview and great insights into the requirements and

prospects necessary for the smart medical home.

23.6 Telemedicine in the Smart
Medical Home

Telemedicine refers to the use of multimedia technologies that

consist of audio, visual, and network for use in medical diag-

nosis, treatment, and patient care. This is made possible

through the exchange of health information, which allows

the provision of health care services across geographic, time,

social, and cultural barriers between patients and physicians

[80–83]. There has been signiWcant growth in the Weld

of clinical applications for telemedicine. This includes, for

example, teleconsultation [84, 85], teleradiology [86, 87], and

remote patient monitoring [88].

Teleconsultation and remote patient monitoring are funda-

mental technologies for a successful smart medical home. As

an example, for patients undergoing chronic disease manage-

ment, it is necessary to consult physicians on a regular basis

[78]. Health monitoring technologies can potentially reduce

the need for the patient to physically meet the physician.

Rather, the practitioner could perform teleconsultation via

video conferencing, with the necessary medical information

shared through remote monitoring systems [88]. Another

technology that is often found together with telemedicine for

use in the smart medical home is a special sensory device that

is used to aid communications such as gesture recognition [89]

and speech recognition [6]. Greater details regarding sensory

devices and health monitoring systems are discussed in the

following section.

23.7 Sensory Devices and Health
Monitoring

Due to a continuous decline in size, costs, and power con-

sumption of sensory devices, it is now common to Wnd sensors

embedded in diVerent places and objects, such as home appli-

ances/furniture [7, 9] or wearable items like wristbands [81],

jewelry [89], and clothing [24, 90, 91]. This section will discuss

sensor technology and its application to the smart medical

home.

23.7.1 Wearable Devices in Health Care

Wearable devices can be broadly deWned as mobile electronic

devices that can be unobtrusively embedded in the user’s outWt

as part of clothing or as an accessory [91, 92]. These devices are

made up of three main components: sensors that measure vital

health signs; computing hardware that processes, displays, and

transmits information from the sensors; and clothing that acts

as the supporting element and cosmetic exterior of the device

[91]. These mobile devices are fundamentally designed to be

operated and accessed without interfering with the user’s daily

living activities [91, 93]. There has been much discussion

about the development of wearable devices for medical appli-

cations. Examples include discussion of sensors to measure

vital signs in patients with dementia [93], evaluation of

response to stressful training situations [94], and the rehabili-

tation of patients with stroke and heart disease [95]. These

studies and others have demonstrated that wearable devices

have the potential to become integral components of a modern

health care system, as they can provide alternative options and

solutions to numerous medical and social requirements [10,

15, 96]. These devices not only improve the provision of health

care to enhance the quality of life of the chronically ill and the

disabled, but also have proven to be Wnancially rewarding by

saving the health service money via hospitalization reductions,

either through prevention or by helping provide appropriate

means for independent living.

Instead of measuring health signs, a study by Starner et al.

[89] introduced a wearable device for use in measuring the

tremor of a patient’s hand as the user makes a gesture. A

pendant that consists of a small camera was designed to be

worn by a patient, such that the pendant records and interprets

hand gestures that are performed by the wearer. The measure-

ment of tremors, particularly in older populations, was shown

to be beneWcial in detecting the signs of various medical

conditions.

23.7.2 Health Monitoring Systems

There is a clear need for health monitoring systems to form a

part of the smart medical home, thereby providing both the

monitoring of the occupant’s vital health signs and the ability

to react to changing health signs [7, 9, 80, 81, 94, 96–99]. These

systems are necessary and include a monitoring system that

automatically alerts the hospital staV when patients’ vital con-

ditions are abnormal and a patient tracking system that is used

to track patients who may require immediate assistance. In a

typical health monitoring setup, sensors are used to measure

patient vital signs and feed information to the monitoring

system.

A monitoring system that measures patient blood pressure

and records an electrocardiogram was presented by Hung et al.

[80]. Here, the novelty was the use of a mobile phone as the

monitoring interface using the wireless application protocol

such that Web-enabled mobile phones could be used as a

health monitoring device. In another study, Anliker et al.

[81] presented an advanced care and alert portable telemedical

monitor, which is a wearable medical monitoring and alerting

system designed for cardiac/repository patients. This system

combines the measurement of multiple vital signs, online

analysis, and cellular communication to a telemedicine center
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in a wearable wrist device that is unobtrusive for everyday use.

In another paper, Korhenen et al. [9] reported on a wireless

wellness project (WWM) that aims to develop a prototype

system for homes supporting ubiquitous computing applica-

tions for wellness management and home automation. The

WWM focused on building a home network where multiple

simple household and health monitoring devices were con-

nected. An Internet-based information and support system for

patient home recovery after coronary artery bypass graft sur-

gery was presented in the work by Brennan et al. [99]. This

system was designed to extend the scope of nursing services to

patients from hospital through home, in addition to providing

information and support that are tailored to individual

patients’ needs during recovery in a timely manner.

23.8 Speech Recognition and
Conversational Systems

Speech and language processing systems that enable users to

communicate with computers using conversational speech are

expected to greatly improve our health care system through

the development of an easier and more eYcient manner to

communicate and interact with computers [6, 100–102].

23.8.1 Speech Recognition in Medical
Applications

Speech recognition systems provide computers with the ability

to identify spoken words and phrases, thereby allowing their use

as an interface to command and control computer programs

[100] as well as to provide a means of control for physically

impaired people [103]. Recent studies have shown that the

quality of speech recognition and its usability are continuously

being improved, with increases in speech recognition systems

being adopted in medical applications [100, 101, 104]. In the

medical Weld, these innovations have primarily been incorpor-

ated into dictation systems for the development of reporting

systems [104]. For example, speech recognition systems are

steadily replacing conventional transcription services in hos-

pitals, primarily driven by the potential increase in operational

productivity (shorter time for examination) and reduction in

time required to index the reports into the hospital’s informa-

tion system [100]. The ability for the user to create his or

her vocabulary dictionary in speech recognition systems has

increased their usability and acceptance in the medical Weld,

which enables the addition of medical vocabulary and technical

medical terms. A key factor in the rapid growth of speech

recognition systems has been the introduction of picture archiv-

ing and communication systems (PACS) [105]. PACS enables

immediate availability of medical images, which has greatly

increased the time between the availability of these images and

their corresponding reports [100].

23.8.2 Conversational Human-Computer
Interface Systems

Conversational systems diVer from speech recognition systems

in that conversational systems not only recognize the words

input by the user but they also attempt to interpret the mean-

ing of these words (i.e., understand the spoken dialogue of the

user). Dialogue systems have found various applications, for

example, intelligent dialogue systems [106] and problem solv-

ing assistant and speech translational systems [107], which

demonstrated the use of a mobile device that recognized user

input in Japanese, and output an English translation of the

input. In another study, Polifroni et al. [108] reported the use

of dialogue input to allow users to search information from the

Web so that the interaction with the computer was natural and

Xexible.

The adaptation of speech recognition and conversational

HCI systems in the smart medical home domain has created

several novel applications. In particular, the medication

advisor project proposed by Ferguson et al. [6] is an intelligent

assistant that interacts with its users via conversational natural

language, with the purpose of providing the users with infor-

mation and advice regarding their prescription medication.

This study has shown that the dialogue system between

human and computer has the potential to aid people in man-

aging their medication, and that such systems can Wnd many

other smart medical home applications that can improve and

enhance the lives of people.

23.9 Multimedia Technologies for
Patient Education and Care

Informing patients about diagnosis, surgery, and treatment is

necessary and often has a signiWcant impact on patient aware-

ness of medical procedures [16, 99, 109–113]. The use of

multimedia to facilitate patient awareness is becoming wide-

spread, with the advent of visual, audio, interactive, and Inter-

net content that compliments traditional paper-based

information. The acceptance of multimedia usage and the

relay of information from these media are an important aspect

of patient awareness. Two topics are discussed in this section:

use of multimedia content for patient education and awareness

and multimedia technologies for reducing patient anxiety in

regards to surgery.

23.9.1 Multimedia for Patient Education
and Awareness

The use of multimedia has been an inseparable tool in educa-

tion as it enables the presentation of visual, audio, and inter-

active information. The use of multimedia computers for

patient education is becoming widespread in the health care
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industry from the increase in use and acceptance of computers

by patients and improvements in technology modules that

have eased comfort and usage of these educational systems

[109, 114, 115]. This is becoming more important as patients

require increased access to medical information to help facili-

tate decisions about their health care. Krishna et al. [116]

discussed a trial on the eVect of an Internet-enabled interactive

multimedia asthma education program, with results indicating

a signiWcant increase in asthma knowledge for both patients

and caregivers. Furthermore, this study also found that this

knowledge resulted in a reduction of symptom days and emer-

gency department visits. Fagerlin et al. [117] developed and

evaluated a multimedia education program for patients with

prostate cancer. The program was carried out on a stand-alone

personal computer and participations used a selection of

on-screen buttons that controlled interaction and navigation

with an assistant providing instructions and support. The

study reported that the majority of the information needs

were fulWlled; however, like many other studies, the informa-

tion provided was not completely satisfactory [115].

Another area that has beneWted from the use of multimedia

is the delivery of information to patients and their families in

the hospital waiting room. These waiting rooms typically have

a large amount of information in print media forms (pamph-

lets and posters) regarding preoperative procedures. Often

there is also a nurse, social worker, physician, or volunteer

present to assist patients and families with this information

and with understanding the progress of patients through talk-

ing in person or over the telephone. Such practice of informa-

tion delivery is low-tech and can potentially beneWt from the

use of multimedia technologies [118]. Wheeler et al. [111]

presented the use of videotapes containing information regard-

ing the use of antibiotics that was shown to improve both

patient awareness and understanding of the drugs. Wheeler

et al. further stated that the conventional paper media (pamph-

lets) were not read by patients, reinforcing the advantages of

using multimedia contents. In another study, Oermann et al.

[119] demonstrated the advantage from the use of multimedia

content in informing patients. Here, educational videos were

also used to provide instructions in the clinical waiting area.

They concluded that such video instructions can be an eVective

and eYcient teaching intervention for health information.

23.9.2 Multimedia for Reducing Patient Anxiety

Multimedia technologies have been used as a tool for reducing

patient anxiety [112, 120–122]. The use of multimedia has the

potential to reduce the need for sedatives to help patients relax

during surgery [123] and thereby beneWt patients. DiVerent

methods have been used to alleviate anxiety and fear during

the operative periods, ranging from friendly hospitals, multi-

media-embedded operating theatre environment, and the

availability of relevant information and explanations. It is

common to Wnd music being played in the operating theatre

during surgery [120, 121]. Music was shown to reduce patient

anxiety by lessening the unfamiliar noise and auditory stimuli

that occur during surgery and to reduce anxiety before surgery.

Even though the use of multimedia has advantages for

patients, there have been many reported studies that suggest

these aids to patients can cause distraction to physicians and

nurses during surgery, primarily with regard to hearing vital

sign measures and potential conXicts in communications with

staV when music is used in the operating room. Therefore, it is

important to take the above issues into consideration when

multimedia systems are designed.

Apart from music, Man et al. [112] presented the eVect of

intraoperative video on patient anxiety with results indicating

ease in patient anxiety during operation and in overall

improvement of comfort and satisfaction. In this study,

patients undergoing surgery were equipped with specially

designed glasses that included liquid crystal display screens

and audio used to playback video.

23.10 Multimedia Operating Theater
and Virtual Reality

Computer-driven simulations of operating theater in VR are

articulating huge interests from both education and clinical

environments [124–127]. The ability to utilize multimedia

components to create real-time simulation of surgical proced-

ures in a controlled and realistic setting (i.e., a virtual theater)

provides the operating surgeon with the ability to perform

preoperative planning and practice, surgical education, and

training. Such systems have demonstrated usefulness where

the outcomes of surgery are often determined by the technical

skills of the surgeon. In particular, the use of virtual/augmen-

ted reality for surgical planning and education has great

potential to evolve for medical home uses (i.e., virtual

simulations that are targeted to increase emotional comfort

of older and disabled patients at home) [3, 128, 129].

23.10.1 Multimedia Operating Theatre

The utilization of computers in surgical procedures is often

referred to as computer assisted/aided surgery and/or com-

puter-integrated surgery (CIS) [130]. Recent studies have

shown that the use of CIS has the potential to contribute to

cost cutting in health care by allowing fewer staV to perform

the same surgery in less time than with traditional methods

[131]. Refer to Chapter 18 for further details about CIS and

other related topics.

Multimedia technologies play an essential role in the devel-

opment of CIS systems. In a typical CIS, these systems consist

of image viewing (two-dimension/three-dimension) software,

a telecommunication system with video/audio conferencing,

and an interactive user interface that uses input devices that
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provide haptic feedback, such as a joystick device [132, 133].

Other multimedia devices have also been used such as the use

of remote visualization in the operating theatre [126], where a

projection of the images is displayed and controlled by the

surgeon using a joystick. Gering et al. [134] reported a camera

and position sensory device that was embedded into a surgical

cutting knife, where the captured video was used to navigate

through a volume rendering of the patient’s data in relation to

the knife. There has also been introduction of robotics that are

controlled using computers for use in surgery [135].

23.10.2 Virtual Reality for Medical Teaching
and Training

Recent studies in biomedical information technologies dem-

onstrated the capability of using VR in surgical procedures as a

tool for simulation and training [124, 136–139]. As described

in Section 23.2.4, VR can be used to create an immersive

environment that is made up of multimedia contents that

simulate realistic conditions of surgery [125]. One of the key

potentials of this multimedia technology is its application to

aid in education by allowing interactive training of surgical

procedures [139, 140]. VR can compliment traditional

approaches to teaching of surgical skills which usually involve

a see and do approach [141]. It has been demonstrated on

a number of applications such as for simulating a vascular

reconstruction in a virtual operating theatre [125] and for

neurosurgery planning in virtual workbench [138]. An alter-

native use of VR in medical education is described by Johnsen

et al. [142]. Here, the experience in interaction between

patients and physicians was simulated through the use of

virtual characters. These life-size characters were projected to

screens and were used to interact using gestures and speech.

VR in biomedicine is not only restricted to teaching and

training, but can also be used for numerous health care appli-

cations. Flynn et al. [115] reported a virtual reality system that

has been used to enhance recovery of skilled arm and hand

movements after stroke. Particularly with redundant input, VR

systems enable physically or cognitively handicapped people to

access computers.

23.11 Summary

This chapter has discussed the advances in multimedia tech-

nologies and their applications to the smart medical home

(and hospitals). The core technologies covered include

human-computer interaction, multimedia content manage-

ment, and multimedia delivery, followed by their impact on

the development of medical applications for smart medical

homes (and hospitals), including telemedicine, sensory de-

vices, speech and conversational systems, patient education

and care, operating theatres, and virtual reality. Multimedia

technologies have already demonstrated their usefulness, and

they will continue to expand their usefulness in health care and

in improving the quality of people’s lives.
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23.12 Exercises

1. Analyze the inXuence of MPEG standards in health care

systems for medical homes.

2. State and discuss the most signiWcant diVerences between

MPEG-4 and MPEG-1/2.

3. Describe a multimedia-enabled health care system or prod-

uct and identify what enabling multimedia technologies

have been adopted.

4. Telemedicine is a term used to describe the telecommuni-

cations technology for medical diagnosis and patient care

when the provider and client are separated by distance. List

three or more telemedicine applications and their similar-

ities and diVerences.

5. What are the advantages and disadvantages of a virtual

operating theatre in the training of physicians?

6. Multimedia is often used to reduce patient anxiety in both

the waiting room and operating theatre. What other ben-

eWts does multimedia have in these environments for

patients?

7. Wearable devices are diVerent from other medical devices in

that they must not only be designed to aid in the user’s

health, but also be comfortable and unobtrusive. What are

the guidelines to follow in the design of wearable medical

devices?
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order-specific, 167
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multidimensional, 70–71

in sinogram domains, 74–77
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FIGURE 6.12 Image-derived input function for the heart in 15O-water study. The red

lines on (c) and (d) show the outlines of the ROIs for left ventricular chamber (c) and

for adjacent myocardial region (d). LV is the time activity curve for left ventricular (a);

Myo TAC is the curve for myocardial tissue (b), Ca(t) is the estimated input function

(a). Courtesy of Dr. H. Iida, Akita, Japan.



FIGURE 6.13 rCBF images using the image-derived input function from the 15O-water study. Courtesy of Dr. H. Iida,

Akita, Japan.



FIGURE 6.14 Display of gated SPECT with the automated quantiWed parameters (b). LV

volume time curve over cardiac cycle (a), estimated variation of thickening (d).



FIGURE 6.15 Parametric images of K1 (a) and Vd (b) using the Yokoi

plot for a 201Tl study.



FIGURE 6.16 Example of parametric images of rCBF, rCOEF and

rCMRO2. Courtesy of Dr. H. Iida, Akita, Japan.



FIGURE 6.17 SUV images for whole body FDG-PET. (a) Initial

staging of NSCLC. (b) Response to treatment.



FIGURE 6.18 Parametric images of rCMRGlu for a neurologic study using FDG-PET. The input function is derived by the

population-based IF with two calibration points.



FIGURE 6.19 Parametric images of Vd for the baseline state, nicotine implantation,

and post-nicotine infusion, respectively. The middle images at each row demonstrate

normal, blocking, and upregulation of nAChRs, respectively.



FIGURE 6.20 Parametric images for inXux rate: K1; volume of distribution: Vd ¼ K1=k2 (1þ k3=k4); and binding

potential: BP ¼ K1 k3=k2 k4 , respectively. Voxel values with nonphysiologic rate constant estimates (negative rate

constants or > 1) were set to zero.



(a) (b) (c)

FIGURE 7.4 Example of image segmentation used to identify pixels belonging to brain tissue.

(a) Slice from a T2-weighted image. (b) Region identified as brain highlighted in red. (c) Surface

rendering of the brain region from the entire image volume. The MR images are from the BrainWeb

database (http://www.bic.mni.mcgill.ca/brainweb).



10% sampling rate
36.2 FPS

(a) (b) (c)

50% sampling rate
14.1 FPS

100% sampling rate
6.6 FPS

FIGURE 9.5 DiVerent sampling rates applied to whole-body PET data using texture-based volume

rendering. The lowest sampling rate has the poorest visual quality, with obvious loss of detail in

rendering the internal organ structures. Increasing the sampling rate improves rendering quality.

However, there is a decrease in the frames per second (fps) when the volume is interacted with

(rotated around all axes).



(a) (b) (c) (d)

FIGURE 9.7 Interactive segmentation of dynamic PET images, with changes in the segmentation of

the brain tumor’s deWnition. Top row is the volume-rendered images of the segmented structures.

Bottom row is the 2D representation of these volumes, with segmentation results highlighted in red

outline. Image (a) is the original image, and (b) to (d) are the results from varying the segmentation

parameter in real-time volume rendering.
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FIGURE 9.8 (a) CT volume of the lung using texture-based

rendering; (b) application of transfer function speciWed in (c) to

the volume in (a). A spike-based transfer function appears to

produce the most appealing results in revealing structures of

interest with gradual fade-out of nearby structures to the selected

structures (lung and bone) in CT visualization.



0

1

0 1Source LUT (Input) 

0

1

0 1Source LUT (Input) 

0
Source LUT (Input) 0

1

D
es

ti
n

at
io

n
 L

U
T

 

PET           CT 

1

(a)

(c)

(e)

(b)

(d)

(f) 

D
es

ti
n

at
io

n
 L

U
T

 
D

es
ti

n
at

io
n

 L
U

T
 

(o
u

tp
u

t)
(o

u
tp

u
t)

(o
u

tp
u

t)

FIGURE 9.10 Application of dual-LUT transfer functions. (a) Axial view of PET/CT with its dual-LUT transfer

function in (b) set to equal fusion ratio. Tumors inside the lungs are highlighted by arrows. (c, d) Selection of

tumors from PET and the surrounding anatomical lung boundary from CT. (e, f) Identical PET transfer function

with inverted and modiWed CT transfer function.
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FIGURE 9.11 Overview of the segmentation-based spatial transfer function applied to PET/CT visualization. (a) Original

PET image (single axial-view slice) with segmented structures highlighted (arrow); (b) distance map calculated from the

segmented result; (c) fused PET/CT result from the spatial transfer function using (b).



(b)

(d)(c)

(a)

FIGURE 9.12 (a) Volume rendering of PET/CT image using texture-

based volume rendering; (b) automated FCM (fuzzy c-means cluster-

ing) segmentation result with segmented tumor structures fused with

PET; (c) result from varying the PET segmentation parameter to select

voxels that more closely resemble the tumor; (d) segmentation result

of (b) fused with CT. All volumes have been fused with equal fusion

ratios. The transparency level and the LUT of the segmented volumes

can be adjusted to reduce obscuration of underlying structures rele-

vant for the interpretation of the images and segmentation results.



Mass Spectrometer is composed of:

Ion source Mass analyzer Detector

• Electron impact (EI)
• Chemical ionization (CI)
• Fast atom bombardment (FAB)

• Fourier transform ion
  Cyclotron resonance (FTICR)

• Quadrupole
• Magnetic sector

•

•

Matrix assisted laser desorption/
lonization (MALDI)
Electropsray ionization (ESI)

•
•
•

Ion trap
Quadrupole-TOF
Time-of-flight (TOF)

Photon diode
and electron
multiplier.

FIGURE 12.4 Overview of mass spectrometer components. The red-font items are the

most frequently used ion source and mass analyzer methods.
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FIGURE 12.10 DiVerential labeling of peptides in two biologic samples allows relative quantitation of the parent proteins. The based peak

shows the peptides detected in a scan of the mass spectrometer (MS). A single peak in the based peak scan (red arrow) is then expanded to

greater resolution in the zoom scan, where the pair of peaks representing the same peptide from the two biologic samples (labeled and

unlabeled peptides). Isotopic variants of each peptide are obvious in the zoom scan. Individual peptides are then gated and fragmented to

provide fragmentation scan representative of the amino acid sequence (MS/MS) (see Figure 12.9).
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FIGURE 12.12 Ingenuity network analysis of mRNA transcripts diVerentially regulated by the obesity state.



30genes

5genes

25genes

30genes

5genes

12genes

12-ALS

1-BMD, 2-DMD, 3-Dysferlin, 4-Calpain3,
5-FKRP, 6-EDMD, 10-FSHD, 11-NHM, 12-ALS

1-BMD, 2-DMD, 3-Dysferlin, 4-Calpain3,
5-FKRP, 6-EDMD, 8-HSP, 10-FSHD, 11-NHM, 12-ALS

All classes: 1-BMD(5(# of samples), o (symbol)), 2-DMD(9,^), 3-Dysferlin(9,s),
4-Calpain3(11,d), 5-FKRP(7,p), 6-EDMD(5,v), 7-AQM(5,>), 8-HSP(4,<), 9-
JDM(18,+), 10-FSHD(14,h), 11-NHM(19,*), 12-ALS(9,x)

8genes

DCA plots with various numbers of
genes for obtaining best visual cluster
separation in 2D

2-DMD

6-EDMD

10-FSHD 11-NHM

3-Dysferlin 1-BMD,4-Calpain3, 5-FKRP

1-BMD 4-Calpain3 5-FKRP

1-BMD, 2-DMD, 3-Dysferlin,
4-Calpain3, 5-FKRP

1-BMD, 2-DMD, 3-Dysferlin,
4-Calpain3, 5-FKRP, 6-EDMD

1-BMD, 2-DMD, 3-Dysferlin, 4-Calpain3,
5-FKRP, 6-EDMD, 10-FSHD, 11-NHM

8-HSP

7-AQM 9-JDM

FIGURE 12.14 Diagnostic gene selection in a 12-group data set of muscle biopsies from patients with muscular

dystrophy (see Bakay et al. [16]).
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FIGURE 12.15 A model for molecular pathophysiology of a type of muscular dystrophy

involving mutations of the nuclear envelope. The X axis (bottom) shows time series data from

mouse regeneration (see Figure 12.13). The remainder of the Wgure shows timed induction of

transcriptional pathways during muscle regeneration around the time of the transition from

mitotically active cells to postmitotic diVerentiated myotubes (mitotic/postmitotic transition).

The proteins boxed in red are those that are diVerentially regulated in Emery Dreifuss muscular

dystrophy (EDMD) patients, while the red cross-hatches indicate potential blocks in this

molecular pathway due to nuclear envelope mutations. ModiWed from Bakay et al. [16].



FIGURE 16.10 Display interface for a multimodality workstation that displays computer outputs in numerical,

pictorial, and graphical modes for both mammography CADx output and sonography CADx output.

Sonography CADx output is shown in the Wgure. Courtesy of M. Giger, University of Chicago.



FIGURE 19.3 The diVusion tensor tractography (direc-

tion-encoded color map) of the normal volunteer identifying

the major association, commissural, and projection path-

ways in the brain. The diVerent colors of the white matter

tracts represent their diVerent directions/orientations.



FIGURE 19.4 The DTI (Wber tracking) of a patient with right

frontal meningioma, depicting the displacement (rather than

destruction) of the right white matter tracts.



(c) (d)

(a) (b)

FIGURE 19.8 Maps of (a) CBF, (b) CBV, (c) MTT, and (d) TTP

obtained from the perfusion-weighted images of a patient with acute

infarct. The MTT and TTP maps demonstrate elevated signal intensity

at the posterior right temporal lobe. The CBF map depicts reduced

blood Xow not only at the corresponding region but also at the right

frontal lobe (to a lesser degree).



(a)

(b)

(d)(c)

FIGURE 19.9 The PWI (a) of a patient with old stroke.

The CBV map (d) demonstrates the focal reduced blood

volume in the right brain due to old infarction. The signal

intensity-time curve (b) of the infarct region denoted by red

dashed line displays less reduced signal.



(a)

(b)

FIGURE 19.10 BOLD images of the activations of (a) occipital cortex

during visual stimulation and (b) motor cortex. The signal intensity-

time curves show increased BOLD signals during stimulation.



FIGURE 19.11 Real-time BOLD image (top left) of the cortical

activation of speciWc center, which could be superimposed on the

multiplaner high-resolution structural MRI (bottom right). The

BOLD signal intensity-time curves of the two ROIs demonstrate

signiWcant diVerence.
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FIGURE 20.4 (a) Excitation and (b) emission spectra are shown as solid or dashed lines for monomeric variants and

as a dotted line for dTomato and tdTomato, with colors corresponding to the color of each variant. PuriWed proteins

(from left to right, mHoneydew, mBanana, mOrange, tdTomato, mTangerine, mStrawberry, and mCherry) are shown

in (c) visible light and (d) Xuorescence. The Xuorescence image is a composite of several images with excitation

ranging from 480 nm to 560 nm. Adapted from Shaner et al. [3].
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FIGURE 20.5 (a) Kinetics of tumor regression using in vivo bioluminescence imaging of

luciferase-labeled liver tumors. Transplanted tumors undergo rapid regression but residual,

persisting luciferase activity remains at the site of tumor growth. Upon myc reactivation,

tumor growth reoccurred. For visualization of tumor growth, a pseudocolor image represent-

ing luciferase light intensity is superimposed over a greyscale reference image of the repre-

sentative animals in each treatment group: squares, myc on, then myc oV, and Wnally myc on;

circles, myc on then myc oV. Luciferase activity is measured in photons=cm2=s per steradian

(p cm�2 s�1 sr�1). (b) Representative images for a mouse where myc is on (left); myc is on

and then oV for 3 months (3 m) (center); and myc is on, oV for 3 months, and then

reactivated for 2 months (right). (c) A representative control mouse is represented for the

same time points: myc on (left); myc on then oV for 3 months (center); and myc remains oV

for 5 months (right). Data are representative of Wve diVerent experiments with 1 to 10

animals in each group. Adapted from Shachaf et al. [12].
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FIGURE 20.6 (a) Oscillatory behavior of p53 following total body irradiation. MDM2-luciferase mice were radiated

with 5 Gy total body irradiation or sham irradiated and then followed with serial bioluminescence imaging scans:

before radiation, 0.5 hour, 1 hour, and then every hour until 14 hours after radiation. Top, serial images from one

representative irradiated animal; bottom, serial images from one representative control animal. (b) QuantiWcation of

bioluminescence induction for the abdominal region of interest (ROI). Fold-induction above baseline for the

abdominal ROI for the irradiated (black circles) or control (white squares) animals depicted in (a). (c) QuantiWcation

of the bioluminescence induction for the abdominal ROI. Points, average of Wve irradiated (black circles) and four

control animals (white squares); bars, standard error. Adapted from Wiener et al. [9].
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FIGURE 20.7 PET imaging of A2780 tumor-bearing BALB/c nu/nu

mice after injection of adenoviruses. The tumors were injected with

the various recombinant adenoviruses (5� 108 plaque-forming

units, three mice/group) and scanned 72 hours later after injection

of Na124I. The data were acquired for 1 hour. Single 0.5-mm coronal

slices of the 30–60 minute time frame are shown. hTERT, human

telomerase reverse transcriptase; hTR, human telomerase RNA; NIS,

Na/I symporter. Adapted from Groot-Wassink et al. [5].
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FIGURE 20.8 (a) In vivo bioluminescent imaging of luciferase expression after systemic AAVP delivery. Nude mice bearing DU145-

derived tumor xenografts received an intravenous single dose of either RGD-4C AAVP-Luciferase (5� 1011 TU) or control (nontargeted

AAVP-Luc or scrambled RGD-4C AAVP-Luciferase). Ten days later, bioluminescence imaging of tumor-bearing mice was performed. (b)

Multitracer PET imaging in tumor-bearing mice after systemic delivery of RGD-4C AAVP-HSVtk. Nude mice bearing DU145-derived

tumor xenografts (n¼ 9 tumor-bearing mice per cohort) received an intravenous single dose (5� 1011 TU) of RGD-4C AAVP-HSVtk or

nontargeted AAVP-HSVtk. PET images with [18F]FDG and [18F]FEAU obtained before and after GCV treatment are presented. T, tumor;

H, heart; BR, brain; BL, bladder. Calibration scales are provided in (a) and (b). Superimposition of PET on photographic images of

representative tumor-bearing mice was performed to simplify the interpretation of [18F]FDG and [18F]FEAU biodistribution. (c) Growth

curves of individual tumor xenografts after AAVP administration. (d) Temporal dynamics of HSVtk gene expression as assessed by

repetitive PET imaging with [18F]FEAU at diVerent days post-AAVP administration. (e) Changes in tumor viability before and after GCV

therapy as assessed with [18F]FDG PET. Error bars in (c) through (e) represent standard deviations. Adapted from Hajitou et al. [13].
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FIGURE 20.9 (Left) Schematic of how C6 cells were infected with viruses carrying the TET transactivator (tTA) under a constitutive promoter

(pRev-tTA-OFF-IN). The cells were then transfected to express TET-EGFP-HA-ferritin using a bidirectional vector (pBI-EGFP-HA-Ferr vector).

Selected clones showed overexpression of EGFP and HA-tagged ferritin, both of which were tightly suppressed by administration of TET

(þTet). (Right) In vivo MRI detection of switchable ferritin expression in C6 tumor xenografts in the hind limb of nude mice generated from C6

cell clones stably expressing TET-EGFP-HA-ferritin. TET and sucrose (or sucrose only for –Tet) were supplied in drinking water, starting 2 days

before inoculation. (a) R1 and R2 maps of tumor regions overlaid on the MR images are shown for two representative mice from each group.

(b) R1 and R2 values (mean + SD) at the tumor region in the presence (ferritin oV; n¼ 7) or absence (ferritin on; n¼ 4) of TET in drinking

water. �P < 0.05: two-tailed unpaired Student t test. Scalebar¼ 2.5 mm. Adapted from Cohen et al. [6].
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FIGURE 20.12 (a) Background-subtracted, color-coded US image taken 120 seconds after injection

of microbubbles (MBs) conjugated to RRL (MBRRL) into a mouse bearing a Clone C tumor. Within the

colored areas, gradations from red to orange to yellow to white denote greater signal enhancement by

contrast material. Non-color coded portions are not background subtracted and do not inXuence the

videointensity data. MBRRL resulted in greater contrast enhancement. (b) Corresponding image for

MBs conjugated to a glycine control peptide (MBControl) in the same mouse as A. (c) and (d) Similar

ultrasound images as in (a) and (b), but from a mouse with a PC3 tumor. (e) Collage of high-resolution

photomicrographs taken of a midline PC3 tumor section immunohistochemically stained for factor

VIII, showing localization of the microvasculature predominantly to the periphery of the tumor. Cells

are counterstained with hematoxylin. Some expected shrinkage has occurred secondary to formalin

Wxation. Original magniWcation�20. Adapted from Weller et al. [26].
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FIGURE 20.13 (a) The initial proximity of the Xuorophore molecules to each other results

in signal quenching. (b) NIR Xuorescence image (top) and bright light image (bottom) of

nonactivated C-PGC (left) and activated probe (right). Fluorophore concentration: 0.17 M.

Image acquisition time: 30 seconds. Excitation: 670 nm, emission: 700 nm. Note the diVerence

in signal intensity between enzyme-activated and unactivated probe. (c) Chemical structure of

repeating graft copolymer segment indicating quenching of Cy5.5 and enzymatic degradation

site (green arrow). Adapted from Weissleder et al. [29].



FIGURE 20.14 NIR Xuorescence imaging 24 hours after intravenous

injection of the cathepsin-B-sensitive autoquenched probe in a rep-

resentative animal. (a) Light image; (b) raw NIR Xuorescence image;

and (c) color encoded NIR Xuorescence signal (arbitrary units of NIR

Xuorescence intensity) superimposed on light image. The highly in-

vasive breast adenocarcinoma (DU4475) was implanted on the right

of the chest and the well-diVerentiated adenocarcinoma (BT20) on

the left. Note the higher Xuorescent signal depicted on the highly

invasive breast lesion (b, c). Adapted from Bremer et al. [28].
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FIGURE 20.15 Comparison of [18F]FDG PET (A and A0) and [11C]choline PET (B and B0) in

two patients with brain tumors. The tumor (red arrow) in A and B has a high glycolytic rate and

high choline levels. The tumor in A0 and B0 contains high choline levels, but a relatively low

glycolytic rate.
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FIGURE 20.18 (a) Second-harmonic signal in a Mu89 melanoma grown in the dorsal skinfold

chamber of a severe combined immunodeWcient mouse. This image was a montage of 12 separate

images, each of which was a maximum intensity projection of 5 images obtained at 20-mm steps.

The image shown is 6.6 mm in width. (b) Second-harmonic signal with highlighted vessels.

Vessels were highlighted with an intravenous injection of 0.1 ml tetramethylrhodamine-dextran

(10 mg/ml; red pseudocolor). SHG signal, green pseudocolor. There was no colocalization of SHG

signal with the borders of blood vessels. The image shown is 275 mm in width. (c) Average spectra

of light generated with 810 nm excitation of an approximately 0:25-mm2 region of a Mu89

melanoma in the dorsal skinfold chamber of an immunodeWcient mouse. Adapted from Brown

et al. [61].



FIGURE 20.19 SPECT versus SPECT-CT in combined PSMA receptor and anatomic prostate cancer

imaging. (Left) SPECT scan of a patient receiving ProstaScintTM showing the presence of multiple

metastases as well as liver and spleen uptake. (Right) Fused SPECT-CT images in a diVerent patient also

receiving ProstaScintTM as well as major blood vessels in the imaged region (yellow arrows).
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FIGURE 20.20 Maps of (a) vascular volume (VV) and (b) permeability surface area product (PSP)

obtained from a central slice of a PC-3 prostate tumor xenograft (180 mm3) expressing enhanced

green Xuorescent protein (EGFP) under the control of a hypoxia response element (HRE). VVranged

from 0 to 344 ml=g and PSP from 0 to 24 ml=g min. (c) Fluorescent microscopy of a fresh tissue slice

obtained from the imaged slice, using a Nikon TS100-F microscope (�1 objective) with a wavelength

of 512 nm. (d) Hematoxylin and eosin stained, 5-mm-thick section from the central MRI slice. The

region exhibiting EGFP consisted of viable cells. The less dense staining in the upper part of the

section is due to uneven sectioning. The only area of dying cells was in a small necrotic focus (black

arrow). Adapted from Raman et al. [62].
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FIGURE 21.4 Antibodies of any speciWcity can readily be engineered for in vivo targeting and

imaging by microPET. In each panel, the antigen-positive xenograft is indicated by the thick

yellow arrow, and the antigen-negative control tumor is shown by the thin orange arrow. All

images were acquired at 18–21 hours postinjection; coronal slices are shown. (a) CEA imaging

using I-124 cT84.66 diabody. (b) Her2 imaging using Cu-64-DOTA (tetraazacyclo-dodecane-

tetraacidic acid) trastuzumab scFv-Fc DM. (c) CD20 imaging using I-124 rituximab minibody.

(d) PSCA imaging using I-124 hu2B3 minibody.



Effects of irradiation on implanted tumor in mouse as measured with PET
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FIGURE 21.6 Multiple microPET images (using FDG and FLT) of a mouse (C57BL/6) at various

days post-irradiation (25 Gy) applied to an implanted tumor (TRAMP). The tumor on the other

side did not receive radiation and was used as a control. The images are the transaxial (left) and

coronal (right) sectional images of the mouse through the center of the tumors. They were scanned

at 60 minutes after tracer injection (IV bolus through the tail vein). FDG uptakes at days 2 and 5

post-irradiation (P.I.) are seen to have increased (compared with that of the control tumor) until

day 9 P.I., when it decreased. FLT uptake at day 1 P.I. is seen to be lower than that in the control

tumor but got back to a comparable level at day 8 P.I.
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FIGURE 21.7 (a) Short-time-frame PET images (coronal and sagittal sections) of a mouse

immediately after a bolus of FDG injected IV in the tail vein. The PET images (in color) were fused

over the x-CT images (in black and white) of the animal. The injected tracer Wrst appeared in the

vena cava, then in the right ventricle (RV), the lung, the left ventricle (LV), and the aorta in

sequence in less than Wve seconds. Afterward, the tracer was delivered to various organ tissues in the

body. (b) Time activity curves obtained from regions of interest deWned on the RV and LV. The

kinetics can be used to calculate the transit time through the pulmonary system and the cardiac

output of the animal [96, 97]. Figure provided by Dr. H. M. Wu, Department of Molecular and

Medical Pharmacology, UCLA School of Medicine.



FIGURE 21.8 Screen capture of the opening window panel of KIS (upper left background)

and that of the whole-body kinetics simulation panel of the virtual experimentation module in

KIS. For a set of kinetic parameters speciWed by the user for a tracer in various organs of the

body, virtual experimentation can generate the time activity curves in the body organs and

corresponding dynamic mouse PET images, which simulate the real PET images if the tracer

were actually given to an experimental mouse.


